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ABSTRACT  

Link criticality analysis for road networks is essential for mitigating and withstanding 

disruptive events. Frontier methods for link criticality analysis rely heavily on equilibrium 

traffic assignment (TA) models, which provide consistent network traffic flows and travel 

costs. These methods can account for network connectivity, redundancy, travel demand, 

individual travel choices, and congestion effects induced by traveler interactions. 

Conceptually, these methods define link criticalities in terms of their functional importance 

for normal network operations, as indicated by equilibrium TA model. Conventional methods 

assess link criticalities using a full-scan approach, which entails sequentially deactivating 

each link, solving a TA problem for each network modification, and subsequently reactivating 

the link before proceeding to the next one. While feasible for small networks, this approach 

is impractical for large-scale networks. Most studies have focused on the computational 

aspects of the problem, aiming either to approximate or bypass the full-scan process. In doing 

so, these studies often neglected the need for behaviorally plausible TA models for effective 

link criticality analysis. This oversight highlights the motivation for this thesis. 

It is well known that travelers often have incomplete knowledge of network conditions, 

which affects their individual route choices, and that they may switch modes of travel, change 

their departure times, or forego trips altogether in response to congestion. Ignoring these 

factors in TA models can lead to traffic flow patterns and network efficiency measures that 

do not adequately represent reality. Consequently, link criticality analysis methods based on 

TA models without these considerations may provide a poor representation of actual link 

criticalities. Nonetheless, most studies have assessed network link criticalities using user 

equilibrium TA models with fixed demand (UE-FD or UE), which is known to assume that 
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travelers have perfect knowledge of network conditions, always use the least-cost routes, and 

never change their intension to travel, departure time, and mode of travel. To bridge this gap, 

this thesis advances an efficient link criticality analysis method by adopting stochastic user 

equilibrium (SUE) TA model with elastic demand (ED). In contrast to UE, SUE relaxes the 

assumption of perfect knowledge of network state and assigns traffic flows across all 

considered routes rather than just the least-cost routes, while ED adjusts travel demand based 

on congestion levels. The experiments show that the advanced method can prevent 

overestimating the criticality of links on least-cost routes, which is common for UE-based 

methods. Using real-world networks, it demonstrates that this method is applicable to large-

scale road networks and consistent with the full-scan methods. 

Route similarity issues, stemming from route overlaps, are common in road networks. 

These issues not only substantially distort route choice probabilities, making similar routes 

less attractive from a travel cost perspective, but also impact origin-destination (O-D) travel 

demands. This can dramatically change total travel demand, O-D demand patterns, network 

flow patterns, travel costs, and, hence, link criticalities. Although the concept of route 

similarity has been well-explored within the context of SUE TA, its application in link 

criticality analysis remains limited. To address this research gap, this thesis adopts the cross-

nested logit (CNL) SUE model with ED, which can flexibly capture the effects of route 

similarity on both disaggregate (or individuals’) route choices and aggregate travel demand. 

It then incorporates this model into the selected link criticality analysis method. The results 

of the experiments demonstrate that the criticalities of links belonging to similar routes can 

be considerably overestimated if route similarity is not considered. 

Bridges play a vital role in road networks that are divided by obstacles like rivers and 

valleys. They connect different parts of the network and are essential for reaching certain 
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destinations. Due to their limited number, they often become traffic bottlenecks, 

disproportionately affecting travel costs, and overall network performance. It has been 

recognized that bridges greatly influence route choice behavior, with travelers typically 

selecting bridges first and then deciding on the connecting routes. Despite this recognition, 

the functional importance of bridges has not been sufficiently emphasized in network 

equilibrium and link criticality analysis contexts. To address this research gap, this thesis 

introduces the concept of bridge-centric transport networks and develops a joint bridge-route 

choice model to better reflect how travelers first select bridges and then decide on the 

connecting routes. Then, it develops a network equilibrium model that encapsulates the joint 

bridge-route choice model along with a customized route-based solution algorithm, which 

consists of a bridge-centric choice set generation method and a route equilibration method. 

Finally, it applies the developed methodology to link criticality analysis. The results of the 

experiments demonstrate that network equilibrium models can produce substantially different 

traffic flow patterns and link criticality values, depending on whether they account for the 

importance of bridges in route choice. They also suggest that link criticality analysis methods 

based on traditional models may greatly underestimate the criticality of bridges. 

In summary, this thesis advances link criticality analysis by integrating nuanced 

equilibrium TA models that account for travelers’ imperfect perception of network conditions, 

their responses to congestion, and route similarity issues. Emphasizing the crucial role of 

bridges in the route choice process, it also develops a bridge-centric framework, which 

includes a joint bridge-route choice model, a network equilibrium model, and a customized 

route-based algorithm, and integrates it into the selected link criticality analysis method. The 

properties of the resulting methods are thoroughly investigated, and their validity and 

applicability to large-scale networks are demonstrated using real-world networks.  
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CHAPTER 1 

Introduction 

1.1 Research background 

Transportation networks are essential for the movement of people and goods, playing a 

vital role in the economic and social development of cities. However, they are vulnerable to 

various hazards, which pose potential threats that can damage infrastructure and disrupt 

network operations (Xu and Chopra, 2023). Hazards vary in type, frequency, and intensity. 

When a hazard occurs and severely disrupts the network, it becomes a disaster, leading to 

significant direct and indirect socio-economic losses (Adam et al., 2024). For example, in 

2009, floods in Cumbria destroyed or damaged 20 bridges, resulting £34 million in repair and 

replacement costs, along with significant societal impacts (Council, 2011). Similarly, the 

2013 floods in the Danube and Elbe River regions of Central Europe caused road and rail 

closures, erosion of embankments and streets, damage to bridges, and landslides blocking 

railways, with total economic damage estimated at over €12 billion (MunichRe, 2013). In 

2018, a section of the Polcevera viaduct in Genoa, Italy, tragically collapsed during a 

rainstorm, resulting in the deaths of 43 people (Rymsza, 2021). These examples highlight the 

importance of effective disaster management to mitigate risks and minimize the impact of 

such events on transportation infrastructure and society. 

Disaster management focuses on prioritization and optimization of pre- and post-disaster 

investment strategies to enhance a transportation system’s resilience and minimize disaster-

related losses (Zhang et al., 2023). One of the initial steps for disaster management is the 

assessment of the consequences of disruptive events. This includes evaluating potential or 
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actual structural damage, direct and indirect economic losses, and social impacts expressed 

in terms of travel delays or casualties (Faturechi and Miller-Hooks, 2015). Figure 1.1 shows 

a simplified flowchart for analyzing losses from disruptive events. In this context, a disruptive 

event encompasses both hazards and disasters. 

 

Figure 1.1. Flowchart for analyzing losses from disruptive events. 

As illustrated in Figure 1.1, a disruptive event can damage transportation infrastructure, 

necessitating immediate safety measures and emergency response actions. To ensure 

travelers' safety, infrastructure managers may impose traffic restrictions, which reduce the 

traffic capacity of the affected infrastructure elements. Direct economic losses arise from the 

repair work required for the damaged infrastructure repair, while indirect economic losses 

result from travel delays caused by the reduced capacity (Argyroudis et al., 2019). Network 

travel delays are often evaluated through network equilibrium traffic assignment (TA) 

models. These models evaluate travel costs and traffic flows based on abstract representation 

of physical road network, origin-destination (O-D) travel demands, travelers’ route choice 

behavior, and their interactions. Equilibrium TA models provide a robust, objective, and 

reproducible basis for decision-making and are used frequently in transport planning 

applications (Capacci et al., 2022). In summary, losses can be measured using various 

efficiency measures such as direct monetary costs, travel delay, or number of casualties, with 

TA models being often used for their estimation. 
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To mitigate the impact of disruptive events, disaster management may need to prioritize 

critical network facilities due to limited resources. This often requires network component 

criticality analysis, which generally evaluates the importance of individual network 

components (Du et al., 2022). This analysis might consider both structural characteristics 

(such as age and repair cost) and functional characteristics (such as capacity, travel time, 

impact on travelers’ route choices). Unlike loss estimation (Figure 1.1), which typically 

focuses on realistically reproducing the consequences of disruptive events and may need to 

assess the impact of multiple network facility failures simultaneously, network component 

criticality analysis aims to objectively assess criticality of individual components (Zhou et al., 

2019). It may seem that assessing criticality of individual components is an easier task than 

loss estimation, given that simultaneous failures are not considered. However, assessing the 

criticality of a network component can be seen as performing loss estimation for a disruptive 

event that causes the failure of the specified component. In its most intuitive form, assessing 

criticality of all network components might require multiple loss estimation procedures 

(Jansuwan and Chen, 2015). Therefore, network component criticality analysis tends to be 

independent of actual disruptive events and can be more computationally intensive than loss 

estimation. 

This thesis specifically confines its scope to link criticality. Links are abstract 

representations of roadways and can be characterized by their free flow travel time (FFTT), 

capacity, and flow-dependent cost functions. There are multiple ways to define the criticality 

of these links. Figure 1.2 schematically outlines several interpretations of the criticality of 

network links. 
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Figure 1.2. Alternative interpretations of criticality of network links. 

As shown in Figure 1.2, links may exhibit structural vulnerability, functional 

vulnerability, functional importance, or a combination of these factors. Bridges, for instance, 

often demonstrate greater structural vulnerability compared to standard road segments due to 

elevated structural components. Similarly, single-lane links are more prone to functional 

vulnerability, as accidents or disruptions can completely block traffic flow, unlike multi-lane 

alternatives. Conversely, links located near central business districts (CBDs) tend to hold 

higher functional importance for network efficiency than peripheral links, given their role in 

high-traffic zones. A CBD bridge exemplifies overlapping risks, combining structural 

vulnerability (e.g., elevated design) with heightened functional importance due to its critical 

location. This framework highlights how distinct attributes shape a link’s role and resilience 

within transportation networks. 

This thesis addresses the problem of link criticality analysis in terms of functional 

importance. Link criticality analysis methods based on functional importance measures can 

be roughly divided into two groups: topology-based methods and network equilibrium TA-

based methods. Topology-based methods focus on network connectivity aspects (Corley and 

Sha, 1982, Fulkerson and Harding, 1977, Holme et al., 2002, Latora and Marchiori, 2001) 

and are applicable in scenarios where common travel demand and congestion effects can be 
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neglected, such as evacuation or emergency planning (Sugiura and Kurauchi, 2023). In 

contrast, TA-based approaches provide a more comprehensive evaluation by considering 

individual traveler behavior and interactions (Jansuwan and Chen, 2015, Jenelius, 2009, 

Jenelius et al., 2006, Nagurney and Qiang, 2007, Sullivan et al., 2010), making them suitable 

for applications where travel demand and congestion effects cannot be neglected, such as in 

the development of mitigation strategies at the pre-disruption stage (Gu et al., 2020). 

Therefore, this thesis focuses on TA-based link criticality analysis methods, which are crucial 

for developing effective mitigation strategies in scenarios where  these factors effects cannot 

be ignored. 

1.2 Motivation and research gaps 

Link criticality analysis for road networks is essential for mitigating and withstanding 

disruptive events. Frontier methods for link criticality analysis rely heavily on network 

equilibrium TA models, which provide consistent network traffic flows and travel costs 

(Faturechi and Miller-Hooks, 2015). These methods can account for network connectivity, 

redundancy, travel demand, individual travel choices, and congestion effects induced by 

traveler interactions. Conceptually, these methods define link criticalities in terms of their 

functional importance for normal network operations, as indicated by equilibrium TA model. 

Conventional methods assess link criticalities using a full-scan approach, which entails 

sequentially deactivating each link, solving a TA problem for each network modification, and 

subsequently reactivating the link before proceeding to the next one. While feasible for small 

networks, this approach is impractical for large-scale networks (Almotahari and Yazici, 

2019). Most studies have focused on the computational aspects of the problem, aiming either 

to approximate (Chen et al., 2012b, Knoop et al., 2012) or bypass the full-scan process 

(Almotahari and Yazici, 2019, Gauthier et al., 2018). In doing so, these studies often neglected 
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the need for behaviorally plausible TA models for effective link criticality analysis. TA 

models mimic travelers’ route choice behavior and the congestion effects induced by their 

interactions. These models generate traffic flows and travel costs, which are used for 

evaluating link criticalities. As a result, equilibrium TA models are fundamental to TA-based 

link criticality analysis methods. If these models inaccurately represent travelers’ behavior 

and congestion, the evaluations can be considerably imprecise. This possibility for 

inaccuracies underscores the critical need to address the following research gaps identified in 

this thesis. 

Research gap 1: Numerous studies have assessed network link criticalities using user 

equilibrium (UE) (Beckmann et al., 1956) models with fixed demand (FD), which assume 

that travelers try to minimize their travel costs, having perfect knowledge of network 

conditions and travel demand insensitive to network congestion (i.e., travel demand is 

inelastic to level of service of the network). However, it is well known that travelers often 

have incomplete knowledge of network conditions, which affects their individual route 

choices (Daganzo and Sheffi, 1977), and that they may switch modes of travel, change their 

departure times, or forego trips altogether in response to network congestion (Kitthamkesorn 

et al., 2016). Ignoring these factors in TA models can lead to traffic flow patterns and network 

performance that do not adequately represent reality (Prashker and Bekhor, 2004). As a result, 

link criticality analysis based on such restricted TA models may also provide a poor 

representation of actual link criticalities. 

Research gap 2: Route similarity issues, stemming from route overlaps, are common in 

road networks (Chen et al., 2012a). These issues not only substantially distort route choice 

probabilities, making similar routes less attractive from a travel cost perspective, but also 

impact O-D travel demands (Xu and Chen, 2013). This can dramatically change total travel 

demand, O-D demand patterns, network flow patterns, travel costs, and, hence, link 
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criticalities. Although the concept of route similarity has been well-explored within the 

context of stochastic user equilibrium (SUE) TA (Bekhor et al., 2008, Chen et al., 2012a, 

Prashker and Bekhor, 2004), its application in link criticality analysis remains limited. 

Research gaps 3 and 4: Bridges play a vital role in road networks that are divided by 

obstacles like rivers and valleys (Habib et al., 2013). They connect different parts of the 

network and are essential for reaching certain destinations. Due to their functional 

importance, they often become traffic bottlenecks, disproportionately affecting travel costs, 

and overall network performance (Alizadeh et al., 2018). It has been recognized that bridges 

greatly influence route choice behavior (Manley et al., 2015), with travelers typically 

selecting bridges first and then deciding on the connecting routes (Kazagli et al., 2016). 

Despite this recognition, the functional importance of bridges has not been sufficiently 

emphasized in network equilibrium and link criticality analysis contexts. Existing models 

treat all links as ordinary road segments, which may not fully capture the behavioral impact 

of bridges as critical infrastructure components. 

1.3 Research objectives and contributions 

Motivated by the above research gaps, this thesis aims to enhance link criticality analysis, 

with specific research objectives as follows: 

1. To incorporate perception error and travel demand elasticity into link criticality 

analysis. This objective focuses on the first research gap. It aims at advancing a selected 

link criticality analysis method by relaxing the assumptions of perfect travel cost 

perception and FD adopting SUE TA model with elastic demand (ED). 

2. To incorporate the effects of route similarity and elastic demand into link criticality 

analysis. This objective addresses the second research gap. It aims at incorporating the 

cross-nested logit (CNL) SUE model with ED (CNL-SUE-ED), which can flexibly 
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capture the effects of route similarity on both disaggregate (or individuals’) route choices 

and aggregate elastic travel demand, into the selected link criticality analysis method. 

3. To emphasize the crucial role of bridges in network equilibrium analysis. This 

objective investigates the third research gap. It introduces the concept of bridge-centric 

transport networks and develops a new joint bridge and route choice model to better 

reflect how travelers first select bridges and then decide on the connecting routes. Then, 

it develops a network equilibrium model that encapsulates the joint bridge and route 

choice model along with a customized route-based solution algorithm, which consists of 

a bridge-centric choice set generation method and a route equilibration method. 

4. To apply the developed bridge-centric network equilibrium framework to the 

criticality analysis of bridges. This objective addresses the fourth research gap. 

Acknowledging the unique functional importance of bridges in route choice, it 

investigates how emphasizing the role of bridges in route choice models and network 

equilibrium models influences bridge criticalities. By integrating a bridge-centric 

network equilibrium framework into a selected link criticality analysis method, this study 

conducts experiments to demonstrate the method’s effectiveness and feasibility. 

The research objectives of this thesis are schematically summarized in Figure 1.3. As 

illustrated, the thesis encompasses four research objectives, grouped into two parts. The first 

part aims to advance link criticality analysis by examining various behavioral issues such as 

user perception error and the ED issue in the first objective, and route similarity and the ED 

issue in the second objective. These issues have been thoroughly investigated in the context 

of equilibrium TA but have been overlooked in link criticality analysis. The second part 

investigates user behavior, including joint bridge-route choice. Empirical studies indicate that 

bridges can considerably impact route choice compared to ordinary links. A bridge-centric 

framework is developed, which includes a bridge-route choice model, a bridge-route choice 
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equilibrium model, and a customized solution algorithm. This framework is also incorporated 

into the link criticality analysis. 

 

Figure 1.3. Research objectives. 

1.4 Thesis organization 

This thesis consists of seven chapters. Chapter 1 introduces the research problem, while 

Chapter 2 reviews relevant literature. Chapters 3 to 6 are divided into two parts: Part 1 

(Chapters 3 and 4) advances link criticality analysis for road networks, and Part 2 (Chapters 

5 and 6) focuses on advancing link criticality analysis for more general bridge-centric 

transport networks. Chapter 7 provides the concluding remarks. The detailed content of each 

chapter is explained below. 

Chapter 1: Introduction establishes the foundation for the thesis. It begins with an 

overview of the research background, providing context for the study. This is followed by the 

motivation for the research, explaining why the study is important. The chapter then clearly 

outlines the research objectives and contributions, detailing what the study aims to achieve. 

Finally, it concludes with a description of the thesis structure, giving an outline of the 

subsequent chapters. 
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Chapter 2: Literature review conducts an in-depth analysis of existing studies pertinent 

to this research. It examines route choice models, network equilibrium TA models, and link 

criticality analysis methods, forming the foundation for the methodologies employed in this 

study. 

Chapter 3: Link criticality index: Stochastic user equilibrium model with elastic 

demand addresses the first research objective by employing a TA-based link criticality 

analysis method. It thoroughly examines the method's properties, identifies and resolves 

deficiencies of the original method, and demonstrates the applicability of the advanced 

method to large-scale networks. 

Chapter 4: Incorporating route similarity and demand elasticity into link criticality 

analysis addresses the second research objective. Building on the foundation established in 

Chapter 3, it integrates the CNL-SUE-ED model into the link criticality analysis method, 

effectively capturing the influence of route similarity on both individual route choices and 

aggregate travel demand. Similar to Chapter 3, it provides a comprehensive analysis of the 

method's properties, emphasizing the critical role of route similarity in link criticality analysis 

for large-scale networks. 

Chapter 5: Bridges matter: Modeling joint bridge and route choice equilibrium 

with bridge-centric choice set generation addresses the third research objective by 

developing a bridge-centric framework. This framework includes a joint bridge-route choice 

model, a new bridge-centric network equilibrium model, and a customized route-based 

algorithm, highlighting the critical role of bridges in travelers’ route choice. It also analyzes 

and discusses the model's impact on traffic flow patterns compared to traditional models that 

do not emphasize bridges as important components of transport networks. 

Chapter 6: Advancing bridge criticality analysis: Joint bridge-route choice 

equilibrium approach addresses the forth research objective. It integrates the developed 
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bridge-centric network equilibrium model and customized route-based algorithm into the 

selected link criticality analysis method and applies it to bridge criticality analysis in a large-

scale network. It demonstrates that link criticality analysis methods based on traditional 

models can substantially underestimate the criticality of bridges and overestimate the 

criticality of links representing ordinary road segments. 

Chapter 7: Conclusions finalize the thesis by providing a summary of the research 

findings, contributions, and potential future work. This chapter emphasizes the study's 

impacts and suggests further research to expand the proposed methods' scope and 

applicability. 
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CHAPTER 2 

Literature review 

The primary objective of this thesis is to advance methodology for link criticality analysis 

utilizing network equilibrium traffic assignment (TA) models. This chapter provides a review 

of the existing literature on network equilibrium TA models and link criticality analysis 

methods. 

2.1 Network equilibrium models 

Network equilibrium TA models are essential for TA-based link criticality analysis 

methods. These models simulate travelers' route choice behavior and the congestion effects 

resulting from their interactions. They generate traffic flows and travel costs, which are used 

to evaluate link criticalities. If these models implausibly represent travelers' behavior and 

congestion, the evaluations can be misleading. 

This section reviews some prominent network equilibrium models. It is organized 

according to the mathematical network models. The mathematical network models abstract 

the physical roadway infrastructure and serve as one of the inputs to the network equilibrium 

analysis. This section distinguishes between two types of transport networks: road networks 

and bridge-centric transport networks. In road networks, no distinction is made between 

ordinary road segments and bridges, whereas in bridge-centric transport networks, this 

distinction is explicitly considered. A road network can be considered as a special case of 

bridge-centric transport networks. When there are no or limited number of bridges, a bridge-

centric transport network can be viewed as an ordinary road network. 
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2.1.1 Network equilibrium models for road networks 

In congested networks, travelers make trips from their origins to destinations using routes 

they believe minimize their travel costs. When aggregated, individual travelers’ route choices 

create traffic flow, which leads to congestion. Congestion forces travelers to seek alternative 

routes and keep changing routes until they believe they cannot further minimize their travel 

costs. Any disruption to the network may influence or force travelers to seek alternative travel 

options. Equilibrium TA models simulate this behavior. They integrate individual travel 

choices and their aggregated impact on transportation systems. The fundamental aim of 

equilibrium TA is to obtain traffic flow patterns given a mathematical network model, origin-

destination (O-D) demand matrix, travelers’ route choice behavioral assumptions, and flow-

dependent link cost functions (Sheffi, 1985). 

This section reviews behavioral route choice assumptions, logit-based route choice 

models, and network equilibrium models, both with fixed demand and elastic demand. Figure 

2.1 summarizes the contents of the section. 
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Figure 2.1. Summary of network equilibrium TA models with MP formulation. 

2.1.1.1 Behavioral route choice assumptions 

Two prominent behavioral route choice principles are well-known in the literature: 

deterministic user equilibrium (UE) and stochastic user equilibrium (SUE). UE follows 

Wardrop’s first principle (Wardrop, 1952). It assumes that all travelers are rational (i.e., 

choose the least-cost routes) and they possess perfect knowledge of network state (i.e., have 

no perception errors). At equilibrium, no traveler can experience a lower travel time by 

unilaterally changing routes (Sheffi, 1985). The UE principle has long been criticized for 

assuming perfect knowledge of travel costs of all available routes in the network, as travelers 

typically make decisions based on their perceived travel costs, which contain perception 

errors, rather than actual costs. 
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Daganzo and Sheffi (1977) extended the UE principle to the SUE principle by adopting 

random utility models (RUMs) for adding stochasticity to travel choice behavior at the 

individual level. RUMs incorporate perception errors into travel disutility function and relax 

the unrealistic assumption of perfect knowledge of travel costs. Therefore, in SUE, travelers 

are assumed to choose routes with the minimum perceived (rather than the actual) travel 

disutility. The perceived error, as well as perceived travel cost, is assumed to follow a certain 

distribution. 

Different distributional assumptions for the random error term lead to the development 

of various route choice models. Some of these models have closed-form probability 

expressions, while others do not (i.e., open-form probability expressions). The formulation of 

a network equilibrium TA model depends on whether it adopts a closed-form model, as 

discussed in the next subsection. 

2.1.1.2 Equilibrium traffic assignment problem formulations 

There are various ways to formulate an equilibrium TA problem. For example, it can be 

formulated as an equivalent mathematical programming (MP) problem, nonlinear 

complementarity problem,  variational inequality, or fixed point (Cantarella et al., 2015). The 

latter three formulations are considered more general than the MP formulation. For example, 

equivalent MP formulations are not necessarily available for network equilibrium TA 

problems with asymmetric transportation costs (Liu et al., 2021). However, these 

formulations lack some important theoretical features that MP formulation approach can 

provide. Specifically, a MP formulation is beneficial because it (i) explicitly defines the 

objective function, constraints, decision variables, and optimality conditions, making it highly 

interpretable (Beckmann et al., 1956, Fisk, 1980, Prashker and Bekhor, 2004, Yang and Bell, 

1998), and (ii) aids in developing efficient algorithms that can effectively determine the 
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direction, step sizes, and stopping criteria in the search process (Chen et al., 2013, Damberg 

et al., 1996, Du et al., 2021, Frank and Wolfe, 1956, Larsson and Patriksson, 1992, Leblanc, 

1975). 

2.1.1.3 Logit-based route choice equilibrium models 

A probabilistic route choice model is a core component of SUE TA models. Among all, 

the closed-form route choice models are valued for their analytical tractability. Consequently, 

SUE models that incorporate these route choice models can be formulated as MP problems. 

This subsection reviews well-known logit-based route choice models, which exemplify 

closed-form route choice models and are used throughout the entire thesis. 

The multinomial logit (MNL) model, a discrete choice model frequently used in route 

choice, is based on RUM. It assumes that the random components of each utility function are 

independently and identically distributed (IID) Gumbel variables. The probability of choosing 

a route is determined by the difference in measured utilities between that route and all others 

(Dial, 1971). The MNL model has a closed-form probability solution, which makes it 

analytically convenient. However, its structure cannot capture similarities among routes due 

to the independence assumption of random terms (Bekhor and Prashker, 1999, Vovsha, 1997). 

Many efforts have been made to develop various extended logit choice models to address 

this issue. The developed models can be categorized into three types based on how they handle 

route similarity. The first type incorporates modification terms into the utility function’s 

systematic component to adjust route choice probabilities: the C-logit model (Cascetta et al., 

1996, Zhou et al., 2012) and the path-size logit (PSL) model (Ben-Akiva and Bierlaire, 1999, 

Chen et al., 2012a). The second group modifies the error term of the utility function, allowing 

a more flexible nested model structure: the paired combinatorial logit (PCL) model (Bekhor 

and Prashker, 1999, Chen et al., 2014, Chu, 1989, Pravinvongvuth and Chen, 2005), the cross-
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nested logit (CNL) model (Bekhor and Prashker, 1999, Vovsha, 1997), and the generalized 

nested logit (GNL) model (Bekhor and Prashker, 2001, Wen and Koppelman, 2001). The 

third group extends the previous models by incorporating route similarities into the error 

structure of the utility function, using mixed logit models (i.e., open-form probability 

expressions that cannot be analytically evaluated), which are out of the scope of the current 

research. 

Logit-based route choice models are used in SUE TA. Fisk (1980) provided equivalent 

MP formulation for MNL-SUE. Zhou et al. (2012) provided equivalent MP formulation for 

C-logit-SUE. Equivalent MP formulations for CNL-SUE, PCL-SUE, and GNL-SUE were 

given by (Bekhor and Prashker, 1999, Bekhor and Prashker, 2001). 

2.1.1.4 Logit-based route choice equilibrium models with elastic demand 

Besides route choice, travelers can have other travel choices such as travel choice 

(whether to travel or not), destination choice (where to travel), and mode choice (which mode 

to use) (Meyer, 2016). If congestion is too high, travelers may cancel their trips, choose less 

congested destinations, or use other travel modes. Conversely, low congestion levels may 

induce previously hidden travel demand. These phenomena can be captured by a variable 

demand function that accounts for demand elasticity in relation to congestion levels 

(Beckmann et al., 1956, Kitthamkesorn et al., 2016, Yang and Bell, 1998). Therefore, a TA 

model with elastic demand (ED) function allows to account for these behavioral features of 

travelers. 

Beckmann et al. (1956) formulated the UE TA problem with ED as a convex optimization 

problem that assumed perfect knowledge of network state. To account for travelers’ imperfect 

knowledge on network conditions, Yang and Bell (1998) extended the MNL-SUE model with 

fixed demand proposed by Fisk (1980). The model formulated by Yang and Bell (1998) 
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overlooks the impact of route similarity on route choice behavior. To account for route 

similarity, Xu and Chen (2013) extended Zhou et al. (2012) and provided a MP formulation 

for the C-logit-SUE problem with ED. Similarly, Ryu et al. (2014) extended Bekhor and 

Prashker (1999) and provided an equivalent MP formulation for the PCL-SUE problem with 

ED. Kitthamkesorn et al. (2016) developed an equivalent MP for the combined modal split 

and TA model as a CNL-SUE-ED model to explicitly capture mode and route similarities 

under congested networks. The mode choice was modelled using the nested logit model (Ben-

Akiva and Lerman, 1985b) and the route choice was modelled through the CNL model 

(Bekhor and Prashker, 1999). 

2.1.2 Network equilibrium models for bridge-centric transport 

networks 

Existing SUE models treat all links as ordinary road segments, which may not fully 

capture the behavioral impact of bridges as critical infrastructure components of 

transportation networks. This section discusses the key elements of a bridge-centric network 

equilibrium framework. 

2.1.2.1 Modeling joint bridge-route choice 

The real-world evidence supporting the hypothesis that bridge choice is distinct from 

route choice is provided in Manley et al. (2015), Habib et al. (2013), and Alizadeh et al. (2018). 

Manley et al. (2015) observed that taxi drivers’ route choices in London were influenced by 

anchor points, including bridges. Habib et al. (2013) and Alizadeh et al. (2018) reported that 

hierarchical bridge-route choice models could better represent the route choice behavior in 

Montreal, Canada. 

Researchers have made great efforts to adopt discrete choice models in the context of 

route choice (Chen et al., 2012a, Prashker and Bekhor, 2004, Prato, 2009). These models can 
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be further adopted to solve the joint bridge-route choice problem. The MNL model provides 

a closed-form probability expression which can enhance computational efficiency. The 

implicit availability/perception logit (IAPL) model, an extension of MNL, models the implicit 

perception/availability of an alternative (Cascetta and Papola, 2001). It inherits all its features 

and additionally accounts for potential choice set misspecification. This misspecification 

occurs because analysts may not fully understand travelers’ preferences and may inaccurately 

specify the choice set. Such misspecification can bias traffic flow predictions (Bliemer and 

Bovy, 2008, Bovy, 2009, Prato, 2009). In the IAPL model, choice set misspecification is 

addressed using an ‘availability perception value’, a function based on the availability 

attributes of the choice alternatives. This value ranges from 0 to 1, providing intermediate 

degrees of availability for a choice alternative. It can also be interpreted as the probability of 

a choice alternative being included in the choice set (Cascetta and Papola, 2001). The main 

benefits of the IAPL model are its operational flexibility and its ability to circumvent the 

computational burden associated with the explicit availability/perception and choice 

approaches (Ben-Akiva and Boccara, 1995). 

2.1.2.2 Bridge-route choice set generation 

Consideration of bridge impact on route choices may require modifications not only in 

choice models but also in choice set generation techniques. Figure 2.2 shows route-centric 

and bridge-centric choice set generation techniques. 
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Figure 2.2. Flowcharts of route- and bridge-centric choice set generation approaches. 

A review of the literature reveals that in existing studies on the joint bridge-route choice 

problem, choice sets were mainly generated in a route-centric manner (Alizadeh et al., 2018). 

As shown in Figure 2.2, for each O-D pair, the process was as follows: first, generate a set of 

routes; then, from these routes, extract bridge choice sets; and finally, form route choice sets 

conditioned on the bridge choice sets. However, existing route set generation techniques can 

produce unrealistic alternatives, such as long-detour routes, overly similar routes, or overly 

complex routes  (Bekhor et al., 2008, Bovy, 2009, Prato, 2009). A bridge set extracted from 

these routes may contain unreasonably long bridge choice alternatives1. Consequently,  routes 

based on these bridge choice alternatives may also be unrealistic. To avoid the issue with the 

bridge choice set, existing studies (Alizadeh et al., 2018) assumed that O-D pairs utilized 

identical bridge choice sets consisting of single-bridge choice alternatives (i.e., each bridge 

choice alternative is associated with a bridge sequence of length one). This assumption 

permitted the manual enumeration and elimination of unreasonable bridge choice alternatives. 

However, in general bridge-centric transport networks, this assumption may not hold because 

it oversimplifies the complexity of real-world bridge-centric transport networks. For example, 

 
1 A bridge choice alternative is a feasible sequence of bridges connecting O-D pair. It may consist of one or 

several bridges. 
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travelers between different O-D pairs may have different sets of feasible or preferable bridges 

based on factors such as distance, toll, traffic conditions, and personal preferences.  Then, the 

assumption of single-bridge choice alternatives implies that each route only involves crossing 

one bridge. This may not be the case in complex bridge-centric transport networks where 

routes may involve crossing multiple bridges. Moreover, there may be multiple destinations 

that would not necessarily consider the same set of bridges. Travelers going to different 

destinations may choose different bridges even if they start from the same origin. This issue 

remains unaddressed in the literature. Further research on generating bridge choice sets and 

conditioned route choice sets is required. 

2.1.2.3 Modeling joint bridge-route choice network equilibrium 

Although the existing empirical results have shown several behavioral issues need to (or 

can) be incorporated to enhance the modeling of bridge and route choice, these issues are 

based on discrete choice modeling and cannot endogenously consider the congestion effect, 

which is a critical factor for modeling traffic bottlenecks like bridges. Congestion effects may 

influence travelers to choose alternative bridges or routes when the primary ones are 

congested or not available, which in turn can impact the network-level traffic flow pattern. 

Consistent prediction of traffic flow patterns in urban networks necessitates modeling the 

interplay between congestion and travel choices. To the best of our knowledge, the existing 

studies on modeling joint bridge-route choice did not consider the effects of congestion on 

the travelers’ choices. Habib et al. (2013) developed a choice model that simultaneously 

addressed bridge choice set formation and bridge choice, enabling the adjustment of analysts’ 

errors in choice set specification. Nevertheless, their study did not consider the congestion 

effects and the overall route choice connecting the origin to the destination. Alizadeh et al. 

(2018) extended the scope to include joint bridge-route choice analysis. While the latter 
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tackled the joint bridge-route choice issue, it did not account for congestion effects and choice 

set formation. Further research is therefore necessary to consider the impact of joint bridge-

route choice and congestion effects on traffic flow patterns as a joint bridge-route network 

equilibrium model. 

2.2 Link criticality analysis methods 

This section reviews methodologies for link criticality analysis and identifies existing 

research gaps. Figure 2.3 provides a visual summary of these methods in terms of two 

important issues: thoroughness of analysis and computational efficiency. 

As shown in Figure 2.3, link criticality analysis methods can be represented by two 

dominant methodologies: topology-based methods, which emphasize the structural 

characteristics of networks (Corley and Sha, 1982, Fulkerson and Harding, 1977, Holme et 

al., 2002, Latora and Marchiori, 2001), and TA-based methods, which integrate 

considerations of travel behavior, demand, and congestion effects (Jenelius, 2009, Jenelius et 

al., 2006, Nagurney and Qiang, 2007, Scott et al., 2006, Sullivan et al., 2010). 

Topology-based methods, on the one hand, could be used for planning evacuation or 

emergency lifesaving strategies after disruptive events when the typical travel demand and 

congestion effects could be neglected (Sugiura and Kurauchi, 2023). On the other hand, they 

were arguably inapplicable for planning transportation infrastructure reinforcement (prior to 

disruptive events) or reconstruction plans (after disruptive events) when congestion effects 

and drivers’ travel behavior could not be neglected. While topology-based methods have their 

specific applications, the limitations in addressing congestion and travel behavior necessitated 

the use of TA-based methods for a more comprehensive evaluation of link criticality. 
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Figure 2.3. Classification of link criticality analysis methods. 

Early TA-based methods used a full network scan methodology. This methodology 

evaluated link criticalities by systematically deactivating links and analyzing the resulting 

impact on overall network efficiency by solving an equilibrium TA problem for each network 

change (Nagurney and Qiang, 2007). While thorough, this approach was impractical for large-

scale networks due to the need to solve the TA problem for each link deactivation, which 

entails solving a large number of TAs (Chen et al., 2012b, Jung et al., 2020, Knoop et al., 

2012). Subsequent TA-based methods reduced the computational burden by scanning a subset 

of links (Knoop et al., 2012, Liu et al., 2022, Shapouri et al., 2023), limiting the impact area 

of link deactivation (Chen et al., 2012b), or using equally sized link grids (Jung et al., 2020, 

Mahajan and Kim, 2020, Ohi and Kim, 2021). However, these methods overlooked critical 

links, ignored global effects of link removal, or failed to capture individual link importance, 

respectively. Additionally, the latter methods still relied on network scan methodology, which 

might limit their application in large-scale networks. To address this issue, methods that 

eliminated network scanning altogether were explored. One such method was the link 

criticality index (LCI) proposed by (Almotahari and Yazici, 2019, Almotahari and Yazici, 
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2021). This method assessed the criticality of all links based on flow fluctuations during a 

single equilibrium TA procedure, making it one of the most efficient methods for link 

criticality analysis. 

Besides computational complexities, many TA-based link criticality analysis methods 

may produce implausible results due to their reliance on oversimplified TA models. 

Numerous studies assessed network link criticalities using UE TA (Almotahari and Yazici, 

2019, Almotahari and Yazici, 2021, Jenelius, 2009, Nagurney and Qiang, 2007, Sullivan et 

al., 2010). UE assumes that travelers have perfect knowledge of route costs, enabling them to 

consistently choose the least-cost routes. This assumption was often considered unrealistic, 

as travelers might not always know the exact least-cost routes (Sheffi, 1985). Complementing 

this, only a few studies including Jansuwan and Chen (2015) refined link criticality 

assessment measures by extending them to SUE. 

