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Abstract

Unmanned underwater vehicles (UUVs) are increasingly essential for a variety of under-
water tasks, with a primary emphasis on achieving autonomy. Autonomy is critical for
enhancing safety, flexibility, expanding operational capabilities, and reducing expenses.
However, developing effective and robust control algorithms for UUVs is challenging due
to nonlinear dynamics, uncertainties, constraints, and environmental disturbances. Model
Predictive Control (MPC) is a well-established technique for UUV control, with the key

challenge lying in obtaining precise prediction models to enhance controller performance.

This thesis primarily introduces two enhanced MPC approaches that enable a UUV
with partially unknown dynamics to autonomously navigate complex marine environ-
ments. The first approach is a Disturbance Observer-based MPC (DOBMPC). The
DOBMPC integrates unmodeled dynamics and environmental disturbances into a dis-
turbance term estimated by an Extended Active Observer (EAOB). While the proposed
DOBMPC effectively enhances disturbance rejection, the thesis also addresses handling

unknown dynamics more meticulously.

Subsequently, the second proposed control method is an Adaptive MPC with an online
system identification algorithm. This online system identification method is constructed
using an Extended Active Observer (EAOB) and the Recursive Least Squares with Vari-
able Forgetting Factor (RLS-VFF) algorithm to estimate environmental disturbances and
identify uncertain hydrodynamic parameters. The estimated disturbances and parame-

ters are continuously updated in the MPC’s prediction model to generate optimal control

I



inputs based on real-time environmental and vehicle conditions.

These proposed methodologies are validated within the Gazebo and Robot Operat-
ing System (ROS) simulation environment, illustrating their effectiveness in managing
uncertainties and disturbances for UUV control.

Keywords: model predictive control; disturbance observer; extended Kalman filter;

adaptive control; unmanned underwater vehicle; online system identification;
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Chapter 1

Introduction

This chapter provides a brief introduction of the research work, which includes the back-
ground information about the Unmanned Underwater Vehicle ([UUYV]), the motivation
of the research work, and the current contributions. The organization of the thesis is

presented at the end of this chapter.

1.1 Background

With the increasing demand for underwater operations, [[UVEk have gained significant
interest for applications in a variety of challenging underwater tasks, such as underwa-
ter facilities repair operations [1]|, marine-growth removal [2|, and offshore infrastructure
inspection |3|. These applications serve as representative examples of proving the effective-
ness of using[UUVk in assisting or even replacing humans in hazardous and labor-intensive
tasks. [UUVE represent an integration of various disciplines, combining mechanical, sen-
sor fusion, electrical design, communication systems, and control systems. Through their
integrated technology and remarkable accomplishments, [[UVE became invaluable tools
for improving underwater operations’ efficiency and safety.

Coastal cities such as Hong Kong heavily rely on large-scale bridges as essential trans-
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portation infrastructure. Yet, severe weather, such as typhoons, strong winds, and seawa-
ter corrosion, can accelerate degradation and pose serious problems for these structures.
Consequently, routine bridge inspections prove crucial for identifying issues early on and
recommending the necessary maintenance to guarantee sustainability and safety of these
structures. Traditionally, human divers are employed for underwater bridge inspection
tasks. Nevertheless, the unpredictable and complex underwater conditions around off-
shore structures increase the dangers associated with human-led inspections. The range
of access available to human divers is also constrained. In contrast, [[UVk offer numer-
ous benefits in inspection tasks in underwater environments, including reducing operation
cost, improving efficiency, and enhancing safety. [TUVk can feedback high-resolution data
in real time, navigate in complex areas, and conduct thorough inspections without hu-
man intervention, making them ideal for maintaining the safety and reliability of coastal

bridges.

[UUVE can be categorized into two kinds, which are Remotely Operated Vehicle (ROV))
and Autonomous Underwater Vehicle (AUV]). This classification is based on the extent
of human involvement during their mission execution processes. [ROVE often heavily rely
on human instructions during operations. Therefore, a tether is required for signal and
data transmitting between vehicles and human operators in real time. In contrast, [AUVk
have a higher level of autonomy, which allows them to execute pre-programmed missions
off-line. This autonomy allows [AUVk to travel longer distances and minimize human
operation costs. As a result, the current focus of [UUV] development is concentrated on

increasing autonomy, while the autonomy highly depends on the design of control systems.

Designing control systems for [[UVk presents several significant challenges. Firstly,
[UUVk are Multiple-Input Multiple-Output (MIMO]) dynamic systems that are highly
nonlinear. Besides, parametric uncertainties pose a consideration problem. These uncer-
tainties are caused by the difficulty of accurately identifying hydrodynamic coefficients.

which capture the complex interactions between the UUV and the surrounding fluid.
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Estimating the dynamic loading on the vehicle caused by hydrodynamic terms associ-
ated with waves and currents further complicates the matter, especially during aggressive
maneuvering. Another major challenge involves coping with unpredictable time-varying
environmental disturbances in complex underwater environments, such as ocean waves
and currents. Operating under such conditions can lead to instability and performance
degradation in the closed-loop control system, hindering even simple inspection tasks.

Therefore, it is crucial to effectively address these problems in [JUV] control systems.

Numerous control approaches have been developed to tackle the aforementioned con-
trol challenges. Traditionally, the Proportional-Integral-Derivative (PIDIl) control method
has been used to address motion control problems in autonomous vehicles. control
offers a cost-effective and easily implementable solution. It is beneficial due to its model-
free nature and ability to provide system stability by adjusting the control signal based on
the error between the desired setpoint and the actual process variable. In order to enhance
robustness against external disturbances, an adaptive fuzzy nonlinear controller was

developed for an underwater robotic vehicle |4].

Another popular control method is Sliding Mode Control (SMC]). Unlike the model-
free approach, SMC addresses the issue of parametric uncertainty by creating a sliding
surface that the system’s state trajectory is compelled to follow, regardless of uncertain
parameters. In order to achieve closed-loop stability, a robust adaptive was designed
for an underactuated AUV [5]. The stability of this proposed method was also proved by
using Lyapunov’s direct method. However, SMC] suffers from chattering problems, which
is a phenomenon arising due to SM(Ts discontinuous control law. This chattering effect
can result in reduced accuracy and energy loss, especially when the vehicle operates at

high speeds.

In recent years, Model Predictive Control (MPCl) methods have exploded in popular-
ity, driven by advances in on-board computer computing capabilities [6]. [MPC involves

solving an Optimal Control Problem ([OCP]) with a finite horizon recursively to determine

3
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the control action at every time step. is particularly favored for designing control
systems for [UUVE due to its ability to handle control limits and state constraints. Fur-
thermore, Nonlinear Model Predictive Control (NMPC]) provides additional advantages
by accommodating the inherent nonlinear dynamics of complex systems. However, it is
important to note that the performance of [MP( is heavily dependent on the accuracy of

the prediction model used.

Consequently, several improved [MPC| methods have been developed to enhance the
performance of the controller. One common approach is employing a Disturbance Ob-
server (DO that estimates and compensates for unmodeled dynamics and disturbances,
in order to overcome the parametric uncertainties and environmental disturbances. The
combination of MPC and DOB has been proposed and implemented in many recent
research studies. For example, a robust based on Active Disturbance Rejection
Control (ADRC]) was developed for an [ATUVI] [7]. This approach implemented a discrete
Extended State Observer (ESQ) to estimate the effect of model uncertainties and external
disturbances. Data-driven methods have also been widely applied to learn dynamic resid-
uals, which enhance the prediction model incorporated in [MPCl A [MPC framework with
learned residual dynamics using Gaussian Processes was proposed in 2021 [8]. It aimed to
improve control performance in high-speed trajectory tracking problems by providing a
more accurate dynamics model. While these research works have demonstrated enhanced
robustness and control performance by addressing external disturbances and model uncer-
tainties, they still have certain limitations. Disturbance Observer-Based Control (DOBC)
methods treat unmodeled dynamics as part of disturbances to be compensated, which
does not provide an accurate model for MPCl As for data-driven methods, they typically

require a large amount of training data, which can lead to heavy computational burden.

Based on existing challenges in control and their solutions, this research project aims
to offer a reliable control resolution for enabling [TUVE to conduct autonomous inspections

of bridges. The main focus of this study lies within the domain of control systems, where

4
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two types of Adaptive Model Predictive Control (AMPC]) are introduced. The initial
approach develops a Disturbance Observer-Based Model Predictive Control (DOBMPC),
which using an Extended Active Observer (EAOB]) to estimate total disturbances, in-
cluding unmodeled dynamics and environmental disturbances. Subsequently, to address
disturbances more effectively, instead of combining all sources of disturbance into a single
variable per Degrees of Freedom (DOF]) through the principle of superposition, the sec-
ond method aims to establish an integrated with an online system identification
module. This module is designed to identify uncertain hydrodynamic parameters using
the overall estimated disturbances provided by the [EAOBl To realize this, the RLS-VFF
algorithm is employed to iteratively update the estimated parameters within the [MPCl's
prediction model. The [RLS-VFE] algorithm not only adjusts to non-static data and dy-
namically changing system behaviors but also enhances memory efficiency, making the
method both practical and cost-efficient. The dynamic adaptation of the variable forget-
ting factor within the algorithm is guided by the F-test, strengthening its capability to
detect and react to the changes in the system. To achieve autonomous navigation, the
[UUV] adopted in this study is also equipped with multiple sensors, including a sonar, a
Doppler Velocity Log (DVL), a pressure sensor, an Attitude and heading reference sys-
tem (AHRS]), and a stereo camera. Although the autonomous navigation module is still
under development due to time limitations, the hardware and software design part has

been finalized and is described within this study.

1.2 Contributions

The primary objective of this project is to effectively tackle the challenges arising from
complex varying marine environments and evolving system dynamics, ultimately deliver-
ing a robust solution that enables [JUVk to autonomously operate in complex underwater

environments. The main contributions of this research are outlined as follows:
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1. Development of a baseline approach that considers physical system con-
straints, including control inputs and system state limitations. The prediction model
within the NMPC] will be continuously updated using feedback from a disturbance
observer and an online parameter estimation module. This update process will

create a parameter-varying model.

2. Development of an [EAOB]I to estimate total disturbances, encompassing both un-
modeled dynamics and external disturbances. The estimated disturbances will be
provided to the online parameter estimation algorithm. The objective is to achieve

accurate estimations even in the presence of measurement noise.

3. Design of a learning-based online identification algorithm for real-time adaptation
and learning of the dynamics of the [JUV] By utilizing the disturbances provided
by the [EAOB! the learning problem is simplified, enabling the development of an

accurate data-augmented dynamic model for the [NMPCL

1.3 Thesis Organization

The following chapters of this thesis are organized as below:

e Chapter 2 presents a foundational description of the [TUV] model utilized, encom-

passing the hardware and software design, and dynamic modeling of the [TUV]

e Chapter 3 introduces the initial control method proposed in this study, namely
DOBMPCL This chapter entails a review of literature on various forms of [IDOBC]
the methodology of the proposed approach, results from semi-physical experiments,

and concluding insights.

e Chapter 4 demonstrates the development of the second control method, derived

from Chapter 3, which is an [AMPC| integrated with online system identification. It
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incorporates a review of related adaptive control methods utilizing data-augmented
models, the methodology of the identification algorithm and IMPC]implementation,

results from identification and control performance, and conclusions.

e Chapter 5 summarizes the work in this thesis and discusses the future works and

research directions.
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Chapter 2

Unmanned Underwater Vehicle Model

This chapter primarily focuses on introducing the model of the selected [TUV] platform, en-
compassing its hardware and software design as well as dynamic modeling. The hardware
and software design section elaborates on the sensors integrated into the UUV platform
and their intercommunication. In the dynamic modeling segment, a comprehensive dy-
namic model is developed, serving as a foundation for constructing model-based controllers

in subsequent chapters.

