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Abstract

The advancement of AI has significantly accelerated CV research in industrial

manufacturing, focusing on using AI-based models to detect and classify surface de-

fects in product inspection. However, existing models often underperform in prac-

tice due to neglecting defect characteristics. This study addresses three key issues:

underutilization of large-scale normal samples, challenges in leveraging few defec-

tive samples, and ensuring robust detection against product/inspection standard

changes. While industrial settings have abundant normal samples, effectively using

them for training remains difficult. Humans can detect/classify defects with min-

imal examples, but deep learning requires substantial labeled data, which is often

unfeasible. Lastly, current models struggle to generalize to new products/standards

due to industrial products’ vast diversity and irregularity.

First, the unsupervised Reducing Biases (REB) is proposed for industrial anomaly

detection representation. This model learns from normal images to detect prod-

uct surface defects. A self-supervised task fine-tunes the pre-trained model via

the DefectMaker strategy, ensuring diverse synthetic defects. Additionally, the

local-density k-nearest neighbors (LDKNN) method addresses normal image pat-

terns/distributions, reduces feature space density bias, and enables effective anomaly

detection.

Second, this research proposes a novel mulit-view region context (MVREC) frame-

work for few-shot defect multi-classification (FSDMC), focusing on generalization

and contextual feature extraction. MVREC enhances defect classification by inte-

grating pre-trained AlphaCLIP for general feature extraction and using a region-

context framework with multi-view context augmentation. The framework also in-

cludes Few-shot Zip-Adapter(-F) classifiers to cache support set features for efficient

few-shot classification. To validate MVREC, this study introduces MVTec-FS, a

new FSDMC benchmark with instance-level mask annotations for 46 defect cate-

gories, and demonstrates its performance via comprehensive experiments on multiple

datasets.
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Third, addressing fabric inspection challenges in the dynamic clothing indus-

try—where new fabric types and inspection criteria emerge—this research proposes

a Continual Learning-based Fabric Inspection Model (CLFIM). Traditional models

fail to adapt to unseen patterns or defect categories due to pattern/criteria shifts.

CLFIM, trained on specific fabrics, learns pattern and inspection criteria contexts to

adapt to new tasks. Experiments on three complex-patterned fabrics with varying

criteria show that the YOLOV8-based CLFIM effectively handles evolving inspec-

tion challenges.

Overall, this research introduces innovative approaches—REB, MVREC, and

CLFIM—to address critical challenges: underutilization of normal/defective sam-

ples and detection difficulties for altered products/inspection criteria. These models

enhance defect detection/classification across fabric types and industrial products.

Incorporating self-supervised, few-shot, and continual learning expands defect de-

tection research scope.
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Chapter 1

Introduction

1.1 Background

In manufacturing Industry, productivity and product quality are fundamental to

a company’s growth and competitiveness. Consequently, defect detection on in-

dustrial product surfaces has garnered significant attention from researchers across

various industrial sectors, including the textile, steel, automotive industries, intel-

ligent manufacturing, semiconductors, and polymer material processing. Surface

quality is critical for products because surface defects can greatly affect their ap-

pearance, functionality, performance, yield, management, and marketability. The

limitations of current product surface inspection methods are a key factor constrain-

ing product quality. As labor costs rise, demand for production capacity expands,

relevant policies provide support, and numerous industrial frameworks are estab-

lished, new methods such as machine vision-based intelligent defect detection are

rapidly emerging. In industrial production, manual measurement and judgment are

prone to errors, visual fatigue, and inconsistencies among operators. Despite these

challenges, ineffective and costly human visual inspection remains the predominant

approach. To further advance the automation of product defect detection, the adop-

tion of computer vision (CV) and deep learning (DL) methods has emerged as a key

development direction. These methods simulate human inspection processes to en-

hance efficiency and accuracy in detecting product defects. Consequently, the study

1



CHAPTER 1. INTRODUCTION

of CV methods for product defect detection holds significant practical relevance,

and research in this area is of great theoretical importance and practical value for

achieving intelligent manufacturing.

Industrial surface inspection is typically conducted using image processing within

computer vision-based (CV) techniques. CV-based defect detection, with its long

history of development, identifies the presence of defects in an image and deter-

mines their location. This work classifies CV-based defect detection into two main

categories: traditional CV-based methods and deep learning-based (DL) methods.

1.1.1 Traditional Computer Vision-based Defect Detection

Traditional CV-based algorithms have played a significant role in research, especially

before the widespread adoption of convolutional neural networks (CNNs). These

traditional algorithms aim to construct templates or features for detecting defects,

and their performance heavily depends on how accurately they can model these

features. Numerous methods have been proposed to address this challenge across

various scenarios. Popular feature-extraction techniques include the local binary

pattern [1], co-occurrence matrix [2], Gabor filter [3], and histogram [4]. However,

traditional algorithms often struggle with generalization and effectiveness, as they

are typically designed for specific scenarios.

1.1.2 Deep Learning-based Defect Detection

Designing generic feature representations for defect detection tasks presents a sig-

nificant challenge. Deep learning (DL)-based defect detection, which falls under

the category of representation learning, can automatically learn defect features and

has recently shown greater potential, becoming one of the most prominent top-

ics in AI. Today, several DL-based models [5, 6] have significantly outperformed

traditional methods in defect detection due to their ability to automatically learn

task-relevant representations. These DL models, in which all the samples used for

training are labeled, are referred to as fully supervised models. However, training

2



CHAPTER 1. INTRODUCTION

a convolutional neural network (CNN) requires a large number of annotated sam-

ples, particularly defective ones. The process of collecting and annotating these

samples is time-consuming, which significantly limits their industrial application.

To address the high cost of labeling, many weakly supervised models [7, 8, 9] and

unsupervised models [10, 11, 10] have been developed, and these have also become

hot research topics. Weakly supervised models rely on imprecise supervision, which

reduces costs. Liu et al. [7] proposed an effective weakly supervised model for fabric

defect detection, incorporating attention mechanisms to emphasize defective regions.

Zhang et al. [8] suggested training a weakly supervised model with image-level la-

bels while performing both image classification and defect localization. Boi et al. [9]

explored using a mixture of image-level and pixel-level labels to enhance image

classification performance. However, weakly supervised learning methods may face

unstable training due to incomplete supervision, resulting in unsatisfactory perfor-

mance. Unsupervised models, such as autoencoders, estimate defects by calculating

the residual between an image and its reconstruction. These models assume that

only non-defective samples are used during training to eliminate the need for data

labeling, with the expectation that reconstruction errors will be higher for unseen

defective images. Mei et al. [10] proposed a multi-scale convolutional denoising au-

toencoder network for unsupervised fabric defect detection. Tsai and Jen [11] also

employed a convolutional autoencoder (CAE) to detect surface defects, significantly

reducing development costs. Niu et al. [12] trained a generative adversarial network

to measure the distribution distance between test samples and non-defective sam-

ples. However, the results are not always as expected, as CNNs may utilize their

powerful learning abilities to replicate inputs, including defective regions.

1.2 Research Gap

To summarise, previous works cannot be applied properly to actual industrial

scenarios due to ignoring that a large number of normal samples with a small

number of defective samples is most often encountered in industrial scenarios. The

3



CHAPTER 1. INTRODUCTION

research gap is as follows:

(1) Underutilization of Large-Scale Normal Samples

These data-driven DL-based methods rely on large-scale defect datasets with

high-quality annotations to alleviate the overfitting problem. However, it is difficult

to collect a big-scale fabric defect dataset due to the low probability of defect

occurrence. Luckily, Large-Scale normal (non-defective) samples are easy to collect

in industrial scenarios. How to make the best of the large-scale normal samples to

train a defect detection model is a crucial research question.

(2) Underutilization of a small number of defective samples

In practice, a small number of defective samples of different classes is available in

addition to a large number of normal samples. Even if only a few defect samples

of each class are provided, humans can learn characteristics and do detection

and classification with a high degree of accuracy. Unfortunately, deep learning

algorithms rely on as much labeled data as possible to obtain great generalization,

which is not in line with the actual situation. In particular, defect classification

tasks require a very large number of labeled samples to cope with the intra-class

diversity of the defects. Thus, it is a practical research problem to use a small

number of defective samples to develop a model for defect classification properly.

(3) The uncertain performance when products and inspection standards

are altered.

The uncertain performance when products and inspection standards are altered.

It is challenging to build an annotated dataset and train a model that covers all

products and potential defects due to the extensive diversity of industrial products

and the irregularity of defects. Most current models are typically trained to detect

specific defects in a controlled set of products with predefined inspection criteria.

However, when these products or inspection standards are altered, the performance

of the model becomes uncertain. The model may struggle to adapt to new types of

defects or product variations it has not encountered during training. This limitation

poses significant challenges in maintaining consistent accuracy and reliability in
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CHAPTER 1. INTRODUCTION

real-world applications.

1.3 Research Objectives

This research seeks to design an intelligent model for the quality control of industrial

products. The primary objectives of this study are outlined as follows:

a) To develop a new intelligent vision model for general industrial image defect

detection and classification. The defect detection model learns from a large number

of normal images (without defects ) and can detect defects subsequently. On the

other hand, the defect classification model can identify the defect categories.

b) To train a defect detection model by using only normal samples for handling

the lack of defect data. The model learns the normality representation from normal

samples to handle unseen defects and achieve better detection precision and recall.

c) To develop a defect classification model based on the few-shot learning to make

the best of the limited defects and achieve competitive classification accuracy.

d) To apply the model in the textile industry and handle fabric inspection problems

on common woven fabrics, including plain, stripe and print fabric.

1.4 Research Methodology

In this study, a comprehensive Computer Vision Model for Industrial Product Sur-

face Inspection is proposed, specifically focusing on fabrics in the textile and apparel

industry. The research is organized into four key phases.

First, this study constructed a dataset by combining public and self-collected

sources, including the MVTec AD dataset, Visa dataset, and the AIFIX fabric

dataset, to evaluate the models. The MVTec AD dataset, a widely recognized

benchmark for industrial anomaly detection, along with the AIFIX fabric dataset

and the self-collected fabric dataset, were used to assess the performance of the few-

shot classification and context-based fabric inspection models.
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The second phase involves industrial anomaly detection, where this study utilizes

pre-trained models to detect anomalies in industrial product images, framing it as

a one-class classification problem that addresses domain bias and normality distri-

bution.

In the third phase, this study addresses few-shot defect multi-classification at the

instance level using techniques such as multi-view augmentation, region context rep-

resentation, fine-tuning, and adapter-based models.

The final phase introduces a continual learning-based fabric inspection model de-

signed to tackle the challenges of pattern shift and inspection criterion shift in fabric

inspection tasks. The model undergoes initial pre-training on a plain color fabric

dataset, followed by continual learning using support samples to detect defects in un-

familiar fabrics. A thorough examination of the methodology is detailed in Chapter

3.

1.5 Research Significance

This study proposes a comprehensive model with corresponding algorithms to ad-

dress the challenges of defect detection and classification in industrial product sur-

face images, particularly fabric images. The model is capable of highlighting and

displaying defect locations on fabrics, facilitating quality inspection in the industrial

manufacturing industry. Additionally, the model can categorize defects, aiding in

tracking the causes of these defects. specifically, this study contributes to the field

of computer vision in the following aspects:

(1) Enhancement of Methodology for Defect Detection.

This study introduces an algorithm designed to enhance defect detection perfor-

mance. The algorithm maximizes the utilization of normal samples to train a defect

detection model, thereby improving the detection of unseen defects. Furthermore,

the algorithm effectively leverages pre-trained models to analyze surface images and

accurately localize defects.

(2) Advancement of Methodology for Defect Classification.

6



CHAPTER 1. INTRODUCTION

This study offers new perspectives to broaden the research methodology for defect

classification. It advocates for the direct application of general feature extraction

from pre-trained models, combined with few-shot defect samples, to train a defect

classification model. This approach addresses the gap in methodologies for defect

classification in quality inspection.

(3) Improvement of Performance for Fabric Inspection Model.

This study proposes a fabric inspection model utilizing continual learning, specif-

ically designed for the textile industry. Pre-trained feature representations and

memory bank techniques are introduced to quickly adapt to new detection tasks in-

volving different fabric types and defect categories. This approach aims to enhance

the performance of defect category classification in the textile industry.

1.6 Outline of the Thesis

Chapter 1 introduces the research background of industrial quality control. This

chapter highlights the research gap and describes the research objectives and signif-

icance of this study. Chapter 2 rviews the research works on the CV field. Chapter

3 presents the research methodology for solving the defect detection and classifica-

tion problems, including the defect dataset, the metrics, and the proposed method.

Chapter 4 introduces an unsupervised anomaly detection algorithm for industrial

product quality control. Chapter 5 introduces a defect multi-classification model

using few-shot learning. Chapter 6 introduces a Continual Learning-based Fabric

Inspection Model to adapt to unseen defects and fabric types. Chapter 7 summarises

the accomplished work and gives plans for future research.
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Chapter 2

Literature Review

Deep learning is increasingly used in industrial product surface inspection. This

chapter first reviews the use of DL in industrial product surface inspection. In

addition, the paradigm of anomaly detection using normal images, few-shot defect

multi-classification, and continual learning-based fabric inspection are discussed.

2.1 Deep Learning-based Models for Defect De-

tection

This work examines deep learning-based algorithms for defect detection from the

perspective of learning methodologies, including supervised and unsupervised learn-

ing. Supervised models require that all images be labeled. Based on their network

structure, these models can be categorized into three types: defect classification

models, object detection models, and segmentation models. Defect classification

models address the “what” question, i.e., determining whether an image contains

defects and identifying the category of those defects. These models can be fur-

ther divided into binary and multi-class classifications. The binary classification

models aim to predict the presence of defects in an image, while the multi-class

models seek to identify the specific class of defects. Common classification networks

include the Vgg series [13], Resnet series [14, 15], and ShuffleNet [16, 17] series.
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ShuffleNet [16] is a lightweight model designed for high inference efficiency, incorpo-

rating two new modules, pointwise group convolution and channel shuffle, to reduce

computational cost. Building on the ShuffleNetV2 [17] framework, Liang et al. [18]

proposed using ShuffleNetV2 for plastic container inspection and applied it in a

practical industrial inspection system. Object detection models aim to answer the

questions “where is the defect and what is it?” by locating and categorizing defects.

Commonly used models include the RCNN [19, 20, 21] and YOLO [22, 23, 24] series.

In the literature, Tao et al. [25] adopted Faster R-CNN with a cascaded structure

for power line insulator defect detection. Hu and Wang [26] developed a new PCB

surface defect detection model based on Faster R-CNN, using ResNet50 as the back-

bone. Commonly used segmentation networks include FCN [27], Unet [28], and the

DeepLab [29, 30, 31] series. Mask RCNN [21] is an advanced model that extends

Faster R-CNN by integrating object detection and instance segmentation in a two-

stage process. Xiao et al. [32] proposed an improved version of Mask RCNN, called

IPCNN, which first uses a deep residual neural network to map the image to CNN

features. These features are processed by a feature pyramid to generate pyramid

features, which are then fed into an RPN to generate defect bounding boxes and

classify them. Finally, FCN is used to generate a defect mask within the defect

bounding box. In the field of surface defect detection of industrial products, super-

vised methods are currently the most widely used deep learning techniques due to

their high accuracy and good adaptability. However, the drawbacks of these meth-

ods have become increasingly apparent in practical applications, particularly the

substantial workload associated with labeling datasets, especially in high-precision

scenarios. Additionally, the ongoing advancement of industrial standards has led

to a decrease in defective samples, which presents further challenges for supervised

methods.
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2.2 Unsupervised Anomaly Detection Using Nor-

mal Samples

With the proposal of the industrial anomaly detection datasets, such as the MVTec

AD datasets [33], the MVTec LOCO dataset [34], and the Real-ID D3 dataset [35],

the research on industrial unsupervised anomaly detection has gained significant

attention. The MVTec AD dataset is a widely used benchmark for evaluating

anomaly detection methods, containing 15 categories with various defects. The

MVTec LOCO dataset includes both structural and logical anomalies. It contains

3644 images from five different categories inspired by real-world industrial inspection

scenarios. Real-ID 3D is a high-precision multimodal dataset that uniquely incor-

porates an additional pseudo3D modality generated through photometric stereo,

alongside high-resolution RGB images and micrometer-level 3D point clouds. Un-

supervised learning [36] algorithms are designed to analyze and cluster unlabeled

datasets. These algorithms identify hidden structures or data clusters without hu-

man annotations by recognizing similarities and differences, making them widely

applicable in computer vision tasks. However, the irregularity of defect data limits

the effectiveness of standard unsupervised learning methods. Given that normal im-

ages of product surfaces are readily available, anomaly detection (AD) [37], which

learns exclusively from normal images, has been proposed as a new unsupervised

paradigm. The objective of AD is to develop computational models and methods

that learn “what is normal” and thereby identify and locate defects. Anomaly de-

tection has been a significant research topic for decades, with pioneering work dating

back to the 1960s [38]. This method has been explored across various disciplines

and applications, including image, video, text, and audio data. Image anomaly

detection, an essential computer vision task, identifies abnormal regions in images

and holds great potential for applications in the medical and manufacturing fields.

Image anomaly detection can be performed at either the image level or the instance

level.
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In recent years, deep learning has demonstrated significant capabilities. However,

applying deep learning algorithms using supervised learning to practical defect de-

tection is challenging due to the scarcity of anomaly data and the highly imbalanced

distribution between normal and abnormal classes. Recently, deep learning-based

anomaly detection methods have been introduced, offering improved performance.

Since this study primarily explores deep-learning-based anomaly detection, the term

“anomaly detection” will be used for brevity in the following sections. Unsupervised

anomaly detection is generally categorized into reconstruction-based and embedded

feature-based methods.

2.2.1 Reconstruction-based Anomaly Detection

The first category is “image reconstruction-based methods,” which represent the

most fundamental approaches in anomaly detection (AD). These methods [11, 39, 40,

41, 42] are based on the principle that an encoder-decoder model is trained to recon-

struct only normal images. When an abnormal image is input, the model typically

fails to accurately reconstruct the anomalous regions. Therefore, the discrepancy

between the input and reconstructed images indicates the presence of anomalies.

Auto-encoder (AE): Vanilla auto-encoders (AEs) have been used for decades for

feature dimensionality reduction. Masci et al. [43] first combined CNNs with AEs

to create CAE, demonstrating superior performance on digit and object recogni-

tion benchmarks in 2011. With the rapid development of CNNs, improvements and

applications of CAEs have increased, making it a popular framework in computer

vision. One of the most prominent applications of AEs is anomaly (defect) detection.

Hasan et al. [44] were the first to use CAE for video anomaly detection, pioneering

the application of AEs in reconstruction tasks for unsupervised anomaly detection.

Baur et al. [45] designed an unsupervised anomaly segmentation AE to detect brain

anomalies in MR images. Reconstruction-based methods for industrial anomaly de-

tection in CAE follow this AE framework. For instance, Mei et al. [46] employed

CAE to reconstruct fabric images and used the residual reconstruction map for in-
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dustrial fabric defect detection. Recognizing the difficulty of directly reconstructing

entire fabric images with tiny defects, they focused on reconstructing image patches

at various levels of the image feature pyramid. Youkachen et al. [47] used AE for

anomaly detection on hot-rolled steel strip surfaces, while Chow et al. [48] presented

a similar CAE application for structural concrete defect detection.

2.2.2 Representation-based Anomaly Detection

Recently, pre-trained models on natural image datasets such as ImageNet [49], as

well as models trained through general computer vision tasks, have become popular

feature extractors, demonstrating impressing performance. Representation-based

methods for anomaly detection build an feature space for normal samples, followed

by estimating features using various distribution models, such as Gaussian density

estimation (GDE) [50, 51, 52] and normalizing flow (NF) [53, 54, 55, 56], as well

as non-parametric models like KNN [57, 58, 59] and KDE [60, 61]. KNN-based

anomaly detection collects a dictionary of normal features from a pre-trained model

and then performs KNN retrieval and distance measurement. DN2 [59] was the

first method to combine KNN with a pre-trained CNN feature extractor, showing

promising results in image anomaly detection. Subsequently, SPADE [58] extracted

patch-level features and performed patch-level anomaly detection and localization

using KNN. PatchCore [57], following this approach, built a patch-level feature

dictionary referred to as a feature set. Additionally, it collects multi-level features

for better representation and employs a Coreset algorithm [62] to reduce Computing

costs. Yao et al. [63] propose a simple but effective framework (called ResAD) that

can be irectly applied to detect anomalies in new product categories. The main

insight is to learn the esidual feature distribution rather than the initial feature

distribution. In this way, ResAD ignificantly reduces feature variations. Wang et

al. [64] proposed a istribution Prototype Diffusion Learning (DPDL) method aimed

at enclosing normal samples within a compact and discriminative distribution space.

