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Abstract

Background

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality,
with most cases diagnosed at an advanced stage, making immunotherapy a key
treatment strategy. However, the response rate to PD-L1 inhibitors remains low,
necessitating further exploration of resistance mechanisms and predictive
biomarkers. Hypoxia is a major contributor to immunotherapy resistance, as HIF-
la upregulates PD-L1 expression and activates genes that help tumor cells adapt

to hypoxia, ultimately reducing immunotherapy efficacy.

This study integrated bioinformatics, machine learning, and deep learning to
identify key hypoxia-associated genes and pathways contributing to PD-LI
expression. A hypoxia risk score model was developed to stratify cases by risk,
and a Kolmogorov-Arnold Network (KAN) deep learning model was constructed
to predict immunotherapy response. Additionally, an in vitro hypoxia-induced
drug-resistant HepG2 cell model was established, and the role of NOXA in
apoptosis regulation was examined through flow cytometry and Al-based image

analysis.



Results and Conclusion

52 HCC-Hypoxia Overlap genes (HHOs) were identified, with 14 PD-L1
regulatory genes and 10 hub genes influencing immunotherapy response.
PMAIP1 (NOXA) was significantly associated with immunotherapy response (p
< 0.001). A hypoxia risk score model integrating PMAIP1 and 9 hypoxia risk-
associated genes demonstrated high predictive accuracy (AUC = 0.815, 0.774,
0.771 for 1-, 2-, and 3-year survival, respectively). The KAN deep learning model
incorporating 11 key genes achieved high predictive accuracy (AUC = 0.936
training, 0.7 test). SVM-based integration of hypoxia risk score and KAN model

improved prediction performance (AUC = 0.725 test set).

Experimental validation demonstrated that hypoxia enhances drug resistance in
HepG2 cells, while NOXA knockdown alters apoptosis patterns, potentially
modulating treatment response. These findings highlight NOXA as a potential
therapeutic target and establish a robust model for predicting immunotherapy

response, advancing precision medicine in HCC treatment.
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Chapter 1 Literature Review

1.1 Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC), a disease known for its high aggression and
heterogeneity, is the leading form of primary liver cancer, constituting 80-90% of
all cases. From 2005 to 2015, HCC has risen to become the second largest cause
of cancer-related years of life lost on a global scale and the second leading cause
of malignant tumor deaths in Asia. The latest report from the World Health
Organization (WHO) indicates that the incidence and mortality rates of liver
cancer have increased over the last 20 years. In 2020, the global incidence and
mortality rates of HCC were 906,000 and 830,000, respectively. The WHO also
reported that nearly 70% of cases occur in the Asian region, with China having
the top incidence rate among HCC patients. It is reported that the age-specific
incidence rate is highest among individuals over 70 years old. Additionally, HCC
1s predominant in males (showing a male-to-female ratio ranging from 2 to 3:1),

which may be connected to the higher prevalence of risk factors in males [1-3].
1.1.1 The Diagnosis of HCC

Currently, the guidelines for diagnosing HCC recommend the use of imaging
characteristics, with ultrasound being widely utilized for HCC surveillance and
early diagnosis due to its cost-effectiveness, non-invasiveness, and lack of

excessive radiation exposure. Despite its widespread clinical application, the
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sensitivity and specificity of ultrasound in diagnosing HCC, especially in its early
stages, remain unsatisfactory. Magnetic resonance imaging (MRI) offers higher
accuracy for early HCC detection with a sensitivity ranging from 66.7% to 73%.
However, MRI is costly, time-consuming, and associated with high cumulative
radiation doses. Positron emission tomography (PET) and other nuclear imaging

techniques show a sensitivity of 30—70% in diagnosing primary HCC [4, 5].

In addition to imaging techniques, serum biomarkers hold significant value in
HCC diagnosis. Traditionally, HCC has been screened and diagnosed based on
the expression of molecular biomarkers, which also aid in predicting patient
prognosis and monitoring treatment response. Over the past few decades, alpha-
fetoprotein (AFP) has emerged as the most promising and extensively studied
candidate biomarker. Abnormal plasma AFP levels are closely associated with the
malignancy of HCC. However, approximately 20% of HCC patients do not
produce AFP, 60% overexpress AFP, and 30-40% have normal AFP levels (< 20
ng/mL). Thus, the performance of AFP as a screening, diagnostic, and prognostic
biomarker for HCC is suboptimal. AFP-L3, with its high specificity, was approved
by the FDA as an HCC biomarker in 2015, but it only has a sensitivity of 48.3%.
Protein induced by vitamin K absence or antagonist-1I (PIVKA-II), also known
as Des-y-carboxy prothrombin, has been approved as a serum biomarker for HCC
in East Asia, yet its sensitivity remains controversial. Glypican-3 (GPC3) is

overexpressed in most HCC tumor tissues, but its diagnostic accuracy for early
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HCC is still unsatisfactory. To date, no single protein biomarker has demonstrated
sufficient accuracy to be used alone for early HCC diagnosis [6, 7]. Despite the
potential of several biomarkers, their practicality in clinical practice requires
further validation. Compounding the challenge is the lack of specific tumor

symptoms in HCC, causing most patients to be diagnosed at a later stage.

1.1.2 Therapeutic Progression of HCC

Treatment strategies for HCC patients are contingent on the disease's clinical stage.
According to the internationally accepted Barcelona Clinic Liver Cancer (BCLC)
staging system, HCC patients are categorized into five stages: BCLC-0 (very early
stage), BCLC-A (early stage), BCLC-B (intermediate stage), BCLC-C (advanced
stage), and BCLC-D (terminal stage) [8]. The primary treatment options for HCC
include liver resection, liver transplantation, ablation, or transarterial
chemoembolization (TACE), which may offer curative potential for early-stage
patients. For patients with intermediate-stage HCC, locoregional treatments such
as TACE are preferred [9, 10]. However, for advanced-stage HCC patients,
surgical options are unsuitable due to factors such as tumor size, location, lesion
count, and comorbidities, making appropriate treatment options very limited.
Advanced-stage HCC patients primarily benefit from systemic therapies. More
than 50% of HCC patients are diagnosed at an advanced stage, significantly

increasing the rate of patients undergoing systemic treatments. Initially,
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chemotherapy drugs were the mainstay for advanced HCC treatment, but their
efficacy was limited, and adverse effects were significant. In 2007, targeted
inhibitors such as sorafenib and other multikinase inhibitors, along with immune
checkpoint inhibitors (ICI), were approved for systemic therapy in advanced liver
cancer [11-15]. Until the mid-2010s, sorafenib was the only drug available for

systemic treatment of HCC.

1.1.3 The Immunological Classification of HCC

HCC can be categorized into inflamed and non-inflamed types based on their
immune profiles. The inflamed type includes immune-active, immune-exhausted,
and immune-like subclasses. The immune-active and immune-like subclasses
share similar characteristics, such as high cytotoxic immune cell activity, elevated
interferon signaling, and favorable prognosis, with the immune-like subclass
showing enhanced Wnt—-catenin signaling [16]. Recent research has
demonstrated that patients with inflamed HCC have higher response rates to
immunotherapy. The non-inflamed type includes immune-intermediate and
immune-excluded subclasses. The immune-intermediate subclass is associated
with a high frequency of TP53 mutations and significant chromosomal loss of
immune-related genes. The immune-excluded subclass i1s distinguished by high-
frequency CTNNBI mutations, PTK2 overexpression, gene amplification, and

promoter hypomethylation, usually exhibiting low immune infiltration[17, 18].
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Additionally, HCC can be categorized into four unique immunovascular subtypes
based on the interaction between immune-related and angiogenesis-driven tumor
microenvironments: immune-high/vascular-suppressed, immune-medium /
vascular-medium, immune-low/vascular-activated, and immune-low/vascular-
low [18, 19]. This classification provides new insights into the efficacy of

immunotherapy.

1.1.4 ICI Therapy in HCC

In recent years, significant progress has been made in the treatment of HCC with
immune checkpoint inhibitors (ICIs). Tumor cells often evade immune system
attacks by activating immune checkpoints. ICIs restore T-cell antitumor activity
by blocking the signaling pathways between immune checkpoints. In HCC, the
primary immune checkpoint targets are PD-1/PD-L1 and CTLA-4. In 2019, the
atezolizumab and bevacizumab combination therapy demonstrated a significantly
longer overall survival (OS) compared to sorafenib in the IMbravel50 trial [20-
23]. In 2020, the U.S. FDA approved atezolizumab (Tecentriq) in combination
with bevacizumab (Avastin) for the first-line option for treating advanced,
unresectable, or metastatic HCC. Although these therapies have become the
standard treatment for HCC patients, their widespread clinical application is
limited by the frequency of adverse events, intolerance, lack of treatment response,

and drug resistance. The objective response rate (ORR) for advanced HCC
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patients receiving ICIs in combination therapy is only 36%, and even lower at
under 20% for monotherapy [24, 25]. Consequently, new therapeutic strategies
are being developed to enhance the efficacy of immunotherapy, improve cancer

treatment safety, and expand available treatment options for HCC patients.

1.2 PD-L1

PD-L1 (B7-H1 or CD274) is a transmembrane protein that is a member of the B7
family. In various cancers, the expression levels of PD-L1 are significantly
elevated, making it a crucial immune checkpoint. PD-L1 plays a vital
immunoregulatory role by modulating the initiation and cessation of
immunotherapy responses. Consequently, PD-L1 has become a significant target

in anti-tumor immunotherapy [26].

1.2.1 PD-L1 Structure

PD-L1 is a type | transmembrane protein composed of 290 amino acids, belonging
to the immunoglobulin superfamily with IgC and IgV domains. PD-LI
encompasses three primary domains: the extracellular domain (ED), the
transmembrane domain (TM), and the intracellular domain (ID). The extracellular
domain (ED) includes variable immunoglobulin regions, comprising both distal
and proximal segments. The intracellular domain (ID) contains three conserved

amino acid motifs: DTSSK, RMLD-VEKC, and QFEET. Promoting signal
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transduction and signal transducer and activator of transcription 3 (STAT3)
phosphorylation is the primary function of the RMLD-VEKC motif, in contrast

to the DTSSK motif, which inhibits this phosphorylation process [26, 27].

The expression of PD-L1 on the surface of cancer cells is regulated by multiple
signaling  pathways and  proteins, including  PI3K/AKT/mTOR,
COX2/mPGES1/PGE2, nuclear factor kappa B p105 subunit (NF-xB), hypoxia-
inducible factor 1-alpha (HIF-1a), RAF/MEK/ERK/MAPK pathways, and STAT
proteins [27-29]. These signaling pathways and proteins are frequently mutated
or upregulated during malignant transformation, thereby influencing the

expression levels and functions of PD-L1.

1.2.2 The Expression Level of PD-L1 in Cancers

PD-L1 is regulated by intrinsic oncogenic and adaptive signaling pathways,
exhibiting high expression levels across various cancers, including hepatocellular
carcinoma, non-small cell lung cancer, melanoma, and breast cancer. The aberrant
expression of PD-L1 significantly reduces antitumor immunity in the tumor
microenvironment (TME), thus closely correlating with tumor aggression,
metastatic potential, and unfavorable patient outcomes. Elevated PD-L1 levels are

often indicative of poorer prognosis and lower therapeutic response rates [30].
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Recent studies have revealed that MYC is capable of binding to the PD-LI
promoter, thereby upregulating its expression across various cancer types.
Furthermore, genetic or pharmacological inhibition of MYC can decrease PD-L1
mRNA levels and revive antitumor immunity in the TME. Anaplastic lymphoma
kinase (ALK) also drives PD-L1 upregulation, with hyperactivation of the ALK
signaling pathway, induced by NPM-ALK gene fusion, enhancing PD-L1
expression through STAT3. Besides MYC and ALK, other oncogenic pathways
such as HIF1/2a, mitogen-activated protein kinase (MAPK), nuclear factor kB
(NF-kB), phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog
(PTEN), and epidermal growth factor receptor (EGFR) also enhance PD-L1

mRNA expression when mutated or hyperactivated [31-33].

In the TME, cancer cells are subjected to the surveillance threats of innate and
adaptive immunity. This region is rich in inflammatory cytokines that coordinate
the stability of antitumor immunity. However, by exploiting inflammatory
pathways (also known as adaptive signaling pathways), cancer cells can boost PD-
L1 expression, leading to an environment conducive to tumor progression through
the inhibition of antitumor immunity. In order to escape from T-cell attacks,
cancer cells activate the IFN- v /JAK/STAT1 pathway, leading to increased PD-
L1 mRNA expression [30, 34]. IFN-y, produced by natural killer (NK) cells and
T cells, is an inflammation-promoting cytokine that boosts the expression of major

histocompatibility complex (MHC) and promotes the presentation of neoantigens
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on cancer cells [35]. By leveraging the IFN-y/JAK/STAT1 pathways, PD-L1 on
cancer cells can neutralize cytotoxic T cells and diminish immune surveillance

within the TME [34].

Similarly, multiple inflammatory cytokines can stimulate PD-L1 mRNA
expression within tumor cells or the stromal cells associated with tumors,
including TNF-a, IFN-o/B, TLR3, 1L-4/6/17/27 ,and transforming growth factor
B (TGF-B) [30, 36-38]. These discoveries contribute to a better grasp of the
mechanisms that could be regulating PD-L1 expression in tumor cells.
Nonetheless, the specific role of oncogenic signaling pathways in modulating PD-
L1 expression post-translationally to inhibit antitumor immunotherapy responses

remains unclear and warrants further investigation.

1.2.3 The Role of PD-L1 in Cancer Progression

Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are type I
transmembrane proteins belonging to the immunoglobulin (Ig) superfamily. PD-
L1 plays a critical role in cancer progression by inhibiting T-cell activation and
promoting immune evasion. The PD-1 cytoplasmic domain features two tyrosine-
based signaling motifs: ITIM (immunoreceptor tyrosine-based inhibitory motif)
and ITSM (immunoreceptor tyrosine-based switch motif). During T cell

activation, the binding of PD-1 to PD-L1 induces conformational changes that
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recruit the phosphatase SHP-2 [32, 39]. The recruitment leads to a reduction in
key proximal T-cell receptor (TCR) signaling events, such as LCK-induced
phosphorylation of ZAP70, and decreases the activity of the RAS-MEK-ERK and
PI3K-Akt-mTOR pathways. The inhibition of these signaling pathways results in
suppressed T-cell proliferation and cytotoxic functions, altered metabolism,
impaired cytotoxic T lymphocyte (CTL) killing activity, and ultimately leads to
the apoptosis of activated T cells, leading to the protection of tumor cells from

immune system attacks [40].

Furthermore, PD-L1 can enhance its immunosuppressive effects by engaging with
B7-1 (CD80). B7-1 is another immune regulatory molecule that typically binds to
CD28 to promote T-cell activation. However, when PD-L1 engages with B7-1, it
inhibits B7-1 from interacting with CD28, thus inhibiting the co-stimulatory
signals necessary for T-cell activation. This inhibition leads to a decrease in T-cell
proliferation and cytotoxicity, while also compromising the immune systems
effectiveness in recognizing and attacking tumor cells. The binding of PD-L1 to
B7-1 within the tumor microenvironment exerts a dual inhibitory effect,
reinforcing the mechanisms of immune evasion and allowing tumor cells to
continue growing and spreading under the surveillance of the immune system [41,

42].
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1.2.4 The Regulation of PD-L1 in Cancers

The expression of PD-L1 is regulated by multiple factors, including genetic
mutations, signaling pathway activation, and microenvironmental influences. For
instance, hypoxic conditions can upregulate PD-L1 expression via HIF-1a, while
mutations in EGFR and ALK also promote its expression [43-45]. Additionally,
cytokines in the tumor microenvironment, such as IFN-y, can significantly
increase PD-L1 expression levels [30, 45].The expression of PD-L1 is also
significantly influenced by epigenetic factors like histone modifications and DNA

methylation [44, 46].

The PI3K-Akt signaling pathway is critical for survival, metabolism, proliferation,
and migration of cancer cells. Numerous studies have established a positive
correlation between PI3K-Akt signaling and PD-L1 expression across various
cancers, including colorectal cancer (CRC), non-small cell lung cancer (NSCLC),
glioblastoma, breast cancer, and melanoma [32]. Moreover, the activation of the
PI3K-Akt-mTOR cascade by both type I and type II interferons, which regulates
interferon-dependent mRNA translation, points to a synergistic interaction
between the Akt-mTOR pathway and interferon receptor signaling. [47, 48].
Consistently, pharmacological inhibition of PI3K-Akt signaling can suppress

IFN-y-induced PD-L1 expression [49].

The MEK-ERK pathway, typically activated by upstream receptor mutations such
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as KRAS and EGFR, represents another common activation pathway in human
cancers and plays a pivotal role in the upregulation of PD-L1 levels. Evidence
suggests that hyperactivation of MEK-ERK signaling can directly enhance PD-
L1 gene expression across various cancers, including lung cancer, breast cancer,

multiple myeloma, bladder cancer, and lymphoma [32, 50, 51].

These findings elucidate the complex regulatory mechanisms governing PD-L1
expression and underscore the importance of these pathways in cancer
immunology. Comprehending these mechanisms is essential for the development
of targeted therapies aimed at modulating PD-L1 expression to enhance antitumor

immunity.

