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ABSTRACT 

Reynolds-averaged Navier-Stokes (RANS) simulation is a widely employed numerical 

approach for turbulence modeling. The computational fluid dynamics (CFD) method has long 

been the predominant approach in RANS simulation, owing to its intuitiveness, ease of 

implementation, and high accuracy in modeling. Some well-known CFD methods such as the 

finite element method and finite volume method have been adopted in RANS simulation in 

past decades. However, as research progresses, the shortcomings of the CFD-based RANS 

simulations are gradually becoming apparent. Several consensus problems are enumerated here. 

For instance, the CFD methods require manual meshing, which may induce various kinds of 

grid generation issues. In addition, the RANS equations incorporate the Reynolds stress terms 

as additional unknown variables during the averaging process. The Reynolds stress modeling 

resulting from the action of Reynolds averaging contributes to the non-universality of RANS 

simulations. 

In recent years, a novel machine learning-based solver for partial differential equations 

(PDEs), i.e., physics-informed neural network (PINN), has emerged. Since its inception, it has 

shown a considerable impact in the field of fluid mechanics. Researchers have also been 

identifying the potential of PINN’s applications in RANS simulations. The advantages of this 

method over CFD methods are evident. Firstly, being a meshless approach, it does not 

encounter any grid-related issues. For instance, the partial derivative terms in the PDEs are 

calculated using the automatic differentiation function in a PINN, eliminating any truncation 

error that may arise from grid methods. In addition, PINN has a neural network foundation, 
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while it can integrate data information into its simulation, and thus derive physics-based data-

driven solutions.  

Nevertheless, it must be acknowledged that while PINN possesses certain advantages over 

conventional CFD methods when solving the RANS equations, this emerging machine learning 

solver for PDEs still faces several challenges. First and foremost, the convergence performance 

of a PDE solver is a crucial indication for assessing its effectiveness in solving equations. 

However, studies have shown that minimizing the loss of a PINN may sometimes be 

challenging using these gradient-based methods. Secondly, there is the issue of the limitation 

of the nonlinear expression and feature learning capabilities for PINN-based RANS simulations. 

Learning high-frequency features using neural networks has been found to be difficult in 

previous research. Furthermore, although grid issues do not plague PINNs, the limited 

applicability of the RANS turbulence models under various flow conditions still exists. One of 

the most difficult issues to solve is still the search for a universal turbulence simulation 

approach in PINN-based RANS simulations. 

The entire thesis is divided into seven chapters, with the first chapter being an introduction 

to the entire thesis and the second chapter being a review of existing methods. Based on the 

discussions in Chapters 1 and 2, this thesis proposes four amelioration measures grounded in 

the PINN framework, namely Dynamic Prioritization in Chapter 3, Multifidelity Modeling in 

Chapter 4, Quantum Layer Integration in Chapter 5, and Weighted Sum Turbulence Model in 

Chapter 6. These amelioration measures are dedicated to alleviating the aforementioned key 

issues in PINN-based RANS simulations. Some are used to improve the convergence 

performance of a PINN, some can accelerate the learning ability of a PINN for extracting high-

frequency features, and some can alleviate the issue of poor applicability of RANS turbulence 

models. These proposed methods have been validated by using experiments and achieved 
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satisfactory results, promoting the further developments of physics-informed machine learning 

methods in turbulence modeling. At the end of this research, the future work is prospected, and 

the future research direction is pointed out. 
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CHAPTER 1                           

INTRODUCTION 

1.1 Background 

The Navier-Stokes (NS) equations, as a set of partial differential equations (PDEs), are 

commonly used to describe the movements of viscous fluid substances, which accurately depict 

the momentum and mass conservations in the motions of Newtonian fluids. However, only in 

some laminar flow cases with low Reynolds numbers can we see the presence of the NS 

equations as the fluid governing equations (Wissink et al. 2003, Lu et al. 2006). In contrast to 

the laminar flow, the turbulent flow exhibits a more disorderly pattern of velocity and pressure 

distributions in both spatial and temporal dimensions. The NS equations are proficient in 

laminar modeling, but they are not suitable for simulating turbulence due to the challenges 

posed by the computational resources required for turbulence modeling (Mikulevicius and 

Rozovskii 2004, Wong 2020). Naturally, various kinds of simplified forms for NS equations 

have been put forward to solve turbulence modeling (Boris et al. 1992, Iaccarino et al. 2003, 

Mikulevicius and Rozovskii 2004). For instance, the Reynolds-averaged Navier-Stokes (RANS) 

equations are one of its variants, which is the time-averaged form of the NS equations. The 

fluid properties within the flow field are simplified into time-averaged variables, which 

constitute the parameters to be solved in the RANS equations, while the turbulence effect is 

manifested in the RANS turbulence models (Mikulevicius and Rozovskii 2004). Such a 

simplified form of the NS equations provides an alternative approach for turbulent flow 
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simulation at the theoretical level. Large Eddy Simulation (LES) is another high-precision 

numerical simulation method for turbulence investigation. The core idea of LES is to directly 

analyze large-scale turbulent structures while modelling small-scale eddies using subgrid scale 

models. Compared to RANS, large eddy simulation (LES) can capture unsteady turbulent 

characteristics such as the separated flows and vortex evolution, making it suitable for 

problems sensitive to transient turbulent characteristics such as the aerodynamic noise. 

Considering that this thesis mainly focuses on fast and high-precision prediction of industrial-

scale problems, and RANS simulation should be a better carrier. This is because by filtering 

out turbulent fluctuations through time averaging, only the averaged fluid equation is solved in 

RANS simulations. All turbulence scales are enclosed by models, without the need to directly 

analyze transient vortex structures. 

Computational fluid dynamics (CFD) methods have long been used to solve the RANS 

equations. Some well-known CFD methods such as the finite element method, finite volume 

method, and discrete element method have been adopted in flow simulation in the past decade 

(Fasel 1976, Jones and Titi 1992, Tobiska and Verfürth 1996). The finite volume method is one 

of the most mature and widely adopted approaches, which discretizes the computational 

domain into a set of non-overlapping control volumes and then involves the derivation of 

discrete equations in each individual control volume (Eymard et al. 2000). The finite volume 

method has been widely adopted by commercial software like Ansys Fluent and OpenFOAM 

due to its excellent ability to formulate unstructured meshes and handle complicated geometries 

while solving PDEs such as the RANS equations. 

Since the flow field has been averaged and there is no need to analyze vortices at all scales, 

the grid resolution required for solving the RANS equations when using CFD methods can be 

far less precise compared to directly solving the NS equation (also known as Direct Numerical 
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Simulation, i.e., DNS). This significantly reduces the computer resources needed. The CFD 

simulation, which relies on the RANS equations, offers the benefits of reduced computational 

complexity and superior time efficiency. Despite the loss of turbulent characteristics due to 

averaging in the RANS equations, there are innumerable cases where the analysis of time-

averaged properties of the flow should be prioritized, such as the vehicle wind resistance 

problem (Ashton et al. 2016). As a result, CFD-based RANS simulation has become one of the 

methods commonly adopted for fluid simulation in engineering problems (Coroneo et al. 2011, 

Hertwig et al. 2012). A large number of research studies have emerged to solve practical 

engineering problems involving turbulence in the past period of time based on CFD-based 

RANS simulations (Peltier and Hambric 2007, Tominaga and Stathopoulos 2011). For example, 

train aerodynamics has become a research focus of great significance in the modern high-speed 

railway system. Massive train-air models have been established to study the flow field around 

the high-speed train and further reduce the wind resistance during its daily operation (Chen et 

al. 2017, Deng et al. 2019, Chen et al. 2020, Deng et al. 2020, Chen et al. 2022).  

As research progresses, the shortcomings of the CFD-based RANS simulations are 

gradually becoming apparent. Firstly, the CFD methods require manual meshing, while the 

results are greatly affected by grid resolution (Katz and Sankaran 2011). Improper grids may 

hinder the analysis of fine flow details, leading to imprecise results. Secondly, discretization in 

CFD simulations brings new problems such as numerical diffusion and dissipation, which may 

have a significant impact on the simulation results (Ekaterinaris 2005). Thirdly, compared to 

the NS equations, the RANS equations incorporate the Reynolds stress terms as additional 

unknown variables during the averaging process. To fully define the RANS equations, the 

Reynolds stress terms should be incorporated by the time-averaged flow characteristics, which 

is known as RANS turbulence modeling. A number of turbulence models have been proposed 
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in recent years. However, these are semi-empirical models, and there is no consensus on which 

specific turbulence model should be selected in different flow conditions (Zhang et al. 2007). 

As a result, the accuracy of the RANS simulation largely depends on the applicability of the 

selected turbulence model (Farhadi et al. 2018). 

In recent years, a novel machine learning-based PDE solver, i.e., physics-informed neural 

network (PINN), has emerged (Raissi et al. 2019). Since its inception, it has shown 

considerable impact in the field of fluid mechanics (Choi et al. 2022). The advantages of this 

method over CFD methods are evident. Firstly, being a meshless approach, it does not 

encounter any grid-related issues. For instance, the partial derivative terms in the PDEs are 

calculated using the automatic differentiation (AD) function in a PINN, eliminating any 

truncation error that may arise from grid methods. In addition, PINN has a neural network 

foundation, while it can integrate data information into its simulation, and thus derive physics-

based data-driven solutions (de la Mata et al. 2023). Finally, with sufficient data, PINN is also 

a powerful tool for solving inverse problems in fluid dynamics, such as parameter identification 

issues and the discovery of underlying physical relationships of fluid parameters (Luo et al. 

2020, Ngo and Lim 2021, Guo and Fang 2023, Yang et al. 2023). 

In the PINN framework, the problem of the NS equation's incapacity to explicitly model 

turbulent flows with high Reynolds numbers persists (Patel et al. 2024). Consequently, 

researchers have been identifying the potential of PINN’s applications in RANS simulations 

(Hanrahan et al. 2023, Pioch et al. 2023). To fully define the system of PDEs, RANS turbulence 

modeling is still indispensable in the PINN framework. In the PINN framework, the approach 

of turbulence modeling, i.e., introducing extra PDEs to solve Reynolds stress terms, is still 

applicable, as it is in CFD methods. However, it should be noted that, compared to CFD, PINNs 

have the ability to integrate data for turbulence simulation. Therefore, with sufficient data 
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support, the turbulence modeling task may be substituted with the embedded training data, 

where the Reynolds stress terms are directly incorporated into the computational domain, 

eliminating the need for collateral modeling (Eivazi et al. 2022). In addition, PINN has shown 

exceptional performance not just in solving forward problems but also in addressing inverse 

problems involving the RANS equations (Luo et al. 2020). The RANS turbulence models are 

filled with a multitude of empirical constants that lack universal applicability to all flow 

conditions (Geng and Escaler 2020). Deriving empirical constants from data under different 

flow conditions can also contribute to the further development of the RANS turbulence models. 

Specifically, PINN completes this task by converting empirical constants into neural network 

parameters to be optimized (Raissi et al. 2019). 

Nevertheless, it must be acknowledged that while PINN possesses certain advantages over 

conventional CFD methods when solving the RANS equations, this emerging machine learning 

solver for PDEs still faces several challenges. Some are chronic illnesses even in the CFD 

framework, while others are newly introduced. These challenges compel researchers to delve 

deeper into this research topic, thereby laying the foundation for this thesis. 

1.2 Research Motivation 

While researchers have successfully utilized PINN as a machine learning solver for the 

RANS equations in flow field simulation tasks and have gotten favorable outcomes, there are 

still some unresolved issues that need to be addressed in PINN-RANS simulations. To begin 

with, let us review the limitations of using CFD methods to solve the RANS equations, which 

were previously described. Although grid issues do not exist in PINNs, the limited applicability 

of the RANS turbulence models under various flow conditions still exists (Pioch et al. 2023, 
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Rui et al. 2023). The problem is not induced by the PDE solver, but rather an inevitable result 

of the simplification process from the NS equations to the RANS equations. The RANS 

equations transform the unsteady turbulence problem into a steady-state problem, and the 

information inherent in the time-accurate NS equations will be lost. In addition, it is well-

known that the RANS turbulence model should be introduced in order to close the system of 

PDEs. RANS turbulence models can be categorized into various groups depending on the 

number of extra PDEs incorporated in turbulence modeling. These groups include zero-

equation models, one-equation models, two-equation models, and so on (Yusuf et al. 2020). 

Some of these models are suited for simulating indoor airflows (Chen and Xu 1998). Some are 

for outdoor flow fields around building structures (Li et al. 2012), while others are for free 

shear flows (Lakshminarayana 1986, Yakhot et al. 1992). Different RANS turbulence models 

describe the Reynolds stress terms in totally different ways due to the close relationships 

between these terms and flow boundaries, making it challenging to find a universally applicable 

model under various flow conditions. Nevertheless, it is important to note that the PINN has 

the capability to mitigate this issue by embedding pre-existing data in their training to aid in 

the flow simulations (Eivazi et al. 2022, Hanrahan et al. 2023). The capacity of machine 

learning algorithms to generalize from training data is a distinctive feature in the age of big 

data, and this ability is inherently passed down to the PINN (Li and Chitre 2023). Continuously 

correcting the solution of PDEs using measurement data during the equation solving process is 

a solution to overcome the limited universality of such physical models (de la Mata et al. 2023).  

Furthermore, PINN, being a PDE solver, has some fundamental limitations that restrict its 

potential applications in RANS simulations. First and foremost, the problem at hand is 

convergence. The convergence performance of a PDE solver is a crucial indication for 

assessing its effectiveness in solving equations (Pantidis et al. 2023). The governing equation 
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loss, the boundary condition loss, and the labeled data loss which is likely to be present, make 

up the loss function of a PINN while solving the RANS equation. Out of these, the governing 

equation loss and the labeled data loss usually contain around three to four loss components 

apiece. However, the number of loss components in the boundary condition loss alone usually 

reaches two digits, depending on whether it is a two-dimensional or three-dimensional problem. 

Therefore, the total loss of a PINN in solving the RANS equations is generally accumulated by 

more than ten to twenty independent loss components. This may lead to several issues, such as 

the imbalance between various loss components, namely, the challenge of determining the 

weight coefficients for each component in the total loss (Li and Feng 2022, Liu et al. 2022, 

Heldmann et al. 2023, Hou et al. 2024). Should the values of these weight coefficients remain 

consistent throughout the training process? If their values stay constant, how should they be 

taken? If the values do not remain constant, how should they be altered throughout the training 

process? The answers to these questions are currently undisclosed, and these also constitute the 

current focus of many studies. Moreover, as is well known, the training of a neural network is 

generally carried out using gradient descent methods. However, studies have shown that 

minimizing the loss of a PINN may sometimes be challenging using these gradient-based 

methods (Krishnapriyan et al. 2021, Wang et al. 2021, Rathore et al. 2024). These studies 

generally assume that the presence of the differential operators in a PINN will result in an ill-

conditioned loss function. 

Secondly, there is the issue of the limitation of the nonlinear expression and feature 

learning capabilities of a PINN. It is widely acknowledged that in the vast majority of current 

research, the main body of a PINN, namely the function fitting module, is a fully connected 

neural network (FCNN). Nevertheless, FCNNs have some established deficiencies in the 

function fitting procedure such as the frequency principle observed in its training process. More 
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specifically, the frequency principle refers to the common phenomenon that an FCNN tends to 

learn low-frequency information in the signal first, and then slowly learn high-frequency 

information when fed with training data to comprehend the distribution of the signal (Xu et al. 

2020). This phenomenon is detrimental to the utilization of a PINN for solving the RANS 

equations (Sallam and Fürth 2023, Ye et al. 2024, Zhang et al. 2024). Although the solution of 

the RANS equations does not contain a time term and traditional high-frequency and low-

frequency components, similar to image reconstruction tasks (for details, see Figure 1-1), the 

PINN prioritizes providing a crude drawing of the time-averaged solution when solving the 

RANS equations, which hinders the acquisition of the accurate solutions for areas with 

substantial variations in gradients.  

 

To summarize, there are challenges reflected in three aspects when using the PINN to 

solve the RANS equations. Firstly, the inclusion of the Reynolds stress terms in the fluid 

governing equations is necessary due to the trade-off made in simplifying the NS equations. 

Nevertheless, the numerical modeling for the Reynolds stress terms would unavoidably give 

rise to the applicability issue between various turbulence models, leading to disparities between 

the simulation results and the real flow fields. The second issue is the convergence difficulty 

when training a PINN. This involves the loss balance issue and the ill-conditioned loss function 

Figure 1-1. The frequency principle is observed in a two-dimensional image reconstruction 

task. Reprinted from (Xu et al. 2020). 
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induced by differential operators in governing equations. Finally, there are issues with the 

nonlinear expression and feature learning capabilities of a PINN. The frequency principle 

implies that for an FCNN, high-frequency features are difficult to capture, which is often 

manifested as the difficulty in solving flow characteristics in areas with sharp gradients in fluid 

simulation tasks. This study seeks to partially resolve these three difficulties, therefore 

advancing the use of PINN in solving the RANS equations. 

1.3 Research Methodology and Tasks 

Based on Sections 1.1 and 1.2, the rest of this study will be organized into six chapters. In 

addition to the literature review in Chapter 2 and the summary in Chapter 7, the main research 

will be divided into four sections, namely Dynamic Prioritization in Chapter 3, Multifidelity 

Modeling in Chapter 4, Quantum Layer Integration in Chapter 5, and Weighted Sum 

Turbulence Model in Chapter 6, which will be explained sequentially as follows.  

In Chapter 2, a comprehensive review is conducted, concentrating on the origin as well as 

the mathematical form of the RANS equations. This chapter reviews the conventional 

numerical methods for solving the RANS equations, the concept of PINN, and its developments 

in recent years. At the end of this chapter, the research gap in this thesis is clarified. 

In Chapter 3, a novel self-adaptive dynamic prioritization loss balance strategy is proposed 

to partially alleviate the loss balance issue to improve the convergence performance of the 

PINN in the RANS simulations. This approach first reorganizes the loss function in the PINN-

RANS simulations and then borrows the experience from the loss balancing strategy in multi-

task learning. The weight coefficients in the PINN’s loss function are determined by the relative 

errors between its prediction values and the training data. Greater weights are assigned to the 
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loss components with larger relative errors as a punishment, wherein these loss components 

can be emphasized in the next stages of the training process. 

In Chapter 4, a Gaussian process-based multifidelity modeling algorithm is adopted as a 

post-processing step in the PINN-RANS simulation. In this research, the solution of the PINN-

RANS simulation is defined as the low-fidelity data, while the measurement data is regarded 

as the high-fidelity data. The algorithm captures the nonlinear non-functional space-dependent 

cross-correlations between the low-fidelity and high-fidelity data sets. It utilizes the trend of 

the low-fidelity PINN-RANS simulation results to fit the scattered data points on the high-

fidelity level. This approach significantly alleviates the problem of the inconsistency between 

PINN-RANS simulations and the measurement data. 

In Chapter 5, in order to improve the nonlinear expression and feature learning capabilities 

of the PINN, the structure of the FCNN, which is the function fitting module, has been the 

focus of innovation. By incorporating a quantum layer into the FCNN structure, the PINN is 

transformed into a hybrid classical-quantum model. Empirical evidence has shown that this 

model successfully mitigates the problems arising from the frequency principle, therefore 

enhancing the expressive capability of the model in the PINN-RANS simulations. 

In Chapter 6, a weighted sum RANS turbulence model is proposed under the PINN 

framework, which is based on the linear superposition of the existing zero-equation RANS 

turbulence models. A novel PINN structure is designed for calculating the Reynolds stress loss 

and other physics-based losses in the meantime. The weight for each base model is 

automatically optimized through minimizing the Reynolds stress loss. Results demonstrate that 

the proposed method significantly alleviates the poor applicability of the RANS turbulence 

model. 
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Chapter 7 provides a comprehensive summary of the thesis. Furthermore, in this chapter, 

the drawbacks of the proposed methods are laid out and the issues that still need attention are 

identified. At the end of the entire thesis, the potential research directions are outlined, which 

are the further extensions of existing works. 

Figure 1-2 illustrates the technical route of this thesis as a summary for this chapter. The 

figure provides a concise overview of the key issues identified in the current research, as well 

as the key technologies to be used and research content in the following chapters. The research 

objectives are also outlined in the figure. 

 

  Figure 1-2. Technical route of this thesis. 
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CHAPTER 2                                           

LITERATURE REVIEW 

2.1 An Overview of the RANS Equations 

2.1.1 Beginning with the NS equations 

Since the RANS equations are derived by averaging the NS equations, a thorough 

comprehension of the latter is essential before delving into the RANS equations. The NS 

equations is a collective name, covering the fluid continuity and momentum equations. For the 

incompressible flow, the fluid continuity equation takes the following form. Note that the 

subscripts in this thesis follow the Einstein summation convention. 

𝜕𝑢௜

𝜕𝑥௜
= 0 (2 − 1) 

where 𝑥௜ is the spatial coordinate, and 𝑢௜ is the velocity component in the 𝑥௜ direction. The 

continuity equation is the specific manifestation of the mass conservation law in fluid flows. 

For the incompressible flow, the momentum equation takes the following form 

𝜕𝑢௜

𝜕𝑡
+ 𝑢௝

𝜕(𝑢௜)

𝜕𝑥௝
= −

1

𝜌

𝜕𝑝

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቈ𝜈 ቆ

𝜕𝑢௜

𝜕𝑥௝
+

𝜕𝑢௝

𝜕𝑥௜
ቇ቉ + 𝑓௜ (2 − 2) 

where 𝑡 stands for the time. 𝜌 denotes the fluid density. 𝑝 denotes the pressure. 𝜈 stands 

for the kinematic viscosity of the fluid. 𝑓௜ is the external force. The momentum equation can 

be split into five distinct terms. First comes the time derivative term 
డ௨೔

డ௧
, which describes the 
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variation of the flow rate over time. Then comes the inertial force term 
డ൫௨೔௨ೕ൯

డ௫ೕ
, which reflects 

the inertial response of the fluid flow. ଵ

ఘ

డ௣

డ௫೔
 denotes the pressure force, followed by the viscous 

force term 
డ

డ௫ೕ
൤𝜈 ൬

డ௨೔

డ௫ೕ
+

డ௨ೕ

డ௫೔
൰൨, which represents the effect of smoothing flow distribution due 

to viscosity. The rightmost side of the equation is the external forces applied to the fluid 𝑓௜. If 

there is no external force, this term equals zero. 

2.1.2 Reynolds averaging 

Reynolds averaging refers to the process of dividing an instantaneous physical quantity 

∅(𝒙, 𝑡) , which is within the time range of [0, 𝑇] , into a mean quantity ∅ഥ(𝒙, 𝑡)  and a 

fluctuating quantity ∅ᇱ(𝒙, 𝑡). For steady flows, the mean quantity ∅ഥ(𝒙, 𝑡) is independent of 

time. Thus, it is also written as ∅ഥ(𝒙) . This thesis discusses steady flows, therefore in the 

following text, ∅ഥ refers to ∅ഥ(𝒙). Mathematically, the quantity ∅ can be written as follows 

∅ = ∅ഥ + ∅ᇱ (2 − 3) 

where 

∅ഥ =
1

𝑇
න ∅

்

଴

𝑑𝜏 (2 − 4) 

Here, 𝑇  represents the length of the time range, which should exceed the fluctuation 

period of turbulence by a substantial margin. Now, it is necessary to clarify some rules of 

Reynolds averaging before performing Reynolds averaging on the NS equations. These rules 

are listed as follows 

∅ന =
1

𝑇
න ∅ഥ

்

଴

𝑑𝜏 =
∅ഥ

𝑇
න 𝑑𝜏

்

଴

= ∅ഥ (2 − 5) 
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∅ ± 𝜑തതതതതതതത =
1

𝑇
න (∅ ± 𝜑)

்

଴

𝑑𝜏 =
1

𝑇
න ∅

்

଴

𝑑𝜏 ±
1

𝑇
න 𝜑

்

଴

𝑑𝜏 = ∅ഥ ± 𝜑ത (2 − 6) 

∅ᇱഥ = ∅ − ∅ഥതതതതതതതത = ∅ഥ − ∅ന = 0 (2 − 7) 

∅ഥ𝜑തതതത =
1

𝑇
න ∅ഥ

்

଴

𝜑𝑑𝜏 = ∅ഥ
1

𝑇
න 𝜑

்

଴

𝑑𝜏 = ∅ഥ𝜑ത (2 − 8) 

∅𝜑തതതത = ൫∅ഥ + ∅ᇱ൯(𝜑ത + 𝜑ᇱ)തതതതതതതതതതതതതതതതതതതതതത = ∅ഥ𝜑തതതതത + ∅ഥ𝜑ᇱതതതതത + ∅ᇱ𝜑തതതതതത + ∅ᇱ𝜑ᇱതതതതതത = ∅ഥ𝜑ത + ∅ᇱ𝜑ᇱതതതതതത (2 − 9) 

𝜕∅

𝜕𝑡

തതതത
=

1

𝑇
න

𝜕∅

𝜕𝑡

்

଴

𝑑𝜏 =
1

𝑇
[∅(𝒙, 𝑇) − ∅(𝒙, 0)] =

1

𝑇

𝜕

𝜕𝑡
ቆන ∅𝑑𝜏

்

଴

ቇ =
𝜕∅ഥ

𝜕𝑡
= 0 (2 − 10) 

𝜕∅

𝜕𝒙

തതതത
=

1

𝑇
න

𝜕∅

𝜕𝒙

்

଴

𝑑𝜏 =
1

𝑇

𝜕

𝜕𝒙
ቆන ∅𝑑𝜏

்

଴

ቇ =
𝜕∅ഥ

𝜕𝒙
(2 − 11) 

Based on the above rules, the continuity and momentum equations in the NS equations 

can be Reynolds averaged, thus transforming the NS equations into the RANS equations. 

2.1.3 The RANS equations 

First, the continuity equation in the incompressible NS equations, namely Eq.(2-1), 

undergoes Reynolds averaging on both sides of the equal sign, which is as follows 

𝜕𝑢ప

𝜕𝑥ప

തതതതത
= 0ത (2 − 12) 

Then, based on Eq. (2-11), we may get 

𝜕𝑢ത௜

𝜕𝑥௜
= 0 (2 − 13) 

Here, 𝑢ത௜ denotes the mean quantity of instantaneous fluid velocity 𝑢௜. Or, to put it more 

bluntly, 𝑢ത௜ is the time-averaged velocity components in the 𝑥௜ direction. Similarly, Reynolds 
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averaging is applied to both sides of the equal sign in the momentum equation, i.e., Eq. (2-2). 

Then, we may get 

𝜕𝑢ప

𝜕𝑡

തതതതത
+ 𝑢ఫ

𝜕(𝑢ప)

𝜕𝑥ఫ

തതതതതതതതതത
= −

1

𝜌

𝜕𝑝

𝜕𝑥ప

തതതത
+

𝜕

𝜕𝑥ఫ
ቈ𝜈 ቆ

𝜕𝑢ప

𝜕𝑥ఫ
+

𝜕𝑢ఫ

𝜕𝑥ప
ቇ቉

തതതതതതതതതതതതതതതതതതതതതതതതത
+ 𝑓ప

ഥ (2 − 14) 

Handle the terms on the left side of the equal sign individually. For steady flows, there are 

𝜕𝑢ప

𝜕𝑡

തതതതത
+ 𝑢ఫ

𝜕(𝑢ప)

𝜕𝑥ఫ

തതതതതതതതതത
= ൫𝑢ఫഥ + 𝑢ఫ

ᇱ൯
𝜕(𝑢തప + 𝑢ప

ᇱ)

𝜕𝑥ఫ

തതതതതതതതതതതതതതതതതതതതതതതതതതത
= 𝑢ఫഥ

𝜕𝑢തప

𝜕𝑥ఫ
+ 𝑢ఫഥ

𝜕𝑢ప
ᇱ

𝜕𝑥ఫ
+ 𝑢ఫ

ᇱ
𝜕𝑢തప

𝜕𝑥ఫ
+ 𝑢ఫ

ᇱ
𝜕𝑢ప

ᇱ

𝜕𝑥ఫ

തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത

= 𝑢ఫന
𝜕𝑢തప

𝜕𝑥ఫ

തതതതത
+ 𝑢ఫ

ᇱ
𝜕𝑢ప

ᇱ

𝜕𝑥ఫ

തതതതതതതതത
= 𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
+

𝜕

𝜕𝑥௝
ቀ𝑢௜

ᇱ𝑢௝
ᇱቁ (2 − 15)

 

Then, handle the terms on the right side of the equal sign individually. For steady flows, 

if there is no external force, it will be as follows 

−
1

𝜌

𝜕𝑝

𝜕𝑥ప

തതതത
+

𝜕

𝜕𝑥ఫ
ቈ𝜈 ቆ

𝜕𝑢ప

𝜕𝑥ఫ
+

𝜕𝑢ఫ

𝜕𝑥ప
ቇ቉

തതതതതതതതതതതതതതതതതതതതതതതതത
+ 𝑓ప

ഥ = −
1

𝜌

𝜕𝑝̅

𝜕𝑥௜
+ 𝜈

𝜕

𝜕𝑥௝
ቆ

𝜕𝑢ప

𝜕𝑥ఫ
ቇ

തതതതതതതത
= −

1

𝜌

𝜕𝑝̅

𝜕𝑥௜
+ 𝜈

𝜕ଶ𝑢ത௜

𝜕𝑥௝
ଶ

(2 − 16) 

Based on Eq. (2-14), (2-15) and (2-16), we may get 

𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
= −

1

𝜌

𝜕𝑝̅

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቆ𝜈

𝜕𝑢ത௜

𝜕𝑥௝
− 𝑢௜

ᇱ𝑢௝
ᇱቇ (2 − 17) 

If the density of the fluid is multiplied on both sides of the equal sign simultaneously, then 

this equation may be expressed as follows 

𝜌𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
= −

𝜕𝑝̅

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቆ𝜇

𝜕𝑢ത௜

𝜕𝑥௝
− 𝜌𝑢௜

ᇱ𝑢௝
ᇱቇ (2 − 18) 

where 𝜇 is the dynamic viscosity, and 𝜇 = 𝜌𝜈. Eq. (2-18) is the momentum equation after 

Reynolds averaging, which forms the RANS equations together with Eq. (2-13). −𝜌𝑢௜
ᇱ𝑢௝

ᇱ is 

an additional mathematical term introduced in the process of Reynolds averaging, which is the 
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well-known Reynolds stress term. For convenience, −𝜌𝑢௜
ᇱ𝑢௝

ᇱ  is substituted by 𝑅௜௝  in the 

following text. The additional introduction of the Reynolds stress term 𝑅௜௝ has led to the non-

closure problem of the system of equations. Handling the Reynolds stress term to achieve 

the closure of the RANS equations is also known as RANS turbulence modeling. Various 

treatments of this term have led to the appearances of different RANS turbulence models. 

2.1.4 RANS Turbulence modeling 

The treatment methods of the Reynolds stress term in the RANS equations can be mainly 

divided into two categories. One is to use the Reynolds stress model (RSM) to describe the 

Reynolds stress term, that is, to establish the transport equation for each element in the 

Reynolds stress term. RSMs are believed to have the capability to provide accurate predictions 

for complex flows. Nevertheless, the precision of RSM predictions is inherently limited by the 

closure assumptions of several terms in the RSM transport equations, such as the pressure-

strain and dissipation rate terms. Furthermore, the introduction of a substantial number of 

transport equations (five in two-dimensional cases and seven in three-dimensional cases) 

results in quite high computational expense for RSM. Consequently, RSM is not the preferred 

method in RANS turbulence modeling. 

