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Abstract

Unmanned underwater vehicles (UUVs) are increasingly essential for a variety of under-

water tasks, with a primary emphasis on achieving autonomy. Autonomy is critical for

enhancing safety, flexibility, expanding operational capabilities, and reducing expenses.

However, developing effective and robust control algorithms for UUVs is challenging due

to nonlinear dynamics, uncertainties, constraints, and environmental disturbances. Model

Predictive Control (MPC) is a well-established technique for UUV control, with the key

challenge lying in obtaining precise prediction models to enhance controller performance.

This thesis primarily introduces two enhanced MPC approaches that enable a UUV

with partially unknown dynamics to autonomously navigate complex marine environ-

ments. The first approach is a Disturbance Observer-based MPC (DOBMPC). The

DOBMPC integrates unmodeled dynamics and environmental disturbances into a dis-

turbance term estimated by an Extended Active Observer (EAOB). While the proposed

DOBMPC effectively enhances disturbance rejection, the thesis also addresses handling

unknown dynamics more meticulously.

Subsequently, the second proposed control method is an Adaptive MPC with an online

system identification algorithm. This online system identification method is constructed

using an Extended Active Observer (EAOB) and the Recursive Least Squares with Vari-

able Forgetting Factor (RLS-VFF) algorithm to estimate environmental disturbances and

identify uncertain hydrodynamic parameters. The estimated disturbances and parame-

ters are continuously updated in the MPC’s prediction model to generate optimal control
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inputs based on real-time environmental and vehicle conditions.

These proposed methodologies are validated within the Gazebo and Robot Operat-

ing System (ROS) simulation environment, illustrating their effectiveness in managing

uncertainties and disturbances for UUV control.

Keywords: model predictive control; disturbance observer; extended Kalman filter;

adaptive control; unmanned underwater vehicle; online system identification;
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Chapter 1

Introduction

This chapter provides a brief introduction of the research work, which includes the back-

ground information about the Unmanned Underwater Vehicle (UUV), the motivation

of the research work, and the current contributions. The organization of the thesis is

presented at the end of this chapter.

1.1 Background

With the increasing demand for underwater operations, UUVs have gained significant

interest for applications in a variety of challenging underwater tasks, such as underwa-

ter facilities repair operations [1], marine-growth removal [2], and offshore infrastructure

inspection [3]. These applications serve as representative examples of proving the effective-

ness of using UUVs in assisting or even replacing humans in hazardous and labor-intensive

tasks. UUVs represent an integration of various disciplines, combining mechanical, sen-

sor fusion, electrical design, communication systems, and control systems. Through their

integrated technology and remarkable accomplishments, UUVs became invaluable tools

for improving underwater operations’ efficiency and safety.

Coastal cities such as Hong Kong heavily rely on large-scale bridges as essential trans-
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Chapter 1. Introduction

portation infrastructure. Yet, severe weather, such as typhoons, strong winds, and seawa-

ter corrosion, can accelerate degradation and pose serious problems for these structures.

Consequently, routine bridge inspections prove crucial for identifying issues early on and

recommending the necessary maintenance to guarantee sustainability and safety of these

structures. Traditionally, human divers are employed for underwater bridge inspection

tasks. Nevertheless, the unpredictable and complex underwater conditions around off-

shore structures increase the dangers associated with human-led inspections. The range

of access available to human divers is also constrained. In contrast, UUVs offer numer-

ous benefits in inspection tasks in underwater environments, including reducing operation

cost, improving efficiency, and enhancing safety. UUVs can feedback high-resolution data

in real time, navigate in complex areas, and conduct thorough inspections without hu-

man intervention, making them ideal for maintaining the safety and reliability of coastal

bridges.

UUVs can be categorized into two kinds, which are Remotely Operated Vehicle (ROV)

and Autonomous Underwater Vehicle (AUV). This classification is based on the extent

of human involvement during their mission execution processes. ROVs often heavily rely

on human instructions during operations. Therefore, a tether is required for signal and

data transmitting between vehicles and human operators in real time. In contrast, AUVs

have a higher level of autonomy, which allows them to execute pre-programmed missions

off-line. This autonomy allows AUVs to travel longer distances and minimize human

operation costs. As a result, the current focus of UUV development is concentrated on

increasing autonomy, while the autonomy highly depends on the design of control systems.

Designing control systems for UUVs presents several significant challenges. Firstly,

UUVs are Multiple-Input Multiple-Output (MIMO) dynamic systems that are highly

nonlinear. Besides, parametric uncertainties pose a consideration problem. These uncer-

tainties are caused by the difficulty of accurately identifying hydrodynamic coefficients.

which capture the complex interactions between the UUV and the surrounding fluid.
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Chapter 1. Introduction

Estimating the dynamic loading on the vehicle caused by hydrodynamic terms associ-

ated with waves and currents further complicates the matter, especially during aggressive

maneuvering. Another major challenge involves coping with unpredictable time-varying

environmental disturbances in complex underwater environments, such as ocean waves

and currents. Operating under such conditions can lead to instability and performance

degradation in the closed-loop control system, hindering even simple inspection tasks.

Therefore, it is crucial to effectively address these problems in UUV control systems.

Numerous control approaches have been developed to tackle the aforementioned con-

trol challenges. Traditionally, the Proportional-Integral-Derivative (PID) control method

has been used to address motion control problems in autonomous vehicles. PID control

offers a cost-effective and easily implementable solution. It is beneficial due to its model-

free nature and ability to provide system stability by adjusting the control signal based on

the error between the desired setpoint and the actual process variable. In order to enhance

robustness against external disturbances, an adaptive fuzzy nonlinear PID controller was

developed for an underwater robotic vehicle [4].

Another popular control method is Sliding Mode Control (SMC). Unlike the model-

free PID approach, SMC addresses the issue of parametric uncertainty by creating a sliding

surface that the system’s state trajectory is compelled to follow, regardless of uncertain

parameters. In order to achieve closed-loop stability, a robust adaptive SMC was designed

for an underactuated AUV [5]. The stability of this proposed method was also proved by

using Lyapunov’s direct method. However, SMC suffers from chattering problems, which

is a phenomenon arising due to SMC’s discontinuous control law. This chattering effect

can result in reduced accuracy and energy loss, especially when the vehicle operates at

high speeds.

In recent years, Model Predictive Control (MPC) methods have exploded in popular-

ity, driven by advances in on-board computer computing capabilities [6]. MPC involves

solving an Optimal Control Problem (OCP) with a finite horizon recursively to determine
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Chapter 1. Introduction

the control action at every time step. MPC is particularly favored for designing control

systems for UUVs due to its ability to handle control limits and state constraints. Fur-

thermore, Nonlinear Model Predictive Control (NMPC) provides additional advantages

by accommodating the inherent nonlinear dynamics of complex systems. However, it is

important to note that the performance of MPC is heavily dependent on the accuracy of

the prediction model used.

Consequently, several improved MPC methods have been developed to enhance the

performance of the controller. One common approach is employing a Disturbance Ob-

server (DO) that estimates and compensates for unmodeled dynamics and disturbances,

in order to overcome the parametric uncertainties and environmental disturbances. The

combination of MPC and DOB has been proposed and implemented in many recent

research studies. For example, a robust MPC based on Active Disturbance Rejection

Control (ADRC) was developed for an AUV [7]. This approach implemented a discrete

Extended State Observer (ESO) to estimate the effect of model uncertainties and external

disturbances. Data-driven methods have also been widely applied to learn dynamic resid-

uals, which enhance the prediction model incorporated in MPC. A MPC framework with

learned residual dynamics using Gaussian Processes was proposed in 2021 [8]. It aimed to

improve control performance in high-speed trajectory tracking problems by providing a

more accurate dynamics model. While these research works have demonstrated enhanced

robustness and control performance by addressing external disturbances and model uncer-

tainties, they still have certain limitations. Disturbance Observer-Based Control (DOBC)

methods treat unmodeled dynamics as part of disturbances to be compensated, which

does not provide an accurate model for MPC. As for data-driven methods, they typically

require a large amount of training data, which can lead to heavy computational burden.

Based on existing challenges in control and their solutions, this research project aims

to offer a reliable control resolution for enabling UUVs to conduct autonomous inspections

of bridges. The main focus of this study lies within the domain of control systems, where
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two types of Adaptive Model Predictive Control (AMPC) are introduced. The initial

approach develops a Disturbance Observer-Based Model Predictive Control (DOBMPC),

which using an Extended Active Observer (EAOB) to estimate total disturbances, in-

cluding unmodeled dynamics and environmental disturbances. Subsequently, to address

disturbances more effectively, instead of combining all sources of disturbance into a single

variable per Degrees of Freedom (DOF) through the principle of superposition, the sec-

ond method aims to establish an AMPC integrated with an online system identification

module. This module is designed to identify uncertain hydrodynamic parameters using

the overall estimated disturbances provided by the EAOB. To realize this, the RLS-VFF

algorithm is employed to iteratively update the estimated parameters within the MPC’s

prediction model. The RLS-VFF algorithm not only adjusts to non-static data and dy-

namically changing system behaviors but also enhances memory efficiency, making the

method both practical and cost-efficient. The dynamic adaptation of the variable forget-

ting factor within the algorithm is guided by the F-test, strengthening its capability to

detect and react to the changes in the system. To achieve autonomous navigation, the

UUV adopted in this study is also equipped with multiple sensors, including a sonar, a

Doppler Velocity Log (DVL), a pressure sensor, an Attitude and heading reference sys-

tem (AHRS), and a stereo camera. Although the autonomous navigation module is still

under development due to time limitations, the hardware and software design part has

been finalized and is described within this study.

1.2 Contributions

The primary objective of this project is to effectively tackle the challenges arising from

complex varying marine environments and evolving system dynamics, ultimately deliver-

ing a robust solution that enables UUVs to autonomously operate in complex underwater

environments. The main contributions of this research are outlined as follows:
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1. Development of a baseline NMPC approach that considers physical system con-

straints, including control inputs and system state limitations. The prediction model

within the NMPC will be continuously updated using feedback from a disturbance

observer and an online parameter estimation module. This update process will

create a parameter-varying model.

2. Development of an EAOB to estimate total disturbances, encompassing both un-

modeled dynamics and external disturbances. The estimated disturbances will be

provided to the online parameter estimation algorithm. The objective is to achieve

accurate estimations even in the presence of measurement noise.

3. Design of a learning-based online identification algorithm for real-time adaptation

and learning of the dynamics of the UUV. By utilizing the disturbances provided

by the EAOB, the learning problem is simplified, enabling the development of an

accurate data-augmented dynamic model for the NMPC.

1.3 Thesis Organization

The following chapters of this thesis are organized as below:

• Chapter 2 presents a foundational description of the UUV model utilized, encom-

passing the hardware and software design, and dynamic modeling of the UUV.

• Chapter 3 introduces the initial control method proposed in this study, namely

DOBMPC. This chapter entails a review of literature on various forms of DOBC,

the methodology of the proposed approach, results from semi-physical experiments,

and concluding insights.

• Chapter 4 demonstrates the development of the second control method, derived

from Chapter 3, which is an AMPC integrated with online system identification. It
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Chapter 1. Introduction

incorporates a review of related adaptive control methods utilizing data-augmented

models, the methodology of the identification algorithm and MPC implementation,

results from identification and control performance, and conclusions.

• Chapter 5 summarizes the work in this thesis and discusses the future works and

research directions.
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Chapter 2

Unmanned Underwater Vehicle Model

This chapter primarily focuses on introducing the model of the selected UUV platform, en-

compassing its hardware and software design as well as dynamic modeling. The hardware

and software design section elaborates on the sensors integrated into the UUV platform

and their intercommunication. In the dynamic modeling segment, a comprehensive dy-

namic model is developed, serving as a foundation for constructing model-based controllers

in subsequent chapters.

2.1 Hardware and Software Design

The research employs the BlueROV2 as the foundational UUV platform. While the full

navigation module remains unfinished, the project has successfully implemented sensor

installation and communication, laying a groundwork for future navigation algorithm de-

velopment. The BlueROV2 features a Pixhawk as a flight controller, a Raspberry Pi as

a companion computer, and a USB camera connected to the companion computer. The

Pixhawk includes an onboard Inertial Measurement Unit (IMU) and pressure sensor, with

data transmitted to MAVProxy and MAVROS via USB. MAVProxy relays messages via

UDP to QGroundControl on the topside computer, which also receives USB camera data
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through gstreamer. MAVROS operates within the companion computer’s ROS environ-

ment. The stereo camera and AHRS communicate with the companion computer through

serial connections, enabling the companion computer’s Robot Operating System (ROS) to

run drivers for these sensors, facilitating sensor data integration within ROS. Sonar and

DVL connect to the companion computer via an Ethernet switch, allowing SonarView on

the topside computer to receive sonar data. A DVL ROS driver on the topside computer

processes DVL data, publishing it as ROS topics. With ROS nodes running on both the

companion and topside computers, they engage in multiple ROS communications, con-

figuring the companion computer as a ROS slave and the topside computer as a ROS

master to consolidate sensor data within ROS. Figure 2.1 illustrates the overall software

structure of the developed BlueROV2.

