

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

DEVELOPMENT OF AMELIORATIVE METHODS FOR

REYNOLDS-AVERAGED NAVIER-STOKES SIMULATIONS

BASED ON PHYSICS-INFORMED MACHINE LEARNING

RUI ENZE

PhD

The Hong Kong Polytechnic University

2025

The Hong Kong Polytechnic University

Department of Civil and Environmental Engineering

Development of Ameliorative Methods for Reynolds-Averaged

Navier-Stokes Simulations Based on Physics-Informed Machine

Learning

Rui Enze

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

December 2024

I

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except where due acknowledgement

has been made in the text.

______________ (Signed)

 RUI Enze (Name of student)

Dedicated to my family

for their love and support

II

ABSTRACT

Reynolds-averaged Navier-Stokes (RANS) simulation is a widely employed numerical

approach for turbulence modeling. The computational fluid dynamics (CFD) method has long

been the predominant approach in RANS simulation, owing to its intuitiveness, ease of

implementation, and high accuracy in modeling. Some well-known CFD methods such as the

finite element method and finite volume method have been adopted in RANS simulation in

past decades. However, as research progresses, the shortcomings of the CFD-based RANS

simulations are gradually becoming apparent. Several consensus problems are enumerated here.

For instance, the CFD methods require manual meshing, which may induce various kinds of

grid generation issues. In addition, the RANS equations incorporate the Reynolds stress terms

as additional unknown variables during the averaging process. The Reynolds stress modeling

resulting from the action of Reynolds averaging contributes to the non-universality of RANS

simulations.

In recent years, a novel machine learning-based solver for partial differential equations

(PDEs), i.e., physics-informed neural network (PINN), has emerged. Since its inception, it has

shown a considerable impact in the field of fluid mechanics. Researchers have also been

identifying the potential of PINN’s applications in RANS simulations. The advantages of this

method over CFD methods are evident. Firstly, being a meshless approach, it does not

encounter any grid-related issues. For instance, the partial derivative terms in the PDEs are

calculated using the automatic differentiation function in a PINN, eliminating any truncation

error that may arise from grid methods. In addition, PINN has a neural network foundation,

III

while it can integrate data information into its simulation, and thus derive physics-based data-

driven solutions.

Nevertheless, it must be acknowledged that while PINN possesses certain advantages over

conventional CFD methods when solving the RANS equations, this emerging machine learning

solver for PDEs still faces several challenges. First and foremost, the convergence performance

of a PDE solver is a crucial indication for assessing its effectiveness in solving equations.

However, studies have shown that minimizing the loss of a PINN may sometimes be

challenging using these gradient-based methods. Secondly, there is the issue of the limitation

of the nonlinear expression and feature learning capabilities for PINN-based RANS simulations.

Learning high-frequency features using neural networks has been found to be difficult in

previous research. Furthermore, although grid issues do not plague PINNs, the limited

applicability of the RANS turbulence models under various flow conditions still exists. One of

the most difficult issues to solve is still the search for a universal turbulence simulation

approach in PINN-based RANS simulations.

The entire thesis is divided into seven chapters, with the first chapter being an introduction

to the entire thesis and the second chapter being a review of existing methods. Based on the

discussions in Chapters 1 and 2, this thesis proposes four amelioration measures grounded in

the PINN framework, namely Dynamic Prioritization in Chapter 3, Multifidelity Modeling in

Chapter 4, Quantum Layer Integration in Chapter 5, and Weighted Sum Turbulence Model in

Chapter 6. These amelioration measures are dedicated to alleviating the aforementioned key

issues in PINN-based RANS simulations. Some are used to improve the convergence

performance of a PINN, some can accelerate the learning ability of a PINN for extracting high-

frequency features, and some can alleviate the issue of poor applicability of RANS turbulence

models. These proposed methods have been validated by using experiments and achieved

IV

satisfactory results, promoting the further developments of physics-informed machine learning

methods in turbulence modeling. At the end of this research, the future work is prospected, and

the future research direction is pointed out.

V

ACKNOWLEDGEMENTS

In the first place, I would like to express my gratitude to Prof. Yi-Qing Ni, who serves as

my chief supervisor during my PhD study at the Hong Kong Polytechnic University. Prof. Ni

helped me a lot through my step-by-step transition process from an undergraduate graduate

who had no prior knowledge of scientific research to an experienced researcher. Prof. Ni has

been fully engaged in the area for decades, possessing a thorough and one-of-a-kind grasp of

scientific research. Prof. Ni never loses touch with the cutting edge of the research, despite the

fact that he holds a prominent position among peers and is always thrown into a packed

schedule. I hold his personality and his approach to work in the highest regard. He shows me

that nothing is impossible to a willing heart.

I would also like to take this opportunity to express my appreciation to my PhD co-

supervisor, Dr. Zheng-Wei Chen, for his meticulous guidance in every stage of my research

study, from guiding me in formula manipulation to teaching me how to prepare figures in

research papers. The completion of this thesis would not have been possible for me without his

careful guidance.

I want to especially express my appreciation to Dr. Xiang-Yun Deng and Ms. Wendy So

for their assistance in both my personal life and academic pursuits at the beginning of my five-

year stay in Hong Kong.

I would like to offer my sincere gratitude to the National Rail Transit Electrification and

Automation Engineering Technology Research Center (Hong Kong Branch). I sincerely thank

Mr. Wing-Hong Kwan, Mr. Tai-Tung Wai, Ms. Freda Chow, Mr. Chen-Xing Zhang, Ms. Lin-

VI

Lin Cai, Ms. Josephine Lui, Mr. Han-Zhan Lu, and Ms. Karina Leung for their help during my

work time. I would also like to express my thanks to the administrative staff in the CEE

department for their assistance in the past four years of my PhD study.

I want to express my thanks to Dr. You-Wu Wang, Dr. Su-Mei Wang, Dr. Wai-Kei Ao, Dr.

Hong-Wei Li, Dr. Jason Lin, Dr. Wen-Qiang Liu, Dr. Duo Zhang, Dr. Zi-Jian Guo, Dr. Xiao-

Ming Tan, Dr. Yun-Fan Yang, Dr. Xiu-Yu Chen, Dr. Wen-Bo Hu, Dr. Yuan-Hao Wei, Dr. Yun-

Ke Luo, Dr. Si-Yi Chen, Dr. Xin Ye, Mr. Chao Zhang, Mr. Yang Lu, Mr. Guang Zhou, Mr. Gao-

Feng Jiang, Mr. Shuo Hao, Mr. Zhen Lin, Mr. Lei Yuan, Mr. You-Liang Zheng, Mr. Yu-Ling

Wang, Mr. Qi-Fan Zhou, Mr. Xiang-Xiong Li, Mr. Wei-Jia Zhang, Ms. Qi Zhu, Mr. Da-Zhi

Dang, Mr. Yan-Ke Tan, Mr. Yu-Xuan Liang, Mr. Guang-Zhi Zeng, Mr. Zhan-Hao Guo, Mr.

Zheng-Xin Che, Mr. Sheng-Yuan Liu, Mr. Zhen-Bin Zhou, Mr. Jia-Hao Lu, Ms. Xin-Yue Xu,

Mr. Yuan-Jiang Zeng, Mr. Qing-Chen Tang, Mr. Liang Lyu, Mr. Gang Zeng, Mr. Cheng Peng,

Mr. Yu-Hang Lu, Ms. Xin-Ge Zhao, Ms. Shu Li, Ms. Xuan Zhao, Mr. Zi-Rui Zuo, and other

members in our research group for their support and friendship. Sincerely wish everyone a

bright future!

I would like to express my special thanks once again to Dr. Xin Ye, Mr. Lei Yuan, Mr.

Wei-Jia Zhang, Mr. Guang-Zhi Zeng, and Mr. Zhan-Hao Guo for their academic advising that

has greatly benefited me in my PhD study.

I would like to express my deepest gratitude to Ms. Yi-Min Zheng for being the one who

offered me the most profound spiritual support when I was working on preparing this thesis for

graduation. The inspiration to keep pushing forward and the will to keep working hard were

both gifts that she bestowed upon me. I am indebted to her for her unwavering support and

concern throughout the entire process.

VII

Lastly and most importantly, I would like to express my gratitude to my parents and

families for their long-term endless support, care, and raising. I appreciate all the little things

they do for me from my birth to now. Wish them all the best in their work and life!

VIII

LIST OF PUBLICATIONS

Journal Papers:

Chen, Z. W., Rui, E. Z., Liu, T. H. *, Ni, Y. Q., Huo, X. S., Xia, Y. T., Li, H. W., Guo, Z. J. &

Zhou, L. (2022). Unsteady aerodynamic characteristics of a high-speed train induced by

the sudden change of windbreak wall structure: A case study of the Xinjiang railway.

Applied Sciences, 12, 7217.

Liu, W. Q. †, Rui, E. Z. †, Yuan, L., Chen, S. Y., Zheng, Y. L. & Ni, Y. Q. * (2023). A novel

computer vision-based vibration measurement and coarse-to-fine damage assessment

method for truss bridges. Smart Structures and Systems, 31, 393-407.

Rui, E. Z., Chen, Z. W., Ni, Y. Q. *, Yuan, L. & Zeng, G. Z. (2023). Reconstruction of 3D flow

field around a building model in wind tunnel: a novel physics-informed neural network

framework adopting dynamic prioritization self-adaptive loss balance strategy.

Engineering Applications of Computational Fluid Mechanics, 17, 2238849.

Rui, E. Z., Zeng, G. Z., Ni, Y. Q. *, Chen, Z. W. & Hao, S. (2024). Time-averaged flow field

reconstruction based on a multifidelity model using physics-informed neural network

(PINN) and nonlinear information fusion. International Journal of Numerical Methods

for Heat & Fluid Flow, 34, 131-149.

Li, H. W., Ni, Y. Q. *, Wang, Y. W., Chen, Z. W., Rui, E. Z. & Xu, Z. D. (2024). Modeling of

forced-vibration systems using continuous-time state-space neural network. Engineering

Structures, 302, 117329.

IX

Zeng, G. Z., Chen, Z. W. *, Ni, Y. Q. & Rui, E. Z. (2024). Investigating embedded data

distribution strategy on reconstruction accuracy of flow field around the crosswind-

affected train based on physics-informed neural networks. International Journal of

Numerical Methods for Heat & Fluid Flow, 34, 2963-2985.

Rui, E. Z., Chen, Z. W. *, & Ni, Y. Q. (2024). Integrating a quantum layer into a physics-

informed neural network for solving forward and inverse problems involving differential

equations. Neurocomputing, under review.

Conference Papers:

Rui, E. Z., Chen, Z. W., Ni, Y. Q. * & Yuan, L. Full domain flow information recognition

around buildings with sparse near-wall data through a physics-informed data-driven

approach. Proceedings of the 8th World Conference on Structural Control and Monitoring,

5-8 Jun 2022, Orlando, Florida, United States of America.

Li, H. W. *, Ni, Y. Q., Wang, Y. W., Chen, Z. W. & Rui, E. Z. Continuous-time state-space

neural network and its application in modeling of forced-vibration systems. Structural

Health Monitoring 2023: Proceedings of the 14th International Workshop on Structural

Health Monitoring, 12-14 Sep 2023, Stanford, United States.

Li, H. W. *, Ni, Y. Q., Wang, Y. W., Chen, Z. W., Rui, E. Z. & Xu, Z. D. State-integration neural

network for modeling of forced-vibration systems. Proceedings of the 29th International

Conference on Computational & Experimental Engineering and Sciences, 26-29 May

2023, Shenzhen, China.

X

Yuan, L. *, Ni, Y. Q., Rui, E. Z. & Zhang, W. J. Structural damage inverse detection from noisy

vibration measurement with physics-informed neural networks. Proceedings of the XII

International Conference on Structural Dynamics, 3-5 Jul 2023, Delft, Netherlands.

Rui, E. Z. *, Chen, Z. W., Li, H. W. & Ni, Y. Q. Integration of a weak-form RANS turbulence

model into PINN-based fluid simulations. Proceedings of the 10th Asia Conference on

Mechanical Engineering and Aerospace Engineering, 18-20 Oct 2024, Taicang, China.

Note: * Corresponding author; † Equal contribution.

XI

TABLE OF CONTENTS

CERTIFICATE OF ORIGINALITY ... I

ABSTRACT .. II

ACKNOWLEDGEMENTS .. V

LIST OF PUBLICATIONS .. VIII

TABLE OF CONTENTS ... XI

LIST OF FIGURES ... XV

LIST OF TABLES .. XXI

LIST OF SYMBOLS ... XXIII

LIST OF ABBREVIATIONS ... XXXIII

CHAPTER 1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Research Motivation ... 5

1.3 Research Methodology and Tasks .. 9

CHAPTER 2 LITERATURE REVIEW .. 12

2.1 An Overview of the RANS Equations .. 12

2.1.1 Beginning with the NS equations ... 12

2.1.2 Reynolds averaging .. 13

2.1.3 The RANS equations ... 14

2.1.4 RANS Turbulence modeling .. 16

2.2 Conventional Methods for Solving the RANS Equations ... 22

2.2.1 FVM ... 23

XII

2.2.2 FEM ... 31

2.3 PINN ... 35

2.3.1 Overall description ... 35

2.3.2 Origins of PINN in fluid mechanics .. 38

2.3.3 PINN in RANS simulations ... 45

2.3.4 Limitations of PINN-based RANS simulations ... 49

2.4 Summary ... 52

CHAPTER 3 DYNAMIC PRIORITIZATION ... 54

3.1 Foreword ... 54

3.2 Basic Principles ... 56

3.2.1 Structure of PINN .. 56

3.2.2 Dynamic prioritization loss balance strategy ... 58

3.3 Validation Case: Building Outdoor Wind Field.. 62

3.3.1 Brief description of the wind tunnel test .. 62

3.3.2 Boundary conditions of the computational domain ... 62

3.3.3 Data constraints of the computational domain ... 66

3.3.4 Physical governing equations ... 71

3.3.5 Implementation of dpPINN in the case study .. 72

3.3.5 dpPINN results compared with experimental data ... 73

3.3.6 Comparison of different loss balance strategies ... 78

3.3.7 Influence of the neural network configuration ... 82

3.3.8 Influence of turbulence model ... 82

3.4 Conclusions ... 87

CHAPTER 4 MULTIFIDELITY MODELING .. 90

XIII

4.1 Foreword ... 90

4.2 Methodology ... 93

4.2.1 PINN structure ... 93

4.2.2 NIF algorithm ... 94

4.2.3 Workflow of the multifidelity strategy .. 96

4.3 Results and Discussions .. 97

4.3.1 Case 1: Flow past a single hill (Reynolds number: 60000).. 97

4.3.2 Case 2: Square cylinder flow (Reynolds number: 21400) ... 106

4.4 Conclusions ... 112

CHAPTER 5 QUANTUM LAYER INTEGRATION .. 114

5.1 Foreword ... 114

5.2 Methodology ... 117

5.2.1 Quantum computing and variational quantum algorithms ... 117

5.2.2 Dressed quantum circuit... 120

5.2.3 Physics-based loss function ... 121

5.3 Results and Analysis ... 122

5.3.1 Forward problem: RANS equations ... 123

5.3.2 Forward problem: Heat equation ... 127

5.3.3 Forward problem: The Poisson equation ... 131

5.3.4 Inverse problem: One-dimensional elastostatics equation ... 134

5.4 Further Exploration ... 138

5.5 Conclusions ... 141

CHAPTER 6 WEIGHTED SUM TURBULENCE MODEL .. 144

6.1 Foreword ... 144

XIV

6.2 Methodology ... 146

6.2.1 RANS equations and turbulence models.. 146

6.2.2 Weighted sum RANS turbulence model .. 149

6.2.3 PINN structure for implementation of the weighted sum model 150

6.3 Case Study: Square Cylinder Flow ... 155

6.3.1 Computational domain and boundary conditions .. 155

6.3.2 Validation data ... 155

6.3.3 Training using two zero-equation models .. 156

6.3.4 Training using the weighted sum RANS turbulence model ... 158

6.3.5 Training using the pretrained models ... 163

6.3.6 Training with three candidate models .. 166

6.4 Case Study: Flow Past a Single Hill ... 168

6.5 Conclusions ... 170

CHAPTER 7 CONCLUSIONS & RECOMMENDATIONS ... 172

7.1 Conclusions ... 172

7.2 Recommendations ... 179

7.2.1 Discovering underlying physics in turbulence ... 179

7.2.2 Empirical constants in RANS turbulence models .. 180

7.2.3 Quantum transfer learning ... 182

REFERENCE ... 185

XV

LIST OF FIGURES

Figure 1-1. The frequency principle is observed in a two-dimensional image reconstruction

task. Reprinted from (Xu et al. 2020). ... 8

Figure 1-2. Technical route of this thesis. ... 11

Figure 2-1. The control volume and grid points when solving the steady one-dimensional

diffusion equation. ... 24

Figure 2-2. A comparison between the RANS simulated wind speed and measurement results

carried out by Chen and Xu (1998).. 28

Figure 2-3. Comparison between the pressure coefficients obtained from RANS simulations

and wind tunnel experiments by Jędrzejewski et al. (2017). ... 29

Figure 2-4. Analysis of train surface pressure distribution using various RANS turbulence

models carried out by Li et al. (2019).. 31

Figure 2-5. The DGM-based simulation of flow over a three-dimensional sinusoidal bump in

a channel: (a) the velocity contour, and (b) the pressure contour. Reprinted from (Crivellini et

al. 2013). .. 34

Figure 2-6. Identification of unknown parameters in the NS equations using a PINN by Raissi

et al. (2019). The figures show the detailed spatiotemporal distributions of the data points used

for training. .. 40

Figure 2-7. Comparison of the velocity and pressure contours in a steady cylinder flow when

different PDE solvers are adopted: (a) Ansys Fluent, and (b) PINN adopting the mixed-variable

XVI

scheme. Reprinted from (Rao et al. 2020). .. 41

Figure 2-8. Comparison of the CFD results with the PINN results in a two-dimensional blood

flow: (a) the velocity contour, and (b) the WSS. Reprinted from (Arzani et al. 2021). 42

Figure 2-9. Comparison of the pressure coefficients on the cylinder surface between the

PINN’s results and the analytical results. Reprinted from (Sun et al. 2021). 43

Figure 2-10. The immersed boundary method for PINN-based laminar flow simulation

proposed by Huang et al. (2022).. 43

Figure 2-11. The FCNN structure adopted by Almajid and Abu-Al-Saud (2022) for porous

media flow simulation.. 44

Figure 2-12. Error maps for the y-direction fluid velocity: (top) errors between the DNS and

RANS (default values) results, and (bottom) errors between the DNS and RANS (PINN-

inferred values) results. Reprinted from (Luo et al. 2020). ... 46

Figure 2-13. RANS simulation of the flow past periodic hills using PINN carried out by Eivazi

et al. (2022). ... 47

Figure 2-14. Comparison of the PINN-based RANS simulation results when different FCNN

structures were adopted. Reprinted from (Harmening et al. 2024). .. 48

Figure 2-15. Comparison of the velocity contours of the backward-facing step flow when

different RANS turbulence models are adopted: (top) the standard k-ω model, and (bottom)

the Prandtl mixing-length model. Reprinted from (Pioch et al. 2023). 50

Figure 2-16. Comparison of the PINN’s solutions to the time-dependent Poisson equation

when different loss balance strategies are adopted: (top) the default PINN, and (bottom) the

XVII

proposed lbPINN. .. 51

Figure 3-1. Schematic diagram of PINN for the RANS simulation of the three-dimensional

fluid flow. ... 57

Figure 3-2. Updating mechanism of the dpPINN weighting coefficients. 60

Figure 3-3. Computational domain for outdoor airflow simulation: (a) side view, (b) top view,

and (c) general view. .. 64

Figure 3-4. Distribution of velocity component 𝑢𝑖𝑛𝑖𝑡𝑖𝑎𝑙 on the initial speed boundary. 66

Figure 3-5. Distribution of measurement points in the cross-sections (a) y = 0.35 m, (b) z =

0.01 m, and (c) z = 0.10 m. .. 70

Figure 3-6. Comparison of results between dpPINN predictions and wind tunnel measurements

in the cross-section y = 0.35 m. ... 76

Figure 3-7. Comparison of results between dpPINN predictions and wind tunnel measurements

in the cross-section z = 0.10 m. .. 77

Figure 3-8. ℓ2 errors of the PINN predictions using different loss balance strategies (top: u;

bottom: resultant velocity). .. 79

Figure 3-9. The dynamic balance of weighting coefficients in the dpPINN........................... 80

Figure 3-10. u contours at y = 0.35 m: (a) and (b) 93 measurement points are used to train the

dpPINN model; (c) and (d) 100 measurement points are used to train the dpPINN model. ... 84

Figure 3-11. Comparison of Li-dpPINN predictions with the Chen-dpPINN predictions of the

velocity component u at the cross-section y = 0.35 m.` ... 86

Figure 3-12. The flow streamlines in the building's leeward recirculation zone. 87

XVIII

Figure 4-1. The structure of the multifidelity PINN proposed by Meng and Karniadakis (2020).

.. 91

Figure 4-2. PINN framework for RANS simulation when Chen model is adopted. 94

Figure 4-3. Workflow of the multifidelity strategy. .. 96

Figure 4-4. Computational domain of the flow past a two-dimensional hill. 98

Figure 4-5. Prediction of u using the low-fidelity model in Case 1: (a) general view; (b) the

velocity contour compared with the experimental counterpart (absolute error = prediction –

experimental result). .. 100

Figure 4-6. Prediction of u using the multifidelity model in Case 1: (a) general view; (b) the

velocity contour compared with the experimental counterpart (absolute error = prediction –

experimental result). .. 103

Figure 4-7. Comparison of the results between the multifidelity model prediction and the

high/low-fidelity data on twelve vertical lines. .. 105

Figure 4-8. Computational domain for the flow past a two-dimensional square cylinder. ... 106

Figure 4-9. Prediction of u using five distinct schemes: (top) prediction; (middle) experimental

result; (bottom) absolute error. ... 109

Figure 4-10. Comparison of the results between the multifidelity model prediction (Scheme 2)

and the high/low-fidelity data on twelve vertical lines. ... 111

Figure 5-1. The structure of a PIHCQNN. .. 121

Figure 5-2. Computational domain for the two-dimensional square cylinder flow. 124

Figure 5-3. The PINN structures adopted for comparison study: (a) 5-layer PINN, and (b) 6-

XIX

layer PINN. .. 125

Figure 5-4. The l2 errors of (a) u, and (b) v. .. 126

Figure 5-5. Convergence curves of (a) the total loss, and (b) the l2 error of u(t, x). 129

Figure 5-6. Comparison of the transient temperature distributions and absolute errors (error =

prediction – ground truth) by PIHCQNN, 5-layer PINN, and 6-layer PINN. 131

Figure 5-7. Comparison of the solutions of the Poisson equation and corresponding absolute

errors (error = prediction – ground truth) obtained from PIHCQNN, 5-layer PINN, and 6-layer

PINN. ... 133

Figure 5-8. Convergence curves of (a) the total loss of different models, and (b) the l2 error of

u(x, y). .. 134

Figure 5-9. (a) The total loss of PIHCQNN and PINN, and (b) the l2 error of PIHCQNN and

PINN’s predictions. .. 137

Figure 5-10. Convergence behaviors of three different frequency components. 139

Figure 5-11. The absolute errors between the analytical solution and (a) PIHCQNN’s results,

and (b) PINN’s results. .. 140

Figure 6-1. The proposed PINN structure for implementation of the weighted sum RANS

turbulence model in two-dimensional flows. ... 153

Figure 6-2. Computational domain of the flow passing a 2D square cylinder. 155

Figure 6-3. (a) Total losses, (b) l2 errors of u, and (c) l2 errors of v of two default PINNs. . 157

Figure 6-4. The convergence curves of (a) the physics-based loss, (b) the Reynolds stress loss,

and (c) the weight coefficients 𝑟𝑖. ... 159

XX

Figure 6-5. (a) l2 errors of u and (b) l2 errors of v of the weighted sum model. 160

Figure 6-6. (a) Position of the line x = 0.21 m, and (b) Comparison of u on this line.......... 161

Figure 6-7. (a) Position of the line x = 0.24 m, and (b) Comparison of u on this line.......... 161

Figure 6-8. (a) Position of the line x = 0.25 m, and (b) Comparison of u on this line.......... 162

Figure 6-9. (a) Position of the line x = 0.36 m, and (b) Comparison of u on this line.......... 162

Figure 6-10. The convergence curves of (a) the physics-based loss, (b) the l2 errors of u, and

(c) the l2 errors of v during the adjustment process. .. 164

Figure 6-11. The convergence curves of (a) the Reynolds stress loss, and (b) 𝑟1............... 166

Figure 6-12. The convergence curves of (a) the Reynolds stress loss, and (b) 𝑟𝑖 when there

are three candidate models. .. 167

Figure 6-13. Comparison between the predicted and measured Reynolds shear stress. 168

Figure 7-1. The structure of the neural network for governing equation identification proposed

by Chen et al. (2021). .. 180

Figure 7-2. The PINN structure for RANS simulations using a weak-form turbulence model

adopted by Rui et al. (2024). ... 182

Figure 7-3. The quantum transfer learning strategy adopted by Otgonbaatar et al. (2023). . 183

XXI

LIST OF TABLES

Table 2-1. The typical values of the empirical constants in the Prandtl’s one-equation model.

.. 19

Table 2-2. The typical values of the empirical constants in the standard k-ε model. 21

Table 2-3. The typical values of the empirical constants in the RNG k-ε model. 21

Table 3-1. ℓ2 errors of the PINN, lbPINN, and dpPINN predictions after 1×105 iterations. ... 81

Table 3-2. ℓ2 errors of the dpPINN predictions with different neural network configurations.

.. 82

Table 4-1. Spatial coordinates of the high-fidelity points used for multifidelity modeling. . 101

Table 4-2. Performance of different flow field reconstruction strategies. 105

Table 4-3. Spatial coordinates of the high-fidelity points used for multifidelity modeling. . 107

Table 4-4. Five flow field simultaion strategies in Case 2. ... 108

Table 4-5. Performance of different flow field reconstruction strategies. 111

Table 5-1. Avergaed l2 errors of the different model’s results when solving the RANS equations.

.. 126

Table 5-2. Avergaed l2 errors of different model results in solving the heat equation. 129

Table 5-3. Averaged l2 errors of different results in solving the Poisson equation. 133

Table 5-4. The ultimate value of EA(x) and the averaged relative error. 138

XXII

Table 6-1. Spatial coordinates of the training points. .. 156

Table 6-2. The l2 errors of u and v obtained from different models. 165

XXIII

LIST OF SYMBOLS

The main symbols used in this thesis are listed below (duplicate symbols are excluded).

Chapter 2 Description

𝑥௜ Spatial coordinate

𝑢௜ Velocity component in the 𝑥௜ direction

𝑡 Time

𝜌 Density

𝑝 Pressure

𝜈 Kinematic viscosity

𝑓௜ External force in the 𝑥௜ direction

∅ Physical quantity

𝜑 Physical quantity

𝑇 Length of the time range

𝜇 Dynamic viscosity

XXIV

𝑅௜௝ Reynolds stress term

𝜇௧ Turbulent viscosity

𝛿௜௝ Kronecker delta function

𝑘 Turbulent kinetic energy

𝜇௘௙௙ Effective viscosity

𝐶௣ఓ Problem-dependent constant

𝑙௣଴ Length scale

𝑢௧ Characteristic fluid velocity

𝑙௣ଵ Turbulent length scale

𝐶஽ Constant

𝜎௞ Constant

𝜀 Turbulent dissipation rate

𝑆௜௝ Mean strain rate tensor

𝐶ఓ Constant

𝐶ଵఌ Constant

XXV

𝐶ଶఌ Constant

𝜎ఌ Constant

𝜂଴ Constant

𝛽 Constant

𝜓 Physical quantity of diffusion

𝐾 Diffusion coefficient

𝑄 Rate of heat generation per unit volume

𝑄௖ Constant component

𝑎ா Intermediate variable

𝑎ௐ Intermediate variable

𝑎௉ Intermediate variable

𝑏 Intermediate variable

𝛿𝑥 Length of the control volume

𝑓 Scalar function of the independent variables

𝑅 Residual value

𝑊௜ Weight function

XXVI

𝐷 Computational domain

𝑚஽ Number of elements

𝑵 Shape function

𝝍𝒆 Unknowns to be solved on nodes

𝑅௖ Residual of the continuity equation

𝑅௠ Residual of the momentum equation

Chapter 3 Description

𝐿௙ Governing equation loss

𝐿௕ Boundary condition loss

𝐿ௗ Data loss

𝑤௙ Weight coefficient for 𝐿௙

𝑤௕ Weight coefficient for 𝐿௕

𝑤ௗ Weight coefficient for 𝐿ௗ

𝑓௜
௡ Residual of the governing equation

XXVII

𝑟௡௕
௜ Residual of the Neumann boundary

𝑟ௗ௕
௜ Residual of the Dirichlet boundary

𝑟ௗ
௜ Residual of the data constraints

𝑁௙ Number of the collocation points for calculating 𝑓௜
௡

𝑁௡௕ Number of the collocation points for calculating 𝑟௡௕
௜

𝑁ௗ௕ Number of the collocation points for calculating 𝑟ௗ௕
௜

𝑁ௗ Number of the collocation points for calculating 𝑟ௗ
௜

𝐿௨ Loss component related to 𝑢

𝐿௩ Loss component related to 𝑣

𝐿௪ Loss component related to 𝑤

𝐿௣ Loss component related to 𝑝

𝑤௨ Weight coefficient for 𝐿௨

𝑤௩ Weight coefficient for 𝐿௩

𝑤௪ Weight coefficient for 𝐿௪

𝑤௣ Weight coefficient for 𝐿௣

XXVIII

𝐔௥ Set of the equation numbers related to 𝑢

𝐕௥ Set of the equation numbers related to 𝑣

𝐖௥ Set of the equation numbers related to 𝑤

𝐏௥ Set of the equation numbers related to 𝑝

𝑟௡
௜ Residual of Eq. (3-n)

𝑁௡ Number of the collocation points for calculating 𝑟௡
௜

𝛾 Hyperparameter in dpPINN

𝑼𝑻𝒊
 Vector of the labeled training data

𝑼෩𝑻𝒊
 Vector of PINN predictions on the training points

𝑘௜ Intermediate variable

 𝜇௜௡ Boundary layer’s turbulent viscosity

𝜇௢௨௧ Outer layer’s turbulent viscosity

𝐶௕ Building width

𝐻௕ Building height

 𝐼 Constant

XXIX

𝑧ீ Constant

𝛼 Constant

𝑼𝒊 Vector of the reference data

𝑼෩ 𝒊 Vector of the dpPINN predictions

Chapter 4 Description

𝑓௛ High-fidelity model

𝑓௟ Low-fidelity model

𝜃௛ Hyperparameter

𝑘௛ Kernel function

𝑘௛ഐ
 Kernel function

𝑘௛೑
 Kernel function

𝑘௛ഃ
 Kernel function

𝜃௛ഐ
 Hyperparameter

𝜃௛೑
 Hyperparameter

XXX

𝜃௛ഃ
 Hyperparameter

𝑲 Kernel function

𝒚 Training target

𝑛ௗ Dimension of the input space

Chapter 5 Description

𝑋 NOT gate

𝐻 Hardamard gate

𝜓଴ Initial state of a qubit

𝑉 Unitary operator

𝑈 Parameterized VQC

𝜃 Trainable parameter of a VQC

𝑌 The observable

𝜽 Rotation angle vector

𝜎௬ Pauli-Y operator

XXXI

𝐿௜ Initial condition loss

𝑤௜ Weight coefficient for 𝐿௜

𝑛 Repetition number

𝐸 Young’s modulus

𝐴 Cross-sectional area

𝑝௕ Body force

Chapter 6 Description

𝐶௦ Empirical constant

𝑉௦ Turbulent velocity scale

𝑙௦ Turbulent length scale

𝐺 Mean strain rate

𝑙௠ Mixing length

𝑙 Nearest distance from the wall

𝑙௠௔௫ Maximum value of 𝑙

𝐶௖ Constant

XXXII

𝑛௖ Number of the candidate turbulence models

𝑟௜ Weight coefficient for the candidate model

𝑁ோ Number of training points

 𝑟ோ௫௫
௜ Residual of the Reynolds stress component

 𝑟ோ௫௬
௜ Residual of the Reynolds stress component

 𝑟ோ௬௬
௜ Residual of the Reynolds stress component

𝐿ோ Reynolds stress loss

XXXIII

LIST OF ABBREVIATIONS

NS Navier-Stokes

PDE Partial differential equation

RANS Reynolds-averaged Navier-Stokes

CFD Computational fluid dynamics

DNS Direct numerical simulation

PINN Physics-informed neural network

AD Automatic differentiation

FCNN Fully connected neural network

RSM Reynolds stress model

RNG Re-Normalization Group

FVM Finite volume method

FEM Finite element method

DGM Deep Galerkin method

XXXIV

PIV Particle image velocimetry

LDA Laser Doppler anemometry

SGD Stochastic gradient descent

Adam Adaptive moment estimation

Tanh Hyperbolic tangent function

WSS Wall shear stress

LES Large eddy simulation

DES Detached-eddy simulation

dpPINN Dynamic prioritization PINN

GP Gaussian Process

NIF Nonlinear information fusion

NLML Negative log marginal likelihood

VQC Variational quantum circuit

NISQ Noisy intermediate-scale quantum

QAOA Quantum approximate optimization algorithm

XXXV

PIQC Physics-informed quantum circuit

ODE Ordinary differential equation

PIHCQNN Physics-informed hybrid classical-quantum neural network

ENN Embedding neural network

CNOT Controlled NOT

RoNN Readout neural network

MSE Mean-squared error

1

CHAPTER 1

INTRODUCTION

1.1 Background

The Navier-Stokes (NS) equations, as a set of partial differential equations (PDEs), are

commonly used to describe the movements of viscous fluid substances, which accurately depict

the momentum and mass conservations in the motions of Newtonian fluids. However, only in

some laminar flow cases with low Reynolds numbers can we see the presence of the NS

equations as the fluid governing equations (Wissink et al. 2003, Lu et al. 2006). In contrast to

the laminar flow, the turbulent flow exhibits a more disorderly pattern of velocity and pressure

distributions in both spatial and temporal dimensions. The NS equations are proficient in

laminar modeling, but they are not suitable for simulating turbulence due to the challenges

posed by the computational resources required for turbulence modeling (Mikulevicius and

Rozovskii 2004, Wong 2020). Naturally, various kinds of simplified forms for NS equations

have been put forward to solve turbulence modeling (Boris et al. 1992, Iaccarino et al. 2003,

Mikulevicius and Rozovskii 2004). For instance, the Reynolds-averaged Navier-Stokes (RANS)

equations are one of its variants, which is the time-averaged form of the NS equations. The

fluid properties within the flow field are simplified into time-averaged variables, which

constitute the parameters to be solved in the RANS equations, while the turbulence effect is

manifested in the RANS turbulence models (Mikulevicius and Rozovskii 2004). Such a

simplified form of the NS equations provides an alternative approach for turbulent flow

2

simulation at the theoretical level. Large Eddy Simulation (LES) is another high-precision

numerical simulation method for turbulence investigation. The core idea of LES is to directly

analyze large-scale turbulent structures while modelling small-scale eddies using subgrid scale

models. Compared to RANS, large eddy simulation (LES) can capture unsteady turbulent

characteristics such as the separated flows and vortex evolution, making it suitable for

problems sensitive to transient turbulent characteristics such as the aerodynamic noise.

Considering that this thesis mainly focuses on fast and high-precision prediction of industrial-

scale problems, and RANS simulation should be a better carrier. This is because by filtering

out turbulent fluctuations through time averaging, only the averaged fluid equation is solved in

RANS simulations. All turbulence scales are enclosed by models, without the need to directly

analyze transient vortex structures.

Computational fluid dynamics (CFD) methods have long been used to solve the RANS

equations. Some well-known CFD methods such as the finite element method, finite volume

method, and discrete element method have been adopted in flow simulation in the past decade

(Fasel 1976, Jones and Titi 1992, Tobiska and Verfürth 1996). The finite volume method is one

of the most mature and widely adopted approaches, which discretizes the computational

domain into a set of non-overlapping control volumes and then involves the derivation of

discrete equations in each individual control volume (Eymard et al. 2000). The finite volume

method has been widely adopted by commercial software like Ansys Fluent and OpenFOAM

due to its excellent ability to formulate unstructured meshes and handle complicated geometries

while solving PDEs such as the RANS equations.

Since the flow field has been averaged and there is no need to analyze vortices at all scales,

the grid resolution required for solving the RANS equations when using CFD methods can be

far less precise compared to directly solving the NS equation (also known as Direct Numerical

3

Simulation, i.e., DNS). This significantly reduces the computer resources needed. The CFD

simulation, which relies on the RANS equations, offers the benefits of reduced computational

complexity and superior time efficiency. Despite the loss of turbulent characteristics due to

averaging in the RANS equations, there are innumerable cases where the analysis of time-

averaged properties of the flow should be prioritized, such as the vehicle wind resistance

problem (Ashton et al. 2016). As a result, CFD-based RANS simulation has become one of the

methods commonly adopted for fluid simulation in engineering problems (Coroneo et al. 2011,

Hertwig et al. 2012). A large number of research studies have emerged to solve practical

engineering problems involving turbulence in the past period of time based on CFD-based

RANS simulations (Peltier and Hambric 2007, Tominaga and Stathopoulos 2011). For example,

train aerodynamics has become a research focus of great significance in the modern high-speed

railway system. Massive train-air models have been established to study the flow field around

the high-speed train and further reduce the wind resistance during its daily operation (Chen et

al. 2017, Deng et al. 2019, Chen et al. 2020, Deng et al. 2020, Chen et al. 2022).

As research progresses, the shortcomings of the CFD-based RANS simulations are

gradually becoming apparent. Firstly, the CFD methods require manual meshing, while the

results are greatly affected by grid resolution (Katz and Sankaran 2011). Improper grids may

hinder the analysis of fine flow details, leading to imprecise results. Secondly, discretization in

CFD simulations brings new problems such as numerical diffusion and dissipation, which may

have a significant impact on the simulation results (Ekaterinaris 2005). Thirdly, compared to

the NS equations, the RANS equations incorporate the Reynolds stress terms as additional

unknown variables during the averaging process. To fully define the RANS equations, the

Reynolds stress terms should be incorporated by the time-averaged flow characteristics, which

is known as RANS turbulence modeling. A number of turbulence models have been proposed

4

in recent years. However, these are semi-empirical models, and there is no consensus on which

specific turbulence model should be selected in different flow conditions (Zhang et al. 2007).

As a result, the accuracy of the RANS simulation largely depends on the applicability of the

selected turbulence model (Farhadi et al. 2018).

In recent years, a novel machine learning-based PDE solver, i.e., physics-informed neural

network (PINN), has emerged (Raissi et al. 2019). Since its inception, it has shown

considerable impact in the field of fluid mechanics (Choi et al. 2022). The advantages of this

method over CFD methods are evident. Firstly, being a meshless approach, it does not

encounter any grid-related issues. For instance, the partial derivative terms in the PDEs are

calculated using the automatic differentiation (AD) function in a PINN, eliminating any

truncation error that may arise from grid methods. In addition, PINN has a neural network

foundation, while it can integrate data information into its simulation, and thus derive physics-

based data-driven solutions (de la Mata et al. 2023). Finally, with sufficient data, PINN is also

a powerful tool for solving inverse problems in fluid dynamics, such as parameter identification

issues and the discovery of underlying physical relationships of fluid parameters (Luo et al.

2020, Ngo and Lim 2021, Guo and Fang 2023, Yang et al. 2023).

In the PINN framework, the problem of the NS equation's incapacity to explicitly model

turbulent flows with high Reynolds numbers persists (Patel et al. 2024). Consequently,

researchers have been identifying the potential of PINN’s applications in RANS simulations

(Hanrahan et al. 2023, Pioch et al. 2023). To fully define the system of PDEs, RANS turbulence

modeling is still indispensable in the PINN framework. In the PINN framework, the approach

of turbulence modeling, i.e., introducing extra PDEs to solve Reynolds stress terms, is still

applicable, as it is in CFD methods. However, it should be noted that, compared to CFD, PINNs

have the ability to integrate data for turbulence simulation. Therefore, with sufficient data

5

support, the turbulence modeling task may be substituted with the embedded training data,

where the Reynolds stress terms are directly incorporated into the computational domain,

eliminating the need for collateral modeling (Eivazi et al. 2022). In addition, PINN has shown

exceptional performance not just in solving forward problems but also in addressing inverse

problems involving the RANS equations (Luo et al. 2020). The RANS turbulence models are

filled with a multitude of empirical constants that lack universal applicability to all flow

conditions (Geng and Escaler 2020). Deriving empirical constants from data under different

flow conditions can also contribute to the further development of the RANS turbulence models.