In fact, currently, the dominant approaches to RANS turbulence modelling are based on 

the Boussinesq eddy viscosity assumption, which presupposes a linear correlation between the 

Reynolds stress and the mean rate of strain tensor. Based on the Boussinesq eddy viscosity 

assumption, the Reynolds stress can be expressed as follows 

𝑅௜௝ = 𝜇௧ ቆ
𝜕𝑢ത௜

𝜕𝑥௝
+

𝜕𝑢ത௝

𝜕𝑥௜
ቇ −

2

3
𝜌𝛿௜௝𝑘 (2 − 19) 
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where 𝜇௧  is the turbulent viscosity. 𝛿௜௝  is the Kronecker delta function. 𝑘 =
ଵ

ଶ
𝑢௜

ᇱ𝑢௜
ᇱ  is the 

turbulent kinetic energy. Substitute the Reynolds stress term in Eq. (2-18) with Eq. (2-19), and 

then we may get 

𝜌𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
= −

𝜕𝑝̅

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቆ𝜇

𝜕𝑢ത௜

𝜕𝑥௝
+ 𝜇௧ ቆ

𝜕𝑢ത௜

𝜕𝑥௝
+

𝜕𝑢ത௝

𝜕𝑥௜
ቇ − 𝑐𝜌𝛿௜௝𝑘ቇ

= −
𝜕 ቀ𝑝̅ +

2
3

𝜌𝑘ቁ

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
൭(𝜇 + 𝜇௧)

𝜕𝑢ത௜

𝜕𝑥௝
൱ (2 − 20)

 

In some literature, authors may use 𝜇௘௙௙ to refer to the sum of the dynamic viscosity 𝜇 

and the turbulent viscosity 𝜇௧, which is also known as the effective viscosity. Therefore, it is 

evident from the above equation that the problem of determining the Reynolds stress term in 

the RANS equations has been transformed into determining the turbulent viscosity 𝜇௧, which 

is the only unknown brought by Reynolds averaging in Eq. (2-20). To determine the turbulent 

viscosity 𝜇௧,  the general approach is to introduce new PDEs to solve it. Depending on the 

number of additional equations introduced, these methods are categorized as zero-equation 

models, one-equation models, two-equation models, and so on. 

The zero-equation model, also known as the algebraic model, has the simplest form among 

various turbulence models. The essence of the zero-equation model is to describe turbulent 

viscosity using the averaged characteristics of the flow. For instance, the Prandtl mixing-length 

model is one of the most well-known zero-equation RANS turbulence models (Prandtl 1925). 

The turbulent viscosity 𝜇௧ is described as follows 

𝜇௧ = 𝐶௣ఓ𝜌𝑢௧𝑙௣଴ (2 − 21) 

where 𝐶௣ఓ  is a problem-dependent constant and 𝑙௣଴  is a prescribed length based on the 

location of the grid. 𝑢௧ is the characteristic velocity of the fluid. In the two-dimensional shear 
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flows, there are 𝑢௧ = 𝐿 ቚ
డ௨ഥ

డ௬
ቚ. Here, 𝑢ത denotes the time-averaged mainstream velocity and 𝑦 

is the perpendicular direction. Based on Eq. (2-21), it is evident that the Prandtl mixing-length 

model couples the turbulent viscosity with the gradient of the time-averaged flow velocity 

without introducing new PDEs in equation solving. Consequently, it is referred to as the zero-

equation RANS turbulence model. The Prandtl mixing-length model is demonstrated to have 

good precision in modeling shear flows, waves, and so on. 

The Baldwin-Lomax model is another commonly used zero-equation model for RANS 

turbulence enclosure (Baldwin and Lomax 1978). The model decomposes the flow field into 

two layers, namely the inner and outer layers. Each layer employs a distinct calculation method 

to determine turbulent viscosity 𝑢௧. It is worth noting that when using the Baldwin-Lomax 

model, the value of 𝑘 in Eq. (2-19) is set to zero, which is a prevalent approach when zero-

equation models are adopted. Other commonly used zero-equation models include the Chen 

model for indoor airflow simulation (Chen and Xu 1998), and the Li model for modeling 

external airflow over buildings (Li et al. 2012).  

Despite their significant computational efficiency, zero-equation models generally lack 

universality and are unable to accurately represent flows in diverse intricate geometries. 

Moreover, these zero-equation models may lack the capability to adequately include the 

historical influences of the turbulence, such as the convection and diffusion of the turbulent 

energy. Lastly, when dealing with complicated turbulent flows, it is challenging to identify the 

turbulent length scale which always appears in various zero-equation models. These factors all 

make it difficult for the zero-equation RANS turbulence models to be widely applied in dealing 

with practical problems. 

The one-equation model refers to the RANS turbulence model that incorporates one extra 
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PDE into Reynolds stress modeling. Prandtl was also the first to propose a one-equation RANS 

turbulence model (Prandtl 1945). In this model, an equation describing turbulent kinetic energy 

𝑘 is introduced, which takes the following form 

𝜕𝜌𝑘

𝜕𝑡
+ 𝑢ത௝

𝜕𝜌𝑘

𝜕𝑥௝
= 𝑅௜௝

𝜕𝑢ത௜

𝜕𝑥௝
− 𝐶஽

𝜌𝑘
ଷ
ଶ

𝑙௣ଵ
+

𝜕

𝜕𝑥௝
ቈ൬𝜇 +

𝜇௧

𝜎௞
൰

𝜕𝑘

𝜕𝑥௝
቉ (2 − 22) 

where 𝑙௣ଵ  is the turbulent length scale. To be noted, the approach for estimating the 

turbulent length scale is similar to the one used in the Prandtl mixing-length model. In addition, 

there is the following relationship between the turbulent kinetic energy 𝑘 and the turbulent 

viscosity 𝜇௧ 

𝜇௧ = 𝜌𝑘
ଵ
ଶ𝑙௣ଵ (2 − 23) 

It is not difficult to discover that there are some empirical constants in the Prandtl’s one-

equation model, and the values of these empirical constants directly affect the accuracy of the 

RANS turbulence model. The typical values of the empirical constants in the Prandtl’s one-

equation model are now tabulated in Table 2-1 for readers’ reference. 

Table 2-1. The typical values of the empirical constants in the Prandtl’s one-equation model. 

Coefficient 𝐶஽ 𝜎௞ 

Value 0.08 1 

Other well-known one-equation RANS turbulence models include the Spalart-Allmaras 

model (Spalart and Allmaras 1992), the Baldwin-Barth model (Baldwin and Barth 1991), and 

so on. In general, the one-equation models outperform the zero-equation models for simulating 

separated flows, which is due to the calculation of the convection and diffusion effects of 



 

20 

 

turbulence. Nevertheless, similar to the zero-equation model, the one-equation model still 

requires empirical estimation of turbulent length scales. As a result, its overall generality 

remains limited and it is only applicable in certain cases, such as the hypersonic flows (Paciorri 

et al. 1997). 

Among all the RANS turbulence models, the two-equation model is the prevailing form. 

The plenty of engineering cases adopting two-equation models in RANS turbulence modeling 

are enough to prove its core position in this field. As its name suggests, a two-equation model 

includes two additional transport equations to characterize turbulent properties, in addition to 

the continuity and momentum equations. Basically, there will be an equation used to describe 

the turbulent kinetic energy 𝑘. As for the second additional equation introduced, it depends on 

the specific model. 

For example, the standard k-ε model is one of the well-known two-equation turbulence 

models, which has been widely adopted in practical engineering (Launder and Sharma 1974). 

Apart from the continuity and the momentum equations, the kinetic energy equation and the 

dissipation equation (i.e., k-equation and ε-equation) are additionally introduced in the standard 

k-ε turbulence model to simulate turbulent behaviors. k-equation and ε-equation can be 

described as follows (buoyancy is neglected) 

𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥௜

(𝜌𝑘𝑢ത௜) =
𝜕

𝜕𝑥௝
ቈ(𝜇 +

𝜇௧

𝜎௞
)

𝜕𝑘

𝜕𝑥௝
቉ + 𝜇௧𝑆ଶ + 𝑅௜௝

𝜕𝑢ത௝

𝜕𝑥௜
− 𝜌𝜀 (2 − 24) 

𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥௜

(𝜌𝜀𝑢ത௜) =
𝜕

𝜕𝑥௝
ቈ(𝜇 +

𝜇௧

𝜎ఌ
)

𝜕𝜀

𝜕𝑥௝
቉ + 𝐶ଵఌ

𝜀

𝑘
𝑅௜௝

𝜕𝑢ത௝

𝜕𝑥௜
− 𝐶ଶఌ𝜌

𝜀ଶ

𝑘
(2 − 25) 

Here, 𝑆 = ඥ2𝑆௜௝𝑆௜௝. 𝑆௜௝ =
ଵ

ଶ
൬

డ௨ഥ೔

డ௫ೕ
+

డ௨ഥೕ

డ௫೔
൰, which is the mean strain rate tensor. 𝜀 is the 

turbulent dissipation rate. 𝑘, 𝜀, and 𝜇௧ have the following relationship 



 

21 

 

𝜇௧ = 𝜌𝐶ఓ

𝑘ଶ

𝜀
(2 − 26) 

The typical values of the empirical constants in the standard k-ε model are now tabulated 

in Table 2-2 for readers’ reference. 

Table 2-2. The typical values of the empirical constants in the standard k-ε model. 

Coefficient 𝐶ఓ 𝐶ଵఌ 𝐶ଶఌ 𝜎௞ 𝜎ఌ 

Value 0.09 1.44 1.92 1.0 1.3 

As another well-known two-equation RANS turbulence model, the Re-Normalization 

Group (RNG) k-ε model is the renormalized form of the standard k-ε model, which takes the 

smaller scales of turbulent fluctuation into consideration (Smith and Woodruff 1998). More 

specifically, in the RNG k-ε model, the k-equation has the same mathematical expression as 

that in the standard k-ε model. The only difference is the ε-equation, which takes the following 

form at present 

𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥௜

(𝜌𝜀𝑢ത௜) =
𝜕

𝜕𝑥௝
ቈ(𝜇 +

𝜇௧

𝜎ఌ
)

𝜕𝜀

𝜕𝑥௝
቉ + 𝐶ଵఌ

𝜀

𝑘
𝑅௜௝

𝜕𝑢ത௝

𝜕𝑥௜
− 𝐶ଶఌ

∗ 𝜌
𝜀ଶ

𝑘
(2 − 27) 

where 

𝐶ଶఌ
∗ = 𝐶ଶఌ +

𝐶ఓ𝜂ଷ ቀ1 −
𝜂
𝜂଴

ቁ

1 + 𝛽𝜂ଷ
(2 − 28) 

Here, 𝜂 =
ௌ௞

ఌ
. The typical values of the empirical constants in the RNG k-ε model are now 

tabulated in Table 2-3 for readers’ reference. 

Table 2-3. The typical values of the empirical constants in the RNG k-ε model. 
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Coefficient 𝐶ఓ 𝐶ଵఌ 𝐶ଶఌ 𝜎௞ 𝜎ఌ 𝜂଴ 𝛽 

Value 0.0845 1.42 1.68 0.7194 0.7194 4.38 0.012 

In contrast to the zero-equation and one-equation models, the two-equation model 

essentially introduces additional equations to estimate the turbulence length scale using 

turbulence kinetic energy and turbulence dissipation rate, thereby enclosing the RANS 

equations. An advantage of the two-equation RANS turbulence model is its enhanced 

applicability, making it suitable for a broader spectrum of flow conditions. Nevertheless, the 

drawback lies in the potential increase in computational expenses and the comparatively 

low computational efficiency. 

Besides the aforementioned models, there are more RANS turbulence models such as the 

three-equation models (Walters and Cokljat 2008, Li et al. 2020), the four-equation models 

(Chitta et al. 2013, Grunloh 2019), and so on. Moreover, some models have challenged the 

Boussinesq eddy viscosity assumption by assuming a nonlinear correlation between the 

Reynolds stress term and the time-averaged turbulent properties (Craft et al. 1997, Bauer et al. 

2000). While these models will not be enumerated, their fundamental nature lies in different 

approaches for the characterization of the Reynolds stress term. 

2.2 Conventional Methods for Solving the RANS Equations 

Once the physical modeling is completed, namely the closure of the RANS equations, it 

becomes imperative to address the subsequent challenge of using numerical methods for 

approximating the solutions of these physical equations. One may doubt the need to pursue an 
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analytical solution. While it is indeed feasible to explore the possibility of obtaining an 

analytical solution, as the problem becomes more complex, the task of finding such a solution 

becomes challenging. Thus, the use of other approximation approaches, i.e., numerical methods, 

is necessitated. More specifically, the primary objective of such numerical methods is to 

develop effective, resilient, and dependable numerical algorithms for obtaining an approximate 

solution of the governing PDEs. 

As mentioned in Section 1.1, the CFD methods, which are the numerical methods 

involving the discretization of the governing PDEs within the computational domain, have been 

predominantly reigning in the realm of RANS turbulence simulations. CFD methods serve as 

an umbrella term, encompassing two main approaches in RANS simulations. One faction 

employs the finite volume method (FVM) as its foundation for solving the RANS equations, 

while the other relies on a finite element method (FEM), i.e., the Discontinuous Galerkin 

method (DGM), for tackling these equations. The following discussion will delve into these 

two methods. 

2.2.1 FVM 

FVM is based on the concept of partitioning the computational domain into a number of 

grids and aiming to find the approximate solutions for the PDEs on the grid nodes. FVM 

generates a non-overlapping control volume around each grid point. It then integrates the PDEs 

to be solved for each control volume to obtain a set of discrete equations. In order to calculate 

the integral, it is necessary to assume the variation law of the solution of the PDEs between 

grid nodes, that is, to set the piecewise interpolation of the solution function between grid nodes. 

The advantage of FVM lies in the fact that the discrete equations satisfy conservation in each 

control volume and also in the entire computational domain. 
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Taking the steady one-dimensional diffusion equation as an example, the discretization 

method of FVM will be discussed. The steady one-dimensional diffusion equation can be 

expressed as follows 

𝑑

𝑑𝑥
൬𝐾

𝑑𝜓

𝑑𝑥
൰ + 𝑄 = 0 (2 − 29) 

where 𝜓 denotes the physical quantity of diffusion. 𝐾 denotes the diffusion coefficient. 𝑄 

is the rate of heat generation per unit volume. Figure 2-1 depicts the control volume and grid 

points when solving the steady one-dimensional diffusion equation. As shown in the figure, the 

grid point P is sandwiched between adjacent grid points W and E. The dashed lines represent 

the boundary surfaces w and e. 

 

By integrating Eq. (2-29) with the control volume around the grid point P, we may obtain 

the following equation 

൬𝐾
𝑑𝜓

𝑑𝑥
൰

௘
− ൬𝐾

𝑑𝜓

𝑑𝑥
൰

௪
+ න 𝑄𝑑𝑥

௘

௪

= 0 (2 − 30) 

Figure 2-1. The control volume and grid points when solving the steady one-dimensional 

diffusion equation. 
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In order to solve the above equation, it is important to approximate the derivative terms 

in the equation. We can now assume that the solution function is linearly interpolated between 

grid points. Then, we may get 

𝐾௘(𝜓ா − 𝜓௉)

𝛿𝑥௉ா
−

𝐾௪(𝜓௉ − 𝜓ௐ)

𝛿𝑥௉ா
+ 𝑄ത௉𝛿𝑥 = 0 (2 − 31) 

where 𝑄ത௉ denotes the averaged value of the source term 𝑄 within the control volume. In 

most cases, the source term 𝑄 is a function of the variable 𝜓. Now assume that 𝑄ത௉ takes the 

following form 

𝑄ത௉ = 𝑄௖ + 𝑎𝜓௉ (2 − 32) 

where 𝑄௖  is the constant component of the 𝑄ത௉ , and 𝑎  is the coefficient of 𝜓௉ . Then by 

substituting the 𝑄ത௉ in Eq. (2-31) with Eq. (2-32), we may get the following equation 

𝐾௘(𝜓ா − 𝜓௉)

𝛿𝑥௉ா
−

𝐾௪(𝜓௉ − 𝜓ௐ)

𝛿𝑥௉ா
+ (𝑄௖ + 𝑎𝜓௉)𝛿𝑥 = 0 (2 − 33) 

If we denote 
௄೐

ఋ௫ುಶ
 as 𝑎ா and 

௄ೢ

ఋ௫ುಶ
 as 𝑎ௐ, then we may get 

𝑎ா(𝜓ா − 𝜓௉) − 𝑎ௐ(𝜓௉ − 𝜓ௐ) + 𝑄௖𝛿𝑥 + 𝑎𝜓௉𝛿𝑥 = 0 (2 − 34) 

That is 

𝑎ா𝜓ா + 𝑎ௐ𝜓ௐ + 𝑄௖𝛿𝑥 = (𝑎ா + 𝑎ௐ − 𝑎𝛿𝑥)𝜓௉ (2 − 35) 

Then, we may find that Eq. (2-35) equals to the following form 

𝑎ா𝜓ா + 𝑎ௐ𝜓ௐ + 𝑏 = 𝑎௉𝜓௉ (2 − 36) 

where 𝑏 = 𝑄௖𝛿𝑥, and 𝑎௉ = 𝑎ா + 𝑎ௐ − 𝑎𝛿𝑥. Eq. (2-36) is the discretization form of Eq. (2-

29) for use in further numerical computations. Notably, a linear interpolation is employed to 
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calculate the derivative, which is not the mandatory choice. Alternative methods of 

interpolation can be employed to calculate the derivative, potentially yielding different 

outcomes. From Eq. (2-30) it can be discoverd that FVM is directly based on conservation laws, 

i.e., mass, momentum, energy, etc. FVM ensures the conservation of these physical quantities 

by integrating over each control volume. This is particularly important for RANS turbulence 

simulations, as turbulence involves complex momentum and energy exchanges. FVM’s 

capability of ensuring physical conservation laws can improve the physical modeling accuracy 

of the RANS turbulence simulations. The preceding analysis also clearly shows that FVM can 

handle complicated geometries and boundary constraints. Turbulence typically occurs in 

complex engineering environments such as the regions around aircraft wings and car bodies, 

and the FVM’s flexibility allows it to better adapt to these complex geometries. 

The result is that many well-known commercial CFD software, such as Ansys Fluent, Star 

CCM+, and OpenFOAM, have all chosen FVM as the computational method for fluid flow 

simulation, including RANS turbulence simulation. Researchers have carried out many 

meaningful studies in a variety of domains based on mature commercial software, for example, 

in the fields of building’s indoor and outdoor flow field simulation and high-speed train 

aerodynamics. 

In the field of indoor airflow simulation, for instance, numerous research studies have 

been conducted, that integrated the RANS turbulence models with the FVM approach to 

simulate the building’s indoor environment (Durrani et al. 2015). Stamou and Katsiris (2006) 

verified the applicability of the Shear Stress Transport (SST) k-ω RANS turbulence model, 

which was proposed by Menter (1993), in an office environment. The work was carried out 

using the FVM-based CFD commercial software CFX. This work also compared the simulation 

results of the standard k-ε model and the RNG k-ε model are also with experimental data. The 
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results in this study indicated that the SST k-ω RANS turbulence model is the model highly 

recommended for practical applications in indoor airflow simulations due to its consistency 

with the experimental data.  

Posner et al. (2003) investigated the influence of obstructions on the indoor flow field. 

Initially, they employed commercial software Ansys Fluent, which is based on the FVM 

approach, to conduct RANS simulations using various turbulence models including the 

standard k-ε model and the RNG k-ε model. Subsequently, they implemented experimental 

measurements employing the particle image velocimetry (PIV) and laser Doppler anemometry 

(LDA) technologies to verify the CFD simulation results. Their findings suggested that the 

RNG k-ε model may be the most effective in simulating indoor airflow when there exist 

obstructions indoors. 

Considering the substantial computing expense induced by the two-equation RANS 

turbulence models in indoor airflow simulation, Chen and Xu (1998) proposed a simple zero-

equation RANS turbulence model as an alternative. Figure 2-2 depicts the comparison between 

simulated wind speed and measured results when using the proposed zero-equation model and 

the standard k-ε model. The findings suggested that while the proposed zero-equation model 

has enhanced computing efficiency, the simulated wind velocities in regions with significant 

gradient variations are inferior to those obtained using the conventional two-equation RANS 

turbulence models. It is worth mentioning that this study was carried out using the commercial 

FVM-based software PHOENICS. 

Furthermore, apart from the indoor flow field, there are also many research cases of FVM-

based RANS simulations for building’s outdoor flow (Van Hooff et al. 2017, Vita et al. 2020, 

Zheng et al. 2020). Acquiring outdoor airflow characteristics is crucial in building simulations 
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since they have a direct impact on the thermal environment and air pollution issues around a 

building (Mfula et al. 2005, Challoner and Gill 2014, Yang et al. 2021).  

 

 Jędrzejewski et al. (2017) conducted research on investigating the airflow characteristics 

around building clusters using Ansys Fluent. Aside from utilizing the widely used realizable k-

ε model, which was proposed by Shih et al. (1995), to close the RANS equations, the 

aforementioned RSM was also adopted in the simulation. Figure 2-3 illustrates the disparity 

between the results obtained from the wind tunnel test and FVM-based numerical results. The 

Figure 2-2. A comparison between the RANS simulated wind speed and measurement results 

carried out by Chen and Xu (1998). 
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cross represents the discrete data from the experiment, the red line represents the results of the 

realizable k-ε model, and the blue line represents the results of the RSM. Such a finding 

suggests that the FVM-based RANS simulation has the capability to accurately present the 

actual flow field around building structures, provided that the turbulence model is chosen 

properly. 

 

In the realm of high-speed train aerodynamics, researchers have also carried out a number 

of meaningful works using FVM-based RANS simulations (Diedrichs 2010, Rezvani and 

Figure 2-3. Comparison between the pressure coefficients obtained from RANS simulations 

and wind tunnel experiments by Jędrzejewski et al. (2017). 
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Mohebbi 2014, Munoz-Paniagua et al. 2017). Issues including a sudden rise in the air resistance 

and a higher risk of overturning induced by crosswinds when trains operate at high speeds have 

emerged as critical challenges in the development of high-speed rail (Brockie and Baker 1990, 

Raghunathan et al. 2002, Baker et al. 2011). Real vehicle testing opportunities are rare, leading 

to the difficulty for researchers to obtain data in real environments (Gallagher et al. 2018, Misu 

and Ishihara 2018). Owing to its inherent ground effects and other factors that may influence 

the experimental results, the wind tunnel test is not the mainstream method in this research 

field (Baker and Brockie 1991). Thus, numerical simulation has become a fundamental tool in 

the discipline of high-speed train aerodynamics to search for strategies for reducing air 

resistance and preventing train overturning. Given the complex geometry of the train, 

the steady RANS simulation is a commonly used numerical method to minimize the number 

of grids and computational expenses without compromising accuracy.  

For instance, Li et al. (2019) applied FVM-based RANS simulations to the study of 

investigating the train aerodynamics under crosswinds, which determined the optimal RANS 

turbulence model for modeling the aerodynamic characteristics of high-speed trains. 

Comparative analysis was conducted on six RANS turbulence models, including the 

aforementioned standard k-ε model, RNG k-ε model, Realizable k-ε model, SST k-ω model, 

and Spalart–Allmaras model. Figure 2-4 shows the analysis of train surface pressure 

distribution using various RANS turbulence models. The results in the figure indicated that the 

choice of the RANS turbulence model will influence the surface pressure distribution 

significantly. The authors also suggested that the SST k-ω model might be the best choice for 

FVM-based RANS simulations of train aerodynamics under crosswind conditions considering 

its extremely high accuracy. 
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2.2.2 FEM 

FEM is a widely employed numerical method for solving fluid-related problems, which 

is mainly based on the variational principle or the weighted residual method. On this basis, the 

FEM also borrows the concept of discretization from the finite difference method. The core 

idea of the FEM is to approximate the solution of PDEs by using simple equations inside a 

small element. The use of the finite element method for solving partial differential equations 

may be generally divided into the following steps: (a) formulating the mathematical model for 

the physical problem, identifying the computational domain, and determining the initial and 

boundary conditions; (b) utilizing the principle of virtual work to construct the weak-form 

physical governing equations; (c) discretization of the computational domain as well as the 

PDEs; (d) unit analysis and establishing the unit stiffness matrix; (e) establishing the global 

stiffness matrix; (f) treatment of the boundary conditions, and (g) solving the linear equations. 

Figure 2-4. Analysis of train surface pressure distribution using various RANS turbulence 

models carried out by Li et al. (2019). 
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More specifically, physical governing PDEs, such as Eq. (2-29), can be expressed in the 

following form 

𝐿(𝜓) = 𝑓 (2 − 37) 

where 𝐿(∙)  is the differential operator, and 𝑓  is the scalar function of the independent 

variables. By drawing inspiration from the weighted residual method, we may assume 𝜓ᇱ as 

the approximate solution. By substituting the approximate solution 𝜓ᇱ into the above equation, 

a residual value 𝑅 can be obtained 

𝑅 = 𝐿(𝜓ᇱ) − 𝑓 ≠ 0 (2 − 38) 

Based on the weighted residual method, the weight function 𝑊௜ is chosen to ensure that 

the weighted integral of the residual 𝑅 throughout the entire computational domain is equal 

to zero, which is as follows 

ඵ 𝑅𝑊௜𝑑𝐷
஽

= ඵ (𝐿(𝜓ᇱ) − 𝑓)𝑊௜𝑑𝐷
஽

= 0 (2 − 39) 

where 𝐷 is the computational domain. In FEM, the computational domain is partitioned into 

a finite number of elements. Mathematically, it can be expressed as follows 

𝐷 = ෍ ∆𝐷௜

௠ವ

௜ୀଵ

(2 − 40) 

where 𝑚஽ is the number of elements. In each element, we may assume that the approximate 

solution of the PDEs takes the following form 

𝜓ᇱ = 𝑵𝝍𝒆 (2 − 41) 

where 𝑵 = ൣ𝑁௜ 𝑁௝  𝑁௞  ⋯ ൧  denotes the shape function, and 𝝍𝒆 = ൣ𝜓௜  𝜓௝  𝜓௞  ⋯ ൧
்
  denotes 
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the unknowns to be solved on nodes i, j, k, ⋯. By substituting the computational domain 𝐷 

and the approximate solution 𝜓ᇱ in Eq. (2-39) with Eq. (2-40) and Eq. (2-39), we may obtain 

෍ ඵ (𝐿(𝑵𝝍𝒆) − 𝑓)𝑊௜𝑑𝐷
∆஽೔

௠ವ

௜ୀଵ

= 0 (2 − 42) 

By solving Eq. (2-42) to determine the unknowns on the nodes 𝝍𝒆 , one may get the 

approximate numerical solution for the PDEs. The DGM, which evolved from the FEM, is 

commonly used in solving fluid mechanics problems.  

The difference between the conventional FEM and the DGM is that the FEM requires the 

shape function 𝑵 to be continuous between the elements, while the DGM does not. Instead, 

an additional term called ‘numerical flux’ is introduced to handle the discontinuities of shape 

functions at the boundary of the unit in the DGM. However, the principle of DGM will not be 

elaborated here, which is beyond the scope of the thesis.  

DGM is often utilized in fluid mechanics, particularly in RANS simulations, due to its 

satisfying performance for handling complex boundary conditions (Crivellini et al. 2013, Bassi 

et al. 2014, Li et al. 2015, Lorini et al. 2021).  

Crivellini et al. (2013) utilized the high-order DGM for solving three-dimensional 

incompressible RANS equations in simple and complex geometries. Several flow cases were 

studied, including the flow over a three-dimensional sinusoidal bump in a channel, as shown 

in Figure 2-5, and the flow past a sphere. The one-equation Spalart-Allmaras model was 

adopted in the RANS simulation in this work. They also emphasized the difficulties that still 

exist when using DGM in RANS modeling, such as the requirement for the special treatment 

of wall boundary conditions. 
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Jiang et al. (2015) discussed the implementation and performance of a p-multigrid DGM 

solver for steady RANS simulations. This research focused on the practical aspects of the solver, 

including algorithmic details and computational efficiency. The proposed DGM solver was 

demonstrated to possess improved convergence capability and accuracy for steady flow 

problems. Tiberga et al. (2020) proposed a novel DGM solver for the incompressible RANS 

equations coupled with the standard k-ε RANS turbulence model. The solver used an algebraic 

pressure correction scheme, implicit backward differentiation formulae for time discretization, 

and the symmetric interior penalty method for diffusive terms. 

Currently, however, DGM is not the preferred solution approach for solving the RANS 

equations because it requires costly high-order polynomial computations inside each unit, 

resulting in significant computing and storage demands. In contrast, the FVM has superior 

computing efficiency and is well-suited for large-scale use in practical engineering applications. 

Figure 2-5. The DGM-based simulation of flow over a three-dimensional sinusoidal bump in 

a channel: (a) the velocity contour, and (b) the pressure contour. Reprinted from (Crivellini et 

al. 2013). 
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2.3 PINN 

2.3.1 Overall description 

PINN has recently emerged as a new branch of scientific machine learning that solves 

governing PDEs of physical problems by leveraging the universal approximation and nonlinear 

expression capabilities of the deep learning algorithm (Scarselli and Tsoi 1998). It is a new 

approach to solving physical PDEs, which combines one of the hottest research topics today, 

i.e., deep learning, with classical physics.  

According to our traditional understanding of deep learning, which is typically 

represented by the deep neural network, it ought to be an algorithm that is entirely data-driven. 

That is, for the majority of deep learning models, data and its corresponding label are essential 

elements in their training process (Bishop 1994). From this perspective, solving PDEs is not 

the task in which deep learning algorithms should be skilled, as there is no or only a very small 

amount of sparse training data available for them to learn from. In other words, the solutions 

of the physical PDEs in most regions are unknown. However, the primary objective of equation 

solving is to obtain unknown solutions within the computational domain, thereby leaving deep 

learning models without any viable labels for training and learning. So, the question is, how 

does a PINN solve PDEs? 

Before answering this question, it is necessary to first give an introduction to the loss 

function of a neural network. As mentioned earlier, data labels are crucial in the training process 

of deep learning models. In deep learning models, the loss function is derived from the 

discrepancies between the model prediction values and the label values. By minimizing the 

loss function to converge to an infinitesimal value, regression or clustering tasks can be 
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achieved. Now let us return to that question: how does a PINN solve equations? The answer 

actually lies in the PINN’s utilization of the residuals of the equations as the loss function to 

supervise model training. The primary issue is how we define the residual of an equation. In 

this thesis, we define the residual of an equation as a function derived from the equation, which 

is obtained by subtracting the terms on the right side of the equal sign from the term on the left 

side. Let us take the continuity equation in the RANS equations, i.e., Eq. (2-13), as an example, 

its residual shall be 

𝑅௖ =
𝜕𝑢ത௜

𝜕𝑥௜
− 0 =

𝜕𝑢ത௜

𝜕𝑥௜

(2 − 43) 

If we take the momentum equation in the RANS equations, i.e., Eq. (2-18), as another 

example, its residual shall be 

𝑅௠ = 𝜌𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
+

𝜕𝑝̅

𝜕𝑥௜
−

𝜕

𝜕𝑥௝
ቆ𝜇

𝜕𝑢ത௜

𝜕𝑥௝
− 𝜌𝑢௜

ᇱ𝑢௝
ᇱቇ (2 − 44) 

Based on the above equations, it is evident that the residual is a function that depends on 

temporal and spatial coordinates. For deep neural networks, as long as a point (namely, 

collocation point) is taken in the computational domain, the prediction value of the neural 

network at that point can be outputted. If necessary, the partial derivatives at the collocation 

point can also be calculated based on AD or numerical differentiation (Baydin et al. 2018, Chiu 

et al. 2022). The prediction values of the physical quantities and their partial derivatives at 

these collocation points constitute the residuals of PDEs, which serve as the loss function of 

the PINN.  