Zhu et al. [65] introduced a novel approach, namely Anomaly Heterogeneity Learning
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(AHL), that simulates a diverse set of heterogeneous anomaly distributions and then

utilizes them to learn a unified heterogeneous abnormality model in surrogate open-

set environments.

2.2.3 Synthetic Defect-based Anomaly Detection

Pre-trained CNNs are not ideal for anomaly detection due to the domain bias

between pre-trained tasks and current task. To mitigate this problem, many re-

searchers have proposed using self-supervised learning (SSL) [66] to create proxy

tasks that reduce domain bias. SSL methods learn features from unlabeled images.

Among these, synthetic defect-based methods [67, 68, 69, 70, 71], which generate

synthetic defect samples through image editing, are some of the most commonly

used proxy tasks for anomaly detection. Image editing is a widely adopted data

augmentation technique in supervised learning [72, 73]. A straightforward tech-

nique [69, 70] involves randomly removing regions of various sizes and filling them

with customized values. However, these methods often produce artificial defects that

fail to accurately mimic real defects, resulting in biased models with poor general-

ization. Improved techniques fall into two categories. The first focuses on increasing

the complexity of the training task [71, 67, 74, 75]. For example, Zavrtanik et al. [74]

and Yan et al. [75] increased training difficulty by removing significant portions of

the image during training, reducing information redundancy and making the recon-

struction task more challenging. This approach led to better anomaly detection

performance. Additionally, Tan et al. [71] first proposed using image patches from

different images within the same dataset as defects. Similarly, Li et al. [67] intro-

duced an SSL method called Cutpaste, where a region is cropped from a defect-free

image and pasted onto another to create a synthetic defect. These methods treat

normal patches from other images as defects, thereby increasing the complexity of

the learning task and improving feature representation. The second category aims

to generate more diverse defects. Theoretically, the more diverse the synthetic de-

fects, the smaller the domain bias. As a result, some methods incorporate different
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defect distributions, sizes, brightness levels, and shapes to create a wider variety of

synthetic defects [68, 76]. For instance, Zavrtanik et al. [68] generated more realis-

tic defects by cropping regions from various texture images in public datasets and

using them as defective fills. Schlüter et al. [76] proposed a Poisson fusion method

to address the visible discontinuity at defect margins caused by pasting one part of

an image onto another.

2.3 Few-shot Defect Multi-Classification

2.3.1 Few-shot Learning

Given the challenge of acquiring a substantial number of labeled samples in many

practical scenarios, the applicability of deep neural network models is often signif-

icantly constrained. Few-shot learning addresses this by focusing on the critical

challenge of training models to achieve high performance with only a limited set of

labeled samples, a necessity for advancing machine learning in various domains. In

few-shot learning, each category is represented by a small set of training samples,

referred to as the support set, with the objective of classifying the query set based

on the model’s training on this support set. However, the scarcity of training data

increases the risk of overfitting, which can degrade model performance. To mitigate

this, few-shot learning typically involves an additional training set, known as the

base classes, which contains categories distinct from those in the support set. The

model is initially trained on these base classes, and when presented with a new task

involving novel classes, it quickly adapts using the support set, thereby achieving

good performance on the new task. This approach is analogous to the human cog-

nitive process, where individuals can swiftly learn to identify a new object from a

few examples after building up prior knowledge.

Few-shot learning has been applied in various fields, including medical image

recognition, defect detection in products, robotic action learning, speech synthesis,

and more. These models have demonstrated impressive performance across different
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datasets, highlighting the potential of few-shot learning in defect classification tasks.

However, traditional methods often involve training a base model on the base classes

and then fine-tuning it on novel classes, which limits their ability to handle all classes

simultaneously. The proposed MVREC model, utilizing the CLIP model, addresses

this limitation by allowing evaluation on all classes within any dataset, making it

more reflective of real-world scenarios.

2.3.2 CLIP-based Few-shot Classification

The most common few-shot methods include meta-learning and metric learning.

Meta-learning methods learn a model that can quickly adapt to new tasks with

minimal training data. Metric learning methods learn a distance metric that can

effectively measure the similarity between samples. Recently, large language models

and multi-modal pre-training models, such as GPT [77, 78] and CLIP [79], have

emerged as powerful tools. Related research [80, 81] has been applied to defect

detection tasks, showing impressive performance. Numerous adapter-based methods

have been proposed to adapt the CLIP model to specific tasks with few samples, such

as CLIP-Adapter [82], Tip-Adapter [83], CoOp [84], and SuS-X [85]. To enable CLIP

to focus on specific regions within the entire image, various methods [86, 87, 88, 89]

have been explored. AlphaCLIP is an innovative enhancement of the CLIP model,

designed to improve its ability to focus attention on specific regions [89]. This

architecture enables AlphaCLIP to provide precise control over the emphasis of

image content. In this work, AlphaCLIP is used to generate the region-context

feature for the defect instance.
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2.4 Continual Learning-based Fabric Inspection

Model

2.4.1 Fabric Inspection Models using Deep Learning

The current techniques for fabric defect detection include structural, spectral, sta-

tistical, model-based, and learning-based approaches [90]. Structural methods view

fabric textures as assemblies of textural primitives, typically identifying defects

through a two-step process: first, by detecting basic fabric textures, and second,

by learning the overall texture patterns. However, these methods often struggle

with irregular fabric textures. Spectral methods, on the other hand, identify defec-

tive regions by converting the original image into the spectral domain and analyzing

the filter response energy. Techniques such as Fourier [91], Gabor [92], and wavelet

transforms [93] are included under spectral methods, effectively leveraging global

information from fabric images. Model-based methods address defect detection

through modeling and decomposition techniques. Although spectral and statisti-

cal methods face challenges in inspecting stochastic surface variations in randomly

textured fabrics, model-based methods, such as auto-regressive models and Gauss

Markov random fields (MRF), can offer improved performance in these scenarios.

Recent advancements in deep learning have become crucial for developing algorithms

that address image processing challenges in quality inspection within the textile and

apparel industry. For instance, Jing et al. [94] applied the deep convolutional neural

network YOLOv3, originally successful in general object detection tasks, to fabric

defect detection. Additionally, Zhu et al. [95] modified the DenseNet architecture

and developed a tailored cross-entropy loss function aimed specifically at defect de-

tection within edge computing environments. This study presents an innovative

prototypical network crafted to improve fabric defect classification, particularly in

cases where class distributions are imbalanced. The proposed approach, evaluated

against five established models using a commercial fabric defect dataset, achieved a

leading classification accuracy of 96.04% across seven defect categories.
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2.4.2 Continual Learning with Pre-Trained Models

With the swift progress of deep neural networks, deep learning models have exhibited

exceptional potential across numerous applications. However, in practical situations,

data frequently arrives in a streaming manner, necessitating the development of

learning systems that can adapt and evolve continuously. The emerging field of pre-

training techniques has recently offered promising opportunities in this area. Lever-

aging pre-trained models (PTMs) developed from extensive datasets and advanced

techniques [96] has proven highly effective for continual learning (CL). These PTMs

exhibit robust generalization across a wide array of downstream tasks, leading to

the growing popularity of PTM-based CL in research. The integration of PTMs into

CL generally follows three main approaches: prompt-based methods, representation-

based methods, and model mixture-based methods. In prompt-based methods [97],

visual prompts are fine-tuned while keeping the pre-trained weights unchanged.

Conversely, model mixture-based methods generate multiple models throughout the

learning process and apply strategies like model merging, ensembling, and other

combination techniques to derive the final prediction. Representation-based meth-

ods operate under the assumption that the knowledge required for new tasks is

already encapsulated within the PTMs, exploiting their generalization capabilities

to construct downstream models directly. This section is dedicated to exploring

representation-based methods in detail.

Inspired by representation learning, SimpleCIL [98] introduces a straightforward

approach to handle continuous data streams by freezing pre-trained weights and

computing a central representation (prototype) for each class. This method captures

the most representative pattern by averaging the embeddings of samples within the

same class, which is then used as a classification template during inference. Sim-

pleCIL replaces the classifier weight for each class with its corresponding prototype

and employs a cosine classifier for prediction. Despite its simplicity, this approach

yields impressive results, demonstrating that pre-trained models (PTMs) possess

sufficiently generalizable representations that can be directly applied to downstream
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tasks. Similar results have been observed in other studies [99], with [100] extend-

ing this concept to large language models. Building on the strong generalization

capabilities of PTMs, ADAM [98] evaluates performance on new classes by compar-

ing prototype-based classifiers to fully fine-tuned models. The findings suggest that

while PTMs are highly generalizable, they may lack the specific information needed

for optimal performance on new downstream tasks. Consequently, ADAM advo-

cates fine-tuning PTMs using parameter-efficient modules, such as prompts [101]

or adapters [102], and combining features from both the pre-trained and adapted

models. This strategy effectively bridges the domain gap between pre-trained and

downstream datasets, leading to improved performance over SimpleCIL. More re-

cently, EASE [103] further enhances performance by integrating feature represen-

tations from multiple task-specific backbones, achieving state-of-the-art results. It

introduces a semantic mapping strategy to complement the classifier, addressing

challenges posed by the expanding feature space and previous classifiers. Building

on ADAM, RanPAC [104] discovers that prototypes often exhibit class-wise correla-

tions and suggests using an online LDA model to remove the intra-class correlations,

thereby improving class separability. Additionally, RanPAC introduces a random

projection layer to align the feature distribution with a Gaussian fit, projecting

features into a higher-dimensional space. Furthermore, LayUP [105] identifies that

the strong representational capability extends into the deeper layers of transformer

blocks. Representation-based methods are designed to fully leverage the features ex-

tracted by pre-trained models, which have demonstrated strong performance across

various tasks. This approach offers several key advantages: it provides intuitive

and interpretable recognition models by capturing the most typical pattern of each

class, facilitates the assessment of baseline performance in PTM-based continual

learning, and supports a lightweight update process by freezing the backbone and

only updating classifier weights, making it practical for real-world applications.
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2.5 Chapter Summary

This chapter reviews the use of deep learning in industrial product surface inspec-

tion from a learning perspective. Then methods for unsupervised anomaly detection

and few-shot defect multi-classification are introduced. Furthermore, the continual

learning-based methods and fabric inspection models are discussed. However, the

existing anomaly detection methods do not fully consider the domain bias between

pre-trained models and industrial anomaly detection tasks and the intra-image dis-

tribution bias in industrial images, which limits their performance. The existing

defect Few-shot defect multi-classification methods is rarely and do not exploit the

pre-trained CLIP model and the region context feature for defect instance. The

current fabric inspection models ,mainly focuses on the deep learning-based defect

detection methods, and the continual learning-based fabric inspection model is not

fully explored. The next chapter will introduce the methodology of this work to

address these limitations.
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Methodology

This chapter presents the proposed industrial product surface inspection methodol-

ogy and introduces the related deep learning methods. Additionally, the datasets

and the metrics used are presented.

3.1 Overview of the proposed Computer Vision

Model for Industrial Product Surface Inspec-

tion

The goal of this study is to develop a Computer Vision Model for Industrial Product

Surface Inspection, with a focus on fabrics in the textile and apparel industry. To

achieve this goal, four specific tasks are designed. The overall research process,

consisting of four phases, is illustrated in Figure 3.1. The framework includes

four phases: 1) Dataset Construction, 2) Unsupervised Anomaly Detection, 3)

Few-shot Learning-based Defect Classification, and 4) A Practical End-to-End

Fabric Detection Model Using Continual Learning.

Phase 1. Dataset Construction:

To evaluate the performance of the developed algorithms, both public and self-

collected datasets are utilized.

Phase 2. Industrial Anomaly Detection:
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This phase involves learning the distribution of normal samples using pre-trained

models and detecting anomalies in industrial product images, which is framed as

a one-class classification problem. This task addresses domain bias between the

pre-trained model and industrial product images, models the distribution of normal

samples, and measures the distance between normality and test samples.

Phase 3. Few-shot Defect Multi-classification:

This phase focuses on solving the defect classification problem at the instance level

after learning from few-shot samples. Several techniques are employed, including

multi-view augmentation, region context representation, fine-tuning, and adapter-

based models. The model is trained with a support set and evaluated using a query

set and few-shot samples.

Phase 4. Continual Learning-based Fabric Inspection Model:

This phase addresses the challenges of pattern shift and inspection criteria shift in

fabric inspection tasks. In practical scenarios, the model may encounter unseen

fabric patterns and defects. To evaluate the model, both a self-collected solid color

fabric dataset and a novel fabric dataset are used. The model is first pre-trained

on the solid color fabric dataset and then tested on the novel fabric dataset using

available samples. By adapting the model with few-shot samples, it can effectively

detect unseen defects in the novel fabric dataset.

Figure 3.1: Architecture of the proposed intelligent framework.

21



CHAPTER 3. METHODOLOGY

3.2 Dataset Construction

Figure 3.2: Visualization of the MVTec AD Dataset. The dataset consists of 15
different product types.

In this section, datasets for training and evaluating the performance of related

methods and the algorithms of the proposed intelligent model are described. Some

public industrial product defect datasets and self-collected fabric datasets are intro-

duced in this section.

Public datasets

The public datasets include the MVTec AD dataset [33], MVTec LOCO

dataset [106], and BTAD dataset [107] are used to evaluate the performance of

the developed anomaly detection model. These datasets are the most widely used

benchmarks for industrial anomaly detection. MVTed-FS based on MVTed AD is

built to evaluate the performance of the developed few-shot classification model,
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with more details shown in chapter 5. Additionally, four other datasets with clas-

sifcation annotations also are used to evaluate the performance of the developed

defect classification model, including NEU-DET [108], PCB Defect Dataset [109],

Magnetic Tile Surface Defects (MTD) [110], AITEX Fabric defect [111].

MTFabric dataset

Owing to the lack of fabric defect datasets focusing our the problems, this study

constructs one Mulit-type Fabric (MTFabric) dataset, which contains three types

of fabric with different patterns and inspection standards. We categorize these as

Fabric Type A, Fabric Type B, and Fabric Type C. Fabric Type A represents a

knitted fabric with a consistent pattern (see Table 3.1). Fabric Type B, a printed

fabric (see Table 3.2), and Fabric Type C, characterized by irregular stripes (see

Table 3.3), are sourced from the publicly available Guangdong dataset [112]. This

dataset is designed for the evaluation of intelligent fabric inspection models, with

instance-level bounding boxes applied to label defects. Each type is divided into two

primary subsets: the support set and the query set. The support set comprises a

mixture of normal images and a limited number of defective images, while the query

set includes the remaining images. The model is initially trained on the support

set and subsequently tested on the query set, with performance assessed using the

few-shot defective samples.

Figure 3.3: Visualization of the MTFabric Dataset. The dataset consists of three
fabric types with differnt patterns and inspection standards.
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Split
Image Defect

Total Normal Defective StopMark OilNeedle OilYarn HorizontalStrip Knot Stain StainPoint
support set 218 142 76 33 11 11 18 4 6 6
query set 120 52 68 18 5 11 25 6 6 7

Table 3.1: Details of fabric type A in novel fabric dataset.

Split
Image Defect Count Map

Total Normal Defective Seam Seam Impression Crease Pattern Hair
query set 141 47 94 61 23 13 3
support set 187 71 116 83 28 16 5

Table 3.2: Details of fabric type B in novel fabric dataset.

Split
Image Defect Count Map

Total Normal Defective Seam Stain Crease Pattern Hair
support set 206 45 161 90 83 41 11
query set 258 127 131 68 69 27 11

Table 3.3: Details of fabric type C in novel fabric dataset.

3.3 Industrial Anomaly Detection

In industrial defect detection, the combination of pre-trained models, fine-tuning

techniques, and distance-based anomaly detection methods is pivotal for achieving

high accuracy and efficiency. Leveraging pre-trained models on large datasets like

ImageNet [49], followed by domain-specific fine-tuning, enables models to adapt to

the unique characteristics of industrial images. Additionally, distance measurement

techniques, such as k-Nearest Neighbors (k-NN) with Euclidean distance, provide

robust mechanisms for identifying anomalies, ensuring reliable and precise defect

detection in industrial settings.

3.3.1 Pre-trained Models and Fine-tuning

Pre-trained models have become a cornerstone in the field of computer vision (CV),

significantly enhancing the efficiency and performance of downstream tasks. These

models, typically trained on large and diverse datasets such as ImageNet, capture

a wide range of features, from low-level edges to high-level object representations.

ImageNet, in particular, is a widely recognized benchmark in the CV community,

consisting of millions of images across thousands of categories. By pre-training on

such a comprehensive dataset, models develop a robust ability to generalize across

various visual tasks.
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When applied to downstream tasks, pre-trained models offer several advantages.

First, they reduce the need for extensive labeled data, as the pre-trained weights

provide a strong starting point for further fine-tuning. This is particularly benefi-

cial for specialized tasks where labeled data may be scarce or expensive to obtain.

Second, using pre-trained models accelerates the training process since the model

already possesses a foundational understanding of visual features. Fine-tuning these

models for specific tasks, such as defect detection in industrial products, allows the

network to adapt its learned features to the nuances of the new task, often leading

to improved accuracy and efficiency compared to training from scratch.

However, while pre-trained models provide a solid foundation, they often per-

form suboptimally when directly applied to downstream tasks due to domain bias.

Domain bias occurs when the data distribution of the pre-trained model’s source

domain (e.g., ImageNet) differs significantly from that of the target domain (e.g.,

industrial product images). To mitigate this issue, fine-tuning is employed, which

involves retraining the pre-trained model on a smaller dataset specific to the target

domain. This process can be mathematically expressed as an optimization problem:

θ∗ = argmin
θ

N∑
i=1

L(f(xi; θ), yi) (3.1)

where θ represents the parameters of the pre-trained model, xi and yi are the

input images and their corresponding labels in the target domain, and L is the loss

function used to measure the difference between the predicted and actual labels.

The goal is to adjust the pre-trained weights θ to minimize the loss on the target

domain data.

In the context of defect detection, fine-tuning is particularly important because

the nature of defects in industrial products can vary greatly from the objects typ-

ically found in general-purpose datasets like ImageNet. To further reduce domain

bias, a common approach is to fine-tune the model using a proxy task that involves

classifying between normal images and synthetically generated defect images. This

approach allows the model to adapt its learned features more effectively to the spe-
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cific characteristics of the target domain.

The training process for this proxy task typically employs a cross-entropy loss

function, which is widely used for classification tasks. The cross-entropy loss for this

task can be defined as:

Lcross-entropy = −
1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (3.2)

where yi is the true label of the i-th sample (with 1 for defect and 0 for normal),

ŷi is the predicted probability of the i-th sample being a defect, and N is the total

number of samples. This loss function measures how well the model’s predictions

match the true labels and is minimized during fine-tuning to improve the model’s

classification accuracy.

By treating the differentiation between normal and defect samples as a proxy

task and using synthetic defects, the model can better learn to distinguish between

defect-free and defective regions, thereby enhancing its ability to detect real-world

anomalies.

This strategy not only adapts the model to the specific characteristics of in-

dustrial images but also leverages the robustness of pre-trained features to improve

defect detection accuracy. Consequently, the adoption of pre-trained models, com-

bined with fine-tuning on such proxy tasks, has become a standard practice in

computer vision, driving advancements across a wide array of applications.

3.3.2 Normality Representation

Normality is represented by features extracted from defect-free samples, which serve

as the baseline for identifying deviations in defect detection tasks. These features

are typically derived from a fine-tuned model trained on images within the target

domain that contain no defects. By encoding these normal features, the model

develops a comprehensive understanding of what constitutes ’normal’ in the context

of industrial product images.

The extracted features are stored in a memory bank, denoted asM, which serves
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as a reference repository:

M = {f1, f2, . . . , fN} (3.3)

where fi represents the feature vector of the i-th normal sample, and N is the

total number of stored normal samples.

During the defect detection process, the features of new samples fnew are com-

pared against the memory bankM. If these features significantly deviate from those

inM, the sample is flagged as potentially defective. This method ensures consistent

and accurate identification of anomalies by leveraging the fine-tuned feature space.

3.3.3 Distance Measurement

In the context of anomaly detection, distance measurement is critical for assessing

how much a test sample’s features deviate from those of the normal samples stored

in the memory bank. One of the most common approaches is to use the k-Nearest

Neighbors (k-NN) algorithm in conjunction with Euclidean distance to quantify this

deviation.