Specifically, PINN completes this task by converting empirical constants into neural network

parameters to be optimized (Raissi et al. 2019).

Nevertheless, it must be acknowledged that while PINN possesses certain advantages over

conventional CFD methods when solving the RANS equations, this emerging machine learning

solver for PDEs still faces several challenges. Some are chronic illnesses even in the CFD

framework, while others are newly introduced. These challenges compel researchers to delve

deeper into this research topic, thereby laying the foundation for this thesis.

1.2 Research Motivation

While researchers have successfully utilized PINN as a machine learning solver for the

RANS equations in flow field simulation tasks and have gotten favorable outcomes, there are

still some unresolved issues that need to be addressed in PINN-RANS simulations. To begin

with, let us review the limitations of using CFD methods to solve the RANS equations, which

were previously described. Although grid issues do not exist in PINNs, the limited applicability

of the RANS turbulence models under various flow conditions still exists (Pioch et al. 2023,

6

Rui et al. 2023). The problem is not induced by the PDE solver, but rather an inevitable result

of the simplification process from the NS equations to the RANS equations. The RANS

equations transform the unsteady turbulence problem into a steady-state problem, and the

information inherent in the time-accurate NS equations will be lost. In addition, it is well-

known that the RANS turbulence model should be introduced in order to close the system of

PDEs. RANS turbulence models can be categorized into various groups depending on the

number of extra PDEs incorporated in turbulence modeling. These groups include zero-

equation models, one-equation models, two-equation models, and so on (Yusuf et al. 2020).

Some of these models are suited for simulating indoor airflows (Chen and Xu 1998). Some are

for outdoor flow fields around building structures (Li et al. 2012), while others are for free

shear flows (Lakshminarayana 1986, Yakhot et al. 1992). Different RANS turbulence models

describe the Reynolds stress terms in totally different ways due to the close relationships

between these terms and flow boundaries, making it challenging to find a universally applicable

model under various flow conditions. Nevertheless, it is important to note that the PINN has

the capability to mitigate this issue by embedding pre-existing data in their training to aid in

the flow simulations (Eivazi et al. 2022, Hanrahan et al. 2023). The capacity of machine

learning algorithms to generalize from training data is a distinctive feature in the age of big

data, and this ability is inherently passed down to the PINN (Li and Chitre 2023). Continuously

correcting the solution of PDEs using measurement data during the equation solving process is

a solution to overcome the limited universality of such physical models (de la Mata et al. 2023).

Furthermore, PINN, being a PDE solver, has some fundamental limitations that restrict its

potential applications in RANS simulations. First and foremost, the problem at hand is

convergence. The convergence performance of a PDE solver is a crucial indication for

assessing its effectiveness in solving equations (Pantidis et al. 2023). The governing equation

7

loss, the boundary condition loss, and the labeled data loss which is likely to be present, make

up the loss function of a PINN while solving the RANS equation. Out of these, the governing

equation loss and the labeled data loss usually contain around three to four loss components

apiece. However, the number of loss components in the boundary condition loss alone usually

reaches two digits, depending on whether it is a two-dimensional or three-dimensional problem.

Therefore, the total loss of a PINN in solving the RANS equations is generally accumulated by

more than ten to twenty independent loss components. This may lead to several issues, such as

the imbalance between various loss components, namely, the challenge of determining the

weight coefficients for each component in the total loss (Li and Feng 2022, Liu et al. 2022,

Heldmann et al. 2023, Hou et al. 2024). Should the values of these weight coefficients remain

consistent throughout the training process? If their values stay constant, how should they be

taken? If the values do not remain constant, how should they be altered throughout the training

process? The answers to these questions are currently undisclosed, and these also constitute the

current focus of many studies. Moreover, as is well known, the training of a neural network is

generally carried out using gradient descent methods. However, studies have shown that

minimizing the loss of a PINN may sometimes be challenging using these gradient-based

methods (Krishnapriyan et al. 2021, Wang et al. 2021, Rathore et al. 2024). These studies

generally assume that the presence of the differential operators in a PINN will result in an ill-

conditioned loss function.

Secondly, there is the issue of the limitation of the nonlinear expression and feature

learning capabilities of a PINN. It is widely acknowledged that in the vast majority of current

research, the main body of a PINN, namely the function fitting module, is a fully connected

neural network (FCNN). Nevertheless, FCNNs have some established deficiencies in the

function fitting procedure such as the frequency principle observed in its training process. More

8

specifically, the frequency principle refers to the common phenomenon that an FCNN tends to

learn low-frequency information in the signal first, and then slowly learn high-frequency

information when fed with training data to comprehend the distribution of the signal (Xu et al.

2020). This phenomenon is detrimental to the utilization of a PINN for solving the RANS

equations (Sallam and Fürth 2023, Ye et al. 2024, Zhang et al. 2024). Although the solution of

the RANS equations does not contain a time term and traditional high-frequency and low-

frequency components, similar to image reconstruction tasks (for details, see Figure 1-1), the

PINN prioritizes providing a crude drawing of the time-averaged solution when solving the

RANS equations, which hinders the acquisition of the accurate solutions for areas with

substantial variations in gradients.

To summarize, there are challenges reflected in three aspects when using the PINN to

solve the RANS equations. Firstly, the inclusion of the Reynolds stress terms in the fluid

governing equations is necessary due to the trade-off made in simplifying the NS equations.

Nevertheless, the numerical modeling for the Reynolds stress terms would unavoidably give

rise to the applicability issue between various turbulence models, leading to disparities between

the simulation results and the real flow fields. The second issue is the convergence difficulty

when training a PINN. This involves the loss balance issue and the ill-conditioned loss function

Figure 1-1. The frequency principle is observed in a two-dimensional image reconstruction

task. Reprinted from (Xu et al. 2020).

9

induced by differential operators in governing equations. Finally, there are issues with the

nonlinear expression and feature learning capabilities of a PINN. The frequency principle

implies that for an FCNN, high-frequency features are difficult to capture, which is often

manifested as the difficulty in solving flow characteristics in areas with sharp gradients in fluid

simulation tasks. This study seeks to partially resolve these three difficulties, therefore

advancing the use of PINN in solving the RANS equations.

1.3 Research Methodology and Tasks

Based on Sections 1.1 and 1.2, the rest of this study will be organized into six chapters. In

addition to the literature review in Chapter 2 and the summary in Chapter 7, the main research

will be divided into four sections, namely Dynamic Prioritization in Chapter 3, Multifidelity

Modeling in Chapter 4, Quantum Layer Integration in Chapter 5, and Weighted Sum

Turbulence Model in Chapter 6, which will be explained sequentially as follows.

In Chapter 2, a comprehensive review is conducted, concentrating on the origin as well as

the mathematical form of the RANS equations. This chapter reviews the conventional

numerical methods for solving the RANS equations, the concept of PINN, and its developments

in recent years. At the end of this chapter, the research gap in this thesis is clarified.

In Chapter 3, a novel self-adaptive dynamic prioritization loss balance strategy is proposed

to partially alleviate the loss balance issue to improve the convergence performance of the

PINN in the RANS simulations. This approach first reorganizes the loss function in the PINN-

RANS simulations and then borrows the experience from the loss balancing strategy in multi-

task learning. The weight coefficients in the PINN’s loss function are determined by the relative

errors between its prediction values and the training data. Greater weights are assigned to the

10

loss components with larger relative errors as a punishment, wherein these loss components

can be emphasized in the next stages of the training process.

In Chapter 4, a Gaussian process-based multifidelity modeling algorithm is adopted as a

post-processing step in the PINN-RANS simulation. In this research, the solution of the PINN-

RANS simulation is defined as the low-fidelity data, while the measurement data is regarded

as the high-fidelity data. The algorithm captures the nonlinear non-functional space-dependent

cross-correlations between the low-fidelity and high-fidelity data sets. It utilizes the trend of

the low-fidelity PINN-RANS simulation results to fit the scattered data points on the high-

fidelity level. This approach significantly alleviates the problem of the inconsistency between

PINN-RANS simulations and the measurement data.

In Chapter 5, in order to improve the nonlinear expression and feature learning capabilities

of the PINN, the structure of the FCNN, which is the function fitting module, has been the

focus of innovation. By incorporating a quantum layer into the FCNN structure, the PINN is

transformed into a hybrid classical-quantum model. Empirical evidence has shown that this

model successfully mitigates the problems arising from the frequency principle, therefore

enhancing the expressive capability of the model in the PINN-RANS simulations.

In Chapter 6, a weighted sum RANS turbulence model is proposed under the PINN

framework, which is based on the linear superposition of the existing zero-equation RANS

turbulence models. A novel PINN structure is designed for calculating the Reynolds stress loss

and other physics-based losses in the meantime. The weight for each base model is

automatically optimized through minimizing the Reynolds stress loss. Results demonstrate that

the proposed method significantly alleviates the poor applicability of the RANS turbulence

model.

11

Chapter 7 provides a comprehensive summary of the thesis. Furthermore, in this chapter,

the drawbacks of the proposed methods are laid out and the issues that still need attention are

identified. At the end of the entire thesis, the potential research directions are outlined, which

are the further extensions of existing works.

Figure 1-2 illustrates the technical route of this thesis as a summary for this chapter. The

figure provides a concise overview of the key issues identified in the current research, as well

as the key technologies to be used and research content in the following chapters. The research

objectives are also outlined in the figure.

 Figure 1-2. Technical route of this thesis.

12

CHAPTER 2

LITERATURE REVIEW

2.1 An Overview of the RANS Equations

2.1.1 Beginning with the NS equations

Since the RANS equations are derived by averaging the NS equations, a thorough

comprehension of the latter is essential before delving into the RANS equations. The NS

equations is a collective name, covering the fluid continuity and momentum equations. For the

incompressible flow, the fluid continuity equation takes the following form. Note that the

subscripts in this thesis follow the Einstein summation convention.

𝜕𝑢௜

𝜕𝑥௜
= 0 (2 − 1)

where 𝑥௜ is the spatial coordinate, and 𝑢௜ is the velocity component in the 𝑥௜ direction. The

continuity equation is the specific manifestation of the mass conservation law in fluid flows.

For the incompressible flow, the momentum equation takes the following form

𝜕𝑢௜

𝜕𝑡
+ 𝑢௝

𝜕(𝑢௜)

𝜕𝑥௝
= −

1

𝜌

𝜕𝑝

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቈ𝜈 ቆ

𝜕𝑢௜

𝜕𝑥௝
+

𝜕𝑢௝

𝜕𝑥௜
ቇ቉ + 𝑓௜ (2 − 2)

where 𝑡 stands for the time. 𝜌 denotes the fluid density. 𝑝 denotes the pressure. 𝜈 stands

for the kinematic viscosity of the fluid. 𝑓௜ is the external force. The momentum equation can

be split into five distinct terms. First comes the time derivative term
డ௨೔

డ௧
, which describes the

13

variation of the flow rate over time. Then comes the inertial force term
డ൫௨೔௨ೕ൯

డ௫ೕ
, which reflects

the inertial response of the fluid flow. ଵ

ఘ

డ௣

డ௫೔
 denotes the pressure force, followed by the viscous

force term
డ

డ௫ೕ
൤𝜈 ൬

డ௨೔

డ௫ೕ
+

డ௨ೕ

డ௫೔
൰൨, which represents the effect of smoothing flow distribution due

to viscosity. The rightmost side of the equation is the external forces applied to the fluid 𝑓௜. If

there is no external force, this term equals zero.

2.1.2 Reynolds averaging

Reynolds averaging refers to the process of dividing an instantaneous physical quantity

∅(𝒙, 𝑡) , which is within the time range of [0, 𝑇] , into a mean quantity ∅ഥ(𝒙, 𝑡) and a

fluctuating quantity ∅ᇱ(𝒙, 𝑡). For steady flows, the mean quantity ∅ഥ(𝒙, 𝑡) is independent of

time. Thus, it is also written as ∅ഥ(𝒙) . This thesis discusses steady flows, therefore in the

following text, ∅ഥ refers to ∅ഥ(𝒙). Mathematically, the quantity ∅ can be written as follows

∅ = ∅ഥ + ∅ᇱ (2 − 3)

where

∅ഥ =
1

𝑇
න ∅

்

଴

𝑑𝜏 (2 − 4)

Here, 𝑇 represents the length of the time range, which should exceed the fluctuation

period of turbulence by a substantial margin. Now, it is necessary to clarify some rules of

Reynolds averaging before performing Reynolds averaging on the NS equations. These rules

are listed as follows

∅ന =
1

𝑇
න ∅ഥ

்

଴

𝑑𝜏 =
∅ഥ

𝑇
න 𝑑𝜏

்

଴

= ∅ഥ (2 − 5)

14

∅ ± 𝜑തതതതതതതത =
1

𝑇
න (∅ ± 𝜑)

்

଴

𝑑𝜏 =
1

𝑇
න ∅

்

଴

𝑑𝜏 ±
1

𝑇
න 𝜑

்

଴

𝑑𝜏 = ∅ഥ ± 𝜑ത (2 − 6)

∅ᇱഥ = ∅ − ∅ഥതതതതതതതത = ∅ഥ − ∅ന = 0 (2 − 7)

∅ഥ𝜑തതതത =
1

𝑇
න ∅ഥ

்

଴

𝜑𝑑𝜏 = ∅ഥ
1

𝑇
න 𝜑

்

଴

𝑑𝜏 = ∅ഥ𝜑ത (2 − 8)

∅𝜑തതതത = ൫∅ഥ + ∅ᇱ൯(𝜑ത + 𝜑ᇱ)തതതതതതതതതതതതതതതതതതതതതത = ∅ഥ𝜑തതതതത + ∅ഥ𝜑ᇱതതതതത + ∅ᇱ𝜑തതതതതത + ∅ᇱ𝜑ᇱതതതതതത = ∅ഥ𝜑ത + ∅ᇱ𝜑ᇱതതതതതത (2 − 9)

𝜕∅

𝜕𝑡

തതതത
=

1

𝑇
න

𝜕∅

𝜕𝑡

்

଴

𝑑𝜏 =
1

𝑇
[∅(𝒙, 𝑇) − ∅(𝒙, 0)] =

1

𝑇

𝜕

𝜕𝑡
ቆන ∅𝑑𝜏

்

଴

ቇ =
𝜕∅ഥ

𝜕𝑡
= 0 (2 − 10)

𝜕∅

𝜕𝒙

തതതത
=

1

𝑇
න

𝜕∅

𝜕𝒙

்

଴

𝑑𝜏 =
1

𝑇

𝜕

𝜕𝒙
ቆන ∅𝑑𝜏

்

଴

ቇ =
𝜕∅ഥ

𝜕𝒙
(2 − 11)

Based on the above rules, the continuity and momentum equations in the NS equations

can be Reynolds averaged, thus transforming the NS equations into the RANS equations.

2.1.3 The RANS equations

First, the continuity equation in the incompressible NS equations, namely Eq.(2-1),

undergoes Reynolds averaging on both sides of the equal sign, which is as follows

𝜕𝑢ప

𝜕𝑥ప

തതതതത
= 0ത (2 − 12)

Then, based on Eq. (2-11), we may get

𝜕𝑢ത௜

𝜕𝑥௜
= 0 (2 − 13)

Here, 𝑢ത௜ denotes the mean quantity of instantaneous fluid velocity 𝑢௜. Or, to put it more

bluntly, 𝑢ത௜ is the time-averaged velocity components in the 𝑥௜ direction. Similarly, Reynolds

15

averaging is applied to both sides of the equal sign in the momentum equation, i.e., Eq. (2-2).

Then, we may get

𝜕𝑢ప

𝜕𝑡

തതതതത
+ 𝑢ఫ

𝜕(𝑢ప)

𝜕𝑥ఫ

തതതതതതതതതത
= −

1

𝜌

𝜕𝑝

𝜕𝑥ప

തതതത
+

𝜕

𝜕𝑥ఫ
ቈ𝜈 ቆ

𝜕𝑢ప

𝜕𝑥ఫ
+

𝜕𝑢ఫ

𝜕𝑥ప
ቇ቉

തതതതതതതതതതതതതതതതതതതതതതതതത
+ 𝑓ప

ഥ (2 − 14)

Handle the terms on the left side of the equal sign individually. For steady flows, there are

𝜕𝑢ప

𝜕𝑡

തതതതത
+ 𝑢ఫ

𝜕(𝑢ప)

𝜕𝑥ఫ

തതതതതതതതതത
= ൫𝑢ఫഥ + 𝑢ఫ

ᇱ൯
𝜕(𝑢തప + 𝑢ప

ᇱ)

𝜕𝑥ఫ

തതതതതതതതതതതതതതതതതതതതതതതതതതത
= 𝑢ఫഥ

𝜕𝑢തప

𝜕𝑥ఫ
+ 𝑢ఫഥ

𝜕𝑢ప
ᇱ

𝜕𝑥ఫ
+ 𝑢ఫ

ᇱ
𝜕𝑢തప

𝜕𝑥ఫ
+ 𝑢ఫ

ᇱ
𝜕𝑢ప

ᇱ

𝜕𝑥ఫ

തത

= 𝑢ఫന
𝜕𝑢തప

𝜕𝑥ఫ

തതതതത
+ 𝑢ఫ

ᇱ
𝜕𝑢ప

ᇱ

𝜕𝑥ఫ

തതതതതതതതത
= 𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
+

𝜕

𝜕𝑥௝
ቀ𝑢௜

ᇱ𝑢௝
ᇱቁ (2 − 15)

Then, handle the terms on the right side of the equal sign individually. For steady flows,

if there is no external force, it will be as follows

−
1

𝜌

𝜕𝑝

𝜕𝑥ప

തതതത
+

𝜕

𝜕𝑥ఫ
ቈ𝜈 ቆ

𝜕𝑢ప

𝜕𝑥ఫ
+

𝜕𝑢ఫ

𝜕𝑥ప
ቇ቉

തതതതതതതതതതതതതതതതതതതതതതതതത
+ 𝑓ప

ഥ = −
1

𝜌

𝜕𝑝̅

𝜕𝑥௜
+ 𝜈

𝜕

𝜕𝑥௝
ቆ

𝜕𝑢ప

𝜕𝑥ఫ
ቇ

തതതതതതതത
= −

1

𝜌

𝜕𝑝̅

𝜕𝑥௜
+ 𝜈

𝜕ଶ𝑢ത௜

𝜕𝑥௝
ଶ

(2 − 16)

Based on Eq. (2-14), (2-15) and (2-16), we may get

𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
= −

1

𝜌

𝜕𝑝̅

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቆ𝜈

𝜕𝑢ത௜

𝜕𝑥௝
− 𝑢௜

ᇱ𝑢௝
ᇱቇ (2 − 17)

If the density of the fluid is multiplied on both sides of the equal sign simultaneously, then

this equation may be expressed as follows

𝜌𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
= −

𝜕𝑝̅

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቆ𝜇

𝜕𝑢ത௜

𝜕𝑥௝
− 𝜌𝑢௜

ᇱ𝑢௝
ᇱቇ (2 − 18)

where 𝜇 is the dynamic viscosity, and 𝜇 = 𝜌𝜈. Eq. (2-18) is the momentum equation after

Reynolds averaging, which forms the RANS equations together with Eq. (2-13). −𝜌𝑢௜
ᇱ𝑢௝

ᇱ is

an additional mathematical term introduced in the process of Reynolds averaging, which is the

16

well-known Reynolds stress term. For convenience, −𝜌𝑢௜
ᇱ𝑢௝

ᇱ is substituted by 𝑅௜௝ in the

following text. The additional introduction of the Reynolds stress term 𝑅௜௝ has led to the non-

closure problem of the system of equations. Handling the Reynolds stress term to achieve

the closure of the RANS equations is also known as RANS turbulence modeling. Various

treatments of this term have led to the appearances of different RANS turbulence models.

2.1.4 RANS Turbulence modeling

The treatment methods of the Reynolds stress term in the RANS equations can be mainly

divided into two categories. One is to use the Reynolds stress model (RSM) to describe the

Reynolds stress term, that is, to establish the transport equation for each element in the

Reynolds stress term. RSMs are believed to have the capability to provide accurate predictions

for complex flows. Nevertheless, the precision of RSM predictions is inherently limited by the

closure assumptions of several terms in the RSM transport equations, such as the pressure-

strain and dissipation rate terms. Furthermore, the introduction of a substantial number of

transport equations (five in two-dimensional cases and seven in three-dimensional cases)

results in quite high computational expense for RSM. Consequently, RSM is not the preferred

method in RANS turbulence modeling.

In fact, currently, the dominant approaches to RANS turbulence modelling are based on

the Boussinesq eddy viscosity assumption, which presupposes a linear correlation between the

Reynolds stress and the mean rate of strain tensor. Based on the Boussinesq eddy viscosity

assumption, the Reynolds stress can be expressed as follows

𝑅௜௝ = 𝜇௧ ቆ
𝜕𝑢ത௜

𝜕𝑥௝
+

𝜕𝑢ത௝

𝜕𝑥௜
ቇ −

2

3
𝜌𝛿௜௝𝑘 (2 − 19)

17

where 𝜇௧ is the turbulent viscosity. 𝛿௜௝ is the Kronecker delta function. 𝑘 =
ଵ

ଶ
𝑢௜

ᇱ𝑢௜
ᇱ is the

turbulent kinetic energy. Substitute the Reynolds stress term in Eq. (2-18) with Eq. (2-19), and

then we may get

𝜌𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
= −

𝜕𝑝̅

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቆ𝜇

𝜕𝑢ത௜

𝜕𝑥௝
+ 𝜇௧ ቆ

𝜕𝑢ത௜

𝜕𝑥௝
+

𝜕𝑢ത௝

𝜕𝑥௜
ቇ − 𝑐𝜌𝛿௜௝𝑘ቇ

= −
𝜕 ቀ𝑝̅ +

2
3

𝜌𝑘ቁ

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
൭(𝜇 + 𝜇௧)

𝜕𝑢ത௜

𝜕𝑥௝
൱ (2 − 20)

In some literature, authors may use 𝜇௘௙௙ to refer to the sum of the dynamic viscosity 𝜇

and the turbulent viscosity 𝜇௧, which is also known as the effective viscosity. Therefore, it is

evident from the above equation that the problem of determining the Reynolds stress term in

the RANS equations has been transformed into determining the turbulent viscosity 𝜇௧, which

is the only unknown brought by Reynolds averaging in Eq. (2-20). To determine the turbulent

viscosity 𝜇௧, the general approach is to introduce new PDEs to solve it. Depending on the

number of additional equations introduced, these methods are categorized as zero-equation

models, one-equation models, two-equation models, and so on.

The zero-equation model, also known as the algebraic model, has the simplest form among

various turbulence models. The essence of the zero-equation model is to describe turbulent

viscosity using the averaged characteristics of the flow. For instance, the Prandtl mixing-length

model is one of the most well-known zero-equation RANS turbulence models (Prandtl 1925).

The turbulent viscosity 𝜇௧ is described as follows

𝜇௧ = 𝐶௣ఓ𝜌𝑢௧𝑙௣଴ (2 − 21)

where 𝐶௣ఓ is a problem-dependent constant and 𝑙௣଴ is a prescribed length based on the

location of the grid. 𝑢௧ is the characteristic velocity of the fluid. In the two-dimensional shear

18

flows, there are 𝑢௧ = 𝐿 ቚ
డ௨ഥ

డ௬
ቚ. Here, 𝑢ത denotes the time-averaged mainstream velocity and 𝑦

is the perpendicular direction. Based on Eq. (2-21), it is evident that the Prandtl mixing-length

model couples the turbulent viscosity with the gradient of the time-averaged flow velocity

without introducing new PDEs in equation solving. Consequently, it is referred to as the zero-

equation RANS turbulence model. The Prandtl mixing-length model is demonstrated to have

good precision in modeling shear flows, waves, and so on.

The Baldwin-Lomax model is another commonly used zero-equation model for RANS

turbulence enclosure (Baldwin and Lomax 1978). The model decomposes the flow field into

two layers, namely the inner and outer layers. Each layer employs a distinct calculation method

to determine turbulent viscosity 𝑢௧. It is worth noting that when using the Baldwin-Lomax

model, the value of 𝑘 in Eq. (2-19) is set to zero, which is a prevalent approach when zero-

equation models are adopted. Other commonly used zero-equation models include the Chen

model for indoor airflow simulation (Chen and Xu 1998), and the Li model for modeling

external airflow over buildings (Li et al. 2012).

Despite their significant computational efficiency, zero-equation models generally lack

universality and are unable to accurately represent flows in diverse intricate geometries.

Moreover, these zero-equation models may lack the capability to adequately include the

historical influences of the turbulence, such as the convection and diffusion of the turbulent

energy. Lastly, when dealing with complicated turbulent flows, it is challenging to identify the

turbulent length scale which always appears in various zero-equation models. These factors all

make it difficult for the zero-equation RANS turbulence models to be widely applied in dealing

with practical problems.

The one-equation model refers to the RANS turbulence model that incorporates one extra

19

PDE into Reynolds stress modeling. Prandtl was also the first to propose a one-equation RANS

turbulence model (Prandtl 1945). In this model, an equation describing turbulent kinetic energy

𝑘 is introduced, which takes the following form

𝜕𝜌𝑘

𝜕𝑡
+ 𝑢ത௝

𝜕𝜌𝑘

𝜕𝑥௝
= 𝑅௜௝

𝜕𝑢ത௜

𝜕𝑥௝
− 𝐶஽

𝜌𝑘
ଷ
ଶ

𝑙௣ଵ
+

𝜕

𝜕𝑥௝
ቈ൬𝜇 +

𝜇௧

𝜎௞
൰

𝜕𝑘

𝜕𝑥௝
቉ (2 − 22)

where 𝑙௣ଵ is the turbulent length scale. To be noted, the approach for estimating the

turbulent length scale is similar to the one used in the Prandtl mixing-length model. In addition,

there is the following relationship between the turbulent kinetic energy 𝑘 and the turbulent

viscosity 𝜇௧

𝜇௧ = 𝜌𝑘
ଵ
ଶ𝑙௣ଵ (2 − 23)

It is not difficult to discover that there are some empirical constants in the Prandtl’s one-

equation model, and the values of these empirical constants directly affect the accuracy of the

RANS turbulence model. The typical values of the empirical constants in the Prandtl’s one-

equation model are now tabulated in Table 2-1 for readers’ reference.

Table 2-1. The typical values of the empirical constants in the Prandtl’s one-equation model.

Coefficient 𝐶஽ 𝜎௞

Value 0.08 1

Other well-known one-equation RANS turbulence models include the Spalart-Allmaras

model (Spalart and Allmaras 1992), the Baldwin-Barth model (Baldwin and Barth 1991), and

so on. In general, the one-equation models outperform the zero-equation models for simulating

separated flows, which is due to the calculation of the convection and diffusion effects of

20

turbulence. Nevertheless, similar to the zero-equation model, the one-equation model still

requires empirical estimation of turbulent length scales. As a result, its overall generality

remains limited and it is only applicable in certain cases, such as the hypersonic flows (Paciorri

et al. 1997).

Among all the RANS turbulence models, the two-equation model is the prevailing form.

The plenty of engineering cases adopting two-equation models in RANS turbulence modeling

are enough to prove its core position in this field. As its name suggests, a two-equation model

includes two additional transport equations to characterize turbulent properties, in addition to

the continuity and momentum equations. Basically, there will be an equation used to describe

the turbulent kinetic energy 𝑘. As for the second additional equation introduced, it depends on

the specific model.

For example, the standard k-ε model is one of the well-known two-equation turbulence

models, which has been widely adopted in practical engineering (Launder and Sharma 1974).

Apart from the continuity and the momentum equations, the kinetic energy equation and the

dissipation equation (i.e., k-equation and ε-equation) are additionally introduced in the standard

k-ε turbulence model to simulate turbulent behaviors. k-equation and ε-equation can be

described as follows (buoyancy is neglected)

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥௜

(𝜌𝑘𝑢ത௜) =
𝜕

𝜕𝑥௝
ቈ(𝜇 +

𝜇௧

𝜎௞
)

𝜕𝑘

𝜕𝑥௝
቉ + 𝜇௧𝑆ଶ + 𝑅௜௝

𝜕𝑢ത௝

𝜕𝑥௜
− 𝜌𝜀 (2 − 24)

𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥௜

(𝜌𝜀𝑢ത௜) =
𝜕

𝜕𝑥௝
ቈ(𝜇 +

𝜇௧

𝜎ఌ
)

𝜕𝜀

𝜕𝑥௝
቉ + 𝐶ଵఌ

𝜀

𝑘
𝑅௜௝

𝜕𝑢ത௝

𝜕𝑥௜
− 𝐶ଶఌ𝜌

𝜀ଶ

𝑘
(2 − 25)

Here, 𝑆 = ඥ2𝑆௜௝𝑆௜௝. 𝑆௜௝ =
ଵ

ଶ
൬

డ௨ഥ೔

డ௫ೕ
+

డ௨ഥೕ

డ௫೔
൰, which is the mean strain rate tensor. 𝜀 is the

turbulent dissipation rate. 𝑘, 𝜀, and 𝜇௧ have the following relationship

21

𝜇௧ = 𝜌𝐶ఓ

𝑘ଶ

𝜀
(2 − 26)

The typical values of the empirical constants in the standard k-ε model are now tabulated

in Table 2-2 for readers’ reference.

Table 2-2. The typical values of the empirical constants in the standard k-ε model.

Coefficient 𝐶ఓ 𝐶ଵఌ 𝐶ଶఌ 𝜎௞ 𝜎ఌ

Value 0.09 1.44 1.92 1.0 1.3

As another well-known two-equation RANS turbulence model, the Re-Normalization

Group (RNG) k-ε model is the renormalized form of the standard k-ε model, which takes the

smaller scales of turbulent fluctuation into consideration (Smith and Woodruff 1998). More

specifically, in the RNG k-ε model, the k-equation has the same mathematical expression as

that in the standard k-ε model. The only difference is the ε-equation, which takes the following

form at present

𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥௜

(𝜌𝜀𝑢ത௜) =
𝜕

𝜕𝑥௝
ቈ(𝜇 +

𝜇௧

𝜎ఌ
)

𝜕𝜀

𝜕𝑥௝
቉ + 𝐶ଵఌ

𝜀

𝑘
𝑅௜௝

𝜕𝑢ത௝

𝜕𝑥௜
− 𝐶ଶఌ

∗ 𝜌
𝜀ଶ

𝑘
(2 − 27)

where

𝐶ଶఌ
∗ = 𝐶ଶఌ +

𝐶ఓ𝜂ଷ ቀ1 −
𝜂
𝜂଴

ቁ

1 + 𝛽𝜂ଷ
(2 − 28)

Here, 𝜂 =
ௌ௞

ఌ
. The typical values of the empirical constants in the RNG k-ε model are now

tabulated in Table 2-3 for readers’ reference.

Table 2-3. The typical values of the empirical constants in the RNG k-ε model.

22

Coefficient 𝐶ఓ 𝐶ଵఌ 𝐶ଶఌ 𝜎௞ 𝜎ఌ 𝜂଴ 𝛽

Value 0.0845 1.42 1.68 0.7194 0.7194 4.38 0.012

In contrast to the zero-equation and one-equation models, the two-equation model

essentially introduces additional equations to estimate the turbulence length scale using

turbulence kinetic energy and turbulence dissipation rate, thereby enclosing the RANS

equations. An advantage of the two-equation RANS turbulence model is its enhanced

applicability, making it suitable for a broader spectrum of flow conditions. Nevertheless, the

drawback lies in the potential increase in computational expenses and the comparatively

low computational efficiency.

Besides the aforementioned models, there are more RANS turbulence models such as the

three-equation models (Walters and Cokljat 2008, Li et al. 2020), the four-equation models

(Chitta et al. 2013, Grunloh 2019), and so on. Moreover, some models have challenged the

Boussinesq eddy viscosity assumption by assuming a nonlinear correlation between the

Reynolds stress term and the time-averaged turbulent properties (Craft et al. 1997, Bauer et al.

2000). While these models will not be enumerated, their fundamental nature lies in different

approaches for the characterization of the Reynolds stress term.

2.2 Conventional Methods for Solving the RANS Equations

Once the physical modeling is completed, namely the closure of the RANS equations, it

becomes imperative to address the subsequent challenge of using numerical methods for

approximating the solutions of these physical equations. One may doubt the need to pursue an

23

analytical solution. While it is indeed feasible to explore the possibility of obtaining an

analytical solution, as the problem becomes more complex, the task of finding such a solution

becomes challenging. Thus, the use of other approximation approaches, i.e., numerical methods,

is necessitated. More specifically, the primary objective of such numerical methods is to

develop effective, resilient, and dependable numerical algorithms for obtaining an approximate

solution of the governing PDEs.

As mentioned in Section 1.1, the CFD methods, which are the numerical methods

involving the discretization of the governing PDEs within the computational domain, have been

predominantly reigning in the realm of RANS turbulence simulations. CFD methods serve as

an umbrella term, encompassing two main approaches in RANS simulations. One faction

employs the finite volume method (FVM) as its foundation for solving the RANS equations,

while the other relies on a finite element method (FEM), i.e., the Discontinuous Galerkin

method (DGM), for tackling these equations. The following discussion will delve into these

two methods.

2.2.1 FVM

FVM is based on the concept of partitioning the computational domain into a number of

grids and aiming to find the approximate solutions for the PDEs on the grid nodes. FVM

generates a non-overlapping control volume around each grid point. It then integrates the PDEs

to be solved for each control volume to obtain a set of discrete equations. In order to calculate

the integral, it is necessary to assume the variation law of the solution of the PDEs between

grid nodes, that is, to set the piecewise interpolation of the solution function between grid nodes.

The advantage of FVM lies in the fact that the discrete equations satisfy conservation in each

control volume and also in the entire computational domain.

24

Taking the steady one-dimensional diffusion equation as an example, the discretization

method of FVM will be discussed. The steady one-dimensional diffusion equation can be

expressed as follows

𝑑

𝑑𝑥
൬𝐾

𝑑𝜓

𝑑𝑥
൰ + 𝑄 = 0 (2 − 29)

where 𝜓 denotes the physical quantity of diffusion. 𝐾 denotes the diffusion coefficient. 𝑄

is the rate of heat generation per unit volume. Figure 2-1 depicts the control volume and grid

points when solving the steady one-dimensional diffusion equation. As shown in the figure, the

grid point P is sandwiched between adjacent grid points W and E. The dashed lines represent

the boundary surfaces w and e.

By integrating Eq. (2-29) with the control volume around the grid point P, we may obtain

the following equation

൬𝐾
𝑑𝜓

𝑑𝑥
൰

௘
− ൬𝐾

𝑑𝜓

𝑑𝑥
൰

௪
+ න 𝑄𝑑𝑥

௘

௪

= 0 (2 − 30)

Figure 2-1. The control volume and grid points when solving the steady one-dimensional

diffusion equation.

25

In order to solve the above equation, it is important to approximate the derivative terms

in the equation. We can now assume that the solution function is linearly interpolated between

grid points. Then, we may get

𝐾௘(𝜓ா − 𝜓௉)

𝛿𝑥௉ா
−

𝐾௪(𝜓௉ − 𝜓ௐ)

𝛿𝑥௉ா
+ 𝑄ത௉𝛿𝑥 = 0 (2 − 31)

where 𝑄ത௉ denotes the averaged value of the source term 𝑄 within the control volume. In

most cases, the source term 𝑄 is a function of the variable 𝜓. Now assume that 𝑄ത௉ takes the

following form

𝑄ത௉ = 𝑄௖ + 𝑎𝜓௉ (2 − 32)

where 𝑄௖ is the constant component of the 𝑄ത௉ , and 𝑎 is the coefficient of 𝜓௉ . Then by

substituting the 𝑄ത௉ in Eq. (2-31) with Eq. (2-32), we may get the following equation

𝐾௘(𝜓ா − 𝜓௉)

𝛿𝑥௉ா
−

𝐾௪(𝜓௉ − 𝜓ௐ)

𝛿𝑥௉ா
+ (𝑄௖ + 𝑎𝜓௉)𝛿𝑥 = 0 (2 − 33)

If we denote
௄೐

ఋ௫ುಶ
 as 𝑎ா and

௄ೢ

ఋ௫ುಶ
 as 𝑎ௐ, then we may get

𝑎ா(𝜓ா − 𝜓௉) − 𝑎ௐ(𝜓௉ − 𝜓ௐ) + 𝑄௖𝛿𝑥 + 𝑎𝜓௉𝛿𝑥 = 0 (2 − 34)

That is

𝑎ா𝜓ா + 𝑎ௐ𝜓ௐ + 𝑄௖𝛿𝑥 = (𝑎ா + 𝑎ௐ − 𝑎𝛿𝑥)𝜓௉ (2 − 35)

Then, we may find that Eq. (2-35) equals to the following form

𝑎ா𝜓ா + 𝑎ௐ𝜓ௐ + 𝑏 = 𝑎௉𝜓௉ (2 − 36)

where 𝑏 = 𝑄௖𝛿𝑥, and 𝑎௉ = 𝑎ா + 𝑎ௐ − 𝑎𝛿𝑥. Eq. (2-36) is the discretization form of Eq. (2-

29) for use in further numerical computations. Notably, a linear interpolation is employed to

26

calculate the derivative, which is not the mandatory choice. Alternative methods of

interpolation can be employed to calculate the derivative, potentially yielding different

outcomes. From Eq. (2-30) it can be discoverd that FVM is directly based on conservation laws,

i.e., mass, momentum, energy, etc. FVM ensures the conservation of these physical quantities

by integrating over each control volume. This is particularly important for RANS turbulence

simulations, as turbulence involves complex momentum and energy exchanges. FVM’s

capability of ensuring physical conservation laws can improve the physical modeling accuracy

of the RANS turbulence simulations. The preceding analysis also clearly shows that FVM can

handle complicated geometries and boundary constraints. Turbulence typically occurs in

complex engineering environments such as the regions around aircraft wings and car bodies,

and the FVM’s flexibility allows it to better adapt to these complex geometries.

The result is that many well-known commercial CFD software, such as Ansys Fluent, Star

CCM+, and OpenFOAM, have all chosen FVM as the computational method for fluid flow

simulation, including RANS turbulence simulation. Researchers have carried out many

meaningful studies in a variety of domains based on mature commercial software, for example,

in the fields of building’s indoor and outdoor flow field simulation and high-speed train

aerodynamics.

In the field of indoor airflow simulation, for instance, numerous research studies have

been conducted, that integrated the RANS turbulence models with the FVM approach to

simulate the building’s indoor environment (Durrani et al. 2015). Stamou and Katsiris (2006)

verified the applicability of the Shear Stress Transport (SST) k-ω RANS turbulence model,

which was proposed by Menter (1993), in an office environment. The work was carried out

using the FVM-based CFD commercial software CFX. This work also compared the simulation

results of the standard k-ε model and the RNG k-ε model are also with experimental data. The

27

results in this study indicated that the SST k-ω RANS turbulence model is the model highly

recommended for practical applications in indoor airflow simulations due to its consistency

with the experimental data.

Posner et al. (2003) investigated the influence of obstructions on the indoor flow field.

Initially, they employed commercial software Ansys Fluent, which is based on the FVM

approach, to conduct RANS simulations using various turbulence models including the

standard k-ε model and the RNG k-ε model. Subsequently, they implemented experimental

measurements employing the particle image velocimetry (PIV) and laser Doppler anemometry

(LDA) technologies to verify the CFD simulation results. Their findings suggested that the

RNG k-ε model may be the most effective in simulating indoor airflow when there exist

obstructions indoors.

Considering the substantial computing expense induced by the two-equation RANS

turbulence models in indoor airflow simulation, Chen and Xu (1998) proposed a simple zero-

equation RANS turbulence model as an alternative. Figure 2-2 depicts the comparison between

simulated wind speed and measured results when using the proposed zero-equation model and

the standard k-ε model. The findings suggested that while the proposed zero-equation model

has enhanced computing efficiency, the simulated wind velocities in regions with significant

gradient variations are inferior to those obtained using the conventional two-equation RANS

turbulence models. It is worth mentioning that this study was carried out using the commercial

FVM-based software PHOENICS.

