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Abstract of thesis entitled “Discrete Minimal Surfaces”
submitted by WONG, Chi Kin
for the degree of Master of Philosophy
at The Hong Kong Polytechnic University in 2000

In this thesis, I propose a new numerical procedure to obtain discrete
minimal surfaces with fixed or partially free boundaries. Using this procedure,
I recover most of the minimal surfaces obtained by other mathematicians such
as Hildebrandt, Karcher as presented in the monograph “Minimal Surfaces” by
Dierkes et al (1992) [1]. The same procedure also gives rise to new graphics of
partially free boundary minimal surfaces as depicted in the popular scientific
account “The parsimonious universe : shape and form in the natural world” by
Hildebrandt and Tromba (1996) [3]. The origin of the minimization algorithm
comes from the paper of Pinkall and Polthier [4] published in the Journal
Experimental Mathematics in 1993. My contributions consists of :

(1) improving the algorithm of Pinkall and Polthier so that one point at a
time needs be minimized, as a consequence of which the computer code
is greatly simplified.

(i) writing down the codes in the language of Mathematica and
implementing it,

(iii) proving the convergence of my algorithm for the fixed boundary case,

(iv) using this algorithm to produce graphics of most of the famous minimal
surfaces in the book on minimal surfaces by Dierkes et al [1] as well as
some additional new minimal surfaces by pasting and refinement
techniques starting from some simple fundamental pieces, and

(v) writing down the Mathematica codes to handle the partially free

boundary problem case.
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Discrete Minimal Surfaces

1. INTRODUCTION

Minimal surface, the mathematical synonym for soap film, is a
challenging branch of mathematics that began to arise since the historic

- experimental investigation on liquid films performed by the Belgian physicist
J. Plateau [5]. It was in the mid-nineteenth century when Plateau asked the
famous question as to whether each closed non-self-intersecting curve in the
space spans a soap film. In today's language, this can be reformulated as the

question asking for the existence of a minimal surface of disk-type bounding

each given Jordan curve in R, Nowadays, as many mathematicians have
demonstrated, there are numerous examples of more complex soap films
spanning a Jordan curve ' .

Despite the simple appearance of Plateau's question, its solution seemed
to be very difficult, and evaded many courageous attempts of some
generations of mathematicians. The first mathematically rigorous solution to
this problem was given in 1930 when J. Douglas [2] introduced a new idea to
replace the area functional" by the energy functional and to minimize not the
area functional directly but the energy integral. This energy integral is the

so-called Dirichlet integral

(L.1) DN = [, |V acay

A soap film is a minimal surface because a soap film naturally minimizes surface tension, whereas
surface tension is proportional to surface area.

To find minimal surfaces, we are indeed looking for a surface which gives the minimum of area.
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whereas the conventional area function is defined by
(1.2) aN=|f | fexsy| dcay
where Qc R? and f Q- R® satisfies f(@Q)=T for a given Jordan

curve [ < R? .

Since the solution of Plateau's problem by J. Douglas in the late thirties,
variants of Plateau's question were investigated, such as the so-called
partially free boundary value problem and the thread problem. In the partially
free boundary value problem, one has Jordan arcs whose ends sit on a surface.
The aim is to look for a minimal surface with part of its boundary sitting on
the arcs while the rest of it sitting on the surface.

In this paper, we study both cases of fixed boundary and partially free
boundary problems. Part of our approach is based on the algorithm proposed
by Pinkall and Polthier [4], where we apply a variant of their iteration
technique in the minimization procedure to find the minimal surface
numerically.

The plan of this dissertation 1s as follows: In the next section, we
formulate definitions concerning discrete minimal surfaces and describe
basic consequences of these definitions in our setting. After that, the
procedure of our methodology to work with a discrete surface under our
minimization algorithm is presented. Subsequently, we prove the
convergence of our algorithm, and finally we describe the implementation of
our algorithm using the software Mathematica. In fact, we set up a package
using Mathematica to generate all the graphics outputs in this work. The

detail of the package is mentioned in Section 6.
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In Section 7 of this paper, all the computer graphics constructed will be

shown and the conclusion will be given in the final section.
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2. DEFINITION OF DISCRETE MINIMAL SURFACES

We first define the notion of a discrete boundary curve.

| Definition1 |

(DI A discrete boundary curve T, in R is Jormed by a set of
straight lines I'; with endpoints at P, and P,
(i=0,1,2,....n, P, =Fy ), which are points on T, .
Furthermore, the curve I, is non-self-intersecting and not
knotted. (See Figure 2.1} .

Note that since P, | = Fy ,
(2.1) Lp=PulPun =Fh .
Hence, we may write (D/) as

(2.2) I, =U{L,,I,...T, }

"%

where I, =P P and Pel, (i=0,1,2,..,n; P,,1=F ).

Figure 2.1 A smooth boundary curve I and a discrete boundary
curve Iy approximating it
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| Definition ZJ

(D2y  Adiscrete surface in R* with boundary I, in Risa simplicial

complex consisting of triangles such that its boundary is T',.

] Definition 3 '

Let Q be adomain in R*and consider A, a triangulation of 2, i.e.

a polygonal domain satisfying the following properties.

(D3.a)  The vertices of 2A , the boundary of A, is a subset of 6Q2.

(D3.b) A is the union of finitely many triangles {A;} whose interiors

are pairwise disjoint and such that each of their edges is either an

edge of another triangle or an edge of the polygén oA .

D3¢ A discrete parametric surface (or a "discrete surface"” in short
p

with parameter domain  is a piecewise linear mapping f from
A to R? such that f(2A) is a discrete boundary curve [,,. (For

simplicity, [, will be denoted by I in the sequel).

(D3.d) A discrete minimal surface with fixed boundary is a discrete
surface with interior vertices p, pa,...p; such that its area is the
least when compared to nearby surface in the following sense:

Area of surface with < Area of surface with

interior vertices p|,..py  interior vertices py,..py

if ||ﬁ| - p||| <d,..., Ifﬁk - P || < § ; for 35 a small positive number.
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Let A and M denote the triangulated domain and the discrete surface
respectively. For a piecewise linear map, f:A— f(A)=M c R’, the
discrete minimal surface, say M , is the one whose total surface area is the

least.