The k-NN algorithm identifies the k closest normal samples to the test sample

within the feature space. The proximity of these samples is determined using the

Euclidean distance metric. The Euclidean distance d(x, y) between two feature

vectors x and y is calculated as:

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2 (3.4)

where xi and yi represent the i-th features of the vectors x and y, respectively,

and n is the number of features.

Once the k nearest neighbors are identified, the anomaly score for the test sample

is computed based on the distances to these neighbors. A common approach is to

use the average distance to the k nearest neighbors:
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Anomaly Score =
1

k

k∑
j=1

d(x,yj) (3.5)

where yj represents the j-th nearest neighbor to the test sample x. A higher

anomaly score indicates a greater deviation from the normal samples, suggesting

that the test sample is more likely to be an anomaly.

The effectiveness of k-NN with Euclidean distance in anomaly detection stems

from its simplicity and interpretability. By focusing on the direct, straight-line

distance between feature vectors, this method provides an intuitive measure of sim-

ilarity. Moreover, by averaging the distances to the k nearest neighbors, the model

can smooth out noise and achieve a more robust assessment of whether a sample is

anomalous.

3.4 Few-shot Defect Mulit-Classifcation

3.4.1 Few-Shot Classification

Few-shot classification aims to classify objects using only a small number of labeled

examples. In the conventional N -way K-shot setting, models typically categorize

classes into base classes and novel classes. Base classes are those with ample labeled

data available during training, enabling the model to learn robust feature represen-

tations. Novel classes, however, are introduced during testing with only K labeled

examples per class, challenging the model to generalize from minimal data.

Formally, let Cbase and Cnovel denote the sets of base and novel classes, respectively,

where Cbase∩Cnovel = ∅. The model is trained on tasks Ttrain, each involving a support

set Si and a query set Qi, drawn from Cbase. During testing, the model is evaluated

on tasks drawn from Cnovel, where it must classify novel classes with limited examples.

In our approach, however, this study removes the distinction between base and

novel classes. Instead, this study evaluates the model across all classes, relying solely

on the few examples provided per class, regardless of whether the class was seen
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during training. This unified approach leverages the model’s ability to generalize

across all classes:

Si = {(xj, yj)}N×K
j=1 , yj ∈ Call (3.6)

Qi = {(xl, yl)}Ll=1, yl ∈ Call (3.7)

where Call represents the complete set of classes without distinguishing between

base and novel classes. This strategy allows the model to be evaluated across all

available classes, relying purely on the small number of examples per class, thereby

streamlining the classification process and potentially enhancing its generalization

capabilities across a broader range of classes.

3.4.2 Contrastive Language-Image Pretraining Model

Contrastive Language-Image Pretraining (CLIP) [79] is a model that learns a joint

embedding space for both images and text. By aligning image and text represen-

tations in the same space, CLIP enables a range of tasks such as zero-shot and

few-shot learning without requiring task-specific fine-tuning. CLIP leverages large-

scale datasets consisting of image-text pairs to train its model, resulting in a versatile

and generalizable representation.

The CLIP model consists of two main components: an image encoder fimg(·)

and a text encoder ftext(·), which project images and texts into a shared embedding

space. During training, CLIP optimizes a contrastive loss function that encourages

image-text pairs to have similar embeddings while pushing apart embeddings of

unrelated pairs.

Zero-Shot Learning with CLIP

CLIP’s zero-shot learning capability leverages the model’s ability to understand and

align image and text representations without the need for additional training on the

specific downstream task. In a zero-shot setting, the model is provided with a set

of class labels described in natural language and is tasked with classifying images
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into these classes without having seen any labeled examples for these classes during

training.

Given an image xquery, the zero-shot classification is performed as follows:

1. Encode the image using the image encoder:

zimg = fimg(xquery) (3.8)

2. Encode each class label using the text encoder. For each class cj with descrip-

tion tj, compute:

zjtext = ftext(tj) (3.9)

3. Compute the similarity between the image embedding and each class label

embedding:

simj = sim(zimg, z
j
text) (3.10)

4. Assign the image to the class with the highest similarity score:

ypred = argmax
j

simj (3.11)

Few-Shot Learning with CLIP

For few-shot learning, CLIP can be adapted by utilizing a small number of labeled

examples to refine the alignment between the image and text embeddings. While

CLIP can be used directly in a zero-shot manner, leveraging a few labeled examples

can help improve its performance on the target task.

The few-shot learning process with CLIP typically involves the following steps:

1. Support Set Construction: Collect a small support set S consisting of K

labeled examples for each of the N classes. Each support example includes an image

xj and its corresponding class label yj described by text tj.

2. Feature Extraction: Encode the images in the support set and their corre-
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sponding text descriptions using the CLIP encoders:

zjimg = fimg(xj), zjtext = ftext(tj) (3.12)

3. Prototypical Representations: Compute a prototypical representation for

each class by averaging the embeddings of the support examples for that class:

zcproto =
1

K

K∑
j=1

zjimg (3.13)

4. Query Classification: For a given query image xquery, encode it using the

image encoder:

zquery = fimg(xquery) (3.14)

Then, compute the similarity between the query image embedding and each class

prototype:

simc = sim(zquery, z
c
proto) (3.15)

Finally, assign the query image to the class with the highest similarity score:

ypred = argmax
c

simc (3.16)

This few-shot classification strategy allows CLIP to adapt to new tasks with lim-

ited labeled data, leveraging its pretrained joint embedding space to make accurate

predictions.

3.4.3 Region Context-based Models

Unlike dense prediction tasks such as object detection and instance segmentation,

which can predict the positions and categories of multiple instances within an image,

classification networks typically provide an image-level prediction. This approach

does not account for the presence of multiple instances within a single image, poten-

tially leading to a loss of information regarding individual instances. To address this
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limitation, region context-based models have been proposed. These models incor-

porate positional information as a prompt to predict the target’s information while

preserving the contextual information around the target.

P(I) = f(R,C) (3.17)

In this equation, P(I) represents the predicted information for the image I, f

denotes the function of the model, R indicates the region of interest within the

image, and C represents the contextual information surrounding that region.

For example, the Segment Anything Model (SAM) network uses prompts in

the form of points, bounding boxes, or masks to guide the segmentation process.

By incorporating these prompts, the network is able to preserve the contextual

information around the target, leading to more accurate predictions for specific

regions within the image.

T(R,P ) =
n∑

i=1

wi · g(Ri, Pi) (3.18)

Here, T(R,P ) denotes the target information predicted by the model for region

R with prompt P , where Ri and Pi are the respective regions and prompts at

position i, wi represents the weight assigned to the contextual information, and g

is a function that combines the region and prompt information.

These models effectively bridge the gap between image-level predictions and

instance-level predictions, allowing for more precise and context-aware classifica-

tion of multiple instances within a single image. The incorporation of region-based

prompts ensures that the model can focus on specific areas of interest, enhancing

its ability to discern and categorize multiple targets within the image.
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3.5 Continual Learning-based Fabric Inspection

Model

The Continual Learning-based fabric inspection model (CLFIM) integrates the ap-

proach outlined in the previous two phases, utilizing normal samples along with a

small number of defective samples. The main differences between this chapter and

the previous ones are as follows: First, this model is specifically designed for fabric

inspection, with pre-training conducted on a solid-color fabric dataset. Second, it is

an end-to-end model that directly performs detection and classification tasks, mak-

ing it more suitable for real-world applications. This study discusses the application

of end-to-end YOLOv8 for object detection, deep feature extraction for enhanced de-

fect representation, and the use of pre-trained models (PTMs) in continual learning

to ensure robust.

3.5.1 YOLOv8 for Object Detection

The first phase involves the application of YOLOv8 (You Only Look Once, Version

8), a SOTA one-stage object detection model known for its efficiency. YOLOv8 takes

an input image I and outputs a set of bounding boxes along with their corresponding

class labels and confidence scores. Formally, the output can be represented as:

YOLOv8(I) = {(bi, ci, si)}ni=1 (3.19)

where bi = (xi, yi, wi, hi) denotes the bounding box for the i-th detected defect,

with xi and yi being the coordinates of the center of the bounding box, and wi and

hi representing the width and height, respectively. ci is the class label assigned to

the i-th defect, and si is the confidence score indicating the probability that the

detected defect belongs to class ci.

The output from YOLOv8 provides the preliminary identification of potential

defects within the image, with each detected defect characterized by its location

and category. This allows for further, more detailed analysis to confirm the presence
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and nature of any defects identified.

3.5.2 Continual Learning with Pre-Trained Models

Continual learning (CL) focuses on learning from a continuous stream of data, in-

stead of learning static dataset. Formally, given a sequence of tasks T = (T1, T2, . . .),

where each task Ti comprises a training dataset

Di = {(x(i)1 , y
(i)
1 ), (x

(i)
2 , y

(i)
2 ), . . .}, (3.20)

an offline continual learning algorithm ACL updates the weights θ using the current

task Dk, such that θk = ACL(θk−1, Dk), beginning from an initial parameter θ0.

To mitigate the issue of forgetting in CL, many setups employ an episodic

memory Mk, a limited-size subset of training data from prior tasks, such that

(θk,Mk) = ACL(θk−1,Mk−1, Dk). The goal is to minimize the error of θk across

all encountered tasks {Ti}ki=1.

In contrast to offline CL, where all training samples in Dk are available simulta-

neously, online CL processes data as a stream of samples (x
(k)
1 , y

(k)
1 ), (x

(k)
2 , y

(k)
2 ), . . ..

An online CL algorithm AOCL is thus defined as:

(θk,t,Mk,t) = AOCL

(
θk,t−1,Mk,t−1, (x

(k)
t , y

(k)
t )

)
(3.21)

with the same objective of minimizing the error of θk,t on {Ti}ki=1. As the algorithm

does not retain previous samples {(x(k)s , y
(k)
s ), s < t} at time t, multi-epoch training

on Dk is not feasible in the online CL setting.

Representation-based methods are specifically designed to maximize the utility

of features extracted by pre-trained models, which have shown high effectiveness

across various tasks. This approach provides several significant benefits. Firstly,

class prototypes encapsulate the most representative patterns of their respective

classes, making them a natural and interpretable basis for constructing recognition
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models. Prototype-based classifiers also offer a simple yet effective benchmark for

evaluating the performance of PTM-based continual learning (CL). Furthermore,

this method usually involves freezing the backbone and only updating the classifier

weights, leading to a lightweight and practical update process suitable for real-world

scenarios.

3.6 Chapter Summary

This chapter has outlined the development of a computer vision model for industrial

product surface inspection using unsupervised learning and few-shot learning tech-

niques. Initially, this study introduces the public datasets and the self-collected fab-

ric datasets utilized in this study. Following this, this study introduces the research

methodology for industrial anomaly detection, which includes model pre-training,

fine-tuning, normality representation, and distance measurement. Subsequently, this

study discusses the research methodology for region-context-based few-shot defect

multi-classification, incorporating deep feature extraction techniques and advanced

algorithms such as CLIP and AlphaCIP. This methodology covers few-shot classi-

fication as well as the evaluation strategy for the proposed few-shot classification

method. Finally, this study presents the research methodology for the continual

learning-based fabric inspection model, which integrates the popular one-stage de-

tection model YOLOv8 and continual learning with pre-trained models. This chap-

ter provides a comprehensive overview of the research methodologies employed in

this study, setting the stage for the subsequent chapters to explore the technical

details and experimental results.
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Chapter 4

Reducing Biases in Representation

for Industrial Anomaly Detection

This chapter introduces an advanced methodology for industrial anomaly detection,

addressing the shortcomings of current representation-based techniques. Typically,

these methods follow a two-stage process: first, extracting feature representations us-

ing a pre-trained model, and second, applying distance measures to identify anoma-

lies. Among these approaches, K-nearest neighbor (KNN) retrieval methods have

shown significant potential. However, their effectiveness is often constrained by in-

sufficient feature utilization, a consequence of domain bias in pre-trained models

and variations in local density within the feature space.

To address these limitations, this chapter presents a novel method called Reduc-

ing Biases (REB) in representation. REB mitigates domain bias through the inte-

gration of a self-supervised learning task specifically tailored for enhanced domain

adaptation, coupled with a defect generation strategy named DefectMaker, which

ensures substantial diversity in synthetic defects. Furthermore, a local-density KNN

(LDKNN) technique is proposed to reduce local density bias in the feature space,

thereby improving detection results.

The effectiveness of the proposed method is demonstrated by achieving remark-

able results, such as a 99.5% Im.AUROC on the well-known MVTec AD dataset us-
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ing smaller backbone networks like Vgg11 and Resnet18. Additionally, the method

achieves 88.8% Im.AUROC on the MVTec LOCO AD dataset and 96.0% on the

BTAD dataset, surpassing other representation-based approaches. These results

validate the method’s effectiveness and efficiency, making it a viable solution for

industrial applications.

4.1 Introduction

Inspired by human cognition, automatic anomaly detection [113] seeks to identify

unusual patterns or disrupted structures in data predominantly trained on normal

instances. This approach has found extensive application across various domains, in-

cluding industrial product surface inspection [114], video analysis [115], and medical

diagnosis [116, 117].

This research specifically focuses on the challenge of industrial anomaly de-

tection, which involves identifying anomalies within industrial images. Figure 4.1

presents illustrative examples from the MVTec AD [33] and MVTec LOCO AD [106]

datasets, along with corresponding detection outcomes. Otaining a substantial

amount of anomalous data for training is difficult in practical scenarios. To address

this problem, current studies have employed unsupervised anomaly detection tech-

niques, utilizing auto-encoding models, Generative Adversarial Networks (GANs),

and representation-based methods.

Representation-based methods for anomaly detection typically consist of two

main components: a feature extractor and a distribution estimator. The feature

extractor derives features from normal images or image patches using pre-trained

Deep Learning (DL) models. The distribution estimator then models the normal

feature representation and calculates the distance between the extracted features

of a given image and the model’s normal feature distribution, which serves as the

anomaly score. These methods have become increasingly popular due to their sim-

plicity and effectiveness, leveraging pre-trained models that benefit from the rapid

advancements in computer vision. Many studies [118, 57, 50, 51, 58] have utilized
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Figure 4.1: Anomaly detection results on the industrial product surface.

pre-trained models for feature extraction and subsequent distribution estimation in

anomaly detection.

Nevertheless, detecting anomalies in industrial settings poses distinct chal-

lenges. Unlike object detection in natural scenes, where the content is varied

and semantically rich, industrial anomalies often manifest in small, irregular ar-

eas. This disparity creates a domain bias between natural-scene image detection

and industrial anomaly detection, which subsequently reduces the effectiveness of

methods based on pre-trained models. To overcome this limitation, various stud-

ies [67, 76, 68, 69, 70, 71, 119] have explored self-supervised learning techniques to

develop improved feature representations for anomaly detection.

In particular, some approaches [67, 68, 69, 70, 71] focus on simulating natural
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defects to enhance representation learning. Nevertheless, these methods often fall

short in capturing the full complexity and variability of real defects. Although they

attempt to generate defects of varying sizes and locations, the defects are frequently

drawn from a fixed-shape distribution, making it easy for DL models to overfit, thus

resulting in suboptimal performance. To address this issue, this work proposes a

novel defect generation strategy called DefectMaker, which produces a diverse array

of synthetic defects to enhance representation learning.

On the other hand, industrial images often contain complex information, leading

to significant differences between image patches, known as intra-image distribution

bias. For instance, in the MVTec AD dataset, the five texture categories exhibit

smaller intra-image distribution biases, whereas the ten object categories display

larger intra-image distribution biases, as shown in Fig. 4.1. This intra-image dis-

tribution bias arises because object categories typically contain more diverse local

structures, shapes, and semantic content within a single image, resulting in greater

variability among patch-level features. In contrast, texture categories are generally

more homogeneous, with repetitive patterns and less variation across patches, lead-

ing to a more uniform feature distribution. Such bias poses additional challenges

for anomaly detection, as models must distinguish between normal variations within

an image and true anomalies. Therefore, effectively modeling and compensating for

intra-image distribution bias is crucial for improving the robustness and accuracy of

industrial anomaly detection methods.

Therefore, designing an effective distribution estimator is a critical component of

representation-based methods, which aim to model patch-level features for anomaly

localization and detection. Numerous studies have proposed various solutions to

address this challenge. Earlier works have employed Gaussian density estimation

(GDE) [50, 51, 67, 52] to model CNN features for anomaly detection. Some ap-

proaches have utilized normalizing flows to map image features into a Gaussian

distribution. Additionally, several studies [57, 58, 59] have adopted KNN search for

feature matching, using the distance as an anomaly score.
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KNN-based methods, known for their simplicity and effectiveness, have yielded

promising results in anomaly detection. However, most industrial anomaly detection

methods rely solely on the vanilla KNN approach, neglecting the local density bias

present in feature space. In other domains, existing KNN variants, such as Kth-

NN [120], LOF [121], and LDOF [122], consider the local distribution in feature

space but show minimal improvement in industrial anomaly detection based on my

experiments. This chapter builds on the KNN framework by proposing an LDKNN

model that better accounts for density bias in industrial anomaly detection. Our

experiments demonstrate that LDKNN outperforms vanilla KNN and other KNN

variants, achieving state-of-the-art results.

Overall, to tackle the dual challenges previously identified, this study proposes REB

for industrial anomaly detection, comprising two innovative modules: DefectMaker

and LDKNN.

DefectMaker characterizes defects by integrating shapes with fills, using an array

of both to generate a diverse set of synthetic defects. Notably, DefectMaker employs

Bézier curves to craft various defect shapes and leverages a saliency model to guide

their placement, resulting in lifelike synthetic defects. These generated defects are

subsequently utilized to fine-tune a pre-trained model via a self-supervised learning

approach, effectively mitigating domain bias. The refined model is then able to

extract more pertinent features for industrial anomaly detection tasks. LDKNN,

on the other hand, operates on patch-level features extracted by pre-trained models

and performs unsupervised anomaly detection. LDKNN addresses density bias in

features by incorporating a local density model that accounts for variations in local

feature density. This local density is used to normalize distance measurements

during inference, thereby enhancing anomaly detection performance. The proposed

framework improves detection accuracy while utilizing fewer parameters, making it

suitable for real-time inspection.

The remainder of this chapter is organized as follows: Section 4.2 reviews related

work. Section 4.3 details the proposed method. Section 4.4 presents and discusses
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the experimental results. Finally, Section 4.5 concludes this chapter.

4.2 Related Works

Anomaly detection (AD) based on learning from normal images is the most preva-

lent unsupervised approach in defect detection and can be categorized into two

main types: construction-based methods and representation-based methods. Re-

cently, the use of pre-trained models on natural image datasets like ImageNet [49]

or self-supervised learning tasks has become popular as feature extractors, yielding

satisfactory results.

Representation-based methods for anomaly detection create an embedding fea-

ture space for normal samples and then estimate or compare these features using var-

ious distribution models. These models include parametric approaches such as Gaus-

sian density estimation (GDE) [50, 51, 52] and normalizing flow (NF) [53, 54, 55, 56],

as well as non-parametric methods like KNN [57, 58, 59] and kernel density estima-

tion (KDE) [60, 61].

KNN-based anomaly detection techniques typically involve constructing a dic-

tionary of normal features from a pre-trained model, followed by KNN retrieval and

distance computation. DN2 [59] was the pioneering method to integrate KNN with

a pre-trained CNN feature extractor, yielding promising results in image anomaly

detection. Building on this, SPADE [58] extracted patch-level features and utilized

KNN for patch-level anomaly detection and localization. PatchCore [57] advanced

this approach by creating a patch-level feature dictionary, known as a memory bank,

and improving feature representation through multi-level feature extraction. It also

leveraged the Coreset algorithm [62] to reduce inference costs. Another method,

SMCC [123], introduced an anomaly detection framework based on self-updating

memory and center clustering, employing a Gaussian mixture model to fit normal

features while simultaneously learning the backbone and updating the memory bank.

Similarly, the proposed method also employs a feature memory bank to represent

normality. However, the primary distinction between REB and existing memory
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Figure 4.2: Overview of the framework of REB.

bank-based approaches is that REB utilizes a locally density-normalized metric for

anomaly detection. Rather than considering the overall dataset density, REB em-

phasizes the density of data points in the immediate vicinity of the point being

analyzed. This concept has been well-established in foundational clustering algo-

rithms [124, 125] and outlier detection [121, 126]. We assume that the memory bank,

composed of patch-level features from normal samples, is clean. Therefore, samples

with lower local density are less likely to be anomalies, which contrasts with the

typical outlier detection assumption. This is achieved by applying a local density

model to normalize the distance measurement between the feature under detection

and its nearest neighbors.

