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Abstract 

Background 
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, 

with most cases diagnosed at an advanced stage, making immunotherapy a key 

treatment strategy. However, the response rate to PD-L1 inhibitors remains low, 

necessitating further exploration of resistance mechanisms and predictive 

biomarkers. Hypoxia is a major contributor to immunotherapy resistance, as HIF-

1α upregulates PD-L1 expression and activates genes that help tumor cells adapt 

to hypoxia, ultimately reducing immunotherapy efficacy. 

 

This study integrated bioinformatics, machine learning, and deep learning to 

identify key hypoxia-associated genes and pathways contributing to PD-L1 

expression. A hypoxia risk score model was developed to stratify cases by risk, 

and a Kolmogorov-Arnold Network (KAN) deep learning model was constructed 

to predict immunotherapy response. Additionally, an in vitro hypoxia-induced 

drug-resistant HepG2 cell model was established, and the role of NOXA in 

apoptosis regulation was examined through flow cytometry and AI-based image 

analysis. 
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Results and Conclusion 
52 HCC-Hypoxia Overlap genes (HHOs) were identified, with 14 PD-L1 

regulatory genes and 10 hub genes influencing immunotherapy response. 

PMAIP1 (NOXA) was significantly associated with immunotherapy response (p 

< 0.001). A hypoxia risk score model integrating PMAIP1 and 9 hypoxia risk-

associated genes demonstrated high predictive accuracy (AUC = 0.815, 0.774, 

0.771 for 1-, 2-, and 3-year survival, respectively). The KAN deep learning model 

incorporating 11 key genes achieved high predictive accuracy (AUC = 0.936 

training, 0.7 test). SVM-based integration of hypoxia risk score and KAN model 

improved prediction performance (AUC = 0.725 test set). 

 

Experimental validation demonstrated that hypoxia enhances drug resistance in 

HepG2 cells, while NOXA knockdown alters apoptosis patterns, potentially 

modulating treatment response. These findings highlight NOXA as a potential 

therapeutic target and establish a robust model for predicting immunotherapy 

response, advancing precision medicine in HCC treatment.  
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Chapter 1 Literature Review 

1.1 Hepatocellular Carcinoma 

Hepatocellular carcinoma (HCC), a disease known for its high aggression and 

heterogeneity, is the leading form of primary liver cancer, constituting 80-90% of 

all cases. From 2005 to 2015, HCC has risen to become the second largest cause 

of cancer-related years of life lost on a global scale and the second leading cause 

of malignant tumor deaths in Asia. The latest report from the World Health 

Organization (WHO) indicates that the incidence and mortality rates of liver 

cancer have increased over the last 20 years. In 2020, the global incidence and 

mortality rates of HCC were 906,000 and 830,000, respectively. The WHO also 

reported that nearly 70% of cases occur in the Asian region, with China having 

the top incidence rate among HCC patients. It is reported that the age-specific 

incidence rate is highest among individuals over 70 years old. Additionally, HCC 

is predominant in males (showing a male-to-female ratio ranging from 2 to 3:1), 

which may be connected to the higher prevalence of risk factors in males [1-3]. 

1.1.1 The Diagnosis of HCC 

Currently, the guidelines for diagnosing HCC recommend the use of imaging 

characteristics, with ultrasound being widely utilized for HCC surveillance and 

early diagnosis due to its cost-effectiveness, non-invasiveness, and lack of 

excessive radiation exposure. Despite its widespread clinical application, the 



 19 

sensitivity and specificity of ultrasound in diagnosing HCC, especially in its early 

stages, remain unsatisfactory. Magnetic resonance imaging (MRI) offers higher 

accuracy for early HCC detection with a sensitivity ranging from 66.7% to 73%. 

However, MRI is costly, time-consuming, and associated with high cumulative 

radiation doses. Positron emission tomography (PET) and other nuclear imaging 

techniques show a sensitivity of 30–70% in diagnosing primary HCC [4, 5]. 

 

In addition to imaging techniques, serum biomarkers hold significant value in 

HCC diagnosis. Traditionally, HCC has been screened and diagnosed based on 

the expression of molecular biomarkers, which also aid in predicting patient 

prognosis and monitoring treatment response. Over the past few decades, alpha-

fetoprotein (AFP) has emerged as the most promising and extensively studied 

candidate biomarker. Abnormal plasma AFP levels are closely associated with the 

malignancy of HCC. However, approximately 20% of HCC patients do not 

produce AFP, 60% overexpress AFP, and 30-40% have normal AFP levels (≤ 20 

ng/mL). Thus, the performance of AFP as a screening, diagnostic, and prognostic 

biomarker for HCC is suboptimal. AFP-L3, with its high specificity, was approved 

by the FDA as an HCC biomarker in 2015, but it only has a sensitivity of 48.3%. 

Protein induced by vitamin K absence or antagonist-II (PIVKA-II), also known 

as Des-γ-carboxy prothrombin, has been approved as a serum biomarker for HCC 

in East Asia, yet its sensitivity remains controversial. Glypican-3 (GPC3) is 

overexpressed in most HCC tumor tissues, but its diagnostic accuracy for early 
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HCC is still unsatisfactory. To date, no single protein biomarker has demonstrated 

sufficient accuracy to be used alone for early HCC diagnosis [6, 7]. Despite the 

potential of several biomarkers, their practicality in clinical practice requires 

further validation. Compounding the challenge is the lack of specific tumor 

symptoms in HCC, causing most patients to be diagnosed at a later stage. 

 

1.1.2 Therapeutic Progression of HCC 

Treatment strategies for HCC patients are contingent on the disease's clinical stage. 

According to the internationally accepted Barcelona Clinic Liver Cancer (BCLC) 

staging system, HCC patients are categorized into five stages: BCLC-0 (very early 

stage), BCLC-A (early stage), BCLC-B (intermediate stage), BCLC-C (advanced 

stage), and BCLC-D (terminal stage) [8]. The primary treatment options for HCC 

include liver resection, liver transplantation, ablation, or transarterial 

chemoembolization (TACE), which may offer curative potential for early-stage 

patients. For patients with intermediate-stage HCC, locoregional treatments such 

as TACE are preferred [9, 10]. However, for advanced-stage HCC patients, 

surgical options are unsuitable due to factors such as tumor size, location, lesion 

count, and comorbidities, making appropriate treatment options very limited. 

Advanced-stage HCC patients primarily benefit from systemic therapies. More 

than 50% of HCC patients are diagnosed at an advanced stage, significantly 

increasing the rate of patients undergoing systemic treatments. Initially, 
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chemotherapy drugs were the mainstay for advanced HCC treatment, but their 

efficacy was limited, and adverse effects were significant. In 2007, targeted 

inhibitors such as sorafenib and other multikinase inhibitors, along with immune 

checkpoint inhibitors (ICI), were approved for systemic therapy in advanced liver 

cancer [11-15]. Until the mid-2010s, sorafenib was the only drug available for 

systemic treatment of HCC. 

 

1.1.3 The Immunological Classification of HCC 

HCC can be categorized into inflamed and non-inflamed types based on their 

immune profiles. The inflamed type includes immune-active, immune-exhausted, 

and immune-like subclasses. The immune-active and immune-like subclasses 

share similar characteristics, such as high cytotoxic immune cell activity, elevated 

interferon signaling, and favorable prognosis, with the immune-like subclass 

showing enhanced Wnt–β-catenin signaling [16]. Recent research has 

demonstrated that patients with inflamed HCC have higher response rates to 

immunotherapy. The non-inflamed type includes immune-intermediate and 

immune-excluded subclasses. The immune-intermediate subclass is associated 

with a high frequency of TP53 mutations and significant chromosomal loss of 

immune-related genes. The immune-excluded subclass is distinguished by high-

frequency CTNNB1 mutations, PTK2 overexpression, gene amplification, and 

promoter hypomethylation, usually exhibiting low immune infiltration[17, 18]. 



 22 

Additionally, HCC can be categorized into four unique immunovascular subtypes 

based on the interaction between immune-related and angiogenesis-driven tumor 

microenvironments: immune-high/vascular-suppressed, immune-medium / 

vascular-medium, immune-low/vascular-activated, and immune-low/vascular-

low [18, 19]. This classification provides new insights into the efficacy of 

immunotherapy. 

 

1.1.4 ICI Therapy in HCC 

In recent years, significant progress has been made in the treatment of HCC with 

immune checkpoint inhibitors (ICIs). Tumor cells often evade immune system 

attacks by activating immune checkpoints. ICIs restore T-cell antitumor activity 

by blocking the signaling pathways between immune checkpoints. In HCC, the 

primary immune checkpoint targets are PD-1/PD-L1 and CTLA-4. In 2019, the 

atezolizumab and bevacizumab combination therapy demonstrated a significantly 

longer overall survival (OS) compared to sorafenib in the IMbrave150 trial [20-

23]. In 2020, the U.S. FDA approved atezolizumab (Tecentriq) in combination 

with bevacizumab (Avastin) for the first-line option for treating advanced, 

unresectable, or metastatic HCC. Although these therapies have become the 

standard treatment for HCC patients, their widespread clinical application is 

limited by the frequency of adverse events, intolerance, lack of treatment response, 

and drug resistance. The objective response rate (ORR) for advanced HCC 
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patients receiving ICIs in combination therapy is only 36%, and even lower at 

under 20% for monotherapy [24, 25]. Consequently, new therapeutic strategies 

are being developed to enhance the efficacy of immunotherapy, improve cancer 

treatment safety, and expand available treatment options for HCC patients. 

 

1.2 PD-L1 

PD-L1 (B7-H1 or CD274) is a transmembrane protein that is a member of the B7 

family. In various cancers, the expression levels of PD-L1 are significantly 

elevated, making it a crucial immune checkpoint. PD-L1 plays a vital 

immunoregulatory role by modulating the initiation and cessation of 

immunotherapy responses. Consequently, PD-L1 has become a significant target 

in anti-tumor immunotherapy [26]. 

 

1.2.1 PD-L1 Structure 

PD-L1 is a type I transmembrane protein composed of 290 amino acids, belonging 

to the immunoglobulin superfamily with IgC and IgV domains. PD-L1 

encompasses three primary domains: the extracellular domain (ED), the 

transmembrane domain (TM), and the intracellular domain (ID). The extracellular 

domain (ED) includes variable immunoglobulin regions, comprising both distal 

and proximal segments. The intracellular domain (ID) contains three conserved 

amino acid motifs: DTSSK, RMLD-VEKC, and QFEET. Promoting signal 
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transduction and signal transducer and activator of transcription 3 (STAT3) 

phosphorylation is the primary function of the RMLD-VEKC motif, in contrast 

to the DTSSK motif, which inhibits this phosphorylation process [26, 27]. 

 

The expression of PD-L1 on the surface of cancer cells is regulated by multiple 

signaling pathways and proteins, including PI3K/AKT/mTOR,  

COX2/mPGES1/PGE2, nuclear factor kappa B p105 subunit (NF-κB), hypoxia-

inducible factor 1-alpha (HIF-1α), RAF/MEK/ERK/MAPK pathways, and STAT 

proteins [27-29]. These signaling pathways and proteins are frequently mutated 

or upregulated during malignant transformation, thereby influencing the 

expression levels and functions of PD-L1. 

 

1.2.2 The Expression Level of PD-L1 in Cancers 

PD-L1 is regulated by intrinsic oncogenic and adaptive signaling pathways, 

exhibiting high expression levels across various cancers, including hepatocellular 

carcinoma, non-small cell lung cancer, melanoma, and breast cancer. The aberrant 

expression of PD-L1 significantly reduces antitumor immunity in the tumor 

microenvironment (TME), thus closely correlating with tumor aggression, 

metastatic potential, and unfavorable patient outcomes. Elevated PD-L1 levels are 

often indicative of poorer prognosis and lower therapeutic response rates [30]. 
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Recent studies have revealed that MYC is capable of binding to the PD-L1 

promoter, thereby upregulating its expression across various cancer types. 

Furthermore, genetic or pharmacological inhibition of MYC can decrease PD-L1 

mRNA levels and revive antitumor immunity in the TME. Anaplastic lymphoma 

kinase (ALK) also drives PD-L1 upregulation, with hyperactivation of the ALK 

signaling pathway, induced by NPM-ALK gene fusion, enhancing PD-L1 

expression through STAT3. Besides MYC and ALK, other oncogenic pathways 

such as HIF1/2α, mitogen-activated protein kinase (MAPK), nuclear factor κB 

(NF-κB), phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog 

(PTEN), and epidermal growth factor receptor (EGFR) also enhance PD-L1 

mRNA expression when mutated or hyperactivated [31-33]. 

 

In the TME, cancer cells are subjected to the surveillance threats of innate and 

adaptive immunity. This region is rich in inflammatory cytokines that coordinate 

the stability of antitumor immunity. However, by exploiting inflammatory 

pathways (also known as adaptive signaling pathways), cancer cells can boost PD-

L1 expression, leading to an environment conducive to tumor progression through 

the inhibition of antitumor immunity. In order to escape from T-cell attacks, 

cancer cells activate the IFN-γ/JAK/STAT1 pathway, leading to increased PD-

L1 mRNA expression [30, 34]. IFN-γ, produced by natural killer (NK) cells and 

T cells, is an inflammation-promoting cytokine that boosts the expression of major 

histocompatibility complex (MHC) and promotes the presentation of neoantigens 
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on cancer cells [35]. By leveraging the IFN-γ/JAK/STAT1 pathways, PD-L1 on 

cancer cells can neutralize cytotoxic T cells and diminish immune surveillance 

within the TME [34]. 

 

Similarly, multiple inflammatory cytokines can stimulate PD-L1 mRNA 

expression within tumor cells or the stromal cells associated with tumors, 

including TNF-α, IFN-α/β, TLR3, IL-4/6/17/27 ,and transforming growth factor 

β (TGF-β) [30, 36-38]. These discoveries contribute to a better grasp of the 

mechanisms that could be regulating PD-L1 expression in tumor cells. 

Nonetheless, the specific role of oncogenic signaling pathways in modulating PD-

L1 expression post-translationally to inhibit antitumor immunotherapy responses 

remains unclear and warrants further investigation. 