Furthermore, apart from the indoor flow field, there are also many research cases of FVM-

based RANS simulations for building’s outdoor flow (Van Hooff et al. 2017, Vita et al. 2020,

Zheng et al. 2020). Acquiring outdoor airflow characteristics is crucial in building simulations

28

since they have a direct impact on the thermal environment and air pollution issues around a

building (Mfula et al. 2005, Challoner and Gill 2014, Yang et al. 2021).

 Jędrzejewski et al. (2017) conducted research on investigating the airflow characteristics

around building clusters using Ansys Fluent. Aside from utilizing the widely used realizable k-

ε model, which was proposed by Shih et al. (1995), to close the RANS equations, the

aforementioned RSM was also adopted in the simulation. Figure 2-3 illustrates the disparity

between the results obtained from the wind tunnel test and FVM-based numerical results. The

Figure 2-2. A comparison between the RANS simulated wind speed and measurement results

carried out by Chen and Xu (1998).

29

cross represents the discrete data from the experiment, the red line represents the results of the

realizable k-ε model, and the blue line represents the results of the RSM. Such a finding

suggests that the FVM-based RANS simulation has the capability to accurately present the

actual flow field around building structures, provided that the turbulence model is chosen

properly.

In the realm of high-speed train aerodynamics, researchers have also carried out a number

of meaningful works using FVM-based RANS simulations (Diedrichs 2010, Rezvani and

Figure 2-3. Comparison between the pressure coefficients obtained from RANS simulations

and wind tunnel experiments by Jędrzejewski et al. (2017).

30

Mohebbi 2014, Munoz-Paniagua et al. 2017). Issues including a sudden rise in the air resistance

and a higher risk of overturning induced by crosswinds when trains operate at high speeds have

emerged as critical challenges in the development of high-speed rail (Brockie and Baker 1990,

Raghunathan et al. 2002, Baker et al. 2011). Real vehicle testing opportunities are rare, leading

to the difficulty for researchers to obtain data in real environments (Gallagher et al. 2018, Misu

and Ishihara 2018). Owing to its inherent ground effects and other factors that may influence

the experimental results, the wind tunnel test is not the mainstream method in this research

field (Baker and Brockie 1991). Thus, numerical simulation has become a fundamental tool in

the discipline of high-speed train aerodynamics to search for strategies for reducing air

resistance and preventing train overturning. Given the complex geometry of the train,

the steady RANS simulation is a commonly used numerical method to minimize the number

of grids and computational expenses without compromising accuracy.

For instance, Li et al. (2019) applied FVM-based RANS simulations to the study of

investigating the train aerodynamics under crosswinds, which determined the optimal RANS

turbulence model for modeling the aerodynamic characteristics of high-speed trains.

Comparative analysis was conducted on six RANS turbulence models, including the

aforementioned standard k-ε model, RNG k-ε model, Realizable k-ε model, SST k-ω model,

and Spalart–Allmaras model. Figure 2-4 shows the analysis of train surface pressure

distribution using various RANS turbulence models. The results in the figure indicated that the

choice of the RANS turbulence model will influence the surface pressure distribution

significantly. The authors also suggested that the SST k-ω model might be the best choice for

FVM-based RANS simulations of train aerodynamics under crosswind conditions considering

its extremely high accuracy.

31

2.2.2 FEM

FEM is a widely employed numerical method for solving fluid-related problems, which

is mainly based on the variational principle or the weighted residual method. On this basis, the

FEM also borrows the concept of discretization from the finite difference method. The core

idea of the FEM is to approximate the solution of PDEs by using simple equations inside a

small element. The use of the finite element method for solving partial differential equations

may be generally divided into the following steps: (a) formulating the mathematical model for

the physical problem, identifying the computational domain, and determining the initial and

boundary conditions; (b) utilizing the principle of virtual work to construct the weak-form

physical governing equations; (c) discretization of the computational domain as well as the

PDEs; (d) unit analysis and establishing the unit stiffness matrix; (e) establishing the global

stiffness matrix; (f) treatment of the boundary conditions, and (g) solving the linear equations.

Figure 2-4. Analysis of train surface pressure distribution using various RANS turbulence

models carried out by Li et al. (2019).

32

More specifically, physical governing PDEs, such as Eq. (2-29), can be expressed in the

following form

𝐿(𝜓) = 𝑓 (2 − 37)

where 𝐿(∙) is the differential operator, and 𝑓 is the scalar function of the independent

variables. By drawing inspiration from the weighted residual method, we may assume 𝜓ᇱ as

the approximate solution. By substituting the approximate solution 𝜓ᇱ into the above equation,

a residual value 𝑅 can be obtained

𝑅 = 𝐿(𝜓ᇱ) − 𝑓 ≠ 0 (2 − 38)

Based on the weighted residual method, the weight function 𝑊௜ is chosen to ensure that

the weighted integral of the residual 𝑅 throughout the entire computational domain is equal

to zero, which is as follows

ඵ 𝑅𝑊௜𝑑𝐷
஽

= ඵ (𝐿(𝜓ᇱ) − 𝑓)𝑊௜𝑑𝐷
஽

= 0 (2 − 39)

where 𝐷 is the computational domain. In FEM, the computational domain is partitioned into

a finite number of elements. Mathematically, it can be expressed as follows

𝐷 = ෍ ∆𝐷௜

௠ವ

௜ୀଵ

(2 − 40)

where 𝑚஽ is the number of elements. In each element, we may assume that the approximate

solution of the PDEs takes the following form

𝜓ᇱ = 𝑵𝝍𝒆 (2 − 41)

where 𝑵 = ൣ𝑁௜ 𝑁௝ 𝑁௞ ⋯ ൧ denotes the shape function, and 𝝍𝒆 = ൣ𝜓௜ 𝜓௝ 𝜓௞ ⋯ ൧
்
 denotes

33

the unknowns to be solved on nodes i, j, k, ⋯. By substituting the computational domain 𝐷

and the approximate solution 𝜓ᇱ in Eq. (2-39) with Eq. (2-40) and Eq. (2-39), we may obtain

෍ ඵ (𝐿(𝑵𝝍𝒆) − 𝑓)𝑊௜𝑑𝐷
∆஽೔

௠ವ

௜ୀଵ

= 0 (2 − 42)

By solving Eq. (2-42) to determine the unknowns on the nodes 𝝍𝒆 , one may get the

approximate numerical solution for the PDEs. The DGM, which evolved from the FEM, is

commonly used in solving fluid mechanics problems.

The difference between the conventional FEM and the DGM is that the FEM requires the

shape function 𝑵 to be continuous between the elements, while the DGM does not. Instead,

an additional term called ‘numerical flux’ is introduced to handle the discontinuities of shape

functions at the boundary of the unit in the DGM. However, the principle of DGM will not be

elaborated here, which is beyond the scope of the thesis.

DGM is often utilized in fluid mechanics, particularly in RANS simulations, due to its

satisfying performance for handling complex boundary conditions (Crivellini et al. 2013, Bassi

et al. 2014, Li et al. 2015, Lorini et al. 2021).

Crivellini et al. (2013) utilized the high-order DGM for solving three-dimensional

incompressible RANS equations in simple and complex geometries. Several flow cases were

studied, including the flow over a three-dimensional sinusoidal bump in a channel, as shown

in Figure 2-5, and the flow past a sphere. The one-equation Spalart-Allmaras model was

adopted in the RANS simulation in this work. They also emphasized the difficulties that still

exist when using DGM in RANS modeling, such as the requirement for the special treatment

of wall boundary conditions.

34

Jiang et al. (2015) discussed the implementation and performance of a p-multigrid DGM

solver for steady RANS simulations. This research focused on the practical aspects of the solver,

including algorithmic details and computational efficiency. The proposed DGM solver was

demonstrated to possess improved convergence capability and accuracy for steady flow

problems. Tiberga et al. (2020) proposed a novel DGM solver for the incompressible RANS

equations coupled with the standard k-ε RANS turbulence model. The solver used an algebraic

pressure correction scheme, implicit backward differentiation formulae for time discretization,

and the symmetric interior penalty method for diffusive terms.

Currently, however, DGM is not the preferred solution approach for solving the RANS

equations because it requires costly high-order polynomial computations inside each unit,

resulting in significant computing and storage demands. In contrast, the FVM has superior

computing efficiency and is well-suited for large-scale use in practical engineering applications.

Figure 2-5. The DGM-based simulation of flow over a three-dimensional sinusoidal bump in

a channel: (a) the velocity contour, and (b) the pressure contour. Reprinted from (Crivellini et

al. 2013).

35

2.3 PINN

2.3.1 Overall description

PINN has recently emerged as a new branch of scientific machine learning that solves

governing PDEs of physical problems by leveraging the universal approximation and nonlinear

expression capabilities of the deep learning algorithm (Scarselli and Tsoi 1998). It is a new

approach to solving physical PDEs, which combines one of the hottest research topics today,

i.e., deep learning, with classical physics.

According to our traditional understanding of deep learning, which is typically

represented by the deep neural network, it ought to be an algorithm that is entirely data-driven.

That is, for the majority of deep learning models, data and its corresponding label are essential

elements in their training process (Bishop 1994). From this perspective, solving PDEs is not

the task in which deep learning algorithms should be skilled, as there is no or only a very small

amount of sparse training data available for them to learn from. In other words, the solutions

of the physical PDEs in most regions are unknown. However, the primary objective of equation

solving is to obtain unknown solutions within the computational domain, thereby leaving deep

learning models without any viable labels for training and learning. So, the question is, how

does a PINN solve PDEs?

Before answering this question, it is necessary to first give an introduction to the loss

function of a neural network. As mentioned earlier, data labels are crucial in the training process

of deep learning models. In deep learning models, the loss function is derived from the

discrepancies between the model prediction values and the label values. By minimizing the

loss function to converge to an infinitesimal value, regression or clustering tasks can be

36

achieved. Now let us return to that question: how does a PINN solve equations? The answer

actually lies in the PINN’s utilization of the residuals of the equations as the loss function to

supervise model training. The primary issue is how we define the residual of an equation. In

this thesis, we define the residual of an equation as a function derived from the equation, which

is obtained by subtracting the terms on the right side of the equal sign from the term on the left

side. Let us take the continuity equation in the RANS equations, i.e., Eq. (2-13), as an example,

its residual shall be

𝑅௖ =
𝜕𝑢ത௜

𝜕𝑥௜
− 0 =

𝜕𝑢ത௜

𝜕𝑥௜

(2 − 43)

If we take the momentum equation in the RANS equations, i.e., Eq. (2-18), as another

example, its residual shall be

𝑅௠ = 𝜌𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
+

𝜕𝑝̅

𝜕𝑥௜
−

𝜕

𝜕𝑥௝
ቆ𝜇

𝜕𝑢ത௜

𝜕𝑥௝
− 𝜌𝑢௜

ᇱ𝑢௝
ᇱቇ (2 − 44)

Based on the above equations, it is evident that the residual is a function that depends on

temporal and spatial coordinates. For deep neural networks, as long as a point (namely,

collocation point) is taken in the computational domain, the prediction value of the neural

network at that point can be outputted. If necessary, the partial derivatives at the collocation

point can also be calculated based on AD or numerical differentiation (Baydin et al. 2018, Chiu

et al. 2022). The prediction values of the physical quantities and their partial derivatives at

these collocation points constitute the residuals of PDEs, which serve as the loss function of

the PINN.

By employing the gradient descent methods to minimize the loss function, the residuals

of the PDEs are minimized and approximated to zero, which is equivalent to the roughly equal

37

relationship between the left and right sides of the equal sign.

 In the steady RANS simulations, the physical governing PDEs within the computational

domain are the Reynolds-averaged continuity and momentum equations, while the physical

governing PDEs on the domain boundary are the boundary conditions. Minimizing the loss

function results in weak satisfaction of the Reynolds-averaged continuity and momentum

equations at the collocation points within the computational domain. In addition, the boundary

conditions are also weakly satisfied at the collocation points on the domain boundaries.

Equivalently, this yields an approximate solution to the RANS equations.

One benefit of PINN as a PDE solver should be highlighted in comparison to conventional

methods such as the FVM and FEM. Given that PINN remains fundamentally a deep neural

network, it is still possible to use the conventional data-driven supervised learning strategy to

assist in PINN model training.

This is crucial because, in engineering practices, the solutions within the domain are not

completely unknown since sensors are often deployed to measure real-time data on sparse

measurement points. Taking the RANS simulation of the building outdoor wind field as an

example, the time-averaged wind velocity and pressure data obtained from the sensors installed

on the building surfaces can be fully embedded as label data in the training process of a PINN,

thereby giving guidance to the solution in the entire domain (Pu et al. 2021, Qin et al. 2023,

Rui et al. 2023, Liu et al. 2024).

Briefly, PINNs have the capability to act as a general PDE solution approximator, which

can embed the knowledge of physical laws in the model training process. The process of

utilizing a PINN to solve the RANS equations can be summarized as follows: (a) utilizing a

deep neural network to establish the relationship between spatial coordinates (input) and the

38

flow characteristics to be solved (output); (b) computing the residuals of the continuity and

momentum equations using forward propagation and AD for the collocation points inside the

domain; (c) computing the residuals of the Dirichlet and Neumann boundary conditions using

forward propagation and AD for the collocation points on the domain boundaries; (d)

computing the labeled data loss if applicable; (e) forming the loss function using the weighted

sum of various equation residuals, and data loss, if any; (f) error backpropagation and model

parameter optimization; and (g) error evaluation.

2.3.2 Origins of PINN in fluid mechanics

The PINN framework was first conceptualized by Raissi et al. (2019), which has aroused

great interest recently across multiple research areas (Fang and Zhan 2019, Liu et al. 2020,

Yucesan and Viana 2020, Chen et al. 2022). PINN has been used to solve PDEs (Mao et al.

2020), including Schrodinger equations and linear Poisson problems, by embedding the

residuals of physical governing equations, initial conditions, and boundary conditions into the

total loss function of the neural network (Pang et al. 2019, Yuan et al. 2022). More specifically,

the approximation of the PDE solution is achieved by summing the residuals of these physical

constraints and then shrinking it towards zero during the PINN training process with the aid of

gradient descent algorithms such as the stochastic gradient descent (SGD) and adaptive

moment estimation (Adam) algorithms (Robbins and Monro 1951, Kingma 2014).

Fluid mechanics is one of the research directions where PINN has been able to showcase

its capabilities since the motion of fluids can be described by governing PDEs. In other words,

since the main task of fluid mechanics is to solve the second-order nonlinear PDE, i.e., the NS

equations, or its variants, various research investigations on the PINN applications to fluid

mechanics have been carried out in recent years (Sun et al. 2021, Cai et al. 2022). Research on

39

PINNs in fluid mechanics is definitely still in its early stages. Following is a concise review of

the most recent cutting-edge research on the PINN application in fluid mechanics.

In fact, a case study of PINN's application to fluid mechanics was included in the paper

where it was first presented. Raissi et al. (2019) managed to solve an inverse problem of

identifying unknown parameters in the NS equations using a PINN, as shown in Figure 2-6.

The definitions of forward and inverse problems in this thesis need to be clarified here.

The forward problem is one in which we need to solve for the system state or evolution given

the knowledge of the physical laws governing a specific system, while the process of

determining the system's unknown parameters or initial conditions from observations is known

as the inverse problem. The values of two parameters in the NS equations were estimated by

Raissi et al. (2019) based on massive observation data. Two tests were carried out, one with

noisy observation data and the other without, and both achieved good estimates of the values

of the unknown parameters. The results demonstrated that the PINN can accurately identify the

unknown parameters with extremely high accuracy even if the training data is interfered

with by noise.

Actually, PINN rarely involved turbulence problems in its early development. Instead,

researchers mostly employed it to simulate laminar flows with relatively low Reynolds

numbers (Bai et al. 2020, Rao et al. 2020, Arzani et al. 2021, Biswas and Anand 2023, Hu and

McDaniel 2023). This is due to the fact that laminar flows are more stable and orderly than

turbulent flows, which just necessitate solving the NS equations and do not involve the process

of turbulence modeling. Rao et al. (2020) solved a forward laminar flow problem using a PINN

under the mixed-variable scheme they proposed in their paper. The flow cases this research

investigated were two cylinder flows, with Reynolds numbers of 5 and 20 respectively. A

40

mixed-variable scheme for PINN was proposed in their research, which greatly improved the

performance of the PINN in laminar flow simulation. In contrast to previous studies, this

approach reduced the training difficulty of a PINN by splitting the momentum equation in the

NS equations into two PDEs containing only first-order derivatives. Figure 2-7 compares the

velocity and pressure contours in a steady cylinder flow when different PDE solvers are

adopted. The results indicated the feasibility of the PINN framework in solving forward fluid

problems and established a solid foundation for fluid dynamitists to use the PINN to address

their problems.

Figure 2-6. Identification of unknown parameters in the NS equations using a PINN by Raissi

et al. (2019). The figures show the detailed spatiotemporal distributions of the data points used

for training.

41

Arzani et al. (2021) simulated three blood flows with Reynolds numbers of 150, 320, and

320 respectively, which adopted the steady incompressible NS equations as the fluid governing

equations. PINN was used as the PDE solver for fluid simulation in this research. Since the

boundary conditions remain uncertain when simulating blood flow, the research team included

sparse measurement data points in the PINN's training process to guide the PDE solving

process. This study leveraged the NS equations and sparse velocity measurements to accurately

quantify wall shear stress (WSS), even without full knowledge of boundary conditions. The

results in Figure 2-8 confirm the above advantage of utilizing PINN to solve PDEs. That is,

conventional wisdom holds that solving PDEs without boundary conditions is nearly

impossible. However, PINN offers an alternative approach, which makes use of sparse

Figure 2-7. Comparison of the velocity and pressure contours in a steady cylinder flow when

different PDE solvers are adopted: (a) Ansys Fluent, and (b) PINN adopting the mixed-variable

scheme. Reprinted from (Rao et al. 2020).

42

solutions inside the domain to guide equation solving and compensate for the absence of

physical information.

Sun et al. (2021) proposed a physics-informed deep learning framework for simulating a

stationary, inviscid, and incompressible cylinder flow using a PINN. Instead of feeding the

neural network a number of labeled training data, they embedded the known physical

knowledge in the neural network training process to increase prediction accuracy and relieve

the stringent constraints on massive data. The NS equations were used as the physical

governing equations. Their results, as illustrated in Figure 2-9, also demonstrated the feasibility

of applying the PINN framework to solving fluid-related problems. The Taylor–Green vortex

problem was also used to demonstrate the robustness and efficiency of the PINN.

Huang et al. (2022) proposed an immersed boundary method for PINN-based laminar

flow simulation, as shown in Figure 2-10. The proposed method introduced two additional loss

penalties in the total loss of a PINN to simulate the no-slip condition at the fluid–solid interface.

The author verified the effectiveness of the proposed immersed boundary method using a case

study of circular cylinder flow. The proposed method was highly successful in capturing the

Figure 2-8. Comparison of the CFD results with the PINN results in a two-dimensional blood

flow: (a) the velocity contour, and (b) the WSS. Reprinted from (Arzani et al. 2021).

43

vortices on the leeward side of the cylinder, and the results of the proposed method

demonstrated good consistency with CFD results.

Figure 2-9. Comparison of the pressure coefficients on the cylinder surface between the

PINN’s results and the analytical results. Reprinted from (Sun et al. 2021).

Figure 2-10. The immersed boundary method for PINN-based laminar flow simulation

proposed by Huang et al. (2022).

44

Almajid and Abu-Al-Saud (2022) simulated a porous media flow under the PINN

framework, as shown in Figure 2-11. They used a PINN to solve the Buckley-Leverett problem

in this study, which took into account both labeled observation data and physical knowledge

from the fluid flow. According to their findings, the PINN could capture the solution's general

trend even in the absence of observation data, but on the other hand, observation data could

greatly increase the solution's precision and accuracy.

The above research mainly focuses on laminar flow with low Reynolds numbers. In

contrast to turbulent flows, the laminar flow has a more straightforward structure, and even if

there are eddies in the flow field, the scale of the eddies will not change significantly. Therefore,

the NS equations are the dominant governing PDEs in PINN-based laminar flow simulation.

The following benefits of using PINN as a brand-new machine learning solver for solving the

NS equations are concluded here. Firstly, it is a meshless approach, therefore no grid-related

Figure 2-11. The FCNN structure adopted by Almajid and Abu-Al-Saud (2022) for porous

media flow simulation.

45

issues will arise.. Secondly, a data-driven strategy can significantly increase the accuracy of

solutions owing to the PINN’s special ability to incorporate labeled data (on-site measurement)

in the model-training process (Riel et al. 2021, Choi et al. 2022). That is, similar to physical

governing equations, the residuals between the PINN prediction and the labeled data can be

incorporated into the total loss. As a result, the final solution to the NS equations derived from

a data-embedded PINN may be viewed as a comprehensive outcome that incorporates both

physical and data information.

2.3.3 PINN in RANS simulations

Due to the complexity of turbulence, it was not the initial focus of PINN's research in fluid

mechanics. Numerous CFD numerical methods are available to simulate turbulent behaviors.

In addition to RANS, popular methods include LES and detached eddy simulation (DES).

Studies have shown that some of these methods can be implemented within the PINN

framework as well and they have achieved satisfying results (Yang et al. 2019, von Saldern et

al. 2022, Tian et al. 2023, Maejima et al. 2024). However, considering that the research focus

of this thesis is on the RANS method, methods other than RANS will not be elaborated here.

Interested readers may refer to the aforementioned citations.

To the best of the author's knowledge, the earliest use of PINN in RANS-related research

can be traced back to 2020, which was carried out by Luo et al. (2020). The main objective of

this work was to solve an inverse problem. More specifically, the five empirical constants in

the standard k-ɛ turbulence model were to be identified, given that the fluid velocity and

pressure were known. The study also pointed out that the value of empirical constants in

turbulence models will to some extent affect the accuracy of RANS simulation results, and

different values are applicable under different flow conditions. This is essentially in line with

46

how the model applicability problem is described in Chapter 1. The DNS data is used to

validate the results of the PINN simulation. The results, as illustrated in Figure 2-12, proved

the reliability and accuracy of utilizing the PINN framework in solving inverse problems in

RANS simulations.

One of the most representative research works on utilizing a PINN to solve the forward

problem involving the RANS equations was carried out by Eivazi et al. (2022). It is worth

mentioning that, no additional PDEs were required to describe the Reynolds stress terms to

close the RANS equations when PINN was adopted as the PDE solver in their work, which

was in contrast to turbulence modelling in conventional CFD methods. Instead, the fluid

velocity, pressure, and Reynolds stresses on the domain boundaries were used as the labeled

data to assist in the PINN's training. Or in other words, the data information on the boundaries

as well as the physical equations were utilized to reconstruct the turbulence characteristics

inside the domain. When compared to conventional methods, this approach offers both benefits

Figure 2-12. Error maps for the y-direction fluid velocity: (top) errors between the DNS and

RANS (default values) results, and (bottom) errors between the DNS and RANS (PINN-

inferred values) results. Reprinted from (Luo et al. 2020).

47

and drawbacks. It is important to recognize that the task of turbulence modeling has been

eliminated, which can help to enhance computing efficiency and partially alleviate the issue of

poor universality of turbulence models. The drawback is that this approach requires an

increasing amount of information on the domain boundaries, and the choice of

the computational domain has an immediate impact on the simulation result. How to delimit

the size of the computational domain has become another challenge. Four case studies were

used to demonstrate the feasibility of the proposed strategy, including the well-known case of

the NACA4412 airfoil and the flow past periodic hills, as shown in Figure 2-13.

Harmening et al. (2024) investigated the influence of the FCNN configuration on the

performance of a PINN when it is used to simulate circular and square cylinder flows. In their

research, the mixed-variable scheme proposed by Rao et al. (2020) was adopted to modify the

RANS equations to facilitate the training and convergence of the PINN models. The

aforementioned Prandtl mixing-length model was adopted as the RANS turbulence model to

describe Reynolds stress. In addition, PINN's training was not supported by any known labeled

data, so, in this research, PINN turns into a PDE solver with the same functionality as CFD

methods. Their results, as illustrated in Figure 2-14, demonstrated that the PINN simulation

results are highly sensitive to the structure of the FCNN. Based on their findings, it can be

Figure 2-13. RANS simulation of the flow past periodic hills using PINN carried out by Eivazi

et al. (2022).

48

concluded that FCNNs with too deep or too wide structures are not conducive to PINN-based

RANS simulations.

In conclusion, the basic principle of the PINN-based RANS simulation is to approximate

the solution of the RANS equations by training a neural network while minimizing its physics-

based loss function, which includes the residuals of RANS equations and boundary conditions

at the collocation points. In the above-mentioned cases, PINNs show satisfying performances

when dealing with the forward problems involving the RANS equations. Generally speaking,

the grid-based CFD methods such as the FVM and FEM are more exposed in the textbooks of

numerical analysis. What sets it apart from conventional CFD methods is that PINN can serve

as a physics-informed data-driven solver for fluid simulation since it can integrate not only the

physical knowledge but also the measurement information into the neural network training

process, making it a fusion method in a more profound sense.

Figure 2-14. Comparison of the PINN-based RANS simulation results when different FCNN

structures were adopted. Reprinted from (Harmening et al. 2024).

49

2.3.4 Limitations of PINN-based RANS simulations

As summarized in Figure 1-2, currently, PINN-based RANS simulations mainly face three

key challenges, which are the limited applicability of the RANS turbulence model, the weak

convergence performance of the PINN, as well as the inadequate nonlinear expression and

feature learning capabilities of the PINN.

As mentioned before, the applicability issue is not a new problem, which also appears in

CFD-based RANS simulations. While PINN has made great achievements in the field of fluid

mechanics, researchers have also reported this issue when they use PINN as the PDE solver.

For example, Pioch et al. (2023) validated the applicability of four different RANS turbulence

models under the PINN framework using a backward-facing step flow. The turbulence model

they adopted included the standard k-ω model (Wilcox 1988) and the Prandtl mixing-length

model. In their case study, the Reynolds number reached up to 5100. Figure 2-14 compares the

time-averaged velocity contours of the backward-facing step flow when the standard k-ω

model and the Prandtl mixing-length model are adopted in RANS simulations, respectively.

From the figure, it can be observed that there are significant differences between the results of

the two in the location of the reattached flow and the sizes of the recirculation vortex and the

corner vortex. The results show that, as with CFD methods, when PINN is utilized to solve the

RANS equations, the turbulence model will significantly influence the simulation results. How

to determine the turbulence model that is applicable to the flow conditions before simulation

remains a challenge in PINN-based RANS simulations. However, this research also mentioned

that after embedding adequate sparse labeled data for supervised learning, the applicability

issue can be effectively alleviated.

50

The weak convergence performance of the PINN has long been criticized by researchers.

There are multiple factors contributing to its poor convergence performance. On the one hand,

the loss balance issue may lead to an unreasonable emphasis on certain loss components in

PINN’s training process (Bischof and Kraus 2021, Yang and Wang 2022, Heldmann et al. 2023,

Wang et al. 2024). On the other hand, using AD to calculate high-order differential terms is a

time-consuming procedure, which further affects its convergence performance (Sharma and

Shankar 2022, Yuan et al. 2022). Undoubtedly, there are many other factors that could impact

PINN's convergence performance, and interested readers are welcome to conduct further

investigation on this issue. Xiang et al. (2022) proposed a self-adaptive loss balanced strategy

for training PINNs, which is named lbPINN. Instead of treating the weight coefficient before

Figure 2-15. Comparison of the velocity contours of the backward-facing step flow when

different RANS turbulence models are adopted: (top) the standard k-ω model, and (bottom)

the Prandtl mixing-length model. Reprinted from (Pioch et al. 2023).

51

each loss component as a constant value, lbPINN updates these weight coefficients based on

maximum likelihood estimation after each training iteration. Results showed that lbPINN

performs better than the default PINN when solving forward problems involving the Poisson

equation, as shown in Figure 2-15.

The nonlinear expression and feature learning capabilities of a PINN are limited by its

neural network backbone. Although the universal approximation theorem tells us that

theoretically, as long as there are enough hidden neurons, an FCNN can learn to fit any

nonlinear function, in practical operation, many research studies have reported the frequency

principle phenomenon when training an FCNN (Cao et al. 2019, Rahaman et al. 2019, Xu et

al. 2024). That is, compared to the low-frequency components, the high-frequency ones are

more difficult for a neural network to learn, which is also reflected in PINNs. Ye et al. (2024)

Figure 2-16. Comparison of the PINN’s solutions to the time-dependent Poisson equation

when different loss balance strategies are adopted: (top) the default PINN, and (bottom) the

proposed lbPINN.

52

introduced the Fourier features embedding strategy in PINN’s training process, which

significantly reduced the adverse effects caused by the frequency principle. Although RANS

simulations do not involve frequency issues on a time scale, similar to the training process in

Figure 1-1, PINN prefers to prioritize providing a crude drawing of the time-averaged solution

when solving the RANS equations, which hinders the acquisition of the accurate solutions for

areas with substantial variations in gradients. Therefore, the limited nonlinear expression and

feature learning capabilities of a PINN have become one of the obstacles that restrict the further

developments of PINN-based RANS simulations.

2.4 Summary

This chapter begins by introducing the NS equations and explains how Reynolds

averaging can be performed on the NS equations to derive the RANS equations. Subsequently,

the RANS turbulence models are introduced, and the conventional methods for solving the

RANS equations are presented. Next, this chapter introduces PINN as a novel PDE solver and

elaborates on the origins of PINN in fluid mechanics, while also reviewing its applications in

RANS simulations. The end of this chapter summarizes the factors that may limit the further

developments of PINN-based RANS simulation.

To conclude, turbulence simulation is mainly based on CFD methods nowadays. At the

same time, a new force emerges, which is the machine learning-based PDE solvers represented

by PINN. They can not only concern physical constraints in the modeling process but also fuse

labeled data information, which shows the potential to become one of the mainstream methods

for solving forward and inverse problems involving the RANS equations. However, such

technology is still in its infancy right now, and there are issues that urgently need to be solved,

53

which calls for further research. Accordingly, this thesis is conducted on this basis, and the uses

of various physics-based machine learning algorithms in turbulence simulation are examined,

which aims to work for the advancement of the research on PINN-based RANS simulations.

54

CHAPTER 3

DYNAMIC PRIORITIZATION

3.1 Foreword

Convergence is a key issue in training a neural network, which refers to the process in

which a model gradually reduces the errors between the predictions and target values, and

stabilizes its performance by learning from training data. As is well known, the total loss of a

neural network represents the mismatch between its prediction and the target, which needs to

be converted to the minimum with the aid of gradient descent algorithms (such as Adam and

SGD) to reach the goal of classification or regression. Similarly, the convergence performance

of the neural network backbone has a significant impact on the accuracy of the results of the

PINN-based RANS simulation. However, there exists a common problem when PINN is

utilized for RANS simulations. That is, the total loss of a PINN used to solve the RANS

equations is generally accumulated by more than ten to twenty independent loss components,

including the residuals of the physical governing equations and various kinds of boundary

conditions, which may lead to the imbalance issue between each loss component.

In fact, the loss balance issue had already shown up prior to the birth of PINN in a branch

of machine learning, i.e., multitask learning. Dealing with the conflict and balance issue

between the loss components of different tasks during the training process is crucial in

multitask learning. The gradient of parameter optimization varies during error backpropagation,

which may lead to different convergence speeds for different tasks. Some tasks may have been

55

well-trained, while others are still far from being well-optimized. Therefore, it is believed that

there exists the theoretical possibility to achieve a faster convergence speed and more accurate

predictions by dynamically balancing these tasks throughout the training process instead of

simply assigning them with fixed weights. It should be explained that the weight here refers to

the weight coefficient before each loss component, and the total loss of the neural network is

the weighted sum of each loss component. Some have been trying to employ self-adaptive loss

balance strategies in order to balance these loss components. A number of correlative studies

have been carried out in the field of multitask learning (Kendall et al. 2018, Sener and Koltun

2018).

PINN has been trying to incorporate some of these ideas from multitask learning (Xiang

et al. 2022). A dynamic prioritization loss balance strategy for the PINN framework will be

proposed in this chapter, which disjoins the total loss of a PINN and recombines the loss

components to form physics-based tasks. On this basis, an evaluation index will be established

for each physics-based task to assess its past performance, and tasks with lagging performance

will be assigned with high weights to be emphasized in the subsequent training process.

Meanwhile, tasks that perform well will be given less attention in the ensuing training process.

It is also worth mentioning that the proposed dynamic prioritization physics-informed neural

network (dpPINN) incorporates the labeled training data into the dynamic loss balance process.

Two forward problems involving the RANS equations will be solved using the proposed

dpPINN models in this chapter. One is the square cylinder flow, while the other is the outdoor

flow around a building. Based on the sparse experimental measurement (i.e., fluid velocity

data), dpPINN models will be fully trained to simulate the fluid flow. Other experimental data

will be used to validate the feasibility of the proposed model.

56

3.2 Basic Principles

3.2.1 Structure of PINN

The basic structure and principle of the PINN model adopted in this chapter will be

described in detail here. By directly embedding physical equations, initial and boundary

conditions, and measurement data into the total loss function for training a neural network,

PINN is proven to be a charming physics-informed data-driven approach for solving forward

and inverse physical problems involving differential equations. The residuals of the physical

constraints tend to converge toward zero during PINN’s training process with the aid of an

optimizer. In this way, the PINN is configured to achieve its function to approximate solutions

to PDEs. The schematic diagram of the PINN targeting to achieve the RANS simulation of the

three-dimensional fluid flow is depicted in Figure 3-1. The left part of the PINN is an FCNN

which maps the relationship between the spatial coordinates (x, y, z) and flow characteristics

of the wind field (u, v, w, p). Here, u, v, and w represent the velocity components in the x, y,

and z directions, respectively, and p represents the pressure. In the middle part of the PINN,

AD is applied to calculate the gradients of the outputs with respect to the inputs, which also

plays a key role in training the neural network (Baydin et al. 2018). The right part of the PINN

is the total loss, which takes the following form

𝐿 = 𝑤௙𝐿௙ + 𝑤௕𝐿௕ + 𝑤ௗ𝐿ௗ (3 − 1)

where

𝐿௙ =
1

𝑁௙
෍ ෍|𝑓௜

௡|ଶ

ସ

௜ୀଵ

ே೑

௡ୀଵ

(3 − 2)

57

𝐿௕ =
1

𝑁௡௕
෍ห𝑟௡௕

௜ ห
ଶ

ே೙್

௜ୀଵ

+
1

𝑁ௗ௕
෍ห𝑟ௗ௕

௜ ห
ଶ

ே೏್

௜ୀଵ

(3 − 3)

𝐿ௗ =
1

𝑁ௗ
෍ห𝑟ௗ

௜ ห
ଶ

ே೏

௜ୀଵ

(3 − 4)

In the above expressions, 𝐿௙, 𝐿௕, and 𝐿ௗ denote the loss components associated with the

residuals of the governing equations, boundary conditions, and data constraints, respectively;

𝑤௙, 𝑤௕, and 𝑤ௗ denote the weighting coefficients of the corresponding loss terms; 𝑓௜
௡ is the

residual of the ith governing equation in Figure 3-1; 𝑟௡௕
௜ , 𝑟ௗ௕

௜ , and 𝑟ௗ
௜ are the residuals for the

Neumann boundary, Dirichlet boundary, and data constraints, respectively. 𝑁௙ is the number

of collocation points used to calculate the residual of the governing functions, while 𝑁௡௕, 𝑁ௗ௕,

and 𝑁ௗ are the numbers of points used to calculate the residuals for the Neumann and Dirichlet

boundaries, and for the data constraints, respectively. Once the total loss is formed, the error

backpropagation algorithm is then employed for calculating the gradients of the parameters to

be optimized and updating their values.

Figure 3-1. Schematic diagram of PINN for the RANS simulation of the three-dimensional

fluid flow.

58

3.2.2 Dynamic prioritization loss balance strategy

How to balance the loss terms in the total loss function during the training process of

PINN has become a challenging issue, as illustrated by Xiang et al. (2022). The imbalance

between different loss terms may significantly diminish the convergence rate and

computational efficiency in the training of a PINN. To alleviate this problem, we rewrite the

total loss in the following form:

𝐿 = 𝐿௙ + 𝑤௨𝐿௨ + 𝑤௩𝐿௩ + 𝑤௪𝐿௪ + 𝑤௣𝐿௣ (3 − 5)

where

𝐿௨ = ෍
1

𝑁௡
෍ห𝑟௡

௜ห
ଶ

ே೙

௜ୀଵ௡∈𝐔ೝ

(3 − 6)

𝐿௩ = ෍
1

𝑁௡
෍ห𝑟௡

௜ห
ଶ

ே೙

௜ୀଵ௡∈𝐕ೝ

(3 − 7)

𝐿௪ = ෍
1

𝑁௡
෍ห𝑟௡

௜ห
ଶ

ே೙

௜ୀଵ௡∈𝐖ೝ

(3 − 8)

𝐿௣ = ෍
1

𝑁௡
෍ห𝑟௡

௜ห
ଶ

ே೙

௜ୀଵ௡∈𝐏ೝ

(3 − 9)

Unlike the original expression in Eq. (3-1), the total loss function is now reshaped to

consist of five separate components, i.e., 𝐿௙, 𝐿௨, 𝐿௩, 𝐿௪, and 𝐿௣. 𝐿௙ has the same meaning

as given before; 𝐿௨ , 𝐿௩ , and 𝐿௪ denote the loss terms directly related to the velocity

components u, v, and w, respectively; 𝐿௣ denotes the loss term related to the pressure p; 𝑤௨,

𝑤௩, 𝑤௪, and 𝑤௣ denote the weighting coefficients of the corresponding loss terms. 𝐔௥, 𝐕௥,

59

𝐖௥, and 𝐏௥ represent the sets which are composed of formula numbers related to u, v, w, and

p. The details will be further explained in the following validation case. 𝑟௡
௜ is the residual of

Eq. (3-n) on the ith collocation point, and 𝑁௡ is the number of collocation points used to

calculate the residual of Eq. (3-n). It can be seen that the residuals of various boundary

conditions and data constraints form the loss terms 𝐿௕ and 𝐿ௗ in Eq. (3-1) in the default PINN.

However, they are reorganized in the proposed dpPINN to form the u, v, w, and p-related loss

terms. Such a reconfiguration enables us to balance each loss term in the following way:

𝑤௜ = ቈ
𝑘௜

min௝൫𝑘௝൯
቉

ఊ

, 𝑖, 𝑗 = 𝑢, 𝑣, 𝑤, 𝑝 (3 − 10)

𝑘௜ =
ฮ𝑼𝑻𝒊

− 𝑼෩𝑻𝒊
ฮ

ଶ

ฮ𝑼𝑻𝒊
ฮ

ଶ

, 𝑖 = 𝑢, 𝑣, 𝑤, 𝑝 (3 − 11)

where 𝛾 is a newly introduced hyperparameter that affects the weight balance between

different loss terms; ‖∙‖ଶ denotes the ℓ2-norm; 𝑼𝑻𝒊
 denotes the vector of the labelled data on

the training points; and 𝑼෩𝑻𝒊
 denotes the vector of PINN predictions on the training points.

Such a setting means that the relative errors of u, v, w, and p between the PINN predictions and

the reference data are calculated at the training points after certain iterations. A flowchart is

depicted to further illustrate the updating mechanism of the dpPINN’s weighting coefficients,

as shown in Figure 3-2. In the first step, current weights will be assigned to the loss function

of a dpPINN and the dpPINN will make its prediction as a normal neural network model. What

follows is an evaluation process, where the errors between the dpPINN predictions and the

reference data on the training points, i.e., Eq. (3-11), are calculated. For example, in Figure 3-

2, the velocity component w is found to possess the highest relative error during the evaluation

process. Then it will be given the highest weight using Eq. (3-10) in the following training

60

process, as a punishment for the low prediction accuracy in the past training process. The

assigned weight will be used to form the total loss to update the neural network parameters.

The core idea of the dpPINN is that we desire to automatically prioritize the terms with

larger relative errors in the subsequent iteration steps. Similar ideas of dynamic prioritization

loss balance strategies can also be found in the field of computer vision and multi-task learning

(Lin et al. 2017, Guo et al. 2018). It should be mentioned that the weighting coefficient 𝑤௙ for

𝐿௙ in Eq. (3-5) is not explicitly defined; instead, the weight of 𝐿௙ in the total loss is indirectly

adjusted by tuning the value of the coefficient 𝛾. The influence of the coefficient 𝛾 on the

prediction accuracy will be discussed in detail later. The reconfigured PINN, referred to as

dpPINN, encompasses a new total loss defined in Eq. (3-5) and the dynamic prioritization loss

balance strategy. The implementation of the dpPINN paradigm for simulating the three-

dimensional flow field simulation is presented in Algorithm 3-1.