(2.3) Area(M)=inf { Area( f: A - R3 ), V piecewise linear f satisfying

the boundary condition f(6A) =T }

where Area(X) is the area function of any discrete surface .X.
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3. FORMULATION

Our problem can now be formulated as follows. For simplicity, let T bea

simple closed curve and M a discrete surface with boundary ', and let

f Ao R bea parametrization of a surface over a two dimensional

domain A C Rz, where A may be a fixed "disk-like" domain or a fixed

rectangular domain, i.e.
_ 2.2 2 - 2,
A={(x,y)eR°: x“+y“ <1} or A={{x,y)eR“: 0<x,y<1}.

To begin with, we note that for any two vectors v,we R’, we have
2
2 2
(b -pa? )" 20

2
which implies ( |v]2 +|w|2] 24|vlzlw|2 and hence

L 2 W = B ()
where |v|2|w|2 —(v,w)2 = [vx w|2. By letting v=f,, w= f, and taking
square root , we have

1 2 23 _ o2

5[|fo +113] J=5|Vfl > | foxfy |-
After integration, 1t follows immediately that

(3.1) Ep(f)= %D(f) > A(f)

1 2 .
whete Ep(f)= 3 .UA V| dxdy is called the Dirichlet energy of f and

equality holds if and only if f is a conformal map.
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Following the paper of Pinkall and Polthier [4], we recall the following
lemmas and theorems which allow us to represent the Dirichlet energy of a
piecewise linear map between two triangulated surfaces using geometric data

of the discrete surfaces.

Let f be a linear map between two triangles A ,

and A g in two vector spaces with constant metrics A and B. Then the

Dirichlet energy of f is
1 2 2 2
(3.2) ED(f)=Z(cota|el |B +cotﬂ‘e2 |B +coty’e3 ’B]

where a, 3, y are the angles of A , with respect to the metric A, and
e | 2 e | 5 | e; | g are the lengths of their corresponding sides of

A g with respect to the metric B .

Figure 3.1 Linear map between two triangles

The Dirichlet energy of a piecewise linear map

[ A= M of Abijectively onto M is given by

(3.3) Ex(N)= 3 Ep(n=y X leota, +eot g)e,

wrigngle ! cdge  §

where a; and f3; are the corresponding angles opposite o the edge

e; inthe two adjacent triangles. ( See Figure 3.2)
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Figure 3.2 Notation for angles and edges

For edges along the boundary of M where one of the angles is missing,
we take the value of this corresponding term to be zero. As an illustration, a

neighborhood of a vertex, say p, on a discrete surface is shown in Figure 3.3 .

Figure 3.3 Neighborhood of a vertex p

| Definition 4 | (Pinkall-Polthier [4])

Let [ :A— M be a piecewise linear map in R Then [ is called

harmonic™ if and only if at every interior vertex pe M
0
(3.4) _E.o(f):O
op

holds, where g = (E,E,E)T
dp & oy Oz

" A discrete harmonic map is a critical point for the Dirichiet energy functional

with respect to variations of interior surface vertices in R
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For a discrete surface with energy defined in (3.2), the minimality condition

translates to

1
(3.5) —~ Y (cota; +cot B,)Xp-q;)=0
neighbouring
yerfices ‘?;

of P

where p is an interior vertex. Equivalently

2. (cota; +cotf)q;
(3.6) p=-

> (cotaj +cotﬂj)
)

If all interior vertices p satisfy this condition, then f is a critical point for the

discrete energy functional.

For the image points along the boundary, their movement is subject to the

relevant boundary conditions:

e If the problem involves symmetries and partially free
boundaries, the image boundary points may vary either along

lines or in the image plane.

e The points of the image boundary are not allowed to move for

all other cases.

In the next section, we make a closer look at the numerical procedure to

compute a discreie minimal surface following the ideas discussed above.
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4. METHODOLOGY

In section 3 we presented a method to find a discrete harmonic map for a

given boundary [ in R} and a given triangulated domain A in RY. Note
that T is a set of Jordan curves and each may be a fixed curve, a symmetry

line or a planar symmetry arc. Now, our problem is

Problem 3.1 Let T be a given discrete boundary configuration,
find a discrete minimal surface with boundary on
[ so that it can be extended across symmetry lines

and arcs of OM if necessary.

Section 4.1 contains a simplified description of the algorithm, in which
we allow reflections of a fundamental piece of the discrete minimal surface
and changes of the triangulation in the domain during iterations (See Section
4.4 & 4.5 for more details). Our minimization algorithm can solve both fixed
and partially free boundary cases. Before we begin with the discussion of the
minimization procedure, we consider the triangulation of the domain
( Section .4..2 ). Then, in Section 4.3 we explain briefly the minimization
procedure of how to vary points on the surface such that a discrete minimal
surface with fixed boundary or partially free boundary can be obtained. The
reflecting and refining techniques applied as a useful tool for speeding up the
process of approximating surfaces that converge to a minimum are described

in Section 4.4 and 4.5 respectively.



The Department of Applied Mathematics Discrete Minimal Surfaces P-4.2

11 Minimization Algorit]

Step 1

Step 2 :

Step 3;

Step 4

Step 5:

Step 6 :

Step 7 :

Let A" and M, be the initial triangulated domain and an
arbitrary  initial surface with boundary M, =T
respectively; set n=1and i=0.

Compute the next surface M as the minimizer of

i+l

Ep(f; : M > M, ™) = A}Eﬁs Ep(f; M = M)
aM=T"

where M denotes an arbitrary discrete surface satisfying the

boundary condition and the condition for the minimum given
by (3.6).

For any tolerance & >0, while
(4.1) Area( M) - Area(M,,,‘) | > &,

we set i to i+1 and repeat Step 2.

Complete the iteration steps, say m, until one arrives at error

below ¢, and output the limiting minimum surface A, " .

Increase the number of grids and construct the next

triangulated domain A"

;set #to ]l and i=0.

Repeat Step 2 until the size of grids is sufficiently smalil.

Reflect the fundamental piece across the symmetry planes if

the minimized surface satisfies certain symmetry properties.
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LD Tri lati
In general, most of the discrete surfaces in our project are mappings
£ MM SR
from a domain M, intoR’?, where A c R?and M = R® for
i=1,2, ... Tor construct an initial surface in the Euclidean space, we may

set a triangulated rectangular domain A as
A={(x,))eR’: asx<h, c<y<d)}.

In the case when the surface is not bounded by four sides a disk-type domain

is more appropriate. Hence in our algorithm we most of the time set
A={(x,y)eR*: x* +y* <r?}.