To the best of our knowledge, no studies have addressed the issue of route similarity, 

demand elasticity, and bridge choice in link criticality analysis context. Route similarity is a 

common issue in road networks. It affects not only route choice but also travel demand 

(Prashker and Bekhor, 2004). Physical infrastructure elements may differ in the roles they 

play in the system. Empirical studies indicate that some elements, such as bridges, may be 

more critical than others, such as ordinary road links. Therefore, they may impact travelers’ 

route choice behavior in different ways (Alizadeh et al., 2018, Habib et al., 2013, Kazagli et 

al., 2016, Manley et al., 2015). All these can alter traffic flow pattern, travel costs, and 

consequently, link criticality values. Conventional network equilibrium models overlook 

these features, potentially biasing the results of any subsequent analysis. 

This section has reviewed link criticality analysis methods, with a particular emphasis on 

TA-based approaches. The subsequent section discusses application of these methods in 

network resilience analysis. 
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2.3 Link criticality analysis applications  

Link criticality analysis in transport networks is closely related to network resilience 

analysis (Almotahari and Yazici, 2019, Zhou et al., 2019). Resilience is a complex multi-

disciplinary concept that includes a wide range of tasks including assessment, monitoring, 

evaluation, planning, prioritization, and management of transportation system to prepare for, 

withstand, and recover from disruptive events (Berdica, 2002, Faturechi and Miller-Hooks, 

2015, Gu et al., 2020, Serdar et al., 2022, Zhou et al., 2019). These tasks are summarized in 

Table 2.1. 

Table 2.1. Lifecycle of disruptive events. 

Stage Phase Tasks Remarks 

Pre-

disruption 

Mitigation 

• Find critical network elements. 

• Assess the vulnerability of critical elements. 

• Design and execute network enhancement 

projects. 
To evaluate the potential negative 
effects of disruptive events and design 

proactive measures, it is important to 

consider congestion and travel demand. 

Preparedness 

• Design contingency protocols and awareness 

campaigns. 

• Train rescue teams. 

• Pre-position equipment. 

Post-

disruption 

Response 
• Monitor and assess system’s performance. 

• Operate emergency and evacuation services. 

Congestion and travel demand other 
than emergency can be neglected. 

Recovery 

• Assess consequences of disruptive event. 

• Prioritize reconstruction works. 

• Develop restoration works and travel demand 

management strategies. 

To select a recovery program that 

effectively restores the system to its 

normal operational state, it is important 
to consider congestion and travel 

demand. 

    

As shown in Table 2.1, there are four phases in the life cycle of a disruptive event: 

mitigation, preparedness, response, and recovery (Faturechi and Miller-Hooks, 2015). The 

mitigation and preparedness phases occur at the pre-disruption stage, focusing on anticipating 

and reducing potential negative impacts of disruptive events. The response and recovery 

phases occur at the post-disruption stage, involving actions to restore network efficiency. 

Mitigation strategies, such as retrofitting components or increasing capacity, aim to prevent 

or minimize impacts (Twumasi-Boakye and Sobanjo, 2018). Preparedness strategies, 

including awareness campaigns, training, and pre-positioning equipment, enhance response 
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efficiency. The response includes emergency rescue and medical services (Sugiura and 

Kurauchi, 2023). The recovery phase concerns system repairs. 

Based on Table 2.1, the proposed method can potentially be utilized during the mitigation 

and preparedness phases to identify critical network elements and plan network retrofitting 

works. However, while the current method offers some insights into the recovery phase, it 

may not be suitable for planning restoration works, as this phase requires more complex 

analyses to effectively schedule concurrent restoration activities in degraded networks (Peng 

et al., 2024). 

In summary, link criticality analysis is indispensable for designing proactive strategies to 

mitigate medium- to long-term disruptions, such as infrastructure degradation, climate 

hazards, and systemic cascades. 

2.4 Chapter summary 

In summary, equilibrium TA integrates individual traveler choices and their aggregated 

impacts on transportation systems, which results in congestion. It provides traffic flow 

patterns and quantifies network performance based on assumed travel behavior and demand 

levels. Numerous studies highlight the importance of explicitly modeling features such as 

traveler perception errors, route similarity, demand elasticity, and recongnizing that links may 

represent infrastructure elements of different criticalities for a behaviorally plausible 

simulation of traveler behavior in congested transportation networks. 

By considering traveler behavioral characteristics and congestion effects, equilibrium TA 

provides a means to define a normal operational network state, which serves as a reference 

for TA-based link criticality analysis. Early TA-based link criticality analysis methods 

required a full-scan process to assess all link criticalities, limiting their applicability to small-

scale networks. In contrast, recent methods have eliminated the need for the full-scan process, 
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making them suitable for large-scale networks. However, these recent methods have 

overlooked the importance of nuanced modeling of travelers’ behavior and network structure, 

which may greatly influence the reference state of the networks and, consequently, the 

criticality of links. This thesis aims to address this issue by incorporating detailed behavioral 

modeling and network structure into analysis to enhance TA-based link criticality analysis. 

Table 2.2 summarizes TA-based methods for link criticality analysis and highlights the 

research gaps addressed in this thesis. 

Table 2.2. Summary of TA-based link criticality methods. 

Reference Method. 
Equilibrium TA 

model 

Travelers’ 

perception 

error 

Demand 

elasticity 

Route 

similarity 

Bridge 

choice 

Scott et al. (2006), Jenelius et 

al., (2006), Nagurney & Qiang 

(2007), Jenelius (2009), Sullivan 
et al. (2010) 

Full scan UE × × × × 

Jansuwan & Chen (2015) Full scan MNL-SUE ✓ × × × 

Knoop et al. (2012), Liu et al. 

(2022), Shapouri et al. (2023), 
Chen et al. (2012b), Jung et al. 

(2020), Mahajan & Kim (2020), 
Ohi and Kim (2021) 

Approx. 

scan 
UE × × × × 

Almotahari & Yazici (2019, 

2021) 
No scan UE × × × × 

Chapter 3 No scan MNL-SUE-ED ✓ ✓ × × 

Chapter 4 No scan CNL-SUE-ED ✓ ✓ ✓ × 

Chapter 5 and 6 No scan IAPL-MNL-SUE ✓ × × ✓ 
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PART I 

Advancing link criticality analysis: 

Road networks 

Real transportation systems are abstracted by mathematical network models, which are 

essential for network analysis. These models are referred to as road networks. Part I advances 

link criticality analysis by integrating nuanced network equilibrium traffic assignment (TA) 

models based on simplified road network representations that consider all links as ordinary 

road segments.  
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CHAPTER 3 

Link criticality index: Stochastic user 

equilibrium model with elastic demand 

This chapter adopts an efficient link criticality method, namely link criticality index 

(LCI), and advances it from user equilibrium TA with fixed demand (UE-FD or UE) to 

stochastic user equilibrium (SUE) TA with elastic demand (ED). These extensions effectively 

account for the stochastic nature of travelers’ route choice (i.e., the assumption of travelers’ 

perfect knowledge of network travel time is relaxed) and acknowledge the existence of travel 

choices beyond route choice (i.e., the assumption of fixed demand is relaxed). 

3.1 Motivation 

Link criticality index (LCI), developed by Almotahari and Yazici (2019), is one of the 

state-of-the-art TA-based method for link criticality analysis. This method circumvents the 

full-scan process that is prevalent in most TA-based methods, while still producing link 

criticality evaluations that are consistent with those obtained from full-scan-based 

approaches. Like all TA-based methods for link criticality analysis, the LCI method 

effectively captures the impact of network connectivity, travel demand, individual travel 

choice behavior, congestion effects, and redundancy. Unlike many TA-based methods, the 

LCI method assesses the criticality of all links in a single equilibrium TA procedure. 

Figure 3.1 illustrates the overall methodology of computing LCI. 
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Figure 3.1. Flowchart for the link criticality index (LCI) method. 

As shown in Figure 3.1, the LCI method assesses link criticality by examining traffic 

flow fluctuations during the equilibration procedure within a single TA execution. This 

method posits that links which consistently experience additional traffic flows, even when 

saturated, are essential for network operation and are therefore critical. 

However, the original LCI method cannot plausibly reflect common travelers’ behavior 

due to the adoption of UE TA model, which is known to assume that travelers have a perfect 

perception of travel costs, which results in a behaviorally restrictive route choice model 

(Daganzo and Sheffi, 1977, Jansuwan and Chen, 2015, Prashker and Bekhor, 2004); fixed 

and known travel demand, which neglects the fact that travelers may change their travel plans 

in response to congestion (Kitthamkesorn et al., 2016, Ryu et al., 2014, Xu and Chen, 2013, 

Yang and Bell, 1998). Additionally, the all-or-nothing (AON) network loading approach is 

typical for UE TA. AON assigns O-D demand exclusively to the shortest route and disregards 

other routes (Sheffi, 1985). This can result in zero-flow routes when used with a route-based 

solution algorithm. There are two key issues with this for the UE-based LCI method. First, a 

route may bear zero flow but still contribute to the criticality of a link serving that route. 

Although this can be interpreted as LCI accounting for network redundancy (i.e., each route 

crossing a link enhances the network redundancy provided by that link), it can be 

inappropriate when there are highly unattractive routes with respect to travel cost (e.g., long 
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detour routes). Routes like these can mistakenly appear in route choice sets, which is a 

common issue in practice (Bliemer and Bovy, 2008). This can potentially lead to an 

overestimation of a link’s criticality. Second, it is possible for two shortest routes to exist in 

an iteration, where the first route may have a link that is identical to a link in the second route. 

Since the AON loads all travel demand onto a single route in each iteration, the second route 

can be neglected. This can lead to different rankings for identical links. 

Motivated by the above challenges, this chapter aims to refine the functional form of the 

UE-based LCI to address the zero-flow problem, should an analyst opt to adhere to the UE 

TA model in the LCI method. Next, it advances the LCI method by integrating SUE and SUE 

with ED (SUE-ED) models. This advancement relaxes the assumption of perfect travel time 

perception, effectively addressing all the aforementioned issues associated with the AON 

network loading approach. Consequently, it offers a more behaviorally realistic framework 

for analyzing link criticality in a road network. Without loss of generality, this study adopts 

the SUE and SUE-ED TA models provided by Fisk (1980) and Yang and Bell (1998), 

respectively. These TA models assume that travelers choose their routes according to the 

multinomial logit (MNL) model (Dial, 1971), one of the simplest closed-form probabilistic 

route choice models. Formulated as mathematical programming (MP) problems, these TA 

models guarantee the existence and uniqueness of equilibrium solutions. To demonstrate the 

properties of the SUE-based and SUE-ED-based LCI methods, these advanced techniques are 

applied to several toy networks. To validate the concept, the methods are also tested on a real-

size road network. 

The remainder of the chapter is organized as follows. Section 3.2 introduces the 

methodology, including notation, equilibrium TA model formulation, and solution algorithm. 

Sections 3.3 elaborates on the original and refined LCI methods. Sections 3.4 and 3.5 present 

the numerical results and concluding remarks, respectively. 
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3.2 Equilibrium traffic assignment model 

This section briefly introduces the MNL route choice model and the equivalent MP 

formulations. 

3.2.1 Notation 

Table 3.1 provides a notation list. 

Table 3.1. Notation. 

Sets 

𝒩  Set of nodes in the network 

𝒜  Set of directed links 

𝒲  Set of O–D pairs 

ℛ𝑤  Set of routes connecting O–D pair 𝑤 

Parameters/inputs 

𝛿𝑎𝑟
𝑤   Element of the route–link incidence matrix corresponding to an O–D pair 𝑤, route 𝑟, and link 𝑎 

𝜃  Dispersion parameter of a route choice model 

𝜉  Demand function scaling parameter, which reflects the sensitivity of demand to travel cost 

𝑞
𝑤

  Maximum (or potential) demand for O–D pair 𝑤 

Intermediate variables/functions 

𝑐𝑟
𝑤,𝑛  Deterministic travel time on route 𝑟 of O–D pair 𝑤 at iteration 𝑛 

𝐶𝑟
𝑤,𝑛  Perceived travel time on route 𝑟 of O–D pair 𝑤 at iteration 𝑛 

𝑃𝑟
𝑤  Probability of choosing route 𝑟 of O–D pair 𝑤 

𝑥𝑎  Flow on link 𝑎 

𝑡𝑎  Travel time on link 𝑎 

𝑚𝑐𝑎  Marginal cost of traveling on link 𝑎 

𝐷𝑤  Demand function for O-D pair 𝑤 

𝑄  Total network demand 

𝑆𝑎
𝑛  Unweighted criticality score for link 𝑎 at iteration 𝑛 

𝛾𝑤  Demand-specific weight of O-D pairs 𝑤 used in LCI 

𝜇𝑟
𝑤,𝑛  Route-specific weight for a route 𝑟 of an O-D 𝑤 at iteration 𝑛  

𝐿𝐶𝐼𝑎  Link criticality index for link 𝑎 

Decision variables 

𝑓𝑟
𝑤  Flow on route 𝑟 of O–D pair 𝑤 

𝑞𝑤  Demand of O–D pair 𝑤 (for ED) 

  

3.2.2 Route choice models 

The random utility model framework is a well-known framework used in modeling route 

choice. It incorporates travelers’ perception error in the random utility model, i.e.: 

𝐶𝑟
𝑤 = 𝑐𝑟

𝑤 + 𝜀𝑟
𝑤, ∀𝑟 ∈ ℛ𝑤, ∀𝑤 ∈ 𝒲 (3.1) 

where 𝐶𝑟
𝑤 is the perceived travel time on route 𝑟 of O–D pair 𝑤, 𝑐𝑟

𝑤 is the deterministic travel 

time on route r of O–D pair w, and 𝜀𝑟
𝑤random error term. 
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It assumes that the perception error term, 𝜀𝑟
𝑤, is represented by the independently and 

identically distributed (IID) Gumbel random variable with the theoretical expectation 

𝐸[𝜀𝑟
𝑤] = 0 and variance 𝑉𝑎𝑟[𝜀𝑟

𝑤] =
𝜋2𝜃2

6
, ∀𝑓 ∈ ℛ𝑤 . The dispersion parameter 𝜃 measures 

the sensitivity of route choices with respect to travel cost (Sheffi, 1985). The MNL model 

provides a closed-form probability expression, i.e.: 

𝑃𝑟
𝑤 =

𝑒−𝜃𝑐𝑟
𝑤

∑ 𝑒−𝜃𝑐𝑙
𝑤

∀𝑙

,   ∀𝑟 ∈ ℛ𝑤, ∀𝑤 ∈ 𝒲 (3.2) 

Owing to the IID assumption, this model cannot consider (i) the similarity between travel 

alternatives and (ii) alternative-specific perception variances with respect to the heterogeneity 

of travel alternatives. However, it is sufficient for us to analyze the properties of LCI in the 

context of SUE. For more information on logit-based route choice models, interested readers 

may refer to (Prashker and Bekhor, 2004). 

3.2.3 Equivalent MP formulation 

This study adopts two models, namely multinomial logit stochastic user equilibrium 

(MNL-SUE) and multinomial logit stochastic user equilibrium with elastic demand (MNL-

SUE-ED). Solutions of both models satisfy the SUE conditions (3.3), and the solution of 

MNL-SUE-ED additionally satisfies the ED function (3.5). 

𝑓𝑟
𝑤 = 𝑃𝑟

𝑤𝑞𝑤, ∀𝑟 ∈ ℛ𝑤, ∀𝑤 ∈ 𝒲 (3.3) 

where 𝑓𝑟
𝑤 is flow on route 𝑟 of O–D pair 𝑤, 𝑃𝑟

𝑤 is probability of choosing route 𝑟 of O–D 

pair 𝑤, 𝑞𝑤 is demand of O–D pair 𝑤. 

The equivalent MNL-SUE and MNL-SUE-ED MP formulations are shown in Figure 3.2. 
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Figure 3.2. Equivalent MP formulation for the MNL-SUE-ED model. 

As shown in Figure 3.2, the MP formulation for the MNL-SUE TA problem was 

developed by (Fisk, 1980), and it was extended by (Yang and Bell, 1998) to MNL-SUE-ED. 

The objective function of the MNL-SUE-ED formulation has four terms. The first term is 

equivalent to the well-known Beckmann transformation objective function. The second term 

corresponds to the route-flow based entropy term. The third term is an inverse demand 

function term for the UE with ED problem. The fourth term represents the demand entropy 

term. 

In the proceeding sections, MNL-SUE and MNL-SUE-ED are referred to as SUE and 

SUE-ED, respectively. 

3.2.4 Travel demand model 

Travel demand may be influenced by the level of service (LOS) on the network. As 

congestion increases, travelers may decide to change their travel choices (Sheffi, 1985). To 

address this phenomenon, travel demand between every O-D pair in the network can be 

assumed to be a function of LOS in (3.4). 

𝑞𝑤 = 𝐷𝑤(𝑢𝑤), ∀𝑤 ∈ 𝒲 (3.4) 



 

35 

where 𝑢𝑤 is the expected perceived cost (EPC) between O-D pair 𝑤. The demand function is 

monotonically decreasing in the O-D travel cost, bounded from above, and invertible. The 

inverse of the demand function is given in (3.5): 

𝑢𝑤 = 𝐷𝑤
−1
(𝑞𝑤), ∀𝑤 ∈ 𝒲 (3.5) 

The inverse of the demand function can be interpreted as: the network user’s travel benefits 

or the price they are ready to pay for their travel (Sheffi, 1985). 

3.2.5 Solution algorithm 

This section presents a partial linearization method for solving the SUE and SUE-ED 

problems. Figure 3.3 provides a detailed flowchart of the method. 

 

Figure 3.3. Partial linearization algorithm with the SRA step size. 

The partial linearization method is a type of descent direction method used for continuous 

optimization problems (Patriksson, 2015). It iteratively determines a search direction and step 



 

36 

size until convergence is reached. To obtain the search direction, a partially linearized 

subproblem is solved using a first-order approximation of the first and third terms of the 

objective function (see Figure 3.2). The algorithm for SUE and SUE-ED is similar, but for 

SUE-ED, the partial linearized subproblem needs to calculate travel demand based on the 

current route cost pattern to satisfy the ED function as shown in Figure 3.3. 

The SUE-ED's objective function is quite complex (i.e., involving four summations: one 

over all links, one over all routes, and two over all O-D pairs) and hence computationally 

expensive to evaluate. To solve this, the self-regulated averaging (SRA) scheme proposed by 

(Liu et al., 2009) to determine an appropriate step size without the need to evaluate the 

objective function was used. SRA employs the residual error 𝛽 and step size in the current 

iteration to determine the next step size and guarantees convergence with either 𝜆1 > 1 or 

0 < 𝜆2 < 1  controlling the decreasing speed. Refer to (Patriksson, 2015) for further 

information on the convergence properties of the partial linearization method. 

3.3 Link criticality index 

This section presents the original UE-based LCI method for link criticality analysis 

(Almotahari and Yazici, 2019), discusses its properties, identifies two deficiencies of the UE-

based LCI, and proposes three modifications to address these deficiencies. 

3.3.1 Original UE-based LCI 

The LCI method is presented in equations (3.6) - (3.10). It accounts for network 

connectivity, travel demand, individual travelers’ behavior, congestion, and redundancy. It 

uses link marginal cost (MC) to capture persistent flow assignment despite increasing 

congestion. If a saturated link is assigned additional flow between iterations 𝑛 and 𝑛 +  1, 

the travel time increase can be calculated as a product of link flow increment and MC in 
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equation (3.7). MCs are normalized by link travel times for comparability. Two weighing 

coefficients account for links serving alternative routes (3.9) and multiple O-Ds (3.10). 

𝐿𝐶𝐼𝑎 = ∑∑∑𝑆𝑎
𝑛 ⋅ 𝛿𝑟𝑎

𝑤 ⋅ 𝛾𝑤 ⋅ 𝜇𝑟
𝑤,𝑛

∀𝑟∀𝑤

𝑁−1

𝑛=0

, ∀𝑎 ∈ 𝐴 (3.6) 

where 𝐿𝐶𝐼𝑎 is link criticality index for link 𝑎, 𝑆𝑎
𝑛 is unweighted criticality score for link a at 

iteration 𝑛, 𝛾𝑤 demand specific weight of O-D pairs 𝑤 used in LCI, 𝜇𝑟
𝑤,𝑛

 is route-specific 

weight for a route 𝑟 of an O-D 𝑤 at iteration 𝑛. The unweighted score and the weights can be 

computed as following: 

𝑆𝑎
𝑛 = max([𝑥𝑎

𝑛+1 − 𝑥𝑎
𝑛], 1.0) ⋅

𝑚𝑐𝑎(𝑥𝑎
𝑛)

𝑡𝑎(𝑥𝑎
𝑛)

, ∀𝑎 ∈ 𝐴, ∀𝑛 ∈ 𝑁 (3.7) 

𝑚𝑐𝑎(𝑥𝑎
𝑛) = 𝑡𝑎(𝑥𝑎

𝑛) + 𝑥𝑎
𝑛𝑡𝑎
′ (𝑥𝑎

𝑛), ∀𝑎 ∈ 𝐴 (3.8) 

𝜇𝑟
𝑤,𝑛 =

1/𝑐𝑟
𝑤,𝑛

∑ 1/𝑐𝑙
 𝑤,𝑛

∀𝑙

, ∀𝑟 ∈ ℛ𝑤, ∀𝑤 ∈ 𝒲,∀𝑛 ∈ 𝑁 (3.9) 

𝛾𝑤 = 𝛾𝑤,𝑛 =
𝑞𝑤

𝑄
, ∀𝑤 ∈ 𝒲,∀𝑛 ∈ 𝑁 (3.10) 

where 𝑐𝑟
𝑤,𝑛 is deterministic travel time on route 𝑟 of O–D pair 𝑤 at iteration 𝑛, 𝑥𝑎

𝑛 is flow on 

link 𝑎 at iteration 𝑛, 𝑚𝑐𝑎 is marginal cost of traveling on link 𝑎, 𝑡𝑎 is travel time on link 𝑎, 

and 𝑡𝑎
′  is the derivative of link travel time with respect to its flow. 

Remark 1: The flow increments in each iteration are not based on behavioral phenomena, 

but on the objectives of the solution methods. However, it is worth emphasizing that this does 

not mean that the interim results are irrelevant or meaningless. On the contrary, interim results 

are arguably still consistent with the behavioral rationale of network users to minimize their 

travel costs, which allows to assign higher criticality to a link that carries more flow despite 

increasing saturation, indicating that the link is more congested and more difficult to replace. 

Remark 2: Different methods, with different incremental properties, might give different 

indices. However, this is not a problem, if the indices are consistent and comparable within 
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each method. The purpose of the indices is to identify critical links and not to compare the 

methods directly. 

Properties of components of LCI 

Figure 3.4 shows the properties of the O-D demand-based and route-based weights of the 

LCI method. 

 

Figure 3.4. Properties of weights for LCI. 

As shown in Figure 3.4 (left), O-D pairs with higher travel demand have higher O-D 

weights than O-D pairs with lower travel demand. As shown in Figure 3.4 (right), the routes 

with longer travel times have lower weights than the routes with lower travel times. 

Deficiencies of the original UE-based LCI 

Two deficiencies of the original UE-based LCI, which may potentially compromise it, 

have been identified: (i) O-D’s contribution to LCI when the link has no flow and (ii) identical 
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links are ranked differently. These issues are explained using the networks in Figure 3.5 and 

Figure 3.6, respectively. 

 

Figure 3.5. A potential limitation of the original UE-based LCI. 

O-D’s contribution to LCI when the link has no flow2. The network in Figure 3.5 has 

six links, two O-D pairs connected with two and three routes, respectively. The network is 

designed such that the demand of the first O-D (1,3) is served by Route 1 (i.e., Route 2 has 

zero flow), and the demand of the second O-D (1,4) is served by Route 4 and Route 5 (i.e., 

Route 3 has zero flow).  The LCI value is computed for Link 1. At an iteration 𝑛, 𝐿𝐶𝐼1
𝑛 is 

given as a sum of two terms, as shown in Figure 3.5. Each term corresponds to a particular 

O-D pair. However, the second O-D pair should not contribute to 𝐿𝐶𝐼1
𝑛 because Link 1 has 

no flow from the second O-D pair. Adding the second term (Figure 3.5) artificially increases 

 
2 This may be problematic if the route set includes unrealistic alternatives, such as routes with long detours that 

are unlikely to be used. These unrealistic routes should not contribute to link criticality, but the original LCI 

cannot capture this, potentially overestimating link criticalities. Conversely, excluding these routes might 

underestimate link criticality, as any route can contribute to network redundancy. Therefore, both perspectives 

are valid, and analysts must decide based on the quality of their route sets. 



 

40 

the link's criticality, potentially leading to an overestimation. A formal solution to this 

example is provided in Section 3.4.1. 

Identical links are ranked differently. The network in Figure 3.6 has three links, a 

single O-D pair, and two routes. Link 1 and Link 2 are identical. Link 3 is shared by both 

routes. The solution process is mimicked, LCI is computed, and the results are summarized 

in Table 3.2. 

 

Figure 3.6. A three-link network with two identical parallel links. 

As shown in Table 3.2, Link 3 received the highest LCI. This was expected because Link 

3 was included in both routes and was assigned flow equal to the full demand. If it were to be 

disrupted, then the O-D pair would be disconnected. Link 1 and Link 2 were expected to 

receive equal LCI values because they were identical, but they were assigned different values. 

Link 1 received a lower LCI value than Link 2. 

Table 3.2. Equilibration process and LCI computation. 

Link 1 2 3 

 Iteration Iteration Iteration 

 1 2 3 LCI 1 2 3 LCI 1 2 3 LCI 

Flow 5 3 2.5  0 2 2.5  5 5 5  

Time 6 4 3.5  1 3 3.5  6 6 6  

MC 1.83 1.75 1.71  1 5 6  1.83 1.83 1.83  

𝛾 1 1 1  1 1 1  1 1 1  

𝜇 0.37 0.47 0.5  0.63 0.53 0.5  1 1 1  

Score - 1.83 1.75  - 2 1.66  - 1.83 1.83  

𝐿𝐶𝐼𝑛 - 0.67 0.83 1.5 - 1.26 0.88 2.14 - 1.83 1.83 3.66 

             

This phenomenon occurred due to the initialization used in the UE framework. In UE, 

the initial solution and loading procedure is done using AON TA, which assigns the entire 

travel demand to the shortest route. Based on Table 3.2, since Link 1 is a part of the shortest 
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route in the first iteration, it received high flow, while Link 2 received no flow. Consequent 

iterations equalized the flow but taking flow from Link 1 diminished its resulting LCI value 

and increased the LCI value of Link 2. Moreover, the score of LCI monotonically reduced 

with each iteration until equilibrium was reached. This suggests that initialization and the first 

few iterations play an important role in the UE-based LCI calculation. 

3.3.2 Refined UE-based LCI 

This section outlines the refinements made to the original UE-based LCI method to 

address the issues discussed in Section 3.3.1 and account for the framework extensions 

discussed in Section 3.2. 

To address the first issue (Section 3.3.1), this study proposes to split the score function 

(3.7) into two parts and substitute link flow increment by route flow increment, as shown in 

(3.11) - (3.12): 

𝐿𝐶𝐼𝑎 = ∑
𝑚𝑐𝑎(𝑥𝑎

𝑛)

𝑡𝑎(𝑥𝑎
𝑛)

∑𝛾𝑤 ⋅ 𝑧𝑤,𝑛∑𝜇𝑟
𝑤,𝑛 ⋅ 𝛿𝑎𝑟

𝑤

∀𝑟∀𝑤

𝑁−1

𝑛=0

, ∀𝑎 ∈ 𝐴 (3.11) 

where the score function is split into two parts. The first part remains unchanged while the 

second part is substituted by a route flow increment (𝑓𝑘
𝑤,𝑛+1 − 𝑓𝑘

𝑤,𝑛), i.e.: 

𝑧𝑤,𝑛 =

{
 
 

 
 ∑(𝑓𝑘

𝑤,𝑛+1 − 𝑓𝑘
𝑤,𝑛)𝛿𝑎𝑘

𝑤

∀𝑘

,   𝑖𝑓 ∑(𝑓𝑘
𝑤,𝑛+1 − 𝑓𝑘

𝑤,𝑛)𝛿𝑎𝑘
𝑤

∀𝑘

> 0, ∀𝑤, ∀𝑛

1, 𝑖𝑓 ∑(𝑓𝑘
𝑤,𝑛+1 − 𝑓𝑘

𝑤,𝑛)𝛿𝑎𝑘
𝑤

∀𝑘

< 0, ∀𝑤, ∀𝑛

       0, 𝑖𝑓 ∄𝑓𝑘
𝑤,𝑛+1 ≠ 0 and ∄𝑓𝑘

𝑤,𝑛 ≠ 0, ∀𝑘, ∀𝑤, ∀𝑛

 (3.12) 

These changes can be interpreted as follows. The contribution of an O-D pair to the LCI 

is only considered if there is demand served from that pair. If all O-D pairs that a link serves 

have non-zero flow passing through that link, the refined UE-based LCI method would be 

identical to the original UE-based LCI method. This refinement of the functional form allows 

for a more precise consideration of O-D pairs in the UE-based LCI method. It is worth noting 
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that this modification may be unnecessary for SUE-based LCI as the SUE model assigns route 

flows based on positive probabilities and identical routes have equal probabilities. 

3.3.3 SUE-based LCI 

The second issue can be automatically alleviated by adopting an SUE TA model for the 

LCI method. More importantly, another benefit of using the SUE framework is that it relaxes 

the assumption of perfect knowledge of travel time, and results in evaluations more consistent 

with observed travelers’ behavior. By extending the framework to SUE, travelers’ perception 

error is incorporated into the model (Sheffi, 1985), and stochastic network loading is 

performed according to a certain probabilistic route choice model. Theoretically, all routes 

should have some non-zero flows.  Actual route travel times are substituted by perceived route 

travel time in route-specific weights (3.9), i.e.: 

𝜇𝑟
𝑤,𝑛 =

1/𝐶𝑟
𝑤,𝑛

∑ 1/𝐶𝑙
 𝑤,𝑛

∀𝑙

, ∀𝑟 ∈ ℛ𝑤, ∀𝑤 ∈ 𝒲,∀𝑛 ∈ 𝑁 (3.13) 

where 𝜇𝑟
𝑤,𝑛

 is route-specific weight for a route 𝑟 of an O-D 𝑤 at iteration 𝑛 and 𝐶𝑟
𝑤,𝑛

 is the 

perceived travel time of route 𝑟 of O-D 𝑤 at iteration 𝑛. 

3.3.4 SUE-ED-based LCI 

Finally, the extension of the SUE framework to SUE-ED enables loosening the 

assumption of fixed demand and accounting for the potential influence of other travel choices 

that may affect travelers’ behavior, resulting in a more realistic TA model. Demand elasticity 

results in variable O-D and total network demand. Consequently, the demand-based weight 

in (3.10) may vary from iteration to iteration. 

Incorporating ED into link criticality assessment may be interpreted as adding another 

conceptual dimension to the metric, namely trip criticality. It seems that the core question is 

whether the link’s criticality should vary under different demand levels or stay constant. One 
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of the simplest examples is a trip choice under normal and degraded conditions in a single-

link network. In a degraded network, travel demand may reduce due to the decrease in level 

of service. Should the criticality of the link reduce with the decrease of travel demand? To 

answer this question, travel demand is considered from the perspective of individual trips, 

which roughly is classified as mandatory and discretionary (or optional) trips. Demand 

reduction can be interpreted as cancelation of discretionary trips. The following logic can be 

used: “If trips are canceled, then people can ‘survive’ without these trips. If they can survive 

without these trips, then they may survive without the corresponding connection. If they 

can survive without this connection, is it really critical?”. Following this logic, it seems 

reasonable to reduce the criticality of links if travel demand reduces. As a result, the ED 

extension may be considered as incorporating the impact of trip criticality into link criticality 

assessment. The sensitivity analysis conducted on SUE and SUE-ED showed results 

consistent with this logic. 

3.4 Numerical experiments 

Three experiments were performed in this section. The first issue of the original UE-

based LCI was addressed by the refined UE-based LCI in Experiment 1. UE-based LCI and 

SUE-based LCI were compared, and the second issue was resolved by SUE-based LCI in 

Experiment 2. SUE-ED-based LCI was also analyzed, and a sensitivity analysis of demand 

function parameters was conducted on the same network. Two real-size networks were used 

in Experiment 3 to compare the computation time of LCI for different traffic assignment 

models. Bridge criticality in the Winnipeg network, Canada, was also assessed and three LCI 

frameworks were compared with the index from (Jansuwan and Chen, 2015). 

In all experiments except Experiment 1 (Section 3.4.1), the travel time of each link is 

assumed to follow the standard Bureau of Public Road (BPR): 
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𝑡𝑎(𝑥𝑎) = 𝑡𝑎
0 [1 + 𝛼 (

𝑥𝑎
𝑂𝑎
 )
𝛽

] , ∀𝑎 ∈ 𝐴 (3.14) 

where 𝑡𝑎
0 is a free-flow travel time on link 𝑎; 𝑥𝑎 is a flow on link 𝑎; 𝑂𝑎 is the capacity of link 

𝑎; 𝛼 and 𝛽 are exogenously defined parameters. 

Without the loss of generality, in this study, the demand function is modeled using an 

exponential function of the expected perceived O-D travel cost (EPC), as follows: 

𝐷𝑤(𝑢𝑤) = 𝑞
𝑤
⋅ 𝑒−𝜉𝑢

𝑤
, ∀𝑤 ∈ 𝒲 (3.15) 

where 𝑞
𝑤

 is the maximum (or potential) demand for O-D pair 𝑤 ∈ 𝒲 ; 𝜉  is the scaling 

parameter, which reflects sensitivity of demand to the travel cost, 𝑢𝑤 is EPC for O-D pair 𝑤 

computed based on actual travel costs 𝑐𝑘
𝑤 𝑘 ∈ 𝐾𝑤as shown in equation (3.16). 

𝐸𝑃𝐶𝑀𝑁𝐿
𝑤 = −

1

𝜃
𝑙𝑛 ∑ 𝑒−𝜃𝑐𝑘

𝑤

𝑘∈𝐾𝑤

, ∀𝑤 ∈ 𝑊 (3.16) 

To be able to compare the LCI values obtained based on different traffic assignment 

frameworks, the LCI values are normalized to lie within the range of 0 to 1, i.e.: 

𝐿𝐶𝐼̃𝑎 =
𝐿𝐶𝐼𝑎

∑ 𝐿𝐶𝐼𝑏∀𝑏
, ∀𝑎 ∈ 𝐴 (3.17) 

and 

∑𝐿𝐶𝐼̃𝑎
∀𝑎

= 1 (3.18) 

3.4.1 Experiment 1: Two O-D pair network 

The purpose of this section is to compare the original UE-based LCI with the refined UE-

based LCI, using the network illustrated in Figure 3.5. To highlight the contrast between the 

original and refined LCI methods, the results are presented for a single arbitrary iteration 𝑛. 

The outcomes of this comparison are summarized in Table 3.3. 
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Table 3.3. An arbitrary iteration of original and refined UE-based LCI methods. 

 Components required for computation of LCI Original LCI Refined LCI 

Target link  Flow on Link 1 (n) 2 

Cost of Link 1 (n) 3 
Marginal cost of Link 1 (n) 5 

Flow on Link 1 (n+1) 2 

OD13 Flow on Route 1 (n) 2 

 Flow on Route 1 (n+1) 2 
 Flow on Route 2 (n) 0 

 Flow on Route 2 (n+1) 0 
 Cost of Route 1 (n) 6 

 Cost of Route 2 (n) 7 

OD14 Flow on Route 3 (n) 0 

 Flow on Route 4 (n) 6 
 Flow on Route 5 (n) 0 

 Cost of Route 3 (n) 8 

 Cost of Route 4 (n) 7 
 Cost of Route 5 (n) 2 

Weights 𝛾𝑂𝐷13 (n) 0.25 

𝛾𝑂𝐷14 (n) 0.75 

𝜇1 (n) 0.54 

𝜇3 (n) 0.21 

Score of Link 1 (n) 1.67 - 

LCI (n) 0.49 0.23 

   

The results presented in Table 3.3 demonstrate that both the original UE-based LCI and 

the refined UE-based LCI methods require the same initial components for computation. 

However, the difference lies in the equation used to calculate the LCI value, where the original 

UE-based LCI method uses (3.6), i.e.: 

𝐿𝐶𝐼1
𝑛 = max([𝑥1

𝑛+1 − 𝑥1
𝑛], 1.0)

𝑚𝑐1(𝑥1
𝑛)

𝑡1(𝑥1
𝑛)

[𝛾13𝜇1
13,𝑛 + 𝛾14𝜇1

14,𝑛]

= max((2 − 2), 1.0) ⋅
5

3
⋅ [0.25 ⋅ 0.54 + 0.75 ⋅ 0.21] = 0.49 

and the refined UE-based LCI method uses (3.11), i.e.: 

𝐿𝐶𝐼1
𝑛 = 

𝑚𝑐1(𝑥1
𝑛)

𝑡1(𝑥1
𝑛)

[𝛾13𝑧13,𝑛𝜇1
13,𝑛 + 𝛾14𝑧14,𝑛𝜇1

14,𝑛] =
5

3
[0.25 ⋅ 1 ⋅ 0.54 + 0.75 ⋅ 0 ⋅ 0.21]

= 0.23 

The criticality value calculated by the original UE-based LCI method is more than twice 

as high as that determined by the refined UE-based LCI method. 

It is important to note that this modification is relevant only for the UE-based LCI 

method, where zero-flow routes may exist. However, for SUE-based LCI or SUE-ED-based 



 

46 

LCI, this modification unnecessary as the SUE models assign route flows based on route 

choice probabilities, which, theoretically, should not result in zero-flow routes. 

3.4.2 Experiment 2: Loophole network 

This section uses the loophole network to analyze LCI methods based on different TA 

models. The loophole network is shown in Figure 3.7. 

The loophole network has four links and a single O-D pair connected by three routes with 

equal free-flow travel time. Routes 2 and 3 share Link 2. Moreover, they are identical. The 

parameters were set as follows: 𝛼 = 0.15, 𝛽 = 4. 