1.3 Hypoxia

Hypoxia is frequently found in cells and tissues in the tumor microenvironment
due to a lack of adequate vascularization. In normal tissues, the oxygen level of
the liver cell is as high as 7.3%. Compared to the normal tissues, oxygenation
levels in HCC are much lower, with O: ratios of only 0.8% [52]. Folkman's theory
indicates that the growth of tissues (including cancer tissues) beyond 2-3mm?
requires new blood vessels, and that optimal nutrients and oxygen are supplied
within a 250pm radius of capillaries. But tumors beyond one mm3 can still survive

in lack of new blood vessels [53]. Collectively, hypoxia is a common feature in
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solid tumors of HCC and not only drives tumorigenesis and progression and is a
significant cause of drug resistance to various therapeutic modalities. Thus, cancer
progression is driven by intrinsic oncogenic mechanisms but not the presence of
blood vessels. Hypoxia may induce a physiological response in tumor tissues,

leading to genetic alterations in signaling pathways [54].

1.3.1 HIF structure

In recent years increasing evidence has indicated that hypoxia-inducible factors
(HIFs) are commonly detected in solid tumors and have shown a strong
association between hypoxia and adverse clinical outcomes in HCC [55]. HIFs
mediate a series of responses of cells to adapt to hypoxia, which are three different
subtypes consisting of the HIF-la, HIF-2a and HIF-3a [56]. HIFs are
heterodimeric proteins composed of a functional HIF-1a subunit and a stably
expressed HIF-1P subunit. Prolyl hydroxylase structural domain (PHD) is a
critical enzyme in the HIFs degradation process, and the PHD in an O:-rich
environment can hydroxylate the proline residues of HIF-1/2a. Hydroxylated HIF
subtypes are recognized and bound by ubiquitin ligases and von Hippel-Lindau
tumor suppressor protein (VHL). Ultimately, ubiquitinated HIF-1/-2a 1s degraded
by the 26S proteasome [57]. Since both PHD and HIF are oxygen-dependent, in
a hypoxic environment, stable HIF-1/2a translocate into the nucleus and activates

a series of hypoxia-responsive element (HRE) genomic sequences [58]. In general,
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HIFs are the shortest half-life proteins in normoxic conditions. In contrast, in
hypoxic environments HIFs are stable and accumulate and translocate to the
nucleus, activating the expression of some genes and adapting to the hypoxic

environment [59].

1.3.2 The expression level of HIF in HCC

Numerous clinical studies have demonstrated the correlation between HIFs and
the recurrence, prognosis, and survival of HCC patients. HIF-1a expression is
higher in HCC tissues than adjacent tissues and is mainly involved in promoting
tumor invasion, migration, metastasis, angiogenesis, epithelial-to-mesenchymal
transition (EMT), glycolytic regulation and lipid metabolism. HIF-1a promotes
tumor cell invasion and migration through the RIT1 axis, and IL-8/Akt/NF-xB
axis upregulates LOXL2 to promote angiogenesis, promotes cancer cell
glycolysis through the PPAR-y/PKM2 axis, induces EMT to promote HCC
metastasis process, and FABP5 mediates lipid metabolism through HIF-1 to drive

HCC progression [60].

1.3.3 The role of HIF in immune escape

Hypoxia promotes tumor immune escape. In hypoxic environments, HIF induces
tumor cells to release large amounts of immunosuppressive factors to reduce

immune cytotoxicity, such as VEGF and encodes cancer-related proteins to cause
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radio resistance and resistance to multiple chemotherapeutic agents, affecting the
antitumor immune response. In addition, HIF-1a induces PD-L1 expression in
tumor cells and MDSCs, promotes immune tolerance in the tumor
microenvironment, and increases the resistance of tumor cells to cytotoxic T
lymphocytes (CTL) [61]. HIF-1a mediates the expression of cancer cell surface
protein CD47 and protects cancer cells from destruction by macrophages [62].
HIF-1a also increases the expression of metalloproteinase ADAM10, decreases
the expression level of MHC-related molecules, and cannot activate the initial

signaling pathway of immune cells [63].

1.3.4 Hypoxia signature genes as Potential Molecular Target in Cancers

Research data suggest that HIF inhibitors may contribute to antitumor and anti-
angiogenic effects. Some approved drugs that indirectly alter HIF-1a expression
may also be helpful as adjuvant therapies in cancer treatment. For example, the
chemotherapeutic drug rapamycin can reduce the expression of HIF-1a and also
act synergistically with mTOR inhibitors (decrease HIF-1a expression) to inhibit
tumor growth in preclinical models of HCC [54, 64]. DNA alkylating agent
temozolomide exhibits enhanced antitumor activity with HIF inhibitors in glioma
[65]. MK 6482 is the first FDA-approved HIF inhibitor for treating advanced renal
cell carcinoma patients [66]. Therefore, combining HIF inhibitors and ICI therapy
will be a potent combination. While ICI plays a vital role in antitumor, HIF

inhibitors can mediate PD-L1 expression and eliminate the ability of tumor cells
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to adapt to a hypoxic environment and develop therapeutic resistance.

1.4 Drug resistance

Immunotherapy has opened a new chapter in cancer treatment. However, in these
studies, most patients did not benefit due to drug resistance, and some patients
had recurrences after treatment. Researchers have divided drug resistance into
three classifications: primary, adaptive, and acquired. Primary resistance is a
clinical condition in which cancer patients resist immunotherapy and have no
immune response. Adaptive resistance is when the immune system recognizes the
tumor, but resistance clones exist before treatment and protect themselves by
adjusting to the immune response. Acquired resistance occurs when cancer
patients initially respond to immunotherapy, only to relapse later and develop drug

resistance [67].

1.4.1 Tumor-Cell-Intrinsic Factors

Intrinsic factors of immunotherapy leading to drug resistance in tumor cells
include modulation of the expression of specific genes or pathways that may be
associated with immunosuppression in the tumor microenvironment. These
mechanisms may initially exist or undergo evolution, culminating in tumor drug
resistance mechanisms. Recent studies have identified various intrinsic tumor

mechanisms that may be associated with drug resistance mechanisms: (1) Tumor
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cells lead to the production of proteins such as VEGF and IL-8 through the MAPK
pathway, which has a suppressive effect on T cell recruitment [68]. (2) PTEN
expression deficiency enhances PI3K signaling and decreased IFN-y, granzyme
B gene expression and CD8+ T cell infiltration [69]. (3) The cancer cell surface
ligand PD-L1 also suppresses T cell responses. The expression mechanisms
include PTEN loss, PI3K/AKT mutation, EGFR mutation and MYC

overexpression [70-74].

1.4.2 Acquired Resistance to Immunotherapy

With the widespread use of immunotherapy, the chance of patients with acquired
drug resistance after a period has increased. The underlying mechanisms may
escape mutations in genes within the tumor, downregulation of tumor antigen
presentation and lack of T cell recognition, B2M mutations leading to loss of HLA
expression, altered interferon signaling, and loss of T cell function [75]. Since
antitumor T cells specifically identify their cognate cancer cells, gene deletions,
mutations or even genetic changes in signaling pathways that alter the expression

of tumor antigens may lead to acquired resistance to ICI therapies [76].

Even though immune combination therapy has the potential to restore immune
response as described above, excessive trimming of the tumor vasculature might

intensify hypoxia in the tumor microenvironment, thereby boosting
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immunosuppression. Hypoxia induces immunosuppression by decreasing
cytotoxic cell activity, promoting the expression of immunosuppressive cytokines,
and increasing infiltration of immunosuppressive cell populations [77]. Thus,
hypoxia-altering PD-L1 expression via HIF may be a potential mechanism for
acquired resistance within the tumor, and understanding these mechanisms will
offer valuable clues about the actions needed to address immunotherapy

resistance in HCC.
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Chapter 2 Identity the pathways governing the
response mechanism of PD-L1 inhibition

2.1 Materials and Methods

2.1.1 Microarray Data Collection and Processing

Two public datasets, GSE14520 and GSE41666, were obtained from the Gene
Expression Omnibus (GEO) database. In the GSE14520 dataset, a single-channel
array platform was utilized to analyze the gene expression levels of tumor samples
from 214 HCC patients and their corresponding 214 non-tumor samples. In the
GSE41666 dataset, HepG2 HCC cell line samples were exposed to hypoxic
conditions at 0% oxygen concentration and normoxic conditions at 21% oxygen
concentration for 24 hours. Each condition was performed in triplicate, and the
gene expression levels of a total of 6 samples were analyzed using an expression

bead chip platform.

For each gene detected by multiple probes on the microarray chip, the average
expression level was calculated to generate an expression matrix corresponding
to unique gene symbols. The expression matrix of the GSE14520 dataset
underwent log2 transformation, whereas the GSE41666 dataset did not, as it had
already undergone variance stabilizing normalization (VSN). Both matrices were
standardized to achieve normally distributed expression levels, N (0,1). The
detailed data processing and analysis workflow is illustrated in Figure 1 and 2.
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Figure 1. Data processing and analysis workflow of Chapter 2.
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Figure 2. Flowchart of processing and analysis of microarray datasets.
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2.1.2 Identification of HCC-signature genes (HSGs) and hypoxia-related

genes (HRGs)

Differential expression analysis was conducted based on t-tests and fold change
(FC). The p-value generated by the t-test for each gene was used to indicate the
statistical significance of its differential expression. To address the issue of
multiple hypothesis testing across a large number of genes, g-values, representing
the estimated false discovery rates (FDR), were derived from p-values using the
Storey-Tibshirani g-value method [78]. For the GSE14520 dataset, paired-sample
t-tests were employed to analyze differences between tumor and paired non-tumor
samples. HCC-signature genes (HSGs) were defined as differentially expressed
genes in HCC tumor samples relative to paired non-tumor samples, with criteria
set at g-value < 0.05 and FC > 1.4 (upregulated) or <1/1.34 (downregulated). For
the GSE41666 dataset, hypoxia-related genes (HRGs) were identified based on
the criteria of g-value < 0.05 and FC > 1.301 (upregulated) or <1/1.199
(downregulated). The cut-off values for FC were determined based on the number
of selected upregulated and downregulated genes. Venn diagrams were created
using the Venny 2.1 platform (https://bioinfogp.cnb.csic.es/tools/venny/, accessed
November 25, 2022), and the HCC-Hypoxia Overlap (HHO) gene set was defined

as the intersection of HSGs and HRGs.
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2.1.3 GO function and KEGG pathway enrichment analysis of HSGs and

HRGs

In this study, Gene Ontology (GO; http://geneontology.org, accessed on
November 29, 2022) analysis was first performed on HSGs and HRGs, using
Python to obtain enrichment results in Biological Process (BP), Cellular
Component (CC), and Molecular Function (MF). Subsequently, Kyoto
Encyclopedia of Genes and Genomes (KEGG; https://www.kegg.jp/, accessed on
November 29, 2022) pathway enrichment analysis was conducted, yielding the
corresponding pathway enrichment results. Adjusted p-values < 0.05 and FDR-
adjusted p-values < 0.05 were considered statistically significant and served as
thresholds for selecting the major enrichment functions and pathways of HSGs

and HRGs.

2.1.4 Gene set enrichment analysis (GSEA) of HSGs and HRGs

GSEA is a computational method used for analyzing and interpreting changes in
gene pathway levels and performing association analysis in transcriptomics
experiments, including genome-wide association studies and RNA-seq gene
expression experiments. The random permutation procedure (permutation = 1000)
in the gseapy-v1.0.0 Python library was employed to obtain the null distribution.
Subsequently, the Enrich method in the gseapy-v1.0 library was utilized to

identify HCC signaling pathways regulated by hypoxia-related features (adjusted
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p-value < 0.05). The gseapy-v1.0.0 package currently supports analysis across

202 databases.

2.1.5 PPI Network Construction and Identification of Hub Genes

STRING (Search Tool for the Retrieval of Interacting Genes, http://string-db.org/,
accessed December 12, 2022) is an online database for searching protein-protein
interactions. To further explore the interactions among HHOs (i.e., the
overlapping genes between HSGs and HRGs), the HHO genes were imported into
the STRING database to construct a PPI network with a confidence score greater
than 0.7 [79]. Based on this network, PPl hub genes were identified using the
degree algorithm of CytoHubba, which ranks genes by their connectivity degree
(i.e., the number of connected neighbors) [80]. The top 10 PPI hub genes with the

highest degree values were then selected for further analysis.

2.1.6 Multiple Regression Analysis of the Effect of HHOs on PD-L1

To investigate the effect of HHOs on PD-L1 expression, this study used multiple
regression analysis. RNA sequencing (RNAseq) expression data from the TCGA-
LIHC cohort, comprising 371 HCC tissue samples, were obtained from the UCSC
Xena website (https://xenabrowser.net/datapages/, accessed December 6, 2022).
The RNAseq expression levels of HHOs and PD-L1 were extracted and

standardized for analysis. Compared to machine learning models, multiple
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regression can produce more stable and reproducible results without the need to
fix a specific random seed. Various feature selection methods were considered.
mRMR effectively reduces feature redundancy. LASSO combines selection and
regularization. Random Forest capture nonlinear relationships. Stepwise forward
regression was chosen due to its suitability for continuous outcomes and superior
interpretability. It enables clear identification of each gene’s contribution. We
applied a stepwise forward algorithm (p-value < 0.05) to identify genes within the
HHOs that significantly and substantially impact PD-L1 expression, denoted as Y

in the following formula.

Y = bo + b1X1 + b2X2+ +anTl

In this formula, X, represents the expression level of the nth selected gene, and bn
represents the corresponding coefficient that quantifies its effect on PD-LI

expression. These selected genes are referred to as PD-L1 regulator genes.

2.1.7 Survival Analysis and PD-L1 Inhibitor Response Prediction

Kaplan Meier plotter (KM plotter; http://kmplot.com/analysis/ as of December 21,
2022) is a survival analysis platform that integrates clinical data, gene expression
data, and survival information from the GEO, EGA, and TCGA databases. Using
this platform, we plotted survival curves and calculated hazard ratios with 95%

confidence intervals, as well as log-rank p-values for PPI hub genes and PD-L1
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regulator genes in cancer patients. Patients were stratified into high-expression
and low-expression groups based on the median expression level of each gene

prior to PD-L1 inhibitor treatment.

The ROC plotter (https://www.rocplot.org/ as of December 23, 2022) is an
analytical tool designed to identify predictive biomarkers based on gene
expression levels using transcriptomic data from many cancer patients. In this
study, this tool was utilized to evaluate the ability of the expression levels of PPI
hub genes and PD-L1 regulator genes to predict the response to PD-L1 inhibitors

in 454 pan-cancer patients within the database.

Additionally, we conducted KEGG pathway enrichment analysis on the union of
PD-L1 regulator genes and PPI hub genes using the ShinyGo 0.76.3 platform
(http://bioinformatics.sdstate.edu/go/, accessed January 1, 2023), with an FDR

threshold of < 0.05 set as the criterion for selection.

2.1.8 Establishment of a Hypoxia Scoring Model

Based on RNA-seq data from HCC patients (N=367) in the TCGA Liver Cancer
(LIHC) database, univariate Cox regression models were initially constructed.
Subsequently, hypoxia-characteristic genes were selected for the multivariate

survival model using the Least Absolute Shrinkage and Selection Operator
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(LASSO) algorithm. A hypoxia-related risk score was calculated using the model
established from these characteristic genes, stratifying patients into high-risk and
low-risk groups. Finally, this model was validated using liver cancer cases (N=232)
from the International Cancer Genome Consortium (ICGC) database (ICGC-

LIRI-JP).

2.2 Results

2.2.1 Identification of HSGs and HRGs in HCC

By setting the cutoff values for q and FC at 1.139 and 1.128, respectively, 800
HSGs (400 upregulated and 400 downregulated) were identified from the
GSE14520 dataset, showing significant differential expression between tumor and
adjacent non-tumor tissues (Figure 3a). The corresponding heatmap is shown in
Supplementary Figure S1. In the GSE41666 dataset, the cutoff values for q and
FC were set at 1.277 and 1.370, respectively, leading to the identification of 800
HRGs (400 upregulated and 400 downregulated), which exhibited significant
differential expression between hypoxic and normoxic conditions (Figure 3b),
with the corresponding heatmap presented in Supplementary Figure S2. Further
analysis revealed that 52 overlapping genes were common to both HCC-signature
genes (HSGs) and hypoxia-related genes (HRGs), termed HCC-Hypoxia
Overlaps (HHOs) (Fisher exact test, p < 1.047 x 107!"). Among these, 37 genes
were upregulated and 15 were downregulated in the hypoxic group compared to

the normoxic group in the GSE41666 dataset (Figure 3c, d).
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Figure 3. Identification of HCC-signature genes (HSGs) and hypoxia-related

genes (HRGs). (a) Volcano plot for GSE14520; (b) Volcano plot for GSE41666;

(c) Overlapping genes between HSGs and HRGs; (d) Overlapping genes among

upregulated and downregulated genes in HSGs and HRGs.
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2.2.2 Gene Set Enrichment Analyses of HSGs and HRGs

Using the gseapy package in Python, enrichment analysis of HSGs and HRGs was
conducted across 202 databases (as of November 29, 2022). Significant
enrichment results were identified in 190 and 161 databases, respi "~ ely. Notably,
we focused on three groups of databases that showed significant enrichment

results closely related to hypoxia, HCC, and PD-L1.

In the GO database, the upregulated HSG genes were significantly enriched in the

nn

gene sets related to "nucleus," "mitosis," and "organelles," while the upregulated
HRG genes were predominantly enriched in the gene sets associated with
"spindle," "mitosis," and '"nuclear chromosome" (Figure 4a, b). The
downregulated HSG genes were primarily enriched in the "monooxygenase
activity" gene set, whereas the downregulated HRG genes were mainly enriched
in the "cellular response to decreased oxygen levels" gene set (Figure 4a, b). The
bar chart depicting the expression profiles of these enriched genes is presented in
Supplementary Figure S3. In the KEGG Human database, the upregulated HSG
genes were significantly enriched in pathways such as "cellular senescence

"nn

signaling," "RNA transport," "drug metabolism," "apoptosis signaling" and
"chemical carcinogenesis" (Figure 4d). Moreover, in the "RNAseq Automatic
GEO Signatures Human" database, it was found that the downregulated HSG and

HRG genes were significantly enriched in the "Rb-immunity downregulating Pd-
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L1" gene set, with CENPA, TPX2, LMNBI1, DLGAPS, and KIF20A, being the

common genes among them. Additionally, the upregulated HRG genes were

significantly enriched in both the "tissue-resident pancreas Pd-1/Pd-L1" gene sets

and "Rb-immunity downregulating Pd-L1" (Figure 4c).