For instance, a k-sided surface is parameterized by a disk-type domain

divided into k sectors. A sector of the general disk-type domain and the

triangulation setting are shown in Figure 4.2 .

¥
A
A N
. / N
. \
; /,, x
c s
a b>x

Figure 4.1 A rectangular domain - Figure 4.2 A4 "disk-type" domain
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L3 Minimization P l

In the following, we denote M j(") simply by M, . As mentioned in the

algorithm in Section 4.1 , for each iteration step, we have to repeat step 2 so

as to find out a sequence of approximating surfaces M, which converge to the
minimum M . Here, we would describe briefly how the points on M, vary in

the image space so as to minimize the surface area.

For the fixed boundary case, we only need to consider the movement of
the interior points on the surface during each iteration. However, for the
partially free boundary case, we first regard the points on the free boundaries
to be fixed while we are minimizing the interior region. After each interior
minimization, we vary the free boundary points with respect to the boundary
conditions. These two steps are repeatedly carried out until the stopping
criterion is satisfied. In short, the minimization procedure consists mainly of

two steps, which are

e interior minimization - to vary only the interior points one

at a time such that each of them satisfies the condition (3.6).

e Boundary minimization - to move those points on the partially
free boundary along lines or in planes subject to the boundary

condition.

The minimization procedures of the fixed boundary and partially free

boundary cases are illustrated and summarized in Table 4.1 .
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Discrete Minimal Surfaces

Table 4.1 Summary of the minimization procedure

Boundaries Fixed Partially free
Repeating
Process
Output M,
Remark: =  moving w.x¢ condition (3.6} Jfixed boundary

-—p moving in plane
=== moving along line

annusane free boundary

edge

P45
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' 4 Reflection Princinl

In some of the problems, the symmetry properties can speed up the
minimization process, because we only need to consider a specific part of the
discrete surface which is bounded partially by symmetry lines or planes and
then paste them tégether. This part of the surface is called the fundamental

domain. From [4], we have

Theorem 4.1
(i) Every straight line contained in a minimal surface is an axis of

symmetry of the surface.

(ii) If a minimal surface intersects some plane T1 perpendicularly,

then I1 is a plane of symmeltry of the surface.

Let us consider a simple example, the case of a catenoid. We construct a
four-sided fundamental domain, three of whose sides are planar symmetry

curves and the fourth side is fixed.( See Figure 4.3 )

v Minimization

Figure 4.3 The fundamental domain
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After going through the process of minimization of a fundamental piece,
the reflections subject to the symmetry lines or planes is then used to generate
a complete surface. Referring to the last example, a catenoid can be
constructed by 8 copies of the minimized fundamental domain by repeated

reflections about the symmetry planes.( See Figure 4.4 )

'y

A

.....

Figure 44 A catenoid is formed by reflecting the
Jundamental piece.
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\5  Refining Techni

During iteration, the triangulation is allowed to change by refining grids.
The advantage of doing this is that at the beginning less grids are required to
obtain the preliminary shape of the minimal surface, and then we use this as
the initial surface in the next iteration after the number of grids has been
increased by refinement. The iteration process is carried on repeatedly until
the number of grids is sufficiently large. To describe our technique, we
consider the example:

Let p,™, '™, p3 be the vertices of a triangle in the image
space at the » th iteration step. Then
p; D = p Jfor i=1,2,3

ey _ 20"

i » Sforij=1,233G<)),

and

where qy(”“) are the new points added in the (n+1) iteration step.

(n+l)

7

P

(m
P2
(n+1)
:
1
p p"!
[ {r+l)
(n) C]” (n+1}

3 ?

At nth iteration At {(n+1) th iteration

Figure 4.5 A triangle is refined into four smaller triangles

After refining, we repeat the minimization procedure with all the image
points, including the original points and newly added points. In the next page,
an example is given to describe how a catenoid is generated using this

technique.
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]
n Domain A™ Before Minimization After Minimization
Image Image
Surface Surface
Image Image
5=
7
o Eniin Vi )
Surface Surface
Image Image ‘
|
|
Surface Surface
|
Image Image '
[
| Surface Surface
|
i
|
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5. PROOF OF CONVERGENCE

In this section, we will

(1) show that the functional Ep,(f) stated in (3.2) is a positive
quadratic function on the set of non-degenerate triangles and

hence has a unique minimum,

(i) show that the decreasing sequence of discrete minimal

surfaces in [4] contains a convergent subsequence,
(iti) prove that the limiting discrete surface is minimal.
For simplicity, the analogous convergence of the algorithm for the
partially free boundary value problem will not be discussed.

Following Pinkall and Polthier [4], the following non-degeneracy will be

assumed throughout :

| Definition 4 | A set of triangles is called non-degenerate if each

element in it satisfies

O<m <a,f,y<m<nm B

Jor some my, my € R

Now, let / be a linear map between two triangulated surfaces. The

following lemma gives an explicit expression of Ep(f) in terms of the

corresponding angles and the positive definiteness of this functional.
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The Dirichlet energy Ep(f) is a positive

quadratic functional on the set of non-degenerate triangles, where

Ep(f) = i—(cota|a|2+cotﬁ|b| 2-+coty|c| 2) .

B / b .
a Y
[

Figure 5.1 Mapping between two triangles

Proof

First note that this formula is just a reformulation of (3.2) of Lemma 1.
Putting a = ¢-b then (3.2) can be rewritten as
]
Ep(f) = " (cota|b—c| 2 +cotﬂ| b[ 2 +cot7]c| 2)

_ 1 rcom[lbl2+'c'2_2(b,c))+cotﬂlb|2+cotrfclz]

s —

1 (cota+cotﬂ)[b| 2 +(Cota+coty)[c| 2 7 cota(b,c)]

| (b )(cota«i-cotﬂ —cota J(b)
= - , €
4 —cota cota +coty/ \¢
Here the usual multiplication is to be replaced by dot product.