4.3 Method

This study introduces the REB framework, which operates through two main pro-

cesses: the training process and the inference process, as illustrated in Fig. 4.2. The

training process involves three key steps: 1) self-supervised learning with Defect-

Maker, 2) constructing the Normality memory bank, and 3) measuring local density

in the memory bank.

In the first step, synthetic defective images are generated using the DefectMaker
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algorithm, which reduces domain bias and aids in the learning of deep features

tailored to industrial applications. In the second step, CNN features extracted from

normal images are collected and stored to construct a memory bank, which serves as

the representation of normality. In the third step, the local density of each feature

point within the memory bank is calculated.

During the inference phase, deep features from test images are extracted using the

frozen CNN model. These features are then matched with their nearest neighbors

from the memory bank, and an anomaly score is calculated based on the local

density-normalized distance.

We summarize the process of measuring local density within the memory bank

and the LDKNN inference process as the LDKNN algorithm.

4.3.1 Self-Supervised Learning with DefectMaker

DefectMaker generates a large volume of synthetic defect samples, and the model

is trained to distinguish these synthetic images from normal ones through a proxy

self-supervised learning (SSL) task.

DefectMaker

DefectMaker is designed to produce various types of defects, including noise,

masking, distortion, and other defect types. To fully utilize normal samples and

create a diverse range of synthetic defects that more closely resemble natural anoma-

lies, DefectMaker models a defect as a combination of its fill and shape, utilizing a

defect-fusing strategy. As depicted in Fig. 4.3, the DefectMaker pipeline consists

of three main steps: 1) generating defect shapes; 2) generating defect fills; and 3)

synthesizing defect images.

Bézier shape. The rectangles used in previous methods like [67] are overly sim-

plistic, resulting in CNNs trained with these shapes exhibiting limited generalization

capabilities. To enhance the realism of the simulated defects, the Bézier curve [127]

is employed to generate a variety of shapes. A Bézier curve is a parametric curve

commonly used in computer graphics to simulate real-world curves using a set of
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discrete ’control points,’ rather than relying on a direct mathematical equation.

Two derivative shapes are defined within this approach: Bézier-scar and Bézier-

clump shapes. Scar augmentation, as introduced in Cutout [72], utilized a long,

thin rectangle to simulate minor defects. In contrast, a Bézier-scar shape is defined

as a curved shape generated by the Bézier algorithm, bounded by a rectangular

scar, making the defects appear more realistic and similar to actual scratches. The

”Bézier-clump shape” is created by generating a curve using the Bézier algorithm,

which is then eroded and divided into a cluster of defects.

Defect fill. DefectMaker generates fills with two different distributions. The

first type is random noise fill, where noise is added to digital signals or images

to introduce randomness or variability—a common data augmentation technique

in machine learning tasks. In this study, the random noise fill is generated by

controlling properties such as the mean and fluctuation range. The second type

is CutPaste fill [67], which involves cutting a region from another image within

the same dataset to use as the fill. This technique increases the complexity of the

learning task, thereby enhancing the model’s discriminative ability.

Defect Fusing. DefectMaker leverages an saliency method [128] to detect promi-

nent regions in images, specifically those containing key objects, which are then used

to define the defect area. Saliency models are designed to identify visually striking

objects or separate the foreground from the background in images using an unsu-

pervised method. In this study, the EDN model [129] is utilized as the saliency

extractor. For texture images, the entire image area is treated as a saliency region

by default.

The fusion of synthetic defects into an image is a critical step. DefectMaker

adopts two fusing styles: Pasting and Blending. Pasting involves directly inserting

the defect into the targeted region, which can create a distinct boundary between the

defect and the background. Blending, on the other hand, merges the defect with

the background using a weighted combination [73], resulting in a more seamless

integration between the defect and the surrounding area. By employing both fusing
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Figure 4.3: DefectMaker Pipline.

techniques simultaneously, DefectMaker enhances the diversity of synthetic samples.

Self-supervised learning (SSL) Task

DefectMaker is capable of generating a vast range of defects with varying sizes,

shapes, textures, positions, and appearances. To fine-tune the pre-trained CNN

models on ImageNet, this chapter introduces an SSL task that involves learning from

these synthetic images. Moreover, defects generated with different configurations in

DefectMaker (such as shapes and fills) can be categorized as distinct classes. To fully

exploit the diversity of synthetic images, a multi-class classification training strategy

is employed. The learning objective for this task is defined using the commonly-used

cross-entropy function, as follows:

L = −
C∑
c=1

Yc log (p (Yc | Xi,Φ)) (4.1)

where Xi is a normal image, Yc is the label for class c, p (Yc | Xi,Φ) is the

predicted probability of class c given the input image Xi and the feature extractor

Φ, and C is the total number of classes. The model is trained to minimize this loss

function, thereby improving its ability to distinguish between normal and defective

images. Different configurations of DefectMaker can be used to generate a diverse set
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of synthetic defects, which can be treated as different classes. This approach allows

the model to learn from a wide range of defect types and enhances its generalization

capabilities.

4.3.2 Constructing the Normality Memory Bank

After SSL learning, the second step of the training process involves using the back-

bone CNN layers to extract patch-level features from normal images and, following

the methods described in [58] and [57], constructing a memory bank as the normal-

ity representation with these features. In this work, ResNet [130, 131] is employed

as the feature extractor. Let X denote a normal image, and φj(X) ∈ RCj×Hj×W j

(j ∈ {1, 2, 3, 4}) represent the feature map of X at the j-th hierarchy, where Cj,

Hj, and W j are the feature channel, height, and width, respectively.

A common strategy, as used in [58, 67, 59], is to take φ4, the feature map from the

last hierarchy of ResNet18. However, this approach may not be ideal for industrial

anomaly detection because the deeper features from the last hierarchy are often

biased towards the proxy task. Given that anomalies in industrial images may be

characterized by small spatial sizes and irregularities, these features can be lost as

the network becomes deeper. Therefore, this work, following [57], adopts the second

and third hierarchies φ2(X) and φ3(X) for X.

To maximize the utility of the multi-hierarchy feature maps, a feature aggrega-

tion module is introduced to combine features from multiple hierarchies. Specif-

ically, the aggregation process involves two steps: local spatial aggregation and

multi-hierarchy aggregation. First, a local average pooling operation is applied

to φ2(X) and φ3(X) to obtain a larger receptive field, followed by upsampling

φ3(X) to match the resolution of φ2(X). Then, φ2(X) and φ3(X) are aggre-

gated along the channel dimension into an integrated feature map, denoted as

φ(X) = φ2(X)⊕ φ3(X) ∈ RC′×H′×W ′
, where C ′, H ′, and W ′ are equal to C2 + C3,

H2, and W 2, respectively. A location φ(X, h, w) ∈ RC′
represents a feature vector

associated with a patch in the image. Finally, the feature vectors of the normal
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training images are collected into a feature dictionary (memory bank M ).

Algorithm 1: LDKNN algorithm

Training Process:
Input: Patch-level Memory Bank M
Mld = {emptyset}
For mi ∈M do

retrieve the KNN m1
i ,m

2
i , ...,m

K
i

dmi = meanK(||m i −m ik||2), 1 ≤ k ≤ K
M ld ←M ld ∪ {(m i, dmi)}

Return Memory bank with local density M ld

Inference Process:
Input: Input image X
Patch-level anomaly score map SX = {emptyset}
Patch-level feature map φ(X) = {f j}, 1 ≤ j ≤ H̀ × Ẁ

(m j , dmj ) = argmin
(mi,dmi )∈M ld

||f j −m i||2

sfj = ||f j −m j ||2 − α ∗ dmj

SX ← SX ∪ sfj
Image-level anomaly score: SI

X = max(SX)

Return S I
X , SX

4.3.3 Local density measurement in the memory bank M

The vanilla KNN-based anomaly detection process involves retrieving the K most

similar feature points for a query feature and computing the average Euclidean

distance as the anomaly score. However, the vanilla KNN approach assumes that the

patch-level feature space is homogeneous, which is an overly simplistic assumption.

This method does not account for the local density bias caused by the complex

intra-image distribution and the irregular characteristics of defects.

In the final training step, local density measurements are performed for each

feature point in the memory bank. Specifically, for each feature point dmi
, its K

nearest neighbor features (KNNs) are retrieved, and the average distance between

the feature point and its KNNs is calculated as the local density using the following

equation:

dmi
= meanK

(
||m i −mk

i ||2
)
, 1 ≤ k ≤ K, (4.2)

where mk
i denotes the k-th neighbor of mi, and meanK(·) represents the mean

function, calculating the average Euclidean distance between mi and its K nearest
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neighbors.

This distance serves as a measure of the local density in the memory bank.

The smaller the distance, the higher the density. As a result, a local density-based

memory bankM ld is constructed, where each feature point is assigned a local density

attribute value.

4.3.4 LDKNN inference process for anomaly detection

After the training process, two core components are obtained: a CNN feature ex-

tractor and a local density memory bank M ld for unsupervised anomaly detection.

In the inference process in Fig. 4.2, for each testing image X, each testing image

X is first fed into the CNN feature extractor to obtain the aggregated feature map

φ(X). For each feature point f j in φ(X),1-NN is used to retrieve the most similar

feature in the memory bank, and the Euclidean distance between them is determined

as the anomaly score. Further, the local-density-normalized anomaly score sf j
for

patch feature f j is calculated as

sfj = ||f j −m j||2 − α ∗ dmj
, (4.3)

where (m j, dmj
) is the nearest neighbor of fj in the memory bank Mld,

(m j, dmj
) = argmin

(mi,dmi )∈Mld

||f j −mi||2. (4.4)

The anomaly score is normalized using dmj
, with α serving as the local density

coefficient, reflecting the degree of density bias between dense and sparse areas.

Setting an appropriate value for α is crucial. Traversing each feature point in the

feature map and calculating its anomaly score yields a patch-level anomaly score

map SX . The image-level anomaly score SI
X for an image X is calculated as the

maximum of the patch anomaly score map SX as

SI
X = max(SX), xi ∈ X. (4.5)
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REB is not only good at image-level anomaly detection results and is also capable

of achieving pixel-level anomaly detection results SP
X by upsampling SX . We

summarize the measuring of the local density in the memory bank process and

local-density normalized inference process as the LDKNN algorithm, as shown in

Algorithm 1.

KNN LDKNN

Training Time Complexity O(1) O(n2)
Inference Time Complexity O(n · d) O(n · d)
Space Complexity O(n · d) O(n · d)

Table 4.1: Computational Complexity Comparison between vanilla KNN and LD-
KNN.

4.3.5 Computational complexity of LDKNN

This section analyzes the complexity of LDKNN and compare it with the vanilla

KNN method used by PatchCore, as summarized in Table 4.3.4.

The training time complexity of vanilla KNN is O(1), since it merely involves

storing data without an explicit learning phase. The inference time complexity is

O(n · d), as it requires a full scan of the dataset for each query, where n represents

the number of data points and d denotes the dimension of the feature space. The

space complexity is also O(n · d), corresponding to the storage needed for the entire

dataset.

LDKNN enhances the vanilla KNN approach by incorporating local density cal-

culations for each data point during the training phase. This involves determining

the average distance between a feature point and its K nearest neighbors to quantify

the local density. Assuming a linear search is used, the training time complexity of

LDKNN is O(n2). During inference, LDKNN extends vanilla KNN by integrating

local density into the anomaly scoring process. Despite this additional step, the

inference time complexity remains O(n · d), similar to KNN, because the local den-

sity adjustment is a constant-time operation. The space complexity of LDKNN is
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equivalent to that of KNN at O(n · d), as it requires storage of the entire training

set along with an additional local density value for each data point.

Overall, LDKNN is highly efficient, improving anomaly detection performance

by learning local density without increasing the inference time complexity or space

complexity.

4.4 Experiments

We conducted a series of experiments on three datasets to evaluate the effective-

ness of REB. In this section, REB is defined as the combination of DefectMaker

fine-tuned weights and LDKNN detection. The most relevant work for compari-

son is PatchCore, which combines ImageNet pre-trained weights with vanilla KNN

detection.

To facilitate a more detailed comparison of each module’s effects, this section in-

troduces the following baselines: the combination of DefectMaker fine-tuned weights

with vanilla KNN detection, referred to as DefectMaker, and the combination of Im-

ageNet pre-trained weights with LDKNN detection, referred to as LDKNN.

4.4.1 Datasets and Metrics

MVTec AD dataset is a dataset for unsupervised anomaly detection with 15 cat-

egories, including ten objects and five textures. There are 5,354 industrial product

images, where 3,629 normal images are for training and validation and 1,725 for

testing. The training set only contains normal images, while the testing set contains

images of various types of defects and normal defects.

MVTec LOCO AD dataset [106] is another dataset for industrial anomaly

detection. It consists of 1,772 images for training, 304 for validation, and 1,568 for

testing. The training and testing sets are used in the experiment. Different from the

MVTec AD dataset, it demonstrates five more complex inspection scenarios. Each

possesses two difficult anomaly categories: logical and structural anomalies.
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BTAD dataset [107] is another dataset similar to MVTec AD, which is com-

posed of RGB images representing three distinct industrial products and consists of

1,799 images for training and 741 images for testing.

Metrics. In the field of unsupervised anomaly detection, model evaluation typ-

ically focuses on two main aspects: anomaly detection performance and anomaly

localization capability.

Anomaly detection performance refers to the model’s ability to determine

whether an entire image contains anomalies. This requires the model to classify

the entire image as either normal or anomalous. Anomaly localization capability,

on the other hand, assesses the model’s ability to identify specific anomalous pixels

within an image, requiring a binary classification (anomalous or not) for each pixel.

For classification tasks, the Receiver Operating Characteristic (ROC) curve [132]

is a commonly used graphical tool that displays a classification model’s performance

across all possible thresholds. The ROC curve is plotted by comparing the True

Positive Rate (TPR) against the False Positive Rate (FPR). The Area Under the

ROC Curve (AUROC) [133] represents the overall classification performance of a

binary classifier model across different thresholds.

Based on these metrics, Image-level AUROC (Im.AUROC) and Pixel-level AU-

ROC (Pi.AUROC) are used to evaluate the anomaly detection performance and

anomaly localization performance, respectively.

4.4.2 Training Details and Hyperparameter Setting

DefectMaker. We combined 3 different defect shapes with 2 types of defect fills

to generate 6 unique defect categories. Additionally, this study incorporated a non-

defect class, framing the DefectMaker self-supervised proxy task as a 7-class clas-

sification problem. The SGD optimization algorithm was utilized with an initial

learning rate of 0.03, which gradually decreased according to a cosine schedule. The

input images were resized to 256×256 pixels, and a batch size of 1024 was used.

The model was trained for 300 iterations. Due to memory limitations, this section
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implemented a training strategy that involved performing multiple forward passes

before executing a single backward pass.

LDKNN. Regarding the two parameters of LDKNN, K and the local density

(LD) coefficient, the LD coefficient was set to 1 across all subsequent experiments

on three datasets unless otherwise specified. For each dataset, this study applied the

same K value across all categories. However, because the number of training images

per class varies in the MVTec AD and MVTec LOCO AD datasets, the optimal

K parameter for achieving the best results may differ across categories. It may be

interesting to assign a variable K for each class. As shown in Table 4.4.2 and 4.4.4,

this section presented the results using both a constant K and a variable K across

different classes.

Method Backbone Pi.AUROC Im.AUROC
15 Total carpet grid leather tile woodbottlecablecapsulehazelnutmetal nut pill screwtoothbrushtransistorzipper15 Total

FYD [52]

Res18

97.4 98.3 97.4 100 95.4 98.2 100 94.3 93.2 99.8 99 94.9 89.7 99.9 97.2 96.8 97.3
FastFlow [54] 97.2 - - - - - - - - - - - - - - - 97.9
Cflow [53] 98.1 98.5 96.8 98.6 99 94 98.8 99.5 97.6 98.3 97.4 95.1 98.4 92.7 93.5 97.7 96.75
NSA [76] - - - - - - - - - - - - - - - - 97.2

DifferNet [55] - 92.9 84 88 99.4 99.8 99 95.9 86.9 99.3 96.1 88.8 96.3 91.9 91.1 88.6 94.9
CutPaste [67] 96.0 93.1 99.9 100 93.4 98.6 98.3 80.6 96.2 97.3 99.3 92.4 86.3 98.3 95.5 99.4 95.2
PatchCore [57] 97.4 99.4 97.7 100.0 98.9 98.9 100.0 97.7 97.9 100.0 99.6 90.5 98.1 100.0 96.5 97.6 98.2
SMCC [123] 97.9 - - - - - - - - - - - - - - - 97.2

SimpleNet [119] 95.7 - - - - - - - - - - - - - - - 98.3
RD++ [134] 97.6 - - - - - - - - - - - - - - - 98.6
DeSTSeg [135] 97.9 - - - - - - - - - - - - - - - 98.6

(Our) DefectMaker 97.7 98.9 99.7 100.0 100.0 99.3 100.0 99.0 95.1 99.3 100.0 97.3 97.5 100.0 95.2 100.0 98.7
(Our) LDKNN (K=5) 97.9 99.5 99.2 100.0 99.8 99.0 100.0 99.8 98.8 100.0 99.8 95.2 97.4 99.4 99.3 99.2 99.1

(Our) LDKNN (Variable K) 98.0 99.6 99.6 100.0 99.9 99.0 100.0 99.9 99.0 100.0 99.9 97.0 98.1 100.0 99.8 99.6 99.4
(Our) REB (K=5) 98.0 98.9 99.6 100.0 100.0 99.4 100.0 99.5 97.9 99.4 100.0 98.7 98.1 98.9 99.6 100.0 99.3

(Our) REB (Variable K) 98.0 99.0 99.7 100.0 100.0 99.5 100.0 99.7 98.3 99.5 100.0 99.3 98.3 100.0 99.7 100.0 99.5
PatchCore [57]

WR50

98.4 98.4 99.3 100.0 99.8 99.2 100.0 99.5 98.9 100.0 100.0 94.6 97.0 99.7 99.4 99.7 99.0
SMCC [123] 98.3 100 99.3 100 100 99.6 100 96.6 96.6 100 99.6 95.5 91.1 100 100 98.5 98.5

SimpleNet [119] 98.1 99.7 99.7 100 99.8 100 100 99.9 97.7 100 100 99.0 98.2 99.7 100 99.9 99.6
RD++ [134] 98.3 - - - - - - - - - - - - - - - 99.4

ReConPatch [136] 98.3 - - - - - - - - - - - - - - - 99.6
THFR [137] 98.2 - - - - - - - - - - - - - - - 99.2

(Our) DefectMaker 98.1 99.8 100.0 100.0 100.0 99.7 100.0 99.9 98.0 99.5 100.0 98.3 96.0 99.2 96.9 100.0 99.1
(Our) LDKNN (K=9) 98.4 98.1 99.2 100.0 99.9 99.5 100.0 100.0 99.8 100.0 100.0 97.5 94.6 97.8 100.0 99.9 99.1

(Our) LDKNN (Variable K) 98.4 98.4 99.3 100.0 100.0 99.5 100.0 100.0 100.0 100.0 100.0 99.3 97.0 99.7 100.0 100.0 99.5
(Our) REB (K=9) 98.3 99.6 100.0 100.0 100.0 99.7 100.0 100.0 99.3 99.7 100.0 99.0 94.7 96.1 99.9 100.0 99.2

(Our) REB (Variable K) 98.4 99.8 100.0 100.0 100.0 99.7 100.0 100.0 99.3 99.7 100.0 99.5 96.0 99.2 100.0 100.0 99.5

Table 4.2: Anomaly detection performance (Im.AUROC and Pi.AUROC) using
backbones Resnet18 and WideResnet50 on MVTec AD dataset. The best results
are shown in bold.

4.4.3 Anomaly Detection on MVTec AD

In this work, REB is evaluated using ResNet18 (Res18) and WideResNet50 (WR50)

as backbones, primarily to ensure a fair comparison with related representation-

based methods. The results indicate that the problem has been adequately addressed

using smaller networks, thus negating the need for larger models.
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In Table 4.4.2, the AUROC scores for various methods on the MVTec AD dataset

are presented. The last column shows the average results across all 15 categories.

The Pi.AUROC scores are detailed in the third column. With Res18 as the back-

bone, an Im.AUROC of 98.7% is achieved by DefectMaker alone, which surpasses

other representation-based methods. Specifically, when comparing DefectMaker,

which utilizes a basic KNN approach for detection, to PatchCore, an average in-

crease of 0.5% in Im.AUROC across 15 different classes is observed. This improve-

ment highlights the successful reduction of domain bias and the enhancement of fea-

ture representation. An Im.AUROC of 99.1% is recorded by LDKNN alone, which

also outperforms other representation-based methods. When LDKNN is compared

with PatchCore, which similarly relies on ImageNet pre-training for representation,

an average increase of 0.9% in Im.AUROC across 15 classes is noted, suggesting

significant improvement in feature representation.