HSGs up-regulated
p-reg Count
DNA replication origin binding L ® 50
protein ser ine/ kinase regulator activity . . 100
kinase binding . 150
protein kinase binding
RNA binding | &
-log,,qvalue
CMG complex
spindle i)
Ilul bounded il 8
nucleus g h 6
1l b bounded il
4
regulation of cellular response to heat .
Y involved in mitasis L]
mitatic spindle organization . SameeGrop
.
DNA replication
regulation of cellular response to stress 4 cc
- MF
01 02 03 04
Gene ratio
HRGs up-regulated ., ..
CMG complex a e
nuclear chromosome g’i : 1
15
condensed chromosome A
spindle | A\ -log,, gvalue

mitotic spindle
mitotic DNA replication

involved in mitosis
DNA replication
mitotic spindle organization

DNA metabolic process

Rb Immunity Downregulating Pd-L1 GSE109724 1

Rb Immunity Downregulating Pd-L1 GSE109724 3

Pd-L1 Knock Mda-Mb231 Ct26 GSE134510

A
5
. 4
{ 3
SampleGroup
. BP
4 CC

01 02 03 04 05
Gene ratio

RNAseq GEO Signatures Human

Count
12

.
® 1
® u
[ BH

[ BG

~log,ggvalue

30
[ ] 25

20

HRGs HSGs

dowregulate genes

HSGs down-regulated

ic acid ep activity idonic acid
monooxygenase activity
oxidoreductase activity

steroid hydroxylase activity

heme binding

peroxisomal matrix

microbody lumen

collagen-containing extracellular matrix { A
endoplasmic reticulum membrane
intracellular organelle lumen
epoxygenase P450 pathway

drug catabolic process

arachidonic acid metabolic process
steroid metabolic process
monocarboxylic acid metabolic process

Count

e 0

B ® 2

| ] ®

2 40
= ®

~log,,qvalue

® SampleGroup

@ + BP
4 CC

02 04 06 08

H

glycerol channel activity

urea transmembrane transporter activity
glycerol transmembrane transporter activity
carbonate dehydratase activity

platelet-derived growth factor receptor binding

by RNA poly 1

1 of tr
cellular response to decreased oxygen levels

response to endoplasmic reticulum stress

Tissue-Resident Pancreas Pd-1 Pd-L1 GSE135582 3

Rb Immunity Downregulating Pd-L1 GSE109724 1

Tissue-Resident Pancreas Pd-1 Pd-L1 GSE135582 1

Rb Immunity Downregulating Pd-L1 G5E109724 1

= MF

Gene ratio

RGs down-regulated Count
®

- @
. e
@

A -log;,qvalue
A
18
a
16
@

RN

SampleGroup

02 04 06 ,

Gene ratio s Cco

RNAseq GEO Signatures Human

. Count
® 15
® 2
@ =

-log;, gvalue

l‘n
'8

6
4

¥
HRGs

upgulate genes

47



d HSGs KEGG Pathway

Drug metabolism

Metabolism of xenobiotics by cytochrome P450
Retinol metabolism

Cell cycle

Chemical carcinogenesis

Tyrosine metabolism

Steroid hormone biosynthesis

Bile secretion

Primary bile acid biosynthesis

Caffeine metabolism

Arachidonic acid metabolism

Tryptophan metabolism

Fatty acid degradation

DNA replication

Pyruvate metabolism

Linoleic acid metabolism

Complement and coagulation cascades
Glycolysis / Gluconeogenesis

Glycine, serine and threonine metabolism
PPAR signaling pathway

10 20
Counts

30

-log,, gvalue

Figure 4. Gene set enrichment analysis. (a) GO enrichment analysis of HSGs; (b)

GO enrichment analysis of HRGs; (c) RNAseq GEO Signatures Human

enrichment analysis of HRGs and HSGs; (d) KEGG enrichment analyses of HSGs.
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2.2.3 Evaluation of the Effect of HHOs on PD-L1 Expression in the TCGA-

LIHC Dataset

The impact of HHOs on PD-L1 expression was evaluated through multiple
regression analysis, ultimately identifying 14 risk genes significantly associated
with PD-L1 expression. A drug resistance gene regulatory model was then
constructed based on these genes. This model is represented as a linear
combination of regression coefficients and the relative expression levels of PD-
L1 regulatory genes, illustrating the relative contribution of each gene to drug

resistance.

PD-L1 = 0.076 + 0.240 X FOS + 0.261 Xx FAM13A
+ 0.443 X DLGAP5 — 0.264 X ALDH5A1
+ 0.223 X GABARAPL1 — 0.123 X CABYR
+ 0.145 X PIK3R1 — 0.150 X HGFAC
+ 0317 X LMNB1 — 0.418 X KIF20A
— 0434 X TPX2 + 0410 Xx NDC80
+ 0.121 X EPHA2 — 0.096 X NEDD4L

Each of the PD-L1 regulator genes included in the model shows a significant
association with drug resistance (p < 0.05). Notably, the genes DLGAPS5, NDC80,
LMNBI1, KIF20A, and TPX2 have the largest absolute regression coefficients,

indicating their critical role in drug resistance.
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2.2.4 Construction of Protein—Protein Interaction Network and

Identification of Hub Genes

The 52 HHO genes were analyzed for PPI networks using the STRING database
platform, and the results were imported into Cytoscape software to construct the
PPI network. Among the 52 HHO genes, 26 genes demonstrated connections in
the PPI network with a confidence score greater than 0.7, while the remaining
genes were excluded from the network representation (Figure 5a). Additionally,
the node connectivity was calculated using the CytoHubba plugin, and 10 genes
with a connectivity degree greater than 33 were identified as hub genes. These
hub genes are CCNBI1, BUBI1B, KIF4A, KIF20A, KIF11, NDC80, TPX2,

CENPA, POLE2, and DLGAP5 (Figure 5b).
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Figure 5. Protein—protein interaction (PPI) networks: (a) Connections among 26
genes with a confidence score > 0.7; larger nodes indicate higher connectivity,
and darker colors represent higher combined score values; (b) 10 hub genes with

a connectivity degree > 33; genes with a confidence score < 0.7 are not shown;

darker colors indicate greater criticality.
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2.2.5 Survival Analysis and PD-L1 Inhibitor Response Prediction KEGG

Pathway Enrichment

We used the Kaplan Meier Plotter software to generate survival curves for the
combined set of PPI hub genes and PD-L1 regulator genes. The results of the
survival analysis indicated that the expression levels of 15 genes were
significantly associated with poor patient prognosis (Table S3). Notably, patients
with high expression levels of NDC80 (HR = 0.76, p = 0.024) and TPX2 (HR =
0.77, p = 0.03) demonstrated significantly better survival rates following PD-L]1
treatment (Figure 6a, b). Additionally, we validated the response of PPI hub genes
and PD-L1 regulator genes to PD-L1 treatment. Among the sample, the three top-
performing genes were GABARAPLI (AUC = 0.56, p = 0.016), PIK3R1 (AUC

=0.549, p = 0.04), and POLE2 (AUC = 0.553, p = 0.027) (Figure 6¢).
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Figure 6. Kaplan—Meier survival curves comparing high and low expression

levels: (a) NDC80 (HR = 0.76, p = 0.024); (b) TPX2 (HR = 0.77, p = 0.03). (c)

Boxplots, receiver operating characteristic (ROC) curves, and responder

frequencies for the top three genes in predicting PD-L1 inhibitor response:

GABARAPL1 (AUC = 0.560, p = 0.016), PIK3R1 (AUC = 0.549, p = 0.04), and

POLE2 (AUC = 0.553, p = 0.027). The “0” indicates the optimal cutoff point,

representing the minimal distance from the ideal discriminator.
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2.2.6 KEGG Pathway Enrichment

The KEGG pathway enrichment analysis of PPI hub genes and PD-L1 regulator
genes was performed using the ShinyGo platform. The results revealed significant
enrichment in 19 pathways (false discovery rates (FDRs) < 0.032), with most
pathways closely related to immune cells, inflammatory factors, and apoptosis
(Figure 7). Notably, the genes FOS (AP-1) and PIK3R 1 were identified within the
"PD-L1 expression and PD-1 checkpoint pathway in cancer," while the

"endocrine resistance pathway" was activated by hypoxia induction.
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Figure 7. KEGG pathway enrichment of the union of PPI hub genes and PD-L1

regulator genes.
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2.2.7 Hypoxia Risk-scoring Model

Univariate Cox analysis revealed that 21 of these HHO genes were significantly
associated with overall survival in HCC patients (Figure 8a). Through LASSO
regression analysis, 9 hypoxia risk score genes, including CENPA, KIF20A,
DLGAPS, HMMR, UPBI, AFM, CABYR, PHLDA2, and N4BP2L1, were
ultimately retained in the survival model (Figure 8b). Based on these 9 genes, the
TCGA-LIHC samples were classified into high-risk (n = 183) and low-risk (n =
184) groups (Figure 9a). Kaplan-Meier (KM) analysis indicated a significant
difference in survival outcomes between the two groups (p < 0.032) (Figure 9b).
In the ICGC-LIRI-JP validation set, risk scoring similarly stratified samples into
high-risk (n = 116) and low-risk (n = 116) groups (Figure 10a). KM analysis
further confirmed that patients in the high-risk group had significantly shorter
survival times compared to those in the low-risk group (p <0.0001) (Figure 10b).
Receiver Operating Characteristic (ROC) curve analysis demonstrated that the
model achieved area under the curve (AUC) values of 0.815, 0.774, and 0.771 at
1, 2, and 3 years, respectively, indicating strong predictive performance in risk

stratification (Figure 10c¢).
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Figure 8. Univariate Cox and LASSO regression analysis: (a) Forest plot showing
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Figure 8. (b) The LASSO regression results illustrate the relationship between
log(A) and partial likelihood deviance. The x-axis shows log(A) values, while the
y-axis represents partial likelihood deviance. Red dots correspond to different A
values, with vertical bars indicating standard errors. The vertical dashed lines
mark the A values selected by cross-validation, identifying the optimal number of
genes for the survival model. The numbers at the top represent the count of genes

retained at each A value.
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Figure 9. Initial Hypoxia Risk Score Model Survival Analysis: (a) The risk score

distribution of patients from the TCGA-LIHC dataset. The horizontal dashed line

separates the low-risk group (green) from the high-risk group (orange) based on

the median risk score. (b) KM survival curves for OS in the TCGA-LIHC cohort,

divided into high-risk (red, n = 183) and low-risk (blue, n = 184) groups (p <

0.032).
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2.3 Discussion and Conclusion

In this chapter, we identified a total of 52 HHOs, which are overlapping genes
between HSGs and HRGs derived from GEO datasets. Gene set enrichment
analysis (GSEA) revealed that some HSGs and HRGs were closely associated
with the PD-L1 expression pathway. Notably, TPX2, KIF20A, CENPA, DLGAPS,
and LMNBI1 within the HHOs were significantly enriched in the retinoblastoma
(RB) immunity downregulation of the PD-L1 expression pathway. Previous
research has demonstrated that hyperphosphorylated RB protein within this
pathway plays a tumor-suppressive role by inhibiting NF- x B activity and PD-L1
expression[81]. Additionally, regression analysis of the TCGA dataset allowed us
to identify 14 PD-L1 regulator genes from the HHOs, and 10 hub genes were
extracted from the PPI network, with TPX2, KIF20A, NDC80, and DLGAP5
being the overlapping genes. Based on clinical data, we analyzed the survival and
treatment response of PPI hub genes and PD-L1 regulator genes following PD-L1
inhibitor treatment to further validate our computational results. TPX2, NDC80,
POLE2, GABARAPLI, and PIK3R1 were found to be significantly associated
with treatment outcomes. These findings suggest that TPX2 and NDC80 play
crucial roles in regulating PD-L1 expression, thereby influencing the efficacy of

PD-L1 inhibitors.

The phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) gene, encoding the
p85 a regulatory subunit of PI3K enzymes, plays a key role in cancer by
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regulating PIP3 expression, AKT activation, and PTEN phosphorylation via the
PI3K pathway [82, 83]. In HCC, PIK3RI1 expression is higher than in normal
tissues, and its knockdown reduces tumor growth by decreasing p-PI3K, p-AKT,
and p-mTOR levels [84, 85]. Targeting protein for Xenopus kinesin-like protein
2 (TPX2), a microtubule nucleation factor, promotes tumor growth in HCC by
regulating the PI3K/AKT/p53/p21 pathway [86, 87]. Nuclear division cycle 80
(NDC80/Hecl), involved in mitosis, is overexpressed in HCC, potentially
promoting cancer progression [88, 89]. DNA polymerase epsilon subunit 2
(POLE2), a DNA polymerase subunit, activates AKT and reduces HIF-1 a ,
driving cancer cell proliferation [90]. Gamma-aminobutyric acid (GABA), a
receptor-associated protein-like 1 (GABARAPLI1), linked to autophagy,

suppresses cancer progression by inhibiting AKT/mTOR signaling [91, 92].

Research has shown that 20 genes, combining PD-L1 regulator genes and PPI hub
genes, are not only differentially expressed in hypoxic HCC tissues but also
regulate cancer cells through the PI3K/AKT pathway. These genes play a critical
role in PD-L1 regulation in hypoxic HCC tissues and may serve as potential
therapeutic and prognostic biomarkers to enhance sensitivity to PD-L1 inhibitors
and overcome drug resistance. However, the specific regulatory mechanisms
remain unclear. In the future, Gene Regulatory Network (GRN) analysis may be
used to further explore the underlying mechanisms, followed by validation

through biological experiments such as gene knockdown, overexpression studies,
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and pathway-specific assays.

The PI3K/AKT/HIF axis is significant in hypoxia-induced drug resistance in HCC,
particularly in regulating PD-L1 expression. TPX2, a key gene, is involved in
various cancers, including HCC, through its interaction with the PI3K/AKT
pathway [93]. KRAS, another critical gene, influences this pathway, further
linking hypoxia to PD-L1 regulation and drug resistance [94, 95]. Additionally,
ROS-mediated activation of the PI3K/AKT/HIF-1 a pathway contributes to

tumor progression under hypoxia [96].

Combining PD-L1 inhibitors with HIF inhibitors, such as MK6482, has shown
promise in treating hypoxic tumors. This combination could enhance anti-tumor
immunity and reduce drug resistance [97]. However, the efficacy and safety of
these combinations require further exploration, particularly regarding their impact
on PD-L1 expression in both tumor and normal tissues. In this study, key
molecules like KRAS, NDC80, TPX2, and PIK3R1 were identified as potential
targets for overcoming drug resistance in hypoxic HCC when combined with PD-
L1 inhibitors. These findings suggest a multi-targeted approach to developing

effective therapies for hypoxic tumors.

This chapter also highlights the significant impact of hypoxia-related genes on the

survival of HCC patients. Our analysis identified 21 HHO genes associated with
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survival, and through LASSO regression, we refined this to 9 key genes—CENPA,
KIF20A, DLGAPS, HMMR, UPB1, AFM, CABYR, PHLDA?2, and N4BP2L.1—
forming the basis of a survival model. These genes appear to be central to how
the hypoxic microenvironment influences HCC progression and prognosis. The
identification of these hypoxia-related genes enhances our understanding of
HCC's molecular mechanisms under hypoxia and suggests potential targets for

therapies aimed at improving patient outcomes.
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Figure 11. Conceptual signaling mechanism of hypoxia-induced PD-L1 inhibitor

resistance.
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Chapter 3 Molecular expression profile
associated with clinical immunotherapy drug
response and resistance in advanced HCC

3.1 Materials and Methods

3.1.1 Collection and processing of public data of gene expression

The EGAD00001008128 dataset was downloaded from the European Genome-
Phenome Archive (EGA) (https://ega-archive.org/datasets/, on October 10, 2023).
The dataset comprises comprehensive RNA sequencing data analyzed via high-
throughput sequencing technologies from pathological biopsies of 290 patients.
These biopsies of patients were obtained prior to immunotherapy (Atezolizumab
and Atezolizumab + Bevacizumab). In this dataset, 90 patients who exhibited
positive therapeutic response, in contrast to 200 patients who had non-response to
the treatment. The dataset was split into training and test sets for establishing the
immunotherapy response prediction models. As the non-response class represents
most of the patients when compared with the response class, the split of training
and test sets, 9:1, was applied to the non-response cases so that 20 out of 200 non-
response cases and 20 out of 90 response cases were randomly selected to form
the test set. The training set consists of the remaining 180 non-response cases and

70 response cases.

The datasets GSE41666, SRP356151, and GSE233802 were acquired from the
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NCBI database (https://www.ncbi.nlm.nih.gov/) in January 2022, March 2024
and June 2024, respectively. The GSE41666 dataset includes gene expression
profiles of HepG2 cell lines under hypoxic (0% O2) and normoxic (21% O»)
conditions for 24 hours, obtained using a microarray platform. Each condition was
replicated three times to ensure biological reproducibility. The SRP356151
dataset contains total RNA sequencing data analyzed via a high throughput
sequencing platform, featuring samples from hypoxic HepG2 cells subject to
HIFla-knockout and LacZ-control. Hypoxia was induced using 100 pmol/L
CoClz, with each condition replicated three times to ensure robust biological
results. The GSE233802 dataset comprises total RNA sequencing data from
HepG2 cells under hypoxic condition (1% O2) for 24 and 48 hours, with normoxic
condition as control, also replicated three times to ensure the robustness of
biological results. These datasets facilitate a comprehensive analysis of gene
expression under various oxygen conditions, providing insights into hypoxia-

related biological processes in HepG2 cells.