 

1.2.3 The Role of PD-L1 in Cancer Progression 

Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are type I 

transmembrane proteins belonging to the immunoglobulin (Ig) superfamily. PD-

L1 plays a critical role in cancer progression by inhibiting T-cell activation and 

promoting immune evasion. The PD-1 cytoplasmic domain features two tyrosine-

based signaling motifs: ITIM (immunoreceptor tyrosine-based inhibitory motif) 

and ITSM (immunoreceptor tyrosine-based switch motif). During T cell 

activation, the binding of PD-1 to PD-L1 induces conformational changes that 
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recruit the phosphatase SHP-2 [32, 39]. The recruitment leads to a reduction in 

key proximal T-cell receptor (TCR) signaling events, such as LCK-induced 

phosphorylation of ZAP70, and decreases the activity of the RAS-MEK-ERK and 

PI3K-Akt-mTOR pathways. The inhibition of these signaling pathways results in 

suppressed T-cell proliferation and cytotoxic functions, altered metabolism, 

impaired cytotoxic T lymphocyte (CTL) killing activity, and ultimately leads to 

the apoptosis of activated T cells, leading to the protection of tumor cells from 

immune system attacks [40]. 

 

Furthermore, PD-L1 can enhance its immunosuppressive effects by engaging with 

B7-1 (CD80). B7-1 is another immune regulatory molecule that typically binds to 

CD28 to promote T-cell activation. However, when PD-L1 engages with B7-1, it 

inhibits B7-1 from interacting with CD28, thus inhibiting the co-stimulatory 

signals necessary for T-cell activation. This inhibition leads to a decrease in T-cell 

proliferation and cytotoxicity, while also compromising the immune systems 

effectiveness in recognizing and attacking tumor cells. The binding of PD-L1 to 

B7-1 within the tumor microenvironment exerts a dual inhibitory effect, 

reinforcing the mechanisms of immune evasion and allowing tumor cells to 

continue growing and spreading under the surveillance of the immune system [41, 

42]. 
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1.2.4 The Regulation of PD-L1 in Cancers 

The expression of PD-L1 is regulated by multiple factors, including genetic 

mutations, signaling pathway activation, and microenvironmental influences. For 

instance, hypoxic conditions can upregulate PD-L1 expression via HIF-1α, while 

mutations in EGFR and ALK also promote its expression [43-45]. Additionally, 

cytokines in the tumor microenvironment, such as IFN-γ, can significantly 

increase PD-L1 expression levels [30, 45].The expression of PD-L1 is also 

significantly influenced by epigenetic factors like histone modifications and DNA 

methylation [44, 46]. 

 

The PI3K-Akt signaling pathway is critical for survival, metabolism, proliferation, 

and migration of cancer cells. Numerous studies have established a positive 

correlation between PI3K-Akt signaling and PD-L1 expression across various 

cancers, including colorectal cancer (CRC), non-small cell lung cancer (NSCLC), 

glioblastoma, breast cancer, and melanoma [32]. Moreover, the activation of the 

PI3K-Akt-mTOR cascade by both type I and type II interferons, which regulates 

interferon-dependent mRNA translation, points to a synergistic interaction 

between the Akt-mTOR pathway and interferon receptor signaling. [47, 48]. 

Consistently, pharmacological inhibition of PI3K-Akt signaling can suppress 

IFN-γ-induced PD-L1 expression [49]. 

 

The MEK-ERK pathway, typically activated by upstream receptor mutations such 
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as KRAS and EGFR, represents another common activation pathway in human 

cancers and plays a pivotal role in the upregulation of PD-L1 levels. Evidence 

suggests that hyperactivation of MEK-ERK signaling can directly enhance PD-

L1 gene expression across various cancers, including lung cancer, breast cancer, 

multiple myeloma, bladder cancer, and lymphoma [32, 50, 51]. 

 

These findings elucidate the complex regulatory mechanisms governing PD-L1 

expression and underscore the importance of these pathways in cancer 

immunology. Comprehending these mechanisms is essential for the development 

of targeted therapies aimed at modulating PD-L1 expression to enhance antitumor 

immunity. 

 

1.3 Hypoxia  

Hypoxia is frequently found in cells and tissues in the tumor microenvironment 

due to a lack of adequate vascularization. In normal tissues, the oxygen level of 

the liver cell is as high as 7.3%. Compared to the normal tissues, oxygenation 

levels in HCC are much lower, with O2 ratios of only 0.8% [52]. Folkman's theory 

indicates that the growth of tissues (including cancer tissues) beyond 2-3mm3 

requires new blood vessels, and that optimal nutrients and oxygen are supplied 

within a 250μm radius of capillaries. But tumors beyond one mm3 can still survive 

in lack of new blood vessels [53]. Collectively, hypoxia is a common feature in 
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solid tumors of HCC and not only drives tumorigenesis and progression and is a 

significant cause of drug resistance to various therapeutic modalities. Thus, cancer 

progression is driven by intrinsic oncogenic mechanisms but not the presence of 

blood vessels. Hypoxia may induce a physiological response in tumor tissues, 

leading to genetic alterations in signaling pathways [54]. 

 

1.3.1 HIF structure 

In recent years increasing evidence has indicated that hypoxia-inducible factors 

(HIFs) are commonly detected in solid tumors and have shown a strong 

association between hypoxia and adverse clinical outcomes in HCC [55]. HIFs 

mediate a series of responses of cells to adapt to hypoxia, which are three different 

subtypes consisting of the HIF-1α, HIF-2α and HIF-3α [56]. HIFs are 

heterodimeric proteins composed of a functional HIF-1α subunit and a stably 

expressed HIF-1β subunit. Prolyl hydroxylase structural domain (PHD) is a 

critical enzyme in the HIFs degradation process, and the PHD in an O2-rich 

environment can hydroxylate the proline residues of HIF-1/2α. Hydroxylated HIF 

subtypes are recognized and bound by ubiquitin ligases and von Hippel-Lindau 

tumor suppressor protein (VHL). Ultimately, ubiquitinated HIF-1/-2α is degraded 

by the 26S proteasome [57]. Since both PHD and HIF are oxygen-dependent, in 

a hypoxic environment, stable HIF-1/2α translocate into the nucleus and activates 

a series of hypoxia-responsive element (HRE) genomic sequences [58]. In general, 
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HIFs are the shortest half-life proteins in normoxic conditions. In contrast, in 

hypoxic environments HIFs are stable and accumulate and translocate to the 

nucleus, activating the expression of some genes and adapting to the hypoxic 

environment [59]. 

 

1.3.2 The expression level of HIF in HCC 

Numerous clinical studies have demonstrated the correlation between HIFs and 

the recurrence, prognosis, and survival of HCC patients. HIF-1α expression is 

higher in HCC tissues than adjacent tissues and is mainly involved in promoting 

tumor invasion, migration, metastasis, angiogenesis, epithelial-to-mesenchymal 

transition (EMT), glycolytic regulation and lipid metabolism. HIF-1α promotes 

tumor cell invasion and migration through the RIT1 axis, and IL-8/Akt/NF-κB 

axis upregulates LOXL2 to promote angiogenesis, promotes cancer cell 

glycolysis through the PPAR-γ/PKM2 axis, induces EMT to promote HCC 

metastasis process, and FABP5 mediates lipid metabolism through HIF-1 to drive 

HCC progression [60]. 

 

1.3.3 The role of HIF in immune escape 

Hypoxia promotes tumor immune escape. In hypoxic environments, HIF induces 

tumor cells to release large amounts of immunosuppressive factors to reduce 

immune cytotoxicity, such as VEGF and encodes cancer-related proteins to cause 
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radio resistance and resistance to multiple chemotherapeutic agents, affecting the 

antitumor immune response. In addition, HIF-1α induces PD-L1 expression in 

tumor cells and MDSCs, promotes immune tolerance in the tumor 

microenvironment, and increases the resistance of tumor cells to cytotoxic T 

lymphocytes (CTL) [61]. HIF-1α mediates the expression of cancer cell surface 

protein CD47 and protects cancer cells from destruction by macrophages [62]. 

HIF-1α also increases the expression of metalloproteinase ADAM10, decreases 

the expression level of MHC-related molecules, and cannot activate the initial 

signaling pathway of immune cells [63].  

1.3.4 Hypoxia signature genes as Potential Molecular Target in Cancers 

Research data suggest that HIF inhibitors may contribute to antitumor and anti-

angiogenic effects. Some approved drugs that indirectly alter HIF-1α expression 

may also be helpful as adjuvant therapies in cancer treatment. For example, the 

chemotherapeutic drug rapamycin can reduce the expression of HIF-1α and also 

act synergistically with mTOR inhibitors (decrease HIF-1α expression) to inhibit 

tumor growth in preclinical models of HCC [54, 64]. DNA alkylating agent 

temozolomide exhibits enhanced antitumor activity with HIF inhibitors in glioma 

[65]. MK6482 is the first FDA-approved HIF inhibitor for treating advanced renal 

cell carcinoma patients [66]. Therefore, combining HIF inhibitors and ICI therapy 

will be a potent combination. While ICI plays a vital role in antitumor, HIF 

inhibitors can mediate PD-L1 expression and eliminate the ability of tumor cells 
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to adapt to a hypoxic environment and develop therapeutic resistance. 

 

1.4 Drug resistance 

Immunotherapy has opened a new chapter in cancer treatment. However, in these 

studies, most patients did not benefit due to drug resistance, and some patients 

had recurrences after treatment. Researchers have divided drug resistance into 

three classifications: primary, adaptive, and acquired. Primary resistance is a 

clinical condition in which cancer patients resist immunotherapy and have no 

immune response. Adaptive resistance is when the immune system recognizes the 

tumor, but resistance clones exist before treatment and protect themselves by 

adjusting to the immune response. Acquired resistance occurs when cancer 

patients initially respond to immunotherapy, only to relapse later and develop drug 

resistance [67]. 

 

1.4.1 Tumor-Cell-Intrinsic Factors 

Intrinsic factors of immunotherapy leading to drug resistance in tumor cells 

include modulation of the expression of specific genes or pathways that may be 

associated with immunosuppression in the tumor microenvironment. These 

mechanisms may initially exist or undergo evolution, culminating in tumor drug 

resistance mechanisms. Recent studies have identified various intrinsic tumor 

mechanisms that may be associated with drug resistance mechanisms: (1) Tumor 
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cells lead to the production of proteins such as VEGF and IL-8 through the MAPK 

pathway, which has a suppressive effect on T cell recruitment [68]. (2) PTEN 

expression deficiency enhances PI3K signaling and decreased IFN-γ, granzyme 

B gene expression and CD8+ T cell infiltration [69]. (3) The cancer cell surface 

ligand PD-L1 also suppresses T cell responses. The expression mechanisms 

include PTEN loss, PI3K/AKT mutation, EGFR mutation and MYC 

overexpression [70-74]. 

 

1.4.2 Acquired Resistance to Immunotherapy 

With the widespread use of immunotherapy, the chance of patients with acquired 

drug resistance after a period has increased. The underlying mechanisms may 

escape mutations in genes within the tumor, downregulation of tumor antigen 

presentation and lack of T cell recognition, B2M mutations leading to loss of HLA 

expression, altered interferon signaling, and loss of T cell function [75]. Since 

antitumor T cells specifically identify their cognate cancer cells, gene deletions, 

mutations or even genetic changes in signaling pathways that alter the expression 

of tumor antigens may lead to acquired resistance to ICI therapies [76]. 

 

Even though immune combination therapy has the potential to restore immune 

response as described above, excessive trimming of the tumor vasculature might 

intensify hypoxia in the tumor microenvironment, thereby boosting 
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immunosuppression. Hypoxia induces immunosuppression by decreasing 

cytotoxic cell activity, promoting the expression of immunosuppressive cytokines, 

and increasing infiltration of immunosuppressive cell populations  [77]. Thus, 

hypoxia-altering PD-L1 expression via HIF may be a potential mechanism for 

acquired resistance within the tumor, and understanding these mechanisms will 

offer valuable clues about the actions needed to address immunotherapy 

resistance in HCC. 
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Chapter 2 Identify the pathways governing the 
response mechanism of PD-L1 inhibition 

2.1 Materials and Methods 

2.1.1 Microarray Data Collection and Processing 

Two public datasets, GSE14520 and GSE41666, were obtained from the Gene 

Expression Omnibus (GEO) database. In the GSE14520 dataset, a single-channel 

array platform was utilized to analyze the gene expression levels of tumor samples 

from 214 HCC patients and their corresponding 214 non-tumor samples. In the 

GSE41666 dataset, HepG2 HCC cell line samples were exposed to hypoxic 

conditions at 0% oxygen concentration and normoxic conditions at 21% oxygen 

concentration for 24 hours. Each condition was performed in triplicate, and the 

gene expression levels of a total of 6 samples were analyzed using an expression 

bead chip platform. 

 

For each gene detected by multiple probes on the microarray chip, the average 

expression level was calculated to generate an expression matrix corresponding 

to unique gene symbols. The expression matrix of the GSE14520 dataset 

underwent log2 transformation, whereas the GSE41666 dataset did not, as it had 

already undergone variance stabilizing normalization (VSN). Both matrices were 

standardized to achieve normally distributed expression levels, N (0,1). The 

detailed data processing and analysis workflow is illustrated in Figure 1 and 2. 
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Figure 1. Data processing and analysis workflow of Chapter 2. 
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Figure 2. Flowchart of processing and analysis of microarray datasets. 
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2.1.2 Identification of HCC-signature genes (HSGs) and hypoxia-related 

genes (HRGs) 

Differential expression analysis was conducted based on t-tests and fold change 

(FC). The p-value generated by the t-test for each gene was used to indicate the 

statistical significance of its differential expression. To address the issue of 

multiple hypothesis testing across a large number of genes, q-values, representing 

the estimated false discovery rates (FDR), were derived from p-values using the 

Storey-Tibshirani q-value method [78]. For the GSE14520 dataset, paired-sample 

t-tests were employed to analyze differences between tumor and paired non-tumor 

samples. HCC-signature genes (HSGs) were defined as differentially expressed 

genes in HCC tumor samples relative to paired non-tumor samples, with criteria 

set at q-value < 0.05 and FC > 1.4 (upregulated) or <1/1.34 (downregulated). For 

the GSE41666 dataset, hypoxia-related genes (HRGs) were identified based on 

the criteria of q-value < 0.05 and FC > 1.301 (upregulated) or <1/1.199 

(downregulated). The cut-off values for FC were determined based on the number 

of selected upregulated and downregulated genes. Venn diagrams were created 

using the Venny 2.1 platform (https://bioinfogp.cnb.csic.es/tools/venny/, accessed 

November 25, 2022), and the HCC-Hypoxia Overlap (HHO) gene set was defined 

as the intersection of HSGs and HRGs. 