The best results are obtained by employing REB (DefectMaker and LDKNN),

with Im.AUROC scores of 99.3% (K=5) and 99.5% (Variable K). Even with WR50 as

the backbone, where PatchCore already achieves a 99.1% Im.AUROC, marginal im-

provements are still achieved by the approaches—DefectMaker, LDKNN, and REB.

A comparative analysis between Res18 and WR50 backbones indicates that when

REB is implemented on Res18, results comparable to those of WR50 are delivered.

This suggests that a balance between fewer parameters and faster detection speeds

is achieved by the proposed REB.

Among other methods, SimpleNet [119] and ReConPatch [136] achieve an

Im.AUROC of 99.6% using the WR50 backbone. In contrast, exceptional perfor-

mance is demonstrated by the methods with the ResNet18 backbone. For example,

Im.AUROC scores of 98.7%, 99.1%, and 99.5% are achieved by DefectMaker, LD-

KNN (K=5), and REB (Variable K), respectively, all outperforming SimpleNet’s

98.3% on Res18. The state-of-the-art (SOTA) result of 98.6% on Res18, previously

set by RD++ [134] and DeSTSeg [135], is also surpassed by REB. This underscores

the efficiency and effectiveness of the approaches, particularly when leveraging the
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smaller backbone.

While the primary focus of this section is on detection performance, as quan-

tified by Im.AUROC, it is noteworthy that a slight improvement in localization

performance is also observed, as indicated by the Pi.AUROC scores in the third

column.

4.4.4 Anomaly Detection on MVTec LOCO AD

The MVTec LOCO AD dataset, introduced by Bergmann et al. [106], presents

a significant challenge in anomaly detection. To address this, the GCAD model

was introduced, achieving an impressive 83.3% Im.AUROC. This model was rigor-

ously tested against various established methods, including autoencoders (AE) [11],

variational autoencoders (VAE) [42], the Variation Model (VM) [138], the memory-

guided autoencoder (MNAD) [139], SPADE [58], and the Student–Teacher (ST)

model [140]. Subsequently, SINBAD [141] was introduced, which, by employing set

features to simulate the distribution of elements in each sample, effectively identi-

fied anomalies caused by unusual combinations of normal elements, demonstrating

superior results on the MVTec LOCO AD dataset. The Template-guided Hierarchi-

cal Feature Restoration (THFR [137]) method further optimized anomaly detection

in images by compressing and restoring hierarchical features through bottleneck

compression and template-guided compensation, achieving promising results.

In this section, a comparative analysis of the proposed approach against other

methods in the field is presented, with a specific focus on PatchCore, the method

most similar to ours. Similar to the experiments on the MVTec dataset, the proposed

approach was evaluated under various scenarios, including the use of DefectMaker,

LDKNN, and REB, and across different backbones: ResNet18 (Res18), WideRes-

Net50 (WR50), and WideResNet101 (WR101). Our analysis considers overall per-

formance while also examining specific categories of structural and logical anomalies.

When Res18 was used as the backbone, DefectMaker alone achieved an

Im.AUROC of 77.5, with scores of 83.9 and 71.1 for the structural and logical classes,
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respectively. While this performance is inferior to GSAD and SINBAD, it outper-

forms PatchCore using Res18. Notably, DefectMaker outperforms both methods

in the structural class. Further analysis reveals that the self-supervised training

provided by DefectMaker effectively improves detection performance in the struc-

tural anomaly category, but leads to a decrease in performance for detecting logical

anomalies, as DefectMaker is primarily designed to generate structural anomalies.

Moreover, when LDKNN alone was used, an average Im.AUROC of 85.4 (K=45)

and 86.1 (Variable K) was achieved, approaching the performance of the state-of-

the-art method SINBAD on WR50. This reaffirms the effectiveness of LDKNN in

mitigating feature density bias and demonstrates its ability to capture the intricate

intra-image distribution. Compared to LDKNN, REB achieves better performance

in detecting structural anomalies but performs worse in detecting logical anomalies

due to the influence of DefectMaker.

Furthermore, when WR50 was used as the backbone, a superior result of 88.1

Im.AUROC was achieved, surpassing all other methods. Experiments were also

conducted using WR101, and only the results of LDKNN are showcased, considering

the potential negative impact of DefectMaker on the detection of logical anomalies.

As shown in Table 4.4.4, an even better result with an impressive Im.AUROC score

of 88.8% was obtained on WR101.

4.4.5 Anomaly Detection on BTAD

Table 4.4 presents a comparative analysis of REB against several state-of-the-art

(SOTA) methods using the WR50 backbone on the BTAD dataset, which comprises

2,540 images across three different categories of industrial products. Compared

to the SOTA methods (i.e., PaDiM [51], RD++ [134], and ReConPatch [136]),

REB demonstrates competitive performance in terms of both Im.AUROC and

Pi.AUROC.

While the SOTA methods each excel in specific categories, REB distinguishes

itself with an impressive average Im.AUROC score of 96.0%, underscoring its supe-
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Method Backbone Pi.AUROC Im.AUROC
Total BreakfastBoxScrewBagPushpinsSplicingConnectors JuiceBottle structural logicalTotal

(Baseline) VAE [42] - - - - - - 54.8 53.8 54.3
(Baseline) AE [11] - - - - - - 56.6 58.1 57.3
(Baseline) VM [138] - - - - - - 58.9 56.5 57.7

(Baseline) f-AnoGAN [142] - - - - - - 62.7 65.8 64.2
(Baseline) MNAD [139] - - - - - - 70.2 60.0 65.1
(Baseline) SPADE [58] - - - - - - 66.8 70.9 68.9
(Baseline) ST [140] - - - - - - - 88.3 66.4 77.3

GCAD [106] - - - - - - 80.6 86.0 83.3
PatchCore [57] Res18 72.4 71.8 93.6 68.1 65.0 77.3 80.5 71.7 76.1
PatchCore [57] WR50 74.3 74.1 93.4 69.2 66.4 82.2 83.6 72.9 78.3
PatchCore [57] WR101 76.6 80.6 95.5 71.0 68.5 84.7 85.3 76.5 80.9
THFR [137] WR50 - - - - - - - 86.0

SINBAD [141] WR50 - 77.5 92.2 71.2 66.9 80.6 84.7 88.9 86.8

(Our) DefectMaker

Res18

70.8 75.4 91.8 72.6 62.4 80.1 83.9 71.1 77.5
(Our) LDKNN (K=45) 68.5 87.9 96.2 83.4 72.4 82.8 90.1 80.7 85.4

(Our) LDKNN (Variable K) 70.28 88.2 97.1 84.0 72.4 84.2 90.9 81.3 86.1
(Our) REB (K=45) 67.7 89.7 96.9 78.1 75.5 84.0 91.3 80.0 85.7

(Our) REB (Variable K) 68.4 89.7 97.3 78.2 75.6 84.3 91.4 80.3 85.9
(Our) DefectMaker

WR50

72.8 77.5 92.2 71.2 66.9 80.6 86.9 71.1 79.0
(Our) LDKNN (K=45) 70.0 90.6 96.9 87.0 71.1 88.7 92.6 83.0 87.8

(Our) LDKNN (Variable K) 70.7 90.6 97.6 87.2 71.6 89.0 92.7 83.5 88.1
(Our) REB (K=45) 68.0 91.0 96.5 79.2 75.0 88.5 93.3 80.9 87.1

(Our) REB 68.52 91.1 97.3 79.6 75.3 88.9 93.2 81.6 87.4
(Our) LDKNN (K=45)

WR101
74.4 91.0 98.9 88.8 70.1 90.1 91.4 85.8 88.6

(Our) LKDKN (Variable K) 73.5 91.1 98.9 88.9 70.9 90.2 91.5 86.1 88.8

Table 4.3: Anomaly detection performance Im.AUROC and Pi.AUROC on MVTec
LOCO AD datasets. The best results are shown in bold.

Method Class 01 Class 02 Class 03 Mean

VT-ADL [107] (97.6, 99.0) (71.0, 94.0) (82.6, 77.0) (83.7, 90.0)
SPADE [58] (91.4, 97.3) (71.4, 94.4) (99.9, 99.1) (87.6, 96.9)
PaDiM [51] (98, 97.0) (82.0, 96.0) (99.4, 98.0) (93.7, 97.3)
FastFlow [54] (99.4, 97.1) (82.4, 93.6) (91.1, 98.3) (91.0, 96.3)

PyramidFlow [143] (100, 97.4) (88.2, 97.6) (99.3, 98.1) (95.8, 97.7)
RD++ [134] (96.8, 96.2) (90.1, 96.4) (100, 99.7) (95.6, 97.4)
PatchCore [57] (98, 96.9) (81.6, 95.8) (99.8, 99.1) (93.1, 97.3)

ReconPatch [136] (99.7, 96.8) (87.7, 96.6) (100, 99.0) (95.8, 97.5)
(Our) REB (K=57) (99.6, 94.7) (88.5, 95.6) (99.8, 99.7) (96.0, 97.2)

Table 4.4: Comparison of state-of-the-art models on the BTAD dataset with REB,
showing (Im.AUROC, Pi.AUROC) for each class. The best results are shown in
bold.

rior capability in detecting image-level anomalies. Furthermore, REB demonstrates

its ability to accurately pinpoint anomalies at the pixel level, achieving an average

Pi.AUROC of 97.2%.

4.4.6 Various Feature Representations

This section explores the performance of the proposed method using various feature

representations derived from pre-trained ImageNet, DRAEM, CutPaste, and Defect-

Maker with different defect configurations. The ImageNet representation refers to

directly using pre-trained weights from the ImageNet dataset, while the other repre-
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sentations involve fine-tuning ImageNet using self-supervised tasks to reduce domain

bias. For a fair comparison, the same backbone (Res18) and training strategy were

used during fine-tuning, with the only difference being the method of generating

synthetic defects. These different representations were evaluated across three dif-

ferent anomaly detection methods: LDKNN, KNN, and GDE, as shown in Table

4.5.

Following convention, the GDE method utilized features from the last layer (φ4)

of Res18, whereas LDKNN and KNN utilized features from shallower layers (φ2

and φ3). The performance of deeper versus shallower features can be assessed by

separately evaluating the results of GDE and LDKNN. Notably, LDKNN achieved

better performance even with shallower features on the MVTec AD dataset.

CutPaste employs rectangular shapes (Rect and RectScar) as anomaly shapes,

and DRAEM uses Perlin noise to generate anomaly shapes, while DefectMaker uses

more diverse Bézier shapes. In addition to the CutPaste fill, DefectMaker incorpo-

rates random noise fill to increase the diversity of synthetic defect images.

The comparison of results clearly shows that DefectMaker generates more effec-

tive synthetic defects and produces better feature representations. Additionally, it

is evident that the performance disparity of the GDE method becomes increasingly

significant with varying representations, which reinforces the understanding that

deeper network layers exacerbate domain bias. PatchCore tackles this challenge by

opting for shallow features to construct its memory bank, effectively sidestepping

the domain bias that occurs in the deeper layers.

Representation Defect Shape Defect Fill Im.AUROC
Strategy Rect RectScar Bézier Perlin CutPaste Random Noise External dataset GDE on φ4 KNN on φ2 + φ3 LDKNN on φ2 + φ3

ImageNet 90.3 98.2 99.1
DRAEM ✓ ✓ 91.0 98.6 98.9
CutPaste ✓ ✓ ✓ 94.5 98.2 98.8
DefectMaker ✓ ✓ 97.7 98.8 99.4
DefectMaker ✓ ✓ 96.6 98.4 99.1
DefectMaker ✓ ✓ ✓ 97.3 98.7 99.3

Table 4.5: Image-level anomaly detection performance (Im.AUROC) on different
feature representations on MVTec AD.
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Dataset Representation KNN Kth-NN LOF LDOF LDKNN (Our)

MVTec LOCO
ImageNet 75.1 74.5 78.3 78.1 83.1

DefectMaker 75.7 75.8 78.7 79.8 84.2

MVTec
ImageNet 98.2 97.3 97.2 96.2 98.8

DefectMaker 98.7 98.6 96.6 95.8 99.3

Table 4.6: Evaluating KNN Methods for Anomaly Detection on Im.AUROC scores.
The best results are shown in bold.

4.4.7 Various KNN Variants

In addition to the standard KNN, this section also compared REB’s Im.AUROC per-

formance against various KNN variants, including Kth-NN, LOF, and LDOF. For all

KNN variants, the neighbor size K was varied within the set {3, 5, 7, 9, 11, 13, 15},

and the best results are reported in Table 4.4.6. Additionally, the other hyper-

parameter, the LD coefficient α, was fixed at 1 for a fair comparison. As shown in

Table 4.4.6, the proposed LDKNN outperforms the other KNN variants on the two

datasets, regardless of whether the DefectMaker self-supervised learning is used.

This superior performance is due to LDKNN’s combination of distance and den-

sity metrics for anomaly detection, with the LD coefficient balancing the two. In

contrast, distance-based KNN and Kth-NN overlook the complex intra-image distri-

bution. LOF and LDOF, which are density-based, show uneven detection ability in

different density regions, being more sensitive in low-density areas but less effective

in high-density areas.

4.4.8 Coreset Algorithm and Inference Time

Detection efficiency is crucial for industrial manufacturing, as it directly affects the

production cost and efficiency. The inference time of KNN-based anomaly detection

methods typically scales with the size of the backbone and the memory bank. This

issue has been previously discussed by works such as [58] and PatchCore [57]. Patch-

Core addresses this challenge by incorporating a Coreset algorithm [144], which se-

lects a subset of the memory bank to approximate the full dataset, thereby reducing

computational costs.

This section integrates the Coreset algorithm with the proposed REB framework
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Figure 4.4: Im.AUROC vs. FPS (frames per second)

and compare its performance with PatchCore. Following convention, REB-n% is

used to denote the percentage of the Coreset used. The Coreset proportions tested

were 100%, 50%, 10%, 1%, and 0.1%. All experiments were conducted on the same

RTX3090 GPU to ensure a fair comparison. We used Res18 and WR50 as the

backbones for REB and PatchCore, respectively.

Figure 4.4 illustrates the relationship between FPS (frames per second) and

Im.AUROC performance, with the x-axis representing FPS and the y-axis repre-

senting Im.AUROC. The results demonstrate that REB consistently outperforms

PatchCore across all Coreset proportions, particularly when using smaller backbone

networks. When the memory bank size is relatively large, REB achieves better

performance by more effectively accounting for the local distribution of the feature

space.

Focusing solely on the FPS (frames per second), the comparison reveals that

PatchCore and REB achieve nearly identical FPS rates when using the same back-

bone and Coreset ratio. This similarity is primarily due to the fact that the only

structural difference between PatchCore and REB during the inference phase is the
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Figure 4.5: Evaluating the Influence of K on Im.AUROC in LDKNN Algorithm,
with KNN as the Baseline Method for Comparison.

use of KNN in PatchCore and LDKNN in REB. Since LDKNN only adds a simple

constant value calculation during inference, the time difference between LDKNN

and KNN is negligible—less than 0.1 ms, according to my measurements. This

data further confirms that LDKNN and vanilla KNN share similar inference time

complexities.

4.4.9 Evaluation on Various Hyper-parameters K

This section explored the effect of varying K from 1 to 57 on the average Image-

Level AUROC across three datasets: MVTec AD, MVTec LOCO AD, and BTAD.

WR50 was primarily used as the backbone. Since KNN detection with the WR50

backbone has already yielded promising results on MVTec AD, simply examining the

impact of changes in K was considered insufficient. Therefore, Res18 was employed

as the backbone for MVTec AD. Additionally, not only was the average performance

across all 15 classes of the MVTec AD dataset analyzed, but detailed insights into

the 5 texture and 10 object classes were also provided. For the MVTec LOCO

AD dataset, this section further categorized the results into structural and logical

anomaly classes.

As shown in Figure 4.5, LDKNN produces results similar to KNN when K is

set to 1. However, as K increases, LDKNN clearly distinguishes itself, consistently

improving in both anomaly detection and localization, in contrast to KNN, which

shows a notable decline in performance as K grows. This difference is likely due

to KNN’s tendency to assign disproportionately low anomaly scores to high-density

regions and higher scores to sparse areas, thus exacerbating imbalance. Based on the
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results from these three experiments, LDKNN, compared to KNN, more effectively

accounts for the distribution of the feature space, effectively reducing local density

bias.

The value of K in the LDKNN algorithm is pivotal in determining the number

of nearest neighbors considered when calculating the local density of each feature

point within the memory bank. This K value directly influences the measurement

of local densities and, consequently, the normalization of anomaly scores during

the detection process. In the context of LDKNN, K affects the granularity of local

density estimation. A smaller K value focuses on the immediate vicinity of a feature

point, resulting in a more localized density estimation, but it may also increase

sensitivity to noise, as the local density measurement can be easily skewed by the

presence of outlier neighbors. Conversely, a larger K value averages the distances

over a broader set of neighbors, providing a more global perspective of the feature

point’s density in the memory bank, leading to more robust anomaly detection.

Given that the memory bank comprises patch-level features from multiple in-

dustrial images, which often contain complex information, significant intra-image

distribution biases between image patches are common. Therefore, selecting a K

value greater than 1 for the LDKNN algorithm can leverage these distribution bi-

ases to enhance its effectiveness. It is also observed that the optimal K value can

vary across different datasets, with performance tending to stabilize or even slightly

decline as K increases. Thus, identifying the optimal K value is a considerable

challenge, shaped by several factors such as the size of the training set (or memory

bank), the specific characteristics of the dataset, and the types of anomalies being

detected. In real-world applications, employing a validation set to systematically

determine the optimal K value is a practical approach.

4.4.10 Other Ablation Study on MVTec AD

To explore the impact of different hyperparameters in the REB method, this section

presents additional experiments on the MVTec AD dataset using, few-shot samples,
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Method \Shots 1 2 5 10 16 20 50
Im.AUROC

SPADE 71.6 73.4 75.2 77.5 78.9 79.6 81.1
PaDim 76.1 78.9 81.0 83.2 85.5 86.5 90.1
DifferNet - - - - 87.3 - -
Patchcore 84.1 87.2 91.0 93.8 95.5 95.9 97.7

(Ours) DefectMaker+KNN 88.5 91.5 94.6 95.5 96.0 96.4 98.4
(Ours) DefectMaker+LDKNN 88.6 92.3 94.9 95.7 96.2 96.8 98.6

Pi.AUROC
SPADE 91.9 93.1 94.5 95.4 95.7 95.7 96.2
PaDim 88.2 90.5 92.5 93.9 94.8 95.1 96.3

Patchcore 92.4 93.3 94.8 96.1 96.8 96.9 97.7
(Ours) DefectMaker+KNN 93.4 94.8 95.7 96.2 96.4 96.5 96.6

(Ours) DefectMaker+LDKNN 93.4 94.7 95.9 96.3 96.5 96.6 96.8

Table 4.7: Evaluating the performance of anomaly detection with few-shot samples:
Im.AUROC and Pi.AUROC metrics on MVTec AD dataset.

various backbones, and hyper-parameters of LD coefficient.

Evaluation on Few-shot Samples

This section follows the PatchCore method [57] to conduct a series of experi-

ments evaluating few-shot learning performance (Im.AUROC and Pi.AUROC) on

the MVTec AD dataset. As shown in Table 4.4.9, the proposed model is com-

pared with four state-of-the-art anomaly detection models, using different numbers

of training samples: 1, 2, 5, 10, 16, 20, and 50. Among these four baseline meth-

ods, PatchCore (ImageNet + KNN) stands out as the best performer, significantly

surpassing the others. When the DefectMaker algorithm is applied to fine-tune the

ImageNet-pretrained features before KNN detection (DefectMaker+KNN), an over-

all improvement over PatchCore across different numbers of shots was observed,

demonstrating promising performance under few-shot conditions.

Evaluation on Various Backbones

The performance of REB and PatchCore with different backbones (Res18,

WR50 [131], and Vgg11 [130]) on the MVTec AD dataset is shown in Fig. 4.6. Since

REB already achieves excellent results on the MVTec AD dataset, larger networks

than WR50 were not utilized. REB surpasses PatchCore in both anomaly detection

and localization, delivering better performance even with smaller backbones, which

allows for more efficient inference.
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Figure 4.6: Im.AUROC (left) and Pi.AUROC (right) over different backbones on
MVTec AD dataset.

Figure 4.7: Im.AUROC (left) and Pi.AUROC (right) over different Neighbor number
K and LD coefficient.

