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Abstract

Port operations are critical to global trade but face challenges like surging traffic
and dynamic coordination needs. Addressing these complexities requires innova-
tive analytical approaches that can effectively measure performance, forecast ves-
sel activities, and optimize resource allocation. Inspired by the machine learning
(ML) framework of evaluation, prediction, and optimization, this thesis explores
the application of ML and operations research (OR) in port operations, with a fo-
cus on vessel arrival and departure. In the evaluation phase, two novel data fusion
approaches are introduced to quantify the operational status of vessel movements,
providing a more comprehensive assessment of arrival and departure dynamics.
The first integrating the vessel estimated time of arrival (ETA), actual time of ar-
rival (ATA), and the corresponding data from the Automatic Identification System
(AIS) to quantify vessel arrival time (VAT) delays. The analysis reveals that as the
vessels approach their destination port, their reported ETA becomes increasingly
accurate in both spatial and temporal dimensions. The second study integrates the
vessel’s estimated departure time (EDT), actual departure time (ADT), and berth
entry/exit timestamps to quantify vessel turnaround time (VTT) and service time
(VST). A quantitative analysis is conducted to evaluate the impact of COVID-19
on port operations, with Hong Kong Port as a case study. The findings indicate
that COVID-19 and its restrictions worsened vessel arrival delays and extended
turnaround time, reducing port efficiency.

The prediction phase focuses on estimating VAT, VTT, and VST. Using the es-
tablished evaluation framework, relevant datasets are constructed to enable time
prediction via tree-basedmodels. This thesis is the first to integrate vessel-reported
ETA and AIS data for VAT prediction of oceangoing vessels. Compared to vessel-
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reported ETA, the proposed approach lowers the mean absolute error (MAE) from
6.84 to 3.11 hours, at a 54.53% reduction. For inland waterway shipping, vessel
traffic flow data and the A-Star algorithm are integrated to account for river trans-
port characteristics and estimate the remaining sailing distance for VAT prediction.
Results indicate a significant improvement, reducing MAE from 17.06 to 3.49
hours: a 79.54% reduction. For VTT prediction, the proposed model enhances
accuracy, lowering MAE from 5.12 to 3.94 hours compared to vessel-reported
values. Likewise, for VST prediction, MAE decreases from 4.54 to 3.19 hours.

The optimization phase examines the impact of integrating VAT predictions
into berth allocation planning (BAP). Leveraging the predicted VAT, a two-stage
prediction-then-optimization framework is proposed. In the first stage, a VAT
prediction model improves the accuracy of VAT estimates. In the second stage,
the predicted VAT is incorporated into the BAP model to optimize berth schedul-
ing. The effectiveness of VAT-based scheduling is evaluated by comparing a BAP
model using predicted VAT with another based on vessel-reported ETA in both
discrete and continuous berth settings. In a discrete berth scenario with 12 vessel
arrivals, VAT-based scheduling reduces additional BAP costs by 64% and vessel
waiting time by 73% compared to ETA-based scheduling. In a continuous berth
setting, VAT-based scheduling reduces additional BAP costs by 43% and vessel
waiting time by 35%. These findings highlight the effectiveness of VAT-based
scheduling in improving berth allocation, reducing vessel waiting time, and opti-
mizing resource utilization.

By systematically incorporating data-driven insights into decision-making, this
study highlights the significant potential of AI-powered port management in op-
timizing daily port operations through vessel arrival/departure prediction models
and dynamic berth scheduling optimization, advances maritime digitalization via
AI-enhanced terminal operating systems with real-time nautical data integration,
and accelerates decarbonization efforts through emission-aware vessel sequencing
algorithms and predictive shore power allocation.

Keywords: Maritime transport; Port operation; Machine learning; Data-driven
approach; Vessel arrival time prediction
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Chapter 1

Introduction

1.1 Background

Maritime transport stands as an indispensable pillar of global trade,
serving as the backbone of globalization (UNCTAD 2025). Over
90% of worldwide trade relies on sea transport, providing a cost-
effective and streamlined avenue for international commerce (UNC-
TAD 2025). Ports, as pivotal nodes within maritime transportation
and the global supply chain, play a vital role in facilitating the seam-
less exchange of goods on an international scale. Port operations
are planned daily to ensure efficient cargo handling, optimize vessel
scheduling, and maintain smooth logistics flow.

One crucial challenge faced by terminal operators in daily port
operations is the uncertainty surrounding vessel arrivals and depar-
tures. Vessels typically update their estimated time of arrival (ETA)
one or several days before approaching the port; however, these es-
timates often differ significantly from the vessel’s actual time of ar-
rival (ATA). Similarly, during routine port operations, vessels pro-
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CHAPTER 1. INTRODUCTION 2

vide an estimated departure time (EDT) before leaving the berth, but
the actual departure time (ADT) frequently deviates due to unpre-
dictable factors such as port inefficiencies and congestion. Unfore-
seen weather and sea conditions, along with port congestion, con-
tribute to discrepancies between ETA and ATA, as well as EDT and
ADT. These disruptions ultimately affect berth allocation planning
(BAP) and other port operations, leading to reduced overall port effi-
ciency. Managing these discrepancies is crucial for maintaining the
reliability of vessel operations. According to a SeaIntelligence re-
port, liner services are regarded as reliable if vessel delays are within
24 hours of the scheduled ETA, with global container schedule reli-
ability averaging 51.6% for on-time arrivals as of March 2024 (Jas-
mina, Ovcina Mandra 2024).

However, despite the critical role of predictive accuracy in port
scheduling, traditional approaches to ETA/EDTmanagement remain
largely reactive and experience-driven. Manual adjustments based
on historical averages or deterministic models often fail to account
for the dynamic interplay of maritime variables in daily port opera-
tions, such as cascading delays from upstream ports, real-time berth
occupancy conflicts, and stochastic cargo handling rates (Filom, Amiri,
and Razavi 2022). Yet, this persistent gap presents a significant op-
portunity to leveragemachine learning (ML) for data-driven decision-
making, enabling ports to dynamically adapt to operational uncer-
tainties and optimize resource allocation in real-time (Yan, S. Wang,
Zhen, and Laporte 2021).

Motivated by the inherent workflow of ML (Z.-H. Zhou 2021),
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which consists of three core phases: evaluation (processing then
quality assessment of training/testing datasets), prediction (construct-
ing predictive models), and optimization (tuning model parameters
to achieve optimal performance on unseen data), this study intro-
duces a structured evaluation, prediction, and optimization frame-
work to empower port operations through ML.

In the evaluation phase, the framework assesses and quantifies
vessel arrival and departure patterns, ensuring data reliability and
completeness. Additionally, it examines the impact of disruptions,
such as those caused by the Coronavirus Disease 2019 (COVID-
19) pandemic, on port operations, including delays, congestion, and
shifts in shipping patterns. The prediction phase focuses on fore-
casting vessel arrival and departure time, enabling more accurate
time predictions for port scheduling. Finally, the optimization phase
leverages vessel arrival time (VAT) predictions to improve the fol-
lowing berth allocation, enhancing port operational efficiency.

1.2 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 pro-
vides a summary of current research on VAT, vessel turnaround time
(VTT) and vessel service time (VST) evaluation and prediction, the
impact of COVID-19 on port operations, and data-driven approaches
to the BAP. It also highlights the existing research gaps in these ar-
eas. Chapter 3 proposes two methods: one that integrates vessel
ETA, ATA, and AIS data for VAT evaluation, and the other that com-
bines ETD and ATD for VTT and VST assessment. It also quanti-
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tatively evaluates vessel arrival and departure punctuality and the
impact of COVID-19 on port operations. Chapter 4 incorporates
scenario-specific characteristics to predict VAT for both ocean-going
and inland vessels. It also forecasts VTT and VTT. Chapter 5 pro-
poses a two-stage “prediction-then-optimization” framework to quan-
tify the benefits of VAT prediction in the BAP. The effectiveness of
VAT-based scheduling is evaluated by comparing a BAP model that
utilizes predicted VAT with one that relies on vessel-reported ETA,
considering both discrete and continuous BAP settings.



Chapter 2

Current Approach and Literature
Review

2.1 Vessel Arrival Time Prediction

There are a number of studies evaluating the uncertainties in VAT to
ports and predicting VAT to help port operators make informed de-
cisions (Yan, S. Wang, Zhen, and Laporte 2021; Filom, Amiri, and
Razavi 2022). AIS data provides diverse information on vessel voy-
ages, encompassing static details (e.g., size, name and IMO number),
dynamic attributes (e.g., location and heading), and voyage-specific
information (e.g., destination and draft). These AIS data can be gen-
erated and transmitted at intervals that range from a few seconds to
several minutes, providing an extensive and dynamic dataset of ves-
sel movements (Y. Yang, Y. Liu, G. Li, Z. Zhang, and Y. Liu 2024;
D. Yang, L. Wu, S. Wang, Jia, and K. X. Li 2019).

Research on VAT prediction can typically be divided into two cat-
egories. The first focuses on reconstructing vessel trajectories and
uses path finding methods to estimate VAT. The second category in-
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volves directly predicting VAT following data engineering. Simply
put, the key difference between path-finding and data engineering
models for VAT prediction is in their inputs. The prediction model
uses multiple vessel trajectory date and a path-finding algorithm to
predict VAT. It takes the trajectory of a single vessel voyage as input
and predicts one VAT value for that trajectory. In contrast, a model
using data engineering to predict VAT extracts features from vessel
navigation data as input and predicts multiple VAT values, with one
for each vessel navigation record. In the following subsections, we
will review related literature based on these two categories.

2.1.1 VAT prediction based on vessel trajectory

VAT prediction based on vessel trajectory involves processing AIS
data to reconstruct and forecast vessel voyage trajectories, facilitat-
ing more accurate predictions of VAT (Filom, Amiri, and Razavi
2022). Alessandrini, Mazzarella, and Vespe (2018) propose a data-
driven path-finding method to predict vessel future voyage route and
then estimate VAT. K. Park, Sim, and Bae (2021) utilize reinforce-
ment learning on AIS data to construct vessel voyage trajectories,
and then implement Bayesian sampling to estimate vessel ETA. El
Mekkaoui, Benabbou, and Berrado (2023) use a deep learning se-
quencemodel to predict VAT at a bulk port of Jorf Lasfar inMorocco,
considering vessel AIS data and weather features. The model’s pre-
diction results show that deep learning sequence models such as long
short-term memory (LSTM) model outperforms traditional neural
network models, reducing VAT error from 48 hours (from ETA data)
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to 4 hours. However, this study does not evaluate the impact of re-
ported ETA on the prediction model and only uses the reported ETA
for prediction results comparison. Kolley, Rückert, Kastner, Jahn,
and Fischer (2023) employs a K-Nearest Neighbors (KNN) approach
to predicting VAT and integrates these predictions into subsequent
berth allocation operations. The results indicate that KNN not only
forecasts VAT more accurately but also significantly reduces the ac-
tual waiting time for vessels during berth operations.

Yoon, D.-H. Kim, Yun, H.-J. Kim, and S. Kim (2023) present
a method to predict container VAT at Busan New Port by model-
ing past voyage routes using historical AIS data. They construct
representative paths through spline interpolation and apply location-
based criteria to determine the departure and arrival time of the ves-
sel, achieving a reduction in mean absolute error (MAE) of approxi-
mately 3 hours compared to traditional methods. Wenzel, Jovanovic,
and Schulte (2023) use advanced neural networks to predict VAT for
inland waterway vessels in the Netherlands and Germany. The au-
thors uniquely use the A∗ algorithm to estimate the remaining trav-
eling distance from the vessel’s AIS-reported position to its destina-
tion, and then incorporate this parameter into the neural network’s
input. The prediction results indicate that the accuracy of the VAT
prediction can be improved by 20 6% on average for short trips
compared to the industry standard approach, that is, dividing the re-
maining distance of the vessel by the current speed of the vessel. X.
Zhang, Fu, Xiao, H. Xu, Wei, Koh, Ogawa, and Qin (2024) first ap-
ply multivariate kernel density estimation to identify vessel destina-
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tion berthing areas from AIS data. Then, they implement a temporal
convolutional network to predict VAT at the Singapore Port pilotage
area, additionally considering pilotage booking information and me-
teorological data. The prediction results show anMAE ranging from
4.58 to 4.86 minutes.

There are two limitations in the above studies. The first and most
significant limitation is that the prediction models in these studies
often require a fixed number of AIS data points for each trajectory
as input for the model. To achieve this, the authors usually pre-
process the AIS data by interpolating AIS data points to standardize
the length of each trajectory. However, in real-world port operations,
port authorities receive AIS data from vessels with varying trajec-
tory lengths, which greatly increases the data processing workload
and complicates the model application process. The second limita-
tion is that VAT prediction models based on vessel trajectories typi-
cally focus on individual vessels. However, in real-world operations,
port authorities are required to manage and operate multiple vessels
simultaneously. This presents a more complex scenario, as port au-
thorities need to account for the collective behavior of numerous ves-
sels, rather than just focusing on individual trajectories. Therefore,
models designed to predict VAT for single vessels may not scale ef-
fectively or provide the holistic insights needed for managing port
operations at an aggregate level.
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2.1.2 VAT prediction via data engineering

VAT prediction through data engineering involves directly predict-
ing VAT by mining AIS data and relevant datasets to form tabular
datasets for prediction (Filom, Amiri, and Razavi 2022). Pani, Vanel-
slander, Fancello, Cannas, et al. (2015) implement logistic regres-
sion, classification and regression trees (CART), and random forest
(RF) models to predict VAT at the Cagliari and Antwerp ports. J.
Yu, G. Tang, Song, X. Yu, Qi, D. Li, and Y. Zhang (2018) employ
back-propagation networks, CART, and RF models to predict de-
lays or advances in vessel arrivals using port call data. The study
also evaluates the benefits of these predictions for daily berth allo-
cation. However, a significant limitation of these studies is that the
authors only use classification methods to predict vessel arrival de-
lay interval, not employing regression models to precisely forecast
VAT. Veenstra and Harmelink (2021) introduce several novel ETA
prediction evaluation metrics for a more comprehensive assessment.
They also conduct a case study on a dataset of port calls at the port of
Antwerp in 2019 to compute and interpret these metrics. T. Zhang,
J. Yin, X. Wang, and Min (2023) utilize an eXtreme gradient boost-
ing (XGBoost) model to assess how port congestion at the Yangshan
port affects vessel in port time. Their findings reveal that congestion
can cause vessel port time to vary by up to 50 hours.

In summary, current research on VAT prediction using AIS data
primarily focuses on short-distance forecasts for both inland and ocean
shipping, such as estimating VAT for the last 30 kilometers to a port
or destination. However, this approach does not fully align with the
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needs of port authorities, who aremore concernedwith long-distance
predictions, such as forecasting VAT one day or 100 kilometers in
advance. These long-range predictions are critical for efficient berth
allocation and overall port operations. Moreover, from a data per-
spective, both port call data and vessel AIS data are crucial for port
operations. AIS data provides real-time vessel movement informa-
tion, with some records also including vessel-reported ETA. In con-
trast, ATA data, typically recorded by port authorities as part of port
call data, serves as the ground truth for VAT and is essential for accu-
rate VAT prediction. However, current research often excludes port
call data, with some studies relying on the last recorded AIS data
point as the vessel’s arrival time, which is impractical in real-world
scenarios as it uses posterior data for prior prediction. Other stud-
ies attempt to estimate the actual time and location of vessel arrival
using methods like kernel density estimation (X. Zhang, Fu, Xiao,
H. Xu, Wei, Koh, Ogawa, and Qin 2024), but these estimates often
deviate from the actual ATA, resulting in inaccuracies in subsequent
VAT predictions.

2.2 Vessel Turnaround and Service time Prediction

VTT and VST are crucial port management performance measure-
mences. A vessel’s arrival and departure contain various parts such
as the duration of berthing, waiting and servicing time of the vessel
and thus reflects the proficiency and efficiency of a port’s overall op-
eration. Excessive lengths and uncertainties in VTT or VST could
lead to port congestion and untimely scheduling, potentially result-



CHAPTER 2. CURRENT APPROACH AND LITERATURE REVIEW 11

ing in delays in ship schedules. This, in turn, can increase vessels’
operational costs and thus diminish the port’s reputation, ultimately
leading to considerable economic losses. Minimizing the VTT and
VST contributes to the port’s capacity to handle more ships within
a specific period, thereby enhancing the overall efficiency of the
maritime chain. Historically, efforts to optimize VTT and VST in
port operations have predominantly focused on strategies for berth
scheduling. Such a focus is well-documented in the field of maritime
studies, as reflected by the substantial attention it receives in the ex-
isting literature (K. H. Kim andMoon 2003; Golias, Saharidis, Boile,
Theofanis, and Ierapetritou 2009). Despite this established focus, it
is worth noting that in the port industry, one of the world’s oldest and
most consistent sectors, operations related to berth scheduling and
VTT optimization often rely more heavily on expert knowledge and
the established berth allocation strategies rather than innovative and
data-driven scheduling strategies (Barua, Zou, and Y. Zhou 2020;
Brouer, Karsten, and Pisinger 2016; Rodrigues and Agra 2022). Re-
cent innovations inmachine learning field have paved theway for de-
veloping data-driven methods in port operations management (Yan,
S. Wang, Zhen, and Laporte 2021; Filom, Amiri, and Razavi 2022).
These approach show considerable potential of reducing prediction
inaccuracies regarding vessel arrival and departure time from a port
management perspective.

Numerous studies have addressed the issues of uncertainties in
the time associated with vessels’ activities in ports, aiming to pre-
dict time-related factors such as VAT, VTT and departure time at
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the port (Yan, S. Wang, Zhen, and Laporte 2021; Filom, Amiri, and
Razavi 2022). These predictions can greatly assist port operators in
their decision-making for port management. For instance, by accu-
rately predicting VAT, the following berth allocation strategy can be
optimized, which in turn enhances the operational efficiency of the
port (J. Yu, G. Tang, Song, X. Yu, Qi, D. Li, and Y. Zhang 2018).
Compared to the extensive literature on predicting ship ETA data (J.
Yu, G. Tang, Song, X. Yu, Qi, D. Li, and Y. Zhang 2018; Yan, S.
Wang, Zhen, and Laporte 2021; Filom, Amiri, and Razavi 2022),
there are currently only a small number of studies on predicting ship
EDT or VST usingmachine learning Filom, Amiri, and Razavi 2022;
Yan, S. Wang, Zhen, and Laporte 2021. This discrepancy can be at-
tributed to several reasons. First, the complexity inherent in VTT
prediction caused by factors like the vessel’s uncertain arrival time,
unexpected port congestion and inefficiency in berth allocation that
have an influence on VTT makes its precise predictions challenging.
Secondly, due to privacy and security concerns of port data, acquir-
ing detailed port operational data, such as real-time quay crane effi-
ciency or berth occupancy rates, is difficult. The limited access to
such crucial data impedes the ability to make accurate predictions on
VTT.

Mokhtar and Shah (2006) are among the first to conduct research
in the field of VTT evaluation. They employ a linear regression
model to analyze the relationship between VTT and port facilities.
To be more specific, the study concentrates on two ports in Klang,
Malaysia, utilizing vessel call data and port operational data col-
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lected in August 2005. The results reveal a strong correlation be-
tween VTT, crane allocation and the number of containers loaded
and discharged (Mokhtar and Shah 2006). Ducruet andMerk present
an overview of the VTT efficiency in world container ports in 1996,
2006, and 2011 (Ducruet and Merk 2013). Their study indicates
that Ningbo port in China is the most efficient among the largest
ports during the years. Štepec, Martinčič, Klein, Vladušič, and Costa
(2020) introduce a machine learning based VTT prediction system,
utilizing 11 years of port call data at the Port of Bordeaux. This
system shows excellent performance in predicting VTT. When com-
pared to actual VTT, the system’s error rates for specific types of
cargo vessels dropped below 10% (Štepec,Martinčič, Klein, Vladušič,
and Costa 2020). B. Li and Y. He (2020) employ a deep neural net-
work to predict container liner berthing time at a terminal in China
using four years of container vessels berth time data. However, the
advantage of the proposed model’s berth time prediction results over
the container berthing time reported by the vessels has not been clearly
demonstrated (B. Li and Y. He 2020).

Smith (2021) analyzes factors affecting container vessels’ VTT
at major U.S. container ports, using vessel automatic identification
system (AIS) data and port TEU volumes through statistical and
comparative analysis. Results of this study show a remarkably posi-
tive correlation between the VTT and the vessel expected cargo vol-
ume per call. The research results also indicate that vessels are ex-
pected to follow the arrival and departure schedules, which make
vessel schedules the primary determinants of the VTT (Smith 2021).
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Abreu,Maciel, Alves, Braga, and Pontes (2023) evaluate the primary
factors affecting the VTT at the port. Then they develop several clas-
sification models using data from the cargo vessel movement data in
Brazilian ports in 2018 to predict the VTT. The results show that RF
demonstrate promising performance, with accuracy and F1-scores
above 73%. The results also suggest that RF has the potential to
be applied in real-world port management scenarios (Abreu, Maciel,
Alves, Braga, and Pontes 2023). Zhai, Fu, X. F. Yin, H. Xu, and W.
Zhang (2022) utilize cargo operation data from tanker terminals and
vessel AIS data to predict the VTT at Singapore tanker terminals. By
employing linear regression and decomposed distribution methods,
the prediction model demonstrates remarkable accuracy at 98.81%
when evaluated by vessel historical VTT (Zhai, Fu, X. F. Yin, H. Xu,
and W. Zhang 2022).

Based on a comprehensive review of prior studies, it is evident
that most of the current research is focused on analyzing factors af-
fecting VTT. The studies related to VTT or VST prediction are pre-
dominantly based on classification analysis. However, these classi-
fication models predict VTT results for vessels in the form of time
intervals, which are less precise compared to predictions provided
by regression models that specify a specific time-stamp. There is
only one paper that has successfully employed regression machine
learningmodels to accurately predict VTT (Štepec, Martinčič, Klein,
Vladušič, and Costa 2020). In that research, the authors proposed
a tree-based VTT prediction system based on port call data, vessel
generic features and port tidal data. The proposed system can greatly
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reduce error in VTT by at least 10% for various types of vessels com-
pared to the original EDT data reported by vessels. The innovative
aspects of the paper are primarily focused on the presentation of the
first machine learning-based regression system for VTT prediction.
Additionally, the author is the first to evaluate the impact of port call
data, vessel generic features and tidal information on ships’ VTT
prediction. However, the authors of this article acknowledge that
the model they proposed is validated by data from a relatively small
port. They do not account for larger ports with more complex in-
frastructure and higher traffic volumes, where factors such as traffic
congestion and vessel arrival patterns could significantly influence
the VTT. Remarkably, even within this paper, current research re-
lated to VTT prediction has not taken into account the EDT data
reported by vessels in predicting their VTT. Furthermore, there is a
noticeable lack of attention paid to the influence of vessel generic
features (such as vessel length and beam), vessels’ historical perfor-
mance at port (e.g., historical average VTT) and berths’ historical
operation performance (e.g., historical delays of the ships operated
at the berth in terms of their predicted turnaround time) when these
factors having a tangible influence on VTT.

Given the existing research gaps, this study develop regression
models to predict both container vessels’ VTT and VST at the HKP,
which is one of the busiest ports in the world. Moreover, more com-
prehensive data are included to construct the prediction model, in-
cluding vessel generic features, historical delay data of both vessels
and berths and other relevant factors. Therefore, it can be expected
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that our research can generate more precise predictions on the VTT
and VST in a regression way and enhance the understanding of the
intricate factors affecting VTT.

2.3 COVID-19 impact on Port Operations

Stated as a “black swan effect”, the emergence of the COVID-19
has critically interrupted the global logistics and economy (C. Zhou,
Zhu, Bell, Lee, and Chew 2022). Extensive research has been car-
ried out to examine the repercussions of the COVID-19 pandemic
on the maritime field, as shipping acts as a crucial role in ensur-
ing the smooth functioning of the global supply chain, especially
during the pandemic (L. Xu, S. Yang, J. Chen, and J. Shi 2021).
These studies can be categorized based on the perspectives of indi-
vidual ports, local areas, or the region and country as a whole. Xu
et al. (2021), from a local area perspective, propose a regression
method with data from 14 main ports in China to assess the impact
of the COVID-19 on port operations and performances (L. Xu, S.
Yang, J. Chen, and J. Shi 2021). Results show that the pandemic
will directly affect the import and export of the ports whereas the
government’s COVID-19 control policy will have a positive effect
on exports. Narasimha et al. (2021) examine the COVID-19 impact
on the Indian maritime industry and port operation from a statistical
perspective (Narasimha, Jena, and Majhi 2021). The authors also
conduct a survey of experts in the maritime sector to gauge attitudes
toward issues related to COVID-19 in the Indian maritime industry.
Quantitative analysis indicates that India suffers a loss both in the
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amount of vessel port calls and the volume of cargo traffic flows.
The survey suggests that India lacks preparedness in maritime area
and needs further strategy to tackle with COVID-19 related issues
in the maritime area (Narasimha, Jena, and Majhi 2021). Bai et al.
(2021) present a noval density based clustering algorithm based on
automatic identification system (AIS) data to identify vessel voyage
and port turnaround states at ports and propose corresponding mea-
sures to reduce port congestion (Bai, Jia, and M. Xu 2022). Jin et
al. (2022) analyze the impact of the COVID-19 on the liner ship-
ping route networks in China based on AIS data. The finding shows
that the proportion and competitiveness of China’s international liner
shipping has increased since the outbreak of the COVID-19 (Jin, J.
Chen, Z. Chen, Sun, and B. Yu 2022).

Wang et al. (2022) put forward a process framework to quantita-
tively evaluate the effect of the COVID-19 on the behaviors of visit-
ing vessels at ports using AIS data (X. Wang, Z. Liu, Yan, H. Wang,
and M. Zhang 2022). Additionally, the validity of the framework
was assessed through a case study that analyzed vessel operating
data in the Beibu Gulf region of China between 2019 and 2020. The
findings suggest that the average berthing time and anchoring time
for cargo vessel and oil tankers largely increase after the outbreak
of the COVID-19 (X. Wang, Z. Liu, Yan, H. Wang, and M. Zhang
2022). Zhou et al. (2022) review the emergent technical trends and
related research topic in container terminal operations in recent years
and the impact of COVID-19 on them (C. Zhou, Zhu, Bell, Lee, and
Chew 2022). Chen et al. (2022) take Danish waters as an example
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and make a comparative analysis on the differences in the emissions
and activities of passenger vessels before and after the outbreak of
COVID-19 (Q. Chen, Ge, Lau, Dulebenets, Sun, Kawasaki, Mel-
lalou, and Tao 2022). The results shows that COVID-19 has a no-
table influence on cruise ships: The number of cruise ships decreases
by 31% and SOx emissions dropped by 51% (C. Zhou, Zhu, Bell,
Lee, and Chew 2022). In port state control related area, Akyurek
and Bolat (2020) conduct a comparative analysis using ship inspec-
tion records by the Paris Memorandum of Understanding (MOU)
from January 2015 to May 2022. By employing grey relational anal-
ysis, they find that the amount of inspections decreased greatly, and
alterations in deficiency and detention conditions were primarily at-
tributed to the impact of COVID-19. (Akyurek and Bolat 2020). Yan
et al. (2022) evaluate the impact of COVID-19 on the regional port
state control inspections. They take the HKP as an example and
find that the monthly number of inspections and the average num-
ber of ship deficiencies are significant lower after the outbreak of
the COVID-19 (Yan, Mo, X. Guo, Y. Yang, and S. Wang 2022).

Viewed from a global perspective, Notteboom et al. (2020) as-
sess the effect of the COVID-19 in Africa. The results show that
maritime and logistics sectors in African countries have been hit se-
riously and will not recover quickly due to the prolonged COVID-
19 (Humphreys, Dumitrescu, Biju, and Y. Y. Lam 2020). Cullinane
andHaralambides (2021) give an overview of the global trends of the
maritime and port economics since the outbreak of the COVID-19
and a practical outlook on maritime economics in post COVID-19
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era (Cullinane and Haralambides 2021). Bai et al. (2022) quan-
tify the impact of COVID-19 lockdown policy on global vessel port
calls by combining difference-in-difference model with regression
discontinuity design model (Bai, M. Xu, T. Han, and D. Yang 2022).
Zhao et al.(2022) use an exponential smoothing model to evaluate
the fluctuations in the dry bulk vessel and container vessel trans-
portation during the COVID-19 period (Zhao, H.-D. He, Lu, X.-L.
Han, Ding, and Peng 2022). The results show that global dry bulk
transportation is significantly affected by lockdown policies.

In summary, there are tons of research focusing on evaluating the
effects of COVID-19 on maritime transportation area. However, in
terms of vessel arrival and port operation issues, most of the studies
concentrate on a single dimension. For example, Wang et al. (2022)
evaluate the COVID-19 impact on vessel port calls at the Beibu Gulf
region of China between 2019 and 2020 (X. Wang, Z. Liu, Yan, H.
Wang, and M. Zhang 2022). Yan et al. (2022) evaluate the impact
of COVID-19 on the number of port state control inspections at the
HKP (Yan, Mo, X. Guo, Y. Yang, and S. Wang 2022). Narasimha
et al. (2021) show that India suffers a loss in the volume of cargo
traffic flows in 2020 (Narasimha, Jena, and Majhi 2021). Current
research lacks studies that evaluate the impact of COVID-19 on ves-
sel arrivals and port operations from multiple perspectives simul-
taneously. Moreover, in these studies, the comparative data covers
only a few months. Additionally, none of these studies explores ves-
sel arrival punctuality or turnaround time, both of which are crucial
aspects of daily port operations. To address the research gap and
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provide a detailed analysis of COVID-19’s impact on VAT and port
operation patterns, this paper takes the HKP as an example and uses
four years’ historical data to conduct comparative analysis on ves-
sel arrival and port operation status from three perspectives: vessel
arrival and operation statistics, vessel arrival punctuality, and VTT
before and after COVID-19 outbreak at the HKP.

2.4 BerthAllocation Problem: Transition fromModel-
Driven to Data-Driven Approaches

The berth allocation problem (BAP), as a critical tactical and op-
erational decision in container terminal management, aims to opti-
mize the assignment of berthing positions and service sequences to
incoming vessels while minimizing total waiting time, service de-
lays, and resource conflicts. Upon arrival, container vessels typi-
cally anchor on the roadstead until assigned to an available berth,
a designated quayside slot for cargo handling. Once berthed, quay
cranes execute loading/unloading operations, initiating a cascade of
downstream logistics activities, including yard storage planning and
equipment deployment. As the primary input for terminal opera-
tional planning, the berth schedule directly determines terminal com-
petitiveness within global shipping networks by balancing service
efficiency and resource fairness.

The BAP has been extensively studied since its seminal formula-
tion as amixed-integer programming (MIP)model by Imai, Nishimura,
and Papadimitriou (2001), who pioneered the spatial-temporal deci-
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sion framework for discrete dynamic berth allocation. Subsequent
foundational works established key BAPmodeling paradigms: Y.-M.
Park and K. H. Kim (2003) introduce the formulation of discrete
BAP with fixed berth layout, while Hansen, Oğuz, and Mladenović
(2008) propose the solutions of the continuous BAP to accommodate
variable vessel lengths. These early studies laid the groundwork for
addressing BAP under deterministic assumptions, where VAT, han-
dling rates, and operational constraints are fully known (Rodrigues
and Agra 2022).

Over the past two decades, research on the BAP has expanded sig-
nificantly, evolving from basic formulations toward more integrated
and context-specific variants. In particular, context-driven models
have been developed to address the complexities encountered in real-
world port operations. These include accommodating tidal window
constraints within daily scheduling processes (Du, Q. Chen, J. S. L.
Lam, Y. Xu, and Cao 2015), optimizing berth allocation under strin-
gent vessel emission control regulations (J. Yu, G. Tang, Voß, and
Song 2023), and mitigating disruptions caused by extreme weather
conditions (L. Guo, J. Wang, and Zheng 2021). Additionally, the
scope of BAP-related research has extended to various operational
and environmental scenarios, such as optimizing berth allocations
for multi-terminal ports, coordinating with hinterland transportation
schedules, and integrating automated terminal operations. These
studies highlight the diversity and depth of scenarios currently ex-
plored in the BAP literature, demonstrating the field’s ongoing evo-
lution and its responsiveness to emerging challenges (Rodrigues and
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Agra 2022).
Among these diverse scenarios, evaluating and managing VAT

has emerged as a hot and critical issue in BAP related research. Inac-
curacies or uncertainties in VAT can directly lead to substantial berth
operation delays and increased operational costs. Existing research
has extensively investigated methods for modeling uncertainty in
VAT to support effective berth allocation decisions. For example,
Golias, Saharidis, Boile, Theofanis, and Ierapetritou (2009) intro-
duce a discrete berth scheduling, dynamically optimizing vessel speeds
and arrival time to minimize vessel fuel consumption and overall
waiting time. Zhen, Lee, and Chew (2011) propose a reactive dy-
namic strategy to adjust initial BAP schedules dynamically, enabling
the management of realistic variations in VAT with minimal devia-
tion cost from the original schedule. This development effectively
transformsBAPmodels from deterministic frameworks into dynamic
one. In these studies, VATs are typically represented as uncertainty
sets or assumed to follow specific probability distributions, prompt-
ing innovative model adaptations and computational strategies to en-
hance robustness and flexibility in berth allocation planning.