, L cota +cot —cota
For simplicity, we let O = and let us check
—cote cota +coty

the signs of cota +cot F and cota +coty first.
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cosasinB+sinacosf _ sin(a+ f)

cota +cotfl = - - - .
sina sin 8 sina sin
cos¢ siny + sina cos sin{a +
and cota+coty = .y - r - ; ( .Y) .
sing siny sin@siny

For a+fB+y=rand O<a,f,y <m,wehave

____S{n(a-f-ﬁ) >0 and ____S{n(a-!-y) >0.
sina sin f sina siny

Hence cota +cotf and cota +coty must be positive. Next, we have to
check whether det O is greater than zero.

cota +cot 8 —-cota
-cota cota +coty

detQ

cotarcot f+cotacoty +cotycot

Replacing y by = —a— f, we can then have

detQ = cotacotf+cot(x —a - B)cota +cot b)

cot e cot ff — cot(a + f){cot a +cot f)

1 l—tanatanﬂ( ! 1 J

- +
tan ¢ tan tana +tanfB \tana tanf

As a result, the matrix  is positive definite. i)
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Since E p(f) is apositive quadratic function of the vertices, it has a
unique minimum. Next we construct a minimizing sequence and show that
the sequence converges to a limiting minimal surface. For convenience, we

consider the case where only one interior vertex exists.

Ji

MO M]

Domain Image

Figure 5.2 Surface M) is generated from an initial surface My

Starting with an initial surface My, we get M| by solving the system of
linear equations obtained by differentiating £ with respect to the interior

vertex,
. 5 E ] i i i
ie. 5 (/i) :52 (cota, +cot ) (p—q')=0

D (cota’ +cot B4,

J

> (coter; +cot £7)

!

thereby obtaining p=

(p depends on i)

In the same way, one gets M;,; from M; by solving a similar

equation. Next we show the sequence of the areas of these discrete surfaces

M, are monotonically decreasing.

P-5.4
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A(f(M;)) = Ep(id: M; - R®)

v

Ep(/fi)
= A(fAMi)+ Ec(f)

v

A(f (M)

where Ec(f)=Ep(f)— A(f(M)) is called the conformal energy of the

mapping f.

From the above, we see that the sequence of numbers {A(f(M;))} is

monotonically decreasing. In the following, we argue that a subsequence of

{M,} converges to a discrete minimal surface. To this end, we first show

The set of vertices of the sequence of surfaces {M}

are bounded

Proof

Suppose that there are N layers of triangles forming the surface M;, and
denote all the vertices of M; by pg'for j=1,2,..,n,  and
k=0,1,2,..,N, where n; represents the number of vertices along the
outer side of the k-th outermost layer, the interior vertices and boundary

vertices can then be expressed as {p,(("l),....,p,(cit)k } where k=1,2,...,N

and m(!‘),__, Pong (")} respectively. (See Figure 5.3)
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1st layer

Figure 5.3 The notation of vertices in the N layers

For the boundary value problem with fixed boundary I'", we have to show
that the vertices are within a fixed distance. Let us consider the outermost

layer first and look at one such triangle pg; pgs py5

Pii

Pol

partof I’

~02

Figure 5.4 A particular triangle on the outermost layer

Each of the lengths of PojPoj+1 on the fixed boundary must be finite.

Hence

(5.1)  0< L(pg1pg) < Max | L(po1P02) » L(P02 P03) s s L(Popy PO1) |

< M forsome real no. M

where L(p 4pp) is the length of between points p, and pg.
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For convenience, we call the corresponding angles inside A py; po2 211

ag), ag2 and ap respectively.

P
ay
Then, by sine formula, we can have
ag
Poi
Lipgip11) _ L(po1poz)
sin g sina %02
: P2
sSiapy
Liporp11) = L(po1P02)

sinag

Under the assumption of non-degenerated triangles,

0<a5a01,a02,a“5A<n’

and (5.1), we have

1
Lippip11) s —M
sina

Inductively, we conclude that the vertices of each of the triangles in the

sequence {M;} are at a bounded distance from the origin. O

From Lemma 3 one concludes that after suitable ordering, each sequence
of vertices of the simplicial complexes {M,} is a bounded sequence and
therefore contains a convergent subsequence. Using a diagonal process, one
can select a convergent subsequence of discrete surfaces again denoted by
{M,} by abuse of language. More precisely, this means each vertex of M,

converges to a limiting vertex which together form the limiting surface

M

@ -
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In the next step, we shall show

Lemma 4 M, is a discrete minimal surface.

Proof

First we define the Dinchlet energy function F; = Ep(f;) and compute the

Hessian of F'at a vertex p. Since

= %;(cota; +cotﬁj-)|,0—4’;.2

Differentiating (5.1) with respect to x, y and z , we can then have

(5.2a) EZ— Zjl(cota +cot 3 )enP“q})
(5.2b) aayj =Z(cotaj +cot f )(ez,p—qj.>
(5.2¢) Z(cota +cot )/e3,p qj>

where ¢,,e,,e, are unit vectors in the x, y and z directions. If all the

equations in (5.2) are differentiated with respect to x, y and z again, it is
not difficult to find that
*F, 3'F,  9'F

(5.3a) axzf = ay; = azz' =§:(cota_‘,'.+cotﬂ})

(5.3b) i = =

'F, 8'F, OF, 8'F, ?'F, 9'F _
xdy  Oydx oz Ozdx  dydz  Ozdy

P-5.8
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Recall VF,-|p_ = 0 , which means that VF; vanishes at p;,;. Then,
+

oF; OF; oF;
(5.4) —4 == - =
O Pi o Pi P+l
. i oF; .
Similarly, the forms of —| and 6— can be easily observed.
4
Pi Pi

Now, consider a function with a parameter f which is defined as

oF
(5.5) o(t) = ;((1 ~0)p, +1tp.)
oF. oF
Note that @(0)=—=" d p()=—
ote that ¢(0) = —| and p() =~

P Pisy

Using the Mean Value Theorem, we obtain

oF; aF;
E‘ - —t = 9(0) - (1)
Pi Pisl
_ de for some &; € (0,1)
dt 1=¢;
_[i 82r, dl1-0p® +rP(k+D)}
ko1 X% a 1=¢,

where x; =x,y,z for £=1,2,3 and p,-(k) is the 4-th component of the

vector p;. After simplifying, the equation in (5.4) can be rewritten as

(p (k) _ (k))

(5.6) o
x .