 

Figure 3.7. Loophole network. 

3.4.2.1 UE-based LCI vs. SUE-based LCI 

This section compares the original UE-based LCI and SUE-based LCI methods. It sets 

the travel demand 𝑞 = 20 and the dispersion parameter 𝜃 = 0.5. The results are summarized 

in Table 3.4 and Figure 3.8. 

As shown in Table 3.4, Link 2 was assigned the highest criticality value by both UE-

based LCI and SUE-based LCI methods. It was followed by Link 1. Link 3 and 4 received 

the lowest values. This behavior was desired because Link 2 contributes more to route 

redundancy than any other link. It serves two routes, while the remaining links serve only one 

route each. If any of these links are disrupted, there would still be two routes available to 
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connect the given O-D pair. However, if Link 2 is disrupted, there would only be one 

alternative route available. 

Table 3.4. Link criticality values and rankings for the loophole network. 

Link 

UE-based LCI SUE-based LCI 

LCI 
Normalized 

LCI 

Rank 
LCI 

Normalized LCI Rank 

1 1608.95 0.17 2 3.15 0.19 2 

2 5050.14 0.53 1 9.25 0.55 1 

3 1403.61 0.15 3 2.19 0.13 3 
4 1397.46 0.15 4 2.19 0.13 3 

Accuracy 1e-5 1e-8 

Iteration count 3885 6 

   

The reason why Link 2 was assigned a higher criticality value than Link 1 is that all 

components of the LCI for Link 2 (i.e., link flow, marginal-actual travel cost ratio, and route-

based weights) were greater than the corresponding components for Link 1 (Figure 3.8a - 

Figure 3.8c), which resulted in higher criticality values at each iteration, as shown in (Figure 

3.8d). 

From Table 3.2, it can also be noticed that the non-normalized values of UE-based LCI 

and SUE-based LCI differ in three orders of magnitude. It was because a non-normalized LCI 

depends on the number of iterations and solving the UE problem required a substantially 

greater number of iterations than solving the SUE problem. For solving the UE and SUE 

problems, an SRA method and partial linearization method with the SRA step size were used, 

respectively. Due to the AON network loading procedure, the SRA method was less efficient 

than the partial linearization algorithm with SRA, which uses a stochastic network loading 

procedure (3.3). 
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Figure 3.8. Analysis of SUE-based LCI fluctuations at each iteration. 

Sensitivity analysis 

A sensitivity analysis was conducted with respect to travel demand and the dispersion 

parameter. Similarly, the travel demand 𝑞 = 20 and the dispersion parameter 𝜃 = 0.5. The 

results are summarized in Figure 3.9 and Figure 3.10, respectively.  

The impact of demand level on the criticality values of identical links was analyzed by 

examining Link 3 and Link 4. These links were selected to facilitate the study of the issue of 

initialization.  
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Figure 3.9. Discrepancy of LCI values of two identical links. 

Figure 3.9a shows that at low demand values, identical links were assigned different UE-

based LCI values, but as demand increased, the differences in criticality values diminished. 

This can be attributed to three factors. Firstly, the first few iterations have the greatest impact, 

as demonstrated in Figure 3.8. Secondly, the SRA method requires fewer iterations to 

converge at lower demand levels than at higher demand levels. Finally, a large number of 

iterations reduces the impact of the first few iterations because criticality values are summed 

up at each iteration. Figure 3.9b demonstrates that SUE-based LCI does not suffer from this 

issue, and identical links receive equal criticality values. This is because the stochastic 

network loading assigns non-zero flow to all alternatives in the route set, resulting in identical 

links receiving equal amounts of flow (if not traversed by routes of other O-D pairs). An 

abrupt bend observed in Figure 3.9b at demand level 20 potentially occurred due to reaching 

network capacity. 

The impact of the dispersion parameter on SUE-based LCI is analyzed. Results in Figure 

3.10 revealed that, at low dispersion parameter values, Links 1, 3, and 4 had similar SUE-

based LCI values. However, as the dispersion parameter value increased, Link 1 became 

consistently more critical than Link 3 and 4, indicating that it played a more important role in 

the network. 
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Figure 3.10. Impact of dispersion parameter on SUE-based LCI. 

It is well known that when the dispersion parameter has low values, the model is less 

sensitive to travel time. As the dispersion parameter value increases, the equilibrium solution 

of a SUE problem becomes more and more sensitive to travel time, hence closer to the UE 

solution (Sheffi, 1985). At certain iterations, Link 1’s lower travel time allowed it to be 

assigned more flow, thereby increasing its importance over Links 3 and 4. Therefore, the 

model became sensitive enough to travel time changes, allowing it to differentiate the higher 

criticality of Link 1 compared to Links 3 and 4 as the dispersion parameter value increased 

over 0.4. 

3.4.2.2 SUE-based LCI vs. SUE-ED-based LCI 

This section compares SUE-based LCI and SUE-ED-based LCI. The results are 

summarized in Table 3.5 and Figure 3.11 – Figure 3.14. The parameters were set as follows: 

𝑞 = 20, 𝜃 = 0.5, 𝜉 = 0.01, 𝑞̅ = 40. 

From Table 3.5, it is evident that the link rankings have remained unchanged. Link 2 has 

the highest rank, followed by Link 1, and then by Links 3 and 4 in that order. On the other 

hand, it should be noted that the SUE-ED-based LCI value of Links 2 is slightly higher, while 

the SUE-ED-based LCI values for Link 3 and 4 are slightly lower than their corresponding 
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SUE-based LCI values. Furthermore, the partial linearization algorithm converges in a 

relatively higher number of iterations in the case of SUE-ED-based LCI than in the case of 

SUE-based LCI. 

Table 3.5. SUE-based LCI and SUE-ED-based LCI values for the loophole network. 

Link 

SUE-based LCI SUE-ED-based LCI 

LCI 
Normalized 

LCI 
Rank LCI Normalized LCI Rank 

1 3.15 0.19 2 68.81 0.19 2 

2 9.25 0.55 1 217.97 0.59 1 

3 2.19 0.13 3 41.54 0.11 3 
4 2.19 0.13 3 41.54 0.11 3 

Accuracy 1e-8 1e-8 

Iteration count 6 81 

   

The reason why SUE-ED-based LCI value of Link 2 was higher is related to the 

mechanism of changing demand. In SUE-ED, demand is a function of LOS. Specifically, 

when LOS is low, then the demand reduces, while when it is high, demand increases.  From 

Figure 3.11, one can see that the network demand fluctuated substantially during the first 

several iterations before it managed to stabilize. 

 

Figure 3.11. Demand changes during the equilibration. 

From Figure 3.12, one can see that this affected the flow on Link 2. It also fluctuated 

considerably during these iterations in the case of SUE-ED, especially during the first two 

iterations. In contrast, the flow on Link 2 remained relatively stable in the case of SUE, as 

shown in Figure 3.12. 
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Figure 3.12. Flow fluctuations on Link 2 during the equilibration process. 

From Figure 3.13, one can see why SUE-ED-based LCI value of Link 1 did not grow. It 

happened because the flow on Link 1 was reducing the first few iterations, whereas the flow 

on Link 2 was increasing. 

 

Figure 3.13. Link flow changes during the equilibration process. 

The reason why SUE-ED needed more iterations than SUE problem is that ED introduces 

additional non-linearity in the TA problem, making the problem more complex and 

challenging to solve. The iterative solution algorithms have to perform additional 

computations to accommodate this non-linearity, which may take more iterations to converge. 

Sensitivity analysis 
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The demand function, which is represented by (3.15), has two parameters: the scaling 

parameter, 𝜉, and the maximum potential demand,  𝑞̅𝑤. The sensitivity analysis for these two 

parameters is presented in Figure 3.14a for the scaling parameter and Figure 3.14b for the 

maximum potential demand. The results from Figure 3.14 indicate that these parameters have 

a limited impact on the SUE-ED-based LCI values. 

 

Figure 3.14. Impact of demand function parameters on LCI. 

3.4.2.3 Discussion on demand elasticity 

To support the above discussion, the impact of ED on a full-scan approach (based on the 

difference of total network travel time) and LCI is analyzed. The experiments were conducted 

on a simple three-link network as shown in Figure 3.15. The results are summarized in Table 

3.6 - Table 3.8. 

 

Figure 3.15. Three-link network. 

The travel time of each link is computed according to (3.14). All characteristics of the 

three links were set identical except the free flow travel time. The link free flow travel times 

were set to obey the following relation: 
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𝑡1
0 < 𝑡2

0 < 𝑡3
0 

The demand function is calculated according to (3.15). The SUE and SUE-ED 

frameworks were selected for the analysis. The solution algorithm described in Section 3.2.5 

was utilized.  The link criticality of full-scan approach was calculated as follows: 

𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦𝑎 =
(𝑇𝐴𝐿𝐿 𝐿𝐼𝑁𝐾𝑆 − 𝑇𝑎)

𝑇𝐴𝐿𝐿 𝐿𝐼𝑁𝐾𝑆
, 𝑎 = {1,2,3} 

where 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦𝑎 is the criticality score of link 𝑎, 𝑇𝐴𝐿𝐿 𝐿𝐼𝑁𝐾𝑆 is the total travel time in the 

network when all links are intact, 𝑇𝑎 is the total travel time in the network in which link 𝑎 is 

deactivated. To ensure comparability between the full-scan measure and LCI, both are 

normalized according to equation (3.17). 

Table 3.6 provides link criticality values for a full-scan and SUE-based LCI approaches 

under FD TA. 

Table 3.6. Link criticality values for SUE  (max demand = 40). 

Scenario 

Full-scan 
Normalized  

SUE-based LCI O-D demand 
Total network 

travel time 
Criticality Normalized Criticality 

Fully functional 11.76 650 - - - 

Link 1 11.76 3206 3.94 0.47 0.4 

Link 2 11.76 2227 2.43 0.29 0.32 

Link 3 11.76 2008 2.09 0.25 0.28 

      

As shown in Table 3.6, the total travel time of a fully functioning network is much lower 

than the total travel time in disrupted networks. It was expected because the travel demand 

remained fixed regardless of the degradation of the network. Specifically, the removal of Link 

1 (i.e., fastest) resulted in the highest discrepancy than removal of Link 2 (i.e., mediocre) or 

Link 3 (i.e., slowest) as expected. It was reflected in the link criticality scores. The criticality 

of Link 1 was almost twice as high as the ranks of other two links. The SUE-based LCI 

followed the same trend but the difference between the criticality scores was lower than for 

the full-scan method. 
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Table 3.7 and Table 3.8 provide criticality values of the methods under ED TA under 

different maximum demand levels, specifically at  𝑞̅ = 2 ⋅ 𝑞 and 𝑞̅ = 4 ⋅ 𝑞 where 𝑞 = 10. 

Table 3.7. Link criticality values for SUE-ED (max demand = 20). 

Scenario 

Full-scan 
Normalized  

SUE-ED-based LCI O-D demand 
Total network 

travel time 
Criticality Normalized Criticality 

Fully 

functional 
11.76 650 - - - 

Link 1 8.41 740 0.14 0.37 0.4 

Link 2 9.133 728 0.12 0.32 0.32 

Link 3 9.35 723 0.11 0.30 0.28 

      

As shown in Table 3.7, the travel demand reduced when the network was degraded. The 

degradation was the highest when Link 1 was removed, mediocre when Link 2 was removed, 

and the lowest when Link 3 was removed.  However, due to the decreased demand, the 

difference in ratings was less pronounced than in FD TA. Compared to the full-scan approach, 

the SUE-ED-based LCI did not change much. These results are consistent with the given 

interpretation in the previous section. 

As shown in Table 3.8, the travel demand, total network travel time, and hence link 

criticality values may depend on parameter values of the demand function. These parameter 

values might be set such that the total travel time of a fully functioning network is worse than 

the travel time in the degraded network. In this case, link criticality of a full-scan method may 

have negative values as shown in Table 3.8. In this case these values obtained by the full-scan 

approach cannot be further used. One can notice that the demand was considerably reduced 

in these scenarios. This can be interpreted as strong suppression of discretionary trips with 

each link disruption scenario forced by high sensitivity of demand function to travel cost. 

Based on the negative results, it seems that the full-scan method used in this section is 

applicable only in scenarios when the demand function is less sensitive to travel cost. In 

contrast, the LCI values were consistent with the interpretation given in the previous section 

and the high sensitivity of demand function to travel cost did not compromise the method. 
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Table 3.8. Link criticality values for SUE-ED. 

 
Scenario 

Full-scan 
Normalized  

SUE-ED-based LCI O-D demand 
Total network 

travel time 
Criticality Normalized Criticality 

Fully functional 14.5 1503.0 - - - 

Link 1 9.78 1101.4 -0.27 - 0.37 

Link 2 10.66 1424.4 -0.05 - 0.33 

Link 3 10.92 1433.1 -0.05 - 0.3 

      

3.4.3 Experiment 3: Real-size networks 

The proposed LCI methods were applied to two real-size road networks: the Winnipeg 

and Chicago Sketch networks. These networks were obtained from an open-source repository. 

The origins and destinations of the O-D flows were the traffic zones in both networks. Fixed 

working route sets were used for a fair comparison. The working route set of the Winnipeg 

network was generated by (Bekhor et al., 2008), and the working route set of the Chicago 

sketch network was generated by using an open-source software. More details about the test 

networks are presented in Figure 3.16. 

 

Figure 3.16. Two large-scale test networks and their characteristics. 

3.4.3.1 Setting model parameters for real-size networks 

This section sets plausible parameter values for route choice and travel demand models. 

3.4.3.1.1 Parameter settings for route choice models 

This section provides sensitivity analyses on the parameters of the selected route choice 

models. The results are summarized in Figure 3.17. To set model parameters, we start with 
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preliminary values and find the equilibrium solution. From this solution, we compute the total 

coefficient of variation 𝐶𝑉̅̅ ̅̅  and compare it with the target total coefficient of variation 𝐶𝑉̅̅ ̅̅ 𝑡𝑟𝑔 

(e.g., 0.1 – moderate level of variation). If 𝐶𝑉̅̅ ̅̅ < 𝐶𝑉̅̅ ̅̅ 𝑡𝑟𝑔, we adjust the parameters and repeat 

the process until the condition is satisfied. 

The total coefficient of variation 𝐶𝑉̅̅ ̅̅  is calculated as follows: 

𝐶𝑉̅̅ ̅̅  =
∑ 𝑞𝑤 ⋅ 𝐶𝑉𝑤𝑤∈𝑊

∑ 𝑞𝑤𝑤∈𝑊
 (3.19) 

where 𝐶𝑉𝑤 is the coefficient of variation for O-D pair 𝑤, calculated as the ratio of standard 

deviation 𝜎𝜀  to mean generalized cost at the equilibrium point 𝑈𝑤: 

𝐶𝑉𝑤 =
𝜎𝜀
𝑈𝑤

, ∀𝑤 ∈ 𝑊 (3.20) 

The standard deviation is derived from the model-specific variance. The mean systematic 

utility for O-D pair 𝑤 is determined as follows: 

𝑈𝑤  =
∑ 𝑓𝑘

𝑤 ⋅  𝑐𝑘
𝑤 𝑘∈𝐾𝑤

𝑞𝑤
, ∀𝑤 ∈ 𝑊 (3.21) 

Parameter setting was performed for the MNL route choice model across two real-size 

networks. The MNL model has a single parameter and can be calibrated using the 

aforementioned procedure without additional assumptions. 

Figure 3.17 summarizes the effect of route choice model parameters on the total 

coefficient of variation for the Winnipeg and Chicago Sketch networks. We set the parameters 

of the selected route choice models such that the mean coefficient of variation 𝐶𝑉̅̅ ̅̅  remained 

within the range of 10% to 20%. 



 

58 

 

Figure 3.17. Effect of route choice model parameters on the total coefficient of variation for 

the Winnipeg and Chicago Sketch networks. 

3.4.3.1.2 Parameter settings for demand function 

This section provides sensitivity analyses on parameters of the demand function. The 

demand function has two parameters: scaling parameter 𝜁 and maximum demand 𝑞̅𝑤, ∀𝑤 ∈

𝑊. The results for two selected real-size networks are summarized in Figure 3.18. 

  

(a) Impact of parameter 𝜁 on total travel 

demand. 

(b) Impact of max demand parameter 

𝑞̅𝑤, ∀𝑤 ∈ 𝑊 on total travel demand. 

Figure 3.18. Impact of demand function parameters on total travel demand for two real-size 

networks. 

As shown in Figure 3.18, the parameters of the demand function were adjusted to ensure 

total travel demand varied between 10% and 20% from the fixed total travel demand. For the 
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Winnipeg network, we set parameter 𝜁 to 0.1 and the maximum demand parameter 𝑞̅𝑤  to 

2.5 ⋅ 𝑞𝑤 for all 𝑤 ∈ 𝑊. Similarly, for the Chicago Sketch network, we set 𝜁 to 0.1 and 𝑞̅𝑤 to 

2.0 ⋅ 𝑞𝑤 for all 𝑤 ∈ 𝑊. 

3.4.3.2 Computational complexity analysis 

In Table 3.9, the computational time of LCI for different traffic assignment models on 

the two test networks is provided. It reports the average CPU time per iteration for the solution 

algorithm steps and the computation of LCI scores, which are explicitly separated. The 

solution algorithm (Section 3.2.5) was terminated either when RMSE=1e-7 or the maximum 

iteration number was reached (i.e., 500 iterations). The solution algorithm was implemented 

in Python 3.7.12. The numerical experiments were conducted on a Microsoft Windows 11 

operating system with Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz with 24 GB of RAM. 

Table 3.9. Convergence characteristics: SUE-based LCI vs. UE-based LCI. 

LCI’s TA model 

Winnipeg Chicago Sketch 

Iter. 

No. 

Alg. 

iter. 

time 

(sec) 

LCI 

comp. 
time (sec) 

Total 

time 
(min) 

Total time 

with LCI 
(min) 

Iter. 

No. 

Alg. 

iter. 

time 

(sec) 

LCI 

comp. 
time (sec) 

Total 

time 
(min) 

Total time 

with LCI 
(min) 

SUE 116 3.68 5.96 7 19 106 9.49 12.59 17 39 

SUE-ED 243 3.66 6.09 15 40 208 9.67 12.94 34 78 

UE* 500 3.25 6.08 27 78 500 7.74 13.0 65 173 
UE-ED* 500 3.32 6.03 28 78 500 7.74 12.8 65 171 

* Reached maximum iteration number 

As shown in Table 3.9, the solution algorithm for SUE framework converged in about 

half the iterations as the SUE-ED framework. This was expected because the ED extension 

added non-linearity to the objective function, increased the number of decision variables (i.e., 

one extra demand variable for each O-D pair), and increased the number of constraints. The 

CPU times for these frameworks were proportional to the iterations. The SUE model took 7 

minutes for the Winnipeg network and 17 minutes for the Chicago Sketch network 

approximately. The SUE-ED model took 15 and 35 minutes, respectively. Computing the LCI 

method added some extra time, resulting in a total CPU time of 19 minutes for the Winnipeg 
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network and 39 minutes for the Chicago Sketch network for SUE, and 40 and 78 minutes, 

respectively, for SUE-ED. 

Neither for the UE nor for the UE-ED framework the algorithm converged within 500 

iterations for both networks. They reached the maximum number of iterations without 

satisfying the specified RMSE criterion of 1e-7 (although they reached RMSE=1e-5). It was 

expected that the UE-based TA algorithm would require more iterations for convergence 

because the solution for the UE-based TA was on the boundary of the feasible region (i.e., 

some constraints were binding – zero-flow routes), which might be more computationally 

expensive to find. In contrast, the SUE-based TA had an interior point solution (i.e., no 

binding constraints – no zero-flow routes), which might be less computationally expensive. 

The total CPU time for computing LCI values was 78 minutes for the Winnipeg network and 

171 minutes for the Chicago Sketch network. 

It should be noted that a full-scan approach for identifying critical links in the same 

networks would require substantially more computational time compared to the LCI 

approach. For example, the Winnipeg network has 2535 links. A full-scan method would need 

to run 2|𝐴| − 1 number of TA procedures, where |𝐴| is the total number of links. This results 

in an infeasibly large number of combinations and, hence, computational time. 

3.4.3.3 Criticality of bridges in the city of Winnipeg 

This section evaluated the bridge criticality in Winnipeg, Manitoba, Canada (Figure 

3.19). The proposed SUE-based LCI methods were used and compared with the J-C method 

by (Jansuwan and Chen, 2015). The J-C method was chosen because it was the only known 

to the authors full-scan method that used SUE TA. Results are summarized in Table 3.11, 

Figure 3.20, and Table 3.12. 
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Figure 3.19. The Winnipeg network and selected bridges. 

Table 3.10 provides a list of considered bridges for the Winnipeg network. 

Table 3.10. List of considered bridges. 

Bridge index Bridge name Bridge index Bridge name 

B1 North Perimeter B8 Fort Gary 

B2 Kildonan Settlers B9 South Perimeter 
B3 Redwood B10 Mid Town 

B4 Disraeli B11 Osborne 

B5 Provencher B12 Maryland 
B6 Norwood B13 St. James 

B7 St. Vital B14 West Perimeter 

    

Table 3.11 summarizes the Top-10 critical bridges according to each measure. It is important 

to note that there is no definitive ground truth for bridge criticality, making it impossible to 

assert that one measure is superior to another. Therefore, the comparison was based on 

common sense interpretation. For example, how the measures reflect the network’s functional 

aspects (e.g., providing connection to the airport) and traffic flow characteristics. 
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Table 3.11. Top-10 LCI critical rank bridges of the Winnipeg network. 

Rank 

SUE-ED-based LCI SUE-based LCI Original UE-based LCI J-C 

Bridge Bound Bridge Bound Bridge Bound Bridge Bound 

1 B13 NB B11 NB B10 NB B13 NB 

2 B11 NB B13 NB B11 NB B6 WB 

3 B5 WB B10 NB B4 WB B5 WB 
4 B10 NB B6 WB B5 WB B12 NB 

5 B6 WB B5 WB B13 NB B1 WB 

6 B4 WB B4 WB B6 WB B4 WB 
7 B7 WB B7 WB B12 NB B7 WB 

8 B2 WB B2 WB B11 SB B10 NB 

9 B11 SB B11 SB B3 WB B14 SB 
10 B12 NB B13 SB B13 SB B7 EB 

         

According to Table 3.11, the most important directional routes are northbound 

Assiniboine River and westbound Red River, as they carry traffic out of Winnipeg City during 

the PM peak period. SUE-ED-based LCI identified the top three bridges as B13-St. James 

Bridge (NB), B11-Osborne Bridge (NB), and B5-Provencher Bridge (WB), with St. James 

Bridge ranked as the most important. Although not the most congested and located outside 

the city center, it serves as a crucial access point between the airport and residential areas. 

Any disruption in the NB direction could have an adverse impact on expected travel costs and 

demands. B11 and B5 are located near the central business district (CBD), which is sensible. 

SUE-ED-based LCI also included B10-Mid Town (NB) and B6-Norwood (WB) into Top-5 

ranked bridges. These bridges are near the center similar to J-C method. 

Figure 3.20 shows the Spearman’s rank correlation coefficients between the measures. 

𝑟𝑋,𝑌 =
𝐶𝑜𝑣(𝑅(𝑋), 𝑅(𝑌))

𝑉𝑎𝑟(𝑅(𝑋))𝑉𝑎𝑟(𝑅(𝑌))
 (3.22) 

where 𝑅(𝑡) shows the rank of the observation of t in 𝑋 or 𝑌 data sets. The Spearman’s rank 

correlation takes values in the range from -1 to 1. The positive correlation signifies that the 

ranks of both the variables are increasing. In contrast, the negative correlation shows that as 

the rank of one variable increases, the rank of the other decreased. To be consistent with 

(Almotahari and Yazici, 2019, Almotahari and Yazici, 2021), the strength of the correlation 
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between two variables is categorized as follows: 0 to 0.19 very weak; 0.2 to 0.39 weak; 0.4 

to 0.59 moderate; and 0.6 to 0.79 strong; and 0.8 to 1 very strong. 

Table 3.12 lists the criticality values and rankings for all bridges. 

Table 3.12. LCI values and ranking of bridges in the Winnipeg network. 

Bridge Bound 
SUE-ED-

based LCI 
Rank SUE-based LCI Rank 

Original 

LCI 
Rank J-C Rank 

B1 EB 2.0E-4 27 3.0E-4 27 7.3E-5 25 2.3E-2 22 

B1 WB 7.8E-4 13 6.9E-4 14 1.0E-3 11 3.9E-2 5 
B2 EB 4.9E-4 18 4.7E-4 20 1.3E-4 22 2.3E-2 18 

B2 WB 1.1E-3 8 1.1E-3 8 3.8E-4 14 2.4E-2 17 

B3 EB 5.2E-4 17 4.6E-4 22 3.0E-4 15 2.7E-2 11 
B3 WB 5.3E-4 16 6.0E-4 17 1.4E-3 9 2.4E-2 16 

B4 EB 2.3E-4 26 3.3E-4 26 1.2E-4 23 2.2E-2 24 

B4 WB 1.9E-3 6 1.9E-3 6 4.4E-3 3 3.4E-2 6 
B5 EB 3.4E-4 21 4.9E-4 19 1.1E-4 24 2.5E-2 14 

B5 WB 2.9E-3 3 2.1E-3 5 4.0E-3 4 4.2E-2 3 

B6 EB 6.0E-4 15 6.7E-4 15 1.5E-4 19 1.7E-2 28 
B6 WB 2.6E-3 5 2.2E-3 4 2.9E-3 6 5.8E-2 2 

B7 EB 4.9E-4 19 6.5E-4 16 2.9E-4 17 2.9E-2 10 

B7 WB 1.4E-3 7 1.2E-3 7 6.3E-4 12 3.4E-2 7 
B8 EB 2.5E-4 25 3.7E-4 25 5.5E-5 26 2.3E-2 21 

B8 WB 9.0E-4 11 7.6E-4 13 5.7E-4 13 2.5E-2 15 

B9 EB 1.8E-4 28 2.6E-4 28 4.9E-5 27 2.2E-2 25 
B9 WB 2.6E-4 24 3.9E-4 24 4.7E-5 28 2.1E-2 26 

B10 NB 2.7E-3 4 2.5E-3 3 7.2E-3 1 3.2E-2 8 

B10 SB 4.2E-4 20 5.4E-4 18 1.8E-4 18 2.0E-2 27 

B11 NB 3.0E-3 2 3.4E-3 1 4.5E-3 2 2.3E-2 19 

B11 SB 1.1E-3 9 1.0E-3 9 1.5E-3 8 2.3E-2 20 

B12 NB 9.7E-4 10 8.4E-4 11 2.1E-3 7 4.1E-2 4 

B12 SB 2.8E-4 23 4.0E-4 23 3.0E-4 16 2.2E-2 23 

B13 NB 3.4E-3 1 2.7E-3 2 3.1E-3 5 6.7E-2 1 

B13 SB 8.7E-4 12 9.3E-4 10 1.2E-3 10 2.7E-2 12 

B14 NB 3.3E-4 22 4.7E-4 21 1.3E-4 21 2.6E-2 13 
B14 SB 6.3E-4 14 8.1E-4 12 1.4E-4 20 2.9E-2 9 

          

Figure 3.20 shows that all four measures have positive correlations. The LCI methods 

are strongly correlated with each other and with the J-C measure. The SUE-ED-based LCI 

and J-C measures have the highest correlation, which means that the LCI approach gives a 

similar ranking to the J-C method. However, it should be remembered that there is no 

definitive ground truth for bridge criticality, making it impossible to assert that one measure 

is superior to another. 
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Figure 3.20. Spearman’s rank correlation coefficients. 

3.5 Chapter summary 

This chapter adopted the link criticality index (LCI) method, originally based on user 

equilibrium TA model with fixed demand (UE-FD or UE). It identified common issues of 

UE-based LCI associated with the all-or-nothing (AON) network loading procedure of the 

UE TA models. It refined the UE-based LCI method and further advanced the LCI method 

by integrating the stochastic user equilibrium traffic assignment (TA) model with elastic 

demand (SUE-ED), which is a more behaviorally plausible TA model than the UE TA. The 

SUE-ED-based LCI method not only eliminated the identified issues but also relaxed the 

assumptions that travelers have perfect knowledge of network conditions and fixed demand. 

The validity of the SUE-ED-based LCI was demonstrated using a large-scale network, with 

results that were reasonable and consistent with full-scan methodologies. 

In summary, this chapter has outlined the base methodology used throughout the thesis, 

provided a thorough analysis of the selected method’s properties, identified the deficiencies 

of the original method, suggested improvements to eliminate these deficiencies, and 
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demonstrated the method’s applicability to large-scale road networks. However, it did not 

account for similarity of routes, which is known to persist in networks. Overlooking the route 

similarity issue may compromize network equilibrium analysis and any subsequent analyses 

because it affects both individuals’ route choice and travel demand. Next chapter addresses 

this issue by advancing link criticality analysis with a network equilibrium model that is 

capable of capturing the effects of route similarities on route choice and travel demand. 
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CHAPTER 4 

Incorporating route similarity and 

demand elasticity into link criticality 

analysis 

The previous chapter integrated travelers' perception error and demand elasticity into link 

criticality analysis using a stochastic user equilibrium model with elastic demand (SUE-ED). 

This chapter further advances link criticality analysis by integrating a cross-nested logit SUE-

ED (CNL-SUE-ED) TA model, which flexibly and plausibly captures the impact of route 

similarity on individual route choices and network flows. 

4.1 Motivation 

Route similarity can affect travelers’ route choices, making correlated routes less 

attractive from a travel cost perspective, altering traffic flow patterns, and consequently 

affecting the criticality of links for the network’s normal operation. Considering route 

similarity is essential to realistically capture travelers’ route choice behavior and avoid 

systematically erroneous link criticality evaluations. This chapter incorporates the effects of 

route similarity into the link criticality assessment framework. It aims to answer the following 

research questions: (i) Does route similarity affect link criticality? and (ii) if so, in what way? 

Specifically, this study advances the link criticality index (LCI) method, which was 

originally proposed by Almotahari and Yazici (2019) and later extended in Chapter 3, for link 

criticality analysis. The LCI method has been chosen for its effectiveness and efficiency. The 

LCI method is effective, as it accounts for congestion effects and common travels’ behavior 
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though the use of TA models. It is also efficient because it eliminates the need for network 

scanning and evaluates the criticality of all links within a single TA procedure. To account 

for route similarity, the CNL model – an advanced route choice model with a theoretically 

sound, flexible structure that considers route similarity – and the corresponding SUE TA 

models with and without ED (Bekhor and Prashker, 1999, Kitthamkesorn et al., 2016, 

Vovsha, 1997), are integrated into the LCI method. The SUE TA problems are formulated as 

mathematical programming (MP) problems and solved using a partial linearization method 

with a self-regulated averaging (SRA) step size (Liu et al., 2009, Ryu et al., 2014, Xu and 

Chen, 2013). To validate the concept, the resulting LCI method is applied to analyze the 

criticality of links in large-scale networks. 

Therefore, the main contribution of this chapter is an advanced link criticality analysis 

method that accounts for route similarity, in addition to topology, redundancy, drivers’ 

perception errors, congestion effects, and the elastic nature of urban travel demand. This 

method promises to provide more behaviorally plausible link criticality evaluations, 

potentially enabling better decision-making for traffic management and infrastructure 

investment. 

The remainder of this chapter is structured as follows. Section 4.2 discusses how route 

similarity may affect link criticality analysis. Section 4.3 elaborates on how the route 

similarity issue has been addressed in this study. Section 4.4 modifies the LCI method to 

account for the route similarity issue. Section 4.5 explains the numerical experiments and 

discusses the results. Finally, Section 4.6 offers concluding remarks. 

4.2 Route similarity and link criticality analysis 

This section discusses the main sources of route similarity and the impact of route 

similarity on travel demand and link criticality. 



 

68 

4.2.1 Sources of route similarity 

The severity of route similarity can be attributed to three factors: (i) the number of shared 

links between routes; (ii) the number of routes sharing the same link; and (iii) the total number 

of routes considered (Bovy, 2009). Figure 4.1 provides an example of route similarity issue 

for a selected origin-destination (O-D) pair of a real-size network. 

 

Figure 4.1 Route similarity issue in the Winnipeg network. 

As depicted in red in Figure 4.1, route alternatives exhibit a complex correlation structure 

due to significant topological overlaps. Certain links are utilized by multiple routes, as 
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indicated by the thick red lines in Figure 4.1. Increase in the route choice set size further 

amplifies route correlation and, therefore, route similarity. This complexity can substantially 

impact the estimated network efficiency measures used in link criticality analysis, potentially 

skewing the results. Therefore, a nuanced approach that accounts for route similarity is 

required for a more realistic link criticality analysis. 

4.2.2 Impact of route similarity on travel demand 

In TA, understanding the relationship between route similarity and travel demand is 

crucial. Higher levels of route similarity may result in lower travel demand, whereas lower 

levels of similarity may boost demand. While adding more routes generally may increase 

travel demand, it may also introduce new challenges. Shared links often become traffic 

bottlenecks, leading to congestion that inhibits further growth in demand. This dynamic is 

illustrated in Figure 4.2. 

As shown in Figure 4.2 (top), a network with a single O-D pair is connected by a link 

with a flow-dependent travel time function 𝑡(𝑥), where 𝑥 represents the link flow, serving a 

travel demand 𝑞1. By introducing an intermediate node 3 that can slide between the origin 

and destination nodes without affecting the overall free-flow travel time (FFTT) 𝑐, route 

similarity can be controlled (Figure 4.2, middle). Then, when node 3 coincides with node 2, 

this single-route scenario can be considered an extreme case of full overlap of two routes, 

making the travel demand 𝑞1 the minimum possible demand. When node 3 coincides with 

node 1, there are two identical non-overlapping routes, leading to the maximum travel demand 

𝑞2. At any other position of node 3, the travel demand 𝑞2
′  is lower than 𝑞2. Next, adding links 

from node 3 to node 2 increases the number of similar routes, which can raise travel demand 

due to the increased capacity of non-shared parts, but the overall demand is constrained by 

the shared link travel time (Figure 4.2, bottom). This example illustrates that increasing route 
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similarity can decrease travel demand, and the growth rate of travel demand due to an 

increasing number of routes may depend on their level of similarity. 

 

Figure 4.2. Impact of route similarity on travel demand. 

4.2.3 Impact of route similarity on link criticality 

Figure 4.3 provides a visual explanation of the link criticality concept in relation to the 

route similarity issue. 

As shown in Figure 4.3, a link is critical if it is essential for serving travel demand which 

also implies connectivity. The highest criticality occurs when no other alternatives exist 

(green box). Increasing the number of alternatives decreases a link’s criticality (left yellow 

box). Splitting a link does not change the criticality of the resulting sub-links (right yellow 

box). Shared links facilitate redundancy and should have higher criticalities than subsequent 

links in a route (blue box). However, shared links can cause route similarity issues, leading 

to overestimated link criticalities due to overestimated route flows. This study incorporates 
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these features into the LCI method - one of the state-of-the-art methods for link criticality 

analysis. 

 

Figure 4.3. Concept of link criticality analysis: Emphasis on route similarity. 

4.3 Addressing route similarity in SUE 

The selected TA models account for travelers’ inaccurate perceptions of travel costs, 

route similarities, and demand elasticity. Considering perception error is important as 

travelers often misjudge the costs associated with different routes. Addressing route similarity 

is necessary because routes that share links can affect travelers’ choices and the overall traffic 

flow distribution in networks. Similarly, modeling demand elasticity is important because, as 

congestion increases, network users may decide to use a different mode of travel, shift the 

time of travel, or forego some trips altogether. This section elaborates on the selected route 

choice models, demand function, equivalent MP formulations, and solution algorithm. 

4.3.1 Probabilistic route choice model 

Probabilistic route choice models are a core of any SUE TA model. These models 

consider travelers’ perception errors in the route choice process by incorporating a random 

component associated with travel cost into the random utility function. Assuming an additive 

error term, mathematically it can be represented as follows: 
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𝐶𝑘
𝑤 = 𝑐𝑘

𝑤 + 𝜀𝑘
𝑤, ∀𝑘 ∈ 𝐾𝑤, ∀𝑤 ∈ 𝒲 (4.1) 

where 𝒲 is set of all O-D pairs, 𝐾𝑤 is a set of routes for O-D pair 𝑤, 𝐶𝑘
𝑤 is perceived travel 

time of route 𝑘 connecting O-D pair 𝑤, 𝑐𝑘
𝑤 is the actual (deterministic) travel time, and 𝜀𝑘

𝑤 is 

an error term associated with route  𝑘 connecting O-D pair 𝑤. This section discusses two 

selected route choice models, namely multinomial logit (MNL) and CNL. A toy network in 

Figure 4.4 is used to illustrate the properties of the selected route choice models. 

 

Figure 4.4. MNL and CNL route choice model structures. 

MNL (Dial, 1971) is a widely used probabilistic route choice model that assumes that 

error terms are independently and identically distributed (IID) Gumbel random variables with 

zero-mean, scaling parameter 𝜃 , and variance 𝑉𝑎𝑟[𝜀𝑘
𝑤] =

𝜋2

6𝜃2
, ∀𝑘 ∈ 𝐾𝑤  . It provides a 

closed-form probability expression, i.e.: 

𝑃𝑘
𝑤 =

𝑒−𝜃𝑐𝑘
𝑤

∑ 𝑒−𝜃𝑐𝑙
𝑤

𝑙∈𝐾𝑤
,  ∀𝑤 ∈ 𝒲,∀𝑘 ∈ 𝐾𝑤 (4.2) 

where the dispersion parameter 𝜃 can be interpreted as drivers’ sensitivity to route costs. 