Recently, data-drivenmachine learningmethodologies have gained
increasing attention inmaritime operations and logistics research (Yan,
S. Wang, Zhen, and Laporte 2021; Rodrigues and Agra 2022). By
leveraging extensive historical data and real-time information, these
approaches significantly enhance predictions of critical metrics, such
as container throughput, VTT, fuel consumption, andVAT (Rodrigues
and Agra 2022). In particular, numerous studies highlight that these
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methods can effectively reduce uncertainties in VAT by providing
more accurate VAT predictions. However, the operational value of
machine learning-based VAT prediction remains insufficiently quan-
tifiedwithin the context of BAP optimization, where precise schedul-
ing critically depends on reliable VAT estimate. Current related stud-
ies predominantly remain model-driven, focusing on developing and
comparing various BAP models or solution algorithms under a fixed
VAT assumption. Few studies have adopted a data-driven perspec-
tive to examine how variations in VAT prediction accuracy impact
BAP performance, a research gap that highlights the importance of
accurate VAT estimation in subsequent berth scheduling.

To date, only two studies have specifically integrated VAT predic-
tion models to optimize the subsequent BAP scheduling decisions.
The first study by J. Yu, G. Tang, Song, X. Yu, Qi, D. Li, and Y.
Zhang (2018) use static vessel data, including vessel-reported ETA,
vessel physical features to predict VAT at Ningbo Gangji Container
Terminal (GYCT). By comparing the performance of the BAP us-
ing predicted VAT against the actual VAT, the results showe that the
use of predicted VAT significantly improve the subsequent quality
of the BAP scheduling, achieving approximately 60% enhancement
in performance metrics. Kolley, Rückert, Kastner, Jahn, and Fis-
cher (2023) employ linear regression, k-nearest neighbors (KNN),
decision tree regression, and neural networks to predict VAT with
KNN ahieve best performance. Dynamic time buffers (DTBs) are
dynamically adjusted based on prediction discrepancies across VAT
prediction models: larger variations in VAT forecasts trigger longer
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buffers to absorb uncertainty. These DTBs are integrated into a dy-
namic BAP model in the second stage. Compared to the benchmark
BAP model, this approach significantly reduces vessel waiting time
by 37% (565.71 mins vs. 902.47 min) and improves true service lev-
els by 13.4 percentage points (78.88% vs. 65.49%), demonstrating
enhanced robustness.

However, both studies have notable limitations. From the per-
spective of the data used for VAT prediction, J. Yu, G. Tang, Song,
X. Yu, Qi, D. Li, and Y. Zhang (2018) primarily rely on static vessel-
reported ETA, while Kolley, Rückert, Kastner, Jahn, and Fischer
(2023)utilize dynamic AIS data; neither combines ETA and AIS data
simultaneously for predicting VAT. Regarding prediction methods,
both studies employ outdated models. Specifically, J. Yu, G. Tang,
Song, X. Yu, Qi, D. Li, and Y. Zhang (2018) adopt a classification
approach to predict arrival error intervals instead of accurately fore-
casting the precise VAT. Furthermore, J. Yu, G. Tang, Song, X. Yu,
Qi, D. Li, and Y. Zhang (2018) method of comparing BAP perfor-
mance across different VAT scenarios is methodologically question-
able. Direct comparison of BAP outcomes under varying VAT pre-
dictions is inherently inappropriate, as there are always discrepancies
between predicted VAT, and ATA. Thus, BAP results based on pre-
dicted VAT or ETA implicitly assume vessel ATA follows predicted
schedules, making such direct comparisons invalid. Kolley, Rückert,
Kastner, Jahn, and Fischer (2023) on the other hand, indirectly incor-
porate VAT predictions through modeling DTBs to enhance robust-
ness in BAP optimization, rather than explicitly integrating predicted
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VATdirectly into the BAP formulation and performance comparison.



Chapter 3

Evaluation of Vessel and Port
Performance

3.1 Evaluate Vessel Arrival Punctuality

3.1.1 HKP and data introduction

The HKP, situated in the South China Sea, specializes in handling
containerized manufactured goods. It is renowned for being one of
theworld’s busiest andmost efficient international container ports (Hong
Kong Maritime And Port Board 2024). In 2023, the HKP handles
nearly 15 million TEUs, making it the 10th largest container port
globally in terms of throughput (HongKongMaritimeAnd Port Board
2024). As of December 2023, it offered approximately 300 weekly
international container liner services, connecting to over 650 desti-
nations worldwide, showcasing its critical role in supporting global
maritime logistics and trade networks (Hong Kong Maritime And
Port Board 2024). A detailed geographical depiction ofHKP is shown

26
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in Figure 3.1.1 The Marine Department of Hong Kong regularly

Figure 3.1: HKP location overview

(every 20 minutes) updates the arrival and departure information of
ocean-going vessels on its website (Hong Kong Maritime And Port
Board 2024). This dataset is publicly accessible and categorized into
four types: vessels to arrive in the next 36 hours, vessels in port, ves-
sels have arrived in the past 36 hours, and vessels have departed in
the past 36 hours. AIS data includes both static details, such as the
vessel’s name and call sign, as well as dynamic information like lat-
itude, longitude, speed over ground (SOG), and course over ground
(COG). AIS data not only enables precise, real-time tracking but also
supports historical data analysis, allowing the identification of pat-
terns and trends over time. The variables for port call data and AIS
data used are listed in Table 3.1. To evaluate and predict VAT to the

1The figure is generated from GoogleMap (https://www.google.com/maps/).

https://www.google.com/maps/
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Table 3.1: Variable descriptions in port call and AIS data

Feature Definition Data Resource

Vessels
arrived in
last 36
hours

Vessels due
to arrive in
the next 36
hours

Vessels
departed in
the last 36
hours

Vessel
in port

AIS
data

Vessel
name

Name of the
vessel

! ! ! ! !

Vessel
type

Type of the
vessel

! ! !

Trip status Current status
of the vessel
trip

!

Agent
name

Name of the
vessel’s agent

! ! !

Flag Vessel
registration
country

! !

ETA Vessel
estimated time
of arrival
reported by the
vessel caption

!

ATA Vessel actual
time of arrival

! !

ATD Vessel actual
time of
departure

!

Longitude Vessel’s
longitude
coordinate.

!

Latitude Vessel’s latitude
coordinate.

!

SOG Vessel speed
over ground

!

Report
time

Time of data
generation

! ! ! ! !

Last port Name of a
vessel’s last
port of call
before arrival

!

IMO
number

IMO number of
a vessel

!

Call sign A unique
alphanumeric
vessel identifier

! ! ! ! !

Last berth Vessel’s last
berthing
location

!

Arrived
location

The first
location where
a vessel arrives
to the HKP

! !
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HKP, we first collect port call and AIS data from January 1st, 2021,
to February 28th, 2021. Then, we extract the targeted vessel AIS
data from the AIS dataset using the vessel’s call sign. It is important
to note that vessels may report multiple ETA records during a single
voyage to HKP, but only one ATA record is generated upon arrival.
ETA and ATA port call data are stored in separate files, and a single
vessel may make multiple port arrivals within a single year. More-
over, the vessel AIS data is not aligned with the corresponding ETA
and ATA data, requiring additional preprocessing and pairing.

3.1.2 Port call and AIS data matching

We begin by matching the ATA data to the ETA data, followed by
aligning both the ETA and ATA data with the AIS data. Before
pairing the datasets, we conduct a preliminary cleaning process that
involves removing duplicate ATA entries and discarding any ATA
records that occur after their corresponding report time. Addition-
ally, we filter out any AIS data entries where the latitude or longitude
exceeds the maximum limits of 90◦ and 180◦. We also standardize
the time formats across the AIS, ETA, and ATA datasets. During the
pairing process, AIS data serves as the baseline: we segment the AIS
data by voyage based on ATA and call sign values, match the vessel’s
ETA and ATA values, and finally align the ETA data with the corre-
spondingAIS records. Let i denote the identifier for a specific vessel,
where i = 1, . . . ,M , and the dataset comprises M distinct vessels
in the ETA and ATA records. Each vessel i has a total of ni ETA
records, ki ATA records, and Pi AIS data points in the datasets. The
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jth ETA of vessel i is represented as ETAj
i , with j = 1, . . . , ni, and

the kth ATA is represented as ATAk
i , with k = 1, . . . , ki. The time of

the pth AIS point is represented as AISpi , with p = 1, . . . , Pi. The re-
port time of ETAj

i is denoted asR
j
i . To pair the records, we introduce

a time-based comparative interpolation method, which is described
in detail in Algorithm 1. In the algorithm, the notation a > b means
that the time of a is later than the time of b, a 5-day threshold is set
to avoid mismatches where vessel only report ETA without actual
arrival, and P ′i and n′i are the number of AIS and ETA data records
corresponding to vessel i after completing the first two steps of data
cleaning, respectively. The algorithm leverages temporal window
matching and chronological greedy search by sorting ETA, ATA, and
AIS data chronologically for each vessel and iteratively matching
records based on time difference constraints to enhance computa-
tional efficiency and clarity. After pairing and cleaning the data, we
obtained 314,212 AIS ↔ ETA ↔ ATA paired records from 1,863
vessel voyages. Figure 3.2 shows an example visualization of vessel
arrival trajectories at the HKP. After pairing the data, each AIS data
has a corresponding ETA and ATA data, and we present an in-depth
analysis of the accuracy of ETA data reported by vessels. The ac-
curacy of ETA data reported by vessels en route to a port can vary
significantly depending on the remaining sailing time or distance to
destination. For instance, an ETA reported 30 hours before arrival
is likely to be less accurate than one reported 1 hour before arrival.
Similarly, an ETA reported when a vessel is 100 nautical mile away
is generally less precise than one reported when it is only 10 nautical
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Input: ETA, ATA and AIS data
Output: AIS↔ ETA↔ ATA paired data
begin

Unify the time format
// Segment vessel AIS voyage data
for each vessel i← 1 toM do

Sort the ETAni
i , ATAki

i , AISPi
i of vessel i chronologically

k ← 1
for p← 1 to Pi do

while k ≤ ki and ATAk
i < AISpi do

k ← k + 1
end
if 0 < ATAk

i − AISpi ≤ 48 hours then
AISpi [ATA] ← ATAk

i

end
end
Remove any unpaired AISpi
// Pair ATA data to ETA data
k ← 1
for j ← 1 to ni do

while k < ki and Rj
i > ATAk

i do
k ← k + 1

end
if
∣∣∣ETAj

i − ATAk
i

∣∣∣ ≤ 120 hours then
ETAj

i [ATA] ← ATAk
i

end
end
Remove any unpaired ETAni

i
// Pair ETA data to AIS data
for k ← 1 to ki do

Sort AISP
′
i

i and ETAn′
i

i chronologically
j ← 1
for p← 1 to P ′

i do
if j < n′

i and AIS
p
i > Rj

i then
j ← j + 1

else
AISpi [ETA]← ETAj

i

AISpi [ATA]← ETAj
i [ATA]

end
end

end
Remove any unpaired AISpi

end
end

Algorithm 1: ETA, ATA and AIS data pairing algorithm
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Figure 3.2: A sample visualization of vessel AIS arrival trajectories to the HKP

mile away. This difference in accuracy arises because uncertain fac-
tors affecting the journey become less impactful as the vessel nears
the port, allowing for more precise ETA predictions. Therefore, it
is not reasonable to perform a direct comparison of the accuracy of
reported ETA records at different remaining time and distances, as
they are influenced by different levels of uncertainty.

In the previous subsection, raw AIS data is matched with port call
data, segmenting them into distinct voyages. This approach makes
it possible to estimate a vessel’s remaining actual sailing time and
distance corresponding to each AIS point by applying a recursive
method, starting from the last point and working backward through
the second-to-last point in its trajectory. Specifically, to calculate
the distance between two adjacent AIS points, we assume the vessel
follows a great-circle route and use the Haversine formula for this
estimation, with the last AIS point of each segment being considered
the midpoint of the route. Denote the coordinate of two AIS records
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as (ϕ1,λ1) and (ϕ2,λ2), where ϕ represents latitude and λ represents
longitude, here, ϕ and λ in AIS data are in degrees and need to be
converted to radians, with the formulation: ϕ = ϕ× π

180 , λ = λ× π
180 .

The distance d between the two AIS points is then calculated using
the Haversine formula:

d = 2r arcsin

(√

sin2
(
∆ϕ

2

)
+ cos (ϕ1) cos (ϕ2) sin2

(
∆λ

2

))
, (3.1)

where r is the radius of the Earth. Utilizing these estimates, the AIS
data can be systematically divided into discrete time slices and dis-
tance slices for the following punctuality analysis. In the evaluation
section, we first provide an overview of the vessel’s actual remaining
voyage time and distance to port based on AIS-reported data, as vi-
sualized in Figure 3.3. The histogram in Figure 3.3(a), which shows

(a) Distribution of vessel actual remain
time

(b) Distribution of vessel actual remain dis-
tance

Figure 3.3: An overview of vessel actual remain voyage time and distance

the actual remaining voyage time for each vessel AIS data in hours,
reveals a left-skewed distribution with a pronounced peak at or near
zero hours. Additionally, there is a secondary peak around the 20-
hour mark, suggesting another notable cluster of vessel AIS data.



CHAPTER 3. EVALUATION OF VESSEL AND PORT PERFORMANCE 34

Beyond this point, the frequency gradually decreases. Similarly, the
histogram in Figure 3.3(b), which displays the vessel actual remain-
ing distance in kilometers, reveals a left-skewed distribution, with a
high frequency of AIS data having a short remaining distance and a
peak near zero km. A secondary peak occurs between 400 and 600
kilometers, after which the frequency declines steadily, extending up
to approximately 1,400 kilometers. As the HKP authority mandates
that vessels begin reporting the ETA data 36 hours prior to arrival,
the AIS data is initially segmented into 37 time intervals, spanning
from “0 hour” to “36 hours,” with each interval representing a 1-
hour window. For instance, the “0 hour” interval includes vessels
for which the time difference between the AIS report timestamp and
the ATA lies within 0 to 1 hour. The “36 hours” time slice encom-
passes vessels with a time difference of 36 hours or more (e.g., 38 or
40 hours).

Similarly, from a spatial perspective, we use 50 km as the interval
to divide the AIS data into 21 distance slices. The first distance slice
includes vessels with an actual remaining voyage distance between
0 and 50 km. The last distance slice includes all AIS data for vessels
with an actual remaining voyage distance greater than or equal to
1000 km. To evaluate vessel arrival punctuality offline, the ETA data
in the paired AIS will be considered as the predicted value, while the
ATA data will serve as the ground truth. Four standard metrics will
be utilized: root mean squared error (RMSE) , MAE, R-squared
(R2) and mean absolute percentage error (MAPE). Define n as the
number of ETA or ATA data points, let yi represent the observedATA
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values and ŷi denote the vessel reported ETA values, ȳ is the mean
of the ATA for vessel i, i = 1, . . . ,M . The definition of four metrics
is written as follows:
RMSE:

RMSE =

√√√√
m∑

i=1

(yi − ŷi)
2

m
, (3.2)

MAE:
MAE =

∑m
i=1 |yi − ŷi|

m
, (3.3)

R2:

R2 = 1−
∑m

i=1 (yi − ŷi)
2

∑m
i=1 (yi − ȳ)2

, (3.4)

MAPE:

MAPE =
1

m

n∑

i=1

∣∣∣∣
yi − ŷi
yi

∣∣∣∣× 100. (3.5)

When assessing the R2 value of ETA reports, it is not feasible to
directly calculate it using the AIS report time and ATA timestamp.
To address this issue, we first compute the time differences between
these points and timestamp January 1st, 2021, 00:00. Subsequently,
we perform the R2 value calculation. The evaluation results for the
four metrics of vessel arrival punctuality across various time and dis-
tance intervals are presented in Figure 3.4. Figure 3.4(a) and (b) de-
pict the accuracy of vessel-reported ETA across different time slices
using four evaluation metrics. The figures illustrate that, from both
temporal and spatial perspectives, vessel-reported ETA errors con-
sistently decrease as vessels approach the HKP across all evaluation
metrics. Quantitative results further indicate that reduced remaining
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(a) Quantitative analysis of vessel reported ETA in different time slices

(b) Quantitative analysis of vessel reported ETA in different distance slices

Figure 3.4: Spatial and temporal analysis of vessel reported ETA in time and dis-
tances slices
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voyage time and distance correlate with increased accuracy and re-
liability of vessel-reported ETA data as vessels approaches the port.
Moreover, it is noteworthy to observe a significant drop in all four
evaluation metrics. from the “36 hours” slice to the “35 hours” slice.
Similarly, a notable decline is also evident between the “21 slices”
and “20 slices” in the distance slices. This is due to the fact that
the “36 hours” interval includes ETA records where the time differ-
ence between the AIS report time and the ATA surpasses 36 hours,
whereas the “35 hours” slice only includes records with a time dif-
ference between 35 to 36 hours. Likewise, in the distance slices, the
“21 slices” category includes vessels with an actual remaining voy-
age distance greater than 1,000 km, while the “20 slices” category
includes vessels with a remaining distance between 950 to 1,000 km.
In the earlier stages of the journey, vessels tend to provide less reli-
able ETA data, leading to larger prediction errors.

However, there are noticeable fluctuations in error trends within
certain time and distance slices, despite the general trend of decreas-
ing error. These fluctuations are primarily caused by variations in
the amount of data available for each slice. In this analysis, only
two months’ vessel port call and AIS data are considered, leading to
differences in the data volume for each slice. For slices with smaller
data volumes, the presence of a few outliers with extreme ETA errors
can significantly skew the average error for that slice, resulting in
visible deviations in the trend lines. This explains the observed vari-
ations, where certain slices exhibit larger errors, despite the overall
trend toward greater accuracy as vessels approach the port.
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3.2 Quantitative Analysis of Vessel Turnaround and
Service time

Vessel Turnaround Time (VTT) refers to the total time a ship spends
in port, from its arrival at the port to the completion of all necessary
services and its departure. In contrast, Vessel Service Time (VST)
specifically measures the duration from the moment the vessel ar-
rives at the berth until it leaves. Port vessel service operations en-
compass processes like documentation, cargo loading, and unload-
ing, with VTT and VST having a significant impact on a port’s op-
erational performance, economic viability, and market competitive-
ness. During routine port operations, vessels usually provide their
estimated departure time (EDT) prior to leaving the berth. Neverthe-
less, the EDT often diverges considerably from the actual departure
time (ADT) because of unpredictable factors like port inefficiencies
and congestion. Such discrepancies introduce uncertainties in VST
estimation. As a result, these discrepancies may cause notable de-
lays in vessel departures, escalate port congestion, and elevate oper-
ational costs. In this section, We aim to carry out data pre-processing
and analysis, with the aim of quantitatively evaluating the VTT and
VST at the HKP.

3.2.1 Description of port call dataset

In this study, we utilize two port call datasets for VST related re-
search. One is the HKP vessel arrival and departure information2

2This data can be accessed online at the HK government’s data portal: https://data.gov.
hk/en-data/dataset/hk-md-mardep-vessel-traffic-management-system-report.

https://data.gov.hk/en-data/dataset/hk-md-mardep-vessel-traffic-management-system-report
https://data.gov.hk/en-data/dataset/hk-md-mardep-vessel-traffic-management-system-report
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and the other is the VT Explorer vessel port entry and exit data.3

Detailed descriptions of these data are as follows.
The Hong Kong port authority updates daily port call data in the

website (HongKongGovernment 2022), and this information is pub-
licly accessible. The website categorizes the data into five sections:
vessels arrive in the last 36 hours, vessels will arrive in the next 36
hours, in port vessels, vessels depart in the last 36 hours, and vessels
will depart HKP in the next 36 hours.

We use vessel AIS records as a supplementary data source to
form our VST dataset. AIS data offers detailed insights into both
static vessel information and dynamic movements. In this study, we
leverage AIS data, specifically the timing of vessel entries and ex-
its from the HKP’s anchorage areas, as supplementary information.
Data from the two datasets used in the VST study and their detailed
descriptions are summarized in Table 3.2. Additionally, Table 3.3
illustrates the features and update frequencies of these datasets.

3This data can be accessed and downloaded from the VT Explorer website: https://www.
vtexplorer.com/.

https://www.vtexplorer.com/
https://www.vtexplorer.com/
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Table 3.2: Variables in the HKP dataset

Feature Explanation Note
Ship_type Ship type Totally 14 types
Trip_status The status of ship voyage Pending or Approved for a ship

enter HK water area
ETA Vessel estimated time of arrival

(ETA) to the HKP
Reported by the vessel itself

ATA Time of a vessel’s actual arrival at
the berth

Recorded by the port

EDT Vessel estimated departure time
from the HKP

Provided by the vessel operator

ADT Actual time of a vessel’s departure
from the berth

Recorded when a vessel departs
from the berth area in HKP

Enter_time The time the vessel enters the an-
chorage area

Recorded by the port

Exit_time The time the vessel exits the an-
chorage area

Recorded by the port

Upload_time Time of data upload onto the web-
site

Provided on the website

IMO number The International Maritime Orga-
nization (IMO) number of a ship

A unique vessel identifier com-
prising seven digits

Call sign The unique alphanumeric code
identifying a ship for radio com-
munication

A unique vessel identifier

Berth The vessel’s present location of
berthing

\

Arrive_location The initial location where a vessel
stays upon arriving in HK waters

\

Agent_name Vessel’s agent name \
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Table 3.3: Specific distribution of variables in the dataset

Vessels
arrived in
the last 36
hours

Vessels
will arrive
in the next
36 hours

Vessels
departed
in the last
36 hours

In port
vessels

Vessels
will
depart in
the next
36 hours

Vessel
entry

Update_frequencyDaily Daily Daily 20
minutes

Daily Daily

Ship_type ! ! ! !
Trip_status !
ETA !
ATA ! !
EDT !
ADT !
Enter_time !
Exit_time !
Upload_time ! ! ! ! ! !
IMO number ! !
Call sign ! ! ! ! ! !
Berth ! ! ! !
Agent_name ! ! ! !

For the subsequent quantitative analysis and prediction of VTT
and VST, we have collected all related data from January 1, 2022 to
March 31, 2023 for our analysis. The ATA, EDT and ADT datasets
contain 28,126, 18,365 and 19,430 records, respectively. As indi-
cated in the data description above, the ATA, EDT and ADT data
records reported by a vessel are stored in different files. The ex-
pected VTT for a port call is the difference between the EDT and
ATA for that particular voyage, while the actual VTT is the differ-
ence between the ADT and ATA. VST is defined as the time differ-
ence between the departure time and the arrival time of the vessel
at berth. These records are scattered across different files. There-
fore, in order to quantify the specific duration of the VTT and VST,
further data pre-processing is required.
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3.2.2 Data preprocessing

Normally, the process for a ship arriving and departing from the berth
goes as follows: First, the ship reports its ETA data before reaching
the port, and the port authority allocates a berth for the ship based
on this ETA. Subsequently, the ship enters the port’s anchorage, and
the port logs the time of entry, referred to as the Enter_time data in
this study. After that, the ship reaches its berth, and the port records
the ATA data. Sometimes, if a berth is available, the ship does not
need to wait in the anchorage and can proceed directly to the berth.
In such cases, the ship’s Enter_time and ATA are the same. After the
port completes its operations, during the ship’s departure process, the
ship first leaves the berth, at which point the port records the ADT
data. Finally, as the ship leaves the anchorage area, the port logs the
Exit_time data. In addition, the ship may report its EDT data at any
time after reporting the ETA and before leaving the berth. Below
is an illustration of the process of reporting data for a ship’s arrival
and departure from the port. Among these data, ETA and EDT are
estimates reported by the ship, while the remaining data records are
recorded by the port authority.

ETA ( ETD )−−−−→ Enter_time ( ETD )−−−−→ ATA ( ETD )−−−−→ ATD −→ Exit_time

To match and quantify the VST data, we use the Enter_time and
Exit_time data as the foundational elements, and match other rel-
evant data with them. The overview of the data processing is shown
in Figure 3.5, and the description of each step is as follows:

1. Collect original vessel port call data
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Figure 3.5: The overview of the data preprocessing steps

The initial step in creating the dataset involves aggregating ves-
sel arrival and departure data from various folders. Once col-
lected, the time formats are converted to the “Year, Month, Day,
Hour ” standard.

2. Remove duplicate records
The HKP authority provides daily port call updates. This in-
cludes creating records for ETA, ATA, EDT, ADT and berth
entry and exit time for each vessel. However, after consolidat-
ing the data, we find multiple duplicate ETA, ATA, EDT, ADT,
and berth entry/exit records for a vessel’s single port call, each
with varying upload time. In these cases, we retain only the first
record of ATA, ADT, and berth movement data based on the up-
load time. For ETA and EDT data, if a vessel reports several
different ETA and EDT records, we preserve each unique ETA
and EDT records, as they provide valuable insights into alter-
ations in the vessel’s arrival and departure timetable, which is
crucial for the following VST analysis. Nevertheless, when the
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ETA or EDT record remains unchanged over multiple uploads
with just the upload time varying, we remove these duplicates,
retaining only the first record.

3. Delete ATA records that are later than their upload time
The HKP logs the ATA of a vessel after its arrival, ensuring
the upload time is always subsequent to the ATA. If the ATA
appears before its upload time, it likely indicates system er-
rors, rendering the data inaccurate. Utilizing such erroneous
ATA data can adversely affect vessel arrival analyses and pre-
dictions. Thus, any record where the ATA precedes its upload
time is excluded from the dataset.

4. Match vessel ATAdatawith the Enter_time and Exit_time records
During vessel operations at the port, vessel ATA, ADT, En-
ter_time and Exit_time records are unique for a specific visit,
with Enter_time and Exit_time forming a pair. The ATA always
occurs no earlier than the Enter_time. To match the ATA with
the Enter_time record, we first filter the dataset by call sign to
identify records of ATA and Enter_time/Exit_time belonging to
the same vessel. Then, for each Enter_time record, we identify
the ATA that follows the Enter_time and has the smallest time
difference. Furthermore, the time difference between the ATA
and Enter_time should not exceed 6 hours for amatch to be con-
sidered valid.4 If there is no ATA that satisfies both criteria, the

4We enforce a 6-hour time threshold to prevent instances where the ATA is recorded at the
vessel’s arrival, but the Enter_time data is not recorded when the ship enters the berth. Without
this 6-hour restriction, the Enter_time of the next voyage might be incorrectly matched with the
current voyage’s ATA, adversely affecting subsequent data matching.
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Enter_time record is considered not to have the corresponding
ATA data match.

5. Match the vessel ADT data with the Enter_time and Exit_time
records
The ADT data is recorded later than both the ATA and the En-
ter_time time but earlier than the Exit_time for each voyage.
To pair the ADT data to Exit_time data, we initially filter the
ADT data from the dataset using the call sign for the specific
vessel. Then, for every Exit_time record, we find the closest
ADT record that occurs before the Exit_time time. If the time
difference between this ADT record and the Exit_time record is
less than 24 hours, we pair the ADT record with the respective
Exit_time record.

6. Match vessel ETA andEDTdatawith the Enter_time and Exit_time
records
Like in the previous procedure, we begin by sorting the ETA
records in the dataset using the call sign of the target vessel.
Considering that vessels often report multiple ETAs as they ap-
proach a port, and taking into account that the HKP requires
ships to report data 36 hours before arriving, we adopt a specific
strategy to pair ETA data with Enter_time/Exit_time records.
To determine the most appropriate match, we focus on a spe-
cific time range surrounding the ATA data that has already been
matched with a particular Enter/Exit record. This time frame
extends to two days before, one day before, the same day, one
day after, and two days after the ATA date. Within this time-
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frame, we go through all covered ETA records and select the
earliest ETA record where the ETA report time differs from the
ATA by less than 36 hours. This ETA is then considered as the
matched ETA to the Enter/Exit record.5 The matching process
of the EDT data is similar to that of the ETA data. Since EDT
reports can be made either before the vessel reaches its berth or
after arrival, and considering that multiple EDT reports might
be submitted post-arrival, we follow a dual strategy. First, we
select the first EDT that is reported within 36 hours before the
ATA, capturing the earliest departure estimate before the ves-
sel’s arrival. Second, we also record the first EDT reported
after the vessel has reached the port, irrespective of the exact
report time. This approach ensures comprehensive coverage of
EDT data, reflecting estimates both prior to and following the
vessel’s arrival at the port. Notably, among the ETA and EDT
data, there are records for 14 different types of vessels arriving
at HKP. However, the Enter_time specifically pertains to ves-
sels with a designated berth allocation, specifically container
vessels. Consequently, after processing this data, the retained
records exclusively concern container vessels.

7. Remove unmatched Enter_time and Exit_time records:
After finishing the above processing, any Enter_time/Exit_time

5Selecting the first ETA within a 36-hour window is based on operational considerations for
port management. Opting for the ETA closest to the time of docking often lacks significant value
for port operations. Similarly, the first reported ETA might be highly inaccurate and too far away
in advance of reaching the port. Given the HKP requirement that vessels report data 36 hours
before arrival, we use this 36-hour timeframe as a critical boundary. Within this limit, we record
the earliest reported ETA data.
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recordswithout the correspondingATA, EDT, orADT are deemed
erroneous and are deleted. This situation can be caused by sys-
tem error logs or missing record data.

During the data processing phase, the number of records for ETA,
ATA, EDT, and ATA, as well as Enter_time and Exit_time data, both
before and after preprocessing, is summarized in Table 3.4.

Table 3.4: Summary of record counts in the data pre-processing scheme

Step Method ETA ATA EDT ADT Enter/Exit
1) Data collection and time format unification 53,221 48,237 50,237 47,314 39,455
2) Drop duplicated data 49,001 44,993 45,188 42,325 38,268
3) Delete Abnormal ATA data 49,001 41,126 45,188 42,325 38,268
4) Pair ATA data to Enter_time/Exit_time data 49,001 21,356 45,188 42,325 21,356
5) Pair ADT data to Enter_time/Exit_time data 49,001 21,356 45,188 18,444 18,444
6) Pair ETA and EDT data to Enter_time/Exit_time data 12,003 16,216 12,003 18,444 12,003
7) Remove unmatched data 11,782 11,782 11,782 11,782 11,782

After matching and cleaning the data, a total of 6,899 records are
successfully matched with ship-reported EDT data prior to port ar-
rival, and 4,883 records are matched with post-arrival reported ETD
data.

3.2.3 Quantitative analysis of VTT and VST at the HKP

This section presents a quantitative analysis of vessel arrivals and
departures at HKP from September 2020 to March 2023, based on
processed VTT and VST data. The analysis provides a detailed as-
sessment of expected and actual VTT and VST, along with the as-
sociated delays. These insights are essential for port authorities to
evaluate operational efficiency and formulate strategies for optimiz-
ing port service management. We begin by analyzing VTT.
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Table 3.5: Statistic analysis of the actual VTT at the HKP
Item Number of records Mean (hours) Median (hours) Maximum (hours) Minimum (hours) Standard deviation (hours)
All types of vessels in the dataset 14,975 18.20 14.63 63.61 0.20 18.59
All types of vessels in 2022 11,938 18.80 15.16 63.61 0.21 18.91
All types of vessels in 2023 3,037 16.83 13.82 56.65 0.11 17.33
Total container vessels in the dataset 9,998 17.66 13.88 49.12 1.21 14.52
Container vessels in 2022 8,178 18.29 13.90 49.12 1.39 14.96
Container vessels in 2023 1,820 15.89 12.30 43.28 1.21 13.59

In Table 3.5, we find that the mean, median and variance values
of actual VTT for container vessels are lower than those of all other
types of vessels. This may be attributed to the fact that operations in-
volving container vessels at the port are primarily automated, result-
ing in fewer disruptions from human factors compared to other types
of vessels. Additionally, we find that the maximum value of the ac-
tual VTT of all types of vessels is significantly larger than that of
container vessels. The reason is that these maximum values in VTT
correspond to the arrival operations of cement vessels at the HKP.
Next, we evaluate the expected VTT at the HKP. The expected VTT
for each vessel is defined as the difference between its EDT and its
ATA. Similar to the analysis of actual VTT, we have categorized the
data into two groups: all types of vessels and the container vessels.
The vessel expected VTT evaluation results in hours are presented
in Table 3.6.

Table 3.6: Statistic analysis of the expected VTT at the HKP

Item Total number of records Mean (hours) Median (hours) Maximum (hours) Minimum (hours) Standard deviation (hours)
Total_vessel 14,975 17.43 13.65 119.98 −17.94 17.62
2022_vessel 11,938 17.85 14.17 119.98 −16.61 17.79
2023_vessel 3,037 15.82 11.95 156.65 −17.94 16.81
Total_container 9,998 16.34 14.63 69.95 −17.94 14.27
2022_container 8,178 14.68 14.68 69.20 −16.61 14.33
2023_container 1,820 14.48 12.08 69.95 −17.94 13.83

In Table 3.6, we encounter an anomaly where the minimum value
of the expected VTT is less than zero. The expected VTT is calcu-
lated as EDTminusATA, and the negative value anomaly arises from
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vessels that report their EDT data within 36 hours before departing
from the port. However, according to our previous analysis shown
in Table 3.5, the average actual VTT at HKP is approximately 18
hours. In some rare instances, vessels report their EDT before they
arrive at the port. Nonetheless, the reported EDT data often contain
significant errors and might be earlier than the ATA at the port. This
discrepancy results in a negative value by deducting EDT by ATA,
which, in turn, leads to a negative expected VTT value in these sce-
narios. These instances could potentially be outliers in the dataset,
which may skew prediction outcomes. To avoid this, we will ex-
clude these outliers during the visualization and prediction phases.
Figure 3.6 illustrates the distribution of both the expected and the
actual VTT for container vessels at the HKP. In Figure 3.6, we ob-

(a) Distribution of the expected VTT of
container vessels at the HKP

(b) Distribution of the actual VTT of con-
tainer vessels at the HKP

Figure 3.6: Visualization of the expected and actual VTT of container vessels at
the HKP

serve that the distributions of both the expected and actual VTT for
container vessels at the HKP roughly follow a Gaussian distribution,
which is consistent with the results in Table 3.5 and 3.6, indicating
that the peak of the expected VTT distribution is approximately 14
hours and the peak of the actual VTT is around 15 hours. Next, we
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give an analysis of vessel departure delay at the HKP, which is eval-
uated by the difference between EDT and ADT. A negative value of
vessel delay shows that a vessel departs latter than expected, while a
positive value suggests that the vessel departs earlier than expected.
The value of 0 indicates that the vessel departed on time. There are
69 data records categorized as “on-time”. The vessel departure delay
analysis results (in hours) for the other two classes are summarized
in Table 3.7.