Figure 2.1: The software structure of the BlueROV2, incorporating a range of sensors such
as a stereo camera, DVL, AHRS, sonar, as well as an IMU and pressure sensor connected
to the Pixhawk.

Figure 2.2 illustrates the physical arrangement of sensors within the BlueROV2. The

stereo camera and sonar are situated on an extended payload skid, enabling them to face

10
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Figure 2.2: Front and rear perspectives of the fully assembled UUV.

forward to execute perception and mapping functions. Positioned at the rear, the DVL

is shielded from disturbances caused by the fluid surrounding the thrusters, safeguarding

the accuracy of its measurements. The AHRS is housed within a sealed tube, aligned

with the orientation of the onboard IMU to facilitate calibration procedures.

2.2 UUV Modeling

The analysis of UUV motion model can be categorized into two main groups: kinematics,

which focuses solely on the geometric aspects of motion, and kinetics, which examines

the forces and moments that drive the motion. In this section, it provides detailed ex-

planations of the kinematic and kinetic equations governing UUV motion. Based on

these equations, a control system model can be established as a basis for the study of

UUV motion control. The section has been included as a part of the author’s published

paper [9].

In this research work, we selected BlueROV2 [10] which has 4 degrees of freedom as

the UUV platform, which operates with 4 DOF covering surge, sway, heave, and yaw

movements. To characterize the UUV’s motion, we employ Fossen’s principles [11], en-

compassing rigid body dynamics, added mass effects, and damping. This section elabo-
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rates on the detailed kinematic and kinetic equations that govern the motion of the UUV.

These equations form the basis for constructing a system model for motion control. The

parameters’ symbols derived from the dynamic model of the UUV are outlined in Table

2.1.

Table 2.1: Notations in the UUV dynamic model.

Surge Sway Heave Roll Pitch Yaw
Position η x y z (m) ϕ θ ψ (rad)
Velocity v u v w (m/s) p q r (rad/s)
Forces and Moments τ X Y Z (N) K M N (Nm)
Control Inputs u u1 u2 u3 (N) / / u4 (Nm)
Total Disturbances w Xw Yw Zw (N) Kw Mw Nw (Nm)
Environmental Disturbance τenv Xenv Yenv Zenv Kenv Menv Nenv

Unmodeled dynamics ∆τ ∆X ∆Y ∆Z ∆K ∆M ∆N
Added Mass MA Xu̇ Yv̇ Zẇ (kg) Kṗ Mq̇ Nṙ (kgm2/rad)
Linear Damping DL Xu Yv Zw (Ns/m) Kp Mq Nr (Ns/rad)
Nonlinear Damping DNL Xu|u| Yv|v| Zw|w| (Ns2/m2) Kp|p| Mq|q| Nr|r| (Ns2/rad2)
Feedback Variables x y z (m) ϕ θ ψ (rad)

u v w (m/s) p q r (rad/s)
X Y Z (N) / / Nw (Nm)

2.2.1 Kinematic Model

Reference Frames

In general, two reference frames are typically employed to depict the motion states of the

UUV, as illustrated in Figure 2.3, namely the Body-Fixed Reference Frame (BRF) and

the Inertial Referemce Frame (IRF).

• The BRF is affixed to the vehicle, with the Center of Gravity (CG) designated as

the origin. The body axes align with the principal axes of inertia. The longitudinal

axis, denoted as the xb axis, extends from aft to fore. The transversal axis, known

12
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as the yb axis, extends from port to starboard. Per the right-hand rule, the zb axis

is orthogonal to both the xb and yb axes.

• The UUV’s motion can be delineated as the movement of the BRF concerning

an IRF. The IRF is instrumental in monitoring the vehicle’s path and specify-

ing control objectives. Commonly used IRFs encompass the Earth-Centered Iner-

tial (ECI)frame, the Earth-Centered Earth-Fixed (ECEF) reference frame, and the

North-East-Down (NED) coordinate system. In this study, the IRF aligns with

the NED coordinate system, a selection driven by the widespread adoption of NED

coordinates for expressing position vectors in diverse navigation applications and

simulation settings. The axes in the IRF are labeled as xi, yi, and zi, as depicted

in Figure 2.3.

Figure 2.3: The reference frames of the UUV, including BRF and IRF.

In the UUV’s model states, the linear and angular velocities are described in the BRF as

η = [x, y, z, ϕ, θ, ψ]T, while the linear and angular position are expressed in the IRF as

v = [u, v, w, p, q, r]T.

13
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In this study, the decision is made to align the IRF with the NED coordinate system.

This choice is influenced by the common practice of representing position vectors using

NED coordinates across a wide range of navigation applications and simulation contexts.

Transformations Between Reference Frames

Since the velocity vector and position vector are expressed in different reference frames,

the rotation matrix Ri
b, which is an element in SO(3), are required for describing the

relationship between them:

SO(3) =
{
R | R ∈ R3×3,RRT = RTR = I, detR = 1

}
. (2.1)

Consider vb = [u, v, w]T denoting the linear velocity in the Body Reference Frame

(BRF), and vi representing the linear velocity in the Inertial Reference Frame (IRF).

Consequently, the relationship between vb and vi can be expressed by the equation:

vi = Ri
b(Θ)vb. (2.2)

Here, Θ comprises the Euler angles—specifically, roll ϕ, pitch θ, and yaw ψ. Subse-

quently, the rotation matrix can be calculated using Θ as follows:

Ri
b(Θ) = Rz,ψRy,θRx,ϕ, (2.3)

Rx,ϕ =


1 0 0

0 cosϕ −sinϕ

0 sinϕ cosϕ

 ,Ry,θ =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 ,Rz,ψ =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 .
(2.4)

Upon expanding Equation 2.3, the resultant form of the rotation matrix Ri
b is:
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Ri
b(Θ) =


cosψcosθ cosψsinθsinϕ− sinψcosϕ cosψcosθsinϕ+ sinψsinϕ

sinψcosθ sinψsinθcosϕ+ cosψcosϕ sinψsinθcosϕ− cosψsinϕ

−sinθ cosθsinϕ cosθcosϕ

 . (2.5)

To convert angular states, consider ωb = [p, q, r]T denoting angular velocity in the

Body Reference Frame (BRF) concerning the Inertial Reference Frame (IRF). Subse-

quently:

Θ̇ = T (Θ)ωb (2.6)

where, Θ̇ = [ϕ̇, θ̇, ψ̇] denotes the Euler angle rate.

The matrix T (Θ), illustrating the connection between angular states in the BRF and

the IRF, can be defined as:

ωb =


ϕ̇

0

0

+RT
x,ϕ


0

θ̇

0

+RT
x,ϕR

T
y,θ


0

0

ψ̇

 . (2.7)

Upon elaborating Equation 2.7, the resulting form of the transformation matrix T (Θ)

is:

T (Θ) =


1 sinϕtanθ cosϕtanθ

0 cosϕ −sinϕ

0 sinϕ/cosθ cosϕ/cosθ

 , (2.8)

J(η) =

 Ri
b(Θ) 03×3,

03×3 T (η)

 . (2.9)

Consequently, the correlation between the velocity and position of the UUV is ex-
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pressed as:

η̇ =

 ṗ

Θ̇

 =

 Ri
b(Θ) 03×3

03×3 T(Θ)


 vb

ωb

 = J(η)v. (2.10)

Here, p = [x, y, z]T signifies the linear position of the UUV in the IRF.

2.2.2 Kinetic Model

In order to streamline the derivation of the dynamic equations governing the motion of

the UUV, a common and logical approach is to presume the vehicle as a rigid body. This

assumption negates the necessity of scrutinizing the interactions among individual mass

elements. The comprehensive dynamic model is articulated as:

Mv̇ +C(v)v +D(v)v + g(η) = τ + τenv (2.11)

where M signifies the mass matrix, C(v) represents the Coriolis and centripetal ma-

trix, D(v) stands for the hydrodynamic damping matrix, g(η) denotes the vector en-

compassing gravitational and buoyancy forces, τ = [X, Y, Z,K,M,N ]T encapsulates the

total propulsion forces and moments, and w accounts for the total disturbance. Both M

and C(v)v incorporate terms pertaining to both the rigid body and hydrodynamic added

mass:  M = MRB +MA

C(v) = CRB(v) +CA(v).
(2.12)

Each component within the dynamic model is elaborated upon in subsequent sections.
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Rigid-Body Dynamics

The rigid-body dynamics of marine vessels, including the UUV, can be derived through the

application of Newtonian mechanics [11]. The rigid-body mass matrix MRB is calculated

as:

MRB =



m 0 0 0 mzg −myg

0 m 0 −mzg 0 mxg

0 0 m myg −mxg 0

0 −mzg myg Ix −Ixy −Ixz

mzg 0 −mxg −Iyx Iy −Iyz

−myg mxg 0 −Izx −Izy Iz


. (2.13)

Here, m represents the vehicle’s mass, Ix, Iy, and Iz denote the moments of inertia

around the xb, yb, and zb axes in the BRF; rg = [xg, yg, zg]
T indicates the position of

the center of gravity (CG) relative to the vehicle’s center. Given that the BRF origin

is situated at the UUV’s geometric center, and the vehicle exhibits symmetry in both

the xz-plane (port-starboard) and xy-plane (fore-aft), the rigid-body mass matrix can be

simplified by assuming xg = yg = 0 and Ixv = Ixz = Iyz = 0. Consequently, Equation

2.14 transforms as:

MRB =



m 0 0 0 mzg 0

0 m 0 −mzg 0 0

0 0 m 0 0 0

0 −mzg 0 Ix 0 0

mzg 0 0 0 Iy 0

0 0 0 0 0 Iz


. (2.14)

Following this, employing the skew-symmetric cross-product operation on MRB pro-

duces the outcome of the rigid-body Coriolis and centripetal matrix CRB(v) as:
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CRB(v) =



0 0 0 0 mw −mv

0 0 0 −mw 0 mu

0 0 0 mv −mu 0

0 mw −mv 0 Izr −Iyq

−mw 0 mu −Izr 0 Ixp

mv −mu 0 Iyq −Ixp 0


. (2.15)

Hydrodynamic Forces and Moments

When computing the overall external forces and moments τ , it is imperative to account

for hydrodynamics. Key contributors to hydrodynamic forces and moments encompass

radiation-induced forces, skin friction damping, wave drift damping, vortex shedding

damping, and environmental disturbances. These elements are individually addressed

employing the superposition principle.

Hydrodynamic added mass can be viewed as a virtual mass integrated into a system

because an accelerating or decelerating body displaces a certain volume of the surrounding

fluid as it traverses through it. This concept is derived from Kirchhoff’s equation [11]:

MA = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ


. (2.16)

In an ideal fluid, for a rigid body at rest or moving at a forward speed U ⩾ 0, the hydro-

dynamic system inertia matrix MA is positive semi-definite. Hydrodynamic coefficients

are defined as the partial derivatives of the added mass force with respect to the corre-
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sponding acceleration. For instance, the added mass force Zu̇ along the z-axis due to the

acceleration u̇ is denoted as Zu̇ = ∂Z
∂u̇

.

Given that in most practical scenarios the non-diagonal elements of MA are con-

siderably smaller than the diagonal elements [11], the off-diagonal terms of MA can be

disregarded. Consequently, MA can be simplified as:

MA = −



Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 0

0 0 Zẇ 0 0 0

0 0 0 Kṗ 0 0

0 0 0 0 Mq̇ 0

0 0 0 0 0 Nṙ


. (2.17)

Thus, the computation of the nonlinear hydrodynamic Coriolis and centripetal matrix

CA(v) can be performed as:

CA(v) =



0 0 0 0 zẇw 0

0 0 0 −zẇw 0 −Xu̇u

0 0 0 −Yv̇v Xu̇u 0

0 −zẇw Yv̇v 0 −Nṙr Mq̇q

zẇw 0 −Xu̇u Nṙr 0 −Kṗp

−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


. (2.18)

Hydrodynamic damping in marine vessels primarily arises from various factors as

explained by [11]:

• Potential Damping: This type of damping involves the interaction of damping

and restoring forces and moments when a body oscillates at the wave excitation

frequency without encountering incident waves. The radiation-induced damping

term is commonly known as linear frequency-dependent potential damping.
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• Skin Friction: Arising from laminar boundary layer theory, the linear frequency-

dependent skin friction is significant for the low-frequency motion of marine vessels.