Higher values of 𝜃 indicate higher sensitivity (drivers tend to select least-cost routes more), 

while lower values – lower sensitivity (Damberg et al., 1996). 

As shown in Figure 4.4, the MNL model has a simple single-level structure for the choice 

probability. It is unable to account for similarities among different route alternatives. To 
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address the limitations of the MNL model, advanced logit-based models were developed. 

Among them, CNL (Bekhor and Prashker, 1999, Vovsha, 1997) is one of the prominent 

advanced logit-based models. CNL combines two Gumbel-distributed error components with 

zero mean, two scaling parameters 𝜃  (governs route-specific error) and 𝜇  (governs nest-

specific error) with 𝜃 ≥ 𝜇 and 𝜇 ∈ [0,1]. The model structure addresses route similarity by 

permitting routes to belong to multiple nests simultaneously, with each nest represented by a 

link. The total variance for the CNL model is 𝑉𝑎𝑟 =
𝜋2

6
(
1

𝜇2
  +

1

𝜃2
). Lower 𝜇  results in higher 

nest variance and stronger correlation within nests, which can be interpreted as travelers 

perceive routes in the same nest as closer substitutes. Lower 𝜇  or 𝜃  increases variance, 

leading to more uniform choice probabilities. It is important to note that the variance of the 

CNL model is greater than that of the MNL model for a given value of θ. As shown in Figure 

4.4, the CNL model uses a two-level hierarchical structure to decompose choice probability 

into marginal (4.3) and conditional probabilities (4.4). Notably, the model structure accounts 

for route similarity by allowing links to be shared among multiple routes. 

𝑃𝑚
𝑤 =

[∑ (𝛼𝑚𝑘
𝑤 𝑒−𝜃𝑐𝑘

𝑤
)
1/𝜇

𝐾𝑤
𝑘=1 ]

𝜇

∑ [∑ (𝛼𝑏𝑘
𝑤 𝑒−𝜃𝑐𝑘

𝑤
)
1/𝜇𝐾𝑏

𝑤

𝑘=1 ]
𝜇

𝑀𝑤

𝑏=1

, ∀𝑤 ∈ 𝒲,∀𝑚 ∈ 𝑀𝑤 
(4.3) 

𝑃𝑘|𝑚
𝑤 =

[𝛼𝑚𝑘
𝑤 𝑒−𝜃𝑐𝑘

𝑤
]
1/𝜇

∑ [𝛼𝑚𝑙
𝑤 𝑒−𝜃𝑐𝑙

𝑤
]
1/𝜇𝐾𝑚

𝑤

𝑙=1

, ∀𝑤 ∈ 𝒲,∀𝑚 ∈ 𝑀𝑤, ∀𝑘 ∈ 𝐾𝑚
𝑤 

(4.4) 

where 𝛼𝑚𝑘
𝑤  is the inclusion coefficient (or degree of membership) of an alternative 𝑘 in link 

nest 𝑚 and 𝜇 is a scaling parameter of the upper choice level. 

Using (4.3) and (4.4), joint link nest and route choice probability of the CNL model can 

be derived as follows: 
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𝑃𝑚𝑘
𝑤 = ∑ 𝑃𝑚

𝑤 ⋅ 𝑃𝑘|𝑚
𝑤

𝑚∈𝑀𝑤

,   ∀𝑤 ∈ 𝒲, ∀𝑘 ∈ 𝐾𝑚
𝑤 (4.5) 

The degrees of membership are represented mathematically as: 

𝛼𝑚𝑘
𝑤 = (

𝐿𝑚
𝐿𝑘
𝑤)

𝛾

𝛿𝑚𝑘
𝑤 , ∀𝑤 ∈ 𝒲,∀𝑚 ∈ 𝑀𝑤 , ∀𝑘 ∈ 𝐾𝑚

𝑤 
(4.6) 

and must satisfy the following normalizing equation for the interpretation and estimation of 

the parameters: 

∑ 𝛼𝑚𝑘
𝑤

𝑚∈𝑀𝑤

= 1,   ∀𝑤 ∈ 𝒲,∀𝑘 ∈ 𝐾𝑚
𝑤 (4.7) 

In particular, the CNL model collapses to the MNL model in two cases: (a) when there is no 

overlap in the network or (b) when the coefficient of nesting, 𝜇, equals 1. 

Illustrative example3 

To show the properties of the MNL and CNL models, the network in Figure 4.5 is 

considered. Link FFTTs are set to 𝑥 = 8  and 𝑏 = 20  where not specified; route choice 

model’s parameters are 𝜃 = 1.0, 𝜇 = 0.05. Route similarity is varied as shown in Figure 4.6. 

The results are summarized in Figure 4.7 and Figure 4.8. 

 
3 It is acknowledged that the loophole network may not display all features of CNL due to its simple block-

diagonal correlation structure (i.e., CNL collapses into a simple nested logit structure). However, it seems to be 

sufficient for demonstrating the differences between the selected models. 
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Figure 4.5. Loophole network: Emphasis on shared link. 

As discussed in Section 4.1, routes with longer shared links are considered more similar 

than those with shorter shared links. Additionally, the number of routes sharing the same link 

affects their attractiveness. Therefore, the models' responses to route similarity are 

investigated from two sources: the length of shared links (Figure 4.6a) and the number of 

similar routes (Figure 4.6b). 

 

Figure 4.6. Studying effects of route similarity on link criticality analysis. 

Figure 4.7 illustrates the impact of route similarity on the selected models. The two 

models responded differently to route similarity. 
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(a) Impact of shared link’s FFTT on route 

choice. 

(b) Impact of number of similar routes on 

route choice. 

Figure 4.7. Impact of route similarity on route choice. 

Specifically, the FFTT of shared links increased the probability of non-overlapping route 

for CNL but did not affect MNL (Figure 4.7a). Additionally, the probability of non-

overlapping route decreased more slowly with an increasing number of overlapping routes 

for CNL compared to MNL (Figure 4.7b). It shows that the CNL model is sensitive to route 

similarity and tends to assign relatively higher probabilities to non-overlapping routes, while 

the MNL model remains unaffected by this factor. 

Next, sensitivity analysis is conducted on the scaling parameter 𝜇 of the CNL model. The 

results are shown in Figure 4.8. 
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Figure 4.8. Sensitivity analysis for CNL. 

As shown in Figure 4.8, with increase of 𝜇 the probability of choosing R1 decreases. 

Theoretically, CNL should collapse to MNL when 𝜇 = 1 , meaning that the difference 

between CNL and MNL disappears. The results in Figure 4.8 are consistent with the theory. 

4.3.2 Travel demand model 

The travel demand is modeled, as detailed in Chapter 3, using an exponential function of 

the expected perceived cost (EPC) for each O-D pair, as represented in equation (3.4). 

4.3.3 Equivalent MP formulation 

The MP formulation allows analysts to relate it to choice probability based on optimality 

conditions. It also facilitates solving the problem using convergent optimization algorithms, 

determining search directions and step sizes, and monitoring convergence. This section 

provides an equivalent MP formulation for the selected route choice models: multinomial 

logit stochastic user equilibrium with elastic demand (MNL-SUE-ED) (Yang and Bell, 1998) 

and cross-nested logit stochastic user equilibrium with elastic demand (CNL-SUE-ED) 

(Kitthamkesorn et al., 2016). The formulations are summarized in Figure 4.9. 
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Figure 4.9. MP formulations for MNL-SUE-ED and CNL-SUE-ED models. 

As shown in Figure 4.9 Yang and Bell (1998) extended Fisk (1980) MP formulation for 

the MNL-SUE model to include ED. The decision variables are route flows and travel demand 

for each O-D pair. The objective function has three components: the Beckmann 

transformation with ED (including a flow-dependent link cost and an inverse demand function 

terms), the route flow-based entropy term by Fisk (1980), and the demand entropy term. The 

ED component, 𝐷−1(⋅), represents the cost of an auxiliary link or an additional route for 

managing elastic demand (Sheffi, 1985). Constraints include flow conservation, non-

negativity, and link-route relation. 

In CNL-SUE-ED (Kitthamkesorn et al., 2016), the route flow decision variables are 

decomposed to explicitly encode the link nests. Unlike MNL-SUE-ED, the new decision 

variables relate to both the link and route. This decomposition requires model reformulation, 

where a route flow entropy term is split into two entropy terms, as shown in Figure 4.9. The 

rest of the formulation is similar to MNL-SUE-ED. 

The uniqueness of the equilibrium solution is guaranteed when the link travel cost 

functions are separable, strictly convex functions of traffic flow, and the demand function is 
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monotonically decreasing in the O-D travel cost, bounded from above, and invertible (Sheffi, 

1985). 

4.3.4 Solution algorithm 

This section elaborates on the solution algorithm for solving SUE TA. The partial 

linearization method with SRA step size was adopted (Ryu et al., 2014, Xu and Chen, 2013). 

The algorithm is summarized in Figure 4.10. 

As shown in Figure 4.10, in each iteration, the algorithm finds a descent search direction 

and determines the corresponding step-size. The search direction is determined by solving a 

partially linearized subproblem defined by the linearization of the integral terms of the 

objective function, which was proven to be a descent and feasible direction (Patriksson, 2015). 

The travel demand is calculated according to the current route cost pattern in the partially 

linearized subproblem, similar to that reported by Xu and Chen (2013). The SRA scheme 

does not need to evaluate the objective function or its derivative (Liu et al., 2009) and has two 

positive parameters, i.e., 𝜆1 > 1 and 𝜆2 < 1, that control the decrease in speed and ensure 

convergence. For a more comprehensive analysis of the properties of this solution method, 

readers may refer to Patriksson (2015) and Liu et al. (2009). The relative gap (RGAP) function 

is used to control the convergence process as shown in Figure 4.10. Once RGAP drops below 

a specified threshold, the algorithm terminates. 
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Figure 4.10. Partial linearization algorithm with the SRA step size. 

4.4 Route similarity in LCI 

The criticality of a link is not only a function of its own characteristics but also of its 

relationship with alternative routes within the network. This section explains the concept of 

link criticality, elaborates on the selected method for link criticality analysis, and provides an 

illustrative example. 

4.4.1 Link criticality index 

Not all TA-based link criticality analysis methods can be used in practice due to their 

computational complexity. This study adopts an efficient method for link criticality analysis 

- LCI proposed by Almotahari and Yazici (2019) and extended to SUE TA in Chapter 3. The 

LCI method is presented in Figure 4.11. 
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Figure 4.11. Explanation of the link criticality index (LCI) method. 

According to Almotahari and Yazici (2019), if a specific link continues to be assigned 

additional flows despite increasing saturation, it indicates that the link is more critical. The 

link criticality score 𝑆𝑚
𝑛  is calculated as the product of a link’s additional flow at iteration 𝑛 +

1 and its marginal cost (MC) (4.8).  

𝑆𝑚
𝑛 = 𝑚𝑎𝑥([𝑥𝑚

𝑛+1 − 𝑥𝑚
𝑛 ], 1.0) ⋅

𝑚𝑐𝑚(𝑥𝑚
𝑛 )

𝑡𝑚(𝑥𝑚
𝑛 )

, ∀𝑚 ∈ 𝑀,∀𝑛 ∈ 𝑁 (4.8) 

where 𝑥𝑚
𝑛  is flow through link 𝑚 at iteration 𝑛, 𝑚𝑐𝑚 is MC on link 𝑚. 

MC serves as an indicator of each link’s saturation, reflecting the increase in travel time 

resulting from an additional unit of flow (4.9). 

𝑚𝑐𝑚(𝑥𝑚
𝑛 ) = 𝑡𝑚(𝑥𝑚

𝑛 ) + 𝑥𝑚
𝑛 𝑡𝑚

′ (𝑥𝑚
𝑛 ), ∀𝑚 ∈ 𝑀 (4.9) 

where 𝑡𝑚 is travel time on link 𝑚, and 𝑡𝑚
′  is the derivative of link travel time with respect to 

its flow. 

Link criticality score is a local measure of criticality and does not explicitly account for 

a link's role in a network. However, since a link can be part of routes for various O-D pairs, 

the criticality score should be weighted by both demand-based and route-based factors to 

incorporate network connectivity information. 
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The demand-based weights (4.10) are introduced to address the fact that the link 

criticality score does not fully reflect link’s criticality in terms of O-D pairs served. A link 

that establishes a connection between O-D pairs with a greater demand tends to have a more 

significant impact on the overall functionality of the system. Additionally, travel demand of 

each O-D pair can vary from iteration to iteration, hence, the total network travel demand due 

to demand elasticity. 

𝛾𝑤,𝑛 =
𝑞𝑤,𝑛

𝑄𝑛
, ∀𝑤 ∈ 𝒲,∀𝑛 ∈ 𝑁 (4.10) 

where 𝑞𝑤,𝑛 denotes travel demand of O-D pair 𝑤 at iteration 𝑛 and 𝑄𝑛 denotes total network 

travel demand at iteration 𝑛. 

The route cost-based weights (4.11) are introduced to address the fact that the link 

criticality score does not fully reflect link’s criticality in terms of route redundancy. The 

existence of multiple alternative routes not crossing this link should reduce its criticality score. 

The impact of travelers’ perception errors and route similarity should be considered. For this 

reason, route cost-based weights are modeled to distinguish alternative routes based on 

perceived travel time. A route with a perceived travel time twice as long as the shortest is 

given different weight than one slightly longer than the shortest. This ensures that for any O-

D pair with multiple routes, the ones perceived to be faster are assigned higher weights. 

In CNL, a route 𝑘 ∈ 𝐾𝑤, 𝑤 ∈ 𝑊 may belong to multiple nests in 𝑀𝑤 (see Figure 4.4 for 

the two-level tree structure). Therefore, a route 𝑘 can be represented by multiple perceived 

route costs 𝐶𝑚𝑘
𝑤 , one for each nest 𝑚 ∈ 𝑀𝑤. It is worth emphasizing that each cost includes 

the actual travel time of route 𝑘. Therefore, it is sufficient to select one cost to represent the 

perceived travel time on route 𝑘. The max operator is applied to select this cost. It can be 

interpreted as choosing the worst-case scenario cost. 
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𝜂𝑘
𝑤,𝑛 =

𝑚𝑎𝑥(1/𝐶𝑚𝑘
𝑤,𝑛, ∀𝑚 ∈ 𝑀𝑤)

∑ 𝑚𝑎𝑥(1/𝐶𝑚𝑖
𝑤,𝑛, ∀𝑚 ∈ 𝑀𝑤)𝑖∈𝐾𝑤

, ∀𝑤 ∈ 𝒲,∀𝑘 ∈ 𝐾𝑤, ∀𝑛 ∈ 𝑁 (4.11) 

where 𝐶𝑚𝑘
𝑤,𝑛 is perceived travel cost on route 𝑘 associated with link nest m for O-D pair 𝑤 at 

iteration 𝑛. The latter can be derived as a partial derivative of the objective function with 

respect to the corresponding link nest-route flow: 

𝐶𝑚𝑘
𝑤,𝑛 = 𝑐𝑘

𝑤,𝑛 +
𝜇

𝜃
[𝑙𝑛 (

𝑓𝑚𝑘
𝑤,𝑛

𝛼𝑚𝑘
𝑤 ) + 1] +

1 − 𝜇

𝜃
[𝑙𝑛 (∑ 𝑓𝑚𝑙

𝑤,𝑛

𝑙∈𝐾𝑚
𝑤

) + 1] (4.12) 

where 𝑐𝑘
𝑤,𝑛

denotes the deterministic travel time on route 𝑘 connecting O-D pair 𝑤 at iteration 

𝑛,  𝑓𝑚𝑘
𝑤,𝑛

 is flow on route 𝑘 associated with link nest 𝑚 for O-D pair 𝑤 at iteration 𝑛, and 𝛼𝑚𝑘
𝑤  

is the corresponding membership value. 

4.4.2 Illustrative example 

This section calculates the LCI method for one iteration, focusing on route cost-based 

weights using the loophole network (Figure 4.5). The route cost-based weights are 

emphasized because they have been modified more than other components of the LCI method. 

The following link travel time function is assumed: 

𝑡𝑚(𝑥𝑚) = 𝑥𝑚 

With parameter values set to 𝜃 = 1.0, 𝜇 = 0.05, 𝑥 = 10, 𝑏 = 20, 𝑓𝑚𝑘
𝑤,𝑛 = 1.0 ∀𝑚, ∀𝑘 , the 

link-route weights are obtained as shown in Table 4.1. 

Table 4.1. Computing route-based weights for LCI. 

Route (m,k) 𝑡𝑚(𝑥𝑚
𝑛 ) 𝑐𝑘

𝑤,𝑛
 𝛼𝑚𝑘

𝑤  𝐶𝑚𝑘
𝑤,𝑛

 𝜂𝑘
𝑤,𝑛

 

R1 (1,1) 1.0 1.0 1.0 2.35 0.46 

R2 
(2,2) 2.0 

3.0 
0.5 4.69 

0.27 
(3,2) 1.0 0.5 4.03 

R3 
(2,3) 2.0 

3.0 
0.5 4.69 

0.27 
(4,3) 1.0 0.5 4.03 

       

The LCI values at iteration n can be found as follows: 

𝐿𝐶𝐼1
𝑛 = 𝑆1

𝑛 ∙ 𝛾𝑤,𝑛 ∙ 𝜂1
𝑤,𝑛 = 𝑆1

𝑛 ∙ 𝛾𝑤,𝑛 ∙ 0.46 

𝐿𝐶𝐼2
𝑛 = 𝑆2

𝑛 ∙ 𝛾𝑤,𝑛 ∙ (𝜂2
𝑤,𝑛 + 𝜂3

𝑤,𝑛) = 𝑆2
𝑛 ∙ 𝛾𝑤,𝑛 ∙ 0.54 
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𝐿𝐶𝐼3
𝑛 = 𝑆3

𝑛 ∙ 𝛾𝑤,𝑛 ∙ 𝜂2
𝑤,𝑛 = 𝑆1

𝑛 ∙ 𝛾𝑤,𝑛 ∙ 0.27 

𝐿𝐶𝐼4
𝑛 = 𝑆4

𝑛 ∙ 𝛾𝑤,𝑛 ∙ 𝜂3
𝑤,𝑛 = 𝑆4

𝑛 ∙ 𝛾𝑤,𝑛 ∙ 0.27 

As observed, although Route 1 had the highest weight, the final weight for Link 2 

surpassed that of Link 1 due to the aggregation of route weights. This demonstrates that LCI 

effectively captured the importance of route cost and redundancy in link criticality 

assessment. The impact of route similarity is emphasized in the next section. 

4.5 Numerical experiments 

Two sets of experiments were conducted. Using a toy network (Figure 4.5), the properties 

of the advanced LCI method were investigated. Using real-size networks (Figure 4.16), the 

applicability of the model to real scenarios were shown. 

Without any loss of generality, the link travel time was modeled by the well-known 

Bureau of Public Roads (BPR) function (3.14). 

The EPC value for TA models was computed according to equation (3.16) for MNL-SUE 

and equation (4.13) for CNL-SUE: 

𝐸𝑃𝐶𝐶𝑁𝐿
𝑤 = −

1

𝜃
𝑙𝑛 [ ∑ ( ∑ (𝛼𝑚𝑘

𝑤 ⋅ 𝑒−𝜃𝑐𝑘
𝑤
)
1
𝜇

𝑘∈𝐾𝑚
𝑤

)

𝜇

𝑚∈𝑀𝑤

] , ∀𝑤 ∈ 𝑊 (4.13) 

Like in Chapter 3, the LCI values are normalized according to (3.17) - (3.18). The 

parameters for SRA step size scheme were set at 𝜆1 = 1.9 and 𝜆2 = 0.1. 

4.5.1 Experiment 1: A toy network 

This section examined the properties of LCI using the toy network in Figure 4.5. The LCI 

methods based on four TA models were analyzed across different levels of route similarity. 

Throughout this section, the following parameter settings were used unless otherwise 

specified. For the link travel time function, link flow capacity 𝑄𝑎 = 10, ∀𝑎 ∈ 𝐴; link FFTT 
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𝑥 = 8, 𝑏 = 20; route choice parameters 𝜃 = 1.0, 𝜇 = 0.05; travel demand for SUE with FD 

𝑞 = 15; demand function maximum demand parameter 𝑞̅ = 2𝑞 and demand function scaling 

parameter 𝜁 =0.05. 

4.5.1.1 Computation of LCI 

This section calculated the MNL-SUE-based LCI and CNL-SUE-based LCI values for a 

fixed level of route similarity. The change in components of LCI was studied at iteration level. 

The results are summarized in Table 4.2 and Figure 4.12. 

As shown in Table 4.2, the method ranked Link 2 as the highest followed by Link 1, Link 

3 and Link 4 for all models. However, the LCI value of Link 2 was almost two times higher 

than that of Link 1 in the case of MNL-SUE framework, while these values were almost equal 

in the case of CNL-SUE. For both frameworks, models with ED slightly reduced the gap 

between the LCI values of Link 1 and Link 2. 

Table 4.2. LCI values with and without considering route similarity. 

Link 

MNL-SUE-based LCI CNL-SUE-based LCI 

Fixed demand Elastic demand Fixed demand Elastic demand 

𝐿𝐶𝐼 𝐿𝐶𝐼̃ Rank 𝐿𝐶𝐼 𝐿𝐶𝐼̃ Rank 𝐿𝐶𝐼 𝐿𝐶𝐼̃ Rank 𝐿𝐶𝐼 𝐿𝐶𝐼̃ Rank 

1 2.82 0.24 2 2.73 0.19 2 1.95 0.27 2 2.06 0.25 2 

2 5.47 0.46 1 6.14 0.43 1 2.11 0.3 1 2.25 0.27 1 

3 1.78 0.15 3 2.69 0.19 3 1.53 0.22 3 2.02 0.24 3 
4 1.78 0.15 3 2.69 0.19 3 1.53 0.22 3 2.02 0.24 3 

             

In Figure 4.12, the components of the CNL-SUE-based LCI methods are elaborated on 

to demonstrate how consideration of route similarity issue formed the LCI values. 

As shown in Figure 4.12, the components of the LCI method fluctuated most during the 

initial iterations, then gradually converged to specific values. The highest impact on LCI came 

from fluctuations in link flow and marginal cost. Generally, incorporating ED reduced the 

fluctuation of component values. These results were consistent with the findings reported in 

previous studies (Almotahari and Yazici, 2019) and Chapter 3. 
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(a) Link flow fluctuations: CNL-SUE. (b) Link flow fluctuations: CNL-SUE-ED. 

  

(c) Norm. marginal cost: CNL-SUE. (d) Norm. marginal cost: CNL-SUE-ED. 

  

(e) Route-based weight: CNL-SUE. (f) Route-based weight: CNL-SUE-ED. 

  

(h) CNL-SUE-based LCI. (j) CNL-SUE-ED-based LCI. 

Figure 4.12. Intermediate values of components for two CNL-SUE-based LCI methods. 

 



 

87 

Following the logic in Figure 4.3, higher criticality rankings were expected for Link 1 

and Link 2 than for Link 3 and Link 4. Given identical FFTT for all routes, lower rank for 

Link 1 than for Link 2 was also expected. As previously stated, not accounting for route 

similarity led to overestimating the criticality of shared links. To correct this, it was important 

to explicitly address the issue of route similarity. 

4.5.1.2 Impact of route similarity on LCI 

This section examined the effect of route similarity on LCI by (i) changing the length of 

a shared link, (ii) changing the number of overlapping routes, and (iii) changing the length of 

non-overlapping routes. The results are summarized in Figure 4.13 to Figure 4.15. 

Changing route similarity via shared link 

In this section, the degree of route similarity in the loophole network was adjusted by 

changing the shared link’s FFTT, as shown in Figure 4.6a. It is important to note that the 

network was designed so that all routes had equal FFTTs. Since L3 and L4 are identical, L3 

was used to represent both links. 

Figure 4.13 summarizes the LCI values based on the MNL-SUE and CNL-SUE models 

in response to these changes. 

As shown in Figure 4.13, the LCI value for L2 strongly dominated over those of L1 and 

L3 in the MNL-SUE framework. At low FFTT values for L2, L1 and L3 had nearly identical 

LCI values. However, as the FFTT of L2 increased, the LCI value of L1 surpassed that of L3. 

The gap between the LCI values of L1 and L3 stopped growing after a certain FFTT value. 

Considering demand elasticity reduced the difference between the LCI values of L1 and L3, 

making L1 slightly more critical than L3 at higher FFTT values of L2. 
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(a) MNL-SUE-based LCI (b) CNL-SUE-based LCI 

  

(c) MNL-SUE-ED-based LCI (d) CNL-SUE-ED-based LCI 

Figure 4.13. Impact of FFTT of shared link on four LCI methods. 

This pattern persisted in the CNL-SUE-based LCI, with the exception that the gap 

between L1 and L2 narrowed substantially. The LCI values of L1 and L2 were almost 

identical compared to the values of MNL-SUE-based LCI. Additionally, the difference 

between the LCI values of L1 and L3 was negligible in the ED case. These results indicate 

that not accounting for route similarity indeed overestimates the criticality of shared links. 

Changing route similarity via number of similar routes 

This section adjusted the route similarity in the loophole network by varying the number 

of overlapping routes, as shown in Figure 4.6b. All routes were designed to have equal FFTTs. 

Since L3 and L4 were identical, L3 was used to represent both links. Figure 4.14 summarizes 

the LCI values based on the MNL-SUE and CNL-SUE frameworks for these changes. 



 

89 

  

(a) MNL-SUE-based LCI (b) CNL-SUE-based LCI 

  

(c) MNL-SUE-ED-based LCI (d) CNL-SUE-ED-based LCI 

Figure 4.14. Impact of choice set size on four LCI methods. 

As shown in Figure 4.14, the LCI values for L2 exhibited different trends with the 

increasing number of overlapping routes, depending on the SUE framework used. The LCI 

values increased under the MNL-SUE framework but decreased under the CNL-SUE 

framework. For L1 and L3, the LCI values decreased in both frameworks. These results 

indicate that the criticality of shared links might be overestimated if route similarity is not 

considered. 

Changing attractiveness of similar routes via FFTT of non-overlapping route 

This section investigated the impact of the length of non-overlapping routes on LCI using 

the loophole network (Figure 4.5). The assumption that all routes have equal FFTTs was 
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relaxed by varying the FFTT of the non-overlapping route. Figure 4.15 summarizes the LCI 

values based on the MNL-SUE and CNL-SUE frameworks for these changes. 

  

(a) MNL-SUE-based LCI (b) CNL-SUE-based LCI 

  

(c) MNL-SUE-ED-based LCI (d) CNL-SUE-ED-based LCI 

Figure 4.15. Impact of FFTT of non-overlapping route on four LCI methods. 

As shown in Figure 4.15, increasing the FFTT of R1 (i.e., L1) decreased its attractiveness. 

At low FFTT values, L1 was ranked higher than L2, but as FFTT increased, its LCI values 

decreased, causing the ranks of L1 and L2 to swap. Interestingly, this swap occurred at 

different FFTT values in different frameworks. In the MNL-SUE framework, the swap 

happened much earlier than in the CNL-SUE framework. Since the length of route alternatives 

can vary in real networks, this highlights the importance of considering route similarity for a 

more realistic assessment of link criticality. 
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4.5.2 Experiment 2: Large-scale networks 

In this section, the applicability of the advanced LCI methods to real-size scenario was 

illustrated. First, parameter settings were discussed. Next, the computational complexity of 

the method was analyzed. Finally, the method was applied to assess the criticality of bridges 

in the Winnipeg network. 

Two benchmark real-size networks were considered: Winnipeg and Chicago Sketch4. 

Quantitative characteristics of these networks are provided in Figure 4.16. To ensure a fair 

comparison, fixed working route sets were used. The Winnipeg network’s route set was 

generated by Bekhor et al. (2008), while the Chicago Sketch network’s route set was created 

using a combination of the link elimination method (Azevedo et al., 1993) and the penalty 

method (De la Barra et al., 1993), which imposed a 5% travel time increase on the shortest 

route links. 

 

Figure 4.16. Two large-scale test networks and their characteristics. 

4.5.2.1 Setting model parameters for real-size networks 

This section sets plausible parameter values for route choice and travel demand models. 

 
4 The Winnipeg and Chicago Sketch networks were downloaded from 

 https://github.com/bstabler/TransportationNetworks 

https://github.com/bstabler/TransportationNetworks
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4.5.2.1.1 Parameter settings for route choice models 

This section provides sensitivity analyses on the parameters of the selected route choice 

models. The parameters for the MNL route choice model has been discussed in Section 

3.4.3.1.1. To set two parameters for the CNL model, the parameter 𝜃 (route level parameter) 

was set using the procedure described in Section 3.4.3.1.1, assuming 𝜇 (nest level parameter) 

is given. Subsequently, sensitivity analysis is conducted on 𝜇. Figure 4.17 summarizes the 

effect of route choice model parameters on the total coefficient of variation for the Winnipeg 

and Chicago Sketch networks. The parameters of the selected route choice models were set 

such that the mean coefficient of variation 𝐶𝑉̅̅ ̅̅  remained within the range of 10% to 20%. 

 

Figure 4.17. Effect of route choice model parameters on the total coefficient of variation for 

the Winnipeg and Chicago Sketch networks. 

4.5.2.1.2 Parameter settings for demand function 

The demand function parameters were set in the same way as in Section 3.4.3.1.2. In 

summary, the parameter settings for the Winnipeg and Chicago Sketch networks are 

summarized in Table 4.3. 
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Table 4.3. Parameter settings for the Winnipeg and Chicago Sketch networks. 

Model Parameter Winnipeg Chicago Sketch 

MNL 𝜃 1.0 1.0 

CNL 
𝜃 1.5 1.5 

𝜇 0.6 0.9 

Demand function 

(where 𝑤 ∈ 𝑊) 

𝜁 0.1 0.1 

𝑞̅𝑤 2.5 ⋅ 𝑞𝑤 2.0 ⋅ 𝑞𝑤 

    

4.5.2.2 Computational complexity analysis 

This section investigated computational complexity of MNL-SUE-based LCI and CNL-

SUE-based LCI methods. The results are summarized in Figure 4.18 and Table 4.4. 

To analyze the impact of network size on the computational time, we used two networks 

with different sizes: the Winnipeg network representing a relatively medium-scale network 

and the Chicago Sketch representing a large-scale network (Figure 4.16). The solution 

algorithm was implemented in Python 3.7.12. The numerical experiments were conducted on 

a Microsoft Windows 11 operating system with Intel(R) Core (TM) i7-9700 CPU @ 3.00GHz 

with 24 GB of RAM. The model parameters were set according to Table 4.3. 

Figure 4.18 shows the convergence curves of the solution algorithm for MNL-SUE and 

CNL-SUE with both fixed and elastic demand. The LCI calculation took approximately three 

seconds per iteration for all models on the Winnipeg network and 11 seconds on the Chicago 

Sketch network. Figure 4.18 demonstrates that the solution algorithm converged in a 

reasonable time for all four models, highlighting the practical applicability of the LCI method 

when considering route similarity in real-size networks. With the increase of network size, 

the computational time increased in general. The algorithm converged substantially faster 

(more than 10 times) for the MNL-SUE models than for the CNL-SUE models, which ase 

anticipated due to the CNL-SUE models having about five times more decision variables than 

the MNL-SUE models. 
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(a) The Winnipeg network. (b) The Chicago Sketch network. 

Figure 4.18. Computational time for assessing criticality of all links in the Winnipeg and 

Chicago Sketch networks. 

Table 4.4 elaborates on computational complexity. Specifically, the two SUE-ED models 

demonstrated a lower total computational time than two SUE-FD in the Winnipeg network, 

likely due to a high fixed demand level necessitating more iterations for convergence despite 

its lower computational time per iteration. This is consistent with observations in the paired 

combinatorial weibit (PCW) SUE model with FD and ED by Li et al. (2024). Conversely, in 

the Chicago Sketch network, the FD model was computationally faster. This might be due to 

the ED model’s higher number of O-D pairs, which could have increased the computational 

time needed to handle the additional variables. These contrasting outcomes underscore how 

computational efficiency may depend on network-specific demand level and problem 

dimensionality. 

Table 4.4. Computational characteristics of four SUE models for two real-sized networks. 

LCI’s model 

Winnipeg Chicago Sketch 

Var. No. 
Iter. 
no. 

Alg. iter. 
time (sec) 

Total time  
(min) 

Var. No. 
Iter.  
no. 

Alg. iter. time 
(sec) 

Total time  
(min) 

MNL-SUE 174,491 122 5 10 836,346 114 13 25 

MNL-SUE-ED 178,836 72 5 6 929,481 132 15 33 
CNL-SUE 1,698,179 126 75 158 5,727,641 167 172 479 

CNL-SUE-ED 1,702,524 103 81 139 5,820,776 172 220 629 
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4.5.2.3 Ranking bridge criticality for Winnipeg network 

In this section, the criticality of bridges in the Winnipeg network was assessed. Two 

rivers separate the network into three areas: Northwest (NW), East (E), and Southwest (SW). 

These areas are connected by bridges. Fifteen bridges were considered as shown in Figure 

4.19. The results are summarized in Table 4.5 and Figure 4.20. For the sake of completeness, 

the LCI values for all bridges are provided in Table 4.6 and Table 4.7. 

 

Figure 4.19. The Winnipeg network and selected bridges. 

A key challenge in link criticality analysis for transport networks is the absence of 

ground-truth benchmarks, necessitating comparative analysis across metrics to evaluate 

ranking consistency. It is important to show that our approach yields rankings that differ 

meaningfully from conventional metrics in key respects while remaining broadly consistent 

with established criticality trends. Such comparisons are vital for demonstrating the 

robustness and reliability of proposed methods. Table 4.5 provides top 5 critical bridges 

according to four LCI methods. All methods consistently prioritize B12 (Osborne Bridge), 

B3 (Disraeli Bridge), and B11 (Midtown Bridge)—critical connectors to the central business 
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district (CBD) – underscoring their functional indispensability. Methodological distinctions 

emerge between MNL and CNL frameworks: CNL-SUE-FD-based LCI method incorporates 

B10 (Old Forts Bridge) into its rankings, a bridge absent in MNL-SUE-FD-based LCI 

method, attributable to the explicit incorporation of route similarity considerations within the 

CNL model. Similarly, contrasts between FD and ED models are evident: B5 (Provencher 

Bridge), ranked 4th under FD assumptions, is replaced by B6 (Norwood Bridge) in ED-based 

LCI methods, reflecting demand elasticicty’s role in redistributing travel patterns under 

congestion-induced cost fluctuations. These variations highlight how nuanced modeling 

assumptions – route similarity in CNL and demand elasticity in ED – refine criticality 

assessments, offering complementary perspectives on network vulnerability. The findings 

underscore the necessity of integrating both factors for robust criticality analysis while 

affirming consensus on primary critical infrastructure. See Table 4.6 and Table 4.7 for the 

complete LCI values of all bridges for four LCI methods. 

Table 4.5. Top 5 critical bridges according to LCI method. 

Rank MNL-SUE-FD 
CNL-SUE-FD 

(𝜇 = 0.6) 
MNL-SUE-ED 

CNL-SUE-ED 

(𝜇 = 0.6) 

1 B12 B11 B12 B12 

2 B3 B12 B3 B11 
3 B11 B3 B11 B3 

4 B5 B5 B6 B6 

5 B14 B10 B10 B10 

     

The influence of route similarity and demand elasticity on bridge criticality is 

demonstrated through a sensitivity analysis of parameter 𝜇. This analysis compares MNL- 

and CNL-SUE-based LCI methods. The correlation strength was quantified using Pearson’s 

formula (4.14). 

𝑟𝑋,𝑌
𝑃𝑒𝑎𝑟𝑠𝑜𝑛 =

𝐶𝑜𝑣(𝑋, 𝑌)

𝑉𝑎𝑟(𝑋)𝑉𝑎𝑟(𝑌)
 (4.14) 

where 𝑋 and 𝑌 are LCI data sets. Correlation strength was categorized as: 0–0.19: Very weak; 

0.2–0.39: Weak; 0.4–0.59: Moderate; 0.6–0.79: Strong; and 0.8–1: Very strong. The 

criticality values for each bridge, considering both directions, were aggregated into a single 
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measure. Correlations were then computed using absolute normalized LCI values. Results are 

shown in Figure 4.20. 

  
(a) Criticality correlation for SUE-FD-

based LCI methods. 

(b) Criticality correlation for SUE-ED-

based LCI methods. 

Figure 4.20. Correlation of bridge LCI values and ranks. 

All four methods exhibited strong correlations, yet notable trends emerged. As shown in 

Figure 4.20, the correlation between MNL-SUE-FD and CNL-SUE-FD-based LCIs increased 

with 𝜇, reaching its lowest value at 𝜇 = 0.3 and peaking at 𝜇 = 0.9. This aligns with the 

theoretical behavior of CNL-SUE: at low 𝜇  (e.g., 𝜇 = 0.3 ), route similarity strongly 

influences rankings, whereas at high 𝜇 (e.g., 𝜇 = 0.9), CNL-SUE converges toward MNL-

SUE as route similarity effects diminish. A parallel trend occurred for ED models (Figure 

4.20), though correlations were considerably higher. The ED model extension nearly 

eliminated distinctions between methods, likely due to demand reduction under congestion 

dampening network impacts—a pattern also observed in Section 4.5.1. These findings 

highlight how integrating route similarity and demand elasticity can refine criticality 

assessments. 
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Table 4.6. Bridge LCI based on two SUE models with FD for the Winnipeg network. 