2.1 Hardware and Software Design

The research employs the BlueROV2 as the foundational [UUV] platform. While the full
navigation module remains unfinished, the project has successfully implemented sensor
installation and communication, laying a groundwork for future navigation algorithm de-
velopment. The BlueROV?2 features a Pixhawk as a flight controller, a Raspberry Pi as
a companion computer, and a USB camera connected to the companion computer. The
Pixhawk includes an onboard Inertial Measurement Unit (IMU]) and pressure sensor, with
data transmitted to MAVProxy and MAVROS via USB. MAVProxy relays messages via

UDP to QGroundControl on the topside computer, which also receives USB camera data

9



Chapter 2. Unmanned Underwater Vehicle Model

through gstreamer. MAVROS operates within the companion computer’s ROS environ-
ment. The stereo camera and communicate with the companion computer through
serial connections, enabling the companion computer’s Robot Operating System (ROS)) to
run drivers for these sensors, facilitating sensor data integration within Sonar and
[DVTI connect to the companion computer via an Ethernet switch, allowing SonarView on
the topside computer to receive sonar data. A [DVIIROS| driver on the topside computer
processes data, publishing it as topics. With nodes running on both the
companion and topside computers, they engage in multiple communications, con-
figuring the companion computer as a slave and the topside computer as a
master to consolidate sensor data within Figure illustrates the overall software

structure of the developed BlueROV2.

Companion Computer Topside Comupter
ip: 192.168.2.2 ip: 192.168.2.1
Video & Audio
gstreamer - Stream
USB Camera »| USB udpsink »| UDP
Pressure QGroundControl
Sensor MAVProxy
Pixhawk »| USB udpbcast »| UDP
IMU
ROS Slave ROS Master
——| MAVROS
multiple ROS
Stereo Camera —| USB Stereo Camera ‘ >
ROS Driver -
DVL ROS
AHRS » USB AHRS ROS Driver
Driver
Sonar Ethernet
ip:192.168.2.86 > JST-GH|  Switch RJ45 ]
> (Ethernet) »| UDP SonarView
IDVIL »| IST-GH
ip:192.168.2.95

Figure 2.1: The software structure of the BlueROV2, incorporating a range of sensors such
as a stereo camera, DVL, AHRS, sonar, as well as an IMU and pressure sensor connected
to the Pixhawk.

Figure illustrates the physical arrangement of sensors within the BlueROV2. The

stereo camera and sonar are situated on an extended payload skid, enabling them to face

10
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Figure 2.2: Front and rear perspectives of the fully assembled UUV.

forward to execute perception and mapping functions. Positioned at the rear, the [DVL
is shielded from disturbances caused by the fluid surrounding the thrusters, safeguarding
the accuracy of its measurements. The [AHRS| is housed within a sealed tube, aligned

with the orientation of the onboard [MU] to facilitate calibration procedures.

2.2 UUV Modeling

The analysis of [JUV] motion model can be categorized into two main groups: kinematics,
which focuses solely on the geometric aspects of motion, and kinetics, which examines
the forces and moments that drive the motion. In this section, it provides detailed ex-
planations of the kinematic and kinetic equations governing [UUV| motion. Based on
these equations, a control system model can be established as a basis for the study of
[UUV] motion control. The section has been included as a part of the author’s published
paper [9].

In this research work, we selected BlueROV2 which has 4 degrees of freedom as
the UUV platform, which operates with 4 covering surge, sway, heave, and yaw
movements. To characterize the UUV’s motion, we employ Fossen’s principles , en-

compassing rigid body dynamics, added mass effects, and damping. This section elabo-

11
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rates on the detailed kinematic and kinetic equations that govern the motion of the UUV.

These equations form the basis for constructing a system model for motion control. The

parameters’ symbols derived from the dynamic model of the UUV are outlined in Table

21
Table 2.1: Notations in the UUV dynamic model.

Surge Sway Heave Roll Pitch Yaw
Position n xyz(m) ¢ 0 (rad)
Velocity v uvw (m/s) pqr (rad/s)
Forces and Moments 7 XY Z(N) K M N (Nm)
Control Inputs u uy ug ug (N) / /) ug (Nm)
Total Disturbances w Xw Yo Zy (N) Ky, My Ny (Nm)
Environmental Disturbance Teny  Xenv Yenv Zenv Kenw Mepy Neny
Unmodeled dynamics AT AX AY AZ AK AM AN

Added Mass M 4

Linear Damping Dy,
Nonlinear Damping Dy,
Feedback Variables

XYy Zy (kg)

X.Y, Z, (Ns/m)

Xl Yoo Zuwjw) (Ns?/m?)
xyz(m)

uvw (m/s)

XY Z (N)

K, M, N; (kgm?/rad)

K, M, N, (Ns/rad)

Kp‘p| Mq|q| NT|T| (NSQ/TadQ)
600 (rad)

pqr (rad/s)

/ [ N (Nm)

2.2.1 Kinematic Model

Reference Frames

In general, two reference frames are typically employed to depict the motion states of the

UUV, as illustrated in Figure 2.3 namely the Body-Fixed Reference Frame (BRE) and

the Inertial Referemce Frame (IRE]).

e The [BRE is affixed to the vehicle, with the Center of Gravity (CG)) designated as

the origin. The body axes align with the principal axes of inertia. The longitudinal

axis, denoted as the z; axis, extends from aft to fore. The transversal axis, known

12
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as the y, axis, extends from port to starboard. Per the right-hand rule, the z, axis

is orthogonal to both the x; and y, axes.

e The [UUVPs motion can be delineated as the movement of the [BRF concerning
an [REl The IRE is instrumental in monitoring the vehicle’s path and specify-
ing control objectives. Commonly used [REk encompass the Earth-Centered Iner-
tial (ECI)frame, the Earth-Centered Earth-Fixed (ECEE]) reference frame, and the
North-East-Down (NEDI]) coordinate system. In this study, the [RE aligns with
the coordinate system, a selection driven by the widespread adoption of
coordinates for expressing position vectors in diverse navigation applications and

simulation settings. The axes in the [RE] are labeled as z;, v;, and z;, as depicted

in Figure 2.3

X;j (north) yi (east)

Figure 2.3: The reference frames of the UUV, including BRF and IRF.

In the [TUV’'s model states, the linear and angular velocities are described in the [BRE] as
n = [z,y,2,¢,0,¢]", while the linear and angular position are expressed in the [RH as

V= [UJ U? w7p7 q7 T]T'

13
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In this study, the decision is made to align the [RF] with the [NEDI coordinate system.
This choice is influenced by the common practice of representing position vectors using

NED coordinates across a wide range of navigation applications and simulation contexts.

Transformations Between Reference Frames

Since the velocity vector and position vector are expressed in different reference frames,
the rotation matrix R;, which is an element in SO(3), are required for describing the

relationship between them:

SOB)={R|RecR”> RR"=R'R=1,detR=1}. (2.1)

Consider v* = [u,v,w|T denoting the linear velocity in the Body Reference Frame
(BRF), and v® representing the linear velocity in the Inertial Reference Frame (IRF).

Consequently, the relationship between v” and v* can be expressed by the equation:

v' = R (©)v’. (2.2)

Here, ® comprises the Euler angles—specifically, roll ¢, pitch €, and yaw 1. Subse-

quently, the rotation matrix can be calculated using © as follows:

R,(©)=R.,R, 4R, (2.3)
1 0 0 cos) 0 sinf costp —sinyp 0
R,;,= |0 cos¢p —sing Ry = 0 1 0 R,y = sy cosyy 0
0 sing coso —sinf 0 cosf 0 0 1

Upon expanding Equation , the resultant form of the rotation matrix R} is:
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cospcos  cossinfsing — sincosgp coscosfsing + sinpsing
1 (0) = sincosd  sinsinfcose + cosicosd  sinpsinfcosd — cossing | - (2.5)

—sinf cosfsing cosbcoso

To convert angular states, consider w® = [p,¢,r]* denoting angular velocity in the
Body Reference Frame (BRF) concerning the Inertial Reference Frame (IRF). Subse-

quently:

© =T(O)u’ (2.6)

where, ® = [¢, 0, 1] denotes the Euler angle rate.

The matrix T'(0©), illustrating the connection between angular states in the [BRE| and
the [RE] can be defined as:

¢ 0 0
W=|0|+Ris| 6| +RisR| 0| (2.7)
0 0 W

Upon elaborating Equation 2.7, the resulting form of the transformation matrix T'(©)

is:

1 singtanf  cos¢ptand
T®O)= 1|0 oS} —Ssing ) (2.8)
0 sing/cosl cosp/cosh
R,(©) 07,

J(n) = : (2.9)
03><3 T('I’])

Consequently, the correlation between the velocity and position of the [JUV] is ex-
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pressed as:

. p R;(©) 0343 vP
n=1,"|= =J(n)v. (2.10)
(S) 03><3 T(@) wb

Here, p = [z, 9, 2]T signifies the linear position of the [[UV]in the [RE!

2.2.2 Kinetic Model

In order to streamline the derivation of the dynamic equations governing the motion of
the [UUV], a common and logical approach is to presume the vehicle as a rigid body. This
assumption negates the necessity of scrutinizing the interactions among individual mass

elements. The comprehensive dynamic model is articulated as:

Mo+ C(v)v+ D(v)v+g(n) =7 + Teny (2.11)

where M signifies the mass matrix, C(v) represents the Coriolis and centripetal ma-
trix, D(v) stands for the hydrodynamic damping matrix, g(n) denotes the vector en-
compassing gravitational and buoyancy forces, 7 = [X,Y, Z, K, M, N]T encapsulates the
total propulsion forces and moments, and w accounts for the total disturbance. Both M
and C(v)v incorporate terms pertaining to both the rigid body and hydrodynamic added

mass:
M = Mpgpp + My

C(’U) = CRB(’U> + CA(’U).

(2.12)

Each component within the dynamic model is elaborated upon in subsequent sections.

16



Chapter 2. Unmanned Underwater Vehicle Model

Rigid-Body Dynamics

The rigid-body dynamics of marine vessels, including the[TUV] can be derived through the

application of Newtonian mechanics |[11]. The rigid-body mass matrix Mgp is calculated

as:
m 0 0 0 mzg — —My,
0 m 0 —mzg, 0 m,
0 0 m my, —max 0
Mpp = ! ! . (2.13)
0 —mzy, MY, I, —I =1
mzg 0 —mxg —Iy, I, —1I,.
—my, M, 0 —IL, —1, I,
Here, m represents the vehicle’s mass, I, I,, and I, denote the moments of inertia
around the x, y, and z, axes in the BREL v, = [2,,9,, 25" indicates the position of

the center of gravity (CG) relative to the vehicle’s center. Given that the [BRE origin
is situated at the UUV’s geometric center, and the vehicle exhibits symmetry in both
the xz-plane (port-starboard) and xy-plane (fore-aft), the rigid-body mass matrix can be
simplified by assuming z, = y, = 0 and I, = I, = I,. = 0. Consequently, Equation

.14 transforms as:

m 0 0 0 mzg 0
0 m 0 —mz, 0 O
0 0 m 0 0 0
Mpgpp = (2.14)
0 —-mz, O I, 0 0
mzg 0 0 0 I, 0
0 0 0 0 0 I

Following this, employing the skew-symmetric cross-product operation on Mgpg pro-

duces the outcome of the rigid-body Coriolis and centripetal matrix Crp(v) as:
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0 0 0 0 mw —mu
0 0 0 —mw 0 mu
0 0 0 mv  —mu 0
Crp(v) = : (2.15)
0 mw —mu 0 Lr —Igq
—mw 0 mu —Lr 0 ILp
mv  —mu 0 I,g —1I,p 0

Hydrodynamic Forces and Moments

When computing the overall external forces and moments 7, it is imperative to account
for hydrodynamics. Key contributors to hydrodynamic forces and moments encompass
radiation-induced forces, skin friction damping, wave drift damping, vortex shedding
damping, and environmental disturbances. These elements are individually addressed
employing the superposition principle.