By employing the gradient descent methods to minimize the loss function, the residuals 

of the PDEs are minimized and approximated to zero, which is equivalent to the roughly equal 
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relationship between the left and right sides of the equal sign. 

 In the steady RANS simulations, the physical governing PDEs within the computational 

domain are the Reynolds-averaged continuity and momentum equations, while the physical 

governing PDEs on the domain boundary are the boundary conditions. Minimizing the loss 

function results in weak satisfaction of the Reynolds-averaged continuity and momentum 

equations at the collocation points within the computational domain. In addition, the boundary 

conditions are also weakly satisfied at the collocation points on the domain boundaries. 

Equivalently, this yields an approximate solution to the RANS equations. 

One benefit of PINN as a PDE solver should be highlighted in comparison to conventional 

methods such as the FVM and FEM. Given that PINN remains fundamentally a deep neural 

network, it is still possible to use the conventional data-driven supervised learning strategy to 

assist in PINN model training.  

This is crucial because, in engineering practices, the solutions within the domain are not 

completely unknown since sensors are often deployed to measure real-time data on sparse 

measurement points. Taking the RANS simulation of the building outdoor wind field as an 

example, the time-averaged wind velocity and pressure data obtained from the sensors installed 

on the building surfaces can be fully embedded as label data in the training process of a PINN, 

thereby giving guidance to the solution in the entire domain (Pu et al. 2021, Qin et al. 2023, 

Rui et al. 2023, Liu et al. 2024). 

Briefly, PINNs have the capability to act as a general PDE solution approximator, which 

can embed the knowledge of physical laws in the model training process. The process of 

utilizing a PINN to solve the RANS equations can be summarized as follows: (a) utilizing a 

deep neural network to establish the relationship between spatial coordinates (input) and the 
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flow characteristics to be solved (output); (b) computing the residuals of the continuity and 

momentum equations using forward propagation and AD for the collocation points inside the 

domain; (c) computing the residuals of the Dirichlet and Neumann boundary conditions using 

forward propagation and AD for the collocation points on the domain boundaries; (d) 

computing the labeled data loss if applicable; (e) forming the loss function using the weighted 

sum of various equation residuals, and data loss, if any; (f) error backpropagation and model 

parameter optimization; and (g) error evaluation. 

2.3.2 Origins of PINN in fluid mechanics 

The PINN framework was first conceptualized by Raissi et al. (2019), which has aroused 

great interest recently across multiple research areas (Fang and Zhan 2019, Liu et al. 2020, 

Yucesan and Viana 2020, Chen et al. 2022). PINN has been used to solve PDEs (Mao et al. 

2020), including Schrodinger equations and linear Poisson problems, by embedding the 

residuals of physical governing equations, initial conditions, and boundary conditions into the 

total loss function of the neural network (Pang et al. 2019, Yuan et al. 2022). More specifically, 

the approximation of the PDE solution is achieved by summing the residuals of these physical 

constraints and then shrinking it towards zero during the PINN training process with the aid of 

gradient descent algorithms such as the stochastic gradient descent (SGD) and adaptive 

moment estimation (Adam) algorithms (Robbins and Monro 1951, Kingma 2014). 

Fluid mechanics is one of the research directions where PINN has been able to showcase 

its capabilities since the motion of fluids can be described by governing PDEs. In other words, 

since the main task of fluid mechanics is to solve the second-order nonlinear PDE, i.e., the NS 

equations, or its variants, various research investigations on the PINN applications to fluid 

mechanics have been carried out in recent years (Sun et al. 2021, Cai et al. 2022). Research on 
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PINNs in fluid mechanics is definitely still in its early stages. Following is a concise review of 

the most recent cutting-edge research on the PINN application in fluid mechanics. 

In fact, a case study of PINN's application to fluid mechanics was included in the paper 

where it was first presented. Raissi et al. (2019) managed to solve an inverse problem of 

identifying unknown parameters in the NS equations using a PINN, as shown in Figure 2-6.  

The definitions of forward and inverse problems in this thesis need to be clarified here. 

The forward problem is one in which we need to solve for the system state or evolution given 

the knowledge of the physical laws governing a specific system, while the process of 

determining the system's unknown parameters or initial conditions from observations is known 

as the inverse problem. The values of two parameters in the NS equations were estimated by 

Raissi et al. (2019) based on massive observation data. Two tests were carried out, one with 

noisy observation data and the other without, and both achieved good estimates of the values 

of the unknown parameters. The results demonstrated that the PINN can accurately identify the 

unknown parameters with extremely high accuracy even if the training data is interfered 

with by noise. 

Actually, PINN rarely involved turbulence problems in its early development. Instead, 

researchers mostly employed it to simulate laminar flows with relatively low Reynolds 

numbers (Bai et al. 2020, Rao et al. 2020, Arzani et al. 2021, Biswas and Anand 2023, Hu and 

McDaniel 2023). This is due to the fact that laminar flows are more stable and orderly than 

turbulent flows, which just necessitate solving the NS equations and do not involve the process 

of turbulence modeling. Rao et al. (2020) solved a forward laminar flow problem using a PINN 

under the mixed-variable scheme they proposed in their paper. The flow cases this research 

investigated were two cylinder flows, with Reynolds numbers of 5 and 20 respectively. A 
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mixed-variable scheme for PINN was proposed in their research, which greatly improved the 

performance of the PINN in laminar flow simulation. In contrast to previous studies, this 

approach reduced the training difficulty of a PINN by splitting the momentum equation in the 

NS equations into two PDEs containing only first-order derivatives. Figure 2-7 compares the 

velocity and pressure contours in a steady cylinder flow when different PDE solvers are 

adopted. The results indicated the feasibility of the PINN framework in solving forward fluid 

problems and established a solid foundation for fluid dynamitists to use the PINN to address 

their problems. 

 

Figure 2-6. Identification of unknown parameters in the NS equations using a PINN by Raissi 

et al. (2019). The figures show the detailed spatiotemporal distributions of the data points used 

for training. 
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Arzani et al. (2021) simulated three blood flows with Reynolds numbers of 150, 320, and 

320 respectively, which adopted the steady incompressible NS equations as the fluid governing 

equations. PINN was used as the PDE solver for fluid simulation in this research. Since the 

boundary conditions remain uncertain when simulating blood flow, the research team included 

sparse measurement data points in the PINN's training process to guide the PDE solving 

process. This study leveraged the NS equations and sparse velocity measurements to accurately 

quantify wall shear stress (WSS), even without full knowledge of boundary conditions. The 

results in Figure 2-8 confirm the above advantage of utilizing PINN to solve PDEs. That is,  

conventional wisdom holds that solving PDEs without boundary conditions is nearly 

impossible. However, PINN offers an alternative approach, which makes use of sparse 

Figure 2-7. Comparison of the velocity and pressure contours in a steady cylinder flow when 

different PDE solvers are adopted: (a) Ansys Fluent, and (b) PINN adopting the mixed-variable 

scheme. Reprinted from (Rao et al. 2020). 
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solutions inside the domain to guide equation solving and compensate for the absence of 

physical information. 

 

Sun et al. (2021) proposed a physics-informed deep learning framework for simulating a 

stationary, inviscid, and incompressible cylinder flow using a PINN. Instead of feeding the 

neural network a number of labeled training data, they embedded the known physical 

knowledge in the neural network training process to increase prediction accuracy and relieve 

the stringent constraints on massive data. The NS equations were used as the physical 

governing equations. Their results, as illustrated in Figure 2-9, also demonstrated the feasibility 

of applying the PINN framework to solving fluid-related problems. The Taylor–Green vortex 

problem was also used to demonstrate the robustness and efficiency of the PINN. 

Huang et al. (2022) proposed an immersed boundary method for PINN-based laminar 

flow simulation, as shown in Figure 2-10. The proposed method introduced two additional loss 

penalties in the total loss of a PINN to simulate the no-slip condition at the fluid–solid interface. 

The author verified the effectiveness of the proposed immersed boundary method using a case 

study of circular cylinder flow. The proposed method was highly successful in capturing the 

Figure 2-8. Comparison of the CFD results with the PINN results in a two-dimensional blood 

flow: (a) the velocity contour, and (b) the WSS. Reprinted from (Arzani et al. 2021). 
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vortices on the leeward side of the cylinder, and the results of the proposed method 

demonstrated good consistency with CFD results. 

 

 

Figure 2-9. Comparison of the pressure coefficients on the cylinder surface between the 

PINN’s results and the analytical results. Reprinted from (Sun et al. 2021). 

Figure 2-10. The immersed boundary method for PINN-based laminar flow simulation 

proposed by Huang et al. (2022). 
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Almajid and Abu-Al-Saud (2022) simulated a porous media flow under the PINN 

framework, as shown in Figure 2-11. They used a PINN to solve the Buckley-Leverett problem 

in this study, which took into account both labeled observation data and physical knowledge 

from the fluid flow. According to their findings, the PINN could capture the solution's general 

trend even in the absence of observation data, but on the other hand, observation data could 

greatly increase the solution's precision and accuracy. 

 

The above research mainly focuses on laminar flow with low Reynolds numbers. In 

contrast to turbulent flows, the laminar flow has a more straightforward structure, and even if 

there are eddies in the flow field, the scale of the eddies will not change significantly. Therefore, 

the NS equations are the dominant governing PDEs in PINN-based laminar flow simulation. 

The following benefits of using PINN as a brand-new machine learning solver for solving the 

NS equations are concluded here. Firstly, it is a meshless approach, therefore no grid-related 

Figure 2-11.  The FCNN structure adopted by Almajid and Abu-Al-Saud (2022) for porous 

media flow simulation. 



 

45 

 

issues will arise.. Secondly, a data-driven strategy can significantly increase the accuracy of 

solutions owing to the PINN’s special ability to incorporate labeled data (on-site measurement) 

in the model-training process (Riel et al. 2021, Choi et al. 2022). That is, similar to physical 

governing equations, the residuals between the PINN prediction and the labeled data can be 

incorporated into the total loss. As a result, the final solution to the NS equations derived from 

a data-embedded PINN may be viewed as a comprehensive outcome that incorporates both 

physical and data information. 

2.3.3 PINN in RANS simulations 

Due to the complexity of turbulence, it was not the initial focus of PINN's research in fluid 

mechanics. Numerous CFD numerical methods are available to simulate turbulent behaviors. 

In addition to RANS, popular methods include LES and detached eddy simulation (DES). 

Studies have shown that some of these methods can be implemented within the PINN 

framework as well and they have achieved satisfying results (Yang et al. 2019, von Saldern et 

al. 2022, Tian et al. 2023, Maejima et al. 2024). However, considering that the research focus 

of this thesis is on the RANS method, methods other than RANS will not be elaborated here. 

Interested readers may refer to the aforementioned citations. 

To the best of the author's knowledge, the earliest use of PINN in RANS-related research 

can be traced back to 2020, which was carried out by Luo et al. (2020). The main objective of 

this work was to solve an inverse problem. More specifically, the five empirical constants in 

the standard k-ɛ turbulence model were to be identified, given that the fluid velocity and 

pressure were known. The study also pointed out that the value of empirical constants in 

turbulence models will to some extent affect the accuracy of RANS simulation results, and 

different values are applicable under different flow conditions. This is essentially in line with 



 

46 

 

how the model applicability problem is described in Chapter 1. The DNS data is used to 

validate the results of the PINN simulation. The results, as illustrated in Figure 2-12, proved 

the reliability and accuracy of utilizing the PINN framework in solving inverse problems in 

RANS simulations. 

 

One of the most representative research works on utilizing a PINN to solve the forward 

problem involving the RANS equations was carried out by Eivazi et al. (2022). It is worth 

mentioning that, no additional PDEs were required to describe the Reynolds stress terms to 

close the RANS equations when PINN was adopted as the PDE solver in their work, which 

was in contrast to turbulence modelling in conventional CFD methods. Instead, the fluid 

velocity, pressure, and Reynolds stresses on the domain boundaries were used as the labeled 

data to assist in the PINN's training. Or in other words, the data information on the boundaries 

as well as the physical equations were utilized to reconstruct the turbulence characteristics 

inside the domain. When compared to conventional methods, this approach offers both benefits 

Figure 2-12.  Error maps for the y-direction fluid velocity: (top) errors between the DNS and 

RANS (default values) results, and (bottom) errors between the DNS and RANS (PINN-

inferred values) results. Reprinted from (Luo et al. 2020). 
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and drawbacks. It is important to recognize that the task of turbulence modeling has been 

eliminated, which can help to enhance computing efficiency and partially alleviate the issue of 

poor universality of turbulence models. The drawback is that this approach requires an 

increasing amount of information on the domain boundaries, and the choice of 

the computational domain has an immediate impact on the simulation result. How to delimit 

the size of the computational domain has become another challenge. Four case studies were 

used to demonstrate the feasibility of the proposed strategy, including the well-known case of 

the NACA4412 airfoil and the flow past periodic hills, as shown in Figure 2-13. 

 

Harmening et al. (2024) investigated the influence of the FCNN configuration on the 

performance of a PINN when it is used to simulate circular and square cylinder flows. In their 

research, the mixed-variable scheme proposed by Rao et al. (2020) was adopted to modify the 

RANS equations to facilitate the training and convergence of the PINN models. The 

aforementioned Prandtl mixing-length model was adopted as the RANS turbulence model to 

describe Reynolds stress. In addition, PINN's training was not supported by any known labeled 

data, so, in this research, PINN turns into a PDE solver with the same functionality as CFD 

methods. Their results, as illustrated in Figure 2-14, demonstrated that the PINN simulation 

results are highly sensitive to the structure of the FCNN. Based on their findings, it can be 

Figure 2-13. RANS simulation of the flow past periodic hills using PINN carried out by Eivazi 

et al. (2022). 
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concluded that FCNNs with too deep or too wide structures are not conducive to PINN-based 

RANS simulations. 

 

In conclusion, the basic principle of the PINN-based RANS simulation is to approximate 

the solution of the RANS equations by training a neural network while minimizing its physics-

based loss function, which includes the residuals of RANS equations and boundary conditions 

at the collocation points. In the above-mentioned cases, PINNs show satisfying performances 

when dealing with the forward problems involving the RANS equations. Generally speaking, 

the grid-based CFD methods such as the FVM and FEM are more exposed in the textbooks of 

numerical analysis. What sets it apart from conventional CFD methods is that PINN can serve 

as a physics-informed data-driven solver for fluid simulation since it can integrate not only the 

physical knowledge but also the measurement information into the neural network training 

process, making it a fusion method in a more profound sense. 

Figure 2-14. Comparison of the PINN-based RANS simulation results when different FCNN 

structures were adopted. Reprinted from (Harmening et al. 2024). 
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2.3.4 Limitations of PINN-based RANS simulations 

As summarized in Figure 1-2, currently, PINN-based RANS simulations mainly face three 

key challenges, which are the limited applicability of the RANS turbulence model, the weak 

convergence performance of the PINN, as well as the inadequate nonlinear expression and 

feature learning capabilities of the PINN. 

As mentioned before, the applicability issue is not a new problem, which also appears in 

CFD-based RANS simulations. While PINN has made great achievements in the field of fluid 

mechanics, researchers have also reported this issue when they use PINN as the PDE solver. 

For example, Pioch et al. (2023) validated the applicability of four different RANS turbulence 

models under the PINN framework using a backward-facing step flow. The turbulence model 

they adopted included the standard k-ω model (Wilcox 1988) and the Prandtl mixing-length 

model. In their case study, the Reynolds number reached up to 5100. Figure 2-14 compares the 

time-averaged velocity contours of the backward-facing step flow when the standard k-ω 

model and the Prandtl mixing-length model are adopted in RANS simulations, respectively. 

From the figure, it can be observed that there are significant differences between the results of 

the two in the location of the reattached flow and the sizes of the recirculation vortex and the 

corner vortex. The results show that, as with CFD methods, when PINN is utilized to solve the 

RANS equations, the turbulence model will significantly influence the simulation results. How 

to determine the turbulence model that is applicable to the flow conditions before simulation 

remains a challenge in PINN-based RANS simulations. However, this research also mentioned 

that after embedding adequate sparse labeled data for supervised learning, the applicability 

issue can be effectively alleviated. 
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The weak convergence performance of the PINN has long been criticized by researchers. 

There are multiple factors contributing to its poor convergence performance. On the one hand, 

the loss balance issue may lead to an unreasonable emphasis on certain loss components in 

PINN’s training process (Bischof and Kraus 2021, Yang and Wang 2022, Heldmann et al. 2023, 

Wang et al. 2024). On the other hand, using AD to calculate high-order differential terms is a 

time-consuming procedure, which further affects its convergence performance (Sharma and 

Shankar 2022, Yuan et al. 2022). Undoubtedly, there are many other factors that could impact 

PINN's convergence performance, and interested readers are welcome to conduct further 

investigation on this issue. Xiang et al. (2022) proposed a self-adaptive loss balanced strategy 

for training PINNs, which is named lbPINN. Instead of treating the weight coefficient before 

Figure 2-15. Comparison of the velocity contours of the backward-facing step flow when 

different RANS turbulence models are adopted: (top) the standard k-ω model, and (bottom) 

the Prandtl mixing-length model. Reprinted from (Pioch et al. 2023). 
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each loss component as a constant value, lbPINN updates these weight coefficients based on 

maximum likelihood estimation after each training iteration. Results showed that lbPINN 

performs better than the default PINN when solving forward problems involving the Poisson 

equation, as shown in Figure 2-15. 

 

The nonlinear expression and feature learning capabilities of a PINN are limited by its 

neural network backbone. Although the universal approximation theorem tells us that 

theoretically, as long as there are enough hidden neurons, an FCNN can learn to fit any 

nonlinear function, in practical operation, many research studies have reported the frequency 

principle phenomenon when training an FCNN (Cao et al. 2019, Rahaman et al. 2019, Xu et 

al. 2024). That is, compared to the low-frequency components, the high-frequency ones are 

more difficult for a neural network to learn, which is also reflected in PINNs. Ye et al. (2024) 

Figure 2-16. Comparison of the PINN’s solutions to the time-dependent Poisson equation 

when different loss balance strategies are adopted: (top) the default PINN, and (bottom) the 

proposed lbPINN. 
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introduced the Fourier features embedding strategy in PINN’s training process, which 

significantly reduced the adverse effects caused by the frequency principle. Although RANS 

simulations do not involve frequency issues on a time scale, similar to the training process in 

Figure 1-1, PINN prefers to prioritize providing a crude drawing of the time-averaged solution 

when solving the RANS equations, which hinders the acquisition of the accurate solutions for 

areas with substantial variations in gradients. Therefore, the limited nonlinear expression and 

feature learning capabilities of a PINN have become one of the obstacles that restrict the further 

developments of PINN-based RANS simulations. 

2.4 Summary 

This chapter begins by introducing the NS equations and explains how Reynolds 

averaging can be performed on the NS equations to derive the RANS equations. Subsequently, 

the RANS turbulence models are introduced, and the conventional methods for solving the 

RANS equations are presented. Next, this chapter introduces PINN as a novel PDE solver and 

elaborates on the origins of PINN in fluid mechanics, while also reviewing its applications in 

RANS simulations. The end of this chapter summarizes the factors that may limit the further 

developments of PINN-based RANS simulation. 

To conclude, turbulence simulation is mainly based on CFD methods nowadays. At the 

same time, a new force emerges, which is the machine learning-based PDE solvers represented 

by PINN. They can not only concern physical constraints in the modeling process but also fuse 

labeled data information, which shows the potential to become one of the mainstream methods 

for solving forward and inverse problems involving the RANS equations. However, such 

technology is still in its infancy right now, and there are issues that urgently need to be solved, 
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which calls for further research. Accordingly, this thesis is conducted on this basis, and the uses 

of various physics-based machine learning algorithms in turbulence simulation are examined, 

which aims to work for the advancement of the research on PINN-based RANS simulations. 
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CHAPTER 3                                         

DYNAMIC PRIORITIZATION  

3.1 Foreword 

Convergence is a key issue in training a neural network, which refers to the process in 

which a model gradually reduces the errors between the predictions and target values, and 

stabilizes its performance by learning from training data. As is well known, the total loss of a 

neural network represents the mismatch between its prediction and the target, which needs to 

be converted to the minimum with the aid of gradient descent algorithms (such as Adam and 

SGD) to reach the goal of classification or regression. Similarly, the convergence performance 

of the neural network backbone has a significant impact on the accuracy of the results of the 

PINN-based RANS simulation. However, there exists a common problem when PINN is 

utilized for RANS simulations. That is, the total loss of a PINN used to solve the RANS 

equations is generally accumulated by more than ten to twenty independent loss components, 

including the residuals of the physical governing equations and various kinds of boundary 

conditions, which may lead to the imbalance issue between each loss component. 

In fact, the loss balance issue had already shown up prior to the birth of PINN in a branch 

of machine learning, i.e., multitask learning. Dealing with the conflict and balance issue 

between the loss components of different tasks during the training process is crucial in 

multitask learning. The gradient of parameter optimization varies during error backpropagation, 

which may lead to different convergence speeds for different tasks. Some tasks may have been 
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well-trained, while others are still far from being well-optimized. Therefore, it is believed that 

there exists the theoretical possibility to achieve a faster convergence speed and more accurate 

predictions by dynamically balancing these tasks throughout the training process instead of 

simply assigning them with fixed weights. It should be explained that the weight here refers to 

the weight coefficient before each loss component, and the total loss of the neural network is 

the weighted sum of each loss component. Some have been trying to employ self-adaptive loss 

balance strategies in order to balance these loss components. A number of correlative studies 

have been carried out in the field of multitask learning (Kendall et al. 2018, Sener and Koltun 

2018).  

PINN has been trying to incorporate some of these ideas from multitask learning (Xiang 

et al. 2022). A dynamic prioritization loss balance strategy for the PINN framework will be 

proposed in this chapter, which disjoins the total loss of a PINN and recombines the loss 

components to form physics-based tasks. On this basis, an evaluation index will be established 

for each physics-based task to assess its past performance, and tasks with lagging performance 

will be assigned with high weights to be emphasized in the subsequent training process. 

Meanwhile, tasks that perform well will be given less attention in the ensuing training process. 

It is also worth mentioning that the proposed dynamic prioritization physics-informed neural 

network (dpPINN) incorporates the labeled training data into the dynamic loss balance process. 

Two forward problems involving the RANS equations will be solved using the proposed 

dpPINN models in this chapter. One is the square cylinder flow, while the other is the outdoor 

flow around a building. Based on the sparse experimental measurement (i.e., fluid velocity 

data), dpPINN models will be fully trained to simulate the fluid flow. Other experimental data 

will be used to validate the feasibility of the proposed model. 
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3.2 Basic Principles 

3.2.1 Structure of PINN 

The basic structure and principle of the PINN model adopted in this chapter will be 

described in detail here. By directly embedding physical equations, initial and boundary 

conditions, and measurement data into the total loss function for training a neural network, 

PINN is proven to be a charming physics-informed data-driven approach for solving forward 

and inverse physical problems involving differential equations. The residuals of the physical 

constraints tend to converge toward zero during PINN’s training process with the aid of an 

optimizer. In this way, the PINN is configured to achieve its function to approximate solutions 

to PDEs. The schematic diagram of the PINN targeting to achieve the RANS simulation of the 

three-dimensional fluid flow is depicted in Figure 3-1. The left part of the PINN is an FCNN 

which maps the relationship between the spatial coordinates (x, y, z) and flow characteristics 

of the wind field (u, v, w, p). Here, u, v, and w represent the velocity components in the x, y, 

and z directions, respectively, and p represents the pressure. In the middle part of the PINN, 

AD is applied to calculate the gradients of the outputs with respect to the inputs, which also 

plays a key role in training the neural network (Baydin et al. 2018). The right part of the PINN 

is the total loss, which takes the following form 

𝐿 = 𝑤௙𝐿௙ + 𝑤௕𝐿௕ + 𝑤ௗ𝐿ௗ (3 − 1) 

where 

𝐿௙ =
1

𝑁௙
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௡|ଶ

ସ
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ே೑

௡ୀଵ

(3 − 2) 
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In the above expressions, 𝐿௙, 𝐿௕, and 𝐿ௗ denote the loss components associated with the 

residuals of the governing equations, boundary conditions, and data constraints, respectively; 

𝑤௙, 𝑤௕, and 𝑤ௗ denote the weighting coefficients of the corresponding loss terms; 𝑓௜
௡ is the 

residual of the ith governing equation in Figure 3-1; 𝑟௡௕
௜ , 𝑟ௗ௕

௜ , and 𝑟ௗ
௜  are the residuals for the 

Neumann boundary, Dirichlet boundary, and data constraints, respectively. 𝑁௙ is the number 

of collocation points used to calculate the residual of the governing functions, while 𝑁௡௕, 𝑁ௗ௕, 

and 𝑁ௗ are the numbers of points used to calculate the residuals for the Neumann and Dirichlet 

boundaries, and for the data constraints, respectively. Once the total loss is formed, the error 

backpropagation algorithm is then employed for calculating the gradients of the parameters to 

be optimized and updating their values. 

 

Figure 3-1. Schematic diagram of PINN for the RANS simulation of the three-dimensional 

fluid flow. 
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3.2.2 Dynamic prioritization loss balance strategy 

How to balance the loss terms in the total loss function during the training process of 

PINN has become a challenging issue, as illustrated by Xiang et al. (2022). The imbalance 

between different loss terms may significantly diminish the convergence rate and 

computational efficiency in the training of a PINN. To alleviate this problem, we rewrite the 

total loss in the following form: 

𝐿 = 𝐿௙ + 𝑤௨𝐿௨ + 𝑤௩𝐿௩ + 𝑤௪𝐿௪ + 𝑤௣𝐿௣ (3 − 5) 

where 

𝐿௨ = ෍
1

𝑁௡
෍ห𝑟௡

௜ห
ଶ

ே೙

௜ୀଵ௡∈𝐔ೝ

(3 − 6) 
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Unlike the original expression in Eq. (3-1), the total loss function is now reshaped to 

consist of five separate components, i.e., 𝐿௙, 𝐿௨, 𝐿௩, 𝐿௪, and 𝐿௣. 𝐿௙ has the same meaning 

as given before; 𝐿௨ , 𝐿௩ , and 𝐿௪  denote the loss terms directly related to the velocity 

components u, v, and w, respectively; 𝐿௣ denotes the loss term related to the pressure p; 𝑤௨, 

𝑤௩, 𝑤௪, and 𝑤௣ denote the weighting coefficients of the corresponding loss terms. 𝐔௥, 𝐕௥, 
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𝐖௥, and 𝐏௥ represent the sets which are composed of formula numbers related to u, v, w, and 

p. The details will be further explained in the following validation case. 𝑟௡
௜ is the residual of 

Eq. (3-n) on the ith collocation point, and 𝑁௡  is the number of collocation points used to 

calculate the residual of Eq. (3-n). It can be seen that the residuals of various boundary 

conditions and data constraints form the loss terms 𝐿௕ and 𝐿ௗ in Eq. (3-1) in the default PINN. 

However, they are reorganized in the proposed dpPINN to form the u, v, w, and p-related loss 

terms. Such a reconfiguration enables us to balance each loss term in the following way: 

𝑤௜ = ቈ
𝑘௜

min௝൫𝑘௝൯
቉

ఊ

, 𝑖, 𝑗 = 𝑢, 𝑣, 𝑤, 𝑝 (3 − 10) 

𝑘௜ =
ฮ𝑼𝑻𝒊

− 𝑼෩𝑻𝒊
ฮ

ଶ

ฮ𝑼𝑻𝒊
ฮ

ଶ

, 𝑖 = 𝑢, 𝑣, 𝑤, 𝑝 (3 − 11) 

where 𝛾 is a newly introduced hyperparameter that affects the weight balance between 

different loss terms; ‖∙‖ଶ denotes the ℓ2-norm; 𝑼𝑻𝒊
 denotes the vector of the labelled data on 

the training points; and 𝑼෩𝑻𝒊
 denotes the vector of PINN predictions on the training points. 

Such a setting means that the relative errors of u, v, w, and p between the PINN predictions and 

the reference data are calculated at the training points after certain iterations. A flowchart is 

depicted to further illustrate the updating mechanism of the dpPINN’s weighting coefficients, 

as shown in Figure 3-2. In the first step, current weights will be assigned to the loss function 

of a dpPINN and the dpPINN will make its prediction as a normal neural network model. What 

follows is an evaluation process, where the errors between the dpPINN predictions and the 

reference data on the training points, i.e., Eq. (3-11), are calculated. For example, in Figure 3-

2, the velocity component w is found to possess the highest relative error during the evaluation 

process. Then it will be given the highest weight using Eq. (3-10) in the following training 
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process, as a punishment for the low prediction accuracy in the past training process. The 

assigned weight will be used to form the total loss to update the neural network parameters. 

 

 

The core idea of the dpPINN is that we desire to automatically prioritize the terms with 

larger relative errors in the subsequent iteration steps. Similar ideas of dynamic prioritization 

loss balance strategies can also be found in the field of computer vision and multi-task learning 

(Lin et al. 2017, Guo et al. 2018). It should be mentioned that the weighting coefficient 𝑤௙ for 

𝐿௙ in Eq. (3-5) is not explicitly defined; instead, the weight of 𝐿௙ in the total loss is indirectly 

adjusted by tuning the value of the coefficient 𝛾. The influence of the coefficient 𝛾 on the 

prediction accuracy will be discussed in detail later. The reconfigured PINN, referred to as 

dpPINN, encompasses a new total loss defined in Eq. (3-5) and the dynamic prioritization loss 

balance strategy. The implementation of the dpPINN paradigm for simulating the three-

dimensional flow field simulation is presented in Algorithm 3-1. 

Figure 3-2. Updating mechanism of the dpPINN weighting coefficients. 
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Algorithm 3-1 dpPINN for three-dimensional flow simulation using the RANS equations 

Require: Training dataset, number of training iteration, learning rate, initial values of 

weighting coefficients, and the value of the coefficient γ. 

Target: Find the best model with appropriate neural network parameters. 

Step 1: Determine the physical problem by specifying the computational domain, 

boundary conditions, and RANS turbulence model. 

Step 2: Construct a deep neural network with the specified hyperparameters and initial 

neural network parameters. 

Step 3: Specify the collocation points in the computational domain. 

Step 4: Calculate loss components 𝐿௙, 𝐿௨, 𝐿௩, 𝐿௪, and 𝐿௣ at the collocation points and 

data points using AD. 

Step 5: Use the gradient descent algorithm to update the neural network parameters as 

follows: 

for each iteration:  

(a) Calculate the total loss function Eq. (3-5) using the values of the weighting 

coefficients from the previous iteration. 

(b) Update the neural network parameters using the optimizer with a fixed 

learning rate by minimizing the total loss function. 