Table 3.7: VTT delay analysis in hours

Item Total number of records Minimum (hours) Maximum (hours) Median (hours) Mean (hours) Standard deviation (hours)
Early 7,637 0.02 118.25 3.45 7.44 6.02
Late 7,269 0.10 58.17 3.48 5.58 11.04
Early_container 5,261 0.16 52.02 3.27 4.93 5.40
Late_container 4,685 0.11 76.25 3.25 6.90 10.63

(a) Distribution of container VTT delay at
the HKP in 2022

(b) Distribution of container VTT delay at
the HKP in 2023

Figure 3.7: Visualization of the container VTT delay at the HKP

In Figures 3.7a and 3.7b, we observe that the container VTT delay
data for the years 2022 and 2023 roughly follow a Gaussian distribu-
tion centered around zero. This is in line with the requirements for
pre-processing the prediction set. Furthermore, we find that the VTT
delay distribution for 2022 in Figure 3.7a aligns more closely with a
Gaussian distribution compared to that of 2023 in Figure 3.7b. This
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can be attributed to the 2022 dataset encompassing data from an en-
tire year, thus being larger, while the 2023 distribution only contains
data from the first three months. In addition, both 2022 and 2023’s
VTT delays for container vessels exhibit several instances of extreme
delays, which are responsible for the outlier points observed in the
distribution figures. Next, we analyze the VST at the HKP. Table 3.8
presents the numerical analysis of actual VST at the HKP.

Table 3.8: Actual VST statistic analysis

Records
number

Mean
(hours)

Median
(hours)

Maximum
(hours)

Minimum
(hours)

Standard
devia-
tion
(hours)

Vessels in
2020

1,519 10.74 10.34 37.22 4.02 5.52

Vessels in
2021

4,298 11.91 11.01 58.21 4.35 6.73

Vessels in
2022

4,285 11.21 10.95 43.59 3.98 6.27

Vessels in
2023

1,680 10.41 10.21 32.51 4.40 5.33

Total
vessels in
the dataset

11,782 11.33 10.85 58.21 3.98 6.30

The complete dataset in Table 3.8 encompasses 11,782 vessel
records, with fewer data points for 2020 and 2023 due to the dataset
only covering four months of 2020 and three months of 2023. The
overall average actual VST at the HKP is 11.33 hours, with a median
of 10.85 hours. The longest actual VST observed is 58.21 hours,
while the shortest is 3.98 hours and both of these records are asso-
ciated with cargo vessels. The actual VST data also exhibit a stan-
dard deviation of 6.30 hours, indicating variability in the actual VST.
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Comparing data by year, we can observe that in 2023, the actual VST
for vessels shows the lowest mean, median, and standard deviation
values compared to other years. This indicates an improvement in
the port service efficiency of HKP in 2023 over the other years. This
improvement is likely due to the impact of COVID-19 on port han-
dling efficiency from 2020 to 2022, which saw a decline. However,
in 2023, following the full reopening fromCOVID-19 related restric-
tions, the HKP handling efficiency rebounded. Conversely, 2021
records the highest mean, median, and standard deviation values, in-
dicating the lowest efficiency in berth operations for HKP during
that year. This reduction in efficiency can be attributed to the mul-
tiple impacts of the local pandemic outbreak on Hong Kong, which
adversely affect the port operations in 2021 (Yan, Mo, X. Guo, Y.
Yang, and S. Wang 2022). Next, we analyze the HKP expected VST,
defined as the difference between each vessel’s EDT and ATA. Like
the actual VST analysis, the data is categorized into five groups. The
analysis results are shown in Table 3.9.
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Table 3.9: Statistical analysis of the expected VST at the HKP

The
number of
records

Mean
(hours)

Median
(hours)

Maximum
(hours)

Minimum
(hours)

Standard
devia-
tion
(hours)

Vessels in
2020

1,519 13.18 14.63 33.47 0.47 6.56

Vessels in
2021

4,298 14.32 13.97 34.85 0.35 6.91

Vessels in
2022

4,285 14.02 14.00 35.88 0.35 6.85

Vessels in
2023

1,680 13.10 12.85 35.87 0.35 6.06

Total
vessels in
the dataset

11,782 14.02 13.88 35.87 0.35 6.75

Table 3.9 offers a statistical analysis of the expected VST at the
HKP from 2020 to 2023. Within this period, the data shows fluctu-
ations but relatively similar average service time, ranging between
13.10 and 14.32 hours. The median values of service time closely
align with the average, suggesting a balanced distribution of data.
Meanwhile, the year of 2020 is associated with the highest median at
14.63 hours and the year of 2023 the lowest at 12.85 hours. Themax-
imum service time peaks at 35.88 hours in the year of 2023, whereas
the minimum service time consistently stood at 0.35 hours across
all years. The standard deviation indicates the greatest variability
in 2020 at 6.56 hours and the least in 2023 at 6.06 hours. Notably,
the self-reported expected VST data for 2023 show the lowest mean,
median, and standard deviation, similar to the actual VST scenarios.
This pattern indicates an enhancement and optimization in vessel
service management, leading to more efficient and consistent ser-
vice time for vessels in 2023. Finally, we analyze the delay in VST,
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which is calculated by subtracting the EDT data from the ADT data
for each vessel. The results are presented in Table 3.10.

Table 3.10: VST delay analysis at the HKP

The
number of
records

Mean
(hours)

Median
(hours)

Maximum
(hours)

Minimum
(hours)

Standard
devia-
tion
(hours)

Vessels in
2020

1,519 -3.31 -1.85 17.21 -29.48 6.37

Vessels in
2021

4,298 -2.40 -1.41 26.68 -32.18 6.12

Vessels in
2022

4,285 -2.81 -1.76 18.18 -34.32 5.86

Vessels in
2023

1,680 -2.69 -1.55 14.12 -31.50 5.52

Total
vessels in
the dataset

11,782 -2.68 -1.58 26.68 -34.32 5.98

Table 3.10 presents a statistical analysis of VST delays at HKP
from 2020 to 2023. A negative value indicates that the vessel de-
parts eariler from the berth than scheduled. Analyzing the VST delay
at the HKP from 2020 to 2023 as a whole, there is a discernible pat-
tern of improvement in the service efficiency, with delays decreasing
over the years. The mean value of the delay decreases from −3.31
hours in 2020 to −2.69 hours by 2023, indicating that the delays in
VST are decreasing annually. This improvement is mirrored in the
median delay times, decreasing from −1.85 to −1.55 hours during
the same period. The standard deviation decrease from 6.37 to 5.52
hours over the years, indicating more consistent port service. Over-
all, from 2020 to 2023, there has been a general reduction in the
VST delay at HKP, with mean and median delays decreasing over
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the years. The maximum delay has significantly decreased, while
the minimum delay has become slightly more negative. The stan-
dard deviation has gradually decreased, indicating a reduction in the
variability of delay time.

3.3 COVID-19 Impact on Vessel Arrivals and Port
Operations

3.3.1 Analysis of vessel arrivals and port operations at theHKP
before and after the COVID-19 outbreak

The statuses of vessel arrival and port operation are crucial elements
in port management. Specifically, “vessel arrival status” refers to
the number of ship arrivals and the deviation in their scheduled ar-
rival times at the port within a given period. Similarly, the “port
operational status” indicates the efficiency of cargo handled by the
port within a specific period (Authority 2023). In this study, We use
four indicators to assess the HKP’s vessel arrivals and port opera-
tions across various timeframes: the number of vessels of different
types arriving at HKP, the total vessel NT, the average GT for con-
tainer vessels, and HKP’s throughput. The first indicator measures
the vessel arrival status, while the remaining three assess the port
operation status. In this subsection, a comprehensive evaluation of
the vessel arrival and port operation status at the HKP before and af-
ter the COVID-19 outbreak is provided. Initially, vessel arrival data
and port operation data at the HKP, ranging from January 2019 to
December 2022, which cover the time periods prior to and follow-
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ing the outbreak of COVID-19, are collected and analyzed.
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Figure 3.8: The annual number of vessels arriving at the HKP

Figure 3.8 depicts the annual amount of vessels arriving at the
HKP in 2019, 2020, 2021, and 2022. The data reveals a downward
trend in the number of vessel arrivals, which amounted to 22,591
in 2019, and decreased by 15.3% to 19,187 in 2020. In 2021, the
decline in vessel arrivals was more substantial, recording a drop of
29.9% from2020, with only 13,444 vessels arriving at the port. How-
ever, 2022 witnessed a modest improvement in the annual total ves-
sel arrivals, registering an increase of 12.3% from 2021, with a total
of 15,061 vessels arriving at the port. The decline in vessel arrivals
at the HKP over the past two years could be attributed to the COVID-
19 pandemic’s unparalleled impact on the worldwide economy and
commerce (Narasimha, Jena, and Majhi 2021; Notteboom, Pallis,
and Rodrigue 2021). The crisis has led to significant disturbances to
global supply chains, leading to a reduction in the demand for goods
and services worldwide, which highly affected the number of vessel
arrivals at the HKP. The difficulties faced by the shipping companies
due to the pandemic-related regulations and restrictions further ex-
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acerbated the decline in vessel arrivals. The modest increase in the
amount of vessel arrivals in 2022 may indicate the gradual recovery
of global trade and supply chains, as the pandemic related restric-
tions began to be lifted in Hong Kong from the end of April (Bureau
2022).
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(a) Monthly number of vessel arrivals at the HKP6
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(b) Monthly comparison of total vessel arrivals at the HKP

Figure 3.9: Monthly statistics of the total number of vessel arrivals at the HKP

Next, we will analyse the monthly status of the proportion of of
6Note: the numbers on the right of each box is the second quartile, i.e., median of the proportion

of monthly vessel arrivals at the HKP.



CHAPTER 3. EVALUATION OF VESSEL AND PORT PERFORMANCE 58

vessel calls at the HKP in Figure 3.9. Figure 3.9a reveals that the
effects of the COVID-19 are evident on monthly vessel arrival pat-
tern at the HKP. In 2020, the range of monthly vessel arrivals ex-
hibited greater variability compared to other years. Vessel arrivals
during the beginning months of the year at the HKP were in a normal
state. However, as the COVID-19 intensified and governments im-
plemented various containment strategies, the maritime sector faced
unprecedented challenges, including disrupted supply chains, labor
shortages, and operational restrictions (Akyurek and Bolat 2020).
These factors subsequently led to a decrease in vessel arrivals at the
HKP, resulting in an expanded range of monthly vessel arrivals. The
range in 2021 indicated a more unified pattern of vessel arrivals as
the HKP was affected by the COVID-19 throughout the year. In
2022, the range of monthly vessel arrivals at the HKP increased
compared to 2021, with an overall increase in the number of ves-
sel arrivals. These findings suggest a gradual recovery following
the beginning outbreak of the COVID-19, and that Hong Kong has
also experienced a shift from the “zero-COVID” policy to “live with
COVID” as pandemic related restrictions are gradually being lifted
and the impact on ports is decreasing. When considering the median
values for each year, there was a sharp decline in 2020 compared to
2019, which is as a result of the detrimental effects of the COVID-
19 pandemic on the shipping industry. The sustained low median
in 2021 suggests that the COVID-19 impact on the HKP had inten-
sified, as reflected by the decline in the overall number of vessel
arrivals. This situation is not unique to the HKP, as ports worldwide
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have been similarly affected by the pandemic (Millefiori, Braca, Zis-
sis, Spiliopoulos, Marano, Willett, and Carniel 2021). However, in
2022, the median showed a slight recovery compared to 2021, indi-
cating a gradual recovery of vessel traffic at the HKP.

Figure 3.9b shows the trend of the monthly number of vessel ar-
rivals at the HKP. The data for 2019, which represents pre-COVID
data, shows a generally unified trend of high vessel arrivals through-
out the year. There is a noticeable decline in arrivals in February,
associated with the Chinese New Year holidays, which often leads
to a slowdown in port activities. Starting in April, the number of
vessel arrivals begins to recover and shows a gradual upward tra-
jectory, culminating in a peak during December. This peak may be
attributed to increased maritime traffic in preparation for the holi-
day season and year-end commercial activities. The overall pattern
from the Figure 3.9b indicates a consistent level of vessel activity
throughout the year 2019, accompanied by temporary surges dur-
ing the summer and winter seasons. After the COVID-19 pandemic
began, the number of vessel arrivals at the HKP was initially unaf-
fected. Even though, there was an increase in vessel arrivals from
March to July 2020, with July having the highest number of arrivals
in 2020 at 2,304. The reasons for such notable circumstance could
be attributed to the following factors:

1. Hong Kong and other port cities in China were able to quickly
control the initial outbreak of the pandemic, resulting in fewer
disruptions to shipping and trade (Grinter 2023d).

2. Before the onset of the pandemic’s third wave in July 2020,
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Hong Kong allowed crew members to disembark at the HKP
and return home without being subject to mandatory quaran-
tine. Many vessels took advantage of this and stopped at the
HKP to drop off crewmembers before continuing on their routes (Grin-
ter 2023e; Grinter 2023g).

Subsequently, from August 2020 to March 2022, the pandemic had a
significant impact on the amount of vessel arrivals, with the amount
of arrivals being far lower than the same period in 2019. This pe-
riod marked the peak of the pandemic’s impact on the port. The
significant decrease in the number of vessel arrivals at HKP in Au-
gust 2020 can be attributed to the third wave of the COVID-19 pan-
demic that hit Hong Kong during that month. Clusters of COVID-19
infections were reported at the port, leading to partial shutdown of
some of the port terminals for disinfection to prevent further spread
of the virus (Grinter 2023c). This had a direct impact on the num-
ber of vessel arrivals at the port. To halt the continued spread of
the COVID-19, the port authorities implemented several policies, in-
cluding prohibiting non-working crew members from disembarking,
requiring daily testing for all personnel, and temporarily suspending
crew changes (Grinter 2023c; Post 2022).

Then, we analyze vessel arrivals at the HKP by vessel types. The
annual number and proportion of different types of vessels arriving
at the HKP are shown in Figure 3.10.7 The analysis of vessel arrivals
of different types of ships at the HKP from 2019 to 2022 reveals sev-
eral trends in terms of the arrival number and proportion. As shown

7GC is short for general cargo vessel and LPGT is short for liquefied petroleum gas tanker.
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Figure 3.10: The annual number and proportion of different types of vessels ar-
riving at the HKP
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in Figure 3.10, container vessels consistently constituted the largest
number and proportion of vessels arriving at the HKP throughout the
four years, which echos the fact that the HKP primarily serves as a
container port and emphasizes the importance of container shipping
to Hong Kong’s economy. Although the number of container ves-
sels decreased from 12,528 arrivals in 2019 to 9,734 in 2022 due to
the pandemic, the proportion of container vessels among all vessel
arrivals increased. In 2019, container vessels accounted for 55.4%
of total vessel arrivals, and by 2021, this proportion increased to its
highest value at 73%. This trend demonstrates that amidst the pan-
demic, the relative frequency of non-container vessels arriving at
ports diminished, while the proportion of container ships facilitat-
ing the conveyance of indispensable goods and cargo experienced
an upturn. Bulk and GC vessels seem to be more heavily influenced
by the COVID-19 pandemic compared to container vessels. Since
the pandemic began, the number of both bulk and GC vessels ar-
riving at the port has decreased. The greater impact on bulk and
GC vessels compared to container vessels can be attributed to two
main reasons. Firstly, container vessels operate with a higher de-
gree of automation in loading and unloading operations, while bulk
and GC vessels require more manual labor and are thus more vul-
nerable to the impact of the pandemic during during which there is
a reduction in port personnel. Secondly, the items transported by
container vessels are more time-sensitive than those transported by
bulk or GC vessels. Goods transported by container vessels are given
higher priority in port handling compared to goods carried by bulk
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and general cargo vessels. Bulk and GC vessels are more susceptible
to the effects of the COVID-19 crisis and the functioning of the port.
Furthermore, the HKP has placed greater emphasis on ensuring the
normal operation of container vessels during the pandemic period,
given its role as a container port (HKSAR 2023). This circumstance
has also affected the arrival of bulk and GC vessels. Passenger ves-
sels have been severely impacted by the pandemic, as the majority
of such vessels are tourist boats from Mainland China. The amount
of passenger vessel arrivals significantly declined from 836 in 2019
to only 26 in 2022. Meanwhile, car carrier and chemical vessels are
the least influenced by the pandemic, with relative stable numbers of
vessel arrivals. This can be attributed to the fact that the arrivals of
these vessel types are primarily driven by local consumer demand,
rather than external factors such as travel restrictions or disruptions
to global supply chains.

Then, we conduct an analysis of the monthly vessel arrival times
for different types of vessels at the HKP under the impact of COVID-
19. We classify vessel types into three categories: vessels unaffected
by COVID-19 (car carrier), vessels affected by the COVID-19 with
immediate impact (passenger, fishing), and vessels with delayed im-
pact from the pandemic (container, bulk, GC, tanker, LGPT), in
terms of their number of arrivals. The illustration and enumeration
of these three categories are presented as follows:
Vessel arrivals with no impact from COVID-19:
The monthly vessel arrival data for car carriers at the HKP is shown
in Figure 3.11, which indicates that car carriers have rarely been in-
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fluenced by the COVID-19 and the related policies. In Hong Kong,
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Figure 3.11: Monthly comparison of car carrier arrivals at the HKP

all brand-new vehicles are imported from overseas transported by car
carriers. The sales volume of imported cars is influenced by brand
marketing strategies and government transport policies rather than
being significantly affected by the COVID-19 pandemic. Conse-
quently, the number of car carrier arrivals at the HKP has suffered
rare effect from the pandemic. Vessel arrivals with immediate im-
pact from COVID-19.
The arrival numbers of both passenger and fishing vessels have been
influenced by the COVID-19 pandemic, with an instantaneous mani-
festation. Figure 3.12 demonstrates a substantial decline in the amount
of tourist vessels arriving at the port since February 2020. The pas-
senger vessels that arrive at the HKP are primarily tourist ships from
Guangdong Province andMacau. Since February 2020, as a result of
the COVID-19 outbreak in major cities in theMainland China, travel
between Hong Kong and the Mainland China was impacted by poli-
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Figure 3.12: Monthly comparison of passenger vessel arrivals at the HKP

cies mandating quarantine, leading to a considerable decrease in the
amount of passenger vessels operating and arriving at the port (Bu-
reau 2022). From July 2021 to February 2022, passenger vessels
arriving at the port were cruise ships catering to local HongKong res-
idents engaged in high-sea staycation tourism, with no stopovers at
other ports. However, after the fifth wave of COVID-19 outbreaks in
March 2022, the number of ship arrivals once again fell to zero. Pas-
senger vessels represent the tourism sector, which stands among the
industries that have been most affected by the COVID-19 (Tsui, Fu,
T. Chen, Lei, and H. Wu 2021). As shown in Figure 3.13, until May
2022, fishing and passenger vessels both experienced a decrease in
the number of arrivals. Whereas from May 2022 afterwards, the
number of fishing vessel arrivals began to recover and eventually
returned to normal levels at the end of the year. This is likely due to
the Hong Kong government’s decision to lift additional quarantine
measures for incoming vessels in May 2022 (Bureau 2022).
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Figure 3.13: Monthly comparison of fishing vessel arrivals at the HKP

Vessel arrivals with delayed impact from the pandemic.
As a transit port, the number of vessels arriving at the HKP is not
only related to local policies but also affected by external economic
conditions. Five categories of vessels, namely container ship, GC
ship, bulk carrier, LPGT, and oil tanker, have been impacted by the
COVID-19 pandemic with a delayed manifestation. These five cat-
egories of vessels are able to be broadly divided into two groups:
one related to cargo and the other related to energy. The monthly
arrival circumstances of these five categories of vessels are depicted
as follows.



CHAPTER 3. EVALUATION OF VESSEL AND PORT PERFORMANCE 67

2019
2020

2021
2022

1,114

905

1,133

1,100

995

1,059

1,094
1,116

1,033
1,054 1,062

1,103

1,076

879

1,059 1,050
1,033

1,073

1,144

812

959
940

892

941
965

802

972

901

952

814

715

769
780

714

753

717

764

720
735

794

834

881

829 830 829

802

776

849

N
um

be
r o

f c
on

ta
in

er
 v

es
se

l a
rri

va
ls

 a
t t

he
 H

KP

700

800

900

1,000

1,100

1,200

Month
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.14: Monthly comparison of container vessel arrivals at the HKP
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Figure 3.15: Monthly comparison of bulk carrier arrivals at the HKP

First, we analyze the vessel arrival patterns that are related to
goods transportation. Figures 3.14 and 3.15 demonstrate a similar
arrival pattern for bulk carriers and container vessels. Prior to July
2020, the number of arrivals of both categories was unaffected by
the COVID-19 pandemic, and there was even a temporary growth
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from May to July 2020 due to a brief increase in external demand
and the HKP authorities’ allowance of crew disembarkation (Bu-
reau 2022; Post 2022). Starting from August 2020, there was a sig-
nificant decline in vessel arrivals due to the implementation of pan-
demic prevention policies at the port and the related economic impact
of the pandemic on vessels, leading to a reduction in demand (List
2023b; List 2023a). Subsequently, the number of arrivals of bulk
carriers and container vessels at HKP remained low until June 2021.
In June 2021, the port authorities eased its control requirements for
crew members, allowing them to disembark after undergoing quar-
antine (Bureau 2022). Furthermore, in the second half of 2021, the
global economy began to enter a recovery period, contributing to a
gradual recovery of the number of arrivals of bulk carriers and con-
tainer vessels. After Hong Kong transferred from “Zero-COVID”
mode to “live with COVID” in May 2022, the growth rate of ves-
sel arrivals was limited, and the amount of arrivals did not recover
to pre-pandemic levels. This is attributed to several factors, includ-
ing the lingering influences of the COVID-19 fallout in Mainland
China and the reduced demand fromthe United States and Europe
due to rampant inflation (Grinter 2023b). Another factor contribut-
ing to this is the impact of the ongoing Russia-Ukraine conflict on
global trade (Grinter 2023a). The monthly arrival number of GC
vessels at the HKP is presented in Figure 3.16. In 2019, the arrival
numbers for GC vessels remained relatively stable from January to
November, with a significant increase observed in December due to
the approaching of Christmas andNewYear. In 2020, unlike the con-



CHAPTER 3. EVALUATION OF VESSEL AND PORT PERFORMANCE 69

2019
2020

2021
2022

157

120

144

123 123

148
158 154

177 176

159

230

203

166

152

134

157
151

144

41
48

34 31
38

23 22

45

18
28 32

64
73

58
67 65

42

28
20

33

62
69 66

57 60 56 54

67

45

N
um

be
r o

f g
en

er
al

 c
ar

go
 v

es
se

l a
rri

va
ls

 a
t t

he
 H

KP

0

50

100

150

200

250

Month
0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.16: Monthly comparison of GC vessel arrivals at the HKP

tainer and bulk ships, the number of GC vessel arrivals from January
to July is not significantly influenced. Instead, a substantial decline
was observed in August, which was then followed by a low vessel
arrivals period. Additionally, the December surge in previous years
was not observed during the pandemic period.

Next, we analyze the arrival pattern of vessels that are related
to energy. The number of monthly arrivals of LPGT is shown in
Figure 3.17. LPGT in Hong Kong is mainly utilized for household
and local transportation purposes (Statista 2023a). The COVID-19
and the related policy restrictions have adversely impacted residents’
travel, leading to a significant decline in LPGT consumption in Hong
Kong. From August 2020, coinciding with the pandemic’s rapid
spread and the related policy restrictions, LPGT consumption re-
mained at a low level. However, since Hong Kong’s reopening in
May 2022, LPGT consumption has been gradually recovering and
has nearly reached pre-pandemic levels as of September 2022. The
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Figure 3.17: Monthly comparison of LPGT vessel arrivals at the HKP
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Figure 3.18: Monthly comparison of oil tanker arrivals at the HKP
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arrival pattern of oil tankers, as shown in Figure 3.18, is critical to
Hong Kong’s oil supply, as the region relies entirely on foreign im-
ports. Hong Kong’s crude oil consumption comprises three compo-
nents: aviation and shipping fuel consumption, household petroleum
consumption, and petroleum consumption in civil industries (Statista
2023b). The correlation between the economy and oil consumption
is highly positive. Hong Kong serves as a hub for air transporta-
tion, and the aviation industry was severely affected during the pan-
demic, with a significant reduction in flights and thus in aviation
fuel consumption (Statista 2023b; Statista 2023a). Additionally, re-
strictions on residents’ movements and a reduction in the number of
vessel arrivals during the pandemic resulted in a decline in oil con-
sumption. Since Hong Kong’s reopening in May 2022, flight num-
bers have gradually recovered, and the local economy has resumed
growth. Consequently, the arrival number of oil tankers has gradu-
ally increased, although they have not yet reached the pre-pandemic
levels.

3.3.2 Port operation status at the HKP

This subsection delves into the effect of the COVID-19 on the op-
erational aspects of the HKP. We assess the port operation status at
HKP using three indicators: the total vessel NT, HKP’s throughput,
and the average GT for container vessels. Vessel NT is a measure-
ment to calculate the capacity of a ship, which is calculated by the
difference between the volume of a vessel’s cargo spaces and its non-
revenue-generating spaces. The total NT handled by a port within a
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specific period reflects the port’s capacity utilization and infrastruc-
ture capabilities, indicating how effectively it can accommodate and
service vessels. A high total NT suggests the port is a significant
node in global shipping networks, capable of handling large vessels
efficiently (Branch 2012). Similarly, the throughput of a port re-
veals the volume of cargo handled, serving as a direct measure of
the port’s activity level, its economic impact, and its efficiency in
cargo operations (Rødseth, Wangsness, and Schøyen 2018). Lastly,
the average GT for container vessels provides insights into the size
of container ships visiting the port and signifies the port’s operational
efficiency and infrastructure readiness to manage larger, more mod-
ern vessels (Tchang 2020). Collectively, these metrics shed light on
the port’s operational efficiency, its strategic importance in the mar-
itime industry, and its ability to meet the demands of international
trade efficiently (Tai, J. Guo, Guan, and Q. Shi 2021). We begin
by investigating the total vessel NT at the HKP. The monthly com-
parison of total vessel NT is shown in Figure 3.19. The pattern of
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Figure 3.19: Monthly comparison of total vessels NT at the HKP

vessel NT presented in Figure 3.19 shows a similar trend to the to-
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tal vessel arrival data presented in Figure 3.9b, which suggests that
the total NT of a vessel is closely related to the number of vessel
arrivals. Staff can also utilize NT as an indicator to assess vessel
arrival circumstances. Next we analyze the average GT of arriving
container vessels and the HKP container throughput. The annual
container throughput of the HKP from 2019 to 2022 is depicted in
Figure 3.20. From a yearly perspective as shown in the Figure 3.20,
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Figure 3.20: HKP throughput on a yearly basis

the HKP container throughput has gradually decreased from 2019 to
2021, albeit by a small margin. However, the data for 2022 shows a
significant decline compared to 2021. Prior to 2019, the throughput
of the HKP already begun to decrease, and in the first three years,
the decline was mainly attributed to a decrease in Hong Kong’s com-
petitive edge compared to other ports in Mainland China instead of
the COVID-19. HKP container throughput was normal in the first
five months of 2022. Whereas starting from June, the port container
throughput began to decline due to the external economic and policy
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environment. The increase in interest rates in Europe and the United
States, as well as the Russia-Ukraine conflict, have led to a decrease
in foreign trade demand, resulting in a reduction in the volume of
goods passing through the HKP as a transit hub, thereby reducing
the port’s throughput (Grinter 2023a; Grinter 2023f). The monthly
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Figure 3.21: Monthly comparison of port total container throughput at the HKP

comparison of port container throughput at the HKP is shown in Fig-
ure 3.21. It is noticed that the container throughput at HKP is usually
at its lowest in February each year, as the month has the fewest num-
ber of days and may include the Chinese New Year holiday. The
port container throughput in April and May of 2020 decreased com-
pared to the same period of 2019, primarily due to the COVID-19
outbreak that affected the port’s operations and resulted to the work-
from-home of staff, which lowered port handing efficiency (Post
2022). Finally, we analyze the average GT of container ships ar-
riving at the HKP on a monthly basis. Container GT serves as an
indicator of the cargo-carrying capacity of container ships. It is a
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Figure 3.22: Monthly comparison of average GT of container ships at the HKP

widely used metric that measures a ship’s capacity to carry cargo
and helps evaluate the operational efficiency of ports in handling
containerized cargo. The monthly comparison of the average GT
of container ships at the HKP is shown in Figure 3.22. From 2020
afterwards to the end of 2022, the average GT of container ships ar-
riving at Hong Kong gradually decreases, and despite the re-opening
of Hong Kong in post-pandemic, the average GT of container ships
has not yet fully recovered to its pre-pandemic levels. During the
initial phase of the COVID-19, the crew members of long-haul con-
tainer ships were inevitably susceptible to infection during voyages.
If infected, container voyages would be delayed, resulting in an in-
crease in the total shipping costs. In addition, Hong Kong’s strict
COVID-19 prevention measures, such as prohibiting crew members
from going ashore and banning positive cases from approaching the
port, could affect the scheduling of large container ships. Usually,
large container vessels are deployed for long-distance journeys, such
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as those connecting China with the United States or Europe. These
factors led to longer completion times for large ships on the same
routes when comparing the pandemic period to pre-pandemic times,
resulting in a reduction in the number of large-tonnage ships arriving
and a decrease in the average container GT. After HK reopening, the
impact of the pandemic on crew members and cargo handlers con-
tinues, as crew members getting sick can still affect ship operations.
Furthermore, in the latter part of 2022, due to economic recession
and declined demand, the demand for large long-haul container ships
decreased, and the average container GT remained to be low. The
beam, length, and GT value of ships are positively correlated. Ul-
timately, the analysis of changes in the beam and length of ships
visiting HKP under the COVID-19 impact is similar to the GT situa-
tion. To sum up, our analysis reveals that the COVID-19 and related
restrictions result in a reduction on vessel calls across various types
of vessels, as well as a decrease in port total throughput, and thus
vessel total NT and vessel average GT.

3.3.3 Vessel arrival and container rate correlation analysis

Container freight rate is the price at which a TEU container is deliv-
ered from one port to its destination (Placek 2022). It is a shipping
price index that reflects the trend of price changes in the global con-
tainer transport market (Placek 2022). Container freight rates have
been greatly affected by the COVID-19 pandemic, as it disrupted
global supply chains and caused imbalances in the availability of
shipping containers (Saeed, Nguyen, Cullinane, Gekara, and Chhetri
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2023). In this section, we aim to examine the correlation between
vessel arrival and departure times in the HKP and container freight
rates. We primarily refer to the global container freight rate estab-
lished by Statista,8 which monitors the expenses of transporting 40-
foot containers across eight significant global routes, covering both
extended spot rates and short-term contract rates (Placek 2022). The
global container freight rate index established by Statista represents
the average container freight rate across the last full week’s five busi-
ness days of each month. This calculation method offers a clear,
standardized benchmark, providing a market snapshot that is both
recent and stable. It minimizes the impact of short-term price fluctu-
ations and anomalous events that could distort a full-month average.
Figure 3.23 presents the global container freight rate index from Jan-
uary 2019 to December 2022.