5]

3
lzz 6xk6x

J p k=1

P-5.9
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By using (5.3), we can simplify (5.6) as

o°F, : :
- 2: (Pi(j)'“ pm(f))
N
I g

(5.7) oF;

in

Computing the norm of the vector on both sides of this equality, we have

2 2
OF; oK (pg)_ D) | 2F “ W _ )
. ) i TPivy= 22| P TP
/ pl gr J éi

for some &, e (0,1). Summing up, we get

<

”V!{. L1<[V2E, Hllp,- - Pl

for some 7, € (0,1), where V2F, denotes the Hessian matrix of F .

from above by the maximum

In the last inequality, we can estimate VZF:..
M

of the entries of the matrix. Let s,,, denote this value, then we have

"VF:"‘DJ, < Smax ”pi — Pitl ”

Finally, recall that lim p; = p,, hence the right-hand-side of this inequality
>

converges to zero and we can conclude that

VFw|p = lim VF,—IP_ =0

o0 f—w I

Therefore F,, is a discrete minimal surface as claimed. O

@ Peo Yue-kong Library
PolyU: Hong Kong
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6. MATHEMATICA PACKAGE

In this section we describe the package which I built into Mathematica to compute
general problems of discrete minimal surfaces for any boundary conditions provided. One
of the most important features of Mathematica is that it is an extensible system, and it is
always possible and convenient to add more functionality. In our case, there are two main
parts, the program body and the package body. They are separated but dependent. The
program body can explicitly tell Mathematica to read in the package we defined so as to
carry out the standard procedure of minimization, data processing as well as graphical
output. To deal with different minimization preblems concerning discrete surfaces, we
merely need to change the input data in the program body subject to both the initial and the
boundary conditions. Before discussing the program body, the structure of the package is
described first in the following.

&Package - 01 |

BeginPackage["Msurface™); Program heading and

L . the name of the

Begin[" Package™]; package is defined as
“Msurface ",

SubProgram 1;
SubProgram 2; Subprogram is the
segment of a program
that can perform a
specific function.

SubProgram N ;
End[]
EndPackage] ] Package ending
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Mathematica uses the notion of BeginPackage[*“package-name™] and EndPackage( ]
to indicate the beginning and ending of a package. The general structure of the
Mathematica package is shown in Package-01.

The package itself is decomposed into several subprograms. Each of them may call
other small subprograms or functions to complete the task, such as drawing graphics,
computing, processing data, etc. We now take a closer look at the main subprogram called

“minimize[]” whose structure is shown below.

Msurface Package
minimize{ |
N N
spider{ | savedataf ] areaf | draw( ] interior{ ]
readdataf ] exterior( |
finkdataf ]

Figure 6.1 A top-down design
In minimize[], user-defined functions and subprograms are contained to execute the
standard process to minimize a discrete surface. The part of subprogram minimize[] is
listed in Package-02, in which minimize[] creates an initial discrete surface, say M,, first
by using another subprogram spider[] after a set of parameters ( i.e. pts, guide, boundary

boundpts and parameter) has been assigned.
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[Pagkages 02-]

" minimize[ pts_, guide_, boundary_, boundpts_, parameter_ ]:=

Module({ },
{nr, 1, dt, opt }=parameter;
{ tol1,digit }={ 10*4,10 };
If [ tt==0, { t=tt, spider[ pts, guide ] } , {
If [ TrueQ[ tt=="last" ],
{{ t}=ReadList[ "time.dat", Number | , tt=t },
t=tt];
linkdatal p, readdatal namefile(t] ] ]
ik
olda=999;
newa=area[p];
draw] Table[ Table[ Line[ { p[ v[m.nr,i] ],
plv[m.nrit] ]}, {L.0wlnrl-1}], {m,0,m-1}]];
draw| fdomain, opt ];
Print[ "n","  ""A(n)""  "A(n}-A{n-1)");
Print[ "---"" " "ewee® " " e
While[ TrueQ[ Abs[newa-olda] > tol ] , {
Print[ t," : ",newa," ",
if[t==tt," -"Abs[newa-olda] ] ];
interior(];
exterior(];
olda=newa;
newa=arealp);
t++;
If { Mod[ t, dt]==0, {
savedatalt,namefile(t]j;

draw[fdomain,opt]; }];

i

Discrete Minimal Surfaces

minimzef] consists of
different subprograms
that can construct
initial discrete surface,
compute the area of
each of the discrete
surfaces, minimize the
discrete surface area
by moving points.

All the data about
surfaces are saved in
files called namefilef]
and time.dat.

P-6.3
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To identify each point p on the surface, we make use of a pointer v[i,j, 4] to state the

coordinates of a point p[ v[ij,k] ] . Hence we have to define the following functions.

rn:=Length[ pts J; Rn is equal to the number
. of the boundary points
W[ j— ]=lf [ TrueQ[ J::nr] [ nr+1 ' j ]l g:’ven.
V[ M.l ]:zMOdU|e [{ mm=m, j=) , u=l }' w{] determines how many
If [TrueQ[ jj==0], { mm=0, ii=0 b points along each line of
segment.

While{ TrueQ[ii<0], { mm-=1 , ii+=w{jj ]} ];
While[ TrueQ[ii>=w(jj 1], { mm+=1 , ii-=w[ jj ] }];
While[ TrueQ[ mm<0 ], mm+=m |;

v{] denotes a pointer.

While[ TrueQ[ mm>=m |, mm-=m |;

1

{mm,jj,ii}};

Next, during processing, we may have to store or recall data which can be done by
calling the subprograms savedata(}, readdata[] and linkdata[]. At each iteration step, we
minimize the surface by moving the interior points first, and then the exterior points on the
boundary. Such steps are performed in the subprograms of interior|] and exterior[]. The
loop of minimization is executed repetitively until the termination criterion is fulfilled. In
order to compare the difference of areas, we therefore define area[] to evaluate the total
area of the discrete surface M; . The figure of the minimized surface is finally
implemented using the function of draw[]. All the subprograms in minimize[] mentioned

above would be presented in more detail later.
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To identify each point p on the surface, we make use of a pointer v[i,k] to state the

coordinates of a point p[ v[i,j,k] ] . Hence we have to define the following functions.

[Package =03 ]

r:=Length[ pts ]; Rn is equal to the number
. . ] of the boundary points
wlj_ ):=If [ TrueQ[ j==nr], nr+1 ,j]; given.
v{m__i_|-=Module [{mm=m, fi=] =i}, wf] determines how many
If [TrueQ[ jj==01], { mm=0, ii=0 1A points along each line of
segment.