Additionally, turbulent boundary layers contribute to high-frequency skin friction.

• Wave Drift Damping: Present as added resistance for surface vessels moving

through waves, wave drift damping is rooted in second-order wave theory. It notably

affects surge in higher sea states due to wave drift forces being proportional to the

square of the significant wave height. In comparison, sway and yaw experience

relatively minor wave drift damping compared to vortex shedding.

• Damping Due to Vortex Shedding: In a viscous fluid, non-conservative fric-

tional forces lead to interference drag, stemming from the shedding of vortex sheets

at sharp edges.

Potential damping and wave drift damping effects are typically disregarded for underwater

vehicles. These diverse damping components contribute to both linear and quadratic

damping terms:

D(v) = DL +DNL(v), (2.19)

here, DL represents the linear damping component induced by skin friction, while DNL

denotes the nonlinear damping matrix arising from quadratic damping and higher-order

effects. The damping matrix is diagonalized due to decoupling, leading to the formulation

of the linear and quadratic damping matrices as described in Equation 2.20 and Equation

2.21 respectively:

DL = − diag [Xu, Yv, Zw, Kp,Mq, Nr] , (2.20)

DNL(v) = − diag
[
Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|,Mq|q||q|, Nr|r||r|

]
. (2.21)
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Consequently, the complete hydrodynamic damping term is expressed as:

D(v) = DL +DNL(v)

= −diag[Xu, Yv, Zw, Kp,Mq, Nr]

− diag[Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|,Mq|q||q|, Nr|r||r|].

(2.22)

Hydrostatics

Archimedes [12] established the foundational principles of fluid statics, which form the

basis of modern hydrostatics. In hydrostatic terms, the gravitational and buoyancy forces

are termed restoring forces, akin to the spring forces in a mass-damper-spring system.

With m representing the mass of the UUV, g denoting the acceleration due to gravity, ρ

standing for the water density, and ∇ representing the volume of fluid displaced by the

UUV, the weight of the UUV can be articulated as:

W = mg. (2.23)

Meanwhile, the buoyancy force B here is expressed as:

B = ρg∇. (2.24)

Assuming the centre of buoyancy (CB) of the UUV is located at rb = [xb, yb, zb]
T , if

we consider the center of the vehicle’s body frame to be positioned at the CB, then rb is

defined as:

rb = [0, 0, 0]T . (2.25)

Since the vehicle has symmetry in the xz-plane and xy-plane, the position of the CG
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of the vehicle rg becomes:

rg =

[
xg yg zg

]T
= [0, 0, zg]

T . (2.26)

Then the overall restoring force vector g(η) can be calculated using Euler angle trans-

formation as:

g(η) =



(W −B) sin θ

−(W −B) cos θ sinϕ

−(W −B) cos θ cosϕ

zgW cos θ sinϕ

zgW sin θ

0


. (2.27)

Propeller Model and Control Allocation

A practical model of a propeller is examined within the dynamics of an Unmanned Un-

derwater Vehicle (UUV). The UUV can be managed in four degrees of freedom (DOF):

forward/backward movement, side-to-side movement, vertical movement, and rotation.

Consequently, the control commands u = [u1, u2, u3, u4]
T are established, correlating to

the forces and moments in the UUV’s various movement dimensions. These control com-

mands are then distributed among the propellers using a control allocation matrix. In the

context of this study, focusing on the blueROV2, the thrust vector t = [t1, t2, t3, t4, t5, t6]
T

is computed as:

t = Au =



−1 1 0 1

−1 −1 0 −1

1 1 0 −1

1 −1 0 1

0 0 −1 0

0 0 −1 0


u. (2.28)
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In this configuration, t represents the combined thrust generated by all propellers. The

arrangement consists of six propellers as illustrated in Figure 2.4. The blue propellers spin

in a clockwise direction, while the green propellers spin counterclockwise. A red arrow

denotes the positive surge orientation.

Figure 2.4: The propeller configuration of the BlueROV2, including two vertical propellers
and four horizontal propellers.

Utilizing the thrust force of each individual propeller, the total force and moment

exerted on the UUV can be computed using a propulsion matrix derived from the geometry

of the blueROV2 as follows:

τ = Kt (2.29)

To determine the forces and moments generated by propeller 1 for computing the

propulsion matrix, where lx1 represents the distance between the center of propeller 1

and the CG in the xb direction, and tx1 is the force projection in the xb direction, the

calculations are as follows:
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τ1 =



tx1

ty1

tz1

tz1ly1 − ty1lz1

tx1lz1 − tz1lx1

ty1lx1 − tx1ly1


=



t1 cosα

−t1 sinα

0

t1 sinα · lz1

t1 cosα · lz1

t1 (− sinα · lx1 − cosα · ly1)



=



cosα

− sinα

0

sinα · lz1

cosα · lz1

− sinα · lx1 − cosα · ly1


t1

(2.30)

Given that α represents the orientation of the propeller, with the specified values α =

π/4 and lx1 = 0.156, ly1 = 0.111, lz1 = 0.072 for propeller 1, the initial column in

the propulsion matrix, denoted as K, can be determined. Subsequent columns can be

computed similarly, leading to the complete propulsion matrix as follows:

K =



0.707 0.707 −0.707 −0.707 0 0

−0.707 0.707 −0.707 0.707 0 0

0 0 0 0 1 1

0.051 −0.051 0.051 −0.051 0.111 −0.111

0.051 0.051 −0.051 −0.051 0.002 −0.002

−0.167 0.167 0.175 −0.175 0 0


. (2.31)

In practice, the signals sent to each propeller are in the form of Pulse Width Modula-

tion (PWM) signals. The Figure 2.5 is provided by the manufacturer, which specifies the
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relationship between the PWM input and the thrust is not linear.

Figure 2.5: Thrust polynomial fitting based on PWM input value within 10-20 V.

Thus, the relationship between thrusts and PWM signal is investigated by applying

fourth order polynomial fitting:

tkgf =− 6.5453× 10−12X4
pwm + 7.6349× 10−8X3

pwm − 2.5053× 10−4X2
pwm

+ 0.3312Xpwm − 157.6016

(2.32)

where the tkgf is the thrust in unit of kgf , and Xpwm is the PWM input. The thrusts

from the datasheet and the thrusts calculated based on polynomial fitting are shown as

Figure 2.6.

2.2.3 UUV Model for Motion Control

For achieving motion control of the UUV, the system state is defined as x = [ηT ,vT ]T .

From the Equation 2.10 and Equation 2.11, the general form of the UUV is obtained as:
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Figure 2.6: Thrust polynomial fitting results through fourth order fitting.

ẋ =

 η̇

v̇

 = f (x, τ ,w, t)

=

 J(η)v

M−1 [τ + τenv −C(v)v −D(v)v − g(η)]


(2.33)

where M and C(v)v contain both rigid body term and hydrodynamic added mass term:

 M = MRB +MA

C(v) = CRB(v) +CA(v)
(2.34)
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Chapter 3

Disturbance Observer-Based Model

Predictive Control

This chapter offers a comprehensive overview of a reliable DOBMPC approach utilizing

the proposed EAOB. It includes a literature review of related works, the methodology

employed, results of control performance and observation, and concluding remarks. This

chapter has been previously published as part of author’s work in the [9].

3.1 Literature Review

The complexities inherent in developing control systems for UUVs arise from their highly

nonlinear dynamics, the uncertainties in their parameters and the unpredictable distur-

bances present in their operating environments. To address these challenges, many control

methods have been explored within the realm of UUV operations. Among these strategies,

the PID controller stands out as a widely employed mechanism in UUV control frame-

works [13]. Noteworthy for its capacity to adeptly navigate parameter uncertainties,

PID control distinguishes itself from other techniques by its reliance on real-time error

feedback rather than precise system models. This inherent adaptability empowers the
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PID controller to adjust control outputs dynamically, thereby accommodating variations

and uncertainties in system parameters, consequently ensuring robust operational perfor-

mance. The application of PID controllers in UUVs spans diverse variants, including the

fractional-order PID controller tailored to optimize parameters amidst uncertainties [14],

the adaptive fuzzy PID controller offering resilience against external disturbances [4], and

the intelligent-PID with feedforward mechanism, augmenting stability [15]. However, PID

controllers are inherently linear controllers and may struggle to effectively control highly

nonlinear UUV systems. UUV dynamics can exhibit complex nonlinear behaviors that

may not be adequately addressed by a PID controller’s linear control scheme.

Besides of PID methods, SMC emerges as another popular control approach in UUV

motion regulation [16]. Renowned for its effectiveness in managing systems character-

ized by uncertainties, disturbances, and nonlinearities, SMC has been leveraged in devis-

ing a dual closed-loop integral SMC methodology tailored for controlling underactuated

UUVs [5]. This technique adeptly addresses the intricate nonlinear and coupled dynamics

of the vehicle, rendering it apt for navigating three-dimensional underactuated scenarios.

Moreover, a sliding mode-based fault-tolerant control mechanism integrated with thrust

allocation has been proposed to mitigate steady errors arising from thruster faults [17].

Nonetheless, the chattering phenomenon inherent to SMC, stemming from its discontin-

uous control law under high-speed UUV maneuvers, poses challenges by compromising

accuracy and inducing energy losses.

MPC, a control method entailing the recursive solution of an OCP over a finite horizon

to determine control actions [18]. This methodology ensures consistent consideration of

system constraints throughout the control process, thereby garnering considerable inter-

est in the domain of marine robotics for its adeptness in managing control constraints,

variation bounds, and state restrictions. The integration of MPC in marine vessels for

dynamic positioning, as evidenced in [19], showcases its efficacy in distributing force gen-

eration over defined time intervals and facilitating motion planning based on varying
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configurations of rotatable thrusters. Noteworthily, NMPC has been tailored to enable

an AUV to track predefined trajectories within the water column [20], highlighting the

potential for real-time MPC control leveraging in situ estimated water current profiles.

Furthermore, the advent of Lyapunov-based MPC methodologies, as exemplified in [21],

ensures closed-loop stability, with the robustness of NMPC validated through experimen-

tal trials in water tanks capable of simulating directional ocean currents [22]. These

studies underpin the advantages of MPC in UUV motion control, elucidating its efficacy

through a blend of numerical simulations and experimental validations.

While MPC has demonstrated effectiveness in controlling UUVs, addressing paramet-

ric uncertainties and environmental disturbances remains a critical consideration. DOBC

is a control technique devised to tackle the challenges posed by environmental disturbances

within a control system. DOBC involves estimating and compensating for disturbances

to bolster overall system performance and robustness, encompassing unmodeled dynamics

and environmental disturbances as part of its domain. Notably, one of the advantages of

DOBC is that it ensures the performance of the outer-loop controller remains intact even

when disturbances are estimated within the inner loop.

In 2018, A Nonlinear Disturbance Observer (NDO) was developed and integrated into a

nonsingular fast terminal sliding mode control scheme for trajectory tracking of an under-

actuated UUV [23]. This integration ensures finite-time convergence and demonstrates

enhanced immunity to external disturbances. In another study, a disturbance observer

was incorporated into fuzzy adapted S-Surface control to enhance robustness against

unmodeled disturbances [24]. A 2019 study introduced a modified constrained controller

that combines a computed-torque controller with a newly designed NDO for improved

performance [25]. This modification boosts the accuracy of disturbance compensation by

refining the evaluation function of the traditional H∞ controller while considering control

input constraints.

Recently, MPC based on ADRC was proposed for motion control of an AUV [7].

29



Chapter 3. Disturbance Observer-Based Model Predictive Control

This approach incorporates a discrete extended state observer to estimate disturbances

and applies feedback control to compensate for them. By amalgamating the strengths

of MPC and DOBC, this controller structure adeptly manages parametric uncertainties

and external disturbances within the inner loop while addressing system constraints in

the outer loop. Hence, advancing a robust disturbance observer resilient to measurement

noise could pave the way for a viable and efficient UUV control system.