For RNA sequencing data, the datasets EGAD00001008128, SRP356151 and
GSE233802 were processed using a standard processing pipeline that includes
initial quality assessment with (1) FastQC, trimming of low-quality bases and
removal of adapters using (i1) Fastp, alignment of cleaned reads to the human
reference genome (GRCh38.104 from NCBI) with (iii)) HISAT2, and gene

quantification with (iv) FeatureCounts, all to ensure the integrity, quality, and
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reliability of the data for comprehensive analysis. All three datasets are equipped
with comprehensive clinical information and an adequate number of samples for

thorough analysis.

Due to the variability in sequencing instruments used for the samples, we
employed different methods, which were used in the relevant literature, to filter
out low-quality gene expression data. For the EGAD00001008128 dataset, we
calculated the median normalized counts-per-million (CPM) value and the
coefficient of variation (CV) for each gene expression profile. A gene was
considered for further analysis if its CPM and CV values across samples exceed
the respective 25th percentiles the CPM and CV values across all the genes and
its expression levels are detectable in at least 75% of the samples. For the
SRP356151 dataset obtained from 6 samples, a gene was considered if it
expressed in at least 4 samples. For the GSE233802 dataset obtained from 9

samples, a gene was considered if it expressed in at least 6 samples.

The pre-processing, analysis, model identification and performance evaluation of

public data are illustrated in Figure 12.
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Figure 12. Flowchart of the pre-processing, analysis, model identification and

performance evaluation in chapter 3.
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3.1.2 Normalization of gene expression data

To effectively eliminate sequencing depth and technical variation between
samples of RNA sequencing data, the preprocessed EGADO00001008128,
SRP356151 and GSE233802 datasets were first normalized using DESeq?2
normalization (deseq2 norm) Python/R function where sample-specific scaling

factors were applied to expression matrices.

To make the EGADO00001008128 data suitable for the machine learning, deep
learning and statistical models, the StandardScaler function from the Sklearn
Python package was used to obtain a scaler with the training data. The obtained

scaler was then used to standardize training and test sets to the standard normal

distribution, N (0,1).

The log2-transformation was not applied to the preprocessed GSE41666 dataset,
which has undergone Variance Stabilizing Normalization (VSN). Standardization

was performed to obtain normally distributed expression levels, N (0,1).

For wvalidating the Cox regression model, the log transformation and
standardization were applied to the preprocessed GSE233802 data to form an

expression matrix following the standard normal distribution, N (0,1).

As SRP356151 dataset has 6 samples and underwent differential expression
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analysis only, no standardization was performed.

3.1.3 Differential expression analysis

The normalized data underwent differential expression analysis (DEA) through t-
tests and Fold-Change (FC) assessments. Through the Statsmodels Python
package, the g-values were calculated from p-values using the Storey-Tibshirani
method [78] for GSE41666 microarray data and Benjamini-Hochberg method [98]
for EGAD00001008128, and GSE233802 RNA sequencing data. A differentially
expressed gene (DEG) is defined as g-value < 0.05. To further control the number

of selected upregulated and downregulated genes, the cutoffs of FCs were set.

Given the limited sample size of RNA sequencing in the SRP356151 dataset, the
combined use of the Wald test and t-test can enhance the efficiency and accuracy
of the analysis. Initially, the Wald test is applied to calculate p-values for each
gene, allowing for the preliminary identification of genes that may exhibit
significant differential expression (p-value < 0.05). These initially identified
genes are then subjected to a t-test, and the false discovery rate is controlled by
calculating g-values using the Benjamini-Hochberg method. DEGs are defined as
those with a g-value < 0.05. To further control the number of selected upregulated

and downregulated genes, the cutoffs of FCs were set.
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Considering the diversity in measurement techniques and sample sizes inherent
to the raw data, appropriate methodologies were employed for DEA to ensure

methodological compatibility and analytical precision.

3.1.4 Inter-relationship between immunological profile and hypoxia

Venn diagrams were constructed wusing the Venny 2.1 platform
(https://bioinfogp.cnb.csic.es/tools/venny/, accessed on May 25, 2024). The
DEGs from the GSE41666 dataset were intersected with DEGs from the
EGADO00001008128 and SRP356151 datasets to identify overlapping genes.
These overlapping genes were subsequently classified into two categories: IRH
(immunotherapy response to Hypoxia) genes and HRH (Hypoxia-Regulated HIF-

la Pathway) genes.

3.1.5 Incorporating the treatment option of Bevacizumab into prediction

models

The EGADO00001008128 dataset includes two immunotherapy strategies:
monotherapy using Atezolizumab and combination therapy using Atezolizumab
and Bevacizumab. Bevacizumab, a VEGF inhibitor, is significantly associated
with tumor hypoxia characteristics, and its use has important implications for
immunotherapy response [99]. Therefore, the treatment option of Bevacizumab

was extracted from the clinical information of the dataset and categorized as a
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binary feature into 1 indicating “used”, or 0 indicating “not used” for each case.
This binary feature was then standardized together with the expression profiles in

the training and test sets, as mentioned in 3.1.2.

3.1.6 Class Balancing of Training Set

Numerous studies have demonstrated that data with balanced classes can enhance
the predictive performance of models. In the training set of the
EGADO00001008128 dataset, the imbalance between the response class of 70
patients, and the non-response class of 180 patients was found. The Synthetic
Minority Over-Sampling Technique (SMOTE) was used as a preliminary
preprocessing step to balance the class distribution in the training set. The
SMOTE technique considers the line segment between a data sample and one of
its nearest neighbors in the minority class, 1i.e. response class in
EGADO00001008128, and randomly selects a point on the line to create a new
synthetic data sample. A data sample is regarded as the standardized gene
expression profiles and treatment option of Bevacizumab. This technique
increases the number of minority class data samples, ensuring that the synthesized
samples can retain the characteristics of the original minority class samples and
thus resemble them closely. The oversampled training set consists of 180 response

samples and 180 non-response samples.

72



3.1.7 Development and Validation of Hypoxia Scoring Model Associated with

Drug Response

Hypoxia-based risk score is defined as log hazard ratio of patient survival
generated from Cox regression model on hypoxia-related and HCC signature
genes. The score was validated using another RNA-seq dataset of cell line

experiment unseen to the model.

To develop a novel hypoxia score model related to drug response, we utilized
sample data (N=367) from the TCGA-LIHC FPKM dataset. Initially, we extracted
the expression levels of IRH (immunotherapy response to Hypoxia) related genes
and 9 genes from the initial hypoxia score model within this dataset. These gene
expression data were then combined with the corresponding survival data. We
employed the phreg function from the Statsmodels library to fit the proportional
hazards regression model (Cox regression model). Using the Cox regression
model, we calculated the regression coefficients for each gene, assessing the

association between gene expression levels and patient survival time.

To validate the effectiveness of the hypoxia scoring model in assessing tumor
hypoxia, we utilized the standardized GSE233802 dataset, which includes short-
term and long-term hypoxic cell lines. To evaluate the tumor risk index under
prolonged hypoxic conditions, we compared the hypoxia scores between datasets
exposed to 0 hour, 24 hours and 48 hours of hypoxia. Given the challenge of
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assessing the degree of internal hypoxia in solid tumors using existing clinical
techniques, this model was employed to evaluate the hypoxia risk in different

HCC patients within the standardized EGAD00001008128 dataset. The hypoxia

risk scores were subsequently added to the feature columns for further analysis.

3.1.8 Establishing and Validation the KAN predictive model for

immunotherapy response

The Minimum Redundancy Maximum Relevance (mRMR) feature selection
algorithm was employed to prioritize genes based on their correlation with
immunotherapy response, identifying the top 50 most relevant feature genes. To
simplify the model and reduce overfitting, Stepwise Forward Selection was used
to incrementally build the model by adding the most important feature genes,
continuing until the genes with the strongest predictive power for immunotherapy

response were selected.

The Kolmogorov-Arnold Network (KAN) is a neural network architecture based
on the Kolmogorov-Arnold representation theorem. To ensure data quality, the
distribution of the target data was analyzed using the Counter method. The feature
genes from the training dataset, extracted using the mRMR algorithm, were
converted into PyTorch Tensors using torch. Tensor to meet the requirements of

deep learning. The KAN model was initialized by defining the model structure
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parameters and loading pretrained model checkpoints. Predictions on the training
data were made using the trained KAN model, with a classification threshold set
at 0.5. The predicted results were converted from PyTorch Tensor format to
NumPy arrays. By applying the threshold, the predicted probabilities were
binarized to generate classification labels (0 for non-response and 1 for response).
The accuracy score was used as the evaluation metric to calculate the prediction
accuracy. The prediction scores were then added to a dataframe containing the
original features and target classification labels for subsequent analysis and

validation.

For the test dataset, the Bevacizumab usage was added as a binary feature, 0 or 1,
and standardized using scaler. The processed data were then converted to PyTorch
Tensors and input into the trained KAN model for prediction, and the prediction
accuracy was calculated. Finally, the prediction scores were generated by the

trained KAN model.

fO)=f(xq, 0, x0) = i b1 Zn: bo,ji (x;)
j i

The model utilizes a double summation approach combined with various gene
expression levels to predict the response to immunotherapy. The outer summation
> ; represents multiple predictors in the model, each transformed by the

parameterized function ¢;; . The inner summation ) ; processes multiple gene
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expression levels and Bevacizumab usage, x;, x2, ..., x» for each predictor,
transforming and integrating these features through the functiongy,;. Ultimately,
the model generates an overall prediction f(x) based on these transformed features,
which is used to assess the likelihood of a patient's response to immunotherapy.
This model enhances the accuracy and reliability of the prediction through a

layered summation approach.

3.1.9 Training the Logistic Regression and SVM model for immunotherapy

response prediction

Using the Logit function from the Statsmodels library, logistic regression models
were fitted separately for the features extracted by the Kolmogorov-Arnold
Network (KAN) and the hypoxia scores. After fitting the models, the predicted
results were classified as integers (0 for non-response and 1 for response) and
compared with the actual immunotherapy response classification labels to
calculate the training set accuracy. The same features were used to predict the test

set, and the test set accuracy was calculated to evaluate the model's effectiveness.

Z = ﬁo + ﬁle +[32X2++ﬁpo

This formula represents the linear component of a logistic regression model,
whereX;, X5, ..., X, denote the extracted genomic features (KAN score and

hypoxia scores), and Z represents the predicted outcome of immunotherapy
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response. By applying weighted combinations of these genomic features, the
model estimates the value of Z, which in turn predicts the probability of an

immunotherapy response.

Combining features extracted from the KAN and hypoxia scores, a composite
model training feature set was constructed. A Support Vector Machine (SVM)
model with a radial basis function (RBF) kernel was employed for training, with
model parameters set to 'gamma=0.2' and 'C=0.1'. Upon completion of the
immunotherapy response prediction model training, the accuracy of the model on
the training dataset was calculated. The same feature set was then used to predict
the test dataset, and the accuracy on the test set was evaluated to assess the

effectiveness of the composite model.

|lx — x| |2

20?2

P (x,xc) = exp(— )

The variables x and x. represent extracted genomic features, with the Euclidean
distance ||x - x¢|| measuring the similarity between a sample and a central feature
xc. The parameter 6 controls the smoothness and spread of the RBF. This function

maps genomic features into a higher-dimensional space, generating a value that
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indicates the sample’s position relative to the feature center, which may

correspond to the characteristics of patients who respond to immunotherapy.
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3.2 Results

3.2.1 Identification of IRH and HRH genes from public dataset

By setting the thresholds, g-value <0.05, FC > 1.999 (upregulation) and FC <
1/1.999 (downregulation) for the EGADO00001008128 dataset, 84 upregulated
differentially expressed genes (DEGs) were identified, indicating differences in
expression between HCC patients who respond to immunotherapy and those who
do not. Given the substantial difference in the number of DEGs among the three
groups, the overlap was adjusted to achieve greater significance. Based on
previous studies, the GSE41666 dataset was adjusted to FC > 1.3202
(upregulation) and FC < 1/1.411 (downregulation), identifying 600 hypoxia-
related genes (HRGs), including 300 upregulated genes and 300 downregulated
genes, which demonstrated differential expression under hypoxic and normoxic
conditions. By setting the threshold, g-value < 0.05 for the SRP356151 dataset,
171 DEGs were identified, including 127 upregulated and 44 downregulated,

potentially related to HIF-1a and hypoxia pathways.
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Figure 13. Identification of differential expression genes. (a) Volcano plot for
EGADO00001008128; (b) Volcano plot for GSE41666; (c) Volcano plot for

SRP356151.
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In the EGADO00001008128 and GSE41666 datasets, 3 overlapping genes (p
value=0.026), PMAIP1 (NOXA), CD3D and CD2, were identified and classified
as an immunotherapy response to Hypoxia (IRH) genes. Among them, the
aberrant expression of PMAIP1 (NOXA) has been well-documented in various
research to be associated with hypoxia. Additionally, analysis of the GSE41666
and SRP356151 datasets revealed 8 significantly overlapping genes (p
value=0.0032), including SLC2AS5, EGLN3, MXDI1, STCI, TOR3A, TJP3,
NEDDA4L, and BNIP3L, which were classified as Hypoxia-Regulated HIF-1a

Pathway (HRH) genes.
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Figure 14. Identification of immunotherapy response to Hypoxia (IRH) genes and
Hypoxia-Regulated HIF-1a Pathway (HRH) genes. (a) IRH genes: Overlapping
DEGs between EGAD00001008128 and GSE41666 datasets; (b) HRH genes:

Overlapping DEGs between GSE41666 and SRP356151 datasets.
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Based on the enrichment method used in Chapter 2 by Shinygo platform,
pathways were identified among the HRH genes. GO database enrichment
analysis indicated that these genes were mainly involved in biological processes
such as response to hypoxia, response to decreased oxygen levels, and adaptation
to hypoxia. KEGG pathway enrichment analysis revealed that these genes were
primarily enriched in pathways such as carbohydrate digestion and absorption,
renal cell carcinoma, autophagy in animals, and tight junctions. Furthermore, in
the hallmark Msigdb database, these genes were also enriched in pathways
including angiogenesis, hypoxia, MTORCI signaling, and glycolysis. EGLN3
expression level is associated with overall survival in liver cancer (p = 6.5x107)
and eight genes except NEDDA4L are significant associated with overall survival

after pan-cancer immunotherapy.
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Figure 15. Enrichment analysis of HRHs. (a) GO enrichment analysis; (b) KEGG

enrichment analysis; (¢) Hallmark Msigdb database enrichment analysis.
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3.2.2 Identification of Hypoxia Scoring Model Associated with Drug

Response

Based on an initial hypoxia risk scoring model that included 9 characteristic genes
and IRH genes, a hypoxia risk scoring model associated with predicting drug
response was constructed through a COX analysis of the TCGA-LIHC dataset.
This model was developed by creating a weighted combination of the variables,
where each gene variable in the formula is preceded by a coefficient representing
its impact on survival time. A positive coefficient indicates that the variable
increases risk, while a negative coefficient suggests that the variable decreases
risk. The model was subsequently applied to the GSE233802 dataset, which
includes HepG?2 cell lines subjected to Oh, 24h, and 48h of hypoxia. Hypoxia risk
scores were calculated for the cell lines at different hypoxia durations, and a T-
test yielded p-values of less than 0.02. In this dataset, the risk scores for HepG2
cell lines exposed to 48h of hypoxia were higher than those exposed to 24h, while
the risk scores at Oh were higher than those at 24h. These results indicate that
during the early stages of hypoxia, tumor cells experience a relative reduction in
risk due to a slowdown in proliferation caused by transient oxygen deprivation.
However, after prolonged hypoxia, the risk index significantly increases. This
model demonstrates superior capability in assessing the hypoxia risk

characteristics within tumors.
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h(t|X) = hO(t)exp(0.1497 x PHLDA2 + 0.0757 x DLGAP5
— 0.2318 X N4BP2L1 + 0.0990 x CENPA — 0.0584 x UPB1
+0.1509 X CABYR — 0.0022 x AFM + 0.3139 x HMMR

+ 0.0587 X KIF20A — 0.1203 X PMAIP1)

The formula represents a linear combination of gene expression levels and their
corresponding regression coefficients, where each gene's expression is weighted
to predict its contribution to hypoxia risk. The genes included in this model are
PHLDA2, DLGAPS, N4BP2L1, CENPA, UPB1, CABYR, AFM, HMMR,
KIF20A, and PMAIPI. The expression value of each gene is weighted by its

respective regression coefficient, determining the sample's hypoxia risk score.
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Table 1. Cox Regression Analysis for the Hypoxia Risk Scoring Model related to

Drug Response Prediction

log HR 95% CI  95%CI
Gene log HR HR t p

SE Lower Upper

PHLDA2 0.1497 0.0753 1.1615 1.9887 0.0467 1.0022 1.3462
DLGAPS 0.0757 0.2695 1.0787 0.281 0.7787 0.636  1.8293
N4BP2L1 -0.2318 0.1636 0.7931 -1.4163 0.1567 0.5755 1.093
CENPA  0.099 0.227 1.104 04361 0.6628 0.7076 1.7226
UPBI  -0.0584 0.0725 0.9433 -0.8061 0.4202 0.8184 1.0872
CABYR 0.1509 0.0752 1.1629 2.0063 0.0448 1.0035 1.3476
AFM  -0.0022 0.0609 0.9978 -0.0368 0.9707 0.8856 1.1242
HMMR 03139 0.1889 1.3687 1.6618 0.0965 0.9452 1.982
KIF20A  0.0587 0.2379 1.0604 0.2465 0.8053 0.6652 1.6904
PMAIP1 -0.1203 0.1857 0.8866 -0.648 0.517 0.6162 1.2758
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Table 2. Hypoxia Risk Scores in the GSE233802 Dataset.