Figure 3-2. Updating mechanism of the dpPINN weighting coefficients.

61

Algorithm 3-1 dpPINN for three-dimensional flow simulation using the RANS equations

Require: Training dataset, number of training iteration, learning rate, initial values of

weighting coefficients, and the value of the coefficient γ.

Target: Find the best model with appropriate neural network parameters.

Step 1: Determine the physical problem by specifying the computational domain,

boundary conditions, and RANS turbulence model.

Step 2: Construct a deep neural network with the specified hyperparameters and initial

neural network parameters.

Step 3: Specify the collocation points in the computational domain.

Step 4: Calculate loss components 𝐿௙, 𝐿௨, 𝐿௩, 𝐿௪, and 𝐿௣ at the collocation points and

data points using AD.

Step 5: Use the gradient descent algorithm to update the neural network parameters as

follows:

for each iteration:

(a) Calculate the total loss function Eq. (3-5) using the values of the weighting

coefficients from the previous iteration.

(b) Update the neural network parameters using the optimizer with a fixed

learning rate by minimizing the total loss function.

(c) Update the weighting coefficients according to Eqs. (3-10) and (3-11).

end for

62

3.3 Validation Case: Building Outdoor Wind Field

3.3.1 Brief description of the wind tunnel test

In this section, utilize a building outflow wind field simulation will be utilized to verify

the feasibility of the proposed dpPINN. The acquaintance of outdoor airflow characteristics is

essential for building simulations since these characteristics directly influence the thermal

environment, air pollutant diffusion, and other relevant effects surrounding a building. The data

from the wind tunnel test conducted by the Shimizu Corporation Institute of Technology (Meng

and Hibi 1998) will be used in this study. A scale model of a building was positioned in the

center location of the wind tunnel, which was 0.08 m in length and width and 0.16 m in height.

During the wind tunnel test, the maximum wind speed at the inlet reached 6.75 m/s. This

resulted in a Reynolds number of up to 2.4×104, which was elicited using the building width

and the wind velocity at the building height. A total of 186 measurement points were sprinkled

throughout the wind tunnel. The sensors deployed collected real-time wind velocity

components in the x, y, and z directions at the measurement points. The mean values and the

standard deviations of the measured wind velocity in sixty seconds during the test were also

provided serving as a public dataset for benchmark study.

3.3.2 Boundary conditions of the computational domain

The computational domain considered here is a cuboid with a size of 1.4 m × 0.7 m × 0.7

m (length × width × height), as shown in Figure 3-3. The details about the position of the scale

building model and the boundary conditions are provided in the figure as well. In this study,

the air density and the kinematic viscosity are set to be 1.225 kg/m3 and 1.497×10−5 m2/s,

63

respectively. The vertical surface OGDA is defined as an initial speed boundary and the x-

direction velocity 𝑢௜௦௕ is defined as follows:

𝑢௜௦௕ = 𝑢௜௡௜௧௜௔௟ (3 − 12)

where 𝑢௜௡௜௧௜௔௟ denotes the velocity distribution, which is shown in Figure 3-4. For more details

about the wind tunnel test, readers may refer to (Meng and Hibi 1998).

The y-direction velocity component 𝑣௜௦௕ and the z-direction velocity component 𝑤௜௦௕ in

the initial speed boundary are subject to the following constraints:

𝑣௜௦௕ = 0 (3 − 13)

𝑤௜௦௕ = 0 (3 − 14)

The horizontal surface ABED is defined as a symmetry wall boundary in which the

velocity components and pressure are subject to the following constraints:

𝜕𝑢௦௪௕

𝜕𝑧
= 0 (3 − 15)

𝜕𝑣௦௪௕ଵ

𝜕𝑧
= 0 (3 − 16)

𝑤௦௪௕ଵ = 0 (3 − 17)

𝜕𝑝௦௪௕ଵ

𝜕𝑧
= 0 (3 − 18)

The vertical surfaces ABCO and DEFG are also defined as symmetry wall boundaries in

which the velocity components and pressure are subject to the following constraints:

𝜕𝑢௦௪௕ଶ

𝜕𝑦
= 0 (3 − 19)

64

Figure 3-3. Computational domain for outdoor airflow simulation: (a) side view, (b) top view,

and (c) general view.

65

𝑣௦௪௕ଶ = 0 (3 − 20)

𝜕𝑤௦௪௕ଶ

𝜕𝑦
= 0 (3 − 21)

𝜕𝑝௦௪௕ଶ

𝜕𝑦
= 0 (3 − 22)

The vertical surface CFEB takes the form of a zero-pressure outlet boundary. The pressure

and fluid velocity on the boundary is described as follows:

𝑝௭௣௕ = 0 (3 − 23)

𝜕𝑢௭௣௕

𝜕𝑥
= 0 (3 − 24)

𝜕𝑣௭௣௕

𝜕𝑥
= 0 (3 − 25)

𝜕𝑤௭௣௕

𝜕𝑥
= 0 (3 − 26)

𝜕𝑝௭௣௕

𝜕𝑥
= 0 (3 − 27)

Finally, the horizontal surface OCFG and the building surfaces are defined as no-slip wall

boundaries, where

𝑢௪௕ = 0 (3 − 28)

𝑣௪௕ = 0 (3 − 29)

𝑤௪௕ = 0 (3 − 30)

In the above expressions, u, v, and w denote the x, y, and z-direction velocity components,

respectively; p denotes the pressure; the subscripts isb, swb1, swb2, zpb, and wb denote the

66

initial speed boundary, symmetry wall boundary of the first kind (surface ABED), symmetry

wall boundary of the second kind (surfaces ABCO and DEFG), zero-pressure outlet boundary

(surface CFEB), and wall boundary, respectively.

3.3.3 Data constraints of the computational domain

Like other neural networks, PINN can embed labelled data (on-site information) into the

model training process (Riel et al. 2021, Choi et al. 2022, Tang et al. 2022, Xie et al. 2022).

The residuals between the PINN prediction and the labelled data, along with the residuals of

RANS equations at collocation points, are calculated at each iteration and embedded in the

total loss. In this way, the final solution to RANS equations by the PINN method can be thought

of as a comprehensive result that combines both physical laws and on-site information (Guo et

al. 2020). So this research is to make an attempt to reconstruct the entire 3D flow field around

a scale building model in wind tunnel by using only a small amount of wind characteristic data

collected near the building model and near the ground (no-slip wall boundary) within the PINN

Figure 3-4. Distribution of velocity component 𝑢௜௡௜௧௜௔௟ on the initial speed boundary.

67

framework.

As aforementioned, 186 measurement points are dispersed throughout the wind tunnel, as

shown in Figure 3-5. Among these measurement points, 66 points are in the cross-section y =

0.35 m (the middle plane in the spanwise direction of the computational domain), and the

remaining 120 points are distributed in the cross-sections z = 0.01 m and z = 0.10 m. Among

the 186 measurement points, 93 near-wall points which are either close to the surface of the

building model or near the ground will be utilized for supervised learning of dpPINN. More

specifically, 21 points are in the cross-section y = 0.35 m, 60 in the cross-section z = 0.01 m,

and 12 in the cross-section z = 0.10 m, as marked by red circles in Figure 3-5. The selection of

training points ensures easy accessibility of the data even in real practice. At the training points,

the dpPINN predictions of the wind velocity components should satisfy the following

constraints:

𝑢௣ = 𝑢௠ (3 − 31)

𝑣௣ = 𝑣௠ (3 − 32)

𝑤௣ = 𝑤௠ (3 − 33)

where the subscripts p and m denote the dpPINN predictions and the measured results at the

training points, respectively.

Then, a dpPINN model is formulated to simulate the flow field in wind tunnel test using

sparse experimental wind velocity data in the near-wall regions for supervised learning.

Keeping in mind limited accessibility in real practice, only the wind characteristics collected

in the near-wall regions of wind tunnel are embedded, in conjunction with the constraints of

physical equations, to guide the training of the dpPINN.

68

69

70

Figure 3-5. Distribution of measurement points in the cross-sections (a) y = 0.35 m, (b) z = 0.01 m, and (c) z = 0.10 m.

71

3.3.4 Physical governing equations

Although the instantaneous NS equation can describe turbulent behaviors, its nonlinearity

makes the computation extremely complex, and it is rarely used in engineering practices.

Instead, solving the RANS equations has evolved into an alternative effective approach to

addressing such engineering problems. The NS equations are averaged in the time domain in

the RANS framework to solve a time-averaged flow field rather than an instantaneous flow

field. The computational burden can be significantly lessened since the turbulent fluctuation

on each scale is no longer calculated. The steady RANS equations for a three-dimensional flow

are shown as follows:

𝜕

𝜕𝑥
(𝜌𝑢ത௜) = 0 (3 − 34)

𝜌𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
= −

𝜕𝑝̅

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቆ𝜇

𝜕𝑢ത௜

𝜕𝑥௝
− 𝜌𝑢௜

ᇱ𝑢௝
ᇱቇ (3 − 35)

where 𝜌 is the fluid density, 𝑢ത௜ is the velocity component in 𝑥௜-direction, 𝑝̅ is the pressure,

𝜇 is the laminar viscosity, and −𝜌𝑢௜
ᇱ𝑢௝

ᇱ is the Reynolds stress. Turbulence models are adopted

to describe the influence of the Reynolds stress terms in the momentum equations. Later in this

chapter, the performances of four different turbulence models on the wind field simulation

around a building will be evaluated. Among them, two are zero-equation models, while the

other two are two-equation models. In zero-equation RANS turbulence models, the Reynolds

stress is described as follows:

−𝜌𝑢௜
ᇱ𝑢௝

ᇱ = 𝜇௧ ቆ
𝜕𝑢௜

𝜕𝑥௝
+

𝜕𝑢௝

𝜕𝑥௜
ቇ (3 − 36)

where 𝜇௧ is the turbulent viscosity. Li model is a zero-equation RANS model for simulating

72

outdoor flow (Li et al. 2013). Li model adopts a mixing-length strategy to describe turbulent

viscosity 𝜇௧, which can be expressed as:

𝜇௧ = max(𝜇௜௡, 𝜇௢௨௧) (3 − 37)

where 𝜇௜௡ is the boundary layer’s turbulent viscosity, and 𝜇௢௨௧ is the outer layer’s turbulent

viscosity. Furthermore, 𝜇௜௡ takes the following form:

𝜇௜௡ = (𝐶௜௡𝑙)ଶ𝑆 (3 − 38)

where

𝐶௜௡ = 1.8 × ൬1 − exp ൬−0.645 ቀ
஼್

ு್
ቁ

଴.଼
൰൰ × exp ቀ−2 × min ቀ

௬

ு್
, 1ቁቁ (3 − 39)

𝑆 = ඨଵ

ଶ
൬

డ௨೔

డ௫ೕ
+

డ௨ೕ

డ௫೔
൰

ଶ

(3 − 40)

where 𝐶௕ and 𝐻௕ denote building width and height in its windward side. Outer layer’s flow

viscosity takes the following form:

𝜇௢௨௧ = 𝐶௢௨௧𝑉𝑙 (3 − 41)

where V is the local resultant velocity of the fluid flow. The coefficient 𝐶௢௨௧ is expressed as:

𝐶௢௨௧ =
𝐶ఓ

଴.ହ𝐼ଶ𝑧ீ
ଶఈା଴.ଵ𝑧଴.ଽିଶఈ

𝛼
(3 − 42)

where 𝐶ఓ = 0.09, 𝐼 = 0.1, 𝑧ீ = 350, and 𝛼 = 0.22.

3.3.5 Implementation of dpPINN in the case study

Now, the sets 𝐔௥, 𝐕௥, 𝐖௥, and 𝐏௥ can be figured out based on the above information.

73

That is, 𝐔௥ = {12, 15, 19, 24, 28, 31} , 𝐕௥ = {13, 16, 20, 25, 29, 32} , 𝐖௥ =

{14, 17, 21, 26, 30, 33} , and 𝐏௥ = {18, 22, 23, 27} . Please note that the chapter numbers

within the formula numbers have been omitted here for clarity. It can be clearly observed that

the original boundary condition loss and training data loss have been broken down, replaced

by task losses related to u, v, w, and p.

For instance, the residuals of Eqs. (3-12) and (3-31) belong to different loss components

in the default PINN, i.e., 𝐿௕ and 𝐿ௗ, respectively. However, in the proposed dpPINN, both

belong to the loss term 𝐿௨ in Eq. (3-5). For another instance, the residuals of Eqs. (3-12) and

(3-13) belong to the same loss components in the default PINN, i.e., 𝐿௕ . However, in the

proposed dpPINN, the former belongs to the loss term 𝐿௨ while the latter belongs to the loss

term 𝐿௩.

The proposed dynamic prioritization loss balance strategy has the benefit of allowing us

to assess the performance of each task throughout the training process and allocate weight

coefficients according to how well it performed in earlier training iterations. Tasks that perform

exceptionally well will generally have a smaller weight in subsequent training, whereas tasks

that perform just moderately well will be assigned with a larger weight so that they can be

emphasized in the next stage of training.

3.3.5 dpPINN results compared with experimental data

As mentioned before, this study simulates the flow field around the scale model of a

building in a wind tunnel by using sparse near-wall velocity data under the dpPINN framework.

In this section, the dpPINN predictions are validated with the measured wind velocity

components at the measurement points from which the data were not used in dpPINN training.

74

All simulations are conducted on the platform equipped with PyTorch v1.9.0 and NVIDIA

A100 graphics processing units.

The value of the coefficient 𝛾 is preliminarily set as 2. Because no pressure data is

embedded in the dpPINN training, the weighting coefficient 𝑤௣ is set to 1 in this case. A

dpPINN with six hidden layers, each containing 40 neurons, is formulated for outdoor airflow

simulation. The hyperbolic tangent function (Tanh) is adopted as the activation function in the

neural network. The Adam optimizer with 1×105 iterations is used to train the dpPINN. The

learning rate is set as 3×10−4, and 26944 collocation points are uniformly distributed within the

cubic computational domain. These collocation points are used to compute the residuals of the

governing equations. Additionally, 9900 collocation points distributed on the domain

boundaries are used to compute the residuals of the boundary conditions.

In this case study, one training iteration takes roughly about 0.318 second. It takes about

53.6% of the duration for AD to calculate the physical residuals and form the components of

the total loss, and the remaining 46.4% is for error backpropagation to update the neural

network parameters.

As indicated previously, among the total 186 measurement points, 93 near-wall points are

selected for training the dpPINN (21 in the cross-section y = 0.35 m, 60 in the cross-section z

= 0.01 m, and 12 in the cross-section z = 0.10 m), as shown in Figure 3-5. The velocity data at

the 93 training points are used for supervised learning and updating of the weighting

coefficients. Excluding the training points, the remaining measurement points (the data from

which are referred to as reference data) are used to verify the proposed approach for outdoor

airflow simulation.

After training the dpPINN model, its prediction results are obtained as shown in Figure 3-

75

6 and Figure 3-7, which are compared with the reference data from wind tunnel measurements.

The black solid lines, red dotted lines, and blue dash-dot lines represent the dpPINN predictions

of the velocity components u, v, and w, respectively. The black dots, red squares, and blue

diamonds denote the experimental mean values of the velocity components u, v, and w,

respectively, at the measurement points. The red and black dots are training and testing points

respectively, which is consistent with Figure 3-5.

From the results, it can be found that the dpPINN predictions show a good agreement with

the experimental data even when the experimental data used for verification were not included

in training the dpPINN. The top left panel of Figure 3-6 can be taken as an example for further

exploration. Eight training points (points 27 to 33 in Figure 3-5(a) and point 29 in Figure 3-

5(c)) and three testing points (points 34 to 36 in Figure 3-5(a)) are scattered on the line x = 0.40

m in the cross-section y = 0.35 m. The dpPINN not only generates agreeable simulation results

of the velocity component u when z (height) is less than 0.17 m but also provides good

predictions in the areas without training data (z > 0.17 m). As another example, on the line x =

0.72 m, only one training data point (point 57 in Figure 3-5(a)) is included for dpPINN training.

However, the dpPINN predictions still show a good agreement with the field-measured results

for the other 10 testing points (points 58 to 66 in Figure 3-5(a) and point 53 in Figure 3-5(c)).

After examining all the results, it is found that dpPINN demonstrates good prediction accuracy

in other regions as well.

One may easily come to the first conclusion about the advantage of this physics-informed

data-driven approach for outdoor airflow simulation around buildings: Compared with pure

data-driven methods, the embedding of physical laws in the dpPINN framework enables us to

use few datasets to generate a model with strong generalization and forecasting capability,

which is of great practical significance.

76

Figure 3-6. Comparison of results between dpPINN predictions and wind tunnel measurements in the cross-section y = 0.35 m.

77

Figure 3-7. Comparison of results between dpPINN predictions and wind tunnel measurements in the cross-section z = 0.10 m.

78

3.3.6 Comparison of different loss balance strategies

In the following, the ℓ2 error is used to quantitatively evaluate the accuracy of the dpPINN

prediction, which is defined as

𝑙ଶ 𝑒𝑟𝑟𝑜𝑟 =
ฮ𝑼𝒊 − 𝑼෩ 𝒊ฮଶ

‖𝑼𝒊‖ଶ
× 100% (3 − 43)

where ‖∙‖ଶ denotes the ℓ2-norm, 𝑼𝒊 denotes the vector of the reference data, and 𝑼෩ 𝒊

denotes the vector of the dpPINN predictions. The ℓ2-norm of a vector 𝒙 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, ⋯ , 𝑥௡)

is calculated as ට∑ 𝑥௜
ଶ௡

௜ୀଵ . To quantify the relative error of the dpPINN prediction, the ℓ2 errors

of the velocity component u and the resultant velocity are recorded during the training process,

as depicted in Figure 3-8. The value of the coefficient 𝛾 is still set as 2, the same as in Section

4.1. It is seen that, after 1×105 iterations, the ℓ2 errors of u and the resultant velocity are reduced

to 0.125 and 0.123. Eivazi and Vinuesa (2022) recently investigated the influence of

observation noise on PINN prediction accuracy. Their results indicated that noisy training data

would interfere with the PINN prediction and make it less accurate. In view of this, the above

results would be acceptable in consideration of the existence of measurement noise during the

wind tunnel test. Also, the prediction accuracy between the dpPINN and other PINNs adopting

different loss balance strategies is compared, as shown in Figure 3-8, where the influence of

the coefficient 𝛾 is investigated as well. In Figure 3-8, the black lines represent the original

PINN, which uses Eq. (3-1) as the total loss. The values of the weighting coefficients 𝑤௙, 𝑤௕,

and 𝑤ௗ are set as 1 during the training process. The blue lines represent the loss balance

strategy ‘lbPINN’ proposed by (Xiang et al. 2022), which updates the weighting coefficients

based on the maximum likelihood estimation. The other lines represent the results of the

79

proposed dpPINN with different values of the coefficient 𝛾.

Unfortunately, the lbPINN seems inapplicable in this case. The ℓ2 errors of the velocity

components u and the resultant velocity reach more than 0.5 when the lbPINN is adopted,

which means that the total loss of the neural network is unable to converge toward zero in this

Figure 3-8. ℓ2 errors of the PINN predictions using different loss balance strategies (top: u;

bottom: resultant velocity).

80

case. It is probably because the lbPINN is inapplicable for solving 3D incompressible turbulent

flow problems. Better solutions can be achieved by the original PINN. The ℓ2 errors of the

velocity component u and the resultant velocity drop eventually to 0.169 after 1×105 iterations.

By contrast, the dpPINN shows much better performance under the same training iteration; in

particular, the final ℓ2 error is not significantly affected by the value of the coefficient 𝛾 .

Compared with the original PINN, the ℓ2 errors of the velocity component u and the resultant

velocity are reduced by roughly 20% to 30% when 𝛾 ranges from 1 to 5 after 1×105 iterations.

However, the conclusion that dpPINN outperforms PINN in prediction accuracy because the

slow convergence rate seems to limit the potential of the PINN cannot be currently drawn, so

the training process for additional 8×104 iterations to a total of 1.8×105 iterations is extended.

The findings reveal that the two approaches estimate u and v with similar accuracy, while the

error of w predicted by dpPINN (𝛾=2) is still 4% lower than that predicted by PINN. A more

detailed comparison is tabulated in Table 3-1.

Figure 3-9. The dynamic balance of weighting coefficients in the dpPINN.

81

In addition, Figure 3-8 indicates that a rough solution can be quickly achieved after only

about 3×104 iterations, demonstrating that the computational efficiency is greatly enhanced

when adopting the dpPINN. It should be noted that we mainly focus on the l2 errors of the

mainstream velocity and resultant velocity in this figure, while the l2 errors of the other two

velocity components are summarized in Table 3-1.

The dynamic balance process of weighting coefficients of the dpPINN (𝛾 =2) is also

monitored, as shown in Figure 3-9. Since u demonstrates the minimum relative error among

those of all velocity components, it possesses the lowest weight, which is stabilized at 1, in its

training process. In addition, the relative error of the velocity component w is always greater

than that of v, thus it is penalized with a higher weight. dpPINN appears to be striving for the

best balance in the first 4×104 iterations, while in the last 6×104 iterations, wu, wv, and ww

gradually balance at the ratio of 1.0: 2.4: 5.2.

Table 3-1. ℓ2 errors of the PINN, lbPINN, and dpPINN predictions after 1×105 iterations.

Type u error v error w error V error

PINN 0.169 0.528 0.271 0.169

lbPINN 0.562 1.010 0.947 0.526

dpPINN (𝛾 = 1) 0.138 0.437 0.283 0.138

dpPINN (𝛾 = 2) 0.125 0.314 0.248 0.123

dpPINN (𝛾 = 3) 0.112 0.323 0.238 0.110

dpPINN (𝛾 = 4) 0.124 0.357 0.258 0.123

dpPINN (𝛾 = 5) 0.107 0.328 0.224 0.105

82

 3.3.7 Influence of the neural network configuration

This section discusses the influence of neural network configuration on the dpPINN

prediction accuracy. The value of the coefficient 𝛾 is set as 2. Nine different neural network

configurations are considered, with three different depths and three different widths. The

relevant results are displayed in Table 3-2. In general, a broader width of the neural network is

beneficial to the overall performance of the dpPINN, but this involves more computational

expense as a side effect. In comparison, the depth of the neural network has a less positive

influence on prediction accuracy. To summarize, the neural network containing six hidden

layers, each with 60 neurons, is found to possess the best performance among the nine

configurations.

Table 3-2. ℓ2 errors of the dpPINN predictions with different neural network configurations.

Depth

Width

4 6 8

u V u V u V

20 0.251 0.253 0.185 0.184 0.170 0.167

40 0.130 0.129 0.125 0.123 0.116 0.119

60 0.131 0.128 0.109 0.108 0.143 0.143

 3.3.8 Influence of turbulence model

To determine the impact of embedding different turbulence models in the PINN

framework, a further analysis is carried out. Another widely used zero-equation turbulence

model is the Chen model (Chen and Xu 1998). It is assumed that the turbulent viscosity is

83

determined by the air density, the local velocity V, and the distance l from the nearest wall,

which can be calculated as follows:

𝜇௧ = 0.03874𝜌𝑉𝑙 (3 − 44)

For this simulation, an attempt is made to embed the Chen model rather than the Li model.

Li-dpPINN and Chen-dpPINN are dpPINNs based on the Li and Chen models, respectively.

As before, the neural network consists of six hidden layers with 40 neurons each. Coefficient

𝛾 is still set to 2.

Figure 3-10 shows the results. This figure shows the contours of the velocity component

u predicted by the Li-dpPINN and the Chen-dpPINN at the cross-section y = 0.35 m

respectively. The velocity contours show that when the Chen model is used in the wind field

simulation instead of the Li model, there is a greater clockwise rotation of the vortex near the

leeward side of the building, contrary to the measured results near the ground. Chen model,

which is widely used in indoor airflow simulation rather than outdoor airflow simulation, may

explain this phenomenon.

84

Figure 3-10. u contours at y = 0.35 m: (a) and (b) 93 measurement points are used to train

the dpPINN model; (c) and (d) 100 measurement points are used to train the dpPINN model.

85

To overcome these challenges, an attempt is made to include velocity data from seven

additional measurement points in the dpPINN training process. These are points 48–53 in

Figure 3-5(a) and point 45 in Figure 3-5(c). With velocity data from these measurement points,

the leeward side of the scale building model can be guided properly for the dpPINN solution.

To be noted, when different turbulence models are embedded for airflow simulation, this region

also has the maximum relative error. Figure 3-10(c), Figure 3-10(d) and Figure 3-11 show the

modified results. As more labelled data are embedded, Figures 3-10(c) and (d) illustrates the

contours of the velocity component u using different turbulence models.

In Figure 3-11, the Chen-dpPINN prediction results for the velocity component u at the

cross-section y = 0.35 m are compared to the Li-dpPINN prediction results. When seven more

measurement points are used to train the Li-dpPINN and Chen-dpPINN, the ℓ2 errors of the

velocity component u drop to 0.089 and 0.128, respectively, which are acceptable in

engineering practice. As a result, even when more training data are used for supervised learning,

the Li-dpPINN still performs better than the Chen-dpPINN.

Although an inapplicable turbulence model, namely the Chen model, is embedded in the

dpPINN for airflow simulation, the solution does not seem totally ineffective because the size

of the vortex near the leeward side of the building is corrected by sufficient training data. In

the cross-section y = 0.35 m, Li-dpPINN and Chen-dpPINN predictions of the velocity

component u are well congruent with the field-measured results, although the former is slightly

better. Here is the second benefit of using this physics-based data-driven approach for outdoor

airflow simulation. PINN integrates measurement data into physical models, which is difficult

when using traditional physics-based methods. Furthermore, this extends the applicability of

these physical models, making the PINN framework robust for airflow simulation.

86

Furthermore, two well-known two-equation RANS turbulence models, i.e., the standard

k-ε model and RNG k-ε model, are also encoded in the dpPINN model. Figure 3-12 depicts the

flow streamlines in the building's leeward recirculation zone when various RANS turbulence

models are utilized. Here, the streamline distribution in an area with a size of 0.2 meters by 0.2

meters which is on the leeward side of the building and near the ground becomes the focus.

The result indicates that when using the zero-equation RANS turbulence models, the airflow

recirculation zone cannot be well reflected, but when the two-equation models are adopted,

appropriately sized refluxes are generated in its leeward side. The reason might be that dpPINN

fails to effectively limit the residuals of the physical governing equations when solving the

Figure 3-11. Comparison of Li-dpPINN predictions with the Chen-dpPINN predictions of the

velocity component u at the cross-section y = 0.35 m.`

87

zero-equation model-embedded RANS equations. Anyway, the constraints of dpPINN on

physical conditions are relatively flexible, that is, only by adding penalty terms in the loss

function, so it is not surprising that its solution sometimes deviates. It is believed that further

in-depth research is needed to specifically address this issue.

3.4 Conclusions

By rewriting the form of the total loss in the original PINN, a novel self-adaptive loss

balance strategy, i.e., dpPINN, is proposed in this chapter. A zero-equation RANS turbulence

Figure 3-12. The flow streamlines in the building's leeward recirculation zone.

88

model is used to reconstruct the entire flow field around a scale model of a building in a wind

tunnel. For supervised learning, sparse near-wall velocity data is used. Furthermore, the wind

tunnel experiment provides verification that the dpPINN framework is feasible. The impact of

different neural network configurations and embedded turbulence models on dpPINN

prediction is also investigated. It appears that the dpPINN can provide an auxiliary means to

predict spatial flow fields around a building based on the results. Here are some conclusions:

 Even though only a small portion of the sparse near-wall data can be used to reconstruct

the three-dimensional flow field around the scale building model, embedding the

measurements and laws into the neural network can still provide the missing airflow

information across the whole computational domain.

 This chapter proposes a dpPINN model frame that outperforms the original PINN and

lbPINN in prediction accuracy. In the dpPINN framework, a higher relative error loss term

is prioritized after certain iterations, speeding up the training process and resulting in better

performance.

 In general, the width of the neural network has a greater influence on prediction accuracy

than the depth of the network. The dpPINN performance improves with a wider width, but

the computational cost increases as well. Nine test configurations were investigated for

outdoor airflow simulation, and the configuration of six hidden layers, each with 60

neurons, was found to be optimal.

 It is important to note that turbulence models embedded in the RANS equations directly

affect the dpPINN solution. There is a tendency for a bigger clockwise-rotating vortex to

occur near the leeward side of the building when the Chen model instead of the Li model

is embedded in the RANS equations. When more training data is used for supervised

89

learning in the PINN framework, however, Li-dpPINN and Chen-dpPINN predictions are

both consistent with experimental results, although the former is still slightly better.

 When there are labeled training data available for supervised learning in flow simulations

around buildings, the PINN framework shows a higher universality compared with pure

physics-based methods. Due to the fact that only the near-wall data is used for training the

neural network, it is also less data-demanding than pure data-driven methods, and yet still

demonstrates competitive results.

90

CHAPTER 4

MULTIFIDELITY MODELING

4.1 Foreword

In the multifidelity modeling framework, accurate but expensive high-fidelity data is

scarce, while cheap and inaccurate low-fidelity data is abundant. In many cases, low-fidelity

data can provide useful information such as trends for high-fidelity modeling. Therefore,

multifidelity modeling based on a small amount of high-fidelity data can greatly improve the

prediction accuracy of single-fidelity modeling. As a result, multifidelity modeling has been

proven to be efficient and effective, by using low-fidelity and high-fidelity data to achieve high

accuracy in different applications.

Building a link between low-fidelity and high-fidelity data in multifidelity modeling is

crucial. Among the current methods, Gaussian Process (GP) regression with a linear

autoregressive framework has attracted the most interest, even though only the linear

association between low-fidelity and high-fidelity data may be captured under this approach

(Le Gratiet and Garnier 2014). This approach has been enhanced by some such that it can

recognize intricate nonlinear relationships (Perdikaris et al. 2017). The multifidelity approach

based on GP regression has made considerable strides, but there are still certain drawbacks,

including the approximation of discontinuous functions, high-dimensional issues, and strongly

nonlinear inverse problems. Nevertheless, multifidelity modeling is still an indispensable

91

means to integrate physical information and data information which has been widely adopted

in different research fields.

For instance, Perdikaris et al. (2017) proposed a nonlinear fusion algorithm for

multifidelity modeling based on the GP regression. In their algorithm, multifidelity modeling

is based on the GP regression and is achieved by combining low-fidelity models with a small

number of high-fidelity observations, which saves much computational cost. Their scheme was

verified by different cases and the results indicated its feasibility when sufficient low-fidelity

and high-fidelity data was available for modeling. In addition, Meng and Karniadakis (2020)

proposed a method which was named multifidelity PINN, as shown in Figure 4-1 in the case

that only a small set of high-fidelity data was available for multifidelity modeling. In their

opinion, implementing multifidelity modeling based on GP regression optimization is fairly

challenging, so multifidelity approaches are therefore urgently required to address these flaws.

Their results also demonstrated that the proposed multifidelity PINN could be a powerful

means of multifidelity modeling.

Figure 4-1. The structure of the multifidelity PINN proposed by Meng and Karniadakis (2020).

92

It has been proposed that a small sampling of high-fidelity data can be used to reconstruct

the flow field within the entire computational domain in order to achieve this balance. For

instance, using direct numerical simulation data, Abrahamson and Lonnes (1995) reconstructed

vorticity fields using the least-squares method. However, it ignores the details of local flow

features, so a local characteristic analysis cannot be conducted based on the least-squares

method, even though it approaches the averaged field well. Also, to reconstruct a flow field

with this method, thousands of high-fidelity data points are required, which remains a heavy

burden for engineers.

This chapter proposes a multifidelity, physics-informed data-driven strategy for time-

averaged turbulent flow field simulation. First, PINN prediction is used to estimate low-fidelity

flow fields based on RANS equations. Since no training data is necessary in low-fidelity

modeling, it is purely physics-based. Second, sparse field or laboratory measurements are

regarded as high-fidelity observations. To reconstruct flow fields, a multifidelity GP model is

established using the nonlinear information fusion (NIF) algorithm proposed by Perdikaris et

al. (2017). By extracting nonlinear cross-correlations between low-fidelity approximations and

high-fidelity observations, the multifidelity GP model can be trained and high-fidelity

predictions can be carried out using the NIF algorithm. A flow past a hill and a flow past a

square cylinder are presented in this chapter to demonstrate the feasibility of our proposed

method. Furthermore, the proposed strategy is compared with two other common methods.

According to the results, the multifidelity model demonstrates superior accuracy when

approximating measurement data for these two flow cases.

Firstly, as the PINN model is used only for low-fidelity, less accurate modeling, the

proposed strategy significantly increases its applicability. In addition, embedded physical

information, however, provides significant guidance in multifidelity modeling, resulting in less

93

training data being needed in flow field reconstruction compared with other pure data-driven

methods.

4.2 Methodology

4.2.1 PINN structure

In Chapter 4, the RANS equations using the Chen model are adopted for time-averaged

flow field simulation. The PINN framework is depicted in Figure 4-2. As shown in the figure,

the framework of the PINN adopted here is similar to that in Section 3.2.1, except that no

measurement data is embedded in the total loss for training the model. The total loss of the

neural network is written as follows:

𝐿 = 𝑤௙𝐿௙ + 𝑤௕𝐿௕ (4 − 1)

where

𝐿௙ =
1

𝑁௙
෍ ෍|𝑓௜

௡|ଶ

ଶ

௜ୀଵ

ே೑

௡ୀଵ

(4 − 2)

𝐿௕ =
1

𝑁௡௕
෍ห𝑟௡௕

௜ ห
ଶ

ே೙್

௜ୀଵ

+
1

𝑁ௗ௕
෍ห𝑟ௗ௕

௜ ห
ଶ

ே೏್

௜ୀଵ

(4 − 3)

In the expression, 𝐿௙ and 𝐿௕ still denote the loss components corresponding to the

residuals of the governing equations and boundary conditions, respectively. 𝑤௙ and 𝑤௕

denote the weighting coefficients of the corresponding loss terms. 𝑓௜
௡ is the residual of the ith

governing equation in Fig. 5-1. 𝑟௡௕
௜ and 𝑟ௗ௕

௜ are the residuals for the Neumann boundary and

Dirichlet boundary, respectively. 𝑁௙ is the number of points used to calculate the residuals of

94

the governing function, while 𝑁௡௕ and 𝑁ௗ௕ are the numbers of points used to calculate the

residuals for the Neumann boundary and Dirichlet boundary, respectively. It is worth noting

that in two-dimensional flow cases, the velocity components are replaced with a stream

function 𝜑 in the neural network outputs to ensure that the continuity condition is strictly

satisfied.

4.2.2 NIF algorithm

In the NIF algorithm, multifidelity modeling is based on the GP algorithm and is achieved

by combining low-fidelity models with a small number of high-fidelity observations. Now, the

GPs 𝑓௛ and 𝑓௟ represent high-fidelity and low-fidelity models, respectively. The NIF

algorithm expresses 𝑓௛ as follows:

𝑓௛(𝒙) = 𝑔௛(𝒙, 𝑓∗௟(𝒙)) (4 − 4)

where 𝑔௛~𝒢𝒫(𝒇𝒉|𝟎, 𝑘௛((𝒙, 𝑓∗௟(𝒙)), (𝒙′, 𝑓∗௟(𝒙′)); 𝜃௛)). A GP posterior at the low-fidelity

level is given by 𝑓∗௟(𝒙) . 𝜃௛ is the hyperparameter. As a covariance kernel, 𝑘௛ can be

decomposed into:

Figure 4-2. PINN framework for RANS simulation when Chen model is adopted.

95

𝑘௛ = 𝑘௛ഐ
ቀ𝒙, 𝒙ᇱ; 𝜃௛ഐ

ቁ × 𝑘௛೑
ቀ𝑓∗௟(𝒙), 𝑓∗௟(𝒙ᇱ); 𝜃௛೑

ቁ + 𝑘௛ഃ
൫𝒙, 𝒙ᇱ; 𝜃௛ഃ

൯ (4 − 5)

A squared exponential form covariance function is used here, with ARD weights applied

to 𝑘௛ഐ
, 𝑘௛೑

, and 𝑘௛ഃ
 (Rasmussen 2003). 𝜃௛ഐ

, 𝜃௛೑
, and 𝜃௛ഃ

 are hyperparameters. Based on

the NIF algorithm, the high-fidelity model may be derived from the input coordinates x and the

output of the low-fidelity model 𝑓∗௟(𝒙). Therefore, it is a joint representation of the low-fidelity

model's input space and its posterior prediction. Eq. (4-4) also incorporates both x and 𝑓∗௟(𝒙)

into its covariance kernel, which captures nonlinear nonfunctional cross-correlations of space-

dependent nonlinearity. Optimization of the hyperparameters of the GP model is based on

minimizing the negative log marginal likelihood (NLML), which can be described as:

𝑁𝐿𝑀𝐿 =
1

2
𝑙𝑜𝑔|𝑲| +

1

2
𝒚்𝑲ିଵ𝒚 +

𝑛ௗ

2
𝑙𝑜𝑔2𝜋 (4 − 6)

where K represents the kernel function, y represents the training target, and 𝑛ௗ represents

the dimension of the input space. Based on the optimized hyperparameters, the posterior

distribution of the high-fidelity GP model at a test point (𝒙∗, 𝑓∗௟(𝒙∗)) can be calculated as

follows:

𝑝(𝑓∗௛(𝒙∗)) = න 𝑝൫𝑓௛൫𝒙∗, 𝑓∗௟(𝒙∗)൯|𝒚௛, 𝒙௛, 𝒙∗൯ 𝑝(𝑓∗௟(𝒙∗))d𝒙∗ (4 − 7)

To simulate the posterior distribution of the high-fidelity model, Monte Carlo simulation

is used. In the low-fidelity model, the posterior prediction follows a Gaussian distribution

because it is a standard GP regression with parametric input data points. High-fidelity models,

however, are GP regression models with the input of the posterior prediction from the low-

fidelity model. This results in a non-Gaussian posterior distribution for the high-fidelity model.

Therefore, Monte Carlo integration of Eq. (4-7) is applied here to calculate the high-fidelity

96

model's posterior mean and variance.

4.2.3 Workflow of the multifidelity strategy

As a summary of the multifidelity flow field reconstruction strategy, which is proposed in

the chapter, the following workflow is given (also shown in Figure 4-3):

Step 1: A PINN model is used to generate massive quantities of low-fidelity continuous

data. In the training process of neural networks, residuals of governing equations and boundary

conditions are incorporated.

Step 2: A sample of training data is obtained from the PINN results in the computational

domain for the low-fidelity GP modeling. Then minimize the NLML of Eq. (4-6) to optimize

the hyperparameters of the low-fidelity GP model. Calculate the posterior mean and variance

of the low-fidelity standard GP regression model.

Step 4: Using the posterior prediction of the low-fidelity model and a small number of

high-fidelity observations, the high-fidelity GP regression model of Eq. (4-4) is constructed. In

the high-fidelity GP model, the hyperparameters are optimized by minimizing the NLML of

Eq. (4-6), using the kernel function from Eq. (4-5).

Step 5: According to the Monte Carlo integration of Eq. (4-7), the posterior mean and

variance for the high-fidelity GP model can be outputted. In this step, the posterior mean and

variance of the low-fidelity standard GP regression model in Step 2 will be used.

 Figure 4-3. Workflow of the multifidelity strategy.

97

4.3 Results and Discussions

4.3.1 Case 1: Flow past a single hill (Reynolds number: 60000)

This case study uses data from a fluid dynamic experiment that is publicly available

(Almeida et al. 1993). A fully developed channel flow passed through a single hill which was

located 6 meters downstream from the inlet of the water channel in the experiment.

Around the hill, time-averaged flow velocities were measured and recorded in both

horizontal and vertical directions, which will later serve as a standard test database to verify

the feasibility of our proposed multifidelity flow field reconstruction strategy. In the experiment,

the Reynolds number reached 6 × 104. This case study will use the low-fidelity PINN

predictions and the high-fidelity measurements to reconstruct the mainstream flow velocity

under the multifidelity strategy.