(c) Update the weighting coefficients according to Eqs. (3-10) and (3-11). 

end for 
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3.3 Validation Case: Building Outdoor Wind Field 

3.3.1 Brief description of the wind tunnel test 

In this section, utilize a building outflow wind field simulation will be utilized to verify 

the feasibility of the proposed dpPINN. The acquaintance of outdoor airflow characteristics is 

essential for building simulations since these characteristics directly influence the thermal 

environment, air pollutant diffusion, and other relevant effects surrounding a building. The data 

from the wind tunnel test conducted by the Shimizu Corporation Institute of Technology (Meng 

and Hibi 1998) will be used in this study. A scale model of a building was positioned in the 

center location of the wind tunnel, which was 0.08 m in length and width and 0.16 m in height. 

During the wind tunnel test, the maximum wind speed at the inlet reached 6.75 m/s. This 

resulted in a Reynolds number of up to 2.4×104, which was elicited using the building width 

and the wind velocity at the building height. A total of 186 measurement points were sprinkled 

throughout the wind tunnel. The sensors deployed collected real-time wind velocity 

components in the x, y, and z directions at the measurement points. The mean values and the 

standard deviations of the measured wind velocity in sixty seconds during the test were also 

provided serving as a public dataset for benchmark study. 

3.3.2 Boundary conditions of the computational domain 

The computational domain considered here is a cuboid with a size of 1.4 m × 0.7 m × 0.7 

m (length × width × height), as shown in Figure 3-3. The details about the position of the scale 

building model and the boundary conditions are provided in the figure as well. In this study, 

the air density and the kinematic viscosity are set to be 1.225 kg/m3 and 1.497×10−5 m2/s, 
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respectively. The vertical surface OGDA is defined as an initial speed boundary and the x-

direction velocity 𝑢௜௦௕ is defined as follows: 

𝑢௜௦௕ = 𝑢௜௡௜௧௜௔௟ (3 − 12) 

where 𝑢௜௡௜௧௜௔௟ denotes the velocity distribution, which is shown in Figure 3-4. For more details 

about the wind tunnel test, readers may refer to (Meng and Hibi 1998). 

The y-direction velocity component 𝑣௜௦௕ and the z-direction velocity component 𝑤௜௦௕ in 

the initial speed boundary are subject to the following constraints: 

𝑣௜௦௕ = 0 (3 − 13) 

𝑤௜௦௕ = 0 (3 − 14) 

The horizontal surface ABED is defined as a symmetry wall boundary in which the 

velocity components and pressure are subject to the following constraints: 

𝜕𝑢௦௪௕

𝜕𝑧
= 0 (3 − 15) 

𝜕𝑣௦௪௕ଵ

𝜕𝑧
= 0 (3 − 16) 

𝑤௦௪௕ଵ = 0 (3 − 17) 

𝜕𝑝௦௪௕ଵ

𝜕𝑧
= 0 (3 − 18) 

The vertical surfaces ABCO and DEFG are also defined as symmetry wall boundaries in 

which the velocity components and pressure are subject to the following constraints: 

𝜕𝑢௦௪௕ଶ

𝜕𝑦
= 0 (3 − 19) 
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Figure 3-3. Computational domain for outdoor airflow simulation: (a) side view, (b) top view, 

and (c) general view. 



 

65 

 

𝑣௦௪௕ଶ = 0 (3 − 20) 

𝜕𝑤௦௪௕ଶ

𝜕𝑦
= 0 (3 − 21) 

𝜕𝑝௦௪௕ଶ

𝜕𝑦
= 0 (3 − 22) 

The vertical surface CFEB takes the form of a zero-pressure outlet boundary. The pressure 

and fluid velocity on the boundary is described as follows: 

𝑝௭௣௕ = 0 (3 − 23) 

𝜕𝑢௭௣௕

𝜕𝑥
= 0 (3 − 24) 

𝜕𝑣௭௣௕

𝜕𝑥
= 0 (3 − 25) 

𝜕𝑤௭௣௕

𝜕𝑥
= 0 (3 − 26) 

𝜕𝑝௭௣௕

𝜕𝑥
= 0 (3 − 27) 

Finally, the horizontal surface OCFG and the building surfaces are defined as no-slip wall 

boundaries, where 

𝑢௪௕ = 0 (3 − 28) 

𝑣௪௕ = 0 (3 − 29) 

𝑤௪௕ = 0 (3 − 30) 

In the above expressions, u, v, and w denote the x, y, and z-direction velocity components, 

respectively; p denotes the pressure; the subscripts isb, swb1, swb2, zpb, and wb denote the 
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initial speed boundary, symmetry wall boundary of the first kind (surface ABED), symmetry 

wall boundary of the second kind (surfaces ABCO and DEFG), zero-pressure outlet boundary 

(surface CFEB), and wall boundary, respectively. 

 

3.3.3 Data constraints of the computational domain 

Like other neural networks, PINN can embed labelled data (on-site information) into the 

model training process (Riel et al. 2021, Choi et al. 2022, Tang et al. 2022, Xie et al. 2022). 

The residuals between the PINN prediction and the labelled data, along with the residuals of 

RANS equations at collocation points, are calculated at each iteration and embedded in the 

total loss. In this way, the final solution to RANS equations by the PINN method can be thought 

of as a comprehensive result that combines both physical laws and on-site information (Guo et 

al. 2020). So this research is to make an attempt to reconstruct the entire 3D flow field around 

a scale building model in wind tunnel by using only a small amount of wind characteristic data 

collected near the building model and near the ground (no-slip wall boundary) within the PINN 

Figure 3-4. Distribution of velocity component 𝑢௜௡௜௧௜௔௟ on the initial speed boundary. 
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framework. 

As aforementioned, 186 measurement points are dispersed throughout the wind tunnel, as 

shown in Figure 3-5. Among these measurement points, 66 points are in the cross-section y = 

0.35 m (the middle plane in the spanwise direction of the computational domain), and the 

remaining 120 points are distributed in the cross-sections z = 0.01 m and z = 0.10 m. Among 

the 186 measurement points, 93 near-wall points which are either close to the surface of the 

building model or near the ground will be utilized for supervised learning of dpPINN. More 

specifically, 21 points are in the cross-section y = 0.35 m, 60 in the cross-section z = 0.01 m, 

and 12 in the cross-section z = 0.10 m, as marked by red circles in Figure 3-5. The selection of 

training points ensures easy accessibility of the data even in real practice. At the training points, 

the dpPINN predictions of the wind velocity components should satisfy the following 

constraints: 

𝑢௣ = 𝑢௠ (3 − 31) 

𝑣௣ = 𝑣௠ (3 − 32) 

𝑤௣ = 𝑤௠ (3 − 33) 

where the subscripts p and m denote the dpPINN predictions and the measured results at the 

training points, respectively.  

Then, a dpPINN model is formulated to simulate the flow field in wind tunnel test using 

sparse experimental wind velocity data in the near-wall regions for supervised learning. 

Keeping in mind limited accessibility in real practice, only the wind characteristics collected 

in the near-wall regions of wind tunnel are embedded, in conjunction with the constraints of 

physical equations, to guide the training of the dpPINN. 
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Figure 3-5. Distribution of measurement points in the cross-sections (a) y = 0.35 m, (b) z = 0.01 m, and (c) z = 0.10 m.
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3.3.4 Physical governing equations 

Although the instantaneous NS equation can describe turbulent behaviors, its nonlinearity 

makes the computation extremely complex, and it is rarely used in engineering practices. 

Instead, solving the RANS equations has evolved into an alternative effective approach to 

addressing such engineering problems. The NS equations are averaged in the time domain in 

the RANS framework to solve a time-averaged flow field rather than an instantaneous flow 

field. The computational burden can be significantly lessened since the turbulent fluctuation 

on each scale is no longer calculated. The steady RANS equations for a three-dimensional flow 

are shown as follows: 

𝜕

𝜕𝑥
(𝜌𝑢ത௜) = 0 (3 − 34) 

𝜌𝑢ത௝

𝜕𝑢ത௜

𝜕𝑥௝
= −

𝜕𝑝̅

𝜕𝑥௜
+

𝜕

𝜕𝑥௝
ቆ𝜇

𝜕𝑢ത௜

𝜕𝑥௝
− 𝜌𝑢௜

ᇱ𝑢௝
ᇱቇ (3 − 35) 

where 𝜌 is the fluid density, 𝑢ത௜  is the velocity component in 𝑥௜-direction, 𝑝̅ is the pressure, 

𝜇 is the laminar viscosity, and −𝜌𝑢௜
ᇱ𝑢௝

ᇱ is the Reynolds stress. Turbulence models are adopted 

to describe the influence of the Reynolds stress terms in the momentum equations. Later in this 

chapter, the performances of four different turbulence models on the wind field simulation 

around a building will be evaluated. Among them, two are zero-equation models, while the 

other two are two-equation models. In zero-equation RANS turbulence models, the Reynolds 

stress is described as follows: 

−𝜌𝑢௜
ᇱ𝑢௝

ᇱ = 𝜇௧ ቆ
𝜕𝑢௜

𝜕𝑥௝
+

𝜕𝑢௝

𝜕𝑥௜
ቇ (3 − 36) 

where 𝜇௧ is the turbulent viscosity. Li model is a zero-equation RANS model for simulating 
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outdoor flow (Li et al. 2013). Li model adopts a mixing-length strategy to describe turbulent 

viscosity 𝜇௧, which can be expressed as: 

𝜇௧ = max(𝜇௜௡, 𝜇௢௨௧) (3 − 37) 

where 𝜇௜௡ is the boundary layer’s turbulent viscosity, and  𝜇௢௨௧ is the outer layer’s turbulent 

viscosity. Furthermore, 𝜇௜௡ takes the following form: 

𝜇௜௡ = (𝐶௜௡𝑙)ଶ𝑆 (3 − 38) 

where 

 

𝐶௜௡ = 1.8 × ൬1 − exp ൬−0.645 ቀ
஼್

ு್
ቁ

଴.଼
൰൰ × exp ቀ−2 × min ቀ

௬

ு್
, 1ቁቁ (3 − 39) 

𝑆 = ඨଵ

ଶ
൬

డ௨೔

డ௫ೕ
+

డ௨ೕ

డ௫೔
൰

ଶ

(3 − 40)  

where 𝐶௕ and 𝐻௕ denote building width and height in its windward side. Outer layer’s flow 

viscosity takes the following form: 

𝜇௢௨௧ = 𝐶௢௨௧𝑉𝑙 (3 − 41) 

where V is the local resultant velocity of the fluid flow. The coefficient 𝐶௢௨௧ is expressed as: 

𝐶௢௨௧ =
𝐶ఓ

଴.ହ𝐼ଶ𝑧ீ
ଶఈା଴.ଵ𝑧଴.ଽିଶఈ

𝛼
(3 − 42) 

where 𝐶ఓ = 0.09, 𝐼 = 0.1, 𝑧ீ = 350, and 𝛼 = 0.22. 

3.3.5 Implementation of dpPINN in the case study 

Now, the sets 𝐔௥, 𝐕௥, 𝐖௥, and 𝐏௥ can be figured out based on the above information. 
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That is, 𝐔௥ = {12, 15, 19, 24, 28, 31} , 𝐕௥ = {13, 16, 20, 25, 29, 32} , 𝐖௥ =

{14, 17, 21, 26, 30, 33} , and 𝐏௥ = {18, 22, 23, 27} . Please note that the chapter numbers 

within the formula numbers have been omitted here for clarity. It can be clearly observed that 

the original boundary condition loss and training data loss have been broken down, replaced 

by task losses related to u, v, w, and p. 

For instance, the residuals of Eqs. (3-12) and (3-31) belong to different loss components 

in the default PINN, i.e., 𝐿௕ and 𝐿ௗ, respectively. However, in the proposed dpPINN, both 

belong to the loss term 𝐿௨ in Eq. (3-5). For another instance, the residuals of Eqs. (3-12) and 

(3-13) belong to the same loss components in the default PINN, i.e., 𝐿௕ . However, in the 

proposed dpPINN, the former belongs to the loss term 𝐿௨ while the latter belongs to the loss 

term 𝐿௩. 

The proposed dynamic prioritization loss balance strategy has the benefit of allowing us 

to assess the performance of each task throughout the training process and allocate weight 

coefficients according to how well it performed in earlier training iterations. Tasks that perform 

exceptionally well will generally have a smaller weight in subsequent training, whereas tasks 

that perform just moderately well will be assigned with a larger weight so that they can be 

emphasized in the next stage of training. 

3.3.5 dpPINN results compared with experimental data 

As mentioned before, this study simulates the flow field around the scale model of a 

building in a wind tunnel by using sparse near-wall velocity data under the dpPINN framework. 

In this section, the dpPINN predictions are validated with the measured wind velocity 

components at the measurement points from which the data were not used in dpPINN training. 
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All simulations are conducted on the platform equipped with PyTorch v1.9.0 and NVIDIA 

A100 graphics processing units.  

The value of the coefficient 𝛾  is preliminarily set as 2. Because no pressure data is 

embedded in the dpPINN training, the weighting coefficient 𝑤௣  is set to 1 in this case. A 

dpPINN with six hidden layers, each containing 40 neurons, is formulated for outdoor airflow 

simulation. The hyperbolic tangent function (Tanh) is adopted as the activation function in the 

neural network. The Adam optimizer with 1×105 iterations is used to train the dpPINN. The 

learning rate is set as 3×10−4, and 26944 collocation points are uniformly distributed within the 

cubic computational domain. These collocation points are used to compute the residuals of the 

governing equations. Additionally, 9900 collocation points distributed on the domain 

boundaries are used to compute the residuals of the boundary conditions.  

In this case study, one training iteration takes roughly about 0.318 second. It takes about 

53.6% of the duration for AD to calculate the physical residuals and form the components of 

the total loss, and the remaining 46.4% is for error backpropagation to update the neural 

network parameters. 

As indicated previously, among the total 186 measurement points, 93 near-wall points are 

selected for training the dpPINN (21 in the cross-section y = 0.35 m, 60 in the cross-section z 

= 0.01 m, and 12 in the cross-section z = 0.10 m), as shown in Figure 3-5. The velocity data at 

the 93 training points are used for supervised learning and updating of the weighting 

coefficients. Excluding the training points, the remaining measurement points (the data from 

which are referred to as reference data) are used to verify the proposed approach for outdoor 

airflow simulation.  

After training the dpPINN model, its prediction results are obtained as shown in Figure 3-
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6 and Figure 3-7, which are compared with the reference data from wind tunnel measurements. 

The black solid lines, red dotted lines, and blue dash-dot lines represent the dpPINN predictions 

of the velocity components u, v, and w, respectively. The black dots, red squares, and blue 

diamonds denote the experimental mean values of the velocity components u, v, and w, 

respectively, at the measurement points. The red and black dots are training and testing points 

respectively, which is consistent with Figure 3-5. 

From the results, it can be found that the dpPINN predictions show a good agreement with 

the experimental data even when the experimental data used for verification were not included 

in training the dpPINN. The top left panel of Figure 3-6 can be taken as an example for further 

exploration. Eight training points (points 27 to 33 in Figure 3-5(a) and point 29 in Figure 3-

5(c)) and three testing points (points 34 to 36 in Figure 3-5(a)) are scattered on the line x = 0.40 

m in the cross-section y = 0.35 m. The dpPINN not only generates agreeable simulation results 

of the velocity component u when z (height) is less than 0.17 m but also provides good 

predictions in the areas without training data (z > 0.17 m). As another example, on the line x = 

0.72 m, only one training data point (point 57 in Figure 3-5(a)) is included for dpPINN training. 

However, the dpPINN predictions still show a good agreement with the field-measured results 

for the other 10 testing points (points 58 to 66 in Figure 3-5(a) and point 53 in Figure 3-5(c)). 

After examining all the results, it is found that dpPINN demonstrates good prediction accuracy 

in other regions as well.  

One may easily come to the first conclusion about the advantage of this physics-informed 

data-driven approach for outdoor airflow simulation around buildings: Compared with pure 

data-driven methods, the embedding of physical laws in the dpPINN framework enables us to 

use few datasets to generate a model with strong generalization and forecasting capability, 

which is of great practical significance.
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Figure 3-6. Comparison of results between dpPINN predictions and wind tunnel measurements in the cross-section y = 0.35 m. 
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Figure 3-7. Comparison of results between dpPINN predictions and wind tunnel measurements in the cross-section z = 0.10 m. 
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3.3.6 Comparison of different loss balance strategies 

In the following, the ℓ2 error is used to quantitatively evaluate the accuracy of the dpPINN 

prediction, which is defined as 

𝑙ଶ 𝑒𝑟𝑟𝑜𝑟 =
ฮ𝑼𝒊 − 𝑼෩ 𝒊ฮଶ

‖𝑼𝒊‖ଶ
× 100% (3 − 43) 

where ‖∙‖ଶ  denotes the ℓ2-norm, 𝑼𝒊  denotes the vector of the reference data, and 𝑼෩ 𝒊 

denotes the vector of the dpPINN predictions. The ℓ2-norm of a vector 𝒙 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ, ⋯ , 𝑥௡) 

is calculated as ට∑ 𝑥௜
ଶ௡

௜ୀଵ . To quantify the relative error of the dpPINN prediction, the ℓ2 errors 

of the velocity component u and the resultant velocity are recorded during the training process, 

as depicted in Figure 3-8. The value of the coefficient 𝛾 is still set as 2, the same as in Section 

4.1. It is seen that, after 1×105 iterations, the ℓ2 errors of u and the resultant velocity are reduced 

to 0.125 and 0.123. Eivazi and Vinuesa (2022) recently investigated the influence of 

observation noise on PINN prediction accuracy. Their results indicated that noisy training data 

would interfere with the PINN prediction and make it less accurate. In view of this, the above 

results would be acceptable in consideration of the existence of measurement noise during the 

wind tunnel test. Also, the prediction accuracy between the dpPINN and other PINNs adopting 

different loss balance strategies is compared, as shown in Figure 3-8, where the influence of 

the coefficient 𝛾 is investigated as well. In Figure 3-8, the black lines represent the original 

PINN, which uses Eq. (3-1) as the total loss. The values of the weighting coefficients 𝑤௙, 𝑤௕, 

and 𝑤ௗ  are set as 1 during the training process. The blue lines represent the loss balance 

strategy ‘lbPINN’ proposed by (Xiang et al. 2022), which updates the weighting coefficients 

based on the maximum likelihood estimation. The other lines represent the results of the 



 

79 

 

proposed dpPINN with different values of the coefficient 𝛾. 

 

Unfortunately, the lbPINN seems inapplicable in this case. The ℓ2 errors of the velocity 

components u and the resultant velocity reach more than 0.5 when the lbPINN is adopted, 

which means that the total loss of the neural network is unable to converge toward zero in this 

Figure 3-8. ℓ2 errors of the PINN predictions using different loss balance strategies (top: u; 

bottom: resultant velocity). 
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case. It is probably because the lbPINN is inapplicable for solving 3D incompressible turbulent 

flow problems. Better solutions can be achieved by the original PINN. The ℓ2 errors of the 

velocity component u and the resultant velocity drop eventually to 0.169 after 1×105 iterations. 

By contrast, the dpPINN shows much better performance under the same training iteration; in 

particular, the final ℓ2 error is not significantly affected by the value of the coefficient 𝛾 . 

Compared with the original PINN, the ℓ2 errors of the velocity component u and the resultant 

velocity are reduced by roughly 20% to 30% when 𝛾 ranges from 1 to 5 after 1×105 iterations. 

However, the conclusion that dpPINN outperforms PINN in prediction accuracy because the 

slow convergence rate seems to limit the potential of the PINN cannot be currently drawn, so 

the training process for additional 8×104 iterations to a total of 1.8×105 iterations is extended. 

The findings reveal that the two approaches estimate u and v with similar accuracy, while the 

error of w predicted by dpPINN (𝛾=2) is still 4% lower than that predicted by PINN. A more 

detailed comparison is tabulated in Table 3-1. 

 

Figure 3-9. The dynamic balance of weighting coefficients in the dpPINN. 
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In addition, Figure 3-8 indicates that a rough solution can be quickly achieved after only 

about 3×104 iterations, demonstrating that the computational efficiency is greatly enhanced 

when adopting the dpPINN. It should be noted that we mainly focus on the l2 errors of the 

mainstream velocity and resultant velocity in this figure, while the l2 errors of the other two 

velocity components are summarized in Table 3-1.  

The dynamic balance process of weighting coefficients of the dpPINN (𝛾 =2) is also 

monitored, as shown in Figure 3-9. Since u demonstrates the minimum relative error among 

those of all velocity components, it possesses the lowest weight, which is stabilized at 1, in its 

training process. In addition, the relative error of the velocity component w is always greater 

than that of v, thus it is penalized with a higher weight. dpPINN appears to be striving for the 

best balance in the first 4×104 iterations, while in the last 6×104 iterations, wu, wv, and ww 

gradually balance at the ratio of 1.0: 2.4: 5.2. 

Table 3-1. ℓ2 errors of the PINN, lbPINN, and dpPINN predictions after 1×105 iterations. 

Type u error  v error w error V error 

PINN 0.169 0.528 0.271 0.169 

lbPINN 0.562 1.010 0.947 0.526 

dpPINN (𝛾 = 1) 0.138 0.437 0.283 0.138 

dpPINN (𝛾 = 2) 0.125 0.314 0.248 0.123 

dpPINN (𝛾 = 3) 0.112 0.323 0.238 0.110 

dpPINN (𝛾 = 4) 0.124 0.357 0.258 0.123 

dpPINN (𝛾 = 5) 0.107 0.328 0.224 0.105 
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 3.3.7 Influence of the neural network configuration 

This section discusses the influence of neural network configuration on the dpPINN 

prediction accuracy. The value of the coefficient 𝛾 is set as 2. Nine different neural network 

configurations are considered, with three different depths and three different widths. The 

relevant results are displayed in Table 3-2. In general, a broader width of the neural network is 

beneficial to the overall performance of the dpPINN, but this involves more computational 

expense as a side effect. In comparison, the depth of the neural network has a less positive 

influence on prediction accuracy. To summarize, the neural network containing six hidden 

layers, each with 60 neurons, is found to possess the best performance among the nine 

configurations. 

Table 3-2. ℓ2 errors of the dpPINN predictions with different neural network configurations. 

Depth 

Width 

4 6 8 

u V u V u V 

20 0.251 0.253 0.185 0.184 0.170 0.167 

40 0.130 0.129 0.125 0.123 0.116 0.119 

60 0.131 0.128 0.109 0.108 0.143 0.143 

 3.3.8 Influence of turbulence model 

To determine the impact of embedding different turbulence models in the PINN 

framework, a further analysis is carried out. Another widely used zero-equation turbulence 

model is the Chen model (Chen and Xu 1998). It is assumed that the turbulent viscosity is 
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determined by the air density, the local velocity V, and the distance l from the nearest wall, 

which can be calculated as follows: 

𝜇௧ = 0.03874𝜌𝑉𝑙 (3 − 44) 

For this simulation, an attempt is made to embed the Chen model rather than the Li model. 

Li-dpPINN and Chen-dpPINN are dpPINNs based on the Li and Chen models, respectively. 

As before, the neural network consists of six hidden layers with 40 neurons each. Coefficient 

𝛾 is still set to 2.  

Figure 3-10 shows the results. This figure shows the contours of the velocity component 

u predicted by the Li-dpPINN and the Chen-dpPINN at the cross-section y = 0.35 m 

respectively. The velocity contours show that when the Chen model is used in the wind field 

simulation instead of the Li model, there is a greater clockwise rotation of the vortex near the 

leeward side of the building, contrary to the measured results near the ground. Chen model, 

which is widely used in indoor airflow simulation rather than outdoor airflow simulation, may 

explain this phenomenon. 
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Figure 3-10. u contours at y = 0.35 m: (a) and (b) 93 measurement points are used to train 

the dpPINN model; (c) and (d) 100 measurement points are used to train the dpPINN model.
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To overcome these challenges, an attempt is made to include velocity data from seven 

additional measurement points in the dpPINN training process. These are points 48–53 in 

Figure 3-5(a) and point 45 in Figure 3-5(c). With velocity data from these measurement points, 

the leeward side of the scale building model can be guided properly for the dpPINN solution. 

To be noted, when different turbulence models are embedded for airflow simulation, this region 

also has the maximum relative error. Figure 3-10(c), Figure 3-10(d) and Figure 3-11 show the 

modified results. As more labelled data are embedded, Figures 3-10(c) and (d) illustrates the 

contours of the velocity component u using different turbulence models.  

In Figure 3-11, the Chen-dpPINN prediction results for the velocity component u at the 

cross-section y = 0.35 m are compared to the Li-dpPINN prediction results. When seven more 

measurement points are used to train the Li-dpPINN and Chen-dpPINN, the ℓ2 errors of the 

velocity component u drop to 0.089 and 0.128, respectively, which are acceptable in 

engineering practice. As a result, even when more training data are used for supervised learning, 

the Li-dpPINN still performs better than the Chen-dpPINN.  

Although an inapplicable turbulence model, namely the Chen model, is embedded in the 

dpPINN for airflow simulation, the solution does not seem totally ineffective because the size 

of the vortex near the leeward side of the building is corrected by sufficient training data. In 

the cross-section y = 0.35 m, Li-dpPINN and Chen-dpPINN predictions of the velocity 

component u are well congruent with the field-measured results, although the former is slightly 

better. Here is the second benefit of using this physics-based data-driven approach for outdoor 

airflow simulation. PINN integrates measurement data into physical models, which is difficult 

when using traditional physics-based methods. Furthermore, this extends the applicability of 

these physical models, making the PINN framework robust for airflow simulation. 
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Furthermore, two well-known two-equation RANS turbulence models, i.e., the standard 

k-ε model and RNG k-ε model, are also encoded in the dpPINN model. Figure 3-12 depicts the 

flow streamlines in the building's leeward recirculation zone when various RANS turbulence 

models are utilized. Here, the streamline distribution in an area with a size of 0.2 meters by 0.2 

meters which is on the leeward side of the building and near the ground becomes the focus. 

The result indicates that when using the zero-equation RANS turbulence models, the airflow 

recirculation zone cannot be well reflected, but when the two-equation models are adopted, 

appropriately sized refluxes are generated in its leeward side. The reason might be that dpPINN 

fails to effectively limit the residuals of the physical governing equations when solving the 

Figure 3-11. Comparison of Li-dpPINN predictions with the Chen-dpPINN predictions of the 

velocity component u at the cross-section y = 0.35 m.` 
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zero-equation model-embedded RANS equations. Anyway, the constraints of dpPINN on 

physical conditions are relatively flexible, that is, only by adding penalty terms in the loss 

function, so it is not surprising that its solution sometimes deviates. It is believed that further 

in-depth research is needed to specifically address this issue. 

 

3.4 Conclusions 

By rewriting the form of the total loss in the original PINN, a novel self-adaptive loss 

balance strategy, i.e., dpPINN, is proposed in this chapter. A zero-equation RANS turbulence 

Figure 3-12. The flow streamlines in the building's leeward recirculation zone. 
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model is used to reconstruct the entire flow field around a scale model of a building in a wind 

tunnel. For supervised learning, sparse near-wall velocity data is used. Furthermore, the wind 

tunnel experiment provides verification that the dpPINN framework is feasible. The impact of 

different neural network configurations and embedded turbulence models on dpPINN 

prediction is also investigated. It appears that the dpPINN can provide an auxiliary means to 

predict spatial flow fields around a building based on the results. Here are some conclusions: 

 Even though only a small portion of the sparse near-wall data can be used to reconstruct 

the three-dimensional flow field around the scale building model, embedding the 

measurements and laws into the neural network can still provide the missing airflow 

information across the whole computational domain. 

 This chapter proposes a dpPINN model frame that outperforms the original PINN and 

lbPINN in prediction accuracy. In the dpPINN framework, a higher relative error loss term 

is prioritized after certain iterations, speeding up the training process and resulting in better 

performance. 

 In general, the width of the neural network has a greater influence on prediction accuracy 

than the depth of the network. The dpPINN performance improves with a wider width, but 

the computational cost increases as well. Nine test configurations were investigated for 

outdoor airflow simulation, and the configuration of six hidden layers, each with 60 

neurons, was found to be optimal. 

 It is important to note that turbulence models embedded in the RANS equations directly 

affect the dpPINN solution. There is a tendency for a bigger clockwise-rotating vortex to 

occur near the leeward side of the building when the Chen model instead of the Li model 

is embedded in the RANS equations. When more training data is used for supervised 
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learning in the PINN framework, however, Li-dpPINN and Chen-dpPINN predictions are 

both consistent with experimental results, although the former is still slightly better. 

 When there are labeled training data available for supervised learning in flow simulations 

around buildings, the PINN framework shows a higher universality compared with pure 

physics-based methods. Due to the fact that only the near-wall data is used for training the 

neural network, it is also less data-demanding than pure data-driven methods, and yet still 

demonstrates competitive results. 
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CHAPTER 4                           

MULTIFIDELITY MODELING 

4.1 Foreword 

In the multifidelity modeling framework, accurate but expensive high-fidelity data is 

scarce, while cheap and inaccurate low-fidelity data is abundant. In many cases, low-fidelity 

data can provide useful information such as trends for high-fidelity modeling. Therefore, 

multifidelity modeling based on a small amount of high-fidelity data can greatly improve the 

prediction accuracy of single-fidelity modeling. As a result, multifidelity modeling has been 

proven to be efficient and effective, by using low-fidelity and high-fidelity data to achieve high 

accuracy in different applications. 

Building a link between low-fidelity and high-fidelity data in multifidelity modeling is 

crucial. Among the current methods, Gaussian Process (GP) regression with a linear 

autoregressive framework has attracted the most interest, even though only the linear 

association between low-fidelity and high-fidelity data may be captured under this approach 

(Le Gratiet and Garnier 2014). This approach has been enhanced by some such that it can 

recognize intricate nonlinear relationships (Perdikaris et al. 2017). The multifidelity approach 

based on GP regression has made considerable strides, but there are still certain drawbacks, 

including the approximation of discontinuous functions, high-dimensional issues, and strongly 

nonlinear inverse problems. Nevertheless, multifidelity modeling is still an indispensable 
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means to integrate physical information and data information which has been widely adopted 

in different research fields. 

For instance, Perdikaris et al. (2017) proposed a nonlinear fusion algorithm for 

multifidelity modeling based on the GP regression. In their algorithm, multifidelity modeling 

is based on the GP regression and is achieved by combining low-fidelity models with a small 

number of high-fidelity observations, which saves much computational cost. Their scheme was 

verified by different cases and the results indicated its feasibility when sufficient low-fidelity 

and high-fidelity data was available for modeling. In addition, Meng and Karniadakis (2020) 

proposed a method which was named multifidelity PINN, as shown in Figure 4-1 in the case 

that only a small set of high-fidelity data was available for multifidelity modeling. In their 

opinion, implementing multifidelity modeling based on GP regression optimization is fairly 

challenging, so multifidelity approaches are therefore urgently required to address these flaws. 

Their results also demonstrated that the proposed multifidelity PINN could be a powerful 

means of multifidelity modeling. 

 

Figure 4-1. The structure of the multifidelity PINN proposed by Meng and Karniadakis (2020). 
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It has been proposed that a small sampling of high-fidelity data can be used to reconstruct 

the flow field within the entire computational domain in order to achieve this balance. For 

instance, using direct numerical simulation data, Abrahamson and Lonnes (1995) reconstructed 

vorticity fields using the least-squares method. However, it ignores the details of local flow 

features, so a local characteristic analysis cannot be conducted based on the least-squares 

method, even though it approaches the averaged field well. Also, to reconstruct a flow field 

with this method, thousands of high-fidelity data points are required, which remains a heavy 

burden for engineers. 