 



 40 

2.1.3 GO function and KEGG pathway enrichment analysis of HSGs and 

HRGs 

In this study, Gene Ontology (GO; http://geneontology.org, accessed on 

November 29, 2022) analysis was first performed on HSGs and HRGs, using 

Python to obtain enrichment results in Biological Process (BP), Cellular 

Component (CC), and Molecular Function (MF). Subsequently, Kyoto 

Encyclopedia of Genes and Genomes (KEGG; https://www.kegg.jp/, accessed on 

November 29, 2022) pathway enrichment analysis was conducted, yielding the 

corresponding pathway enrichment results. Adjusted p-values < 0.05 and FDR-

adjusted p-values < 0.05 were considered statistically significant and served as 

thresholds for selecting the major enrichment functions and pathways of HSGs 

and HRGs. 

 

2.1.4 Gene set enrichment analysis (GSEA) of HSGs and HRGs 

GSEA is a computational method used for analyzing and interpreting changes in 

gene pathway levels and performing association analysis in transcriptomics 

experiments, including genome-wide association studies and RNA-seq gene 

expression experiments. The random permutation procedure (permutation = 1000) 

in the gseapy-v1.0.0 Python library was employed to obtain the null distribution. 

Subsequently, the Enrich method in the gseapy-v1.0 library was utilized to 

identify HCC signaling pathways regulated by hypoxia-related features (adjusted 
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p-value < 0.05). The gseapy-v1.0.0 package currently supports analysis across 

202 databases. 

 

2.1.5 PPI Network Construction and Identification of Hub Genes 

STRING (Search Tool for the Retrieval of Interacting Genes, http://string-db.org/, 

accessed December 12, 2022) is an online database for searching protein-protein 

interactions. To further explore the interactions among HHOs (i.e., the 

overlapping genes between HSGs and HRGs), the HHO genes were imported into 

the STRING database to construct a PPI network with a confidence score greater 

than 0.7 [79]. Based on this network, PPI hub genes were identified using the 

degree algorithm of CytoHubba, which ranks genes by their connectivity degree 

(i.e., the number of connected neighbors) [80]. The top 10 PPI hub genes with the 

highest degree values were then selected for further analysis. 

 

2.1.6 Multiple Regression Analysis of the Effect of HHOs on PD-L1 

To investigate the effect of HHOs on PD-L1 expression, this study used multiple 

regression analysis. RNA sequencing (RNAseq) expression data from the TCGA-

LIHC cohort, comprising 371 HCC tissue samples, were obtained from the UCSC 

Xena website (https://xenabrowser.net/datapages/, accessed December 6, 2022). 

The RNAseq expression levels of HHOs and PD-L1 were extracted and 

standardized for analysis. Compared to machine learning models, multiple 
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regression can produce more stable and reproducible results without the need to 

fix a specific random seed. Various feature selection methods were considered. 

mRMR effectively reduces feature redundancy. LASSO combines selection and 

regularization. Random Forest capture nonlinear relationships. Stepwise forward 

regression was chosen due to its suitability for continuous outcomes and superior 

interpretability. It enables clear identification of each gene’s contribution. We 

applied a stepwise forward algorithm (p-value < 0.05) to identify genes within the 

HHOs that significantly and substantially impact PD-L1 expression, denoted as Y 

in the following formula. 

 
! = #0 +	#1&1 + #2&2+. . . +#!&! 

 

In this formula, Xn represents the expression level of the nth selected gene, and bn 

represents the corresponding coefficient that quantifies its effect on PD-L1 

expression. These selected genes are referred to as PD-L1 regulator genes. 

 

2.1.7 Survival Analysis and PD-L1 Inhibitor Response Prediction 

Kaplan Meier plotter (KM plotter; http://kmplot.com/analysis/ as of December 21, 

2022) is a survival analysis platform that integrates clinical data, gene expression 

data, and survival information from the GEO, EGA, and TCGA databases. Using 

this platform, we plotted survival curves and calculated hazard ratios with 95% 

confidence intervals, as well as log-rank p-values for PPI hub genes and PD-L1 
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regulator genes in cancer patients. Patients were stratified into high-expression 

and low-expression groups based on the median expression level of each gene 

prior to PD-L1 inhibitor treatment. 

 

The ROC plotter (https://www.rocplot.org/ as of December 23, 2022) is an 

analytical tool designed to identify predictive biomarkers based on gene 

expression levels using transcriptomic data from many cancer patients. In this 

study, this tool was utilized to evaluate the ability of the expression levels of PPI 

hub genes and PD-L1 regulator genes to predict the response to PD-L1 inhibitors 

in 454 pan-cancer patients within the database. 

 

Additionally, we conducted KEGG pathway enrichment analysis on the union of 

PD-L1 regulator genes and PPI hub genes using the ShinyGo 0.76.3 platform 

(http://bioinformatics.sdstate.edu/go/, accessed January 1, 2023), with an FDR 

threshold of < 0.05 set as the criterion for selection. 

 

2.1.8 Establishment of a Hypoxia Scoring Model  

Based on RNA-seq data from HCC patients (N=367) in the TCGA Liver Cancer 

(LIHC) database, univariate Cox regression models were initially constructed. 

Subsequently, hypoxia-characteristic genes were selected for the multivariate 

survival model using the Least Absolute Shrinkage and Selection Operator 
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(LASSO) algorithm. A hypoxia-related risk score was calculated using the model 

established from these characteristic genes, stratifying patients into high-risk and 

low-risk groups. Finally, this model was validated using liver cancer cases (N=232) 

from the International Cancer Genome Consortium (ICGC) database (ICGC-

LIRI-JP). 

2.2 Results 

2.2.1 Identification of HSGs and HRGs in HCC 

By setting the cutoff values for q and FC at 1.139 and 1.128, respectively, 800 

HSGs (400 upregulated and 400 downregulated) were identified from the 

GSE14520 dataset, showing significant differential expression between tumor and 

adjacent non-tumor tissues (Figure 3a). The corresponding heatmap is shown in 

Supplementary Figure S1. In the GSE41666 dataset, the cutoff values for q and 

FC were set at 1.277 and 1.370, respectively, leading to the identification of 800 

HRGs (400 upregulated and 400 downregulated), which exhibited significant 

differential expression between hypoxic and normoxic conditions (Figure 3b), 

with the corresponding heatmap presented in Supplementary Figure S2. Further 

analysis revealed that 52 overlapping genes were common to both HCC-signature 

genes (HSGs) and hypoxia-related genes (HRGs), termed HCC-Hypoxia 

Overlaps (HHOs) (Fisher exact test, p < 1.047 × 10−11). Among these, 37 genes 

were upregulated and 15 were downregulated in the hypoxic group compared to 

the normoxic group in the GSE41666 dataset (Figure 3c, d). 



 45 

 

 
 

 

Figure 3. Identification of HCC-signature genes (HSGs) and hypoxia-related 

genes (HRGs). (a) Volcano plot for GSE14520; (b) Volcano plot for GSE41666; 

(c) Overlapping genes between HSGs and HRGs; (d) Overlapping genes among 

upregulated and downregulated genes in HSGs and HRGs. 
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2.2.2 Gene Set Enrichment Analyses of HSGs and HRGs 

Using the gseapy package in Python, enrichment analysis of HSGs and HRGs was 

conducted across 202 databases (as of November 29, 2022). Significant 

enrichment results were identified in 190 and 161 databases, respectively. Notably, 

we focused on three groups of databases that showed significant enrichment 

results closely related to hypoxia, HCC, and PD-L1. 

 

In the GO database, the upregulated HSG genes were significantly enriched in the 

gene sets related to "nucleus," "mitosis," and "organelles," while the upregulated 

HRG genes were predominantly enriched in the gene sets associated with 

"spindle," "mitosis," and "nuclear chromosome" (Figure 4a, b). The 

downregulated HSG genes were primarily enriched in the "monooxygenase 

activity" gene set, whereas the downregulated HRG genes were mainly enriched 

in the "cellular response to decreased oxygen levels" gene set (Figure 4a, b). The 

bar chart depicting the expression profiles of these enriched genes is presented in 

Supplementary Figure S3. In the KEGG Human database, the upregulated HSG 

genes were significantly enriched in pathways such as "cellular senescence 

signaling," "RNA transport," "drug metabolism," "apoptosis signaling" and 

"chemical carcinogenesis" (Figure 4d). Moreover, in the "RNAseq Automatic 

GEO Signatures Human" database, it was found that the downregulated HSG and 

HRG genes were significantly enriched in the "Rb-immunity downregulating Pd-
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L1" gene set, with CENPA, TPX2, LMNB1, DLGAP5, and KIF20A, being the 

common genes among them. Additionally, the upregulated HRG genes were 

significantly enriched in both the "tissue-resident pancreas Pd-1/Pd-L1" gene sets 

and "Rb-immunity downregulating Pd-L1" (Figure 4c). 
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Figure 4. Gene set enrichment analysis. (a) GO enrichment analysis of HSGs; (b) 

GO enrichment analysis of HRGs; (c) RNAseq GEO Signatures Human 

enrichment analysis of HRGs and HSGs; (d) KEGG enrichment analyses of HSGs. 
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2.2.3 Evaluation of the Effect of HHOs on PD-L1 Expression in the TCGA-

LIHC Dataset 

The impact of HHOs on PD-L1 expression was evaluated through multiple 

regression analysis, ultimately identifying 14 risk genes significantly associated 

with PD-L1 expression. A drug resistance gene regulatory model was then 

constructed based on these genes. This model is represented as a linear 

combination of regression coefficients and the relative expression levels of PD-

L1 regulatory genes, illustrating the relative contribution of each gene to drug 

resistance. 

 

 

 

 

 

 

 

 

Each of the PD-L1 regulator genes included in the model shows a significant 

association with drug resistance (p < 0.05). Notably, the genes DLGAP5, NDC80, 

LMNB1, KIF20A, and TPX2 have the largest absolute regression coefficients, 

indicating their critical role in drug resistance. 

 

!"-#1 = 0.076 + 0.240 × ()* + 0.261 × (+,13+
+ 0.443 × "#-+!5 − 0.264 × +#"/5+1
+ 0.223 × -+0+1+!#1 − 0.123 × 2+031
+ 0.145 × !45311 − 0.150 × /-(+2
+ 0.317 × #,601 − 0.418 × 54(20+
− 0.434 × 7!82 + 0.410 × 6"280
+ 0.121 × 9!/+2 − 0.096 × 69""4# 
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2.2.4 Construction of Protein–Protein Interaction Network and 

Identification of Hub Genes 

The 52 HHO genes were analyzed for PPI networks using the STRING database 

platform, and the results were imported into Cytoscape software to construct the 

PPI network. Among the 52 HHO genes, 26 genes demonstrated connections in 

the PPI network with a confidence score greater than 0.7, while the remaining 

genes were excluded from the network representation (Figure 5a). Additionally, 

the node connectivity was calculated using the CytoHubba plugin, and 10 genes 

with a connectivity degree greater than 33 were identified as hub genes. These 

hub genes are CCNB1, BUB1B, KIF4A, KIF20A, KIF11, NDC80, TPX2, 

CENPA, POLE2, and DLGAP5 (Figure 5b). 
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Figure 5. Protein–protein interaction (PPI) networks: (a) Connections among 26 

genes with a confidence score > 0.7; larger nodes indicate higher connectivity, 

and darker colors represent higher combined score values; (b) 10 hub genes with 

a connectivity degree > 33; genes with a confidence score ≤ 0.7 are not shown; 

darker colors indicate greater criticality. 
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2.2.5 Survival Analysis and PD-L1 Inhibitor Response Prediction KEGG 

Pathway Enrichment 

We used the Kaplan Meier Plotter software to generate survival curves for the 

combined set of PPI hub genes and PD-L1 regulator genes. The results of the 

survival analysis indicated that the expression levels of 15 genes were 

significantly associated with poor patient prognosis (Table S3). Notably, patients 

with high expression levels of NDC80 (HR = 0.76, p = 0.024) and TPX2 (HR = 

0.77, p = 0.03) demonstrated significantly better survival rates following PD-L1 

treatment (Figure 6a, b). Additionally, we validated the response of PPI hub genes 

and PD-L1 regulator genes to PD-L1 treatment. Among the sample, the three top-

performing genes were GABARAPL1 (AUC = 0.56, p = 0.016), PIK3R1 (AUC 

= 0.549, p = 0.04), and POLE2 (AUC = 0.553, p = 0.027) (Figure 6c). 
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Figure 6. Kaplan–Meier survival curves comparing high and low expression 

levels: (a) NDC80 (HR = 0.76, p = 0.024); (b) TPX2 (HR = 0.77, p = 0.03). (c) 

Boxplots, receiver operating characteristic (ROC) curves, and responder 

frequencies for the top three genes in predicting PD-L1 inhibitor response: 

GABARAPL1 (AUC = 0.560, p = 0.016), PIK3R1 (AUC = 0.549, p = 0.04), and 

POLE2 (AUC = 0.553, p = 0.027). The “o” indicates the optimal cutoff point, 

representing the minimal distance from the ideal discriminator. 
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2.2.6 KEGG Pathway Enrichment 

The KEGG pathway enrichment analysis of PPI hub genes and PD-L1 regulator 

genes was performed using the ShinyGo platform. The results revealed significant 

enrichment in 19 pathways (false discovery rates (FDRs) < 0.032), with most 

pathways closely related to immune cells, inflammatory factors, and apoptosis 

(Figure 7). Notably, the genes FOS (AP-1) and PIK3R1 were identified within the 

"PD-L1 expression and PD-1 checkpoint pathway in cancer," while the 

"endocrine resistance pathway" was activated by hypoxia induction. 

 

 

Figure 7. KEGG pathway enrichment of the union of PPI hub genes and PD-L1 

regulator genes. 
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2.2.7 Hypoxia Risk-scoring Model 

Univariate Cox analysis revealed that 21 of these HHO genes were significantly 

associated with overall survival in HCC patients (Figure 8a). Through LASSO 

regression analysis, 9 hypoxia risk score genes, including CENPA, KIF20A, 

DLGAP5, HMMR, UPB1, AFM, CABYR, PHLDA2, and N4BP2L1, were 

ultimately retained in the survival model (Figure 8b). Based on these 9 genes, the 

TCGA-LIHC samples were classified into high-risk (n = 183) and low-risk (n = 

184) groups (Figure 9a). Kaplan-Meier (KM) analysis indicated a significant 

difference in survival outcomes between the two groups (p < 0.032) (Figure 9b). 