Hydrodynamic added mass can be viewed as a virtual mass integrated into a system
because an accelerating or decelerating body displaces a certain volume of the surrounding

fluid as it traverses through it. This concept is derived from Kirchhoff’s equation [11]:

Xo Xo Xo X, X; Xi
Yo Y Ya Y Y Y
Zy Zy Zo Zy Zy Zi
My — — (2.16)
Ky K, Ky K, K; K:
My My My M, M; M;
N. N, Ny, N; N; N;

In an ideal fluid, for a rigid body at rest or moving at a forward speed U > 0, the hydro-
dynamic system inertia matrix M4 is positive semi-definite. Hydrodynamic coefficients

are defined as the partial derivatives of the added mass force with respect to the corre-

18



Chapter 2. Unmanned Underwater Vehicle Model

sponding acceleration. For instance, the added mass force Z; along the z-axis due to the
acceleration 1 is denoted as Z, = g—g.
Given that in most practical scenarios the non-diagonal elements of M4 are con-

siderably smaller than the diagonal elements [11], the off-diagonal terms of M4 can be

disregarded. Consequently, M 4 can be simplified as:

X, 00 0 0 0
0 Y 0 0 0 0
0 0 Zy 0 0 0
My =— (2.17)
0 0 0 K, 0 0
0 0 0 0 M, 0
00 0 0 0 N

Thus, the computation of the nonlinear hydrodynamic Coriolis and centripetal matrix

C a(v) can be performed as:

0 0 0 0 Zuy W 0
0 0 0 —ZpW 0 —X,u
0 0 0 Yo X,u 0
Ca(v) = (2.18)
0 —zpw Yyu 0 —Nir Mg
Zpy W 0 —X.u  Npr 0 —Kyp
—Y;',’U qu 0 —4Vigq Kp 0

Hydrodynamic damping in marine vessels primarily arises from various factors as

explained by [11]:
e Potential Damping: This type of damping involves the interaction of damping
and restoring forces and moments when a body oscillates at the wave excitation

frequency without encountering incident waves. The radiation-induced damping

term is commonly known as linear frequency-dependent potential damping.
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e Skin Friction: Arising from laminar boundary layer theory, the linear frequency-
dependent skin friction is significant for the low-frequency motion of marine vessels.

Additionally, turbulent boundary layers contribute to high-frequency skin friction.

e Wave Drift Damping: Present as added resistance for surface vessels moving
through waves, wave drift damping is rooted in second-order wave theory. It notably
affects surge in higher sea states due to wave drift forces being proportional to the
square of the significant wave height. In comparison, sway and yaw experience

relatively minor wave drift damping compared to vortex shedding.

e Damping Due to Vortex Shedding: In a viscous fluid, non-conservative fric-
tional forces lead to interference drag, stemming from the shedding of vortex sheets

at sharp edges.

Potential damping and wave drift damping effects are typically disregarded for underwater
vehicles. These diverse damping components contribute to both linear and quadratic
damping terms:

D(’U) :DL‘I'DNL('U), (219)

here, Dy, represents the linear damping component induced by skin friction, while Dy,
denotes the nonlinear damping matrix arising from quadratic damping and higher-order
effects. The damping matrix is diagonalized due to decoupling, leading to the formulation
of the linear and quadratic damping matrices as described in Equation and Equation

respectively:
Dy = —diag [X,, Yy, Zu, Ky, M,, N,], (2.20)

Dy (v) = —diag [ Xy |ul, Yol |v], Zujw [0, Kppp [Pl Mg lal, Nep[7]] - (2.21)
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Consequently, the complete hydrodynamic damping term is expressed as:

D(’l}) =D+ DNL(U)
— —diag[Xy, Yy, Zu, Ky, My, N, (2.22)

— diag[Xujuy [ul, Yool [0], Zuwfw[w], Kpjpl D], Myig|al; Nejr(|r]]-

Hydrostatics

Archimedes [12] established the foundational principles of fluid statics, which form the
basis of modern hydrostatics. In hydrostatic terms, the gravitational and buoyancy forces
are termed restoring forces, akin to the spring forces in a mass-damper-spring system.
With m representing the mass of the [JUV] g denoting the acceleration due to gravity, p
standing for the water density, and V representing the volume of fluid displaced by the
[UUV] the weight of the [JUV] can be articulated as:

W =mg. (2.23)

Meanwhile, the buoyancy force B here is expressed as:

B = pgV. (2.24)

Assuming the centre of buoyancy (CBI) of the [UUVis located at r, = [x4, y», zb]T, if
we consider the center of the vehicle’s body frame to be positioned at the [CB|, then ry is
defined as:

r, = [0,0,0]". (2.25)

Since the vehicle has symmetry in the xz-plane and xy-plane, the position of the
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of the vehicle r, becomes:

T
Ty = {mg Yy zg] =10,0,z,]" . (2.26)

Then the overall restoring force vector g(n) can be calculated using Euler angle trans-

formation as:

(W — B)sin6
—(W — B) cosfsin ¢
—(W — B) cosfcos ¢
gn) = : (2.27)
24W cos 0 sin ¢

2gW sin 0

0

Propeller Model and Control Allocation

A practical model of a propeller is examined within the dynamics of an Unmanned Un-
derwater Vehicle (UUV]). The [UUV] can be managed in four degrees of freedom (DOE):
forward /backward movement, side-to-side movement, vertical movement, and rotation.
Consequently, the control commands w = [uy, us, u3, us]* are established, correlating to
the forces and moments in the UUV’s various movement dimensions. These control com-
mands are then distributed among the propellers using a control allocation matrix. In the
context of this study, focusing on the blueROV2, the thrust vector ¢ = [t1, 5, t3, t4, t5, t6]"

is computed as:

—1 1 0 1
-1 -1 0 -1
1 1 0 -1
t=Au= u. (2.28)
1 -1 0 1
0 0 -1 0
0 0 -1 0
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In this configuration, ¢ represents the combined thrust generated by all propellers. The
arrangement consists of six propellers as illustrated in Figure 2.4} The blue propellers spin
in a clockwise direction, while the green propellers spin counterclockwise. A red arrow

denotes the positive surge orientation.

Figure 2.4: The propeller configuration of the BlueROV?2, including two vertical propellers
and four horizontal propellers.

Utilizing the thrust force of each individual propeller, the total force and moment
exerted on the[UUV]can be computed using a propulsion matrix derived from the geometry

of the blueROV2 as follows:

=Kt (2.29)

To determine the forces and moments generated by propeller 1 for computing the
propulsion matrix, where [,; represents the distance between the center of propeller 1
and the in the z, direction, and t,; is the force projection in the z; direction, the

calculations are as follows:
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T =

taly —tla
terlzr — taalen
tyiler — a1l
Cos v
—sin o
0
sino -1,

cos o - I,

—sina -l —cosa -l

t1 cos o
—t1sin o
0
tisina -1,
ticosa - Uy

ti (—sina -l —cosa- 1)

1

(2.30)

Given that o represents the orientation of the propeller, with the specified values a@ =

n/4 and l,; = 0.156, l,; = 0.111, [,; = 0.072 for propeller 1, the initial column in

the propulsion matrix, denoted as K, can be determined. Subsequent columns can be

computed similarly, leading to the complete propulsion matrix as follows:

0.707
—0.707
0
0.051
0.051
—0.167

0.707
0.707
0
—0.051
0.051
0.167

-0.707 —0.707 0
—0.707  0.707 0
0 0 1
0.061 —0.051 0.111
—0.051 —0.051 0.002
0.175 —=0.175 0

0

0

1
—0.111
—0.002

0

(2.31)

In practice, the signals sent to each propeller are in the form of Pulse Width Modula-

tion (PWM)) signals. The Figure [2.5|is provided by the manufacturer, which specifies the
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relationship between the [PWM)] input and the thrust is not linear.

Thrustat 10-20V

Thrust (Kg f)

Reverse ESC PWM Input Value (microseconds) Forward

Figure 2.5: Thrust polynomial fitting based on PWM input value within 10-20 V.

Thus, the relationship between thrusts and [PWM] signal is investigated by applying

fourth order polynomial fitting:

trgr = — 6.5453 x 107X} +7.6349 x 107°X7  —2.5053 x 107 X7

pwm pwm

(2.32)
+0.3312Xm — 157.6016

where the t;,4; is the thrust in unit of kgf, and X, is the WM input. The thrusts
from the datasheet and the thrusts calculated based on polynomial fitting are shown as

Figure [2.6,

2.2.3 UUV Model for Motion Control

For achieving motion control of the [JUV] the system state is defined as = = [T, vT]7T.

From the Equation 2.10] and Equation 211} the general form of the [[UV]is obtained as:
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Figure 2.6: Thrust polynomial fitting results through fourth order fitting.

(2.33)

& = 77 = f(@,7 w1
i i J(n)v
_ M [T+ Tepy — C(v)v — D(v)v — g(n)]

where M and C(v)v contain both rigid body term and hydrodynamic added mass term:

M = Mgp + My
C(’U) = CRB(’U) + CA(’U)

26
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Chapter 3

Disturbance Observer-Based Model

Predictive Control

This chapter offers a comprehensive overview of a reliable [DOBMPC] approach utilizing
the proposed [EAOBI It includes a literature review of related works, the methodology
employed, results of control performance and observation, and concluding remarks. This

chapter has been previously published as part of author’s work in the [9].

3.1 Literature Review

The complexities inherent in developing control systems for [JUVE arise from their highly
nonlinear dynamics, the uncertainties in their parameters and the unpredictable distur-
bances present in their operating environments. To address these challenges, many control
methods have been explored within the realm of UUV operations. Among these strategies,
the controller stands out as a widely employed mechanism in [UUV] control frame-
works [13]. Noteworthy for its capacity to adeptly navigate parameter uncertainties,
control distinguishes itself from other techniques by its reliance on real-time error

feedback rather than precise system models. This inherent adaptability empowers the
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controller to adjust control outputs dynamically, thereby accommodating variations
and uncertainties in system parameters, consequently ensuring robust operational perfor-
mance. The application of controllers in [UUVE spans diverse variants, including the
fractional-order controller tailored to optimize parameters amidst uncertainties [14],
the adaptive fuzzy controller offering resilience against external disturbances [4], and
the intelligent{PIDI with feedforward mechanism, augmenting stability [15]. However,
controllers are inherently linear controllers and may struggle to effectively control highly
nonlinear [UUV] systems. [JUV] dynamics can exhibit complex nonlinear behaviors that

may not be adequately addressed by a [PIDI controller’s linear control scheme.

Besides of methods, emerges as another popular control approach in UUV
motion regulation |16]. Renowned for its effectiveness in managing systems character-
ized by uncertainties, disturbances, and nonlinearities, has been leveraged in devis-
ing a dual closed-loop integral [SMC methodology tailored for controlling underactuated
UUVs [5]. This technique adeptly addresses the intricate nonlinear and coupled dynamics
of the vehicle, rendering it apt for navigating three-dimensional underactuated scenarios.
Moreover, a sliding mode-based fault-tolerant control mechanism integrated with thrust
allocation has been proposed to mitigate steady errors arising from thruster faults [17].
Nonetheless, the chattering phenomenon inherent to [SMC], stemming from its discontin-
uous control law under high-speed [UUV] maneuvers, poses challenges by compromising

accuracy and inducing energy losses.

[MPC, a control method entailing the recursive solution of an over a finite horizon
to determine control actions [18|. This methodology ensures consistent consideration of
system constraints throughout the control process, thereby garnering considerable inter-
est in the domain of marine robotics for its adeptness in managing control constraints,
variation bounds, and state restrictions. The integration of in marine vessels for
dynamic positioning, as evidenced in [19], showcases its efficacy in distributing force gen-

eration over defined time intervals and facilitating motion planning based on varying
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configurations of rotatable thrusters. Noteworthily, has been tailored to enable
an [AUV] to track predefined trajectories within the water column [20], highlighting the
potential for real-time control leveraging in situ estimated water current profiles.
Furthermore, the advent of Lyapunov-based [MPCl methodologies, as exemplified in [21],
ensures closed-loop stability, with the robustness of validated through experimen-
tal trials in water tanks capable of simulating directional ocean currents [22]. These
studies underpin the advantages of [MPC] in [UUV] motion control, elucidating its efficacy

through a blend of numerical simulations and experimental validations.

While has demonstrated effectiveness in controlling [UUVE, addressing paramet-
ric uncertainties and environmental disturbances remains a critical consideration.
is a control technique devised to tackle the challenges posed by environmental disturbances
within a control system. involves estimating and compensating for disturbances
to bolster overall system performance and robustness, encompassing unmodeled dynamics
and environmental disturbances as part of its domain. Notably, one of the advantages of
is that it ensures the performance of the outer-loop controller remains intact even

when disturbances are estimated within the inner loop.

In 2018, A Nonlinear Disturbance Observer (NDQI) was developed and integrated into a
nonsingular fast terminal sliding mode control scheme for trajectory tracking of an under-
actuated [UUV] [23]. This integration ensures finite-time convergence and demonstrates
enhanced immunity to external disturbances. In another study, a disturbance observer
was incorporated into fuzzy adapted S-Surface control to enhance robustness against
unmodeled disturbances [24]. A 2019 study introduced a modified constrained controller
that combines a computed-torque controller with a newly designed for improved
performance [25|. This modification boosts the accuracy of disturbance compensation by
refining the evaluation function of the traditional H., controller while considering control

input constraints.