This chapter proposes a multifidelity, physics-informed data-driven strategy for time-

averaged turbulent flow field simulation. First, PINN prediction is used to estimate low-fidelity 

flow fields based on RANS equations. Since no training data is necessary in low-fidelity 

modeling, it is purely physics-based. Second, sparse field or laboratory measurements are 

regarded as high-fidelity observations. To reconstruct flow fields, a multifidelity GP model is 

established using the nonlinear information fusion (NIF) algorithm proposed by Perdikaris et 

al. (2017). By extracting nonlinear cross-correlations between low-fidelity approximations and 

high-fidelity observations, the multifidelity GP model can be trained and high-fidelity 

predictions can be carried out using the NIF algorithm. A flow past a hill and a flow past a 

square cylinder are presented in this chapter to demonstrate the feasibility of our proposed 

method. Furthermore, the proposed strategy is compared with two other common methods. 

According to the results, the multifidelity model demonstrates superior accuracy when 

approximating measurement data for these two flow cases. 

Firstly, as the PINN model is used only for low-fidelity, less accurate modeling, the 

proposed strategy significantly increases its applicability. In addition, embedded physical 

information, however, provides significant guidance in multifidelity modeling, resulting in less 
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training data being needed in flow field reconstruction compared with other pure data-driven 

methods. 

4.2 Methodology 

4.2.1 PINN structure 

In Chapter 4, the RANS equations using the Chen model are adopted for time-averaged 

flow field simulation. The PINN framework is depicted in Figure 4-2. As shown in the figure, 

the framework of the PINN adopted here is similar to that in Section 3.2.1, except that no 

measurement data is embedded in the total loss for training the model. The total loss of the 

neural network is written as follows: 

𝐿 = 𝑤௙𝐿௙ + 𝑤௕𝐿௕ (4 − 1) 

where 

𝐿௙ =
1
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(4 − 3) 

In the expression, 𝐿௙  and 𝐿௕  still denote the loss components corresponding to the 

residuals of the governing equations and boundary conditions, respectively. 𝑤௙  and 𝑤௕ 

denote the weighting coefficients of the corresponding loss terms. 𝑓௜
௡ is the residual of the ith 

governing equation in Fig. 5-1. 𝑟௡௕
௜  and 𝑟ௗ௕

௜  are the residuals for the Neumann boundary and 

Dirichlet boundary, respectively. 𝑁௙ is the number of points used to calculate the residuals of 
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the governing function, while 𝑁௡௕ and 𝑁ௗ௕ are the numbers of points used to calculate the 

residuals for the Neumann boundary and Dirichlet boundary, respectively. It is worth noting 

that in two-dimensional flow cases, the velocity components are replaced with a stream 

function 𝜑 in the neural network outputs to ensure that the continuity condition is strictly 

satisfied. 

 

4.2.2 NIF algorithm 

In the NIF algorithm, multifidelity modeling is based on the GP algorithm and is achieved 

by combining low-fidelity models with a small number of high-fidelity observations. Now, the 

GPs 𝑓௛  and 𝑓௟  represent high-fidelity and low-fidelity models, respectively. The NIF 

algorithm expresses 𝑓௛ as follows: 

𝑓௛(𝒙) = 𝑔௛(𝒙, 𝑓∗௟(𝒙)) (4 − 4) 

where 𝑔௛~𝒢𝒫(𝒇𝒉|𝟎, 𝑘௛((𝒙, 𝑓∗௟(𝒙)), (𝒙′, 𝑓∗௟(𝒙′)); 𝜃௛)). A GP posterior at the low-fidelity 

level is given by 𝑓∗௟(𝒙) . 𝜃௛  is the hyperparameter. As a covariance kernel, 𝑘௛  can be 

decomposed into: 

Figure 4-2. PINN framework for RANS simulation when Chen model is adopted. 
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𝑘௛ = 𝑘௛ഐ
ቀ𝒙, 𝒙ᇱ; 𝜃௛ഐ

ቁ × 𝑘௛೑
ቀ𝑓∗௟(𝒙), 𝑓∗௟(𝒙ᇱ); 𝜃௛೑

ቁ + 𝑘௛ഃ
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൯ (4 − 5) 

A squared exponential form covariance function is used here, with ARD weights applied 

to 𝑘௛ഐ
, 𝑘௛೑

, and 𝑘௛ഃ
 (Rasmussen 2003). 𝜃௛ഐ

, 𝜃௛೑
, and 𝜃௛ഃ

 are hyperparameters. Based on 

the NIF algorithm, the high-fidelity model may be derived from the input coordinates x and the 

output of the low-fidelity model 𝑓∗௟(𝒙). Therefore, it is a joint representation of the low-fidelity 

model's input space and its posterior prediction. Eq. (4-4) also incorporates both x and 𝑓∗௟(𝒙) 

into its covariance kernel, which captures nonlinear nonfunctional cross-correlations of space-

dependent nonlinearity. Optimization of the hyperparameters of the GP model is based on 

minimizing the negative log marginal likelihood (NLML), which can be described as: 

𝑁𝐿𝑀𝐿 =
1

2
𝑙𝑜𝑔|𝑲| +

1

2
𝒚்𝑲ିଵ𝒚 +

𝑛ௗ

2
𝑙𝑜𝑔2𝜋 (4 − 6) 

where K represents the kernel function, y represents the training target, and 𝑛ௗ represents 

the dimension of the input space. Based on the optimized hyperparameters, the posterior 

distribution of the high-fidelity GP model at a test point (𝒙∗, 𝑓∗௟(𝒙∗))  can be calculated as 

follows: 

𝑝(𝑓∗௛(𝒙∗)) = න 𝑝൫𝑓௛൫𝒙∗, 𝑓∗௟(𝒙∗)൯|𝒚௛, 𝒙௛, 𝒙∗൯ 𝑝(𝑓∗௟(𝒙∗))d𝒙∗ (4 − 7) 

To simulate the posterior distribution of the high-fidelity model, Monte Carlo simulation 

is used. In the low-fidelity model, the posterior prediction follows a Gaussian distribution 

because it is a standard GP regression with parametric input data points. High-fidelity models, 

however, are GP regression models with the input of the posterior prediction from the low-

fidelity model. This results in a non-Gaussian posterior distribution for the high-fidelity model. 

Therefore, Monte Carlo integration of Eq. (4-7) is applied here to calculate the high-fidelity 
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model's posterior mean and variance. 

4.2.3 Workflow of the multifidelity strategy 

As a summary of the multifidelity flow field reconstruction strategy, which is proposed in 

the chapter, the following workflow is given (also shown in Figure 4-3): 

Step 1: A PINN model is used to generate massive quantities of low-fidelity continuous 

data. In the training process of neural networks, residuals of governing equations and boundary 

conditions are incorporated. 

Step 2: A sample of training data is obtained from the PINN results in the computational 

domain for the low-fidelity GP modeling. Then minimize the NLML of Eq. (4-6) to optimize 

the hyperparameters of the low-fidelity GP model. Calculate the posterior mean and variance 

of the low-fidelity standard GP regression model. 

Step 4: Using the posterior prediction of the low-fidelity model and a small number of 

high-fidelity observations, the high-fidelity GP regression model of Eq. (4-4) is constructed. In 

the high-fidelity GP model, the hyperparameters are optimized by minimizing the NLML of 

Eq. (4-6), using the kernel function from Eq. (4-5). 

Step 5: According to the Monte Carlo integration of Eq. (4-7), the posterior mean and 

variance for the high-fidelity GP model can be outputted. In this step, the posterior mean and 

variance of the low-fidelity standard GP regression model in Step 2 will be used. 

 

 Figure 4-3. Workflow of the multifidelity strategy. 
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4.3 Results and Discussions 

4.3.1 Case 1: Flow past a single hill (Reynolds number: 60000) 

This case study uses data from a fluid dynamic experiment that is publicly available 

(Almeida et al. 1993). A fully developed channel flow passed through a single hill which was 

located 6 meters downstream from the inlet of the water channel in the experiment.  

Around the hill, time-averaged flow velocities were measured and recorded in both 

horizontal and vertical directions, which will later serve as a standard test database to verify 

the feasibility of our proposed multifidelity flow field reconstruction strategy. In the experiment, 

the Reynolds number reached 6 × 104. This case study will use the low-fidelity PINN 

predictions and the high-fidelity measurements to reconstruct the mainstream flow velocity 

under the multifidelity strategy. 

Making use of the RANS equations and the boundary conditions, a PINN is first 

formulated, which can offer a solution to the two-dimensional time-averaged flow field around 

the hill. As aforementioned in Chapter 2, the introduction of the Reynolds stress terms makes 

the RANS equations no longer a closed-form system of equations.  

To close RANS equations, the Chen model proposed by Chen and Xu (1998) is adopted 

which takes the form as that in Eq. (3-44). Under the PINN framework, an approximate solution 

to the time-averaged flow field around the hill is provided first. As described by Casey and 

Wintergerste (2000), the recommended computational domain configuration, except that the 

downstream boundary is defined as a zero-pressure outlet, is adopted in this case study. A more 

detailed description on the configuration of computational domain for PINN calculations can 

be found in Figure 4-4.  
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In order to map the relationship between spatial coordinates and flow characteristics, a 

deep neural network that contains six hidden layers, each with forty neurons, is employed. The 

Adam optimizer with a steady learning rate of 3 × 10-4 as well as the Tanh activation function 

are adopted in this case study to simulate the two-dimensional flow field. 

 

Inside the domain, 100 equally-spaced collocation points are sampled along the x-axis and 

y-axis respectively. A lattice of collocation points with a 100 × 100 size is thus generated. 

Among these points, 254 points are located inside the two-dimensional hill, so they have been 

excluded, which results in the number of collocation points reducing to 9766 inside the 

computational domain. Meanwhile, there are four distinct boundaries in this case, which are an 

inlet boundary, an outlet boundary, a symmetry boundary and a wall boundary (both the hill 

surface and the ground). On each boundary, 500 equally-spaced collocation points are sampled 

(on the wall boundary, the projections of the distances between collocation points on the x-axis, 

instead of the distances themselves, are equal). Thus, there are 2000 collocation points on the 

domain boundaries to assist in the calculation the residuals of the boundary conditions. 

More specifically, the residuals of the Chen model-based RANS equations calculated at 

the 9766 domain collocation points form the loss term 𝐿௙  defined in Eq. (4-2), and the 

Figure 4-4. Computational domain of the flow past a two-dimensional hill. 
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residuals of the boundary conditions calculated at the 2000 boundary collocation points form 

the loss term 𝐿௕ defined in Eq. (4-3). By minimizing these physical constraints, the configured 

PINN realizes its function of offering approximate solutions to this flow problem.  

The PINN predictions of the mainstream velocity component u after 1×105 training 

iterations are shown in Figure 4-5(a), which are depicted as an orange curved surface, 

compared with the red dots that represent the experiment measurements. Figure 4-5(b) depicts 

the contour of the velocity component u based on the PINN prediction, which is also compared 

with the reference data from the experiment. As can be seen in Figure 4-5, there exists a 

significant difference between the PINN predictions and the experimental results. 

A conclusion can be easily drawn from Figure 4-5 that, without incorporating 

measurement data to train the PINN, its solution can only be viewed as low-fidelity 

approximation. To establish the proposed multifidelity model for predicting the flow field 

around the two-dimensional hill, then 900 uniformly distributed low-fidelity sampling points 

(a 30 × 30 lattice) generated by the PINN prediction are selected.  

Meanwhile, among the total 325 experimental measurement points scattered in the 

computational domain, 35 points are picked out and the measured mainstream velocities at 

these points are considered as high-fidelity training data. The spatial coordinates of the 35 high-

fidelity training points are tabulated in Table 4-1. In selecting the training points, the principle 

of distributing the training points over the whole computational domain as evenly as possible 

is abided by. A multifidelity model is then established using the NIF algorithm. To obtain the 

Gaussian predictive posterior distribution of the mainstream velocity component u, a GP 

regression model is first trained based on the low-fidelity data. With the randomized restart 

strategy, the marginal log-likelihood to seek optimal hyperparameters is maximized.
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Figure 4-5. Prediction of u using the low-fidelity model in Case 1: (a) general view; (b) the velocity contour compared with the experimental 

counterpart (absolute error = prediction – experimental result).
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Table 4-1. Spatial coordinates of the high-fidelity points used for multifidelity modeling. 

x coordinate (m) -0.050 0.050 0.150 0.300 0.500 

y coordinate (m) 

0.006 0.002 0.001 0.001 0.001 

0.015 0.015 0.015 0.016 0.016 

0.030 0.030 0.030 0.030 0.030 

0.070 0.070 0.070 0.070 0.070 

0.100 0.100 0.100 0.100 0.100 

0.130 0.130 0.130 0.130 0.130 

0.160 0.165 0.165 0.165 0.165 

With the Gaussian posterior distribution acquired on the low-fidelity level, the training 

data for the high-fidelity GP regression model can be generated. Hyperparameters are 

optimized again by maximizing marginal log-likelihood using the kernel function in Eq. (4-6). 

With Monte Carlo integrations, the posterior distribution of mainstream velocity component u 

on a high-fidelity level can be obtained after the model has been fully trained. In Figure 4-6, 

the prediction results of the velocity component u using the proposed multifidelity model are 

depicted. The multifidelity model’s prediction of the mainstream velocity component u is 

represented by the green curved surface. The yellow curved surface represents low-fidelity data 

based on PINN predictions. These red dots correspond to high-fidelity experimental results on 

a total of 325 measurement points for the mainstream velocity component u. The low-fidelity 

data (PINN predictions) and multifidelity model predictions show a similar trend across the 

whole computational domain. However, the latter is much closer to high-fidelity measurement 



 

102 

 

data. The reason for this is that our proposed multifidelity model can precisely capture the 

nonlinear nonfunctional space-dependent cross-correlations between the low-fidelity and high-

fidelity data sets. Hence, the multifidelity model can fit the scattered data points on the high-

fidelity level based on the trend of the low-fidelity PINN predictions. To put it another way, the 

scattered high-fidelity data points are used to correct the low-fidelity prediction surface while 

maintaining the trend as much as possible. 

Figure 4-7 compares the high/low fidelity data with the multifidelity model prediction on 

twelve vertical lines within the computational domain. Across the entire computational domain, 

the multifidelity model predictions are consistent with the high-fidelity data (experiment 

measurements). Due to the 35 high-fidelity training data points scattered along lines x = -0.050 

m, x = 0.050 m, x = 0.150 m, x = 0.300 m, and x = 0.500 m, the results are even better on those 

lines.  

The multifidelity model, however, still shows competitive results in comparison to PINN, 

especially when it comes to prediction accuracy. In addition, the performance of the proposed 

multifidelity model and the other two widely used strategies are compared in Table 4-2. In 

addition to embedding the physical governing equations and boundary conditions into the total 

loss, the 35 high-fidelity training data in Table 4-1 are also embedded into the neural network 

training process when the data-driven PINN strategy is adopted. The same configuration is 

adopted for the data-driven PINN as that in the low-fidelity modeling. A regression task based 

on the 35 high-fidelity training data points is all that is required in the neural network strategy. 

The L-BFGS optimizer with a learning rate of 5 × 10-4 is used to train a neural network with 

only one hidden layer containing 10 neurons. The ℓ2 error is still used here for the evaluation 

of prediction accuracy on a quantitative level, and the results are shown in Table 4-2.
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Figure 4-6. Prediction of u using the multifidelity model in Case 1: (a) general view; (b) the velocity contour compared with the experimental 

counterpart (absolute error = prediction – experimental result).
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Considering the low-fidelity PINN model can be fully trained and well-prepared in 

advance since no measurement data is required, multifidelity modeling takes around 53 seconds 

in the training process. An ℓ2 error of 24.6% is obtained with the data-driven PINN strategy, in 

comparison. PINN may also be hampered by its high computational cost, which may prevent 

its widespread adoption. When using the Adam optimizer, a data-driven PINN with 6 hidden 

layers, each with 40 neurons, usually takes around 2.3 × 104 seconds to train with 1 × 105 

iterations. This can be a heavy burden in practical use. Reconstructing the flow field from the 

neural network strategy is faster, but when its predictions are compared to experiments, its 

relative error becomes unbearable. The ℓ2 error reaches 55.3% after 41 seconds of computing 

when the flow field is reconstructed using the neural network strategy using 35 high-fidelity 

training data points distributed throughout the computational domain. 

It must be admitted that the computational cost of the PINN-related strategy may become 

a stumbling block to its wide application. Considering a PINN with 6 hidden layers, each with 

40 neurons, it usually takes around 2.3×104 seconds for its training process with 1×105 

iterations when using the Adam optimizer, which would be a heavy burden in engineering 

applications. For the multifidelity model, it takes an additional 53 seconds for multifidelity 

modeling in considering that the low-fidelity PINN model can be fully trained off-line because 

no measurement data is needed in this process. Based on the above comparisons, it can be 

concluded that our proposed multifidelity model demonstrates the most competitive 

performance for reconstructing the flow field around the two-dimensional single hill without 

considering computing resources. It is worth noting that the experimental data of v is unevenly 

distributed and insufficient to support multifidelity modeling in this case, so the issues 

regarding the velocity component in y-direction are not considered here. 
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Table 4-2. Performance of different flow field reconstruction strategies. 

 Multifidelity Model Data-driven PINN FCNN 

ℓ2 error 9.8% 24.6% 55.3% 

Computing Time (s) 5.3×101 2.3×104 4.1×101 

Figure 4-7. Comparison of the results between the multifidelity model prediction and the 

high/low-fidelity data on twelve vertical lines. 
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4.3.2 Case 2: Square cylinder flow (Reynolds number: 21400) 

Based on the experiment conducted by Lyn and Rodi (1994), this case study describes a 

turbulent flow around a two-dimensional square cylinder, as shown in Figure 4-8. In the middle 

of the computational domain, which measures 0.44 m in length and 0.32 m in width., a 0.04 m 

× 0.04 m square cylinder is located at the left center.  

According to Figure 4-8, point A is located at the bottom left corner of the square cylinder 

at a coordinate of (0.10, 0.14). There is an initial speed boundary on the left boundary of the 

computational domain, where the fluid velocity stabilizes at 0.535 m/s. The right boundary of 

the computational domain is a zero-pressure outlet, while upper and lower boundaries are 

defined as symmetry wall boundaries. As the fluid velocity equals zero at the surfaces of the 

square cylinder, they are considered to be wall boundaries. In the experiment, there were 517 

experimental measurement points capturing the time-averaged flow velocity components u and 

v inside the flow field. 

  

Figure 4-8. Computational domain for the flow past a two-dimensional square cylinder. 
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Generally, Case 2 and Case 1 differ significantly in two aspects. First, the most intuitive 

aspect is the different geometric appearances. Second, the velocity component v, in addition to 

u, is assumed to be known on the high-fidelity points that are utilized to establish the 

multifidelity model. From the 517 high-fidelity measurement points, 36 points scattered along 

nine vertical lines are selected for training the multifidelity model. Table 4-3 tabulates their 

spatial coordinates. In selecting training points, the principle of distributing the training points 

over the whole computational domain as evenly as possible is still abided by. 

Table 4-3. Spatial coordinates of the high-fidelity points used for multifidelity modeling. 

x coordinate (m) 0.000 0.100 0.155 0.200 0.250 0.300 0.350 0.392 0.400 

y coordinate (m) 

0.200 0.200 0.160 0.160 0.160 0.160 0.160 0.160 0.160 

0.240 0.240 0.180 0.200 0.200 0.200 0.200 0.200 0.200 

0.280 0.280 0.200 0.240 0.240 0.240 0.240 0.240 0.240 

0.320 0.320 0.220 - - 0.280 - 0.280 0.280 

- - - - - 0.320 - 0.320 0.320 

The objective of Case 2 remains to apply all available physical restrictions and sparse 

measurement information to reconstruct the high-fidelity mainstream velocity u within the 

entire computational domain. As the data of v is also included in the training process (already 

known), the number of schemes has increased from three to five. In Case 2, the performances 

of five distinct schemes are horizontally compared to achieve this objective.  

For the first three schemes, the NIF algorithm and sparse u measurements are utilized for 

establishing the multifidelity model. The only difference between these three schemes is the 
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low-fidelity data source. A PINN without training data (purely physics-based), a PINN with v 

embedded in its training process, and CFD are used as the low-fidelity data sources, 

respectively. The fourth scheme is a data-driven PINN which both u and v are embedded in to 

train the neural network parameters, and the NIF algorithm is not engaged in Scheme 4. The 

fifth scheme is an FCNN which is similar to that mentioned in Case 1. For the sake of 

explanation, the five strategies are now clarified in Table 4-4 as follows. 

Table 4-4. Five flow field simulation strategies in Case 2. 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

PINN+NIF v-embedded PINN+NIF CFD+NIF u v-embedded PINN FCNN 

It is meaningful to go into further detail on the PINN and CFD frameworks separately due 

to the multiple sources of the low-fidelity data in this case study. For the PINN framework, its 

configuration remains the same as that in the previous case except that there are only 108 

collocation points to be excluded inside the two-dimensional square cylinder, which ultimately 

leads to a total of 9892 internal collocation points. In addition, there are 50 boundary equally-

spaced collocation points on the initial speed boundary, zero-pressure outlet, upper symmetry 

boundary, lower symmetry boundary, and each of the four side surfaces of the two-dimensional 

square cylinder, respectively. Thus, a total of 400 boundary collocation points is used to 

calculate the physical residuals in this case. For the CFD framework, the simulation of the time-

averaged flow field is performed based on the commercial software Star CCM+ in this study, 

and the mesh inside the computational domain consists of more than 36484 cells. For both 

the PINN and CFD frameworks, the standard k-ε model is adopted in RANS turbulence 

modeling, which has already been introduced in detail in Chapter 2. 
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Figure 4-9. Prediction of u using five distinct schemes: (top) prediction; (middle) experimental result; (bottom) absolute error.
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The prediction results of the mainstream velocity u from different schemes are depicted 

in Figure 4-9, which are also compared with the experiment results. These velocity contours 

show that Scheme 2, notably in the upstream region of the square cylinder, reconstructs the 

fluid features most accurately and efficiently. This may be due to the fusion of measured fluid 

features from upstream regions in Scheme 2 in low-fidelity modeling. Again, ℓ2 error is used 

to quantitatively evaluate the accuracy of predictions from different models. As tabulated in 

Table 4-5, the ℓ2 error of Scheme 2 is the lowest among those of all schemes, which is only 

8.8% compared with the experimental results.  

In particular, when v-embedded PINN, instead of CFD, is used as the low-fidelity data 

source, the ℓ2 error has decreased by 6.6%. This is because measurement information has been 

included, and compared to CFD, the simulation results from v-embedded PINN are more 

accurate. However, when field information is unavailable, the precision of the PINN’s 

prediction drops dramatically. This resulted in the ℓ2 error of Scheme 1 being 18.1%, which is 

the worst among those of the multifidelity models.  

The significance of physical information fusion in neural network modeling should be 

emphasized, nevertheless, as it is clear that Scheme 1 has an improved accuracy of 10.2% over 

Scheme 5. By the way, it can be observed that all strategies involving PINN, i.e., Scheme 1, 2, 

and 4, are time-consuming, compared to CFD. Undeniably, this is one of the main drawbacks 

of PINN, which urgently needs to be addressed by further research. Figure 4-10 also illustrates 

the verification results. Across the entire computational domain, the multifidelity model 

predictions (Scheme 2) show good agreement with high-fidelity data (experiment 

measurements). The accuracy of the multifidelity model is still evaluated quantitatively by the 

ℓ2 error.  
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Table 4-5. Performance of different flow field reconstruction strategies. 

 Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

ℓ2 error 18.1% 8.8% 15.4% 15.5% 29.1% 

Computing time (s) 2.8×104 2.8×104 5.4×102 2.8×104 2.1×101                            

 

Figure 4-10. Comparison of the results between the multifidelity model prediction (Scheme 2) 

and the high/low-fidelity data on twelve vertical lines. 
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4.4 Conclusions 

Based on PINN and the NIF algorithm, a novel time-averaged turbulent flow field 

reconstruction strategy is proposed in this chapter. In conclusion, this strategy is a two-step 

process where low-fidelity data are first generated by the PINN framework without 

measurement data embedded. By using the NIF algorithm, the sparse experimental or field 

measurements are regarded as high-fidelity data, which can be used to build a multifidelity 

model. Our proposed multifidelity model is verified using flows past a hill and a square cylinder, 

and their results indicate that the strategy is feasible. The following preliminary conclusions 

can also be drawn: 

 Even though only a small portion of data can be used to reconstruct the time-averaged 

turbulent flow field, embedding the measurements and physical laws into the neural 

network can still provide the missing airflow information across the whole computational 

domain. 

 Since both PINN predictions are poor in accuracy, they are considered low-fidelity data. 

The low-fidelity NIF-based prediction surface can then be corrected using high-fidelity 

data. The multifidelity model can learn from the trend of the low-fidelity PINN predictions, 

and then fit the dispersed data points on the high-fidelity level and achieve strong 

agreement with the test data. 

 The method proposed in this chapter for flow field reconstruction exhibits the most 

competitive outcomes when compared to other reconstruction methods. When compared 

to the experimental observations, the mainstream velocity component's relative errors 

from the multifidelity prediction are less than 10% in both cases. Considering that the low-
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fidelity PINN model is fully trained in advance, it often takes less than one minute to train 

the multifidelity model. 

 Compared with other flow field reconstruction strategies, the proposed strategy 

demonstrates the most competitive results. The relative errors of the mainstream velocity 

component from the multifidelity prediction are less than 10% in both cases relative to the 

experimental measurements. However, all strategies involving PINN are time-consuming, 

and it usually takes additional time to establish the multifidelity model, which is a 

challenging issue to urgently resolve. 
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CHAPTER 5                                       

QUANTUM LAYER INTEGRATION 

5.1 Foreword 

Quantum machine learning is an intersection of two cutting-edge scientific frontiers: 

quantum computing and machine learning (Schuld et al. 2015, Schuld and Killoran 2019). It 

leverages the principles of quantum mechanics to improve the algorithms used in machine 

learning, potentially leading to faster processing and the ability to easily handle complex 

datasets (Ciliberto et al. 2018, Kavitha and Kaulgud 2024). This field is still in its infancy, but 

it holds promise for significant advancements in areas where classical machine learning 

algorithms struggle, such as optimization problems and pattern recognition in vast amounts of 

data (Khan and Robles-Kelly 2020, Abbas 2024).  

Variational quantum circuits (VQCs) are a class of quantum algorithms designed for 

optimization problems on quantum computers (Cerezo et al. 2021, Griol-Barres et al. 2021). 

They leverage a hybrid approach, combining classical optimization techniques with quantum 

computation to find solutions to complex problems. These algorithms are particularly suited 

for Noisy intermediate-scale quantum (NISQ) computers, which are the current generation of 

quantum devices (Huembeli and Dauphin 2021, Bharti et al. 2022). They use a parametrized 

quantum circuit, which is adjusted iteratively by a classical optimizer to minimize a cost 

function. This method has been applied in various algorithms, such as the Quantum 

approximate optimization algorithm (QAOA), which are promising for solving real-world 
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problems using quantum computing (Guerreschi and Matsuura 2019, Nakhl et al. 2024). The 

structure of a VQC is pivotal in quantum computing. A well-designed circuit can efficiently 

simulate quantum systems and solve complex problems (Ostaszewski et al. 2021, Du et al. 

2022). Typically, a VQC comprises two layers: the initialization layer and the variational layer. 

The initialization layer prepares a quantum state that approximates the problem's solution, 

while the variational layer consists of parametrized gates that are tuned to minimize a cost 

function, often related to the problem's Hamiltonian. This structure allows for the adjustment 

of parameters to find the lowest energy state of the system, which is essential in many quantum 

algorithms. 

Physics-informed machine learning is a prominent research area at the moment (Raissi et 

al. 2019, Yuan et al. 2022, Rui et al. 2023, Rui et al. 2024, Zeng et al. 2024), and the field of 

quantum machine learning is no exception (Lloyd et al. 2020, Lubasch et al. 2020, Kyriienko 

et al. 2021). Some studies convert differential equations into Ising models and use QAOA 

methods to solve them (Albino et al. 2022).  

However, although these methods are ingenious, their accuracy is generally not high due 

to the limitation of the number of qubits. Thus, the prevailing approach is to utilize VQCs to 

approximate the solution of the physical equations and optimize the trainable parameters in 

VQCs using physical residuals as costs. For instance, Siegl et al. (2023) propose the concept 

of physics-informed variational quantum circuits (PIQC), which investigates the use of 

quantum circuits for solving differential equations. They compare a classical approach, i.e., 

PINN, with its quantum counterpart, i.e., PIQC, and discuss their performances and 

convergence properties. Their results indicate that PIQC has demonstrated superior 

convergence speed and accuracy compared to PINN in certain situations. However, it should 

also be noted that PIQC currently falls short of achieving performance similar to PINN in 
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complex problems. This is due in part to the belief that PIQC struggles to accurately 

approximate nonlinear functions (Schuld et al. 2021). Additionally, the increase of qubits in 

quantum circuits poses challenges in terms of computational costs. 

Hence, the author believes that physics-informed quantum machine learning necessitates 

utilizing a more intricate classical-quantum hybrid model, rather than relying on a single VQC 

when resolving intricate issues like high-order ordinary differential equations (ODEs) and 

PDEs. Some studies attempt to integrate classical neural networks with VQCs to obtain more 

expressive models, such as the dressed quantum circuit in (Mari et al. 2020), the quantum 

Helmholtz machine in (Benedetti et al. 2018), and the variational quantum classifier in 

(Adhikary et al. 2020).  

In comparison with a VQC, these hybrid models offer notable benefits. For example, the 

neural network-based pre-processing and post-processing modules in a dressed quantum circuit 

enable itself to adapt to different input and output formats, which significantly improves the 

model's flexibility and nonlinear expression capability. Given both classical neural networks 

and VQCs are inherently differentiable, these hybrid models also possess inherent 

differentiability. This property allows for the seamless utilization of the crucial AD function in 

classical physics-informed machine learning (Baydin et al. 2018, Margossian 2019). Naturally, 

some physics-informed hybrid models have emerged, which have preliminarily solved some 

issues such as laminar flow simulation (Dehaghani et al. 2024, Sedykh et al. 2024). This study 

takes into account the nonlinear expression capability and generalization performance of the 

dressed quantum circuit and uses it as the function-fitting module of the physics-informed 

hybrid model.  

A novel physics-informed hybrid classical-quantum neural network (PIHCQNN) is 
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therefore proposed to solve ODE and PDE problems. In addition, the initial stage of addressing 

the inverse problem is also explored in this research. In the following text, the basic principles 

of the variational quantum algorithm, the dressed quantum circuit, the physics-informed 

machine learning, and the proposed PIHCQNN will be explained to readers in Section 5.2. The 

performance of PIHCQNN in addressing three forward PDE problems and an inverse ODE 

problem will be demonstrated in Section 5.3, which is also contrasted to that of classical PINNs. 

In Section 5.4, the phenomenon that PIHCQNN can potentially accelerate the learning of high-

frequency features will be discussed. In addition, a counterexample as well as the factors that 

may influence the PIHCQNN’s performance will also be discussed. Lastly, this research will 

be comprehensively summarized in Section 5.5, which also identifies the model's current 

deficiencies and future research directions. 