In the ICGC-LIRI-JP validation set, risk scoring similarly stratified samples into 

high-risk (n = 116) and low-risk (n = 116) groups (Figure 10a). KM analysis 

further confirmed that patients in the high-risk group had significantly shorter 

survival times compared to those in the low-risk group (p < 0.0001) (Figure 10b). 

Receiver Operating Characteristic (ROC) curve analysis demonstrated that the 

model achieved area under the curve (AUC) values of 0.815, 0.774, and 0.771 at 

1, 2, and 3 years, respectively, indicating strong predictive performance in risk 

stratification (Figure 10c). 
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Figure 8. Univariate Cox and LASSO regression analysis: (a) Forest plot showing 

the hazard ratios (HRs) and 95% confidence intervals (CIs) for the selected feature 

genes based on univariate Cox proportional hazards regression analysis. Each 

gene's HR, CI, and p-value indicate its significance in predicting survival 

outcomes in HCC patients. The red squares represent the HRs, with horizontal 

lines denoting the 95% CIs, emphasizing the importance of these genes in survival 

prediction.  
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Figure 8. (b) The LASSO regression results illustrate the relationship between 

log(λ) and partial likelihood deviance. The x-axis shows log(λ) values, while the 

y-axis represents partial likelihood deviance. Red dots correspond to different λ 

values, with vertical bars indicating standard errors. The vertical dashed lines 

mark the λ values selected by cross-validation, identifying the optimal number of 

genes for the survival model. The numbers at the top represent the count of genes 

retained at each λ value. 
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Figure 9. Initial Hypoxia Risk Score Model Survival Analysis: (a) The risk score 

distribution of patients from the TCGA-LIHC dataset. The horizontal dashed line 

separates the low-risk group (green) from the high-risk group (orange) based on 

the median risk score. (b) KM survival curves for OS in the TCGA-LIHC cohort, 

divided into high-risk (red, n = 183) and low-risk (blue, n = 184) groups (p < 

0.032).  

a 

b 



 59 

 

 
Figure 10. Validation of Initial Hypoxia Risk Score Model Survival Analysis: (a) 

The risk score distribution of patients from the ICGC-LIRI-JP dataset. The 

horizontal dashed line separates the low-risk group (green) from the high-risk 

group (orange) based on the median risk score. (b) KM survival curves for OS in 

the ICGC-LIRI-JP cohort, divided into high-risk (red, n = 116) and low-risk (blue, 

n = 116) groups (p < 0.0001).  

a 

b 
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Figure 10. (c) ROC curves for the risk model predicting 1-year, 2-year, and 3-year 

OS in the ICGC-LIRI-JP cohort. The AUC values are 0.815, 0.774, and 0.771 for 

1, 2, and 3 years, respectively. 
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2.3 Discussion and Conclusion 

In this chapter, we identified a total of 52 HHOs, which are overlapping genes 

between HSGs and HRGs derived from GEO datasets. Gene set enrichment 

analysis (GSEA) revealed that some HSGs and HRGs were closely associated 

with the PD-L1 expression pathway. Notably, TPX2, KIF20A, CENPA, DLGAP5, 

and LMNB1 within the HHOs were significantly enriched in the retinoblastoma 

(RB) immunity downregulation of the PD-L1 expression pathway. Previous 

research has demonstrated that hyperphosphorylated RB protein within this 

pathway plays a tumor-suppressive role by inhibiting NF-κB activity and PD-L1 

expression[81]. Additionally, regression analysis of the TCGA dataset allowed us 

to identify 14 PD-L1 regulator genes from the HHOs, and 10 hub genes were 

extracted from the PPI network, with TPX2, KIF20A, NDC80, and DLGAP5 

being the overlapping genes. Based on clinical data, we analyzed the survival and 

treatment response of PPI hub genes and PD-L1 regulator genes following PD-L1 

inhibitor treatment to further validate our computational results. TPX2, NDC80, 

POLE2, GABARAPL1, and PIK3R1 were found to be significantly associated 

with treatment outcomes. These findings suggest that TPX2 and NDC80 play 

crucial roles in regulating PD-L1 expression, thereby influencing the efficacy of 

PD-L1 inhibitors. 

 

The phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) gene, encoding the 

p85α  regulatory subunit of PI3K enzymes, plays a key role in cancer by 
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regulating PIP3 expression, AKT activation, and PTEN phosphorylation via the 

PI3K pathway [82, 83]. In HCC, PIK3R1 expression is higher than in normal 

tissues, and its knockdown reduces tumor growth by decreasing p-PI3K, p-AKT, 

and p-mTOR levels [84, 85]. Targeting protein for Xenopus kinesin-like protein 

2 (TPX2), a microtubule nucleation factor, promotes tumor growth in HCC by 

regulating the PI3K/AKT/p53/p21 pathway [86, 87]. Nuclear division cycle 80 

(NDC80/Hec1), involved in mitosis, is overexpressed in HCC, potentially 

promoting cancer progression [88, 89]. DNA polymerase epsilon subunit 2 

(POLE2), a DNA polymerase subunit, activates AKT and reduces HIF-1α , 

driving cancer cell proliferation [90]. Gamma-aminobutyric acid (GABA), a 

receptor-associated protein-like 1 (GABARAPL1), linked to autophagy, 

suppresses cancer progression by inhibiting AKT/mTOR signaling [91, 92]. 

 

Research has shown that 20 genes, combining PD-L1 regulator genes and PPI hub 

genes, are not only differentially expressed in hypoxic HCC tissues but also 

regulate cancer cells through the PI3K/AKT pathway. These genes play a critical 

role in PD-L1 regulation in hypoxic HCC tissues and may serve as potential 

therapeutic and prognostic biomarkers to enhance sensitivity to PD-L1 inhibitors 

and overcome drug resistance. However, the specific regulatory mechanisms 

remain unclear. In the future, Gene Regulatory Network (GRN) analysis may be 

used to further explore the underlying mechanisms, followed by validation 

through biological experiments such as gene knockdown, overexpression studies, 
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and pathway-specific assays. 

 

The PI3K/AKT/HIF axis is significant in hypoxia-induced drug resistance in HCC, 

particularly in regulating PD-L1 expression. TPX2, a key gene, is involved in 

various cancers, including HCC, through its interaction with the PI3K/AKT 

pathway [93]. KRAS, another critical gene, influences this pathway, further 

linking hypoxia to PD-L1 regulation and drug resistance [94, 95]. Additionally, 

ROS-mediated activation of the PI3K/AKT/HIF-1α  pathway contributes to 

tumor progression under hypoxia [96]. 

 

Combining PD-L1 inhibitors with HIF inhibitors, such as MK6482, has shown 

promise in treating hypoxic tumors. This combination could enhance anti-tumor 

immunity and reduce drug resistance [97]. However, the efficacy and safety of 

these combinations require further exploration, particularly regarding their impact 

on PD-L1 expression in both tumor and normal tissues. In this study, key 

molecules like KRAS, NDC80, TPX2, and PIK3R1 were identified as potential 

targets for overcoming drug resistance in hypoxic HCC when combined with PD-

L1 inhibitors. These findings suggest a multi-targeted approach to developing 

effective therapies for hypoxic tumors. 

 

This chapter also highlights the significant impact of hypoxia-related genes on the 

survival of HCC patients. Our analysis identified 21 HHO genes associated with 
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survival, and through LASSO regression, we refined this to 9 key genes—CENPA, 

KIF20A, DLGAP5, HMMR, UPB1, AFM, CABYR, PHLDA2, and N4BP2L1—

forming the basis of a survival model. These genes appear to be central to how 

the hypoxic microenvironment influences HCC progression and prognosis. The 

identification of these hypoxia-related genes enhances our understanding of 

HCC's molecular mechanisms under hypoxia and suggests potential targets for 

therapies aimed at improving patient outcomes. 

 

 

 

 

Figure 11. Conceptual signaling mechanism of hypoxia-induced PD-L1 inhibitor 

resistance. 
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Chapter 3 Molecular expression profile 
associated with clinical immunotherapy drug 
response and resistance in advanced HCC 

3.1 Materials and Methods 

3.1.1 Collection and processing of public data of gene expression 

The EGAD00001008128 dataset was downloaded from the European Genome-

Phenome Archive (EGA) (https://ega-archive.org/datasets/, on October 10, 2023). 

The dataset comprises comprehensive RNA sequencing data analyzed via high-

throughput sequencing technologies from pathological biopsies of 290 patients. 

These biopsies of patients were obtained prior to immunotherapy (Atezolizumab 

and Atezolizumab + Bevacizumab). In this dataset, 90 patients who exhibited 

positive therapeutic response, in contrast to 200 patients who had non-response to 

the treatment. The dataset was split into training and test sets for establishing the 

immunotherapy response prediction models. As the non-response class represents 

most of the patients when compared with the response class, the split of training 

and test sets, 9:1, was applied to the non-response cases so that 20 out of 200 non-

response cases and 20 out of 90 response cases were randomly selected to form 

the test set. The training set consists of the remaining 180 non-response cases and 

70 response cases. 

 

The datasets GSE41666, SRP356151, and GSE233802 were acquired from the 
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NCBI database (https://www.ncbi.nlm.nih.gov/) in January 2022, March 2024 

and June 2024, respectively. The GSE41666 dataset includes gene expression 

profiles of HepG2 cell lines under hypoxic (0% O2) and normoxic (21% O2) 

conditions for 24 hours, obtained using a microarray platform. Each condition was 

replicated three times to ensure biological reproducibility. The SRP356151 

dataset contains total RNA sequencing data analyzed via a high throughput 

sequencing platform, featuring samples from hypoxic HepG2 cells subject to 

HIF1α-knockout and LacZ-control. Hypoxia was induced using 100 μmol/L 

CoCl2, with each condition replicated three times to ensure robust biological 

results. The GSE233802 dataset comprises total RNA sequencing data from 

HepG2 cells under hypoxic condition (1% O2) for 24 and 48 hours, with normoxic 

condition as control, also replicated three times to ensure the robustness of 

biological results. These datasets facilitate a comprehensive analysis of gene 

expression under various oxygen conditions, providing insights into hypoxia-

related biological processes in HepG2 cells. 

 

For RNA sequencing data, the datasets EGAD00001008128, SRP356151 and 

GSE233802 were processed using a standard processing pipeline that includes 

initial quality assessment with (i) FastQC, trimming of low-quality bases and 

removal of adapters using (ii) Fastp, alignment of cleaned reads to the human 

reference genome (GRCh38.104 from NCBI) with (iii) HISAT2, and gene 

quantification with (iv) FeatureCounts, all to ensure the integrity, quality, and 
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reliability of the data for comprehensive analysis. All three datasets are equipped 

with comprehensive clinical information and an adequate number of samples for 

thorough analysis. 

 

Due to the variability in sequencing instruments used for the samples, we 

employed different methods, which were used in the relevant literature, to filter 

out low-quality gene expression data. For the EGAD00001008128 dataset, we 

calculated the median normalized counts-per-million (CPM) value and the 

coefficient of variation (CV) for each gene expression profile. A gene was 

considered for further analysis if its CPM and CV values across samples exceed 

the respective 25th percentiles the CPM and CV values across all the genes and 

its expression levels are detectable in at least 75% of the samples. For the 

SRP356151 dataset obtained from 6 samples, a gene was considered if it 

expressed in at least 4 samples. For the GSE233802 dataset obtained from 9 

samples, a gene was considered if it expressed in at least 6 samples.  

 

The pre-processing, analysis, model identification and performance evaluation of 

public data are illustrated in Figure 12. 
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Figure 12. Flowchart of the pre-processing, analysis, model identification and 

performance evaluation in chapter 3. 
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3.1.2 Normalization of gene expression data  

To effectively eliminate sequencing depth and technical variation between 

samples of RNA sequencing data, the preprocessed EGAD00001008128, 

SRP356151 and GSE233802 datasets were first normalized using DESeq2 

normalization (deseq2_norm) Python/R function where sample-specific scaling 

factors were applied to expression matrices.  

 

To make the EGAD00001008128 data suitable for the machine learning, deep 

learning and statistical models, the StandardScaler function from the Sklearn 

Python package was used to obtain a scaler with the training data. The obtained 

scaler was then used to standardize training and test sets to the standard normal 

distribution, N (0,1).  

 

The log2-transformation was not applied to the preprocessed GSE41666 dataset, 

which has undergone Variance Stabilizing Normalization (VSN). Standardization 

was performed to obtain normally distributed expression levels, N (0,1). 

 

For validating the Cox regression model, the log transformation and 

standardization were applied to the preprocessed GSE233802 data to form an 

expression matrix following the standard normal distribution, N (0,1). 

 

As SRP356151 dataset has 6 samples and underwent differential expression 
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analysis only, no standardization was performed. 

 

3.1.3 Differential expression analysis 

The normalized data underwent differential expression analysis (DEA) through t-

tests and Fold-Change (FC) assessments. Through the Statsmodels Python 

package, the q-values were calculated from p-values using the Storey-Tibshirani 

method [78] for GSE41666 microarray data and Benjamini-Hochberg method [98] 

for EGAD00001008128, and GSE233802 RNA sequencing data. A differentially 

expressed gene (DEG) is defined as q-value < 0.05. To further control the number 

of selected upregulated and downregulated genes, the cutoffs of FCs were set. 

 

Given the limited sample size of RNA sequencing in the SRP356151 dataset, the 

combined use of the Wald test and t-test can enhance the efficiency and accuracy 

of the analysis. Initially, the Wald test is applied to calculate p-values for each 

gene, allowing for the preliminary identification of genes that may exhibit 

significant differential expression (p-value < 0.05). These initially identified 

genes are then subjected to a t-test, and the false discovery rate is controlled by 

calculating q-values using the Benjamini-Hochberg method. DEGs are defined as 

those with a q-value < 0.05. To further control the number of selected upregulated 

and downregulated genes, the cutoffs of FCs were set. 
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Considering the diversity in measurement techniques and sample sizes inherent 

to the raw data, appropriate methodologies were employed for DEA to ensure 

methodological compatibility and analytical precision. 