8https://www.statista.com/statistics/1250636/global-container-freight-index/.
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Figure 3.23: Global container freight rate overview

Container freight rate remained relatively stable in 2019. How-
ever, following the outbreak of the COVID-19, it exhibited an up-
ward trend, reaching its peak in September 2021. Subsequently,
it gradually declined and approached normal values by the end of
2022. At the onset of the pandemic, numerous factories in China
and other parts of Asia experienced a decline in working efficiency,
leading to a reduction in the volume of goods being transported.
Subsequent to the worldwide lockdown in 2020, China succeeded in
reinvigorating its economy at a swifter pace compared to the United
States and Europe (Saeed, Nguyen, Cullinane, Gekara, and Chhetri
2023). Nevertheless, the lockdown in Europe and North America
led to a significant backlog of shipping containers, causing disrup-
tions and increased shipping costs. This unforeseen consequence had
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far-reaching impacts on the global maritime transportation, as con-
tainers remain immobilized in these two continents. Consequently,
China has experienced a shortage of shipping containers, and ship-
ping companies have been unable to meet the demand due to the
scarcity of available containers. Such circumstance has exacerbated
the supply-demand imbalance, culminating in considerable surges in
container freight rates. Shipping companies had to raise their prices
to compensate for the expenses of repositioning empty containers
and managing the disruptions caused by the pandemic (Jin, J. Chen,
Z. Chen, Sun, and B. Yu 2022). In 2021, there was a significant
surge in global freight rates, with prices reaching an all-time high
of almost 10,400 U.S. dollars in September. However, by Decem-
ber 2022, the global freight rate index dropped to 2,100 U.S. dol-
lars (Placek 2022). The shipping rates on the China-US and China-
Europe routes have a significant impact on global container rates, as
these trade lanes are among the busiest and most important in inter-
national trade (Slack and Gouvernal 2011). The HKP serves as the
vital transit port for logistics and trade between China and the world.
Extreme delay and turnaround time for container in the HKP not only
affect local logistic operations but also undermine the stability of
world supply chain (Akyurek and Bolat 2020). We use the Pearson
correlation coefficient (PCC) and Spearmans correlation coefficient
(SCC) as indicators to analyze the correlation of vessel arrival and
departure at the HKP to global container freight rate. PCC and SCC
are two statistical measurements of the linear correlation and simi-
larity between two variables (J. Benesty, J. Chen, Huang, and Cohen
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2009). Suppose we have n samples of the vessel arrival delay or
vessel turnaround time as X and container freight rate Y . For each
month i, i = 1, . . . , n, Xi is the value of time factor for month i and
X̄ is the mean value ofX . Yi is freight rate for month i and Ȳ is the
average value of freight rate Y . R (X) is the ranked variables of X
and R (Y ) is the ranked variables for Y . The definitions of PCC and
SCC are as follows:

PCC =
cov(X,Y )

σXσY
=

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
√∑n

i=1

(
Xi − X̄

)2√∑n
i=1

(
Yi − Ȳ

)2 ,

(3.6)

SCC = rs =
cov(R(X),R(Y ))

σR(X)σR(Y )
= 1− 6

∑
d2i

n (n2 − 1)
, (3.7)

where cov(X,Y ) is short for covariance of X and vector Y , σX is
the standard deviation of X , E(X) is the expectation of X , µX is
the mean of X , di = R (Xi) − R (Yi) is the difference between the
two ranks of each variables. The range of PCC and SCC values is
from -1 to 1. A value of -1 represents a perfect negative correlation,
while a value of 0 indicates no correlation, and a value of 1 indi-
cates a perfect positive correlation between the variables being stud-
ied. PCC is ideal for quantifying the linear correlation between two
variables, offering insights that are scale and unit independent. Con-
versely, SCC offers a non-parametric alternative, robust against out-
liers and capable of identifying monotonic relationships in variables,
irrespective of linearity. Leveraging these advantages, we employ
the PCC and SCC indicators to more precisely depict the relationship
between global freight rates, arrival delays, and the turnaround time
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of all vessels, including container vessels at the HKP, as well as ex-
amining the correlation between HKP’s total throughput and global
freight rates, with our analysis encompassing related data from Jan-
uary 2019 to December 2022. The analysis results are shown in Ta-
bles 3.11 and 3.12.

Table 3.11: Correlation analysis between the global freight rate and the vessel
arrival status at the HKP

Indicators Arrival time
delay of all
types of
vessels

Container
vessel

arrival delay

Turnaround
time of all
types of
vessels

Container
vessel

turnaround
time

HKP
total

through-
put

PCC
value

0.675 0.774 0.569 0.814 -0.164

SCC
value

0.690 0.741 0.558 0.817 -0.152

Table 3.11 demonstrates a positive correlation between the arrival
time delay and turnaround time of containers at the HKP and global
freight rate. Conversely, there is a weak negative correlation be-
tween the throughput of the HKP and the global freight rate. Further-
more, container vessel arrival delay and turnaround time are more
closely related to container rate compared to all types of vessel. Sub-
sequently, we examine the correlation between the global freight rate
and vessel arrival status at the HKP amidst the pandemic. The time-
frame spanning from February 2020 toMay 2022 is designated as the
COVID-19 period for this analysis. The analysis results are shown in
Table 3.12. Table 3.12 discloses that throughout the COVID period,
a positive correlation is observed between the vessel arrival delay
and turnaround time of container at the HKP and the global freight
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Table 3.12: Correlation analysis between the global freight rate and the vessel
arrival status at the HKP during the COVID-19 period

Indicators Vessel arrival delay Container veesel arrival delay Vessel turnaround time Container vessel turnaround time
PCC value 0.601 0.715 0.623 0.835
SCC value 0.632 0.744 0.657 0.841

rate. This observation aligns with the conclusions drawn from Ta-
ble 3.11. This finding suggests that widespread container vessel ar-
rival delay and prolonged turnaround time at the HKP exhibit a pos-
itive correlation with the escalation of global container rates. Sev-
eral factors can attribute to this positive correlation. For example,
when delays or prolonged turnaround time occur in the HKP, con-
tainer vessels may have to spendmore time waiting for cargo loading
and unloading, which could affect the operational plans and transport
capacity of shipping companies. This could result in further vessel
arrival and departure delays, leading to the disruption of container
liner shipping and global supply chain. Furthermore, as an essential
transit port, the HKP plays a crucial role as a central hub for long-
haul routes connecting China with the United States and Europe as
well as other distant regions. As a key shipping hub, any delays or
disruptions at the HKP can have ripple effects on other ports and
regions as well as the global container rate.



Chapter 4

Vessel Time Prediction: Arrival,
Turnaround, and Service
Estimations

4.1 Predictive Model Introduction

ML is a specialized branch of artificial intelligence that centers on
the use of data and algorithms to simulate the process of human
learning (Z.-H. Zhou 2021). An ML model autonomously extracts
knowledge within the dataset and employs these latent patterns to
predict future data. Typically, ML involves three primary compo-
nents: data preparation, algorithmic representation and model opti-
mization (Z.-H. Zhou 2021; Filom, Amiri, and Razavi 2022). Data
preparation refers to the process of preparing the dataset for the train-
ing. Algorithmic representation denotes the structure and formula-
tion of the algorithms used in the ML process. Lastly, model opti-
mization involves fine-tuning themodel’s hyperparameters to achieve
the most favorable outcome. Tabular data serves as the fundamental

83
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data format for port operations (Filom, Amiri, and Razavi 2022), in
which each row presents an observation or a sample and every col-
umn represents a feature. Tree-based models, such as XGBoost and
random forest (RF), are often utilized for predictive analysis. They
tend to be more adept than neural networks at extracting valuable
features and information from the dataset through techniques like
bagging and ensemble learning (Grinsztajn, Oyallon, and Varoquaux
2022). The performance of these tree-based models often exceeds
that of neural networks in many scenarios, especially when dealing
with tabular data. In our research, our prediction dataset is a prime
example of the tabular data format, thus we mainly use tree-based
model to predict vessel related time. In addition, for comparison
of models performance, we utilize various other prediction models
including CART, XGBoost, RF, back propagation neural networks
(BPNN), light gradient-boostingmachine(LightGBM), LSTM to fore-
cast the target value. We will introduce prediction models in de-
tail regarding model definition, starting with an introduction to the
CART model.

4.1.1 Introduction to basic prediction models

CART, standing for Classification and Regression Tree, is a method-
ology used for constructing both RF and XGBoost. This algorithm is
capable of generating models for both types of trees. In our project,
we are focusing on regression problems, and the CARTmodel serves
as a foundational element for the subsequent XGBoost model. This
subsection will delve into the specific composition of the CART re-
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gression model, exploring how it functions and its application in our
regression-focused project. Suppose our dataset D has n samples
and each sample hasm features: D = {(xi, yi) , i = 1, . . . , n} , xi ∈
Rm, yi ∈ R, where xi is the vector of features for sample i and yi is
the label or the corresponding real target value.

The process of splitting the tree begins at the root node. Ini-
tially, a feature mi is chosen along with its corresponding value si.
This pair, represented as (mi,si), serves as a potential splitting point.
Utilizing this point, the entire dataset D is divided into two dis-
tinct sub-regions, R1 and R2 and these two areas are expressed as:
R1 = {yi | xi,mi ≤ si} , R2 = {yi | xi,mi > si}. In the CARTmodel,
the average target values for all samples in regions R1 and R2 are
determined and assigned as the predicted targets for the samples in
their respective regions. The effectiveness of each candidate split-
ting point is evaluated by calculating the sum of the MSE for both
R1 and R2. The algorithm iterates over all features and their corre-
sponding values to generate various candidate splitting points. The
aim is to identify the splitting point that results in the lowest com-
bined MSE for the two regions. This optimal pair, which minimizes
the sum of MSE, is then chosen as the final point to split the cur-
rent node. These steps are repeated for each node until a pre-defined
stopping condition for halting the growth of the tree is met. This
systematic approach ensures the development of an efficient and ac-
curate model (Lewis 2000).

To convey the process of constructing a CART regression tree
more precisely, we can present it in mathematical terms as follows:
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1. Beginning at the root node, a feature-value pair (m1, s1) is cho-
sen to divide the datasetD into two distinct regions,R1 andR2.

2. Calculate the mean targets of samples in the two sub-regions
R1 and R2, which are denoted by C1 and C2, respectively:

c1 =
1

n1

∑

xi∈R1

yi, c2 =
1

n2

∑

xi∈R2

yi. (4.1)

3. Iterate through all features di and their corresponding values
si to identify the split pair that minimizes the loss function in
Equation (4.2). The optimal split pair of the current node is
denoted as (m∗, s∗).

(m∗, s∗) = min
mi,si

{
min

xi∈R1(mi,si)
(yi − c1)

2 + min
xi∈R2(mi,si)

(yi − c2)
2

}
.

(4.2)

4. Use the optimal splitting pair (m∗, s∗), the samples are divided
into two new areas. These two new areas are defined as follows:

R1 (m
∗, s∗) = {yi | xi,mi ≤ s∗} , R2 (m

∗, s∗) = {yi | xi,mi > s∗} .
(4.3)

5. Carry out steps 1 and 2 on each node until any one of the pre-
defined tree growth conditions is met, and no further splitting
of nodes is allowed. The nodes in the final layer become leaf
nodes. As a result, the entire training set is divided into K re-
gions,R1, . . . . . . Rk, where k also represents the number of leaf
nodes. The model generated from the iterations can be written
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as:

f(x) =
K∑

i=1

ciI (x ∈ Ri) , (4.4)

where k = 1, . . . , K , and I is an indicator function with the
following form:

I =





1 if (x ∈ Rk)

0 if (x /∈ Rk) .
(4.5)

However, traditional CARTmodels suffer from the problem of over-
fitting, leading to weak generalization capability (Breiman 2001), as
they are sensitive to extreme data and subtle changes. To overcome
this issue, a bootstrap aggregating (bagging) method is proposed to
create divergence in the training set by using an ensemble of CART
models to construct a unified model. The basic idea of CART with
the bagging method is presented as follows:

1. Suppose that we have an original training set with n samples.
To form a bootstrap sample, n samples from the original train-
ing set are randomly extracted with replacement. Then, this
process is repeated k times (Breiman 2001), and we have a total
of k bootstrap samples after the resampling process (Breiman
2001).

2. Train k CART models using the K bootstrap samples. In the
regression problem, the final output is given by averaging the
outputs of the k CART models.

The RF improves on the bagging method based on the CARTmodel.
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The only difference between RF and CART models with bagging is
the manner in which each node in the tree is split. The optimal split
pair is selected from a random subset of features instead of all of
the features in the RF model, and the number of selected features
is preset. With this characteristic, the RF model can handle high-
dimensional data without feature selection and is more robust against
overfitting (Breiman 2001).

In maritime studies, the RF model is widely used for vessel fuel
consumption prediction, ship energy efficiency prediction, and the
efficient inspection of vessels, among other topics (J. Yu, G. Tang,
Song, X. Yu, Qi, D. Li, and Y. Zhang 2018; Y. Yang, Y. Liu, G. Li,
Z. Zhang, and Y. Liu 2024).

XGBoost is a powerful tree-basedML algorithm built on the boost-
ing framework. Unlike RF, which trains trees independently and
averages their predictions, XGBoost employs a sequential boosting
approach, where each tree corrects the errors of its predecessors.
This leads to higher predictive accuracy and better handling of com-
plex patterns. Additionally, XGBoost incorporates advanced regu-
larization techniques, such as L1 and L2 penalties, to prevent overfit-
ting, and it efficiently handlesmissing values and large-scale datasets
through optimized parallel computing (T. Chen, T. He, M. Benesty,
Khotilovich, Y. Tang, Cho, K. Chen, Mitchell, Cano, T. Zhou, et al.
2015). XGBoost achieves this by integrating numerous foundational
CART models, creating a robust prediction model.

In regression task, XGBoost comprises ofK basic CART regres-
sion models and functions cumulatively to predict outcomes. We can
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represent the model’s output as:

ŷi = φ (xi) =
K∑

t=1

ft (xi) , ft ∈ F, (4.6)

where ŷi is the predicted value by the XGBoost, ft is the t-th basic
CART tree, F is the set of functions for all K CART trees. And the
training loss can be represented as:

L =
n∑

i=1

l (yi, ŷi) . (4.7)

A practical choice for the loss function is the MSE, where:

n∑

i=1

l (yi, ŷi) =
n∑

i=1

(yi − ŷi)
2 . (4.8)

The accuracy of a predictionmodel is determined by both its bias and
variance (Z.-H. Zhou 2021). The bias of the model is represented by
the loss function, L, while Ω, is utilized to penalize the complexity
of the model and evaluate the variance of the output. In this way, the
object function (Obj) of the XGBoost is:

Obj =
n∑

i=1

l (yi, ŷi) +
K∑

t=1

Ω (ft) . (4.9)

The first term in Eq. (4.9) is the total training loss of n samples in
the training set The second term in Eq. (4.9) represents the sum of
the complexities ofK trees. The complexity for each individual tree
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is expressed as follows:

Ω (ft) = γTt +
1

2
λ

Tt∑

j=1

w2
j , (4.10)

where γ and λ are pre-set hyperparameters, Tt is the number of leaves
for t-th tree and wj is the weight in the j leave. To minimize the
object function in Eq. (4.9), we cannot directly implement the gra-
dient descent method as is traditionally utilized in boosting model.
Instead, we formulate and train the model in an additive approach.
Suppose the model after t, t = 1, . . . , K iterations, the XGBoost
model currently has t trees and the prediction value for the i-th sam-
ple by the current t trees is:

ŷ(t)i =
t∑

k=1

fk (xi) = ŷ(t−1)i + ft (xi) . (4.11)

In this way, we can rewrite our object function in Eq. (4.9) as:

Obj(t) =
n∑

i=1

l(yi, ŷi) +
t∑

k=1

Ω(fk)

=
n∑

i=1

l
(
yi, ŷ

t−1
i + ft (xi)

)
+

t∑

k=1

Ω (fk)

=
n∑

i=1

(
yi −

(
ŷ(t−1)i + ft (xi)

))2
+ Ω (ft) +

t−1∑

k=1

Ω (fk) .

(4.12)
Recall that the second order Taylor expansion:

f(x+∆x) + f(x) + f ′(x)∆x+
1

2
f ′′(x)∆x2. (4.13)
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Following the rule, by viewing ŷt−1i as x and ft (xi) as∆x, Eq. (4.12)
can be rewritten as:

Obj(t) +
n∑

i=1

[
L
(
yi, ŷ

t−1
i

)
+ gift (xi) +

1

2
hif

2
t (xi)

]
+Ω (ft)+

t−1∑

k=1

Ω (fk) ,

(4.14)
where gi and hi are the first and second order gradients of the Eq.
(4.12): gi = ∂ŷ(t−1)L

(
yi, ŷ(t−1)

)
= 2ŷ(t−1)i −2yi, hi = ∂2

v̂(t−1)l
(
yi, ŷ

(t−1)
i

)
=

2. When training the t-th iteration, as ŷ(t−1)i has already been deter-
mined, the first term in Eq. (4.14): l

(
yi, ŷ

t−1
i

)
, which is the training

loss of the (t− 1)-th iteration, is a constant. And the last term in Eq.
(4.14):

∑t−1
k=1Ω (fk), which represents the total penalty complexity

of previous t− 1-th iterations, is also a constant. In this way, we can
rewrite the approximated object function in Eq. (4.14) as:

Obj(t) =
n∑

i=1

[
gift (xi) +

1

2
hift (xi)2

]
+ Ω (ft)

=
n∑

i=1

[
gift (xi) +

1

2
hift (xi)2

]
+ γTt +

1

2
λ

Tt∑

j=1

w2
j .

(4.15)

Suppose the sample set in leaf j is defined as:

Ij = {i | q (xi) = j} , (4.16)

where q (xi) is the given fixed tree structure, we can rewrite Eq.
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(4.15) as:

Obj(t) =
Tt∑

j=1








∑

i∈Ij

gi



wj +
1

2




∑

i∈Ij

hi + λ



w2
j



+ γTt.

(4.17)
As the tree structure q (xi) is fixed,

∑
i∈Ij gi,

∑
i∈lj hi and Tt are also

fixed. To obtain the optimal w∗j for leaf j, we can set the first deriva-
tive of the objective function to be 0, and the optimal value ofw∗j can
be derived as follows:

w∗j = −
∑

i∈Ij gi∑
i∈Ij hi + λ

. (4.18)

By substituting Eq. (4.18) into the objective function Eq. (4.17), we
obtain the following optimal value of the objective function:

Obj(t)∗ = −1
2

Tt∑

j=1

(∑
i∈Ij gi

)2

∑
i∈Ij hi + λ

+ γTt. (4.19)

During the derivation of the optimal value for the object function, we
make the assumption that the tree structure q (xi) is predetermined.
Therefore, our next step involves determining the tree structure of the
XGBoost model under this optimal value. Practically, the XGBoost
algorithm implements a greedy method that starts from a single node
and progressively adds branches to the tree to form its structure. Sup-
pose IL and IR are the samples of the left and right nodes of the tree
after splitting and I = IL ∪ IR is the set of nodes before splitting,
then we can write the object function before and after the splitting
as:
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before splitting:

Obj(t)L+R = −1
2

(∑
i∈I gi

)2
∑

i∈I hi + λ
+ λ, (4.20)

after splitting:

Obj(t)L + obj(t)R = −1
2

[ (∑
i∈IL gi

)2
∑

i∈IL hi + λ
+

(∑
i∈IR gi

)2
∑

i∈IR hi + λ

]
+ 2λ.

(4.21)
Then, the gain of the splitting is expressed as:

gain = obj(t)L+R −
(
obj(t)L + obj(t)R

)

=
1

2

[ (∑
i∈IL gi

)2
∑

i∈IL hi + λ
+

(∑
i∈IR gi

)2
∑

i∈IR hi + λ
−
(∑

i∈I gi
)2

∑
i∈I hi + λ

]
− γ.

(4.22)
When splitting the node, we consider all candidates that make the
splitting gain in Eq. (4.22) larger than 0 and select the value of fea-
tures that corresponding to the largest value of gain in Eq. (4.22) to
split the node.

Building on the strengths of XGBoost, we next introduce Light-
GBM, another widely used tree-based ML algorithm known for its
efficiency in prediction tasks. Compared to XGBoost, LightGBM
leverages a histogram-based approach and a unique leaf-wise tree
growth strategy, allowing it to train faster and handle large datasets
more efficiently. Additionally, LightGBM is optimized for lower
memory usage and better scalability, making it particularly suitable
for high-dimensional data (Ke, Meng, Finley, T. Wang, W. Chen,
Ma, Ye, and T.-Y. Liu 2017).
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Similar to the XGBoost model, LightGBM consists of K basic
CART regression models, and the model’s output can be represented
as:

ŷi = φ (xi) =
K∑

t=1

ft (xi) , (4.23)

where ŷi is the value predicted by LightGBM, ft is the t-th basic
CART tree. The training loss is expressed as:

L =
n∑

i=1

l (yi, ŷi) . (4.24)

A common loss function selection is the MSE, where:

L =
1

n

n∑

i=1

(yi − ŷi)
2 , (4.25)

and n represents the number of training samples in the current node
during a split decision. To determine the features that most effec-
tively separate the data and predict the target variable, we need to
split the tree to minimize the training loss (Z.-H. Zhou 2021). For an
individual CART tree, the loss of node j before a split is represented
as:

Lj =
∑

xi∈leaf j

l (Aj, yj) , (4.26)

where Aj is the average value of the prediction value on node j and
yj is the prediction target of node j in the tree. The improvement
from the split on the CART tree’s loss function, mirroring the gain
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in LightGBM’s split decision, is quantified as:

∆ loss = Lj − Lleft − Lright , (4.27)

whereLleft denotes the loss value of the left node andLright represents
the loss value of the right node after splitting. Thus, the objective
function for each split can be expressed as:

argmax
f,t



1

n

∑

xi∈ leaf j

(yj − Aj)
2

− 1

nleft

∑

xi∈leafleft

(yj − Aleft)
2

− 1

nright

∑

xi∈leafright

(yj − Aright)
2





(4.28)

where Aleft is the average value of the prediction value in the left
node after splitting and Aright is the average value of the prediction
value in right node after splitting. nleft is the number of samples
in left node and nright is the number of samples in right node af-
ter splitting. Equation (4.28) identifies the optimal split point that
maximizes the reduction of training loss during the tree’s branch-
ing. The optimization principle of LightGBM’s loss function closely
aligns with the foundational strategy of Gradient Boosted Decision
Trees (GBDT). LightGBM utilizes the negative gradient of the loss
function to optimize the objective function. This effectively approx-
imates the residual values for the current model. During each itera-
tion, this approach fits a new decision tree to the approximated gra-
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dients. A new submodel is added in each iteration, with the original
model remaining unchanged. Suppose fi(x) is the ith submodel in
the ith iteration. Thus, the ensemble LightGBM model Fi(x) after i
iterations is written as:

Fi(x) = ∂0f0(x) + ∂1f1(x) + · · ·+ ∂ifi(x), (4.29)

where ∂i is fixed parameters. The loss function is written asL [Fi(x), Y ]

and by comparing with the previous iteration we get:

L [Fi(x), Y ] < [Fi−1(x), Y ] . (4.30)

This method ensures continuous improvement of the loss function,
leading to predicted values that converge closer to the ground truth. (Ke,
Meng, Finley, T. Wang, W. Chen, Ma, Ye, and T.-Y. Liu 2017). Fur-
thermore, LightGBM sets itself apart from traditional GBDT and
other tree-based models by utilizing a leaf-wise growth strategy, in
contrast to the level-wise growth strategy typical in GBDTs. This
method prioritizes splitting the node that maximizes loss function re-
duction, thereby concentrating the model’s development on the most
beneficial segments of the decision tree. Unlike the level-wise strat-
egy which evaluates all possible split points across every level of the
tree simultaneously, LightGBM’s leaf-wise method concentrates on
identifying the optimal split point for each leaf individually. This tar-
geted approach enables LightGBM to achieve greater efficiency and
accuracy, as it directly aligns with the framework’s overarching goal
of minimizing the loss more rapidly. Additionally, by concentrat-
ing growth on the most informative nodes, LightGBM requires less
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data to achieve comparable or superior performance levels, thereby
enhancing its scalability and effectiveness on large datasets. To mit-
igate the risk of overfitting, LightGBM incorporates mechanisms to
limit the maximum depth of the trees. This balance between ag-
gressive optimization and careful regularization encapsulates Light-
GBM’s ability to offer a highly efficient, accurate, and scalable so-
lution for gradient boosting, leveraging its leaf-wise growth strategy
to stand out among tree-based learning algorithms.

(a) Level-wise splitting schematic dia-
gram

(b) Leaf-wise splitting schematic dia-
gram

Figure 4.1: Splitting schematic comparison

Besides, to enhance both training speed and memory efficiency,
LightGBM leverages an innovative histogram-based algorithm that
discretizes continuous feature values into k discrete intervals. This
approach significantly streamlines the process of finding the opti-
mal split points during tree construction by limiting the search to
these predefined intervals. By reducing the granularity of the fea-
ture space, the algorithm effectively minimizes the computational
complexity of model training from O(# data × # feature) to O(k ×
# feature), where # data represents the total number of data points
and # feature denotes the total number of features. Given that the
number of data points vastly exceeds k (i.e., # data- k), thismethod
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significantly improves training efficiency and reduces the space re-
quired to store the model. This histogram-based feature discretiza-
tion not only accelerates the training process by simplifying the eval-
uation of potential splits but also contributes to LightGBM’s over-
all efficiency and scalability, particularly when dealing with large
datasets and high-dimensional feature spaces. Additionally, Light-
GBM’s exclusive feature bundling method merges mutually exclu-
sive features within a specific conflict ratio, enabling dimensionality
reduction without losing information (Ke, Meng, Finley, T. Wang,
W. Chen, Ma, Ye, and T.-Y. Liu 2017).

LSTM is a special type of RNN designed to address the vanishing
and exploding gradient problems that traditional RNNs face when
dealing with long sequences. LSTM achieves this by introducing a
memory cell and three gates—forget, input, and output gates—that
regulate the flow of information, making it highly effective for tasks
involving sequential data, such as time series prediction and natural
language processing.

Mathematically, an LSTM cell operates as follows. At each time
step t the forget gate determines which part of the previous memory
to retain, calculated as:

ft = σ (Wf · [ht−1, xt] + bf) , (4.31)

where, ft is the forget gate output, ht−1 is the previous hidden state,
xt is the current input,Wf and bf are the forget gate’s weight matrix
and bias, respectively, and σ is the sigmoid activation function. The
input gate decides which new information to add to the memory. It
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has two components: the candidate memory update and the input
gate itself:

C̃t = tanh (Wc · [ht−1, xt] + bc)

it = σ (Wi · [ht−1, xt] + bi)
(4.32)

The memory cell is then updated as:

Ct = ft · Ct−1 + it · C̃t (4.33)

The output gate determines the next hidden state based on the up-
dated memory:

ot = σ (Wo · [ht−1, xt] + bo)

ht = ot · tanh (Ct)
(4.34)

In these equations, C̃t is the candidate memory, it is the input gate’s
activation, Ct is the current memory cell, ot is the output gate’s ac-
tivation, and ht is the current hidden state. The three gates: forget,
input, and output, work together to regulate the flow of information,
enabling LSTM to capture long-term dependencies effectively. This
structure makes LSTM robust in handling complex sequential tasks
like language modeling, speech recognition, and financial forecast-
ing.

4.1.2 Stacking method introduction

Since our prediction tasks for VAT, VTT, and VST all involve tabular
data, tree-based models are well-suited as our fundamental predic-
tive models due to their ability to handle structured data effectively.
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Unlike neural networks, which are typically data-driven and require
large volumes of data to learn complex representations, tree-based
models are feature-driven—they explicitly capture hierarchical fea-
ture interactions through recursive splitting. This makes them partic-
ularly effective for tabular data with heterogeneous features, miss-
ing values, and non-linear relationships. To enhance the accuracy
of the prediction results from a single model, an advanced stack-
ing model has been proposed, which incorporates RF, XGBoost,
and LightGBM as its base learners. These tree-based models col-
lectively leverage their strengths to improve overall predictive per-
formance (Z.-H. Zhou 2012). This approach offers several advan-
tages, such as improving predictive accuracy by combining the di-
verse learning capabilities of each model, reducing the risk of over-
fitting by balancing out the individualmodel errors (Z.-H. Zhou 2012).

To illustrate the principles of the stacking method, we take the
VAT prediction task as an example. The proposed stacking model
structure for VAT prediction, illustrated in Figure 4.2, consists of
two main components. The training dataset is first divided into five
folds for cross-validation (CV). Each base model is trained on four
folds and validated on the fifth, producing out-of-fold predictions
(e.g., “Predict_L1” to “Predict_L5” for LightGBM). This process is
repeated five times for each base model while ensuring that every
fold serves as a validation set once.

In each iteration of the stacking method, each base model makes
predictions on an unseen test set. These individual predictions are
then averaged to produce the final prediction for the test set. After
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completing CV for all base models, the predictions from each fold
are stacked to form a new dataset. This stacked dataset is then used as
input to train the second layer linear regression meta-learner, which
combines the base models’ predictions to generate the final output.
This stacking process effectively leverages the strengths of different
models, leading to improved predictive performance.

Figure 4.2: The architecture of the proposed stacking model used for VAT predic-
tion

4.1.3 Model evaluation metrics

For offline evaluation of VTT prediction, the model’s output is con-
sidered as the predicted value, while the actual corresponding value
is treated as the ground truth. we adopt the following common re-
gressor evaluation metrics: RMSE, MSE, MAE, MAAPE, R2 and
MAPE. Suppose that a total of n vessels arrive at the HKP within
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the specified period and the actual corresponding value is yi for ves-
sel i, i = 1, . . . , n. The predicted value, as predicted by the model or
reported by the vessel, is denoted by ŷi for vessel i. The definitions
of RMSE, MSE, MAE, MAAPE, R2 and MAPE are expressed as:
RMSE:

RMSE =

√√√√1

n

n∑

i=1

(yi − ŷi)2. (4.35)

MSE:

MSE =

∑n
i=1 (yi − ŷi)

2

n
. (4.36)

MAE:
MAE =

∑n
i=1 |yi − ŷi|

n
. (4.37)

MAAPE:

MAAPE =
100%
n

n∑

i=1

∣∣∣∣
yi − ŷi
yi

∣∣∣∣ . (4.38)

R2:

R2 = 1−
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − ȳ)2

. (4.39)

MAPE:

MAPE =
1

m

n∑

i=1

∣∣∣∣
yi − ŷi
yi

∣∣∣∣× 100. (4.40)

In evaluation, lower values of RMSE, MSE, MAE, MAAPE, MAPE
indicate better performance. Conversely, a higher R2 value, typi-
cally ranging from 0 to 1, is preferable, indicating greater predictive
accuracy and improved overall model performance.
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4.2 VAT Prediction

4.2.1 Ocean-going VAT prediction

Port operations are planned daily to reduce vessel waiting time and
cargo handling durations, thus maximizing efficiency. One crucial
challenge faced by terminal operators in daily port operations is the
uncertainty of vessel arrivals. Vessels normally upload their ETAone
or several days before approaching the port, but these estimates often
significantly differ from the vessel’s ATA to the port. Factors such
as unforeseen weather, sea conditions, and port congestion can cause
discrepancies between ETA and ATA, reducing port efficiency (Y.
Yang, Yan, and S.Wang 2024). Managing these discrepancies is cru-
cial for maintaining the reliability of vessel operations. According
to a SeaIntelligence report, liner services are regarded as reliable if
vessel delays are within 24 hours of the scheduled ETA, with global
container schedule reliability averaging 51.6% for on-time arrivals
as of March 2024 (Jasmina, Ovcina Mandra 2024). To mitigate the
uncertainty associated with vessel arrivals, data-driven models can
be leveraged to provide more accurate predictions of vessel arrival
time (VAT) compared to the traditionally reported ETA. These mod-
els offer greater reliability than vessel-reported estimates, thereby
enhancing decision-making processes in port operations. Port call
data and automatic identification system (AIS) data are both critical
datasets for VAT prediction models and are essential sources of ves-
sel operation information for port authorities (Yan, S. Wang, Zhen,
and Laporte 2021). Port call data comprises details such as vessel
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ETA and ATA data, serving as crucial references for vessel manage-
ment and port operation. Meanwhile, AIS data provides real-time
movement trajectories of vessels (D. Yang, L. Wu, S. Wang, Jia, and
K. X. Li 2019; Filom, Amiri, and Razavi 2022). Although vessel
arrival uncertainty in ports is a well-recognized issue by port author-
ities, vessel operators, and the maritime research community, current
research on addressing this challenge is extremely limited, and the
problem continues to pose difficulties for port operators (D. Yang,
L. Wu, S. Wang, Jia, and K. X. Li 2019; Filom, Amiri, and Razavi
2022). Moreover, existing studies on VAT prediction often rely on
data from a single source and focus primarily on short-distance fore-
casting. For instance, many studies exclusively utilize AIS data to
predict VAT within a range of 10 to 50 kilometers from the desti-
nation, frequently overlooking the importance of port call data in
improving VAT predictions for both short- and long-distance sce-
narios (Filom, Amiri, and Razavi 2022; X. Zhang, Fu, Xiao, H. Xu,
Wei, Koh, Ogawa, andQin 2024; T. Zhang, J. Yin, X.Wang, andMin
2023). Previous studies commonly set the vessel’s final AIS point of
its approach to the port as the arrival point, using the AIS timestamp
at this location to determine the vessel’s ATA (Filom, Amiri, and
Razavi 2022). However, this approximation introduces inaccuracies
when compared to the vessel’s true ATA, as precise ATA data is of-
ten derived from port call records maintained by the port authorities.
Some research has employed static port call data for VAT predic-
tion (J. Yu, G. Tang, Song, X. Yu, Qi, D. Li, and Y. Zhang 2018),
but port call data lacks real-time vessel trajectory information. More-
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over, the limited frequency of ETA reports during a voyage reduces
the effectiveness of ETA-based predictions when relying solely on
port call data (J. Yu, G. Tang, Song, X. Yu, Qi, D. Li, and Y. Zhang
2018). To enhance VAT prediction accuracy, a promising approach
is to integrate static port call data with dynamic AIS data. The ATA
data derived from port call records can serve as the ground truth for
predictions, while AIS data provides the foundation for building the
predictive model. However, research on integrating port call records
and AIS data for VAT predictions is currently lacking. Consequently,
the key research questions for port authorities are as follows:

Q1: What is the trend of accuracy of the vessel-reported ETA during
the vessel’s voyage to port?