5.2 Methodology 

5.2.1 Quantum computing and variational quantum algorithms 

In the same way that classical computers are composed of numerous classical bits, 

quantum computers are composed of quantum bits, namely, qubits. As with bits, qubits possess 

their own states. More specifically, the state of a bit is either 0 or 1, while the quantum state of 

a qubit is represented by a vector that resides in a two-dimensional complex vector space. For 

instance, the set of computational basis states that is most often used may be expressed in the 

following manner 

|0⟩ ≔ ቂ
1
0

ቃ (5 − 1)       
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|1⟩ ≔ ቂ
0
1

ቃ (5 − 2) 

where |·⟩ denote the ket symbol by using the Dirac notation, which is widely used in 

quantum mechanics. Similarly, there is also the bra symbol ⟨·| , which is the conjugate 

transpose matrix of the ket matrix. The inner product of two distinct quantum state vectors |𝛾⟩ 

and |𝜑⟩ can be denoted by a parenthesis ⟨𝛾|𝜑⟩. For instance, the inner product of the two 

computational basis states listed above in Eq. (1) and (2) can be expressed as 

⟨0|1⟩ = [1 0] ቂ
0
1

ቃ = 0 (5 − 3) 

Another important concept in quantum computing is quantum gates, which are the 

foundation of quantum computing and are similar to the logic gates in classical computers. 

They operate on the fundamental unit qubits of quantum information. Quantum gates 

manipulate these qubits through operations represented by unitary matrices, altering quantum 

states to perform complex quantum computations. Common quantum gates include the NOT 

gate and the Hadamard gate. For example, if we apply a NOT gate X and a Hardamard gate H 

to a qubit |0⟩, then we can get 

𝑋|0⟩ = ቂ
0 1
1 0

ቃ ቂ
1
0

ቃ = ቂ
0
1

ቃ = |1⟩ (5 − 4) 

𝐻|0⟩ =
1

√2
ቂ
1 1
1 −1

ቃ ቂ
1
0

ቃ =
1

√2
ቂ
1
1

ቃ =
1

√2
ቂ
1
0

ቃ +
1

√2
ቂ
0
1

ቃ =
1

√2
|0⟩ +

1

√2
|1⟩ (5 − 5) 

 It is worth emphasizing that there are also some parameterized quantum gates in quantum 

computing, such as the rotation gates which will be mentioned below. These parameterized 

quantum gates play a crucial role in embedding classical data in quantum circuits and parameter 

optimization in quantum machine learning. Finally, measurement operations are essential 

procedures in quantum computing that collapse the superposition of states into a single state 
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by determining the state of a qubit. This process is essential for the operation of quantum 

computers, as it is the final stage in the extraction of classical information from quantum 

systems. The well-known quantum circuit is a graphical representation of the application of 

quantum gates and the measurement operations to qubits. 

Variational quantum algorithm is an analogy of machine learning in the context of 

quantum computing (Huang et al. 2022). In essence, variational quantum algorithms involve 

the optimization of parameterized quantum circuits, i.e., VQCs, using classical optimizers such 

as Adam and SGD (Moll et al. 2018, Ma et al. 2019). For a quantum classifier (Chen et al. 

2021), if there exists a classical labeled dataset (𝑥௞, 𝑦௞) , the cost function of the quantum 

classifier can be written as 

𝐶(𝜃) = ෍ ൣ𝑦௞ − ൻ𝜓଴ห𝑉ற(𝑥௞)𝑈ற(𝜃)𝑌𝑈(𝜃)𝑉(𝑥௞)ห𝜓଴ൿ൧
ଶ

௞
(5 − 6) 

where 𝜓଴ is the initial state of the qubits in the VQC. 𝑉(·) denotes the unitary operator 

in the data embedding module. 𝑈(𝜃) represents the parameterized VQCs with parameter 𝜃. 

𝑌 is the observable. 𝑋ற is the conjugate transpose matrix of 𝑋.  

The main idea of a variational quantum algorithm is to encapsulate the objective problem 

as an optimization task that reduces the cost function of a parameterized quantum circuit by 

optimizing the learnable parameter 𝜃. It is worth noting that the optimization of variational 

quantum circuits are generally solved by classical computers, so VQC itself can be regarded as 

a hybrid classical-quantum algorithm. To conclude, VQC combines classical and quantum 

computing, using a classical optimizer to optimize the parameters of a quantum circuit to 

minimize a cost function. This hybrid approach leverages the advantages of both classical and 

quantum computing algorithms. 
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5.2.2 Dressed quantum circuit 

As one of the embodiments of hybrid classical-quantum algorithms, the dressed quantum 

circuit fuses VQCs with conventional NNs, which was first proposed by Mari and his 

colleagues in 2020 (Mari et al. 2020). A dressed quantum circuit generally comprises two 

classical NN layers at either end of a VQC to enable flexible data embedding and readout, as 

shown in the upper part of Figure 5-1. As seen in Figure 5-1, on the left-hand side of the dressed 

quantum circuit, a fully connected neural network (FCNN) accepts independent variables in 

physical equations as its inputs, which is called an embedding neural network (ENN). Similar 

to a classical FCNN, an ENN may consist of a few hidden layers, but the number of neurons 

in its last layer should always be consistent with the number of qubits in the ensuing VQC. 

This is because, as the red dashed line in the figure illustrates, an ENN's output will be delivered, 

one by one, into the data encoding layers of the VQC. In the VQC, a reuploading strategy is 

adopted for data embedding, where n denotes the cycling number. R(θ) in the trainable layer 

can be expressed as 

𝑅(𝜽) = 𝑅𝑜𝑡(𝜑, 𝜃, 𝜔) = 𝑅𝑍(𝜔)𝑅𝑌(𝜃)𝑅𝑋(𝜑) = ൦
𝑒ି

௜(ఝାఠ)
ଶ cos ቀ

𝜃
2

ቁ

𝑒ି
௜(ఝିఠ)

ଶ sin ቀ
𝜃
2

ቁ

−𝑒ି
௜(ఝିఠ)

ଶ sin ቀ
𝜃
2

ቁ

𝑒
௜(ఝାఠ)

ଶ cos ቀ
𝜃
2

ቁ
൪ (5 − 7) 

where 𝜽  is the rotation angle vector to be optimized in PIHCQNN’s training process. 

Following the trainable layer are the Controlled NOT (CNOT) gates for quantum entanglement. 

In the data encoding layer, Ry gates are used for data embedding, which can be expressed as 

𝑅𝑦(𝑥) = 𝑒ି
௜ఝఙ೤

ଶ = ቎
cos ቀ

𝑥
2

ቁ

sin ቀ
𝑥
2

ቁ

 − sin ቀ
𝑥
2

ቁ

cos ቀ
𝑥
2

ቁ
቏ (5 − 8) 
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where 𝜎௬ denotes the Pauli-Y operator, which allows real numbers to be encoded in each qubit 

and quantum gate. An additional entanglement module, i.e., a single trainable layer followed 

by CNOT gates between each two qubits, comes after the n repetitions. 

The measurement module is the last stage of the VQC. The Hamiltonian adopted in this 

research is a Pauli-Z operator, which ensures the differentiability of the VQC. A readout neural 

network (RoNN) comes after the sandwiched VQC. An FCNN structure is still preserved in a 

RoNN, where the number of neurons in the first layer corresponds to the qubit number, and the 

number of neurons in the last layer, i.e., the output layer in Figure 5-1, corresponds to the 

number of unknown parameters to be solved in the physical equations. 

 

5.2.3 Physics-based loss function 

The loss function drives the learning process of a neural network since training a neural 

network is to adjust the neural network's parameters, i.e., weights and biases, to minimize its 

loss function, effectively improving the model's predictions. One of the most significant 

Figure 5-1. The structure of a PIHCQNN. 
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contributions of PINN is the use of AD to construct residuals for partial differential equations 

and to treat these physics-based residuals as loss components in its loss function to optimize 

model parameters (Raissi et al. 2019). In this study, analogously, the proposed PIHCQNN takes 

advantage of the physics-based loss function module in a PINN to approach the approximate 

solution to PDEs. Since VQC is also differentiable, AD still works in the PIHCQNN 

framework. Figure 5-1 illustrates that AD is initially applied to the RoNN outputs in order to 

form the partial differential terms in the physical equations. Similarly, the total residuals of 

physical governing equations, boundary conditions, and initial conditions will serve as the loss 

of a PIHCQNN, which can be expressed as follows 

𝐶 = 𝑤௚𝐿௚ + 𝑤௕𝐿௕ + 𝑤௜𝐿௜ + 𝑤ௗ𝐿ௗ (5 − 9) 

where 𝐶  represents the total loss. 𝐿௚ , 𝐿௕ , 𝐿௜ , and 𝐿ௗ  denote the governing equation loss 

component, the boundary condition loss component, the initial condition loss component, and 

the data loss component respectively. 𝑤௚ , 𝑤௕ , 𝑤௜ , and 𝑤ௗ  are weight coefficients of 

corresponding loss components. In this work, these loss components take a mean-squared error 

(MSE) form. The neural network parameters of the ENN and RoNN, along with the rotation 

angle vector θ in the VQC, will be optimized by using gradient descent algorithms. Then, the 

objective of approximating the PDE solution may be accomplished in a PIHCQNN by 

minimizing the physics-based loss function. 

5.3 Results and Analysis 

In this chapter, a classical simulator of quantum devices running on classical computers, 

i.e., Pennylane, undertakes the computational tasks of the quantum circuit in the algorithm. 
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Pytorch undertakes the construction of neural networks, the implementation of AD, and the 

formation of physics-based loss functions. The NVIDIA A100 GPU device performed the 

computations that are detailed in this chapter. In Section 5.3.1, a PIHCQNN will be initially 

employed to conduct a RANS simulation using a square cylinder flow. Then, in Section 5.3.2, 

PIHCQNN will be used to resolve a forward PDE problem in thermodynamics. Subsequently, 

in Section 5.3.3, another forward problem involving the Poisson equation will be used to 

evaluate the performance of PIHCQNN. Finally, PIHCQNN will be employed to resolve an 

inverse ODE problem in order to determine material parameters in Section 5.3.4. 

5.3.1 Forward problem: RANS equations 

The cylinder flow described in Section 4.3.2 is adopted here again to validate the 

feasibility of the proposed PIHCQNN. All settings for calculation remain the same, except for 

a slight expansion of the calculation domain. In this case, the computational domain has a 

length of 0.8 m and a width of 0.56 m, which is shown in Figure 5-2. There is also a little 

variation in the quantity of collocation points.  

In this case, the collocation points inside the domain are arranged in a 50×50 matrix, 

additionally with 50 on each boundary, which results in a total of 2492 collocation points for 

calculating the residuals of governing equations (after removing the collocation points inside 

the square cylinder) and 240 for calculating the residuals of boundary conditions. As shown in 

Figure 5-2, point A is the bottom left corner of the square cylinder, whose spatial coordinate is 

(0.18, 0.26). The training data on the points tabulated in Table 4-3 are used for supervised 

learning in this validation case to execute a data-embedding strategy, assisting in the training 

of the PIHCQNN and PINN. The Chen model remains the turbulence model to close the RANS 

equations in this validation case. 
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An experiment is conducted to evaluate the accuracy of PIHCQNN and PINN in solving 

such a PDE problem. Being a part of the PIHCQNN structure, ENN is an FCNN consisting of 

three layers. The input layer (first layer) of the ENN has two neurons that represent the spatial 

coordinate x and y respectively. The ENN also consists of a hidden layer (second layer) and an 

output layer (third layer), comprising 10 and 5 neurons respectively. RoNN, like the ENN, is 

also an FCNN consisting of three layers: an input layer, a hidden layer, and an output layer. 

However, in contrast to ENN, there are 5 neurons in the RoNN input layer, 10 neurons in its 

hidden layer, and three neurons in the output layer, which denotes velocity components u, v, 

and pressure p. For the sandwiched VQC structure, a quantum circuit consisting of five qubits 

is simulated, with a cycling number n of 1. 

Two structures are adopted for the PINN used in this chapter for comparison, which are 

depicted in Figure 5-3 below. One is to substitute the VQC in the PIHCQNN with an identity 

matrix, that is, to directly transmit the output of each neuron in the output layer of the ENN to 

those in the input layer of the RoNN one by one. To be precise, this equals a 5-layer FCNN 

structure with three hidden layers, with a width of [2, 10, 5, 10, 3]. The other one is to substitute 

the VQC with a linear layer (for example, torch.nn.Linear in Pytorch) and a nonlinear 

Figure 5-2. Computational domain for the two-dimensional square cylinder flow. 
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transformation using an activation function, which equals a 6-layer FCNN structure with four 

hidden layers, with a width of [2, 10, 5, 5, 10, 3]. Here, a 6-layer FCNN has 30 additional 

trainable parameters compared to a 5-layer structure, but an additional quantum layer entails 

just 10 more trainable parameters. The quantity of trainable parameters in quantum layers is 

far less than that in conventional fully connected layers; hence, we refrained from comparing 

quantum layers with deeper FCNN architectures for the sake of fairness in the subsequent 

discussion. The activation function is Tanh. Adam optimizer is adopted with a learning rate of 

2×10-3. In this case, the number of training iterations is set to 5×104. 𝑤௚ is set to 1, while the 

other two weight coefficients 𝑤௕ and 𝑤ௗ are set to 1 and 100. Since the RANS simulation is 

a steady-state process, there is no initial condition loss component in this case. 

 

The results are shown in Figure 5-4, which depicts the attenuation curves of the l2 errors 

of velocity components u and v during the training process. In the figure, the blue curve 

represents the results of PIHCQNN, while the orange and green curves represent the results of 

5-layer PINN and 6-layer PINN, respectively. The findings in the figure demonstrate that, at 

Figure 5-3. The PINN structures adopted for comparison study: (a) 5-layer PINN, and (b) 6-

layer PINN. 
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least when examining the relative error of the fluid velocities, adding a quantum layer to the 

FCNN structure can slightly improve the accuracy of PINN-based RANS simulation.  

 

To mitigate the impact of random error resulting from a single experiment, the experiment 

is repeated five times, and the mean values of the l2 errors are now tabulated in Table 5-1. 

Compared to the PINN models, the PIHCQNN model has a roughly 0.4% improvement in 

accuracy for u and a 1.3% -2.1% improvement in accuracy for v. In addition, as seen by Figure 

5-4, another advantage of PIHCQNN, which is not easily noticed, is that it consistently 

exhibits the fastest convergence speed in the early phase of training. Overall, PIHCQNN has 

demonstrated a more stable and reliable performance in RANS simulations compared to PINN 

based on the above findings. 

Table 5-1. Averaged l2 errors of the different model’s results when solving the RANS equations. 

 PIHCQNN 5-layer PINN 6-layer PINN 

Averaged l2 error (u) 9.2% 9.6% 9.6% 

Averaged l2 error (v) 42.2% 43.5% 44.3% 

Figure 5-4. The l2 errors of (a) u, and (b) v.  
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5.3.2 Forward problem: Heat equation 

Now consider a transient problem to showcase the capability of the proposed PIHCQNN 

to solve PDEs. The temperature u(t, x) can be interpreted as a function that depends on both 

time t and spatial position x, which is governed by the following equations 

𝑐
𝜕𝑢

𝜕𝑡
−

𝜕

𝜕𝑥
൬𝜅

𝜕𝑢

𝜕𝑥
൰ − 𝑠 = 0          on 𝑇 × Ω (5 − 10) 

where 𝑐(𝑢) =
ଵ

ଶ଴଴଴
𝑢ଶ + 500, and 𝜅(𝑢) =

ଵ

ଵ଴଴
𝑢 + 7. For the computational domain 𝑇 × Ω, 

time t is within the range of [0, 0.5], while spatial coordinate x is within the range of [0, 1]. In 

Eq. (5-10), s takes the following form 

𝑠(𝑢, 𝑡) =
𝜅𝑢

𝜎ଶ
+ 𝑢

𝑥 − 𝑝

𝜎ଶ
൤𝑐

𝜕𝑝

𝜕𝑡
−

𝑥 − 𝑝

𝜎ଶ
൬𝜅 + 𝑢

𝜕𝜅

𝜕𝑥
൰൨ (5 − 11) 

where 𝑝(𝑡) =
ଵ

ସ
cos(4𝜋𝑡) +

ଵ

ଶ
, and 𝜎 = 0.02. The temperature u(t, x) should also meet the 

following physical constraints on the domain boundaries and the initial state. 

𝜕𝑢(𝑡, 0)

𝜕𝑥
=

𝜕𝑢(𝑡, 1)

𝜕𝑥
= 0 (5 − 12) 

𝑢(0, 𝑥) = exp (−
(𝑥 − 0.75)ଶ

2𝜎ଶ
) (5 − 13) 

The analytical solution of the heat equation is as follows 

𝑢(𝑡, 𝑥) = exp (−
(𝑥 − (

1
4

cos(4𝜋𝑡) +
1
2

))ଶ

2𝜎ଶ
) (5 − 14) 

Now, an experiment is conducted to evaluate the accuracy of PIHCQNN and PINN in 

solving such a PDE problem. Within the structure of the PIHCQNN, ENN is an FCNN 
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consisting of three layers. The input layer (first layer) of the ENN has two neurons that 

represent the temporal variable t and the spatial coordinate x respectively. The ENN also 

consists of a hidden layer (second layer) and an output layer (third layer), both comprising 10 

neurons. RoNN, like the ENN, is also an FCNN consisting of three layers: an input layer, a 

hidden layer, and an output layer. However, in contrast to ENN, there are ten neurons in the 

RoNN input layer, 10 neurons in its hidden layer, and merely one neuron in the output layer, 

which denotes temperature u. For the sandwiched VQC structure, a quantum circuit consisting 

of ten qubits is simulated, with a cycling number n of 2. The activation function is Tanh. Adam 

optimizer is adopted with a learning rate of 2×10-3. In this case, the number of training iterations 

is set to 5×104. 𝑤௚ is set to 3×10-7, while the other two weight coefficients 𝑤௕ and 𝑤௜ are set 

to 1. 50 collocation points are sampled at equal intervals along the spatial and temporal axes, 

forming a collocation point lattice of 50 by 50. 

Figures 5-5 (a) and (b) show the convergence curves of the loss functions and the l2 errors 

of the temperature u(t, x) concerning the analytical solution throughout the training phase, for 

both PIHCQNN and PINN results. After 5×104 training iterations, the total loss of PIHCQNN 

is observed to be the smallest at 0.006. On the contrary, the ultimate total loss of the 5-layer 

PINN is 0.024, while that of the 6-layer PINN is 0.007. In terms of the l2 error compared to the 

analytical solution, PIHCQNN yields the most negligible result of 0.046. Comparatively, the 

l2 error of the 6-layer PINN result is 0.057, whereas that of the 5-layer PINN yields 0.064. To 

mitigate the impact of random error resulting from a single experiment, the experiment is 

repeated five times, and the mean values of the l2 errors are now tabulated in Table 5-2. The 

table still shows that the PIHCQNN yields the closest results to the analytical solution, with an 

error of only 4.9%. In contrast, both the 5-layer PINN and 6-layer PINN produce greater errors. 

These findings demonstrate that both the 5-layer and 6-layer PINNs do not exhibit the 
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equivalent superiority to the PIHCQNN in terms of loss convergence. In addition, the 

PIHCQNN results also exhibit a higher degree of proximity to the analytical solution compared 

to those obtained from PINNs. 

 

Table 5-2. Averaged l2 errors of different model results in solving the heat equation. 

 PIHCQNN 5-layer PINN 6-layer PINN 

Averaged l2 error 4.9% 7.9% 5.1% 

To enhance the comprehensibility of the findings, Figure 5-6 illustrates the transient 

temperature distributions by PIHCQNN, 5-layer PINN, and 6-layer PINN respectively. From 

the figure, it is evident that all three models effectively simulate the temperature distribution 

over time. However, when we zoom into the errors, it becomes apparent that there are 

discrepancies. The absolute error of the 5-layer PINN is most significant within the entire 

computational domain, while the 6-layer PINN shows a better result. However, in regions 

where x < 0.5, the error of the 6-layer PINN exhibits substantial negative values. In comparison, 

PIHCQNN demonstrates a distinct advantage in this aspect. The error across the computational 

Figure 5-5. Convergence curves of (a) the total loss, and (b) the l2 error of u(t, x). 
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domain is negligible, except for that when t = 0.5, which is also evident in other error graphs. 

And since this is an initial value problem, there are no constraints except for the two boundary 

points during the evolution process, so it is expected that the error will gradually increase over 

time.  

The VQC structure in a PIHCQNN can be abstracted as a single quantum layer, rather 

than a classical layer composed of neurons. The findings suggest that the inclusion of such a 

single quantum layer in a neural network can greatly improve the model's capacity to express 

nonlinearity, and may even yield more advantages than merely inserting a single fully 

connected layer.  

As a result, the introduction of the quantum layer has enabled neural networks to have 

stronger expression and feature learning capabilities. The repeatable data embedding structure 

in a VQC could potentially account for this. The features acquired in the preceding layer are 

transmitted directly to the subsequent layer in conventional feedforward neural networks. 

However, PIHCQNN, on the other hand, permits VQC to process the features learned in the 

final layer of ENN iteratively and transfer them to RoNN for analysis following complex 

feature processing and measurement operations, which may be the advantage of the PIHCQNN 

structure.  

It is worth mentioning that the addition of a single quantum layer to a neural network 

invariably results in a significant escalation in computational expenses. In this case, the 

execution time for PIHCQNN was approximately 1.1×105 seconds for 5×104 iterations, while 

PINN (regardless of 5 or 6 layers) requires less than 1.2×103 seconds on the same device, which 

is due to the fact that the quantum circuits simulated by classical computers are very time-

consuming. 
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5.3.3 Forward problem: The Poisson equation 

The Poisson equation is a fundamental PDE, which is used in electrostatics to describe 

the electric field generated by the distribution of charges. In fluid mechanics, the Poisson 

equation describes the relationship between pressure and velocity in incompressible flows. This 

study focuses on solving a specific instance of the Poisson equation, as described below. 

𝜕ଶ𝑢

𝜕𝑥ଶ
+

𝜕ଶ𝑢

𝜕𝑦ଶ
= 𝑥ଶ + 𝑦ଶ (5 − 15) 

where independent variables x and y are within the range of [-1, 1] × [-1, 1]. In this case 

study, boundary conditions on the domain boundaries are as follows 

𝑢(𝑥, −1) = 𝑢(𝑥, 1) =
1

2
𝑥ଶ (5 − 16) 

Figure 5-6. Comparison of the transient temperature distributions and absolute errors (error = 

prediction – ground truth) by PIHCQNN, 5-layer PINN, and 6-layer PINN. 
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𝑢(−1, 𝑦) = 𝑢(1, 𝑦) =
1

2
𝑦ଶ (5 − 17) 

The analytical solution of u in this case can be expressed as follows 

𝑢 =
1

2
𝑥ଶ𝑦ଶ (5 − 18) 

PIHCQNN and PINN models are utilized, respectively, for solving the Poisson equation. 

The structures of both models remain consistent with the previous example, except that the 

widths of the ENN and RoNN, as well as the number of qubits in the sandwiched VQC, have 

been changed from 10 to 5. The number of training iterations has been changed to 5×103. In 

this case, the Poisson equation can be classified as a steady-state problem, meaning that no 

initial condition component is included in the loss function. The weight coefficients 𝑤௚ and 

𝑤௕ are each assigned a value of 1. The collection points have been decreased from a lattice of 

50 by 50 to a lattice of 40 by 40 in order to increase computational efficiency. Additionally, 

there are forty equally-spaced collection points on each domain boundary.  

Figure 5-7 displays the solutions obtained from PIHCQNN and PINNs respectively, along 

with the corresponding absolute errors. While the three models yield similar results based on 

the figures in the first row, the figures in the second row clearly show that the absolute error 

disparity among the three is substantial. These error graphs indicate that in this case study, the 

5-layer PINN still exhibits the lowest accuracy in solving the Poisson equation, while the 

PIHCQNN still performs the best. Similar to the previous case, the training process is repeated 

five times to obtain the mean l2 errors of different models, which are summarized in Table 5-

3. In comparison to the 5-layer PINN and the 6-layer PINN, the l2 error of the PIHCQNN is 

reduced by seven thousandth and one thousandth, respectively. This is consistent with the 

results when solving the heat equation. 
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Table 5-3. Averaged l2 errors of different results in solving the Poisson equation. 

 PIHCQNN 5-layer PINN 6-layer PINN 

Averaged l2 error 1.9% 2.6% 2.0% 

In Figure 5-8, the results of one of the five independent experiments are depicted, which 

are essentially consistent with the previous situation. Following 5000 training iterations, the 

final total loss and l2 error of the PIHCQNN are the lowest of all three models, while those of 

the 5-layer PINN are the highest. Such a result indicates that PIHCQNN has better convergence 

performance in solving PDEs. The expressive capability of the model is considerably enhanced 

by the addition of a quantum layer in comparison to a fully connected classical layer. 

Figure 5-7. Comparison of the solutions of the Poisson equation and corresponding absolute 

errors (error = prediction – ground truth) obtained from PIHCQNN, 5-layer PINN, and 6-layer 

PINN. 
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5.3.4 Inverse problem: One-dimensional elastostatics equation 

In this section, an inverse elastostatics problem will be solved by PIHCQNN and PINN 

simultaneously. The problem is governed by an ODE equation and its corresponding boundary 

conditions, which describe the static displacement of a one-dimensional linear elastic bar. The 

ODE is a second-order differential equation which is as follows 

𝑑

𝑑𝑥
൬𝐸𝐴

𝑑𝑢

𝑑𝑥
൰ + 𝑝௕ = 0 (5 − 19) 

Spatial coordinate x is within the range of [0, 1]. In Eq. (5-19), E(x) is Young’s modulus 

and A(x) is the cross-sectional area. u(x) denotes the displacement. 𝑝௕(𝑥) is the body force. 

Here, we define 𝑝௕ as 

𝑝௕(𝑥) = 4𝜋ଶ sin(2𝜋𝑥) (5 − 20) 

Boundary conditions are also considered at the two ends of the one-dimensional linear 

elastic bar, which can be expressed as 

Figure 5-8. Convergence curves of (a) the total loss of different models, and (b) the l2 error of 

u(x, y). 
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𝑢(0) = 𝑢(1) = 0 (5 − 21) 

For forward problems, the value of EA(x) is known, and u(x) is the unknown of the 

problem. For example, we may set the value of EA(x) to a constant of 1. As a result, the 

analytical solution of the bar equation is as follows 

𝑢(𝑥) = sin(2𝜋𝑥) (5 − 22) 

This time, slightly different is that an attempt is made to solve an inverse problem. 

Assuming that the displacement of the linear elastic bar across the entire computational domain 

is known, then the value of EA(x) can be solved. 50 labeled data points are equidistantly 

sampled in the computational domain as determined by Eq. (5-22) to guide the model training 

process.  

In order to resolve the inverse problem, it is necessary to incorporate an additional data 

constraint into the physics-based loss function. During the resolution of the inverse problem, 

the undetermined parameter EA(x) is optimized simultaneously with the neural network 

parameters and VQC parameters by the optimizer.  

Assuming that this is a steady-state problem, the weight coefficient of the initial condition 

loss (i.e., 𝑤௜ ) should be set to zero. Additionally, the weight coefficient of the boundary 

condition loss (i.e., 𝑤௕) is also set to zero to prevent redundant calculations, as the first and 

last labeled data perfectly coincide with the boundary conditions. This results in the loss 

function containing only governing equation loss and data loss, and the loss coefficients of 

these two are set to 1 and 10, respectively. 

The ENN employs a two-layer FCNN structure here. The spatial coordinate x is 

represented by a single neuron in the first layer, while the output layer of the ENN (i.e., the 
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second layer) is composed of five neurons. RoNN is also composed of two layers. The first 

layer is composed of five neurons that receive outputs from the VQC, while the second layer 

is composed of a single neuron that represents the displacement u of the bar.  

The sandwiched quantum module is a five-qubit VQC, with a cycling number n of 1. The 

learning rate is switched to 5×10-3 and the number of training iterations is reduced to 2×104 in 

this case. Other configurations are kept consistent with the previous case. This time, a PINN 

with two hidden layers is used for comparison. This can be understood as the VQC structure in 

PIHCQNN is replaced with a fully connected layer, and the hidden layer width still remains at 

5. 

The total loss and l2 error of PIHCQNN and PINN during the training process when 

solving the inverse problem are illustrated in Figure 5-9. Figure 5-9(a) illustrates that 

PIHCQNN demonstrates better convergence performance in resolving this inverse problem 

compared to PINN. The reduction in the total loss of PIHCQNN is slightly greater than that of 

PINN.  More specifically, the total loss of PIHCQNN is 2.69×10-3 after 2×104 training 

iterations, whereas the ultimate total loss of PINN is 3.48×10-3. Upon examination of the 

downward trend of the total loss in Fig. 5-5(a) and Fig. 5-9(a), it is possible that PIHCQNN 

will attain an even lower total loss if the training process is further extended.  

Considering the l2 error, as depicted in Fig. 5-9(b), the two values are also comparable 

and of similar magnitude. During the training phase, the EA(x) is optimized alongside other 

parameters, progressively converging towards the analytical solution, which is 1. After 2×104 

training iterations, we successfully reach the ultimate value of EA(x). To minimize the random 

error, three repetitions are conducted to calculate the average of these three trials as the final 

result, as presented in Table 5-4. Table 5-4 reveals that the averaged relative error of PIHCQNN 
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is 0.067%, while that of PINN is 0.080%, which suggests that in this case, PIHCQNN 

outperforms PINN in solving the inverse problem and yields superior accuracy in resolving 

undetermined parameters.  

It should be noted that PIHCQNN still exhibits notable disadvantages in computational 

efficiency, as evidenced by the fact that 2×104 training iterations require 7×103 seconds for a 

PIHCQNN compared to only 120 seconds for a classical PINN. The reason for this is that 

classical computers require the storage of all potential states in order to simulate the 

superposition of quantum states. As the number of qubits increases, the computational expense 

of the simulation will become exceedingly high. In addition, classical computers also incur 

much overhead in simulating quantum entanglement. 

 

In the above case studies, the results demonstrate that PIHCQNN outperforms PINN in 

the solution of both forward and inverse ODE and PDE problems in terms of accuracy. The 

reason for this may be that PIHCQNN, as a hybrid classical-quantum machine learning model, 

has a more robust nonlinear function fitting capability and generalizability. This may be 

Figure 5-9. (a) The total loss of PIHCQNN and PINN, and (b) the l2 error of PIHCQNN and 

PINN’s predictions. 
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attributed to the reuploading strategy in VQC or the fact that VQC can learn features, that 

neural networks find hard to capture, more efficiently. 

Table 5-4. The ultimate value of EA(x) and the averaged relative error. 