Sample name

Hypoxia risk score

Hypoxia duration

SRR24775098

SRR24775099

SRR24775100

SRR24775095

SRR24775096

SRR24775097

SRR24775092

SRR24775093

SRR24775094

0.048819

0.042419

0.601232

-0.618357

-0.99101

-0.600739

0.786606

0.411489

0.319541

Oh

Oh

Oh

24h

24h

24h

48h

48h

48h
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Figure 16. Mean hypoxia risk scores of HepG2 cell lines at different hypoxia

durations (Oh, 24h, 48h) from the GSE233802 dataset.
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3.2.3 KAN predictive model

The algorithmize derivation and computational implementation of mRMR feature
selection and KAN model training were adopted from the work of Chief
Supervisor. Using the mRMR algorithm, genes were prioritized in descending
order of inter-redundancy and ascending order of relevancy to immunotherapy
response, 11 genes mostly relevant to predicting immunotherapy response (TLRS,
SCHIP1, ZNF729, ATG9B, BAMBI, OXSR1, ZNF564, CCRS, ADAM?23,
RRN3P3 1, and RDH14) were selected from the EGAD00001008128 dataset. A
training dataset was constructed by combining these 11 selected genes with the
Bevacizumab usage as features. The features and labels of both the training and
validation sets were converted into PyTorch 2.6 tensors, and the missing and
undefined values were checked to ensure data integrity. The KAN model was used
for training, with the model structure comprising input, hidden, and output layers
with dimensions corresponding to the number of input features. The classification
threshold of the output score for predicting immunotherapy response in the
training set was set at 0.5, and the predicted results were binarized. The training
set's prediction accuracy was 0.9361, indicating that the KAN model performed
well on the training data and could effectively conduct binary classification

predictions.

The trained KAN model was used to predict the test dataset, with the classification

threshold similarly set at 0.5. The prediction accuracy for the test set was 0.7,
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further validating the model's effectiveness. The prediction results (KAN score)
for both the training and test datasets were added to the feature columns for

subsequent analysis and validation of the model's predictive capability.
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Figure 17. Accuracy comparison of the KAN model across training, validation,

and test datasets after applying the mRMR algorithm to select 11 feature genes.
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3.2.4 Logistic regression Model

To enhance model performance and interpretability, the output scores from the
trained KAN model were used as input features for traditional machine learning
models. The KAN scores represent immune-related gene expression patterns,
while the hypoxia risk score reflects the tumor microenvironment. Combining
these two factors helps capture both immune and hypoxia-related mechanisms,

improving the predictive accuracy of the final model.

A logistic regression model was trained using the KAN score to classify
immunotherapy response in the EGAD00001008128 dataset. The training set
comprised the KAN score and immunotherapy response classification labels. The
fitted logistic regression model achieved a training accuracy of 0.9361. Evaluation
on the test set yielded an accuracy of 0.7. The logistic regression summary
indicated that the KAN score had a significant positive coefficient of 4.5581 (p <
0.001), demonstrating a strong association with immunotherapy response
classification. The model successfully converged after 7 iterations, with a final
function value of 0.322704 and a pseudo-R-squared value of 0.5344, indicating a

good fit to the data.
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Table 3. Logistic Regression Summary for KAN Score

Feature coefficient std err z p 95%CI 95%CI

Lower Upper

KAN score 4.5581 0.382 11.942 0 3.81  5.306

A logistic regression model was trained using the Hypoxia score to classify
immunotherapy response in the EGADO00001008128 dataset. The training set
comprised the Hypoxia score and immunotherapy response classification labels.
The fitted logistic regression model achieved a training accuracy of 0.5417.
Evaluation on the test set yielded an accuracy of 0.525. The logistic regression
summary indicated that the Hypoxia score had a significant positive coefficient of
0.3903 (p = 0.026), demonstrating a strong association with immunotherapy
response classification. The model successfully converged after 4 iterations, with
a final function value of 0.6861 and a pseudo-R-squared value of 0.0102. These
results suggest that, although the Hypoxia score has limited predictive power in
distinguishing between different immunotherapy response categories, it still holds

statistical significance.

Table 4. Logistic Regression Summary for Hypoxia score

Feature coefficent std err v/ p 95%CI 95%CI

Lower Upper

Hypoxiascore  0.3903  0.176 222 0.026 0.046 0.735
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A logistic regression model was trained using the immunotherapy response to
Hypoxia (IRH) PMAIP1 (NOXA) gene expression feature to classify
immunotherapy response in the EGADO00001008128 dataset. The training set
comprised the PMAIP1 (NOXA) expression feature and immunotherapy response
classification labels. The fitted logistic regression model achieved a training
accuracy of 0.5972. Evaluation on the test set yielded an accuracy of 0.525. The
logistic regression summary indicated that the PMAIP1 (NOXA) expression
feature had a coefficient of 0.5972 (p < 0.001), demonstrating significant
association with immunotherapy response classification. The model successfully
converged after 6 iterations, with a final function value of 0.6666 and a pseudo-
R-squared value of 0.0383. These results suggest that the PMAIP1 (NOXA)
expression feature has strong predictive power in distinguishing between different

immunotherapy response categories, holding statistical significance.

Table 5. Logistic Regression Summary for PMAIP1 (NOXA)

Feature coefficient std err v/ p 95%CI 95%CI

Lower Upper

PMAIPI 0.5972  0.159 3.757 <0.001 0.286 0.909

A logistic regression model was trained using the KAN score, PMAIP1 (NOXA),

and Hypoxia scores to classify immunotherapy response. The training set
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comprised these features and immunotherapy response classification labels. The
fitted logistic regression model achieved a training accuracy of 0.9389.
Subsequently, the same model was evaluated on the test set, yielding a test
accuracy of 0.7. The logistic regression summary indicated that the KAN score
had a coefficient 0f 4.5237 (p <0.001), the PMAIP1 (NOXA) had a coefficient of
0.1573 (p =0.467), and the Hypoxia score had a coefficient of 0.5031 (p =0.081).
These results (Figure 18) suggest that the KAN score has significant predictive
power in distinguishing between different immunotherapy response categories,
whereas the predictive power of the PMAIP1 (NOXA) and Hypoxia scores is
relatively weaker. The model successfully converged after 7 iterations, with a final
function value of 0.3174 and a pseudo-R-squared value of 0.5421, indicating a
good fit to the data. These findings demonstrate the effectiveness of the combined

features in classifying immunotherapy responses.

Table 6. Logistic Regression Summary for KAN score, PMAIP1 (NOXA), and

Hypoxia score

Feature coefficient std err z p 95%CI 95%CI

Lower Upper

KAN score 4.5237 0393 11.5 0 3.753  5.295
PMAIP1 0.1573  0.216 0.727 0.467 -0.267 0.581

Hypoxia score 0.5031 0.288 1.747 0.081 -0.061 1.068
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3.2.5 SVM Model

A support vector machine (SVM) model was trained using the KAN score and
Hypoxia scores to classify immunotherapy response in the EGADO00001008128
dataset. The training set comprised these two features and immunotherapy
response classification labels. The fitted model achieved a training accuracy of
0.9361. The same model was evaluated on the test set, yielding a test accuracy of
0.725. The SVM model employed a radial basis function (RBF) kernel with
parameters gamma=0.2 and C=0.1. The model successfully converged, indicating
that the KAN score and Hypoxia scores have strong predictive power in
distinguishing between different immunotherapy response categories, with
statistical significance. Furthermore, an SVM model was trained using the KAN
score, PMAIP1 (NOXA), and Hypoxia scores to classify immunotherapy
response. The training set comprised these three features and immunotherapy
response classification labels. The fitted model, when evaluated on the test set,
achieved an accuracy of 0.7. The SVM model again employed an RBF kernel with
parameters gamma=0.2 and C=0.1. When using only the KAN score and PMAIP1
(NOXA), the SVM model also yielded a test accuracy of 0.7. The results were

shown in Figure 19.
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3.3 Discussion and Conclusion

In recent years, the application of machine learning and deep learning in the
medical field, particularly in oncology research, has seen significant
advancements. These technologies enable the extraction of a vast array of
genomic features and the uncovering of deeper layers of data, facilitating the
quantitative translation of microscopic changes in genes or proteins within tumors.
This capability allows for the visualization of tumor heterogeneity and the early
prediction of treatment outcomes. Consequently, assessing the likelihood of an
immunotherapy response to therapy in HCC patients prior to treatment could
enable effective risk stratification. Such an approach would allow for the
identification of patients likely to benefit from immunotherapy, while also
identifying those unlikely to respond, thereby preventing ineffective treatments,
conserving resources and financial costs, and avoiding the adverse effects of

immunotherapy that could potentially exacerbate disease progression.

In this chapter, we established an HCC immunotherapy response prediction model
using the EGADO00001008128 dataset, which is based on patient responses to
immunotherapy, and datasets of hypoxia HepG2 cell lines (GSE41666,
GSE233802, and SRP356151). In the initial hypoxia risk scoring model
developed in the chapter 2, we identified 9 feature genes. To enhance the accuracy
of predicting immune therapy responses, we applied bioinformatics and machine
learning techniques to process the EGADO00001008128 dataset. We identified
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three differentially expressed overlapping genes associated with immunotherapy
response and hypoxia characteristics, among which the abnormal expression of
PMAIP1 (NOXA) under hypoxic tumor microenvironment has been well-
documented in the literature. Under hypoxic tumor microenvironment, tumor
cells typically activate HIF-1a, which binds to the promoter region of the PMAIP1
(NOXA) gene, thereby promoting its transcription and expression. This
mechanism leads to the upregulation of PMAIP1 (NOXA) in the hypoxic tumor
microenvironment, contributing to signaling pathways that slow cancer cell
proliferation, allowing them to adapt to hypoxia and develop resistance to
treatment. Consequently, we incorporated PMAIP1 (NOXA) into the hypoxia risk
scoring model associated with predicting immunotherapy response. Cox
regression analysis was performed on the TCGA-LIHC database to derive the risk
coefficient for each feature gene. The new hypoxia scoring model was thoroughly
validated in the GSE233802 dataset across different hypoxia duration in HepG2
cell lines. It was found in the cultured HCC cells that the score was positively
associated with the hypoxia duration of the incubated culture environment.
Regarding Oh as the reference condition, the prolonged hypoxic condition of 48h
induced more malignant HCC cells than that of 24h. This finding supports that
the hypoxic condition of the tumor microenvironment affects the tumor

malignancy and the patient survival.

To optimize the immune therapy response prediction model, we used machine
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learning in combination with deep learning to extract high-level features from the
EGADO00001008128 dataset. Using the mRMR algorithm, we selected 11 genes
most strongly associated with immunotherapy response and employed SMOTE to
address the imbalance in the training data, thereby enhancing the model's
predictive performance. Compared to traditional deep learning algorithms, the
KAN model performs better on small sample datasets, making it well-suited for
handling high-dimensional gene expression data while mitigating the risk of
overfitting. We trained the KAN model using the 11 selected feature genes along
with the Bevacizumab feature and validated it on the test set. The constructed
prediction model achieved an accuracy of 0.9361 in the training set and 0.7 in the

test set, with each clinical sample receiving a corresponding KAN score.

Based on the KAN score, the hypoxia risk score, and the PMAIP1 (NOXA), we
constructed logistic regression and SVM models. Ultimately, the SVM model
incorporating both the KAN score and the hypoxia risk scores achieved an
accuracy of 0.725 in the test set, demonstrating better predictive performance than
the logistic regression model and the standalone KAN model. This indicates that
the new hypoxia risk score based on PMAIP1 (NOXA) significantly enhances the
predictive accuracy of the immunotherapy response model. These findings
suggest that hypoxia plays a crucial role in the tumor microenvironment and
immunotherapy response. Prolonged hypoxia in the tumor microenvironment

alters proliferative signaling pathways in cancer cells, suppresses immune system
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function, and significantly increases the risk level for tumor patients. As a result,
this condition is more likely to lead to non-responsiveness to immune therapy or
failure to achieve partial response criteria, and it may also exacerbate tumor

progression.

This work employed bioinformatics, machine learning, and deep learning
methodologies to extract and analyze multiple genomic features for predicting
immune therapy response in HCC patients. The results met the expected outcomes,
enabling risk stratification based on hypoxia characteristics, which can further
guide the selection of immunotherapeutic agents and improve clinical treatment

strategies.
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Chapter 4 The Role of NOXA in the resistance of
PD-L1 inhibitors in HCC via Hypoxia-related
pathways

Background

Through the bioinformatics and deep learning analysis, PMAIP1 (NOXA) was
identified in Chapter 3 as one of the differentially expressed genes associated with
both immunotherapy response and hypoxia characteristics. Such abnormal
expression of NOXA under the hypoxic tumor microenvironment has been well-
documented in the literature. This chapter aims to verify the role of NOXA in the

PD-L1 inhibitor resistance in HCC under hypoxic conditions.

4.1 Materials and Methods
4.1.1 Cell Lines

In this study, the HCC cell line (HepG2) and the human T lymphocyte cell line
(Jurkat T) were used. Both cell lines were obtained from the Chinese Academy of
Sciences Cell Bank. The HepG?2 cell line was maintained in Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and
1% penicillin-streptomycin, while the Jurkat T cell line was cultured in RPMI-
1640 medium with 10% FBS and 1% penicillin-streptomycin. All cell cultures

were maintained in an incubator at 37°C with 5% COx.
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4.1.2 Establishment of Hypoxia-Induced Potentially Resistant Cell Lines

On the first day, 1.2 x 107 Jurkat cells were cultured in RPMI-1640 medium
containing 10% heat-inactivated FBS, P/S, and 2 mM L-glutamine, and activated
with 2 ug/mL PHA for 48 hours. Concurrently, HepG2 cells were trypsinized and
labeled with CellTrace reagent at a ratio of 1:1000, with a cell concentration of 1
x 10% cells/mL, incubated at 37°C for 30 minutes. A minimum of 3 x 10° HepG2
cells were required. Subsequently, an additional 2x volume of medium (DMEM
+ 10% FBS + P/S) was added, and the cells were incubated for 5 minutes, then
centrifuged, and the supernatant was discarded. The CellTrace-stained HepG2
cells were then resuspended and seeded into 6-well plates at a density of 2 x 10°
cells/well. Due to the potential toxicity of CellTrace reagent, which may kill some
HepG2 cells during staining, it is crucial to recount the live cells before seeding
into the plates. On the second day, the medium of the HepG?2 cells was refreshed
(DMEM + 10% FBS + P/S) and treated with 10 ng/mL IFN-y and 200 uM CoCl:
for 24 hours. On the third day, Jurkat cells were collected and washed twice with
PBS to remove PHA, then resuspended in RPMI-1640 medium containing 10%
heat-inactivated FBS, P/S, and 2 mM glutamine. Simultaneously, the medium of
HepG2 cells was refreshed with DMEM + 10% FBS + P/S + 200 uM CoCl, +
PD-L1 inhibitor (PD-L11, atezolizumab biosimilar: Cat. SIM0009). For each well,
2 x 10° Jurkat cells were added to the HepG2 culture (or medium without cells as
a control for HepG2 only) for 48 hours, ensuring a ratio of 10:1. Finally, the
medium containing Jurkat T cells was removed and washed with PBS. HepG2
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cells were cultured in cycles following the above steps. The workflow of cell co-

culture and the layout of the 6-well plate are shown in Figure 20.
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Figure 20. HepG2 Co-culture experiments (a) Flowchart of HepG2 Co-culture

workflow; (b) 6-well Plate layout for the co-culture experiment (performed in

duplicate, 12 samples in total).
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4.1.3 NOXA Gene Knockdown in Hypoxia-Induced Resistant Cells and Co-

Culture

To establish NOXA-knockdown HepG2-4-Rounds cell lines, cells were seeded at
a density of 2x10° cells per well in a 6-well plate. After 24 hours of incubation at
37°C with 5% CO., cells were transfected with small interfering RNAs (siRNAs)
targeting NOXA (siNOXA1, siNOXA2, siNOXA3, and siNOXA4, purchased
from Jima Company) using Lipofectamine 3000 (Thermo Fisher Scientific). The
siRNA stock solutions were prepared by dissolving the lyophilized siRNAs in
RNase-free water to a working concentration of 100 nM. For transfection, 20 nM
siRNA was mixed with Opti-MEM medium (Thermo Fisher Scientific) and

incubated with Lipofectamine 3000 at room temperature for 20 minutes.

Following complex formation, the existing medium in each well was carefully
removed, and the siRNA-Lipofectamine complexes were added to the wells
containing complete medium. Cells were incubated for 6 hours, after which the
medium was replaced with conditioned medium. As a negative control, cells were
transfected with scrambled siRNA, while untreated cells served as a blank control.
Transfection efficiency was assessed using Western blotting and reverse
transcription quantitative PCR (RT-qPCR) to ensure suitability for subsequent co-
culture experiments. The experimental method was the same as in 4.1.2. The

experimental workflow diagram is shown in Figure 21.
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Figure 21. NOXA knockdown by transfection and co-culture experiments in
HepG2-4-Rounds cells (a) Workflow of NOXA knockdown by transfection; (b)

6-well Plate layout for the co-culture experiment (performed in triplicate, 9

samples in total)
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4.1.4 Western Blotting

Cells were lysed using RIPA buffer containing a protease inhibitor cocktail
(Thermofisher Scientific). A total of 100 pL. RIPA buffer was added to each well,
and the lysate was collected into 1.5 mL EP tubes after scraping. Protein
concentration was determined using a Quick BCA Protein Assay Kit
(Thermofisher Scientific). After adjusting protein concentrations, lysates were
mixed with loading buffer and heated at 98°C for 10 minutes for denaturation.