Recently, [MPC based on [ADRC| was proposed for motion control of an [AUV] [7].
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This approach incorporates a discrete extended state observer to estimate disturbances
and applies feedback control to compensate for them. By amalgamating the strengths
of MPC and [DOBC] this controller structure adeptly manages parametric uncertainties
and external disturbances within the inner loop while addressing system constraints in
the outer loop. Hence, advancing a robust disturbance observer resilient to measurement

noise could pave the way for a viable and efficient [TUV] control system.

Driven by the considerations mentioned earlier, an [EAOB| has been devised in this
study, leveraging the extended Extended Kalman Filter (EKF]) to merge with [MPC,
forming the DOBMPCL The key innovation of the developed lies in its ability to
estimate disturbances amidst the presence of measurement noise. Moreover, the unmod-
eled parameter within the [MPCls predictive model is assimilated into the disturbance
term, effectively tackling the challenge of parametric uncertainty. In contrast to the tra-
ditional method of compensating estimated disturbances directly into control inputs, the
estimated disturbances are integrated into the [MP(ls predictive model and updated at
each time increment. This approach enables the MPClto craft an optimal control strategy

while accommodating disturbances.

To optimize computational efficiency during the application of in practical sce-
narios, it is essential to streamline computational processes. This study achieves computa-
tional efficiency improvements by employing ACADOS. Nonetheless, there exist alterna-
tive methodologies suitable for real-time integration of MPCl In 2020, a novel category of
condensing-based iteration strategies was introduced, showcasing asymptotic stabil-
ity and ensuring crucial constraint adherence within the closed-loop system, regardless of
the number of Newton updates performed. Another iteration scheme aimed at reducing
computational load for constrained discrete-time linear systems was proposed, specifi-
cally tailored for moving horizon estimation-based output feedback MPCl Furthermore, a
resilient early termination strategy was recently developed, leveraging barrier func-

tions and continuous-time primal-dual gradient flow techniques. Findings indicated that
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this approach provides a suboptimal yet viable and efficient solution when early termina-
tion is activated. Exploring these alternate algorithms holds promise for enhancing the

[MPC implementation, offering diverse avenues to boost computational efficiency.

3.2 Methodology

In this section, it outlines the methodology behind the proposed DOBMPC, a type of
[AMPC employed in this project. The is formulated based on the [EAQBl Con-
sequently, this section covers the design of the [EAODB| stability analysis of the observer,
and the implementation of [MPCl

In the realm of control system design, it is common practice to adopt the principle
of superposition when factoring in environmental disturbances Teyn,, such as wave and
current disturbances [11]. These disturbances encompass unmodeled dynamics A7, which
encompass uncertainties linked to rigid-body parameters (for instance, inertia and mass
properties) and hydrodynamic parameters (like hydrodynamic damping forces) that are
challenging to precisely determine. This principle dictates that all disturbance sources are
aggregated and incorporated on the right-hand side of Equation [2.33] as the disturbance
term w = [ Xy, Yy, Zu, Ky, My, Ny| T

W = Teny + AT. (3.1)

Assumption 1 [t is assumed that the influence of environmental disturbances (Tenw ), like
oceanic waves and currents, and the unmodeled dynamics (AT ), are constrained, specifi-
cally by |Tenw| < 71 and |AT| < T5. Here, T1 and T denote unspecified positive constants
of estimations. Consequently, the overall disturbance w is capped by the cumulative value

of these thresholds, denoted as |lw| < 71 + 7.

Assumption 2 The total disturbance w s assumed to be a slowly time-varying signal.
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Consequently, the internal disturbance model can be formulated as:

w= M+ C(v)v+ D) +g(n) —T

w = 0.

3.2.1 Observer Design

When employing an [EKF] to devise a disturbance observer for offsetting unpredictable
uncertainties, the disturbance term w is regarded as system states in conjunction with

the position i and velocity v.

In practical scenarios, it is common for modeled systems to exhibit continuous-time dy-
namics, whereas measurements are acquired at discrete intervals. To tackle this challenge,
the Continuous-Discrete Extended Kalman Filter (CD-EKF]) is utilized for constructing
the[EAQBl The[CD-EKH integrates continuous and discrete dynamics into the estimation
procedure, akin to the standard [EKE] but with the added capability of accommodating
discrete dynamics. Continuous dynamics are typically defined by differential equations,
while discrete dynamics are characterized by distinction equations. During the prediction
phase of the [CD-EKT] the continuous dynamics are discretized by forward integration in
time using numerical integration methods, effectively capturing the system’s continuous
progression between measurement updates. In the update phase, the merges
the discrete-time measurements to rectify and refine the state estimation. By seam-
lessly amalgamating continuous and discrete dynamics within the estimation framework,
the enhances accuracy and resilience in estimating the state variables of sys-
tems with mixed dynamics. Thus, the system process is delineated as a continuous-time

model, while discrete-time measurements are employed. The system process model can
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be reconsructed as:

Top(t) = f(z(t), 7(t), w(t)) + W(t) W(t) ~N(0,Q(1)). (3.3)

where the observer system states are denoted as o, = [0; v; w|, where W (t) signifies the
process noise assumed to be zero-mean Gaussian noise with covariance Q(t). The function
f() pertains to the nonlinear system process model, and ¢ denotes time continuously.
Consequently, all functions within the system process model are specified in continuous

time.

Hence, the system process model can be structured according to the UUV model in

Equation [2.33}
J(n)v
fle,7,w)=| (M)'[r +w — C(v)v — D(v)v — g(n)] (3.4)

The measurement states encompass the position 0, velocity v, and propulsion forces and

moments 7. Therefore, the discrete-time measurement model is formulated as:

zp=nh (wob,k) +Vi Vi~N(0,Ry) - (3.5)

In this context, the measurement states are represented as z = [n; v; 7], where V. signifies
the measurement noise assumed to be zero-mean Gaussian noise with covariance R;. The
function h(-) relates to the nonlinear measurement model that establishes the connection
between the system states and the measurements acquired from sensors, while k& denotes
time discretely. Therefore, all functions within the measurement model are specified in
discrete time. The initial 12 terms of the measurement model correspond identically to

the system process model, and the 7 can be computed based on the disturbance term w
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as:

T = M + C(v)v + D(v)v + g(n) — w. (3.6)

The accurate estimation of solutions heavily relies on designing the noise covariance
matrices for the system process Q(t) and measurements Ry. One method to create Q(t)
involves utilizing the Piecewise White Noise Model (PWNN]) model. This stochastic
model allows for representing varying noise characteristics across different time intervals
or regions. By integratingPWNN] the [EKTF] can more accurately capture the time-varying
dynamics of the system. This proves especially beneficial for systems with changing or

non-stationary noise traits. The formula for calculating the system process noise covari-

ance Q(t) based on PWNNis as follows:
Q(t)=E[TW()W(#)I'] =TT, (3.7)

where I' = [At?/2, At, At]T is the noise gain of the system, At is the sampling time
step, and o2 represents the variance of the white noise process. The covariance of the
measurement noise Ry is also dependent on the sampling time step At, which is defined

as:

Ry, = diag[At, At, At]. (3.8)

To adapt the real-world implementation, the matrix R can be further fine-tuned ac-
cording to the specific sensors employed. For instance, the accelerometer and gyroscope
are commonly employed for state measurement, but they often introduce unavoidable
noise into the measurements. Consequently, in such cases, it is crucial to carefully deter-
mine the measurement noise matrix R;. Numerous studies have been conducted in this
area. In 2021, an experimental approach was proposed to analyze the impact of different
weightings of matrix Q(¢) and Ry on state estimation derived from the accelerometer and
gyroscope [26]. In addition, a study also developed a dynamic noise model for adaptive

filtering of the gyroscope [27]. This work introduced the dynamic Allan variance, which
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utilized a novel truncation window based on entropy features to construct the noise model.
Additionally, an adaptive Kalman filter was designed to accommodate practical system
and computational environments. Furthermore, a disturbance observer with adaptation
laws has been developed based on the Generalized Super-Twisting Algorithm [28|. This
allows the observer to be auto-tuned, improving robustness to both external disturbances

and model uncertainties.

The matrix Q(¢) is used to model the uncertainty and variability in the system dynam-
ics. By adjusting the Q(t), it can control the level of confidence the observer has in the
predicted state estimates. Meanwhile, the matrix Ry captures the uncertainty associated
with the sensor measurements. Consequently, the tuning of Q(t) and Ry, determines the
weighting between the system model and the measurements. As the current work is being
conducted in simulation, where higher measurement accuracy is present, further adjusting

R, allows for greater reliance on measurements:

Ry, = diag[At? /2, At? /2, At?)2]. (3.9)

The system process model f(x,T,w) and the measurement model h(xop) can be
linearized by taking the partial derivatives of each to evaluate the state transition matrix
F and the measurement matrix H at each operating point with Jacobian matrix. Equation
provides the state transition matrix F that captures the connection between the
current state and the subsequent predicted state in a dynamic system. This matrix is
derived using continuous-time ¢ as a basis. The measurement matrix, denoted as H,
establishes the connection between sensor measurements and the predicted system state,

as expressed in Equation [3.11} with consideration for discrete-time k.

of

Zob | (1) (1) v (1)

F(t) (3.10)
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Ooh
aazob

H, = (3.11)

Zob,k|k—1

Denote the three elements in the second row of matrix F'(t) as Faq(t), Faa(t), and

F53(t). Therefore

L (OM . 0C(v)o OD(v)v Jg(n)
_ 1
_,,0C(v)v  0D(v)v (3.12)
— 1 .
Fy(t) = —M ™ (== + =),

Fos(t) = M.

The CD-EKF is a recursive estimation algorithm, where the main procedure can be
divided into prediction and update parts. Before starting the recursion, an initialization

step is performed based on the first measurement:

Fop (to) = E [Top (t0)], P (to) = Var [zes (t0)] - (3.13)

In the prediction part, it predicts the state estimate ®op gx—1 = Tob (tx) based on the
previous state estimate and the system dynamics. Then the error covariance matrix
Pyji—1 = P (1)) can be calculated based on the state transition matrix F'. The prediction

part is shown as follows:

ii‘ob(t) = f(job(t)7 T(t))
P(t)=F(t)P(t) + Pt)F(1)" + Q(t)

solve
(3.14)
Zob(tk-1) = Bob k—1jk—1 _ Eob k-1 = Tob (tr)

P(ty_1) = Py_1jk—1 Py =P (1y).

with

The prediction step consists of both continuous-time and discrete-time components.
The first equation, &op(t) = f(&eb(t), T(t)), represents the continuous-time dynamics

of the system. It describes how the estimated state @&, evolves over time based on
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the current estimated state and the total propulsion force and moments 7. The second
equation, P(t) = F(t)P(t)+ P(t)F(t)T + Q(t), represents the continuous-time evolution
of the error covariance matrix P. It captures how the uncertainty in the estimated state
evolves over time, taking into account the system’s dynamics represented by the matrix F'
and the process noise covariance matrix ). The discretization occurs implicitly between
the time steps t,_; and t;,. The initial conditions for the discrete-time updates are set
based on the estimated state and error covariance matrix at time ¢;_1, denoted by &1,
and Pj_y,_1, respectively. These initial values are then used to compute the updated
estimates @op jjx—1 and Py at time .

Therefore, in Equation [3.14] a numerical integration method should be applied for dis-
cretization of continuous-time system process model. The numerical integration method
used for discretization here is the Fourth-Order Runge-Kutta (REK4) method.

In the update part, it calculates the measurement residual y,, with current mea-
surements z(k) and measurement model. Then the Kalman Gain K, at time k can be
determined based in the predicted error covariance matrix Py ;—; and linearized measure-
ment matrix Hy. Finally, it updates the state estimate &op ), based on the predicted
state estimate @op f—1 and the Kalman Gain Ky, and recalculate the error covariance
matrix Py, based on Kalman Gain K, and the linearized measurement model H. The

following equations express the procedure in [EKEs update part

Yipe = (26 = 1 (Zob 1))

-1
K) = Py H| (Hy Py H| + Ry)
(3.15)

Zob klk = Lob k-1 T KrYpp

Py, = (I - K Hy) Py,

The equation in the [EKFE] update part is formulated in discrete time. The time step
at which the equation is evaluated is denoted by k. The notation k | k signifies that the

variable or state being considered is at time step k. On the other hand, k | k — 1 refers to
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the estimation or prediction at time step k based on the information available up to the
previous time step, which is k£ — 1.