Evaluation on Various LD coefficient α

This section investigates the influence of local density bias by evaluating the changes

in anomaly detection performance across different LD coefficients α in Eq. (4.3).

Figure 4.7 shows the variations in Im.AUROC and Pi.AUROC with different values

of α, where K in LDKNN is fixed at 9 for a fair comparison. Note that when the

LD coefficient α = 0, LDKNN reduces to 1-NN. Additionally, this section examines

the relationship between local density bias and memory size by using the Coreset

algorithm to down-sample the memory bank. The Coreset percentage reflects the

memory bank size after down-sampling. As shown, as α increases, performance

initially improves but then declines. This trend occurs because the optimal perfor-

mance is achieved at different LD coefficients depending on the Coreset proportions.

The larger the memory bank size, the larger the optimal α tends to be. These results
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indicate that the degree of local density bias is positively related to the memory bank

size. LDKNN improves anomaly detection accuracy by addressing and normalizing

density bias within the feature memory bank.

4.5 Chapter Summary

This chapter has addressed the limitations of existing k-nearest neighbor (KNN)

retrieval-based methods that rely on pre-trained convolutional neural network

(CNN) features for industrial anomaly detection. These methods often fall short due

to their limited exploitation of feature representation. To overcome these challenges,

this chapter introduced the Reducing Biases (REB) approach, which targets two key

biases present in the pre-trained model and feature space.The first stage of REB in-

volves the design of the DefectMaker method, which generates diverse defects and

employs a self-supervised learning task to mitigate domain bias in the pre-trained

model, thereby enhancing the industrial-targeted feature representation. The sec-

ond stage introduces the local density K-nearest neighbor (LDKNN) method, which

normalizes local density bias in the patch-level feature space. This approach allows

for more effective handling of complex image distributions and improves anomaly

detection. We validated the effectiveness of the REB method on three real-world

datasets: MVTec AD, MVTec LOCO AD, and BTAD. The method showed signif-

icant improvements in detection performance, particularly with smaller CNN mod-

els such as Vgg11 and Resnet18, achieving an impressive 99.5% Im.AUROC on the

MVTec AD dataset, alongside promising inference speed. Overall, the REB method

provides a practical and effective solution for industrial anomaly detection.

The classification of defects in different product surface is a crucial aspect of

quality inspection in the industrial manufacturing, necessitating more extensive and

thorough research. In the following chapter, the author presents an algorithm de-

signed for the feature extraction of defect instance and the recognition of various

defect categories.
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Chapter 5

A General Few-shot Defect

Classification Model Using

Multi-View Region-Context

This chapter focuses on Few-shot defect multi-classification (FSDMC) which an

emerging trend in quality control for industrial manufacturing. However, current

FSDMC research often lacks generalization due to its focus on specific datasets.

Additionally, defect classification heavily relies on the context within images, and

existing methods fall short of effectively extracting this contextual information. To

address these challenges, this chapter proposes a general FSDMC framework called

MVREC, which offers two primary advantages: (1) MVREC extracts general fea-

tures for defect instances by incorporating the pre-trained AlphaCLIP. (2) It utilizes

a region-context framework to enhance defect features by leveraging mask region

input and multi-view context augmentation. While Few-shot Zip-Adapter(-F) clas-

sifiers within the model are proposed to cache the visual features of the support set

and perform few-shot classification. Furthermore, this chapter introduces MVTec-

FS, a new FSDMC benchmark based on MVTec AD, which includes instance-level

mask annotations and 46 defect categories. Extensive experiments conducted on

MVTec-FS and fthe proposed additional datasets demonstrate the effectiveness of

65



CHAPTER 5. A GENERAL FEW-SHOT DEFECT CLASSIFICATION MODEL USING
MULTI-VIEW REGION-CONTEXT

MVREC.

5.1 Introduction

(a) Less Context and Inconsistent Input 

Rich Context and Consistent Input (b)
Classification

With
Mask Context

Classification
Without 

Mask Context
Broken
Broken

Broken
Broken

Figure 5.1: Comparison of two different Classification models.

Defect detection and classification [145] is a crucial challenge in industrial man-

ufacturing, as it involves identifying and categorizing defects within workpieces.

High-precision defect classification not only ensures the safety and reliability of

products but also enhances work efficiency and reduces costs. However, in practical

application scenarios, The diversity of defect types and the low occurrence of defect

emergence make it a particularly difficult task.

While Few-shot Learning (FSL) has gained traction in general vision tasks like

mini-Imagenet, its application to defect multi-classification (FSDMC) remains a

challenge. This disparity is evident in the limited availability of dedicated datasets

and research focusing on FSDMC. While Contrastive Vision-Language Pre-training

(CLIP) [79] has shown remarkable success in learning visual features from large-

scale image-text pairs and adapting to downstream tasks with few-shot learning,

its application to FSDMC is still in its early stages. This is primarily due to the

significant domain gap between general vision tasks and FSDMC. Secondly, defects

inherently differ from normal surface areas, necessitating more context information

for effective detection and classification. However, common classification models

often involve cropping the defect region, resizing it by the model input size, and
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feeding it into a network, as shown in Figure 5.1 (a). This pretreatment cannot

retain the contextual information of the defect such as the surrounding background

and the size of the defect. The most popular multi-category datasets [33, 34, 146]

with different product images are usually for anomaly detection instead of defect

classification. Although the field of few-shot defect multi-classification has attracted

considerable research attention [147, 148, 149, 150, 151, 152], the datasets they used

such as the NEU-DET Dataset and the MTD Dataset are limited by their focus

on a single product category. There is a notable scarcity of multi-category datasets

that are specifically proposed for FSDMC.

To mitigate these issues, this chapter proposes a general few-shot defect classi-

fication model using a multi-view region-context called MVREC. Specifically, the

proposed approach begins with generating the region-context visual feature for the

defect instance using the AlphaCLIP [89] model, a transformer-based model that

takes a defect image and its mask context as input to generate the visual feature

from the masked region. By incorporating the mask region context, the network

can perceive the defect foreground region and its surrounding background, gener-

ating target-specific features while maintaining input consistency. Furthermore, a

multi-view augmentation technique is proposed to generate multi-view features for

a defect to maximize the utility of the few-shot samples and enhance generaliza-

tion ability. The multi-view region-context (MVREC) features can be extracted

from the multi-view patches and masks of the defect instance, thereby enhancing

the region-context feature. Moreover, this chpater proposes two few-shot classifiers:

the training-free Zip-Adapter-F that predicts directly without training, and the fine-

tuning Zip-Adapter-F that adapts the MVREC features for better performance. Zip-

Adapter and Zip-Adapter-F have the same structure, consisting of a Zero-initialized

Projection (ZIP) module and a Scale-Dot-Product Attention (SDPA) module. In

detail, it stores the visual features and corresponding class labels in the support

set images as key-value pairs. After that, the SDPA module calculates the visual

feature similarity between the query defect instance and the support defects, out-
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putting the classification logits through the weighted sum of the encoded labels

of the support set. The ZIP module servers as an identical mapping and feature

adapter respectively for Zip-Adapter and Zip-Adapter-F.

Moreover, this chapter proposes MVTec-FS based on MVTec AD to obtain a

multi-category dataset suitable for the FSDMC task. This dataset features a diverse

array of categories and balanced distribution. MVTec-FS includes 15 categories of

product surface images and approximately 46 types of defects, making it a promising

new benchmark in this field.

This chapter tested MVREC across MVTec-FS and four other public defect

datasets with classification annotations, and the results demonstrate superior per-

formance in few-shot defect classification tasks, outperforming existing models and

achieving state-of-the-art results. All in all, the contributions can be summarized

as follows:

• this chapter uses AlphaCLIP and introduce a new Region-Context-based de-

fect classification framework.

• this chapter introduces the multi-view context augmentation and Zip-adapter(-

F) classifiers for few-shot classification.

• this chapter reconstructs the popular MVTec AD datasets into a new FSDMC

benchmark named MVTec-FS.

• this chapter conducted rich experiments on multiple few-shot defect datasets,

showing the effectiveness of MVREC.

The remainder of this chapter is structured as follows: Section 5.2 discusses the

related work on defect detection and classification, few-shot learning, and the appli-

cation of CLIP in defect detection tasks. Section 5.3 introduces the MVREC frame-

work, including the multi-view region-context feature extraction and the training-

free Zip-Adapter classifier. Section 5.4 presents the MVTec-FS dataset, including its

construction and annotation details. Section 5.5 describes the experimental setup
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and results, and Section 5.6 concludes the chapter with a summary and future re-

search directions.

5.2 Related work

Different models, such as object detection, segmentation, and classification, have

been applied to Defect Detection. These years, the MVTec AD [33] dataset has

been widely researched for anomaly detection tasks [153, 113]. These anomaly de-

tection models are designed to learn from only a group of normal samples and detect

the abnormal samples. However, defect classification, identifying the defect type,

is a more challenging task, as defects are rare and diverse, and related datasets

are limited. Few-shot defect classification models [147, 148, 149] have been pro-

posed. However, these methods are limited to specific datasets and require complex

training processes like meta-learning and metric learning. Additionally, using part

of categories as base classes to train a base model and evaluating novel categories

is common but may be practical in real-world scenarios. Unlike dense prediction

tasks (object detection, instance segmentation), which can predict the positions and

categories of multiple instances within an image, classification networks typically

provide a image-level prediction, not account for multiple instances. To address this

issue, Region-context models takes position information as prompt and predicts the

target’s information, preserving contextual information for the target. For example,

the SAM network takes prompts in the form of points, bounding boxes. To enable

CLIP to focus on regions from the whole image, various methods [86, 87, 88, 89]

have been explored. Alpha-CLIP is an innovative enhancement of the CLIP model,

designed to augment its ability to focuse attention on specific regions by involving

the introduction of an additional Alpha Conv layer parallel to the RGB Conv layer

within image encoder. This architecture enables AlphaCLIP to provide precise con-

trol over the emphasis of image contents. This study uses AlphaCLIP to generate

the region-context representation for the defect instance.
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5.3 MVREC

This chapter introduces the MVREC visual feature extraction and then present the

training-free Zip-Adapter classifier and its finetuning version Zip-Adapter-F.
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Figure 5.2: The framework of MVREC. First, the MVREC feature extraction is
introduced. Given an N-way K-shot task, the MVREC features for the support
set are collected. Then the inference process with Zip-Adapter or Zip-Adapter-F is
shown.

5.3.1 Multi-View Region-Context Feature Extraction.

Multi-view region-context (MVREC) feature extraction for defect instances is in-

troduced first. To effectively capture the defect visual representation and explicitly

mine the context information, the pre-trained AlphaCLIP model is employed to

extract visual features from images with their mask prompts. Due to the small

data volume characteristic of few-shot learning tasks, this chapter employs multi-

view context augmentation to generate multi-view patches of defect images to ex-

pand the available dataset for the following process. Specifically, this chapter em-

ploys two context augmentation methods to achieve this: Multi-scale augmenta-

tion is to crop Numscale patches with different scales from the defect patches and

their masks with the center of the defect.Subsequently, the center of the defect

was offset to generate Numoffset defect patches with different offsets on each scale.

V = Numscale ∗Numoffset patches for each defect instance can be obtained by these
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two augmentation methods. The AlphaCLIP extracts MVREC patch embeddings

E ∈ RV×C from the multi-view patches and obtains the MVREC feature F ∈ RC

by averaging E into one view.

5.3.2 Support MVREC Feature and One-Hot Label Extrac-

tion.

For N -way K-shot classification tasks, the MVREC patch embeddings ESUPP ∈

RNK×V×C and MVREC features FSUPP ∈ RNK×C are extracted for the support

set samples firstly. Then the one-hot-encoded class labels YSUPP ∈ RNK×N are

extracted. The MVREC features FSUPP and YSUPP are used to build the cached

key-value pairs for the following few-shot defect classification. In addition, the

MVREC patch embeddings ESUPP and the YSUPP are used as training datasets to

finetune the Zip-Adapter.

5.3.3 Training-free Zip-Adapter Classifier.

This section introduces the method of utilizing MVREC visual features to construct

the zero-initialized projection classifier(Zip-Adapter) for few-shot defect classifica-

tion tasks. The Zip-Adapter classifier consists of a zero-initialized projection (ZIP)

module and a Scaled dot product attention (SDPA) Module and stores the MVREC

features FSUPP with encoded labels YSUPP of the support set sample. The ZIP con-

sists of a single Linear layer, a residual connection, and a SiLU activation function,

with the Linear layer initialized with zeros. The output of the ZIP module is the

adapted feature F ′ generated with:

F ′ = SiLU (Linear (F )) + F (5.1)

where F is the MVREC feature for the support sample or query sample. For Zip-

Adapter, ZIP is designed to serve as an identical transformation by initializing the

linear layer with zeros and residual connection. The SDPA module is a scaled
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dot-product attention mechanism, which is used to calculate the visual similarity

between the query defect instance and the support set and get the classification logits

by the weighted sum of the support encoded labels YSUPP . The SDPA module is

defined as:

logitsquery = YSUPP · ψ
(
Sim

(
F ′
query, F

′
SUPP

))
(5.2)

Where the ψ is the activation function [83] for modulating the cosine similarity:

ψ(x) = exp (−β(1− x)) , (5.3)

β controls the sharpness of the curve. And Sim is the cosine similarity function.

The output of the SDPA module logitsquery is the classification logits of the query

defect instance. The class with the highest logit is identified as the predicted class.

5.3.4 Training Zip-Adapter-F classifier

Zip-Adapter-F adapts the visual features for better performance by fine-tuning the

Zip-Adapter classifier, in which the ZIP module and the cached visual features of

the support set are learnable. Our Zip-Adapter-F is a combination of the cache-

based mechanism and the adapter-based mechanism, taking the ZIP-Adapter as the

base model. The finetuning process involves two training objectives: 1) optimizing

cross-entropy (CE) loss between the predicted logits logitsquery and the labels Yquery.

The CE loss LCE is:

LCE(logitsquery, Yquery) = −
∑
i

yi log(pi) (5.4)

where yi and pi represents the label and predicted probability distribution for class

i.

The second part uses the triplet loss to optimize the intra-class compactness and

inter-class separability of the adapted feature fadapted of the ZIP module within a
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batch. The triplet loss Ltriplet is defined as:

Ltriplet(F
′
query) = max(d(F ′

anchor, F
′
positive)

− d(F ′
anchor, F

′
negative) + α, 0)

(5.5)

where F ′
anchor, F

′
positive, and F

′
negative are the embeddings (feature vectors) of an anchor

sample, a positive sample (same class as an anchor), and a negative sample (different

class from anchor), within a batch, respectively. d(·, ·) is a distance function used

to measure the similarity between embeddings. α is a margin hyperparameter that

specifies the minimum difference between the distances of positive and negative pairs

required for the loss to be zero. The overall loss function for finetuning Zip-Adapter-

F is:

LZip−Adapter−F = LCE + λ · Ltriplet (5.6)

where λ is a hyperparameter that balances the importance of the two parts in the

overall loss. After Zip-Adapter-F is trained, it can be used to classify query defect

instances similar to the Zip-Adapter classifier.

Broken

Bent

Bent

Scratch

Scratch Hole

Hole
Broken_small

Broken_smallScratch

Color

Figure 5.3: Some modified cases are displayed, in which there are multiple defect
instances with different categories.

5.4 MVTec-FS Dataset

Although the field of few-shot defect multi-classification has attracted considerable

research attention, the related datasets such as the NEU-DET Dataset [108] and

the MTD Dataset [110] are limited by their focus on a single product category.

Recently, anomaly detection research has garnered significant attention, and some

multi-category datasets [33, 34, 146] with various product images have been proposed
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Figure 5.4: Details of MVTec-FS dataset.

74



CHAPTER 5. A GENERAL FEW-SHOT DEFECT CLASSIFICATION MODEL USING
MULTI-VIEW REGION-CONTEXT

for this task. However, these datasets are not proposed for defect classification.

MVTec AD [33] dataset is the most popular benchmark for anomaly detection with

15 different product surface images (5 textile and 10 object), showing comprehension

diversity and generalization. In the original configuration, the training set consists

of lots of normal images for model training, and the testing set includes normal

images and some defect images for model evaluation. The defect images are labeled

with masks. There are about 47 types of defect images in total (from 8 to 26

images per category) within this dataset. This makes it suitable for few-shot defect

classification tasks but Few-shot defect classification tasks are rarely studied on it

even though it has classification annotations.

The 1228 defective images of MVTec AD are selected, and instance-level mask labels

are labeled, making a few-shot defect multi-classification benchmark, named MVTec-

FS. Since the toothbrush category contains only one defect category, this study

excluded it from the proposed MVTec-FS. The number of defect instances for each

defect category within each of the 46 categories (ranging from 9 to 58 defect instances

per category) is presented, as shown in Fig 5.4. The original annotations were labeled

at the image level and did not account for the presence of multiple defects within

a single image. The connected component algorithm is used to transfer image-level

masks to instance-level masks for the defect images and necessary human corrections

are made. Some samples are shown in Figure 5.3. More details can be found in the

appendix. In my configuration, for each defect category, 50% of the defects are used

as the training set to sample the support set, and the other 50% is the testing set

(query set). Few-shot setup is defined as an N-way K-shot, where K is set to 1,3,

and 5. The support set is sampled from the training set, and the query set is all the

testing set. Classification Accuracy is used as the evaluation metric.
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FS Classifier Carpet Grid Leather Tile WoodBottleCableCapsuleHazelnutMetalNut Pill ScrewTransistorZipperAverage

0 CLIP-ZeroShot 25.00 51.02 43.18 42.86 75.71 34.38 21.05 20.75 62.86 36.00 14.81 23.33 33.33 39.02 37.38

1

CLIP-Adapter 66.36 42.86 65.46 70.48 64.00 51.88 61.75 44.53 66.29 59.60 54.32 72.67 63.81 77.32 61.52
CLIP-ProtoNet 60.46 42.04 62.73 70.95 63.43 50.62 62.80 46.79 62.86 62.00 59.26 74.67 55.24 74.64 60.61
CLIP-KNN 59.55 42.04 62.73 69.53 62.86 50.62 62.80 47.17 62.86 61.60 58.52 75.00 55.24 74.39 60.35

CLIP-LinearProb 60.45 41.63 64.55 73.33 68.00 55.00 62.81 49.06 69.14 60.00 63.70 73.00 56.19 73.90 62.20
Tip-Adapter 60.00 42.45 62.73 70.00 63.43 50.62 62.80 47.17 62.86 62.00 59.26 74.67 55.24 74.64 60.56
Tip-Adapter-F 60.91 44.90 63.18 72.86 64.57 51.25 63.16 46.79 65.14 61.20 62.71 74.34 60.95 76.59 62.04

Zip-Adapter (MVREC) 73.64 49.79 79.54 94.2969.4358.7580.35 57.74 77.14 71.20 66.91 68.00 77.14 79.02 71.64
Zip-Adapter-F (MVREC) 78.64 50.61 82.27 96.1971.4358.1277.54 60.38 77.14 71.60 72.35 67.33 89.52 79.27 73.74

3

CLIP-Adapter 70.91 57.55 77.27 89.53 81.43 68.13 77.89 61.51 76.00 72.00 68.64 85.67 88.57 85.12 75.73
CLIP-ProtoNet 71.36 57.55 78.18 86.67 82.29 70.00 80.00 63.02 77.71 71.20 69.14 87.00 85.71 83.41 75.95
CLIP-KNN 71.36 57.55 78.18 86.67 82.29 70.00 80.00 63.02 77.71 71.20 69.14 87.00 85.71 83.41 75.95

CLIP-LinearProb 74.09 60.00 82.27 90.96 83.14 71.25 82.11 63.40 78.28 73.60 75.56 86.66 87.62 83.42 78.03
Tip-Adapter 65.45 55.92 77.27 86.19 75.71 68.12 78.95 60.38 77.71 73.20 67.41 86.33 84.76 74.88 73.73
Tip-Adapter-F 72.73 60.82 80.45 89.05 82.28 71.88 81.75 61.51 78.29 73.20 73.34 87.00 87.62 85.37 77.52

Zip-Adapter (MVREC) 81.82 56.73 87.73 97.14 82.86 63.12 91.58 63.39 76.57 78.40 74.81 80.00 97.14 82.93 79.59
Zip-Adapter-F (MVREC) 85.00 71.84 90.91 97.6290.0076.8792.98 73.96 82.29 83.60 83.4688.33 100.00 88.78 86.12

5

CLIP-Adapter 75.46 64.90 87.73 90.96 86.86 67.50 83.86 69.81 78.86 78.80 77.29 90.67 93.34 87.56 80.97
CLIP-ProtoNet 73.64 59.59 83.64 89.05 84.86 67.50 84.91 72.08 74.86 78.40 74.57 89.33 99.05 87.07 79.90
CLIP-KNN 74.09 55.51 81.82 89.52 79.71 65.62 78.25 62.26 73.14 79.20 67.65 89.67 97.14 79.76 76.67

CLIP-LinearProb 79.55 66.94 88.64 93.34 88.29 70.00 86.66 69.81 78.86 80.00 81.24 92.67 92.38 86.34 82.48
Tip-Adapter 72.73 59.18 80.91 88.10 84.86 63.75 82.11 65.66 77.71 78.40 67.65 90.33 98.10 78.29 77.70
Tip-Adapter-F 74.54 65.31 88.18 90.96 89.71 68.12 85.61 70.19 77.14 80.80 80.74 91.00 96.19 87.56 81.86

Zip-Adapter (MVREC) 84.54 60.00 89.55 97.62 89.43 61.88 92.98 75.10 84.00 82.80 75.06 88.00 99.05 83.17 83.08
Zip-Adapter-F (MVREC) 85.91 80.81 92.73 97.6296.5777.5092.98 81.13 88.57 91.20 84.69 92.00 100.00 90.00 89.41

Table 5.1: Classification accuracy (%) on MVTec-FS of different models with quan-
titative values. AlphaCLIP is used to extact the visual feature for all classifiers.
The best results are highlighted in bold.