 PIHCQNN PINN 

 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 

Value of EA(x) 0.9999 1.0013 0.9994 0.9987 1.0004 0.9993 

Averaged error 0.067% 0.080% 

5.4 Further Exploration 

The aforementioned cases have yielded remarkable results from the integration of a 

quantum layer into a PINN, which has been able to obtain more accurate results in the solution 

of both forward and inverse ODE and PDE problems than a classical PINN. One possible 

explanation is that classical PINNs are generally believed to have difficulty accurately 

capturing the high-frequency components in PDE solutions due to the spectral bias 

phenomenon of an FCNN (Ye et al. 2024). However, it is found that the integration of a 

quantum circuit in fully connected layers may potentially alleviate such a phenomenon. Here, 

we endeavor to demonstrate this concept by fitting a simple target function, i.e. f(x) = sin(x) + 

sin(3x) + sin(5x), using a dressed quantum circuit and classical FCNNs respectively. The spatial 

coordinate x is within [−π, π], and 201 evenly spaced labeled points are sampled to train the 

models, which is the same configuration as in reference (Xu et al. 2019). The structures of 

PIHCQNN and PINN models remain consistent with those in Figures 5-1 and 5-3, except that 

the ENN takes a three-layer structure with 1, 20, and 10 neurons and the RoNN also takes a 
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three-layer structure with 10, 20, and 1 neuron. The sandwiched VQC is a 10-qubit quantum 

circuit with a cycling number n of 2. To facilitate comparison, one, two, and three classical 

fully connected layers (with a width of 10) are incorporated between the ENN and RoNN. This 

results in the existence of FCNNs with six, seven, and eight layers, as illustrated in Figure 5-

10, which illustrates the convergence behaviors of three different frequency components during 

the training processes of the above models. Discrete Fourier Transform is employed to calculate 

the model predictions of the amplitudes of the three low-to-high frequencies in f(x). Results 

indicate that the 5-layer PINN tends to prioritize learning low-frequency features during the 

training process, with the neural network progressively mastering the highest-frequency 

features at approximately 3000 steps. The depth of an FCNN can be increased to expedite the 

learning of high-frequency features. Nevertheless, the efficacy of such assistance is restricted, 

and there is no additional benefit beyond a certain depth of the neural network. On the contrary, 

PIHCQNN enters the high-frequency learning stage earlier (less than 500 iterations as shown 

in the leftmost subgraph in Figure 5-10), which may be one of the reasons for its success in 

resolving intricate ODE and PDE problems. 

 

A counterexample which is encountered during our investigation may support the above 

viewpoint, which occurs during our attempt to solve the forward problem of the one-

dimensional elastostatics equation of Eq. (5-19). Specifically, it is given that the material 

Figure 5-10. Convergence behaviors of three different frequency components. 
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parameter EA(x) is equal to 1. Therefore, the objective turns to be the determination of the bar 

displacements within the entire computational domain, where Eq. (5-22) becomes the 

analytical solution of the forward ODE problem. The models and their structure configurations 

remain consistent with those described in Section 3.3. The test is still repeated three times, and 

Figure 5-11 illustrates the absolute errors between the analytical solution and the results 

obtained. The results in the figure indicate that PIHCQNN is prone to more significant errors 

than PINN when solving the forward problem. The mean l2 error of PIHCQNN is 2.4×10-3, 

while that of PINN is only 1.6×10-3. In contrast, the relative error of PINN’s solution has 

decreased by one-third. The reason that this counterexample may support the aforementioned 

perspective is that in this instance, it is only required to solve a simple sin function that contains 

information with a single frequency. In this respect, PIHCQNN may not yield superior results 

to PINN.  

 

Also, it should be emphasized that the precision of the PIHCQNN’s solution may be 

influenced by a variety of factors, such as the configuration of the RoNN and the ENN, the 

Figure 5-11. The absolute errors between the analytical solution and (a) PIHCQNN’s results, 

and (b) PINN’s results. 
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structure of the ansatz in VQC, and the setting of the cycling number n. The impact of these 

factors deserves further research in the future.  

5.5 Conclusions 

This chapter proposes a hybrid classical-quantum model, namely the PIHCQNN, to solve 

the forward and inverse problems involving ODEs and PDEs. PIHCQNN's function fitting 

module is a dressed quantum circuit that resembles a sandwich structure with three 

substructures: an ENN, a VQC, and a RoNN. VQC performs a bridging function among the 

ENN and the RoNN, and its data reuploading strategy improves the model's nonlinear 

expression and feature learning capability. On the other hand, RoNN and ENN ingeniously 

enhance the flexibility of the data structure that VQC can receive and produce. Following the 

approach of the PINN, the knowledge of physical laws is incorporated into the cost function of 

the dressed quantum circuit, resulting in a hybrid classical-quantum model that can deal with 

forward and inverse problems involving differential equations. This chapter illustrates the 

efficacy of PIHCQNN through a case analysis of three PDE forward problems, i.e., the RANS 

equations, the heat equation and the Poisson equation, and an ODE inverse problem, i.e., the 

one-dimensional elastic statistics equation. The accuracy advantage it possesses over classical 

PINN is also demonstrated in these three cases. Nevertheless, the accuracy of PIHCQNN is 

inferior to that of a classical PINN when addressing the forward problem of the one-

dimensional elastostatics equation, and potential influencing factors are discussed. The main 

conclusions drawn from the case analysis are as follows: 

 In most cases, integrating a quantum layer, i.e., VQC, within an FCNN can greatly 

enhance the model's loss convergence capability, while the substitution of an 
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additional classical fully connected layer cannot achieve such an effect. Classical 

PINN has been outperformed by PIHCQNN in terms of accuracy in solving PDE 

forward problems and in solving undetermined parameters in inverse problems. The 

introduction of the VQC structure may be the reason for this, as it enhances the hybrid 

model's capability for nonlinear expression and feature learning in comparison to a 

classical FCNN; 

 The computational efficiency of PIHCQNN is significantly lower than that of PINN 

as a result of the use of quantum circuits simulated by classical computers in this 

research. PIHCQNN requires approximately 60-90 times more computational time 

than PINN in both cases. The reason for this is that classical computers necessitate the 

storage of all possible quantum states in order to replicate the superposition. 

 The potential of PIHCQNN to accelerate the learning of high-frequency features in 

ODE and PDE solutions has been discovered, which may potentially relieve the 

spectral bias observed in classical PINNs to a certain extent. 

Nevertheless, it is imperative to recognize the constraints of our current work. Currently, 

our study relies on classical computers to simulate quantum circuits, which severely restricts 

the size of the simulated quantum system, i.e., the number of qubits. Thus, the proposed model's 

potential for extra expressive capabilities is significantly restricted by this limitation.  

On the other hand, current quantum computers are NISQ computers with noise (Sweke et 

al. 2020, Torlai and Melko 2020). This implies that the results given by NISQ devices have a 

certain probability of being incorrect. Executing the algorithm proposed in this chapter while 

maintaining a certain level of accuracy on NISQ devices is a highly challenging problem that 

is worth further investigation. Furthermore, a mathematical proof is imperatively required that 
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PIHCQNN can accelerate the learning of high-frequency features in order to elucidate the 

findings in Figure 5-10, which is also our next step of work. 
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CHAPTER 6                                               

WEIGHTED SUM TURBULENCE MODEL 

6.1 Foreword 

As a variant form of the NS equations which govern the fluid motions, the RANS 

equations have become a mainstream approach for addressing fluid dynamics problems in 

engineering practices (Salim et al. 2011, Qureshi and Chan 2020, Ricci and Blocken 2020). 

RANS equations are grounded on the assumption that an instantaneous flow variable can be 

decomposed into a time-averaged mean quantity and a fluctuation quantity. The time-averaged 

flow field, which is also the focus of real projects, can be obtained by solving the RANS 

equation, albeit at the expense of introducing new unknown terms (i.e., Reynolds stress 

components) into the physical governing equations. But mathematically, the existence of 

Reynolds stress terms will lead to the non-closure of RANS equations, so it is necessary to 

connect the Reynolds stress components with the time-averaged fluid variables through 

mathematical expressions or to introduce new equations to address the turbulent closure 

problem. Such a process of modeling the Reynolds stress to close RANS equations is also 

known as turbulence modeling (Durbin and Shih 2005, Duraisamy et al. 2019).  

Turbulence models can generally be categorized into several groups, which are zero-

equation models, one-equation models, two-equation models, and so forth, depending on the 

number of additional governing equations introduced into modeling the Reynolds stress (Hino 

1995, Menter et al. 2003, Gao et al. 2017). Among them are several models with solid 
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reputations which are extensively used. For instance, the standard k-ε RANS turbulence model 

is a fundamental tool in CFD simulations, offering a two-equation framework for simulating 

the characteristics of turbulent flow (Launder and Spalding 1983). It achieves a balance 

between the capacity to capture turbulent characteristics and the computational efficiency 

through the use of transport equations. This model has been extensively validated in various 

scenarios and is particularly effective for flows with moderate pressure gradients (Chen 1995, 

Rumsey et al. 2006).  

Again as an example, a zero-equation RANS turbulence model, introduced by Chen in 

1998, represents a significant advancement in the simulation of indoor airflow dynamics (Chen 

and Xu 1998). This innovative model simplifies the computational process by assuming 

turbulent viscosity as a function of length scale and local mean velocity. The Chen model has 

demonstrated its effectiveness in predicting various types of convection within enclosed 

environments, showing commendable agreement with experimental data (Chen and Srebric 

2000). 

On the other hand, as was discussed in Chapters 1 and 2, there is no universal turbulence 

model applicable to all flow conditions. Give the simplest example to prove this viewpoint, 

which is the problem of determining the value of empirical constants in turbulence models. It 

is worth noting that there exist some constants in each of the above RANS turbulence models, 

and the values of these constants are usually determined based on experience or experiments. 

Despite the existence of recommended values for these constants, there is no unified standard, 

and strictly speaking, they should be determined on a case-by-case basis (Guillas et al. 2014). 

For example, the coefficient Cμ in the standard k-ε model, with a typical value of 0.09, affects 

the turbulent energy transfer process. A large value may suppress the development of 

turbulence, making the flow field overly smooth, while a small value may amplify turbulent 
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eddies, making the flow field overly turbulent and not in line with actual physical phenomena. 

In addition, inappropriate values can also lead to numerical instability and divergence, making 

the simulation unable to converge (Luo et al. 2020).  

Under such circumstances, a novel weighted sum RANS turbulence model is proposed in 

this chapter. In addition, a novel PINN structure is proposed here for automatically optimizing 

the hyperparameters in the proposed turbulence model, which serves as the solver for the 

RANS equations. PINN, which was proposed by Raissi et al. (2019), has been placed great 

expectation to become a powerful alternative to traditional CFD methods to solve PDEs (Mao 

et al. 2020, Xiao et al. 2024, Zeng et al. 2024). The rest of the chapter is organized as follows. 

In Section 6.2, the basic principle of the proposed weighted sum RANS turbulence model as 

well as the PINN structure for implementation of the proposed turbulence model will be briefly 

introduced. In Section 6.3, a case study will be utilized to verify the feasibility of the proposed 

method. In Section 6.4, another flow case study will be used to illustrate its broad applicability. 

The main conclusions will be drawn in Section 6.5. 

6.2 Methodology 

6.2.1 RANS equations and turbulence models 

As mentioned earlier, the NS equations are averaged in the time domain to form the RANS 

equations for solving a time-averaged flow field rather than an instantaneous flow field. The 

computational burden can be significantly lessened since the turbulent fluctuation on each scale 

is no longer calculated. The RANS equations for fluid flow simulations are shown as follows 
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𝜕

𝜕𝑥
(𝜌𝑢ത௜) = 0 (6 − 1) 
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ᇱ𝑢௝
ᇱቇ (6 − 2) 

where 𝜌 is the fluid density, 𝑢ത௜ is the velocity component in 𝑥௜-direction, 𝑝̅ is the pressure, 

𝜇 is the laminar viscosity, and −𝜌𝑢௜
ᇱ𝑢௝

ᇱ is the Reynolds stress. Based on the Boussinesq eddy 

viscosity assumption, the Reynolds stress can be expressed as follows 

−𝜌𝑢௜
ᇱ𝑢௝

ᇱ = 𝜇௧ ቆ
𝜕𝑢ത௜

𝜕𝑥௝
+

𝜕𝑢ത௝

𝜕𝑥௜
ቇ −

2

3
𝜌𝛿௜௝𝑘 (6 − 3) 

where k is the turbulent kinetic energy, and 𝑘 =
ଵ

ଶ
𝑢௜

ᇱ𝑢௜
ᇱ . Turbulence models are adopted to 

describe the influence of the Reynolds stress term in the momentum equations. The zero-

equation model, also known as the algebraic model, has the simplest form among various 

turbulence models. The essence of the zero-equation model is to describe turbulent viscosity 

using the averaged characteristics of the flow. 

The weighted sum RANS turbulence model proposed in this chapter is essentially a linear 

combination of various candidate zero-equation models. Therefore, the concept of a candidate 

turbulence model is now proposed. A candidate turbulence model is the base model for the 

weighted sum operation and should be a zero-equation model. Some well-known zero-equation 

models that have the potential to be candidates include the constant eddy viscosity model, the 

Prandtl mixing-length model, the Chen model, and so on. 

The constant eddy viscosity model adopts the most straightforward approach for 

turbulence modeling, which sets 𝜇௧  to be a constant (Apsley 2024). This method works 

effectively for some cases of wake simulation. In the constant eddy viscosity model, 𝜇௧ takes 
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the following form 

𝜇௧ = 𝐶௦𝜌𝑉௦𝑙௦ (6 − 4) 

where 𝐶௦  is an empirical constant. In this chapter, its value is set to 0.01. 𝑉௦  and 𝑙௦  are 

turbulence velocity and length scales. In this chapter, 𝑉௦ is equal to the mean- low velocity 

and 𝑙௦ is equal to one-tenth of the flow width. 

The Prandtl mixing-length model used by Pioch et al. (2023) is adopted in this chapter. In 

the model, the turbulent viscosity 𝜇௧ takes the following form 

𝜇௧ = 𝜌𝑙௠
ଶ √𝐺 (6 − 5) 

where 𝐺  is the mean strain rate. For example, 𝐺  can be described as follows in a two-

dimensional flow 

𝐺 = 2 ൬
𝜕𝑢ത

𝜕𝑥
൰

ଶ

+ 2 ൬
𝜕𝑣̅

𝜕𝑦
൰

ଶ

+ ൬
𝜕𝑢ത

𝜕𝑦
+

𝜕𝑣̅

𝜕𝑥
൰

ଶ

(6 − 6) 

In Eq. (6-5), 𝑙௠ is the mixing length which varies in different flow cases. In this chapter, 

the mixing length is calculated as follows 

𝑙௠ = min (0.419𝑙, 0.09𝑙௠௔௫) 

where 𝑙 is the nearest distance from the wall, and 𝑙௠௔௫ is its maximal value. 

The Chen model is a zero-equation turbulence model that is widely adopted to simulate 

indoor airflow behaviors. In the Chen model, the turbulent viscosity 𝜇௧ takes the form of a 

simple algebraic function: 

𝜇௧ = 𝐶௖𝜌𝑉𝑙 (6 − 7) 

where 𝑉 is the mean fluid velocity, and. 𝐶௖ is a constant which is equal to 0.03874. 
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6.2.2 Weighted sum RANS turbulence model 

A weighted sum zero-equation RANS turbulence model in PINN-based RANS simulation 

is proposed in this study. The turbulent viscosity 𝜇௧  in the proposed weighted sum RANS 

turbulence model can be described as follows 

𝜇௧ = ෍ 𝑟௜𝜇௧௜

௡೎

௜ୀଵ

(6 − 8) 

where 𝜇௧௜ is the turbulent viscosity calculated using the ith candidate turbulence model. 𝑛௖ 

is the number of the candidate turbulence models. 𝑟௜ is the weight coefficient, whose value 

needs to be optimized. 𝑟௜ ∈ [0, 1] should also meet the following constraints 

෍ 𝑟௜

௡೎

௜ୀଵ

= 1 (6 − 9) 

For example, if there are two candidate models, i.e., the constant eddy viscosity model 

and Chen model, the weighted sum turbulent viscosity 𝜇௧ is expressed as follows 

𝜇௧ = 𝑟ଵ𝜇௧ଵ + 𝑟ଶ𝜇௧ଶ = 𝑟ଵ𝐶௦𝜌𝑉௦𝑙௦ + 𝑟ଶ𝐶௖𝜌𝑉𝑙 (6 − 10) 

Therefore, now the problem turns to be how to find the optimal value for the weight 

coefficient 𝑟௜ . The answer lies in the optimization of the weighting coefficients 𝑟௜  by 

minimizing the difference between the measured Reynolds stresses and the ones derived from 

the PINN’s predictions. To be precise, PINN directly outputs flow velocities and fluid pressure, 

while PINN’s predictions of the Reynolds stresses are further calculated based on the 

Boussinesq eddy viscosity assumption, i.e. Eq. (6-3). 
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6.2.3 PINN structure for implementation of the weighted sum 

model 

The PINN structure proposed in this chapter for implementation of the weighted sum 

RANS turbulence model in two-dimensional flows is shown in Figure 6-1. First, it 

demonstrates similarities to a default PINN. Its FCNN mainbody is exactly the same as that in 

a default PINN. In other words, an FCNN has been used as the module for function expression, 

which describes the relationship between spatial coordinates (x, y) and fluid characteristics (u, 

v, and p).  AD is also implemented here to calculate the gradients, forming the partial 

derivative terms in the loss functions (Baydin et al. 2018). The section right after AD shows 

significant differences from a default PINN, as illustrated in Figure 6-1. Next, the proposed 

PINN structure will be described step by step according to the flow sequence of the algorithm. 

After AD, Eq. (6-8) will be used to calculate the turbulent viscosity 𝜇௧ based on the proposed 

weighted sum RANS turbulence model. The weight coefficients 𝑟௜ will be included here as 

additional trainable parameters in the calculation of the turbulent viscosity (it will be assigned 

an initial value at the beginning of training). Then, the Reynolds stress loss is further calculated 

using the turbulent viscosity obtained in the previous step, the neural network outputs, and the 

Boussinesq eddy viscosity assumption. The Reynolds stress loss 𝐿ோ can be defined as follows 

for a two-dimensional flow case 

𝐿ோ =
1

𝑁ோ
෍ ቀห𝑟ோ௫

௜ ห
ଶ

+ ห𝑟ோ௫௬
௜ ห

ଶ
+ ห𝑟ோ௬௬

௜ ห
ଶ

ቁ

ேೃ

௜ୀଵ

(6 − 11) 

where 𝑁ோ is the number of training points on which the Reynolds stress can be obtained. 𝑟ோ௫
௜ , 

𝑟ோ௫௬
௜ , and 𝑟ோ௬௬

௜  are residuals of different Reynolds stress terms on the ith point, which take the 
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following form 

𝑟ோ௫௫ = 2𝜇௧

𝜕𝑢ത

𝜕𝑥
−

2

3
𝜌𝑘 + 𝜌𝑢ᇱ𝑢ᇱ (6 − 12) 

𝑟ோ௫௬ = 𝜇௧ ൬
𝜕𝑢ത

𝜕𝑥
+

𝜕𝑣̅

𝜕𝑦
൰ + 𝜌𝑢ᇱ𝑣ᇱ (6 − 13) 

𝑟ோ௬௬ = 2𝜇௧

𝜕𝑣̅

𝜕𝑦
−

2

3
𝜌𝑘 + 𝜌𝑣ᇱ𝑣ᇱ (6 − 14) 

where 𝑢ᇱ𝑢ᇱ , 𝑢ᇱ𝑣ᇱ , and 𝑣ᇱ𝑣ᇱ  are measured Reynolds stresses. It is worth noting that the 

existence of the terms 𝑟ோ௫௫
௜ , 𝑟ோ௫௬

௜ , and 𝑟ோ௬
௜  in Eq. (6-11) are not mandatory, and some of 

them may be absent depending on whether there is the corresponding measurement data of the 

Reynolds stresses at these measurement points. Based on the Eqs. (6-11), (6-12), (6-13) and 

(6-14), it can be observed that the Reynolds stress loss 𝐿ோ  is a function of the turbulent 

viscosity 𝜇௧ . Also, because in the proposed weighted sum RANS turbulence model, the 

turbulent viscosity 𝜇௧ is a function of the weight coefficient 𝑟௜, consequently, we may come 

to the conclusion that the Reynolds stress loss 𝐿ோ is a function of the weight coefficient 𝑟௜.  

An important assumption in this research is now proposed to simplify the problem. That 

is, except in the early stages of PINN-based RANS simulation, changes in the value of weight 

coefficient 𝑟௜ will not have a direct significant impact on the simulation results of the fluid 

velocity and pressure within the computational domain. This is easy to understand because, 

despite the variations caused by using different turbulence models, the overall simulation 

results are quite analogous from a holistic perspective. 

Based on the above assumption, the optimization of the weight coefficients 𝑟௜ may be 

achieved by minimizing the Reynolds stress loss since 𝐿ோ is a function of velocity gradients, 
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𝑟௜, and a series of constants. When the change in velocity gradients can be ignored, the change 

in 𝑟௜ value becomes the dominant factor in minimizing the Reynolds stress loss. In the chapter, 

the Adam optimizer is adopted to find the optimal values for 𝑟௜. In order to distinguish this 

training process from the later one for optimizing FCNN parameters (note that only 𝑟௜  is 

trained here), the optimizer here is referred to as optimizer 1 and the training iteration here is 

referred to as iteration 1. In order to minimize the computational costs, an early stopping 

strategy should be adopted here. When optimizer 1 is used to optimize the weight coefficients 

𝑟௜, the trend of parameter changes will be considered. If the range of parameter changes is less 

than a threshold within a certain tolerance, the optimization process will be terminated in 

advance. After the optimal value for 𝑟௜  is obtained, it is then input into the weighted sum 

model to calculate the updated turbulent viscosity 𝜇௧. The entire process above is marked as 

Step 1 in Figure 6-1. In summary, the purpose of Step 1 is to find the optimal value for 𝑟௜, so 

that the predicted Reynolds stress is closest to the measured value. 

It should be noted that, although it is mentioned before that the weight coefficients 𝑟௜ will 

be included as additional trainable parameters of the neural network, it is not directly equivalent 

to these trainable parameters. This is because trainable parameters have no upper or lower 

limits, but 𝑟௜ is different. In this chapter, the trainable parameters are standardized using the 

hyperbolic tangent function, and only the standardized results can be considered as the weight 

coefficients 𝑟௜. Next, Step 2 involves training a traditional PINN using the turbulent viscosity 

𝜇௧ obtained from the weighted sum RANS turbulence model updated in Step 1. A traditional 

PINN is trained using the physics-based loss function, which will be minimized to find the 

optimal values of the neural network parameters w and b by using optimizer 2. The training 

iteration here will be referred to as iteration 2 from this time on in this chapter. After the neural 

network parameters have been trained and updated, Step 1 will be repeated in the next round. 
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However, it is worth noting the stability issue during the training process of the FCNN, as 

the value of turbulent viscosity 𝜇௧  is constantly changing during the training process. As 

previously assumed, except in the early stages of PINN-based RANS simulation, changes in 

the values of 𝑟௜ will not significantly influence the simulation result. This implicitly affirms 

that variations in the value of 𝑟௜  will not substantially influence the values of the neural 

network parameters, and hence, will not alter the stability of the neural network’s training 

process. 

 

In summary, in the proposed model, the measured Reynolds stress will be utilized to 

optimize the weight coefficients 𝑟௜ in the weighted sum model, and the optimized turbulent 

viscosity will be used to solve the RANS equations and simulate the time-averaged flow field 

using the physics-based loss function. Step 1 and Step 2 are alternated to achieve a dynamic 

equilibrium relationship in the training process. Algorithm 6-1 also demonstrates how to use 

the proposed PINN structure for implementation of the weighted sum RANS turbulence model. 

Figure 6-1. The proposed PINN structure for implementation of the weighted sum RANS 

turbulence model in two-dimensional flows. 
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Algorithm 6-1 Proposed PINN for implementation of the weighted sum turbulence model 

Require: Training dataset, numbers of iterations 1 and 2, optimizers 1 and 2, initial values 

of weighting coefficients 𝑟௜. 

Target: Find the optimal values of neural network parameters and weight coefficients 𝑟௜. 

Step 1: Construct an FCNN with the specified hyperparameters and initial parameters. 

Step 2: Specify the collocation points in the computational domain. 

for each iteration 2:  

1) Optimize the values of the weighting coefficients 𝑟௜ as follows: 

for each iteration 1:  

a) Calculate the turbulent viscosity using AD and weighted sum turbulence model. 

b) Calculate the Reynolds stress loss based on Eq. (6-11). 

c) Update the values of 𝑟௜ using optimizer 1. 

d) Distinguish whether the criterion for the early stopping strategy has been met. 

end for 

2) Calculate the physics-based loss function based on the optimized 𝑟௜. 

3) Optimize the values of the neural network parameters w and b using optimizer 2. 

end for 

 



 

155 

 

6.3 Case Study: Square Cylinder Flow 

6.3.1 Computational domain and boundary conditions 

The flow case which was described in Section 5.3.1 is used here again for the verification 

of the proposed weighted sum RANS turbulence model and the proposed PINN structure for 

its implementation. The computational domain and boundary conditions are illustrated in 

Figure 6-2 for clarity. The detailed information can be found in the figure, and please note that 

the coordinates of point A are (0.18, 0.26). The inflow velocity is 0.535 m/s and the Reynolds 

number reaches 21400 when water serves as the flowing medium. 

 

6.3.2 Validation data 

Analogous to the preceding chapter, the experimental data obtained in a closed water 

channel test will be used as the data basis for this case study (Lyn and Rodi 1994). 517 

measurement points were distributed throughout the entire computational domain to acquire 

Figure 6-2. Computational domain of the flow passing a 2D square cylinder. 
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the fluid characteristics (the fluid velocities and Reynolds stresses) in the test. The measured 

data on 36 out of the total measurement points are chosen to train the PINN model. The spatial 

coordinates of these training points are tabulated in Table 6-1. The principle of distributing 

them across the entire computational domain as equitably as possible is adhered to during the 

selection of the training points. 

Table 6-1. Spatial coordinates of the training points. 

x (mm) 
y (mm) 

280 300 320 340 360 400 440 

80   ✓  ✓ ✓ ✓ 

180   ✓  ✓ ✓ ✓ 

235 ✓ ✓ ✓ ✓    

280 ✓  ✓  ✓   

330 ✓  ✓  ✓   

380 ✓  ✓  ✓ ✓ ✓ 

430 ✓  ✓  ✓   

472 ✓  ✓  ✓ ✓ ✓ 

520 ✓  ✓  ✓ ✓ ✓ 

Footnote: ✓ indicates the existence of a training point at the specified location. 

6.3.3 Training using two zero-equation models 

In this section, two default PINNs are adopted when the Chen model and Prandtl mixing-

length model are used respectively for the closure of RANS equations. An FCNN with four 
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hidden layers serves as the main body of the PINN. In each hidden layer, there are twenty 

neurons. The hyperbolic tangent function is adopted as the activation function here. Adam 

optimizer with a learning rate of 2×10-4 is used to minimize the loss. The number of training 

iterations is set to 1×105. The values of the weight coefficients of the governing equation loss, 

boundary condition loss, and data loss are set to 1, 1, and 100, respectively.  

Figure 6-3 depicts the total losses and l2 errors of u and v of the two default PINNs during 

the training process. The following conclusions can be drawn from the figure. First, upon the 

completion of 1×105 iterations, both models achieve the goal of convergence. In fact, after 

6×104 iterations, the results tend to stabilize. The total loss of the Chen model reaches 

1.144×10-1 after the training is completed, compared to 1.961×10-1 of the Prandtl mixing-

length model. Despite the Chen model exhibiting a reduced loss compared to the Prandtl model, 

its simulation results were far less accurate in terms of the relative error when compared to 

experimental measurements than those of the Prandtl model. The l2 errors of the flow velocity 

components u and v are 8.58×10-2 and 3.96×10-1 when the Prandtl mixing-length model is 

adopted for RANS simulation. In contrast, the errors of the flow velocity components u and v 

from the Chen model are 9.21×10-2 and 5.03×10-1 respectively. 

 

The above results further affirm that the applicability issue of the RANS turbulence model 

Figure 6-3. (a) Total losses, (b) l2 errors of u, and (c) l2 errors of v of two default PINNs. 
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persists within the PINN framework, despite the incorporation of measurement data to inform 

the solution of the RANS equations within the domain. In terms of relative error, the Prandtl 

mixing-length model is found to be more applicable to this two-dimensional square cylinder 

flow. In the subsequent section, following the inclusion of the proposed weighted sum RANS 

turbulence model for comparative research, a more detailed analysis of this matter will be 

presented. 

6.3.4 Training using the weighted sum RANS turbulence model 

Two zero-equation RANS turbulence models are included here as the candidate turbulence 

models, which are the Chen model and the Prandtl mixing-length model. Thus, the turbulent 

viscosity 𝜇௧ in this case can be described as follows 

𝜇௧ = 𝑟ଵ𝐶௖𝜌𝑉𝑙 + 𝑟ଶ𝜌𝑙௠
ଶ √𝐺 (6 − 15) 

The initial values for the weight coefficients 𝑟ଵ and 𝑟ଶ are both set to 0.5. Adam is used 

as optimizer 1 with a learning rate of 2.5×10-4. The maximum number of iterations for 

optimizer 1 is set to 50, accompanied by an early stopping judgement. When using the proposed 

weighted sum RANS turbulence model, the structure of the FCNN, the settings for optimizer 

2, and the weight coefficients in the loss function remain consistent with those described in 

Section 6.3.3. 

The convergence curve of the proposed model is depicted in Figure 6-4(a), compared with 

those from the default PINNs using the Chen and Prandtl models for the closure of the RANS 

equations. Figure 6-4(b) shows the convergence process of the Reynolds stress loss. In addition, 

the variations of the 𝑟௜ values during the training process are depicted in Figure 6-4(c). The 

figure indicates that the training of the weighted sum model ultimately converges, with both 
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the loss values and weight coefficient values achieving stability. The values of 𝑟ଵ  and 𝑟ଶ 

ultimately stabilize at approximately 0.393 and 0.607, respectively. This indicates that the 

turbulent viscosity derived from the weighted sum model based on this ratio exhibits tinimal 

relative error compared to the actual measured Reynolds stress components at the training 

points. This viewpoint is also demonstrated in Figure 6-4(b). The Reynolds stress loss 

decreases from an initial value of 8.6×10-4 to 6.4×10-4 eventually, while the changes in 𝑟௜ 

values definitely contribute to this reduction. 

 

Figure 6-5 shows the l2 errors of u and v from the weighted sum RANS turbulence model, 

compared to those from the Chen and Prandtl models. Firstly, it can be observed that although 

an additional optimization is introduced during the training process, there is no visible 

difference in convergence speed compared to traditional methods.  

Secondly, the proposed weighted sum model exhibits a minimal discrepancy between the 

predicted mainstream velocity u and the experimental observations. The l2 error of the flow 

velocity component u from the weighted sum turbulence model reaches 8.15×10-2 eventually, 

which has decreased by roughly 5% and 12% compared to the Chen model and Prandtl model, 

Figure 6-4. The convergence curves of (a) the physics-based loss, (b) the Reynolds stress loss, 

and (c) the weight coefficients 𝑟௜. 
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respectively. The l2 error of v reaches 4.07×10-1 at the end of the training, which is a slight 

improvement compared to the Prandtl model but a significant decrease compared to the Chen 

model. In this flow case, the l2 errors indicate that the performance of the proposed weighted 

sum model is more like to that of the Prandtl model. Such a result is in line with expectations 

as the 𝑟ଶ  value ultimately stabilizes at 0.607. That is, in this flow case, the weighted sum 

model is dominated by the Prandtl mixing-length model, while the Chen model acts as a 

supporting role. However, this is not definitive. It is believed that in other flow cases, the 

dominant model may alter based on the agreements between the candidate models and the 

actual flow conditions. 