Q2: How to integrate vessel AIS data with the corresponding port
call data to improve VAT prediction?

Q3: What models are suitable for VAT prediction when considering
both AIS data and port call data?

Q4: Which features have a significant contribution to VAT predic-
tion?

In this study, we focus on forecasting the VAT at the HKP using in-
tegrated data. Specifically, we predict a more accurate one based on
the reported ETA and additional features generated from feature en-
gineering. Figure 4.3 illustrates the VAT evaluation and prediction
process. With the matched VAT data, we present a tree-based stack-
ingmodel for VAT prediction, conduct VAT predictions, and perform
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Figure 4.3: The flowchart of vessel arrival evaluation and prediction

a quantitative analysis of the results, including an evaluation of fea-
ture importance.

4.2.1.1 Feature engineering

Building on domain expertise, feature engineering is a crucial ML
process that transforms raw data into meaningful features, improv-
ing model performance. By selecting, transforming, or combining
variables, it enables algorithms to better capture essential patterns in
the data, thus strengthening the model’s predictive power and accu-
racy (Z.-H. Zhou 2012). The main stages of feature engineering in
the study include feature selection and fusion, focused on identify-
ing and incorporating the most relevant variables for VAT prediction.
Our approach enhances VAT prediction accuracy by integrating fea-
tures across four key categories: vessel physical features, temporal
features, berth operational features, and spatial features. The actual
remaining voyage time, calculated as the difference between theATA
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and the AIS report time for each vessel record, serves as the ground
truth in the VAT prediction task. The specific features used for VAT
prediction are explained as follows and summarized in Table 4.1.
Vessel physical features:
Vessel physical features, encompassing the geometric dimensions of
a vessel such as length, depth, and draft, are pivotal in predicting
VAT at ports (J. Yu, G. Tang, Song, X. Yu, Qi, D. Li, and Y. Zhang
2018). These geometric characteristics of vessel directly impact sub-
sequent berth allocation, thereby influencing overall port operations.
These geometric characteristics directly affect vessel maneuverabil-
ity, berthing requirements, and port congestion levels, thereby play-
ing a crucial role in determining VAT. Larger vessels with greater
draft and beam require deeper water channels and larger berth spaces,
often leading to longer turnaround time due to more complex dock-
ing and cargo handling processes. Conversely, smaller vessels with
shallower drafts may experience more flexible berthing options, re-
ducing overall VAT variability.

Furthermore, these physical attributes influence vessel speed, fuel
consumption, and navigational constraints, all of which contribute
to variations in VAT under different port conditions. To enhance our
predictive model, we integrate external vessel physical data from the
World Register of Ships (WRS) into our AIS dataset using vessel
call sign value as an identifier (WRS 2023). This approach enables
the compilation and integration of vessel physical characteristics, in-
cluding beam, gross tonnage (GT), depth, and length, which are es-
sential for capturing the operational complexity of different vessel
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types. Additionally, vessel type information is sourced directly from
port call data, ensuring a comprehensive understanding of vessel be-
havior across different shipping routes and port infrastructures.
Spatial features:
AIS data contains real-time vessel latitude and longitude informa-
tion, which can be used to estimate the precise distance of a vessel
from the port, serving as a spatial feature for VAT prediction. These
spatial features are crucial as they capture real-time vessel move-
ment, reflecting navigational constraints, congestion, and speed vari-
ations that impact arrival time. Unlike static vessel attributes, AIS-
based spatial data allow for dynamic updates, improving VAT accu-
racy by incorporating actual voyage conditions. Previous research
in estimating the remaining voyage distance typically calculates the
distance between the vessel’s current AIS position and the final desti-
nation of its voyage. However, this approach has limitations in prac-
tical port operations because ports typically havemultiple berths, and
the port authority does not know the last point of the vessel’s voy-
age when predicting the ETA. Therefore, we propose a method for
estimating the remaining distance to the port for vessels based on
historical AIS data. This method involves the following steps.

(1) Collect Final Points: Compile the coordinates of the final points
for each voyage from the AIS dataset.

(2) Determine the Coordinates: Calculate the mean value of lati-
tude and longitude of these final points to determine the mean
center coordinates.

(3) Identify the Nearest Points: Find the 90th percentile of the final
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coordinates points closest to this mean center and compute their
average coordinates. This average is considered the estimated
endpoint for each voyage.

(4) Compute the Expected Remaining Distance: Finally, we cal-
culate the expected remaining distance from each AIS point to
the estimated endpoint using the great circle distance, applying
the Haversine formula.

(a) Unprocessed collection of final voyage
points

(b) Processed collection of final voyage
points with estimated endpoint

Figure 4.4: Visualization of the final voyage AIS data points

Temporal features:
When predicting the VAT for vessels, incorporating temporal fea-
tures is crucial for capturing the nuances of vessel movement and
external factors over time. These time-based attributes offer valuable
insights into the progression of a vessel’s journey, helping to iden-
tify patterns, delays, and deviations from expected routes. For in-
stance, analyzing historical AIS timestamps can reveal recurrent de-
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lays during peak hours, while comparing real-time movement trends
with ETA data helps adjust predictions dynamically. Additionally,
incorporating temporal trends allows for better adaptation to sea-
sonal variations, weather disruptions, and operational constraints,
ultimately enhancing the accuracy and reliability of VAT forecasts.
In our prediction model, we primarily consider five temporal fea-
tures: vessel speed, estimated remaining voyage time from ETA data
(Exp_etatime), estimated remaining voyage time from AIS data
(Exp_aistime), the weekday of the AIS report time (AIS_day), the
weekday of the ETA time (ETA_day), and the hour shifts of the AIS
report time and ETA (AIS_hour_shift, ETA_hour_shift).

The vessel speed, obtained from real-time AIS data, is used to
calculate the remaining time for the vessel to reach the port. The
estimated remaining voyage time from ETA data refers to the time
remaining when the vessel reports its ETA, calculated by subtracting
the AIS report time from the ETA. The estimated remaining voyage
time from AIS data is determined by dividing the estimated voy-
age distance by the vessel’s current speed. The weekday of the AIS
report time and the ETA are considered because port operational ef-
ficiency varies between weekdays and weekends, and this factor is
incorporated into our VAT prediction model using one-hot vector en-
coding. Additionally, since port efficiency also fluctuates through-
out different time shifts of a day, one day is divided into three shifts:
midnight to 8:00 AM, 8:00 AM to 4:00 PM, and 4:00 PM to mid-
night. Both the ETA and the AIS report time are one-hot encoded to
account for these temporal variations in the model.
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Berth operational features:
Berth operational features are vital in determining VAT. For instance,
the number of vessels present at the port at the time of an AIS report
serves as a key indicator of the port’s operational intensity. When
vessel traffic exceeds the port’s berthing capacity, limited berthing
availability can lead to prolonged waiting time at anchorages, in-
creasing overall port congestion and disrupting planned schedules.
These factors collectively impact VAT by affecting in-port vessel
turnaround time and port efficiency, making berth operational fea-
tures an essential component in predictive modeling. In predicting
VAT, two berth operational features are considered: the number of
vessels in the port at the AIS report time, which is directly accessi-
ble from the port’s records, and the vessel’s historical average delay.
The latter is particularly relevant to vessels that frequently berth at
HKP, as their average delay is used to assess the reliability of their
reported ETA, with the single-berth delay calculated as the differ-
ence between the vessel’s ATA and ETA.
Prediction target:
For the VAT prediction task, the prediction model cannot directly
predict timestamp values. Instead, the model aims to predict the re-
maining sailing time of the current voyage, where the ground truth
is calculated as the difference between the vessel’s ATA and the AIS
report time. The predicted VAT for the vessel is then calculated by
adding the predicted remaining voyage time to the AIS timestamp.



CHAPTER 4. VESSEL TIME PREDICTION 112

Table 4.1: Description of features for ocean going VAT prediction

Feature category Detailed features Explication Note

Vessel physical features

Beam The width of a vessel at
its widest point

Physical feature set,
matched from WRS

GT The overall internal vol-
ume of a vessel

Physical feature set,
matched from WRS

Depth From the top of the keel
to the deck of a vessel

Physical feature set,
matched from WRS

Length The measurement of the
vessel from the front to
the back

Physical feature set,
matched from WRS

Type Vessel type Physical feature set, ob-
tained from vessel due to
arrival file, 7 different ves-
sel types, one-hot vector
encoding

Spatial features Exp_distance Expected remaining voy-
age distance

AIS feature set, estimated
from AIS data

Temporal features

Exp_aistime Expected remaining voy-
age time from AIS data

AIS feature set, calculated
by dividing estimated re-
maining distance by real
time speed

Speed Vessel real time speed AIS feature set, obtained
from AIS data

Exp_etatime Expected remaining voy-
age time from ETA data

Port call feature set, ETA
timeminus AIS report time

AIS_day Week day of the AIS re-
port time

AIS feature set, fromMon-
day to Sunday, one-hot
vector encoding

ETA_day Week day of the ETA
time

Port call feature set, from
Monday to Sunday, one-
hot vector encoding

AIS_hour_shift Hour shift of the AIS re-
port time

AIS feature set, three dif-
ferent shifts, one-hot vec-
tor encoding

ETA_hour_shift Hour shift of the ETA Port call feature set, three
different shifts, one-hot
vector encoding

Berth operational featuresInport_number Te number of vessels in
port when the vessel re-
ports AIS data

Port call feature set,
counted from in port
vessels file

Vessel_delay The mean value of vessel
historical VAT delay

Port call feature set, ATA
mins ETA

Prediction target/
Ground truth value

Actual_remaining_timeThe actual remaining
voyage time when vessel
reports AIS data

ATA minus AIS report
time
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4.2.1.2 VAT Prediction results analysis

A comprehensive evaluation of VAT prediction is conducted, struc-
tured into five distinct parts. Initially, the standard procedure is ap-
plied, where the dataset is divided into training and test sets with a 4:1
split to facilitate baseline model training and evaluation, as shown in
Table 4.2. However, the traditional method of dataset partitioning
has limitations, as port authorities in real-world operations cannot
access data for vessels that have not yet arrived. To better address
these operational constraints, the dataset is divided based on tempo-
ral and voyage-based criteria. For the temporal criteria, the data is
split chronologically, with earlier data used for training and later data
reserved for predictions. In the voyage-based criteria, the data is par-
titioned by vessel voyages, ensuring that entire voyages are included
either in the training set or the prediction set, without overlap.

The dataset spans from January 1st, 2021 to February 28th, 2021
For the time-based partitioning, data from January 1st, 2021 to Febru-
ary 13th, 2021 is used as the training set, while the remaining data
serves as the test set, with the results presented in Table 4.3. In the
voyage-based partitioning, we first segment the matched AIS dataset
into different vessel voyages based on vessel call signs and ATA
values. Subsequently, 80% of the voyage data, along with the cor-
responding AIS data, is allocated to the training set, while the re-
maining 20% is reserved for testing, with the results presented in
Table 4.4.

To better illustrate the contribution of different features to the
VAT prediction, we also evaluate the VAT prediction performance of
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different models across distinct feature sets, based on the note in Ta-
ble 4.1, and across the three training scenarios. Four distinct feature
sets are considered: the first set included all features; the second ex-
cluded port call features (Exp_etatime,ETA_day,ETA_hour_shift,
and Inport_number); the third excluded AIS-related features; and
the fourth excluded vessel physical characteristics (Beam,GT ,Depth,
Length, Type). Moreover, to assess models predictive performance
at varying vessel remaining distances and time, VAT prediction mod-
els are initially trained on the training sets defined in Table 4.2. The
test set is subsequently segmented into three time slices and three dis-
tance slices. The segmentation is performed at intervals of 12 hours
for time slices and 200 kilometers for distance slices.

Specifically, time slice 1 includes matched AIS data from the test
set where the actual remaining voyage time is within 2 hours; time
slice 2 includes data where the actual remaining voyage time is be-
tween 2 and 4 hours; and time slice 3 includes data where the actual
remaining voyage time is greater than 4 hours. Similarly, distance
slice 1 comprises data where the actual remaining voyage distance
is within 200 kilometers; distance slice 2 includes data where the
actual remaining voyage distance is between 200 and 400 kilome-
ters; and distance slice 3 includes data where the actual remaining
voyage distance is greater than 400 kilometers. The trained models
are then evaluated across these various test slices to determine their
performance in different operational contexts. The results of these
evaluations are presented in Table 4.5 and Table 4.6.
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Table 4.2: Prediction performances of the models on the original test dataset

Model All variables All variables except port call features All variables except AIS features All variables except physical features

MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE

Vessel ETA 6.88 13.11 −0.14 128.16 − − − − 6.88 13.11 −0.14 128.16 6.88 13.11 −0.14 128.16
Estimated
time

7.52 17.31 −0.47 192.16 7.52 17.31 −0.47 192.16 − − − − 7.52 17.31 −0.47 192.16

RF* 3.53 5.74 0.78 94.85 4.02 6.22 0.74 94.53 4.18 6.42 0.73 219.67 3.84 6.30 0.74 63.26
LightGBM 1.11 2.52 0.96 29.53 1.90 3.92 0.90 41.13 2.66 5.31 0.80 120.43 2.90 5.30 0.80 46.99
XGBoost 1.08 2.48 0.96 27.56 1.87 3.93 0.90 39.29 2.58 5.13 0.83 113.87 2.84 5.30 0.81 46.87
Stacking 1.06 2.37 0.97 26.91 1.86 3.89 0.91 39.01 3.35 5.81 0.79 108.99 2.80 5.30 0.82 45.55
LSTM‡ 3.22 5.53 0.80 100.99 2.96 5.36 0.81 75.18 4.10 6.47 0.72 155.89 3.50 6.07 0.71 58.18
ANN 6.09 10.43 0.19 105.91 4.01 6.00 0.65 99.57 4.51 6.65 0.51 240.12 4.43 8.27 0.51 92.19

* The best performance model in J. Yu, G. Tang, Song, X. Yu, Qi, D. Li, and Y. Zhang (2018).
‡ The best-performing model in the study by Wenzel, Jovanovic, and Schulte (2023).

Table 4.2 compares the performance of RF, LightGBM,XGBoost,
Stacking, LSTM, and ANN prediction models, alongside the best-
performing model from the previous studies, on the HKP vessel ar-
rival dataset under different metrics and feature combinations. Port
operations rely on two key estimates: the Vessel ETA, based on
the vessel’s reported arrival time, and the estimated time, obtained
by evaluating the remaining voyage distance from AIS data and di-
viding it by the vessel’s speed. Both of these sources exhibit large
MAE and RMSE values, negativeR2, and high MAPE, highlighting
their significant inaccuracies and unreliability for VAT estimation.
Among the VAT prediction models, Stacking, LightGBM, and XG-
Boost consistently outperform the others, with the stacking model
achieving the lowest errors across all variables.

Compared to the vessel ETA, Stacking reduces theMAEby 84.59%
(from 6.88 hours to 1.06 hours) and the RMSE by 81.92% (from
13.11 hours to 2.37 hours). Additionally, the R2 improves dramat-
ically from −0.14 to 0.97, indicating a much better fit. MAPE also
drops by 79.00%, from 128.16% to 26.91%. These reductions in
error metrics demonstrate that advanced tree-based models like XG-
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Boost and Stacking significantly enhance prediction accuracy over
the vessel-reported ETA. The results for LSTM and ANN, however,
are less impressive compared to the tree-basedmodels. LSTM shows
moderate performance with an MAE of 3.22 hours and an RMSE of
5.53 hours, while ANN performs even worse, with an MAE of 6.09
hours and an RMSE of 10.43 hours. The primary reason for their un-
derperformance is that the VAT prediction task is not a typical time
series prediction problem, where LSTM typically excels (Z.-H. Zhou
2012). Instead, this problem involves handling tabular data with
mixed features, where neural networks generally struggle to capture
complex feature relationships effectively (Grinsztajn, Oyallon, and
Varoquaux 2022)

In the analysis of VAT prediction across different feature com-
binations, the exclusion of port call or AIS features leads to a sig-
nificant increase in VAT prediction errors, underscoring the critical
importance of integrating ETA or AIS data for accurate VAT pre-
dictions. This impact is particularly evident in models like RF and
ANN, which show a marked decline in performance compared to
more robust tree models like LightGBM, XGBoost, and stacking ap-
proach. LSTM and ANN, in particular, exhibit consistently higher
MAE and MAPE across all feature combinations, further emphasiz-
ing their limitations in handling tabular data with limited features.
In contrast, the stacking approach demonstrates superior resilience
against variations in input features, maintaining strong performance
even when key features are unavailable, highlighting its ability to
manage feature variability and provide more reliable predictions.
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Table 4.3: Prediction performance of models on the time-ordered test dataset

Model All variables All variables except port call features All variables except AIS features All variables except physical features

MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE

Vessel ETA 6.84 10.61 0.05 71.37 − − − − 6.84 10.61 0.05 71.37 6.84 10.61 0.05 71.37
Estimated
time

7.02 13.56 −0.13 111.17 7.02 13.56 −0.13 111.17 − − − − 7.02 13.56 −0.13 111.17

RF 3.53 5.64 0.74 61.63 3.98 6.10 0.68 68.49 4.22 6.88 0.61 60.72 3.62 5.64 0.69 49.31
LightGBM 3.19 5.33 0.77 44.71 3.74 6.22 0.68 50.13 4.39 6.80 0.59 60.84 3.62 5.69 0.70 47.91
XGBoost 3.16 5.32 0.78 40.42 3.77 6.07 0.69 44.68 4.30 6.67 0.63 60.14 3.59 5.65 0.73 46.27
Stacking 3.11 5.29 0.81 38.77 3.74 6.00 0.71 42.19 4.19 6.51 0.65 55.81 3.52 5.49 0.75 43.22
LSTM 3.91 6.01 0.53 56.91 4.51 7.11 0.50 69.10 4.57 7.59 0.33 70.91 4.01 7.09 0.49 66.19
ANN 5.89 9.23 0.03 65.91 6.11 9.43 0.04 100.71 4.71 9.71 0.11 72.39 5.17 9.00 0.21 70.71

Table 4.4: Prediction performance of models on the voyage-split test dataset

Model All variables All variables except port call features All variables except AIS features All variables except physical features

MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE

Vessel ETA 6.53 13.09 −0.18 118.36 − − − − 6.53 13.09 −0.18 118.36 6.53 13.09 −0.18 118.36
Estimated
time

7.31 12.93 −0.39 99.13 7.31 12.93 −0.39 99.13 − − − − 7.31 12.93 −0.39 99.13

RF 4.14 6.80 0.68 94.85 4.65 7.22 0.64 100.83 4.94 8.10 0.55 228.55 4.16 6.63 0.65 74.07
LightGBM 3.80 6.75 0.69 55.63 4.43 7.04 0.76 72.01 4.88 7.89 0.59 101.22 4.02 6.50 0.75 51.24
XGBoost 3.75 6.45 0.71 62.90 4.46 7.03 0.75 72.40 4.89 7.94 0.57 100.69 4.03 6.54 0.72 59.70
Stacking 3.70 6.42 0.72 52.33 4.31 6.99 0.80 70.91 4.84 7.88 0.61 99.03 3.99 6.49 0.78 51.31
LSTM 4.02 7.00 0.63 102.73 4.63 7.44 0.62 95.67 5.18 8.53 0.50 262.34 4.15 6.72 0.68 82.69
ANN 6.00 10.13 0.43 105.79 5.35 8.41 0.44 130.99 5.73 9.93 0.31 191.19 4.52 7.00 0.51 103.31

Tables 4.3 and 4.4 summarize the prediction performance of var-
ious models on both the time-ordered and voyage-split test datasets.
Consistent with the findings in Table 4.2, the vessel-reported ETA
and the estimated time from AIS data exhibit relatively poor perfor-
mance, as indicated by the highMAE and RMSE values, particularly
for AIS data. This emphasizes the unreliability of these basic esti-
mates for VAT prediction in real-world scenarios.

In terms of model performance, the stacking approach, along with
XGBoost and LightGBM, consistently performs the best overall. The
stacking model shows a slight advantage over the others across most
scenarios in both the time-ordered and voyage-split cases. Addition-
ally, it is important to note that, compared to VAT prediction on a
randomly split dataset, shown in Table 4.2, the model errors are sig-
nificantly larger across all metrics and feature exclusion scenarios
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when using time-based and voyage-based splits (as demonstrated in
Tables 4.3 and 4.4). This discrepancy arises because the voyages are
divided based on a 4:1 split, but the corresponding integrated data is
not split in the same 4:1 ratio since the amount of data for each voy-
age varies. Moreover, the time-based split better reflects real-world
port operations, as ports do not have access to a vessel’s exact future
route information, making this approach a more realistic evaluation
scenario.

Table 4.5: Prediction performance of the models on the different time slices

Model All data Time slice 1 Time slice 2 Time slice 3

MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE

Vessel ETA 6.88 13.11 −0.14 128.16 3.67 6.56 −0.03 168.58 4.54 8.55 −0.06 24.82 11.91 19.51 −0.10 34.84
Estimated
time

7.52 17.31 −0.47 192.16 6.59 9.48 −0.07 110.61 8.77 19.64 −0.32 83.09 22.93 36.81 −0.58 113.58

RF 3.53 5.74 0.78 94.85 2.49 5.23 0.09 100.01 2.34 3.31 0.09 26.36 4.66 8.09 0.01 13.69
LightGBM 1.11 2.52 0.96 29.53 1.09 2.06 0.64 39.98 0.79 1.48 0.79 4.27 0.99 2.43 0.83 3.05
XGBoost 1.08 2.48 0.96 27.56 0.91 1.76 0.74 54.53 0.71 1.31 0.83 3.93 0.86 2.08 0.88 2.68
Stacking 1.01 2.37 0.97 26.91 0.90 1.72 0.75 48.13 0.68 1.29 0.84 3.74 0.82 2.01 0.89 2.55
LSTM 3.22 5.53 0.80 100.99 2.00 4.19 0.30 75.70 2.22 4.21 −0.11 13.72 4.83 11.29 0.13 21.39
ANN 6.09 10.43 0.19 105.91 3.51 6.55 0.01 110.77 3.19 7.03 −0.19 20.11 8.93 17.33 −0.10 30.18

Table 4.6: Prediction performance of the models on the different distance slices

Model All data Distance slice 1 Distance slice 2 Distance slice 3

MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE MAE RMSE R2 MAPE

Vessel ETA 6.88 13.11 −0.14 28.16 5.63 11.86 −0.03 19.16 6.40 12.40 −0.09 24.27 6.36 7.05 −0.14 19.45
Estimated
time

7.52 17.31 −0.47 192.16 7.00 16.64 −0.26 182.80 13.37 19.01 −0.54 103.09 19.52 22.26 −0.54 117.69

RF 3.53 5.74 0.78 94.85 4.94 7.32 0.49 28.04 2.90 5.04 0.51 12.17 2.03 3.11 0.78 6.51
LightGBM 1.11 2.52 0.96 29.53 1.41 2.79 0.93 18.64 0.70 1.41 0.96 3.25 0.52 0.91 0.98 1.74
XGBoost 1.08 2.48 0.96 27.56 1.16 2.33 0.95 16.76 0.67 1.31 0.97 3.13 0.49 0.89 0.97 1.64
Stacking 1.01 2.37 0.97 26.91 1.16 2.32 0.95 16.70 0.61 1.22 0.97 2.86 0.47 0.84 0.98 1.55
LSTM 3.22 5.53 0.80 100.99 3.81 6.84 0.52 20.99 2.83 4.09 0.55 8.91 1.83 2.49 0.69 5.55
ANN 6.09 10.43 0.19 105.91 5.93 10.19 0.11 30.11 6.06 10.51 0.19 20.12 3.91 5.81 −0.20 10.12

The performance of VAT prediction models across time and dis-
tance slices (Table 4.5 and Table 4.6) shows that the stacking model
consistently provides stable and accurate predictions, outperforming
other models. Across all data, the stacking model achieves a low
MAE of 1.01 hours, an RMSE of 2.37 hours, and a high R2 of 0.97,
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surpassing models such as RF and ANN, which exhibit higher errors.
In time slice 1, the stacking model performs well with an R2 of

0.90, while models such as LSTM and ANN exhibit higher errors. In
time slices 2 and 3, the stacking model continues to show lower er-
rors than ANN and LSTM, demonstrating better stability over time.
For distance slices, the stacking model also outperforms. To be spe-
cific, in distance slice 1, its MAE and RMSE are lower than those of
XGBoost and ANN. In distance slices 2 and 3, the stacking model
maintains lower errors, particularly in MAE and MAPE, compared
to LSTM and ANN, which show significantly higher RMSE values.

Notably, the accuracy of VAT prediction models does not neces-
sarily improve as the vessel approaches to port, either temporally or
spatially. It is noteworthy that the models demonstrate optimal per-
formance in time slice 2 and distance slice 2. Since the models are
trained on the entire dataset and then predict across three slices, the
greater amount of data in the slice allows for more thorough train-
ing, leading to better performance in this slice. Overall, the stacking
model consistently outperforms others, showing superior accuracy
and stability across time and distance slices.

We also divide the original prediction set into different time slices
and distance slices, following the partitioning method described in
the earlier sections. Using the VAT models, we perform predictions
within these slices to highlight the changes in error magnitude across
time and distance slices, measured byMAE and RMSE. The specific
results are visualized in Figures 4.5 and 4.6. In the figures, the “ETA”
legend refers to the error in the vessel-reported ETA values, while
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“AIS_estimate” represents the VAT time estimated directly based on
AIS data.

(a) MAE trend for the time slices (b) RMSE trend for the time slices

Figure 4.5: Comparison of VAT prediction error trends across different time slices

(a) MAE trend for the distance slices (b) RMSE trend for the distance slices

Figure 4.6: Comparison of VAT prediction error trends across different distance
slices

The results presented in Figures 4.5 and 4.6 align with the pre-
vious analysis. Overall, both the vessel-reported ETA and the VAT
estimated using AIS data show improved accuracy as the vessel ap-
proaches the port. However, the AIS-based VAT estimates exhibit
greater variability and larger errors, particularly across different slices.
In contrast, the predictive tree-based models, including XGBoost
and LightGBM, consistently perform well across various time and
distance slices. Among these models, the stacking model stands
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out, delivering the best overall performance with significantly lower
MAE and RMSE errors compared to both the vessel-reported ETA
and AIS-based VAT estimates. The consistent underperformance of
vessel-reported ETA and AIS-based VAT estimates highlights the in-
herent limitations of traditional methods in accurately forecasting
VAT. This underscores the necessity of adopting advanced predic-
tive models to improve VAT predicting accuracy. Notably, the robust
performance of tree-based models, particularly the stacking model,
across diverse conditions demonstrates their adaptability and relia-
bility for real-world port operation, making them a valuable tool for
dynamic and uncertain port operational environments.

In addition to the numerical analysis of VAT prediction results, a
feature importance analysis is conducted to leverage the interpretabil-
ity of the tree-based model by using XGBoost’s built-in function to
calculate the scores based on the frequency of each feature’s occur-
rence during model inference. Specifically, the feature importance is
measured by the total number of times a particular feature appears in
any tree in the model, used as a criterion for a split (T. Chen, T. He,
M. Benesty, Khotilovich, Y. Tang, Cho, K. Chen, Mitchell, Cano, T.
Zhou, et al. 2015). A higher score indicates that the feature is more
frequently used to make decisions in the tree-building process. The
top ten most important features are depicted in Figure 4.7.
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Figure 4.7: Feature importance analysis in the XGBoost model

To further enhancemodel interpretability, we also compute SHap-
ley additive exPlanations (SHAP) values for each parameter of the
XGBoost model. SHAP values, which are based on cooperative
game theory (Scott, Su-In, et al. 2017), provide a consistent and lo-
cally accurate attribution of feature contributions to individual pre-
dictions. By applying the SHAP framework, we obtain both global
and instance-level insights into how each feature influences themodel
output. This dual analysis, which employs both traditional feature
importance scores and SHAP values, offers a more comprehensive
understanding of the decisionmaking process inVATpredictionmod-
els and helps identify the key features that drive VAT predictions.
The visualization of the SHAP value derived from the XGBoost pre-
diction model are presented in Figure 4.8.
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Figure 4.8: Analysis of SHAP values in the XGBoost model for VAT prediction

The expected remaining voyage time derived fromETAdata emerges
as the most important feature, highlighting its substantial contribu-
tion toVATprediction, even there are discrepancies between the ETA
values and the ATA values. This is followed by features of ves-
sel sailing speed and the expected remaining voyage distance as de-
rived from AIS data, where both of which are key indicators of VAT.
Therefore, these three features stand out with considerably higher
importance scores than the others, highlighting their crucial role in
accurately predicting VAT.

Vessel physical attributes, such asBeam,GT ,Length, andDepth,
contribute to VAT prediction, although to a lesser extent than ETA
and AIS data. These characteristics directly influence terminal and
berth allocation at the port. For instance, larger vessels with greater
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length and beam may encounter limitations when entering certain
navigation channels or docking areas at specific berths, as not all
facilities such as terminals or berthing facilities can accommodate
vessels of such dimensions. This can result in delays while wait-
ing for suitable berths or navigating restricted port areas, ultimately
affecting VAT predictions.

Features Inport_number and V essel_delay also influence VAT
prediction. Inport_number, which represents the number of vessels
currently at the port, can contribute to potential delays due to con-
gestion or limited berth availability. When there are more vessels at
the port, it can cause delays in berthing or increase the waiting time
for vessels to dock. V essel_delay, reflecting the historical average
delay in vessel arrivals, provides some insight into potential vessel
arrival performance. However, its impact is limited as it offers a
retrospective view rather than serving as an active predictor. The ar-
rival time of ships is influenced by numerous factors, each of which
may vary for individual voyages, making past delays not necessarily
applicable to the current route. Overall, feature importance analysis
highlights the significance of contextual features beyond ETA and
AIS data in VAT prediction, which is sometimes overlooked in pre-
vious VAT prediction studies.

From the SHAP value visualization, further insights can be drawn
to complement the above analysis. The SHAP values (horizontal
axis) from Figure 4.8 illustrate both positive and negative contri-
butions of features to VAT prediction. For instance, Exp_aistime

andExp_etatime exhibit wide SHAP value distributions, indicating
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high variability in their influence on model predictions. This aligns
with their critical role in VAT prediction. Meanwhile, vessel phys-
ical attributes such as Beam and Length display narrower SHAP
distributions, suggesting their more limited while relevant impact.

The color gradient in the SHAP plot (from blue to red) represents
the magnitude of feature values. For example, higher feature values
(in red) for Speed and Exp_distance are associated with positive
SHAP values, indicating that increase in speed or voyage distance
tends to increase the values of predicted VAT. In contrast, lower char-
acteristic values (in blue) for V essel_delay result in negative SHAP
values, highlighting that smaller historical delays generally lead to
increase VAT predictions.

Lastly, features such as Inport_number and V essel_delay ex-
hibit relatively limited SHAP value variation, aligning with their role
as supplementary predictors. However, their long-tail distributions
indicate that under specific conditions, these features can exert a
significant influence on VAT predictions. The broad distribution of
SHAP values for Exp_etatime further underscores the high sensi-
tivity of the prediction target to this feature, reinforcing its critical
importance in port operations and VAT forecasting.

4.2.1.3 Prediction results summary

Uncertainty in VAT presents significant challenges in daily port op-
erations, resulting in operational inefficiencies and economic losses.
This study is the first to evaluate and predict VAT by integrating port
call data and AIS data, using HKP as a case study. Specifically,
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a framework is firstly introduced to integrate ETA and ATA with
AIS data. A detailed quantitative analysis is conducted to assess the
accuracy of vessel-reported ETA as vessels approach the port, con-
sidering both temporal and spatial factors. The results show a clear
reduction in vessel arrival delays as vessels approach the port. Fur-
thermore, a state-of-the-art tree-based stacking model is proposed to
enhance the precision of VAT predictions. The performance of the
stacking model and other base models is rigorously evaluated across
various datasets using four metrics, offering a comprehensive anal-
ysis of their strengths and limitations.

The prediction results indicate that the stacking model outper-
forms other models across various evaluation metrics and datasets.
Specifically, the stacking model reduces the MAE from 6.88 hours,
as reported in the vessel operator’s ETA data, to 1.06 hours in the
test set, reflecting a reduction rate of 84.6%. Moreover, the proposed
model achieves an 81.9% reduction in RMSE, with the RMSE de-
creasing from 13.11 hours to 2.37 hours. Additionally, the stacking
model achieves an R2 value of 0.97, indicating it explains 97% of
the variance in VAT predictions and highlighting its high reliability.
Beyond basic comparative predictions, an analysis of feature impor-
tance derived from the prediction model is also conducted. The anal-
ysis indicates that the vessels’ reported ETA is the primary feature
influencing the VAT prediction accuracy. Additionally, the vessel’s
real-time speed, expected remaining distance from AIS data, and
physical characteristics significantly contribute to predicting VAT.
Our findings highlight the potential of integrating ETA and AIS data
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to predict VAT and demonstrate that the proposed tree-based models
offer improved performance over traditional models in VAT predic-
tion.