Making use of the RANS equations and the boundary conditions, a PINN is first

formulated, which can offer a solution to the two-dimensional time-averaged flow field around

the hill. As aforementioned in Chapter 2, the introduction of the Reynolds stress terms makes

the RANS equations no longer a closed-form system of equations.

To close RANS equations, the Chen model proposed by Chen and Xu (1998) is adopted

which takes the form as that in Eq. (3-44). Under the PINN framework, an approximate solution

to the time-averaged flow field around the hill is provided first. As described by Casey and

Wintergerste (2000), the recommended computational domain configuration, except that the

downstream boundary is defined as a zero-pressure outlet, is adopted in this case study. A more

detailed description on the configuration of computational domain for PINN calculations can

be found in Figure 4-4.

98

In order to map the relationship between spatial coordinates and flow characteristics, a

deep neural network that contains six hidden layers, each with forty neurons, is employed. The

Adam optimizer with a steady learning rate of 3 × 10-4 as well as the Tanh activation function

are adopted in this case study to simulate the two-dimensional flow field.

Inside the domain, 100 equally-spaced collocation points are sampled along the x-axis and

y-axis respectively. A lattice of collocation points with a 100 × 100 size is thus generated.

Among these points, 254 points are located inside the two-dimensional hill, so they have been

excluded, which results in the number of collocation points reducing to 9766 inside the

computational domain. Meanwhile, there are four distinct boundaries in this case, which are an

inlet boundary, an outlet boundary, a symmetry boundary and a wall boundary (both the hill

surface and the ground). On each boundary, 500 equally-spaced collocation points are sampled

(on the wall boundary, the projections of the distances between collocation points on the x-axis,

instead of the distances themselves, are equal). Thus, there are 2000 collocation points on the

domain boundaries to assist in the calculation the residuals of the boundary conditions.

More specifically, the residuals of the Chen model-based RANS equations calculated at

the 9766 domain collocation points form the loss term 𝐿௙ defined in Eq. (4-2), and the

Figure 4-4. Computational domain of the flow past a two-dimensional hill.

99

residuals of the boundary conditions calculated at the 2000 boundary collocation points form

the loss term 𝐿௕ defined in Eq. (4-3). By minimizing these physical constraints, the configured

PINN realizes its function of offering approximate solutions to this flow problem.

The PINN predictions of the mainstream velocity component u after 1×105 training

iterations are shown in Figure 4-5(a), which are depicted as an orange curved surface,

compared with the red dots that represent the experiment measurements. Figure 4-5(b) depicts

the contour of the velocity component u based on the PINN prediction, which is also compared

with the reference data from the experiment. As can be seen in Figure 4-5, there exists a

significant difference between the PINN predictions and the experimental results.

A conclusion can be easily drawn from Figure 4-5 that, without incorporating

measurement data to train the PINN, its solution can only be viewed as low-fidelity

approximation. To establish the proposed multifidelity model for predicting the flow field

around the two-dimensional hill, then 900 uniformly distributed low-fidelity sampling points

(a 30 × 30 lattice) generated by the PINN prediction are selected.

Meanwhile, among the total 325 experimental measurement points scattered in the

computational domain, 35 points are picked out and the measured mainstream velocities at

these points are considered as high-fidelity training data. The spatial coordinates of the 35 high-

fidelity training points are tabulated in Table 4-1. In selecting the training points, the principle

of distributing the training points over the whole computational domain as evenly as possible

is abided by. A multifidelity model is then established using the NIF algorithm. To obtain the

Gaussian predictive posterior distribution of the mainstream velocity component u, a GP

regression model is first trained based on the low-fidelity data. With the randomized restart

strategy, the marginal log-likelihood to seek optimal hyperparameters is maximized.

100

Figure 4-5. Prediction of u using the low-fidelity model in Case 1: (a) general view; (b) the velocity contour compared with the experimental

counterpart (absolute error = prediction – experimental result).

101

Table 4-1. Spatial coordinates of the high-fidelity points used for multifidelity modeling.

x coordinate (m) -0.050 0.050 0.150 0.300 0.500

y coordinate (m)

0.006 0.002 0.001 0.001 0.001

0.015 0.015 0.015 0.016 0.016

0.030 0.030 0.030 0.030 0.030

0.070 0.070 0.070 0.070 0.070

0.100 0.100 0.100 0.100 0.100

0.130 0.130 0.130 0.130 0.130

0.160 0.165 0.165 0.165 0.165

With the Gaussian posterior distribution acquired on the low-fidelity level, the training

data for the high-fidelity GP regression model can be generated. Hyperparameters are

optimized again by maximizing marginal log-likelihood using the kernel function in Eq. (4-6).

With Monte Carlo integrations, the posterior distribution of mainstream velocity component u

on a high-fidelity level can be obtained after the model has been fully trained. In Figure 4-6,

the prediction results of the velocity component u using the proposed multifidelity model are

depicted. The multifidelity model’s prediction of the mainstream velocity component u is

represented by the green curved surface. The yellow curved surface represents low-fidelity data

based on PINN predictions. These red dots correspond to high-fidelity experimental results on

a total of 325 measurement points for the mainstream velocity component u. The low-fidelity

data (PINN predictions) and multifidelity model predictions show a similar trend across the

whole computational domain. However, the latter is much closer to high-fidelity measurement

102

data. The reason for this is that our proposed multifidelity model can precisely capture the

nonlinear nonfunctional space-dependent cross-correlations between the low-fidelity and high-

fidelity data sets. Hence, the multifidelity model can fit the scattered data points on the high-

fidelity level based on the trend of the low-fidelity PINN predictions. To put it another way, the

scattered high-fidelity data points are used to correct the low-fidelity prediction surface while

maintaining the trend as much as possible.

Figure 4-7 compares the high/low fidelity data with the multifidelity model prediction on

twelve vertical lines within the computational domain. Across the entire computational domain,

the multifidelity model predictions are consistent with the high-fidelity data (experiment

measurements). Due to the 35 high-fidelity training data points scattered along lines x = -0.050

m, x = 0.050 m, x = 0.150 m, x = 0.300 m, and x = 0.500 m, the results are even better on those

lines.

The multifidelity model, however, still shows competitive results in comparison to PINN,

especially when it comes to prediction accuracy. In addition, the performance of the proposed

multifidelity model and the other two widely used strategies are compared in Table 4-2. In

addition to embedding the physical governing equations and boundary conditions into the total

loss, the 35 high-fidelity training data in Table 4-1 are also embedded into the neural network

training process when the data-driven PINN strategy is adopted. The same configuration is

adopted for the data-driven PINN as that in the low-fidelity modeling. A regression task based

on the 35 high-fidelity training data points is all that is required in the neural network strategy.

The L-BFGS optimizer with a learning rate of 5 × 10-4 is used to train a neural network with

only one hidden layer containing 10 neurons. The ℓ2 error is still used here for the evaluation

of prediction accuracy on a quantitative level, and the results are shown in Table 4-2.

103

Figure 4-6. Prediction of u using the multifidelity model in Case 1: (a) general view; (b) the velocity contour compared with the experimental

counterpart (absolute error = prediction – experimental result).

104

Considering the low-fidelity PINN model can be fully trained and well-prepared in

advance since no measurement data is required, multifidelity modeling takes around 53 seconds

in the training process. An ℓ2 error of 24.6% is obtained with the data-driven PINN strategy, in

comparison. PINN may also be hampered by its high computational cost, which may prevent

its widespread adoption. When using the Adam optimizer, a data-driven PINN with 6 hidden

layers, each with 40 neurons, usually takes around 2.3 × 104 seconds to train with 1 × 105

iterations. This can be a heavy burden in practical use. Reconstructing the flow field from the

neural network strategy is faster, but when its predictions are compared to experiments, its

relative error becomes unbearable. The ℓ2 error reaches 55.3% after 41 seconds of computing

when the flow field is reconstructed using the neural network strategy using 35 high-fidelity

training data points distributed throughout the computational domain.

It must be admitted that the computational cost of the PINN-related strategy may become

a stumbling block to its wide application. Considering a PINN with 6 hidden layers, each with

40 neurons, it usually takes around 2.3×104 seconds for its training process with 1×105

iterations when using the Adam optimizer, which would be a heavy burden in engineering

applications. For the multifidelity model, it takes an additional 53 seconds for multifidelity

modeling in considering that the low-fidelity PINN model can be fully trained off-line because

no measurement data is needed in this process. Based on the above comparisons, it can be

concluded that our proposed multifidelity model demonstrates the most competitive

performance for reconstructing the flow field around the two-dimensional single hill without

considering computing resources. It is worth noting that the experimental data of v is unevenly

distributed and insufficient to support multifidelity modeling in this case, so the issues

regarding the velocity component in y-direction are not considered here.

105

Table 4-2. Performance of different flow field reconstruction strategies.

 Multifidelity Model Data-driven PINN FCNN

ℓ2 error 9.8% 24.6% 55.3%

Computing Time (s) 5.3×101 2.3×104 4.1×101

Figure 4-7. Comparison of the results between the multifidelity model prediction and the

high/low-fidelity data on twelve vertical lines.

106

4.3.2 Case 2: Square cylinder flow (Reynolds number: 21400)

Based on the experiment conducted by Lyn and Rodi (1994), this case study describes a

turbulent flow around a two-dimensional square cylinder, as shown in Figure 4-8. In the middle

of the computational domain, which measures 0.44 m in length and 0.32 m in width., a 0.04 m

× 0.04 m square cylinder is located at the left center.

According to Figure 4-8, point A is located at the bottom left corner of the square cylinder

at a coordinate of (0.10, 0.14). There is an initial speed boundary on the left boundary of the

computational domain, where the fluid velocity stabilizes at 0.535 m/s. The right boundary of

the computational domain is a zero-pressure outlet, while upper and lower boundaries are

defined as symmetry wall boundaries. As the fluid velocity equals zero at the surfaces of the

square cylinder, they are considered to be wall boundaries. In the experiment, there were 517

experimental measurement points capturing the time-averaged flow velocity components u and

v inside the flow field.

Figure 4-8. Computational domain for the flow past a two-dimensional square cylinder.

107

Generally, Case 2 and Case 1 differ significantly in two aspects. First, the most intuitive

aspect is the different geometric appearances. Second, the velocity component v, in addition to

u, is assumed to be known on the high-fidelity points that are utilized to establish the

multifidelity model. From the 517 high-fidelity measurement points, 36 points scattered along

nine vertical lines are selected for training the multifidelity model. Table 4-3 tabulates their

spatial coordinates. In selecting training points, the principle of distributing the training points

over the whole computational domain as evenly as possible is still abided by.

Table 4-3. Spatial coordinates of the high-fidelity points used for multifidelity modeling.

x coordinate (m) 0.000 0.100 0.155 0.200 0.250 0.300 0.350 0.392 0.400

y coordinate (m)

0.200 0.200 0.160 0.160 0.160 0.160 0.160 0.160 0.160

0.240 0.240 0.180 0.200 0.200 0.200 0.200 0.200 0.200

0.280 0.280 0.200 0.240 0.240 0.240 0.240 0.240 0.240

0.320 0.320 0.220 - - 0.280 - 0.280 0.280

- - - - - 0.320 - 0.320 0.320

The objective of Case 2 remains to apply all available physical restrictions and sparse

measurement information to reconstruct the high-fidelity mainstream velocity u within the

entire computational domain. As the data of v is also included in the training process (already

known), the number of schemes has increased from three to five. In Case 2, the performances

of five distinct schemes are horizontally compared to achieve this objective.

For the first three schemes, the NIF algorithm and sparse u measurements are utilized for

establishing the multifidelity model. The only difference between these three schemes is the

108

low-fidelity data source. A PINN without training data (purely physics-based), a PINN with v

embedded in its training process, and CFD are used as the low-fidelity data sources,

respectively. The fourth scheme is a data-driven PINN which both u and v are embedded in to

train the neural network parameters, and the NIF algorithm is not engaged in Scheme 4. The

fifth scheme is an FCNN which is similar to that mentioned in Case 1. For the sake of

explanation, the five strategies are now clarified in Table 4-4 as follows.

Table 4-4. Five flow field simulation strategies in Case 2.

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

PINN+NIF v-embedded PINN+NIF CFD+NIF u v-embedded PINN FCNN

It is meaningful to go into further detail on the PINN and CFD frameworks separately due

to the multiple sources of the low-fidelity data in this case study. For the PINN framework, its

configuration remains the same as that in the previous case except that there are only 108

collocation points to be excluded inside the two-dimensional square cylinder, which ultimately

leads to a total of 9892 internal collocation points. In addition, there are 50 boundary equally-

spaced collocation points on the initial speed boundary, zero-pressure outlet, upper symmetry

boundary, lower symmetry boundary, and each of the four side surfaces of the two-dimensional

square cylinder, respectively. Thus, a total of 400 boundary collocation points is used to

calculate the physical residuals in this case. For the CFD framework, the simulation of the time-

averaged flow field is performed based on the commercial software Star CCM+ in this study,

and the mesh inside the computational domain consists of more than 36484 cells. For both

the PINN and CFD frameworks, the standard k-ε model is adopted in RANS turbulence

modeling, which has already been introduced in detail in Chapter 2.

109

Figure 4-9. Prediction of u using five distinct schemes: (top) prediction; (middle) experimental result; (bottom) absolute error.

110

The prediction results of the mainstream velocity u from different schemes are depicted

in Figure 4-9, which are also compared with the experiment results. These velocity contours

show that Scheme 2, notably in the upstream region of the square cylinder, reconstructs the

fluid features most accurately and efficiently. This may be due to the fusion of measured fluid

features from upstream regions in Scheme 2 in low-fidelity modeling. Again, ℓ2 error is used

to quantitatively evaluate the accuracy of predictions from different models. As tabulated in

Table 4-5, the ℓ2 error of Scheme 2 is the lowest among those of all schemes, which is only

8.8% compared with the experimental results.

In particular, when v-embedded PINN, instead of CFD, is used as the low-fidelity data

source, the ℓ2 error has decreased by 6.6%. This is because measurement information has been

included, and compared to CFD, the simulation results from v-embedded PINN are more

accurate. However, when field information is unavailable, the precision of the PINN’s

prediction drops dramatically. This resulted in the ℓ2 error of Scheme 1 being 18.1%, which is

the worst among those of the multifidelity models.

The significance of physical information fusion in neural network modeling should be

emphasized, nevertheless, as it is clear that Scheme 1 has an improved accuracy of 10.2% over

Scheme 5. By the way, it can be observed that all strategies involving PINN, i.e., Scheme 1, 2,

and 4, are time-consuming, compared to CFD. Undeniably, this is one of the main drawbacks

of PINN, which urgently needs to be addressed by further research. Figure 4-10 also illustrates

the verification results. Across the entire computational domain, the multifidelity model

predictions (Scheme 2) show good agreement with high-fidelity data (experiment

measurements). The accuracy of the multifidelity model is still evaluated quantitatively by the

ℓ2 error.

111

Table 4-5. Performance of different flow field reconstruction strategies.

 Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

ℓ2 error 18.1% 8.8% 15.4% 15.5% 29.1%

Computing time (s) 2.8×104 2.8×104 5.4×102 2.8×104 2.1×101

Figure 4-10. Comparison of the results between the multifidelity model prediction (Scheme 2)

and the high/low-fidelity data on twelve vertical lines.

112

4.4 Conclusions

Based on PINN and the NIF algorithm, a novel time-averaged turbulent flow field

reconstruction strategy is proposed in this chapter. In conclusion, this strategy is a two-step

process where low-fidelity data are first generated by the PINN framework without

measurement data embedded. By using the NIF algorithm, the sparse experimental or field

measurements are regarded as high-fidelity data, which can be used to build a multifidelity

model. Our proposed multifidelity model is verified using flows past a hill and a square cylinder,

and their results indicate that the strategy is feasible. The following preliminary conclusions

can also be drawn:

 Even though only a small portion of data can be used to reconstruct the time-averaged

turbulent flow field, embedding the measurements and physical laws into the neural

network can still provide the missing airflow information across the whole computational

domain.

 Since both PINN predictions are poor in accuracy, they are considered low-fidelity data.

The low-fidelity NIF-based prediction surface can then be corrected using high-fidelity

data. The multifidelity model can learn from the trend of the low-fidelity PINN predictions,

and then fit the dispersed data points on the high-fidelity level and achieve strong

agreement with the test data.

 The method proposed in this chapter for flow field reconstruction exhibits the most

competitive outcomes when compared to other reconstruction methods. When compared

to the experimental observations, the mainstream velocity component's relative errors

from the multifidelity prediction are less than 10% in both cases. Considering that the low-

113

fidelity PINN model is fully trained in advance, it often takes less than one minute to train

the multifidelity model.

 Compared with other flow field reconstruction strategies, the proposed strategy

demonstrates the most competitive results. The relative errors of the mainstream velocity

component from the multifidelity prediction are less than 10% in both cases relative to the

experimental measurements. However, all strategies involving PINN are time-consuming,

and it usually takes additional time to establish the multifidelity model, which is a

challenging issue to urgently resolve.

114

CHAPTER 5

QUANTUM LAYER INTEGRATION

5.1 Foreword

Quantum machine learning is an intersection of two cutting-edge scientific frontiers:

quantum computing and machine learning (Schuld et al. 2015, Schuld and Killoran 2019). It

leverages the principles of quantum mechanics to improve the algorithms used in machine

learning, potentially leading to faster processing and the ability to easily handle complex

datasets (Ciliberto et al. 2018, Kavitha and Kaulgud 2024). This field is still in its infancy, but

it holds promise for significant advancements in areas where classical machine learning

algorithms struggle, such as optimization problems and pattern recognition in vast amounts of

data (Khan and Robles-Kelly 2020, Abbas 2024).

Variational quantum circuits (VQCs) are a class of quantum algorithms designed for

optimization problems on quantum computers (Cerezo et al. 2021, Griol-Barres et al. 2021).

They leverage a hybrid approach, combining classical optimization techniques with quantum

computation to find solutions to complex problems. These algorithms are particularly suited

for Noisy intermediate-scale quantum (NISQ) computers, which are the current generation of

quantum devices (Huembeli and Dauphin 2021, Bharti et al. 2022). They use a parametrized

quantum circuit, which is adjusted iteratively by a classical optimizer to minimize a cost

function. This method has been applied in various algorithms, such as the Quantum

approximate optimization algorithm (QAOA), which are promising for solving real-world

115

problems using quantum computing (Guerreschi and Matsuura 2019, Nakhl et al. 2024). The

structure of a VQC is pivotal in quantum computing. A well-designed circuit can efficiently

simulate quantum systems and solve complex problems (Ostaszewski et al. 2021, Du et al.

2022). Typically, a VQC comprises two layers: the initialization layer and the variational layer.

The initialization layer prepares a quantum state that approximates the problem's solution,

while the variational layer consists of parametrized gates that are tuned to minimize a cost

function, often related to the problem's Hamiltonian. This structure allows for the adjustment

of parameters to find the lowest energy state of the system, which is essential in many quantum

algorithms.

Physics-informed machine learning is a prominent research area at the moment (Raissi et

al. 2019, Yuan et al. 2022, Rui et al. 2023, Rui et al. 2024, Zeng et al. 2024), and the field of

quantum machine learning is no exception (Lloyd et al. 2020, Lubasch et al. 2020, Kyriienko

et al. 2021). Some studies convert differential equations into Ising models and use QAOA

methods to solve them (Albino et al. 2022).

However, although these methods are ingenious, their accuracy is generally not high due

to the limitation of the number of qubits. Thus, the prevailing approach is to utilize VQCs to

approximate the solution of the physical equations and optimize the trainable parameters in

VQCs using physical residuals as costs. For instance, Siegl et al. (2023) propose the concept

of physics-informed variational quantum circuits (PIQC), which investigates the use of

quantum circuits for solving differential equations. They compare a classical approach, i.e.,

PINN, with its quantum counterpart, i.e., PIQC, and discuss their performances and

convergence properties. Their results indicate that PIQC has demonstrated superior

convergence speed and accuracy compared to PINN in certain situations. However, it should

also be noted that PIQC currently falls short of achieving performance similar to PINN in

116

complex problems. This is due in part to the belief that PIQC struggles to accurately

approximate nonlinear functions (Schuld et al. 2021). Additionally, the increase of qubits in

quantum circuits poses challenges in terms of computational costs.

Hence, the author believes that physics-informed quantum machine learning necessitates

utilizing a more intricate classical-quantum hybrid model, rather than relying on a single VQC

when resolving intricate issues like high-order ordinary differential equations (ODEs) and

PDEs. Some studies attempt to integrate classical neural networks with VQCs to obtain more

expressive models, such as the dressed quantum circuit in (Mari et al. 2020), the quantum

Helmholtz machine in (Benedetti et al. 2018), and the variational quantum classifier in

(Adhikary et al. 2020).

In comparison with a VQC, these hybrid models offer notable benefits. For example, the

neural network-based pre-processing and post-processing modules in a dressed quantum circuit

enable itself to adapt to different input and output formats, which significantly improves the

model's flexibility and nonlinear expression capability. Given both classical neural networks

and VQCs are inherently differentiable, these hybrid models also possess inherent

differentiability. This property allows for the seamless utilization of the crucial AD function in

classical physics-informed machine learning (Baydin et al. 2018, Margossian 2019). Naturally,

some physics-informed hybrid models have emerged, which have preliminarily solved some

issues such as laminar flow simulation (Dehaghani et al. 2024, Sedykh et al. 2024). This study

takes into account the nonlinear expression capability and generalization performance of the

dressed quantum circuit and uses it as the function-fitting module of the physics-informed

hybrid model.

A novel physics-informed hybrid classical-quantum neural network (PIHCQNN) is

117

therefore proposed to solve ODE and PDE problems. In addition, the initial stage of addressing

the inverse problem is also explored in this research. In the following text, the basic principles

of the variational quantum algorithm, the dressed quantum circuit, the physics-informed

machine learning, and the proposed PIHCQNN will be explained to readers in Section 5.2. The

performance of PIHCQNN in addressing three forward PDE problems and an inverse ODE

problem will be demonstrated in Section 5.3, which is also contrasted to that of classical PINNs.

In Section 5.4, the phenomenon that PIHCQNN can potentially accelerate the learning of high-

frequency features will be discussed. In addition, a counterexample as well as the factors that

may influence the PIHCQNN’s performance will also be discussed. Lastly, this research will

be comprehensively summarized in Section 5.5, which also identifies the model's current

deficiencies and future research directions.

5.2 Methodology

5.2.1 Quantum computing and variational quantum algorithms

In the same way that classical computers are composed of numerous classical bits,

quantum computers are composed of quantum bits, namely, qubits. As with bits, qubits possess

their own states. More specifically, the state of a bit is either 0 or 1, while the quantum state of

a qubit is represented by a vector that resides in a two-dimensional complex vector space. For

instance, the set of computational basis states that is most often used may be expressed in the

following manner

|0⟩ ≔ ቂ
1
0

ቃ (5 − 1)

118

|1⟩ ≔ ቂ
0
1

ቃ (5 − 2)

where |·⟩ denote the ket symbol by using the Dirac notation, which is widely used in

quantum mechanics. Similarly, there is also the bra symbol ⟨·| , which is the conjugate

transpose matrix of the ket matrix. The inner product of two distinct quantum state vectors |𝛾⟩

and |𝜑⟩ can be denoted by a parenthesis ⟨𝛾|𝜑⟩. For instance, the inner product of the two

computational basis states listed above in Eq. (1) and (2) can be expressed as

⟨0|1⟩ = [1 0] ቂ
0
1

ቃ = 0 (5 − 3)

Another important concept in quantum computing is quantum gates, which are the

foundation of quantum computing and are similar to the logic gates in classical computers.

They operate on the fundamental unit qubits of quantum information. Quantum gates

manipulate these qubits through operations represented by unitary matrices, altering quantum

states to perform complex quantum computations. Common quantum gates include the NOT

gate and the Hadamard gate. For example, if we apply a NOT gate X and a Hardamard gate H

to a qubit |0⟩, then we can get

𝑋|0⟩ = ቂ
0 1
1 0

ቃ ቂ
1
0

ቃ = ቂ
0
1

ቃ = |1⟩ (5 − 4)

𝐻|0⟩ =
1

√2
ቂ
1 1
1 −1

ቃ ቂ
1
0

ቃ =
1

√2
ቂ
1
1

ቃ =
1

√2
ቂ
1
0

ቃ +
1

√2
ቂ
0
1

ቃ =
1

√2
|0⟩ +

1

√2
|1⟩ (5 − 5)

 It is worth emphasizing that there are also some parameterized quantum gates in quantum

computing, such as the rotation gates which will be mentioned below. These parameterized

quantum gates play a crucial role in embedding classical data in quantum circuits and parameter

optimization in quantum machine learning. Finally, measurement operations are essential

procedures in quantum computing that collapse the superposition of states into a single state

119

by determining the state of a qubit. This process is essential for the operation of quantum

computers, as it is the final stage in the extraction of classical information from quantum

systems. The well-known quantum circuit is a graphical representation of the application of

quantum gates and the measurement operations to qubits.

Variational quantum algorithm is an analogy of machine learning in the context of

quantum computing (Huang et al. 2022). In essence, variational quantum algorithms involve

the optimization of parameterized quantum circuits, i.e., VQCs, using classical optimizers such

as Adam and SGD (Moll et al. 2018, Ma et al. 2019). For a quantum classifier (Chen et al.

2021), if there exists a classical labeled dataset (𝑥௞, 𝑦௞) , the cost function of the quantum

classifier can be written as

𝐶(𝜃) = ෍ ൣ𝑦௞ − ൻ𝜓଴ห𝑉ற(𝑥௞)𝑈ற(𝜃)𝑌𝑈(𝜃)𝑉(𝑥௞)ห𝜓଴ൿ൧
ଶ

௞
(5 − 6)

where 𝜓଴ is the initial state of the qubits in the VQC. 𝑉(·) denotes the unitary operator

in the data embedding module. 𝑈(𝜃) represents the parameterized VQCs with parameter 𝜃.

𝑌 is the observable. 𝑋ற is the conjugate transpose matrix of 𝑋.

The main idea of a variational quantum algorithm is to encapsulate the objective problem

as an optimization task that reduces the cost function of a parameterized quantum circuit by

optimizing the learnable parameter 𝜃. It is worth noting that the optimization of variational

quantum circuits are generally solved by classical computers, so VQC itself can be regarded as

a hybrid classical-quantum algorithm. To conclude, VQC combines classical and quantum

computing, using a classical optimizer to optimize the parameters of a quantum circuit to

minimize a cost function. This hybrid approach leverages the advantages of both classical and

quantum computing algorithms.

120

5.2.2 Dressed quantum circuit

As one of the embodiments of hybrid classical-quantum algorithms, the dressed quantum

circuit fuses VQCs with conventional NNs, which was first proposed by Mari and his

colleagues in 2020 (Mari et al. 2020). A dressed quantum circuit generally comprises two

classical NN layers at either end of a VQC to enable flexible data embedding and readout, as

shown in the upper part of Figure 5-1. As seen in Figure 5-1, on the left-hand side of the dressed

quantum circuit, a fully connected neural network (FCNN) accepts independent variables in

physical equations as its inputs, which is called an embedding neural network (ENN). Similar

to a classical FCNN, an ENN may consist of a few hidden layers, but the number of neurons

in its last layer should always be consistent with the number of qubits in the ensuing VQC.

This is because, as the red dashed line in the figure illustrates, an ENN's output will be delivered,

one by one, into the data encoding layers of the VQC. In the VQC, a reuploading strategy is

adopted for data embedding, where n denotes the cycling number. R(θ) in the trainable layer

can be expressed as

𝑅(𝜽) = 𝑅𝑜𝑡(𝜑, 𝜃, 𝜔) = 𝑅𝑍(𝜔)𝑅𝑌(𝜃)𝑅𝑋(𝜑) = ൦
𝑒ି

௜(ఝାఠ)
ଶ cos ቀ

𝜃
2

ቁ

𝑒ି
௜(ఝିఠ)

ଶ sin ቀ
𝜃
2

ቁ

−𝑒ି
௜(ఝିఠ)

ଶ sin ቀ
𝜃
2

ቁ

𝑒
௜(ఝାఠ)

ଶ cos ቀ
𝜃
2

ቁ
൪ (5 − 7)

where 𝜽 is the rotation angle vector to be optimized in PIHCQNN’s training process.

Following the trainable layer are the Controlled NOT (CNOT) gates for quantum entanglement.

In the data encoding layer, Ry gates are used for data embedding, which can be expressed as

𝑅𝑦(𝑥) = 𝑒ି
௜ఝఙ೤

ଶ = ቎
cos ቀ

𝑥
2

ቁ

sin ቀ
𝑥
2

ቁ

 − sin ቀ
𝑥
2

ቁ

cos ቀ
𝑥
2

ቁ
቏ (5 − 8)

121

where 𝜎௬ denotes the Pauli-Y operator, which allows real numbers to be encoded in each qubit

and quantum gate. An additional entanglement module, i.e., a single trainable layer followed

by CNOT gates between each two qubits, comes after the n repetitions.

The measurement module is the last stage of the VQC. The Hamiltonian adopted in this

research is a Pauli-Z operator, which ensures the differentiability of the VQC. A readout neural

network (RoNN) comes after the sandwiched VQC. An FCNN structure is still preserved in a

RoNN, where the number of neurons in the first layer corresponds to the qubit number, and the

number of neurons in the last layer, i.e., the output layer in Figure 5-1, corresponds to the

number of unknown parameters to be solved in the physical equations.

5.2.3 Physics-based loss function

The loss function drives the learning process of a neural network since training a neural

network is to adjust the neural network's parameters, i.e., weights and biases, to minimize its

loss function, effectively improving the model's predictions. One of the most significant

Figure 5-1. The structure of a PIHCQNN.

122

contributions of PINN is the use of AD to construct residuals for partial differential equations

and to treat these physics-based residuals as loss components in its loss function to optimize

model parameters (Raissi et al. 2019). In this study, analogously, the proposed PIHCQNN takes

advantage of the physics-based loss function module in a PINN to approach the approximate

solution to PDEs. Since VQC is also differentiable, AD still works in the PIHCQNN

framework. Figure 5-1 illustrates that AD is initially applied to the RoNN outputs in order to

form the partial differential terms in the physical equations. Similarly, the total residuals of

physical governing equations, boundary conditions, and initial conditions will serve as the loss

of a PIHCQNN, which can be expressed as follows

𝐶 = 𝑤௚𝐿௚ + 𝑤௕𝐿௕ + 𝑤௜𝐿௜ + 𝑤ௗ𝐿ௗ (5 − 9)

where 𝐶 represents the total loss. 𝐿௚ , 𝐿௕ , 𝐿௜ , and 𝐿ௗ denote the governing equation loss

component, the boundary condition loss component, the initial condition loss component, and

the data loss component respectively. 𝑤௚ , 𝑤௕ , 𝑤௜ , and 𝑤ௗ are weight coefficients of

corresponding loss components. In this work, these loss components take a mean-squared error

(MSE) form. The neural network parameters of the ENN and RoNN, along with the rotation

angle vector θ in the VQC, will be optimized by using gradient descent algorithms. Then, the

objective of approximating the PDE solution may be accomplished in a PIHCQNN by

minimizing the physics-based loss function.

5.3 Results and Analysis

In this chapter, a classical simulator of quantum devices running on classical computers,

i.e., Pennylane, undertakes the computational tasks of the quantum circuit in the algorithm.

123

Pytorch undertakes the construction of neural networks, the implementation of AD, and the

formation of physics-based loss functions. The NVIDIA A100 GPU device performed the

computations that are detailed in this chapter. In Section 5.3.1, a PIHCQNN will be initially

employed to conduct a RANS simulation using a square cylinder flow. Then, in Section 5.3.2,

PIHCQNN will be used to resolve a forward PDE problem in thermodynamics. Subsequently,

in Section 5.3.3, another forward problem involving the Poisson equation will be used to

evaluate the performance of PIHCQNN. Finally, PIHCQNN will be employed to resolve an

inverse ODE problem in order to determine material parameters in Section 5.3.4.

5.3.1 Forward problem: RANS equations

The cylinder flow described in Section 4.3.2 is adopted here again to validate the

feasibility of the proposed PIHCQNN. All settings for calculation remain the same, except for

a slight expansion of the calculation domain. In this case, the computational domain has a

length of 0.8 m and a width of 0.56 m, which is shown in Figure 5-2. There is also a little

variation in the quantity of collocation points.

In this case, the collocation points inside the domain are arranged in a 50×50 matrix,

additionally with 50 on each boundary, which results in a total of 2492 collocation points for

calculating the residuals of governing equations (after removing the collocation points inside

the square cylinder) and 240 for calculating the residuals of boundary conditions. As shown in

Figure 5-2, point A is the bottom left corner of the square cylinder, whose spatial coordinate is

(0.18, 0.26). The training data on the points tabulated in Table 4-3 are used for supervised

learning in this validation case to execute a data-embedding strategy, assisting in the training

of the PIHCQNN and PINN. The Chen model remains the turbulence model to close the RANS

equations in this validation case.

124

An experiment is conducted to evaluate the accuracy of PIHCQNN and PINN in solving

such a PDE problem. Being a part of the PIHCQNN structure, ENN is an FCNN consisting of

three layers. The input layer (first layer) of the ENN has two neurons that represent the spatial

coordinate x and y respectively. The ENN also consists of a hidden layer (second layer) and an

output layer (third layer), comprising 10 and 5 neurons respectively. RoNN, like the ENN, is

also an FCNN consisting of three layers: an input layer, a hidden layer, and an output layer.

However, in contrast to ENN, there are 5 neurons in the RoNN input layer, 10 neurons in its

hidden layer, and three neurons in the output layer, which denotes velocity components u, v,

and pressure p. For the sandwiched VQC structure, a quantum circuit consisting of five qubits

is simulated, with a cycling number n of 1.

Two structures are adopted for the PINN used in this chapter for comparison, which are

depicted in Figure 5-3 below. One is to substitute the VQC in the PIHCQNN with an identity

matrix, that is, to directly transmit the output of each neuron in the output layer of the ENN to

those in the input layer of the RoNN one by one. To be precise, this equals a 5-layer FCNN

structure with three hidden layers, with a width of [2, 10, 5, 10, 3]. The other one is to substitute

the VQC with a linear layer (for example, torch.nn.Linear in Pytorch) and a nonlinear

Figure 5-2. Computational domain for the two-dimensional square cylinder flow.

125

transformation using an activation function, which equals a 6-layer FCNN structure with four

hidden layers, with a width of [2, 10, 5, 5, 10, 3]. Here, a 6-layer FCNN has 30 additional

trainable parameters compared to a 5-layer structure, but an additional quantum layer entails

just 10 more trainable parameters. The quantity of trainable parameters in quantum layers is

far less than that in conventional fully connected layers; hence, we refrained from comparing

quantum layers with deeper FCNN architectures for the sake of fairness in the subsequent

discussion. The activation function is Tanh. Adam optimizer is adopted with a learning rate of

2×10-3. In this case, the number of training iterations is set to 5×104. 𝑤௚ is set to 1, while the

other two weight coefficients 𝑤௕ and 𝑤ௗ are set to 1 and 100. Since the RANS simulation is

a steady-state process, there is no initial condition loss component in this case.

The results are shown in Figure 5-4, which depicts the attenuation curves of the l2 errors

of velocity components u and v during the training process. In the figure, the blue curve

represents the results of PIHCQNN, while the orange and green curves represent the results of

5-layer PINN and 6-layer PINN, respectively. The findings in the figure demonstrate that, at

Figure 5-3. The PINN structures adopted for comparison study: (a) 5-layer PINN, and (b) 6-

layer PINN.

126

least when examining the relative error of the fluid velocities, adding a quantum layer to the

FCNN structure can slightly improve the accuracy of PINN-based RANS simulation.

To mitigate the impact of random error resulting from a single experiment, the experiment

is repeated five times, and the mean values of the l2 errors are now tabulated in Table 5-1.

Compared to the PINN models, the PIHCQNN model has a roughly 0.4% improvement in

accuracy for u and a 1.3% -2.1% improvement in accuracy for v. In addition, as seen by Figure

5-4, another advantage of PIHCQNN, which is not easily noticed, is that it consistently

exhibits the fastest convergence speed in the early phase of training. Overall, PIHCQNN has

demonstrated a more stable and reliable performance in RANS simulations compared to PINN

based on the above findings.

Table 5-1. Averaged l2 errors of the different model’s results when solving the RANS equations.

 PIHCQNN 5-layer PINN 6-layer PINN

Averaged l2 error (u) 9.2% 9.6% 9.6%

Averaged l2 error (v) 42.2% 43.5% 44.3%

Figure 5-4. The l2 errors of (a) u, and (b) v.

127

5.3.2 Forward problem: Heat equation

Now consider a transient problem to showcase the capability of the proposed PIHCQNN

to solve PDEs. The temperature u(t, x) can be interpreted as a function that depends on both

time t and spatial position x, which is governed by the following equations

𝑐
𝜕𝑢

𝜕𝑡
−

𝜕

𝜕𝑥
൬𝜅

𝜕𝑢

𝜕𝑥
൰ − 𝑠 = 0 on 𝑇 × Ω (5 − 10)

where 𝑐(𝑢) =
ଵ

ଶ଴଴଴
𝑢ଶ + 500, and 𝜅(𝑢) =

ଵ

ଵ଴଴
𝑢 + 7. For the computational domain 𝑇 × Ω,

time t is within the range of [0, 0.5], while spatial coordinate x is within the range of [0, 1]. In

Eq. (5-10), s takes the following form

𝑠(𝑢, 𝑡) =
𝜅𝑢

𝜎ଶ
+ 𝑢

𝑥 − 𝑝

𝜎ଶ
൤𝑐

𝜕𝑝

𝜕𝑡
−

𝑥 − 𝑝

𝜎ଶ
൬𝜅 + 𝑢

𝜕𝜅

𝜕𝑥
൰൨ (5 − 11)

where 𝑝(𝑡) =
ଵ

ସ
cos(4𝜋𝑡) +

ଵ

ଶ
, and 𝜎 = 0.02. The temperature u(t, x) should also meet the

following physical constraints on the domain boundaries and the initial state.

𝜕𝑢(𝑡, 0)

𝜕𝑥
=

𝜕𝑢(𝑡, 1)

𝜕𝑥
= 0 (5 − 12)

𝑢(0, 𝑥) = exp (−
(𝑥 − 0.75)ଶ

2𝜎ଶ
) (5 − 13)

The analytical solution of the heat equation is as follows

𝑢(𝑡, 𝑥) = exp (−
(𝑥 − (

1
4

cos(4𝜋𝑡) +
1
2

))ଶ

2𝜎ଶ
) (5 − 14)

Now, an experiment is conducted to evaluate the accuracy of PIHCQNN and PINN in

solving such a PDE problem. Within the structure of the PIHCQNN, ENN is an FCNN

128

consisting of three layers. The input layer (first layer) of the ENN has two neurons that

represent the temporal variable t and the spatial coordinate x respectively. The ENN also

consists of a hidden layer (second layer) and an output layer (third layer), both comprising 10

neurons. RoNN, like the ENN, is also an FCNN consisting of three layers: an input layer, a

hidden layer, and an output layer. However, in contrast to ENN, there are ten neurons in the

RoNN input layer, 10 neurons in its hidden layer, and merely one neuron in the output layer,

which denotes temperature u. For the sandwiched VQC structure, a quantum circuit consisting

of ten qubits is simulated, with a cycling number n of 2. The activation function is Tanh. Adam

optimizer is adopted with a learning rate of 2×10-3. In this case, the number of training iterations

is set to 5×104. 𝑤௚ is set to 3×10-7, while the other two weight coefficients 𝑤௕ and 𝑤௜ are set

to 1. 50 collocation points are sampled at equal intervals along the spatial and temporal axes,

forming a collocation point lattice of 50 by 50.

Figures 5-5 (a) and (b) show the convergence curves of the loss functions and the l2 errors

of the temperature u(t, x) concerning the analytical solution throughout the training phase, for

both PIHCQNN and PINN results. After 5×104 training iterations, the total loss of PIHCQNN

is observed to be the smallest at 0.006. On the contrary, the ultimate total loss of the 5-layer

PINN is 0.024, while that of the 6-layer PINN is 0.007. In terms of the l2 error compared to the

analytical solution, PIHCQNN yields the most negligible result of 0.046. Comparatively, the

l2 error of the 6-layer PINN result is 0.057, whereas that of the 5-layer PINN yields 0.064. To

mitigate the impact of random error resulting from a single experiment, the experiment is

repeated five times, and the mean values of the l2 errors are now tabulated in Table 5-2. The

table still shows that the PIHCQNN yields the closest results to the analytical solution, with an

error of only 4.9%. In contrast, both the 5-layer PINN and 6-layer PINN produce greater errors.