Bridge name Bridge ID Dir. MNL-SUE-FD 
CNL-SUE-FD 

(𝜇 = 0.3) 

CNL-SUE-FD 

(𝜇 = 0.6) 

CNL-SUE-FD 

(𝜇 = 0.9) 

North Perimeter B1 
EB  6.9E-05 9.5E-05 9.2E-05 9.0E-05 

WB  1.9E-03 9.9E-04 1.1E-03 1.2E-03 

Redwood B2 
EB 8.8E-05 2.0E-04 1.9E-04 1.8E-04 

WB  4.4E-04 4.2E-04 4.2E-04 4.3E-04 

Disraeli B3 
EB  9.0E-05 1.7E-04 1.5E-04 1.4E-04 
WB  6.9E-03 4.2E-03 4.4E-03 4.7E-03 

Louise B4 
EB 1.8E-04 2.2E-04 2.1E-04 2.0E-04 
WB  3.0E-03 1.3E-03 1.3E-03 1.4E-03 

Provencher B5 
EB  1.3E-04 1.4E-04 1.4E-04 1.3E-04 

WB  4.9E-03 3.5E-03 3.6E-03 3.7E-03 

Norwood B6  
EB  2.1E-04 2.4E-04 2.4E-04 2.4E-04 

WB  1.1E-03 2.6E-03 2.4E-03 1.9E-03 

St. Vital B7  
WB  1.5E-03 7.3E-04 8.2E-04 9.1E-04 
EB  3.5E-04 3.2E-04 3.1E-04 3.2E-04 

Fort Garry B8 
EB  7.5E-05 8.1E-05 7.2E-05 6.5E-05 
WB  1.5E-03 1.0E-03 1.0E-03 1.1E-03 

South Perimeter B9  
EB  5.0E-05 9.8E-05 8.8E-05 8.1E-05 

WB  1.1E-04 1.0E-04 1.0E-04 1.0E-04 

Old Forts B10  
NB  1.0E-03 3.1E-03 2.8E-03 2.4E-03 

SB  4.8E-04 4.2E-04 4.4E-04 4.6E-04 

Midtown B11  
NB  5.2E-03 5.1E-03 4.9E-03 4.8E-03 
SB  2.5E-04 1.1E-04 1.3E-04 1.7E-04 

Osborne B12  
NB  7.0E-03 4.0E-03 4.3E-03 4.9E-03 
SB  3.9E-04 3.9E-04 3.6E-04 3.5E-04 

Maryland Twin B13 
NB  2.3E-03 2.1E-03 2.2E-03 2.3E-03 

SB  2.4E-04 3.1E-04 3.0E-04 2.9E-04 

St. James B14 
NB  3.1E-03 1.9E-03 1.9E-03 1.9E-03 

SB  1.2E-03 5.8E-04 5.8E-04 6.4E-04 

West Perimeter B15 
NB  9.8E-05 9.3E-05 8.4E-05 7.7E-05 
SB  7.0E-04 3.6E-04 4.1E-04 4.7E-04 

       

Table 4.7. Bridge LCI based on two SUE models with ED for the Winnipeg network. 

Bridge name Bridge ID Direction MNL-SUE-ED 
CNL-SUE-ED 

(𝜇 = 0.3) 

CNL-SUE-ED 

(𝜇 = 0.6) 

CNL-SUE-ED 

(𝜇 = 0.9) 

North Perimeter B1 
EB  3.0E-05 3.1E-05 6.8E-05 4.2E-05 

WB  4.7E-04 2.8E-04 1.1E-03 3.6E-04 

Redwood B2 
EB 8.2E-05 7.3E-05 2.1E-04 9.8E-05 
WB  2.5E-04 1.1E-04 7.8E-04 1.7E-04 

Disraeli B3 
EB  4.0E-05 5.5E-05 1.7E-04 7.0E-05 

WB  9.5E-03 6.7E-03 5.2E-03 6.9E-03 

Louise B4 
EB 4.8E-05 6.1E-05 1.8E-04 6.9E-05 

WB  2.5E-03 1.7E-03 1.4E-03 1.7E-03 

Provencher B5 
EB  9.7E-05 6.6E-05 1.5E-04 8.8E-05 
WB  2.1E-03 2.0E-03 5.6E-03 1.9E-03 

Norwood B6  
EB  3.2E-04 2.7E-04 2.2E-04 3.2E-04 

WB  4.8E-03 2.3E-03 4.0E-03 3.1E-03 

St. Vital B7  
WB  4.1E-03 2.0E-03 5.9E-04 2.7E-03 

EB  2.1E-04 1.1E-04 3.4E-04 1.7E-04 

Fort Garry B8 
EB  4.2E-05 4.2E-05 7.4E-05 5.8E-05 

WB  3.7E-04 3.8E-04 9.0E-04 4.5E-04 

South Perimeter B9  
EB  2.3E-05 5.0E-05 8.0E-05 6.7E-05 

WB  3.7E-05 4.1E-05 8.2E-05 5.7E-05 

Old Forts B10  
NB  4.3E-03 2.1E-03 4.4E-03 3.0E-03 
SB  3.7E-04 4.6E-04 3.4E-04 4.5E-04 

Midtown B11  
NB  7.1E-03 5.7E-03 2.1E-03 7.2E-03 

SB  2.1E-04 2.6E-04 1.9E-04 2.4E-04 

Osborne B12  
NB  2.6E-02 1.1E-02 6.0E-03 1.5E-02 

SB  2.2E-04 2.0E-04 4.3E-04 1.9E-04 

Maryland Twin B13 
NB  1.7E-03 1.1E-03 2.8E-03 1.5E-03 
SB  1.2E-04 1.0E-04 2.9E-04 1.5E-04 

St. James B14 
NB  2.6E-03 8.5E-04 4.8E-03 1.3E-03 
SB  1.3E-04 6.5E-05 3.0E-04 1.1E-04 

West Perimeter B15 
NB  3.5E-05 3.1E-05 1.0E-04 4.1E-05 

SB  8.5E-05 6.8E-05 6.6E-04 9.3E-05 
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4.6 Chapter summary 

This chapter investigated the impact of route similarity on link criticality analysis. It used 

LCI as a method for the analysis and advanced it by employing a CNL route choice model 

and a SUE TA model with ED that could account for route similarities. Sensitivity analysis 

was conducted using a toy network to explore the method’s properties, while real-size 

networks were used to examine computational complexity. The method showed reasonable 

computational time for large-scale networks, highlighting its potential as a policy tool for 

informed decision-making. To validate the concept, the advanced LCI method was applied to 

assess the criticality of links in the Winnipeg network. The results indicate that ignoring route 

similarity leads to overestimating the criticality of shared links and that incorporating route 

similarity into LCI may substantially alter the criticality ranking of links assigning shared 

links lower criticalities. 

This chapter concludes Part I of the thesis. Part II focuses on developing a methodology 

for link criticality analysis that highlights bridges as critical elements of transportation 

infrastructure, recognizing their greater impact on route choices compared to ordinary road 

segments. 
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PART II 

Advancing link criticality analysis: 

Bridge-centric transport networks 

Part I advanced link criticality analysis using network models that did not distinguish 

bridges from ordinary road segments. This oversight neglects the essential role bridges may 

play in bridge-centric transport networks. Bridge-centric transport networks are road 

networks divided by obstacles such as rivers and valleys, with the divided parts of the 

networks connected by bridges. The mathematical models for these networks distinguish 

bridges from ordinary road segments. Part II develops a bridge-centric network equilibrium 

framework, including a new joint bridge-route choice model, a network equilibrium traffic 

assignment (TA) model, and a customized route-based solution algorithm. It also integrates 

this framework into a selected link criticality method and applies it to bridge criticality 

analysis in a large-scale bridge-centric transport network.  
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CHAPTER 5 

Bridges matter: Modeling joint bridge and 

route choice equilibrium with bridge-

centric choice set generation 

This chapter develops a bridge-centric network equilibrium framework, including a new 

joint bridge-route choice model, a network equilibrium traffic assignment (TA) model, and a 

customized route-based solution algorithm, which consists of a bridge-centric choice set 

generation method and a route equilibration method. 

5.1 Motivation 

The fundamental aim of network equilibrium TA is to obtain traffic flow patterns given 

the origin-destination (O-D) matrix, network topology, travelers’ route choice behavioral 

assumptions, and flow-dependent travel cost functions (Sheffi, 1985). Network equilibrium 

TA models typically address all links as homogeneous network components. However, when 

considering networks divided by natural obstacles and connected by bridges, the route choice 

behavior can change greatly (Alizadeh et al., 2018, Lee et al., 2017, Manley et al., 2015). 

Bridges act as traffic bottlenecks that can disproportionately affect travel costs (Alizadeh et 

al., 2018, Bucsky and Juhász, 2022, Capacci et al., 2022). Given these considerations, it 

appears reasonable to suggest that bridges, constituting a substantial portion of a route’s travel 

cost and greatly influencing the set of selectable routes, should be viewed as unique network 

components that influence route choice more than ordinary links. This leads us to the 

following research questions: What is the impact of bridges on travelers’ behavior? 
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Specifically, how do bridges affect route choice in congested bridge networks? Can these 

impacts be adequately captured in existing network equilibrium models? 

The real-world evidence supporting the hypothesis that bridge choice is distinct from 

route choice is provided in Manley et al. (2015), Habib et al. (2013), and Alizadeh et al. (2018). 

Manley et al. (2015) observed that taxi drivers’ route choices in London were influenced by 

anchor points, including bridges. Habib et al. (2013) and Alizadeh et al. (2018) reported that 

hierarchical bridge-route choice models could better represent the route choice behavior in 

Montreal, Canada. Although the existing empirical results have shown several behavioral 

issues need to (or can) be incorporated to enhance the modeling of bridge and route choice, 

these issues are based on discrete choice modeling and cannot endogenously consider the 

congestion effect, which is a critical factor for modeling traffic bottlenecks like bridges. 

Bridge-centric transport networks are common in practice. Figure 5.1 provides a well-

known real-world network – the Winnipeg network5. This network has been used for testing 

different equilibrium TA models (Bekhor et al., 2008) and methods for bridge importance 

assessment (Jansuwan and Chen, 2015). As shown in Figure 5.1, two rivers separate the 

network into three regions: Northwest (NW), East (E), and Southwest (SW). These regions 

are connected via 15 bi-directional bridges. The network contains 4345 O-D pairs, among 

which about 60% of O-D pairs are mixed-region (i.e., origin and destination zones belong to 

different regions). Using bridges is unavoidable for these O-D pairs. Additionally, regions are 

connected by multiple bridges. For example, the NW region is connected to the SW region 

by six bridges, while NW and E by five bridges. In general, there are a finite number of 

feasible bridge combinations. However, not all combinations are perceived as equally 

available in terms of travel cost and distance. On the one hand, since bridges often tend to 

 
5 INRO, 1999. Emme/2 User’s Manual: Release 9.2, Montreal. 
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become traffic bottlenecks and sources of recurrent congestion, travelers try to avoid using 

them to reduce travel costs. If unavoidable, they attempt to select routes with fewer bridges. 

On the other hand, to bypass congestion, travelers sometimes opt to take a detour to a bridge 

that is not too far away. Therefore, it is reasonable to suggest that travelers may separately 

make the bridge selection in addition to the choice behavior modeled in the traditional route 

selection problem. 

 

Figure 5.1. Bridge choice alternatives for the Winnipeg network. 

To reproduce traffic flow patterns in networks such as the Winnipeg network, it may be 

necessary to develop a comprehensive equilibrium TA model, and a choice set generation 

technique consistent with the bridge-centric paradigm.  A ‘bridge-centric’ paradigm refers to 

a methodology that places bridges as the central element in route choice modeling and choice 

set generation in the networks where bridges are a significant factor. It can be particularly 
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useful in regions with many waterways or valleys, where bridges are a critical part of the 

transport infrastructure. 

Addressing the joint bridge-route choice problem presents a formidable challenge due to 

the intricate interdependencies between bridges and routes. The decision-making process is 

not linear; it requires simultaneous consideration of both elements. Distinguishing between 

available and unavailable bridges is a complex task, as the viability of a bridge can be 

contingent upon the costs associated with the routes leading to it. Furthermore, the choice of 

a route is inherently dependent on the set of bridges perceived to be available, creating a 

conditional relationship that complicates the planning process. The complexity is further 

compounded when multiple bridges are involved in routes, leading to a combinatorial 

explosion in the number of potential bridge choice sets that must be evaluated. Therefore, this 

problem is especially challenging, and it requires sophisticated analytical tools. This study 

aims to address these challenges. 

The objectives and contributions of this chapter can be summarized as follows: 

• To develop a hierarchical model for a joint bridge-route choice problem and an 

equilibrium TA model. Without loss of generality, bridge and route choices are modeled 

in a nested structure. The availability perception concept (Cascetta and Papola, 2001) is 

customized to address bridge choice behavior and bridge choice set formation problems. 

Additionally, the stochastic user equilibrium (SUE) TA model, which is consistent with 

the joint bridge-route choice model, was developed while considering congestion effects. 

It was formulated as an equivalent mathematical programming (MP) problem, which 

guaranteed the existence and uniqueness of solutions. 

• To propose bridge-centric bridge-route choice set generation. A bridge-centric choice 

set generation strategy that leveraged the inherent properties of both bridges and routes 

is proposed. Initially, bridge choice alternatives are enumerated and then truncated based 
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on the perceived availability criterion for each bridge choice alternative. Subsequently, 

a route choice set is generated conditioned on the bridge choice set, applying a multi-

stage column generation algorithm iteratively. 

• To demonstrate model’s properties and its applicability to a real-world setting. The 

properties of the developed and existing models using both toy and large-scale networks 

are compared. It is shown that the method can converge in a reasonable time in a large-

scale network scenario. 

While prior research acknowledges bridges as critical infrastructure or contextual factors 

in route choice, our study advances policy relevance by quantifying how travelers perceive 

bridges as cognitive landmarks—hierarchically shaping their route decisions—and how these 

perceptions propagate into network-wide traffic patterns under equilibrium. Unlike past 

studies that focus just on how bridges influence individual route choices, our model connects 

traveler behavior — like avoiding bridges or choosing routes based on them — to traffic 

patterns across the entire network with congestion consideration. This can potentially allow 

policymakers to predict how actions targeting bridges (e.g., tolls, closures, upgrades) shift 

congestion throughout the system. 

The remainder of this chapter is organized as follows. Section 5.2 introduces the concept 

of bridge availability perception, bridge-route choice model, equivalent MP formulation, and 

solution algorithm. Sections 5.3 and 5.4 present the numerical results and concluding remarks, 

respectively. 

5.2 Modeling joint bridge-route choice equilibrium with 

bridge-centric choice set generation 

An obstacle such as a river breaks a space into two parts. These parts are connected by 

bridges. From the behavior point of view, travelers may try to avoid bridges because they are 
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traffic bottlenecks and often become a source of recurrent congestion. For some O-D pairs, 

using bridges is unavoidable; for others, using bridges is optional. In the latter case, travelers 

opt for using bridges if they offer better in terms of distance choice alternatives than other 

alternatives. Therefore, travelers may prefer not only shortest routes, but also routes without 

bridges or routes with the least number of bridges. 

Adoptation of the implicit availability perception logit (IAPL) model (Cascetta and 

Papola, 2001) to bridge choice problem is explained in Section 5.2.1. A joint bridge-route 

choice model is introduced in Section 5.2.2. Section 5.2.3 develops an equilibrium TA model, 

formulated as an equivalent MP problem. 

For a better presentation, the notation used in this study is summarized in Table 5.1. 

Table 5.1. Notation. 

Sets 

A Set of all links. 

𝐶𝐴  Set of common links, where 𝐶𝐴 ⊂ 𝐴. 

𝐵𝐴  Set of bridge links, where 𝐵𝐴 = 𝐴\𝐶𝐴 . 
𝒲  Set of all O-D pairs 

𝐶𝒲  Set of common O-D pairs that do not need bridges, where 𝐶𝒲 ⊂ 𝐴. 

𝐵𝒲  Set of O-D pairs that need bridges, where 𝐵𝒲 = 𝒲\𝐶𝒲. 

𝐵  Set of bridge choice alternatives, where each alternative may include multiple bridges. 

𝐵𝑤  Subset of bridge choice alternatives for O-D pair 𝑤. 

𝐾𝑤  Set of routes between O-D pair w. 

𝐾𝑏
𝑤 Set of routes between O-D pair w that passes through bridge choice alternative b. 

Inputs and parameters 

𝑥𝑎  Traffic flow on link 𝑎. 

𝑐𝑡𝑎 Travel time on a common link a. 

𝑏𝑡𝑎  Travel time on a bridge link a. 

𝛿𝑎,𝑘
𝑤   Link-route incidence parameter indicating whether link a is on route k between O-D pair 𝑤. 

𝑐𝑘
𝑤  Generalized travel time of route 𝑘 between O-D pair 𝑤. 

𝐶𝑘
𝑤  Travel disutility of route k between O-D pair w. 

𝜃  Scaling parameter at the route choice level. 

𝜂  Scaling parameter at the bridge choice level. 

𝜇̅𝑏  Expected value of availability perception of bridge nest 𝑏. 

𝑃𝑏
𝑤  Probability of choosing bridge nest b between O-D pair 𝑤. 

𝑃𝑘|𝑏
𝑤   Conditional probability of choosing route k between O-D pair 𝑤 given bridge nest b. 

𝑃𝑘
𝑤  Probability of choosing route k using bridge nest b between O-D pair 𝑤. 

𝑞𝑤  Travel demand between O-D pair 𝑤. 

Decision variables 

𝑓𝑘
𝑤  Traffic flow on route k between O-D pair 𝑤. 

𝑞𝑏
𝑤  Traffic flow through bridge nest b between O-D pair 𝑤. 
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5.2.1 Modeling bridge choice alternatives 

This section introduces the concept of bridge choice alternative and models their 

perceived availability for travelers. For convenience, we exclude the superscript notation 

indicating the O-D pair. 

5.2.1.1 Bridge choice alternatives and their viability 

This section introduces the concept of bridge choice alternatives. First, three real-world 

example networks, where joint bridge-route choice issues may be observed, are discussed to 

set the context and motivate the modeling decisions. Second, an explicit definition of bridge 

choice alternatives is provided. 

Figure 5.2 depicts a map of Wuhan, China. The city is spanned by the Yangtze River and 

connected by over a dozen bridges. For some O-D pairs, using these bridges is unavoidable. 

To be connected, the routes of these O-D pairs must cross at least one bridge. This divides the 

routes into three segments: origin to bridge, bridge, and bridge to destination. Segment lengths 

may vary, with bridges potentially near or far from origins and destinations. Depending on 

the distance of a bridge from the origin or destination, it may be considered viable (black solid 

line, Figure 5.2) or non-viable (red dashed line, Figure 5.2) for a particular O-D pair. In other 

words, there might be many feasible bridge alternatives for an O-D pair, but not all may be 

viable. If a bridge is too far, travelers may not consider it because they may perceive it as 

unavailable. 
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Figure 5.2. Wuhan, China and some most frequent bridge choice alternatives. 

Figure 5.3 provides two more real-world examples: Winnipeg, Canada, and New York, 

US. These cities have more complex combinations of rivers and bridges compared to Wuhan. 

  

  

a) Two-intersecting-river 

scenario: Multiple bridges per 

bridge choice alternative. 

b) Two-parallel-river scenario: At 

least two bridges per bridge choice 

alternative. 

Figure 5.3. Bridge choice alternatives in Winnipeg, Canada, and New York, US. 
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Winnipeg has two intersecting rivers (Figure 5.3a), while New York has two parallel 

rivers (Figure 5.3b). In Winnipeg, crossing multiple bridges may offer more efficient 

connections, especially near the confluence of the rivers. In New York, crossing at least two 

bridges is unavoidable for trips from opposite sides. This complexity necessitates considering 

bridge combinations rather than single bridges as potential choice alternatives. In this case, 

bridges should be considered in strict order because a bridge may require another bridge to 

be accessible as shown in Figure 5.3b. Bridge sequences result in 2𝑛 + 1 route segments 

where 𝑛 is the number of bridges in the bridge combination. It necessitates consideration of 

inter-bridge route segments when evaluating viability of a bridge combination for travelers. 

Additionally, if bridges are aimed at facilitating inter-region communication (i.e., 

between different regions) rather than intra-region (i.e., within a single region), then, due to 

their limited number, bridges may cause congestion, leading travelers to avoid them unless 

they offer outstanding travel cost benefits. Therefore, travel demand from intra-region O-D 

pairs using bridges can be negligibly low. 

Based on the discussion above, a bridge choice alternative refers to a specific sequence 

of bridges that an origin-destination (O-D) pair can use to traverse rivers. This sequence is 

defined by three main factors: the proximity of the first bridge to the origin, the proximity of 

the last bridge to the destination, and the distances between bridges in multi-bridge sequences. 

The viability of a bridge choice alternative depends on the cumulative detour lengths resulting 

from these spatial relationships and the number of bridges in the sequence. Even if a bridge 

choice alternative is physically feasible, it may be deemed non-viable if its bridges are too far 

from the O-D points, if the distances between bridges lead to impractical travel costs, or if the 

bridge sequence is too long. 

Next section models viability of bridge choice alternatives through availability 

perception concept. 
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5.2.1.2 Availability perception attribute6 

This section models viability of bridge choice alternatives by means of the concept of 

availability perception (Cascetta and Papola, 2001). Viable alternatives are close to both 

origin and destination (black solid line, Figure 5.2), while non-viable ones are far from both 

(red dashed line, Figure 5.2). If no other alternatives exist, a bridge choice alternative is viable 

even if the distance is long. In other words, alternatives are non-viable if there are less distant 

options exist. 

 Conceptually, travelers' perception of the availability of a bridge choice alternative is 

influenced by travel distance and the number of bridges in its sequence. Longer distances 

increase travel costs, making bridge choice alternatives with distant bridges less appealing. 

Additionally, longer sequences of bridges increase route complexity. In summary, long route 

segments and bridge sequences with high number of bridges should be penalized. This implies 

that bridge choice alternatives closer to the origin and destination, with shorter route segments 

and fewer bridges, are perceived as more available. 

To achieve this, the availability perception attribute is calculated in three steps. Firstly, 

route segments are categorized into two types: bridge segments and non-bridge segments. For 

convenience, the lengths of route segments in each category are categorized so that each 

category can be represented by a scalar. The former type (i.e., bridge segments) is labeled as 

𝑖 = 1, and the latter type is labeled as 𝑖 = 2. The aggregated length of route segment of type 

𝑖 for bridge choice alternative 𝑏, denoted as 𝑟𝑠𝑖𝑏, is calculated as follows: 

𝑟𝑠𝑖𝑏 = {

𝑙𝑏 ,                                𝑖𝑓 𝑖 = 1 
1

|𝑏| + 1
(𝐿𝑘̅𝑏 − 𝑙𝑏),   𝑖𝑓 𝑖 = 2

 (5.1) 

 
6 The proposed attribute has been designed by connecting and extrapolating theoretical insights on route choice 

set formation and route choice (Cascetta and Papola, 2001; Prashker and Bekhor, 2004; Bovy, 2009) as well as 

empirical insights on bridge and route choice (Habib et al., 2013; Manley et al., 2015; Alizadeh et al., 2018). 
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where 𝐿𝑘̅𝑏 is the FFTT of the shortest route 𝑘̅ for bridge choice alternative 𝑏, 𝑙𝑏 is the sum of 

FFTT of bridges in 𝑏 , and |𝑏|  is the number of bridges in bridge choice alternative 𝑏 . 

Essentially, 𝑟𝑠1𝑏 equals the total FFTT of all bridges, and 𝑟𝑠2𝑏 equals the average FFTT of 

all non-bridge route segments of the shortest route  𝑘̅. 

Secondly, the representative length of route segments for bridge choice alternative 𝑏 is 

determined as follows: 

𝐿𝑏 = max{𝑟𝑠1𝑏 , 𝑟𝑠2𝑏} ∙ (|𝑏| + 1)
𝛼 , ∀𝑏 ∈ 𝐵 (5.2) 

where 𝐵 is set of all bridge choice alternatives for an O-D pair and 𝛼 ≥ 0 is a parameter to 

calibrate. Essentially, 𝛼 controls the sensitivity of the attribute to the number of bridges in a 

bridge choice alternative. A high 𝛼 results in a high sensitivity to long bridge sequences, and 

a low 𝛼 results in lower sensitivity. At its extreme, 𝛼 = 0, the bridge sequence length is not 

penalized. 

Finaly, to ensure that the availability perception attribute 𝑌𝑏 spans from −∞ to +∞, we 

centered it with respect to its mean: 

𝑌𝑏 = 𝐿𝑏 − 𝐿̅, ∀𝑏 ∈ 𝐵 (5.3) 

where 𝐿̅ is the mean of 𝐿𝑏 for all bridge choice alternatives 𝑏 of an O-D pair.  

Next, we discuss availability perception function (Cascetta and Papola, 2001). 

5.2.1.3 Availability perception value 

Availability perception value for bridge choice alternative 𝑏  is denoted as 𝜇𝑏 . 

Availability perception value can be interpreted as a probability of bridge choice alternative 

𝑏 being perceived as available. Its feasible region is an interval from 0 to 1, where the values 

close to zero (i.e., 𝜇𝑏 → 0) can be interpreted as alternative b being fully unavailable and the 

values close to one (i.e., 𝜇𝑏 → 1) as fully available. The natural logarithm over availability 

perception value (i.e., ln 𝜇𝑏) may range from 0 to −∞. If a bridge choice alternative 𝑏 is 
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perceived as fully available (i.e., 𝜇𝑏 → 1) then its natural logarithm tends to zero, ln 𝜇𝑏 → 0. 

In other cases, it is a negative non-zero value. 

The term ln 𝜇𝑏 is interpreted as availability perception function. It shows that alternative 

𝑏 is theoretically available but not completely perceived as such. Because the true value of 

the availability and perception level 𝜇𝑏 is unknown to the analyst, it is modeled as a random 

variable with expected value 𝜇̅𝑏. If 𝜇𝑏 is a random variable, so is ln 𝜇𝑏. A random variable 

can be expressed as the sum of its mean value and a random residual: 

ln 𝜇𝑏 = 𝐸[ln 𝜇𝑏] + 𝜉𝑏 , ∀𝑏 ∈ 𝐵 (5.4) 

To make the model operational, the term 𝐸[ln 𝜇𝑏] is expressed in terms of 𝜇̅𝑏by means of 

second-order Taylor’s series expansion around the point 𝜇̅𝑏: 

ln 𝜇𝑏 = ln 𝜇̅𝑏 +
1

𝜇̅𝑏
(𝜇𝑏 − 𝜇̅𝑏) −

1

2[𝜇̅𝑏]2
(𝜇𝑏 − 𝜇̅𝑏)

2 + 𝜊(3) (5.5) 

and consequently: 

𝐸[ln 𝜇𝑏] ≅ 𝐸[ln 𝜇̅𝑏] + 𝐸 [
1

𝜇̅𝑏
(𝜇𝑏 − 𝜇̅𝑏)] − 𝐸 [

1

2[𝜇̅𝑏]2
(𝜇𝑏 − 𝜇̅𝑏)

2]

= ln 𝜇̅𝑏 −
1

2[𝜇̅𝑏]2
𝑉𝑎𝑟(𝜇𝑏) 

(5.6) 

In general, 𝑉𝑎𝑟(𝜇𝑏)is unknown but can be substituted by its upper bound given by the 

variance of a Bernoulli variable with the same mean 𝜇̅𝑏: 

𝑉𝑎𝑟(𝜇𝑏) ≤ 𝜇̅𝑏[1 − 𝜇̅𝑏] (5.7) 

This gives us the following expression: 

𝐸[ln 𝜇𝑏] ≅ ln 𝜇̅𝑏 −
1 − 𝜇̅𝑏
2𝜇̅𝑏

, ∀𝑏 ∈ 𝐵 (5.8) 

The expected availability perception 𝜇̅𝑏 is specified is specified using a binomial logit 

model, following the methodologies like in Swait and Ben-Akiva (1987) and Ben-Akiva and 

Boccara (1995): 
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𝜇̅𝑏 =
1

1 + 𝑒𝛽𝑌𝑏
, ∀𝑏 ∈ 𝐵 (5.9) 

where 𝑌𝑏  is availability perception attribute of bridge choice alternative 𝑏  and 𝛽  is a 

corresponding scaling parameter. 

In this study, the availability perception value serves two distinct objectives. Firstly, it is 

used for truncation of unreasonably distant bridge choice alternatives. Secondly, it is used for 

modeling intermediate degrees of availability of bridge choice alternatives that tackles the 

potential issue of bridge choice set misspecification. 

5.2.1.4 Illustrative example for calculating availability perception 

This section illustrates how to calculate availability perception using six routes (Figure 

5.4). Each route has its own composition of bridges, which form bridge choice alternative 

(i.e., there are six bridge choice alternatives). For simplicity, it is assumed that all short non-

bridge route segments were length 2, all long non-bridge route segments were length 5, and 

all bridge segments of length 1. According to the mechanics described in Section 5.2.1.1 and 

Section 5.2.1.2, the highest availability perception value is assigned to bridge choice 

alternative 𝑏1  because it has the shortest route segments and the least number of bridges 

among six alternatives. Then, 𝑏2, 𝑏3, 𝑏4 are assigned lower values to because the first two 

have longer route segments than 𝑏1 , 𝑏4  has two bridges while 𝑏1  had one. For the same 

reasons, low availability perception is assigned to 𝑏5 and 𝑏6. 
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Figure 5.4. Bridge choice alternatives grouped based on the route length. 

Table 5.2 summarizes the results for β=0.05. As indicated in Table 5.2, bridge choice 

alternatives with shorter route segments and fewer bridges in the sequence received higher 

availability perception values compared to those with longer route segments and more 

bridges. Alternatives with long route segments and a high number of bridges in the sequence 

were penalized. It seems that we can safely remove 𝑏6 from the bridge choice set because its 

availability perception is substantially lower than that of any other alternative. It is worth 

noting that 𝑏4 received a lower availability score than 𝑏5 even though the route conditioned 

on 𝑏4 was shorter than the route conditioned on 𝑏5. It occurred due to the higher sensitivity 

of the availability attribute to the bridge sequence length compared to the route segment 

length. In this section, we set the parameter 𝛼 = 2 in (5.2). Reducing 𝛼  can increase the 

availability score of 𝑏4 and decrease for 𝑏5. 

Table 5.2. Average availability perception values of bridge choice alternatives. 

Bridge choice 

alternative 

Route 

length 
|𝑏| 

𝑟𝑠1𝑏 

(bridge) 

𝑟𝑠2𝑏  

(not bridge) 
𝐿𝑏 𝐿̅ 𝑌𝑏 𝜇̅𝑏 

𝑏1 5 1 1 2 8 

29 

-21 0.74 

𝑏2 8 1 1 3.5 14 -15 0.68 

𝑏3 8 1 1 3.5 14 -15 0.68 

𝑏4 11 1 1 5 20 -9 0.61 

𝑏5 8 2 2 2 18 -11 0.63 

𝑏6 14 4 4 2 100 71 0.03 
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For the results summarized in Table 5.2, the scaling parameter 𝛽 was set to 0.05. In 

Figure 5.5, the impact of the scaling parameter 𝛽 on the availability perception of bridge 

choice alternatives 𝑏1 and 𝑏6 is analyzed. 

 

Figure 5.5. Impact of β on availability perception value of bridge choice alternatives. 

This parameter controls the gap between the availability perception value of different 

alternatives. High values increase the gap between them, while the low values decrease. In 

other words, higher values of 𝛽 increase the model’s sensitivity to differences in perceived 

availability, while lower values decrease this sensitivity. In practice, the parameters 𝛼 and 𝛽 

must be estimated using real data to ensure accurate representation. 

5.2.2 Bridge-route choice model with availability perception of 

bridges 

Multiple empirical studies reported hierarchical relationships between bridge and route 

choices. This implies that routes are chosen conditional on bridge choices. This section 

develops a nested model for a joint bridge-route choice problem. The developed model 

combines the IAPL model, which handles the perception of available bridge choice 

alternatives along with the choice itself, for bridge choice, and the MNL model for route 

choice (IAPL-MNL). In IAPL-MNL, each route belongs to a single nest because bridge 



 

116 

choice alternatives are represented by specific bridge sequences. These sequences must be 

followed in order, as changing the order can make the bridge choice infeasible (e.g., no 

connection to the second bridge if the first is missing). The model's closed-form probability 

expression ensures analytical tractability. 

The IAPL-MNL model is based on random utility theory. It assumes that travelers assign 

a certain perceived utility to each alternative based on its measurable characteristics and 

choose alternatives such that their perceived utility is maximized. The model is represented 

by choice probabilities. The general probability for this hierarchical model can be written as 

follows: 

𝑃𝑘,𝑏 = Pr(𝑈𝑏 ≥ 𝑈ℎ ∧ 𝑈𝑘 ≥ 𝑈𝑗 , ∀ℎ ≠ 𝑏, ∀𝑗 ≠ 𝑘, ∀𝑏, ℎ ∈ 𝐵, ∀𝑘 ∈ 𝐾𝑏 , ∀𝑗

∈ 𝐾ℎ),   ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾𝑏 

(5.10) 

where 𝑈𝑏 is a random utility function of bridge choice alternative 𝑏 and 𝑈𝑘 is random utility 

function of route 𝑘. 

The model components – random utility functions and corresponding probability 

expressions – and an illustrative example are provided below. For convenience, the 

superscript notation indicating the O-D pair is removed. 

5.2.2.1 Specification of utility function with availability perception of bridges 

This section presents the utility function with intermediate degrees of availability 

perception of bridges. 

The utility function of bridge nest 𝑏 can be expressed as a sum of systematic utility and 

an error term 𝜀𝑏 associated with nest 𝑏: 

𝑈𝑘,𝑏 = 𝑉𝑘,𝑏 + 𝜀𝑏 , ∀𝑏 ∈ 𝐵 (5.11) 

where error term 𝜀𝑏 can be represented as a sum of 𝛿𝑏 with 𝜏𝑘|𝑏: 
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𝜀𝑏 = 𝛿𝑏 + 𝜏𝑘|𝑏 , ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾𝑏 (5.12) 

Error term 𝜏𝑘|𝑏 is a zero-mean independently and identically distributed (IID) Gumbel 

random variable with scaling parameter 𝜃, i.e.: 

𝐸[𝜏𝑘|𝑏] = 0, 𝑉𝑎𝑟[𝜏𝑘|𝑏] =   
𝜋2

6𝜃2
, ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾𝑏  (5.13) 

The distribution of error term 𝛿𝑏  is picked up such that 𝜀𝑏  is also a zero-mean IID 

Gumbel random variable with the scaling parameter 𝜂 ≤ 𝜃. 

The utility function for route 𝑘 can be expressed as follows: 

𝑈𝑘 = 𝑉𝑘 + 𝜏𝑘|𝑏 , ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾𝑏 (5.14) 

where 𝑉𝑘 is systematic utility of route 𝑘 (elementary alternative). The systematic utility 𝑉𝑘,𝑏 

of bridge nest 𝑏 is represented as a function of expected value of maximum perceived utility 

of its elementary alternatives and availability perception component: 

𝑉𝑘,𝑏 = 𝐸 [max
𝑘∈𝐾𝑏

{𝑉𝑘 + 𝜏𝑘|𝑏}] − ln 𝜇𝑏 , ∀𝑏 ∈ 𝐵 (5.15) 

where 𝜇𝑏  is availability perception value for bridge nest 𝑏; and 𝜏𝑘|𝑏  is random error term 

associated with route 𝑘 in bridge nest 𝑏. It is important to note that the systematic utility of 

route 𝑘 and its trip time 𝑐𝑘 have the following relationship: 

𝑉𝑘 = −𝜃𝑐𝑘, ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾𝑏 (5.16) 

Due to the assumption on the distribution of 𝜏𝑘|𝑏, the systematic utility of bridge nest can 

be expressed as follows: 

𝑉𝑘,𝑏 = −
1

𝜃
ln ∑ 𝑒−𝜃𝑐𝑘

𝑘∈𝐾𝑏

− ln 𝜇𝑏 , ∀𝑏 ∈ 𝐵 (5.17) 

5.2.2.2 Joint probabilistic bridge-route choice model 

The joint bridge-route choice probability can be stated as a multiplication of the route 

choice probability conditional on bridge nest and the marginal probability of bridge nest, i.e.: 
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𝑃𝑘,𝑏 = 𝑃𝑘|𝑏 ⋅ 𝑃𝑏 , ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾𝑏 (5.18) 

where the conditional probability of selecting route 𝑘 in nest 𝑏 is modeled by MNL: 

𝑃𝑘|𝑏 =
𝑒−𝜃𝑐𝑘

∑ 𝑒−𝜃𝑐𝑗𝑗∈𝐾𝑏

, ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾𝑏 (5.19) 

and the marginal probability of bridge nest 𝑏 is modeled by IAPL: 

𝑃𝑏 =

[∑ 𝑒
−𝜃(𝑐𝑘−(ln 𝜇̅𝑏−

1−𝜇̅𝑏
2𝜇̅𝑏

))

𝑘∈𝐾𝑏 ]

𝜂
𝜃

∑ [∑ 𝑒
−𝜃(𝑐𝑘−(ln 𝜇̅ℎ−

1−𝜇̅ℎ
2𝜇̅ℎ

))

𝑘∈𝐾ℎ ]

𝜂
𝜃

ℎ∈𝐵

, ∀𝑏 ∈ 𝐵 (5.20) 

where 𝐾𝑏 is set of routes that passes through bridge nest b; 𝜃 and 𝜂 are scaling parameters at 

the route choice and bridge choice levels, respectively; and 𝑐𝑘 is deterministic travel time for 

route 𝑘. 

Next, an illustrative example is conducted to highlight the properties of the IAPL-MNL 

model. 

5.2.2.3 Illustration of model's features 

A simple example can effectively communicate the underlying mechanics of complex 

ideas. A toy network (Figure 5.6) is used to demonstrate the properties of the IAPL-MNL 

model, compared to the MNL and nested logit (NL) models. The results are schematically 

summarized in Figure 5.7 and Figure 5.8. 