Driven by the considerations mentioned earlier, an EAOB has been devised in this

study, leveraging the extended Extended Kalman Filter (EKF) to merge with MPC,

forming the DOBMPC. The key innovation of the developed EAOB lies in its ability to

estimate disturbances amidst the presence of measurement noise. Moreover, the unmod-

eled parameter within the MPC’s predictive model is assimilated into the disturbance

term, effectively tackling the challenge of parametric uncertainty. In contrast to the tra-

ditional method of compensating estimated disturbances directly into control inputs, the

estimated disturbances are integrated into the MPC’s predictive model and updated at

each time increment. This approach enables the MPC to craft an optimal control strategy

while accommodating disturbances.

To optimize computational efficiency during the application of MPC in practical sce-

narios, it is essential to streamline computational processes. This study achieves computa-

tional efficiency improvements by employing ACADOS. Nonetheless, there exist alterna-

tive methodologies suitable for real-time integration of MPC. In 2020, a novel category of

condensing-based MPC iteration strategies was introduced, showcasing asymptotic stabil-

ity and ensuring crucial constraint adherence within the closed-loop system, regardless of

the number of Newton updates performed. Another iteration scheme aimed at reducing

computational load for constrained discrete-time linear systems was proposed, specifi-

cally tailored for moving horizon estimation-based output feedback MPC. Furthermore, a

resilient early termination MPC strategy was recently developed, leveraging barrier func-

tions and continuous-time primal-dual gradient flow techniques. Findings indicated that
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this approach provides a suboptimal yet viable and efficient solution when early termina-

tion is activated. Exploring these alternate algorithms holds promise for enhancing the

MPC implementation, offering diverse avenues to boost computational efficiency.

3.2 Methodology

In this section, it outlines the methodology behind the proposed DOBMPC, a type of

AMPC employed in this project. The DOBMPC is formulated based on the EAOB. Con-

sequently, this section covers the design of the EAOB, stability analysis of the observer,

and the implementation of MPC.

In the realm of control system design, it is common practice to adopt the principle

of superposition when factoring in environmental disturbances τenv, such as wave and

current disturbances [11]. These disturbances encompass unmodeled dynamics ∆τ , which

encompass uncertainties linked to rigid-body parameters (for instance, inertia and mass

properties) and hydrodynamic parameters (like hydrodynamic damping forces) that are

challenging to precisely determine. This principle dictates that all disturbance sources are

aggregated and incorporated on the right-hand side of Equation 2.33 as the disturbance

term w = [Xw, Yw, Zw, Kw,Mw, Nw]
T :

w = τenv +∆τ. (3.1)

Assumption 1 It is assumed that the influence of environmental disturbances (τenv), like

oceanic waves and currents, and the unmodeled dynamics (∆τ ), are constrained, specifi-

cally by |τenv| ≤ τ1 and |∆τ | ≤ τ2. Here, τ1 and τ2 denote unspecified positive constants

of estimations. Consequently, the overall disturbance w is capped by the cumulative value

of these thresholds, denoted as |w| ≤ τ1 + τ2.

Assumption 2 The total disturbance w is assumed to be a slowly time-varying signal.
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Consequently, the internal disturbance model can be formulated as:

 w = Mv̇ +C(v)v +D(v)v + g(η)− τ

ẇ = 0.
(3.2)

3.2.1 Observer Design

When employing an EKF to devise a disturbance observer for offsetting unpredictable

uncertainties, the disturbance term w is regarded as system states in conjunction with

the position η and velocity v.

In practical scenarios, it is common for modeled systems to exhibit continuous-time dy-

namics, whereas measurements are acquired at discrete intervals. To tackle this challenge,

the Continuous-Discrete Extended Kalman Filter (CD-EKF) is utilized for constructing

the EAOB. The CD-EKF integrates continuous and discrete dynamics into the estimation

procedure, akin to the standard EKF but with the added capability of accommodating

discrete dynamics. Continuous dynamics are typically defined by differential equations,

while discrete dynamics are characterized by distinction equations. During the prediction

phase of the CD-EKF, the continuous dynamics are discretized by forward integration in

time using numerical integration methods, effectively capturing the system’s continuous

progression between measurement updates. In the update phase, the CD-EKF merges

the discrete-time measurements to rectify and refine the state estimation. By seam-

lessly amalgamating continuous and discrete dynamics within the estimation framework,

the CD-EKF enhances accuracy and resilience in estimating the state variables of sys-

tems with mixed dynamics. Thus, the system process is delineated as a continuous-time

model, while discrete-time measurements are employed. The system process model can
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be reconsructed as:

˙xob(t) = f(x(t), τ (t),w(t)) +W (t) W (t) ∼ N (0,Q(t)). (3.3)

where the observer system states are denoted as xob = [η;v;w], where W (t) signifies the

process noise assumed to be zero-mean Gaussian noise with covariance Q(t). The function

f(·) pertains to the nonlinear system process model, and t denotes time continuously.

Consequently, all functions within the system process model are specified in continuous

time.

Hence, the system process model can be structured according to the UUV model in

Equation 2.33:

f(x, τ ,w) =


J(η)v

(M )−1[τ +w −C(v)v −D(v)v − g(η)]

ẇ

 (3.4)

The measurement states encompass the position η, velocity v, and propulsion forces and

moments τ . Therefore, the discrete-time measurement model is formulated as:

zk = h
(
xob,k

)
+ V k V k ∼ N (0,Rk) . (3.5)

In this context, the measurement states are represented as z = [η;v; τ ], where V k signifies

the measurement noise assumed to be zero-mean Gaussian noise with covariance Rk. The

function h(·) relates to the nonlinear measurement model that establishes the connection

between the system states and the measurements acquired from sensors, while k denotes

time discretely. Therefore, all functions within the measurement model are specified in

discrete time. The initial 12 terms of the measurement model correspond identically to

the system process model, and the τ can be computed based on the disturbance term w
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as:

τ = Mv̇ +C(v)v +D(v)v + g(η)−w. (3.6)

The accurate estimation of solutions heavily relies on designing the noise covariance

matrices for the system process Q(t) and measurements Rk. One method to create Q(t)

involves utilizing the Piecewise White Noise Model (PWNN) model. This stochastic

model allows for representing varying noise characteristics across different time intervals

or regions. By integrating PWNN, the EKF can more accurately capture the time-varying

dynamics of the system. This proves especially beneficial for systems with changing or

non-stationary noise traits. The formula for calculating the system process noise covari-

ance Q(t) based on PWNN is as follows:

Q(t) = E
[
ΓW (t)W (t)Γ⊤] = Γσ2Γ⊤. (3.7)

where Γ = [∆t2/2,∆t,∆t]T is the noise gain of the system, ∆t is the sampling time

step, and σ2 represents the variance of the white noise process. The covariance of the

measurement noise Rk is also dependent on the sampling time step ∆t, which is defined

as:

Rk = diag[∆t,∆t,∆t]. (3.8)

To adapt the real-world implementation, the matrix Rk can be further fine-tuned ac-

cording to the specific sensors employed. For instance, the accelerometer and gyroscope

are commonly employed for state measurement, but they often introduce unavoidable

noise into the measurements. Consequently, in such cases, it is crucial to carefully deter-

mine the measurement noise matrix Rk. Numerous studies have been conducted in this

area. In 2021, an experimental approach was proposed to analyze the impact of different

weightings of matrix Q(t) and Rk on state estimation derived from the accelerometer and

gyroscope [26]. In addition, a study also developed a dynamic noise model for adaptive

filtering of the gyroscope [27]. This work introduced the dynamic Allan variance, which
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utilized a novel truncation window based on entropy features to construct the noise model.

Additionally, an adaptive Kalman filter was designed to accommodate practical system

and computational environments. Furthermore, a disturbance observer with adaptation

laws has been developed based on the Generalized Super-Twisting Algorithm [28]. This

allows the observer to be auto-tuned, improving robustness to both external disturbances

and model uncertainties.

The matrix Q(t) is used to model the uncertainty and variability in the system dynam-

ics. By adjusting the Q(t), it can control the level of confidence the observer has in the

predicted state estimates. Meanwhile, the matrix Rk captures the uncertainty associated

with the sensor measurements. Consequently, the tuning of Q(t) and Rk determines the

weighting between the system model and the measurements. As the current work is being

conducted in simulation, where higher measurement accuracy is present, further adjusting

Rk allows for greater reliance on measurements:

Rk = diag[∆t2/2,∆t2/2,∆t2/2]. (3.9)

The system process model f(x, τ ,w) and the measurement model h(xob) can be

linearized by taking the partial derivatives of each to evaluate the state transition matrix

F and the measurement matrix H at each operating point with Jacobian matrix. Equation

3.10 provides the state transition matrix F that captures the connection between the

current state and the subsequent predicted state in a dynamic system. This matrix is

derived using continuous-time t as a basis. The measurement matrix, denoted as H,

establishes the connection between sensor measurements and the predicted system state,

as expressed in Equation 3.11, with consideration for discrete-time k.

F (t) =
∂f

∂xob

∣∣∣∣
x̂(t),τ (t),ŵ(t)

(3.10)
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Hk =
∂h

∂xob

∣∣∣∣
x̂ob,k|k−1

(3.11)

Denote the three elements in the second row of matrix F (t) as F21(t), F22(t), and

F23(t). Therefore

F21(t) = −M−1

(
∂M

∂η̂
˙̂v +

∂C(v̂)v̂

∂η̂
+
∂D(v̂)v̂

∂η̂
+
∂g(η̂)

∂η̂

)
,

F22(t) = −M−1(
∂C(v̂)v̂

∂v̂
+
∂D(v̂)v̂

∂v̂
),

F23(t) = M−1.

(3.12)

The CD-EKF is a recursive estimation algorithm, where the main procedure can be

divided into prediction and update parts. Before starting the recursion, an initialization

step is performed based on the first measurement:

x̂ob (t0) = E [xob (t0)] ,P (t0) = Var [xob (t0)] . (3.13)

In the prediction part, it predicts the state estimate x̂ob,k|k−1 = x̂ob (tk) based on the

previous state estimate and the system dynamics. Then the error covariance matrix

P k|k−1 = P (tk) can be calculated based on the state transition matrix F . The prediction

part is shown as follows:

solve


˙̂xob(t) = f(x̂ob(t), τ (t))

Ṗ (t) = F (t)P (t) + P (t)F (t)T +Q(t)

with

 x̂ob(tk−1) = x̂ob,k−1|k−1

P (tk−1) = P k−1|k−1

⇒

 x̂ob,k|k−1 = x̂ob (tk)

P k|k−1 = P (tk) .

(3.14)

The prediction step consists of both continuous-time and discrete-time components.

The first equation, ˙̂xob(t) = f(x̂ob(t), τ (t)), represents the continuous-time dynamics

of the system. It describes how the estimated state x̂ob evolves over time based on
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the current estimated state and the total propulsion force and moments τ . The second

equation, Ṗ (t) = F (t)P (t)+P (t)F (t)T +Q(t), represents the continuous-time evolution

of the error covariance matrix P . It captures how the uncertainty in the estimated state

evolves over time, taking into account the system’s dynamics represented by the matrix F

and the process noise covariance matrix Q. The discretization occurs implicitly between

the time steps tk−1 and tk. The initial conditions for the discrete-time updates are set

based on the estimated state and error covariance matrix at time tk−1, denoted by x̂k−1|k−1

and P k−1|k−1, respectively. These initial values are then used to compute the updated

estimates x̂ob,k|k−1 and P k|k−1 at time tk.

Therefore, in Equation 3.14, a numerical integration method should be applied for dis-

cretization of continuous-time system process model. The numerical integration method

used for discretization here is the Fourth-Order Runge-Kutta (RK4) method.

In the update part, it calculates the measurement residual ŷk|k with current mea-

surements z(k) and measurement model. Then the Kalman Gain Kk at time k can be

determined based in the predicted error covariance matrix P k|k−1 and linearized measure-

ment matrix Hk. Finally, it updates the state estimate x̂ob,k|k based on the predicted

state estimate x̂ob,k|k−1 and the Kalman Gain Kk, and recalculate the error covariance

matrix P k|k based on Kalman Gain Kk and the linearized measurement model Hk. The

following equations express the procedure in EKF’s update part

ŷk|k =
(
zk − h

(
x̂ob,k|k−1

))
Kk = P k|k−1H

T
k

(
HkP k|k−1H

T
k +Rk

)−1

x̂ob,k|k = x̂ob,k|k−1 +Kkŷk|k

P k|k = (I −KkHk)P k|k−1.

(3.15)

The equation in the EKF update part is formulated in discrete time. The time step

at which the equation is evaluated is denoted by k. The notation k | k signifies that the

variable or state being considered is at time step k. On the other hand, k | k− 1 refers to
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the estimation or prediction at time step k based on the information available up to the

previous time step, which is k − 1.