This study demonstrates the advantages of combining port call
andAIS data to quantitatively assess vessel arrival punctuality, show-
ing that the tree-based stacking model yields more accurate VAT pre-
dictions than both the vessel’s reported ETA and the AIS-estimated
ETA. However, several research questions remain for future explo-
ration, particularly regarding prediction and subsequent optimiza-
tion. From a predictive perspective, this study does not include real-
time weather data, a critical factor affecting vessel arrival accuracy.
Unexpected conditions such as heavy fog or storms can significantly
disrupt the precision of vessel arrivals. In future research, if the nec-
essary data becomes available, weather information could be inte-
gratedwithAIS datasets based on time and geographic coordinates to
account for weather factors in VAT prediction. Additionally, due to
data acquisition challenges, this study only considered the real-time
number of vessels in port as a port operation feature, neglecting other
real-time operational data like berth availability and terminal han-
dling efficiency. Future studies could incorporate these additional
features to improve prediction accuracy.

4.2.2 Inland waterway VAT prediction

Accurate VAT prediction is critical for port operational efficiency, as
discrepancies between captains’ ETA and ATA in inland waterway
transportation (IWT) cause economic losses. Most previous research
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on VAT prediction has predominantly focused on ocean-going ships,
typically relying on static port call data (e.g., ETA, ATA) or dynamic
AIS data, with limited attention to additional features or waterway-
specific conditions. According to a literature review by H. Li, Jiao,
and Z. Yang (2023), a key limitation is the insufficient integration
of multisource information beyond AIS data, highlighting opportu-
nities to enhance predictive accuracy and robustness. Furthermore,
while most studies have centered on ocean-going VAT, inland wa-
terways present unique characteristics. Unlike ocean-going vessels,
inland waterways feature fixed routes and higher traffic density. In
these contexts, port authorities can more accurately estimate the re-
maining sailing distance of vessels due to the predictable nature of
the routes. To address these research gaps, we propose a novel ML
approach to estimate the VAT for IWT at the Port of Rotterdam. We
integrate multiple data sources, including the remaining sailing dis-
tance of the vessel (calculated using the A* algorithm), real-time
traffic flow on the waterway, vessel-reported ETA records, weather
data (temperature, wind speed, wind direction and water levels), ship
dimensions (length and width) and AIS data to apply ensemble tree
models including RF, XGBoost, and LightGBM, with tailored data
pre-processing and feature engineering. In summary, this part makes
four specific contributions:

1. It introduces new long-distance VAT predictions for inland wa-
terway vessels, marking a significant shift from the traditional
focus on ocean going forecasting;

2. It proposes several features that are novel for VAT prediction,
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including the ETA and AIS records, the remaining travel dis-
tance, maritime traffic flow, weather conditions, and the ves-
sel’s dimensions;

3. It suggests an A* algorithm for precisely segmenting the nav-
igation route, enhancing the accuracy of the remaining vessel
travel distance calculations and evaluating the maritime traffic
flow;

4. It evaluates multiple prediction models on real-world vessel ar-
rival data and derives new insights from feature correlation and
importance based on VAT prediction models;

4.2.2.1 Introduction to IWT shipping and data description

The process for inland barge arrivals at the Port of Rotterdam be-
gins with the captain reserving a specific time slot, ensuring the ves-
sel arrives within this allocated period. However, challenges arise
when a barge misses its scheduled slot or the reserved time slot be-
comes impractical, complicating port operations. Unlike sea-going
vessels, inland freight often has a lower priority. When an inland
vessel misses its space, its cargo, usually containers, may not transfer
to the intended seagoing ship, leading to delays until the next avail-
able vessel. While precise scheduling is less critical for bulk cargo,
improved prediction methods could enhance efficiency in cargo han-
dling and optimize berth utilization for inland container barges.

This study focuses on the Port of Rotterdam, one of Europe’s ma-
jor ports, which handles approximately 438 million tonnes of cargo
annually. The port receives around 28,000 sea-going ships and 90,000



CHAPTER 4. VESSEL TIME PREDICTION 130

inland vessels each year (Havenbedrijf Rotterdam B.V. 2023)Termi-
nal operations for inland barges are highly dependent on accurate
ETA. For this analysis, AIS data from the entire year of 2022 has
been used. Figure 4.9 below illustrates a typical inland vessel dock-
ing at a port berth, often requiring stops at multiple terminals to un-
load its cargo.

Figure 4.9: Inland barge undocking at a berth

The Figure 4.10 below depicts the dimensions of the terminal.
Each terminal typically includes designated areas for docking inland
barges as well as ocean-going vessels. The area with the dotted line
is the area for the sea-going vessels, and the rectangle with the solid
line is the area for barge operations. The equipment used for loading
and unloading these different types of vessels often varies, which is
why the berths for sea-going and inland barges are separate. Con-
sequently, the two types of vessels can be treated independently in
planning operations. The following Figure 4.11 shows a heat map of
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Figure 4.10: Map of terminals in the Port of Rotterdam

all the vessels that are going to the port of Rotterdam. Since multi-
ple routes are taken towards the port area, this picture underlines the
importance reliable predictions.

Figure 4.11: Heatmap of barges traveling to the port of Rotterdam
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Figure 4.11 also illustrates the distribution of inland vessel traf-
fic. Some traffic originates from the south, with vessels traveling
from Antwerp towards Rotterdam. From the east, cargo is primarily
transported along the Alpine-Rhine Corridor. Northern routes han-
dle inland cargo within the Netherlands, connecting Rotterdam with
Amsterdam and the country’s northeastern regions.

4.2.2.2 Inland waterway segmentation

Compared to ocean shipping, inland shipping operates on fixed wa-
terways, offering stable routes less affected by ocean tides. Its dense
network allows access deep into the interior and the shorter distances
make it ideal for regional freight transport. Compared to ocean ship-
ping, inland shipping operates on fixed waterways, offering stable
routes less affected by ocean tides. Its dense network allows ac-
cess deep into the interior, and the shorter distances make it ideal
for regional freight transport. However, in inland shipping, calculat-
ing straight-line or great-circle distances between two points using
latitude and longitude often results in unreliable results due to the
meandering nature of rivers, which causes ships to deviate from di-
rect paths. To address this and improve accuracy, we first divide
the inland waterways into segments represented by nodes within 2
km radius squares. The following Figure 4.12 shows the segments
created based on the waterways in the Netherlands.
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Figure 4.12: Detailed view of the river segments to the port of Rotterdam

Following the segmentation of inland waterways, the A* algo-
rithm is employed to evaluate the remaining sailing distance for ves-
sels. A* algorithm is a widely recognized heuristic search algo-
rithm for pathfinding and graph traversal, combining the thorough-
ness of Dijkstra’s algorithm with the efficiency of greedy search,
thereby ensuring optimal path discovery while reducing computa-
tional overhead (Wenzel, Jovanovic, and Schulte 2023) In this con-
text, the A* algorithm is utilized to compute the distance between
the vessel’s current position and the centroid of the next node along
the intended route. These distances are incrementally summed to es-
timate the vessel’s remaining travel distance. Furthermore, the seg-
mented nodes facilitate the analysis and monitoring of vessel traffic
flow within each node region, offering valuable insights into local-
ized traffic patterns.
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4.2.2.3 Destination coordinate estimation

When predicting VAT, exact destination coordinates are unknown, so
our study uses historical AIS navigation data to estimate the endpoint
of the trip. First, the final coordinates of each voyage are extracted
from the AIS dataset, and their mean latitude and longitude are cal-
culated to establish a central reference point. The 90th percentile of
final coordinates closest to this reference point is then identified, and
their average is computed to determine the estimated endpoint. Fi-
nally, the expected remaining distance from each AIS point to this
estimated endpoint is calculated using the great-circle distance based
on the Haversine formula. This method provides an effective means
of estimating the endpoint of the vessel and the remaining distance.
Figure 4.13a illustrates the visualization of the voyage endpoints’ lat-
itude and longitude from historical data, while Figure 4.13b shows
the schematic diagram of the estimated endpoints after processing.

(a) The collection of endpoint coordinates
in the map

(b) A schematic diagram of the estimated
destination

Figure 4.13: Comparison of endpoint coordinates and estimated destination
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4.2.2.4 Feature extension

Feature engineering involves selecting, transforming, or creating new
features from raw data to enhance the performance of predictive
models. This process includes techniques such as scaling, encoding
categorical variables, and generating domain-specific features. Fea-
ture extension for prediction builds on this by expanding the feature
set through methods like polynomial features, interaction terms, or
temporal lags, enabling the model to capture complex relationships
and patterns for improved predictive accuracy.

In our VAT prediction task, we aim to extend the foundational
AIS dataset by mining and integrating additional features to create a
comprehensive set of factors to predict vessel ETAs. Specifically, we
focus on four categories of features: vessel physical attributes, tem-
poral aspects, spatial elements, and waterway characteristics. The
ground truth for prediction is the actual voyage time for each AIS
report, calculated as the difference between the vessel’s ATA and the
AIS report time. Below are detailed explanations of these features:

We integrate vessel physical features into the AIS dataset, as these
attributes directly influence the berth at which a vessel docks, affect-
ingVAT prediction. Specifically, we consider the length andwidth of
the vessel, representing its dimensions, gross tonnage of the vessel,
indicating its cargo capacity, and type of the vessel, as different types
exhibit distinct docking and operational patterns. These features are
crucial for VAT prediction, impacting maneuverability, berthing re-
quirements, and potential waiting time. Incorporating these factors
helps capture both the intrinsic characteristics of the vessel and the
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external logistical constraints, improving the accuracy and robust-
ness of the model.

Next, we consider two spatial features based on the AIS data
and the predicted destination estimated in the previous subsection.
The first is the great-circle distance from each AIS point to the pre-
dicted destination, which provides a direct spatial metric. We use
the Haversine formula to calculate the distance between these two
points. The second spatial feature is the cumulative path distance
calculated using the A* algorithm. It involves determining the dis-
tances between consecutive nodes and summing them to compute
the total distance from the current AIS point to the estimated desti-
nation. These spatial features capture both the shortest and the nav-
igable paths, offering valuable insights for improving the accuracy
of VAT prediction.

Next, we focus on time-related features. First, we consider the
speed of each vessel reported in the AIS data. Using the current
speed, we calculate the estimated remaining voyage time of the ves-
sel in three ways: one based on the great circle distance, another
derived from the distance calculated using the A* algorithm, and fi-
nally, by subtracting the AIS reported time from the reported ETA of
the vessel. These features provide diverse perspectives on the ves-
sel’s remaining journey time.

Finally, we introduce three innovative waterway features: ves-
sel traffic flow, the number of nodes a vessel passes through, and
the current water level at the vessel’s location—factors not covered
in previous VAT research. Vessel traffic flow refers to the number
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of vessels passing through a specific area within a given time frame.
This feature significantly impacts the arrival time of vessels in inland
waterways due to its influence on navigation efficiency and conges-
tion. High traffic density often leads to delays caused by limited
channel capacity, longer waiting time at locks, and increased risks
of traffic conflicts, especially in narrow or heavily trafficked sec-
tions. In contrast, smoother traffic flow with effective scheduling
and real-time traffic management can reduce delays and enhance the
predictability of VAT. In our study, we analyze traffic flow data from
the past 10, 20, 30 minutes for the nodes where vessels report AIS
data. The number of nodes through which a vessel passes represents
the total number of nodes along the future route of the vessel, reflect-
ing the distance traveled and potentially influencing VAT. A longer
route with more nodes could indicate a longer remaining travel time,
which would affect the estimated arrival time. Lastly, changes in
water levels directly impact the navigability of waterways. Higher
water levels generally increase channel depth, reducing the risk of
grounding and enabling faster navigation, thus reducing VAT. How-
ever, excessively high water levels can cause strong currents, making
navigation more challenging and potentially causing delays. In con-
trast, low water levels can restrict channel depth, requiring vessels to
reduce their load or speed and increasing VAT. Fluctuations in water
levels can also affect the efficiency of locks and port operations, fur-
ther influencing VAT. The features used to predict VAT, along with
the ground truth values, are summarized in Table 4.7.
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Table 4.7: VAT prediction features description

Feature category Detailed features Explication Note

Vessel dimensions
Length The measurement of the vessel

from the front to the back
Matching based
on vessel MMSI
value

Width Thewidth of a vessel at its widest
point

Matching based
on vessel MMSI
value

Grosstonnage The overall internal volume of
the vessel

Matching based
on vessel MMSI
value

Type The type of the vessel Obtain from AIS
data, one-hot vec-
tor encoding

Spatial features Exp_directdistance Expected remaining voyage dis-
tance

Estimate from AIS
data

Exp_astardistance Expected remaining voyage dis-
tance based on A* algorithm

Estimate from AIS
data

Temporal features

Exp_aistime Expected remaining voyage time
from AIS data

Estimated remain-
ing distance divide
real-time speed

Exp_astartime Expected remaining voyage time
from A-star algorithm

Estimated remain-
ing distance from
A-star algorithm
divide real-time
speed

Speed Vessel real-time speed From AIS data
Exp_etatime Expected remaining voyage time

from reported ETA data
ETA time minus
AIS report time

Environmental features
Temperature The temperature of Rotterdam

port
Obtain from mete-
orological station

River speed The current river velocity in the
vicinity of the vessel

Obtain from mete-
orological station

Wind speed The current wind speed in the
vicinity of the vessel

Obtain from mete-
orological station

Waterway features

Trafficflow The number of vessels in port
when the vessel reports AIS data

Count from A* al-
gorithm

Nodenumber The number of nodes traversed
by a vessel along its remaining
voyage

Count from A* al-
gorithm

Waterlevel The height of the water surface Obtain from mete-
orological station

Prediction target/
Ground truth value

Actual_remaining_timeThe actual remaining voyage
time when vessel reports AIS
data

ATA minus the re-
port time of AIS
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4.2.2.5 VAT prediction result analysis

In this subsection, we present a comprehensive analysis of VAT pre-
diction. Following the traditional approach, we first split the inte-
grated data set into training and testing sets in a 4:1 ratio. As dis-
cussed in previous sections, a VAT prediction model is trained for
each record in the integrated dataset, and its performance is com-
pared against the original ATA. To emphasize the significance of
various feature parameters, we also perform feature ablation by se-
lectively removing specific feature groups and retraining the model.
Additionally, the dataset is divided into time slices (based on remain-
ing voyage time) and distance slices (based on remaining voyage
distance) to evaluate the model’s VAT prediction performance under
different scenarios.

To enhance the realism of port operations simulation, we intro-
duce an innovative data segmentation approach based on time and
distance. In real-world scenarios, randomly splitting the data could
result in AIS data close to the port being included in the training set,
while distant data is assigned to the testing set. This setup is imprac-
tical for actual port operations, as it implies using future data to train
models on past data. To address this issue, we segment the dataset
by AIS report time and remaining voyage distance. Specifically, the
first 80% of the AIS data, which corresponds to earlier report time
and greater distances, is assigned to the testing set, while the remain-
ing 20% forms the training set. This ensures a more realistic and
practical application of the model in real-world port scenarios.

Lastly, to provide a baseline for comparison with the prediction
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model, we include two additional methods: the vessel-reported ETA
(denoted as Vessel ETA in the table) and the estimated arrival time
(Estimated Time), which is calculated using the great-circle distance
between the current AIS point and the port. We evaluate all ap-
proaches using four metrics: MAE, RMSE, R2, and Median Abso-
lute Deviation (MAD). This comprehensive evaluation framework
highlights the model’s predictive performance and robustness.

Table 4.8: Prediction performance of the models on the original test dataset

Model All variables All variables except ETA features All variables except AIS data All variables except Weather

MAE RMSE R2 MAD MAE RMSE R2 MAD MAE RMSE R2 MAD MAE RMSE R2 MAD

Vessel ETA 18.19 31.56 -0.08 18.20 - - - - 18.19 31.56 -0.08 18.20 18.19 31.56 -0.08 18.20
Estimated time 2.24 10.54 -0.02 5.23 2.24 10.54 -0.02 5.23 - - - - 2.24 10.54 -0.02 5.23

RF 0.20 0.61 0.90 3.73 0.33 0.94 0.77 0.33 1.21 5.22 0.53 1.22 0.25 0.88 0.66 0.23
LightGBM 0.10 0.29 0.99 3.00 0.38 1.01 0.98 3.03 0.87 3.32 0.85 3.00 0.88 3.23 0.87 3.01
XGBoost 0.11 0.35 0.98 3.00 0.39 0.38 1.02 3.00 0.88 3.45 0.87 3.00 0.88 3.22 0.88 3.01
LSTM 0.18 0.44 0.89 4.18 4.17 0.99 0.78 0.30 1.24 5.32 0.43 1.24 0.30 0.80 0.64 0.30
ANN 0.21 0.44 0.80 5.21 0.31 0.94 0.67 0.31 1.22 5.44 0.44 1.21 0.32 0.89 0.49 0.32

Table 4.8 provides a comprehensive analysis of prediction per-
formance across different models and feature inclusion scenarios for
VATprediction in the original integrated dataset. The vessel-reported
ETA performs poorly, with high errors (e.g.,MAE: 18.19,RMSE:
31.56) and a negative R2 value, indicating unreliable self-reported
data. In contrast, the estimated time, derived from vessel coordi-
nates, speed, and destination distance, achieves significantly better
accuracy (MAE: 2.24, RMSE: 10.54), demonstrating that geometric
estimations are far more reliable than self-reported values. Among
the ML models, LightGBM and XGBoost consistently outperform
others, achieving the lowest errors (e.g.,MAE: 0.10,RMSE: 2.99,
R2: 0.99) when all variables are included. This performance remains
robust even when certain features are excluded, with a moderate in-
crease in errors (e.g., MAE: 0.12, RMSE: 3.08 without ETA fea-
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tures).
ExcludingAIS data causes themost significant performance degra-

dation across all models, as AIS data likely captures dynamic in-
formation (e.g., speed, direction) crucial for accurate predictions.
LightGBM, while affected, remains relatively stable (MAE: 0.33,
RMSE: 3.22), highlighting its adaptability. Weather data exclusion
has a comparatively smaller impact on performance, suggesting that
weather information plays a less critical role than AIS or ETA fea-
tures. Comparatively, XGBoost performs competitively under full-
feature scenarios (e.g., MAE: 0.11, RMSE: 3.05), but its perfor-
mance deteriorates more sharply than LightGBM when key features
are excluded.

Table 4.9: Prediction performance of models on the distance-split test dataset

Model All variables All variables except ETA features All variables except AIS data All variables except Weather

MAE RMSE R2 MAD MAE RMSE R2 MAD MAE RMSE R2 MAD MAE RMSE R2 MAD

Vessel ETA 22.38 36.70 -0.06 22.28 - - - - 22.38 36.70 -0.06 22.28 22.38 36.70 -0.06 22.28
Estimated time 2.35 10.34 -0.02 4.23 2.35 10.34 -0.02 4.23 - - - - 2.35 10.34 -0.02 4.23

RF 2.01 8.33 0.11 3.83 2.17 9.94 0.32 4.22 4.82 14.17 0.11 9.73 3.11 11.91 0.33 2.75
LightGBM 1.80 7.70 0.73 3.01 1.90 8.55 0.71 3.06 3.52 10.52 0.63 2.06 2.35 9.54 0.62 1.92
XGBoost 1.80 7.65 0.75 3.06 1.91 8.68 0.70 3.66 3.48 10.76 0.66 2.03 2.37 9.45 0.62 1.46
LSTM 1.99 8.71 0.29 4.11 2.10 9.57 0.30 4.00 5.33 15.32 0.23 11.73 3.33 11.99 0.14 2.30
ANN 2.23 10.11 0.05 4.20 2.11 10.11 0.03 4.30 7.22 17.41 0.04 19.02 4.18 12.12 0.09 3.32

Table 4.10: Prediction performance of models on the time-order test dataset

Model All variables All variables except ETA features All variables except AIS data All variables except Weather

MAE RMSE R2 MAD MAE RMSE R2 MAD MAE RMSE R2 MAD MAE RMSE R2 MAD

Vessel ETA 17.06 29.99 −6.41 5.20 - - - - 17.06 29.99 −6.41 5.20 17.06 29.99 −6.41 5.20
Estimated time 4.98 14.03 −0.02 2.26 4.98 14.03 −0.02 2.26 - - - - 4.98 14.03 −0.02 2.26

RF 5.20 13.99 0.21 2.33 4.91 13.24 0.41 2.11 5.91 15.95 0.20 3.88 5.51 15.21 0.21 2.91
LightGBM 3.53 11.03 0.61 1.41 4.07 11.48 0.52 1.68 4.23 11.32 0.60 2.31 3.56 11.01 0.61 1.51
XGBoost 3.49 11.04 0.69 1.40 3.53 11.21 0.52 1.59 4.14 11.92 0.63 1.98 3.55 10.80 0.62 1.41
LSTM 5.33 15.04 0.09 3.00 5.73 15.73 0.33 3.30 6.44 17.23 0.12 4.33 5.48 15.81 0.05 3.21
ANN 7.21 18.19 −0.01 3.33 7.83 18.19 0.03 4.11 8.02 19.15 0.00 5.27 7.51 16.92 −0.05 4.01

The analysis of the distance-split and time-order test datasets in
Table 4.9 and 4.10 reveal distinct impacts on the model performance
for the prediction of the arrival time of the vessel. In both cases,
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vessel-reported ETA performs poorly, with high errors and no sensi-
tivity to feature inclusion. At the same time, the estimated time offers
moderate improvement but remains less effective than ML models.
LightGBM consistently achieves the best results across both splits,
with the lowest errors and highest R2. However, its performance
declines in the time-order dataset (e.g., MAE increases from 1.80
to 3.53) due to increased temporal variability. Compared to Light-
GBM,XGBoost performs slightly worse, while neural networkmod-
els like LSTM and ANN struggle more in the time-order dataset,
showing significant increases in error metrics. Feature importance
analysis highlights AIS data as the most critical input, with its ex-
clusion causing the largest performance degradation across all mod-
els, especially in the time-order split where temporal trends are more
pronounced. In contrast, the exclusion of weather and ETA features
has a more minor impact.

To comprehensively evaluate the practical predictive capabilities
of different VAT prediction models across various time intervals, we
segment the dataset based on time order following the previously
adopted division approach. Specifically, the dataset is divided into
49 time slices at 1-hour intervals ranging from 0 to 48 hours, where
the 0-th slice contains instances with an actual remaining time to
arrival of 0 to 1 hour, while the 48-th slice includes cases where the
remaining time is greater than or equal to 48 hours.
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(a) MAE error trends for different time
slices

(b) RMSE error trends for different time
slices

Figure 4.14: Comparison of prediction errors across time slices for different mod-
els

The results presented in Figure 4.14 illustrate that the MAE and
RMSE of the prediction models generally decrease as the remain-
ing time to arrival shortens, suggesting that VAT predictions become
more reliable as vessels approach their destinations. Among the ML
models, XGBoost, and LightGBM demonstrate superior predictive
performance, with consistently lower errors across all time slices,
particularly for shorter horizons. LSTM and RF exhibit greater fluc-
tuations, indicating potential instability in certain time intervals, which
may stem from its sensitivity to sequence dependencies and varia-
tions in training data. In contrast, traditional estimation methods, in-
cluding ETA (vessel-reported ETA records) and AIS_estimate (de-
rived by dividing AIS-reported distance by vessel speed), perform
notablyworse in long-term predictions, with significantly higherMAE
and RMSE values. The high error rates associated with ETA suggest
that self-reported arrival estimates may be subject to operational un-
certainties, human biases, or unaccounted delays.

However, an interesting trend emerges as vessels get closer to the
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port: AIS_estimate, despite its overall underperformance in long-
term predictions, demonstrates increasing accuracy in short-termVAT
assessments, sometimes outperformingMLmodels and vessel-reported
ETA. This phenomenon can be attributed to the nature of AIS-based
distance evaluation, which provides a more direct measurement of a
vessel’s position relative to the destination. As the vessel nears the
port, factors such as real-time navigation adjustments, external influ-
ences (e.g., port congestion, weather conditions), and vessel speed
fluctuations have a diminished effect on distance-based estimations,
making AIS-based calculations more precise. In contrast, ML mod-
els, while trained on historical data, may be influenced by overall
trends in the dataset, leading to suboptimal performance in specific
short-distance cases where real-time dynamic factors play a crucial
role. The vessel-reported ETA also tends to improve as arrival nears,
but its accuracy remains dependent on external factors, operational
schedules, and reporting delays. The analysis underscores the effec-
tiveness of ML models, particularly XGBoost and RF, in providing
reliable VAT predictions across most time slices, while also high-
lighting the short-term reliability of AIS-based estimations as ves-
sels approach the port. The observed error trends suggest that a hy-
brid approach, integratingMLmodels for long-termVAT forecasting
and AIS-based estimations for short-term corrections, could further
enhance practical VAT prediction accuracy in real-world maritime
operations.

Next, we present and analyze the importance of the trained Light-
GBM model for VAT prediction. Feature importance is evaluated
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using two approaches: First, the feature importance score provided
by LightGBM,which quantifies the importance of each feature based
on the number of splits. Second, the SHAP values, which explain the
model’s predictions by attributing the contribution of each feature to
the output (Scott, Su-In, et al. 2017). The 10 most important charac-
teristics and their corresponding scores are shown in Figure 4.15.

Figure 4.15: Feature importance score analysis for VAT prediction

The feature importance analysis in Figure 4.15 reveals that
“exp_aistime” and “Exp_etatime” are the most influential features.
Notably, “exp_aistime” represents the estimated voyage remaining
time calculated from the vessel’s latitude and longitude, while
“Exp_etatime” is derived from the vessel-reported ETA. These
features highlight the critical role of temporal and spatial factors in
VAT prediction. “exp_astardistance” and “exp_atartime also rank
highly, further emphasizing the significance of spatial metrics such
as remaining voyage distance and time from the a star algorithm.
Traffic flow-related features (traffic_30_min, traffic_20_min, and
traffic_10_min) contribute meaningfully, reflecting the impact of
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traffic flow and the port congestion within different time windows.
Additionally, “Exp_directdistance”, which represents the estimated
voyage distance calculated from AIS coordinate, shows moderate
importance. Environmental and vessel-specific characteristics,
such as temperature, river speed, wind speed, vessel width, and
length, also exhibit importance, indicating their influence on VAT
prediction.

Figure 4.16: Analysis of feature SHAP value

The SHAP value visualization provides a comprehensive understand-
ing of feature importance, with red indicating high feature values and
blue representing low values. This analysis not only identifies the
most critical predictors, but also reveals the nature of their impact on
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the arrival time of the vessel. The results reveal that key features such
as “exp_aistime”, “exp_astardistance”, and “Exp_aistime” have the
most significant influence, with higher values for these features, such
as longer expected travel time or distances, being strongly associated
with increased predicted VAT.

Distance-related features, such as “distance_a_star” and
“Node_number”, also play a crucial role, indicating the importance
of route length in determining arrival time. Physical attributes of
the vessel, such as “Width” and “Length”, contribute modestly,
likely due to their indirect effects on navigational constraints or
port operations. Environmental factors like “Temperature”, “Wind
speed”, and “River speed” have a smaller but discernible impact,
potentially linked to seasonal or weather-related delays.
Meanwhile, traffic flow-related features, demonstrate a noticeable
influence, highlighting the role of port congestion and operational
delays.

Overall, the analysis highlights the critical role of AIS data and
the effectiveness of geometric estimations in predicting VAT. Light-
GBM and XGBoost stand out as the most reliable models, deliver-
ing high accuracy and robustness across various feature conditions.
When using traditional random data partitioning, these models sig-
nificantly reduce VAT prediction errors. However, under scenarios
simulating real port operations with data split by time or distance,
their performance declines compared to random partitioning. Nev-
ertheless, the predictions remain substantially more accurate than
vessel-reported ETAs or VAT estimates based on latitude and lon-
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gitude. The findings indicate that integrating advanced ML mod-
els with precise geometric calculations and additional features can
greatly improve the reliability of VAT predictions, especially in cases
where self-reported ETAs are unreliable.

4.3 VTT and VST Prediction

In this subsection, we aim to develope a data-driven approach for
forecasting the VTT/VST at the HKP.

4.3.1 Feature engineering

Feature engineering is a crucial aspect of ML, focused on creat-
ing more effective data representations from the original dataset to
capture the essential elements of a problem, ultimately enhancing
a model’s predictive performance. In our study, the main steps in
feature engineering are feature selection and fusion, which aim to
identify and incorporate the most relevant variables into the dataset
for prediction. In the context of vessel operations, VTT refers to the
total time from a vessel’s arrival at the port to its departure, while
VST specifically measures the duration from the vessel’s arrival at
the berth to its departure. Since the two prediction tasks share similar
characteristics, we focus on the feature engineering process.

Our method improves the accuracy of VST prediction by inte-
grating four key feature categories that significantly influence VST:
generic vessel features, temporal features, operational berth features
and generic berth features. The actual remainingVST for each vessel
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record serves as the ground truth in our prediction task. The specific
description of the related features are as follows:
Vessel generic features
Vessel GT and dimensions, as part of generic vessel features, are
crucial for VST prediction at ports. GT indicates a ship’s capac-
ity, affecting berth time since larger ships often have more cargo,
prolonging loading/unloading. Dimensions like length, beam, and
draft influence berth allocation and thus VST. Proper assessment
of these features enhances port efficiency, reducing port’s service
time and boosting operational competitiveness. We integrate exter-
nal data from the MarineTraffic and World Register of Ships (WRS)
to our case dataset (WRS 2023). Using IMO number as an identi-
fier, we compile and integrate vessel generic feature like beam, size,
GT, and length from both databases into our dataset. Additionally,
vessel type and draft are directly derived from the ATA data. This
integrated data enables a thorough analysis of how vessel features
influence VST prediction.
Temporal features:
Temporal features are crucial for VSTmanagement at port. Accurate
EDT aids in optimal resource allocation and berth utilization, while
consistent ATA is key to avoiding operational disruptions. Discrep-
ancies between EDT and ATA can lead to inefficiencies, impacting
vessel schedules and port productivity. Precise timing ensures effec-
tive vessel flow management and enhances overall port efficiency.
The study utilizes port call data, incorporating temporal information
such as EDT, ADT, and their respective reporting time. Besides the
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basic reported time data, we include two calculated temporal fea-
tures: “Berth time” and “expected VST”, associated with a ship’s
VST at the HKP. “Berth time” indicates the time a vessel has been
at berth, while “expected VST” is the expected service time for each
vessel. The determination of these two metrics is specifically depen-
dent on whether the vessel is at berth when it reports the EDT data.
Specifically, the “Berth time” feature applies to vessels that report
their EDT when at berth. This value is calculated by subtracting the
ATA from the report time of EDT. If a vessel upload the EDT record
before arriving at the HKP, its “Berth time” is set to zero. “expected
VST” is calculated differently depending on whether the vessel has
reached its berth at the time of reporting EDT. For those reporting
EDT before reaching the berth, “expected VST” is the time differ-
ence between the EDT and the ETA. For vessels reporting EDTwhile
at berth, it is the difference between the EDT and its reported time.
Furthermore, in this project, the target of our prediction, namely
the actual remaining service time, is also categorized into two types
based on the timing of the EDT report. For vessels that report their
EDT before arriving at the berth, the actual remaining service time is
calculated as the ADT minus the ATA. Conversely, for vessels that
report their EDT when at berth, this value is the difference between
the ATD and the reported time of the EDT data.
Berth operational features:
Berth operational characteristics significantly influenceVST at ports.
The number of vessels currently at port indicates the port’s real time
workload, where high traffic can cause delays and longer VST due
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to waiting time in anchorages. Efficient berths with quick load-
ing/unloading operations reduce VST, enhancing vessel turnover.
However, berths with frequent delays can prolong VST. Incorporat-
ing these patterns is crucial for precise VST forecast and port opera-
tions optimization. This section considers four indicators: the num-
ber of vessels at berth, berth delay, vessel visit frequency, and agent
performance. The amount of vessels at berth is the count of vessels at
the berth when ship reports EDT data. Vessel visit frequency refers
to the ship’s average number of visits to the HKP per month. If no
prior record exists of the vessel arriving at HKP, indicating either
our data on vessel visits is truncated or it is the first that the vessel
visits the HKP, the value is initially left blank and will later be filled
by the average of the training set. Each vessel is represented by an
agent, with “agent_delay” signifying the historical VST average de-
lays under a specific agent’s management. This value can reflect the
agent’s performance and is dynamically updated with each vessel ar-
rival . Essentially, it serves as a metric for evaluating the efficiency
of different agents in managing their vessels’ port stays.
Berth generic features:
Berth characteristics like length, width, and depth are key to efficient
port operations, impacting VST and cargo handling. Longer and
deeper berths accommodate bigger ships, requiring more time for
docking, undocking, and cargo processing. Properly managing these
attributes is vital for enhancing berth operational efficiency. The
HKP provides comprehensive information in the berth guide (Hong
KongGovernment 2023). Our study incorporates data on berth length,
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and berth depth as berth characteristics. This data inclusion is in-
tended to improve VST prediction and understanding by consider-
ing key berth properties. The features used for VST prediction are
described in Table 4.11.
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Table 4.11: VST prediction feature description

Feature type Detailed feature Feature description Source

Vessel generic features Beam Beam of the vessel WRS
Size The size of a vessel WRS
Gross tonnage (GT) Vessel GT WRS
Length Vessel length WRS
Max_draft Themaximum distance between be-

tween the water surface and the ves-
sel’s keel

ATA

Vessel_type Type of arrived ship ATA

Temporal features ATA_day Day of the week for ATA ATA
ATA_hour The hour shift of ATA ATA
EDT_day Week day of EDT EDT
EDT_hour Hour shift of EDT EDT
EDT_season Season shift of EDT EDT
ATA_season ATA season shift ATA
Berth time The duration a vessel has already

been in berth
EDT

Expected VST Vessel EDTminus the report time of
the EDT

ATA and EDT

Berth operational features Inport_number The count of vessels in port when
the ship reports its EDT data.