The denatured proteins were stored at -80°C until further use.

Protein samples were loaded onto SDS-PAGE gels and separated by
electrophoresis at 120 V. The separated proteins were transferred onto a
polyvinylidene difluoride (PVDF) membrane at 250 mA for 90 minutes. The
membrane was blocked with 5% skim milk in TBST (1% Tween 20 in TBS) for 1
hour. Primary antibodies were diluted according to the manufacturer’s
recommendations and incubated with the membrane overnight at 4°C. After three
washes with TBST, the membrane was incubated with HRP-conjugated secondary
antibodies (anti-rabbit or anti-goat) at room temperature for 1 hour. Finally,
protein bands were visualized using a high-sensitivity ECL detection reagent

(Millipore).
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4.1.5 RT-qPCR

RNA concentration was measured using a Thermo Fisher Scientific NanoDrop
2000C spectrophotometer. Complementary DNA (cDNA) synthesis was
performed using a reverse transcription kit from Takara Bio (Tokyo, Japan) in an
Applied Biosystems Veriti 96-well thermal cycler. The reaction conditions were
set as follows: reverse transcription at 37°C for 15 minutes, followed by heat

inactivation at 85°C for 5 seconds. The final product was stored at 4°C.

Quantitative PCR (qPCR) was conducted using the Applied Biosystems 7500
Real-Time PCR System (Thermo Fisher Scientific) with Roche SYBR Green PCR
Master Mix (Baden-Wiirttemberg, Germany). Primer sequences are listed in Table
8. All experiments were performed in triplicate, with no-template negative

controls included.

Table 7. The sequences of primers.

Gene Forward Primer (5-3") Reverse primer (5- 3')

NOXA CAGAGCTGGAAGTOGAGT TGCAGTCAGGTTCCTGAG

GTGC CAGA

B-actin AGGATTCCTATGTGGGCGA ATAGCACAGCCTGGATAG

C CAA
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4.1.6 Flow cytometry

The co-cultured cells were harvested with trypsin, centrifuged at 500g for 5
minutes, and the supernatant was discarded. The cells were gently washed once
with PBS, followed by two gentle washes with precooled PBS. The cells were
then resuspended in a binding buffer at a concentration of 1 x 10° cells/mL. A 100
pL cell suspension was transferred to a 5 mL flow cytometry tube, and 5 pL of
FITC Annexin V and 5 pL of PI (BD Pharmingen, Cat No: 556547) were added.
The cells were incubated at room temperature in the dark for 15 minutes. Finally,
200 pL of binding buffer was added, the samples were kept on ice, and flow

cytometry analysis was performed within one hour, keeping the samples on ice.
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4.2 Results

4.2.1 Establishment of Hypoxia-Induced Moderately Drug-Resistant Cell

Lines

To evaluate the successful establishment of hypoxia-induced drug-resistant cells,
we analyzed HIF-1a expression as a key marker of hypoxia. Using Western blot
analysis, we measured HIF-1a levels under varying CoCl: concentrations and
exposure durations. As shown in Figure 22(a) and (b), the time-dependent pattern
of HIF-l1a expression reflects the cellular adaptation to hypoxia. HIF-la
expression increases at the early stage (24 h) due to inhibited degradation, but
may later be modulated by feedback mechanisms and maintained at a stable level
(48 h). This expression trend is consistent with the changes in hypoxia risk scores
observed in the GSE233802 dataset, as described in Chapter 3. Therefore,
prolonged hypoxia may activate intrinsic mechanisms within cancer cells,
enabling adaptation to the hypoxic environment, with a corresponding increase in
the hypoxia risk score. In this study, the assessment of HIF-1a levels at both 24
and 48 hours ensured that the hypoxic conditions used in the subsequent co-
culture experiments were biologically effective. The densitometric analysis
further confirmed a significant dose- and time-dependent upregulation of HIF-1a

expression, indicating effective hypoxic induction.

To investigate the impact of hypoxia on PD-L1 inhibitor resistance, HepG2 cells
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were co-cultured with Jurkat T cells in a 200 uM CoClz environment for four
cycles. Subsequently, flow cytometry was employed to accurately determine the
percentage of viable cells. As shown in Figure 23 a, b and c, hypoxia cells
subjected to four rounds of CoCl: treatment exhibited higher survival rates
compared to normoxic cells and those receiving only one round of treatment.
Compared to the normoxic control group, the apoptosis rate in cells treated with
I-round of hypoxia was significantly reduced (p = 0.0005, T-statistic = —4.1431,
t-test). After 4-round of hypoxia treatment, the apoptosis rate was further
significantly decreased (p < 0.0001, T-statistic = —10.7825, t-test). A comparison
between the 1-round and 4-round hypoxia groups showed that the apoptosis rate
in the four-round group was significantly lower than that in the one-round group
(T-statistic = —8.3049, p < 0.00001, t-test). This finding strongly suggests the
successful induction of a hypoxia-adapted resistant phenotype. Conversely, the
survival rate of cells that were not exposed to cobalt chloride (CoCl.) was
significantly lower. These experimental results confirm the successful
establishment of a hypoxia resistant HepG2 cell model. In order to better
determine the appropriate concentration of the PD-L1 inhibitor, we used NIS-
Element AR software from Nikon to analyze the proliferation rate of the cells
before and after co-culture. Based on the CNN algorithm of Al, this software can
identify and count the areas of the cells on the 6-well plate before and after co-
culture. It enables objective, high-throughput, and morphology-aware

quantification of cellular features, making it particularly suitable for analyzing
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complex co-culture systems. We used it to quantify fluorescence intensity, and the
output was the fluorescence-positive area, which reflects the level of cell
proliferation. To ensure accurate segmentation, we manually defined
representative positive cells to establish thresholds for cell recognition, enabling
consistent identification across multiple image fields. It precisely determined that
an appropriate concentration of 0.1 uM of the PD-L1 inhibitor has a better effect
of inhibiting cell proliferation. Figure 23 d shows the area of the cells in the culture
dish before and after co-culture at different concentrations of the PD-L1 inhibitor.
There were no significant differences between the groups treated with different
concentrations of PD-L1 inhibitor before and after co-culture, and no strong
apoptotic response was observed under any condition. PD-L1 inhibitor require an
intact and functional immune microenvironment to achieve optimal efficacy,
which is often compromised under tumor hypoxia. The increases in early and late

apoptosis may suggest the development of drug resistance or immune evasion.
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Figure 22. HIF-1a expression of HepG?2 cells treated with CoCl.. (a) The Western
blotting image of HIF-1a under the culture condition of 200 uM CoClz; (b) HIF-

la mRNA level in HepG2 cells treated with CoCl.
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Figure 23. Cell apoptosis in HepG2 Cell line samples. (a) Apoptosis analysis after
co-culture of Normoxic HepG2 cells; (b) Apoptosis analysis after co-culture of
Hypoxia (1 round) HepG2 Cells; (c) Apoptosis analysis after co-culture of
Hypoxia (4 rounds) HepG2 Cells (normoxic : 1 round hypoxia, p-value = 0.0005;
normoxic: 4 rounds hypoxia, p-value < 0.0001; 1 round hypoxia: 4 rounds
hypoxia , p-value <0.00001); (d) The proliferative changes in the area proportion
of cells in the culture dish before and after co-culture. The data are expressed as

mean £ SD, ns p>0.05, **p <0.01, ***p <0.001 vs control.
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4.2.2 NOXA Knockdown Efficiency

Western blot and qPCR were used to confirm NOXA knockdown efficiency in
HepG2 cells. Figure 24 a and b shows the protein expression levels of NOXA
after transfection with four different siRNAs. Among them, siNOXA4
demonstrated the most significant knockdown effect (p-value < 0.01), showing a
drastic reduction in NOXA protein levels compared to the control (NC siRNA).
B-actin was used as the internal control. Additionally, qPCR results confirmed that
NOXA mRNA expression was significantly decreased in cells transfected with
SINOXA4 (p-value < 0.001), further validating the knockdown efficiency in

Figure 24 c.
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Figure 24. NOXA transfection knockdown validation. (a)Western blotting image
of siNOXA; (b) Relative NOXA protein levels; (¢) qPCR assay in NC-HepG4-
round 4 and siNOXA- HepG4-round 4 cells. The data are expressed as mean =+

SD, ns p-value >0.05, **p-value < 0.01, ***p-value < 0.001 vs control.
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4.2.3 Apoptosis Analysis of NOXA-Knockdown Potentially Resistant Cells

To assess the role of NOXA in apoptosis regulation, NOXA-knockdown
(siNOXA) cells were co-cultured with Jurkat T cells under hypoxic conditions.
The control group is HepG2-4-Rounds cells. Apoptosis rates were analyzed using
flow cytometry. The Figure 25 shown the effect of siNOXA group on HepG2-4-
Rounds cell apoptosis under hypoxic conditions and 0.1 uM PD-L1i treatment.
The results indicate that the live cell population increased from 64.10% in the
control group to 70.05% in the siNOXA group, suggesting that siNOXA HepG2-
4-Rounds cells may enhance cell survival under PD-L1i treatment. Additionally,
early apoptosis decreased from 14.77% to 10.50%, while late apoptosis decreased
significantly from 16.50% to 10.38% in the siNOXA group. To further quantify
the effect of NOXA knockdown on apoptosis, the Cohen’s d values for late and
early apoptosis rates were 1.2976 and 1.5109, respectively, both exceeding the
threshold of 0.8 for a large effect size. These findings suggest that siNOXA
HepG2-4-Rounds cells may reduce early apoptosis and late apoptosis, potentially

modulating PD-L1i-induced cell death.
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Figure 25. Effect of NOXA-knockdown HepG2-4-Rounds cell apoptosis with
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4.3 Discussion and Conclusion

In this study, we successfully established a hypoxia-induced drug-resistant HepG2
cell line by exposing the cells to CoCl.. Our results demonstrated that the
expression of HIF-1a increased in response to different CoCl. concentrations and
incubation durations, confirming the effectiveness of hypoxic induction.
Furthermore, the survival rate of HepG2 cells subjected to multiple rounds of
hypoxic co-culture treatment was significantly higher than that of cells under
normoxic conditions, indicating the successful induction of a hypoxia-adapted
resistant phenotype. These findings provide a valuable in vitro model for studying

the mechanisms of hypoxia-mediated drug resistance in HCC.

To evaluate the effect of PD-L1 inhibition on hypoxia-exposed HepG2 cells, we
utilized Al-based image analysis to determine that 0.1 uM PD-L1 inhibitor is the
optimal concentration. This finding further supports its potential research

significance in targeting hypoxia-induced drug resistance in HepG?2 cells.

Furthermore, we investigated the role of NOXA in apoptosis regulation under
hypoxic conditions. Flow cytometry analysis demonstrated that NOXA
knockdown (siNOXA) significantly altered apoptosis patterns in HepG2-4-
Rounds cells. Specifically, siNOXA HepG2-4-Rounds cells exhibited an increase
in the number of live cells, while early apoptosis and late apoptosis were
significantly reduced. These results suggest that NOXA knockdown may reduce
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early apoptosis and late apoptosis, which could be a potential mechanism
underlying the development of resistant cells. These findings are consistent with
previous studies highlighting NOXA’s involvement in apoptosis regulation and

drug resistance.

Therefore, our findings suggest that prolonged hypoxia induces resistance to PD-
L1 inhibitors in HepG2 cells, and NOXA knockdown modulates the apoptotic
progression of resistant cells. These findings lay the foundation for future studies
on hypoxia-mediated immune evasion and highlight NOXA as a potential

therapeutic target for overcoming PD-L1 inhibitor resistance in HCC.
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Chapter 5 Overall Discussion and Conclusion

In recent years, the application of machine learning and deep learning in the
medical field, particularly in oncology research, has made significant strides.
These technologies enable the extraction of vast genomic features and uncover
deeper layers of data, thereby facilitating the quantitative analysis of microscopic
changes in genes or proteins within tumors. This capability allows for the
visualization of tumor heterogeneity and the early prediction of treatment
outcomes. This approach not only aids in identifying patients likely to benefit
from immunotherapy but also helps in recognizing those who may not respond,
thereby preventing ineffective treatments, conserving resources and financial
costs, and avoiding potential adverse effects of immunotherapy that could

exacerbate disease progression.

In this study, we integrated bioinformatics, machine learning, and deep learning
methodologies to analyze various genomic features, providing an in-depth
exploration of hypoxia-related mechanisms in hepatocellular carcinoma (HCC)
and their impact on the efficacy of immunotherapy. Our findings emphasize the
critical role of hypoxia in modulating the tumor microenvironment, influencing
tumor progression, and determining patient responses to PD-L1 inhibitors.
Therefore, assessing the likelithood of immunotherapy response in HCC patients

before treatment could facilitate effective risk stratification.
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In the second chapter of this study, we identified a total of 52 HCC-Hypoxia
Overlap genes (HHOs) by intersecting HSGs and HRGs derived from GEO
datasets. Gene set enrichment analysis (GSEA) revealed that some of these genes
were closely associated with the PD-L1 expression pathway. Notably, TPX2,
KIF20A, CENPA, DLGAPS, and LMNBI1 were significantly enriched in the
retinoblastoma (RB) immunity downregulation of the PD-L1 expression pathway.
Previous studies have shown that hyperphosphorylated RB protein within this
pathway exerts a tumor-suppressive role by inhibiting NF-kB activity and PD-L1
expression. Additionally, through regression analysis of the TCGA dataset, we
identified 14 PD-L1 regulatory genes from the HHOs and extracted 10 hub genes
from the PPI network, with TPX2, KIF20A, NDC80, and DLGAPS5 being the
overlapping genes. Based on clinical data, we analyzed the survival and treatment
response of PPI hub genes and PD-L1 regulatory genes following PD-L1 inhibitor
treatment to further validate our computational results. The results indicated that
TPX2, NDC80, POLE2, GABARAPLI, and PIK3R1 were significantly
associated with treatment outcomes, suggesting that TPX2 and NDC80 play
crucial roles in regulating PD-L1 expression and, consequently, the effectiveness

of PD-L1 inhibitors.

We discovered that the 20 overlapping genes between PD-L1 regulatory genes
and PPI hub genes are not only differentially expressed in hypoxic HCC tissues

but also regulate cancer cells through the PI3K/AKT pathway. These genes play
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a critical role in PD-L1 regulation in hypoxic HCC tissues and may serve as
potential therapeutic and prognostic biomarkers to enhance sensitivity to PD-L1
inhibitors and overcome drug resistance. However, the specific regulatory
mechanisms remain unclear. In the chapter 2, the PI3K/AKT/HIF axis was found
to play a significant role in hypoxia-induced HCC resistance, particularly in

regulating PD-L1 expression.

In this study, an HCC immunotherapy response prediction model was established
based on the EGADO00001008128 dataset (which includes data on patient
responses to immunotherapy) and hypoxia HepG2 cell line datasets (GSE41666,
GSE233802, and SRP356151). In the initial hypoxia risk score model developed
in the chapter 2, we identified 9 hypoxia risk-associated genes. To improve the
accuracy of predicting immunotherapy responses, we applied bioinformatics and
machine learning techniques to process the EGAD(00001008128 dataset. We
identified 3 IRHs, among which PMAIP1 (NOXA) has been well-documented in

the literature for its abnormal expression in hypoxic tumor microenvironments.

The role of PMAIP1 (NOXA) under hypoxic conditions has been extensively
studied, demonstrating its importance in the adaptation of tumor cells to the
hypoxic environment. NOXA is a pro-apoptotic protein belonging to the BCL-2
family, primarily promoting apoptosis through interactions with anti-apoptotic

proteins [100]. Under hypoxic conditions, HIF-1a is activated and binds to the
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promoter region of the PMAIP1 (NOXA) gene, enhancing its transcription and
expression [101]. This mechanism not only helps tumor cells survive in the
hypoxic microenvironment but also promotes malignancy by regulating

proliferative and apoptotic pathways.

Importantly, the abnormal expression of PMAIP1 (NOXA) under hypoxia is
closely related to the drug resistance of tumor cells. Its upregulation may alter
proliferative signaling pathways in tumor cells, enabling them to better adapt to
adverse growth conditions, which in turn leads to treatment failure [102].
Therefore, PMAIP1 (NOXA) is considered a potential therapeutic target, as
targeting its regulatory pathway could effectively reverse hypoxia-induced drug

resistance 1in tumor cells.

In this study, PMAIP1 (NOXA) was incorporated into the hypoxia risk score
model to assess its predictive ability for immunotherapy response. The results
indicated that the expression of this gene in a hypoxic microenvironment
significantly impacts the effectiveness of immunotherapy, particularly under
prolonged hypoxia exposure, where risk levels were notably elevated. In the
logistic regression model, the prediction of immunotherapy response was
significant (coefficient = 0.5972, p < 0.01), further validating the critical role of
PMAIPI (NOXA) in tumor drug resistance. Based on these findings, PMAIP1

(NOXA) holds promise as a key target for improving immunotherapy efficacy,
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especially in strategies targeting hypoxia-induced drug resistance.

Cox regression analysis was performed on the TCGA-LIHC database to
determine the risk coefficient for each feature gene. The hypoxia risk score model
was thoroughly validated in the GSE233802 dataset across different hypoxia
durations in HepG?2 cell lines. It was found in cultured HepG?2 cells that the score
was positively associated with the hypoxia duration of the incubation environment.
Regarding Oh as the reference condition, the prolonged hypoxic condition of 48h
induced more malignant HCC cells than that of 24h. This finding supports that
the hypoxic condition of the tumor microenvironment affects tumor malignancy

and patient survival.