These findings demonstrate that both the 5-layer and 6-layer PINNs do not exhibit the

129

equivalent superiority to the PIHCQNN in terms of loss convergence. In addition, the

PIHCQNN results also exhibit a higher degree of proximity to the analytical solution compared

to those obtained from PINNs.

Table 5-2. Averaged l2 errors of different model results in solving the heat equation.

 PIHCQNN 5-layer PINN 6-layer PINN

Averaged l2 error 4.9% 7.9% 5.1%

To enhance the comprehensibility of the findings, Figure 5-6 illustrates the transient

temperature distributions by PIHCQNN, 5-layer PINN, and 6-layer PINN respectively. From

the figure, it is evident that all three models effectively simulate the temperature distribution

over time. However, when we zoom into the errors, it becomes apparent that there are

discrepancies. The absolute error of the 5-layer PINN is most significant within the entire

computational domain, while the 6-layer PINN shows a better result. However, in regions

where x < 0.5, the error of the 6-layer PINN exhibits substantial negative values. In comparison,

PIHCQNN demonstrates a distinct advantage in this aspect. The error across the computational

Figure 5-5. Convergence curves of (a) the total loss, and (b) the l2 error of u(t, x).

130

domain is negligible, except for that when t = 0.5, which is also evident in other error graphs.

And since this is an initial value problem, there are no constraints except for the two boundary

points during the evolution process, so it is expected that the error will gradually increase over

time.

The VQC structure in a PIHCQNN can be abstracted as a single quantum layer, rather

than a classical layer composed of neurons. The findings suggest that the inclusion of such a

single quantum layer in a neural network can greatly improve the model's capacity to express

nonlinearity, and may even yield more advantages than merely inserting a single fully

connected layer.

As a result, the introduction of the quantum layer has enabled neural networks to have

stronger expression and feature learning capabilities. The repeatable data embedding structure

in a VQC could potentially account for this. The features acquired in the preceding layer are

transmitted directly to the subsequent layer in conventional feedforward neural networks.

However, PIHCQNN, on the other hand, permits VQC to process the features learned in the

final layer of ENN iteratively and transfer them to RoNN for analysis following complex

feature processing and measurement operations, which may be the advantage of the PIHCQNN

structure.

It is worth mentioning that the addition of a single quantum layer to a neural network

invariably results in a significant escalation in computational expenses. In this case, the

execution time for PIHCQNN was approximately 1.1×105 seconds for 5×104 iterations, while

PINN (regardless of 5 or 6 layers) requires less than 1.2×103 seconds on the same device, which

is due to the fact that the quantum circuits simulated by classical computers are very time-

consuming.

131

5.3.3 Forward problem: The Poisson equation

The Poisson equation is a fundamental PDE, which is used in electrostatics to describe

the electric field generated by the distribution of charges. In fluid mechanics, the Poisson

equation describes the relationship between pressure and velocity in incompressible flows. This

study focuses on solving a specific instance of the Poisson equation, as described below.

𝜕ଶ𝑢

𝜕𝑥ଶ
+

𝜕ଶ𝑢

𝜕𝑦ଶ
= 𝑥ଶ + 𝑦ଶ (5 − 15)

where independent variables x and y are within the range of [-1, 1] × [-1, 1]. In this case

study, boundary conditions on the domain boundaries are as follows

𝑢(𝑥, −1) = 𝑢(𝑥, 1) =
1

2
𝑥ଶ (5 − 16)

Figure 5-6. Comparison of the transient temperature distributions and absolute errors (error =

prediction – ground truth) by PIHCQNN, 5-layer PINN, and 6-layer PINN.

132

𝑢(−1, 𝑦) = 𝑢(1, 𝑦) =
1

2
𝑦ଶ (5 − 17)

The analytical solution of u in this case can be expressed as follows

𝑢 =
1

2
𝑥ଶ𝑦ଶ (5 − 18)

PIHCQNN and PINN models are utilized, respectively, for solving the Poisson equation.

The structures of both models remain consistent with the previous example, except that the

widths of the ENN and RoNN, as well as the number of qubits in the sandwiched VQC, have

been changed from 10 to 5. The number of training iterations has been changed to 5×103. In

this case, the Poisson equation can be classified as a steady-state problem, meaning that no

initial condition component is included in the loss function. The weight coefficients 𝑤௚ and

𝑤௕ are each assigned a value of 1. The collection points have been decreased from a lattice of

50 by 50 to a lattice of 40 by 40 in order to increase computational efficiency. Additionally,

there are forty equally-spaced collection points on each domain boundary.

Figure 5-7 displays the solutions obtained from PIHCQNN and PINNs respectively, along

with the corresponding absolute errors. While the three models yield similar results based on

the figures in the first row, the figures in the second row clearly show that the absolute error

disparity among the three is substantial. These error graphs indicate that in this case study, the

5-layer PINN still exhibits the lowest accuracy in solving the Poisson equation, while the

PIHCQNN still performs the best. Similar to the previous case, the training process is repeated

five times to obtain the mean l2 errors of different models, which are summarized in Table 5-

3. In comparison to the 5-layer PINN and the 6-layer PINN, the l2 error of the PIHCQNN is

reduced by seven thousandth and one thousandth, respectively. This is consistent with the

results when solving the heat equation.

133

Table 5-3. Averaged l2 errors of different results in solving the Poisson equation.

 PIHCQNN 5-layer PINN 6-layer PINN

Averaged l2 error 1.9% 2.6% 2.0%

In Figure 5-8, the results of one of the five independent experiments are depicted, which

are essentially consistent with the previous situation. Following 5000 training iterations, the

final total loss and l2 error of the PIHCQNN are the lowest of all three models, while those of

the 5-layer PINN are the highest. Such a result indicates that PIHCQNN has better convergence

performance in solving PDEs. The expressive capability of the model is considerably enhanced

by the addition of a quantum layer in comparison to a fully connected classical layer.

Figure 5-7. Comparison of the solutions of the Poisson equation and corresponding absolute

errors (error = prediction – ground truth) obtained from PIHCQNN, 5-layer PINN, and 6-layer

PINN.

134

5.3.4 Inverse problem: One-dimensional elastostatics equation

In this section, an inverse elastostatics problem will be solved by PIHCQNN and PINN

simultaneously. The problem is governed by an ODE equation and its corresponding boundary

conditions, which describe the static displacement of a one-dimensional linear elastic bar. The

ODE is a second-order differential equation which is as follows

𝑑

𝑑𝑥
൬𝐸𝐴

𝑑𝑢

𝑑𝑥
൰ + 𝑝௕ = 0 (5 − 19)

Spatial coordinate x is within the range of [0, 1]. In Eq. (5-19), E(x) is Young’s modulus

and A(x) is the cross-sectional area. u(x) denotes the displacement. 𝑝௕(𝑥) is the body force.

Here, we define 𝑝௕ as

𝑝௕(𝑥) = 4𝜋ଶ sin(2𝜋𝑥) (5 − 20)

Boundary conditions are also considered at the two ends of the one-dimensional linear

elastic bar, which can be expressed as

Figure 5-8. Convergence curves of (a) the total loss of different models, and (b) the l2 error of

u(x, y).

135

𝑢(0) = 𝑢(1) = 0 (5 − 21)

For forward problems, the value of EA(x) is known, and u(x) is the unknown of the

problem. For example, we may set the value of EA(x) to a constant of 1. As a result, the

analytical solution of the bar equation is as follows

𝑢(𝑥) = sin(2𝜋𝑥) (5 − 22)

This time, slightly different is that an attempt is made to solve an inverse problem.

Assuming that the displacement of the linear elastic bar across the entire computational domain

is known, then the value of EA(x) can be solved. 50 labeled data points are equidistantly

sampled in the computational domain as determined by Eq. (5-22) to guide the model training

process.

In order to resolve the inverse problem, it is necessary to incorporate an additional data

constraint into the physics-based loss function. During the resolution of the inverse problem,

the undetermined parameter EA(x) is optimized simultaneously with the neural network

parameters and VQC parameters by the optimizer.

Assuming that this is a steady-state problem, the weight coefficient of the initial condition

loss (i.e., 𝑤௜) should be set to zero. Additionally, the weight coefficient of the boundary

condition loss (i.e., 𝑤௕) is also set to zero to prevent redundant calculations, as the first and

last labeled data perfectly coincide with the boundary conditions. This results in the loss

function containing only governing equation loss and data loss, and the loss coefficients of

these two are set to 1 and 10, respectively.

The ENN employs a two-layer FCNN structure here. The spatial coordinate x is

represented by a single neuron in the first layer, while the output layer of the ENN (i.e., the

136

second layer) is composed of five neurons. RoNN is also composed of two layers. The first

layer is composed of five neurons that receive outputs from the VQC, while the second layer

is composed of a single neuron that represents the displacement u of the bar.

The sandwiched quantum module is a five-qubit VQC, with a cycling number n of 1. The

learning rate is switched to 5×10-3 and the number of training iterations is reduced to 2×104 in

this case. Other configurations are kept consistent with the previous case. This time, a PINN

with two hidden layers is used for comparison. This can be understood as the VQC structure in

PIHCQNN is replaced with a fully connected layer, and the hidden layer width still remains at

5.

The total loss and l2 error of PIHCQNN and PINN during the training process when

solving the inverse problem are illustrated in Figure 5-9. Figure 5-9(a) illustrates that

PIHCQNN demonstrates better convergence performance in resolving this inverse problem

compared to PINN. The reduction in the total loss of PIHCQNN is slightly greater than that of

PINN. More specifically, the total loss of PIHCQNN is 2.69×10-3 after 2×104 training

iterations, whereas the ultimate total loss of PINN is 3.48×10-3. Upon examination of the

downward trend of the total loss in Fig. 5-5(a) and Fig. 5-9(a), it is possible that PIHCQNN

will attain an even lower total loss if the training process is further extended.

Considering the l2 error, as depicted in Fig. 5-9(b), the two values are also comparable

and of similar magnitude. During the training phase, the EA(x) is optimized alongside other

parameters, progressively converging towards the analytical solution, which is 1. After 2×104

training iterations, we successfully reach the ultimate value of EA(x). To minimize the random

error, three repetitions are conducted to calculate the average of these three trials as the final

result, as presented in Table 5-4. Table 5-4 reveals that the averaged relative error of PIHCQNN

137

is 0.067%, while that of PINN is 0.080%, which suggests that in this case, PIHCQNN

outperforms PINN in solving the inverse problem and yields superior accuracy in resolving

undetermined parameters.

It should be noted that PIHCQNN still exhibits notable disadvantages in computational

efficiency, as evidenced by the fact that 2×104 training iterations require 7×103 seconds for a

PIHCQNN compared to only 120 seconds for a classical PINN. The reason for this is that

classical computers require the storage of all potential states in order to simulate the

superposition of quantum states. As the number of qubits increases, the computational expense

of the simulation will become exceedingly high. In addition, classical computers also incur

much overhead in simulating quantum entanglement.

In the above case studies, the results demonstrate that PIHCQNN outperforms PINN in

the solution of both forward and inverse ODE and PDE problems in terms of accuracy. The

reason for this may be that PIHCQNN, as a hybrid classical-quantum machine learning model,

has a more robust nonlinear function fitting capability and generalizability. This may be

Figure 5-9. (a) The total loss of PIHCQNN and PINN, and (b) the l2 error of PIHCQNN and

PINN’s predictions.

138

attributed to the reuploading strategy in VQC or the fact that VQC can learn features, that

neural networks find hard to capture, more efficiently.

Table 5-4. The ultimate value of EA(x) and the averaged relative error.

 PIHCQNN PINN

 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

Value of EA(x) 0.9999 1.0013 0.9994 0.9987 1.0004 0.9993

Averaged error 0.067% 0.080%

5.4 Further Exploration

The aforementioned cases have yielded remarkable results from the integration of a

quantum layer into a PINN, which has been able to obtain more accurate results in the solution

of both forward and inverse ODE and PDE problems than a classical PINN. One possible

explanation is that classical PINNs are generally believed to have difficulty accurately

capturing the high-frequency components in PDE solutions due to the spectral bias

phenomenon of an FCNN (Ye et al. 2024). However, it is found that the integration of a

quantum circuit in fully connected layers may potentially alleviate such a phenomenon. Here,

we endeavor to demonstrate this concept by fitting a simple target function, i.e. f(x) = sin(x) +

sin(3x) + sin(5x), using a dressed quantum circuit and classical FCNNs respectively. The spatial

coordinate x is within [−π, π], and 201 evenly spaced labeled points are sampled to train the

models, which is the same configuration as in reference (Xu et al. 2019). The structures of

PIHCQNN and PINN models remain consistent with those in Figures 5-1 and 5-3, except that

the ENN takes a three-layer structure with 1, 20, and 10 neurons and the RoNN also takes a

139

three-layer structure with 10, 20, and 1 neuron. The sandwiched VQC is a 10-qubit quantum

circuit with a cycling number n of 2. To facilitate comparison, one, two, and three classical

fully connected layers (with a width of 10) are incorporated between the ENN and RoNN. This

results in the existence of FCNNs with six, seven, and eight layers, as illustrated in Figure 5-

10, which illustrates the convergence behaviors of three different frequency components during

the training processes of the above models. Discrete Fourier Transform is employed to calculate

the model predictions of the amplitudes of the three low-to-high frequencies in f(x). Results

indicate that the 5-layer PINN tends to prioritize learning low-frequency features during the

training process, with the neural network progressively mastering the highest-frequency

features at approximately 3000 steps. The depth of an FCNN can be increased to expedite the

learning of high-frequency features. Nevertheless, the efficacy of such assistance is restricted,

and there is no additional benefit beyond a certain depth of the neural network. On the contrary,

PIHCQNN enters the high-frequency learning stage earlier (less than 500 iterations as shown

in the leftmost subgraph in Figure 5-10), which may be one of the reasons for its success in

resolving intricate ODE and PDE problems.

A counterexample which is encountered during our investigation may support the above

viewpoint, which occurs during our attempt to solve the forward problem of the one-

dimensional elastostatics equation of Eq. (5-19). Specifically, it is given that the material

Figure 5-10. Convergence behaviors of three different frequency components.

140

parameter EA(x) is equal to 1. Therefore, the objective turns to be the determination of the bar

displacements within the entire computational domain, where Eq. (5-22) becomes the

analytical solution of the forward ODE problem. The models and their structure configurations

remain consistent with those described in Section 3.3. The test is still repeated three times, and

Figure 5-11 illustrates the absolute errors between the analytical solution and the results

obtained. The results in the figure indicate that PIHCQNN is prone to more significant errors

than PINN when solving the forward problem. The mean l2 error of PIHCQNN is 2.4×10-3,

while that of PINN is only 1.6×10-3. In contrast, the relative error of PINN’s solution has

decreased by one-third. The reason that this counterexample may support the aforementioned

perspective is that in this instance, it is only required to solve a simple sin function that contains

information with a single frequency. In this respect, PIHCQNN may not yield superior results

to PINN.

Also, it should be emphasized that the precision of the PIHCQNN’s solution may be

influenced by a variety of factors, such as the configuration of the RoNN and the ENN, the

Figure 5-11. The absolute errors between the analytical solution and (a) PIHCQNN’s results,

and (b) PINN’s results.

141

structure of the ansatz in VQC, and the setting of the cycling number n. The impact of these

factors deserves further research in the future.

5.5 Conclusions

This chapter proposes a hybrid classical-quantum model, namely the PIHCQNN, to solve

the forward and inverse problems involving ODEs and PDEs. PIHCQNN's function fitting

module is a dressed quantum circuit that resembles a sandwich structure with three

substructures: an ENN, a VQC, and a RoNN. VQC performs a bridging function among the

ENN and the RoNN, and its data reuploading strategy improves the model's nonlinear

expression and feature learning capability. On the other hand, RoNN and ENN ingeniously

enhance the flexibility of the data structure that VQC can receive and produce. Following the

approach of the PINN, the knowledge of physical laws is incorporated into the cost function of

the dressed quantum circuit, resulting in a hybrid classical-quantum model that can deal with

forward and inverse problems involving differential equations. This chapter illustrates the

efficacy of PIHCQNN through a case analysis of three PDE forward problems, i.e., the RANS

equations, the heat equation and the Poisson equation, and an ODE inverse problem, i.e., the

one-dimensional elastic statistics equation. The accuracy advantage it possesses over classical

PINN is also demonstrated in these three cases. Nevertheless, the accuracy of PIHCQNN is

inferior to that of a classical PINN when addressing the forward problem of the one-

dimensional elastostatics equation, and potential influencing factors are discussed. The main

conclusions drawn from the case analysis are as follows:

 In most cases, integrating a quantum layer, i.e., VQC, within an FCNN can greatly

enhance the model's loss convergence capability, while the substitution of an

142

additional classical fully connected layer cannot achieve such an effect. Classical

PINN has been outperformed by PIHCQNN in terms of accuracy in solving PDE

forward problems and in solving undetermined parameters in inverse problems. The

introduction of the VQC structure may be the reason for this, as it enhances the hybrid

model's capability for nonlinear expression and feature learning in comparison to a

classical FCNN;

 The computational efficiency of PIHCQNN is significantly lower than that of PINN

as a result of the use of quantum circuits simulated by classical computers in this

research. PIHCQNN requires approximately 60-90 times more computational time

than PINN in both cases. The reason for this is that classical computers necessitate the

storage of all possible quantum states in order to replicate the superposition.

 The potential of PIHCQNN to accelerate the learning of high-frequency features in

ODE and PDE solutions has been discovered, which may potentially relieve the

spectral bias observed in classical PINNs to a certain extent.

Nevertheless, it is imperative to recognize the constraints of our current work. Currently,

our study relies on classical computers to simulate quantum circuits, which severely restricts

the size of the simulated quantum system, i.e., the number of qubits. Thus, the proposed model's

potential for extra expressive capabilities is significantly restricted by this limitation.

On the other hand, current quantum computers are NISQ computers with noise (Sweke et

al. 2020, Torlai and Melko 2020). This implies that the results given by NISQ devices have a

certain probability of being incorrect. Executing the algorithm proposed in this chapter while

maintaining a certain level of accuracy on NISQ devices is a highly challenging problem that

is worth further investigation. Furthermore, a mathematical proof is imperatively required that

143

PIHCQNN can accelerate the learning of high-frequency features in order to elucidate the

findings in Figure 5-10, which is also our next step of work.

144

CHAPTER 6

WEIGHTED SUM TURBULENCE MODEL

6.1 Foreword

As a variant form of the NS equations which govern the fluid motions, the RANS

equations have become a mainstream approach for addressing fluid dynamics problems in

engineering practices (Salim et al. 2011, Qureshi and Chan 2020, Ricci and Blocken 2020).

RANS equations are grounded on the assumption that an instantaneous flow variable can be

decomposed into a time-averaged mean quantity and a fluctuation quantity. The time-averaged

flow field, which is also the focus of real projects, can be obtained by solving the RANS

equation, albeit at the expense of introducing new unknown terms (i.e., Reynolds stress

components) into the physical governing equations. But mathematically, the existence of

Reynolds stress terms will lead to the non-closure of RANS equations, so it is necessary to

connect the Reynolds stress components with the time-averaged fluid variables through

mathematical expressions or to introduce new equations to address the turbulent closure

problem. Such a process of modeling the Reynolds stress to close RANS equations is also

known as turbulence modeling (Durbin and Shih 2005, Duraisamy et al. 2019).

Turbulence models can generally be categorized into several groups, which are zero-

equation models, one-equation models, two-equation models, and so forth, depending on the

number of additional governing equations introduced into modeling the Reynolds stress (Hino

1995, Menter et al. 2003, Gao et al. 2017). Among them are several models with solid

145

reputations which are extensively used. For instance, the standard k-ε RANS turbulence model

is a fundamental tool in CFD simulations, offering a two-equation framework for simulating

the characteristics of turbulent flow (Launder and Spalding 1983). It achieves a balance

between the capacity to capture turbulent characteristics and the computational efficiency

through the use of transport equations. This model has been extensively validated in various

scenarios and is particularly effective for flows with moderate pressure gradients (Chen 1995,

Rumsey et al. 2006).

Again as an example, a zero-equation RANS turbulence model, introduced by Chen in

1998, represents a significant advancement in the simulation of indoor airflow dynamics (Chen

and Xu 1998). This innovative model simplifies the computational process by assuming

turbulent viscosity as a function of length scale and local mean velocity. The Chen model has

demonstrated its effectiveness in predicting various types of convection within enclosed

environments, showing commendable agreement with experimental data (Chen and Srebric

2000).

On the other hand, as was discussed in Chapters 1 and 2, there is no universal turbulence

model applicable to all flow conditions. Give the simplest example to prove this viewpoint,

which is the problem of determining the value of empirical constants in turbulence models. It

is worth noting that there exist some constants in each of the above RANS turbulence models,

and the values of these constants are usually determined based on experience or experiments.

Despite the existence of recommended values for these constants, there is no unified standard,

and strictly speaking, they should be determined on a case-by-case basis (Guillas et al. 2014).

For example, the coefficient Cμ in the standard k-ε model, with a typical value of 0.09, affects

the turbulent energy transfer process. A large value may suppress the development of

turbulence, making the flow field overly smooth, while a small value may amplify turbulent

146

eddies, making the flow field overly turbulent and not in line with actual physical phenomena.

In addition, inappropriate values can also lead to numerical instability and divergence, making

the simulation unable to converge (Luo et al. 2020).

Under such circumstances, a novel weighted sum RANS turbulence model is proposed in

this chapter. In addition, a novel PINN structure is proposed here for automatically optimizing

the hyperparameters in the proposed turbulence model, which serves as the solver for the

RANS equations. PINN, which was proposed by Raissi et al. (2019), has been placed great

expectation to become a powerful alternative to traditional CFD methods to solve PDEs (Mao

et al. 2020, Xiao et al. 2024, Zeng et al. 2024). The rest of the chapter is organized as follows.

In Section 6.2, the basic principle of the proposed weighted sum RANS turbulence model as

well as the PINN structure for implementation of the proposed turbulence model will be briefly

introduced. In Section 6.3, a case study will be utilized to verify the feasibility of the proposed

method. In Section 6.4, another flow case study will be used to illustrate its broad applicability.

The main conclusions will be drawn in Section 6.5.

6.2 Methodology

6.2.1 RANS equations and turbulence models

As mentioned earlier, the NS equations are averaged in the time domain to form the RANS

equations for solving a time-averaged flow field rather than an instantaneous flow field. The

computational burden can be significantly lessened since the turbulent fluctuation on each scale

is no longer calculated. The RANS equations for fluid flow simulations are shown as follows

147

𝜕

𝜕𝑥
(𝜌𝑢ത௜) = 0 (6 − 1)

𝜌𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
= −

𝜕𝑝̅

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቆ𝜇

𝜕𝑢ത௜

𝜕𝑥௝
− 𝜌𝑢௜

ᇱ𝑢௝
ᇱቇ (6 − 2)

where 𝜌 is the fluid density, 𝑢ത௜ is the velocity component in 𝑥௜-direction, 𝑝̅ is the pressure,

𝜇 is the laminar viscosity, and −𝜌𝑢௜
ᇱ𝑢௝

ᇱ is the Reynolds stress. Based on the Boussinesq eddy

viscosity assumption, the Reynolds stress can be expressed as follows

−𝜌𝑢௜
ᇱ𝑢௝

ᇱ = 𝜇௧ ቆ
𝜕𝑢ത௜

𝜕𝑥௝
+

𝜕𝑢ത௝

𝜕𝑥௜
ቇ −

2

3
𝜌𝛿௜௝𝑘 (6 − 3)

where k is the turbulent kinetic energy, and 𝑘 =
ଵ

ଶ
𝑢௜

ᇱ𝑢௜
ᇱ . Turbulence models are adopted to

describe the influence of the Reynolds stress term in the momentum equations. The zero-

equation model, also known as the algebraic model, has the simplest form among various

turbulence models. The essence of the zero-equation model is to describe turbulent viscosity

using the averaged characteristics of the flow.

The weighted sum RANS turbulence model proposed in this chapter is essentially a linear

combination of various candidate zero-equation models. Therefore, the concept of a candidate

turbulence model is now proposed. A candidate turbulence model is the base model for the

weighted sum operation and should be a zero-equation model. Some well-known zero-equation

models that have the potential to be candidates include the constant eddy viscosity model, the

Prandtl mixing-length model, the Chen model, and so on.

The constant eddy viscosity model adopts the most straightforward approach for

turbulence modeling, which sets 𝜇௧ to be a constant (Apsley 2024). This method works

effectively for some cases of wake simulation. In the constant eddy viscosity model, 𝜇௧ takes

148

the following form

𝜇௧ = 𝐶௦𝜌𝑉௦𝑙௦ (6 − 4)

where 𝐶௦ is an empirical constant. In this chapter, its value is set to 0.01. 𝑉௦ and 𝑙௦ are

turbulence velocity and length scales. In this chapter, 𝑉௦ is equal to the mean- low velocity

and 𝑙௦ is equal to one-tenth of the flow width.

The Prandtl mixing-length model used by Pioch et al. (2023) is adopted in this chapter. In

the model, the turbulent viscosity 𝜇௧ takes the following form

𝜇௧ = 𝜌𝑙௠
ଶ √𝐺 (6 − 5)

where 𝐺 is the mean strain rate. For example, 𝐺 can be described as follows in a two-

dimensional flow

𝐺 = 2 ൬
𝜕𝑢ത

𝜕𝑥
൰

ଶ

+ 2 ൬
𝜕𝑣̅

𝜕𝑦
൰

ଶ

+ ൬
𝜕𝑢ത

𝜕𝑦
+

𝜕𝑣̅

𝜕𝑥
൰

ଶ

(6 − 6)

In Eq. (6-5), 𝑙௠ is the mixing length which varies in different flow cases. In this chapter,

the mixing length is calculated as follows

𝑙௠ = min (0.419𝑙, 0.09𝑙௠௔௫)

where 𝑙 is the nearest distance from the wall, and 𝑙௠௔௫ is its maximal value.

The Chen model is a zero-equation turbulence model that is widely adopted to simulate

indoor airflow behaviors. In the Chen model, the turbulent viscosity 𝜇௧ takes the form of a

simple algebraic function:

𝜇௧ = 𝐶௖𝜌𝑉𝑙 (6 − 7)

where 𝑉 is the mean fluid velocity, and. 𝐶௖ is a constant which is equal to 0.03874.

149

6.2.2 Weighted sum RANS turbulence model

A weighted sum zero-equation RANS turbulence model in PINN-based RANS simulation

is proposed in this study. The turbulent viscosity 𝜇௧ in the proposed weighted sum RANS

turbulence model can be described as follows

𝜇௧ = ෍ 𝑟௜𝜇௧௜

௡೎

௜ୀଵ

(6 − 8)

where 𝜇௧௜ is the turbulent viscosity calculated using the ith candidate turbulence model. 𝑛௖

is the number of the candidate turbulence models. 𝑟௜ is the weight coefficient, whose value

needs to be optimized. 𝑟௜ ∈ [0, 1] should also meet the following constraints

෍ 𝑟௜

௡೎

௜ୀଵ

= 1 (6 − 9)

For example, if there are two candidate models, i.e., the constant eddy viscosity model

and Chen model, the weighted sum turbulent viscosity 𝜇௧ is expressed as follows

𝜇௧ = 𝑟ଵ𝜇௧ଵ + 𝑟ଶ𝜇௧ଶ = 𝑟ଵ𝐶௦𝜌𝑉௦𝑙௦ + 𝑟ଶ𝐶௖𝜌𝑉𝑙 (6 − 10)

Therefore, now the problem turns to be how to find the optimal value for the weight

coefficient 𝑟௜ . The answer lies in the optimization of the weighting coefficients 𝑟௜ by

minimizing the difference between the measured Reynolds stresses and the ones derived from

the PINN’s predictions. To be precise, PINN directly outputs flow velocities and fluid pressure,

while PINN’s predictions of the Reynolds stresses are further calculated based on the

Boussinesq eddy viscosity assumption, i.e. Eq. (6-3).

150

6.2.3 PINN structure for implementation of the weighted sum

model

The PINN structure proposed in this chapter for implementation of the weighted sum

RANS turbulence model in two-dimensional flows is shown in Figure 6-1. First, it

demonstrates similarities to a default PINN. Its FCNN mainbody is exactly the same as that in

a default PINN. In other words, an FCNN has been used as the module for function expression,

which describes the relationship between spatial coordinates (x, y) and fluid characteristics (u,

v, and p). AD is also implemented here to calculate the gradients, forming the partial

derivative terms in the loss functions (Baydin et al. 2018). The section right after AD shows

significant differences from a default PINN, as illustrated in Figure 6-1. Next, the proposed

PINN structure will be described step by step according to the flow sequence of the algorithm.

After AD, Eq. (6-8) will be used to calculate the turbulent viscosity 𝜇௧ based on the proposed

weighted sum RANS turbulence model. The weight coefficients 𝑟௜ will be included here as

additional trainable parameters in the calculation of the turbulent viscosity (it will be assigned

an initial value at the beginning of training). Then, the Reynolds stress loss is further calculated

using the turbulent viscosity obtained in the previous step, the neural network outputs, and the

Boussinesq eddy viscosity assumption. The Reynolds stress loss 𝐿ோ can be defined as follows

for a two-dimensional flow case

𝐿ோ =
1

𝑁ோ
෍ ቀห𝑟ோ௫

௜ ห
ଶ

+ ห𝑟ோ௫௬
௜ ห

ଶ
+ ห𝑟ோ௬௬

௜ ห
ଶ

ቁ

ேೃ

௜ୀଵ

(6 − 11)

where 𝑁ோ is the number of training points on which the Reynolds stress can be obtained. 𝑟ோ௫
௜ ,

𝑟ோ௫௬
௜ , and 𝑟ோ௬௬

௜ are residuals of different Reynolds stress terms on the ith point, which take the

151

following form

𝑟ோ௫௫ = 2𝜇௧

𝜕𝑢ത

𝜕𝑥
−

2

3
𝜌𝑘 + 𝜌𝑢ᇱ𝑢ᇱ (6 − 12)

𝑟ோ௫௬ = 𝜇௧ ൬
𝜕𝑢ത

𝜕𝑥
+

𝜕𝑣̅

𝜕𝑦
൰ + 𝜌𝑢ᇱ𝑣ᇱ (6 − 13)

𝑟ோ௬௬ = 2𝜇௧

𝜕𝑣̅

𝜕𝑦
−

2

3
𝜌𝑘 + 𝜌𝑣ᇱ𝑣ᇱ (6 − 14)

where 𝑢ᇱ𝑢ᇱ , 𝑢ᇱ𝑣ᇱ , and 𝑣ᇱ𝑣ᇱ are measured Reynolds stresses. It is worth noting that the

existence of the terms 𝑟ோ௫௫
௜ , 𝑟ோ௫௬

௜ , and 𝑟ோ௬
௜ in Eq. (6-11) are not mandatory, and some of

them may be absent depending on whether there is the corresponding measurement data of the

Reynolds stresses at these measurement points. Based on the Eqs. (6-11), (6-12), (6-13) and

(6-14), it can be observed that the Reynolds stress loss 𝐿ோ is a function of the turbulent

viscosity 𝜇௧ . Also, because in the proposed weighted sum RANS turbulence model, the

turbulent viscosity 𝜇௧ is a function of the weight coefficient 𝑟௜, consequently, we may come

to the conclusion that the Reynolds stress loss 𝐿ோ is a function of the weight coefficient 𝑟௜.

An important assumption in this research is now proposed to simplify the problem. That

is, except in the early stages of PINN-based RANS simulation, changes in the value of weight

coefficient 𝑟௜ will not have a direct significant impact on the simulation results of the fluid

velocity and pressure within the computational domain. This is easy to understand because,

despite the variations caused by using different turbulence models, the overall simulation

results are quite analogous from a holistic perspective.

Based on the above assumption, the optimization of the weight coefficients 𝑟௜ may be

achieved by minimizing the Reynolds stress loss since 𝐿ோ is a function of velocity gradients,

152

𝑟௜, and a series of constants. When the change in velocity gradients can be ignored, the change

in 𝑟௜ value becomes the dominant factor in minimizing the Reynolds stress loss. In the chapter,

the Adam optimizer is adopted to find the optimal values for 𝑟௜. In order to distinguish this

training process from the later one for optimizing FCNN parameters (note that only 𝑟௜ is

trained here), the optimizer here is referred to as optimizer 1 and the training iteration here is

referred to as iteration 1. In order to minimize the computational costs, an early stopping

strategy should be adopted here. When optimizer 1 is used to optimize the weight coefficients

𝑟௜, the trend of parameter changes will be considered. If the range of parameter changes is less

than a threshold within a certain tolerance, the optimization process will be terminated in

advance. After the optimal value for 𝑟௜ is obtained, it is then input into the weighted sum

model to calculate the updated turbulent viscosity 𝜇௧. The entire process above is marked as

Step 1 in Figure 6-1. In summary, the purpose of Step 1 is to find the optimal value for 𝑟௜, so

that the predicted Reynolds stress is closest to the measured value.

It should be noted that, although it is mentioned before that the weight coefficients 𝑟௜ will

be included as additional trainable parameters of the neural network, it is not directly equivalent

to these trainable parameters. This is because trainable parameters have no upper or lower

limits, but 𝑟௜ is different. In this chapter, the trainable parameters are standardized using the

hyperbolic tangent function, and only the standardized results can be considered as the weight

coefficients 𝑟௜. Next, Step 2 involves training a traditional PINN using the turbulent viscosity

𝜇௧ obtained from the weighted sum RANS turbulence model updated in Step 1. A traditional

PINN is trained using the physics-based loss function, which will be minimized to find the

optimal values of the neural network parameters w and b by using optimizer 2. The training

iteration here will be referred to as iteration 2 from this time on in this chapter. After the neural

network parameters have been trained and updated, Step 1 will be repeated in the next round.

153

However, it is worth noting the stability issue during the training process of the FCNN, as

the value of turbulent viscosity 𝜇௧ is constantly changing during the training process. As

previously assumed, except in the early stages of PINN-based RANS simulation, changes in

the values of 𝑟௜ will not significantly influence the simulation result. This implicitly affirms

that variations in the value of 𝑟௜ will not substantially influence the values of the neural

network parameters, and hence, will not alter the stability of the neural network’s training

process.

In summary, in the proposed model, the measured Reynolds stress will be utilized to

optimize the weight coefficients 𝑟௜ in the weighted sum model, and the optimized turbulent

viscosity will be used to solve the RANS equations and simulate the time-averaged flow field

using the physics-based loss function. Step 1 and Step 2 are alternated to achieve a dynamic

equilibrium relationship in the training process. Algorithm 6-1 also demonstrates how to use

the proposed PINN structure for implementation of the weighted sum RANS turbulence model.

Figure 6-1. The proposed PINN structure for implementation of the weighted sum RANS

turbulence model in two-dimensional flows.

154

Algorithm 6-1 Proposed PINN for implementation of the weighted sum turbulence model

Require: Training dataset, numbers of iterations 1 and 2, optimizers 1 and 2, initial values

of weighting coefficients 𝑟௜.

Target: Find the optimal values of neural network parameters and weight coefficients 𝑟௜.

Step 1: Construct an FCNN with the specified hyperparameters and initial parameters.

Step 2: Specify the collocation points in the computational domain.

for each iteration 2:

1) Optimize the values of the weighting coefficients 𝑟௜ as follows:

for each iteration 1:

a) Calculate the turbulent viscosity using AD and weighted sum turbulence model.

b) Calculate the Reynolds stress loss based on Eq. (6-11).

c) Update the values of 𝑟௜ using optimizer 1.

d) Distinguish whether the criterion for the early stopping strategy has been met.

end for

2) Calculate the physics-based loss function based on the optimized 𝑟௜.

3) Optimize the values of the neural network parameters w and b using optimizer 2.

end for

155

6.3 Case Study: Square Cylinder Flow

6.3.1 Computational domain and boundary conditions

The flow case which was described in Section 5.3.1 is used here again for the verification

of the proposed weighted sum RANS turbulence model and the proposed PINN structure for

its implementation. The computational domain and boundary conditions are illustrated in

Figure 6-2 for clarity. The detailed information can be found in the figure, and please note that

the coordinates of point A are (0.18, 0.26). The inflow velocity is 0.535 m/s and the Reynolds

number reaches 21400 when water serves as the flowing medium.

6.3.2 Validation data

Analogous to the preceding chapter, the experimental data obtained in a closed water

channel test will be used as the data basis for this case study (Lyn and Rodi 1994). 517

measurement points were distributed throughout the entire computational domain to acquire

Figure 6-2. Computational domain of the flow passing a 2D square cylinder.

156

the fluid characteristics (the fluid velocities and Reynolds stresses) in the test. The measured

data on 36 out of the total measurement points are chosen to train the PINN model. The spatial

coordinates of these training points are tabulated in Table 6-1. The principle of distributing

them across the entire computational domain as equitably as possible is adhered to during the

selection of the training points.

Table 6-1. Spatial coordinates of the training points.

x (mm)
y (mm)

280 300 320 340 360 400 440

80 ✓ ✓ ✓ ✓

180 ✓ ✓ ✓ ✓

235 ✓ ✓ ✓ ✓

280 ✓ ✓ ✓

330 ✓ ✓ ✓

380 ✓ ✓ ✓ ✓ ✓

430 ✓ ✓ ✓

472 ✓ ✓ ✓ ✓ ✓

520 ✓ ✓ ✓ ✓ ✓

Footnote: ✓ indicates the existence of a training point at the specified location.

6.3.3 Training using two zero-equation models

In this section, two default PINNs are adopted when the Chen model and Prandtl mixing-

length model are used respectively for the closure of RANS equations. An FCNN with four

157

hidden layers serves as the main body of the PINN. In each hidden layer, there are twenty

neurons. The hyperbolic tangent function is adopted as the activation function here. Adam

optimizer with a learning rate of 2×10-4 is used to minimize the loss. The number of training

iterations is set to 1×105. The values of the weight coefficients of the governing equation loss,

boundary condition loss, and data loss are set to 1, 1, and 100, respectively.

Figure 6-3 depicts the total losses and l2 errors of u and v of the two default PINNs during

the training process. The following conclusions can be drawn from the figure. First, upon the

completion of 1×105 iterations, both models achieve the goal of convergence. In fact, after

6×104 iterations, the results tend to stabilize. The total loss of the Chen model reaches

1.144×10-1 after the training is completed, compared to 1.961×10-1 of the Prandtl mixing-

length model. Despite the Chen model exhibiting a reduced loss compared to the Prandtl model,

its simulation results were far less accurate in terms of the relative error when compared to

experimental measurements than those of the Prandtl model. The l2 errors of the flow velocity

components u and v are 8.58×10-2 and 3.96×10-1 when the Prandtl mixing-length model is

adopted for RANS simulation. In contrast, the errors of the flow velocity components u and v

from the Chen model are 9.21×10-2 and 5.03×10-1 respectively.

The above results further affirm that the applicability issue of the RANS turbulence model

Figure 6-3. (a) Total losses, (b) l2 errors of u, and (c) l2 errors of v of two default PINNs.

158

persists within the PINN framework, despite the incorporation of measurement data to inform

the solution of the RANS equations within the domain. In terms of relative error, the Prandtl

mixing-length model is found to be more applicable to this two-dimensional square cylinder

flow. In the subsequent section, following the inclusion of the proposed weighted sum RANS

turbulence model for comparative research, a more detailed analysis of this matter will be

presented.

6.3.4 Training using the weighted sum RANS turbulence model

Two zero-equation RANS turbulence models are included here as the candidate turbulence

models, which are the Chen model and the Prandtl mixing-length model. Thus, the turbulent

viscosity 𝜇௧ in this case can be described as follows

𝜇௧ = 𝑟ଵ𝐶௖𝜌𝑉𝑙 + 𝑟ଶ𝜌𝑙௠
ଶ √𝐺 (6 − 15)

The initial values for the weight coefficients 𝑟ଵ and 𝑟ଶ are both set to 0.5. Adam is used

as optimizer 1 with a learning rate of 2.5×10-4. The maximum number of iterations for

optimizer 1 is set to 50, accompanied by an early stopping judgement. When using the proposed

weighted sum RANS turbulence model, the structure of the FCNN, the settings for optimizer

2, and the weight coefficients in the loss function remain consistent with those described in

Section 6.3.3.