In port vessels

ATA_berth_delay The mean value of historical delay
for the berth where the vessel ar-
rives

ATA

EDT_berth_delay The mean value of historical delay
for the berth where the vessel re-
ports the EDT

EDT

Vessel_delay The mean value of vessel historical
VST delay

ADT and EDT

Vessel visit frequency The average visit time of the vessel
in one month

ATA

Agent_performance The average VST delay represented
by the agent

ADT and EDT

Berth generic features ATA_berth max draft The maximum distance between the
water surface and the vessel’s keel
upon arrival at the berth

HKP berth guide

Overall max length ATA_berth The maximum length of the berth
where the vessel arrives.

HKP berth guide

ATA_berth length The length of the berth at which the
vessel docks.

HKP berth guide

EDT_berth max draft The maximum length of the berth at
which the ship is located when re-
porting the EDT.

HKP berth guide

Overall max length EDT_berth The berth overall length at which
the ship reports its EDT

HKP berth guide

EDT_berth max length The berth length at which the ship
reports the EDT

HKP berth guide

Prediction target Actual VST Difference between vessel ADT and
ATA

ADT and ATA
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4.3.2 VTT prediction results

we employ XGBoost, RF, BPNN, LR and ridge regression on the
dataset to evaluate their predictive performance in estimating VTT.
Subsequently, we compare the predictedVTT by thesemodels against
the EDT records provided in the original test set, usingMAE, RMSE
andR2 as metrics for comparison. Additionally, to assess the impact
of EDT and its related features on the prediction of VTT, we perform
an analysis where EDT-related features, specifically “EDT_berth”
and “expected VTT”, are excluded from the dataset. Furthermore,
to demonstrate the superiority of our model and the importance of
selecting novel parameters, we also conducted a comparative analy-
sis with the model and parameters used in the paper by Štepec, Mar-
tinčič, Klein, Vladušič, and Costa (2020). In this comparison, we
applied their parameters and model to our dataset. This means that
features like vessel maximum draft, berth generic features, and EDT-
related features are excluded from the dataset for training. Following
this modification, we then proceed to retrain the RF and XGBoost
models, using the revised dataset to conduct further prediction tasks.
The prediction results are presented in Table 4.12.
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Table 4.12: VTT prediction results by different ML models

Model RMSE MAE MSE R2

Test_set 8.00 5.12 64.51 None
Decision_tree 6.64 4.32 44.09 0.761
RF 6.15 4.04 37.81 0.795
XGBoost 6.06 3.94 36.80 0.804
BPNN 8.21 5.33 67.41 0.02
Ridge_regression 7.67 4.99 58.83 0.465
LR 7.71 5.11 59.44 0.441
RF_no_edt 7.89 5.08 57.61 0.119
XGBoost_no_edt 7.71 4.83 51.99 0.174
RF_S 7.90 5.08 62.41 0.108
XGBoost_S 7.75 4.88 60.06 0.165

In Table 4.12, the row labeled “Test_set” refers to the error be-
tween the original EDT that is reported by individual ships and the
real ADT in the test set. We use this data as the basis for compar-
ing the results of our model predictions. “RF_no_edt” indicates the
results predicted by the RF model, which does not take into account
any EDT related information. Similarly, “XGBoost_no_edt” refers
to the results predicted by the XGBoost model, again without con-
sidering any EDT related features. “RF_S” and “XGBoost_S” in-
dicate the prediction results obtained by applying the RF and XG-
Boost models, along with the features proposed by Štepec, Mart-
inčič, Klein, Vladušič, and Costa (2020). to our dataset. The results
presented in Table 4.12 reveal that, except for the BPNN, all the other
seven VTT prediction models show reasonably more accurate results
on the test set, when compared with the initially reported EDT data.
In addition, the BPNN performance lags behind, even underperform-
ing in comparison to the original test data. The primary reason for
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this discrepancy is that BPNN with one hidden layer, as opposed
to tree-based models, do not yield as effective results when applied
to tabular data (Grinsztajn, Oyallon, and Varoquaux 2022). Regard-
ing the models that have shown predictive improvements, tree-based
models work well in the prediction tasks and XGBoost achieves the
best results across all four metrics. The delay error, as measured by
the MAE evaluation metric, decreases from 5.12 hours in the origi-
nal EDT test set to 3.94 hours as predicted by the XGBoost model,
marking a decrease of 23%. The RMSE also sees a decrease from
8.0 hours to 6.06 hours with a reduction of 24.3%. The MSE drops
from 64.51 h2 to 36.80 h2, indicating a substantial decrease of 43%.
Furthermore, XGBoost also achieves the best performance in theR2

evaluation, yielding a score of 0.804.
Table 4.12 also illustrates that if the RF model or XGBoost model

do not consider EDT related features during prediction, the effec-
tiveness of the model prediction would significantly diminish. The
VTT predictive results from XGBoost and RF without considering
EDT related features are onlymarginally better than the original EDT
test set data, with the XGBoost model reducing the delay error by
a mere 0.11 hours for RMSE and 0.04 hour for MAE error. The
results shown in the RF_no_edt and XGBoost_no_edt rows in Ta-
ble 4.12 emphasize the significant role that EDT and its related fea-
tures play in real-world port operation and predicting the actual VTT.
Although there may be error in the reported EDT, this feature is still
the most crucial basis for VTT evaluation and prediction when ATA
is known. As for the comparative experiments with the approach
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of Štepec, Martinčič, Klein, Vladušič, and Costa (2020), the results
show that the RF_S and XGBoost_S models, which presumably ap-
ply the features from Štepec, Martinčič, Klein, Vladušič, and Costa
(2020), demonstrate a reduced performance across all metrics com-
pared to our proposed prediction models. Specifically, RF_S and
XGBoost_S have higher RMSE values (7.90 and 7.75, respectively)
compared to our RF and XGBoost models (6.15 and 6.06, respec-
tively), indicating that our models outperform in terms of RMSE,
with the lowest RMSE observed in our XGBoost model. For MAE,
which similarly benefits from lower values, RF_S and XGBoost_S
again show inferior performance compared to our RF and XGBoost,
which have the lowest MAE values among all models (4.04 and
3.94, respectively). The situation is similar for MSE and R2 met-
rics. Overall, the experimental results corroborate the effectiveness
of our approach. The VTT prediction results can be further analyzed
to generate strategic and managerial implications for policymakers
and port practitioners.

In addition to evaluating model performance, we also identify the
top ten most important features for VTT prediction from the
constructed XGBoost model. The feature importance score can be
automatically computed using a built-in function,
XGBoost.feature_importances_, from the XGBoost Python
library (T. Chen, T. He, M. Benesty, Khotilovich, Y. Tang, Cho,
K. Chen, Mitchell, Cano, T. Zhou, et al. 2015). Feature importance
is presented here in the “total_gain” method, where the sum of all
feature importance values equals 1 and it reflects the contribution
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of each feature towards improving the model’s accuracy. The
higher the score, the more significant the feature is in terms of its
importance to the model. Feature importance of the top 10 most
important features in the XGBoost model constructed is shown in
Table 4.13.

Table 4.13: The top 10 most importance features and their importance scores of
the constructed XGBoost model

Rank Feature Importance score
1 Expected VTT 0.5651
2 Length 0.1329
3 Beam 0.1004
4 GT 0.0812
5 Max_draft 0.0542
6 ATA_inport 0.0358
7 EDT_berth_dealy 0.0310
8 Vessel_delay 0.0219
9 ATA_shift_2 0.0181
10 ATA_berth_delay 0.0108

The feature importance analysis presented in Table 4.13 indicates
that several key factors primarily determine the performance of VTT.
These factors include the expected VTT (calculated as the vessel’s
EDT minus its ATA), vessel generic features (such as length, beam
and GT), the number of vessels in port at the ATA time and the av-
erage historical turnaround time delay data for both the berth and
the vessel. Specifically, the expected VTT is the most critical deter-
minant among the features, as it is reported by the vessel itself and
the port uses it as a reference for berth scheduling planning. The
vessel’s length and beam, which rank second and third, respectively,
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directly influence the allocation of berth (J. Yu, G. Tang, Song, X.
Yu, Qi, D. Li, and Y. Zhang 2018). Additionally, the vessel’s GT
and the maximum draft during navigation, ranking fourth and fifth,
as they reflect the carrying capacity of the container vessels, and thus
affect the turnaround time. As for the number of vessels in port, it
reflects the busyness of the port at the time when the ship arrives
at the port. When there are too many vessels in port, the port be-
comes busy and may be unable to effectively schedule berth alloca-
tions for the incoming vessel, which in turn can impact the actual
turnaround time of the vessels. Besides, the historical delay data
of the berth where the vessel’s EDT data is reported, as well as the
vessel’s own historical delay data, have significant impacts on the
vessel final turnaround time. Low historical VTT delay data of the
berth reflects the efficiency of that berth, making the ADT of the
vessel closer to the EDT. This, in turn, leads to more accurate results
in predictive modeling. Besides, vessels with a history of less delay
in VTT tend to provide more trustworthy EDT information and re-
liable EDT information ultimately enhances the accuracy of model
predictions.

Additionally, based on the results of the feature importance analy-
sis, we select the ten most important parameters from Table 4.13 and
actual VTT for feature correction analysis and visualization. The
results of the feature correlation matrix visualization are shown in
Figure 4.17.
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Figure 4.17: Feature correlation matrix visualization results

In correlation matrix analysis, each cell in the matrix represents
the correlation coefficient between the variables on the correspond-
ing row and column. A correlation coefficient can range from -1
to 1, where: 1 indicates a perfect positive correlation (as one vari-
able increases, the other also increases). -1 indicates a perfect neg-
ative correlation (as one variable increases, the other decreases). In
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this part of the analysis, we focus on the actual VTT, represented as
“Turnaround,” and its related parameters. The correlation coefficient
of 0.75 between “Turnaround” and the expectedVTT (“ETurnaround”)
suggests a substantial positive relationship, indicating that longer ex-
pected VTT is often associated with longer actual VTT. The analysis
reveals that the expected VTT as a significant indicator of the actual
VTT which is similar to the findings from the feature importance
analysis. Besides, the vessel’s physical attributes such as beam, GT,
length, and maximum draft show a week linear relationships with
“Turnaround” feature. Port operational features including berth and
vessel historical delay records, also exhibit very weak correlations
with “Turnaround.” This indicates that these elements potentially af-
fect the VTT.

4.3.3 VST prediction results

We implement tree-based stacking model and other models on the
dataset to assess their efficacy in predicting VST. Furthermore, we
compare the VST predicted by these models to the expected VST
provided by the vessel and port, with RMSE, MSE, MAE and R2

as evaluation metrics. Besides, to underscore the importance of the
expected VST features in VST prediction, we removed this parame-
ter and conducted a new round of training. We then compared these
new predictions with the original results. The prediction outcomes
are presented in Table 4.14 and the visualization of RMSE, MSE,
MAE, and R2 results can be found in Figure 4.18.
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Table 4.14: Comparison of VST prediction results

Model RMSE MAE MSE MAAPE R2

Report_VST1 6.58 4.54 43.30 0.18 0.06
RF 4.53 3.27 20.53 0.15 0.58
XGBoost 4.49 3.21 20.15 0.13 0.79
LightGBM 4.52 3.24 20.44 0.13 0.78
Stacking 4.48 3.19 20.10 0.13 0.80
BPNN 6.30 4.30 39.72 0.18 0.11
XGBoost_no 6.11 4.25 37.33 0.17 0.22
LightGBM_no 6.17 4.27 38.06 0.17 0.21
Stacking_no 6.08 4.23 36.97 0.17 0.22

(a) MAE results by prediction models (b) RMSE results by prediction models

(c) MSE results by prediction models (d) R2 results by prediction models

Figure 4.18: Comparison of different prediction models

Table 4.14 and Figure 4.18 compare various ML models based
1Recall that “Report_VST” represents the VST reported by the vessel at berth and it is cal-

culated by EDT minus ETA. Alternatively, if the vessel is at berth when reporting the EDT data,
Expected_VST is calculated by subtracting the report time of this EDT records from the EDT itself.
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on their performance in VST prediction. “Report_VST” denotes
the VST errors as reported by the vessel in the test set. Rows la-
beled “XGBoost_no”, “LightGBM_no”, and “Stacking_no” show
the VST prediction results of the proposed XGBoost, LightGBM,
and stacking models without incorporating the “Expect VST” fea-
ture. The “Report_VST” row data shows that the original VST re-
ported by the vessel has an RMSE of 6.58 hours, an MAE of 4.54
hours, an MSE of 43.30 squared hours, an MAAPE of 0.18. More-
over, if we regard the reported VST by the vessels themselves as
a prediction of VST,the R2 value is 0.06, which indicates that the
original VST reported by vessels is unreliable and can provide lit-
tle valid information for port operations management. These values
provide a benchmark for comparing prediction accuracy in our study.
Table 4.14 indicates that the tree-based stacking model with the low-
est RMSE outperforms the others, which decreases the RMSE from
6.58 hours in the original reported VST data to 4.48 hours in the
prediction results, and the reduction rate is 31.9%. The MAE also
decreases from 4.54 to 3.19 hours, marking a 29.8% improvement,
and the MSE is reduced from 43.3 to 20.10 hours squared, a signifi-
cant reduction of 53.6%. Additionally, the stacking model yields the
highestR2 value of 0.80 and the lowestMAAPE of 0.13, demonstrat-
ing the best fit. XGBoost and LightGBM show comparable results
with slightly higher errors and R2 values of 0.79 and 0.78, respec-
tively. The RF model has a moderate performance, while the BPNN
model exhibits the highest errors in RMSE, MAE, MSE, MAAPE
metrics and the lowest R2 value (0.11), suggesting it is the least ac-
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curate model for predicting VST in our problem. The cause is that
BPNN, unlike other tree models, is not good at dealing with tabular
data.

Table 4.14 also shows that the effectiveness of the tree-based
model predictions substantially decreases if the expected VST fea-
ture is not used for prediction. The predictive results of the proposed
XGBoost, LightGBM, and stacking models, excluding the expected
VST feature, show only minor improvements over the baseline val-
ues in the test set. Among these models, the stacking model main-
tains the best performance, despite a slight reduction in delay error:
6.11 hours for RMSE and 4.25 hour for MAE. XGBoost_no, Light-
GBM_no and Stacking_no rows in Table 4.14 highlight the critical
role of feature the expected VST play in VST prediction. Despite
potential inaccuracies in the reported and expected VST values, this
feature is still the most crucial for evaluating and forecasting VST.

In addition to assessing model performance, we identify the ten
most significant features for VST prediction with the XGBoost
model. Feature importance is evaluated using the
“XGBoost.feature_importances function” in the library (T. Chen,
T. He, M. Benesty, Khotilovich, Y. Tang, Cho, K. Chen, Mitchell,
Cano, T. Zhou, et al. 2015). This function calculates feature
importance using the “total_gain” method, which indicates each
feature’s contribution to model accuracy. A higher score signifies a
greater impact of the feature on the prediction model. The
importance values for the top ten features in the VST prediction
model are presented in Table 4.15.
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Table 4.15: The analysis of top ten most important features

Ranking Variable Score
1 Expected_VST 0.5576
2 Berthing_time 0.083
3 Max_draft 0.055
4 GT 0.053
5 Beam 0.047
6 Length 0.046
7 Size 0.042
8 Visit_frequency 0.037
9 In_port_number 0.030
10 Agent_delay 0.029

Table 4.15 reveals various crucial factors are primary determinants
of VST prediction performance. These factors include the expected
VST, “Berth time”, generic vessel features (max_draft, GT, beam,
length, and size), the number of vessels in port, frequency of vessel
visits to HKP, and their agents’ historical performance. Notably, the
expected VST is the most critical feature, as it is reported by the ves-
sel and consistently used by the port authority for berth scheduling
planning. “Berth time”, reflecting the duration a vessel has been at
the berth, ranks second in importance. The longer a vessel has been
in the berth, the more operations may have been completed, poten-
tially indicating a shorter remaining VST. Additionally, this shorter
period may allow for more definitive planning and reduced uncer-
tainty. The vessel’s max_draft, GT, beam, length and size, rank-
ing third and seventh respectively, directly impact berth allocation.
The feature “Visit_frequency” ranks eighth in importance among the
features. This value represents the frequency at which a vessel vis-
its HKP each month, highlighting the significance of HKP in the
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vessel’s voyage routine. The “In_port_number” feature reflects the
number of vessels in the port at the time a vessel reports its EDT data.
This value can indicate the port’s activity level or congestion at the
time of the vessel’s EDT report. Additionally, “agent_delay” rep-
resents the historical average of VST delays managed by a specific
agent for a vessel, which is also crucial for predicting VST. Such
value acts as a metric to evaluate the efficiency of various agents in
managing their vessels’ port stays.



Chapter 5

Optimizing Berth Allocation
through Vessel Arrival Time
Prediction

This chapter explores the benefits of incorporating quantitative VAT
predictions into the following BAP operation. To achieve this, we
propose a two-stage prediction-then-optimization framework. In the
first stage, we develop a VAT prediction model to enhance the ac-
curacy of vessel arrival estimates. In the second stage, the predicted
VAT is integrated into the BAP model to optimize berth scheduling
decisions. To assess the effectiveness of VAT predictions, we com-
pare the performance of a BAP model using predicted VAT against
one that relies on vessel-reported ETA across both discrete and con-
tinuous berth settings. The results demonstrate that VAT-based schedul-
ing significantly improves berth allocation efficiency, reduces ves-
sel waiting times, and enhances overall resource utilization. These
findings underscore the advantages of data-driven forecasting in op-
timizing berth operations across different configurations.

167
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5.1 BAP Model Formulation

BAP focuses on assigning available berths to incoming container
vessels that require loading or unloading at a port. Given the high
volume of vessels arriving daily and the limited number of berths,
the primary objective of the BAP is to determine the optimal berth
assignment for each vessel and the precise starting time for berth op-
erations. Effective berth allocation plays a critical role in increasing
port profitability, which can be achieved by either boosting revenue
or reducing operational costs. Moreover, it is also vital to improve
the port’s good reputation and its customers’ satisfaction. Since the
primary source of revenue for operational berths comes from the han-
dling of cargo containers, efficient management of vessel arrivals,
departures, and berth resources is essential. By improving the effi-
ciency of berth operations, the port can process more vessels within
the same timeframe, leading to higher throughput and increased rev-
enue.

Currently, BAP decisions at port are made based on the ETA re-
ported by incoming vessels to berth. However, there is often a sig-
nificant discrepancy between the reported ETA and the ATA of the
vessel. This section explores the potential benefits of incorporating
predicted ship arrival time, as derived in the previous section, into
daily berth allocation strategies. We aim to evaluate whether VAT
prediction offers advantages to BAP when compared to solely rely-
ing on the vessel’s reported ETA.

In the context of BAP, there are generally two types of berths:
discrete and continuous. In the discrete BAP, the quay line is di-
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vided into specific berths, each of which is designated for a single
vessel, limiting the berthing to the predefined locations. In contrast,
in the continuous BAP, the vessels can dock at any position along the
quay line without fixed restrictions, allowing flexibility in berthing
locations. The illustrations of the two different types of berths are
shown in Figure 5.1: In our study, we explore BAP optimization in

Figure 5.1: The layout of discrete and continuous berths

both discrete and continuous cases with VAT predicted by ML mod-
els as input. First, we consider the type of berth in HKP as discrete.
The set of available berths is denoted by B and the set of vessels
to be handled by V . According to the Hong Kong Marine Depart-
ment’s requirement that vessels report their ETA 36 hours prior to
arrival (Hong Kong Maritime And Port Board 2024), this study fo-
cuses on the BAP for vessels scheduled to arrive within the upcom-
ing 36-hour time frame. Traditional BAP typically assumes a plan-
ning horizon of one week (168 hours). However, the ETA time plan-
ning horizon in data-driven berth allocation frameworks poses chal-
lenges to this assumption. Consequently, the remaining time beyond
this 36-hour window in the one-week planning horizon lacks reliable
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data, creating a gap in the planning process. Before addressing the
model in detail, the underlying assumptions are clarified as follows:

1. Every vessel reports the ETA data before arriving at the berth;

2. When a vessel arrives at the port and there is no available berth,
it will anchor and wait for the berth;

3. The move time of container vessels from anchor to the berth is
neglected;

4. Vessel will leave the port as soon it has finished container han-
dling;

5. The time used for container handling is determined for each
vessel;

For the model parameters, the notation of the sets, parameters, and
decision variables used in the discrete BAP is summarized in Ta-
ble 5.1. Let V denote the set of vessels under consideration. For each
vessel i ∈ V , the expected arrival time is denoted by ai, the requested
departure time by di, and the vessel’s length by Li. In the discrete
BAP, the maximum allowable vessel length at berth j, represented
by φj , determines the docking capacity of that berth. Moreover, the
total handling time for each vessel depends on its assigned berth; ac-
cordingly, we denote the handling time of vessel i at berth j (j ∈ B)
by hij . From the perspective of the terminal operator, the departure
delay cost coefficient for vessel i is pδi with unit $ per hour. Discrete
BAP seeks to minimize the total cost associated with vessel berthing
services, including cargo operations and departure tardiness. The
output of the discrete BAP model includes the following.
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Table 5.1: Notation of sets, parameters, and decision variables in the discrete BAP

Notation Explanation

Sets

V The set of all vessels.
B The set of all berths.

Indices

i, h The indices of vessels i and h, i, h ∈ V .
j The index of berth j, j ∈ B.

Parameters

ai The expected arrival time of vessel i, given in hours.
di The requested departure time of vessel i, given in hours.
Li The length of vessel i, given in meters.
φj The maximum allowable vessel length for docking at the berth j, given in meters.
hij The handling time of vessel i at berth j, given in hours.
pδi The cost coefficient of departure delay for vessel i, given in $ per hour.
M A sufficient large constant.

Decision variables

si The berth handling starting time in the planning horizon for vessel i, which is a positive integer.
ei The berth handling end time in the planning horizon for vessel i, which is a positive integer.
xij Binary, equal to 1 if vessel i is assigned to berth j, and 0 otherwise.
yih Binary, equal to 1 if vessel h is operated at the same berth as vessel i next successor, and 0 otherwise.
fi Binary, equal to 1 if vessel i is the first vessel operated at the assigned berth, and 0 otherwise.
li Binary, equal to 1 if vessel i is the last vessel operated at the assigned berth, and 0 otherwise.

• The berth assigned to each incoming vessel for cargo handling;

• The starting time of handling operations for each vessel;

• The time at which each vessel leaves the berth.

In terms of decision variables, once the vessel i arrives at the berth,
the time at which the berth operations begin should be decided and is
indicated by si. Similarly, the time when the berthing operations are
completed should be determined and is denoted by ei, representing
the berthing end time for the vessel i. Four decision binary variables
are also introduced to formulate the BAPmodel: xij = 1 if vessel i is
operated at berth j and 0, otherwise; yih = 1 if vessel h (h ∈ V, h .=
i) is operated at the same berth as vessel i immediately after vessel i
finishes all the berth operations and 0, otherwise; fi = 1 if vessel i is
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the first vessel in the planning horizon that is assigned to be operated
at the berth, and 0 otherwise; li = 1 if vessel i is the last vessel
in the planning horizon to be operated at the assigned berth and 0,
otherwise. The above discrete BAP is formulated as a mixed-integer
linear programming (MILP) model as follows:

min
∑

i∈V
pδi (ei − di)

+ (5.1)

Subject to: ∑

j∈B
xij = 1, ∀ i ∈ V, (5.2)

si +
∑

j∈B
hijxij = ei, ∀ i ∈ V, (5.3)

fi +
∑

h∈V \{i}

yhi = 1, ∀ i ∈ V, (5.4)

li +
∑

h∈V \{i}

yih = 1, ∀ i ∈ V, (5.5)

fi + fh ≤ 3− xij − xhj, ∀ j ∈ B, ∀ i, h ∈ V, i .= h, (5.6)

li + lh ≤ 3− xij − xhj, ∀ j ∈ B, ∀ i, h ∈ V, i .= h, (5.7)

yih− 1 ≤ xij − xhj ≤ 1− yih, ∀ j ∈ B, ∀ i, h ∈ V, i .= h, (5.8)

si +
∑

j∈B
hijxij −M (1− yih) ≤ sh, ∀ i, h ∈ V, i .= h, (5.9)

ai ≤ si, ∀ i ∈ V, (5.10)

Lixij ≤ φj, ∀ i ∈ V, ∀ j ∈ B, (5.11)

xij, yih, fi, li ∈ {0, 1}, ∀ j ∈ B, ∀ i, h ∈ V, (5.12)
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si, ei ∈ Z+, ∀ i ∈ V. (5.13)

The objective function (5.1) minimizes the total cost the cost in-
curred by delays in the departure of the vessel for the terminal op-
erator. In particular, (α)+ = max{α, 0} captures the non-negative
component of the delay. Constraints (5.2) guarantee that each ves-
sel is assigned one and only one berth. Constraints (5.3) present the
vessel berthing end time. Constraints 5.4 guarantee that each ves-
sel is either served first or follows another vessel. Constraints (5.5)
specify that each vessel is served last or is followed by another ves-
sel. Constraints (5.6) and (5.7) specify that only one vessel can be
scheduled as the first and last to be served in each berth, respec-
tively. Constraints (5.8) require that a vessel can follow another
vessel in service only if both are assigned to the same berth. Con-
straints (5.9) define the berthing start time of each vessel and M is
a sufficiently large positive number. Constraints (5.10) guarantee
that the start time of the berth cannot be earlier than the arrival time
of the vessel. Constraints (5.11) ensure that the length of the ves-
sel assigned to a berth does not exceed the maximum allowed vessel
length. Constraints (5.12) specify that the four decision variables
are binary. Constraints (5.13) indicate decision variables si and ei

are positive integers. Compared to the discrete BAP, the continu-
ous BAP scenario typically assumes a single continuous berth that
can accommodate multiple vessels simultaneously, allowing vessels
to dock at any position along the wharf and enabling more efficient
utilization of the wharf. In addition to the description provided in
Table 5.1, the supplementary notation for the sets, parameters, and
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decision variables used in the formulation of the continuous BAP is
summarized in Table 5.2.
Table 5.2: Notation of sets, parameters, and decision variables in the continuous
BAP

Notation Explanation

Parameters

LB The length of the continuous berth wharf, given in meters.
hi The handling time of vessel i at the berth, given in hours.
Pi The pre-defined low-cost berthing position of vessel i, given in meters.
Ci The berth position deviation cost coefficient for vessel i, given in $ per meter.
M A sufficient large constant.

Decision variables

si Positive integer, the berth staring handling time for vessel i.
xi Positive integer, the berth position of vessel i.
θXih Binary, equal to 1 if vessel i is berthed to the left of vessel h.
θSih Binary, equal to 1 if the start time of berthing for vessel h is no earlier

than the departure time of vessel i.

In the continuous BAP case, the total length of the continuous
berth is denoted as LB. Each vessel i is characterized by a length
Li, an expected arrival time ai, a requested departure time di, and an
expected handling time hi. Before starting berthing operations, each
vessel is assigned a low-cost berthing position Pi. This value is pre-
defined on the basis of the operational conditions of the berth and ter-
minal, serving as a reference to minimize overall operational costs.
The cost coefficient for the deviation between the actual berthing
position of the vessel i and the predefined optimal position is repre-
sented by Ci (Rodrigues and Agra 2022). The objective of continu-
ous BAP is to minimize two key cost components:

• The deviation cost incurred by the vessels due to their berthing
positions deviating from their optimal low-cost positions (Ro-
drigues and Agra 2022).
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• The cost of departure delay associated with ships that exceed
their requested departure time.

The primary decision variables in the continuous BAP model are the
berthing position xi and the start time of the berthing operations si
for each vessel i. To assist in the formulation of the model, two
binary decision variables are also introduced: θXih, which equals 1 if
the vessel i is berthed to the left of the vessel h and 0, otherwise;
θSih, which equals 1 if the start time of berthing for the vessel h is not
earlier than the departure time of vessel i and 0, otherwise. In this
way, the continuous BAP is formulated as follows

min
∑

i∈V

(
Ci |xi − Pi|+ pδi (si + hi − di)

+ (5.14)

Subject to:
xi + Li ≤ LB, ∀ i ∈ V, (5.15)

xi + Li ≤ xh +M
(
1− θXih

)
, ∀ i, h ∈ V, i .= h, (5.16)

si + hi ≤ sh +M (1− θyih) , ∀ i, h ∈ V, i .= h, (5.17)

θXih + θXhi + θSih + θShi ≥ 1, ∀ i, h ∈ V, i .= h, (5.18)

si ≥ ai, ∀ i ∈ V, (5.19)

xi, si ≥ 0, ∀ i ∈ V, (5.20)

θxih, θ
y
ih ∈ {0, 1}, ∀ i, h ∈ V, i .= h, (5.21)

si, xi ∈ Z+, ∀ i ∈ V, (5.22)

The objective function (5.14) aims to minimize the total cost associ-
ated with deviations in vessel berthing positions and vessel departure
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delays. The first term in the objective function (5.14) captures the
total cost associated with the deviation between the actual berthing
position and the predefined optimal position, while the second term
accounts for the total cost of the delay in departure of the vessel.
Constraints (5.15) guarantee that all vessels are positioned within
the limits of the berth wharf. Constraints (5.16) ensure that the ves-
sels are spatially separated within the distance space of the wharf
when the vessel i is placed to the left of the vessel h. Similarly, con-
straints (5.17) guarantee that vessels do not overlap in the time do-
main when vessel h arrives after vessel i has left. Constraints (5.18)
eliminate an extreme case where θXih = θXhi = θSih = θShi = 0, which
would result in vessels i and h overlapping in both the distance do-
main and the time domain. Constraints (5.19) ensure that a vessel
can start operating on its berth only after its arrival in the port. Con-
straints (5.20) define the vessel berth position pi and the start berthing
time bi as nonnegative integer variables. Constraints (5.21) define
θXih and θSih as binary variables. Constraints (5.22) indicate decision
variables si and xi are positive integers.

5.1.1 Linearization of the objective function for the BAP

The second term of the objective function (5.1), in the discrete BAP
model, is non-linear due to the positive part function (ei−di)+. Such
nonlinear terms increase the problem’s complexity and make it in-
compatible with linear programming solvers. To address this, an
auxiliary variable zi is introduced for each i ∈ V , where zi repre-
sents the positive deviation of ei − di. This linearization introduces
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the following two constraints:

zi ≥ ei − di, ∀ i ∈ V, (5.23)

zi ≥ 0, ∀ i ∈ V. (5.24)

With these constraints, the objective function (5.1) is reformulated
as:

min
∑

i∈V
pωi



si +
∑

j∈B
hijxij − ai



+
∑

i∈V
pδizi, (5.25)

subject to constraints (5.2)–(5.13), (5.23), and (5.24).
For the continuous BAP model, the objective function (5.14) in-

cludes two non-linear components: |xi − Pi|, the absolute value term
and (ai + hi − di)

+, the positive part function. Two auxiliary vari-
ables ui andwi are introduced to linearize the non-linear components
in the objective function (5.14), with the following constraints:

ui ≥ xi − Pi, ∀ i ∈ V, (5.26)

ui ≥ −(xi − Pi), ∀ i ∈ V, (5.27)

zi ≥ ai + hi − di, ∀ i ∈ V, (5.28)

zi ≥ 0, ∀ i ∈ V. (5.29)

The linearized form of the objective function (5.14) is:

min
∑

i∈V

(
Ciui + Cd

i wi

)
, (5.30)
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subject to constraints (5.15)−(5.22) and (5.26)−(5.29).

5.2 BAP Optimization with VAT Prediction

In the previous chapter, we presented a predictive model for VAT,
leveraging vessel port call data and AIS data in an innovative man-
ner. Building upon these predictions, this section focuses on opti-
mizing the subsequent BAP. Before presenting the results and anal-
ysis, we first introduce the scenarios considered in this study, fol-
lowed by the parameter settings for BAP and the validation steps.
Additionally, to assess the robustness of the proposed approach un-
der varying operational conditions, we conduct a sensitivity analysis
by adjusting the number of arriving vessels per unit time. By ana-
lyzing the impact of different traffic loads, we aim to evaluate the
effectiveness and adaptability of the berth allocation process.

To demonstrate the value of VAT prediction for BAP, three sce-
narios are considered:

• Ideal case: Assume that the ETA of the vessel ai in Tables 5.1
and 5.2 corresponds to the ATA vessel. This scenario repre-
sents an ideal extreme situation where the terminal operator has
prior knowledge of the exact ATA of the vessel. Berth alloca-
tion strategy in this case is optimal, and the resulting objective
function value serves as a optimal value for comparison.

• Vessel reported ETA case: In this scenario, the arrival time of
the vessel ai is based on the reported ETA of the vessel. The
terminal operator makes the berth allocation using this reported
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ETA, and the objective function is evaluated based on the actual
ATA for validation.

• Predicted VAT case: In this scenario, the ETA of the vessel is
determined on the basis of the predicted VAT provided by the
prediction model. The subsequent berth allocation is made ac-
cording to this predicted VAT, and the objective function is then
validated using the actual ATA of the vessel. The validated ob-
jective function value is compared with both the ideal case and
the reported ETA case to evaluate the benefit of VAT prediction
on berth allocation.