MNL is used for modeling route choice. It includes a scaling parameter, 𝜃, controlling 

sensitivity to travel costs. The NL model, with an additional scaling parameter, 𝜂, captures 

the hierarchical relationship between bridge choices and routes, emphasizing correlation 

among routes. The NL model collapses to MNL when 𝜂 = 1 . The IAPL-MNL model 

advances the NL model by accounting for the perception of availability of bridge choice 
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alternatives and collapses to NL when 𝜇̅𝑏 = 1 for all bridge choice alternatives. Thus, the 

IAPL-MNL model is the most general model among the three. 

 

Figure 5.6. Toy network and its bridge-route choice model. 

The following parameter settings were used where it was not specified. The scaling 

parameter 𝜃 was set at 1.0, 𝜂 was set at 0.5, and 𝛽 was set at 1.0. FFTT on Link 1 is initially 

set to 4 and then gradually increased to 10 in one-unit increments. Changes in FFTT on Link 

1 result in increased FFTTs on routes R1 and R2, as both routes traverse this link. The FFTTs 

on R3 and R4 remain unaffected. Since R1 is identical to R2 and R3 is identical to R4, these 

pairs are denoted as R1 and R3, respectively. 

Figure 5.7 depicts the variation in availability perception values of bridge choice 

alternatives relative to the FFTT of Link 1. 
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Figure 5.7. Impact of Link 1’s FFTT on availability perception of bridge choice alternatives. 

As shown in Figure 5.7, as FFTT on Link 1 (hence, on route R1) increases, the 

availability perception of bridge b1 decreases. Conversely, the availability perception of 

bridge b2 increases as the FFTT of route R1 increases. At the point where R1 and R3 had 

identical FFTT, the availability perception value for the b1 - bridge choice alternative of R1 

- was about 7 times higher than the corresponding value of b2. From this, we can observe that 

the perception of availability is negatively correlated with a route’s FFTT. In other words, 

bridge choice alternatives that are spanned by shortest routes with higher FFTTs would have 

a lower perception of availability compared to alternatives spanned by shortest routes with 

lower FFTTs. 

In Figure 5.8, the impact of FFTT of R1 on its choice probabilities is shown. The IAPL-

MNL, NL, and MNL models are compared. As shown in Figure 5.8, as FFTT increases R1’s 

probability decreases for all three models. Due to the hierarchical structure and the perceived 

availability component, the IAPL-MNL model substantially deviates from the other two 

models. Predominantly, it tends to assign higher probabilities to route R1 due to the perceived 

availability component of its corresponding bridge choice alternative. From this example, one 
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can clearly see that the proposed joint bridge-route choice model can capture the impact of 

bridge choice on route choice. 

   

(a) 𝜂 = 0.25  (b) 𝜂 = 0.5 (c) 𝜂 = 0.75 

Figure 5.8. Impacts of FFTT and parameter η on choice probabiliaty for Route 1. 

Remark: The study assumes that single-region O-D pairs may use bridges if the routes 

crossing them are cost-optimal. However, it does not explicitly model bridge choice for these 

pairs, assuming negligible bridge usage due to the availability of lower-cost, bridge-free 

alternatives. This assumption is based on rational cost minimization and network topology, 

where bridge-free routes serve local traffic efficiently, while routes with bridges prioritize 

mixed-region O-D pairs. This approach maintains the model's computational efficiency, 

focusing on bridge-route choices for mixed-region O-D pairs. Future research could relax this 

assumption. 

5.2.3 Equivalent MP formulation 

For consistent prediction of traffic flow patterns in urban road networks it is important to 

incorporate congestion effects into the model. Congestion rises with the increase of traffic 

flow forcing travelers to consider alternative bridges and routes that are believed to have lower 

travel costs. While there are numerous other ways to measure congestion, travel time is one 

of the most straightforward indicators of how it impacts travelers. This study expresses 

congestion using flow-dependent link travel time functions. It is assumed that travelers 
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continue to shift their routes until a stochastic user equilibrium is reached, at which point no 

one believes they can improve their travel time any further (Daganzo and Sheffi, 1977). 

In this section, an equivalent MP formulation for the proposed IAPL-MNL bridge-route 

choice model is provided. The proposed equilibrium model will be referred to as IAPL-MNL 

SUE. 

Mathematically, the SUE conditions are expressed in (5.21): 

𝑓𝑘
𝑤 = 𝑞𝑤 ⋅ 𝑃𝑘,𝑏

𝑤 (𝑓𝑘
𝑤), ∀𝑤 ∈ 𝒲,∀𝑏 ∈ 𝐵𝑤, ∀𝑘 ∈ 𝐾𝑏

𝑤,  (5.21) 

where 𝒲 is set of all O-D pairs, 𝐾𝑏
𝑤 is set of routes between O-D pair w, 𝑞𝑤 is travel demand 

between O-D pair 𝑤, 𝑓𝑘
𝑤 is traffic flow on route k between O-D pair 𝑤, 𝑃𝑘,𝑏

𝑤  is probability of 

choosing route k using bridge choice alternative b between O-D pair 𝑤. For O-D pairs that do 

not require bridges  𝑃𝑘,𝑏
𝑤 = 𝑃𝑘

𝑤. The probability expression for the IAPL-MNL bridge-route 

choice model is given in (5.18). 

To be consistent with the utility maximization behavior underlying the hierarchical 

choice structure (Ben-Akiva and Lerman, 1985b), the dispersion (scaling) parameters at 

different choice levels satisfy the condition that   . To facilitate the formulation of the 

developed equilibrium model with multiple choice levels, the dispersion parameters are 

rescaled as 
r = , 

1 1 1

b  
= − . 

The resulting SUE model is formulated as an equivalent MP problem: 

min
𝑓
𝑍 =  ∑ ∫ 𝑐𝑡𝑎(𝑣)𝑑𝑣

𝑥𝑎

0𝑎∈𝐶𝐴

+ ∑ ∫ 𝑏𝑡𝑎(𝑣)𝑑𝑣
𝑥𝑎

0𝑎∈𝐵𝐴

+
1

𝜃𝑟
∑ ∑ 𝑓𝑘

𝑤 ln 𝑓𝑘
𝑤

𝑘∈𝐾𝑤𝑤∈𝐶𝒲

+
1

𝜃𝑟
∑ ∑ ∑ 𝑓𝑘

𝑤 ln 𝑓𝑘
𝑤

𝑘∈𝐾𝑏
𝑤𝑏∈𝐵𝑤𝑤∈𝐵𝒲

+
1

𝜃𝑏
∑ ∑ 𝑞𝑏

𝑤 ln(𝑞𝑏
𝑤)

𝑏∈𝐵𝑤𝑤∈𝐵𝒲

− ∑ ∑ 𝑞𝑏
𝑤 (ln 𝜇̅𝑏 −

1 − 𝜇̅𝑏
2𝜇̅𝑏

)

𝑏∈𝐵𝑤𝑤∈𝐵𝒲

 

(5.22) 

s.t. 
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∑ 𝑓𝑘
𝑤

𝑘∈𝐾𝑤

= 𝑞𝑤, ∀𝑤 ∈ 𝐶𝒲 
(5.23) 

∑ 𝑓𝑘
𝑤

𝑘∈𝐾𝑏
𝑤

= 𝑞𝑏
𝑤, ∀𝑤 ∈ 𝐵𝒲, 𝑏 ∈ 𝐵𝑤 

(5.24) 

∑ 𝑞𝑏
𝑤

𝑏∈𝐵𝑤

= 𝑞𝑤, ∀𝑤 ∈ 𝐵𝒲 
(5.25) 

𝑓𝑘
𝑤 ≥ 0, ∀𝑤 ∈ 𝒲, 𝑘 ∈ 𝐾𝑤 (5.26) 

𝑞𝑏
𝑤 ≥ 0, ∀𝑤 ∈ 𝐵𝒲, 𝑏 ∈ 𝐵𝑤  (5.27) 

𝑥𝑎 = ∑ ∑ 𝑓𝑘
𝑤δ𝑎,𝑘

𝑤

𝑘∈𝐾𝑤𝑤∈𝒲

,   ∀𝑎 
(5.28) 

where 𝐶𝐴 is set of common links, 𝐵𝐴 is set of bridge links, 𝐶𝒲 is set of common O-D pairs 

that do not need bridges, 𝐵𝒲 is a set of O-D pairs that need bridges, 𝐵𝑤 is subset of bridges 

for O-D pair 𝑤, δ𝑎,𝑘
𝑤  is a route-link incidence indicator, 𝑥𝑎 is traffic flow on link 𝑎, 𝑐𝑡𝑎(⋅) is 

travel time on common link a, 𝑏𝑡𝑎(⋅) is travel time on bridge link a, 𝑞𝑏
𝑤 is traffic flow passing 

through bridge nest b between O-D pair 𝑤, 𝑞𝑤 is travel demand between O-D pair 𝑤, 𝜇̅𝑏 is 

expected value of availability perception of bridge choice alternative 𝑏, respectively. 

The formulation in (5.22) - (5.28) possesses the following features. Firstly, it is a convex 

problem with a non-linear objective function (5.22) and linear constraints (5.23) - (5.28). 

Assuming that link travel time functions are strongly increasing functions of traffic flow, 

existence and uniqueness of the solution can be ensured (see Prop. 1 and Prop. 2). Secondly, 

travel time on common links and bridge links can be expressed by dissimilar functions. 

Thirdly, the model can distinguish O-D pairs that must use bridges and those that can avoid 

them while accommodating both. The bridge choice applies only to O-D pairs that must use 

bridges, while the route choice covers both types of O-D pairs. 

Proposition 1. The MP formulation given in Eq. (5.22) - (5.28) has the solution of the 

IAPL-MNL model. 
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Proof. To demonstrate the equivalence of the formulation to bridge-route choice model, 

the Lagrangian is created, partial derivatives are calculated and equated to zero. The 

corresponding probability expressions (5.19) - (5.20) are obtained by elementary arithmetic 

operations. The formal proof of equivalence is provided in Section 5.2.3.1. 

Proposition 2. The solution of IAPL-MNL-SUE is unique. 

Proof. It is sufficient to prove that the objective function in (5.22) is strictly convex in 

the vicinity of route flow and that the feasible region is convex. The convexity of the feasible 

region is assured by the linear equality constraints in (5.23) - (5.25). The non-negative and 

definitional constraints in (5.26) - (5.27) do not alter this characteristic. The formal proof of 

uniqueness is provided in Section 5.2.3.2. 

5.2.3.1 Proof of equivalence 

In this section, the equivalence of the MP formulation to the bridge-route choice model 

with bridge availability perception is proved. 

The Lagrangian of model (5.22) - (5.28) is: 

𝐿 = 𝑍 + ∑ 𝑢1
𝑤 ⋅ (𝑞𝑤 − ∑ 𝑓𝑘

𝑤

𝑘∈𝐾𝑤

)

𝑤∈𝒲̃

+ ∑ ∑ 𝑢2
𝑤 ⋅ (𝑞𝑏

𝑤 − ∑ 𝑓𝑘
𝑤

𝑘∈𝐾𝑏
𝑤

)

𝑏∈𝐵𝑤𝑤∈𝑅

+ ∑ 𝑢3
𝑤 (𝑞𝑤 − ∑ 𝑞𝑏

𝑤

𝑏∈𝐵𝑤

)

𝑤∈𝑅

 

(5.29) 

After the 𝐿 function is formed, the partial re waere equated to zero and multiplied by 𝜃, 

the following expression is obtained: 

𝜃𝑐𝑘
𝑤 + ln 𝑓𝑘

𝑤 − 𝜃 (ln 𝜇̅𝑏 −
1 − 𝜇̅𝑏
2𝜇̅𝑏

) + (
𝜃

𝜂
− 1) ln 𝑞𝑏

𝑤 − 𝜃 (𝑢3
𝑤 −

1

𝜂
) = 0,   ∀𝑤 ∈ 𝐵𝒲, 𝑏 ∈ 𝐵𝑤 , 𝑘

∈ 𝐾𝑏
𝑤 

(5.30) 

The following expression is obtained after some elementary arithmetic manipulations: 

𝑓𝑘
𝑤(𝑞𝑏

𝑤)
𝜃
𝜂
−1
= 𝑒

−𝜃(𝑐𝑘
𝑤−(ln 𝜇̅𝑏−

1−𝜇̅𝑏
2𝜇̅𝑏

))
𝑒
𝜃(𝑢𝑤−

1
𝜂
)
,   ∀𝑤 ∈ 𝐵𝒲, 𝑏 ∈ 𝐵𝑤 , 𝑘 ∈ 𝐾𝑏

𝑤 
(5.31) 

Summing the above expression by route 𝑘 result in the following expression: 
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(𝑞𝑏
𝑤)

𝜃
𝜂 = 𝑒

𝜃(𝑢𝑤−
1
𝜂
)
∑ 𝑒

−𝜃(𝑐𝑘
𝑤−(ln 𝜇̅𝑏−

1−𝜇̅𝑏
2𝜇̅𝑏

))

𝑘∈𝐾𝑏
𝑤

, ∀𝑤 ∈ 𝐵𝒲, 𝑏 ∈ 𝐵𝑤  (5.32) 

By elevating both sides by 
𝜂

𝜃
, the following expression is obtained: 

𝑞𝑏
𝑤 = 𝑒

𝜂(𝑢𝑤−
1
𝜂
)
[ ∑ 𝑒

−𝜃(𝑐𝑘
𝑤−(ln 𝜇̅𝑏−

1−𝜇̅𝑏
2𝜇̅𝑏

))

𝑘∈𝐾𝑏
𝑤

]

𝜂
𝜃

,   ∀𝑤 ∈ 𝐵𝒲,𝑏 ∈ 𝐵𝑤  (5.33) 

The corresponding marginal probability is obtained as follows: 

𝑃𝑏
𝑤 =

∑ 𝑓𝑘
𝑤

𝑘∈𝐾𝑏
𝑤

∑ ∑ 𝑓𝑘
𝑤

𝑘∈𝐾ℎ
𝑤ℎ∈𝐵

=

[∑ 𝑒
−𝜃(𝑐𝑘

𝑤−(ln 𝜇̅𝑏−
1−𝜇̅𝑏
2𝜇̅𝑏

))

𝑘∈𝐾𝑏
𝑤 ]

𝜂
𝜃

∑ [∑ 𝑒
−𝜃(𝑐𝑘

𝑤−(ln 𝜇̅ℎ−
1−𝜇̅ℎ
2𝜇̅ℎ

))

𝑘∈𝐾ℎ
𝑤 ]

𝜂
𝜃

ℎ∈𝐵

, ∀𝑤 ∈ 𝐵𝒲, 𝑏 ∈ 𝐵𝑤 (5.34) 

The conditional probability is obtained by dividing (5.31) by (5.32): 

𝑃𝑘|𝑏
𝑤 =

𝑓𝑘
𝑤

∑ 𝑓𝑗
𝑤

𝑗∈𝐾𝑏
𝑤

=
𝑒
−𝜃(𝑐𝑘

𝑤−(ln 𝜇̅𝑏−
1−𝜇̅𝑏
2𝜇̅𝑏

))

∑ 𝑒
−𝜃(𝑐𝑙

𝑤−(ln 𝜇̅𝑏−
1−𝜇̅𝑏
2𝜇̅𝑏

))

𝑙∈𝐾𝑏
𝑤

=
𝑒−𝜃𝑐𝑘

𝑤

∑ 𝑒−𝜃𝑐𝑙
𝑤

𝑙∈𝐾𝑏
𝑤

,

∀𝑤 ∈ 𝐵𝒲, 𝑏 ∈ 𝐵𝑤 , 𝑘 ∈ 𝐾𝑏
𝑤 

(5.35) 

This concludes the proof of the equivalence for the O-D pairs that require bridges. 

Similarly, the equivalence for the O-D pairs that do not require bridges is shown. The 

partial derivatives with respect to 𝑓𝑘
𝑤 are found and equated to zero, and multiplying by 𝜃, 

the following expression is derived: 

𝜃𝑐𝑘
𝑤 + ln 𝑓𝑘

𝑤 + 1 − 𝑢1
𝑤 = 0, ∀𝑤 ∈ 𝐶𝒲, 𝑘 ∈ 𝐾𝑤 (5.36) 

The following expression is acquired after some elementary arithmetic manipulations: 

𝑓𝑘
𝑤 = 𝑒−𝜃𝑐𝑘

𝑤
𝑒𝑢1

𝑤−1, ∀𝑤 ∈ 𝐶𝒲, 𝑘 ∈ 𝐾𝑤 (5.37) 

The expression for 𝑘 ∈ 𝐾𝑤 in equation (5.37) is summed up as follows: 

∑ 𝑓𝑘
𝑤

𝑘∈𝐾𝑤

= 𝑒𝑢1
𝑤−1 ∑ 𝑒−𝜃𝑐𝑘

𝑤

𝑘∈𝐾𝑤

, ∀𝑤 ∈ 𝐶𝒲 (5.38) 

The probability can be obtained as follows: 
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𝑃𝑘
𝑤 =

𝑓𝑘
𝑤

∑ 𝑓𝑗
𝑤

𝑗∈𝐾𝑤
=

𝑒𝑢1
𝑤−1𝑒−𝜃𝑐𝑘

𝑤

𝑒𝑢1
𝑤−1∑ 𝑒−𝜃𝑐𝑘

𝑤

𝑙∈𝐾𝑤
=

𝑒−𝜃𝑐𝑘
𝑤

∑ 𝑒−𝜃𝑐𝑙
𝑤

𝑙∈𝐾𝑤
, ∀𝑤 ∈ 𝐶𝒲, 𝑘 ∈ 𝐾𝑤 (5.39) 

This concludes the proof of the equivalence for the O-D pairs that do not require bridges. 

5.2.3.2 Proof of uniqueness 

In this section, the uniqueness of the solution of the MP formulation is proved. 

Given the convex feasible region constructed by the sets of linear constraints, the proof 

of the solution uniqueness is equivalent to proving the strict convexity of the objective 

function (5.22). The Hessian matrix with respect to 𝑓𝑘
𝑤, ∀𝑤 ∈ 𝐵𝒲, 𝑘 ∈ 𝐾𝑏

𝑤: 

𝜕2𝑍

𝜕𝑓𝑙
𝑤𝜕𝑓𝑘

𝑤 = {

𝜕𝑐𝑘
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𝑤 +

1

𝜃
⋅
1

𝑓𝑘
𝑤 > 0 𝑘 = 𝑙 

0 𝑘 ≠ 𝑙 

 (5.40) 

With the increasing travel time function with respect to traffic flow, the above expression 

implies the positive definite matrix. 

𝜕2𝑍

𝜕𝑞ℎ
𝑤𝜕𝑞𝑏

𝑤 = {
(
1

𝜂
−
1

𝜃
) ⋅ (

1

∑ 𝑓𝑗
𝑤

𝑗∈𝐾𝑏
𝑤

) > 0 ℎ = 𝑏 𝑎𝑛𝑑 𝜃 ≥ 𝜂

0 ℎ ≠ 𝑏 𝑎𝑛𝑑 𝜃 ≥ 𝜂

 (5.41) 

In the hierarchical choice structure, the dispersion parameter at the upper level should be 

smaller than the dispersion parameter at the lower level, which requires the dispersion 

parameter for conditional bridge choice smaller than that for route choice. Therefore, the 

Hessian matrix w.r.t. 𝑞𝑏
𝑤, ∀𝑤 ∈ 𝐵𝒲, 𝑏 ∈ 𝐵𝑤 is positive definite. 

The Hessian matrix with respect to 𝑓𝑘
𝑤, ∀𝑤 ∈ 𝐶𝒲, 𝑘 ∈ 𝐾𝑤: 

𝜕2𝑍

𝜕𝑓𝑙
𝑤𝜕𝑓𝑘

𝑤 = {

𝜕𝑐𝑘
𝑤(𝑓𝑘

𝑤)

𝜕𝑓𝑘
𝑤 +

1

𝜃
⋅
1

𝑓𝑘
𝑤 > 0 𝑘 = 𝑙

0 𝑘 ≠ 𝑙

 (5.42) 

In summary, the proposed equilibrium model has a unique solution for both the bridge 

flow and route flow. This completes the proof. 
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5.2.4 Solution algorithm 

Solving the proposed model necessitates (i) a technique for distinguishing between O-D 

pairs for which the use of bridges is inevitable (bridge O-D pairs), and O-D pairs for which 

the use of bridges is optional (non-bridge O-D pairs), (ii) a method to generate bridge and 

route choice sets, and (iii) an iterative algorithm to equilibrate network traffic flows. This 

section elaborates on these components. The flowchart of the solution algorithm is shown in 

Figure 5.9. 

 

Figure 5.9. Flowchart for solution algorithm. 

As shown in Figure 5.9, the algorithm begins with dividing the O-D pairs into bridge and 

non-bridge O-D pairs. In Section 5.2.4.1, a technique for automatically classifying O-D pairs 

is proposed. Next, the algorithm generates a bridge choice set for O-D pairs that must use 

bridges. In Section 5.2.4.2.1, a strategy for generating O-D-specific bridge choice alternatives 

is proposed. The algorithm then enters its iterative phase, which combines a route-generation 

scheme with a network flow update method. In Section 5.2.4.2.2, a multi-step column 

generation algorithm that ensures that generated routes pass through specified bridge choice 

alternatives is presented. For O-D pairs that do not need bridges, a conventional column 



 

128 

generation algorithm is used (Damberg et al., 1996) at this stage. Without loss of generality, 

a route-based partial linearization method is adapted for network flow updates in Section 

5.2.4.3. 

5.2.4.1 Automatic identification of bridge O-D pairs 

In road networks segmented by rivers, the use of bridges is unavoidable for some O-D 

pairs, while for others, it is optional. Why is this distinction important? It’s because the bridge 

choice problem is modelled exclusively for bridge O-D pairs – O-D pairs that cannot avoid 

using bridges. 

This section describes a method for automatically detecting O-D pairs of the former type. 

Figure 5.10 schematically depicts the key idea of this technique. 

 

Figure 5.10. Method for automatically identifying bridge O-D pairs. 

As shown in Figure 5.10, the method involves temporarily deactivating all bridges and 

determining whether O-D pairs remain connected. An O-D pair is disconnected if no route 

can be found from the origin to the corresponding destination. If an O-D pair becomes 

disconnected, it indicates the need to use a bridge. Importantly, this approach objectively and 

systematically categorizes O-D pairs into two groups without requiring additional manual 

effort during network changes, regardless of network size or bridge count. 
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5.2.4.2 Bridge-centric choice set generation 

The formation of bridge and route choice sets in travelers’ minds may be inseparable and 

unconscious. Integrated approaches (route-first/bridge-second) could be favorable if not for 

the practical challenges they face, such as the inability to enumerate routes and the existence 

of implausible but feasible routes in transport networks. Disjoint methods offer a plausible 

trade-off between realistic processes and practical implementation. They can effectively 

leverage the features of both bridges and routes, mitigating the issues associated with 

integrated approaches. 

The disjoint choice set generation for a joint bridge-route choice problem essentially 

involves two parts: the generation of bridge choice sets and the generation of route choice 

sets. Bridge choice alternatives can be enumerated, and unreasonable options excluded based 

on their availability perception values, whereas route choice alternatives, having no specific 

location and being stretched throughout the network, cannot be enumerated and sieved in a 

similar manner. Therefore, generating route choice set requires specific heuristics to form a 

choice set explicitly (Bekhor et al., 2008) or an iterative technique for implicit selection 

(Damberg et al., 1996). 

A disjoint bridge-centric strategy that makes effective use of the properties of bridges 

and routes is proposed. For each bridge O-D pair, feasible bridge choice alternatives are 

enumerated explicitly and sieved based on their availability perception values. Routes are 

generated implicitly for each bridge choice alternative of each O-D pair using a column 

generation technique embedded into iterations of a partial linearization algorithm (Patriksson, 

2015). For bridge O-D pairs, a multi-step column generation is employed to enforce the routes 

to pass through a specified set of bridge choice alternatives, while for non-bridge O-D pairs, 

a traditional column generation technique is used. 
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5.2.4.2.1 Bridge choice set generation 

This section details the proposed bridge choice set generation algorithm. It begins with a 

description of the travelers' behavior that the model aims to replicate, followed by an 

introduction to the algorithm. 

Figure 5.11 presents three different O-D pairs that share a common feature: their origins 

and destinations belong to the same regions, NW and E, respectively. It is reasonable to 

assume that these O-D pairs may share a common set of bridge choice alternatives. However, 

these bridge choice alternatives may vary in how they are perceived by the travelers of 

different O-D pairs. Some bridge choice alternatives that are attractive for one O-D pair may 

not be as appealing for another O-D pair within the same group. Therefore, while O-D pairs 

in the same group may have a generic bridge choice set, each O-D pair may have its own 

specific consideration set. 

 

Figure 5.11. Three scenarios of routes with bridges for the Winnipeg network. 

These behavioral considerations are incorporated into the developed bridge choice set 

generation algorithm. The steps of the algorithm are depicted in Figure 5.12. It is worth 

emphasizing that this algorithm is executed once prior to solving the bridge-route choice 

problem. 
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Figure 5.12. Flowchart for the bridge choice set generation. 

As shown in Figure 5.12, first, a generic region-based bridge choice set of bridge choice 

alternatives is generated using pure combinatorial methods (i.e., the shortest path algorithm 

is not required at this stage). The number of bridge sequence variations can be found as 

follows: 

𝐵𝑟𝑖𝑑𝑔𝑒 𝑠𝑒𝑞. # =∑
|𝐵𝐴|!

(|𝐵𝐴| − 𝑖)!

𝑀

𝑖=1

  (5.43) 

where |𝐵𝐴| is the total number of bridges in network and 𝑀 is the maximum number of 

bridges in bridge sequences.  

Then, the set of bridge choice alternatives obtained by (5.43) includes both feasible and 

infeasible bridge sequences. Infeasible bridge sequences are removed. The problem’s inherent 

directionality allows us to do it easily. For example, the origin of an O-D pair and the head of 

the first bridge must be in the same region; similarly, the tail of the first bridge and the head 

of the second bridge must also be within the same region, and so on. We contend that the set 

of feasible bridge sequences remains manageable, even for large networks, as previously 

discussed. At this step, the region-based bridge choice set is not specific to O-D pairs.  

Next, O-D specific bridge choice sets are formed. They can be extracted from the region-

based bridge choice set. The main consideration here is that some feasible bridge choice 
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alternatives may be practically implausible for some O-D pairs. For example, a bridge may 

be too distant from origin and/or destination nodes, making it an unreasonable option for 

travelers. This issue can be addressed by truncating O-D specific bridge choice sets based on 

the availability perception values of bridge choice alternatives. The availability perception 

attribute is designed to penalize both alternatives with distant bridges and long bridge 

sequences (see Section 5.2.1). This results in a plausible set of bridge choice alternatives. 

5.2.4.2.2 Route choice set generation 

Routes are implicitly generated for each bridge nest of each O-D pair by employing a 

column generation technique within the iterations of a partial linearization algorithm. Column 

generation for the route choice problem relies on identifying the shortest route from the origin 

to the destination. For non-bridge O-D pairs, a standard one-step column generation process 

was employed. Conversely, for bridge O-D pairs, the process was transformed into a multi-

step column generation to guarantee that the routes cross a predetermined set of bridge choice 

alternatives. This section focuses on multi-step column generation. A special case of a multi-

step column generation procedure – a two-step column generation – is schematically 

illustrated in Figure 5.13. 

In Figure 5.13, a column generation technique consistent with the hierarchical structure 

of the model necessitates the use of a two-step shortest route algorithm. A shortest route going 

through a particular bridge is a special case of shortest route algorithm. The approach involves 

decomposing the problem into two subproblems: 1) finding the shortest route from origin to 

the bridge start node (green) and 2) determining the shortest route from the bridge end to the 

destination (yellow). Once these steps are completed, the two route segments are 

concatenated. Essentially, this process is equivalent to executing a shortest route algorithm 

twice. Dijkstra’s shortest route algorithm is a suitable choice for this purpose, with a time 
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complexity of 𝑂(𝑚 +  𝑛 log 𝑛), where 𝑚 represents the number of links in the graph, and 𝑛 

denotes the number of nodes. 

 

Figure 5.13. Illustration of two-step shortest route algorithm. 

For bridge choice alternatives that involve sequences of multiple bridges, the algorithm 

is generalized to a multi-step column generation approach. In this scenario, the process begins 

by finding the shortest route from the origin to the start node of the first bridge in the sequence. 

Subsequently, the shortest route is determined from the end node of the first bridge to the start 

node of the subsequent bridge. This procedure is repeated for each bridge in the sequence. 

Finally, the shortest route from the end node of the last bridge to the destination node is 

established. This necessitates running the two-step column generation algorithm as many 

times as there are bridges in the sequence. 

5.2.4.3 Network flow update 

The solution algorithm combines a route-generation scheme with a network flow update 

method. A route-based partial linearization is adapted for network flow updates. This section 

elaborates on the partial linearization method and its components such as search direction, 

step size, and a measure for termination condition. 
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The partial linearization method is one of the types of descent direction methods used for 

continuous optimization problems. It iteratively determines a search direction and step size 

until convergence is reached (Patriksson, 2015). 

To obtain the search direction, a partially linearized subproblem is solved using a first-

order approximation of the first two terms (i.e., Beckmann transformation terms) of the 

objective function. All other terms except the last one are entropy terms and should be retained 

to ensure compliance with logit-based stochastic equilibrium conditions for both route and 

bridge choices. By retaining the entropy terms, the subproblem’s first-order conditions 

naturally yield closed-form logit probabilities for both route and bridge choices. The last term 

is already linear in 𝑞𝑏
𝑤, so no need to linearize it. 

To obtain an appropriate step size, a self-regulated averaging (SRA) scheme proposed by 

(Liu et al., 2009) is used. This scheme allows determining a step size without the need to 

evaluate the objective function. Because the objective function is relatively complex, it may 

reduce considerable computational efforts spent on objective function evaluation. SRA uses 

the residual error β and step size in the current iteration to determine the next step size and 

guarantees convergence with either λ1 > 1 or 0 < λ2 < 1  controlling the decreasing speed. 

Refer to (Patriksson, 2015) for further information on the convergence properties of the partial 

linearization method. 

Relative gap (RGAP) function (5.44) is employed to control the convergence process. 

Once RGAP drops below a specified threshold, the algorithm terminates. 

𝑅𝐺𝐴𝑃 = 1 −
∑ 𝑞𝑤𝐶𝑚𝑖𝑛

𝑤
𝑤∈𝑊

∑ ∑ 𝑓𝑘
𝑤

𝑘∈𝐾𝑤𝑤∈𝑊 ⋅ 𝐶𝑘
𝑤 (5.44) 

where 𝐶𝑘
𝑤 is the perceived cost of route 𝑘  between O-D pair 𝑤  and 𝐶𝑚𝑖𝑛

𝑤  is the minimum 

perceived cost between O-D pair 𝑤. The key idea of RGAP is as follows. The relative gap 

between the shortest route in terms of perceived travel cost and all other routes is expected to 
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shrink with each iteration, and, at equilibrium, it is expected to approach zero. This is due to 

the assumption that all active routes of an O-D pair should have equal perceived travel time 

at equilibrium (Sheffi, 1985). Considering that route costs cannot be a positive value to have 

a physical interpretation, the feasible range of values for the relative gap lies between 0 and 

1, i.e., 𝑅𝐺𝐴𝑃 ∈ [0, 1]. 

5.3 Numerical experiments 

In this section, experiments were conducted on two networks. Using a toy network 

(Figure 5.6) the properties of the proposed IAPL-MNL-SUE model were investigated. Using 

the real-size network (Figure 5.1), the applicability of the model was shown in a real case 

study. 

Both common link and bridge link travel times are modelled as a well-known Bureau of 

Public Road (BPR) function, as shown in equation (3.14). 

5.3.1 Experiment 1: A toy network 

In this section, the properties of the IAPL-MNL-SUE model were analyzed using the toy 

network in Figure 5.6. Specifically, the effects of congestion on equilibrium solutions were 

investigated and how demand level may affect the traffic flow pattern was studied. 

5.3.1.1 Equilibrium solution 

In this section, the effect of congestion on traffic flow prediction was investigated. The 

results are summarized in Table 5.3 and Table 5.4. 

The parameters were set as follows. The demand level was set at 20, the availability 

attribute scaling parameter 𝛽 was set at 1.0, the scaling parameters 𝜃 and 𝜂 were set at 1.0 

and 0.5, respectively. The average availability perception values of bridges were set according 

to Section 5.2.2.3. Link free flow travel times were set according to Figure 5.6 for all links 
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except Link 2, for which it was set at 7. This change made R1 non-identical to R2. Link 

capacity was set at 10 for all links. For fairness of comparison of route flows, routes were 

enumerated. All routes except R1 had a free flow travel time of 16. For R1, it was 18. 

As shown in Table 5.3, the IAPL-MNL-SUE model assigns higher flows to the routes 

R1 and R2 – routes of bridge choice alternative b1 – than the other two models. It attributed 

to the higher perceived availability value of b1 than of b2. It is consistent with the results in 

previous sections. 

Table 5.3. Route flows for three SUE models. 

Routes IAPL-MNL-SUE NL-SUE MNL-SUE 

R1 1.86 1.47 1.45 

R2 8.80 7.99 7.93 
R3 4.67 5.27 5.31 

R4 4.67 5.27 5.31 

    

This indicates that the proposed SUE model is indeed capable of accounting for the impact of 

bridges on route choice in a congested network. 

Table 5.4 shows how each term (e.g., travel cost integrals, entropy terms, bridge choice 

set formation errors), contributes to the overall objective function value. 

Table 5.4. Objective function values for three SUE models. 

Objective function IAPL-MNL-SUE NL-SUE MNL-SUE 

Bec. trans. 331.27 329.97 329.96 
Route flow entropy 34.68 34.69 34.7 

Bridge flow entropy 46.1 46.08 - 

Bridge avail. 30.18 - - 

Total obj. 442.23 410.75 364.66 

    

Examining Table 5.4, it is observed that the objective function of the IAPL-MNL SUE 

model has a larger value than that of the NL SUE and MNL SUE models. This is because the 

IAPL-MNL SUE model incorporates additional considerations related to route correlation 

due to bridges. Specifically, the objective function of the IAPL-MNL SUE model includes a 

bridge availability perception term, which still influences bridge flow and route flow-related 

entropy terms. 
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5.3.1.2 Impact of demand level on route choice probabilities  

In this section, the impact of demand level on equilibrium was investigated by gradually 

increasing demand level. The results are summarized in Figure 5.14 and Table 5.5. 

   

(a) IAPL-MNL SUE model. (b) NL SUE model. (c) MNL SUE model. 

Figure 5.14. Impact of demand level on route choice probabilities. 

In Figure 5.14, we observe a distinct difference between the IAPL-MNL SUE, NL SUE, 

and MNL SUE models, particularly at lower demand levels. The NL SUE and MNL SUE 

tended to assign higher probability values to R3 and R4 than the IAPL-MNL SUE model. At 

low demand levels, the IAPL-MNL SUE model assigned almost two times higher 

probabilities to R1 and R2 than the other two models. This was attributed to the higher 

perceived availability of b1, which the latter two routes cross. The probabilities of R3 and R4 

were identical to each other for all models. This was expected because they shared the same 

features and belonged to the same bridge choice alternative b2. Similarly, the probability of 

R1 was lower than the probability of R2 for all scenarios due to R1 having a higher FFTT 

than R2. We can also see that the difference in bridge choice probabilities between different 

bridge choice alternatives was evident at low demand levels. As demand increased, this 

difference gradually diminished. This behavior aligns with the SUE framework, which 

predicts that all SUE models tend to converge toward deterministic user equilibrium as 

congestion levels rise due to increased demand. Table 5.5 supplements Figure 5.14 by 

providing predicted route choice probabilities. 
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Table 5.5. Equilibrium probabilities for different demand levels. 

𝑞 
 Average  

v/c ratio 

IAPL-MNL-SUE NL-SUE MNL-SUE 

R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 

10 0.5 0.11 0.70 0.10 0.10 0.05 0.39 0.28 0.28 0.05 0.35 0.30 0.30 

20 1 0.12 0.47 0.20 0.20 0.07 0.40 0.26 0.26 0.06 0.40 0.27 0.27 
30 1.5 0.15 0.37 0.24 0.24 0.13 0.36 0.26 0.26 0.12 0.36 0.26 0.26 

40 2 0.19 0.31 0.25 0.25 0.18 0.31 0.25 0.25 0.18 0.32 0.25 0.25 

50 2.5 0.21 0.28 0.25 0.25 0.21 0.28 0.25 0.25 0.21 0.28 0.25 0.25 

              

Results presented in Figure 5.14 and Table 5.5 show that the proposed network 

equilibrium TA model based on the IAPL-MNL bridge-route choice model could successfully 

capture the hierarchical relationship between bridge and route choices, account for congestion 

effects, and difference between availability perception of bridge choice alternatives. 

5.3.2 Experiment 2: A large-scale network 

This section adopts the Winnipeg network as a case study to demonstrate the applicability 

of the proposed model and choice set generation technique in a real network. The network is 

shown in Figure 5.1. Two rivers separate the space into three regions: Northwest (NW), East 

(E), and Southwest (SW). These regions are connected via 15 bi-directional bridges. The 

network consists of 154 zones, 1067 nodes, 2535 links, and 4345 O-D pairs.  The network 

topology, link characteristics, and O-D demands can be found in Emme/2 software. 

5.3.2.1 Bridge choice set generation 

In this section, O-D pairs were split into two groups, and region-based and O-D specific 

bridge choice sets were generated as described in Section 5.2.4.1. The results are summarized 

in Table 5.6, Table 5.7, Figure 5.15, and Figure 5.16. 

Table 5.6 presents statistics for the number of mixed-region O-D pairs (where the origin 

and destination are in different regions). As shown in Table 5.6, there are a total of 2473 

mixed-region O-D pairs, constituting approximately 57% of all O-D pairs. This observation 

underscores the potential importance of accounting for bridge impact when making route 

choices for this network. From visual investigation of the network, all mixed-region O-D pairs 
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could be connected by single bridges. Nonetheless, longer bridge sequences were checked as 

well because they might be used to bypass congestion in the center business district (CBD). 