 

3.1.4 Inter-relationship between immunological profile and hypoxia 

Venn diagrams were constructed using the Venny 2.1 platform 

(https://bioinfogp.cnb.csic.es/tools/venny/, accessed on May 25, 2024). The 

DEGs from the GSE41666 dataset were intersected with DEGs from the 

EGAD00001008128 and SRP356151 datasets to identify overlapping genes. 

These overlapping genes were subsequently classified into two categories: IRH 

(immunotherapy response to Hypoxia) genes and HRH (Hypoxia-Regulated HIF-

1α Pathway) genes. 

 

3.1.5 Incorporating the treatment option of Bevacizumab into prediction 

models 

The EGAD00001008128 dataset includes two immunotherapy strategies: 

monotherapy using Atezolizumab and combination therapy using Atezolizumab 

and Bevacizumab. Bevacizumab, a VEGF inhibitor, is significantly associated 

with tumor hypoxia characteristics, and its use has important implications for 

immunotherapy response [99]. Therefore, the treatment option of Bevacizumab 

was extracted from the clinical information of the dataset and categorized as a 
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binary feature into 1 indicating “used”, or 0 indicating “not used” for each case. 

This binary feature was then standardized together with the expression profiles in 

the training and test sets, as mentioned in 3.1.2.  

 

3.1.6 Class Balancing of Training Set 

Numerous studies have demonstrated that data with balanced classes can enhance 

the predictive performance of models. In the training set of the 

EGAD00001008128 dataset, the imbalance between the response class of 70 

patients, and the non-response class of 180 patients was found. The Synthetic 

Minority Over-Sampling Technique (SMOTE) was used as a preliminary 

preprocessing step to balance the class distribution in the training set. The 

SMOTE technique considers the line segment between a data sample and one of 

its nearest neighbors in the minority class, i.e. response class in 

EGAD00001008128, and randomly selects a point on the line to create a new 

synthetic data sample. A data sample is regarded as the standardized gene 

expression profiles and treatment option of Bevacizumab. This technique 

increases the number of minority class data samples, ensuring that the synthesized 

samples can retain the characteristics of the original minority class samples and 

thus resemble them closely. The oversampled training set consists of 180 response 

samples and 180 non-response samples.  
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3.1.7 Development and Validation of Hypoxia Scoring Model Associated with 

Drug Response  

Hypoxia-based risk score is defined as log hazard ratio of patient survival 

generated from Cox regression model on hypoxia-related and HCC signature 

genes. The score was validated using another RNA-seq dataset of cell line 

experiment unseen to the model.  

 

To develop a novel hypoxia score model related to drug response, we utilized 

sample data (N=367) from the TCGA-LIHC FPKM dataset. Initially, we extracted 

the expression levels of IRH (immunotherapy response to Hypoxia) related genes 

and 9 genes from the initial hypoxia score model within this dataset. These gene 

expression data were then combined with the corresponding survival data. We 

employed the phreg function from the Statsmodels library to fit the proportional 

hazards regression model (Cox regression model). Using the Cox regression 

model, we calculated the regression coefficients for each gene, assessing the 

association between gene expression levels and patient survival time. 

 

To validate the effectiveness of the hypoxia scoring model in assessing tumor 

hypoxia, we utilized the standardized GSE233802 dataset, which includes short-

term and long-term hypoxic cell lines. To evaluate the tumor risk index under 

prolonged hypoxic conditions, we compared the hypoxia scores between datasets 

exposed to 0 hour, 24 hours and 48 hours of hypoxia. Given the challenge of 
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assessing the degree of internal hypoxia in solid tumors using existing clinical 

techniques, this model was employed to evaluate the hypoxia risk in different 

HCC patients within the standardized EGAD00001008128 dataset. The hypoxia 

risk scores were subsequently added to the feature columns for further analysis. 

 

3.1.8 Establishing and Validation the KAN predictive model for 

immunotherapy response 

The Minimum Redundancy Maximum Relevance (mRMR) feature selection 

algorithm was employed to prioritize genes based on their correlation with 

immunotherapy response, identifying the top 50 most relevant feature genes. To 

simplify the model and reduce overfitting, Stepwise Forward Selection was used 

to incrementally build the model by adding the most important feature genes, 

continuing until the genes with the strongest predictive power for immunotherapy 

response were selected. 

 

The Kolmogorov-Arnold Network (KAN) is a neural network architecture based 

on the Kolmogorov-Arnold representation theorem. To ensure data quality, the 

distribution of the target data was analyzed using the Counter method. The feature 

genes from the training dataset, extracted using the mRMR algorithm, were 

converted into PyTorch Tensors using torch. Tensor to meet the requirements of 

deep learning. The KAN model was initialized by defining the model structure 
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parameters and loading pretrained model checkpoints. Predictions on the training 

data were made using the trained KAN model, with a classification threshold set 

at 0.5. The predicted results were converted from PyTorch Tensor format to 

NumPy arrays. By applying the threshold, the predicted probabilities were 

binarized to generate classification labels (0 for non-response and 1 for response). 

The accuracy score was used as the evaluation metric to calculate the prediction 

accuracy. The prediction scores were then added to a dataframe containing the 

original features and target classification labels for subsequent analysis and 

validation.  

 

For the test dataset, the Bevacizumab usage was added as a binary feature, 0 or 1, 

and standardized using scaler. The processed data were then converted to PyTorch 

Tensors and input into the trained KAN model for prediction, and the prediction 

accuracy was calculated. Finally, the prediction scores were generated by the 

trained KAN model. 

 

((*) = ((*", … , *!) =./",$
%

$
0./&,$,'

!

'
(*')1 

 

The model utilizes a double summation approach combined with various gene 

expression levels to predict the response to immunotherapy. The outer summation 

∑ j represents multiple predictors in the model, each transformed by the 

parameterized function ϕ1,j . The inner summation ∑ j processes multiple gene 
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expression levels and Bevacizumab usage, x1, x2, …, xn for each predictor, 

transforming and integrating these features through the functionϕ0,j,i. Ultimately, 

the model generates an overall prediction f(x) based on these transformed features, 

which is used to assess the likelihood of a patient's response to immunotherapy. 

This model enhances the accuracy and reliability of the prediction through a 

layered summation approach. 

 

3.1.9 Training the Logistic Regression and SVM model for immunotherapy 

response prediction 

Using the Logit function from the Statsmodels library, logistic regression models 

were fitted separately for the features extracted by the Kolmogorov-Arnold 

Network (KAN) and the hypoxia scores. After fitting the models, the predicted 

results were classified as integers (0 for non-response and 1 for response) and 

compared with the actual immunotherapy response classification labels to 

calculate the training set accuracy. The same features were used to predict the test 

set, and the test set accuracy was calculated to evaluate the model's effectiveness. 

 
2 = 30 	+ 	31&1 + 32&2+. . . +3(&( 

 

This formula represents the linear component of a logistic regression model, 

whereX1, X2, …, Xp denote the extracted genomic features (KAN score and 

hypoxia scores), and Z represents the predicted outcome of immunotherapy 
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response. By applying weighted combinations of these genomic features, the 

model estimates the value of Z, which in turn predicts the probability of an 

immunotherapy response.  

 

Combining features extracted from the KAN and hypoxia scores, a composite 

model training feature set was constructed. A Support Vector Machine (SVM) 

model with a radial basis function (RBF) kernel was employed for training, with 

model parameters set to 'gamma=0.2' and 'C=0.1'. Upon completion of the 

immunotherapy response prediction model training, the accuracy of the model on 

the training dataset was calculated. The same feature set was then used to predict 

the test dataset, and the accuracy on the test set was evaluated to assess the 

effectiveness of the composite model. 
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The variables x and xc represent extracted genomic features, with the Euclidean 

distance ||x - xc|| measuring the similarity between a sample and a central feature 

xc . The parameter σ controls the smoothness and spread of the RBF. This function 

maps genomic features into a higher-dimensional space, generating a value that 
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indicates the sample’s position relative to the feature center, which may 

correspond to the characteristics of patients who respond to immunotherapy.   
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3.2 Results 

3.2.1 Identification of IRH and HRH genes from public dataset 

By setting the thresholds, q-value <0.05, FC > 1.999 (upregulation) and FC < 

1/1.999 (downregulation) for the EGAD00001008128 dataset, 84 upregulated 

differentially expressed genes (DEGs) were identified, indicating differences in 

expression between HCC patients who respond to immunotherapy and those who 

do not. Given the substantial difference in the number of DEGs among the three 

groups, the overlap was adjusted to achieve greater significance. Based on 

previous studies, the GSE41666 dataset was adjusted to FC > 1.3202 

(upregulation) and FC < 1/1.411 (downregulation), identifying 600 hypoxia-

related genes (HRGs), including 300 upregulated genes and 300 downregulated 

genes, which demonstrated differential expression under hypoxic and normoxic 

conditions. By setting the threshold, q-value < 0.05 for the SRP356151 dataset, 

171 DEGs were identified, including 127 upregulated and 44 downregulated, 

potentially related to HIF-1α and hypoxia pathways. 
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Figure 13. Identification of differential expression genes. (a) Volcano plot for 

EGAD00001008128; (b) Volcano plot for GSE41666; (c) Volcano plot for 

SRP356151. 
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In the EGAD00001008128 and GSE41666 datasets, 3 overlapping genes (p 

value=0.026), PMAIP1 (NOXA)，CD3D and CD2, were identified and classified 

as an immunotherapy response to Hypoxia (IRH) genes. Among them, the 

aberrant expression of PMAIP1 (NOXA) has been well-documented in various 

research to be associated with hypoxia. Additionally, analysis of the GSE41666 

and SRP356151 datasets revealed 8 significantly overlapping genes (p 

value=0.0032), including SLC2A5, EGLN3, MXD1, STC1, TOR3A, TJP3, 

NEDD4L, and BNIP3L, which were classified as Hypoxia-Regulated HIF-1α 

Pathway (HRH) genes. 
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Figure 14. Identification of immunotherapy response to Hypoxia (IRH) genes and 

Hypoxia-Regulated HIF-1α Pathway (HRH) genes. (a) IRH genes: Overlapping 

DEGs between EGAD00001008128 and GSE41666 datasets; (b) HRH genes: 

Overlapping DEGs between GSE41666 and SRP356151 datasets. 
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Based on the enrichment method used in Chapter 2 by Shinygo platform, 

pathways were identified among the HRH genes. GO database enrichment 

analysis indicated that these genes were mainly involved in biological processes 

such as response to hypoxia, response to decreased oxygen levels, and adaptation 

to hypoxia. KEGG pathway enrichment analysis revealed that these genes were 

primarily enriched in pathways such as carbohydrate digestion and absorption, 

renal cell carcinoma, autophagy in animals, and tight junctions. Furthermore, in 

the hallmark Msigdb database, these genes were also enriched in pathways 

including angiogenesis, hypoxia, MTORC1 signaling, and glycolysis. EGLN3 

expression level is associated with overall survival in liver cancer (p = 6.5×10-5) 

and eight genes except NEDD4L are significant associated with overall survival 

after pan-cancer immunotherapy.  

 

 

 

 

 

 

a                             GO enrichment analysis 
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Figure 15. Enrichment analysis of HRHs. (a) GO enrichment analysis; (b) KEGG 

enrichment analysis; (c) Hallmark Msigdb database enrichment analysis. 

 

b                 KEGG enrichment analysis   

c            Hallmark Msigdb database enrichment analysis 
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3.2.2 Identification of Hypoxia Scoring Model Associated with Drug 

Response 

Based on an initial hypoxia risk scoring model that included 9 characteristic genes 

and IRH genes, a hypoxia risk scoring model associated with predicting drug 

response was constructed through a COX analysis of the TCGA-LIHC dataset. 

This model was developed by creating a weighted combination of the variables, 

where each gene variable in the formula is preceded by a coefficient representing 

its impact on survival time. A positive coefficient indicates that the variable 

increases risk, while a negative coefficient suggests that the variable decreases 

risk. The model was subsequently applied to the GSE233802 dataset, which 

includes HepG2 cell lines subjected to 0h, 24h, and 48h of hypoxia. Hypoxia risk 

scores were calculated for the cell lines at different hypoxia durations, and a T-

test yielded p-values of less than 0.02. In this dataset, the risk scores for HepG2 

cell lines exposed to 48h of hypoxia were higher than those exposed to 24h, while 

the risk scores at 0h were higher than those at 24h. These results indicate that 

during the early stages of hypoxia, tumor cells experience a relative reduction in 

risk due to a slowdown in proliferation caused by transient oxygen deprivation. 

However, after prolonged hypoxia, the risk index significantly increases. This 

model demonstrates superior capability in assessing the hypoxia risk 

characteristics within tumors. 
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The formula represents a linear combination of gene expression levels and their 

corresponding regression coefficients, where each gene's expression is weighted 

to predict its contribution to hypoxia risk. The genes included in this model are 

PHLDA2, DLGAP5, N4BP2L1, CENPA, UPB1, CABYR, AFM, HMMR, 

KIF20A, and PMAIP1. The expression value of each gene is weighted by its 

respective regression coefficient, determining the sample's hypoxia risk score. 
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Table 1. Cox Regression Analysis for the Hypoxia Risk Scoring Model related to 

Drug Response Prediction 

 

Gene log HR 
log HR 

SE 
HR t p 

95% CI 

Lower 

95%CI 

Upper 

PHLDA2 0.1497 0.0753 1.1615 1.9887 0.0467 1.0022 1.3462 

DLGAP5 0.0757 0.2695 1.0787 0.281 0.7787 0.636 1.8293 

N4BP2L1 -0.2318 0.1636 0.7931 -1.4163 0.1567 0.5755 1.093 

CENPA 0.099 0.227 1.104 0.4361 0.6628 0.7076 1.7226 

UPB1 -0.0584 0.0725 0.9433 -0.8061 0.4202 0.8184 1.0872 

CABYR 0.1509 0.0752 1.1629 2.0063 0.0448 1.0035 1.3476 

AFM -0.0022 0.0609 0.9978 -0.0368 0.9707 0.8856 1.1242 

HMMR 0.3139 0.1889 1.3687 1.6618 0.0965 0.9452 1.982 

KIF20A 0.0587 0.2379 1.0604 0.2465 0.8053 0.6652 1.6904 

PMAIP1 -0.1203 0.1857 0.8866 -0.648 0.517 0.6162 1.2758 
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Table 2. Hypoxia Risk Scores in the GSE233802 Dataset. 