Therefore, the state estimation x̂ob = [η̂; v̂; ŵ] can be obtained.

3.2.2 Stability Analysis

The system process model Equation 3.4 can be extended as:

ẋob =f(x, τ ,w) +Gξx

=


J(η)v

(M )−1[τ +w −C(v)v −D(v)v − g(η)]

ẇ

+G


ξη

ξv

ξw

 ,
Y =Hxob + V k

(3.16)

where Y is the output of the system, G is a unit matrix, ξη, ξv and ξw represent the

process noises of system states [η;v;w] respectively.

Therefore, in the above observer design process as Equation 3.15, the state estimate

˙̂x is formulated as:

˙̂xob = f (x, τ ,w) + PHT (HPHT +R)−1(Y −Hx̂), (3.17)

where

Ṗ =
∂f

∂x̂ob

P + P
∂fT

∂x̂ob

+GQGT − PHT (HPHT +R)−1HP . (3.18)

The stability of using the EKF for force estimation has been demonstrated in [29]).

Accordingly, the stability analysis of the proposed EAOB method can be conducted using

two theorems.

Theorem 1 The proposed EAOB for the system described in Equation 2.33 is locally
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stable, given that

1. α1I ≤ ∥Q(t)∥ ≤ α2I,

2. α3I ≤ ∥Rk∥ ≤ α4I.

3. Then the following is true:

α5I ≤
∫ t+σ

t

F23(τ )
TF23(τ )dτ ≤ α6I (3.19)

where F23(τ ) in Equation 3.12 is bounded based on Assumption 1, and α1−6 are

positive constants.

Theorem 2 Assume that the model of a linearized system is

1. uniformly completely observable,

2. uniformly completely controllable,

3. α1I ≤ ∥Q(t)∥ ≤ α2I,

4. α3I ≤ ∥Rk∥ ≤ α4I,

5. ∥F (t)∥ ≤ α5, ∥G(t)∥ ≤ α6, ∥Hk∥ ≤ α7.

Then the following equation which derived from Equation 3.15 is true

˙̂xob = F x̂ob + PHT (HPHT +R)−1Hx̃ob,

˙̃xob =
[
F − PHT (HPHT +R)−1H

]
x̃ob,

(3.20)

is uniformly asymptotically stable based on [30], where x̃ = x− x̂ is the unforced optimal

filter.
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As per Theorem 2, it is necessary to linearize the nonlinear dynamic system. The

linearized system can be constructed with Equation 3.10 and 3.11 as follows:

ẋob = F (t)xob +Gξx,

z = Hxob + V k.

(3.21)

To ensure the stability of the EAOB, certain conditions must be met. Firstly, the

linearized system must be fully observable, which can be achieved by satisfying conditions

2 and 3 in Theorem 1. Secondly, the linearized system must be fully controllable, which

can be accomplished by meeting condition 1 in Theorem 1. Finally, stability can be

achieved by utilizing the outcomes of Theorem 2.

3.2.3 MPC Implementation

MPC is a model based control strategy, which determines the control action by recursively

solving OCPs and respects the system constraints during the control, as shown in Figure

3.1.

Figure 3.1: Control loop of the MPC, which mainly includes an optimizer and a prediction
model.

In the MPC control loop, it receives reference states, system constraints and mea-
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surement states from the dynamic system, and outputs the control inputs back to the

system. The MPC calculates the predicted outputs based on the prediction model with a

sequence of control inputs over a certain horizon, and the optimizer solves the Quadratic

Programming (QP) problem as:

min
U,X

∫ T

t=0

∥h(x(t),u(t))− yref∥2Qc
dt+ ∥h(x(T ))− yN,ref∥2QN

subject to ẋ = f(x(t),u(t));

u(t) ∈ U

x(t) ∈ X

x(0) = x (t0) .

(3.22)

where u(t) and x(t) represent control inputs and system states at time t; T is the predic-

tion horizon which refers to the number of time steps to look forward; yref and yN,ref

are the stage reference states in the prediction horizon and the terminal reference states

respectively; Qc and QN are the weighting matrics for stage states and terminal states;

f(·) and h(·) are the prediction model and system output function; and U and X are

constraints in control inputs and system states.

When designing a real-world system, it is important to consider the input constraints

based on the physical limits of the actuator being used. In this case, the control inputs

u are bounded, as |u1| ≤ fmax, |u2| ≤ fmax, |u3| ≤ fmax, |u4| ≤ Mmax. fmax and Mmax

represent the maximum allowed force and moment limits, respectively. The fmax and

Mmax are determined based on the propeller thrust force datasheet in [22]. In this study,

the MPC also takes system constraints into account. The vehicle’s linear velocity are

limited as |u| ≤ vmax, |v| ≤ vmax, and |w| ≤ vmax. Here, vmax represents the maximum

linear velocity. The vmax is determined based on the system’s specification in [10], while

vmax = 1.5m/s. To ensure that the constraints are taken into account during optimization

and further assure control feasibility, the input constraints are written into U, while the
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system constraints are written into X in the cost function in Equation 3.22.

To tune the MPC, there are several important steps to follow. First, the prediction

horizon T is selected, taking into account the trade-off between control performance and

computational burden. To find an optimal value that balances these factors, the horizon

is incrementally increased during simulations and evaluated for improved control perfor-

mance while maintaining real-time operation of the MPC. Additionally, MPC allows for

the prioritization of multiple control objectives by assigning weighting factors in the ma-

trix Qc to each objective. In this particular work, the yaw angle ψ is given the highest

priority, followed by the position states x, y, and z. The terminal cost is associated with

the final state of the system at the end of the prediction horizon. The weighting matrix at

terminal states QN reflects the relative significance of achieving the desired steady-state

or target. A higher weight indicates a stronger emphasis on reaching the desired terminal

state. However, since the focus of this work is on the robustness of the controller, QN is

set equal to the values in Qc to provide less aggressive control.

Once the MPC has been fine-tuned to attain the desired control performance, the

proposed EAOB, as described in Section 3.2, can be incorporated into the MPC. The

estimated states x̂k|k provided by the EAOB are divided into two components. The first

component consists of the estimated positions η̂ and velocities v̂, which are utilized by

the MPC module to enhance the accuracy of the system states. Simultaneously, the sec-

ond component, the estimated disturbances ŵ, is incorporated into the MPC’s prediction

model as Equation 2.33 at each time step. According to Assumption 2, the disturbance

term throughout the prediction horizon T remains consistent with the estimated distur-

bance ŵ at the current time step.

Therefore, the DOBMPC algorithm is implemented in a receding horizon as following

steps:

1. At the sampling time instant, utilize prediction equation 3.14 and update equation

3.15 to estimate the disturbance ŵ using the EAOB approach.
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2. Update the parameters within the disturbance term w in the prediction model of

the MPC, as represented by Equation 2.33, at the current time instant and within

the prediction horizon [0, T ], by incorporating the estimated disturbance ŵ obtained

in the initial step.

3. The OCP in the Equation 3.22 is solved to obtain the optimized control sequence

u∗(s), s ∈ [0, T ].

4. The first set of the control sequence u∗(s), s ∈ [0,∆t] is implemented in the dynamic

system, while the rest will be treated as initial condition in the next iteration.

5. At the next sampling instant, the OCP in the Equation 3.22 will be solved again

with the measurement states and new initial condition.

By integrating the EAOB with MPC, the parameters within the disturbance term w

in the MPC’s prediction model are continuously updated at each time step, as outlined

in step 2. This integration results in a nonlinear parameter-varying model. Consequently,

the MPC’s optimizer incorporates the estimated disturbances, enabling it to generate

optimal control inputs that effectively reject disturbances at each iteration.

To realize the MPC, the OCP should be discretized from t0 to tT and solved with multi-

ple shooting schemes. Therefore, it becomes a Sequential Quadratic Program (SQP) which

is executed in a real-time iteration scheme [31]. In this research work, the implementations

are completed through ACADOS [32]. ACADOS is a versatile and efficient open-source

optimization framework designed specifically for real-time MPC applications. It follows a

two-stage approach, consisting of an offline stage and an online stage. In the offline stage,

ACADOS defines the system dynamics, cost function, and constraints, formulating the

MPC problem as a Nonlinear Programming (NLP). It compiles this representation into

a solver-ready format. In the online stage, ACADOS solves the NLP in real-time, taking

the current system state as input and iteratively optimizing the control inputs while satis-

fying the dynamics and constraints. ACADOS offers various advantageous functionalities,
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such as efficient numerical algorithms, real-time capabilities, and the flexibility to choose

solvers, constraints, and objective functions based on specific requirements.

Figure 3.2: Block diagram of the proposed DOBMPC scheme with disturbance compen-
sation incorporated.

The overall block diagram of the proposed DOBMPC is depicted in Figure 3.2. The

EAOB module receives measurements of positions η, velocities v, and propulsion forces

and moments τ . It then outputs the estimated positions η̂, velocities v̂, and disturbances

ŵ. The MPC module utilizes the estimated positions η̂ and velocities v̂ as system states.

It generates control inputs u based on the error e between the reference trajectory (com-

prising positions ηd and velocities vd) and the system states. The estimated disturbances

ŵ are directly written into the MPC prediction model, as illustrated in the figure. The

resulting optimal control inputs u, which account for the disturbances, are then passed

through the control allocation process to drive the system plant.
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3.3 Results

The performance of the proposed DOBMPC is validated through simulation using the

UUV Simulator [33], an extension of the open-source robotics simulator Gazebo tailored

for underwater scenarios, enhancing realism in the simulation environment.

In practical applications, obtaining measurements of system states, including linear

and angular position along with linear and angular velocity, is essential. In underwater

settings where GPS signals are unavailable, alternative sensors come into play. Under-

water acoustic positioning systems like Ultra-Short Baseline (USBL) are favored for their

mobility, offering reliable linear position data for the UUV. The AHRS aids in deter-

mining the UUV’s angular position (pitch, roll, and yaw) for acquiring crucial attitude

details. Gyroscopes within the AHRS facilitate angular velocity estimation. Determining

linear velocity often involves using a DVL for UUVs. However, a cost-effective alterna-

tive method estimates velocity based on thrust and a fixed thrust-velocity relationship

at steady state, albeit potentially with reduced accuracy, especially in the presence of

significant external disturbances.

The BlueROV2’s specifications in this study are outlined in a Unified Robot Descrip-

tion Format (URDF) file, representing the robot model. This model in the URDF file

aligns with the dynamic model in Section 2.2, detailing parameters such as mass m, weight

W , buoyancy B, and inertia Ix, Iy, and Iz in Table 3.1 for the rigid body parameters.

Table 3.2 specifies hydrodynamic terms, including added mass due to UUV movement

through fluid and linear damping from skin friction.

In the tests for rejecting disturbances, two tasks in motion control are addressed,

namely dynamic positioning and following desired paths. The performance of the proposed

DOBMPC is assessed against conventional PID and standard MPC controllers. Following

Fossen’s principles [11], the disturbance component is characterized in terms of forces

according to Equation 2.33. To evaluate how well disturbances are countered, disturbances
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Table 3.1: BlueROV2 rigid-body parameters defined in URDF file.

Parameter Value
m 11.26 kg
W 112.8 N
B 114.8 N
Ix 0.3 kgm2

Iy 0.63 kgm2

Iz 0.58 kgm2

Table 3.2: BlueROV2 hydrodynamic parameters defined in URDF file.

Direction Parameter Value
Surge Xu̇ 1.7182 kg
Sway Yv̇ 0 kg
Heave Zẇ 5.468 kg
Roll Kṗ 0 kgm2/rad
Pitch Mq̇ 1.2481 kgm2/rad
Yaw Nṙ 0.4006 kgm2/rad
Surge Xu -11.7391 Ns/m
Sway Yv -20 Ns/m
Heave Zw -31.8678 Ns/m
Roll Kp -25 Ns/rad
Pitch Mq -44.9085 Ns/rad
Yaw Nr -5 Ns/rad

are simulated as body wrenches, encompassing forces and moments across 4 degrees of

freedom. By utilizing the ROS service ApplyBodyWrench, forces and moments acting

at the CG of the UUV in the IRF are generated. Consequently, to compare outcomes,

the rotation matrix outlined in Equation 2.9 is necessary to transform the disturbances

w estimated in the BRF to the IRF.

Table 3.3 provides a breakdown of the parameters for the MPC, which are applicable

to both the proposed DOBMPC and the standard MPC used as a reference. The base-

line MPC employed for comparison adopts the identical cost function as the proposed

DOBMPC outlined in Equation 3.22. With a prediction horizon of 60 and a sampling
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time of 0.05 seconds, the system looks ahead by 3 seconds. The average computational

time for solving the OCP tasks stands at 7 milliseconds, ensuring real-time operation.