With the increase of the maximum length of bridge sequences, the number of bridge sequence 

variations increase according to (5.43). For example, for 𝑀 = 3, enumeration of region-based 

bridge sequences produced 25260 variations, among which 22626 were infeasible and only 

2634 feasible. Because bridge choice was modeled only for mixed-region O-D pairs, the final 

number of feasible bridge sequences was reduced to 1790. Therefore, the number of feasible 

bridge sequences remained relatively manageable. 

Table 5.6. Region-based distribution of O-D pairs and corresponding bridge sequences. 

Region of  
origin 

Region of  
destination 

Number of O-D pairs 
Number of feasible bridge sequences 

 M=1 M=2 M=3 

E NW 796 4 34 254 

SW NW 654 6 22 334 

NW E 310 5 29 303 
NW SW 278 6 30 342 

E SW 254 5 29 303 
SW E 181 4 34 254 

 Total 2473 30 178 1790 

      

The distribution of bridge choice alternatives with respect to their availability perception 

values is provided in Table 5.7 and Figure 5.15. 

Table 5.7. Number of region-based bridge sequences and O-D specific bridge choice 

alternatives. 

Bridge sequence maximum 

allowed length M 

Region-based bridge 

sequences # 

O-D specific feasible bridge choice alternative # 

Before truncation After truncation 

1 30 12,320 11,336 
2 178 72,302 52,654 

3 1790 731,941 483,176 

    

Table 5.7 provides the total number of region-based bridge sequences and O-D specific 

bridge choice alternatives for different values of maximum allowed bridge sequence length. 

Based on Table 5.6, the total number of O-D specific bridge choice alternatives could be 

calculated by summing up the multiplication of number of O-D pairs and the corresponding 

number of feasible region-based bridge sequences. For example, 𝑀 = 2 resulted in 72,302 

bridge choice alternatives. As shown in Figure 5.15, about a third of all bridge choice 

alternatives had the availability perception value lower than 0.1 (for 𝛼 = 2 and 𝛽 = 0.1). 



 

140 

Therefore, they could be truncated with a little effect on the equilibrium traffic flow pattern 

and a significant impact on computational time. 

 

Figure 5.15. Availability perception values for bridge choice alternatives at M = 2. 

 

Figure 5.16. Number of bridge choice alternatives before and after truncation. 

Figure 5.16 shows the distribution of O-D pairs before and after bridge choice alternative 

truncation for 𝑀 = 2. There were 1872 single-region O-D pairs. Since bridge choice was not 

modelled for these O-D pairs, they had no bridge choice alternatives. The remaining O-D 

pairs had bridge choice alternatives. Before truncation, almost the same number of mixed-

region O-D pairs had more than 25 bridge choice alternatives. After truncation, the number 

of alternatives was reduced by a third, and the distribution of the number of bridge choice 

alternatives among mixed-region O-D pairs became more uniform. Reducing the number of 
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bridge choice alternatives also decreased computational time, as fewer computations needed 

to be performed. 

Sensitivity analysis 

This section conducts a sensitivity analysis for parameters 𝛼 and 𝛽, which influence the 

availability perception score. 

  
(a) Sensitivity analysis for 𝛽. (b) Sensitivity analysis for 𝛼. 

Figure 5.17. Sensitivity analysis on the parameters of the availability perception value. 

Parameter 𝛽  controls sensitivity to the availability perception attribute 𝑌𝑏  (5.3), with 

higher values increasing sensitivity and lower values decreasing it (Figure 5.17a). Parameter 

𝛼 affects sensitivity to long bridge sequences, with higher values penalizing alternatives with 

longer sequences. To illustrate the impact of 𝛼, the distribution of bridge choice alternatives 

with 𝑀 = 3 is presented (Figure 5.17b). Increasing 𝛼 and 𝛽 resulted in a greater number of 

bridge choice alternatives with extreme availability perception values, both low and high. 

This is because 𝑌𝑏 is centered around its mean, calculated among bridge alternatives of the 

same O-D pair. This makes 𝑌𝑏 range from −∞ to +∞. Without centering, 𝑌𝑏 would not have 

negative values, which are crucial for calculating the availability perception score. 

5.3.2.2 Setting model parameters 

This section provides sensitivity analyses on the parameters of the selected choice 

models. The results are summarized in Figure 5.18. 
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To set model parameters, the total coefficient of variation analysis has been used as 

described in Section 3.4.3.1.1. To set parameters for the IAPL-MNL model, we find 𝜃 (route 

level parameter) using the above procedure, assuming 𝜂  (nest level parameter) is given. 

Subsequently, sensitivity analysis is conducted on 𝜂. 

 

Figure 5.18. Effect of the selected choice model parameters on the total coefficient of 

variation for the Winnipeg network. 

As shown in Figure 5.18, the parameters of the selected choice models were set such that 

the mean coefficient of variation 𝐶𝑉̅̅ ̅̅  remained within the range of 10% to 20%. 

5.3.2.3 Computational complexity analysis 

This section investigates convergence characteristics of the solution algorithm. The 

algorithm was executed for the MNL-SUE and IAPL-MNL-SUE models only. 

The stopping value of the relative gap was set at 10−5. For MNL-SUE, the parameter 𝜃 

was set at 1.0. For IAPL-MNL-SUE, the parameters 𝜃  and 𝜂  were set at 1.5  and 0.6 , 

respectively. Parameters 𝛼 and 𝛽 were set at 2 and 0.1. The numerical experiments were 

conducted on a MS Windows 11 operating system with Intel(R) Core (TM) i7-9700 CPU @ 

3.00GHz with 24 GB of RAM. The results are shown in Figure 5.19 and Table 5.8. 



 

143 

 

Figure 5.19. Convergence characteristics of the solution algorithm. 

Figure 5.19 illustrates the convergence time of the solution algorithm for both the MNL-

SUE model and the IAPL-MNL-SUE model.Table 5.8 further elaborates on it. The IAPL-

MNL-SUE model was tested under different values of 𝑀 . As shown in Figure 5.19, the 

computational complexity increased with 𝑀 . Nonetheless, the algorithm managed to 

converge in reasonable times for all three cases. As expected, the MNL-SUE had the lowest 

computational time because it was the simplest among the two. In the IAPL-MNL-SUE model 

case, the computational time showed to be highly dependent on the parameter 𝑀  – the 

maximum allowed bridge number in a bridge sequence. Higher values required more 

computational time for the algorithm to converge than the lower ones. The reason was that 

higher 𝑀 values resulted in higher number of region-based bridge sequence variations, which 

increased the number of O-D specific bridge choice alternatives as shown in Table 5.8. 

Based on Table 5.8, the IAPL-MNL-SUE model converged in fewer iterations than the 

MNL-SUE model. Moreover, with the increase of 𝑀, the number of iterations reduced. This 

was attributed to the higher number of variations of bridge sequence in the choice set. 

However, the computation time increased proportionally to the increased number of 
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alternatives. Therefore, assuming that greater a number of variations provide more realistic 

combinations of bridges, tradeoff has to be found between realism and computational time. 

Table 5.8. Convergence characteristics: MNL-SUE vs. IAPL-MNL-SUE. 

Model Iteration # 
Total CPU time  

(in sec.) 

Bridge choice set 

generation time 
(in sec.)  

Aver. CPU time  

per iter. (in sec.) 
Total route #  

MNL-SUE 105 57.1 - 0.6 15,312 

IAPL-MNL-SUE 

(M=1) 
101 150.6 1.3 1.5 51,482 

IAPL-MNL-SUE 

(M=2) 
76 631.8 2.8 8.3 247,530 

IAPL-MNL-SUE 
(M=3) 

82 7354.9 34.4 89.7 2,358,473 

      

It was observed that with the increase of 𝑀, the number of iterations reduced for the 

IAPL-MNL-SUE model. This was attributed to the higher number of variations of bridge 

sequence in the choice set. However, the computation time increased proportionally to the 

dimensionality of the problem. 

5.3.2.4 Flow allocation comparison 

In this section, the difference between the traffic flow patterns obtained from the IAPL-

MNL-SUE and MNL-SUE models were investigated. The results are summarized in Figure 

5.20 and Figure 5.21 for 𝑀 = 2. 

Direct comparison of route flows  infeasible due to different choice sets from the models. 

Instead, absolute and relative differences were analyzed, with aggregated link flow 

differences measured using RMSE (5.45). 

𝑅𝑀𝑆𝐸 = √
1

|𝐴|
∑(𝑥𝑎𝐼𝐴𝑃𝐿 − 𝑥𝑎𝑀𝑁𝐿)2

𝑎∈𝑋

 (5.45) 

where 𝑋 ⊆ 𝐴 denotes the set of investigated links, which is a subset of the whole link set 𝐴; 

𝑥𝑎
𝐼𝐴𝑃𝐿  and 𝑥𝑎

𝑀𝑁𝐿  are flow on link 𝑎  for the IAPL-MNL-SUE and MNL-SUE models, 

respectively. The relative link flow difference was calculated according to (5.46). 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑓𝑓 (%) =
|𝑥𝑎
𝐼𝐴𝑃𝐿 − 𝑥𝑎

𝑀𝑁𝐿|

0.5 (𝑥𝑎𝐼𝐴𝑃𝐿 + 𝑥𝑎𝑀𝑁𝐿)
× 100 % (5.46) 
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Figure 5.20 illustrates link absolute flow differences in GIS map. The size of the blue 

circles indicates how much the link flows of the two models deviate from each other. For 

clarity, flow differences in both directions were summed for each link. 

 

Figure 5.20. The Winnipeg network: Link flow difference visualized on GIS map. 

Figure 5.20 illustrates that larger differences were observed in links near the CBD. 

Notably, flow discrepancies between the two models were pronounced for bridges near the 

CBD, gradually diminishing with distance from the CBD. Figure 5.21 further elaborates on 

the link flow differences at 𝑀 = 2. 
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(a) Absolute differences of bridge flows. (b) Relative differences of bridge flows. 

Figure 5.21. Equilibrium link flow differences for IAPL-MNL and MNL-SUE models. 

Figure 5.21 demonstrates that the MNL-SUE model substantially underestimated bridge 

flows for all bridges except B5 and B14, with the most pronounced underestimations observed 

for B4 and B11. Conversely, it overestimated flows for B5 and B14. These discrepancies 

suggest that incorporating the hierarchical relationship between bridge and route choices, 

along with the availability perception of bridge choice alternatives, as done by the developed 

IAPL-MNL-SUE model, may be crucial for achieving plausible equilibrium traffic 

assignment. 

5.3.3 Discussion on practical implications 

While prior research acknowledges bridges as critical infrastructure or contextual factors 

in route choice, our study advances policy relevance by quantifying how travelers perceive 

bridges as cognitive landmarks—hierarchically shaping their route decisions—and how these 

perceptions propagate into network-wide traffic patterns under equilibrium. Unlike past 

studies that focus narrowly on how bridges influence individual route choices, our model 

connects traveler behavior — like avoiding bridges or choosing routes based on them — to 

traffic patterns across the entire network. This can potentially allow policymakers to predict 
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how actions targeting bridges (e.g., tolls, closures, upgrades) shift congestion throughout the 

system. 

5.4 Chapter summary 

This chapter developed a new joint bridge-route choice model, incorporating an implicit 

availability/perception logit model for bridge choice and a multinomial logit model for route 

choice (IAPL-MNL). The hierarchical structure of this joint model reflects the complex 

decision-making processes in urban mobility, where bridges often serve as critical points, 

particularly in bridge-centric transport networks. The availability perception characteristics 

capture the viability of bridge choice alternatives. Additionally, it developed a corresponding 

network equilibrium TA model (IAPL-MNL-SUE) and a customized route-based solution 

algorithm with bridge-centric choice set generation. These models and the solution algorithm 

acknowledge bridges as pivotal elements within transportation networks and align well with 

strategic transport policy objectives, which might prioritize the management of bridge 

congestion. 

Next chapter applies the developed bridge-centric network equilibrium framework to 

bridge criticality analysis. 
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CHAPTER 6 

Proactive disruption mitigation: Bridge 

criticality analysis with a bridge-centric 

traffic assignment framework 

The previous chapter developed a bridge-centric network equilibrium traffic assignment 

(TA) framework that effectively captured the impact of bridges on individual route choices 

and network flows. In this chapter, the developed bridge-centric TA framework is integrated 

into a selected link criticality analysis method. The properties of the method are demonstrated, 

and it is then applied to analyze bridge criticality in a large-scale bridge-centric transport 

network. 

6.1 Motivation 

Bridges are critical components of bridge-centric transport networks (i.e., networks 

spanned by natural barriers and connected by bridges). They play a vital role in connecting 

parts of the network divided by obstacles such as rivers, making them essential for reaching 

certain destinations. However, they are also costly to design, construct, and maintain 

(Argyroudis et al., 2019, Bocchini and Frangopol, 2011, Kurth et al., 2020). Bridges are 

elevated from the ground. They consist of three main components: foundation (includes piles, 

caps, and bents), substructure (includes abutments, piers, and pier caps), and superstructure 

(includes girders, bearings, trusses, decks, barriers, and arches) (Hancilar et al., 2013, Singh 

et al., 2002). Thus, bridges are more important and vulnerable than ordinary road segments 

(Capacci et al., 2022). 
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Disruption of bridges may result in high socio-economic losses. Structural complexity 

makes bridges more vulnerable to hazards than ordinary roads. For example, earthquakes can 

dislocate permanently abutment walls or cause bridge deck to pound against abutment walls 

(Fakharifar et al., 2015); floods can induce scours undermining piers and abutments (Tubaldi 

et al., 2022); and hydraulic forces from high water levels and strong currents can potentially 

lead to settlement or tilting (Sullivan et al., 2024). The structural complexity also leads to 

considerably more time and cost required for repairing bridges than repairing road segments. 

Additionally, bridge collapses can have far more severe consequences than road segment 

failures. For example, a failure of a single bridge can hinder movement of people and goods  

in a region for months or years beyond lives lost and the costs of replacement (Adam et al., 

2024). All these factors can result in substantial socio-economic losses (Zhang et al., 2023). 

Because of high and long-term potential socio-economic losses that bridge disruption can 

cause, assessing the criticality of bridges in the road networks divided by natural obstacles is 

of paramount importance for prioritizing disaster mitigation efforts. However, the essential 

functional importance of bridges, including their impacts on individual route choices and 

network flows, and their structural vulnerability have not been sufficiently emphasized in 

existing link criticality analysis methods. Traditional TA models used in link criticality 

analysis tend to treat all network links as uniformly important, making no distinction between 

bridges and ordinary road segments (Alizadeh et al., 2018, Habib et al., 2013, Manley et al., 

2015). On the other hand, although road link failures often allow for quicker recovery 

compared to bridges, due to less complex repairs (Singh et al., 2002) and the availability of 

alternative routes (Tubaldi et al., 2022), some road links can still remain more critical 

functionally than some bridges. Their failure can disrupt network operations to an extent that 

exceeds the potential impact of certain bridge collapses (Kurth et al., 2020). These suggest 

that proactive disruption mitigation may require an approach that would be able to 
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endogenously find a trade-off between acknowledging potential high negative consequences 

of bridge collapses and respecting functional importance of ordinary road links for normal 

operation of bridge-centric transport networks. 

This chapter advances the link criticality index (LCI) method introduced in Chapter 3 by 

integrating the bridge-centric TA framework from Chapter 5 and incorporating structural 

vulnerability considerations. This approach recognizes the higher structural vulnerability of 

bridges and their greater impact on the route choice process compared to ordinary road 

segments when assessing link criticality. In contrast to previous chapters where bridge 

criticalities were discussed in isolation from other network links, this chapter compares the 

criticalities of bridges with those of other network links. 

The structure of this chapter is as follows: Section 6.2 presents the bridge-centric link 

criticality analysis method. Section 6.3 details the experimental design and discusses the 

results. Section 6.4 offers concluding remarks. 

6.2 Bridge-centric link criticality analysis methodology 

This section provides a brief introduction to the bridge-centric TA framework developed 

in Chapter 5 and elaborates on the advancements of the LCI method introduced in this chapter. 

6.2.1 Bridge-centric network equilibrium framework 

This chapter adopts a bridge-centric TA framework developed in Chapter 5. The bridge-

centric TA framework includes an intricate mathematical network model, a new joint bridge-

route choice model, a corresponding TA model, and a customized route-based solution 

algorithm. 
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Bridge-centric transport network model 

Road network models used in conventional TA models do not distinguish between bridge 

links and common road segment links. They treat all network links uniformly. The bridge-

centric transport network model makes this distinction, emphasizing bridges as critical 

infrastructure elements as shown in Figure 6.1. The bridge-centric transport network model 

can be considered as a generalization of conventional road network models. 

 

Figure 6.1. Network models: Road network vs. bridge-centric transport network. 

Joint bridge-route choice model 

Multiple empirical studies have reported hierarchical relationships between bridge and 

route choices, implying that routes are chosen conditional on bridge choices (Alizadeh et al., 

2018). The joint bridge-route choice model adopted in this study is a nested model, 

incorporating the implicit availability perception logit (IAPL) model for managing the 

availability perception of bridge choice alternatives and the bridge choice itself, along with 

the MNL model for route choice (IAPL-MNL). In the IAPL-MNL model, bridge choice 

alternatives are O-D specific and may include more than one bridge represented by bridge 

sequences, i.e., the specific order that bridges are used. Different orders of the same 

combination of bridges are represented by different bridge sequences, as changing the order 

can make the bridge choice alternative infeasible (e.g., no connection to the second bridge if 
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the first is missing). At the marginal choice level, each bridge choice alternative forms a 

bridge nest; at the conditional choice level, each route belongs to a single bridge nest. It is 

worth emphasizing that this model has a closed-form probability expression, which ensures 

analytical tractability. 

The joint bridge-route choice probability 𝑃𝑘 can be stated as a multiplication of the route 

choice probability conditional 𝑃𝑘|𝑏 on bridge nest and the marginal probability of bridge nest 

𝑃𝑏 as follows: 

𝑃𝑘 = 𝑃𝑘|𝑏 ⋅ 𝑃𝑏 , ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾𝑏 (6.1) 

where the conditional probability of selecting route 𝑘 in nest 𝑏 is modeled by MNL: 

𝑃𝑘|𝑏 =
𝑒−𝜃𝑐𝑘

∑ 𝑒−𝜃𝑐𝑗𝑗∈𝐾𝑏

, ∀𝑏 ∈ 𝐵, ∀𝑘 ∈ 𝐾𝑏 (6.2) 

and the marginal probability of bridge nest 𝑏 is modeled by IAPL: 

𝑃𝑏 =

[∑ 𝑒
−𝜃(𝑐𝑘−(ln 𝜇̅𝑏−

1−𝜇̅𝑏
2𝜇̅𝑏

))

𝑘∈𝐾𝑏 ]

𝜂
𝜃

∑ [∑ 𝑒
−𝜃(𝑐𝑘−(ln 𝜇̅ℎ−

1−𝜇̅ℎ
2𝜇̅ℎ

))

𝑘∈𝐾ℎ ]

𝜂
𝜃

ℎ∈𝐵

, ∀𝑏 ∈ 𝐵 (6.3) 

where 𝐵 is a set of bridge nests; 𝐾𝑏 is set of routes that passes through bridge nest b; 𝜃 and 𝜂 

are scaling parameters at the route choice and bridge choice levels, respectively; 𝑐𝑘  is 

deterministic travel time for route 𝑘; and 𝜇̅𝑏 is expected value of availability perception of 

bridge choice alternative 𝑏 specified as a binomial logit model: 

𝜇̅𝑏 =
1

1 + 𝑒𝛽𝑌𝑏
, ∀𝑏 ∈ 𝐵 (6.4) 

where 𝑌𝑏  is availability perception attribute of bridge choice alternative 𝑏  and 𝛽  is a 

corresponding scaling parameter. The availability perception value serves two objectives: 

truncating unreasonably distant bridge choice alternatives and modeling intermediate 
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availability degrees to address potential bridge choice set misspecification. For more 

information on the availability perception value, an interested reader may refer to Chapter 5. 

Equivalent mathematical programming (MP) formulation 

This section presents an equivalent MP formulation for the joint bridge-route choice 

IAPL-MNL model. The adopted TA model is referred to as IAPL-MNL-SUE. 

Mathematically, the SUE conditions are expressed in (6.5): 

𝑓𝑘
𝑤 = 𝑞𝑤 ⋅ 𝑃𝑘

𝑤(𝑓𝑘
𝑤), ∀𝑤 ∈ 𝑊,∀𝑏 ∈ 𝐵𝑤, ∀𝑘 ∈ 𝐾𝑏

𝑤,  (6.5) 

where 𝑊 is set of all O-D pairs, 𝐾𝑏
𝑤 is set of routes between O-D pair w, 𝑞𝑤 is travel demand 

between O-D pair 𝑤, 𝑓𝑘
𝑤 is traffic flow on route k between O-D pair 𝑤, 𝑃𝑘

𝑤 is probability of 

choosing route k using bridge choice alternative b between O-D pair 𝑤 . The probability 

expression for the IAPL-MNL bridge-route choice model is given in (6.1). 

To be consistent with the utility maximization behavior underlying the hierarchical 

choice structure (Ben-Akiva and Lerman, 1985a), the dispersion (scale) parameters at 

different choice levels must satisfy the condition that   . To facilitate the formulation of 

the developed equilibrium model with multiple choice levels, the dispersion parameters are 

re-expressed as r = , 
1 1 1

b  
= − . Owing to the above condition on dispersion parameters, 

𝜃𝑟 , 𝜃𝑏 > 0. 

The resulting SUE model is formulated as an equivalent MP problem: 

min
𝑓
𝑍 =  ∑ ∫ 𝑐𝑡𝑎(𝑣)𝑑𝑣

𝑥𝑎

0𝑎∈𝐴𝐶

+ ∑ ∫ 𝑏𝑡𝑎(𝑣)𝑑𝑣
𝑥𝑎

0𝑎∈𝐴𝐵

+
1

𝜃𝑟
∑ ∑ 𝑓𝑘

𝑤 ln 𝑓𝑘
𝑤

𝑘∈𝐾𝑤𝑤∈𝑊𝐶

+
1

𝜃𝑟
∑ ∑ ∑ 𝑓𝑘

𝑤 ln 𝑓𝑘
𝑤

𝑘∈𝐾𝑏
𝑤𝑏∈𝐵𝑤𝑤∈𝑊𝐵

+
1

𝜃𝑏
∑ ∑ 𝑞𝑏

𝑤 ln(𝑞𝑏
𝑤)

𝑏∈𝐵𝑤𝑤∈𝑊𝐵

− ∑ ∑ 𝑞𝑏
𝑤 (ln 𝜇̅𝑏 −

1 − 𝜇̅𝑏
2𝜇̅𝑏

)

𝑏∈𝐵𝑤𝑤∈𝑊𝐵

 

(6.6) 

subject to 
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∑ 𝑓𝑘
𝑤

𝑘∈𝐾𝑤

= 𝑞𝑤, ∀𝑤 ∈ 𝑊𝐶 (6.7) 

∑ 𝑓𝑘
𝑤

𝑘∈𝐾𝑏
𝑤

= 𝑞𝑏
𝑤, ∀𝑤 ∈ 𝑊𝐵 , 𝑏 ∈ 𝐵

𝑤  (6.8) 

∑ 𝑞𝑏
𝑤

𝑏∈𝐵𝑤

= 𝑞𝑤, ∀𝑤 ∈ 𝑊𝐵 (6.9) 

𝑓𝑘
𝑤 ≥ 0, ∀𝑤 ∈ 𝑊, 𝑘 ∈ 𝐾𝑤 (6.10) 

𝑞𝑏
𝑤 ≥ 0, ∀𝑤 ∈ 𝑊𝐵 , 𝑏 ∈ 𝐵

𝑤  (6.11) 

𝑥𝑎 = ∑ ∑ 𝑓𝑘
𝑤δ𝑎,𝑘

𝑤

𝑘∈𝐾𝑤𝑤∈𝑊

,   ∀𝑎 (6.12) 

where  𝐴𝐶  is set of common links, 𝐴𝐵 is set of bridge links, 𝑊𝐶 is set of common O-D pairs 

that do not need bridges, 𝑊𝐵 is a set of O-D pairs that need bridges, 𝐵𝑤 is subset of bridges 

for O-D pair 𝑤, δ𝑎,𝑘
𝑤  is a route-link incidence indicator, 𝑥𝑎 is traffic flow on link 𝑎, 𝑐𝑡𝑎(⋅) is 

travel time on common link a, 𝑏𝑡𝑎(⋅) is travel time on bridge link a, 𝑞𝑏
𝑤 is traffic flow passing 

through bridge nest b between O-D pair 𝑤 , 𝑞𝑤  is travel demand between O-D pair 𝑤 , 

respectively. 

This study customizes a route-based partial linearization algorithm for bridge-centric TA 

model. First, the bridge choice set is explicitly generated prior to the iterative network 

equilibration process. Then, within the iterative equilibration process, the route choice set is 

implicitly generated based on the bridge choice set using a multi-step column generation 

algorithm, ensuring routes pass through specified bridges. Network flows are updated using 

a route-based partial linearization algorithm as explained in  Patriksson (1994). 

6.2.2 Bridge-centric link criticality index 

Earlier LCI methods could not plausibly capture the criticality of bridges for two main 

reasons. First, they rely on conventional TA models that overlook the hierarchical relationship 

between bridges and routes. Second, they fail to account for bridges' higher structural 

vulnerabilities compared to ordinary road segments. This omission can lead to equal criticality 
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values being assigned to both types of links representing bridges and ordinary road segments, 

as shown in Figure 6.2. 

Figure 6.2 provides an illustrative example with a single-route network where all links 

appear equally critical if no distinction is made between links representing bridges and 

ordinary road segments. However, as previously noted, bridge links often hold greater 

criticality due to their structural complexity, high reconstruction costs, and extended repair 

timelines. 

 

Figure 6.2. Rationale for incorporating structural vulnerability weights into LCI. 

This chapter advances the LCI method by integrating the IAPL-MNL-SUE TA model 

and a structural vulnerability coefficient, 𝜑𝑎, for each link 𝑎 ∈ 𝐴. This integration enables the 

efficient identification of links that are both functionally critical and structurally vulnerable. 

The method introduced in this section is termed the bridge-centric LCI method. The bridge-

centric LCI method is schematically shown in Figure 6.3. 
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Figure 6.3. Bridge-centric link criticality index. 

Typically, vulnerability coefficients 𝜑𝑎, ∀𝑎 are derived from fragility curves (Argyroudis 

et al., 2019), which estimate the likelihood of infrastructure failure under various hazard 

intensities. To plausibly capture the higher structural vulnerability of bridges compared to 

ordinary road segments, without aiming to replicate reality precisely, we manually assign 

higher structural vulnerability coefficients to bridge links. These coefficients range from 0 

(least vulnerable) to 1 (most vulnerable). Additionally, sensitivity analysis on this coefficient 

is conducted in numerical experiments to evaluate its impact on the results. For a more 

accurate representation, fragility curves should be calibrated using real-world data. 

The link criticality score 𝑆𝑎
𝑛 is calculated as the product of a link’s additional flow at 

iteration 𝑛 + 1 and its marginal cost (MC): 

𝑆𝑎
𝑛 = 𝑚𝑎𝑥([𝑥𝑎

𝑛+1 − 𝑥𝑎
𝑛], 1.0) ⋅

𝑚𝑐𝑎(𝑥𝑎
𝑛)

𝑡𝑎(𝑥𝑎
𝑛)

, ∀𝑎 ∈ 𝐴, ∀𝑛 ∈ 𝑁 (6.13) 

where 𝑥𝑎
𝑛 is flow through link 𝑎 at iteration 𝑛, 𝑚𝑐𝑎 is MC on link 𝑎. The latter is calculated 

as follows: 
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𝑚𝑐𝑎(𝑥𝑎
𝑛) = 𝑡𝑎(𝑥𝑎

𝑛) + 𝑥𝑎
𝑛𝑡𝑎
′ (𝑥𝑎

𝑛), ∀𝑎 ∈ 𝐴 (6.14) 

where 𝑡𝑎 is travel time on link 𝑎, and 𝑡𝑎
′  is the derivative of link travel time with respect to its 

flow. 

Link criticality score is a local metric that overlooks a link's network role. Weighing it 

by demand-based (6.15) and route-based (6.16) factors can incorporate network connectivity 

information effectively. 

𝛾𝑤 =
𝑞𝑤

𝑄
, ∀𝑤 ∈ 𝑊 (6.15) 

where 𝑞𝑤 denotes travel demand of O-D pair 𝑤 and 𝑄 denotes total network travel demand. 

𝜂𝑘
𝑤,𝑛 =

1/𝐶𝑘
𝑤,𝑛

∑ 1/𝐶𝑖
𝑤,𝑛

𝑖∈𝐾𝑤
, ∀𝑤 ∈ 𝑊,∀𝑘 ∈ 𝐾𝑤, ∀𝑛 ∈ 𝑁 

(6.16) 

where 𝐶𝑘
𝑤,𝑛 is perceived travel cost on route 𝑘 for O-D pair 𝑤 at iteration 𝑛. 

6.3 Numerical experiments 

This section conducts three experiments, in which the properties of the bridge-centric 

LCI method were analyzed showing its practical feasibility for bridge criticality assessment 

as shown in Table 6.1. 

Table 6.1. Analyzing feature impacts on bridge criticality across experiments. 

 Features 
Experiment 1: 

Toy network 

Experiment 2: 

Nguyen-Dupuis 

Experiment 3: 

Winnipeg 

1 Joint bridge-route choice ✓ ✓ ✓ 

2 Congestion effects ✓ ✓ ✓ 

3 Multiple O-D pairs  ✓ ✓ 

4 Network structure  ✓ ✓ 

5 Choice set  ✓ ✓ 

6 Non-uniform travel demand  ✓ ✓ 

7 Bridge choice alternatives with multiple bridges   ✓ 

 8 Structural vulnerability coefficient   ✓ 
     

Throughout this section, the following parameter settings for joint bridge-route choice 

model were used unless otherwise specified: the availability attribute scaling parameter 𝛽 was 
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set at 0.3, the structural vulnerability coefficient was set to 1, the scaling parameters 𝜃 and 𝜂 

were set at 1.0 and 0.5, respectively. 

In this chapter, availability perception is defined at a disaggregated level for bridge 

choice alternatives, which may include multiple bridges. To apply this concept to individual 

bridges, the availability perception values are aggregated as follows: 

𝜇̂𝑎 =∑ 𝜇̅𝑏
𝑏∈𝐵

, ∀𝑎 ∈ 𝐴𝐵 (6.17) 

where 𝐴𝐵  is set of all bridges, 𝐵 is set of all bridge choice alternatives, 𝜇̂𝑎  is availability 

perception of bridge 𝑎, and 𝜇̅𝑏 is expected availability perception of bridge choice alternative 

𝑏. 

To facilitate the comparison of LCI values derived from different TA models, these 

values were normalized to fall within the range of 0 to 1, i.e.: 

𝐿𝐶𝐼̃𝑎 =
𝐿𝐶𝐼𝑎

∑ 𝐿𝐶𝐼𝑖𝑖∈𝐴
, ∀𝑎 ∈ 𝐴 (6.18) 

and 

∑𝐿𝐶𝐼̃𝑎
𝑎∈𝐴

= 1.0 (6.19) 

6.3.1 Experiment 1: A toy bridge-centric transport network 

This section analyses the properties of the bridge-centric LCI method using the toy 

network in Figure 6.4. It investigates the impact of joint bridge-route choice TA model on 

link criticality values. Sensitivity analysis is then conducted for the key parameters of the 

underlying bridge-centric TA model. 
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Figure 6.4. A toy network and structure of the corresponding joint bridge-route choice 

model. 

As shown in Figure 6.4, the network is divided by a river into two regions, connected by 

two bridges. It consists of eight links and a single O-D pair with four routes. Routes R1 and 

R2 use bridge b1, while routes R3 and R4 use bridge b2. It can be interpreted as travelers 

choosing among four routes conditioned on two bridges. Link free-flow travel times (FFTT) 

are provided in Figure 6.4. Routes R1 and R3 have the shortest FFTT values of 19. Routes 

R2 and R4 have FFTT values of 20. The O-D demand is set at 30. 

The network is designed so that Link 1, Link 2, b1, and b2 are expected to have higher 

criticality values than the other links in the network due to their critical role in connecting the 

O-D pair. Moreover, Link 1 and bridge b1, shared by R1 and R2, are expected to have 

identical criticality values because they are adjacent to each other and equally important for 

the connection, as are Link 4 and bridge b2, shared by R3 and R4. Depending on the selected 

TA model, either Link 1 and b1 or Link 4 and b2 can be ranked higher. 

The impact of TA models on link criticality values is explored in the subsection below. 
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6.3.1.1 Impact of TA model on bridge criticality  

This subsection evaluates and compares the MNL-SUE LCI proposed in Chapter 3 and 

the bridge-centric LCI method proposed in the current chapter. The results are summarized 

in Table 6.2, Figure 6.5, and Figure 6.6. 

Table 6.2 provides link criticality values and corresponding criticality ranks for the LCI 

methods based on the selected models. 

Table 6.2. Criticality values for MNL-SUE and bridge-centric LCI. 

Link label 
MNL-SUE LCI Bridge-centric LCI  

LCI Norm. LCI Criticality rank LCI Norm. LCI Criticality rank 

b1 152.77 0.203 2 156.31 0.227 1 

b2 157.08 0.208 1 128.12 0.186 2 

1 152.77 0.203 2 156.31 0.227 1 

2 39.52 0.052 3 42.06 0.061 3 

3 27.75 0.037 6 21.64 0.031 5 
4 157.08 0.208 1 128.12 0.186 2 

5 38.22 0.051 4 35.47 0.052 4 

6 28.84 0.038 5 19.43 0.028 6 

       

As shown in Table 6.2, the choice of TA model can, indeed, affect link criticality ranks. 

The MNL-SUE LCI method ranked Link 1 and b1 lower than Link 4 and b2, whereas the 

bridge-centric LCI method ranked Link 1 and b1 higher than Link 4 and b2. One feasible 

explanation is that, unlike the MNL-SUE model, the IAPL-MNL-SUE model considers 

bridge availability perception, influencing joint bridge-route choice probabilities. With 

availability perception values of 0.92 for b1 and 0.08 for b2, it is reasonable that the bridge 

(b1) that was perceived more available and the upstream link (Link 1) received a higher 

criticality value. 

Figure 6.5 complements Table 6.2 by displaying normalized link criticality values in 

descending order for the two LCI methods, visually highlighting the magnitude of criticality 

values across different ranks within each method and between the methods. 
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Figure 6.5. Sorted criticality values for MNL-SUE LCI and bridge-centric LCI methods. 

Figure 6.5 shows that Link 1, Link 4, b1, and b2 had substantially higher LCI values than 

other links as expected. Notably, the magnitude difference between rank 1 and rank 2 links 

was almost 10 times greater for the bridge-centric LCI method (i.e., 0.227-0.186=0.041) 

compared to the MNL-SUE LCI method (i.e., 0.208-0.203=0.005). The significant difference 

in availability perception values for the two bridges (0.92 for b1 and 0.08 for b2) could also 

cause the large criticality magnitude difference between rank 1 and rank 2 links. 

Figure 6.6 elaborates on the criticality values of bridges, breaking them down by 

components and first 49 iterations. It facilitates the explanation why the bridge-centric LCI 

method ranked Link 1 and b1 higher than Link 4 and b2, while the MNL-SUE LCI method 

did the opposite. 

Figure 6.6 shows that the LCI methods oscillate, with greater oscillation in the IAPL-

MNL-SUE-based method than in the MNL-SUE-based method. These oscillations damped 

with iterations. It seems that the MNL-SUE-based method ranked b2 higher than b1 due to 

slightly higher criticality scores (Figure 6.6a). However, the magnitudes of the final LCI 

values of these bridges were visually similar (Figure 6.6e). Conversely, the bridge-centric 

method ranked b1 higher than b2 due to dominant weights (Figure 6.6d), resulting in 

noticeably different final criticality values (Figure 6.6f). 
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(a) Criticality scores: MNL-SUE. (b) Criticality scores: IAPL-MNL-SUE. 

  

(c) Combined weight: MNL-SUE. (d) Combined weight: IAPL-MNL-SUE. 

  

(e) LCI values: MNL-SUE. (f) LCI values: IAPL-MNL-SUE. 

  

Figure 6.6. Decomposition of two LCI methods by components and iteration. 

This subsection compared the link criticality values of the MNL-SUE LCI and bridge-

centric LCI methods. The results suggest that the criticality of links in routes crossing bridges 

perceived as more available can be significantly underestimated, while the criticality of links 

in routes crossing bridges perceived as less available can be substantially overestimated. The 
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next section performs sensitivity analysis for the key parameters of the bridge-centric TA 

model and analyzes how these parameters impact the corresponding LCI method. 

6.3.1.2 Sensitivity analysis 

This subsection conducts sensitivity analysis for the key parameters of the adopted 

bridge-centric TA model and investigates their impact on the corresponding LCI method. The 

results are summarized in Figure 6.7 - Figure 6.9. 

  

(a) Impact of 𝛽 on bridge avail. perc. (b) Impact of 𝛽 on LCI. 

Figure 6.7. Sensitivity analysis for parameter beta of the IAPL-MNL-SUE model. 

Parameter 𝛽 scales the availability perception attribute, influencing travelers’ sensitivity 

to perceived availability of bridge choice alternatives. Figure 6.7a shows that increasing 𝛽 

raised the availability perception of bridge b1 and lowers it for bridge b2. Adjusting 𝛽 

modifies these perceptions. Figure 6.7b demonstrates that at low 𝛽 levels, bridge-centric LCI 

values were close to the MNL-SUE-based values but diverge as 𝛽 increased. This indicates 

that the bridge-centric LCI method offers greater flexibility in controlling link criticality 

values by adjusting 𝛽. 