 

Sample name Hypoxia risk score Hypoxia duration 

SRR24775098 0.048819 0h 

SRR24775099 0.042419 0h 

SRR24775100 0.601232 0h 

SRR24775095 -0.618357 24h 

SRR24775096 -0.99101 24h 

SRR24775097 -0.600739 24h 

SRR24775092 0.786606 48h 

SRR24775093 0.411489 48h 

SRR24775094 0.319541 48h 
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Figure 16. Mean hypoxia risk scores of HepG2 cell lines at different hypoxia 

durations (0h, 24h, 48h) from the GSE233802 dataset. 
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3.2.3 KAN predictive model 

The algorithmize derivation and computational implementation of mRMR feature 

selection and KAN model training were adopted from the work of Chief 

Supervisor. Using the mRMR algorithm, genes were prioritized in descending 

order of inter-redundancy and ascending order of relevancy to immunotherapy 

response, 11 genes mostly relevant to predicting immunotherapy response (TLR8, 

SCHIP1, ZNF729, ATG9B, BAMBI, OXSR1, ZNF564, CCR8, ADAM23, 

RRN3P3_1, and RDH14) were selected from the EGAD00001008128 dataset. A 

training dataset was constructed by combining these 11 selected genes with the 

Bevacizumab usage as features. The features and labels of both the training and 

validation sets were converted into PyTorch 2.6 tensors, and the missing and 

undefined values were checked to ensure data integrity. The KAN model was used 

for training, with the model structure comprising input, hidden, and output layers 

with dimensions corresponding to the number of input features. The classification 

threshold of the output score for predicting immunotherapy response in the 

training set was set at 0.5, and the predicted results were binarized. The training 

set's prediction accuracy was 0.9361, indicating that the KAN model performed 

well on the training data and could effectively conduct binary classification 

predictions.  

 

The trained KAN model was used to predict the test dataset, with the classification 

threshold similarly set at 0.5. The prediction accuracy for the test set was 0.7, 
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further validating the model's effectiveness. The prediction results (KAN score) 

for both the training and test datasets were added to the feature columns for 

subsequent analysis and validation of the model's predictive capability. 

 

 

 
 

Figure 17. Accuracy comparison of the KAN model across training, validation, 

and test datasets after applying the mRMR algorithm to select 11 feature genes.  
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3.2.4 Logistic regression Model 

To enhance model performance and interpretability, the output scores from the 

trained KAN model were used as input features for traditional machine learning 

models. The KAN scores represent immune-related gene expression patterns, 

while the hypoxia risk score reflects the tumor microenvironment. Combining 

these two factors helps capture both immune and hypoxia-related mechanisms, 

improving the predictive accuracy of the final model.  

 

A logistic regression model was trained using the KAN score to classify 

immunotherapy response in the EGAD00001008128 dataset. The training set 

comprised the KAN score and immunotherapy response classification labels. The 

fitted logistic regression model achieved a training accuracy of 0.9361. Evaluation 

on the test set yielded an accuracy of 0.7. The logistic regression summary 

indicated that the KAN score had a significant positive coefficient of 4.5581 (p < 

0.001), demonstrating a strong association with immunotherapy response 

classification. The model successfully converged after 7 iterations, with a final 

function value of 0.322704 and a pseudo-R-squared value of 0.5344, indicating a 

good fit to the data. 
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Table 3. Logistic Regression Summary for KAN Score  

Feature coefficient std err z p 95%CI 

Lower 

95%CI 

Upper 

KAN score 4.5581 0.382 11.942 0 3.81 5.306 

 

A logistic regression model was trained using the Hypoxia score to classify 

immunotherapy response in the EGAD00001008128 dataset. The training set 

comprised the Hypoxia score and immunotherapy response classification labels. 

The fitted logistic regression model achieved a training accuracy of 0.5417. 

Evaluation on the test set yielded an accuracy of 0.525. The logistic regression 

summary indicated that the Hypoxia score had a significant positive coefficient of 

0.3903 (p = 0.026), demonstrating a strong association with immunotherapy 

response classification. The model successfully converged after 4 iterations, with 

a final function value of 0.6861 and a pseudo-R-squared value of 0.0102. These 

results suggest that, although the Hypoxia score has limited predictive power in 

distinguishing between different immunotherapy response categories, it still holds 

statistical significance. 

 

Table 4. Logistic Regression Summary for Hypoxia score   

Feature coefficent std err z p 95%CI 

Lower 

95%CI 

Upper 

Hypoxia score 0.3903 0.176 2.22 0.026 0.046 0.735 
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A logistic regression model was trained using the immunotherapy response to 

Hypoxia (IRH) PMAIP1 (NOXA) gene expression feature to classify 

immunotherapy response in the EGAD00001008128 dataset. The training set 

comprised the PMAIP1 (NOXA) expression feature and immunotherapy response 

classification labels. The fitted logistic regression model achieved a training 

accuracy of 0.5972. Evaluation on the test set yielded an accuracy of 0.525. The 

logistic regression summary indicated that the PMAIP1 (NOXA) expression 

feature had a coefficient of 0.5972 (p < 0.001), demonstrating significant 

association with immunotherapy response classification. The model successfully 

converged after 6 iterations, with a final function value of 0.6666 and a pseudo-

R-squared value of 0.0383. These results suggest that the PMAIP1 (NOXA) 

expression feature has strong predictive power in distinguishing between different 

immunotherapy response categories, holding statistical significance. 

 

Table 5. Logistic Regression Summary for PMAIP1 (NOXA)  

Feature coefficient std err z p 95%CI 

Lower 

95%CI 

Upper 

PMAIP1 0.5972 0.159 3.757 <0.001 0.286 0.909 

 

A logistic regression model was trained using the KAN score, PMAIP1 (NOXA), 

and Hypoxia scores to classify immunotherapy response. The training set 
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comprised these features and immunotherapy response classification labels. The 

fitted logistic regression model achieved a training accuracy of 0.9389. 

Subsequently, the same model was evaluated on the test set, yielding a test 

accuracy of 0.7. The logistic regression summary indicated that the KAN score 

had a coefficient of 4.5237 (p < 0.001), the PMAIP1 (NOXA) had a coefficient of 

0.1573 (p = 0.467), and the Hypoxia score had a coefficient of 0.5031 (p = 0.081). 

These results (Figure 18) suggest that the KAN score has significant predictive 

power in distinguishing between different immunotherapy response categories, 

whereas the predictive power of the PMAIP1 (NOXA) and Hypoxia scores is 

relatively weaker. The model successfully converged after 7 iterations, with a final 

function value of 0.3174 and a pseudo-R-squared value of 0.5421, indicating a 

good fit to the data. These findings demonstrate the effectiveness of the combined 

features in classifying immunotherapy responses. 

 

Table 6. Logistic Regression Summary for KAN score, PMAIP1 (NOXA), and 

Hypoxia score  

Feature coefficient std err z p 95%CI 

Lower 

95%CI 

Upper 

KAN score 4.5237 0.393 11.5 0 3.753 5.295 

PMAIP1 0.1573 0.216 0.727 0.467 -0.267 0.581 

Hypoxia score 0.5031 0.288 1.747 0.081 -0.061 1.068 
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Figure 18. Training and Test Accuracy for Different Features in Logit Regression 

Model 
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3.2.5 SVM Model 

A support vector machine (SVM) model was trained using the KAN score and 

Hypoxia scores to classify immunotherapy response in the EGAD00001008128 

dataset. The training set comprised these two features and immunotherapy 

response classification labels. The fitted model achieved a training accuracy of 

0.9361. The same model was evaluated on the test set, yielding a test accuracy of 

0.725. The SVM model employed a radial basis function (RBF) kernel with 

parameters gamma=0.2 and C=0.1. The model successfully converged, indicating 

that the KAN score and Hypoxia scores have strong predictive power in 

distinguishing between different immunotherapy response categories, with 

statistical significance. Furthermore, an SVM model was trained using the KAN 

score, PMAIP1 (NOXA), and Hypoxia scores to classify immunotherapy 

response. The training set comprised these three features and immunotherapy 

response classification labels. The fitted model, when evaluated on the test set, 

achieved an accuracy of 0.7. The SVM model again employed an RBF kernel with 

parameters gamma=0.2 and C=0.1. When using only the KAN score and PMAIP1 

(NOXA), the SVM model also yielded a test accuracy of 0.7. The results were 

shown in Figure 19. 
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Figure 19. Training and Test Accuracy for Different Features in Logit Regression 

and SVM Model 
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3.3 Discussion and Conclusion 

In recent years, the application of machine learning and deep learning in the 

medical field, particularly in oncology research, has seen significant 

advancements. These technologies enable the extraction of a vast array of 

genomic features and the uncovering of deeper layers of data, facilitating the 

quantitative translation of microscopic changes in genes or proteins within tumors. 

This capability allows for the visualization of tumor heterogeneity and the early 

prediction of treatment outcomes. Consequently, assessing the likelihood of an 

immunotherapy response to therapy in HCC patients prior to treatment could 

enable effective risk stratification. Such an approach would allow for the 

identification of patients likely to benefit from immunotherapy, while also 

identifying those unlikely to respond, thereby preventing ineffective treatments, 

conserving resources and financial costs, and avoiding the adverse effects of 

immunotherapy that could potentially exacerbate disease progression. 

 

In this chapter, we established an HCC immunotherapy response prediction model 

using the EGAD00001008128 dataset, which is based on patient responses to 

immunotherapy, and datasets of hypoxia HepG2 cell lines (GSE41666, 

GSE233802, and SRP356151). In the initial hypoxia risk scoring model 

developed in the chapter 2, we identified 9 feature genes. To enhance the accuracy 

of predicting immune therapy responses, we applied bioinformatics and machine 

learning techniques to process the EGAD00001008128 dataset. We identified 
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three differentially expressed overlapping genes associated with immunotherapy 

response and hypoxia characteristics, among which the abnormal expression of 

PMAIP1 (NOXA) under hypoxic tumor microenvironment has been well-

documented in the literature. Under hypoxic tumor microenvironment, tumor 

cells typically activate HIF-1α, which binds to the promoter region of the PMAIP1 

(NOXA) gene, thereby promoting its transcription and expression. This 

mechanism leads to the upregulation of PMAIP1 (NOXA) in the hypoxic tumor 

microenvironment, contributing to signaling pathways that slow cancer cell 

proliferation, allowing them to adapt to hypoxia and develop resistance to 

treatment. Consequently, we incorporated PMAIP1 (NOXA) into the hypoxia risk 

scoring model associated with predicting immunotherapy response. Cox 

regression analysis was performed on the TCGA-LIHC database to derive the risk 

coefficient for each feature gene. The new hypoxia scoring model was thoroughly 

validated in the GSE233802 dataset across different hypoxia duration in HepG2 

cell lines. It was found in the cultured HCC cells that the score was positively 

associated with the hypoxia duration of the incubated culture environment. 

Regarding 0h as the reference condition, the prolonged hypoxic condition of 48h 

induced more malignant HCC cells than that of 24h. This finding supports that 

the hypoxic condition of the tumor microenvironment affects the tumor 

malignancy and the patient survival. 

 

To optimize the immune therapy response prediction model, we used machine 
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learning in combination with deep learning to extract high-level features from the 

EGAD00001008128 dataset. Using the mRMR algorithm, we selected 11 genes 

most strongly associated with immunotherapy response and employed SMOTE to 

address the imbalance in the training data, thereby enhancing the model's 

predictive performance. Compared to traditional deep learning algorithms, the 

KAN model performs better on small sample datasets, making it well-suited for 

handling high-dimensional gene expression data while mitigating the risk of 

overfitting. We trained the KAN model using the 11 selected feature genes along 

with the Bevacizumab feature and validated it on the test set. The constructed 

prediction model achieved an accuracy of 0.9361 in the training set and 0.7 in the 

test set, with each clinical sample receiving a corresponding KAN score. 

 

Based on the KAN score, the hypoxia risk score, and the PMAIP1 (NOXA), we 

constructed logistic regression and SVM models. Ultimately, the SVM model 

incorporating both the KAN score and the hypoxia risk scores achieved an 

accuracy of 0.725 in the test set, demonstrating better predictive performance than 

the logistic regression model and the standalone KAN model. This indicates that 

the new hypoxia risk score based on PMAIP1 (NOXA) significantly enhances the 

predictive accuracy of the immunotherapy response model. These findings 

suggest that hypoxia plays a crucial role in the tumor microenvironment and 

immunotherapy response. Prolonged hypoxia in the tumor microenvironment 

alters proliferative signaling pathways in cancer cells, suppresses immune system 
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function, and significantly increases the risk level for tumor patients. As a result, 

this condition is more likely to lead to non-responsiveness to immune therapy or 

failure to achieve partial response criteria, and it may also exacerbate tumor 

progression. 

 

This work employed bioinformatics, machine learning, and deep learning 

methodologies to extract and analyze multiple genomic features for predicting 

immune therapy response in HCC patients. The results met the expected outcomes, 

enabling risk stratification based on hypoxia characteristics, which can further 

guide the selection of immunotherapeutic agents and improve clinical treatment 

strategies. 
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Chapter 4 The Role of NOXA in the resistance of 
PD-L1 inhibitors in HCC via Hypoxia-related 
pathways 

Background 

Through the bioinformatics and deep learning analysis, PMAIP1 (NOXA) was 

identified in Chapter 3 as one of the differentially expressed genes associated with 

both immunotherapy response and hypoxia characteristics. Such abnormal 

expression of NOXA under the hypoxic tumor microenvironment has been well-

documented in the literature. This chapter aims to verify the role of NOXA in the 

PD-L1 inhibitor resistance in HCC under hypoxic conditions. 