Therefore, the state estimation &, = [7); 0; W] can be obtained.

3.2.2 Stability Analysis

The system process model Equation [3.4] can be extended as:

Top =f(x, T, W) + G,

J(n)v &y
=| M) r+w-Cwv—-Dwv—-gn)] | +G| & |- (3.16)
w £w

Y :HZIZOb + Vk

where Y is the output of the system, G is a unit matrix, &,,&, and &, represent the
process noises of system states [n; v; w| respectively.
Therefore, in the above observer design process as Equation the state estimate

x is formulated as:

iop = f (x,7,w)+ PH'(HPH" + R)"(Y — H&), (3.17)
where
5 of afT T T T -1
P=_—P+P—-—+GQG" —PH' (HPH" + R) HP. (3.18)
aazob awob

The stability of using the [EKF] for force estimation has been demonstrated in [29]).
Accordingly, the stability analysis of the proposed [EAOB|method can be conducted using
two theorems.

Theorem 1 The proposed EAOB for the system described in Equation [2.33 is locally

38



Chapter 3. Disturbance Observer-Based Model Predictive Control

stable, given that
1. onI < ||Q()| < aol,
2. CK3I < HRkH < 044I.

3. Then the following is true:
t+o
asI < / Fo3(1)! Fos(1)dT < a6l (3.19)
t

where Fa3(7) in Equation is bounded based on Assumption 1, and aq_g are

positive constants.

Theorem 2 Assume that the model of a linearized system is
1. uniformly completely observable,
2. uniformly completely controllable,
3.l <||Q(t)] < aol,
4. asl <||Ry| < aul,
5. [[F@ < a5, |GQ)|| < as, [[Hi| < az.
Then the following equation which derived from Equation[3.15 is true

&op = Fitop + PH (HPH” + R) "' HZ,
(3.20)
Zop = [F— PH' (HPH" + R)"'H| &,

is uniformly asymptotically stable based on [30], where & = & — T is the unforced optimal

filter.
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As per Theorem [2| it is necessary to linearize the nonlinear dynamic system. The

linearized system can be constructed with Equation and as follows:

dzob - F(t):lf'ob + Gﬁw, (3 21)

z=H Tob + Vk
To ensure the stability of the [EAOB] certain conditions must be met. Firstly, the
linearized system must be fully observable, which can be achieved by satisfying conditions
2 and 3 in Theorem [I} Secondly, the linearized system must be fully controllable, which

can be accomplished by meeting condition 1 in Theorem [I} Finally, stability can be

achieved by utilizing the outcomes of Theorem

3.2.3 MPC Implementation

MPClis a model based control strategy, which determines the control action by recursively

solving [OCPk and respects the system constraints during the control, as shown in Figure

B
C T Measurement
ontrol Inputs .
——————»| Dynamic System States
MPC
Optimizer
Control Predicted |
Sequence . States
Prediction Reference States,
Model System Constraints

Figure 3.1: Control loop of the MPC, which mainly includes an optimizer and a prediction
model.

In the [MP{ control loop, it receives reference states, system constraints and mea-
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surement states from the dynamic system, and outputs the control inputs back to the
system. The [MP(] calculates the predicted outputs based on the prediction model with a

sequence of control inputs over a certain horizon, and the optimizer solves the Quadratic

Programming problem as:
T
i [ @0, 0(0) ~ Yregly, dt + (D) ~ Yrerly,
subject to @ = f(x(t),u(t));
wlt) € U (3.22)
x(t) e X

x(0) =z (to) .

where u(t) and x(t) represent control inputs and system states at time ¢; 7" is the predic-
tion horizon which refers to the number of time steps to look forward; yres and yn,res
are the stage reference states in the prediction horizon and the terminal reference states
respectively; Q. and Qpn are the weighting matrics for stage states and terminal states;
f(-) and h(-) are the prediction model and system output function; and U and X are

constraints in control inputs and system states.

When designing a real-world system, it is important to consider the input constraints
based on the physical limits of the actuator being used. In this case, the control inputs
u are bounded, as |u1| < fraz, [U2] < frmaz, U3 < frnaz, [Ua] < Moz frnge and Myaq
represent the maximum allowed force and moment limits, respectively. The f,,.. and
M4 are determined based on the propeller thrust force datasheet in [22]. In this study,
the also takes system constraints into account. The vehicle’s linear velocity are
limited as |u| < Vmaz, |V] < Vmaz, and |w| < Uyee. Here, vp,q, represents the maximum
linear velocity. The v,q, is determined based on the system’s specification in [10], while
Umaz = 1.5m/s. To ensure that the constraints are taken into account during optimization

and further assure control feasibility, the input constraints are written into U, while the
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system constraints are written into X in the cost function in Equation [3.22

To tune the [MPC] there are several important steps to follow. First, the prediction
horizon T is selected, taking into account the trade-off between control performance and
computational burden. To find an optimal value that balances these factors, the horizon
is incrementally increased during simulations and evaluated for improved control perfor-
mance while maintaining real-time operation of the [MPCl Additionally, MPC allows for
the prioritization of multiple control objectives by assigning weighting factors in the ma-
trix Q. to each objective. In this particular work, the yaw angle v is given the highest
priority, followed by the position states x, y, and z. The terminal cost is associated with
the final state of the system at the end of the prediction horizon. The weighting matrix at
terminal states Qpn reflects the relative significance of achieving the desired steady-state
or target. A higher weight indicates a stronger emphasis on reaching the desired terminal
state. However, since the focus of this work is on the robustness of the controller, Qp is
set equal to the values in Q. to provide less aggressive control.

Once the [MPC has been fine-tuned to attain the desired control performance, the
proposed [EAOB| as described in Section [3.2] can be incorporated into the MPCl The
estimated states &, provided by the [EAQB] are divided into two components. The first
component consists of the estimated positions 9 and velocities ©, which are utilized by
the module to enhance the accuracy of the system states. Simultaneously, the sec-
ond component, the estimated disturbances a, is incorporated into the [MP(l's prediction
model as Equation [2.33] at each time step. According to Assumption 2, the disturbance
term throughout the prediction horizon T remains consistent with the estimated distur-
bance w at the current time step.

Therefore, the algorithm is implemented in a receding horizon as following

steps:

1. At the sampling time instant, utilize prediction equation and update equation
to estimate the disturbance 1 using the [EAQB] approach.
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2. Update the parameters within the disturbance term w in the prediction model of
the MPC] as represented by Equation [2.33] at the current time instant and within
the prediction horizon [0, T, by incorporating the estimated disturbance @ obtained

in the initial step.

3. The lIOCP| in the Equation |3.22] is solved to obtain the optimized control sequence

u*(s),s €10, T].

4. The first set of the control sequence u*(s), s € [0, At] is implemented in the dynamic

system, while the rest will be treated as initial condition in the next iteration.

5. At the next sampling instant, the [DCP]in the Equation [3.22] will be solved again

with the measurement states and new initial condition.

By integrating the [EAOB| with [MPC|, the parameters within the disturbance term w
in the [MP(Ts prediction model are continuously updated at each time step, as outlined
in step 2. This integration results in a nonlinear parameter-varying model. Consequently,
the [MPCl's optimizer incorporates the estimated disturbances, enabling it to generate
optimal control inputs that effectively reject disturbances at each iteration.

To realize the[MPC] the should be discretized from t, to ¢t and solved with multi-
ple shooting schemes. Therefore, it becomes a Sequential Quadratic Program (SQP)) which
is executed in a real-time iteration scheme [31]. In this research work, the implementations
are completed through ACADOS [32]. ACADOS is a versatile and efficient open-source
optimization framework designed specifically for real-time MPC applications. It follows a
two-stage approach, consisting of an offline stage and an online stage. In the offline stage,
ACADOS defines the system dynamics, cost function, and constraints, formulating the
problem as a Nonlinear Programming (NLP)). It compiles this representation into
a solver-ready format. In the online stage, ACADOS solves the [NLP|in real-time, taking
the current system state as input and iteratively optimizing the control inputs while satis-

fying the dynamics and constraints. ACADOS offers various advantageous functionalities,
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such as efficient numerical algorithms, real-time capabilities, and the flexibility to choose

solvers, constraints, and objective functions based on specific requirements.

DOBMPC Framework

MPC Disturbances w(ocean Measurement
Reference + e -~ wave, CUl‘l‘E[lt...) noises
trajectory ® — Optimizer Control l *
Na Vd 1 inputs u Control | +w
. > Allocation > > Plant
Prediction Eq. 18, 19
Model Eq. 22 —
A

\/

Extended Acti Measurement positions #
Estimated disturbances @ X xtended Active Measurement velocities v
Disturbance Observer |«
Eq. 25-38

Estimated positions and velocities # ¥

Figure 3.2: Block diagram of the proposed DOBMPC scheme with disturbance compen-
sation incorporated.

The overall block diagram of the proposed is depicted in Figure [3.2l The
[EAOB| module receives measurements of positions 7, velocities v, and propulsion forces
and moments 7. It then outputs the estimated positions 7}, velocities v, and disturbances
w. The MPC module utilizes the estimated positions 77 and velocities © as system states.
It generates control inputs u based on the error e between the reference trajectory (com-
prising positions 1, and velocities v4) and the system states. The estimated disturbances
w are directly written into the prediction model, as illustrated in the figure. The
resulting optimal control inputs w, which account for the disturbances, are then passed

through the control allocation process to drive the system plant.
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3.3 Results

The performance of the proposed is validated through simulation using the
[UUV] Simulator [33], an extension of the open-source robotics simulator Gazebo tailored
for underwater scenarios, enhancing realism in the simulation environment.

In practical applications, obtaining measurements of system states, including linear
and angular position along with linear and angular velocity, is essential. In underwater
settings where GPS signals are unavailable, alternative sensors come into play. Under-
water acoustic positioning systems like Ultra-Short Baseline (USBII) are favored for their
mobility, offering reliable linear position data for the [[UVl The aids in deter-
mining the [[UV]s angular position (pitch, roll, and yaw) for acquiring crucial attitude
details. Gyroscopes within the facilitate angular velocity estimation. Determining
linear velocity often involves using a for TUVk. However, a cost-effective alterna-
tive method estimates velocity based on thrust and a fixed thrust-velocity relationship
at steady state, albeit potentially with reduced accuracy, especially in the presence of
significant external disturbances.

The BlueROV2’s specifications in this study are outlined in a Unified Robot Descrip-
tion Format (URDE]) file, representing the robot model. This model in the [URDF] file
aligns with the dynamic model in Section [2.2] detailing parameters such as mass m, weight
W, buoyancy B, and inertia I,, I, and I, in Table for the rigid body parameters.
Table [3.2 specifies hydrodynamic terms, including added mass due to [JUV] movement
through fluid and linear damping from skin friction.

In the tests for rejecting disturbances, two tasks in motion control are addressed,
namely dynamic positioning and following desired paths. The performance of the proposed
is assessed against conventional and standard IMPCl controllers. Following
Fossen’s principles 11|, the disturbance component is characterized in terms of forces

according to Equation[2.33] To evaluate how well disturbances are countered, disturbances
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Table 3.1: BlueROV2 rigid-body parameters defined in URDF file.

Parameter Value

m 11.26 kg
w 112.8 N
B 1148 N
I, 0.3 kgm?
I, 0.63 kgm?
I, 0.58 kgm?

Table 3.2: BlueROV2 hydrodynamic parameters defined in URDF file.

Direction Parameter Value

Surge Xa 1.7182 kg

Sway Y, 0 kg

Heave Zi 5.468 kg

Roll K, 0 kgm?/rad
Pitch M, 1.2481 kgm?/rad
Yaw N; 0.4006 kgm?/rad
Surge Xu -11.7391 Ns/m
Sway Y, -20 Ns/m

Heave Zw -31.8678 Ns/m
Roll K, -25 Ns/rad
Pitch M, -44.9085 Ns/rad
Yaw N, -5 Ns/rad

are simulated as body wrenches, encompassing forces and moments across 4 degrees of
freedom. By utilizing the service ApplyBodyW rench, forces and moments acting
at the of the [JTUV] in the [RE are generated. Consequently, to compare outcomes,
the rotation matrix outlined in Equation [2.9]is necessary to transform the disturbances

w estimated in the [BRE] to the [RF!