While[ TrueQ[ii<0], { mm-=1 , ii+=w[ ]} ];
While[ TrueQ[ii>=w[jj ] ], { mm+=1 , ii-=w[jj ] }];
While[ TrueQ[ mm<0}, mm+=m J;

v{] denotes a pointer.

While[ TrueQ{ mm>=m], mm-=m;

i}

{mm j,ii}};

Next, during processing, we may have to store or recall data which can be done by
-—calling the subprograms savedata(], readdata[] and linkdata[]. At each iteration step, we
,/ minimize the surface by moving the interior points first, and then the exterior points on the

boundary. Such steps are performed in the subprograms of interior[] and exterior[]. The
loop of nlinimization is executed repetitively until the termination criterion is fulfilled. In
rder to compare the difference of areas, we therefore define area[] to evaluate the total

wea of fhe discrete surface M; . The figure of the minimized surface is finally

mplemented using the function of draw[]. All the subprograms in minimize[] mentioned

tm)e»/vou]d be presented in more detail later.
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Figure 6.2 The working procedure in spider

Figure 6.2 shows a simple example how the triangulation of an initial domain is
performed in the subprogram spider{], in which pfs contains Pos P1s - >, Py » the
boundary points on the Jordan curve and guide instructs how the boundary points connect
together that may be either joining as a straight line or plotting according to some
parametric mapping. Next, we determine a central point by averaging the weightings
among the boundary points. After that, the function ratio{] is used to divide each line

Joined by two points.

rab - ra

0a

ob

o

Figure 6.3  The vector ox is found by the function ratiof]
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Package'-'04:;

Spider| pts_,guide_ ]:= Module( { }, guide indicates how
the points pis join

Do[ p[ v[m,nr,0] ] = N[ pts{[m+1]]], {m,0,m-1}]; together by either a
straight line or a

DO[ parametric mapping.

If [ TrueQ[ guide[[m+1]] == "join" ] , {
Do[ p[ vm,nr,i] ] = ratio[ p[ vm,nr,0] ],
plvim+1,n,01],1, winr) ], {i,1,w[nr]-1} ];
3
ds=( #3 - #2) / winr] &@@ guide[[m+1,2]};
Do[ p[ v[m,nr,i] ] = N[ #17#2[[1]] -> (#2[{2]}+i*ds) |
@@ guide(m+1]], {i,1 winl-1} )

ik
{m,0,rm-1}];
p[ v[0,0,0] } = Sum[ p[ v[m,nr,i] ], {m,0,r-1} p[v{0,0,0]] indicates
i * th tral int
(L0awinrk-1} 17 (e 1) among. the. boundary
Do[ p[v[m,j,0]] = ratio[ p{ ¥v[0,0,0] ], p[ v[m,nr,0] ], ] points.

o] {1}, {m,0m-1} ;
Do[  p[vIm,j,i]] = ratio[ p[v[m,j,0] ], p{vIm*1,j,0]], i
! W[J] ] I {j,2,nr'1} ' {m,O,m-1} 1 {i,O,W[j]-1} ]:
X

: = rat*aa + rat . ratiof] is wsed lo
ratio] oa_,ob_,ra_,rab_ ]:=N[ ( (rab-raj*oa + ra*ob ) /rab J; divided each line by

ratio.

For convenience, it is better to save the data about the points on each discrete surface
during minimization. As a result, we define the functions savedata[], readdata[] and
linkdata[] so as to save data in files named by the function namefile[] and to read data from

files if necessary.
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[ Package =05}

data[ x_ J:=Insert|
Flatten]

Table[ x[v[m,ji]] . {i.1,nr}, {m,0,m-1}, {i,0,w(j]-1} ]

2]
X[V[0,0,0] 1}

Change[ t_ ]:= Module[ { tt, st },
Iff t >= 1000, tt = Mod]t, 1000}, tt=1];
ft = ToString[ 1t ];
st = StringLength ft];

Dol ft = "0"<>ft, {3-st} ];

f];

namefile[ t_ ]:= Module[ {15 },

ts = ToString[Quotient[ t,1000 ] ];

name = datafile<>ts<>"."<>Change[ t ];
name];

savedata[ t_, file_]:= Module[ { },
SetDirectory[ root ],
WriteString[ "time.dat”, t );
Ciose[ "time.dat" J;
Do[{ WriteString] fite,
FortranForm| SetPrecision[#1,digit] ] , " ",

FortranForm[ SetPrecision[#2,digit] ] , " °,
FortranForm|[ SetPrecisionf#3,digit] ], "\n"

J&@@datafp]{[m]]
% {m,1,Length( data[p] ] } I,

Close{file];
)

readdata file_ |:= Module[ { },

SetDirectory[ root |;

outdata = Partition[ ReadList] file, Real ], 3 ];
outdata;

linkdata[ x_, indata_ ]:= Module[ { k=1},
x[v[0,0,0]] = indata[[K]];

Do[ { k++;

x[v[m j.i]] = indata][[k]]

3 4,100, {m,0,m-1}, {L.0,w[j]-1} |;

)

dataf] groups all pointers

Change[] converts the
number t into a string as a
part of the name of the
data file.

namefile{] specify a name
of file to store data at the
t-th iteration.

savedataf] is to write the
coordinates of all points in
the specified file.

readdataf] is used to recall
the saved data.

linkdataf] transforms the
Jormat of the data read.
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Besides processing data, we also have to draw out the graphic of the output. Hence the

function draw[] is defined to draw after a figure and options are provided. The

triangulation of any discrete surfaces can be described in polys[] as a set of vertices of

triangles, and the figure is represented in picture[] using . The program is listed below (see

[Package-06] .)

[\)Package <06.]

Polys[ x_ ]:= Partition]
Partition[
Flatten[ Join]
Table[ { x[v[m,j.i]], x[v[m,j-1,i]], x[v[m,j-1,i-1]} }
{i.2nr-1}, {m,0,m-1}, {i,1,wlj]-1}].