4.1 Materials and Methods 

4.1.1 Cell Lines 

In this study, the HCC cell line (HepG2) and the human T lymphocyte cell line 

(Jurkat T) were used. Both cell lines were obtained from the Chinese Academy of 

Sciences Cell Bank. The HepG2 cell line was maintained in Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 

1% penicillin-streptomycin, while the Jurkat T cell line was cultured in RPMI-

1640 medium with 10% FBS and 1% penicillin-streptomycin. All cell cultures 

were maintained in an incubator at 37°C with 5% CO2. 
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4.1.2 Establishment of Hypoxia-Induced Potentially Resistant Cell Lines 

On the first day, 1.2 x 107 Jurkat cells were cultured in RPMI-1640 medium 

containing 10% heat-inactivated FBS, P/S, and 2 mM L-glutamine, and activated 

with 2 μg/mL PHA for 48 hours. Concurrently, HepG2 cells were trypsinized and 

labeled with CellTrace reagent at a ratio of 1:1000, with a cell concentration of 1 

x 106 cells/mL, incubated at 37°C for 30 minutes. A minimum of 3 x 106 HepG2 

cells were required. Subsequently, an additional 2x volume of medium (DMEM 

+ 10% FBS + P/S) was added, and the cells were incubated for 5 minutes, then 

centrifuged, and the supernatant was discarded. The CellTrace-stained HepG2 

cells were then resuspended and seeded into 6-well plates at a density of 2 x 105 

cells/well. Due to the potential toxicity of CellTrace reagent, which may kill some 

HepG2 cells during staining, it is crucial to recount the live cells before seeding 

into the plates. On the second day, the medium of the HepG2 cells was refreshed 

(DMEM + 10% FBS + P/S) and treated with 10 ng/mL IFN-γ and 200 μM CoCl2 

for 24 hours. On the third day, Jurkat cells were collected and washed twice with 

PBS to remove PHA, then resuspended in RPMI-1640 medium containing 10% 

heat-inactivated FBS, P/S, and 2 mM glutamine. Simultaneously, the medium of 

HepG2 cells was refreshed with DMEM + 10% FBS + P/S + 200 μM CoCl2 + 

PD-L1 inhibitor (PD-L1i, atezolizumab biosimilar: Cat. SIM0009). For each well, 

2 x 106 Jurkat cells were added to the HepG2 culture (or medium without cells as 

a control for HepG2 only) for 48 hours, ensuring a ratio of 10:1. Finally, the 

medium containing Jurkat T cells was removed and washed with PBS. HepG2 
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cells were cultured in cycles following the above steps. The workflow of cell co-

culture and the layout of the 6-well plate are shown in Figure 20.  
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Figure 20. HepG2 Co-culture experiments (a) Flowchart of HepG2 Co-culture 

workflow; (b) 6-well Plate layout for the co-culture experiment (performed in 

duplicate, 12 samples in total). 
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4.1.3 NOXA Gene Knockdown in Hypoxia-Induced Resistant Cells and Co-

Culture 

To establish NOXA-knockdown HepG2-4-Rounds cell lines, cells were seeded at 

a density of 2×10⁵ cells per well in a 6-well plate. After 24 hours of incubation at 

37°C with 5% CO₂, cells were transfected with small interfering RNAs (siRNAs) 

targeting NOXA (siNOXA1, siNOXA2, siNOXA3, and siNOXA4, purchased 

from Jima Company) using Lipofectamine 3000 (Thermo Fisher Scientific). The 

siRNA stock solutions were prepared by dissolving the lyophilized siRNAs in 

RNase-free water to a working concentration of 100 nM. For transfection, 20 nM 

siRNA was mixed with Opti-MEM medium (Thermo Fisher Scientific) and 

incubated with Lipofectamine 3000 at room temperature for 20 minutes. 

 

Following complex formation, the existing medium in each well was carefully 

removed, and the siRNA-Lipofectamine complexes were added to the wells 

containing complete medium. Cells were incubated for 6 hours, after which the 

medium was replaced with conditioned medium. As a negative control, cells were 

transfected with scrambled siRNA, while untreated cells served as a blank control. 

Transfection efficiency was assessed using Western blotting and reverse 

transcription quantitative PCR (RT-qPCR) to ensure suitability for subsequent co-

culture experiments. The experimental method was the same as in 4.1.2. The 

experimental workflow diagram is shown in Figure 21. 
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Figure 21. NOXA knockdown by transfection and co-culture experiments in 

HepG2-4-Rounds cells (a) Workflow of NOXA knockdown by transfection; (b) 

6-well Plate layout for the co-culture experiment (performed in triplicate, 9 

samples in total) 

 

 

 

 

b      
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4.1.4 Western Blotting  

Cells were lysed using RIPA buffer containing a protease inhibitor cocktail 

(Thermofisher Scientific). A total of 100 µL RIPA buffer was added to each well, 

and the lysate was collected into 1.5 mL EP tubes after scraping. Protein 

concentration was determined using a Quick BCA Protein Assay Kit 

(Thermofisher Scientific). After adjusting protein concentrations, lysates were 

mixed with loading buffer and heated at 98°C for 10 minutes for denaturation. 

The denatured proteins were stored at -80°C until further use. 

 

Protein samples were loaded onto SDS-PAGE gels and separated by 

electrophoresis at 120 V. The separated proteins were transferred onto a 

polyvinylidene difluoride (PVDF) membrane at 250 mA for 90 minutes. The 

membrane was blocked with 5% skim milk in TBST (1% Tween 20 in TBS) for 1 

hour. Primary antibodies were diluted according to the manufacturer’s 

recommendations and incubated with the membrane overnight at 4°C. After three 

washes with TBST, the membrane was incubated with HRP-conjugated secondary 

antibodies (anti-rabbit or anti-goat) at room temperature for 1 hour. Finally, 

protein bands were visualized using a high-sensitivity ECL detection reagent 

(Millipore). 
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4.1.5 RT-qPCR 

RNA concentration was measured using a Thermo Fisher Scientific NanoDrop 

2000C spectrophotometer. Complementary DNA (cDNA) synthesis was 

performed using a reverse transcription kit from Takara Bio (Tokyo, Japan) in an 

Applied Biosystems Veriti 96-well thermal cycler. The reaction conditions were 

set as follows: reverse transcription at 37°C for 15 minutes, followed by heat 

inactivation at 85°C for 5 seconds. The final product was stored at 4°C. 

 

Quantitative PCR (qPCR) was conducted using the Applied Biosystems 7500 

Real-Time PCR System (Thermo Fisher Scientific) with Roche SYBR Green PCR 

Master Mix (Baden-Württemberg, Germany). Primer sequences are listed in Table 

8. All experiments were performed in triplicate, with no-template negative 

controls included. 

 

Table 7. The sequences of primers. 

Gene Forward Primer (5-3′)  Reverse primer (5- 3′) 

NOXA CAGAGCTGGAAGTOGAGT

GTGC 

TGCAGTCAGGTTCCTGAG

CAGA 

β-actin AGGATTCCTATGTGGGCGA

C 

ATAGCACAGCCTGGATAG

CAA 
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4.1.6 Flow cytometry 

The co-cultured cells were harvested with trypsin, centrifuged at 500g for 5 

minutes, and the supernatant was discarded. The cells were gently washed once 

with PBS, followed by two gentle washes with precooled PBS. The cells were 

then resuspended in a binding buffer at a concentration of 1 x 106 cells/mL. A 100 

μL cell suspension was transferred to a 5 mL flow cytometry tube, and 5 μL of 

FITC Annexin V and 5 μL of PI (BD Pharmingen, Cat No: 556547) were added. 

The cells were incubated at room temperature in the dark for 15 minutes. Finally, 

200 μL of binding buffer was added, the samples were kept on ice, and flow 

cytometry analysis was performed within one hour, keeping the samples on ice. 
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4.2 Results 

4.2.1 Establishment of Hypoxia-Induced Moderately Drug-Resistant Cell 

Lines 

To evaluate the successful establishment of hypoxia-induced drug-resistant cells, 

we analyzed HIF-1α expression as a key marker of hypoxia. Using Western blot 

analysis, we measured HIF-1α levels under varying CoCl₂ concentrations and 

exposure durations. As shown in Figure 22(a) and (b), the time-dependent pattern 

of HIF-1α expression reflects the cellular adaptation to hypoxia. HIF-1α 

expression increases at the early stage (24 h) due to inhibited degradation, but 

may later be modulated by feedback mechanisms and maintained at a stable level 

(48 h). This expression trend is consistent with the changes in hypoxia risk scores 

observed in the GSE233802 dataset, as described in Chapter 3. Therefore, 

prolonged hypoxia may activate intrinsic mechanisms within cancer cells, 

enabling adaptation to the hypoxic environment, with a corresponding increase in 

the hypoxia risk score. In this study, the assessment of HIF-1α levels at both 24 

and 48 hours ensured that the hypoxic conditions used in the subsequent co-

culture experiments were biologically effective. The densitometric analysis 

further confirmed a significant dose- and time-dependent upregulation of HIF-1α 

expression, indicating effective hypoxic induction.  

 

To investigate the impact of hypoxia on PD-L1 inhibitor resistance, HepG2 cells 
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were co-cultured with Jurkat T cells in a 200 μM CoCl₂ environment for four 

cycles. Subsequently, flow cytometry was employed to accurately determine the 

percentage of viable cells. As shown in Figure 23 a, b and c, hypoxia cells 

subjected to four rounds of CoCl₂ treatment exhibited higher survival rates 

compared to normoxic cells and those receiving only one round of treatment. 

Compared to the normoxic control group, the apoptosis rate in cells treated with 

1-round of hypoxia was significantly reduced (p = 0.0005, T-statistic = –4.1431, 

t-test). After 4-round of hypoxia treatment, the apoptosis rate was further 

significantly decreased (p < 0.0001, T-statistic = –10.7825, t-test). A comparison 

between the 1-round and 4-round hypoxia groups showed that the apoptosis rate 

in the four-round group was significantly lower than that in the one-round group 

(T-statistic = –8.3049, p < 0.00001, t-test). This finding strongly suggests the 

successful induction of a hypoxia-adapted resistant phenotype. Conversely, the 

survival rate of cells that were not exposed to cobalt chloride (CoCl₂) was 

significantly lower. These experimental results confirm the successful 

establishment of a hypoxia resistant HepG2 cell model. In order to better 

determine the appropriate concentration of the PD-L1 inhibitor, we used NIS-

Element AR software from Nikon to analyze the proliferation rate of the cells 

before and after co-culture. Based on the CNN algorithm of AI, this software can 

identify and count the areas of the cells on the 6-well plate before and after co-

culture. It enables objective, high-throughput, and morphology-aware 

quantification of cellular features, making it particularly suitable for analyzing 
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complex co-culture systems. We used it to quantify fluorescence intensity, and the 

output was the fluorescence-positive area, which reflects the level of cell 

proliferation. To ensure accurate segmentation, we manually defined 

representative positive cells to establish thresholds for cell recognition, enabling 

consistent identification across multiple image fields. It precisely determined that 

an appropriate concentration of 0.1 μM of the PD-L1 inhibitor has a better effect 

of inhibiting cell proliferation. Figure 23 d shows the area of the cells in the culture 

dish before and after co-culture at different concentrations of the PD-L1 inhibitor. 

There were no significant differences between the groups treated with different 

concentrations of PD-L1 inhibitor before and after co-culture, and no strong 

apoptotic response was observed under any condition. PD-L1 inhibitor require an 

intact and functional immune microenvironment to achieve optimal efficacy, 

which is often compromised under tumor hypoxia. The increases in early and late 

apoptosis may suggest the development of drug resistance or immune evasion.   
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Figure 22. HIF-1α expression of HepG2 cells treated with CoCl2. (a) The Western 

blotting image of HIF-1α under the culture condition of 200 μM CoCl₂; (b) HIF-

1α mRNA level in HepG2 cells treated with CoCl2. 
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a           Normoxic HepG2 cells in 48h treatment 

b         Hypoxia (1 round) HepG2 cells in 48h treatment  
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c         Hypoxia (4 rounds) HepG2 cells in 48h treatment  
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Effect of Different PD-L1 Inhibitor Concentrations on the Proliferation Rate of 

Co-cultured Cells 

 

Proliferation Fill area = After Fill area [px2] — Before Fill area [px2]  

 

Figure 23. Cell apoptosis in HepG2 Cell line samples. (a) Apoptosis analysis after 

co-culture of Normoxic HepG2 cells; (b) Apoptosis analysis after co-culture of 

Hypoxia (1 round) HepG2 Cells; (c) Apoptosis analysis after co-culture of 

Hypoxia (4 rounds) HepG2 Cells (normoxic : 1 round hypoxia, p-value = 0.0005; 

normoxic: 4 rounds hypoxia, p-value < 0.0001; 1 round hypoxia: 4 rounds 

hypoxia , p-value < 0.00001); (d) The proliferative changes in the area proportion 

of cells in the culture dish before and after co-culture. The data are expressed as 

mean ± SD, ns p>0.05, **p < 0.01, ***p < 0.001 vs control. 
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4.2.2 NOXA Knockdown Efficiency 

Western blot and qPCR were used to confirm NOXA knockdown efficiency in 

HepG2 cells. Figure 24 a and b shows the protein expression levels of NOXA 

after transfection with four different siRNAs. Among them, siNOXA4 

demonstrated the most significant knockdown effect (p-value < 0.01), showing a 

drastic reduction in NOXA protein levels compared to the control (NC siRNA). 

β-actin was used as the internal control. Additionally, qPCR results confirmed that 

NOXA mRNA expression was significantly decreased in cells transfected with 

siNOXA4 (p-value < 0.001), further validating the knockdown efficiency in 

Figure 24 c. 
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Figure 24. NOXA transfection knockdown validation. (a)Western blotting image 

of siNOXA; (b) Relative NOXA protein levels; (c) qPCR assay in NC-HepG4-

round 4 and siNOXA- HepG4-round 4 cells. The data are expressed as mean ± 

SD, ns p-value >0.05, **p-value < 0.01, ***p-value < 0.001 vs control. 
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4.2.3 Apoptosis Analysis of NOXA-Knockdown Potentially Resistant Cells 

To assess the role of NOXA in apoptosis regulation, NOXA-knockdown 

(siNOXA) cells were co-cultured with Jurkat T cells under hypoxic conditions. 

The control group is HepG2-4-Rounds cells. Apoptosis rates were analyzed using 

flow cytometry. The Figure 25 shown the effect of siNOXA group on HepG2-4-

Rounds cell apoptosis under hypoxic conditions and 0.1 μM PD-L1i treatment. 