Table [3.3] provides a breakdown of the parameters for the MPC| which are applicable
to both the proposed [DOBMPC] and the standard [MPC| used as a reference. The base-

line [MPC] employed for comparison adopts the identical cost function as the proposed
[DOBMPC outlined in Equation [3.22] With a prediction horizon of 60 and a sampling
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time of 0.05 seconds, the system looks ahead by 3 seconds. The average computational
time for solving the tasks stands at 7 milliseconds, ensuring real-time operation.
The parameters employed in this study are also detailed in Table [3.4] The imple-
mented controller leverages the system’s positional states i and velocity v, along
with the control inputs encompassing forces and moments 7. The control signals deter-
mined by the controller are subsequently distributed to each propeller through the

control allocation methodology delineated in Equation [2.28

Table 3.3: MPC parameters utilized in this work.

Controller parameters Value

Prediction horizon 60

Sample time (s) 0.05

Q. [300 300 150 10 10 150 10 10 10 10 10 10 15 15 15 0.5]
QN [300 300 150 10 10 150 10 10 10 10 10 10|

OCP time (ms) 7

Table 3.4: PID parameters utilized in this work.

Control gain  Surge Sway Heave Yaw

K, 5 5 5 7
K; 0.05 005 005 0.1
Ky 12 12 12 06
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3.3.1 Dynamic Positioning Results

In the context of dynamic positioning, the [JUV] faces two distinct forms of disturbances:
periodic wave influences and persistent current effects. These disturbances materialize
as forces and moments exerted on the [UUV] Concerning periodic disruptions, sinusoidal
waves with variable force magnitudes spanning from 10 to 16 N are exerted in the x;, v;,
and z; orientations, alongside sinusoidal waves with random moment magnitudes ranging
from 1 to 2 Nm applied along the z; axis.

The[JUV]is configured to maintain a fixed position at coordinates [0, 0, —20] within the
IRE with a yaw angle of 0 degrees, amidst external disruptions. Illustrated in Figure[3.3
are the inferred disturbances juxtaposed with the actual disturbances. The visualization
demonstrates a close alignment between the estimated and actual disturbances, with the

estimation lag falling below the sampling interval, affirming the viability of the proposed

[EACB!

——Observed disturbance
——Applied disturbance

Force X (N)

Force Y (N)

(Nm) |I=orce Z (N)

Moment Z

Time (s)

Figure 3.3: Disturbances estimation of periodic waves with random force and moment
amplitudes.

By integrating the estimated disturbances into the predictive model of the [MPC],

the controller’s ability to reject disturbances is significantly improved. This enhanced
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performance surpasses both the and the standard approaches. The results are
illustrated in Figure Additionally, a two-dimensional representation showcasing the
dynamic positioning outcomes of the three controllers is depicted in Figure [3.5] with the
trajectory in blue highlighting the improved stability of the in maintaining the

reference position.
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Figure 3.4: Tracking errors of the proposed DOBMPC, baseline MPC and PID controllers
under periodic disturbances.
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Figure 3.5: Trajectories of dynamic positioning results of the proposed DOBMPC, baseline
MPC and PID controllers under periodic disturbances.
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Figure [3.6| presents the control inputs associated with the proposed IDOBMPC| when

subjected to periodic wave disturbances.

15 T T

ul
u2
u3
u4

AN \'\\\
AWMV

o [9)]
T

Control Inputs (N) {(Nm})

'
(5]

Time (s)

Figure 3.6: Control inputs of the proposed DOBMPC in surge, sway, heave and yaw
direction for dynamic positioning under periodic wave effect.

To induce continual disturbances, a force of 10 N is exerted along the x;, y;, and z; axes
at time t = 10s, accompanied by a torque of 5 Nm applied around the z; axis simultane-
ously. In Figure 3.7, a minor overshoot is noticeable when the disturbances shift abruptly
from 0 N to 10 N. This overshoot arises due to substantial variations in estimated states
between consecutive time steps. The[EAOBI mechanism corrects the estimated states with
high accuracy within less than 0.5 seconds through iterative adjustments. Figure [3.§]illus-
trates the error tracking of the proposed DOBMPC] standard MPC|, and controllers
under constant currents, showcasing distinct levels of disturbance rejection ability. The
controller adeptly estimates disturbances and compensates for them, leading
to error convergence towards zero along each axis. The 2D plot in Figure further
elucidates the dynamic positioning performance of these controllers, revealing a marked
enhancement in disturbance rejection capability with the implementation of the proposed
DOBMPC

The corresponding control inputs of the proposed DOBMPC for dynamic positioning
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Figure 3.7: Disturbances estimation of constant currents in x, y, z directions.

under constant current effect is illustrated in Figure [3.10]

Furthermore, this study delves into evaluating the ability to reject disturbances when
combining periodic wave and constant current influences in dynamic positioning scenarios.
Sinusoidal waves with varying force amplitudes spanning from 3 to 6 N are administered
in the x;, y;, and z; directions, alongside sinusoidal waves with random moment amplitudes
ranging from 1 to 2 Nm around the z; axis. At time ¢t = 4s, the constant current impact
is superimposed with forces of 10 N in the z;, y;, and z; directions, along with a torque
of 3 Nm around the z; axis. Figure [3.11] illustrates the comparison between the applied
and estimated disturbances, showcasing a high degree of alignment. The error in tracking

and the control inputs are depicted in Figure [3.12) and Figure [3.13] respectively.

3.3.2 Trajectory Tracking Results

To evaluate trajectory tracking performance, two distinct movement scenarios are utilized.

Initially, a circular trajectory with a radius of 2 meters is employed, with the yaw angle of
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Figure 3.8: Tracking errors of the proposed DOBMPC, baseline MPC, and PID controllers
under constant currents.

the [TUV] defined relative to the surge direction. To gauge the system’s resilience, a 10 N
force is exerted in the z;, y;, and z; directions, accompanied by a 5 Nm torque around the
z; axis. Figure presents a comparison between the estimated disturbances and the
actual disturbances. The periodic disturbances in the X and Y directions during a [UUVTs
circular trajectory can be classified as unmodeled dynamics because the observer’s nominal
model may not fully capture the nonlinear hydrodynamic effects, such as added mass and
Coriolis forces, which vary periodically with the vehicle’s motion. These unmodeled effects
are misinterpreted as external disturbances, leading to the observed periodic fluctuations.
The observed differences between the estimated and actual disturbances can be attributed
to unmodeled components within the disturbance term originating from the nonlinear

damping forces encountered by the [JUV] during circular trajectory motion.

The tracking errors of the [PID| standard [MPC], and the proposed [DOBMP( are
displayed in Figure showcasing a notable decrease in tracking errors with the imple-
mentation of the proposed DOBMPCl Furthermore, Figures and offer a visual

representation of the trajectory tracking outcomes. The control inputs corresponding to

the proposed [DOBMPC] are depicted in Figure [3.18]
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Figure 3.9: Trajectories of dynamic positioning results of the proposed DOBMPC, baseline
MPC, and PID controllers under constant currents.
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Figure 3.16: Circular trajectory tracking results of the proposed DOBMPC, baseline
MPC, and PID controllers in x, y, z, and yaw directions.
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Figure 3.10: Control inputs of the proposed DOBMPC in surge, sway, heave and yaw
direction for dynamic positioning under constant currents.
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Figure 3.17: Three-dimensional circular trajectory tracking results of the proposed
DOBMPC, baseline MPC, and PID controllers.
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Figure 3.11: Disturbances estimation of superposition of periodic wave and constant
current effect in x, y, z directions.
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Figure 3.18: Control inputs of the proposed DOBMPC in surge, sway, heave, and yaw
direction for tracking circular trajectory under constant currents.

To assess the efficacy of the proposed control methodology in tracking a highly in-
tricate nonlinear path, a lemniscate trajectory with a 2-meter amplitude is employed.

The yaw angle remains constant at 0 degrees throughout the motion, with periodic wave
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Figure 3.12: Tracking errors of the proposed DOBMPC, baseline MPC, and PID con-
trollers under superposition of periodic wave and constant current effect.

effects integrated into the evaluation phase. These waves encompass random force am-
plitudes ranging from 10 to 16 N and random moment amplitudes ranging from 2 to 4
Nm. Figure [3.19 presents a comparison between the generated disturbances and the esti-
mated disturbances. The outcomes reveal that the disturbance forces in the z;, y;, and z;
directions can be accurately estimated when following a lemniscate trajectory. However,
challenges arise in accurately estimating the disturbance moment around z; during the
tracking of this trajectory, leading to occasional deviations or noise around the actual dis-
turbance value. The intricate nature of unmodeled nonlinear hydrodynamics, particularly
pronounced when tracking a nonlinear trajectory like the lemniscate, may contribute to
this issue.

In Figure [3.20] the system states during the tracking of a lemniscate trajectory under
periodic waves are compared across the [PID] [MPCl and the proposed DOBMPC. While
the states of the and [MP{ exhibit irregularities due to time-varying significant dis-
turbances, the states of the remain notably smoother. The tracking error, as
depicted in Figure shows a marked reduction with the proposed [DOBMPClin con-
trast to the and [MPC methods. Lastly, Figure [3.22] offers a three-dimensional visual
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Figure 3.13: Control inputs of the proposed DOBMPC in surge, sway, heave and yaw
direction for dynamic positioning under superposition of periodic wave and constant cur-
rent effect.

representation of the trajectory tracking outcomes. The control inputs corresponding to
the proposed [DOBMPCI for tracking the lemniscate trajectory are illustrated in Figure

0.20
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Figure 3.20: Lemniscate trajectory tracking results of the proposed DOBMPC, baseline
MPC, and PID controllers in x, y, z, and yaw directions.
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Figure 3.14: Disturbances estimation of constant currents during circular trajectory track-
ing.
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Figure 3.21: Tracking errors of the proposed DOBMPC, baseline MPC, and PID con-

trollers under constant currents during lemniscate trajectory tracking.
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Figure 3.15: Tracking errors of the proposed DOBMPC, baseline MPC, and PID con-
trollers under constant currents during circular trajectory tracking.

Reference
DOBMPC
e MPC
N PID
e ——
o =

— -19.8
= -20

15

0 -0.5 -2

y [m]

Figure 3.22: Three-dimensional lemniscate trajectory tracking results of the proposed
DOBMPC, baseline MPC, and PID controllers.
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Figure 3.19: Disturbances estimation of periodic waves during lemniscate trajectory track-
ing.
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Figure 3.23: Control inputs of the proposed DOBMPC in surge, sway, heave, and yaw
direction for tracking lemniscate trajectory under periodic waves.
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3.3.3 Results Analysis

The figures above illustrate that the proposed observer can effectively estimate distur-
bances arising from both periodic wave effects and constant current effects, showcasing
an aptitude for capturing unmodeled dynamics. Nonetheless, it is evident that at high
frequencies of periodic wave effects, the observer’s accuracy in estimating disturbances
may diminish. This limitation arises due to the assumption that the disturbance term
represents a slowly time-varying signal.

In Table 3.5 an assessment of the dynamic positioning and trajectory tracking per-
formance of the [TUV] is presented based on the Root Mean Square Error (RMSE]). The
[RMSE] metric is commonly employed in control systems literature as a performance mea-
sure and is widely recognized for its utility in comparing and interpreting results across
various controllers. By offering a quantitative measure, facilitates the evaluation
and ranking of different control strategies. Moreover, RMSE]is less influenced by outliers
compared to metrics like Mean Absolute Error (MAE]). By considering squared errors,
[RMSE] accentuates the impact of larger errors, making it suitable for assessing the per-
formance of control systems where extreme errors may occur.

The minimum [RMSE] value in each row is emphasized in the table. The outcomes
distinctly indicate that the incorporation of the proposed substantially bolsters

the system’s capacity to mitigate disturbances.

3.4 Conclusion

In this chapter, a reliable DOBMPCI| has been designed for the dynamic positioning and
trajectory tracking tasks of an [UUV]in the face of unexpected disturbances. The results

from simulations demonstrate the effectiveness of the proposed control method in rejecting
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Table 3.5: RMSE of the proposed DOBMPC, baseline MPC, and PID controllers in

dynamic positioning and trajectory tracking.