The convergence curve of the proposed model is depicted in Figure 6-4(a), compared with

those from the default PINNs using the Chen and Prandtl models for the closure of the RANS

equations. Figure 6-4(b) shows the convergence process of the Reynolds stress loss. In addition,

the variations of the 𝑟௜ values during the training process are depicted in Figure 6-4(c). The

figure indicates that the training of the weighted sum model ultimately converges, with both

159

the loss values and weight coefficient values achieving stability. The values of 𝑟ଵ and 𝑟ଶ

ultimately stabilize at approximately 0.393 and 0.607, respectively. This indicates that the

turbulent viscosity derived from the weighted sum model based on this ratio exhibits tinimal

relative error compared to the actual measured Reynolds stress components at the training

points. This viewpoint is also demonstrated in Figure 6-4(b). The Reynolds stress loss

decreases from an initial value of 8.6×10-4 to 6.4×10-4 eventually, while the changes in 𝑟௜

values definitely contribute to this reduction.

Figure 6-5 shows the l2 errors of u and v from the weighted sum RANS turbulence model,

compared to those from the Chen and Prandtl models. Firstly, it can be observed that although

an additional optimization is introduced during the training process, there is no visible

difference in convergence speed compared to traditional methods.

Secondly, the proposed weighted sum model exhibits a minimal discrepancy between the

predicted mainstream velocity u and the experimental observations. The l2 error of the flow

velocity component u from the weighted sum turbulence model reaches 8.15×10-2 eventually,

which has decreased by roughly 5% and 12% compared to the Chen model and Prandtl model,

Figure 6-4. The convergence curves of (a) the physics-based loss, (b) the Reynolds stress loss,

and (c) the weight coefficients 𝑟௜.

160

respectively. The l2 error of v reaches 4.07×10-1 at the end of the training, which is a slight

improvement compared to the Prandtl model but a significant decrease compared to the Chen

model. In this flow case, the l2 errors indicate that the performance of the proposed weighted

sum model is more like to that of the Prandtl model. Such a result is in line with expectations

as the 𝑟ଶ value ultimately stabilizes at 0.607. That is, in this flow case, the weighted sum

model is dominated by the Prandtl mixing-length model, while the Chen model acts as a

supporting role. However, this is not definitive. It is believed that in other flow cases, the

dominant model may alter based on the agreements between the candidate models and the

actual flow conditions.

A detailed comparison of the mainstream velocity u on the line x = 0.21 m is shown in

Figure 6-6. From the left figure, it can be seen that this line is located at the flank region of the

square cylinder, which is the area characterized by a sharp variation in the gradients of the flow

velocities. From the subgraph on the right, it can be observed that among the three models, the

proposed model is clearly closer to the measured values. Figures 6-7 and 6-8 show the

comparison results of u in the wake region. The results show that the proposed model is closest

Figure 6-5. (a) l2 errors of u and (b) l2 errors of v of the weighted sum model.

161

to the experimental results, whether in the flow separation region or the external mainstream

region. More specifically, the proposed model is the only one that simulates a flow velocity

less than zero (i.e. reverse flow) when x equals 0.25 and y is less than 0.29, which is consistent

with the experimental results. Figure 6-9 depicts the comparison results of u at a downstream

position. The results in the figure indicate that there is not much difference between the

simulation results of each model at the downstream position away from the blunt body.

Figure 6-6. (a) Position of the line x = 0.21 m, and (b) Comparison of u on this line.

Figure 6-7. (a) Position of the line x = 0.24 m, and (b) Comparison of u on this line.

162

From the above figures, it can also be observed that in this flow case, the results of the

proposed weighted sum RANS turbulence model align more closely with the Prandtl model,

which confirms the previous conclusion and deduction. In summary, during the training process

of the proposed model, the optimal values for weight coefficients 𝑟௜ are obtained by

minimizing the Reynolds stress loss, resulting in the expression for the turbulent viscosity 𝜇௧.

The results of the proposed model have demonstrated a smaller relative error with the

experimental measurement results compared to candidate models. The proposed method for

turbulence modeling greatly improves the applicability of the RANS turbulence model, as the

Figure 6-8. (a) Position of the line x = 0.25 m, and (b) Comparison of u on this line.

Figure 6-9. (a) Position of the line x = 0.36 m, and (b) Comparison of u on this line.

163

proposed model can automatically adjust the weight coefficient 𝑟௜ based on the measured

Reynolds stress components, and then automatically identify the most suitable one in the

candidate models to become the ‘leader’, or form a completely new one by the means of linear

superposition of the candidate models.

6.3.5 Training using the pretrained models

In this section, attempts are made to replace the randomly initialized parameters of the

neural network with those from two pretrained models, which are described previously in

Section 6.3.3. That is, assuming the existence of two well-trained PINN models based on the

conventional zero-equation models, the current attempt is to use the proposed weighted sum

model to further modify the simulation results. This significantly reduces the computational

expense relative to training a model from the ground up. The settings for model training remain

consistent with the previous sections, except that the number of training iterations 2 has been

reduced to 8×104. In addition, the learning rate of the optimizer 2 has been reduced to 1×10-4.

The initial values for the weight coefficients 𝑟௜ have to be changed based on the specified

zero-equation model for pretraining. More specifically, if the Chen model is used for

pretraining, 𝑟ଵ will be assigned a value infinitely close to 1. If not, it will be assigned a value

infinitely close to 0 (At the code level, weight is a trainable parameter that has been normalized

by a hyperbolic tangent function, so the weight can only approach 0 or 1 infinitely).

Figure 6-10 shows the adjustment process when the proposed weighted sum model is

adopted to modify the simulation results obtained from the pretrained models. It should be

noted that the results of the initial 1×105 iterations are consistent with the corresponding results

in Figures 6-4 and 6-5, while the subsequent 8×104 iterations are the adjustment process of

using the proposed weighted sum model to modify the simulation results of the pretrained

164

model.

Compared to the physics-based losses before the adjustment, the loss of the Chen model

has decreased by 0.6% to 1.137×10-1 while the loss of the Prandtl mixing-length model has

dropped by 13.3% to 1.701×10-1. The l2 error of u has reduced by 4.2% to 8.22×10-2 when the

Prandtl mixing-length model is used as the pretrained model and has reduced by 3.8% to

8.86×10-2 when the Chen model is adopted.

During the adjustment process, the l2 error of v in the Prandtl model slightly increases. In

comparison, the l2 error of v in the Chen model has reduced by 19.7% to 4.04×10-1. For

comparison purposes, the l2 errors of u and v obtained from all the models mentioned in this

chapter are now summarized in Table 6-2. The results shown in the table and figure consistently

demonstrate that utilizing the proposed RANS turbulence model substantially reduces the

relative error between the simulated flow velocities and the measured values. This can be

achieved by integrating the weighted sum RANS turbulence model into the initial training stage

of a PINN or by rectifying the existing simulation results of conventional models using the

proposed model. Such a result presents definitive evidence of the viability and efficacy of the

proposed model.

Figure 6-10. The convergence curves of (a) the physics-based loss, (b) the l2 errors of u, and

(c) the l2 errors of v during the adjustment process.

165

Table 6-2. The l2 errors of u and v obtained from different models.

Strategy

Model

Default PINN Proposed Model Pretraining

u v u v u v

Chen 9.2% 50.3%
8.2% 40.7%

8.9% 40.4%

Prandtl 8.6% 39.6% 8.2% 40.8%

Figure 6-10 shows the convergence processes of the Reynolds stress losses and the weight

coefficient 𝑟ଵ during the adjustment process (𝑟ଶ is not drawn here because it can be derived

from the value of 𝑟ଵ.). The results in Section 6.3.4 are also included here for comparison. The

author initially holds the belief that, regardless of the turbulence models employed during

pretraining, the final revised results should align with those presented in Section 6.3.4.

Nonetheless, the results depicted in the figure unequivocally demonstrate that the mixing

ratio in the final weighted sum model does not align with expectations when the Chen model

was employed for pretraining. That is, 72% of the turbulent viscosity in the weighted sum

model comes from the Chen model, while the remaining 28% comes from the Prandtl mixing-

length model. In contrast, the ratio of these two in other models is about 0.4:0.6. This difference

in proportion also leads to the different values of Reynolds stress losses. Such a phenomenon

may result from the pretraining model having already produced a preliminary estimation of the

flow field, including the velocity gradient, which influenced the calculation of the Reynolds

stress terms using the Boussinesq eddy viscosity assumption. Nonetheless, the accuracy of the

revised model has been enhanced. In addition, the Reynolds stress losses have decreased

relative to the initial values, underscoring the significance of the proposed model.

166

6.3.6 Training with three candidate models

On the basis of the original two turbulence models, a third zero-equation RANS

turbulence model has been integrated in the weighted sum model as an additional candidate

model, which is the aforementioned constant eddy viscosity model. Now, the turbulent

viscosity in the weighted sum model is transformed into the following form

𝜇௧ = 𝑟ଵ𝐶௖𝜌𝑉𝑙 + 𝑟ଶ𝜌𝑙௠
ଶ √𝐺 + 𝑟ଷ𝐶௦𝜌𝑉௦𝑙௦ (6 − 16)

All setups for the RANS simulation remain consistent with those in Section 6.3.3, except

that the initial weights are set to 0.5, 0.25, and 0.25. Furthermore, in the first 2×104 iterations

of minimizing the physics-based loss, the optimization of the Reynolds stress loss is omitted.

The weight coefficients 𝑟௜ are frozen at the initial values of 0.5, 0.25, and 0.25 without any

changes during these 2×104 iterations. This is predicated on the belief that a rough solution is

adequate enough in the primary training phase, rendering the optimization of 𝑟௜ values

unnecessary and so conserving computational costs. In addition, from another aspect, it can be

seen that the implementation of the weighted sum RANS turbulence model proposed in this

Figure 6-11. The convergence curves of (a) the Reynolds stress loss, and (b) 𝑟ଵ.

167

chapter is very flexible and can be enabled and terminated at any stage of training. The l2 errors

of u and v ultimately decrease to 8.9% and 41.7%, which are almost identical to the results

listed in Table 6-2.

Figure 6-12 depicts the convergence curves of the Reynolds stress loss, and 𝑟௜ . It is

obvious that the turbulent viscosity in the weighted sum model is still dominated by the Prandtl

mixing-length model, accounting for about 54%, with the constant eddy viscosity model

playing an auxiliary role, accounting for about 46%, while the Chen model has a very small

proportion and can be ignored. Another finding is that when the physics-based loss is optimized

for 2×104 iterations and the weighted sum model is activated, there is a significant decrease in

the Reynolds stress loss. This indicates that the proposed method is effective in minimizing the

discrepancies between predicted Reynolds stress terms and measured values.

Figure 6-13 compares the predicted and measured Reynolds shear stress on the line x =

0.28 m. The results indicate that the Reynolds shear stress predicted by the proposed weighted

sum model is a compromise between the Prandtl mixing-length model and the constant eddy

Figure 6-12. The convergence curves of (a) the Reynolds stress loss, and (b) 𝑟௜ when there

are three candidate models.

168

viscosity model, which is consistent with the results in Figure 6-12. Additionally, the Reynolds

shear stress that is predicted by the weighted sum model is able to mirror the trend of those that

have been observed, and it is relatively close to the measured values, which is a strong

indication of the accuracy advantage that this model possesses.

6.4 Case Study: Flow Past a Single Hill

In this section, the numerical example described in Chapter 4 is utilized, namely the flow

past a two-dimensional hill (see Figure 4-3 for details). The neural network has six hidden

layers, each layer containing 40 neurons. Tanh is used as the activation function. On each of

the four boundaries, there are 50 evenly distributed collocation points to calculate the residuals

of the boundary condition loss. Furthermore, the collocation points, which constitute a

uniformly distributed 50 by 50 lattice, were organized within the computational domain to

compute the residuals of the governing equation loss. Adam is selected as the optimizer with a

Figure 6-13. Comparison between the predicted and measured Reynolds shear stress.

169

stable learning rate of 0.0001. The number of iteration 2 is fixed at 50000. The time-averaged

velocities at the measurement points listed in Table 4-1 are used for PINN’s training, and the

Reynolds shear stresses at these points are also used to calculate the Reynolds stress loss.

In this case study, only the Chen model (candidate model 1) and the constant eddy

viscosity model (candidate model 2) are selected as the candidate models. Figure 6-14 reveals

that in this flow case, the Chen model is more suitable for describing turbulent characteristics

than the constant eddy viscosity model, as after 50000 training iterations, the l2 error of the

mainstream velocity u using the Chen model decreased to 11.7%, while the l2 error of the

mainstream velocity u using the constant eddy viscosity model reached 26.7%. Upon

implementing the proposed weighted sum RANS turbulence model, it can be observed that the

weight coefficients eventually stabilize at around 0.46 and 0.54 for candidate models 1 and 2,

respectively. Furthermore, we observed that the use of the weighted sum turbulence model

results in a reduction of the l2 error of u to 11.0%, the lowest value among the three, thus

validating the efficacy of the weighted sum turbulence model.

Figure 6-14. The l2 errors of the mainstream velocity u and the weight coefficients in the

weighted sum model.

 The above results indicate that the weight coefficients of the weighted sum model vary

170

depending on the specific flow condition. Specific weight combinations might reduce Reynolds

stress loss, therefore attaining optimal simulation accuracy based on the given candidate

models, which is the fundamental concept and core value of the proposed weighted sum RANS

turbulence model.

6.5 Conclusions

This chapter proposes a weighted sum RANS turbulence model for PINN-based RANS

simulations. The existing zero-equation RANS turbulence models are considered to be

candidate models. The turbulent viscosity of the proposed model is a linear combination of the

turbulent viscosities of the candidate models. The key to the problem then shifts to the

optimization of the weights for each candidate. This chapter formulates a new loss term, i.e.,

the Reynolds stress loss, by using the measured Reynolds stress and the Boussinesq eddy

viscosity assumption, therefore attaining the objective of weight optimization via the

minimization of the Reynolds stress loss. Meanwhile, a novel PINN structure is proposed for

the implementation of the proposed weighted sum model. The feasibility of the proposed model

has been verified through a case study of a two-dimensional square cylinder flow and the flow

past a two-dimensional hill. Some conclusions can be drawn as follows

 The applicability issue of the RANS turbulence model still exists in the PINN

framework, despite the assistance of the measured data. For example, when using two

different turbulence models for PINN-based RANS simulation, there is a discrepancy

in results. The Prandtl mixing-length model is superior in the two-dimensional square

cylinder flow case in the matter of relative errors.

171

 The proposed model minimizes the Reynolds stress loss by finding the optimal values

for weight coefficients 𝑟௜. The proposed method calculates the Reynolds stress based

on the Boussinesq eddy viscosity assumption and the predicted turbulent viscosity

from the weighted sum model. The difference between the measured Reynolds stresses

and the predicted values is significantly reduced during the training process.

 The proposed weighted sum RANS turbulence model exhibits optimal performance in

both two flow cases. In comparison to existing zero-equation models, the discrepancy

between the simulated mainstream velocities and the measurements is minimized

when the weighted sum model is adopted.

 The proposed weighted sum RANS turbulence model can also be used to modify the

pretrained models using the conventional turbulence models. When using an

inappropriate turbulence model for pretraining of a PINN, the modified results show

significant improvements compared to those before adjustment, and the relative error

is greatly reduced.

However, it must be acknowledged that the method proposed in this chapter also has its

drawbacks. Firstly, it exacerbates the problem of high computational cost in PINN’s training to

a certain extent. Secondly, this method requires training data and cannot be implemented

without known Reynolds stress. The impact of the measured Reynolds stress on the results of

the proposed model remains uncertain. To address these issues, more investigations are

necessitated, becoming one of the key focuses of future work.

172

CHAPTER 7

CONCLUSIONS & RECOMMENDATIONS

This chapter aims to encapsulate the novel contributions previously discussed in this thesis

and provide prospects for future research.

7.1 Conclusions

In the first chapter of this thesis, the background of turbulence simulation is presented for

the first time. This chapter gives a detailed description of the physical governing equations. i.e.,

the RANS equations, for turbulence simulation. Additionally, this chapter introduces the

traditional numerical methods that are used for turbulence simulation, namely various CFD

methods, and provides a comprehensive analysis of the benefits and drawbacks associated with

these approaches in turbulence simulation. Following that, this chapter presents a revolutionary

PDE solver designed on the basis of machine learning methods, which is referred to as PINN.

The utilizations of PINNs in both forward and inverse physical problems involving ODEs and

PDEs are presented. Then, a short introduction to the current applications of PINNs in fluid

mechanics and turbulence modeling is presented. The effectiveness of PINN directly used in

turbulence simulation appears to be average at the present time, with the exception of a few

report cases. That is, the further application and development of PINNs in the field of

turbulence simulation is hindered by a number of factors, which is what sparks the discussions

on research motivation in Section 1.2. The three main factors currently limiting the further

173

development of PINN-based RANS simulation are summarized as follows.

Firstly, the loss function of a PINN is made up of a number of distinct and complicated

components, and its convergence turns into a non-convex optimization, which often leads to

an unsatisfying convergence performance. Secondly, PINN is a PDE solver based on a neural

network structure, while the nonlinear expression and feature learning capabilities of the PINN

are constrained by its neural network architecture. For example, the frequency principle is a

phenomenon that usually occurs while training a neural network, but it may also be discovered

during PINN’s training. Thirdly, within the realm of PINN-based RANS simulation, the issue

of poor applicability of RANS turbulence models persists. Since the Reynolds stress

components induced by Reynolds averaging cause the governing equations to be unclosed, it

is important to model the Reynolds stress components in mathematical forms to solve the

RANS equations. The RANS turbulence model is the aggregate name for various physics-based

mathematical models that are used to describe the Reynolds stress components. However,

studies have shown that the most suitable RANS turbulence model does not remain constant

over a variety of flow cases. This problem is referred to as the applicability issue of the RANS

turbulence model. This kind of issue is still present not only in conventional CFD-based RANS

simulations but also in PINN simulations, becoming a major factor restricting the development

of RANS simulations. The above three factors constitute the main constraints on PINN-based

RANS simulation.

In Chapter 2, an overview of the RANS equations, which are the governing equations used

in turbulence simulation in this thesis, is first provided. This chapter explores in detail how the

NS equations evolve step by step into the RANS equations. The rules regarding Reynolds

averaging are elaborated in detail as well. The necessity of RANS turbulence modeling and

common turbulence models are also elaborated here. In order to close the RANS equations,

174

additional equations need to be introduced to describe the unknown variables. According to the

number of equations introduced, common RANS turbulence models can be classified into zero-

equation models, one-equation models, and two-equation models, all of which have been

elaborated one by one in that section.

Following that, a review of the conventional numerical approaches to solving the RANS

equations is carried out. For complex PDEs such as the RANS equations, finding their

analytical solutions is a daunting task (in fact, even the existence of the analytical solutions of

the RANS equations has not been proven), so researchers can only rely on numerical methods

to approximate the solution of the RANS equations. The FVM, a kind of CFD method and the

most commonly used numerical method to solve the RANS equations, has been reviewed from

its principle to application. Another approach that is emphasized is the FVM method. Although

it is used extensively in the field of solid mechanics, FVM also has a slot in the field of

turbulence modeling. At the end of this chapter, a systematic review of the PINN has been

conducted. In the beginning, its history is broken down, and then the evolution of PINN in the

field of fluid mechanics is discussed in more detail. In the next step, the application of PINN

in RANS simulation has been expounded upon, and in the last step, the limiting factors in

PINN-based RANS simulation at the present level are evaluated and backed by research

instances.

In this thesis, four ameliorative methods for physics-informed machine learning based

RANS simulations are presented. Chapter 3 proposes one of these ameliorative methods, i.e.,

a novel self-adaptive loss balancing approach which is referred to as dpPINN. This strategy is

achieved by rewriting the total loss function in the original PINN. The proposed strategy

constructs loss functions based on specific flow variables, rather than using the traditional

boundaries and data losses. Following a designated number of training iterations, the weight

175

coefficient for each loss component will be reassigned. The update is based on the relative error

between the predictions of these flow variables and the measured values. This chapter uses a

building outdoor flow case to validate the proposed method. A zero-equation RANS turbulence

model is then adopted in order to simulate the flow field surrounding a scale model of a building

that is located inside a wind tunnel. The utilization of sparse near-wall wind velocity data is for

the purpose of supervised learning.

Additionally, the experiment data in a wind tunnel test conducted in Japan serves as the

database that verifies the dpPINN’s feasibility. In addition to this, the influence that various

neural network structures and incorporated turbulence models have on the prediction accuracy

of dpPINN is investigated. The dpPINN is demonstrated to be capable of offering an auxiliary

means to simulate the flow field around a bluff body based on the findings. Lastly, according

to the findings, the proposed dynamic loss balancing strategy can successfully speed the early

convergence of a PINN and significantly increase its accuracy in the middle to late stages of

training, which is beneficial for alleviating the aforementioned PINN’s convergence issue.

The second ameliorative method for physics-informed machine learning based RANS

simulations is presented in Chapter 4. For ease of understanding, the term fidelity should be

first introduced. To be noted here, initially, fidelity is a term that describes the degree to which

a prototype is similar to the original product. Here, the term fidelity is regarded as the degree

of similarity and detail preservation between the simulated or measured flow data and the

theoretical solutions. The higher the fidelity, the closer it is to the theoretical solutions, while

the lower the fidelity, it is believed to only roughly conform to the trend, and basically lose

details and accuracy.

As an emerging algorithm, multifidelity modeling algorithm balances the accessibility of

176

low-fidelity data with the accuracy of high-fidelity data, attempting to rely on low-fidelity data

trends and sparse high-fidelity data accuracy to restore theoretical solutions. In this chapter, the

results based on the PINN-based RANS simulation are regarded to have a low fidelity owing

to the faults that were mentioned before, but the measurement data is deemed to have a high

fidelity.

The NIF algorithm proposed by Perdikaris et al. (2017) is adopted here for multifidelity

modeling. In the NIF algorithm, the multifidelity model is generally constructed based on the

GP regression model. In this chapter, the multifidelity model is essentially a GP regression

model that takes spatial coordinates and low-fidelity data as inputs, and outputs high-fidelity

data. It is also equipped with a well-built Gaussian kernel to capture the nonlinear

nonfunctional cross-correlations of space-dependent nonlinearity.

The multifidelity model that was proposed has been validated by two flow cases, and the

results attained are astonishing. In spite of the fact that PINN has a low fidelity of accuracy, the

findings demonstrate that it is able to accurately capture the trend of theoretical solutions in the

computational domain. Furthermore, sparse measurement data also provides a corrective

function for low-fidelity simulations obtained from the PINN. The findings obtained from the

multifidelity model demonstrate strong concordance with the measured values. Meanwhile, as

PINN only aims to provide rough low-fidelity data, the applicability of RANS turbulence

models can be partially alleviated.

Chapter 5 presents the third ameliorative method for physics-informed machine learning

based RANS simulations. This chapter starts with the function expression module of a PINN,

i.e., the FCNN mainbody. In previous experience, the FCNN has been known to suffer some

difficulties, such as the difficulty in learning high-frequency features. This issue is mirrored in

177

the PINN-based RANS simulation as the phenomena of the lack of turbulent details in local

regions. It is praiseworthy that the dressed quantum circuit, which is a hybrid classical-quantum

algorithm, has proved its capacity to speed up the learning of high-frequency characteristics in

advance in the numerical example that has been provided. In light of this, the aim of this chapter

is to utilize a dressed quantum circuit as an alternative to the conventional fully connected

layers that serve as the backbone of a PINN. Then, the proposed model is referred to as

PIHCQNN.

The effectiveness of PIHCQNN has been validated on four forward problems involving

PDEs or ODEs, as well as one inverse problem involving ODEs, which includes the forward

problem of simulating the flow around a square cylinder using the RANS equations. According

to the findings, the results achieved through the utilization of the PIHCQNN model have

demonstrated a degree of enhancement in comparison to the conventional PINNs. Such a result

also indicates that the embedding of quantum layers in the FCNN structure can enhance the

nonlinear expression and feature learning capabilities of a PINN to a certain extent.

An innovative turbulence model for PINN-based RANS simulation is proposed in Chapter

6. A persistent and challenging issue in RANS turbulence modeling has always been the poor

applicability of various turbulence models. Within the realm of RANS turbulence simulation,

the linear eddy viscosity models that are founded on the Boussinesq eddy viscosity assumption

have consistently been the predominant models.

The linear eddy viscosity models can be further subdivided into zero-equation models,

one-equation models, two-equation models, and so on, depending on the number of additional

equations introduced. To be mentioned, the zero-equation models have certain advantages in

PINN-based RANS simulation, mainly due to their simple forms and the absence of additional

178

unknowns and PDEs for solving the RANS equations. The proposed model is referred to as the

weighted sum RANS turbulence model, which may be viewed as a linear combination of the

conventional zero-equation RANS turbulence models. Then, the challenge of turbulence

modeling is transformed into determining the linear coefficients in the weighted sum model,

namely the weight coefficients 𝑟௜.

To address this issue, this chapter introduces the concept of Reynolds stress loss, which

refers to the difference between the PINN-predicted Reynolds stress components and the

measured values. The proposed method determines the values of the weight coefficient 𝑟௜ by

minimizing the Reynolds stress loss. That is, the proposed method aims to find a set of optimal

𝑟௜ values that minimize the difference between the simulated Reynolds stress components and

the measured values.

Meanwhile, this chapter also proposes a novel PINN structure to achieve simultaneous

optimization of the traditional PINN loss and the Reynolds stress loss. The proposed turbulence

model has been validated on a square cylinder flow, and it has shown superior accuracy

performance in comparison to conventional zero-equation models. The proposed turbulence

model is concurrently employed to rectify the simulation results derived from the pretraining

PINN models when conventional zero-equation RANS turbulence models are used, still

achieving satisfactory results. The results demonstrate that, during the simulation process, the

weight of the most suitable candidate model in the weighted sum model will inherently be

emphasized, which may greatly alleviate the applicability issue of RANS turbulence models.

In summary, the three existing challenges in the PINN-based RANS simulation concluded

in this thesis have been addressed through the four proposed ameliorative methods. The thesis

has preliminarily achieved its research objective, which is to develop physics-informed

179

machine learning methods which are accurate, dependable, stable, and affordable to address

fluid dynamics issues involving the RANS equations.

7.2 Recommendations

In this section, insights on future work will be provided based on the research work

conducted thus far.

7.2.1 Discovering underlying physics in turbulence

As aforementioned, the determination of the turbulent viscosity at a particular position is

one of the most important challenges that should be addressed in RANS turbulence modeling.

Although Chapter 6 makes an effort to enhance the generalization capability of RANS

turbulence modeling through the linear superposition of zero-equation RANS turbulence

models, it is still far from achieving the desired result.

The reason for this is that the zero-equation model has not been the focus of research over

the past decades, and there are not many options available for the choice of candidate models.

This means that these candidate models cannot serve as a complete basis for a universal RANS

turbulence model. In addition, with an increasing number of candidate models, there is also the

danger of being mired in a situation known as a local optimal solution.

As is known to all, PINN is able to address inverse problems by identifying unknown

coefficients in physical governing equations. However, in RANS turbulence simulations, the

governing equation that is used to characterize turbulent viscosity is fully unknown, not only

the coefficients. This is an issue that cannot be solved by PINN itself.

180

Chen et al. (2021) successfully discovered governing PDEs for nonlinear spatiotemporal

systems using PINN and sparse regression from scarce and noisy data. A collection of partial

derivatives of each potential component element in the physical governing equation, i.e., the

library, was created by the authors, as can be seen in Figure 7-1. Unknown physical governing

equations may be identified by utilizing the residual between the linear combination of these

partial derivatives and the observed values as the loss function of the neural network.

However, it must be acknowledged that such kind of methods requires a large amount of

high-quality data for inference (de Silva et al. 2020, Zhou et al. 2022). When it comes to

turbulence simulations, this circumstance does not frequently occur. This is also why in this

thesis, an attempt is made to construct a new RANS turbulence model using a linear

combination of the existing turbulence models rather than starting from scratch. The benefit of

this approach is that the interpolation and extrapolation accuracy of the new turbulence model

will remain reasonable. In summary, the strategy illustrated in Figure 7-1 offers valuable

insights for ongoing research and merits additional investigation.

7.2.2 Empirical constants in RANS turbulence models

As mentioned in Section 6.1, the RANS turbulence model, as an artificially designed

mathematical model for closure of the RANS equations, inevitably include a few empirical

Figure 7-1. The structure of the neural network for governing equation identification proposed

by Chen et al. (2021).

181

constants (Margheri et al. 2014).

 Nevertheless, it is found that the determination of the values of the empirical constants

in RANS turbulence models might be a challenging issue (Geng and Escaler 2020). On one

hand, the values of these empirical constants are usually determined based on experience or

experiments (Xiao and Cinnella 2019). Despite the existence of recommended values for these

constants, there is no unified standard, and strictly speaking, they should be determined on a

case-by-case basis (Lien et al. 1998). The values of these empirical constants, on the other hand,

will have a certain impact on the RANS simulation results (Yazdani and Tahani 2024).

Given that the values of these constants have a certain impact on the final simulation

results, a supervised learning strategy is suggested to be adopted to optimize the values of these

empirical constants. The question now shifts to how to integrate the supervised learning

strategy into the training process of PINN to guide the training of these empirical constants.

It is recommended that similar to when PINNs are adopted to solve inverse problems,

empirical constants can be considered as parameters to be optimized during the training process

of the neural network. The conventional physics-based loss that a PINN adopts is not utilized

as the basis of training; rather, their values should be optimized by minimizing the Reynolds

stress loss, as described in Chapter 6.

There have been attempts to solve such an issue. For example, as shown in Figure 7-2,

Rui et al. (2024) proposed a weak-form zero-equation RANS turbulence model that releases

the constants in the turbulence model and converts them into neural network outputs. In their

proposed model, the distribution of the empirical constant value in space is found by

incorporating deviation errors in the loss function and defining upper and lower limits, hence

converting the RANS turbulence model into a weak-form model. The findings indicate that the

182

model can achieve results with lower relative errors. However, in their model, challenges like

the inability to precisely simulate the positive pressure distributions on the windward side still

persist, and further research is desired to address such issues.

7.2.3 Quantum transfer learning

Transfer learning is a commonly used strategy in the realm of PINN, and fine-tuning in

transfer learning is a common approach in model-based transfer learning (Goswami et al. 2020,

Liu et al. 2023, Prantikos et al. 2023). Fine-tuning eliminates the need to train the neural

network from the start for new tasks (Tajbakhsh et al. 2016, Touvron et al. 2023). As a result

of its increased computational cost in comparison to conventional numerical methods, PINN is

better suited for fine-tuning applications.

Within the realm of transfer learning, VQCs have demonstrated the capability to extract

features and post-process the features derived from conventional neural network models (Mari

et al. 2020). More specifically, VQCs, as well as dressed quantum circuits, may be used as

feature extractors to extract knowledge in general tasks and pass the pre-acquired knowledge

Figure 7-2. The PINN structure for RANS simulations using a weak-form turbulence model

adopted by Rui et al. (2024).

183

to conventional neural networks for post-processing. Additionally, they can be used as post-

processing modules to further compress and process features that have been retrieved by

conventional models (Azevedo et al. 2022, Mogalapalli et al. 2022, Kim et al. 2023). An

illustration of the quantum transfer learning framework that Otgonbaatar et al. (2023) adopted

may be found in Figure 7-3. As can be seen from the figure, the feature extractor adopted in

this quantum transfer learning model is a pre-trained classical neural network model, namely

VGG16. This is in line with the conventional transfer learning strategy. The only difference is

that the features extracted from the VGG16 model are post-processed using quantum machine

learning models in quantum transfer learning. As reported in their work, quantum models

generally have higher accuracy than classical models.

The applicability issue of turbulence models in PIHCQNN-based RANS simulations is

expected to be alleviated through the use of quantum transfer learning. When RANS simulation

is performed using a variety of turbulence models, the flow velocity and pressure field that are

derived from simulations are distinct from one another. However, despite the fact that there are

disparities, there is consistency in the overall trend of solutions within the domain. Therefore,

the flow velocity and pressure fields that are calculated using a certain turbulence model may

be considered to be the source domain, while those calculated using a different turbulence

Figure 7-3. The quantum transfer learning strategy adopted by Otgonbaatar et al. (2023).

184

model can be considered to be the target domain. It is feasible to accomplish the task of the

target domain by employing a neural network model that has already been trained in the source

domain and a minimal number of labeled training samples in the target domain, which can be

accomplished by freezing the parameters in the inner layers and releasing those in the

outermost layers for training (Tang et al. 2022, Prantikos et al. 2023).

185

REFERENCE

Abbas, H. (2024). "Quantum Machine Learning-Models and Algorithms: Studying Quantum

Machine Learning Models and Algorithms for Leveraging Quantum Computing

Advantages in Data Analysis, Pattern Recognition, and Optimization." Australian Journal

of Machine Learning Research and Applications 4(1): 221-232.

Abrahamson, S. and Lonnes, S. (1995). "Uncertainty in Calculating Vorticity from 2D Velocity

Fields Using Circulation and Least-Squares Approaches." Experiments in Fluids 20(1):

10-20.

Adhikary, S., Dangwal, S. and Bhowmik, D. (2020). "Supervised Learning with a Quantum

Classifier Using Multi-Level Systems." Quantum Information Processing 19: 1-12.

Albino, A. S., Jardim, L. C., Knupp, D. C., Neto, A. J. S., Pires, O. M. and Nascimento, E. G.

S. (2022). "Solving Partial Differential Equations on near-Term Quantum Computers."

arXiv preprint arXiv:.05805.

Almajid, M. M. and Abu-Al-Saud, M. O. (2022). "Prediction of Porous Media Fluid Flow

Using Physics Informed Neural Networks." Journal of Petroleum Science and

Engineering 208: 109205.

Almeida, G., Durao, D. and Heitor, M. (1993). "Wake Flows Behind Two-Dimensional Model

Hills." Experimental Thermal and Fluid Science 7(1): 87-101.

Apsley, D. (2024). "Turbulence Modelling." https://personalpages.manchester.ac.uk/staff/da

186

vid.d.apsley/lectures/comphydr/turbmodel.pdf

Arzani, A., Wang, J.-X. and D'Souza, R. M. (2021). "Uncovering Near-Wall Blood Flow from

Sparse Data with Physics-Informed Neural Networks." Physics of Fluids 33(7): 071905.

Ashton, N., West, A., Lardeau, S. and Revell, A. (2016). "Assessment of RANS and DES

Methods for Realistic Automotive Models." Computers & Fluids 128: 1-15.

Azevedo, V., Silva, C. and Dutra, I. (2022). "Quantum Transfer Learning for Breast Cancer

Detection." Quantum Machine Intelligence 4(1): 5.

Bai, X.-D., Wang, Y. and Zhang, W. (2020). "Applying Physics Informed Neural Network for

Flow Data Assimilation." Journal of Hydrodynamics 32(6): 1050-1058.

Baker, C. and Brockie, N. (1991). "Wind Tunnel Tests to Obtain Train Aerodynamic Drag

Coefficients: Reynolds Number and Ground Simulation Effects." Journal of Wind

Engineering and Industrial Aerodynamics 38(1): 23-28.

Baker, C., Hemida, H., Iwnicki, S., Xie, G. and Ongaro, D. (2011). "Integration of Crosswind

Forces into Train Dynamic Modelling." Proceedings of the Institution of Mechanical

Engineers, Part F: Journal of Rail Rapid Transit 225(2): 154-164.

Baldwin, B. and Barth, T. (1991). A One-Equation Turbulence Transport Model for High

Reynolds Number Wall-Bounded Flows. 29th aerospace sciences meeting.

Baldwin, B. and Lomax, H. (1978). Thin-Layer Approximation and Algebraic Model for

Separated Turbulentflows. 16th aerospace sciences meeting.

Bassi, F., Ghidoni, A., Perbellini, A., Rebay, S., Crivellini, A., Franchina, N. and Savini, M.

187

(2014). "A High-Order Discontinuous Galerkin Solver for the Incompressible RANS and

k–Ω Turbulence Model Equations." Computers & Fluids 98: 54-68.

Bauer, W., Haag, O. and Hennecke, D. (2000). "Accuracy and Robustness of Nonlinear Eddy

Viscosity Models." International Journal of Heat and Fluid Flow 21(3): 312-319.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A. and Siskind, J. M. (2018). "Automatic

Differentiation in Machine Learning: A Survey." Journal of Marchine Learning Research

18: 1-43.

Benedetti, M., Realpe-Gómez, J. and Perdomo-Ortiz, A. (2018). "Quantum-Assisted

Helmholtz Machines: A Quantum–Classical Deep Learning Framework for Industrial

Datasets in near-Term Devices." Quantum Science Technology 3(3): 034007.

Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand, A., Degroote,

M., Heimonen, H., Kottmann, J. S. and Menke, T. (2022). "Noisy Intermediate-Scale

Quantum Algorithms." Reviews of Modern Physics 94(1): 015004.

Bischof, R. and Kraus, M. (2021). "Multi-Objective Loss Balancing for Physics-Informed

Deep Learning." arXiv preprint arXiv:.09813.

Bishop, C. M. (1994). "Neural Networks and Their Applications." Review of scientific

instruments 65(6): 1803-1832.

Biswas, S. K. and Anand, N. (2023). "Three-Dimensional Laminar Flow Using Physics

Informed Deep Neural Networks." Physics of Fluids 35(12): 121703.

Boris, J. P., Grinstein, F. F., Oran, E. S. and Kolbe, R. L. (1992). "New Insights into Large Eddy

188

Simulation." Fluid Dynamics Research 10(4-6): 199.

Brockie, N. J. and Baker, C. (1990). "The Aerodynamic Drag of High Speed Trains." Journal

of Wind Engineering and Industrial Aerodynamics 34(3): 273-290.

Cai, S., Mao, Z., Wang, Z., Yin, M. and Karniadakis, G. E. (2022). "Physics-Informed Neural

Networks (PINNs) for Fluid Mechanics: A Review." Acta Mechanica Sinica 37: 1727-

1738.

Cao, Y., Fang, Z., Wu, Y., Zhou, D.-X. and Gu, Q. (2019). "Towards Understanding the Spectral

Bias of Deep Learning." arXiv preprint arXiv:.01198.

Casey, M. and Wintergerste, T. (2000). "European Research Community on Flow, Turbulence

and Combustion." ERCOFTAC Best Practice Guidelines: ERCOFTAC Special Interest

Group on Quality and Trust in Industrial CFD.

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean, J. R.,

Mitarai, K., Yuan, X. and Cincio, L. (2021). "Variational Quantum Algorithms." Nature

Reviews Physics 3(9): 625-644.

Challoner, A. and Gill, L. (2014). "Indoor/Outdoor Air Pollution Relationships in Ten

Commercial Buildings: PM2. 5 and NO2." Building and Environment 80: 159-173.

Chen, H., Katelhon, E. and Compton, R. G. (2022). "Predicting Voltammetry Using Physics-

Informed Neural Networks." Journal of Physical Chemistry Letters 13(2): 536-543.

Chen, Q. (1995). "Comparison of Different k-e Models for Indoor Air Flow Computations."

Numerical Heat Transfer, Part B Fundamentals 28(3): 353-369.

189

Chen, Q. and Srebric, J. (2000). "Application of CFD Tools for Indoor and Outdoor

Environment Design." International Journal on Architectural Science 1(1): 14-29.

Chen, Q. and Xu, W. (1998). "A Zero-Equation Turbulence Model for Indoor Airflow

Simulation." Energy and Buildings 28(2): 137-144.

Chen, S. Y.-C., Huang, C.-M., Hsing, C.-W. and Kao, Y.-J. (2021). "An End-to-End Trainable

Hybrid Classical-Quantum Classifier." Machine Learning: Science and Technology 2(4):

045021.

Chen, Z.-W., Rui, E.-Z., Liu, T.-H., Ni, Y.-Q., Huo, X.-S., Xia, Y.-T., Li, W.-H., Guo, Z.-J. and

Zhou, L. (2022). "Unsteady Aerodynamic Characteristics of a High-Speed Train Induced

by the Sudden Change of Windbreak Wall Structure: A Case Study of the Xinjiang

Railway." Applied Sciences 12(14): 7217.

Chen, Z., Liu, T., Chen, X., Xie, T. and Li, W. (2017). Comparison of the Trackside Pressure

with Respect to Different Nose Lengths of High-Speed Trains. 2nd International

Conference on Industrial Aerodynamics. Qingdao, China, DEStech Transactions on

Engineering and Technology Research.