The results indicate that the live cell population increased from 64.10% in the 

control group to 70.05% in the siNOXA group, suggesting that siNOXA HepG2-

4-Rounds cells may enhance cell survival under PD-L1i treatment. Additionally, 

early apoptosis decreased from 14.77% to 10.50%, while late apoptosis decreased 

significantly from 16.50% to 10.38% in the siNOXA group. To further quantify 

the effect of NOXA knockdown on apoptosis, the Cohen’s d values for late and 

early apoptosis rates were 1.2976 and 1.5109, respectively, both exceeding the 

threshold of 0.8 for a large effect size. These findings suggest that siNOXA 

HepG2-4-Rounds cells may reduce early apoptosis and late apoptosis, potentially 

modulating PD-L1i-induced cell death.  
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Figure 25. Effect of NOXA-knockdown HepG2-4-Rounds cell apoptosis with 

Jurkat T cells under hypoxic conditions. (a) The apoptosis experiment of siNOXA 

HepG2-4-Rounds cells; (b) The apoptosis experiment of hypoxia HepG2-4-

Rounds cells; (c) Statistical analysis: Mean of three biological replicate 

experiments. Cohen's d value for early apoptosis rate is 1.5109. Cohen's d value 

for late apoptosis rate is 1.2976. 
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4.3 Discussion and Conclusion 

In this study, we successfully established a hypoxia-induced drug-resistant HepG2 

cell line by exposing the cells to CoCl₂. Our results demonstrated that the 

expression of HIF-1α increased in response to different CoCl₂ concentrations and 

incubation durations, confirming the effectiveness of hypoxic induction. 

Furthermore, the survival rate of HepG2 cells subjected to multiple rounds of 

hypoxic co-culture treatment was significantly higher than that of cells under 

normoxic conditions, indicating the successful induction of a hypoxia-adapted 

resistant phenotype. These findings provide a valuable in vitro model for studying 

the mechanisms of hypoxia-mediated drug resistance in HCC. 

 

To evaluate the effect of PD-L1 inhibition on hypoxia-exposed HepG2 cells, we 

utilized AI-based image analysis to determine that 0.1 μM PD-L1 inhibitor is the 

optimal concentration. This finding further supports its potential research 

significance in targeting hypoxia-induced drug resistance in HepG2 cells.   

 

Furthermore, we investigated the role of NOXA in apoptosis regulation under 

hypoxic conditions. Flow cytometry analysis demonstrated that NOXA 

knockdown (siNOXA) significantly altered apoptosis patterns in HepG2-4-

Rounds cells. Specifically, siNOXA HepG2-4-Rounds cells exhibited an increase 

in the number of live cells, while early apoptosis and late apoptosis were 

significantly reduced. These results suggest that NOXA knockdown may reduce 
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early apoptosis and late apoptosis, which could be a potential mechanism 

underlying the development of resistant cells. These findings are consistent with 

previous studies highlighting NOXA’s involvement in apoptosis regulation and 

drug resistance. 

 

Therefore, our findings suggest that prolonged hypoxia induces resistance to PD-

L1 inhibitors in HepG2 cells, and NOXA knockdown modulates the apoptotic 

progression of resistant cells. These findings lay the foundation for future studies 

on hypoxia-mediated immune evasion and highlight NOXA as a potential 

therapeutic target for overcoming PD-L1 inhibitor resistance in HCC. 

 



 130 

Chapter 5 Overall Discussion and Conclusion 

In recent years, the application of machine learning and deep learning in the 

medical field, particularly in oncology research, has made significant strides. 

These technologies enable the extraction of vast genomic features and uncover 

deeper layers of data, thereby facilitating the quantitative analysis of microscopic 

changes in genes or proteins within tumors. This capability allows for the 

visualization of tumor heterogeneity and the early prediction of treatment 

outcomes. This approach not only aids in identifying patients likely to benefit 

from immunotherapy but also helps in recognizing those who may not respond, 

thereby preventing ineffective treatments, conserving resources and financial 

costs, and avoiding potential adverse effects of immunotherapy that could 

exacerbate disease progression. 

 

In this study, we integrated bioinformatics, machine learning, and deep learning 

methodologies to analyze various genomic features, providing an in-depth 

exploration of hypoxia-related mechanisms in hepatocellular carcinoma (HCC) 

and their impact on the efficacy of immunotherapy. Our findings emphasize the 

critical role of hypoxia in modulating the tumor microenvironment, influencing 

tumor progression, and determining patient responses to PD-L1 inhibitors. 

Therefore, assessing the likelihood of immunotherapy response in HCC patients 

before treatment could facilitate effective risk stratification. 
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In the second chapter of this study, we identified a total of 52 HCC-Hypoxia 

Overlap genes (HHOs) by intersecting HSGs and HRGs derived from GEO 

datasets. Gene set enrichment analysis (GSEA) revealed that some of these genes 

were closely associated with the PD-L1 expression pathway. Notably, TPX2, 

KIF20A, CENPA, DLGAP5, and LMNB1 were significantly enriched in the 

retinoblastoma (RB) immunity downregulation of the PD-L1 expression pathway. 

Previous studies have shown that hyperphosphorylated RB protein within this 

pathway exerts a tumor-suppressive role by inhibiting NF-κB activity and PD-L1 

expression. Additionally, through regression analysis of the TCGA dataset, we 

identified 14 PD-L1 regulatory genes from the HHOs and extracted 10 hub genes 

from the PPI network, with TPX2, KIF20A, NDC80, and DLGAP5 being the 

overlapping genes. Based on clinical data, we analyzed the survival and treatment 

response of PPI hub genes and PD-L1 regulatory genes following PD-L1 inhibitor 

treatment to further validate our computational results. The results indicated that 

TPX2, NDC80, POLE2, GABARAPL1, and PIK3R1 were significantly 

associated with treatment outcomes, suggesting that TPX2 and NDC80 play 

crucial roles in regulating PD-L1 expression and, consequently, the effectiveness 

of PD-L1 inhibitors. 

 

We discovered that the 20 overlapping genes between PD-L1 regulatory genes 

and PPI hub genes are not only differentially expressed in hypoxic HCC tissues 

but also regulate cancer cells through the PI3K/AKT pathway. These genes play 
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a critical role in PD-L1 regulation in hypoxic HCC tissues and may serve as 

potential therapeutic and prognostic biomarkers to enhance sensitivity to PD-L1 

inhibitors and overcome drug resistance. However, the specific regulatory 

mechanisms remain unclear. In the chapter 2, the PI3K/AKT/HIF axis was found 

to play a significant role in hypoxia-induced HCC resistance, particularly in 

regulating PD-L1 expression. 

 

In this study, an HCC immunotherapy response prediction model was established 

based on the EGAD00001008128 dataset (which includes data on patient 

responses to immunotherapy) and hypoxia HepG2 cell line datasets (GSE41666, 

GSE233802, and SRP356151). In the initial hypoxia risk score model developed 

in the chapter 2, we identified 9 hypoxia risk-associated genes. To improve the 

accuracy of predicting immunotherapy responses, we applied bioinformatics and 

machine learning techniques to process the EGAD00001008128 dataset. We 

identified 3 IRHs, among which PMAIP1 (NOXA) has been well-documented in 

the literature for its abnormal expression in hypoxic tumor microenvironments. 

 

The role of PMAIP1 (NOXA) under hypoxic conditions has been extensively 

studied, demonstrating its importance in the adaptation of tumor cells to the 

hypoxic environment. NOXA is a pro-apoptotic protein belonging to the BCL-2 

family, primarily promoting apoptosis through interactions with anti-apoptotic 

proteins [100]. Under hypoxic conditions, HIF-1α is activated and binds to the 
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promoter region of the PMAIP1 (NOXA) gene, enhancing its transcription and 

expression [101]. This mechanism not only helps tumor cells survive in the 

hypoxic microenvironment but also promotes malignancy by regulating 

proliferative and apoptotic pathways. 

 

Importantly, the abnormal expression of PMAIP1 (NOXA) under hypoxia is 

closely related to the drug resistance of tumor cells. Its upregulation may alter 

proliferative signaling pathways in tumor cells, enabling them to better adapt to 

adverse growth conditions, which in turn leads to treatment failure [102]. 

Therefore, PMAIP1 (NOXA) is considered a potential therapeutic target, as 

targeting its regulatory pathway could effectively reverse hypoxia-induced drug 

resistance in tumor cells. 

 

In this study, PMAIP1 (NOXA) was incorporated into the hypoxia risk score 

model to assess its predictive ability for immunotherapy response. The results 

indicated that the expression of this gene in a hypoxic microenvironment 

significantly impacts the effectiveness of immunotherapy, particularly under 

prolonged hypoxia exposure, where risk levels were notably elevated. In the 

logistic regression model, the prediction of immunotherapy response was 

significant (coefficient = 0.5972, p < 0.01), further validating the critical role of 

PMAIP1 (NOXA) in tumor drug resistance. Based on these findings, PMAIP1 

(NOXA) holds promise as a key target for improving immunotherapy efficacy, 
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especially in strategies targeting hypoxia-induced drug resistance. 

 

Cox regression analysis was performed on the TCGA-LIHC database to 

determine the risk coefficient for each feature gene. The hypoxia risk score model 

was thoroughly validated in the GSE233802 dataset across different hypoxia 

durations in HepG2 cell lines. It was found in cultured HepG2 cells that the score 

was positively associated with the hypoxia duration of the incubation environment. 

Regarding 0h as the reference condition, the prolonged hypoxic condition of 48h 

induced more malignant HCC cells than that of 24h. This finding supports that 

the hypoxic condition of the tumor microenvironment affects tumor malignancy 

and patient survival. 

 

To optimize the immune therapy response prediction model, we used machine 

learning in combination with deep learning to extract high-level features from the 

EGAD00001008128 dataset. Using the mRMR and stepwise forward selection 

methods, we selected 11 genes most strongly associated with immunotherapy 

response and used SMOTE to address the imbalance in the training data, thereby 

enhancing the model's predictive performance. Compared to traditional deep 

learning algorithms, the KAN model performs better on small sample datasets, 

making it well-suited for handling high-dimensional gene expression data while 

mitigating the risk of overfitting. We trained the KAN prediction model using the 

11 selected feature genes along with the Bevacizumab feature and validated it on 
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the test set. The constructed prediction model achieved an accuracy of 0.993 in 

the training set and 0.7 in the test set, with each clinical sample receiving a 

corresponding KAN immunotherapy response score. 

 

Based on the KAN immunotherapy response score, the hypoxia risk score, and 

the PMAIP1 (NOXA) gene, we constructed logistic regression and SVM models. 

Ultimately, the SVM model incorporating both the KAN immunotherapy 

response score and the hypoxia risk score achieved an accuracy of 0.725 in the 

test set, demonstrating better predictive performance than the logistic regression 

model and the standalone KAN model. This indicates that the hypoxia risk score 

based on PMAIP1 (NOXA) significantly enhances the predictive accuracy of the 

immunotherapy response model. These findings suggest that hypoxia plays a 

crucial role in the tumor microenvironment and immunotherapy response. 

Prolonged hypoxia in the tumor microenvironment alters proliferative signaling 

pathways in cancer cells, suppresses immune system function, and significantly 

increases the risk level for tumor patients. As a result, this condition is more likely 

to lead to non-responsiveness to immune therapy or failure to achieve partial 

response criteria, and it may also exacerbate tumor progression [103]. 

 

In addition to the computational and predictive analyses conducted in this study, 

we also established an in vitro hypoxia-induced drug-resistant HepG2 cell line to 

further investigate the molecular mechanisms underlying hypoxia-mediated 
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resistance to PD-L1 inhibitors. Through CoCl₂ treatment, we successfully induced 

a hypoxia-adapted phenotype in HepG2 cells, as evidenced by an increase in cell 

survival following multiple rounds of hypoxic exposure. These findings confirm 

that prolonged hypoxia plays a significant role in the development of drug 

resistant HepG2 cells, and this cell line can serve as a valuable in vitro model for 

studying resistance mechanisms. 

 

Additionally, we utilized AI-based image analysis to determine the optimal 

concentration of PD-L1 inhibitor. We further explored the role of NOXA in 

apoptosis regulation under hypoxic conditions. Flow cytometry analysis showed 

that siNOXA-treated round 4 HepG2 cells exhibited reduced early and late 

apoptosis compared to the control group, suggesting that NOXA depletion may 

shift apoptotic progression toward a more survival-favorable state. This finding is 

consistent with previous studies indicating that NOXA plays a crucial role in 

apoptosis regulation and drug resistance, highlighting its strong association with 

hypoxia-induced immune evasion. 

 

Recent studies have extensively documented the role of NOXA in hypoxia and 

immunotherapy. As a pro-apoptotic BH3 domain-specific protein, NOXA 

knockout has been reported to reduce chimeric antigen receptor T-cell (CAR-T) 

mediated tumor cell apoptosis, leading to CAR-T therapy resistance [104]. Our 

study also revealed that NOXA expression was upregulated in hypoxic HepG2 
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cells and in patients who responded to immunotherapy. Whether in predicting 

immunotherapy response model or investigating hypoxia-induced resistance in 

HepG2 cells, these findings underscore NOXA's potential as a therapeutic target. 

 

In conclusion, our study provides new insights into the role of hypoxia in inducing 

resistance to PD-L1 inhibitors and the function of NOXA in apoptosis regulation. 

We demonstrated that prolonged hypoxia promotes the development of drug-

resistant HCC cells, while NOXA knockdown alters apoptotic progression, 

potentially affecting treatment outcomes. These findings support the hypothesis 

that hypoxia-mediated immune evasion contributes to PD-L1 inhibitor resistance 

in HCC. 

 

By integrating bioinformatics, machine learning, deep learning, and experimental 

validation, this study offers a comprehensive approach to understanding the 

hypoxia-immunotherapy relationship in HCC. Identifying PMAIP1 (NOXA) as a 

possible treatment target further supports the development of new strategies to 

overcome hypoxia-related resistance, helping to improve the success of 

immunotherapy. 
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Appendix 

 

Overview of Publication 

The following articles, published in the International Journal of Molecular 

Sciences (IJMS) and the American Society of Clinical Oncology (ASCO), present 

the research detailed in Chapter Two of this dissertation. This study explores 

potential regulatory genes and mechanisms underlying hypoxia-induced PD-L1 

inhibitor resistance in hepatocellular carcinoma through bioinformatics. 

Additionally, an initial hypoxia risk score model was developed using machine 

learning to identify potential hypoxia-related risk genes in hepatocellular 

carcinoma. Presented as an appendix, this research supports the conclusions of 

this dissertation. Each figure in the articles corresponds to the figures in the 

dissertation and is supplemented with additional materials. 
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