To optimize the immune therapy response prediction model, we used machine
learning in combination with deep learning to extract high-level features from the
EGADO00001008128 dataset. Using the mRMR and stepwise forward selection
methods, we selected 11 genes most strongly associated with immunotherapy
response and used SMOTE to address the imbalance in the training data, thereby
enhancing the model's predictive performance. Compared to traditional deep
learning algorithms, the KAN model performs better on small sample datasets,
making it well-suited for handling high-dimensional gene expression data while
mitigating the risk of overfitting. We trained the KAN prediction model using the

11 selected feature genes along with the Bevacizumab feature and validated it on
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the test set. The constructed prediction model achieved an accuracy of 0.993 in
the training set and 0.7 in the test set, with each clinical sample receiving a

corresponding KAN immunotherapy response score.

Based on the KAN immunotherapy response score, the hypoxia risk score, and
the PMAIP1 (NOXA) gene, we constructed logistic regression and SVM models.
Ultimately, the SVM model incorporating both the KAN immunotherapy
response score and the hypoxia risk score achieved an accuracy of 0.725 in the
test set, demonstrating better predictive performance than the logistic regression
model and the standalone KAN model. This indicates that the hypoxia risk score
based on PMAIP1 (NOXA) significantly enhances the predictive accuracy of the
immunotherapy response model. These findings suggest that hypoxia plays a
crucial role in the tumor microenvironment and immunotherapy response.
Prolonged hypoxia in the tumor microenvironment alters proliferative signaling
pathways in cancer cells, suppresses immune system function, and significantly
increases the risk level for tumor patients. As a result, this condition is more likely
to lead to non-responsiveness to immune therapy or failure to achieve partial

response criteria, and it may also exacerbate tumor progression [103].

In addition to the computational and predictive analyses conducted in this study,
we also established an in vitro hypoxia-induced drug-resistant HepG2 cell line to

further investigate the molecular mechanisms underlying hypoxia-mediated
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resistance to PD-L1 inhibitors. Through CoCl: treatment, we successfully induced
a hypoxia-adapted phenotype in HepG?2 cells, as evidenced by an increase in cell
survival following multiple rounds of hypoxic exposure. These findings confirm
that prolonged hypoxia plays a significant role in the development of drug
resistant HepG2 cells, and this cell line can serve as a valuable in vitro model for

studying resistance mechanisms.

Additionally, we utilized Al-based image analysis to determine the optimal
concentration of PD-L1 inhibitor. We further explored the role of NOXA in
apoptosis regulation under hypoxic conditions. Flow cytometry analysis showed
that siNOXA-treated round 4 HepG2 cells exhibited reduced early and late
apoptosis compared to the control group, suggesting that NOXA depletion may
shift apoptotic progression toward a more survival-favorable state. This finding is
consistent with previous studies indicating that NOXA plays a crucial role in
apoptosis regulation and drug resistance, highlighting its strong association with

hypoxia-induced immune evasion.

Recent studies have extensively documented the role of NOXA in hypoxia and
immunotherapy. As a pro-apoptotic BH3 domain-specific protein, NOXA
knockout has been reported to reduce chimeric antigen receptor T-cell (CAR-T)
mediated tumor cell apoptosis, leading to CAR-T therapy resistance [104]. Our

study also revealed that NOXA expression was upregulated in hypoxic HepG2
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cells and in patients who responded to immunotherapy. Whether in predicting
immunotherapy response model or investigating hypoxia-induced resistance in

HepG2 cells, these findings underscore NOXA's potential as a therapeutic target.

In conclusion, our study provides new insights into the role of hypoxia in inducing
resistance to PD-L1 inhibitors and the function of NOXA in apoptosis regulation.
We demonstrated that prolonged hypoxia promotes the development of drug-
resistant HCC cells, while NOXA knockdown alters apoptotic progression,
potentially affecting treatment outcomes. These findings support the hypothesis
that hypoxia-mediated immune evasion contributes to PD-L1 inhibitor resistance

in HCC.

By integrating bioinformatics, machine learning, deep learning, and experimental
validation, this study offers a comprehensive approach to understanding the
hypoxia-immunotherapy relationship in HCC. Identifying PMAIP1 (NOXA) as a
possible treatment target further supports the development of new strategies to
overcome hypoxia-related resistance, helping to improve the success of

immunotherapy.
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Appendix

Overview of Publication

The following articles, published in the International Journal of Molecular
Sciences (IJMS) and the American Society of Clinical Oncology (ASCO), present
the research detailed in Chapter Two of this dissertation. This study explores
potential regulatory genes and mechanisms underlying hypoxia-induced PD-L1
inhibitor resistance in hepatocellular carcinoma through bioinformatics.
Additionally, an initial hypoxia risk score model was developed using machine
learning to identify potential hypoxia-related risk genes in hepatocellular
carcinoma. Presented as an appendix, this research supports the conclusions of
this dissertation. Each figure in the articles corresponds to the figures in the

dissertation and is supplemented with additional materials.
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Abstract: The combination of a PD-L1 inhibitor and an anti-angiogenic agent has become the new
reference standard in the first-line treatment of non-excisable hepatocellular carcinoma (HCC) due
to the survival advantage, but its objective response rate remains low at 36%. Evidence shows
that PD-L1 inhibitor resistance is attributed to hypoxic tumor microenvironment. In this study, we
performed bioinformatics analysis to identify genes and the underlying mechanisms that improve
the efficacy of PD-L1 inhibition. Two public datasets of gene expression profiles, (1) HCC tumor
versus adjacent normal tissue (N = 214) and (2) normoxia versus anoxia of HepG2 cells (N = 6),
were collected from Gene Expression Omnibus (GEO) database. We identified HCC-signature and
hypoxia-related genes, using differential expression analysis, and their 52 overlapping genes. Of
these 52 genes, 14 PD-L1 regulator genes were further identified through the multiple regression
analysis of TCGA-LIHC dataset (N = 371), and 10 hub genes were indicated in the protein-protein
interaction (PPI) network. It was found that POLE2, GABARAPL1, PIK3R1, NDC80, and TPX2 play
critical roles in the response and overall survival in cancer patients under PD-L1 inhibitor treatment.
Our study provides new insights and potential biomarkers to enhance the immunotherapeutic role of
PD-L1 inhibitors in HCC, which can help in exploring new therapeutic strategies.

Keywords: hepatocellular carcinoma; hypoxia; PD-L1 inhibitor; drug resistance; bioinformatics
analysis; molecular target; immune escape; combined treatment

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignancies with the
fourth highest cancer mortality rate in the world, seriously damaging human life and
health. Chronic hepatitis B and C viruses, chronic alcohol consumption, and metabolic
syndrome are all major clinical risk factors for HCC. Current clinical treatment options for
liver cancer are classified into surgical therapies, including liver transplantation, cryoab-
lation, resection, and non-surgical therapies, including chemotherapy, targeted therapy,
and immunotherapy [1]. However, eligible treatment approaches become very few for
patients in advanced HCC where surgical therapy is not appropriate due to large tumor
size, location, number of lesions, and comorbidities [2]. Patients with advanced HCC
treated with immune-checkpoint inhibitors (ICIs) reached the objective response rate (ORR)
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Figure 1. Identification of HCC-signature genes (HSGs) and hypoxia-related genes (HRGs).
(a) Volcano plot for GSE14520; (b) Volcano plot for GSE41666; (c) Overlapping genes between
HSGs and HRGs; (d) Overlapping genes among upregulated and downregulated genes in HSGs
and HRGs.

2.2. Gene Set Enrichment Analyses of HSGs and HRGs

Enrichment analysis of HSGs and HRGs on 202 databases (as of 29 November, 2022)
was performed using the gseapy package in Python. Significant enrichment results were
found in 190 and 161 databases, respectively. Here, we particularly highlight three groups
of databases that gave significant enrichment results closely related to hypoxia, HCC,
and PD-L1.

In the Gene Ontology (GO) databases, HSGs upregulated genes were significantly
enriched in “mitosis”, “nucleus”, and “organelles” gene sets, HRGs upregulated genes
were mainly enriched in “mitosis”, “spindle”, and “nuclear chromosome” gene sets, HSGs
downregulated genes were mainly enriched in “monooxygenase activity”, and HRGs
downregulated genes were mainly enriched in “cellular response to decreased oxygen
levels ” gene set (Figure 2a,b). The bar chart of expression profile of enriched genes is shown
in Supplementary Figure S3. In the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Human databases, upregulated HSGs were enriched in “RNA transport” and “cellular
senescence signaling”, “drug metabolism”, “chemical carcinogenesis”, and “apoptosis
signaling” pathways (Figure 2d). In the “RNAseq Automatic GEO Signatures Human”
database, we found that downregulated HSGs and HRGs together were significantly
enriched in the “Rb-immunity downregulating Pd-L1” gene set where TPX2, KIF20A,
CENPA, DLGAPS5, and LMNB1 were found in the genes in common, whereas upregulated
HRGs were significantly enriched in the “Rb-immunity downregulating Pd-L1” and “tissue-
resident pancreas Pd-1/Pd-L1” gene sets, respectively (Figure 2c).
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of 36% only with drug combination and even lower than 20% with a single drug [3]. There-
fore, novel approaches to clarify the underlying mechanism and enhance the response to
immunotherapy are important to improve patient survivability and quality of life.

Hypoxia is a common feature of solid tumors, which is closely associated with poor
prognosis. Recent experimental analyses have shown that HCC under a hypoxic en-
vironment has significant changes in proliferation, apoptosis, migration, invasion, and
epithelial-mesenchymal transition [4]. Therefore, itis important to investigate the molecular
mechanisms associated with hypoxia in the HCC microenvironment, and the hypoxia-
induced factor (HIF) is the main tumor-adapted transcription factor, consisting of HIF-1«,
2«, and 3« [5]. In the hypoxic microenvironment of solid tumors, high expression of HIF-1c
is associated with poor prognosis in various cancers, including HCC [6]. It was shown
that in the hypoxic environment, HIF-1a is involved in the hypoxic response and activates
hundreds of genes associated with the tumor vasculature and tumor cell adaptation to
the hypoxic environment. To activate the HIF-downstream pathways that regulate energy
metabolism in tumor cells and the expression of immune checkpoint proteins, HIF can bind
to the hypoxia response element (HRE) in the promoter region of genes downstream of
HIF [7].

PD-L1 is an important immune checkpoint molecule that primarily regulates cellular
apoptosis, and therefore, PD-L1 has an essential impact on tumor growth. An increasing
number of studies have found that organs exposed to hypoxic conditions and experimental
models of hypoxia showed elevated PD-L1 expression at the affected region [8]. In the
hypoxic tumor microenvironment, HIF-1o can upregulate PD-L1 expression. Such PD-L1
expression enhancement can be suppressed by the knockdown of HIF-1« [9]. Thus, PD-L1
may be one of the critical mediators expressed by hypoxic tumor cells. PD-L1 inhibitor
combination therapy is currently the first-line treatment option for HCC, but no more than
35% of patients manifested a clinical response [10]. In addition, drug resistance acquired
due to PD-L1-mediated immune escape after several years of treatment remains a severe
problem for patients with cancer recurrence and metastasis. It has been shown that targeting
HIF-1« can eliminate PD-L1-mediated immune escape in the tumor microenvironment
and increase immune tolerance in normal tissues [11]. Therefore, we hypothesize that
the HIF-1a-stimulated increase in PD-L1 expression is a key factor in drug resistance in
hypoxic tumors.

This study aimed to gain new insights into the mechanisms regulating PD-L1 expres-
sion and the PD-L1 immune checkpoint inhibitor resistance in solid HCC tumors in a
hypoxic microenvironment. Based on the genomic mechanisms, the potential theranos-
tic molecular biomarkers could be identified so that new therapeutic strategies can be
recognized to overcome hypoxia-induced PD-L1 inhibitor resistance.

2. Results
2.1. Identification of HSGs and HRGs in HCC

By setting the cutoff values of q and fold change (FC) at 1.139 and 1.128, HSGs
constitute 800 genes (400 upregulated and 400 downregulated) that indicate differential
expression in GSE14520 between tumor and adjacent non-tumor (Figure 1a). The corre-
sponding heatmap is shown in Supplementary Figure S1. By setting the cutoff values of q
and FC at 1.277 and 1.370, HRGs constitute 800 genes (400 upregulated and 400 downregu-
lated) that indicate differential expression between hypoxic and normoxic environments in
GSE41666 (Figure 1b). The corresponding heatmap is shown in Supplementary Figure S2.
The intersection of HCC-signature genes (HSGs) and hypoxia-related genes (HRGs) of
the two datasets gave 52 overlapping genes, so-called HCC-Hypoxia Overlaps (HHOs),
(Fisher-exact test p < 1.047 x 10~11), 37 of which were upregulated and 15 of which were
downregulated in the hypoxic group compared with the normoxic group in GSE41666
(Figure 1c,d).
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2.3. Evaluation of the Effect of HHOs on PD-L1 Expression in the TCGA-LIHC Dataset

Multiple regression analysis was used to evaluate the effect of HHOs on PD-L1 expres-
sion. Ultimately, 14 genes were identified as relevant risk factors affecting PD-L1 expression
and were subsequently used to construct a drug-resistance gene regulator model. The
model is represented by a linear combination of regression coefficients multiplied by the
relative expression levels of PD-L1 regulator genes, indicating the relative effect of each
gene on the drug resistance based on multiple regression analysis.

PD—-L1= 0.076+ 0.240 x FOS + 0.261 x FAM13A + 0.443 x DLGAP5
—0.264 x ALDH5A1 +0.223 x GABARAPL1
—0.123 x CABYR + 0.145 x PIK3R1 — 0.150 x HGFAC
+0.317 x LMNB1 — 0.418 x KIF20A —0.434 x TPX2
+0.410 x NDC80 + 0.121 x EPHA2 — 0.096 x NEDDA4L

Each of the PD-L1 regulator genes included in the model is associated with a significant
effect on drug resistance (p < 0.05). It is worth noting that the PD-L1 regulator genes with
the top five coefficient magnitudes are DLGAP5, NDC80, LMNB1, KIF20A, and TPX2.

2.4. Construction of Protein—Protein Interaction Network and Identification of Hub Genes

The 52 HHOs were entered into the STRING database platform for protein-protein
interaction (PPI) network analysis, and the results were imported into Cytoscape software
to construct the PPI network. Among 52 HHOs, 26 genes had connections with confidence
score >0.7 in the PPI network, and thus, the rest were removed from the network repre-
sentation (Figure 3a). In addition, the degree of node connections was calculated using
cytoHubba plug-in, and 10 genes with degree >33 were identified as hub genes, namely,
CCNBI, BUBI1B, KIF4A, KIF20A, KIF11, NDC80, TPX2, CENPA, POLE2, DLGAPS5 (Figure 3b).

b

Figure 3. Protein—protein interaction (PPI) networks: (a) Connections among 26 genes with confidence
score >0.7; The larger the node, the greater the degree of connectivity and the darker the color, the
greater the combined score value; (b) 10 hub genes with connectivity degree >33; Genes with a
confidence score <0.7 are not shown here; The darker the color, the stronger the degree of criticality.

2.5. Survival Analysis and PD-L1 Inhibitor Response Prediction

We used Kaplan Meier Plotter software to plot survival curves for genes, which
are the union of PPI hub genes and PD-L1 regulator genes. The results of the survival
analysis showed that the expression levels of 15 genes significantly correlated with the
poor prognosis of the patients (Table S3). Particularly, significantly better survival rates
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after PD-L1 treatment were found in patients with a higher expression level of NDC80
(HR =0.76, p = 0.024) and TPX2 (HR = 0.77, p = 0.03) than those with a lower expression
level (Figure 4a,b). We validated the expression of PPI hub genes and PD-L1 regulator
genes in response to PD-L1 treatment. Three of the best performing genes in the sample
were GABARAPLI (AUC = 0.56, p = 0.016), PIK3R1 (AUC = 0.549, p = 0.04), and POLE2
(AUC =0.553, p = 0.027) (Figure 4c).
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Figure 4. Kaplan-Meier plots for the comparison of survival between high and low expression
levels: (a) NDC80 (HR = 0.76, p = 0.024); (b) TPX2 (HR = 0.77, p = 0.03). (c) Boxplots, Receiver
operating characteristic (ROC) curves, and responders” frequency of top three genes in predicting
PD-L1 inhibitor response: GABARAPLI (AUC = 0.560, p = 0.016), PIK3R1 (AUC = 0.549, p = 0.04), and
POLE2 (AUC = 0.553, p = 0.027); “©” indicates the strongest cutoff, which has the minimal distance
from the ideal discriminator.
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2.6. KEGG Pathway Enrichment

The KEGG pathway enrichment of PPI hub genes and PD-L1 regulator genes were
analyzed using the ShinyGo platform. We found 19 significantly enriched pathways (false
discovery rates (FDRs) < 0.032), and most of them are associated with immune cells,
inflammatory factors, and apoptosis (Figure 5). It is important to note that two genes,
FOS (AP-1) and PIK3R1, are found in “PD-L1 expression and PD-1 checkpoint pathway in
cancer”, while the “endocrine resistance pathway” is activated by hypoxia induction.
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Figure 5. KEGG pathway enrichment of the union of PPI hub genes and PD-L1 regulator genes.