Figure 6.8 shows that the bridge nest level scaling parameter 𝜂 has a minimal effect on 

criticality measures compared to the parameter 𝛽, as LCI ranks exhibit negligible variation 

across different 𝜂 values. 
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Figure 6.8. Impact of the parameter eta of the bridge-centric TA model on LCI values. 

Figure 6.9 indicates that the difference between criticality values of the bridge-centric 

LCI and MNL-SUE LCI methods vanishes at high demand levels. 

 

Figure 6.9. Impact of demand level on criticality of bridges. 

This section investigated the properties of the bridge-centric LCI method and compared 

it to the MNL-SUE LCI method using a simple network. The next section applies the 

developed method to a relatively more complex network with multiple O-D pairs. 

6.3.2  Experiment 2: The Nguyen-Dupius network 

The previous section showed that bridges perceived as more available tended to receive 

higher criticality scores than those perceived as less available. This section further 
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investigates the properties of the bridge-centric LCI method. It demonstrates that not only 

availability perception but also network structure, choice set, and O-D interactions can 

substantially influence overall link criticalities. 

This section adapts the Nguyen-Dupuis network (Figure 6.10). The network comprises 

13 nodes, including four zones, and 19 links. It includes four O-D pairs, each with a travel 

demand of 200. These O-D pairs are connected by a total of 25 routes. The network is divided 

by a river, with three bridges providing connectivity. For all O-D pairs except (1, 2), routes 

have no other option but to cross one of the bridges.  Figure 6.10 presents the network 

topology and link characteristics. 

 

Figure 6.10. The Nguyen-Dupius bridge-centric transport network. 

6.3.2.1 Impact of network structure on bridge criticality 

This subsection examines the impact of network structure on bridge criticalities, 

assuming uniform travel demand for all O-D pairs and enumerated bridge and route choices 
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(see Table 6.10). The results are summarized in Table 6.3 and Figure 6.11. The LCI values 

for all links can be found in Table 6.11 and Table 6.12. 

For each bridge, Table 6.3 provides the route numbers for each bridge, their availability 

perceptions, LCI values, and overall rankings. 

Table 6.3. Characteristics of bridges in the Nguyen-Dupius network. 

Bridge Link ID Route number Avail. perc. LCI Norm. LCI Overall rank 

b1 7 9 1.56 114.45 0.120 2 

b2 14 12 1.07 96.74 0.102 3 

b3 19 3 1.36 16.26 0.017 16 

       

As shown in Table 6.3, bridge b2 with a lower availability perception value was assigned 

with a higher criticality ranking than bridge b3 with a higher availability perception value. 

Figure 6.11 presents the criticality scores and their corresponding weights for bridges across 

the first 22 iterations. 

  

(a) Criticality scores for bridges. (b) Weights for bridges. 

Figure 6.11. Bridge criticality scores and weights for the Nguyen-Dupius network. 

As shown in Figure 6.11, bridges b1 and b2 had higher criticality scores and weights than 

bridge b3. At first few iterations, bridge b1 had the highest scores, with b2 surpassing b3. By 

iteration 5, the algorithm started approaching equilibrium, equalizing the scores (Figure 

6.11a). Weights in Figure 6.11b represent the aggregated O-D demand- and route-based 

weights. Due to uniform O-D demands, the O-D demand-based weights were the same for all 

links. Therefore, the aggregated weights varied due to the number of routes and their costs. 
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Bridge b2, crossed by 12 routes, had the highest weights, while b3, crossed by three routes, 

had the lowest. These weights, combined with criticality scores, produced the LCI values in 

Table 6.3. 

The bridge-centric LCI method ranks b2 higher than b3, despite b2 having a lower 

availability perception value than b3, suggesting that higher availability perception values do 

not always result in higher bridge criticality rankings. A bridge can be ranked high due to its 

role in facilitating redundancy. Within a single network, it is possible that bridges serving O-

D pairs in sparse regions, where redundancy tends to be lower, are ranked lower than those 

in dense regions, where redundancy is typically higher. 

This subsection demonstrated that network structure can influence bridge criticalities, 

assuming uniform O-D demand and an enumerated choice set. The next subsection 

investigates how relaxing the enumerated choice set affects bridge criticalities. 

6.3.2.2 Impact of choice set on bridge criticality 

In large-scale networks, it is impractical to enumerate all routes. Instead, analysts create 

subsets of feasible routes either before or during TA process using various techniques. These 

subsets can differ in size and composition. This subsection employs a bridge-centric method 

for generating route choice sets and examines its effect on the criticality of bridges. A uniform 

travel demand for all O-D pairs is assumed. The results are summarized in Table 6.4 and 

Figure 6.12. LCI values for all links can be found in Table 6.11 and Table 6.12. 

Table 6.4 provides bridge criticalities using the bridge-centric LCI method with both 

enumerated and implicitly generated route choice sets. 

As shown in Table 6.4, the number of routes using bridge b2 halved from 12 to 6, causing 

its overall rank to fall from 3rd to 9th. Meanwhile, bridge b3’s rank improved by one position, 

likely due to absorbing some of the flow from bridge b2. 
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Table 6.4. Bridge criticalities: Enumerated vs. implicit choice sets. 

Bridge 

label 

Link 

label 

Aggregated 

avail. perc. 

Enumerated choice set Bridge-centric choice set generation 

Norm. LCI Route No. Rank Norm. LCI Route No. Rank 

b1 7 1.56 0.120 9 2 0.133 6 2 

b2 14 1.07 0.102 12 3 0.050 6 9 

b3 19 1.36 0.017 3 16 0.018 3 15 

         

Figure 6.12 demonstrates the aggregated LCI weights for bridges over the first 22 

iterations in two scenarios. 

  

(a) Enumerated choice set. (b) Implicitly generated choice set. 

Figure 6.12. Weights for bridges: Enumerated choice set vs. generated choice set. 

As shown in Figure 6.12, the aggregated weights for bridge b2 were the highest in the 

enumerated route set scenario, but they dropped below the aggregated weights for bridge b1. 

This demonstrates that the method of generating route choices (explicitly or implicitly) can 

affect the ranking of link criticality. Bridges with a greater number of routes can be assessed 

as more critical than bridges with a lower number of routes. 

This subsection investigated how choice sets can affect bridge criticalities under the 

assumption of uniform O-D demands. Next subsection relaxes this assumption. 

6.3.2.3 Impact of non-uniform O-D travel demands on bridge criticality 

Previous subsections assumed that all four O-D pairs had the same travel demand levels. 

However, this assumption does not hold true in practice. Often, O-D pairs in real networks 

have different travel demands. This subsection investigates how varying travel demands can 

affect bridge criticalities by increasing the travel demand for the O-D pair (4, 3) from 200 to 
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400. The results are summarized in Table 6.5 and Figure 6.13. LCI values for all links can be 

found in Table 6.12. 

Table 6.5 provides bridge criticalities using the bridge-centric LCI method with both 

enumerated and implicitly generated route choice sets for non-uniform O-D demands 

scenario. 

Table 6.5. Bridge criticalities: Non-uniform travel demand. 

Bridge 

label 

Link 

label 

Aggregated 

avail. perc. 

Enumerated choice set Bridge-centric choice set generation 

Norm. LCI Route No. Rank Norm. LCI Route No. Rank 

b1 7 1.56 0.058 9 6 0.060 6 5 

b2 14 1.07 0.061 12 5 0.046 8 7 

b3 19 1.36 0.047 3 8 0.053 3 6 

         

As shown in Table 6.5, the rank of bridge b2 became higher than the rank of b1 for the 

problem with the enumerated choice set. For the problem with the bridge-centric choice set 

generation, bridge b1 was ranked the highest, whereas b3 was ranked higher than b2. Figure 

6.13 demonstrates the LCI values for bridges over the first 20 iterations for the enumerated 

and implicitly generated choice sets. 

As shown in Figure 6.13a, bridge b2 received sufficiently high LCI value at first iteration 

to dominate over the LCI value of bridge b1, although the gap between the two was relatively 

small, for the enumerated choice set scenario. This was due to the redundancy of routes 

crossing bridge b2. However, with implicit choice set generation, bridge b2’s initial advantage 

was eliminated, significantly reducing its LCI value and resulting in its lowest rank (Figure 

6.13b). Additionally, the overall rank of bridge b3 increased, as it connected to node 3, a 

destination with increased demand. Therefore, non-uniform O-D demands can affect link 

criticalities. 
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(a) LCI values for the scenario with 

enumerated choice set. 

(b) LCI values for the scenario with 

implicitly generated choice set. 

Figure 6.13. LCI values for non-uniform demand: Enumerated vs. generated choice sets. 

This section applied the bridge-centric LCI method to a relatively simple network where 

each bridge choice alternative consisted of a single bridge and demonstrated that, although 

bridges perceived as more available can be assigned higher criticality values than those 

perceived as less available, higher availability perception does not always result in higher 

ranks due to the impacts of network structure, choice set, and non-uniform O-D travel 

demands. The next section applies the same method to a real-size network, where each bridge 

choice alternative may consist of a sequence of bridges rather than just a single bridge. 

6.3.3 Experiment 3: Large-scale bridge-centric transport network 

This section analyzes the Winnipeg network - a real-world bridge-centric transport 

network. The section employs the bridge-centric LCI method and includes a network 

description, a sensitivity analysis of bridge sequence length, an assessment of computational 

complexity, and a discussion of the results. 
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6.3.3.1 Descriptive analysis of the Winnipeg network 

This subsection analyzes characteristics of the Winnipeg network for a better 

interpretation of the bridge criticality assessment results. Figure 6.14 depicts the Winnipeg 

network. 

 

Figure 6.14. The Winnipeg network: Emphasis on bridges. 

The Winnipeg network is divided by two rivers into three regions: Northwest (NW), East 

(E), and Southwest (SW). These regions are connected by 15 bi-directional bridges. The 
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network comprises 154 zones, 1067 nodes, 2535 links, and 4345 origin-destination (O-D) 

pairs, with 2473 being mixed-region pairs and the rest single-region pairs. For their trips, 

travelers of mixed-region O-D pairs consider various bridge options, including single bridges 

or sequences of multiple bridges. Since bridge choice is not modeled for single-region O-D 

pairs, their feasible bridge options are not specified in Figure 6.14. However, routes for these 

O-D pairs can still include bridge crossings. Detailed network topology, link characteristics, 

and O-D demands are available in the Emme/2 software. 

Figure 6.15 provides a visual representation of land use in the Winnipeg network, 

showing where the main trip production and attraction zones are located. 

 

Figure 6.15. Schematic representation of land use in the Winnipeg network. 

As shown in Figure 6.15, the NW region included high trip production and attraction 

zones which encompassed residential, business, and airport areas. Notably, the E and SW 
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regions have high trip production zones but relatively low attraction zones. Given this 

distribution, it is reasonable to expect the NW region to have the highest internal travel 

demand, followed by demand from other regions. 

Figure 6.16 depicts the distribution of the location of the O-D pairs with the highest travel 

demands. The overall region-based distribution of O-D pairs can be found in Figure 6.14. 

 

Figure 6.16. O-D pairs with the highest travel demands. 

Figure 6.16 illustrates that the network around high travel demand O-D pairs is relatively 

sparse, potentially limiting the number of generated routes. This is evident for O-D pairs 92-

103, 31-30, and 62-59. Consequently, links in these sparse regions may be assigned high 

criticality values due to limited route alternatives and high travel demands. 

This subsection analyzed the network to identify common features that provided 

preliminary insights into bridge criticalities. The network is complex, with multiple single- 

and mixed-region O-D pairs exhibiting non-uniform travel demands. High-demand O-D pairs 
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are predominantly single-region. The network topology is sparse near regions with high-

demand O-D pairs. Therefore, considering the network’s complexity, the distribution of travel 

demands, and the sparse topology near high-demand areas, it is reasonable to expect that 

bridges may not be ranked as the most critical elements in the network. The next subsection 

will perform bridge criticality analysis using the bridge-centric LCI method. 

6.3.3.2 Model parameter settings 

To set model parameters, the total coefficient of variation analysis has been used as 

described in Chapter 3 and Chapter 5. The parameters of the selected choice models were set 

such that the mean coefficient of variation 𝐶𝑉̅̅ ̅̅  remained within the range of 10% to 20%. For 

MNL-SUE, the parameter 𝜃 was set at 1.0. For IAPL-MNL-SUE, the parameters 𝜃 and 𝜂 

were set at 1.5 and 0.6, respectively. Parameters 𝛼 and 𝛽 were set at 2 and 0.1. 

6.3.3.3 Bridge criticality analysis for the Winnipeg network 

Table 6.6 shows the Top 5 critical bridges. For simplicity of interpretation, the maximum 

number of bridges per bridge nest 𝑀 was set to 1 for the bridge-centric LCI method and, for 

the MNL-SUE LCI, it is unrestricted. 

Table 6.6. Top 5 critical bridges for the Winnipeg network (M=1). 

Bridge 
rank 

MNL-SUE LCI Bridge-centric LCI (M=1) 

Bridge Dir. Route No. 
Norm. 

LCI 

Overall 

rank 
Bridge Dir. Avail. perc. Route No. 

Norm. 

LCI 

Overall 

rank 

1 B3 WB  1204 6.3E-3 32 B3 WB  524.43 6900 2.3E-2 1 
2 B11 NB  847 5.9E-3 38 B4 WB  484.64 6536 1.7E-2 4 

3 B12 NB  693 5.6E-3 40 B11 NB  399.83 6559 5.6E-3 37 

4 B5 WB  809 3.3E-3 67 B10 NB  360.65 5917 4.3E-3 53 
5 B14 NB  1092 3.3E-3 68 B2 WB  470.82 4309 4.2E-3 56 

            

Table 6.6 shows that bridge rankings differ between the two LCI methods. The bridge-

centric LCI method generally assigns higher overall ranks to the top critical bridges compared 

to the MNL-SUE LCI method. For instance, bridge B3 (WB) is ranked 32nd by the MNL-

SUE LCI method but 1st by the bridge-centric LCI method. This indicates that the MNL-SUE 

LCI method may not be able to sufficiently emphasize the criticality of bridges. 
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This subsection used the bridge-centric LCI method to assess bridge criticalities in 

Winnipeg network. The results were consistent with the discussion in the previous two 

sections. The results suggest that the MNL-SUE LCI method may underestimate bridge 

criticality. This analysis assumed only bridge choice alternatives of length one for mixed-

region O-D pairs, which might be unrealistic. Next subsection relaxes this assumption. 

6.3.3.4 Impact of maximum bridge sequence length on bridge criticality 

Setting 𝑀 to 1 restricts routes to a single bridge crossing. However, cost-effective routes 

may cross multiple bridges, such as trips from the E region to the NW region using bridges 

B6 and B10 (see Figure 6.14). It is reasonable to expect routes that use both bridges 

simultaneously. Therefore, it seems that a higher 𝑀 value may provide behaviorally more 

plausible route choice set than lower a 𝑀 value. This subsection performs sensitivity analysis 

for the maximum number of bridges per bridge choice alternative of mixed-region O-D pairs. 

The results are summarized in Table 6.7 and Figure 6.17. Table 6.13 lists the information on 

all bridges.
 

Table 6.7 lists the top 5 critical bridges for three parameter 𝑀 settings. The bridge-centric 

LCI method with 𝑀 = 2 and 𝑀 = 3 ranked bridges B10 and B12 as more critical than B3 

and B4, as higher 𝑀 values allow the inclusion of routes that combine multiple bridges. The 

observed shift in rankings reflects the impact of considering such bridge combinations when 

𝑀 > 1. 

Table 6.7. Top 5 critical bridges for three M settings. 

Bridge 

rank 

M = 1 M = 2 M = 3 

Bridge Dir. 
Norm. 

LCI 

Overall 

rank 
Bridge Dir. 

Norm. 

LCI 

Overall 

rank 
Bridge Dir. 

Norm. 

LCI 

Overall 

rank 

1 B3 WB  2.3E-2 1 B10 NB  1.4E-2 5 B10 NB  1.4E-2 4 

2 B4 WB  1.7E-2 4 B12 NB  8.6E-3 15 B12 NB  1.3E-2 6 
3 B11 NB  5.6E-3 37 B3 WB  7.4E-3 26 B11 NB  1.1E-2 8 

4 B10 NB  4.3E-3 53 B6 WB  6.4E-3 38 B3 WB  8.7E-3 13 
5 B2 WB  4.2E-3 56 B11 NB  3.5E-3 65 B10 SB  6.3E-3 33 
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Figure 6.17 shows the Spearman correlation between the bridge overall criticality ranks 

obtained by means of the bridge-centric LCI methods for three parameter M settings as well 

as the MNL-SUE LCI method. 

 

Figure 6.17. Spearman correlation of bridge criticality ranks across four LCI methods. 

The results indicate that the bridge-centric LCI methods with 𝑀 = 2 and 𝑀 = 3 had 

correlation close to one. The correlation among other methods was considerably lower. This 

is likely due to greater overlap in choice alternatives at higher 𝑀 values. The bridge choice 

set for 𝑀 = 1 was a subset of that for 𝑀 = 2, which in turn was a subset of 𝑀 = 3. This led 

to smaller traffic flow fluctuations during the iterative solution algorithm compared to 𝑀 =

1. 

This subsection conducted a sensitivity analysis for parameter M, suggesting that a higher 

M value may provide a more realistic route choice set. However, higher M values also increase 

the method’s computational complexity, necessitating a tradeoff. The next subsection 

analyzes this computational complexity. 
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6.3.3.5 Computational complexity analysis 

This subsection investigates the computational complexity of the bridge-centric LCI 

method. The results are summarized in Table 6.8. The numerical experiments were conducted 

on MS Windows 11 operating system with Intel(R) Core (TM) i7-9700 CPU@3.00GHz with 

24 GB of RAM. 

Table 6.8 lists the characteristics of the MNL-SUE LCI method and the bridge-centric 

LCI method across three values of 𝑀. Table 6.8 shows that the MNL-SUE LCI method had 

the lowest computational complexity, while the bridge-centric LCI method with 𝑀 = 3 had 

the highest, with a CPU time difference of over 100 times. The bridge-centric LCI method 

with 𝑀 = 1 and 𝑀 = 2 required about three and ten times more CPU time, respectively, than 

the MNL-SUE LCI method. Most computational time was spent solving the underlying TA 

problem, though LCI computation time also increased with the number of routes considered. 

Therefore, parameter 𝑀 can be used for controlling computational time of the bridge-centric 

LCI link criticality assessment. 

Table 6.8. Computation efforts of the LCI methods (CPU time in sec.). 

LCI’s model 
Iter. 

No. 

Bridge 

nest No. 

Total route 

No. 

Aver. iter. CPU 

time 

Aver. LCI iter. 

CPU time 

Total LCI 

CPU time 

Total CPU 

time  

MNL SUE 99 - 15,312 0.6 0.04 4.2 58.1 

IAPL-MNL SUE 
(M=1) 

101 11,336 51,482 1.5 0.2 16.3 166.9 

IAPL-MNL SUE 

(M=2) 
76 52,654 247,530 8.3 1.1 81.2 713.0 

IAPL-MNL SUE 
(M=3) 

82 483,176 2,358,473 89.7 11.28 924.6 8279.5 

      CPU time in sec. 

6.3.3.6 Impact of structural vulnerability coefficients on bridge criticality7 

For this study, the structural vulnerability of bridges is set at 1, while the structural 

vulnerability of links representing ordinary road segments (hereafter referred to as ordinary 

links) is set at a lower value. This reflects the fact that bridges are generally more structurally 

 
7 In practice, the structural vulnerability coefficients of links is evaluated using fragility curves calibrated with 

historical data from past disruptive events. However, collecting data and calibrating fragility curves are beyond 

the scope of this study. 
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vulnerable than ordinary road segments. Since the actual structural vulnerability coefficients 

are unknown, a sensitivity analysis is conducted to show how the criticality of bridges changes 

in response to variations in the structural vulnerability coefficients of ordinary links. The 

results are summarized in Table 6.9. 

Table 6.9. Impact of structural vulnerability coefficients on bridge criticality rankings. 

Bridge name Bridge ID Dir. 
Overall Rank (M=2) 

𝜑𝑎 = 1.0 𝜑𝑎 = 0.75 𝜑𝑎 = 0.5 𝜑𝑎 = 0.25 𝜑𝑎 = 0.1 

North Perimeter B1 
EB 1331 1282 1220 1070 870 

WB 517 440 352 230 135 

Redwood B2 
EB 584 525 425 285 172 

WB 121 96 65 30 10 

Disraeli B3 
EB 415 354 279 194 96 

WB 26 11 7 3 3 

Louise B4 
EB 420 356 280 196 97 
WB 117 89 60 24 9 

Provencher B5 
EB 558 490 394 263 153 

WB 212 189 138 75 27 

Norwood B6 
EB 291 245 198 122 57 
WB 38 19 9 4 4 

St. Vital B7 
WB 94 67 47 13 6 

EB 190 154 109 59 17 

Fort Garry B8 
EB 435 371 290 201 105 
WB 242 207 163 95 43 

South Perimeter B9 
EB 1016 944 859 739 525 

WB 928 862 794 646 423 

Old Forts B10 
NB 5 3 1 1 1 
SB 189 151 108 58 16 

Midtown B11 
NB 65 51 33 9 5 

SB 236 199 159 91 40 

Osborne B12 
NB 15 8 5 2 2 
SB 428 363 285 199 102 

Maryland Twin B13 
NB 148 117 81 45 12 

SB 805 750 654 487 290 

St. James B14 
NB 294 251 200 128 58 
SB 259 215 180 104 49 

West Perimeter B15 
NB 905 846 778 613 398 

SB 869 821 749 576 369 

        

As shown in Table 6.9, the criticality ranks of bridges increase with the decrease of the 

structural vulnerability of ordinary links. It is expected that at certain points all bridges would 

be assessed more critical than ordinary links. 

This section analyzed the bridge-centric LCI method with structural vulnerability 

coefficients, demonstrating its practical feasibility for bridge criticality analysis in a real-

world transport network. The method efficiently evaluated the criticality of all used links, 

allowing for comparisons between bridges and ordinary links. It also enabled systematic and 

interpretable adjustments to bridge criticality, providing a useful tool for highway and bridge 

management agencies to prioritize resources. 
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6.3.3.7 Reliability implications 

Figure 6.18 highlights the 100 most critical links based on the IAPL-MNL-SUE-based 

LCI method. As shown in Figure 6.18, the top 100 links include not only links representing 

bridges but also links representing ordinary roadway segments. These links connect major 

trip production zones (e.g., 92 and 94) to high trip attraction zones near the airport (e.g., 103) 

and in the CBD. Additionally, some critical links connect the E region to the NW region and 

the SW region to the NW region, which is consistent with the mixed-region O-D pair 

distribution shown in Figure 6.14. 

 

Figure 6.18. Top 100 critical links according to IAPL-MNL-SUE-based LCI. 

Not all bridges are included in the top 100 most critical links. The labels of critical bridges 

are shown in black, while the labels of less critical ones are displayed in gray, as illustrated 

in Figure 6.18. Structural vulnerability coefficients offer a means to control criticality values, 

as detailed in Section 3.3.6. For instance, reducing the coefficient for ordinary links can ensure 
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all bridges become the most critical below a specific threshold. In practice, these coefficients 

should be calibrated using real-world data tailored to each facility type. Moreover, available 

data can enable differentiation among bridge types by assigning distinct vulnerability 

coefficients to each type. 

In summary, while bridges are undeniably structurally more vulnerable, the analysis 

demonstrates that regular links also play a vital role and may be more critical for normal 

network operation than some bridges. Therefore, it is essential to assess criticality of both for 

a balanced and effective approach to infrastructure maintenance planning. This suggests that 

if planning agencies or transport departments prioritize bridges exclusively and neglect 

regular links, it could lead to issues. 

This section conducted an arguably comprehensive analysis of the properties of the 

bridge-centric LCI method and applied it to a real-world transport network showing its 

practical feasibility for bridge criticality assessment. 

6.3.4 Supplementary material 

Table 6.10. Specification of the bridge and route choice sets (the Nguyen-Dupuis network). 

O-D pair Usage of bridges Bridge nest Bridge sequence Route Route links FFTT 

(1, 2)  Optional  -  

[7] 

R1 [1, 5, 7, 9, 11] 29 

R2 [1, 5, 7, 10, 15] 33 

R3 [2, 17, 7, 9, 11] 35 

R4 [2, 17, 7, 10, 15] 39 

[14] 

R5 [1, 6, 12, 14, 15] 41 

R6 [2, 17, 8, 14, 15] 44 

R7 [1, 5, 8, 14, 15] 38 

- R8 [2, 18, 11] 32 

(1, 3) Unavoidable 

BN1 [7] 
R9 [1, 5, 7, 10, 16] 32 

R10 [2, 17, 7, 10, 16] 38 

BN2 [14] 

R11 [1, 5, 8, 14, 16] 37 

R12 [1, 6, 12, 14, 16] 40 

R13 [2, 17, 8, 14, 16] 43 

BN3 [19] R14 [1, 6, 13, 19] 36 

(4, 2) Unavoidable 

BN4 [7] 
R15 [3, 5, 7, 9, 11] 31 

R16 [3, 5, 7, 10, 15] 35 

BN5 [14] 

R17 [3, 5, 8, 14, 15] 40 

R18 [3, 6, 12, 14, 15] 43 

R19 [4, 12, 14, 15] 37 

(4, 3) Unavoidable 

BN6 [7] R20 [3, 5, 7, 10, 16] 34 

BN7 [14] 

R21 [3, 5, 8, 14, 16] 39 

R22 [3, 6, 12, 14, 16] 42 

R23 [4, 12, 14, 16] 36 

BN8 [19] 
R24 [3, 6, 13, 19] 38 

R25 [4, 13, 19] 32 
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Table 6.11. Link attributes for the Nguyen-Dupuis network with uniform O-D travel 

demands. 

Link label 
Enumerated choice set Bridge-centric choice set generation 

Route number LCI Norm. LCI Rank Route number LCI Norm. LCI Rank 

1 8 62.511 0.066 6 4 62.903 0.063 4 
2 6 54.856 0.058 7 3 62.698 0.063 5 

3 8 76.291 0.080 4 6 71.846 0.072 3 
4 3 29.423 0.031 11 3 54.227 0.054 7 

5 10 189.714 0.200 1 8 245.574 0.246 1 

6 6 18.573 0.020 14 2 4.959 0.005 18 
7 9 114.450 0.120 2 6 132.928 0.133 2 

8 6 9.247 0.010 17 4 7.851 0.008 17 

9 3 31.476 0.033 10 2 53.597 0.054 8 
10 6 27.880 0.029 12 4 24.101 0.024 14 

11 4 24.662 0.026 13 3 56.045 0.056 6 

12 6 47.828 0.050 8 2 25.272 0.025 13 

13 3 16.263 0.017 16 3 18.017 0.018 15 

14 12 96.740 0.102 3 6 49.764 0.050 9 

15 9 65.770 0.069 5 3 31.406 0.031 11 
16 9 44.318 0.047 9 7 40.390 0.040 10 

17 5 18.260 0.019 15 2 11.728 0.012 16 

18 1 6.280 0.007 18 1 26.142 0.026 12 
19 3 16.263 0.017 16 3 18.017 0.018 15 

         

Table 6.12. Link attributes for the Nguyen-Dupuis network with non-uniform O-D travel 

demands.. 

Link label 
Enumerated choice set Bridge-centric choice set generation 

Route number LCI Norm. LCI Rank Route number LCI Norm. LCI Rank 

1 8 86.936 0.036 9 4 83.812 0.036 9 

2 6 67.476 0.028 12 3 72.670 0.031 10 
3 8 472.563 0.193 1 8 427.444 0.182 1 

4 3 171.707 0.070 4 3 178.972 0.076 4 
5 10 313.772 0.128 3 8 330.222 0.141 2 

6 6 62.343 0.025 13 4 52.087 0.022 13 

7 9 142.890 0.058 6 6 141.117 0.060 5 
8 6 34.661 0.014 14 4 22.771 0.010 17 

9 3 28.501 0.012 17 2 45.714 0.019 14 

10 6 117.668 0.048 7 4 98.650 0.042 8 
11 4 29.275 0.012 16 3 60.513 0.026 12 

12 6 81.977 0.033 10 4 71.303 0.030 11 

13 3 115.080 0.047 8 3 123.349 0.053 6 
14 12 148.254 0.061 5 8 108.075 0.046 7 

15 9 75.064 0.031 11 4 43.211 0.018 15 

16 9 345.037 0.141 2 8 317.308 0.135 3 
17 5 32.731 0.013 15 2 18.102 0.008 18 

18 1 7.759 0.003 18 1 29.783 0.013 16 

19 3 115.080 0.047 8 3 123.349 0.053 6 
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Table 6.13. Criticality values and ranks for bridge-centric LCI with different parameter 

settings (the Winnipeg network). 

Bridge 

name 

Bridge 

ID 
Dir. 

M=1 M=2 M=3 

Value Overall Rank Value Overall Rank Value Overall Rank 

North Perimeter B1 
EB  2.5E-5 1205 5.1E-6 1593 4.1E-5 1022 

WB  9.5E-4 203 1.8E-4 599 9.0E-4 224 

Redwood B2 
EB 1.4E-3 167 1.9E-4 586 7.8E-4 258 

WB  4.8E-3 50 2.0E-3 118 4.3E-3 55 

Disraeli B3 
EB  3.5E-3 78 3.1E-4 447 6.9E-4 280 
WB  2.1E-2 1 7.1E-3 30 8.2E-3 19 

Louise B4 
EB 1.5E-3 150 2.6E-4 489 4.4E-4 365 

WB  1.9E-2 2 2.0E-3 120 4.1E-3 62 

Provencher B5 
EB  1.6E-4 639 1.5E-4 648 1.7E-4 645 

WB  1.1E-3 186 8.7E-4 226 6.3E-4 294 

Norwood B6 
EB  1.1E-4 731 5.3E-4 305 1.1E-3 198 

WB  2.6E-3 101 7.3E-3 28 5.1E-3 47 

St. Vital B7 
WB  7.9E-4 232 2.7E-3 89 2.9E-3 87 

EB  7.2E-5 907 1.1E-3 200 1.4E-3 174 

Fort Garry B8 
EB  2.3E-5 1223 2.8E-4 468 2.5E-4 542 

WB  1.6E-4 640 6.9E-4 257 8.5E-4 238 

South Perimeter B9 
EB  1.1E-5 1468 2.4E-5 1152 5.7E-5 931 
WB  1.4E-5 1392 3.3E-5 1053 7.6E-5 866 

Old Forts B10 
NB  5.3E-3 43 1.6E-2 5 1.9E-2 1 

SB  2.2E-4 538 1.7E-3 135 8.4E-3 18 

Midtown B11 
NB  5.2E-3 45 3.8E-3 65 1.4E-2 7 

SB  1.1E-4 733 8.3E-4 228 1.8E-3 133 

Osborne B12 
NB  8.3E-4 225 9.4E-3 12 1.5E-2 6 
SB  6.6E-5 932 3.4E-4 423 1.2E-3 188 

Maryland Twin B13 
NB  3.7E-4 418 1.5E-3 162 4.1E-3 63 

SB  2.9E-5 1149 6.6E-5 889 1.2E-4 753 

St. James B14 
NB  5.7E-4 320 5.2E-4 311 1.8E-3 138 

SB  2.4E-4 529 5.6E-4 292 1.1E-3 202 

West Perimeter B15 
NB  2.3E-5 1222 3.3E-5 1047 4.4E-5 995 
SB  2.6E-5 1199 3.6E-5 1020 7.0E-5 889 
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6.4 Chapter summary 

This chapter addressed the problem of bridge criticality analysis by recognizing the 

unique functional importance of bridges in route choice and their inherent high structural 

vulnerability. The link criticality index (LCI) was enhanced by integrating a joint bridge-route 

choice stochastic user equilibrium model, which uses an implicit availability/perception logit 

(IAPL) model for bridge choice and a multinomial logit (MNL) model for route choice 

(bridge-centric LCI). The IAPL model considered the perceived availability of bridges in 

travelers' decision-making, both in bridge choice set formation and behavior. This joint model 

provided a more behaviorally plausible representation of travelers’ route choices while 

assessing bridge criticalities. Structural vulnerability coefficients were added to the LCI 

method to emphasize bridge vulnerability. The results show that ignoring bridge choice and 

its hierarchical relationship with route choices can lead to underestimating bridge criticality 

and overestimating other network links' criticality. Ordinary roadway segments, though 

structurally less vulnerable, can also be critical for normal network operation. Therefore, 

bridge criticality should be assessed jointly with ordinary roadway segments. The proposed 

method effectively highlights the functional importance and high structural vulnerability of 

bridges, as well as the criticality of ordinary roadway segments, making it a valuable tool for 

transportation network reliability assessment. 
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CHAPTER 7 

Conclusions 

7.1 Summary of research contributions 

This research has addressed link criticality analysis problem with a focus on network 

equilibrium traffic assignment (TA)-based methods, which are important for disaster 

management applications where common travlers’ behavior and congestion effects cannot be 

neglected. Because these methods have relied on traffic flow patterns and travel costs induced 

by TA models, plausibly modelling travel choices has been of paramount importance for a 

representative link criticality evaluation. 

In the first part, this thesis has advanced link criticality analysis for large-scale road 

networks by integrating nuanced traffic assignment (TA) models that account for travelers’ 

imperfect perception of network conditions, their responses to congestion, and route similarity 

issues. Specifically, Chapter 3 has laid the foundation for the thesis. First, it introduced the 

selected method for link criticality analysis and meticulously investigated its properties. 

Second, it advanced the selected method by incorporating two stochastic user equilibrium 

(SUE) TA models: SUE with fixed demand (SUE) and SUE with elastic demand (SUE-ED). 

The original method was based on the user equilibrium (UE) model with fixed demand. UE 

is known to be restrictive because it assumes that travelers have perfect knowledge of network 

conditions and that they do not change their travel plans, which is inconsistent with actual 

traveler behavior and can generate non-representative traffic flow patterns. The adopted 

models have relaxed these assumptions. The results demonstrated that the UE-based method 
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overestimated the criticality of links on least-cost routes, while the SUE-based methods 

minimized this overestimation. 

Chapter 4 has acknowledged that route correlation is common in road networks and that 

it can raise the issue of route similarity. This issue can greatly affect travelers’ route choices 

and overall travel demand, altering traffic flows, travel costs, and, consequently, link 

criticality values. This chapter has incorporated the SUE-ED TA model based on the cross-

nested logit (CNL) route choice model, which effectively captures the influence of route 

similarity on both individual route choices and aggregate travel demand. The results have 

indicated that ignoring route similarity leads to overestimating the criticality of shared links, 

while incorporating route similarity considerations can notably alter the criticality ranking of 

links. 

In the second part, emphasizing the crucial role of bridges in the route choice process, 

this thesis has developed a bridge-centric framework. This framework includes a joint bridge-

route choice model, a network equilibrium model, and a customized route-based algorithm, 

and has been integrated into the selected link criticality analysis method. The models and 

methods developed in this part of the thesis are applicable to bridge-centric transport 

networks—road networks separated by obstacles such as valleys or rivers, and connected by 

bridges. Specifically, Chapter 5 has developed an advanced individual travel choice model 

for the joint bridge-route choice problem, a corresponding network equilibrium model, and a 

solution algorithm that effectively leverages the features of both bridges and routes. The 

results of these experiments have demonstrated that network equilibrium models can produce 

substantially different traffic flow patterns, depending on whether they account for the 

importance of bridges in route choice. 

Chapter 6 has applied the developed bridge-centric methodology in Chapter 5 to bridge 

criticality analysis in large-scale bridge-centric transport networks. The results have shown 
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markedly different traffic flow patterns and link criticality values for the proposed method 

compared to a model that did not consider bridge choice. These findings suggest that link 

criticality analysis methods based on models that do not consider bridge choice may greatly 

underestimate the importance of bridges. 

7.2 Limitations and future research directions 

This research has three primary limitations. First, the traffic assignment (TA) models and 

methodologies for evaluating link criticality lack validation against real-world datasets. Their 

development is grounded in theoretical frameworks and empirical observations from prior 

literature, with sensitivity analyses of key parameters serving as a compensatory mechanism 

for the absence of empirical validation. Second, the assessment of link criticality is conducted 

independently of specific disruptive scenarios, emphasizing the generalized functional role of 

network links rather than their vulnerability to particular event-driven disruptions. This limits 

the applicability of findings to context-agnostic resilience planning. Third, the 

conceptualization of “bridges” is narrowly defined as physical infrastructure components, 

excluding non-physical or abstract interpretations of connectivity that may hold relevance in 

broader network resilience discourse. 

Building on the limitations identified, four key directions emerge for advancing this 

research. First, empirical validation of the proposed TA and link criticality assessment 

methods using real-world datasets is essential to bridge the gap between theoretical 

frameworks and practical applicability. Such validation would require systematic data 

collection, network calibration, and parameter estimation, as the current reliance on 

sensitivity analyses and literature-derived insights remains insufficient for operational 

deployment. Second, extending the link criticality analysis to scenario-specific disruptions—

such as floods or earthquakes—could enhance its utility for mitigating long-term 
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infrastructure risks. This would entail integrating probabilistic models of disruption frequency, 

magnitude, and cascading consequences into the assessment framework. Third, broadening 

the conceptualization of “bridges” from purely physical infrastructure elements to functional 

interconnections between regions or cities could expand the methodological scope, enabling 

applications beyond traditional infrastructure resilience. Finally, methodological 

innovations—such as refining network equilibrium models to better capture traveler behavior 

dynamics or developing novel criticality metrics—could address existing gaps in behavioral 

realism and analytical rigor, strengthening the theoretical foundations of link criticality 

analysis. 
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