The PID parameters employed in this study are also detailed in Table 3.4. The imple-

mented PID controller leverages the system’s positional states η and velocity v, along

with the control inputs encompassing forces and moments τ . The control signals deter-

mined by the PID controller are subsequently distributed to each propeller through the

control allocation methodology delineated in Equation 2.28.

Table 3.3: MPC parameters utilized in this work.

Controller parameters Value

Prediction horizon 60

Sample time (s) 0.05

Qc [300 300 150 10 10 150 10 10 10 10 10 10 15 15 15 0.5]

QN [300 300 150 10 10 150 10 10 10 10 10 10]

OCP time (ms) 7

Table 3.4: PID parameters utilized in this work.

Control gain Surge Sway Heave Yaw

Kp 5 5 5 7

Ki 0.05 0.05 0.05 0.1

Kd 1.2 1.2 1.2 0.6
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3.3.1 Dynamic Positioning Results

In the context of dynamic positioning, the UUV faces two distinct forms of disturbances:

periodic wave influences and persistent current effects. These disturbances materialize

as forces and moments exerted on the UUV. Concerning periodic disruptions, sinusoidal

waves with variable force magnitudes spanning from 10 to 16 N are exerted in the xi, yi,

and zi orientations, alongside sinusoidal waves with random moment magnitudes ranging

from 1 to 2 Nm applied along the zi axis.

The UUV is configured to maintain a fixed position at coordinates [0, 0,−20] within the

IRF, with a yaw angle of 0 degrees, amidst external disruptions. Illustrated in Figure 3.3

are the inferred disturbances juxtaposed with the actual disturbances. The visualization

demonstrates a close alignment between the estimated and actual disturbances, with the

estimation lag falling below the sampling interval, affirming the viability of the proposed

EAOB.

Figure 3.3: Disturbances estimation of periodic waves with random force and moment
amplitudes.

By integrating the estimated disturbances into the predictive model of the MPC,

the controller’s ability to reject disturbances is significantly improved. This enhanced
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performance surpasses both the PID and the standard MPC approaches. The results are

illustrated in Figure 3.4. Additionally, a two-dimensional representation showcasing the

dynamic positioning outcomes of the three controllers is depicted in Figure 3.5, with the

trajectory in blue highlighting the improved stability of the DOBMPC in maintaining the

reference position.

Figure 3.4: Tracking errors of the proposed DOBMPC, baseline MPC and PID controllers
under periodic disturbances.

Figure 3.5: Trajectories of dynamic positioning results of the proposed DOBMPC, baseline
MPC and PID controllers under periodic disturbances.
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Figure 3.6 presents the control inputs associated with the proposed DOBMPC when

subjected to periodic wave disturbances.

Figure 3.6: Control inputs of the proposed DOBMPC in surge, sway, heave and yaw
direction for dynamic positioning under periodic wave effect.

To induce continual disturbances, a force of 10 N is exerted along the xi, yi, and zi axes

at time t = 10s, accompanied by a torque of 5 Nm applied around the zi axis simultane-

ously. In Figure 3.7, a minor overshoot is noticeable when the disturbances shift abruptly

from 0 N to 10 N . This overshoot arises due to substantial variations in estimated states

between consecutive time steps. The EAOB mechanism corrects the estimated states with

high accuracy within less than 0.5 seconds through iterative adjustments. Figure 3.8 illus-

trates the error tracking of the proposed DOBMPC, standard MPC, and PID controllers

under constant currents, showcasing distinct levels of disturbance rejection ability. The

DOBMPC controller adeptly estimates disturbances and compensates for them, leading

to error convergence towards zero along each axis. The 2D plot in Figure 3.9 further

elucidates the dynamic positioning performance of these controllers, revealing a marked

enhancement in disturbance rejection capability with the implementation of the proposed

DOBMPC.

The corresponding control inputs of the proposed DOBMPC for dynamic positioning
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Figure 3.7: Disturbances estimation of constant currents in x, y, z directions.

under constant current effect is illustrated in Figure 3.10.

Furthermore, this study delves into evaluating the ability to reject disturbances when

combining periodic wave and constant current influences in dynamic positioning scenarios.

Sinusoidal waves with varying force amplitudes spanning from 3 to 6 N are administered

in the xi, yi, and zi directions, alongside sinusoidal waves with random moment amplitudes

ranging from 1 to 2 Nm around the zi axis. At time t = 4s, the constant current impact

is superimposed with forces of 10 N in the xi, yi, and zi directions, along with a torque

of 3 Nm around the zi axis. Figure 3.11 illustrates the comparison between the applied

and estimated disturbances, showcasing a high degree of alignment. The error in tracking

and the control inputs are depicted in Figure 3.12 and Figure 3.13, respectively.

3.3.2 Trajectory Tracking Results

To evaluate trajectory tracking performance, two distinct movement scenarios are utilized.

Initially, a circular trajectory with a radius of 2 meters is employed, with the yaw angle of

51



Chapter 3. Disturbance Observer-Based Model Predictive Control

Figure 3.8: Tracking errors of the proposed DOBMPC, baseline MPC, and PID controllers
under constant currents.

the UUV defined relative to the surge direction. To gauge the system’s resilience, a 10 N

force is exerted in the xi, yi, and zi directions, accompanied by a 5 Nm torque around the

zi axis. Figure 3.14 presents a comparison between the estimated disturbances and the

actual disturbances. The periodic disturbances in the X and Y directions during a UUV’s

circular trajectory can be classified as unmodeled dynamics because the observer’s nominal

model may not fully capture the nonlinear hydrodynamic effects, such as added mass and

Coriolis forces, which vary periodically with the vehicle’s motion. These unmodeled effects

are misinterpreted as external disturbances, leading to the observed periodic fluctuations.

The observed differences between the estimated and actual disturbances can be attributed

to unmodeled components within the disturbance term originating from the nonlinear

damping forces encountered by the UUV during circular trajectory motion.

The tracking errors of the PID, standard MPC, and the proposed DOBMPC are

displayed in Figure 3.15, showcasing a notable decrease in tracking errors with the imple-

mentation of the proposed DOBMPC. Furthermore, Figures 3.16 and 3.17 offer a visual

representation of the trajectory tracking outcomes. The control inputs corresponding to

the proposed DOBMPC are depicted in Figure 3.18.
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Figure 3.9: Trajectories of dynamic positioning results of the proposed DOBMPC, baseline
MPC, and PID controllers under constant currents.

Figure 3.16: Circular trajectory tracking results of the proposed DOBMPC, baseline
MPC, and PID controllers in x, y, z, and yaw directions.
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Figure 3.10: Control inputs of the proposed DOBMPC in surge, sway, heave and yaw
direction for dynamic positioning under constant currents.

Figure 3.17: Three-dimensional circular trajectory tracking results of the proposed
DOBMPC, baseline MPC, and PID controllers.
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Figure 3.11: Disturbances estimation of superposition of periodic wave and constant
current effect in x, y, z directions.

Figure 3.18: Control inputs of the proposed DOBMPC in surge, sway, heave, and yaw
direction for tracking circular trajectory under constant currents.

To assess the efficacy of the proposed control methodology in tracking a highly in-

tricate nonlinear path, a lemniscate trajectory with a 2-meter amplitude is employed.

The yaw angle remains constant at 0 degrees throughout the motion, with periodic wave
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Figure 3.12: Tracking errors of the proposed DOBMPC, baseline MPC, and PID con-
trollers under superposition of periodic wave and constant current effect.

effects integrated into the evaluation phase. These waves encompass random force am-

plitudes ranging from 10 to 16 N and random moment amplitudes ranging from 2 to 4

Nm. Figure 3.19 presents a comparison between the generated disturbances and the esti-

mated disturbances. The outcomes reveal that the disturbance forces in the xi, yi, and zi

directions can be accurately estimated when following a lemniscate trajectory. However,

challenges arise in accurately estimating the disturbance moment around zi during the

tracking of this trajectory, leading to occasional deviations or noise around the actual dis-

turbance value. The intricate nature of unmodeled nonlinear hydrodynamics, particularly

pronounced when tracking a nonlinear trajectory like the lemniscate, may contribute to

this issue.

In Figure 3.20, the system states during the tracking of a lemniscate trajectory under

periodic waves are compared across the PID, MPC, and the proposed DOBMPC. While

the states of the PID and MPC exhibit irregularities due to time-varying significant dis-

turbances, the states of the DOBMPC remain notably smoother. The tracking error, as

depicted in Figure 3.21, shows a marked reduction with the proposed DOBMPC in con-

trast to the PID and MPC methods. Lastly, Figure 3.22 offers a three-dimensional visual
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Figure 3.13: Control inputs of the proposed DOBMPC in surge, sway, heave and yaw
direction for dynamic positioning under superposition of periodic wave and constant cur-
rent effect.

representation of the trajectory tracking outcomes. The control inputs corresponding to

the proposed DOBMPC for tracking the lemniscate trajectory are illustrated in Figure

3.23.

Figure 3.20: Lemniscate trajectory tracking results of the proposed DOBMPC, baseline
MPC, and PID controllers in x, y, z, and yaw directions.
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Figure 3.14: Disturbances estimation of constant currents during circular trajectory track-
ing.

Figure 3.21: Tracking errors of the proposed DOBMPC, baseline MPC, and PID con-
trollers under constant currents during lemniscate trajectory tracking.
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Figure 3.15: Tracking errors of the proposed DOBMPC, baseline MPC, and PID con-
trollers under constant currents during circular trajectory tracking.

Figure 3.22: Three-dimensional lemniscate trajectory tracking results of the proposed
DOBMPC, baseline MPC, and PID controllers.
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Figure 3.19: Disturbances estimation of periodic waves during lemniscate trajectory track-
ing.

Figure 3.23: Control inputs of the proposed DOBMPC in surge, sway, heave, and yaw
direction for tracking lemniscate trajectory under periodic waves.
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3.3.3 Results Analysis

The figures above illustrate that the proposed observer can effectively estimate distur-

bances arising from both periodic wave effects and constant current effects, showcasing

an aptitude for capturing unmodeled dynamics. Nonetheless, it is evident that at high

frequencies of periodic wave effects, the observer’s accuracy in estimating disturbances

may diminish. This limitation arises due to the assumption that the disturbance term

represents a slowly time-varying signal.

In Table 3.5, an assessment of the dynamic positioning and trajectory tracking per-

formance of the UUV is presented based on the Root Mean Square Error (RMSE). The

RMSE metric is commonly employed in control systems literature as a performance mea-

sure and is widely recognized for its utility in comparing and interpreting results across

various controllers. By offering a quantitative measure, RMSE facilitates the evaluation

and ranking of different control strategies. Moreover, RMSE is less influenced by outliers

compared to metrics like Mean Absolute Error (MAE). By considering squared errors,

RMSE accentuates the impact of larger errors, making it suitable for assessing the per-

formance of control systems where extreme errors may occur.

The minimum RMSE value in each row is emphasized in the table. The outcomes

distinctly indicate that the incorporation of the proposed DOBMPC substantially bolsters

the system’s capacity to mitigate disturbances.

3.4 Conclusion

In this chapter, a reliable DOBMPC has been designed for the dynamic positioning and

trajectory tracking tasks of an UUV in the face of unexpected disturbances. The results

from simulations demonstrate the effectiveness of the proposed control method in rejecting
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Table 3.5: RMSE of the proposed DOBMPC, baseline MPC, and PID controllers in
dynamic positioning and trajectory tracking.

Motion Disturbance Direction PID (m) MPC (m) DOBMPC (m)
X 0.1374 0.1689 0.0537

Dynamic Periodic Y 0.1095 0.1934 0.0605
Positioning wave effects Z 0.0871 0.0896 0.0350

Yaw 0.0536 0.1108 0.0282
X 0.7893 0.3099 0.0521

Dynamic Constant Y 0.7544 0.2882 0.0482
Positioning current effects Z 0.2032 0.1508 0.0469

Yaw 0.7858 0.4547 0.0491
Superposition X 1.4991 0.5666 0.0932

Dynamic of wave Y 1.3921 0.5151 0.0501
Positioning and currents Z 0.2179 0.1603 0.0486

Yaw 0.5141 0.3039 0.1100
Circular X 2.3626 0.8012 0.2924
Trajectory Constant Y 1.6433 0.5521 0.2629
Tracking current effects Z 0.1763 0.1510 0.0233

Yaw 0.4355 0.6325 0.2582
Lemniscate X 0.9854 0.3764 0.2306
Trajectory Constant Y 0.7732 0.3844 0.1504
Tracking current effects Z 0.0877 0.1133 0.0510

Yaw 0.2059 0.2413 0.1457

disturbances. The proposed control method brings several key advantages. It firstly shows

the capability to instantly estimate varying disturbances, ensuring swift compensation.