Table[ { x{v[m,},il], x[v[m,j+1,ill, x{v[m,j+1,i+1]] }
{5.0.nr-2}, {m,0,m-1}, {i,0w([j]} ],

Table[ { x[v[m,nri}], x[v[m,nr,i+1]], x[v[m,nr-1,i-1]] }
Am,0,m-1}, {i,1,winr}-1}],

Table[ { x[v[m,nr-1,i]], x[vim,nr-1,i+1]], x[v[m,nr,i+2]] }
Am,0,m-1} {i,0w[nr-1]-1} ],

Table[ { x[v[m,nr,0]], x[v[m,nr-1,0]}, x[v[m,nr,1]] }
Am,0,m-1}}

—_—
[ % Jre—
I

picture{ x_ ]:= Polygon[ # ] &@polys[ x };

draw( fig_, opts_ ]:= Show[ Graphics3D[ fig ], opts ];

polysf]  contains
all the triangles
formed on a
surface.

picturef] formed a
set of polygons or
triangles if polys{]
has found

drawf] shows the
graphical  output
under the opinions
provided.
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In general, it is necessary to measure the arca and the angles of the triangles of a
discrete surface in each iteration for the purpose of checking the termination criterion and
performing the minimization process respectively. The functions triangle[] and angle[] can
measure the area of AABC and £ABC respectively if the position vectors of O4, OB and
OC are provided. And then the total area of triangles described in poly[] can be computed

by the function area[].

'Package -.07 ]

triangle[ oa_, ob_, oc_ J:= Module[ { }, triangle{]  computes
the area of a triangle
{ab, ac } = { ob-o0a, oc-0a }; only.

AppendTo[ ab, abj[1]] ];
AppendTo] ac, ac[[1]] ];

da = Sqri
Sum[(ab{[m]]*ac{[m+1]]-ab[[m+1]]*ac([m]]}"2
{m.1,3}]
1/2.;
daj;

areal x_}= Plus@@( tianglel {11}, #1121, HI31 | L@POYSIAL ) | veer cotentanet by

Sunction trianglef].

angle[] can measure

angle{ oa_, ob_, oc_]:= Module[ { }, o angle in a triangle

{ba, bc } = { 0a-ob, oc-ob };
babc = Sqrt[ (ba.ba)*{bc.be) |;
If[ TrueQ[babe<toll]
ang=0,
ang=Re[ ArcCos|(ba.bc)/babc] |
I
ang J;
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After having introduced some components in the package, the most important parts of

the package will be discussed now. In order to minimize the area, the condition (3.6) for all

interior points is used. For each nterior point, say pj;, its corresponding neighborhood

(refer to Figure 3.3) is grouped and called allv in the program. Then the new location of a

point p;; is found in the subprogram iteration[] with respect to its neighborhood under

condition (3.6) .

e

alivi={ p[vm,j+1.i]], p[ v[m,j+1,i+1]], the neighborhood of a
plvIm,j+1,i+2} ], p[v[m J,i+1] ], pomtis defined as
pEvimj-Li] ], plvmj-1.i-1]1, o

} plvImj 1] ], plvim,j+1.i-1]]

teration[ vp_ viist_ [:= Module [ { upp=(0,00}, low=0, o e e

nv = Length| viist ]; position such that the
' area of the discrete

vs = Insert] Insert] viist, viist[[1]] , -1, viist{[nv]}, 1]; cunfice formed by it
Do { neighborhood vlist is

ang? = angle[ vp, vs{[k-1]}, vsi(k]] | reduced.
Iff TrueQ[ ang1<tol1 || N[Abs{ang1-Pi)j<toi1 ],
co1=0.,
cot = N[ Cot[ ang1]]
J
ang2 = angle[ vp, vs[fk+1]], vs[[k]] J;
If[ TrueQ[ ang2<tol1 || N[Abs[ang2-Pi)]<toit ],
c02=0.,
coZ =N[Cot[ang2]]
L
upp += (co1+co2)*vs[[k]);
low += (Co1+co2);

h{k.2nv+1}];

H[ TrueQ[ low==0. ], outp = vp , outp = upp/low |;
outp);
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Note that the subprogram iteration[] moves only one point at each time. For all interior
points on the discrete surface, interior[] is used to call iteration[] at each point until every

interior point has moved to the position such that the area is minimized. (See Package-09)

interior] = Moduef { AR

Do[{ calling  subprogram
|f[ T!'UGQ[ j:=nr-1 ], { iteration{].
If TrueQ[ i==0},
viist = Drop[ allv,{6} ],
viist = Drop[ Drop{ allv,{8} ], {1} ]
I

H
Ifl TrueQ[ i==01],
vlist = Drop[ Drop] allv{6} ], {3} ],
vlist = Drop[ Drop] allv,{8} ], {3} ]
X :
]

p[v(m,j.if] = iteration[ p{v[m,j,i]] , vlist };
%, {inr-1,1,-1}, {m,0,m-1}, {i,0.w[j]-1}
viist = Table[ p[v[m,1,0]] , {m,0.m-1} ];

p[v[0,0,0]] = iteration[ p[v[0,0,0]] , vlist ];
5

After interior minimization, we have to move those poinis on the boundary to
minimize the area. If the boundary is fixed, no exterior points on that boundary move. For
partially free boundary or free boundary, additional condition is needed to restrict the
movement of the boundary points. The restriction may be that the points move either along

a line or on a plane. To determine the moving exterior points, the functions onsurface[] and
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atline[] are written to find out those points on the surface or along the line such that the

areas of the triangles formed on the outermost layer are the least.

onsurface[ pt_, fct_]:= Module[ { },
Clear[x, v, z,K];
df = D[ fct, #] &@{x. y. 2}
lhs = Append[ 2*( {x, y, Z}-pt }, fct J;
rhs = Appendf k*df, 0 ];
soln = Solve[
Table[ ths[[m]] == rhs{{m]]
{m.1.4}]
A ¥, 2. K ;
outp = Flatten[ {x, y, z}/.soln |;

outp);

atline[ pt_, fet_]:= Module[ { },
" Clear[x,y,z,k 5]
dft = D{fet{[1]], # 1 &@ {x, ¥, 2z},
df2 = D[ fct[[2]], # ] ¥@{x, ¥, z};
lhs = Append|
Append[ 2*({x.y.z}-pt), fct[[1]}]
fet[[2]] ]
rhs = Append|
Append| k*df1+s*df2, 0]
Q]
soln = Solve(
Table[ ths[[m]] == rhs([m]]
{m,1.5}]
,{X,y,z,k,S}];
outp = Flatten{ {x,y,z}/.soln ];

outp]; .