Motion Disturbance Direction PID (m) MPC (m) DOBMPC (m)

X 0.1374 0.1689 0.0537

Dynamic Periodic Y 0.1095 0.1934 0.0605
Positioning wave effects Z 0.0871 0.0896 0.0350
Yaw 0.0536 0.1108 0.0282

X 0.7893 0.3099 0.0521

Dynamic Constant Y 0.7544 0.2882 0.0482
Positioning current effects 7 0.2032 0.1508 0.0469
Yaw 0.7858 0.4547 0.0491

Superposition X 1.4991 0.5666 0.0932

Dynamic of wave Y 1.3921 0.5151 0.0501
Positioning and currents 7 0.2179 0.1603 0.0486
Yaw 0.5141 0.3039 0.1100

Circular X 2.3626 0.8012 0.2924
Trajectory  Constant Y 1.6433 0.5521 0.2629
Tracking current effects 7 0.1763 0.1510 0.0233
Yaw 0.4355 0.6325 0.2582

Lemniscate X 0.9854 0.3764 0.2306
Trajectory  Constant Y 0.7732 0.3844 0.1504
Tracking current effects 7 0.0877 0.1133 0.0510
Yaw 0.2059 0.2413 0.1457

disturbances. The proposed control method brings several key advantages. It firstly shows
the capability to instantly estimate varying disturbances, ensuring swift compensation.
Secondly, it proves tolerance to measurement noises by incorporating algorithm,
guaranteeing consistent performance. Furthermore, the [MPCl structure ensures that sys-
tem constraints are accounted for when solving the iteratively, thus keeping the
[UUV] system within set boundaries. The estimated disturbances are directly integrated
into the MP(T's predictive model at each step, facilitating the computation of an optimal

control strategy.

However, in this section, the hydrodynamic damping forces D(v) were considered
into the [MP{ prediction model using ground truth data from Gazebo. As a result, in

the preceding results, these forces were not classified as part of the disturbance term w.
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However, in practical scenarios, measuring damping coefficients directly is challenging, and
they can exert significant and rapidly changing forces on the [JUV] due to their positive
correlation with velocities. Including the entire damping forces as a superposition in the
disturbance term could potentially impact the optimization process negatively. Therefore,
the online system identification algorithm is considered in this control framework in the

following chapter to address this challenge.
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Chapter 4

Model Predictive Control with Online

System Identification

This chapter expands upon Chapter [3) where an [EAODB| was employed to estimate total
disturbances, including unmodeled dynamics and environmental disturbances. Instead of
treating all disturbance sources as a unified variable in each through the superposi-
tion principle, the focus here is on crafting an online system identification module capable
of identifying uncertain hydrodynamic parameters using the estimated disturbances from
the [EAOBlI The chapter encompasses a review of relevant [AMP( literature featuring
data-augmented models, the methodology behind the proposed identification algorithm
and [AMPC] implementation, results of estimation accuracy and control performance, and

conclusions. This chapter has been previously accepted as part of author’s work in the [34].

4.1 Literature Review

The literature review in Section already delves into other control methods commonly
used for UUVs, including [PID] SMC] [DOBC] and other improved [MPC| methods. In

this chapter’s literature review, the focus shifts primarily towards control methods with
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data-driven/ data-augmented model.

Neural Network (NNJ)-based control approaches, classified as adaptive control meth-
ods, effectively manage parametric uncertainties by learning and adapting to evolving
environments and system dynamics. Unlike conventional techniques, [NNlbased control
leverages [NNk to approximate system dynamics, adjusting network parameters based on
data and feedback. This adaptability empowers control systems to navigate variations,
uncertainties, and disturbances, bolstering robustness and flexibility. [NNlbased control
excels in handling complex and nonlinear systems by capturing intricate patterns and
relationships, ensuring precise control in highly uncertain scenarios. For instance, a hy-
brid coordination method utilizing reinforcement learning to online learn system behavior
was implemented in an [ATV] [35]. A robust neural network approximation-based output-
feedback tracking controller has also been devised to effectively counter uncertainties [36].
Moreover, radial basis function neural networks have been integrated to compensate for
unknown dynamics and disturbances in [MPC|, enhancing path following performance in
surface ships [37]. Nonetheless, proving the system stability of NNFbased control methods
is often theoretically challenging, necessitating validation primarily through experimental
evidence. Additionally, the efficacy of neural network adaptive controllers heavily relies
on the number of neural network nodes, leading to a significant computational burden

that hampers practical implementation in engineering applications.

Conversely, the fusion of Gaussian Process (GPl)s with [MPC| has emerged as a potent
strategy to tackle the aforementioned challenges [38]. demand less training data
and ensure system security. In 2021, were applied to model unmanned quadrotor
systems and integrated into the MPCl framework [8]. Experimental results showcase GP’s
ability to discern the complex aerodynamic effects of quadrotors, achieving efficient and
precise control. In [39|, a sample-efficient probabilistic was proposed to enhance
control robustness against noise and disturbances, validated through a USV experiment.

These endeavors underscore that [GP, as a potent nonparametric plant in [MPC] inherently
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considers model uncertainties. Nonetheless, the applicability and convergence speed of
these controllers are constrained by the interdependency of vehicle dynamic and kinematic

models.

The methods aforementioned primarily belong to offline system identification, neces-
sitating initial collection of training data. Various online system identification techniques
have also been explored. Online system identification permits systems to adapt promptly
to environment or system dynamics changes, offering more current parameter estimates.
This adaptability enables swift responses to operational variations or disturbances, mak-
ing it apt for applications requiring rapid adjustments. Online system identification can
potentially be more cost-effective in scenarios mandating continuous monitoring and adap-
tation, obviating the need for recurrent large dataset collection for parameter estimation.
In 40|, a state variable filter and recursive least square estimator were developed to es-
timate unknown hydrodynamic parameters for an [AUV], showcasing superior prediction
accuracy, computational efficiency, and training time compared to conventional offline
identification methods. An online system identification problem was also proposed in [41],
estimating unknown parameters in nonlinear system dynamics without persistent exci-
tation based on state-derivative estimation, demonstrating convergence to steady-state
parameter estimates. Furthermore, an incremental support vector regression method was
introduced to sequentially learn the [UUVIs model from data streams, highlighting its

adaptability to dynamic changes in the robot’s behavior [42].

However, these methods typically regard dynamics as static constructs. Hence, any
alterations in the mechanical structure of an [UUV] or the physical parameters of its sur-
rounding fluid could significantly impact the integrity of its mathematical model without
adaptive measures. Inspired by the aforementioned studies, an online system identification
algorithm grounded in Recursive Least Square (RLS) is proposed, further incorporating
Variable Forgetting Factor (VEE]) to adapt to shifts in the [TUVI's dynamics.
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4.2 Methodology

In the system identification section of this project, the impact of Coriolis and centripetal
forces resulting from the added mass C4 is deemed insignificant. This is because in
numerous real-world scenarios like underwater examinations or low-speed data gathering
operations, the velocities of open-frame [JUVk typically do not exceed a few meters per

second. Therefore, the dynamics model can be expanded in each [DOFH as:

X = (m— Xy)u—mrv+mquw + (= Xy — Xy |u|)u

(4.1)
+ (W — B)sin — Xy,
Y = (m — Ya)i + mru — mpw + (=Y, — goulel)v
(4.2)
— (W — B) cosfsin ¢ — Yoy,
Z = (m - Zw>w — mqu + mpv + (_Zw - Zw|w||w|)w
(4.3)
— (W — B) cosfcos ¢ — Zeny,
K= (I, = Kp)p+ (L, — I)qr + (—Kp — Kppp))p
(4.4)
+ 24W cos Osin ¢ — Kepy,
M = (I, — My)q + (I, — L)pr + (=M, — Myqlql)q
(4.5)
+ 2,Wsin 0 — Moy,
N = (]z - NT)T + (Iy - Iw)pq + (_Nr - Nr|r||r|)T - Nenv- (46)

While it is possible to calculate the hydrodynamic added mass coefficients of torpedo-
shaped [JUVk by assuming the vehicle as an ellipsoid, such as the study in [43], it is

challenging to directly calculate the added mass coefficients of open-frame [TUVk like
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BlueROV2. Thus, in this work the added mass M, is estimated by the online system
identification. In the meantime, the hydrodynamic damping coefficients are commonly
identified through experiment data, which are difficult to be calculated directly. Thus,
damping forces D(v) with both linear and nonlinear damping coefficients are also treated

as variable parameters to be estimated.

4.2.1 Problem Formulation

The observer’s disturbance estimation w includes the superposition of the environmental
disturbance T,y and the unmodeled dynamics A7. Meanwhile, the unmodeled dynam-
ics encompass the added mass M4 (Equation and linear and nonlinear damping
coefficients (Equation as detailed in Section . Hence, w can be expressed as:

W = Topy + AT
(4.7)

= M0 + Dpv + Dyp|v|v + Teny-

In this section, the surge dynamics in Equation is discussed as an example, while
the rest dynamics in Equation [£.2] [4.3] and can also be implemented in a similar

manner. Therefore, Equation [4.7] can be reconstructed for the surge dynamics as:

X
. Xy
X = {u u |uju 1 ] (4.8)
Xuful
Xext
where four unknown parameters can be denoted as
-
©=| Xi Xu Xup Xew | - (4.9)
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The identification problem involves determining the values of parameters using in-
put/output discrete data while meeting specific goodness-of-fit constraints between pre-
dicted data and measurements. Therefore, the ® can be identified by solving the cost

function:

e

=N
1
argmin  J(@)=,| — [y — @Tq)k]z
QT:[Xﬂ,Xuyxext] N k=1 (410)
subject to Xy, Xu, Xy, Xext € R

where N is the total number of samples available, y; is the observed output (which is

equal to X,, in surge dynamics), and

4.2.2 Identification Algorithm

To find the optimal parameters for a cost function, a common approach is to use the Least
Square (LS) method. identifies parameters by minimizing the sum of the squared er-
rors between predicted and observed values. In contrast to[LS, which performs regression
based on offline collected data, the algorithm operates online. processes data
sequentially and updates parameter estimates as new data becomes available. The dis-
tinguishing feature of [RLS-VEE]is the incorporation of a forgetting factor, which enables
a trade-off between tracking time-varying parameters and robustness to noise. The for-
getting factor determines the weight assigned to past data points relative to recent data
points when updating parameter estimates. A forgetting factor close to 1 places more
emphasis on past rewards, resulting in low misadjustment but reduced adaptation ability.
Conversely, a forgetting factor closer to 0 indicates that the agent prioritizes recent re-
wards, leading to high adaptation ability but potential susceptibility to outlier data and

instability.
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In the standard [RLS-FF| algorithm, the forgetting factor is typically set as a constant
value. However, in this research, the forgetting factor is considered as a variable that can
be dynamically adjusted based on the outcome of the F-test. The F-test is a statistical
test used to compare the variances of two samples. In this context, it is employed to
compare the prediction error variance of two windows of past estimation results: a
long window and a short window. The purpose of this comparison is to determine whether

the variance has increased. The F-test statistic, denoted as F},, is calculated as follows:

_ % Z?:k—n (ei - /'Ln)z
= d 2
é Zi:k—d (ei — pa)

F, = (4.12)

&.qw | :qm

where n represents the number of samples in the short window, d represents the number
of samples in the long window, o2 is the prediction error variance with n samples, o2 is
the prediction error variance with d samples, and d > n > 1. The prediction error ey
can be computed as the difference between the observed output y, and the parameter
estimate at time k — 1:

AT

By comparing the variance of the prediction errors in the short and long windows, the
F-test provides insights into whether the system dynamics have changed significantly. If
the F-test statistic exceeds a predefined threshold +, it indicates that the variance has
increased, suggesting a change in the system dynamics. In such cases, the forgetting factor
is adjusted to respond to these changes and maintain accurate estimation:

A1+ AN if Fo <y

A = (4.14)
A1 — AN otherwise

where A\ represents the adjustment value for the forgetting factor.
This approach of using the F-test to adapt the forgetting factor in [RLS-VETE] enhances

the algorithm’s ability to track time-varying system dynamics, resulting in improved es-
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timation performance.
In the initialization stage of the [RLS-VFE| algorithm, the parameter estimation @
is initialized to zero. Meanwhile, the initial value of the error covariance matrix P is

determined based on the forgetting factor A:

ék:() — O
) (4.15)
Py_o= -1
k=0 A

where I is the identity matrix.