FS MVREC CLIP-Adapter CLIP-ProtoNet CLIP-KNN CLIP-LinearProb Tip-Adapter Tip-Adapter-F Zip-Adapter Zip-Adapter-F

1
✗ 61.52 60.61 60.35 62.2 60.56 62.04 60.56 62.37
✓ 73.05 71.59 71.29 71.82 71.64 72.95 71.64 73.74

Gain +11.53 +10.98 +10.94 +9.62 +11.08 +10.91 +11.08 +11.37

3
✗ 75.73 75.95 70.99 78.03 73.73 77.52 73.73 77.93
✓ 85.68 83.4 78.91 84.76 79.59 85.72 79.59 86.12

Gain +9.95 +7.45 +7.92 +6.73 +5.86 +8.20 +5.86 +8.19

5
✗ 80.97 79.9 76.67 82.48 77.7 81.86 77.7 82.24
✓ 89.21 86.14 82.59 88.11 83.08 89.22 83.08 89.41

Gain +8.24 +6.24 +5.92 +5.63 +5.38 +7.36 +5.38 +7.17

Table 5.2: Gains of MVREC Representation and Zip-Adapter(-F) Classifiers across
different Few-Shot Settings.

5.5 Experiments

5.5.1 Experiments Setting

First, this section conducted experiments on the MVTec-FS dataset and four other

datasets to evaluate the proposed MVREC using accuracy metrics. Ablation stud-

ies were performed on the MVTec-FS dataset to evaluate the effectiveness of the

proposed MVREC feature extraction and the training-free Zip-Adapter classifier.

For AlphaCLIP, the backbone of ViT-L14 [154] was chosen. For the MVREC visual

feature, the number of scales was set to 3, representing the commonly used settings

of large, medium, and small. The number of offsets was set to 9, based on a grid
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Classifier Crop style Feature Extractor
Few Shot Setup

1 3 5

Zip-Adapter

Defect Size CLIP 57.65 65.5 68.5
Fixed Size CLIP 58.11 64.78 68.56
Fixed Size AlphaCLIP Wo. Mask 61.75 68.02 70.13
Fixed Size AlphaCLIP 71.64 79.59 83.08

Zip-Adapter-F

Defect Size CLIP 61.35 76.99 82.02
Fixed Size CLIP 65.09 80.57 85.47
Fixed Size AlphaCLIP Wo. Mask 66.32 79.59 85.44
Fixed Size AlphaCLIP 73.74 86.12 89.41

Table 5.3: Classification accuracy (%) on MVTec-FS with different region-context
handling methods.

Classifier
Mulit-View Augmentation Few Shot Setup

Scale Rotate Flip Offset 1 3 5

Zip-Adapter

✗ ✗ ✗ ✗ 60.56 73.73 77.7
✓ ✗ ✗ ✗ 68.06 78.28 81.36
✗ ✓ ✗ ✗ 68.54 77.93 82.11
✗ ✗ ✓ ✗ 55.27 64.78 68.16
✗ ✗ ✗ ✓ 70.72 78.51 80.67
✓ ✓ ✗ ✗ 70.51 78.37 81.99
✓ ✗ ✓ ✗ 60.33 71.13 74.53
✓ ✗ ✗ ✓ 71.64 79.59 83.08

Zip-Adapter-F

✗ ✗ ✗ ✗ 62.37 77.93 82.24
✓ ✗ ✗ ✗ 69.32 82.93 86.37
✗ ✓ ✗ ✗ 70.53 83.17 86.77
✗ ✗ ✓ ✗ 54.69 72.62 78.32
✗ ✗ ✗ ✓ 72.43 83.83 87.09
✓ ✓ ✗ ✗ 73.09 84.33 88.43
✓ ✗ ✓ ✗ 62.64 79.5 84.98
✓ ✗ ✗ ✓ 73.74 86.12 89.41

Table 5.4: Classification accuracy (%) on MVTec-FS of different augmentation meth-
ods.

layout similar to a tic-tac-toe board. The β was set to 32 and 1 for the Zip-Adapter

and Zip-Adapter-F classifiers, respectively. When training the Zip-Adapter-F, the

AdamW optimizer with a learning rate of 0.0001 was used. The model was updated

for 500 iterations, and in each iteration, the model was trained on all MVREC

features of the support set. For the triplet item of the loss function, the hyper-

parameters α and λ were set to 0.5 and 4, respectively.

In the experiment, a variety of baseline classifiers based on the AlphaCLIP backbone

were evaluated, including:

(1) Clip-ZeroShot [79] leverages the zero-shot capability of the CLIP model. Text

embeddings for each class description were generated, and the similarity between the

test image embeddings and these text embeddings was computed, with classification
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Zip-Adapter-F Config Few Shot Setup

Trainable support feature Trainable ZIP 1 3 5

✓ ✗ 72.67 85.55 89.39
✗ ✓ 73.45 85.89 89.32
✓ ✓ 73.74 86.12 89.41

Table 5.5: Classification accuracy (%) on MVTec-FS of different training setttings
of ZIFA-Adapter-F.

based on the highest similarity.

(2) CLIP-KNN uses the K-Nearest Neighbors algorithm with the CLIP features.

The most similar K (K=1) support samples are retrieved for a query sample, and

the class with the majority vote is selected as the prediction.

(3) CLIP-ProtoNet builds a Prototypical Network [155] on top of the CLIP, in which

proxy features representing each class are calculated from the support set, and test

images are classified based on their similarity to these class proxies.

(5) CLIP-Adapter [82] involves adding adapter layers on top of the CLIP. These lay-

ers are trained for the new classification task, adjusting the image feature feature.

(6) Tip-Adapter [83] constructs a key-value cache model via CLIP-extracted fea-

tures from the few-shot data and can conduct recognition in a retrieving manner.

Tip-Adapter-F treats the visual cache as learnable parameters and optimizes them

to improve the performance.

5.5.2 Results on MVTec-FS Dataset

In Table 5.1, the classification accuracy (%) of various few-shot models evaluated

on the MVTec-FS dataset under different few-shot learning configurations is pre-

sented. To ensure a fair comparison, this section reports results across several few-

shot settings, specifically with 0, 1, 3, and 5 shots. The accuracies for 14 product

categories, as well as the average accuracy, are reported in separate columns. As

shown in the table, the proposed MVREC demonstrates outstanding performance

in all few-shot setups, regardless of whether Zip-Adapter or Zip-Adapter-F is used.

The Zip-Adapter-F achieves the highest accuracy of 89.41% with 5 shots, which is

6.93% higher than the second-best, LinearProb. By comparing different product
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categories, it is evident that the Zip-Adapter-F achieves the highest accuracy in

most categories, demonstrating its effectiveness in few-shot learning scenarios.

5.5.3 Ablation Study

In this section, ablation studies are conducted to investigate the contribution of

different components.

Contributions of MVREC feature and Zip-Adapter(-F).

First, this section investigates the effectiveness of the MVREC feature and the

Zip-Adapter(-F) classifiers by comparing the performance of the Zip-Adapter(-F)

classifiers to other classifiers no matter whether the MVREC feature is used. As

shown in Table 5.2, the MVREC feature consistently improves the performance of

all classifiers across different few-shot settings and gets the biggest gain of 11.53% on

CLIP-Adapter with 1-shot, demonstrating its general effectiveness for few-shot de-

fect classification. Our proposed Zip-Adapter-F consistently outperforms most other

classifiers, regardless of whether the MVREC feature is used. This indicates the in-

herent strength of the Zip-Adapter-F. When combined with the MVREC feature,

the proposed Zip-Adapter-F achieves the best results across all few-shot settings.

This combination maximizes the classifier’s potential, making Zip-Adapter-F with

MVREC the most effective approach for FSDMC. The Zip-Adapter and Zip-Adapter

have the same result since they are mathematically equivalent before training.

Mask Region-Context.

This section investigates the impact mask Region-Context. As mentioned, mask

Region-Context can help the model focus on the region of the defect instance without

cropping the region according to the defect size which causes the loss of context

information of the defect. The mask Region-Context are removed with two styles:

1) and take a whole-foreground mask as the Region-Context as the input of Alpha-

clip. 2) use clip without mask Region-Context. The results from 5.3 demonstrate
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that removing the mask context leads to a noticeable decrease in accuracy. This

section also considers the impact of different cropping styles. Cropping by defect size

with CLIP ignores the region-context. Cropping by fixed size with CLIP preserves

context but doesn’t use it effectively. Using AlphaCLIP Wo. (without) Mask take

full foreground mask as region-context and preserves context but still underutilizes

it. Finally, cropping by fixed size with AlphaCLIP and a masked region-context

both preserves and effectively utilizes the context. When cropping by defect size

and using vanilla CLIP, the worst results are obtained, which also indicates the

importance of mask region context. Cropping by fixed size and using AlphaCLIP

as the feature extractor achieves the best performance, indicating the effectiveness

of MVREC.

Multi-View Context Augmentation.

From the results in Table 5.3, this section can observe that different augmentation

methods have varying impacts on classification accuracy. When single augmenta-

tion is used, the multi-scale,multi-offset, and multi-rotation augmentations show

significant improvements across both Zip-Adapter and Zip-Adapter-F. When dou-

ble augmentations are used, the combination of multi-scale and multi-offset gets the

best results, which indicates that the multi-scale and multi-offset augmentations are

complementary and can be combined to achieve better performance. Multi-scale

augmentation allows the model to learn features at various resolutions, which is

crucial for capturing both fine and coarse details in the images. And multi-offset

augmentation helps in learning robust features by shifting the image and mask con-

text to improve the robustness and accuracy of the model in real-world applications.

Different Training Setting of Zip-Adapter(-F).

As shown in Figure 5.5, the impact of different training settings is investigated. The

combination of trainable support features and trainable ZIP module leads to the

highest accuracy across all few-shot setups.
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5.5.4 Visualization.

Figure 5.5: t-SNE projections of the MVREC features FSUPP for support set. From
left to right are 1) FSUPP without multi-view augmentation. 2) FSUPP 3) finetuned
FSUPP .

To better illustrate the function of the MVREC framework, t-SNE [156] is used

to visualize the support MVREC features FSUPP in Zip-Adapter-F, as shown in

Figure 5.5. The dots in different colors represent 5 categories of the 5-shot leather

image of the MVTec-FS dataset. The change in the distribution shows that multi-

view augmentation and finetuning can help the model learn more discriminative

features for classification tasks.

5.5.5 Comparison on Other Datasets

Dataset Defect Type (Instance Number) Annotations

NEU DET
Crazing(689), Pitted surface(432), Rolled in scale(628),

Bounding Bbox
Patches(881), Scratches(548), Inclusion(1011)

PCB
Spurious copper(503), Short(491), Spur(488),

Bounding Bbox
Mouse bite(492), Missing hole(497), Open circuit(482)

MTD
Break(108), Crack(69), Fray(37),

Image-level Mask
Uneven(103), Blowhole(115)

AITEX
Broken end(11), Broken yarn(16), Broken pick (65),

Image-level Mask
Fuzzyball(42), Cuts elvage(12), Weftcrack(15), Nep(19)

Table 5.6: Defect types and their counts in Other four datasets

Other datasets. MVREC were evaluated on several public datasets, including:

1) NEU-DET [108] is a metal surface defect dataset for detection model research.

2) PCB Defect Dataset [109] was released by The Open Lab on Human Robot

Interaction of Peking University. 3) Magnetic Tile Surface Defects (MTD)
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Figure 5.6: Classification accuracy (%) on other four datasets of different models
with quantitative values

[110] contains 6 common magnetic tile defects. 4) AITEX Fabric defect [111] is

a fabric defect dataset with 12 types of defects, in which seven defect types with

at least 10 samples are selected. For each dataset, 50% of the data are used as

the training set for sampling the support set and the other 50% is the testing data

(query set). In addition to 1, 3, and 5 shots, this section also evaluates the perfor-

mance with 10, 15, and 20 shots on NEU-DET, PCB Defect, and MTD datasets,

for a more comprehensive comparison. The results, as shown in Table 5.6 show that

Zip-Adapter-F (MVREC) achieves the best performance on all datasets, and the

performance of Zip-Adapter-F improves as the number of shots increases. Over-

all, these results demonstrate the generalization capability of the proposed method

across different datasets with different types of annotations.
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5.6 Chapter Summary

This chapter introduces MVREC, a general method for few-shot defect multi-

classification (FSDMC). MVREC is an instance-level classification method that

accommodates various labeled formats, including bounding boxes, masks, and key-

points. Extensive experiments were conducted on the MVTec-FS dataset, as well as

other public datasets, to evaluate the effectiveness of the proposed method, demon-

strating that it is a versatile and effective approach for FSDMC tasks. Overall,

MVTec-FS and MVREC can serve as benchmarks for FSDMC. I hope that this

work will inspire future research in this field and contribute to the development of

more advanced and effective methods. In the previous and current chapters, this

chapter has addressed the tasks of defect localization and defect classification sepa-

rately; however, these are often treated as independent tasks. In practical applica-

tions, end-to-end networks are generally preferred. In the next chapter, this chapter

will introduce a practical end-to-end detection model using continual learning for

industrial defect detection, particularly in the textile industry.
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Chapter 6

A Continual Learning-based

Fabric inspection Model

This chapter addresses the challenges of fabric inspection in the rapidly evolving

clothing industry, where new fabric types and inspection criteria frequently emerge.

Traditional inspection models struggle with pattern and inspection criterion shifts,

failing to adapt to unseen fabric patterns and new defect categories. To tackle

these issues, this chapter proposes a Continual Learning-based Fabric Inspection

Model (CLFIM) that adapts to new inspection tasks by learning both pattern and

inspection criterion contexts. This chapter pre-trained a base model on solid color

fabric images and evaluated the performance of the proposed model on the MTFabric

dataset with complex patterns and textures and different inspection criteria, which

demonstrates that the proposed CLFIM, based on the YOLOV8 model, achieves

promising results in adapting to new inspection challenges.

6.1 Introduction

In fabric inspection field, there are too many types of fabric, defects, and inspection

criterion. In addition, with the clothing industry changing very fast, the produc-

tion process is also constantly changing, new types of cloth may also appear, new

inspection criterion may also emrge. Therefore, it is very important to design a
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model for continual learning [99] on new tasks, such as different cloth types and

inspection criterion. A lot of works [157, 158, 159, 160] try to solve the fabric defect

inspection problem, but they do not consider the continual learning problem in the

fabric inspection field. Traditional inspection models are fixed and perform poorly

on patterns unseen before. The traditional inspection model is fixed and can not

adapt to the new inspection criterion (classification). this chapter summarized as

two problems: pattern shift and inspection criterion shift. pattern shift means that

fabric of unseen pattern and texture are encountered in the new inspection task, and

inspection criterion shift means that the new inspection criterion (different defect

categories) is different from the previous one. These two problems are the main

challenges when dealing with the unseen fabric types.

To tackle these two problems, this chapter proposes a Continual learning-based

Fabric Inspection Model (CLFIM). This chapter consider this problem as a CL

problem, in which the inspection model that pre-trained on a sequence of inspection

tasks and adapt to new inspection task by learning pattern context and inspection

criterion contxt. Pattern context and inspection criterion context are some normal

images and defect samples. Learning pattern from the normal images can reduce

the pattern shift from image, feature or region levels, and encourage the detectors

to focus more on the defective area as a result and ignore the normal area. Learning

inspection criterion can help the model to adapt to the new inspection criterion

by providing a few defect samples. This study constructs two datasets: a base

dataset with woven fabric images with solid color, which is used to train a common

object detection model as the base model. The MTFabric dataset with complex

patterns and textures and different inspection criterion, which is used to evaluate

the performance of the model based YOLOV8 [161], the most popular and efficient

object detection model are used as the base model to evaluate the proposed CLFIM.

Rich experiments are conducted to evaluate the performance of the model, and the

results show that the model can achieve promising results on the new inspection

task.
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6.2 Related Works

Recent advances in fabric inspection are reviewed, with a focus on methods that ad-

dress pattern context and inspection criterion context. The Multistage GAN frame-

work [157] offers a novel approach to defect inspection by addressing the complexity

of varying fabric textures and defect types. By leveraging a generative adversarial

network (GAN), this method is capable of synthesizing realistic defects and adapting

to different fabric textures in real-world applications. The framework’s integration

of a deep semantic segmentation network and a multistage GAN enables continuous

improvement in defect detection accuracy, making it highly relevant for tasks involv-

ing pattern context and defect inspection. The prototypical network [158] presents

an advanced approach for fabric defect classification, particularly addressing chal-

lenges related to imbalanced class distributions. By utilizing a few-shot learning

algorithm, this method improves classification accuracy by splitting the training set

into support and query sets, ensuring a balanced representation of classes. The

proposed network’s ability to enhance classification in the context of few-shot fabric

defects. RDDN [159] addresses the challenges of texture shift and partial visual con-

fusion in defect detection, which are critical issues in object detection tasks within

computer vision, particularly for industrial applications. The method introduces

template and context references to mitigate these challenges, thereby improving the

accuracy of detecting defects by focusing on the defective areas and leveraging con-

text information for better region classification. SDANet [160] introduces a siamese

defect-aware attention network designed to enhance defect detection on new, un-

seen samples without the need for large-scale retraining. By leveraging a siamese

feature pyramid network and a defect-aware attention module, this approach high-

lights inconsistencies between input and template features, improving the detection

accuracy for industrial applications. The method’s integration as a plug-in module

significantly boosts the performance of existing detection algorithms, particularly in

scenarios requiring adaptive pattern context and defect detection. These methods

provide valuable insights into the fabric defect detection using partten context and
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inspection criterion context. However, they do not consider the continual learn-

ing problem in the fabric inspection field. This work aims to address this gap by

proposing a continual learning-based fabric inspection model that can adapt to new

inspection tasks by learning pattern context and inspection criterion context.

6.3 A Continual Learning-based Fabric Inspec-

tion Model

In this section, a continual learning-based fabric inspection model is proposed that

evolves beyond traditional static detection approaches. The model use integreated

deep defect representations extracted from a pre-trained YOLOV8 model and adapts

to new inspection tasks by learning pattern context and inspection criterion context,

as shown in Figure 6.2. The model is designed to address the challenges of pattern

shift and inspection criterion shift in fabric inspection, enabling it to adapt to new

fabric types and inspection criteria effectively.

6.3.1 YOLOV8 for Fabric Inspection

Figure 6.1: The pipeline of YOLOv8 architecture adapted for defect inspection.