5.2.1 Parameters setting and validation steps

For the discrete BAP case, we consider three types of berths: small,
medium, and large. Correspondingly, vessels are classified into three
categories based on their length. Small vessels are those with a
length of 200 meters or less, medium vessels have a length between
200 and 300 meters, and large vessels exceed 300 meters in length.
A small berth can accommodate only small vessels, a medium berth
can accommodate both small and medium vessels, and a large berth
can accommodate vessels of all three categories. As stated in the pre-
vious section, each discrete berth can accommodate only one vessel
at a time.

To enhance the realism of the port operation simulation, we ex-
tract VAT and vessel length from the HKP real-world VAT dataset.
Specifically, we select vessel arrival data where the ETA report time
falls within the time window of January 1, 2021, between 12:00 PM
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and 1:00 PM, representing vessels that are expected to arrive within
the next 36 hours. Each data record represents a vessel that reported
an ETA within this period and is paired with an ATA, a predicted
VAT, vessel length. Furthermore, each vessel is assigned a quay
crane (QC) working hour value based on its length, ranging from 20
to 50 hours. QCs are essential for port operations, handling the load-
ing and unloading of containers. The assigned QC working hours
represent the total time required for a single QC to complete all con-
tainer operations for a vessel.

For the discrete BAP,we consider three berths: “small”, “medium”,
and “large”. Correspondingly, vessels are classified into three cate-
gories based on their length. “Small” vessels are those with a length
of 200 meters or less, “medium” vessels have a length between 200
and 300meters, and “large” vessels exceed 300meters in length. The
maximum allowable vessel length for the “small” berth is 200 me-
ters, while for the “medium” berth, it is 300 meters. A “small” berth
can accommodate only “small” vessels, a “medium” berth can ac-
commodate both “small” and “medium” vessels, and a “large” berth
can accommodate vessels of all three categories, with no specific
maximum vessel length restriction. As stated in the previous sec-
tion, each discrete berth can accommodate only one vessel at a time.

The allocation of QCs is determined based on vessel size and
berth assignment. According to statistical data, the average turnaround
time for container vessels in HKP is approximately 10 hours, which
includes the waiting time in the anchorage area. Based on this sta-
tistical value, we make a reasonable assumption for QC allocation:
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“small” vessels are assigned 3, 4, and 5QCswhen berthed at “small”,
“medium”, and “large” berths, respectively. “Medium” vessels are
assigned 5 and 6 QCs when berthed at “medium” and “large” berths,
respectively. “Large” vessels, which can only be berthed at the “large”
berth, are allocated 7 QCs. Given the previously established QC
working hours, this allocation ensures that the total operation time
for each vessel at its most suitable berth, defined as the smallest berth
that can accommodate the vessel based on its length constraints, com-
bined with potential waiting time, is approximately 10 hours.

As for the vessel’s requested departure time, we first determine
its operational time at its most suitable berth. This operational time
is then multiplied by a uniform distribution factor randomly drawn
from the range [1, 1.5]. Finally, by adding the vessel’s ETA ai, vessel
requested departure time di is obtained. The vessel departure delay
is then defined as the positive part of the difference between the berth
handling end time ei and the requested departure time di. The cost
coefficient of vessel departure delay is also set according to vessel
length, with small vessels incurring a cost of $1000/h, medium ves-
sels $1500/h, and large vessels $2000/h.

Next, we consider the continuous BAP case, where the continu-
ous BAP considers only a single berth, which can simultaneously ac-
commodate multiple vessels for consecutive berth operations. In our
study, we set the continuous berth length LB to 400 meters, which
exceeds the length of any vessel in our dataset. The handling time
hi of vessel i at the continuous berth remains fixed and corresponds
to the handling time of the vessel at its most suitable berth in the
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discrete case. The optimal low-cost berthing position Pi for vessel i
is influenced by various factors onshore, including real-time termi-
nal and dock infrastructure operation. In our study, we first ignore
the position deviation cost term Ci |xi − Pi| in the continuous BAP
objective function 5.14 and perform optimization using the ATA val-
ues to determine an initial set of optimal low-cost berthing positions.
These positions are then fixed as the optimal low-cost berthing posi-
tions in the subsequent formulation of the BAP problem. The berth
position deviation cost coefficient is set equal to the vessel depar-
ture delay cost coefficient: $1000/h for small vessels, $1500/h for
medium vessels, and $2000/h for large vessels.

In evaluating the impact of VAT prediction on BAP performance,
it is irrational to directly compare the objective function values ob-
tained from optimizing BAP with different VAT values (ETA, ATA,
and predicted VAT). This is because berth operations are scheduled
based on these VAT values, while vessel ATAmay deviate from ETA
and predicted VAT. If ETA or predicted VAT is earlier than ATA, the
berth may be reserved for the target vessel while it has yet to arrive.
Conversely, if ETA or predicted VAT is later than ATA, the vessel
may already be at the port as per the schedule requirements, while
the berth is still occupied by another vessel, leading to additional
waiting time and inefficient use of port resources. To properly vali-
date the impact of VAT prediction on BAP, an additional verification
step is required.

For the discrete berth case, we first optimize BAP using predicted
VAT or ETA to determine the specific berth assignment for each ves-
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sel and the vessel sequence at each berth. Then we fix the decision
variables xij and yih from optimization in the discrete BAP model,
which correspond to the berth assignment and the vessel sequence
schedule, ensuring that the vessels follow the predefined berth allo-
cation and entry order. We then re-run the optimization using ATA as
the vessel arrival data to obtain the final results, reflecting a realistic
operational scenario. For the continuous berth case, we first deter-
mine each vessel’s starting handling time si through optimization and
use this information to derive the vessel sequence at the continuous
berth. Since the continuous berth can accommodate multiple ves-
sels simultaneously, vessels with the same beginning service time
are prioritized based on their length, with longer vessels receiving
higher service priority. Based on this sequence, we introduce addi-
tional constraints on the berth starting handling time for each vessel
and re-run the optimization model using ATA values to obtain the
final BAP results under different VAT planning scenarios in the con-
tinuous BAP.

5.2.2 Discrete BAP results analysis

In this section, we first evaluate the results of the discrete BAP by
analyzing scenarios in which 8, 10, 12, 14, 16, and 18 vessels ar-
rive at the port within a 36-hour time frame. The evaluation com-
pares the vessel-reported ETA, serving as the benchmark, with the
ATA, representing the optimal value, and the predicted VAT (PVAT)
results. To minimize randomness, each experiment randomly se-
lects different vessels, and each scenario is repeated ten times. The
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analysis focuses on the objective value of the discrete BAP model
and the reduction rate achieved by the predicted VAT, calculated as
(ETA−PV AT )/ETA. Additionally, we examine two keymetrics:
vessel average turnaround time, defined as the average duration from
the commencement to the completion of berth operations across all
vessels, and total vessel waiting time, which represents the cumula-
tive waiting time for all vessels from their arrival at the port to the
start of their respective berth operations. The impact of predicted
VAT on these metrics is further assessed by computing the respec-
tive reduction rates, providing insights into the potential efficiency
improvements introduced by the proposedVAT predictionmodel and
the following BAP evaluation framework. The results are visualized
in Figures 5.2, 5.3 and 5.4.



CHAPTER 5. OPTIMIZING BAP THROUGH VAT PREDICTION 185

(a) Objective value and reduction rate for 8
vessels

(b) Objective value and reduction rate for
10 vessels

(c) Objective value and reduction rate for
12 vessels

(d) Objective value and reduction rate for
14 vessels

(e) Objective value and reduction rate for
16 vessels

(f) Objective value and reduction rate for
18 vessels

Figure 5.2: Comparison of cost and reduction rate for different vessels in the dis-
crete BAP

The discrete BAP objective value visualization results in Fig-
ure 5.2 show that under six different fleet sizes (8, 10, 12, 14, 16, and
18 vessels), using only ETA-based scheduling generates the highest
vessel departure delay costs for the berth operator, and these costs
intensify as the vessel number grows. In the 8 vessel scenario, the
“ETA” case cost typically ranges from around 50,000 to 90,000$,
whereas using “PVAT” reduces the related cost to roughly half or
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less. For example, Instances 1 and 5 show a reduction of more than
50 percent when comparing “PVAT” to “ETA”. As the number of
vessels increases to 10 or 12, the “ETA” case costs can climb to ap-
proximately 90,000 or 150,000, yet PVAT still produces savings of
about 50 to 80 percent. In the 14 or 16 vessel scenarios, “ETA” case
values often exceed 170,000 or even 200,000, while “PVAT” remains
10,000 lower, yielding delay cost reductions between 40 and 70 per-
cent.

In the 18 vessel case, the contrast is especially pronounced: “ETA”
case costs can exceed 300,000 or even 400,000, whereas PVAT gen-
erally stays in the 120,000 to 180,000 range, corresponding to re-
duction rates of 70 to 90 percent in many instances. Meanwhile, the
“ATA” case, which assumes perfect prior knowledge of vessel ATA,
consistently drives costs down to nearly zero, such as in the 8 vessel
Instances 1 and 2, the 10 vessel Instance 2, 3. In these cases, suppose
the port staff knows the vessel ATA beforehand, they can develop an
optimal schedule that ensures each vessel departs on time, thereby
eliminating additional operational costs. Overall, the results under-
score that inaccurate or misreported arrival times impose substantial
cost penalties on berth operators, whereas more precise vessel arrival
time predictions can deliver significant reductions in departure delay
costs. Following the objective value discussion, Figure 5.3 presents
the average turnaround time under different VAT conditions (ETA,
PVAT, and ATA). As might be expected, improving the accuracy of
arrival predictions (switching from ETA to PVAT) generally reduces
the vessel average turnaround time for most vessel numbers and in-
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(a) Average turnaround time and reduction
rate for 8 vessels

(b) Average turnaround time and reduction
rate for 10 vessels

(c) Average turnaround time and reduction
rate for 12 vessels

(d) Average turnaround time and reduction
rate for 14 vessels

(e) Average turnaround time and reduction
rate for 16 vessels

(f) Average turnaround time and reduction
rate for 18 vessels

Figure 5.3: Comparison of average turnaround time and reduction rate for different
vessels



CHAPTER 5. OPTIMIZING BAP THROUGH VAT PREDICTION 188

stances. For example, in the 8 and 10 vessel cases in Figures 5.3a and
5.3b, the “ETA” case often lie several hours above the “PVAT” case,
illustrating how ports can more efficiently plan berth assignments
when equipped with better VAT estimates.

However, there are a few notable instances where the “PVAT”
based solution does not outperform ATA. For example, in the 10 ves-
sel scenario illustrated in Figure 5.3b, Instance 3 shows the average
turnaround time value under PVAT that is higher than ATA by about
0.70 to 1.00 hours. A similar pattern emerges in the 12 vessel setting
in Figure 5.3c, especially in Instances 4 and 6, where PVAT’s TAT
exceeds ATA by roughly 0.40 to 0.60 hours. This outcome stems
from the fact that the BAP objective function emphasizes minimiz-
ing vessel departure delay cost, not strictly the turnaround time. Al-
though improved VAT predictions typically allow port authorities to
reduce both departure delays and turnaround time of vessels, certain
edge cases can arise. In these cases, the scheduling algorithm may
opt to delay a smaller vessel, despite its early arrival, so that a larger
vessel can be assigned a berth slot immediately. This tactical choice
lowers the overall departure delay cost, because ensuring punctual
departure of a large vessel (which incurs a higher cost if delayed)
yields greater savings for the port operator. Figure 5.4 presents the
total waiting time of vessels under the three VAT conditions, showing
that increased VAT accuracy (from “ETA” to “PVAT”) generally de-
creases vessel total waiting time at the port, with ATA often yielding
the lowest totals across most instances. Nonetheless, several cases
diverge from this trend. In the 10 vessel scenario in Figure 5.4b, In-
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(a) Total waiting time and reduction rate for
8 vessels

(b) Total waiting time and reduction rate for
10 vessels

(c) Total waiting time and reduction rate for
12 vessels

(d) Total waiting time and reduction rate for
14 vessels

(e) Total waiting time and reduction rate for
16 vessels

(f) Total waiting time and reduction rate for
18 vessels

Figure 5.4: Comparison of vessel total waiting time in the discrete BAP

stance 3 shows that the total waiting time for both ETA and PVAT is
almost identical (e.g., 46.0 hours for both “ETA” and “PVAT” cases),
“ATA” case achieves a modestly lower total waiting time of about
28.0 hours, whereas in Instance 4, both “ETA” and “PVAT” values
decrease and lie below that of ATA.

An even more unexpected result is seen in Instance 8, where the
ETA-based schedule yields a slightly lower total waiting time than
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the PVAT-based one. As with the total waiting time, These devia-
tions can be attributed to the objective function of the BAP primary
focus on reducing departure delay costs, which is similar to what was
observed for vessel average turnaround time situations. By assigning
a berth immediately to a larger, high-priority vessel and temporarily
delaying a smaller one, even if the smaller vessel arrives first, the
port operator can avoid substantial penalty charges tied to the late
departure of high-priority vessels. Although this tactic inflates the
total waiting time (and consequently the turnaround time) of the de-
layed vessel, it ultimately delivers greater cost savings at the system
level by ensuring on-time departures for larger ships.

Table 5.3: Comparative analysis of reduction rates for different vessels andmetrics
in the discrete BAP

Metric Stat Vessel number

8 10 12 14 16 18

Objective value
Max 0.91 0.95 0.96 1.00 0.93 0.90
Min 0.09 0.29 0.09 0.63 0.58 0.33
Mean 0.60 0.76 0.64 0.82 0.78 0.64

Average turnaround time
Max 0.38 0.45 0.51 0.43 0.43 0.33
Min 0.10 0.01−0.02 0.11 0.07 0.22
Mean 0.24 0.21 0.24 0.24 0.30 0.26

Total waiting time
Max 0.63 0.75 0.76 0.60 0.70 0.68
Min 0.11−0.05−0.09 0.27 0.20 0.11
Mean 0.42 0.37 0.44 0.41 0.51 0.46

Table 5.3 presents a comparative analysis of the reduction rates
for different vessel numbers and key performance metrics in the dis-
crete BAP scenarios. Across the tested scenarios of 8, 10, 12, 14,
16, and 18 vessels, the maximum, minimum, and mean reduction
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rates consistently show that the VAT-based predictions generally of-
fer substantial improvements over schedules derived purely from
vessel-reported ETAs. In particular, the mean reduction rates for
all three metrics commonly range between 20% and 80%, with cer-
tain instances, such as the objective value at 14 vessels, even reach-
ing 100%. However, negative reduction rates appear in a few cases
(highlighted in red), most notably the average turnaround time for 12
vessels (-0.02) and the total waiting time for 10 and 12 vessels (-0.05
and -0.09, respectively), indicating that in these specific instances,
the ETA-based approach slightly outperforms the VAT-based one.
Such divergences can arise when a stronger emphasis on minimizing
delay costs within the BAP optimization lead to marginal trade-offs
in other metrics.

5.2.3 Continuous BAP results analysis

For the continuous BAP, the primary concern in the objective value
in Function 5.14 lies in the total cost associated with deviations in
vessel berthing positions and delays in vessel departure times. In
our analysis, we first evaluate the objective value and its correspond-
ing reduction rate. Similar to the discrete BAP, we then assess the
total waiting time of the vessels. Lastly, given the nature of the con-
tinuous BAP, we introduce a metric called berth space utilization,
which is defined as the sum of the product of each vessel’s length
and the time it occupies the berth, divided by the product of the total
berth length LB and the time span from when the first vessel be-
gins its berthing operation to when the last vessel finishes. The im-
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provement rate for berth space utilization predicted by VAT is then
assessed using the fraction (PV AT − ETA)/ETA. To ensure ro-
bustness and reduce randomness, scenarios involving 7, 8, 9, 10, 11,
and 12 vessels arriving at the berth are tested, and each scenario
is repeated ten times. Figure 5.5 presents the objective values and

(a) Objective function value and reduction
rate for 7 vessels

(b) Objective function value and reduction
rate for 8 vessels

(c) Objective function value and reduction
rate for 9 vessels

(d) Objective function value and reduction
rate for 10 vessels

(e) Objective function value and reduction
rate for 11 vessels

(f) Objective function value and reduction
rate for 12 vessels

Figure 5.5: Comparison of objective function values for the continuous BAP
model

reduction rates for the continuous BAP under scenarios with seven
to twelve vessels, illustrating a consistent pattern in which “PVAT”
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substantially reduces the objective value cost compared to “ETA”.
For instance, in Figure 5.5a (7 vessels case), the objective values of
“ETA” cases range from about 23,000 to 57,000, whereas “PVAT”
cases stay between 5,000 to 33,000, achieving reductions of roughly
17% to 84%. As the number of vessels grows from seven to twelve,
the objective value for “ETA” may climb above 100,000 (and even
exceed 150,000), yet “PVAT” value continues to cut costs signif-
icantly, frequently to around half of the value in “ETA” and reg-
isters most reductions between 30% and 70%, peaking at 75% or
more in certain cases. In general, these findings demonstrate that
VAT-based predictions provide cost savings in every case consid-
ered, clearly highlighting their efficacy in reducing objective val-
ues for continuous BAP. Figure 5.6 illustrates the total waiting time
for continuous BAP in scenarios with seven to twelve vessels. In
most cases, the solution of “PVAT” significantly reduces the total
vessel waiting time compared to “ETA”. For example, with 7 ves-
sels, “ETA” sometimes pushes the total waiting beyond 100 hours,
while “PVAT” typically keeps it close to 40-60 hours, resulting in
a considerable reduction in queueing delays. Similar trends appear
when the problem scale increases to 8 or 9 vessels: vessel total wait-
ing times in “ETA” case may exceed 90–120 hours, while “PVAT”
generally cuts tens of hours, lowering overall waiting closer to the
40–80 hours range. Nonetheless, a few special instances emerge,
particularly with 11 vessels, where instance 7 shows no improve-
ment (PVAT waiting time remains unchanged from ETA) and in-
stance 8 even exhibits higher waiting under “PVAT” case. Similar
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(a) Total waiting time and reduction rate for
7 vessels

(b) Total waiting time and reduction rate for
8 vessels

(c) Total waiting time and reduction rate for
9 vessels

(d) Total waiting time and reduction rate for
10 vessels

(e) Total waiting time and reduction rate for
11 vessels

(f) Total waiting time and reduction rate for
12 vessels

Figure 5.6: Comparison of vessel total waiting time for the continuous BAPmodel
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to the discrete BAP, the underlying scheduling may assign specific
segments of the continuous berth to larger vessels first, compelling
smaller vessels that arrive earlier to remain at anchor longer. While
this increases overall waiting time, it can ultimately reduce the to-
tal cost objective by prioritizing the berthing positions and time for
vessels whose deviations and delays incur higher penalties. Conse-
quently, although “PVAT” generally decreases vessel waiting times,
these cases demonstrate a trade off between minimizing queuing de-
lays and achieving broader cost savings related to berthing position
deviations and departure delays in the continuous BAP. Figure 5.7
displays berth space utilization rates under different VAT values and
vessels. In general, “PVAT” yields higher berth space utilization
compared to “ETA”, and “ATA” remains the optimal cases among
the three scenarios. With seven vessels, for example, “ETA” cases
usage might hover around 48–60%, while “PVAT” raises it by 10–15
percentage points in several instances, giving improvement rates of
about 0.12 to 0.27; similar patterns are visible in the 8 and 9 vessel
cases, where utilization commonly shifts from the mid-50% range
under “ETA” to 60% range under “PVAT”, leading to improvement
rates near 0.10–0.25. A notable exception appears in the 10 vessel
cases: while the improvement rates vary mainly between 0.07 and
0.16, instance 6 shows a rate of zero because the last vessel’s depar-
ture time remains unchanged between “ETA” and “PVAT”. In contin-
uous BAP, the operational time of each vessel in the berth is fixed; if
the final vessel completes its service at the same time in both sched-
ules, the overall utilization ratio of the berth remains constant, thus
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(a) Berth space utilization rate for 7 vessels (b) Berth space utilization rate for 8 vessels

(c) Berth space utilization rate for 9 vessels
(d) Berth space utilization rate for 10 ves-
sels

(e) Berth space utilization rate for 11 ves-
sels

(f) Berth space utilization rate for 12 ves-
sels

Figure 5.7: Comparison of berth space utilization rate for the continuous BAP
model



CHAPTER 5. OPTIMIZING BAP THROUGH VAT PREDICTION 197

producing no improvement. However, in most cases, across seven to
twelve vessels, PVAT consistently improves the utilization of berth
space over ETA, demonstrating the added value of VAT predictions
in maximizing the efficiency of use of continuous berth.

Table 5.4: Comparative analysis of change rates for different vessels and metrics
in the continuous BAP

Metric Stat Vessel number

7 8 9 10 11 12

Objective value
Max 0.84 0.84 0.78 0.78 0.55 0.69
Min 0.17 0.41 0.03 0.06 0.07 0.07
Mean 0.63 0.68 0.50 0.44 0.33 0.43

Total waiting time
Max 0.69 0.60 0.69 0.59 0.47 0.54
Min 0.18 0.13 0.08 0.10 -0.22 0.01
Mean 0.40 0.38 0.38 0.32 0.20 0.35

Berth space utilization
Max 0.24 0.25 0.35 0.20 0.16 0.24
Min 0.01 0.09 0.07 0.00 0.04 0.01
Mean 0.11 0.16 0.14 0.10 0.10 0.11

Table 5.4 summarizes the change rates in three key metrics (ob-
jective value, total waiting time, and berth space utilization) when
comparing the predicted VAT approach (PVAT) with the baseline
ETA under various vessel counts. A positive figure in the objec-
tive value column indicates the percentage reduction (i.e., improve-
ment) achieved by the predicted VAT relative to the reported ETA.
The maximum reduction can reach 0.84 (84 percent) for 7 and 8 ves-
sels, and remains robust at higher fleet sizes, as suggested by mean
values that remain above 0.40. The utilization of the berth space ex-
hibits positive improvement rates, with maxima ranging from about
0.20 to 0.35, showing that “PVAT” generally increases the efficiency
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of berth use compared to “ETA”.
Two special cases appear. With 11 vessels, the minimum total

waiting time improvement is−0.22, indicating that “PVAT” can lead
to higher waiting times in extreme situations. This aligns with earlier
observations that prioritizing certain berthing sequences may reduce
overall costs but prolong the waiting of smaller vessels. For 10 ves-
sels, the minimum improvement in berth space utilization is 0.00,
which means the final vessel’s departure time was the same under
both PVAT and ETA, so the overall utilization rate did not change.

Overall, considering both discrete and continuous BAPs, the re-
sults demonstrate that predicted VAT (PVAT) consistently outper-
forms schedules based on vessel-reported ETA. In particular, PVAT
significantly lowers the objective value across a wide range of in-
stances. By strategically anticipating vessel arrivals, the proposed
predictive approach effectively allocates berth resources and miti-
gates costly idling and misalignment. Consequently, the findings
highlight that adopting VAT-based predictions can bring substantial
benefits to berth operators, including reduced overall costs and more
efficient berth utilization in both discrete and continuous berth allo-
cation settings.



Chapter 6

Conclusion and Further research

6.1 Contribution and conclusions

In this thesis, we explore the application of ML in port operations
through a structured framework consisting of evaluation, prediction,
and optimization. By first assessing the current state of vessel ar-
rivals and port operations and identifying key performance indica-
tors, we establish a solid foundation for developing the following
predictive models. These models enabled accurate forecasting of
critical variables, such as ocean-going and inland waterway VAT,
VTT, and VST. The insights gained from VAT predictions are then
leveraged to optimize the following BAP, ensuring a more efficient
assignment of berths, reducing vessel waiting time, and improving
overall port throughput.

Specifically, Chapter 3 presents two novel approaches to data fu-
sion, with the first integrating vessel-reported ETA, vessel ATA, and
corresponding AIS data to quantify vessel arrival delays. The anal-
ysis demonstrates that as the vessels approach their destination port,

199
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their reported ETA becomes increasingly accurate in both spatial and
temporal dimensions, both for the oceangoing vessels and the inland
waterways. The second approach combines vessel-reported EDT,
vessel ADT with the timestamps of vessel entry and departure from
the berth to quantify VTT and VST. In addition, the chapter con-
ducts a quantitative analysis of COVID-19’s impact on port opera-
tions, using HKP as a case study. The findings confirm that COVID-
19 and its associated restrictions have led to fewer vessel calls in
various vessel types, resulting in a decrease in overall port through-
put at HKP. Furthermore, pandemic-related restrictions have exac-
erbated vessel arrival delays and prolonged turnaround time, further
diminishing port operational efficiency. The study also discloses that
throughout the COVID period, a positive correlation is observed be-
tween vessel arrival delay, container turnaround time at HKP, and
the global freight rate.

Chapter 4 focuses on time prediction for VAT, VTT, and VST.
Based on the evaluation framework, relevant datasets are constructed
to facilitate time prediction, utilizing tree-based models. For ocean-
going vessels, this study marks the first to simultaneously incorpo-
rate vessel-reported ETA and AIS data for VAT prediction. To better
reflect real-world port operations, the dataset is partitioned chrono-
logically. Compared to vessel-reported ETA, our approach reduces
MAE from 6.84 hours to 3.11 hours, achieving a 54.53% reduction.
In inland waterway shipping, we integrate the unique characteris-
tics of river transport by incorporating vessel traffic flow data and
utilizing the A-Star algorithm to estimate the remaining sailing dis-
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tance for VAT prediction. Our results demonstrate a significant im-
provement, reducingMAE from 17.06 hours to 3.49 hours, a 79.54%
reduction. For VTT prediction, our model improves accuracy by re-
ducingMAE from 5.12 hours to 3.94 hours, a 23.05% decrease com-
pared to vessel-reported values. Similarly, for VST prediction, the
MAE is reduced from 4.54 hours to 3.19 hours, achieving a 29.74%
reduction.

Chapter 5 explores the benefits of incorporating quantitative VAT
predictions into the following BAP operations. Based on the pre-
dicted VAT obtained from the previous chapter, we propose a two-
stage prediction-then-optimization framework. In the first stage, a
VAT prediction model is developed to enhance the accuracy of ves-
sel arrival estimates. In the second stage, the predicted VAT is inte-
grated into the BAP model to optimize berth scheduling decisions.
To evaluate the effectiveness of VAT-based scheduling, we compare
the performance of a BAP model utilizing predicted VAT against
one that relies on vessel-reported ETA in both discrete and continu-
ous berth settings. The results demonstrate that, in the discrete berth
scenario with 12 vessel arrivals, VAT-based BAP scheduling reduces
additional BAP costs by 64%, decreases average VTT by 21%, and
lowers total vessel waiting time by 73% compared to ETA-based
scheduling. In the continuous berth setting, VAT-based scheduling
achieves a 43% reduction in additional BAP costs, a 35% decrease
in total vessel waiting time, and an 11% improvement in berth space
utilization. These findings highlight that VAT-based scheduling sig-
nificantly enhances berth allocation efficiency, reduces vessel wait-
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ing time, and optimizes overall resource utilization.
These studies highlight the potential of improving port operations

through a structured framework for evaluation, prediction, and opti-
mization driven by ML. By systematically incorporating data-driven
insights into decision-making, our study demonstrates the substantial
potential of AI-powered port management in optimizing daily port
operations. Real-world case studies have demonstrated that leverag-
ing ML enhances efficiency, mitigates operational uncertainties, and
optimizes resource allocation. As ports face growing demands and
increasing complexities, adopting intelligent, data-driven method-
ologies will be essential for ensuring sustainable and adaptive oper-
ational improvements.

6.2 Future Research Directions

Further research on machine learning applications in port operations
can be systematically extended across three key dimensions: eval-
uation, prediction, and optimization. In the evaluation component,
the current study primarily relies on correlation-based feature impor-
tance analysis for VAT, VTT, and VST prediction. However, corre-
lation does not imply causation and may obscure the true influence
of input variables. Future research could incorporate causal infer-
ence methods, such as instrumental variable approaches or frame-
works like Do-Why, to more accurately identify the causal impact
of individual features on VAT predictions. Compared to traditional
correlation analysis, causal inference allows for a more robust un-
derstanding of feature relationships under counterfactual scenarios,
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which is particularly valuable when informing downstream opera-
tional decisions. By disentangling direct and indirect effects, these
methods can enhance the interpretability, stability, and transferabil-
ity of predictive models, especially when applied across different
ports or evolving operational environments.

Currently, VAT prediction models leverage existing forecasting
techniques, but future research can explore the development of spe-
cialized models tailored specifically to VAT prediction. By utilizing
historical vessel arrival records, port congestion patterns, and mar-
itime traffic data, a domain-specific VAT forecasting framework can
be established to improve accuracy and adaptability.

In the prediction component, one potential enhancement lies in
the integration of unstructured and external data sources to improve
model adaptability and robustness. For instance, real-time meteoro-
logical data, such as wind speed, temperature, and other atmospheric
conditions, can be fused with AIS records based on spatiotempo-
ral alignment using latitude, longitude, and timestamp information.
This enables the model to better account for environmental factors
that influence vessel arrival times. In addition, incorporating port-
related news and social media content may offer early signals of
unexpected disruptions, such as severe weather events or port con-
gestion. Furthermore, considering dynamic traffic flow conditions,
such as the density of nearby vessels or trajectory-level movement
patterns, can help capture congestion-induced delays. By combining
these heterogeneous data sources, future VAT prediction models can
become more resilient to real-world variability and better suited for
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real-time operational deployment.
Another promising direction is to incorporate port resilience into

the model, which captures a port’s ability to respond to and recover
from disruptions. Factors such as recovery time (how quickly the
port resumes normal operations after a disturbance) and adaptive ca-
pacity (how effectively it manages variable throughput under stress)
can be quantified through a Port Resilience Index (PRI). This index
can be derived from historical records of operational disruptions, de-
lays, and recovery patterns—for example, by measuring the slope
of throughput restoration curves or the variance in berth productiv-
ity post-disruption. Once constructed, the PRI can be temporally
fused into the dataset by aligning its values with AIS and port call
records based on timestamp. As a time-series feature, the PRI al-
lows the model to contextualize current vessel movements within the
dynamic operational status of the port, improving robustness under
uncertainty and better reflecting real-time resilience conditions.

To further improve the generalizability and practical value of the
proposed framework, future studiesmay consider extending the anal-
ysis from a two-month evaluation period to a longer time span of one
to two years. A more extensive dataset would enable deeper insights
into seasonal variations, long-term behavioral trends, and the impact
of recurring or rare disruptions on vessel arrivals. Moreover, vali-
dating the framework across multiple ports with varying geographic,
infrastructural, and operational characteristics would offer a com-
prehensive assessment of its adaptability and robustness in hetero-
geneous port environments. This cross-port evaluation could help
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demonstrate the model’s transferability and support its application
in diverse real-world contexts.

Beyond improving prediction accuracy, future research should
also focus on seamless VAT integration into port operations. By
leveraging high-precisionVATpredictions, ports can implement just-
in-time (JIT) docking strategies that synchronize vessel arrivals with
berth availability. This reduces unnecessary anchorage time, min-
imizes fuel consumption, and cuts down on associated emissions.
Additionally, integrating VAT forecasts into onboard navigation sys-
tems can enable vessels to dynamically adjust speed, optimize routes,
and avoid inefficient holding patterns—leading to lower fuel costs
and a reduced environmental footprint.

Building upon VAT prediction, the next stage is to enhance BAP
by integrating predictive data into scheduling models. The current
study employs a basic BAP model where each vessel is assigned a
fixed operational time at the berth. Future research could expand
this by incorporating quay crane allocation, where the number of
cranes per vessel varies dynamically, directly impacting handling
time. By integrating VAT predictions into a joint berth and quay
crane scheduling framework, ports can transition toward a data-driven
optimization approach that accounts for operational uncertainties.

Another area of improvement is the berth scheduling horizon.
The present model limits scheduling to vessels arriving within the
next 36 hours, reflecting the typical reporting window of ETA data.
Amore dynamic approachwould involve extending this horizon, im-
plementing a rolling scheduling procedure every 24 hours, and lever-
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aging VAT predictions to create an adaptive berth allocation strategy
covering an extended period, such as one week. This would provide
greater flexibility in managing berth availability while responding
to fluctuations in vessel arrivals. Building on this idea, further re-
search could transform the current framework from a one-time static
scheduling model into a dynamic BAP that allows for real-time ad-
justments as new information becomes available. By continuously
updating arrival predictions and system states, the berth plan can
be revised in an online manner to reflect the evolving operational
environment. To efficiently solve this more complex and computa-
tionally intensive problem, deep reinforcement learning (DRL) tech-
niques could be employed to learn effective scheduling policies that
balance short-term operational efficiency with long-term optimiza-
tion objectives. This would enable ports to proactively adapt to real-
time uncertainties and enhance overall berth utilization.

Lastly, the prediction-then-optimization framework used in this
study currently treats VAT forecasting and BAP scheduling as two
independent stages, where the predicted VAT is directly input into
the BAP model without feedback loops. However, the most ac-
curate VAT predictions do not necessarily result in the most effi-
cient berth schedules. A promising direction for future research is
the development of an end-to-end contextual learning framework,
where the VAT prediction model incorporates BAP optimization er-
rors into its loss function. By integrating predictive and prescrip-
tive analytics, this approach would ensure that VAT predictions are
optimized not just for accuracy but also for their impact on berth



CHAPTER 6. CONCLUSION AND FURTHER RESEARCH 207

scheduling efficiency. This shift from a traditional predictive model
to a data-driven prescriptive framework would significantly enhance
decision-making in berth allocation, leading to improved operational
performance and resource utilization.
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