The [RLS-VFE] algorithm operates similarly to the Kalman filters family. At time &, it
calculates the Kalman gain K, using the forgetting factor A, the error covariance matrix
P from time k£ — 1, and the regression factor ®,. Subsequently, the parameter estimation
@klk is updated based on the Kalman gain and the error, and the error covariance matrix

Py, is also updated accordingly. The recursive process can be formulated as:

Py 1Py,
K, = T
At @y Prj—1 Py
é)k|k = C:')k:|k—1 + Kyey, (4.16)

1

P pu—
Kk =Y

(Prjp—1 — K @[ Pryp—1) -

4.2.3 MPC Implementation

Here the [MPC| optimization problem in Equation [3.22]is reformulated as:

Tn-1

minJ = 7 [exl, + llurl,| +llerylq,
k::TO
(4.17)
st. ep = h(xp, Up) — Yrey,),

u, €U, z,€X, zp, € Xy
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where Tj represents the initial time step, and Tl denotes the final time step within a
prediction horizon. The matrices Q., R., and @ denote the weighting matrices used in
optimization process. Based on multiple shooting method, the optimization problem at

time ¢ = k becomes:

k+N-1
min Jk = Z l(:l:l,uz) +lf (wk+N,uk+N)
o i=k (4.18)

S.t. u; € U, xT; € X, Ty S XN

where [(-) denotes the positive definite function that related to the stage cost, and /()

is the positive definite function that related to the terminal cost.

The comprehensive adaptive MPC framework is outlined in Algorithm [I]

Algorithm 1 Adaptive MPC with online system identification

1: Initialization:

2 Initialize EAOB, RLS-VFF based on Equation [3.13]

3: while t>0 do

4: Measure z = [n; v; 7]

5: Estimate & = [f); &; @] with EAOB by Equation [3.14]
6 Calculate F}, by Equation

7 if F >~ then

8 Update forgetting factor A\ = A1 — A\

9

else
10: Update forgetting factor Ay = A\p_1 + AX
11: Estimate © = (X3 X0 Xy Xext)T with RLS-VFF by Equation
12: Update MPC control law: 7 = K(Au) = Mgp? + C(v)v + g(n) — o'
13: Solve the OCP to obtain the optimized control sequence u*(s) by Equation
417
14: Implement the first element ug in the optimized control sequence to the UUV

15: end while

Figure [4.1] illustrates the control framework of the [AMPC| with online system iden-
tification proposed in this work, with the pink box highlights the adaptive mechanism

involved in steps 5-11 in Algorithm [T}
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Figure 4.1: Block diagram of the proposed adaptive MPC scheme for the UUV, where
the blue box illustrates baseline MPC and control allocation, the yellow box shows the
UUV platform, and the pink module indicates the adaptive module with an observer and
identification algorithm.

4.2.4 Stability Analysis

The stability analysis of the proposed [AMPC] has been obtained as a part of Author’s
work in the [44].

The assurance of MPC stability relies on the terminal cost and constraints. Hence,

the subsequent assumption is made:

Assumption 3 For allx € Xy, the terminal cost l;(-) is a continuous Lyapunov function
such that:

Lz, uw)) = lf(z,u) < —l(z,u). (4.19)
Therefore, the lemma can be published as:

Lemma 1 With the optimization problem defined in Equation [{.17, the [MPQ controller

18 asymptotically stable if the following conditions hold:
1) U, X, Xy # 0.

2) Only the u(k) is inputted to the optimization process.
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3) N is sufficiently large and global optimal can be acquired at each time k.
4) Jy=04fx,u=0
5) The prediction model is unbiased and has no measurement noises

6) Assumption[3 holds

Proof 1 Define Lyapunov function as Vi, = min Jy, thus:

k+N—-1

‘/k = Z Z(CL'Z',’U,O +lf (mk+N,uk+N). (420)
i=k

Therefore, Vi, is positive definite. Similarly,

k+N

Vi = Z U(xi, ;) + U (Tr14n8, Wkt14N)
i=k+1
k+N-—1

— Z U(xi, ;) + U (TN, Wkg ) (4.21)
i=k

+ 1 (Thg14n, Upr14n) — L (2p, uk)

— I (Tpgn, Uy N) + U (Tpgn, Upsn) -

Using Condition 4 in Lemma[1] and Equation [{.20 yields:

Virr = Vi — L@, wp) + Iy (Tpy148, Urp14n)
(4.22)

— U (Tpyn, Uiy n) + U (Tpgn, U n) -

Using the facts that —l (g1, u,) < 0 and lp (Tpr14n, Wer1+n) — U (Tppn, Upen) +
[ (Xrin, upsn) < 0, the difference equation of Vi is therefore semi-negative definite. The

proof is hence concluded.
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4.3 Results

To perform online system identification, the [[UVl's motion in each must be cap-
tured for training and regression with the RLS-VFF] Therefore, a reference trajectory is
specified for training purposes and provided to the [MPCl before executing other trajectory
tracking tasks. The entire training process spans 40 seconds, with the following break-
down: 1) Surge dynamics training: begins at 0 seconds and concludes at 10 seconds; 2)
Sway dynamics training: commences at 10 seconds and finishes at 20 seconds; 3) Heave
dynamics training: initiates at 20 seconds and terminates at 30 seconds; 4) Yaw dynamics
training: starts at 30 seconds and concludes at 40 seconds.

In this study, the number of samples in the short and long windows are set as n = 10
and d = 50. A smaller n makes the F-test more sensitive to system changes, resulting in
a fast adjusting forgetting factor. Additionally, the threshold value v is set to 0.8. The
estimated parameters in © obtained using the [RLS-VFF] algorithm are compared with
those obtained using the standard [RLS-FF| algorithm with a forgetting factor of 0.98.
Since the work is conducted in Gazebo, the parameters defined in the Gazebo’s [URDE]
file are used as a benchmark for comparison with the estimation results.

Figure [4.2] presents the system identification results in the absence of additional envi-
ronmental disturbances. In this scenario, the system can be considered as slowly changing.
Consequently, the F-test value remains below the threshold + for most of the time, causing
the variable forgetting factor to approach 1. As a result, the estimation results obtained
using the [RLS-VFT], represented by the blue line, exhibit a slower convergence rate but
higher stability, resulting in a smoother line. The estimation results exhibit greater fluc-
tuations in the Z-axis may caused by the influence of gravity and buoyancy.

On the other hand, Figure demonstrates the system identification results with the
introduction of additional environmental disturbances of 5N in the x;, y;, and z; directions

in the IREl Since the environmental disturbances term 7, is defined in the [BRElin the
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Figure 4.2: Online system identification results of added mass, linear damping coefficients,
nonlinear damping coefficients, and environmental disturbances using the RLS-FF]and the
RLS-VFE during the training process without applied environmental disturbances.
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Figure 4.3: Online system identification results of added mass, linear damping coeflicients,
nonlinear damping coefficients, and environmental disturbances using the RLS-FF]and the
RLS-VFE during the training process with applied environmental disturbances.

[UUV] dynamics model, it has been transformed to the [RE] using a rotation matrix for a
clearer presentation of the results. After 30 seconds, the orientation of the [UUV] begins to
change to train the yaw dynamics. Consequently, the environmental disturbances acting
on the [BRF also start to change, leading to a faster changing system. In this situation,
the standard [RLS-FT] struggles to adapt to these changes quickly and stably, resulting in
significant chattering in the red line. In contrast, the proposed [RLS-VEFF] still manages

to converge to the defined parameters swiftly.

The performance of the proposed [AMPC] algorithm is evaluated in comparison to a
standard [MPC] controller and a [PID] controller. Both the [AMPC] and the standard [MPC)

employ the same control parameters, as detailed in Table [3.3] Meanwhile, the [PID] con-
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Figure 4.4: Control results of lemniscate trajectory tracking using the proposed adaptive
MPC, standard MPC, and PID controllers.

troller’s control gains are specified in Table A lemniscate trajectory with amplitude
of 2 meters is employed as trajectory tracking control problem for these controllers. Fur-
thermore, the additional environmental disturbances of 10N are also applied in the x;, y;,

and z; directions in the [RF]

Figure [4.4] presents the control outcomes achieved by the [AMPC] standard [MPC|
and controllers in tracking the lemniscate trajectory. The subplots indicate the
three-dimensional trajectory tracking results, control inputs, tracking errors, and track-
ing states, respectively. These results demonstrate the substantial improvement in control
performance achieved by employing the proposed adaptive algorithm, even when
faced with a highly nonlinear tracking problem and the presence of environmental distur-

bances.
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4.4 Conclusion

In this study, an effective adaptive control method is proposed by integrating a fast sys-
tem identification module with [MP( for [TUVK’ motion control in complex underwater
environments. Unlike conventional offline system identification, the proposed approach
utilizes RLS-VETF! for online real-time adaptation of the system model when new measure-
ment data is available. This incremental update of model parameters enables continuous
learning and tracking of system dynamics. Additionally, RLS-VFF offers computational
efficiency by avoiding the need to recompute the regression from scratch for each new
data point. By incorporating a variable forgetting factor, the algorithm determines the
weight between recent and past data based on the F-test. The F-test assesses if the
system has undergone significant changes, and if so, the algorithm gradually reduces the
influence of older data to enable rapid and stable adaptation. By improving the accuracy
of the prediction model in [MPCl and compensating for environmental disturbances, the
proposed method achieves a reliable controller with the capability of adapting to unknown

environments and delivering superior control performance.
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Conclusions and Future Work

This thesis explores the application of two improved [MPC strategies to enable an [TUV]
to navigate autonomously within intricate marine settings surrounding underwater struc-
tures. These controllers are engineered to adapt to unforeseen environmental perturba-

tions and changing system dynamics.

Chapter [2] delves into the [JUV] platform utilized, equipped with a variety of sen-
sors that lay the groundwork for future autonomous navigation. Additionally, the [TUV]

dynamic model is established based on the Fossen model [11].

In Chapter [3] the initial proposed improved is introduced. Initially, a[DOBMPC|
is developed to integrate unmodeled dynamics into the disturbance model, alongside envi-
ronmental disturbances, within the MPCTs predictive framework. Various external distur-
bances are simulated for evaluation, such as constant currents, periodic waves, and their
superposition. Diverse control tasks, including dynamic positioning, circular trajectory
tracking, and lemniscate tracking, are employed for assessment. Results indicate that
compared to and baseline approaches, the proposed exhibits the
lowest in tracking. While the simulation demonstrates the DOBMP(s efficacy in
mitigating disturbances, it’s noted that excessively large and rapidly changing unidenti-

fied hydrodynamic damping forces, if directly integrated as part of the total disturbance,
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may impede the [MPCl optimizer’s performance.

Subsequently, an[AMPClincorporating an online system identification algorithm, based
on the [DOBMPC] is presented in Chapter [l This algorithm utilizes estimated total
disturbances from the Extended Augmented Observer-based approach as input to itera-
tively estimate hydrodynamic coefficients, encompassing hydrodynamic added mass, lin-
ear damping coefficients, and nonlinear damping coefficients. To ensure identification ac-
curacy, the algorithm employs an F-test to compare prediction error variances and adjust
the forgetting factor as necessary. Comparative analysis demonstrates that, in contrast
to the baseline [RLS-FF] method, the proposed identification algorithm converges more

swiftly and robustly towards the true values, thereby enhancing the control performance

of the AMPCL

The future direction of this research focuses on developing a deep learning-based Tube
Model Predictive Control (TMPC]) framework to enhance the robustness and performance
of [JUVk in uncertain underwater environments. Learning-based control involves con-
structing data-driven models of the system dynamics for planning and trajectory opti-
mization; however, accurate uncertainty quantification remains a critical challenge due to
the presence of external disturbances, model inaccuracies, and the inherent complexity
of the system. Traditional uncertainty propagation methods often rely on restrictive as-
sumptions, which can limit controller performance. To overcome this, we propose using
deep learning techniques to directly learn uncertainty from data through quantile regres-
sion, enabling a flexible representation of trajectory distributions. This approach forms
a tube around the nominal trajectory that captures the variability of future system be-
havior. The resulting tube will be integrated into the framework, forming a [TMPC]
that ensures constraint satisfaction with high probability and improves closed-loop per-
formance. The implementation will begin with data collection from simulations under
various disturbances, followed by training a neural network to model both the dynam-

ics and associated uncertainty. The learned quantile tubes will then be embedded into
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the optimization problem of [MPC] reformulating constraints to account for predicted un-
certainty bounds. This approach will be validated through extensive simulations using
platforms like Gazebo and the UUV Simulator, comparing it with baseline controllers,
and eventually optimized for real-time deployment in real-world scenarios. By integrating
uncertainty quantification into the control framework, the proposed [TMPC method aims
to provide a robust and effective solution for reliable operation of autonomous marine

systems.
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