Illustrated in Figure 6.1, YOLOV8 is a state-of-the-art defect detection model

widely used in computer vision applications, known for its real-time detection ca-

pabilities. This backbone extracts features from the input image, which are then

passed through a series of convolutional layers to predict the bounding boxes and
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class labels of the detected defects in fabric images. The model employs a combina-

tion of supervised and unsupervised learning techniques to improve its performance

across a wide range of defect detection tasks. Despite its relatively lower accu-

racy compared to two-stage detection algorithms, YOLOv8’s speed and simplicity

make it an ideal choice for defect inspection, where rapid and efficient processing

is crucial. The network structure of YOLOv8, as applied to defect inspection, is

illustrated in Figure 6.1. In defect inspection, the variability in size and shape of

defects poses challenges in accurately localizing defects using traditional anchor-

based methods. YOLOV8, unlike its predecessor YOLOv5, adopts an anchor-free

approach. YOLOV8’s Center-based method, on the other hand, identifies the cen-

tral area of the defect and predicts the distances from the center to the four edges

of the bounding box. This approach eliminates the dependency on predefined an-

chor boxes, allowing the model to learn the shape of various bounding boxes during

training. Consequently, YOLOV8 enhances the efficiency and accuracy of object

prediction with fewer predicted boxes, making it well-suited for detecting defects in

fabrics, where defect types and sizes can vary significantly. YOLOV8 retains the bi-

nary cross-entropy (BCE) loss for classification, directly outputting confidence scores

for each defect class and selecting the highest score as the final confidence. In the

training process, In defect inspection, defects are typically sparse within an image

dominated by non-defective background. Focusing solely on identifying defects can

lead to false positives, so it is equally important to train the model on non-defective

regions. However, this creates an imbalance as defect regions (positive samples)

are far fewer than non-defective regions (negative samples). A dynamic assignment

strategy, named Task Alignment Learning (TAL), is used to adjust sample weights

dynamically during training. TAL initially penalizes misclassified samples heavily

and gradually refines the model to focus on accurately detecting challenging defects.

It improves the model’s performance by prioritizing high-quality positive samples us-

ing combined classification scores and IoU metrics. This dynamic approach ensures

more efficient learning from diverse defect data, enhancing overall model accuracy.
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This section trains the YOLOV8 model on the soild color fabric dataset to serve

as the foundational model for continual learning in detecting previously unseen fab-

ric types. By leveraging YOLOV8’s capabilities, this section aims to enhance the

accuracy and efficiency of defect detection in fabric inspection processes.

Figure 6.2: The pipeline of CLFIM.

6.3.2 Integrated Defect Representation from YOLOv8

This section focuses on extracting deep feature embeddings from the YOLOv8

model’s detection head, particularly from the classification branch. The detection

head of the YOLOv8 model comprises two branches: one for bounding box

regression and the other for classification. The classification branch outputs

class probabilities for each detected defect, while the regression branch outputs

the bounding box coordinates. Once training is complete, YOLOv8’s detection

head can accurately identify and represent defects in fabric images. The defect

representation generated by YOLOv8 includes bounding box coordinates (x1, y1)

and (x2, y2), a confidence score conf , and a class label class. This representation

(x1, y1, x2, y2, conf, class) provides a concise summary of each detected defect,

essential for automated fabric inspection systems to trigger alerts or prioritize

defects based on type.
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Moveover, The classification head consists of multiple convolutional layers de-

signed to process the input feature maps and generate deep feature embeddings

specific to each class. Let x0 represent the input feature maps from the preceding

layers. The classification head processes these inputs through a series of convolu-

tional operations, mathematically expressed as:

ei = Conv1(x0,i), i = 1, 2, . . . , nl (6.1)

where Conv1 denotes the first convolutional layer in the classification branch, nl is

the number of detection layers, and ei represents the feature embeddings extracted

from the i-th layer. The extracted deep feature embeddings correspond to the out-

puts from the third-to-last layer in the classification branch. These embeddings

capture high-level semantic information related to the classification task, specifi-

cally the discriminative features used to categorize defects into different classes, as

learned from the training data. These deep feature embeddings are not limited to

the original defect detection task for which the model was trained. They possess

generalization capabilities that can be applied to other downstream tasks. this study

called this module as Feature-intergrated Head, as shown in Figure 6.2. By lever-

aging these embeddings, this study can effectively perform task adaptation, making

full use of the pre-trained knowledge encoded within the YOLOv8 model. In the

context of defect inspection, the extracted deep feature embeddings, along with

the bounding box (bbox) and classification results (cls), are combined to represent

each detected defect, named integrated defect representation. For each detected de-

fect, it not only provides the bounding box location and class prediction but also a

high-dimensional feature vector which contain key information for classification and

retain deep semantic features from the input data, ensuring that each defect has

a unique deep feature representation. The advantage of this method is that it en-

hances the model’s versatility, extending its utility beyond simple defect detection.

In summary, by combining deep feature embeddings with regular detection outputs,
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this approach equips each detected defect with a rich deep feature representation,

significantly expanding the model’s functionality and application scope.

6.3.3 Learning Pattern-Context from Normal Images

To address the pattern shift problem when encountering unseen fabrics, a pattern-

context-based defect detection model designed is proposed to assess whether a de-

tected defect corresponds to the target defect. The pattern-context is defined as a

memory bank,M, which stores integrated defect representations of normal images.

The model calculates the similarity between a query sample and the memory samples

to estimate the probability of the detected defect. For classifying a defect sample,

the model selects the top-K most similar memory samples, based on a similarity

score. The similarity score is computed using the following function:

sim(q,mi) = exp

(
−γ ·

(
1− q ·mi

∥q∥∥mi∥

))
, (6.2)

where γ controls the sharpness of the similarity curve, q is the query sample, and mi

represents the i-th memory sample. The similarity scores are then combined with

the associated labels of the top-K memory samples to calculate the probability of

the defect. This probability is given by:

Pprior =

∑K
i=1 (labeli · sim(q,mi))∑K

i=1 sim(q,mi)
(6.3)

This probability score ranges from 0% to 100%, providing a clear indication of the

confidence in the detected defect. This initial probability score is then weighted

and combined with the network’s direct prediction confidence to produce the final

probability score:

probfinal = α · confnetwork + (1− α) · probprior (6.4)

where α is a weighting factor that balances the influence of the network’s direct

prediction confidence (confnetwork) and the calculated probability from the memory
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bank (probprior). The final probability score determines whether the detected region

is classified as a defect. This comprehensive approach effectively integrates deep fea-

ture similarity and direct network predictions, ensuring accurate and robust defect

detection even in dynamic environments.

6.3.4 Learning Criterion-Context from Defect Samples

When defect samples with corresponding classification labels are available, this study

can further enhance the model’s adaptability by introducing a criterion-context-

based detection head. This detection head adapts to new inspection criterion by

learning from the a few defect samples. Unlike the pattern-context, which is derived

from normal images, the criterion-context is more complex due to the introduction of

new defect categories that differ from those previously encountered. The criterion-

context is represented as a memory bank,Mc, containing the prototype features [98]

of each defect category. These prototype features, denoted as pi for the i-th defect

category, capture the central tendency of the samples within each category:

pi =
1

Ni

Ni∑
j=1

fj (6.5)

where Ni is the number of samples in the i-th category, and fj represents the feature

embedding of the j-th sample. The model calculates the similarity between a query

sample q and the stored prototype features pi to determine the classification logits

for the detected defect:

sim(q,pi) = exp

(
−∥q− pi∥2

σ2

)
(6.6)

where ∥q−pi∥ is the Euclidean distance between the query sample and the prototype

feature, and σ is a scaling parameter. The defect is then classified into the category

to which it is most similar, based on its proximity to the nearest prototype in the

feature space:

ŷ = argmax
i

sim(q,pi) (6.7)
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This approach enables the model to incrementally learn and update its understand-

ing of defect categories, even with a limited number of labeled samples. By leverag-

ing this method, the model ensures robust performance in dynamic environments,

continually adapting to new inspection criterion as they arise. The entire process,

from feature extraction to classification, is seamlessly integrated into the detection

pipeline, facilitating real-time updates and accurate defect detection.

6.4 Experiments

6.4.1 Experimental Settings

In the experiments, a standard YOLOv8 model trained on a solid color fabric dataset

is used as the foundation. The solid color fabric dataset, as shown in Figure 6.3

used to train the base model is collected from the fabric factory and contains 20

defect classes, including knot, structural defect, distort, edge, tag, wrinkle, flyarn,

stain, ball, attach, cusha, henji, hole, surface, ColorYarn, BrokenYarn, MissYarn,

DoubleYarn, Cao, and WrongDensity. The dataset is labeled with instance-level

bounding boxes. Then the model is evaluated on the MTFabric dataset with complex

patterns and textures and different inspection criteria, as shown in Figure 3.3.

The model’s performance is assessed across three distinct cases: (1) without utilizing

pattern context or inspection criterion context, (2) utilizing pattern context only,

and (3) incorporating both pattern context and inspection criterion context. This

chapter focuses on binary detection performance, specifically the model’s ability to

distinguish between defective and non-defective samples. For Case 3, where the

model must distinguish among multiple defect types, this study also assesses multi-

class detection performance.

6.4.2 Evaluation Metrics

To evaluate the performance of the proposed defect detection model, this study em-

ploys three key metrics: Recall and Precision, and mean Average Precision (mAP).

93



CHAPTER 6. A CONTINUAL LEARNING-BASED FABRIC INSPECTION MODEL

Figure 6.3: Visualization of the solid color fabric dataset.

Considering that Recall and Precision vary at different threshold parameters, this

section provides the Recall and Precision corresponding to the threshold at which

the F1-score is maximized. Recall (R) quantifies the proportion of actual positives

correctly identified by the model. It is calculated as:

R =
TP

TP + FN
(6.8)

where TP represents the number of true positives, and FN denotes the number of

false negatives. Precision (P) measures the proportion of predicted positives that

are correctly identified. It is given by:

P =
TP

TP + FP
(6.9)

where TP is the number of true positives, and FP is the number of false positives.

The F1 score, the harmonic mean of Precision and Recall, provides a balanced metric
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between these two measures. It is computed as:

F1 = 2× P ×R
P +R

(6.10)

Finally, the mean Average Precision (mAP) offers a comprehensive evaluation by

averaging the Average Precision (AP) across all classes. The AP for a specific class

is determined by integrating the Precision-Recall curve:

mAP =
1

N

N∑
i=1

APi (6.11)

where N is the total number of classes, and APi denotes the Average Precision

for class i. The mAP metric that this chapter uses subsequently is assumed to be

mAP@50 by default. The metric mAP@50 (mean Average Precision at an Intersec-

tion over Union threshold of 50%) is commonly used to evaluate the performance

of object detection models. It measures the accuracy of the model by calculating

the average precision across all classes, where a detection is considered correct if the

Intersection over Union (IoU) between the predicted bounding box and the ground

truth box exceeds 50%.

6.4.3 Results on MTFabric Dataset

The experimental results presented in the Table 6.1 provide a clear overview of

the performance improvements achieved by the proposed continual learning-based

fabric inspection model across three fabric types (A, B, and C) under varying condi-

tions: no context, pattern-context only, and a combination of pattern-context with

few-shot learning (criterion-context). Across all fabric types, the baseline model,

which operated without any contextual information, exhibited the lowest perfor-

mance metrics, particularly in precision and recall, with Fabric Type C showing the

most significant drop, where the mAP50 was just 0.219. Additionally, it is important

to note that without criterion-context, the model was unable to produce multi-class

classification results because the baseline model’s classification criteria differed from
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the test data, leading to inconsistent detection outcomes.

The introduction of pattern-context led to a marked enhancement in the model’s

defect detection capabilities. For example, Fabric Type C saw a significant mAP50

improvement from 0.219 to 0.641, reflecting a better generalization over standard

fabric patterns. The full integration of both pattern-context and few-shot learn-

ing further bolstered the model’s performance. Notably, for Fabric Type A, the

mAP50 in the binary classification task increased from 0.618 to 0.635. Similarly,

while the multi-class detection task showed improvements, the extent varied across

fabric types.

Overall, these results underscore that the combination of pattern-context and

criterion-context not only significantly improves detection performance but also en-

hances the model’s adaptability to novel defect criteria. This combination makes

the model more robust and flexible, better suited to real-world fabric inspection

applications where new defect types and patterns may be encountered.

Dataset
Context Binary Multi-class

Pattern Few-shot Precision Recall mAP50 Precision Recall mAP50

Fabric Type A
- - 0.536 0.587 0.577 - - -
✓ - 0.674 ↑ 0.63 ↑ 0.618 ↑ - - -
✓ ✓ 0.598 ↑ 0.699 ↑ 0.635 ↑ 0.284 ↑ 0.543 ↑ 0.401 ↑

Fabric Type B
- - 0.682 0.314 0.393 - - -
✓ - 0.744 ↑ 0.497 ↑ 0.541 ↑ - - -
✓ ✓ 0.732 ↑ 0.531 ↑ 0.554 ↑ 0.29 ↑ 0.375 ↑ 0.327 ↑

Fabric Type C
- - 0.289 0.589 0.219 - - -
✓ - 0.834 ↑ 0.612 ↑ 0.641 ↑ - - -
✓ ✓ 0.711 ↑ 0.711 ↑ 0.699 ↑ 0.395 ↑ 0.52 ↑ 0.502 ↑

Table 6.1: Performance comparison of the CLFIM across different fabric types and
context settings.

6.4.4 Ablation Study

This section explores the influence of key hyperparameters on the performance of

the proposed Continual Learning-based Fabric Inspection Model (CLFIM). The ab-

lation study analyzes how varying these parameters impacts the model’s ability to

adapt to new fabric patterns and inspection criterion, addressing the challenges of

pattern shift and inspection criterion shift. Ablation studies are performed on key
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hyperparameters, such as α and γ, and the choice of K, which are the YOLOv8

confidence weight, the shapeness of the similarity curve, and the number of nearest

neighbors, respectively.

Influence of YOLOv8 Confidence Weight α

Figure 6.4: Effect of YOLOV8 confidence weight α on binary and multi-class
mAP50.

The parameter α controls the weight of YOLOv8 confidence weight. As shown in

the Figure 6.4, the performance trends, where both binary mAP50 and multi-class

mAP50 initially increase and then decrease, demonstrate that relying solely on the

YOLOv8 model’s confidence score or the probability prediction based on context is

not optimal. The best results are achieved when these two factors are combined with

appropriate weighting. This also confirms that the introduction of pattern context

significantly enhances the model’s detection capability.

Influence of Nearest Neighbor Number K

The parameter K determines the number of nearest neighbors considered during

the learning of pattern context. As depicted in Figure 6.5, increasing knn K leads

to an upward trend in both binary mAP50 and multi-class mAP50, peaking at knn

K = 50. At this point, binary mAP50 reaches the best, and multi-class mAP50
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shows a similar improvement, indicating that considering a larger context of neigh-

bors improves pattern recognition and defect identification across different classes.

However, beyond knn K = 50, the performance gains plateau for both metrics,

and further increases provide diminishing returns. Therefore, setting knn K around

50 is recommended for optimal defect detection performance in both binary and

multi-class scenarios.

Figure 6.5: Effect of K on binary and multi-class mAP50.

Influence of the Sim Sharpness γ

The sim sharpness parameter affects the sharpness of the similarity function used

during adaptation to new inspection criterion. Figure 6.6 illustrates that a setting

of sim sharpness = 2.0 produces the best results. This suggests that a moderate

sharpness in the similarity function allows the model to effectively discriminate

between similar and dissimilar defect patterns, aiding in accurate classification of

novel defect types across both binary and multi-class tasks.
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Figure 6.6: Effect of sim sharpness γ on binary and multi-class mAP50.

6.5 Visualization of the Detection Results

Figures 6.7, 6.8, and 6.9 display the detection results of the CLFIM model on three

different types of datasets within the MTFabric collection. From these results, it is

evident that CLFIM effectively detects defects across various datasets. Furthermore,

the model successfully identifies different categories of defects specific to each dataset

type. This indicates that the proposed method is adaptable and performs well under

varying dataset conditions and detection criteria.

6.6 Chapter Summary

In conclusion, this chapter has developed a CL-based Fabric Inspection Model

(CADDM) to address the challenges of adapting to new fabric types and inspec-

tion criterion in the rapidly evolving clothing industry. By leveraging YOLOV8 as

the proposed base model, this chapter introduced the concepts of learning inspection

context and inspection criterion context to mitigate the issues of pattern shift and

inspection criterion shift. This approach allows the model to adapt to new inspec-

tion tasks effectively. Through comprehensive experiments on the MTFabric dataset

with complex patterns and varying inspection criterion. this chapter demonstrated
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Figure 6.7: Detection Results of CLFIM on Fabric Type A of the MTFabric dataset.

Figure 6.8: Detection Results of CLFIM on Fabric Type B of the MTFabric dataset.

Figure 6.9: Detection Results of CLFIM on Fabric Type C of the MTFabric dataset.
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that CADDM performs robustly in detecting defects under new conditions. The

results highlight the model’s potential in maintaining high accuracy and reliability,

even as production processes and inspection criterion continue to evolve. How-

ever, this approach does have certain limitations. Currently, this model’s continued

learning is primarily built upon the features of the pre-trained model. While this

enables the model to adapt to new tasks, further exploration is needed to optimize

the pre-trained model itself for new tasks, which could lead to even better feature

extraction and improved performance. Additionally, the exploration of continued

learning is mainly focused on metric-based learning. Expanding this approach to

include parameter optimization models is another promising direction for future

research. These enhancements could further bolster the model’s adaptability and

accuracy in increasingly complex inspection scenarios.
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Chapter 7

Conclusions and Suggestions for

Future Research

7.1 Conclusions

This research has introduced several novel approaches to enhance defect detection

and classification in industrial settings, particularly within computer vision-based

(CV) applications. The study addresses key challenges such as the underutilization

of large-scale normal samples, the difficulty of leveraging a small number of defective

samples, and the need for robust detection of unseen defects. Three primary models

were proposed: the Reducing Biases (REB) model for industrial anomaly detec-

tion, the MVREC framework for few-shot defect multi-classification (FSDMC), and

the Continual Learning-based Fabric Inspection Model (CLFIM). Each model was

developed to tackle specific issues in defect detection, such as improving feature rep-

resentation, enhancing generalization capabilities, and adapting to new inspection

tasks.

The REB model utilized self-supervised learning and a novel defect generation

strategy, DefectMaker, to maximize the use of normal images, leading to improved

anomaly detection performance. The MVREC framework integrated multi-view con-

text augmentation and few-shot learning techniques to enhance defect classification
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accuracy, particularly in scenarios with limited labeled data. Lastly, the CLFIM

model, based on the YOLOV8 architecture, demonstrated robust adaptability to

new fabric types and inspection criteria, showcasing its potential in rapidly evolving

industrial environments.

Extensive experiments on multiple datasets, including MVTec AD, MVTec-FS,

and self-collected fabric datasets, validated the effectiveness of these models. The re-

sults highlight significant improvements in detection and classification performance,

offering promising solutions for real-world industrial applications.

7.2 Limitations

Despite the advancements made in this research, several limitations remain. First,

while the REB model effectively reduces biases and improves anomaly detection, it

demonstrated suboptimal performance on the MVTec LOCO AD dataset, particu-

larly in detecting logical-type defects. This limitation arises from the DefectMaker

strategy’s inability to effectively simulate such defects. Additionally, the two phases

of REB—DefectMaker and LDKNN—operate as independent modules, which may

limit the overall performance.

For the MVREC framework, the study primarily focused on using image features

extracted by the CLIP model’s visual encoder, leaving the potential of the text

encoder unexplored. This limits the framework’s application in multi-modal defect

detection scenarios. Moreover, the MVREC framework has not been evaluated on a

unified model that can handle different defect datasets with a single training session.

The CLFIM model, while demonstrating adaptability to new inspection tasks,

relies heavily on the pre-trained features of the YOLOV8 model. This dependency

constrains the model’s potential for further optimization in new tasks, particularly in

complex and evolving industrial environments. Furthermore, the research primarily

explored metric-based learning for continual learning, without delving into parame-

ter optimization models, which could offer additional improvements in adaptability

and accuracy.
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7.3 Suggestions for Future Research

Future research should aim to address the limitations identified in this study. For

the REB model, developing a more sophisticated DefectMaker strategy that can

simulate logical defects would be a critical step toward improving its performance

on datasets like MVTec LOCO AD. Additionally, integrating the two phases of

REB into a cohesive learning process, potentially through a memory bank-based

approach, could enhance the model’s overall effectiveness.

In the case of the MVREC framework, exploring the use of CLIP’s text encoder

for multi-modal defect detection could expand the framework’s applicability to a

broader range of industrial scenarios. Furthermore, future studies should investigate

the development of a unified model capable of handling various defect datasets

with a single training session, which would significantly improve the framework’s

practicality in real-world applications.

For the CLFIM model, future research should focus on optimizing the pre-trained

features for new tasks, potentially through advanced fine-tuning techniques. Ex-

panding the exploration of continual learning to include parameter optimization

models could further enhance the model’s adaptability and accuracy, especially in

complex inspection environments with evolving criteria.

Overall, while this research has made significant strides in improving defect de-

tection and classification in industrial settings, ongoing efforts to address these lim-

itations and explore new research directions will be essential to advancing the field.
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[116] P. Seeböck, J. I. Orlando, T. Schlegl, S. M. Waldstein, H. Bogunović, S. Klim-
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