Secondly, it proves tolerance to measurement noises by incorporating EKF algorithm,

guaranteeing consistent performance. Furthermore, the MPC structure ensures that sys-

tem constraints are accounted for when solving the OCP iteratively, thus keeping the

UUV system within set boundaries. The estimated disturbances are directly integrated

into the MPC’s predictive model at each step, facilitating the computation of an optimal

control strategy.

However, in this section, the hydrodynamic damping forces D(v) were considered

into the MPC prediction model using ground truth data from Gazebo. As a result, in

the preceding results, these forces were not classified as part of the disturbance term w.
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However, in practical scenarios, measuring damping coefficients directly is challenging, and

they can exert significant and rapidly changing forces on the UUV due to their positive

correlation with velocities. Including the entire damping forces as a superposition in the

disturbance term could potentially impact the optimization process negatively. Therefore,

the online system identification algorithm is considered in this control framework in the

following chapter to address this challenge.
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Chapter 4

Model Predictive Control with Online

System Identification

This chapter expands upon Chapter 3, where an EAOB was employed to estimate total

disturbances, including unmodeled dynamics and environmental disturbances. Instead of

treating all disturbance sources as a unified variable in each DOF through the superposi-

tion principle, the focus here is on crafting an online system identification module capable

of identifying uncertain hydrodynamic parameters using the estimated disturbances from

the EAOB. The chapter encompasses a review of relevant AMPC literature featuring

data-augmented models, the methodology behind the proposed identification algorithm

and AMPC implementation, results of estimation accuracy and control performance, and

conclusions. This chapter has been previously accepted as part of author’s work in the [34].

4.1 Literature Review

The literature review in Section 3.1 already delves into other control methods commonly

used for UUVs, including PID, SMC, DOBC, and other improved MPC methods. In

this chapter’s literature review, the focus shifts primarily towards control methods with
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data-driven/ data-augmented model.

Neural Network (NN)-based control approaches, classified as adaptive control meth-

ods, effectively manage parametric uncertainties by learning and adapting to evolving

environments and system dynamics. Unlike conventional techniques, NN-based control

leverages NNs to approximate system dynamics, adjusting network parameters based on

data and feedback. This adaptability empowers control systems to navigate variations,

uncertainties, and disturbances, bolstering robustness and flexibility. NN-based control

excels in handling complex and nonlinear systems by capturing intricate patterns and

relationships, ensuring precise control in highly uncertain scenarios. For instance, a hy-

brid coordination method utilizing reinforcement learning to online learn system behavior

was implemented in an AUV [35]. A robust neural network approximation-based output-

feedback tracking controller has also been devised to effectively counter uncertainties [36].

Moreover, radial basis function neural networks have been integrated to compensate for

unknown dynamics and disturbances in MPC, enhancing path following performance in

surface ships [37]. Nonetheless, proving the system stability of NN-based control methods

is often theoretically challenging, necessitating validation primarily through experimental

evidence. Additionally, the efficacy of neural network adaptive controllers heavily relies

on the number of neural network nodes, leading to a significant computational burden

that hampers practical implementation in engineering applications.

Conversely, the fusion of Gaussian Process (GP)s with MPC has emerged as a potent

strategy to tackle the aforementioned challenges [38]. GPs demand less training data

and ensure system security. In 2021, GPs were applied to model unmanned quadrotor

systems and integrated into the MPC framework [8]. Experimental results showcase GP’s

ability to discern the complex aerodynamic effects of quadrotors, achieving efficient and

precise control. In [39], a sample-efficient probabilistic MPC was proposed to enhance

control robustness against noise and disturbances, validated through a USV experiment.

These endeavors underscore that GP, as a potent nonparametric plant in MPC, inherently
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considers model uncertainties. Nonetheless, the applicability and convergence speed of

these controllers are constrained by the interdependency of vehicle dynamic and kinematic

models.

The methods aforementioned primarily belong to offline system identification, neces-

sitating initial collection of training data. Various online system identification techniques

have also been explored. Online system identification permits systems to adapt promptly

to environment or system dynamics changes, offering more current parameter estimates.

This adaptability enables swift responses to operational variations or disturbances, mak-

ing it apt for applications requiring rapid adjustments. Online system identification can

potentially be more cost-effective in scenarios mandating continuous monitoring and adap-

tation, obviating the need for recurrent large dataset collection for parameter estimation.

In [40], a state variable filter and recursive least square estimator were developed to es-

timate unknown hydrodynamic parameters for an AUV, showcasing superior prediction

accuracy, computational efficiency, and training time compared to conventional offline

identification methods. An online system identification problem was also proposed in [41],

estimating unknown parameters in nonlinear system dynamics without persistent exci-

tation based on state-derivative estimation, demonstrating convergence to steady-state

parameter estimates. Furthermore, an incremental support vector regression method was

introduced to sequentially learn the UUV’s model from data streams, highlighting its

adaptability to dynamic changes in the robot’s behavior [42].

However, these methods typically regard dynamics as static constructs. Hence, any

alterations in the mechanical structure of an UUV or the physical parameters of its sur-

rounding fluid could significantly impact the integrity of its mathematical model without

adaptive measures. Inspired by the aforementioned studies, an online system identification

algorithm grounded in Recursive Least Square (RLS) is proposed, further incorporating

Variable Forgetting Factor (VFF) to adapt to shifts in the UUV’s dynamics.
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4.2 Methodology

In the system identification section of this project, the impact of Coriolis and centripetal

forces resulting from the added mass CA is deemed insignificant. This is because in

numerous real-world scenarios like underwater examinations or low-speed data gathering

operations, the velocities of open-frame UUVs typically do not exceed a few meters per

second. Therefore, the dynamics model can be expanded in each DOF as:

X = (m−Xu̇)u̇−mrv +mqw + (−Xu −Xu|u||u|)u

+ (W −B) sin θ −Xenv,

(4.1)

Y = (m− Yv̇)v̇ +mru−mpw + (−Yv − yv|v||v|)v

− (W −B) cos θ sinϕ− Yenv,

(4.2)

Z = (m− Zẇ)ẇ −mqu+mpv + (−Zw − Zw|w||w|)w

− (W −B) cos θ cosϕ− Zenv,

(4.3)

K = (Ix −Kṗ)ṗ+ (Iz − Iy)qr + (−Kp −Kp|p||p|)p

+ zgW cos θ sinϕ−Kenv,

(4.4)

M = (Iy −Mq̇)q̇ + (Ix − Iz)pr + (−Mq −Mq|q||q|)q

+ zgW sin θ −Menv,

(4.5)

N = (Iz −Nṙ)ṙ + (Iy − Ix)pq + (−Nr −Nr|r||r|)r −Nenv. (4.6)

While it is possible to calculate the hydrodynamic added mass coefficients of torpedo-

shaped UUVs by assuming the vehicle as an ellipsoid, such as the study in [43], it is

challenging to directly calculate the added mass coefficients of open-frame UUVs like
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BlueROV2. Thus, in this work the added mass MA is estimated by the online system

identification. In the meantime, the hydrodynamic damping coefficients are commonly

identified through experiment data, which are difficult to be calculated directly. Thus,

damping forces D(v) with both linear and nonlinear damping coefficients are also treated

as variable parameters to be estimated.

4.2.1 Problem Formulation

The observer’s disturbance estimation ŵ includes the superposition of the environmental

disturbance τenv and the unmodeled dynamics ∆τ . Meanwhile, the unmodeled dynam-

ics encompass the added mass MA (Equation 2.17) and linear and nonlinear damping

coefficients (Equation 2.22) as detailed in Section 2.2. Hence, ŵ can be expressed as:

ŵ = τenv +∆τ

= MAv̇ +DLv +DNL|v|v + τenv.

(4.7)

In this section, the surge dynamics in Equation 4.1 is discussed as an example, while

the rest dynamics in Equation 4.2, 4.3, and 4.6 can also be implemented in a similar

manner. Therefore, Equation 4.7 can be reconstructed for the surge dynamics as:

X̂w =

[
u̇ u |u|u 1

]


Xu̇

Xu

Xu|u|

Xext


(4.8)

where four unknown parameters can be denoted as

Θ =

[
Xu̇ Xu Xu|u| Xext

]⊤
. (4.9)
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The identification problem involves determining the values of parameters using in-

put/output discrete data while meeting specific goodness-of-fit constraints between pre-

dicted data and measurements. Therefore, the Θ can be identified by solving the cost

function:

argmin
Θ⊤=[Xu̇,Xu,Xext]

J(Θ) =

√√√√ 1

N

k=N∑
k=1

[
yk −Θ⊤Φk

]2
subject to Xu̇, Xu, Xu|u|, Xext ∈ ℜ

(4.10)

where N is the total number of samples available, yk is the observed output (which is

equal to X̂w in surge dynamics), and

Φk =

[
u̇k uk |u|uk 1

]⊤
. (4.11)

4.2.2 Identification Algorithm

To find the optimal parameters for a cost function, a common approach is to use the Least

Square (LS) method. LS identifies parameters by minimizing the sum of the squared er-

rors between predicted and observed values. In contrast to LS, which performs regression

based on offline collected data, the RLS algorithm operates online. RLS processes data

sequentially and updates parameter estimates as new data becomes available. The dis-

tinguishing feature of RLS-VFF is the incorporation of a forgetting factor, which enables

a trade-off between tracking time-varying parameters and robustness to noise. The for-

getting factor determines the weight assigned to past data points relative to recent data

points when updating parameter estimates. A forgetting factor close to 1 places more

emphasis on past rewards, resulting in low misadjustment but reduced adaptation ability.

Conversely, a forgetting factor closer to 0 indicates that the agent prioritizes recent re-

wards, leading to high adaptation ability but potential susceptibility to outlier data and

instability.
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In the standard RLS-FF algorithm, the forgetting factor is typically set as a constant

value. However, in this research, the forgetting factor is considered as a variable that can

be dynamically adjusted based on the outcome of the F-test. The F-test is a statistical

test used to compare the variances of two samples. In this context, it is employed to

compare the prediction error variance of two windows of past RLS estimation results: a

long window and a short window. The purpose of this comparison is to determine whether

the variance has increased. The F-test statistic, denoted as Fk, is calculated as follows:

Fk =
σ2
n

σ2
d

=
1
n

∑n
i=k−n (ei − µn)

2

1
d

∑d
i=k−d (ei − µd)

2
(4.12)

where n represents the number of samples in the short window, d represents the number

of samples in the long window, σ2
n is the prediction error variance with n samples, σ2

d is

the prediction error variance with d samples, and d > n ≥ 1. The prediction error ek

can be computed as the difference between the observed output yk and the parameter

estimate at time k − 1:

ek = yk − Θ̂
T

k|k−1Φk. (4.13)

By comparing the variance of the prediction errors in the short and long windows, the

F-test provides insights into whether the system dynamics have changed significantly. If

the F-test statistic exceeds a predefined threshold γ, it indicates that the variance has

increased, suggesting a change in the system dynamics. In such cases, the forgetting factor

is adjusted to respond to these changes and maintain accurate estimation:

λk =

 λk−1 +∆λ if Fk < γ

λk−1 −∆λ otherwise
(4.14)

where ∆λ represents the adjustment value for the forgetting factor.

This approach of using the F-test to adapt the forgetting factor in RLS-VFF enhances

the algorithm’s ability to track time-varying system dynamics, resulting in improved es-
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timation performance.

In the initialization stage of the RLS-VFF algorithm, the parameter estimation Θ̂

is initialized to zero. Meanwhile, the initial value of the error covariance matrix P is

determined based on the forgetting factor λ:

Θ̂k=0 = 0

P k=0 =
1

λ
I

(4.15)

where I is the identity matrix.

The RLS-VFF algorithm operates similarly to the Kalman filters family. At time k, it

calculates the Kalman gain Kk using the forgetting factor λ, the error covariance matrix

P from time k− 1, and the regression factor Φk. Subsequently, the parameter estimation

Θ̂k|k is updated based on the Kalman gain and the error, and the error covariance matrix

P k|k is also updated accordingly. The recursive process can be formulated as:

Kk =
P k|k−1Φk

λ+ΦT
kP k|k−1Φk

Θ̂k|k = Θ̂k|k−1 +Kkek

P k|k =
1

λ

(
P k|k−1 −KkΦ

T
kP k|k−1

)
.