To vary all the free exterior points on planes or along lines, the subprogram exterior[] can

call atline[] and onsurface[] subject to the boundary condition.
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Package 1T

exterior{]:=Module[{},
Do[{If[TrueQ[boundary{[m+1]}=="fix"}, ,{
Do[{ p[v[m,nr,i]]=onsurface]
p[v[m,nr-1,i-1]),boundary[[m+1]]]
},{i,1 ,W[nr]‘1 }]n
3

If[TrueQ{boundpts[[m+1]]=="fix"}], ,{
[f[TrueQfLength[boundpts[[m+1]j]==1],{
p[v[m,nr,0]J=onsurface|
p[v[m,nr-1,0}],boundpts[[m+1,1]]]
}{p[v[m,nr,0]]=atline[p{v[m,nr-1,0]] boundpts(im+1]]]

ik
hih
},{m,0,m-1}];

I

Sometimes we can make use of reflections as well as rotations to construct a complete
discrete minimal surface from a fundamental domain. In some cases, the subprograms
reflection[] and rotation[] are applied by calling the functions reflect[] and rotate[] after

minimizing a discrete fundamental piece.

reflect]pt_.fct_]:=2*onsurface[pt,fct]-pt;

reflection[x_.fct_]:=Module[{},
x[v[0,0,0]}=reflect{x[v[0,0,0]],fct];
Do[ xfv[m,},i]]=reflect{x[v[m.,j,i]],fct]
i 1.n0}{m,0,m-1},{i,0,w(j}-1});

X

rotate[pt_,ang_]:={ {Cos[ang],-Sin[ang] 0},
{Sin[ang],Cos[ang],0},
{0.0,1} }.nt;

rotation[x_,ang_]:=Module[{},
x[v[0,0,0]]=rotate[x[v[0,0,0]},ang];
Do[ x[v[m.,j,i]}=rotate[x{v[m,},i]].ang]
A1 1.nch,{m,0,m-1}{i,0,w[i]-1}];

L
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7. GRAPHICS

In this section, some of the result of the discrete minimal surfaces
mimmized by the package described in Section 6 are shown. In which. there
are both cases of surfaces with fixed boundary and partially free boundary.
Also. the reflection of fundamental domain is used in some problems to
construct a complete minimal surface. All the computer graphics in this

section are drawn by Mathematica.

Figure 7.1 Schwar’z Surface from different point of view

Figure 7.2 A case of fixed boundary problem (left) and

a case of partially free boundary problem (right)
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Figure 7.3 The fundamental domain (left) of the twisted
rectangular strip surface (right). The points on
the frame marked the mitial position of the

boundary points.

Figure 7.4 I'he fundamental domain (letl) of double rwisted

rectangular strip surface (right).
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Figure 7.5

Figure 7.6

Discrete Minimal Surfaces

The fundamental domain (left) of the Jorge

Meeks surface (night).

The fundamental domain (left) of the Scherk’s

tower (right).

L
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Fioure 7.7 The fundamental domain (left) of the Schiwarz’s
g

CLP-surface (right).

Figure 7.8 The fundamental domain (left) of a Scherk's
first surface and a Scherk’s surface can be built

through repeated reflection in edges (right)
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Figure 7.9 The fundamental domain (left) of the Neovius

surface (right).

Figure 7.10 The Gergonne's surface (left) penerates a

periodic mimimal surface (right).
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Figure 712 A fundamental cell (left) of the Schwar’z
P-surface (right).

Figure 713 Schoen’s §’-S”"-surface (left) and one layer of
dual lattice (right).
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Figure 7.14 [migonal fundamental cell (left) and hexagonal

fundamental cell (right)

Figure 7.15 Part of a helicoid (left) and a rotationally
symmetric configuration consisting of three

coaxial circles (right).
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Figure 7.16 The fundamental domain (left) of the Costa

surface (right).

Figure 7.17  Different views of the costa surface.

P-7.9
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Figure 718 The left side of the costa surface.

Figure 719 The top and bottom views of Figure 7.18.
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8. CONCLUSION

In general, there are two approaches leading to the construction of minimal
surfaces in the three-dimensional Euclidean space. The first approach is based
on the Weierstrass representation formulas, as explained in Dierkes et al [1].
This approach leads to stationary minimal surfaces (i.e. they are stationary
points of the area functional and may not be minimizing). The second approach
relies on minimizatién of area in certain class of objects. Although the first
approach is elegant, it is often a tedious if not impossible task to find
complicated or periodic minimal surfaces this way, as it is not so easy to find the
appropriate Weierstrass representation formulas or to computer them. In this
paper, we studied a new method based on discrete techniques proposed by
Pinkail and Polthier [4]. This is a direct minimization approach for which the
objects in consideration are (non-smooth) surfaces. Indeed, they are all specific
collections of triangles spanned by a set of vertices on a surface and have
polygonal contours. In this thesis, I have made an in-depth study and
improvements of their minimization algorithm. This includes convergence
proof as well as programming and implementation of the algorithm in the
Mathematica language. It also includes further refinements of the algorithm to
include the case of minimal surfaces with partially free boundaries. From this

study, [ discovered the following interesting facts :

1. The algorithm can be simplified by minimizing one interior vertex
each time,
2. The algorithm produces a unique minimal surface afier the whole

iteration procedure, because of the fact that a quadratic function is

being minimized each time,



The Department of Applied Mathematics Discrete Minimal Surfaces P-8.2

3. By suitable adaptations, the algorithm can be made to handle the

case of partially free boundary problems.

In the partially free boundary case, there are two ways to model the minimal

surfaces obtained.

(A) Using the fact that minimal surfaces are perpendicular to the
supporting surfaces, we can require the first layer of interior points
(i.e. the layer immediately above the supporting surface) to be
perpendicular to the supporting surface. More precisely, we
minimize the interior points one after another. Subsequently, we
minimize this layer of points successively requiring that they are
perpendicular to the supporting surface.

(B) We minimize the interior points successively, with the additional
condition requiring the points on the layer immediately next to the

supporting surface to satisfy the constraints.

For method (A), although the algorithm seems to model the phenomenon, the
convergence proof is not clear. The major difficulty lies in the fact that in the
discrete case, a minimizing surface may not be perpendicular to the supporting
surface. For method (B), the convergence should follow from arguments along
the same line as in the proof for the fixed boundary case. This is because the set
of all interior points lie in a bounded set as before. To see this, one needs to
observe that the proof of Lemma 3 in P-5.5 requires only one fixed line segment.
Having such a segment, one can estimate the positions of all other line segments

successively using the Sine law.
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