Chen, Z., Liu, T. and Li, W. (2020). "Numerical Analysis of Different Nose Shapes on the Train

Aerodynamic Performance at a Windbreak Transition under Crosswinds." Journal of

Applied Mathematics and Physics 8(11): 2519-2525.

Chen, Z., Liu, Y. and Sun, H. (2021). "Physics-Informed Learning of Governing Equations

from Scarce Data." Nature Communications 12(1): 6136.

Chitta, V., Dhakal, T. P. and Walters, D. K. (2013). Development and Application of a New

190

Four-Equation Eddy-Viscosity Model for Flows with Transition, Curvature and Rotation

Effects. Fluids Engineering Division Summer Meeting, American Society of Mechanical

Engineers.

Chiu, P.-H., Wong, J. C., Ooi, C., Dao, M. H. and Ong, Y.-S. (2022). "CAN-PINN: A Fast

Physics-Informed Neural Network Based on Coupled-Automatic–Numerical

Differentiation Method." Computer Methods in Applied Mechanics and Engineering 395:

114909.

Choi, S., Jung, I., Kim, H., Na, J. and Lee, J. M. (2022). "Physics-Informed Deep Learning for

Data-Driven Solutions of Computational Fluid Dynamics." Korean Journal of Chemical

Engineering 39(3): 515-528.

Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S. and Wossnig,

L. (2018). "Quantum Machine Learning: A Classical Perspective." Proceedings of the

Royal Society A: Mathematical, Physical Engineering Sciences 474(2209): 20170551.

Coroneo, M., Montante, G., Paglianti, A. and Magelli, F. (2011). "CFD Prediction of Fluid

Flow and Mixing in Stirred Tanks: Numerical Issues About the Rans Simulations."

Computers & Chemical Engineering 35(10): 1959-1968.

Craft, T., Launder, B. and Suga, K. (1997). "Prediction of Turbulent Transitional Phenomena

with a Nonlinear Eddy-Viscosity Model." International Journal of Heat and Fluid Flow

18(1): 15-28.

Crivellini, A., D’Alessandro, V. and Bassi, F. (2013). "High-Order Discontinuous Galerkin

Rans Solutions of the Incompressible Flow over a Delta Wing." Computers & Fluids 88:

191

663-677.

Crivellini, A., D’Alessandro, V. and Bassi, F. (2013). "High-Order Discontinuous Galerkin

Solutions of Three-Dimensional Incompressible Rans Equations." Computers & Fluids

81: 122-133.

De La Mata, F. F., Gijón, A., Molina-Solana, M. and Gómez-Romero, J. (2023). "Physics-

Informed Neural Networks for Data-Driven Simulation: Advantages, Limitations, and

Opportunities." Physica A: Statistical Mechanics and its Applications 610: 128415.

De Silva, B. M., Higdon, D. M., Brunton, S. L. and Kutz, J. N. (2020). "Discovery of Physics

from Data: Universal Laws and Discrepancies." Frontiers in Artificial Intelligence 3: 25.

Dehaghani, N. B., Aguiar, A. P. and Wisniewski, R. (2024). "A Hybrid Quantum-Classical

Physics-Informed Neural Network Architecture for Solving Quantum Optimal Control

Problems." arXiv preprint arXiv:.15015.

Deng, E., Yang, W., Deng, L., Zhu, Z., He, X. and Wang, A. (2020). "Time-Resolved

Aerodynamic Loads on High-Speed Trains During Running on a Tunnel–Bridge–Tunnel

Infrastructure under Crosswind." Engineering Applications of Computational Fluid

Mechanics 14(1): 202-221.

Deng, E., Yang, W., Lei, M., Zhu, Z. and Zhang, P. (2019). "Aerodynamic Loads and Traffic

Safety of High-Speed Trains When Passing through Two Windproof Facilities under

Crosswind: A Comparative Study." Engineering Structures 188: 320-339.

Diedrichs, B. (2010). "Aerodynamic Crosswind Stability of a Regional Train Model."

Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail Rapid

192

Transit 224(6): 580-591.

Du, Y., Huang, T., You, S., Hsieh, M.-H. and Tao, D. (2022). "Quantum Circuit Architecture

Search for Variational Quantum Algorithms." NPJ Quantum Information 8(1): 62.

Duraisamy, K., Iaccarino, G. and Xiao, H. (2019). "Turbulence Modeling in the Age of Data."

Annual Review of Fluid Mechanics 51(1): 357-377.

Durbin, P. and Shih, T. (2005). "An Overview of Turbulence Modeling." Modelling and

Simulation of Turbulent Heat Transfer 16(3): 3-34.

Durrani, F., Cook, M. J. and McGuirk, J. (2015). "Evaluation of LES and RANS CFD

Modelling of Multiple Steady States in Natural Ventilation." Building and Environment

92: 167-181.

Eivazi, H., Tahani, M., Schlatter, P. and Vinuesa, R. (2022). "Physics-Informed Neural

Networks for Solving Reynolds-Averaged Navier-Stokes Equations." Physics of Fluids

34: 065129.

Eivazi, H. and Vinuesa, R. (2022). "Physics-Informed Deep-Learning Applications to

Experimental Fluid Mechanics." arXiv preprint arXiv:2203.15402.

Ekaterinaris, J. A. (2005). "High-Order Accurate, Low Numerical Diffusion Methods for

Aerodynamics." Progress in Aerospace Sciences 41(3-4): 192-300.

Eymard, R., Gallouët, T. and Herbin, R. (2000). "Finite Volume Methods." Handbook of

numerical analysis 7: 713-1018.

Fang, Z. and Zhan, J. (2019). "A Physics-Informed Neural Network Framework for PDEs on

193

3D Surfaces: Time Independent Problems." IEEE Access 8: 26328-26335.

Farhadi, A., Mayrhofer, A., Tritthart, M., Glas, M. and Habersack, H. (2018). "Accuracy and

Comparison of Standard k-ϵ with Two Variants of k-Ω Turbulence Models in Fluvial

Applications." Engineering Applications of Computational Fluid Mechanics 12(1): 216-

235.

Fasel, H. (1976). "Investigation of the Stability of Boundary Layers by a Finite-Difference

Model of the Navier-Stokes Equations." Journal of Fluid Mechanics 78(2): 355-383.

Gallagher, M., Morden, J., Baker, C., Soper, D., Quinn, A., Hemida, H., Sterling, M. J. J. o. W.

E. and Aerodynamics, I. (2018). "Trains in Crosswinds–Comparison of Full-Scale on-

Train Measurements, Physical Model Tests and CFD Calculations." Journal of Wind

Engineering and Industrial Aerodynamics 175: 428-444.

Gao, F., Wang, H. and Wang, H. (2017). "Comparison of Different Turbulence Models in

Simulating Unsteady Flow." Procedia Engineering 205: 3970-3977.

Geng, L. and Escaler, X. (2020). "Assessment of Rans Turbulence Models and Zwart

Cavitation Model Empirical Coefficients for the Simulation of Unsteady Cloud

Cavitation." Engineering Applications of Computational Fluid Mechanics 14(1): 151-167.

Goswami, S., Anitescu, C., Chakraborty, S. and Rabczuk, T. (2020). "Transfer Learning

Enhanced Physics Informed Neural Network for Phase-Field Modeling of Fracture."

Theoretical and Applied Fracture Mechanics 106: 102447.

Griol-Barres, I., Milla, S., Cebrián, A., Mansoori, Y. and Millet, J. (2021). "Variational

Quantum Circuits for Machine Learning. An Application for the Detection of Weak

194

Signals." Applied Sciences 11(14): 6427.

Grunloh, T. P. (2019). "Four Equation k-omega Based Turbulence Model with Algebraic Flux

for Supercritical Flows." Annals of Nuclear Energy 123: 210-221.

Guerreschi, G. G. and Matsuura, A. Y. (2019). "Qaoa for Max-Cut Requires Hundreds of Qubits

for Quantum Speed-Up." Scientific reports 9(1): 6903.

Guillas, S., Glover, N. and Malki-Epshtein, L. (2014). "Bayesian Calibration of the Constants

of the k–e Turbulence Model for a CFD Model of Street Canyon Flow." Computer

Methods in Applied Mechanics Engineering 279: 536-553.

Guo, M., Haque, A., Huang, D., Yeung, S. and Li, F. (2018). Dynamic Task Prioritization for

Multitask Learning. 15th European Conference on Computer Vision (ECCV 2018): 270-

287.

Guo, X.-Y. and Fang, S.-E. (2023). "Structural Parameter Identification Using Physics-

Informed Neural Networks." Measurement 220: 113334.

Guo, Y., Cao, X., Liu, B. and Gao, M. (2020). "Solving Partial Differential Equations Using

Deep Learning and Physical Constraints." Applied Sciences 10(17): 5917.

Hanrahan, S., Kozul, M. and Sandberg, R. (2023). "Studying Turbulent Flows with Physics-

Informed Neural Networks and Sparse Data." International Journal of Heat and Fluid

Flow 104: 109232.

Harmening, J. H., Peitzmann, F.-J. and el Moctar, O. (2024). "Effect of Network Architecture

on Physics-Informed Deep Learning of the Reynolds-Averaged Turbulent Flow Field

195

around Cylinders without Training Data." Frontiers in Physics 12: 1385381.

Heldmann, F., Berkhahn, S., Ehrhardt, M. and Klamroth, K. (2023). "PINN Training Using

Biobjective Optimization: The Trade-Off between Data Loss and Residual Loss." Journal

of Computational physics 488: 112211.

Hertwig, D., Efthimiou, G. C., Bartzis, J. G. and Leitl, B. (2012). "CFD-RANS Model

Validation of Turbulent Flow in a Semi-Idealized Urban Canopy." Journal of Wind

Engineering and Industrial Aerodynamics 111: 61-72.

Hino, T. (1995). "Viscous Flow Computations around a Ship Using One-Equation Turbulence

Models." Journal of the Society of Naval Architects of Japan 1995(178): 9-22.

Hou, X., Zhou, X. and Liu, Y. (2024). "Reconstruction of Ship Propeller Wake Field Based on

Self-Adaptive Loss Balanced Physics-Informed Neural Networks." Ocean Engineering

309: 118341.

Hu, B. and McDaniel, D. (2023). "Applying Physics-Informed Neural Networks to Solve

Navier–Stokes Equations for Laminar Flow around a Particle." Mathematical and

Computational Applications 28(5): 102.

Huang, R., Tan, X. and Xu, Q. (2022). "Learning to Learn Variational Quantum Algorithm."

IEEE Transactions on Neural Networks and Learning Systems 34(11): 8430 - 8440.

Huang, Y., Zhang, Z. and Zhang, X. (2022). "A Direct-Forcing Immersed Boundary Method

for Incompressible Flows Based on Physics-Informed Neural Network." Fluids 7(2): 56.

Huembeli, P. and Dauphin, A. (2021). "Characterizing the Loss Landscape of Variational

196

Quantum Circuits." Quantum Science Technology 6(2): 025011.

Iaccarino, G., Ooi, A., Durbin, P. and Behnia, M. (2003). "Reynolds Averaged Simulation of

Unsteady Separated Flow." International Journal of Heat and Fluid Flow 24(2): 147-156.

Jędrzejewski, M., Poćwierz, M. and Zielonko-Jung, K. (2017). "The Problem of Airflow

around Building Clusters in Different Configurations." Archive of Mechanical

Engineering 64(3): 401-418.

Jiang, Z., Yan, C., Yu, J. and Yuan, W. (2015). "Practical Aspects of P‐Multigrid Discontinuous

Galerkin Solver for Steady and Unsteady Rans Simulations." International Journal for

Numerical Methods in Fluids 78(11): 670-690.

Jones, D. A. and Titi, E. S. (1992). "Determining Finite Volume Elements for the 2D Navier-

Stokes Equations." Physica D: Nonlinear Phenomena 60(1-4): 165-174.

Katz, A. and Sankaran, V. (2011). "Mesh Quality Effects on the Accuracy of CFD Solutions on

Unstructured Meshes." Journal of Computational physics 230(20): 7670-7686.

Kavitha, S. and Kaulgud, N. (2024). "Quantum Machine Learning for Support Vector Machine

Classification." Evolutionary Intelligence 17(2): 819-828.

Kendall, A., Gal, Y. and Cipolla, R. (2018). Multi-Task Learning Using Uncertainty to Weigh

Losses for Scene Geometry and Semantics. the IEEE Conference on Computer Vision and

Pattern Recognition: 7482-7491.

Khan, T. M. and Robles-Kelly, A. (2020). "Machine Learning: Quantum vs Classical." IEEE

Access 8: 219275-219294.

197

Kim, J., Huh, J. and Park, D. K. (2023). "Classical-to-Quantum Convolutional Neural Network

Transfer Learning." Neurocomputing 555: 126643.

Kingma, D. P. (2014). "Adam: A Method for Stochastic Optimization." arXiv preprint

arXiv:.1412.6980.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R. and Mahoney, M. W. (2021).

"Characterizing Possible Failure Modes in Physics-Informed Neural Networks."

Advances in Neural Information Processing Systems 34: 26548-26560.

Kyriienko, O., Paine, A. E. and Elfving, V. E. (2021). "Solving Nonlinear Differential

Equations with Differentiable Quantum Circuits." Physical Review A 103(5): 052416.

Lakshminarayana, B. (1986). "Turbulence Modeling for Complex Shear Flows." AIAA journal

24(12): 1900-1917.

Launder, B. E. and Sharma, B. I. (1974). "Application of the Energy-Dissipation Model of

Turbulence to the Calculation of Flow near a Spinning Disc." Letters in Heat and Mass

Transfer 1(2): 131-137.

Launder, B. E. and Spalding, D. B. (1983). The Numerical Computation of Turbulent Flows.

Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, Elsevier: 96-

116.

Le Gratiet, L. and Garnier, J. (2014). "Recursive Co-Kriging Model for Design of Computer

Experiments with Multiple Levels of Fidelity." International Journal for Uncertainty

Quantification 4(5): 365-386.

198

Li, C., Li, X., Su, Y. and Zhu, Y. (2012). "A New Zero-Equation Turbulence Model for Micro-

Scale Climate Simulation." Building and Environment 47: 243-255.

Li, C., Li, X., Su, Y. and Zhu, Y. (2013). "Zero-Equation Turbulence Model for Outdoor

Airflow Simulation." Journal of Tsinghua University (Science and Technology) 53: 589-

594.

Li, H., Zhang, Y. and Chen, H. (2020). "Aerodynamic Prediction of Iced Airfoils Based on

Modified Three-Equation Turbulence Model." AIAA journal 58(9): 3863-3876.

Li, K. and Chitre, M. (2023). "Data-Aided Underwater Acoustic Ray Propagation Modeling."

IEEE Journal of Oceanic Engineering 48(4): 1127-1149.

Li, M., Liu, W., Zhang, L. and He, X. (2015). "Applications of High Order Hybrid DG/FV

Schemes for Two-Dimensional Rans Simulations." Procedia Engineering 126: 628-632.

Li, S. and Feng, X. (2022). "Dynamic Weight Strategy of Physics-Informed Neural Networks

for the 2D Navier–Stokes Equations." Entropy 24(9): 1254.

Li, T., Qin, D. and Zhang, J. (2019). "Effect of Rans Turbulence Model on Aerodynamic

Behavior of Trains in Crosswind." Chinese Journal of Mechanical Engineering 32: 1-12.

Lien, F. S., Kalitzin, G. and Durbin, P. A. (1998). "RANS Modeling for Compressible and

Transitional Flows." In Proceedings of the Summer Program (Vol. 1, p. 1998). Stanford

University USA.

Lin, T., Goyal, P., Girshick, R., He, K. and Dollár, P. (2017). Focal Loss for Dense Object

Detection. IEEE International Conference on Computer Vision (ICCV 2017): 2980-2988.

199

Liu, M., Liang, L. and Sun, W. (2020). "A Generic Physics-Informed Neural Network-Based

Constitutive Model for Soft Biological Tissues." Computer Methods in Applied

Mechanics and Engineering 372: 113402.

Liu, Y., Cai, L., Chen, Y. and Wang, B. (2022). "Physics-Informed Neural Networks Based on

Adaptive Weighted Loss Functions for Hamilton-Jacobi Equations." Mathematical

Biosciences and Engineering 19(12): 12866–12896.

Liu, Y., Liao, S., Yang, Y. and Zhang, B. (2024). "Data-Driven and Physics-Informed Neural

Network for Predicting Tunnelling-Induced Ground Deformation with Sparse Data of

Field Measurement." Tunnelling and Underground Space Technology 152: 105951.

Liu, Y., Liu, W., Yan, X., Guo, S. and Zhang, C.-a. (2023). "Adaptive Transfer Learning for

Pinn." Journal of Computational physics 490: 112291.

Lloyd, S., De Palma, G., Gokler, C., Kiani, B., Liu, Z.-W., Marvian, M., Tennie, F. and Palmer,

T. (2020). "Quantum Algorithm for Nonlinear Differential Equations." arXiv preprint

arXiv:.06571.

Lorini, M., Bassi, F., Colombo, A., Ghidoni, A. and Noventa, G. (2021). "Discontinuous

Galerkin Solution of the RANS and kl−k−log(Ω) Equations for Natural and Bypass

Transition." Computers & Fluids 214: 104767.

Lu, J., Biswas, S. and Tryggvason, G. (2006). "A DNS Study of Laminar Bubbly Flows in a

Vertical Channel." International Journal of Multiphase Flow 32(6): 643-660.

Lubasch, M., Joo, J., Moinier, P., Kiffner, M. and Jaksch, D. (2020). "Variational Quantum

Algorithms for Nonlinear Problems." Physical Review A 101(1): 010301.

200

Luo, S., Vellakal, M., Koric, S., Kindratenko, V. and Cui, J. (2020). Parameter Identification of

RANS Turbulence Model Using Physics-Embedded Neural Network. International

Conference on High Performance Computing, Springer: 137-149.

Lyn, D. and Rodi, W. (1994). "The Flapping Shear Layer Formed by Flow Separation from the

Forward Corner of a Square Cylinder." Journal of fluid Mechanics 267: 353-376.

Ma, Y., Tresp, V., Zhao, L. and Wang, Y. (2019). "Variational Quantum Circuit Model for

Knowledge Graph Embedding." Advanced Quantum Technologies 2(7-8): 1800078.

Maejima, S., Tanino, K. and Kawai, S. (2024). "Physics-Informed Machine-Learning Solution

to Log-Layer Mismatch in Wall-Modeled Large-Eddy Simulation." Physical Review

Fluids 9(8): 084609.

Mao, Z., Jagtap, A. D. and Karniadakis, G. E. (2020). "Physics-Informed Neural Networks for

High-Speed Flows." Computer Methods in Applied Mechanics and Engineering 360:

112789.

Margossian, C. C. (2019). "A Review of Automatic Differentiation and Its Efficient

Implementation." Wiley interdisciplinary reviews: data mining knowledge discovery 9(4):

e1305.

Mari, A., Bromley, T. R., Izaac, J., Schuld, M. and Killoran, N. (2020). "Transfer Learning in

Hybrid Classical-Quantum Neural Networks." Quantum 4: 340.

Meng, X. and Karniadakis, G. E. (2020). "A Composite Neural Network That Learns from

Multi-Fidelity Data: Application to Function Approximation and Inverse PDE Problems."

Journal of Computational Physics 401: 109020.

201

Meng, Y. and Hibi, K. (1998). "Turbulent Measurments of the Flow Field around a High-Rise

Building." Wind Engineers, JAWE 1998(76): 55-64.

Menter, F. (1993). "Zonal Two Equation k-Ω Models for Aerodynamic Flows." AIAA paper 93:

2906.

Mfula, A., Kukadia, V., Griffiths, R. and Hall, D. (2005). "Wind Tunnel Modelling of Urban

Building Exposure to Outdoor Pollution." Atmospheric Environment 39(15): 2737-2745.

Mikulevicius, R. and Rozovskii, B. L. (2004). "Stochastic Navier--Stokes Equations for

Turbulent Flows." SIAM Journal on Mathematical Analysis 35(5): 1250-1310.

Misu, Y. and Ishihara, T. (2018). "Prediction of Frequency Distribution of Strong Crosswind in

a Control Section for Train Operations by Using Onsite Measurement and Numerical

Simulation." Journal of Wind Engineering and Industrial Aerodynamics 174: 69-79.

Mogalapalli, H., Abburi, M., Nithya, B. and Bandreddi, S. K. V. (2022). "Classical–Quantum

Transfer Learning for Image Classification." SN Computer Science 3(1): 20.

Moll, N., Barkoutsos, P., Bishop, L. S., Chow, J. M., Cross, A., Egger, D. J., Filipp, S., Fuhrer,

A., Gambetta, J. M. and Ganzhorn, M. (2018). "Quantum Optimization Using Variational

Algorithms on Near-Term Quantum Devices." Quantum Science and Technology 3(3):

030503.

Munoz-Paniagua, J., García, J. and Lehugeur, B. (2017). "Evaluation of RANS, SAS and

IDDES Models for the Simulation of the Flow around a High-Speed Train Subjected to

Crosswind." Journal of Wind Engineering and Industrial Aerodynamics 171: 50-66.

202

Nakhl, A. C., Quella, T. and Usman, M. (2024). "Calibrating the Role of Entanglement in

Variational Quantum Circuits." Physical Review A 109(3): 032413.

Ngo, S. I. and Lim, Y.-I. (2021). "Solution and Parameter Identification of a Fixed-Bed Reactor

Model for Catalytic CO2 Methanation Using Physics-Informed Neural Networks."

Catalysts 11(11): 1304.

Ostaszewski, M., Trenkwalder, L. M., Masarczyk, W., Scerri, E. and Dunjko, V. (2021).

"Reinforcement Learning for Optimization of Variational Quantum Circuit

Architectures." Advances in Neural Information Processing Systems 34: 18182-18194.

Otgonbaatar, S., Schwarz, G., Datcu, M. and Kranzlmüller, D. (2023). "Quantum Transfer

Learning for Real-World, Small, and High-Dimensional Remotely Sensed Datasets."

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 16:

9223-9230.

Paciorri, R., Dieudonne, W., Degrez, G., Charbonnier, J.-M., Deconinck, H., Paciorri, R.,

Dieudonne, W., Degrez, G., Charbonnier, J.-M. and Deconinck, H. (1997). Validation of

the Spalart-Allmaras Turbulence Model for Application in Hypersonic Flows. 28th Fluid

Dynamics Conference.

Pang, G., Lu, L. and Karniadakis, G. E. (2019). "Fpinns: Fractional Physics-Informed Neural

Networks." SIAM Journal on Scientific Computing 41(4): 2603-2626.

Pantidis, P., Eldababy, H., Tagle, C. M. and Mobasher, M. E. (2023). "Error Convergence and

Engineering-Guided Hyperparameter Search of PINNs: Towards Optimized I-FENN

Performance." Computer Methods in Applied Mechanics and Engineering 414: 116160.

203

Patel, Y., Mons, V., Marquet, O. and Rigas, G. (2024). "Turbulence Model Augmented Physics-

Informed Neural Networks for Mean-Flow Reconstruction." Physical Review Fluids 9(3):

034605.

Peltier, L. and Hambric, S. (2007). "Estimating Turbulent-Boundary-Layer Wall-Pressure

Spectra from CFD RANS Solutions." Journal of Fluids and Structures 23(6): 920-937.

Perdikaris, P., Raissi, M., Damianou, A., Lawrence, N. D. and Karniadakis, G. E. (2017).

"Nonlinear Information Fusion Algorithms for Data-Efficient Multi-Fidelity Modelling."

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences

473(2198): 20160751.

Pioch, F., Harmening, J. H., Müller, A. M., Peitzmann, F.-J., Schramm, D. and Moctar, O. e.

(2023). "Turbulence Modeling for Physics-Informed Neural Networks: Comparison of

Different Rans Models for the Backward-Facing Step Flow." Fluids 8(2): 43.

Posner, J., Buchanan, C. and Dunn-Rankin, D. (2003). "Measurement and Prediction of Indoor

Air Flow in a Model Room." Energy and Buildings 35(5): 515-526.

Prandtl, L. (1925). "Über Die Ausgebildete Turbulenz." Z. Angew. Math. Mech 5: 136-139.

Prandtl, L. (1945). "Über Ein Neues Formelsystem Für Die Ausgebildete Turbulenz." Nacr.

Akad. Wiss. Gottingen, Math-Phys. Kl: 6-19.

Prantikos, K., Chatzidakis, S., Tsoukalas, L. H. and Heifetz, A. (2023). "Physics-Informed

Neural Network with Transfer Learning (TL-PINN) Based on Domain Similarity Measure

for Prediction of Nuclear Reactor Transients." Scientific Reports 13(1): 16840.

204

Pu, J., Peng, W. and Chen, Y. (2021). "The Data-Driven Localized Wave Solutions of the

Derivative Nonlinear Schrödinger Equation by Using Improved PINN Approach." Wave

Motion 107: 102823.

Qin, S.-M., Li, M., Xu, T. and Dong, S.-Q. (2023). "A-Wpinn Algorithm for the Data-Driven

Vector-Soliton Solutions and Parameter Discovery of General Coupled Nonlinear

Equations." Physica D: Nonlinear Phenomena 443: 133562.

Qureshi, M. Z. I. and Chan, A. (2020). "Influence of Eddy Viscosity Parameterisation on the

Characteristics of Turbulence and Wind Flow: Assessment of Steady RANS Turbulence

Model." Journal of Building Engineering 27: 100934.

Raghunathan, R. S., Kim, H.-D. and Setoguchi, T. (2002). "Aerodynamics of High-Speed

Railway Train." Progress in Aerospace Sciences 38(6-7): 469-514.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y. and

Courville, A. (2019). On the Spectral Bias of Neural Networks. International conference

on machine learning, PMLR.

Raissi, M., Perdikaris, P. and Karniadakis, G. E. (2019). "Physics-Informed Neural Networks:

A Deep Learning Framework for Solving Forward and Inverse Problems Involving

Nonlinear Partial Differential Equations." Journal of Computational physics 378: 686-

707.

Rao, C., Sun, H. and Liu, Y. (2020). "Physics-Informed Deep Learning for Incompressible

Laminar Flows." Theoretical and Applied Mechanics Letters 10(3): 207-212.

Rasmussen, C. E. (2003). Gaussian Processes in Machine Learning, Springer.

205

Rathore, P., Lei, W., Frangella, Z., Lu, L. and Udell, M. (2024). "Challenges in Training PINNs:

A Loss Landscape Perspective." arXiv preprint arXiv:.01868.

Rezvani, M. A. and Mohebbi, M. (2014). "Numerical Calculations of Aerodynamic

Performance for Atm Train at Crosswind Conditions." Wind and Structures 18(5): 529-

548.

Ricci, A. and Blocken, B. (2020). "On the Reliability of the 3d Steady RANS Approach in

Predicting Microscale Wind Conditions in Seaport Areas: The Case of the Ijmuiden Sea

Lock." Journal of Wind Engineering and Industrial Aerodynamics 207: 104437.

Riel, B., Minchew, B. and Bischoff, T. (2021). "Data-Driven Inference of the Mechanics of

Slip Along Glacier Beds Using Physics-Informed Neural Networks: Case Study on

Rutford Ice Stream, Antarctica." Journal of Advances in Modeling Earth Systems 13(11):

e2021MS002621.

Robbins, H. and Monro, S. (1951). "A Stochastic Approximation Method." The Annals of

Mathematical Statistics: 400-407.

Rui, E.-Z., Chen, Z.-W., Ni, Y.-Q., Yuan, L. and Zeng, G.-Z. (2023). "Reconstruction of 3D

Flow Field around a Building Model in Wind Tunnel: A Novel Physics-Informed Neural

Network Framework Adopting Dynamic Prioritization Self-Adaptive Loss Balance

Strategy." Engineering Applications of Computational Fluid Mechanics 17(1): 2238849.

Rui, E.-Z., Zeng, G.-Z., Ni, Y.-Q., Chen, Z.-W. and Hao, S. (2024). "Time-Averaged Flow Field

Reconstruction Based on a Multifidelity Model Using Physics-Informed Neural Network

(PINN) and Nonlinear Information Fusion." International Journal of Numerical Methods

206

for Heat and Fluid Flow 34(1): 131-149.

Rumsey, C. L., Pettersson Reif, B. A. and Gatski, T. B. (2006). "Arbitrary Steady-State

Solutions with the k-epsilon Model." AIAA journal 44(7): 1586-1592.

Salim, S. M., Cheah, S. C. and Chan, A. (2011). "Numerical Simulation of Dispersion in Urban

Street Canyons with Avenue-Like Tree Plantings: Comparison between RANS and LES."

Building and Environment 46(9): 1735-1746.

Sallam, O. and Fürth, M. (2023). "On the Use of Fourier Features-Physics Informed Neural

Networks (ff-PINN) for Forward and Inverse Fluid Mechanics Problems." Proceedings of

the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime

Environment 237(4): 846-866.

Scarselli, F. and Tsoi, A. C. (1998). "Universal Approximation Using Feedforward Neural

Networks: A Survey of Some Existing Methods, and Some New Results." Neural

Networks 11(1): 15-37.

Schuld, M. and Killoran, N. (2019). "Quantum Machine Learning in Feature Hilbert Spaces."

Physical review letters 122(4): 040504.

Schuld, M., Sinayskiy, I. and Petruccione, F. (2015). "An Introduction to Quantum Machine

Learning." Contemporary Physics 56(2): 172-185.

Schuld, M., Sweke, R. and Meyer, J. J. (2021). "Effect of Data Encoding on the Expressive

Power of Variational Quantum-Machine-Learning Models." Physical Review A 103(3):

032430.

207

Sedykh, A., Podapaka, M., Sagingalieva, A., Pinto, K., Pflitsch, M. and Melnikov, A. (2024).

"Hybrid Quantum Physics-Informed Neural Networks for Simulating Computational

Fluid Dynamics in Complex Shapes." Machine Learning: Science and Technology 5(2):

025045.

Sener, O. and Koltun, V. (2018). Multi-Task Learning as Multi-Objective Optimization.

Advances in Neural Information Processing Systems. 31.

Sharma, R. and Shankar, V. (2022). "Accelerated Training of Physics-Informed Neural

Networks (PINNs) Using Meshless Discretizations." Advances in Neural Information

Processing Systems 35: 1034-1046.

Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z. and Zhu, J. (1995). "A New k-ϵ Eddy Viscosity

Model for High Reynolds Number Turbulent Flows." Computers & Fluids 24(3): 227-

238.

Siegl, P., Wassing, S., Mieth, D. M., Langer, S. and Bekemeyer, P. (2023). "Solving Transport

Equations on Quantum Computers-Potential and Limitations of Physics-Informed

Quantum Circuits." CEAS Aeronautical Journal, https://doi.org/10.1007/s13272-024-

00774-2.

Smith, L. M. and Woodruff, S. L. (1998). "Renormalization-Group Analysis of Turbulence."

Annual Review of Fluid Mechanics 30(1): 275-310.

Spalart, P. and Allmaras, S. (1992). A One-Equation Turbulence Model for Aerodynamic Flows.

30th aerospace sciences meeting and exhibit.

Stamou, A. and Katsiris, I. (2006). "Verification of a CFD Model for Indoor Airflow and Heat

208

Transfer." Building and Environment 41(9): 1171-1181.

Sun, Y., Sun, Q. and Qin, K. (2021). "Physics-Based Deep Learning for Flow Problems."

Energies 14(22): 7760.

Sweke, R., Kesselring, M. S., van Nieuwenburg, E. P. and Eisert, J. (2020). "Reinforcement

Learning Decoders for Fault-Tolerant Quantum Computation." Machine Learning:

Science and Technology 2(2): 025005.

Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T., Kendall, C. B., Gotway, M. B. and Liang,

J. (2016). "Convolutional Neural Networks for Medical Image Analysis: Full Training or

Fine Tuning?" IEEE Transactions on Medical Imaging 35(5): 1299-1312.

Tang, H., Liao, Y., Yang, H. and Xie, L. (2022). "A Transfer Learning-Physics Informed Neural

Network (TL-PINN) for Vortex-Induced Vibration." Ocean Engineering 266: 113101.

Tian, Y., Woodward, M., Stepanov, M., Fryer, C., Hyett, C., Livescu, D. and Chertkov, M.

(2023). "Lagrangian Large Eddy Simulations Via Physics-Informed Machine Learning."

Proceedings of the National Academy of Sciences 120(34): e2213638120.

Tiberga, M., Hennink, A., Kloosterman, J. L. and Lathouwers, D. (2020). "A High-Order

Discontinuous Galerkin Solver for the Incompressible Rans Equations Coupled to the k−

ϵ Turbulence Model." Computers & Fluids 212: 104710.

Tobiska, L. and Verfürth, R. (1996). "Analysis of a Streamline Diffusion Finite Element

Method for the Stokes and Navier–Stokes Equations." SIAM Journal on Numerical

Analysis 33(1): 107-127.

209

Tominaga, Y. and Stathopoulos, T. (2011). "CFD Modeling of Pollution Dispersion in a Street

Canyon: Comparison between LES and RANS." Journal of Wind Engineering and

Industrial Aerodynamics 99(4): 340-348.

Torlai, G. and Melko, R. G. (2020). "Machine-Learning Quantum States in the NISQ Era."

Annual Review of Condensed Matter Physics 11: 325-344.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra,

S., Bhargava, P. and Bhosale, S. (2023). "Llama 2: Open Foundation and Fine-Tuned Chat

Models." arXiv preprint arXiv:.09288.

Van Hooff, T., Blocken, B. and Tominaga, Y. (2017). "On the Accuracy of CFD Simulations of

Cross-Ventilation Flows for a Generic Isolated Building: Comparison of RANS, LES and

Experiments." Building and Environment 114: 148-165.

Vita, G., Salvadori, S., Misul, D. A. and Hemida, H. (2020). "Effects of Inflow Condition on

RANS and LES Predictions of the Flow around a High-Rise Building." Fluids 5(4): 233.

Von Saldern, J. G., Reumschüssel, J. M., Kaiser, T. L., Sieber, M. and Oberleithner, K. (2022).

"Mean Flow Data Assimilation Based on Physics-Informed Neural Networks." Physics of

Fluids 34(11).

Walters, D. K. and Cokljat, D. (2008). "A Three-Equation Eddy-Viscosity Model for Reynolds-

Averaged Navier–Stokes Simulations of Transitional Flow." Journal of Fluids

Engineering 130(12): 121401.

Wang, S., Teng, Y. and Perdikaris, P. (2021). "Understanding and Mitigating Gradient Flow

Pathologies in Physics-Informed Neural Networks." SIAM Journal on Scientific

210

Computing 43(5): A3055-A3081.

Wang, Y., Yao, Y., Guo, J. and Gao, Z. (2024). "A Practical PINN Framework for Multi-Scale

Problems with Multi-Magnitude Loss Terms." Journal of Computational Physics 510:

113112.

Wilcox, D. C. (1988). "Reassessment of the Scale-Determining Equation for Advanced

Turbulence Models." AIAA Journal 26(11): 1299-1310.

Wissink, J., Rodi, W. J. F., turbulence and combustion (2003). "DNS of a Laminar Separation

Bubble in the Presence of Oscillating External Flow." Flow, Turbulence and Combustion

71: 311-331.

Wong, B. (2020). "Modeling Turbulence with the Navier-Stokes Equations." J Nonlinear Sci

Appl 13: 97-99.

Xiang, Z., Peng, W., Liu, X. and Yao, W. (2022). "Self-Adaptive Loss Balanced Physics-

Informed Neural Networks." Neurocomputing 496: 11-34.

Xiao, H. and Cinnella, P. (2019). "Quantification of Model Uncertainty in RANS Simulations:

A Review." Progress in Aerospace Sciences, 108: 1-31.

Xiao, Z., Ju, Y., Li, Z., Zhang, J. and Zhang, C. (2024). "On the Hard Boundary Constraint

Method for Fluid Flow Prediction Based on the Physics-Informed Neural Network."

Applied Sciences 14(2): 859.

Xie, J., Chai, Z., Xu, L., Ren, X., Liu, S. and Chen, X. (2022). "3D Temperature Field

Prediction in Direct Energy Deposition of Metals Using Physics Informed Neural

211

Network." The International Journal of Advanced Manufacturing Technology 119(5):

3449-3468.

Xu, Z.-Q. J., Zhang, Y. and Luo, T. (2024). "Overview Frequency Principle/Spectral Bias in

Deep Learning." Communications on Applied Mathematics and Computation: 1-38.

Xu, Z.-Q. J., Zhang, Y., Luo, T., Xiao, Y. and Ma, Z. (2020). "Frequency Principle: Fourier

Analysis Sheds Light on Deep Neural Networks." Communications in Computational

Physics 28(5): 1746-1767.

Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. and Speziale, C. (1992). "Development of

Turbulence Models for Shear Flows by a Double Expansion Technique." Physics of Fluids

A: Fluid Dynamics 4(7): 1510-1520.

Yang, J., Yang, Y., Sun, D., Jin, C. and Xiao, X. (2021). "Influence of Urban Morphological

Characteristics on Thermal Environment." Sustainable Cities and Society 72: 103045.

Yang, X., Du, Y., Li, L., Zhou, Z. and Zhang, X. (2023). "Physics-Informed Neural Network

for Model Prediction and Dynamics Parameter Identification of Collaborative Robot

Joints." IEEE Robotics and Automation Letters 8(12): 8462-8469.

Yang, X. and Wang, Z. (2022). "Solving Benjamin–Ono Equation Via Gradient Balanced Pinns

Approach." The European Physical Journal Plus 137(7): 864.

Yang, X., Zafar, S., Wang, J.-X. and Xiao, H. (2019). "Predictive Large-Eddy-Simulation Wall

Modeling Via Physics-Informed Neural Networks." Physical Review Fluids 4(3): 034602.

Yazdani, S. and Tahani, M. (2024). "Data-Driven Discovery of Turbulent Flow Equations

212

Using Physics-Informed Neural Networks." Physics of Fluids 36(3): 035107.

Ye, X., Ni, Y.-Q., Ao, W. K. and Yuan, L. (2024). "Modeling of the Hysteretic Behavior of

Nonlinear Particle Damping by Fourier Neural Network with Transfer Learning."

Mechanical Systems and Signal Processing 208: 111006.

Ye, X., Ni, Y.-Q., Sajjadi, M., Wang, Y. W. and Lin, C. S. (2022). "Physics-Guided, Data-

Refined Modeling of Granular Material-Filled Particle Dampers by Deep Transfer

Learning." Mechanical Systems and Signal Processing, 180: 109437.

Yuan, L., Ni, Y.-Q., Deng, X.-Y. and Hao, S. (2022). "A-PINN: Auxiliary Physics Informed

Neural Networks for Forward and Inverse Problems of Nonlinear Integro-Differential

Equations." Journal of Computational Physics 462: 111260.

Yucesan, Y. A. and Viana, F. A. (2020). "A Physics-Informed Neural Network for Wind Turbine

Main Bearing Fatigue." International Journal of Prognostics and Health Management

11(1): 2594.

Yusuf, S. N. A., Asako, Y., Sidik, N. A. C., Mohamed, S. B. and Japar, W. M. A. A. (2020). "A

Short Review on RANS Turbulence Models." CFD Letters 12(11): 83-96.

Zeng, G.-Z., Chen, Z.-W., Ni, Y.-Q. and Rui, E.-Z. (2024). "Investigating Embedded Data

Distribution Strategy on Reconstruction Accuracy of Flow Field around the Crosswind-

Affected Train Based on Physics-Informed Neural Networks." International Journal of

Numerical Methods for Heat and Fluid Flow: ahead-of-print.

Zhang, T., Yan, R., Zhang, S., Yang, D. and Chen, A. (2024). "Application of Fourier Feature

Physics-Information Neural Network in Model of Pipeline Conveying Fluid." Thin-

213

Walled Structures 198: 111693.

Zhang, Z., Zhang, W., Zhai, Z. J. and Chen, Q. Y. (2007). "Evaluation of Various Turbulence

Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part

2—Comparison with Experimental Data from Literature." Hvac&R Research 13(6): 871-

886.

Zheng, X., Montazeri, H. and Blocken, B. (2020). "CFD Simulations of Wind Flow and Mean

Surface Pressure for Buildings with Balconies: Comparison of RANS and LES." Building

and Environment 173: 106747.

Zhou, T., Yang, Q., Yan, B., Deng, X. and Yuan, Y. (2022). "Detached Eddy Simulation of

Turbulent Flow Fields over Steep Hilly Terrain." Journal of Wind Engineering and

Industrial Aerodynamics 221: 104906.