(4.16)

4.2.3 MPC Implementation

Here the MPC optimization problem in Equation 3.22 is reformulated as:

min
u
J =

TN−1∑
k=T0

[
∥ek∥2Qc

+ ∥uk∥2Rc

]
+ ∥eTN∥QN

s.t. ek = h (xk,uk)− yref,k

uk ∈ U, xk ∈ X, xTN ∈ XN

(4.17)
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where T0 represents the initial time step, and TN denotes the final time step within a

prediction horizon. The matrices Qc, Rc, and QN denote the weighting matrices used in

optimization process. Based on multiple shooting method, the optimization problem at

time t = k becomes:

min
x,u

Jk =
k+N−1∑
i=k

l (xi,ui) + lf (xk+N ,uk+N)

s.t. ui ∈ U, xi ∈ X, xtN ∈ XN

(4.18)

where l(·) denotes the positive definite function that related to the stage cost, and lf (·)

is the positive definite function that related to the terminal cost.

The comprehensive adaptive MPC framework is outlined in Algorithm 1.

Algorithm 1 Adaptive MPC with online system identification
1: Initialization:
2: Initialize EAOB, RLS-VFF based on Equation 3.13, 4.15
3: while t≥0 do
4: Measure z = [η;v; τ ]
5: Estimate x̂ = [η̂; v̂; ŵ] with EAOB by Equation 3.14, 3.15
6: Calculate Fk by Equation 4.12
7: if Fk > γ then
8: Update forgetting factor λk = λk−1 −∆λ
9: else

10: Update forgetting factor λk = λk−1 +∆λ

11: Estimate Θ̂ = [Xu̇XuXu|u|Xext]
T with RLS-VFF by Equation 4.16

12: Update MPC control law: τ = K(Au) = MRBv̇ +C(v)v + g(η)− Θ̂
T
Φ

13: Solve the OCP to obtain the optimized control sequence u∗(s) by Equation
4.17

14: Implement the first element u∗0 in the optimized control sequence to the UUV
15: end while

Figure 4.1 illustrates the control framework of the AMPC with online system iden-

tification proposed in this work, with the pink box highlights the adaptive mechanism

involved in steps 5-11 in Algorithm 1.
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Figure 4.1: Block diagram of the proposed adaptive MPC scheme for the UUV, where
the blue box illustrates baseline MPC and control allocation, the yellow box shows the
UUV platform, and the pink module indicates the adaptive module with an observer and
identification algorithm.

4.2.4 Stability Analysis

The stability analysis of the proposed AMPC has been obtained as a part of Author’s

work in the [44].

The assurance of MPC stability relies on the terminal cost and constraints. Hence,

the subsequent assumption is made:

Assumption 3 For all x ∈ XN , the terminal cost lf (·) is a continuous Lyapunov function

such that:

lf (h(x,u))− lf (x,u) ≤ −l(x,u). (4.19)

Therefore, the lemma can be published as:

Lemma 1 With the optimization problem defined in Equation 4.17, the MPC controller

is asymptotically stable if the following conditions hold:

1) U,X,XN ̸= ∅.

2) Only the u(k) is inputted to the optimization process.
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3) N is sufficiently large and global optimal can be acquired at each time k.

4) Jk = 0 if x,u = 0

5) The prediction model is unbiased and has no measurement noises

6) Assumption 3 holds

Proof 1 Define Lyapunov function as Vk = min Jk, thus:

Vk =
k+N−1∑
i=k

l (xi,ui) + lf (xk+N ,uk+N) . (4.20)

Therefore, Vk is positive definite. Similarly,

Vk+1 =
k+N∑
i=k+1

l (xi,ui) + lf (xk+1+N ,uk+1+N)

=
k+N−1∑
i=k

l (xi,ui) + lf (xk+N ,uk+N)

+ lf (xk+1+N ,uk+1+N)− l (xk,uk)

− lf (xk+N ,uk+N) + l (xk+N ,uk+N) .

(4.21)

Using Condition 4 in Lemma 1 and Equation 4.20 yields:

Vk+1 = Vk − l (xk,uk) + lf (xk+1+N ,uk+1+N)

− lf (xk+N ,uk+N) + l (xk+N ,uk+N) .

(4.22)

Using the facts that −l (xk+1,uk) ≤ 0 and lf (xk+1+N ,uk+1+N) − lf (xk+N ,uk+N) +

l (xk+N ,uk+N) ≤ 0, the difference equation of Vk is therefore semi-negative definite. The

proof is hence concluded.
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4.3 Results

To perform online system identification, the UUV’s motion in each DOF must be cap-

tured for training and regression with the RLS-VFF. Therefore, a reference trajectory is

specified for training purposes and provided to the MPC before executing other trajectory

tracking tasks. The entire training process spans 40 seconds, with the following break-

down: 1) Surge dynamics training: begins at 0 seconds and concludes at 10 seconds; 2)

Sway dynamics training: commences at 10 seconds and finishes at 20 seconds; 3) Heave

dynamics training: initiates at 20 seconds and terminates at 30 seconds; 4) Yaw dynamics

training: starts at 30 seconds and concludes at 40 seconds.

In this study, the number of samples in the short and long windows are set as n = 10

and d = 50. A smaller n makes the F-test more sensitive to system changes, resulting in

a fast adjusting forgetting factor. Additionally, the threshold value γ is set to 0.8. The

estimated parameters in Θ̂ obtained using the RLS-VFF algorithm are compared with

those obtained using the standard RLS-FF algorithm with a forgetting factor of 0.98.

Since the work is conducted in Gazebo, the parameters defined in the Gazebo’s URDF

file are used as a benchmark for comparison with the estimation results.

Figure 4.2 presents the system identification results in the absence of additional envi-

ronmental disturbances. In this scenario, the system can be considered as slowly changing.

Consequently, the F-test value remains below the threshold γ for most of the time, causing

the variable forgetting factor to approach 1. As a result, the estimation results obtained

using the RLS-VFF, represented by the blue line, exhibit a slower convergence rate but

higher stability, resulting in a smoother line. The estimation results exhibit greater fluc-

tuations in the Z-axis may caused by the influence of gravity and buoyancy.

On the other hand, Figure 4.3 demonstrates the system identification results with the

introduction of additional environmental disturbances of 5N in the xi, yi, and zi directions

in the IRF. Since the environmental disturbances term τenv is defined in the BRF in the
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Figure 4.2: Online system identification results of added mass, linear damping coefficients,
nonlinear damping coefficients, and environmental disturbances using the RLS-FF and the
RLS-VFF during the training process without applied environmental disturbances.
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Figure 4.3: Online system identification results of added mass, linear damping coefficients,
nonlinear damping coefficients, and environmental disturbances using the RLS-FF and the
RLS-VFF during the training process with applied environmental disturbances.

UUV dynamics model, it has been transformed to the IRF using a rotation matrix for a

clearer presentation of the results. After 30 seconds, the orientation of the UUV begins to

change to train the yaw dynamics. Consequently, the environmental disturbances acting

on the BRF also start to change, leading to a faster changing system. In this situation,

the standard RLS-FF struggles to adapt to these changes quickly and stably, resulting in

significant chattering in the red line. In contrast, the proposed RLS-VFF still manages

to converge to the defined parameters swiftly.

The performance of the proposed AMPC algorithm is evaluated in comparison to a

standard MPC controller and a PID controller. Both the AMPC and the standard MPC

employ the same control parameters, as detailed in Table 3.3. Meanwhile, the PID con-
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Figure 4.4: Control results of lemniscate trajectory tracking using the proposed adaptive
MPC, standard MPC, and PID controllers.

troller’s control gains are specified in Table 3.4. A lemniscate trajectory with amplitude

of 2 meters is employed as trajectory tracking control problem for these controllers. Fur-

thermore, the additional environmental disturbances of 10N are also applied in the xi, yi,

and zi directions in the IRF.

Figure 4.4 presents the control outcomes achieved by the AMPC, standard MPC,

and PID controllers in tracking the lemniscate trajectory. The subplots indicate the

three-dimensional trajectory tracking results, control inputs, tracking errors, and track-

ing states, respectively. These results demonstrate the substantial improvement in control

performance achieved by employing the proposed adaptive MPC algorithm, even when

faced with a highly nonlinear tracking problem and the presence of environmental distur-

bances.
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4.4 Conclusion

In this study, an effective adaptive control method is proposed by integrating a fast sys-

tem identification module with MPC for UUVs’ motion control in complex underwater

environments. Unlike conventional offline system identification, the proposed approach

utilizes RLS-VFF for online real-time adaptation of the system model when new measure-

ment data is available. This incremental update of model parameters enables continuous

learning and tracking of system dynamics. Additionally, RLS-VFF offers computational

efficiency by avoiding the need to recompute the regression from scratch for each new

data point. By incorporating a variable forgetting factor, the algorithm determines the

weight between recent and past data based on the F-test. The F-test assesses if the

system has undergone significant changes, and if so, the algorithm gradually reduces the

influence of older data to enable rapid and stable adaptation. By improving the accuracy

of the prediction model in MPC and compensating for environmental disturbances, the

proposed method achieves a reliable controller with the capability of adapting to unknown

environments and delivering superior control performance.
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Conclusions and Future Work

This thesis explores the application of two improved MPC strategies to enable an UUV

to navigate autonomously within intricate marine settings surrounding underwater struc-

tures. These controllers are engineered to adapt to unforeseen environmental perturba-

tions and changing system dynamics.

Chapter 2 delves into the UUV platform utilized, equipped with a variety of sen-

sors that lay the groundwork for future autonomous navigation. Additionally, the UUV

dynamic model is established based on the Fossen model [11].

In Chapter 3, the initial proposed improved MPC is introduced. Initially, a DOBMPC

is developed to integrate unmodeled dynamics into the disturbance model, alongside envi-

ronmental disturbances, within the MPC’s predictive framework. Various external distur-

bances are simulated for evaluation, such as constant currents, periodic waves, and their

superposition. Diverse control tasks, including dynamic positioning, circular trajectory

tracking, and lemniscate tracking, are employed for assessment. Results indicate that

compared to PID and baseline MPC approaches, the proposed DOBMPC exhibits the

lowest RMSE in tracking. While the simulation demonstrates the DOBMPC’s efficacy in

mitigating disturbances, it’s noted that excessively large and rapidly changing unidenti-

fied hydrodynamic damping forces, if directly integrated as part of the total disturbance,
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may impede the MPC optimizer’s performance.

Subsequently, an AMPC incorporating an online system identification algorithm, based

on the DOBMPC, is presented in Chapter 4. This algorithm utilizes estimated total

disturbances from the Extended Augmented Observer-based approach as input to itera-

tively estimate hydrodynamic coefficients, encompassing hydrodynamic added mass, lin-

ear damping coefficients, and nonlinear damping coefficients. To ensure identification ac-

curacy, the algorithm employs an F-test to compare prediction error variances and adjust

the forgetting factor as necessary. Comparative analysis demonstrates that, in contrast

to the baseline RLS-FF method, the proposed identification algorithm converges more

swiftly and robustly towards the true values, thereby enhancing the control performance

of the AMPC.

The future direction of this research focuses on developing a deep learning-based Tube

Model Predictive Control (TMPC) framework to enhance the robustness and performance

of UUVs in uncertain underwater environments. Learning-based control involves con-

structing data-driven models of the system dynamics for planning and trajectory opti-

mization; however, accurate uncertainty quantification remains a critical challenge due to

the presence of external disturbances, model inaccuracies, and the inherent complexity

of the system. Traditional uncertainty propagation methods often rely on restrictive as-

sumptions, which can limit controller performance. To overcome this, we propose using

deep learning techniques to directly learn uncertainty from data through quantile regres-

sion, enabling a flexible representation of trajectory distributions. This approach forms

a tube around the nominal trajectory that captures the variability of future system be-

havior. The resulting tube will be integrated into the MPC framework, forming a TMPC

that ensures constraint satisfaction with high probability and improves closed-loop per-

formance. The implementation will begin with data collection from simulations under

various disturbances, followed by training a neural network to model both the dynam-

ics and associated uncertainty. The learned quantile tubes will then be embedded into
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the optimization problem of MPC, reformulating constraints to account for predicted un-

certainty bounds. This approach will be validated through extensive simulations using

platforms like Gazebo and the UUV Simulator, comparing it with baseline controllers,

and eventually optimized for real-time deployment in real-world scenarios. By integrating

uncertainty quantification into the control framework, the proposed TMPC method aims

to provide a robust and effective solution for reliable operation of autonomous marine

systems.
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