 

A detailed comparison of the mainstream velocity u on the line x = 0.21 m is shown in 

Figure 6-6. From the left figure, it can be seen that this line is located at the flank region of the 

square cylinder, which is the area characterized by a sharp variation in the gradients of the flow 

velocities. From the subgraph on the right, it can be observed that among the three models, the 

proposed model is clearly closer to the measured values. Figures 6-7 and 6-8 show the 

comparison results of u in the wake region. The results show that the proposed model is closest 

Figure 6-5. (a) l2 errors of u and (b) l2 errors of v of the weighted sum model. 
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to the experimental results, whether in the flow separation region or the external mainstream 

region. More specifically, the proposed model is the only one that simulates a flow velocity 

less than zero (i.e. reverse flow) when x equals 0.25 and y is less than 0.29, which is consistent 

with the experimental results. Figure 6-9 depicts the comparison results of u at a downstream 

position. The results in the figure indicate that there is not much difference between the 

simulation results of each model at the downstream position away from the blunt body. 

 

 

Figure 6-6. (a) Position of the line x = 0.21 m, and (b) Comparison of u on this line. 

Figure 6-7. (a) Position of the line x = 0.24 m, and (b) Comparison of u on this line. 
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From the above figures, it can also be observed that in this flow case, the results of the 

proposed weighted sum RANS turbulence model align more closely with the Prandtl model, 

which confirms the previous conclusion and deduction. In summary, during the training process 

of the proposed model, the optimal values for weight coefficients 𝑟௜  are obtained by 

minimizing the Reynolds stress loss, resulting in the expression for the turbulent viscosity 𝜇௧. 

The results of the proposed model have demonstrated a smaller relative error with the 

experimental measurement results compared to candidate models. The proposed method for 

turbulence modeling greatly improves the applicability of the RANS turbulence model, as the 

Figure 6-8. (a) Position of the line x = 0.25 m, and (b) Comparison of u on this line. 

Figure 6-9. (a) Position of the line x = 0.36 m, and (b) Comparison of u on this line. 
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proposed model can automatically adjust the weight coefficient 𝑟௜  based on the measured 

Reynolds stress components, and then automatically identify the most suitable one in the 

candidate models to become the ‘leader’, or form a completely new one by the means of linear 

superposition of the candidate models. 

6.3.5 Training using the pretrained models 

In this section, attempts are made to replace the randomly initialized parameters of the 

neural network with those from two pretrained models, which are described previously in 

Section 6.3.3. That is, assuming the existence of two well-trained PINN models based on the 

conventional zero-equation models, the current attempt is to use the proposed weighted sum 

model to further modify the simulation results. This significantly reduces the computational 

expense relative to training a model from the ground up. The settings for model training remain 

consistent with the previous sections, except that the number of training iterations 2 has been 

reduced to 8×104. In addition, the learning rate of the optimizer 2 has been reduced to 1×10-4. 

The initial values for the weight coefficients 𝑟௜ have to be changed based on the specified 

zero-equation model for pretraining. More specifically, if the Chen model is used for 

pretraining, 𝑟ଵ will be assigned a value infinitely close to 1. If not, it will be assigned a value 

infinitely close to 0 (At the code level, weight is a trainable parameter that has been normalized 

by a hyperbolic tangent function, so the weight can only approach 0 or 1 infinitely). 

Figure 6-10 shows the adjustment process when the proposed weighted sum model is 

adopted to modify the simulation results obtained from the pretrained models. It should be 

noted that the results of the initial 1×105 iterations are consistent with the corresponding results 

in Figures 6-4 and 6-5, while the subsequent 8×104 iterations are the adjustment process of 

using the proposed weighted sum model to modify the simulation results of the pretrained 
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model. 

Compared to the physics-based losses before the adjustment, the loss of the Chen model 

has decreased by 0.6% to 1.137×10-1 while the loss of the Prandtl mixing-length model has 

dropped by 13.3% to 1.701×10-1. The l2 error of u has reduced by 4.2% to 8.22×10-2 when the 

Prandtl mixing-length model is used as the pretrained model and has reduced by 3.8% to 

8.86×10-2 when the Chen model is adopted.  

During the adjustment process, the l2 error of v in the Prandtl model slightly increases. In 

comparison, the l2 error of v in the Chen model has reduced by 19.7% to 4.04×10-1. For 

comparison purposes, the l2 errors of u and v obtained from all the models mentioned in this 

chapter are now summarized in Table 6-2. The results shown in the table and figure consistently 

demonstrate that utilizing the proposed RANS turbulence model substantially reduces the 

relative error between the simulated flow velocities and the measured values. This can be 

achieved by integrating the weighted sum RANS turbulence model into the initial training stage 

of a PINN or by rectifying the existing simulation results of conventional models using the 

proposed model. Such a result presents definitive evidence of the viability and efficacy of the 

proposed model. 

 

Figure 6-10. The convergence curves of (a) the physics-based loss, (b) the l2 errors of u, and 

(c) the l2 errors of v during the adjustment process. 
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Table 6-2. The l2 errors of u and v obtained from different models. 

Strategy 

Model 

Default PINN Proposed Model Pretraining 

u v u v u v 

Chen 9.2% 50.3% 
8.2% 40.7% 

8.9% 40.4% 

Prandtl 8.6% 39.6% 8.2% 40.8% 

Figure 6-10 shows the convergence processes of the Reynolds stress losses and the weight 

coefficient 𝑟ଵ during the adjustment process (𝑟ଶ is not drawn here because it can be derived 

from the value of 𝑟ଵ.). The results in Section 6.3.4 are also included here for comparison. The 

author initially holds the belief that, regardless of the turbulence models employed during 

pretraining, the final revised results should align with those presented in Section 6.3.4.  

Nonetheless, the results depicted in the figure unequivocally demonstrate that the mixing 

ratio in the final weighted sum model does not align with expectations when the Chen model 

was employed for pretraining. That is, 72% of the turbulent viscosity in the weighted sum 

model comes from the Chen model, while the remaining 28% comes from the Prandtl mixing-

length model. In contrast, the ratio of these two in other models is about 0.4:0.6. This difference 

in proportion also leads to the different values of Reynolds stress losses. Such a phenomenon 

may result from the pretraining model having already produced a preliminary estimation of the 

flow field, including the velocity gradient, which influenced the calculation of the Reynolds 

stress terms using the Boussinesq eddy viscosity assumption. Nonetheless, the accuracy of the 

revised model has been enhanced. In addition, the Reynolds stress losses have decreased 

relative to the initial values, underscoring the significance of the proposed model. 
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6.3.6 Training with three candidate models 

On the basis of the original two turbulence models, a third zero-equation RANS 

turbulence model has been integrated in the weighted sum model as an additional candidate 

model, which is the aforementioned constant eddy viscosity model. Now, the turbulent 

viscosity in the weighted sum model is transformed into the following form 

𝜇௧ = 𝑟ଵ𝐶௖𝜌𝑉𝑙 + 𝑟ଶ𝜌𝑙௠
ଶ √𝐺 + 𝑟ଷ𝐶௦𝜌𝑉௦𝑙௦ (6 − 16) 

All setups for the RANS simulation remain consistent with those in Section 6.3.3, except 

that the initial weights are set to 0.5, 0.25, and 0.25. Furthermore, in the first 2×104 iterations 

of minimizing the physics-based loss, the optimization of the Reynolds stress loss is omitted. 

The weight coefficients 𝑟௜ are frozen at the initial values of 0.5, 0.25, and 0.25 without any 

changes during these 2×104 iterations. This is predicated on the belief that a rough solution is 

adequate enough in the primary training phase, rendering the optimization of 𝑟௜  values 

unnecessary and so conserving computational costs. In addition, from another aspect, it can be 

seen that the implementation of the weighted sum RANS turbulence model proposed in this 

Figure 6-11. The convergence curves of (a) the Reynolds stress loss, and (b) 𝑟ଵ. 
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chapter is very flexible and can be enabled and terminated at any stage of training. The l2 errors 

of u and v ultimately decrease to 8.9% and 41.7%, which are almost identical to the results 

listed in Table 6-2. 

Figure 6-12 depicts the convergence curves of the Reynolds stress loss, and 𝑟௜ . It is 

obvious that the turbulent viscosity in the weighted sum model is still dominated by the Prandtl 

mixing-length model, accounting for about 54%, with the constant eddy viscosity model 

playing an auxiliary role, accounting for about 46%, while the Chen model has a very small 

proportion and can be ignored. Another finding is that when the physics-based loss is optimized 

for 2×104 iterations and the weighted sum model is activated, there is a significant decrease in 

the Reynolds stress loss. This indicates that the proposed method is effective in minimizing the 

discrepancies between predicted Reynolds stress terms and measured values.  

 

Figure 6-13 compares the predicted and measured Reynolds shear stress on the line x = 

0.28 m. The results indicate that the Reynolds shear stress predicted by the proposed weighted 

sum model is a compromise between the Prandtl mixing-length model and the constant eddy 

Figure 6-12. The convergence curves of (a) the Reynolds stress loss, and (b) 𝑟௜ when there 

are three candidate models. 
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viscosity model, which is consistent with the results in Figure 6-12. Additionally, the Reynolds 

shear stress that is predicted by the weighted sum model is able to mirror the trend of those that 

have been observed, and it is relatively close to the measured values, which is a strong 

indication of the accuracy advantage that this model possesses. 

 

6.4 Case Study: Flow Past a Single Hill 

In this section, the numerical example described in Chapter 4 is utilized, namely the flow 

past a two-dimensional hill (see Figure 4-3 for details). The neural network has six hidden 

layers, each layer containing 40 neurons. Tanh is used as the activation function. On each of 

the four boundaries, there are 50 evenly distributed collocation points to calculate the residuals 

of the boundary condition loss. Furthermore, the collocation points, which constitute a 

uniformly distributed 50 by 50 lattice, were organized within the computational domain to 

compute the residuals of the governing equation loss. Adam is selected as the optimizer with a 

Figure 6-13. Comparison between the predicted and measured Reynolds shear stress. 
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stable learning rate of 0.0001. The number of iteration 2 is fixed at 50000. The time-averaged 

velocities at the measurement points listed in Table 4-1 are used for PINN’s training, and the 

Reynolds shear stresses at these points are also used to calculate the Reynolds stress loss. 

In this case study, only the Chen model (candidate model 1) and the constant eddy 

viscosity model (candidate model 2) are selected as the candidate models. Figure 6-14 reveals 

that in this flow case, the Chen model is more suitable for describing turbulent characteristics 

than the constant eddy viscosity model, as after 50000 training iterations, the l2 error of the 

mainstream velocity u using the Chen model decreased to 11.7%, while the l2 error of the 

mainstream velocity u using the constant eddy viscosity model reached 26.7%. Upon 

implementing the proposed weighted sum RANS turbulence model, it can be observed that the 

weight coefficients eventually stabilize at around 0.46 and 0.54 for candidate models 1 and 2, 

respectively. Furthermore, we observed that the use of the weighted sum turbulence model 

results in a reduction of the l2 error of u to 11.0%, the lowest value among the three, thus 

validating the efficacy of the weighted sum turbulence model. 

 

Figure 6-14. The l2 errors of the mainstream velocity u and the weight coefficients in the 

weighted sum model. 

 The above results indicate that the weight coefficients of the weighted sum model vary 



 

170 

 

depending on the specific flow condition. Specific weight combinations might reduce Reynolds 

stress loss, therefore attaining optimal simulation accuracy based on the given candidate 

models, which is the fundamental concept and core value of the proposed weighted sum RANS 

turbulence model. 

6.5 Conclusions 

This chapter proposes a weighted sum RANS turbulence model for PINN-based RANS 

simulations. The existing zero-equation RANS turbulence models are considered to be 

candidate models. The turbulent viscosity of the proposed model is a linear combination of the 

turbulent viscosities of the candidate models. The key to the problem then shifts to the 

optimization of the weights for each candidate. This chapter formulates a new loss term, i.e., 

the Reynolds stress loss, by using the measured Reynolds stress and the Boussinesq eddy 

viscosity assumption, therefore attaining the objective of weight optimization via the 

minimization of the Reynolds stress loss. Meanwhile, a novel PINN structure is proposed for 

the implementation of the proposed weighted sum model. The feasibility of the proposed model 

has been verified through a case study of a two-dimensional square cylinder flow and the flow 

past a two-dimensional hill. Some conclusions can be drawn as follows 

 The applicability issue of the RANS turbulence model still exists in the PINN 

framework, despite the assistance of the measured data. For example, when using two 

different turbulence models for PINN-based RANS simulation, there is a discrepancy 

in results. The Prandtl mixing-length model is superior in the two-dimensional square 

cylinder flow case in the matter of relative errors. 
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 The proposed model minimizes the Reynolds stress loss by finding the optimal values 

for weight coefficients 𝑟௜. The proposed method calculates the Reynolds stress based 

on the Boussinesq eddy viscosity assumption and the predicted turbulent viscosity 

from the weighted sum model. The difference between the measured Reynolds stresses 

and the predicted values is significantly reduced during the training process. 

 The proposed weighted sum RANS turbulence model exhibits optimal performance in 

both two flow cases. In comparison to existing zero-equation models, the discrepancy 

between the simulated mainstream velocities and the measurements is minimized 

when the weighted sum model is adopted. 

 The proposed weighted sum RANS turbulence model can also be used to modify the 

pretrained models using the conventional turbulence models. When using an 

inappropriate turbulence model for pretraining of a PINN, the modified results show 

significant improvements compared to those before adjustment, and the relative error 

is greatly reduced. 

However, it must be acknowledged that the method proposed in this chapter also has its 

drawbacks. Firstly, it exacerbates the problem of high computational cost in PINN’s training to 

a certain extent. Secondly, this method requires training data and cannot be implemented 

without known Reynolds stress. The impact of the measured Reynolds stress on the results of 

the proposed model remains uncertain. To address these issues, more investigations are 

necessitated, becoming one of the key focuses of future work. 
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CHAPTER 7                              

CONCLUSIONS & RECOMMENDATIONS 

This chapter aims to encapsulate the novel contributions previously discussed in this thesis 

and provide prospects for future research. 

7.1 Conclusions 

In the first chapter of this thesis, the background of turbulence simulation is presented for 

the first time. This chapter gives a detailed description of the physical governing equations. i.e., 

the RANS equations, for turbulence simulation. Additionally, this chapter introduces the 

traditional numerical methods that are used for turbulence simulation, namely various CFD 

methods, and provides a comprehensive analysis of the benefits and drawbacks associated with 

these approaches in turbulence simulation. Following that, this chapter presents a revolutionary 

PDE solver designed on the basis of machine learning methods, which is referred to as PINN. 

The utilizations of PINNs in both forward and inverse physical problems involving ODEs and 

PDEs are presented. Then, a short introduction to the current applications of PINNs in fluid 

mechanics and turbulence modeling is presented. The effectiveness of PINN directly used in 

turbulence simulation appears to be average at the present time, with the exception of a few 

report cases. That is, the further application and development of PINNs in the field of 

turbulence simulation is hindered by a number of factors, which is what sparks the discussions 

on research motivation in Section 1.2. The three main factors currently limiting the further 
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development of PINN-based RANS simulation are summarized as follows.  

Firstly, the loss function of a PINN is made up of a number of distinct and complicated 

components, and its convergence turns into a non-convex optimization, which often leads to 

an unsatisfying convergence performance. Secondly, PINN is a PDE solver based on a neural 

network structure, while the nonlinear expression and feature learning capabilities of the PINN 

are constrained by its neural network architecture. For example, the frequency principle is a 

phenomenon that usually occurs while training a neural network, but it may also be discovered 

during PINN’s training. Thirdly, within the realm of PINN-based RANS simulation, the issue 

of poor applicability of RANS turbulence models persists. Since the Reynolds stress 

components induced by Reynolds averaging cause the governing equations to be unclosed, it 

is important to model the Reynolds stress components in mathematical forms to solve the 

RANS equations. The RANS turbulence model is the aggregate name for various physics-based 

mathematical models that are used to describe the Reynolds stress components. However, 

studies have shown that the most suitable RANS turbulence model does not remain constant 

over a variety of flow cases. This problem is referred to as the applicability issue of the RANS 

turbulence model. This kind of issue is still present not only in conventional CFD-based RANS 

simulations but also in PINN simulations, becoming a major factor restricting the development 

of RANS simulations. The above three factors constitute the main constraints on PINN-based 

RANS simulation. 

In Chapter 2, an overview of the RANS equations, which are the governing equations used 

in turbulence simulation in this thesis, is first provided. This chapter explores in detail how the 

NS equations evolve step by step into the RANS equations. The rules regarding Reynolds 

averaging are elaborated in detail as well. The necessity of RANS turbulence modeling and 

common turbulence models are also elaborated here. In order to close the RANS equations, 
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additional equations need to be introduced to describe the unknown variables. According to the 

number of equations introduced, common RANS turbulence models can be classified into zero-

equation models, one-equation models, and two-equation models, all of which have been 

elaborated one by one in that section.  

Following that, a review of the conventional numerical approaches to solving the RANS 

equations is carried out. For complex PDEs such as the RANS equations, finding their 

analytical solutions is a daunting task (in fact, even the existence of the analytical solutions of 

the RANS equations has not been proven), so researchers can only rely on numerical methods 

to approximate the solution of the RANS equations. The FVM, a kind of CFD method and the 

most commonly used numerical method to solve the RANS equations, has been reviewed from 

its principle to application. Another approach that is emphasized is the FVM method. Although 

it is used extensively in the field of solid mechanics, FVM also has a slot in the field of 

turbulence modeling. At the end of this chapter, a systematic review of the PINN has been 

conducted. In the beginning, its history is broken down, and then the evolution of PINN in the 

field of fluid mechanics is discussed in more detail. In the next step, the application of PINN 

in RANS simulation has been expounded upon, and in the last step, the limiting factors in 

PINN-based RANS simulation at the present level are evaluated and backed by research 

instances. 

In this thesis, four ameliorative methods for physics-informed machine learning based 

RANS simulations are presented. Chapter 3 proposes one of these ameliorative methods, i.e., 

a novel self-adaptive loss balancing approach which is referred to as dpPINN. This strategy is 

achieved by rewriting the total loss function in the original PINN. The proposed strategy 

constructs loss functions based on specific flow variables, rather than using the traditional 

boundaries and data losses. Following a designated number of training iterations, the weight 
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coefficient for each loss component will be reassigned. The update is based on the relative error 

between the predictions of these flow variables and the measured values. This chapter uses a 

building outdoor flow case to validate the proposed method. A zero-equation RANS turbulence 

model is then adopted in order to simulate the flow field surrounding a scale model of a building 

that is located inside a wind tunnel. The utilization of sparse near-wall wind velocity data is for 

the purpose of supervised learning.  

Additionally, the experiment data in a wind tunnel test conducted in Japan serves as the 

database that verifies the dpPINN’s feasibility. In addition to this, the influence that various 

neural network structures and incorporated turbulence models have on the prediction accuracy 

of dpPINN is investigated. The dpPINN is demonstrated to be capable of offering an auxiliary 

means to simulate the flow field around a bluff body based on the findings. Lastly, according 

to the findings, the proposed dynamic loss balancing strategy can successfully speed the early 

convergence of a PINN and significantly increase its accuracy in the middle to late stages of 

training, which is beneficial for alleviating the aforementioned PINN’s convergence issue. 

The second ameliorative method for physics-informed machine learning based RANS 

simulations is presented in Chapter 4. For ease of understanding, the term fidelity should be 

first introduced. To be noted here, initially, fidelity is a term that describes the degree to which 

a prototype is similar to the original product. Here, the term fidelity is regarded as the degree 

of similarity and detail preservation between the simulated or measured flow data and the 

theoretical solutions. The higher the fidelity, the closer it is to the theoretical solutions, while 

the lower the fidelity, it is believed to only roughly conform to the trend, and basically lose 

details and accuracy.  

As an emerging algorithm, multifidelity modeling algorithm balances the accessibility of 
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low-fidelity data with the accuracy of high-fidelity data, attempting to rely on low-fidelity data 

trends and sparse high-fidelity data accuracy to restore theoretical solutions. In this chapter, the 

results based on the PINN-based RANS simulation are regarded to have a low fidelity owing 

to the faults that were mentioned before, but the measurement data is deemed to have a high 

fidelity.  

The NIF algorithm proposed by Perdikaris et al. (2017) is adopted here for multifidelity 

modeling. In the NIF algorithm, the multifidelity model is generally constructed based on the 

GP regression model. In this chapter, the multifidelity model is essentially a GP regression 

model that takes spatial coordinates and low-fidelity data as inputs, and outputs high-fidelity 

data. It is also equipped with a well-built Gaussian kernel to capture the nonlinear 

nonfunctional cross-correlations of space-dependent nonlinearity.  

The multifidelity model that was proposed has been validated by two flow cases, and the 

results attained are astonishing. In spite of the fact that PINN has a low fidelity of accuracy, the 

findings demonstrate that it is able to accurately capture the trend of theoretical solutions in the 

computational domain. Furthermore, sparse measurement data also provides a corrective 

function for low-fidelity simulations obtained from the PINN. The findings obtained from the 

multifidelity model demonstrate strong concordance with the measured values. Meanwhile, as 

PINN only aims to provide rough low-fidelity data, the applicability of RANS turbulence 

models can be partially alleviated. 

Chapter 5 presents the third ameliorative method for physics-informed machine learning 

based RANS simulations. This chapter starts with the function expression module of a PINN, 

i.e., the FCNN mainbody. In previous experience, the FCNN has been known to suffer some 

difficulties, such as the difficulty in learning high-frequency features. This issue is mirrored in 
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the PINN-based RANS simulation as the phenomena of the lack of turbulent details in local 

regions. It is praiseworthy that the dressed quantum circuit, which is a hybrid classical-quantum 

algorithm, has proved its capacity to speed up the learning of high-frequency characteristics in 

advance in the numerical example that has been provided. In light of this, the aim of this chapter 

is to utilize a dressed quantum circuit as an alternative to the conventional fully connected 

layers that serve as the backbone of a PINN. Then, the proposed model is referred to as 

PIHCQNN.  

The effectiveness of PIHCQNN has been validated on four forward problems involving 

PDEs or ODEs, as well as one inverse problem involving ODEs, which includes the forward 

problem of simulating the flow around a square cylinder using the RANS equations. According 

to the findings, the results achieved through the utilization of the PIHCQNN model have 

demonstrated a degree of enhancement in comparison to the conventional PINNs. Such a result 

also indicates that the embedding of quantum layers in the FCNN structure can enhance the 

nonlinear expression and feature learning capabilities of a PINN to a certain extent. 

An innovative turbulence model for PINN-based RANS simulation is proposed in Chapter 

6. A persistent and challenging issue in RANS turbulence modeling has always been the poor 

applicability of various turbulence models. Within the realm of RANS turbulence simulation, 

the linear eddy viscosity models that are founded on the Boussinesq eddy viscosity assumption 

have consistently been the predominant models.  

The linear eddy viscosity models can be further subdivided into zero-equation models, 

one-equation models, two-equation models, and so on, depending on the number of additional 

equations introduced. To be mentioned, the zero-equation models have certain advantages in 

PINN-based RANS simulation, mainly due to their simple forms and the absence of additional 
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unknowns and PDEs for solving the RANS equations. The proposed model is referred to as the 

weighted sum RANS turbulence model, which may be viewed as a linear combination of the 

conventional zero-equation RANS turbulence models. Then, the challenge of turbulence 

modeling is transformed into determining the linear coefficients in the weighted sum model, 

namely the weight coefficients 𝑟௜.  

To address this issue, this chapter introduces the concept of Reynolds stress loss, which 

refers to the difference between the PINN-predicted Reynolds stress components and the 

measured values. The proposed method determines the values of the weight coefficient 𝑟௜ by 

minimizing the Reynolds stress loss. That is, the proposed method aims to find a set of optimal 

𝑟௜ values that minimize the difference between the simulated Reynolds stress components and 

the measured values.  

Meanwhile, this chapter also proposes a novel PINN structure to achieve simultaneous 

optimization of the traditional PINN loss and the Reynolds stress loss. The proposed turbulence 

model has been validated on a square cylinder flow, and it has shown superior accuracy 

performance in comparison to conventional zero-equation models. The proposed turbulence 

model is concurrently employed to rectify the simulation results derived from the pretraining 

PINN models when conventional zero-equation RANS turbulence models are used, still 

achieving satisfactory results. The results demonstrate that, during the simulation process, the 

weight of the most suitable candidate model in the weighted sum model will inherently be 

emphasized, which may greatly alleviate the applicability issue of RANS turbulence models. 

In summary, the three existing challenges in the PINN-based RANS simulation concluded 

in this thesis have been addressed through the four proposed ameliorative methods. The thesis 

has preliminarily achieved its research objective, which is to develop physics-informed 
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machine learning methods which are accurate, dependable, stable, and affordable to address 

fluid dynamics issues involving the RANS equations. 

7.2 Recommendations 

In this section, insights on future work will be provided based on the research work 

conducted thus far.  

7.2.1 Discovering underlying physics in turbulence 

As aforementioned, the determination of the turbulent viscosity at a particular position is 

one of the most important challenges that should be addressed in RANS turbulence modeling. 

Although Chapter 6 makes an effort to enhance the generalization capability of RANS 

turbulence modeling through the linear superposition of zero-equation RANS turbulence 

models, it is still far from achieving the desired result.  

The reason for this is that the zero-equation model has not been the focus of research over 

the past decades, and there are not many options available for the choice of candidate models. 

This means that these candidate models cannot serve as a complete basis for a universal RANS 

turbulence model. In addition, with an increasing number of candidate models, there is also the 

danger of being mired in a situation known as a local optimal solution.  

As is known to all, PINN is able to address inverse problems by identifying unknown 

coefficients in physical governing equations. However, in RANS turbulence simulations, the 

governing equation that is used to characterize turbulent viscosity is fully unknown, not only 

the coefficients. This is an issue that cannot be solved by PINN itself.  
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Chen et al. (2021) successfully discovered governing PDEs for nonlinear spatiotemporal 

systems using PINN and sparse regression from scarce and noisy data. A collection of partial 

derivatives of each potential component element in the physical governing equation, i.e., the 

library, was created by the authors, as can be seen in Figure 7-1. Unknown physical governing 

equations may be identified by utilizing the residual between the linear combination of these 

partial derivatives and the observed values as the loss function of the neural network. 

 

However, it must be acknowledged that such kind of methods requires a large amount of 

high-quality data for inference (de Silva et al. 2020, Zhou et al. 2022). When it comes to 

turbulence simulations, this circumstance does not frequently occur. This is also why in this 

thesis, an attempt is made to construct a new RANS turbulence model using a linear 

combination of the existing turbulence models rather than starting from scratch. The benefit of 

this approach is that the interpolation and extrapolation accuracy of the new turbulence model 

will remain reasonable. In summary, the strategy illustrated in Figure 7-1 offers valuable 

insights for ongoing research and merits additional investigation. 

7.2.2 Empirical constants in RANS turbulence models 

As mentioned in Section 6.1, the RANS turbulence model, as an artificially designed 

mathematical model for closure of the RANS equations, inevitably include a few empirical 

Figure 7-1. The structure of the neural network for governing equation identification proposed 

by Chen et al. (2021). 
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constants (Margheri et al. 2014). 

 Nevertheless, it is found that the determination of the values of the empirical constants 

in RANS turbulence models might be a challenging issue (Geng and Escaler 2020). On one 

hand, the values of these empirical constants are usually determined based on experience or 

experiments (Xiao and Cinnella 2019). Despite the existence of recommended values for these 

constants, there is no unified standard, and strictly speaking, they should be determined on a 

case-by-case basis (Lien et al. 1998). The values of these empirical constants, on the other hand, 

will have a certain impact on the RANS simulation results (Yazdani and Tahani 2024). 

Given that the values of these constants have a certain impact on the final simulation 

results, a supervised learning strategy is suggested to be adopted to optimize the values of these 

empirical constants. The question now shifts to how to integrate the supervised learning 

strategy into the training process of PINN to guide the training of these empirical constants.  

It is recommended that similar to when PINNs are adopted to solve inverse problems, 

empirical constants can be considered as parameters to be optimized during the training process 

of the neural network. The conventional physics-based loss that a PINN adopts is not utilized 

as the basis of training; rather, their values should be optimized by minimizing the Reynolds 

stress loss, as described in Chapter 6.  

There have been attempts to solve such an issue. For example, as shown in Figure 7-2, 

Rui et al. (2024) proposed a weak-form zero-equation RANS turbulence model that releases 

the constants in the turbulence model and converts them into neural network outputs. In their 

proposed model, the distribution of the empirical constant value in space is found by 

incorporating deviation errors in the loss function and defining upper and lower limits, hence 

converting the RANS turbulence model into a weak-form model. The findings indicate that the 
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model can achieve results with lower relative errors. However, in their model, challenges like 

the inability to precisely simulate the positive pressure distributions on the windward side still 

persist, and further research is desired to address such issues. 

 

7.2.3 Quantum transfer learning 

Transfer learning is a commonly used strategy in the realm of PINN, and fine-tuning in 

transfer learning is a common approach in model-based transfer learning (Goswami et al. 2020, 

Liu et al. 2023, Prantikos et al. 2023). Fine-tuning eliminates the need to train the neural 

network from the start for new tasks (Tajbakhsh et al. 2016, Touvron et al. 2023). As a result 

of its increased computational cost in comparison to conventional numerical methods, PINN is 

better suited for fine-tuning applications. 

Within the realm of transfer learning, VQCs have demonstrated the capability to extract 

features and post-process the features derived from conventional neural network models (Mari 

et al. 2020). More specifically, VQCs, as well as dressed quantum circuits, may be used as 

feature extractors to extract knowledge in general tasks and pass the pre-acquired knowledge 

Figure 7-2. The PINN structure for RANS simulations using a weak-form turbulence model 

adopted by Rui et al. (2024). 
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to conventional neural networks for post-processing. Additionally, they can be used as post-

processing modules to further compress and process features that have been retrieved by 

conventional models (Azevedo et al. 2022, Mogalapalli et al. 2022, Kim et al. 2023). An 

illustration of the quantum transfer learning framework that Otgonbaatar et al. (2023) adopted 

may be found in Figure 7-3. As can be seen from the figure, the feature extractor adopted in 

this quantum transfer learning model is a pre-trained classical neural network model, namely 

VGG16. This is in line with the conventional transfer learning strategy. The only difference is 

that the features extracted from the VGG16 model are post-processed using quantum machine 

learning models in quantum transfer learning. As reported in their work, quantum models 

generally have higher accuracy than classical models. 

 

The applicability issue of turbulence models in PIHCQNN-based RANS simulations is 

expected to be alleviated through the use of quantum transfer learning. When RANS simulation 

is performed using a variety of turbulence models, the flow velocity and pressure field that are 

derived from simulations are distinct from one another. However, despite the fact that there are 

disparities, there is consistency in the overall trend of solutions within the domain. Therefore, 

the flow velocity and pressure fields that are calculated using a certain turbulence model may 

be considered to be the source domain, while those calculated using a different turbulence 

Figure 7-3. The quantum transfer learning strategy adopted by Otgonbaatar et al. (2023). 
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model can be considered to be the target domain. It is feasible to accomplish the task of the 

target domain by employing a neural network model that has already been trained in the source 

domain and a minimal number of labeled training samples in the target domain, which can be 

accomplished by freezing the parameters in the inner layers and releasing those in the 

outermost layers for training (Tang et al. 2022, Prantikos et al. 2023). 
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