3. Discussion

Accumulating evidence suggests that hypoxia has a significant impact on HCC, as
hypoxia is a prominent feature of malignancy that not only promotes cancer progression
but also poses a challenge to the efficacy of immunotherapy. Therefore, there is an urgent
need to find HCC biomarkers associated with hypoxia and immunotherapy and elucidate
their linkages. In this study, we identified a total of 52 HHOs, which represent overlapping
between HSGs and HRGs derived from the GEO datasets. In gene set enrichment analysis
(GSEA), we found that some genes in HSGs and HRGs were closely related to the pathways
of PD-L1 expression. Particularly, TPX2, KIF20A, CENPA, DLGAPS, and LMNB1 of HHOs
were significantly enriched by the retinoblastoma (RB) immunity downregulating PD-L1
expression pathway. The study identifying this pathway illustrated the tumor suppressor
function of hyperphosphorylated RB protein in repressing NF-«B activity and PD-L1
expression [12]. Alternatively, 14 PD-L1 regulator genes were selected from HHOs using
regression analysis of a TCGA dataset. Further, 10 hub genes were derived from the PPI
network of HHOs. Among PD-L1 regulator genes and PPI hub genes, 4 overlapping genes,
TPX2, KIF20A, NDC80, and DLGAP5, were found. In a future study, we plan to perform
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co-immunoprecipitation of these 4 overlapping genes and PD-L1. Therefore, we analyzed
the survival and treatment response of PPI hub genes and PD-L1 regulator genes after PD-
L1 inhibitor treatment based on clinical data to further validate our in-silico results. TPX2,
NDC80, POLE2, GABARAPLI, and PIK3R1 were significantly associated with treatment
outcomes. The above-mentioned findings support the crucial roles of TPX2 and NDC80 in
regulating PD-L1 expression and thus affect the PD-L1 inhibitor treatment outcome.

The phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) gene product is mainly
p85«, a regulatory subunit of PI3K enzymes. It is also responsible for splicing the isoforms
p55a and p50«, primarily expressed in skeletal muscle and liver [13]. Increasing research
has shown that PIK3R1 plays a vital role in human cancer development. The p85 regulatory
subunit of PI3K regulates phosphatidylinositol 3,4,5-triphosphate (PIP3) expression, AKT
activation, PTEN phosphorylation, and related mRNA expression, mainly through PI3K
pathway, which is involved in tumor growth, apoptosis, and drug resistance [14]. It was
found that PIK3R1 expression was significantly higher in HCC tissues than in adjacent
normal tissues [15]. In cell lines of HCC, the knockdown of PIK3R1 significantly reduced
the expression of p-PI3K, p-AKT, and p-mTOR, which were closely associated with the
growth and proliferation of tumor cells. Furthermore, in a hypoxic environment, cellular
activation of HIF-1a downregulated ROS/PI3K/AKT to adapt to the hypoxic loop, while
MAPK also downregulated ROS/PI3K/AKT by reducing ERK1/2 phosphorylation [16].

Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a microtubule nucle-
ation factor involved in mitotic spindle formation. TPX2 is overexpressed in a variety of
malignant tumor tissues, including HCC, colon cancer, breast cancer, esophageal cancer,
and cervical cancer. It was found that TPX2 regulates PI3K/AKT/p53/p21 pathway and
promotes tumor metastasis and growth in HCC tissues [17]. Downregulation of TPX2 sig-
nificantly reduced the expression levels of Bcl-2, c-Myc, and Cyclin D1, inhibited PI3K/AKT
signaling, suppressed cell proliferation, and promoted apoptosis, thus possibly preventing
the development and progression of HCC [18].

Nuclear division cycle 80 (NDC80/Hec1) is a kinetochore complex protein associated
with mitosis and is involved in microtubule binding and spindle assembly [19]. Notably,
mutations in NDC80 have been confirmed in the second most prevalent primary liver
cancer (cholangiocarcinoma, CCA) [20]. In HCC tissues, NDC80 mRNA expression was
significantly higher than that of adjacent tissues and may have a role in reducing apoptosis
and promoting HCC development [21]. Interestingly, a few studies have shown that NDC80
is associated with PI3K/AKT, but the core component of its complex, SPC24, is defined to
regulate the PI3K/AKT pathway in breast cancer cells and produce oncogenic effects [22].

DNA polymerase epsilon subunit 2 (POLE2) is a DNA polymerase subunit that
is involved in the DNA replication process, has DNA repair effects, and reduces the
occurrence of mutated genes. POLE2, which potentially acts as a therapeutic target and
prognostic factor, is overexpressed in a variety of cancers. One study found that POLE2
regulates its downstream oncogene STC1, activates AKT phosphorylation, decreases HIF-
la expression levels, and promotes cancer cell proliferation [23].

Gamma-aminobutyric acid (GABA), a receptor-associated protein-like 1 (GABARAPL1),
is an autophagosomal protein that is a key PI3K transcriptional target and plays an
important role in protein transport, interactions, cell proliferation, and tumorigenesis.
GABARAPL1 expression is inversely correlated with cancer metastasis and its high ex-
pression is associated with a good prognosis. It has been shown that strong expression of
GABARAPLI1 attenuates AKT activation, reduces mTOR activation, and increases cancer
cell invasion [24-26]. In fact, autophagy is a tumor suppressor mechanism, mainly limiting
oncogenic stresses, such as DNA damage or oxidative stress, in the early stages of tumori-
genesis, but it can also promote the survival of cancer cells under nutrient starvation or
hypoxic conditions in the advanced stages of tumor progression.

In summary, 20 genes in union of PD-L1 regulator genes and PPI hub genes are not
only differentially expressed in hypoxic HCC tissues but also potentially regulate cancer
cells through the PI3K/AKT signaling pathway, according to the above-mentioned evi-
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dence. These genes are essential in regulating PD-L1 in hypoxic HCC tumor tissues. They
may be potential therapeutic and prognostic biomarkers to enhance the sensitivity of cancer
cells to PD-L1 inhibitors and reverse drug resistance. However, the specific regulatory
mechanisms among them have not been clarified. We predicted that the related genes
of possible regulatory mechanisms would provide new insights into the drug resistance
mechanisms of potential genes functioning in hypoxic HCC tissues. TPX2, a critical tar-
get of KRAS, has been reported to be involved in the development of pancreatic ductal
adenocarcinoma (PDAC) through the regulation of hypoxia-mediated HIF-1 [27]. KRAS
is known to be an oncogenic gene that regulates the PI3K/AKT/mTOR signaling path-
way [28]. Notably, hypoxia-mediated HIF-1«x increases PD-L1 expression in a variety of
solid hypoxic tumors via the PTEN/PI3K/AKT signaling pathway, thereby inducing T-cell
unresponsiveness or apoptosis [29], which suggests that the PTEN/PI3K/AKT/HIF axes
may be an essential part of the occurrence and development of drug resistance mechanisms
in hypoxic HCC. Additionally, we found that the potential genes are also interrelated.
However, the mechanism of their interactive regulation and the role of inter-regulation
with PD-L1 in hypoxic HCC still needs further experimental exploration and validation.

Currently, researchers believe that immunotherapy resistance is induced in tumor
cells due to the lack of antigenic mutations, altered antigen processing mechanisms, major
histocompatibility complex (MHC) dysfunction, human leukocyte antigen (HLA) expres-
sion deficiency, 32 microglobulin (32M) mutations leading to HLA loss, constitutive PD-L1
expression, loss of T cell function, and altered signaling pathways (PI3K, MAPK, WNT,
IFN), but it remains unclear about the holistic molecular mechanism leading to the PD-L1
overexpression, and thus, drug resistance under hypoxic conditions [30].

In previous studies, it was found that PD-L1 expression in tumor cells could be
upregulated by interferons (IFN) or cytokines, such as tumor necrosis factor (TNF) [31].
Furthermore, HIF-1« also upregulates TNF expression and increases the absorption of TNF
by innate immune cells [32]. This is consistent with our findings that PD-L1 expression is
regulated by the upstream pathway activated by TNE. It has been shown that TNFR2 acts as
the predominant TNF receptor on activation of CD8+ effector T cells. TNF directly affects
CD8+ effector T cells through TNFR2, leading to activation-induced cell apoptosis [33].
The upregulated PD-L1 expression can further lead to the apoptosis of T cells through the
interaction with PD-1.

The signaling mechanism of PD-L1 expression could be initiated from the binding
of TNF to TNFR1. TNFR1 mutations result in altered mitochondrial function, enhanced
oxidative capacity, and mitochondrial reactive oxygen species (ROS) production [34]. Under
a hypoxic environment, ROS can regulate the stability of HIF-1x and induce DNA damage,
further accumulating the risk of DNA mutation [35,36]. Research indicates that ROS can
mediate hypoxia through activation of PI3K/AKT/HIF-1a pathway [37]. In addition,
activator protein 1 (AP-1, FOS gene) is activated by ROS oxidative stress and is involved in
tumor generation and the regulation of vascular endothelial growth factor (VEGF) involved
in tumor vasculogenesis [38].

A study explored the possibility of combining immune checkpoint inhibitor treatment
with HIF inhibitor to repress tumor progression, enhance anti-tumor immunity, and reduce
drug resistance. MK6482 was the first HIF-2ct inhibitor approved by the FDA to treat
patients with advanced renal cancer. Several chemotherapeutic agents were also used
clinically to target HIF expression, such as rapamycin, but they have poor bioavailability at
the tumor site (<15%) and poor solubility in water, thus increasing associated therapeutic
toxicity [4,39]. Drugs known to repress HIF-1x expression indirectly, such as mTOR
inhibitors, can also be used as adjuvant therapy for cancer because it has been shown
in preclinical models of HCC that such treatment can suppress tumor growth. HIF-1«
inhibitors can not only downregulate the PD-L1 expression in tumors but also upregulate
the PD-L1 expression in normal tissues, increasing the tolerance of normal tissues to
immunotherapy and reducing adverse events [39]. Therefore, it is essential to explore
the mechanisms of HIF-induced PD-L1 resistance in solid hypoxic tumors and develop
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effective and safe new therapies using a potentially multi-targeted approach. In this
comprehensive bioinformatics study, the conceptual signaling mechanism of hypoxia-
induced PD-L1 inhibitor resistance has been elucidated (Figure 6). KRAS, NDC80, TPX2,
and PIK3R1, which act as molecules intimate to hypoxic stress upstream of PD-L1 in
the signaling mechanism, were recognized as the potential targets of agents that could
be combined with a PD-L1 inhibitor to overcome drug resistance. Such agents include
MDe6482, PT2385, ABT-869 (mTOR inhibitor); MD6482 has only been used clinically in
patients with advanced renal cancer, while the other drugs are currently only being trialed
in preclinical models [35,40].
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Figure 6. Conceptual signaling mechanism of hypoxia-induced PD-L1 inhibitor resistance.

4, Materials and Methods

Two datasets, GSE14520 and GSE41666, were downloaded from the GEQ database and
analyzed to determine hypoxia-induced differentially expressed genes in HCC. Functional
enrichment analysis and protein—protein interaction (PPI) network construction screened
the differentially expressed genes for hub genes. Multiple regression analysis models
were constructed using the expression of common differentially expressed genes in the
TCGA database to screen for genes highly associated with PD-L1 expression. Finally, we
used the Kaplan Meier plotter to analyze PPT hub genes survival and response rates after
treatment with PD-L1 immune checkpoint inhibitors and associated pathway analysis
to identify potential pathways regulating PD-L1 expression in the hypoxic HCC tumor
microenvironment (Figure 7).

4.1. Microarray Data Collection and Processing

Two datasets, GSE14520 and GSE41666, were obtained from the GEO database. In the
GSE14520 dataset, a single channel array platform was used to profile the gene expression
levels of 214 tumor and 214 paired non-tumor samples of HCC patients. In the GSE41666
dataset, HepG2 HCC cell line samples were exposed to anoxia with 24 h of 0% O> and
normoxia with a control of 21% O,, respectively. As 3 biological replicates were performed
for each condition, the gene expression levels of 6 samples were profiled by the expression
beadchip platform.
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Figure 7. Flowchart of this study.

For each gene interrogated by multiple probes in the microarray chip, the average
of expression levels of respective probes was taken to provide an expression matrix of
unique gene symbols. The log2-transformation was applied to the expression matrix of
the GSE14520 dataset but not to the GSE41666 dataset, which has undergone Variance
stabilizing normalization (VSN). Standardization was performed to both matrices to obtain
normally distributed expression levels, N (0,1). The flowchart of data processing and
analysis is shown in (Figure 8).

4.2. Identification of Differentially Expressed Genes

Differential expression analysis was performed based on t-test and fold change (FC).
For each gene, the p-value generated by t-test indicates the statistical significance of differ-
ential expression. To address the issue of multiple hypothesis tests for a huge number of
genes, g-values, i.e., the estimated false discovery rates (FDRs), were derived from p-values
based on the Storey-Tibshirani g-value procedure [41]. For GSE14520, the related sample
t-test was used to examine the difference between the tumor and paired non-tumor samples.
HCC-signature genes (HSGs) are defined as differentially expressed genes where g-value
< 0.05, FC > 1.4 (upregulated) and <1/1.34 (downregulated) in HCC tumor compared to
paired non-tumor samples. For G5E41666, hypoxia-related genes (HRGs) are defined as
the differentially expressed genes with g-value < 0.05 and FC > 1.301 (upregulated) and
<1/1.199 (downregulated), respectively. The cut-off values of FC were determined based on
the quantities of upregulated and downregulated genes to be selected. The Venn diagrams
were drawn using the Venny 2.1 platform (https:/ /bioinfogp.cnb.csic.es/tools/venny/, as
of 25 November 2022), and the HCC-Hypoxia Overlap (HHO) is defined as the gene set
obtained from the intersection of HSGs and HRGs.
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Figure 8. Flowchart of processing and analysis of microarray datasets.

4.3. GO Function and KEGG Pathway Enrichment Analysis of HSGs and HRGs

In this study, for the HSGs and HRGs, Gene Ontology (GO; http:/ /geneontology.org,
as of 29 November 2022) analysis was first performed by Python to obtain the results of
HSGs and HRGs enrichment in Biological Process (BP), Cellular Component (CC), and
Molecular Function (MF). The results of enrichment in Biological Process (BP), Cellular
Component (CC), and Molecular Function (MF) were obtained. Then, the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG; https://www.kegg.jp/, as of 29 November 2022)
signaling pathway enrichment analysis was performed, and the pathway enrichment re-
sults were obtained. The adjusted p-value < 0.05 and FDR adjusted p-value < 0.05 were
statistically significant and were the thresholds for selecting the major enrichment functions
and pathways of the HSGs and HRGs.

4.4. Gene Set Enrichment Analysis (GSEA) of HSGs and HRGs

GSEA is a computational method for analyzing and interpreting changes in gene path-
way levels and association analysis in transcriptomics experiments, including genome-wide
association studies and RNA-seq gene expression experiments. The random permutation
procedure (permutation_num = 1000) using the gseapy-v1.0.0 python library was used
to obtain the zero distribution. The Enrichr method in the gseapy-v1.0 python library
was used to determine the signaling pathways regulated by hypoxia-related features of
HCC (adjust p value < 0.05). The gseapy-v1.0.0 package currently supports a library of
202 databases.

4.5. PPI Network Construction and Identification of Hub Genes

STRING (Search Tool for the Retrieval of Interacting Genes, http://string-db.org/, as
of 12 December 2022) is an online database for searching protein interactions. To further
explore the interactions among HHOs, which represent the overlapping genes between
HSGs and HRGs, the HHOs were imported into STRING to obtain the PPI network with a
confidence score > 0.7 [42]. Among the HHOs, the PPI hub genes were identified with a
degree threshold using the degree algorithm of cytoHubba, where the connectivity degree
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of a gene is defined as its connected neighbors [43]. A threshold was selected to include
10 PPI hub genes with the top degree values for further analysis.

4.6. Multiple Regression Analysis of the Effect of HHOs on PD-L1

To examine the effect of HHO on PD-L1 expression, we used multiple regression
analysis. RNAseq expressions of TCGA-LIHC were obtained from the UCSC xena website
(https:/ /xenabrowsernet/datapages/ as of 6 December 2022), including 371 HCC tissue
samples, and RNAseq expressions of HHOs and PD-L1 were extracted and standardized.
Compared with machine learning models, multiple regression could produce more sta-
bilized and re-producible results without fixing a particular random seed. We adopted
stepwise forward algorithm (p value < 0.05) to select the genes from HHO that significantly
and substantially affect the PD-L1 expression level, denoted by Y in the following formula:

YZbQ +b1X] +b2X2+‘.. +ann/

where X, represents the expression level of the nth selected gene and by, represents the
corresponding coefficient quantifying its effect on PD-L1 expression. The selected genes
are denoted by PD-L1 regulator genes.

4.7. Survival Analysis and PD-L1 Inhibitor Response Prediction

Kaplan Meier plotter (KM plotter; http:/ /kmplot.com/analysis/ as of 21 December
2022) is a survival analysis platform containing clinical data and gene expression data with
survival information from GEO, EGA, and TCGA databases. We plotted survival curves
and calculated risk ratios for log-rank p values and 95% confidence intervals for each of PPI
hub genes and PD-L1 regulator genes in cancer patients. The patients were stratified into
higher and lower expression groups based on the median expression level of each gene
before PD-L1 inhibitor treatment.

The ROC plotter (https:/ /www.rocplot.org/ as of 23 December 2022) is a tool that
enables the identification of predictive biomarkers based on gene expression using tran-
scriptomic data from many cancer patients. It was used to evaluate the ability of expression
level of each of the PPI hub genes and PD-L1 regulator genes in predicting the response to
the PD-L1 inhibitor based on 454 pan-cancer patients in the database.

In addition, we performed KEGG pathway enrichment analysis with the criteria of
FDR < 0.05 for the union of PPl hub genes and PD-L1 regulator genes in the ShinyGo 0.76.3
platform (http:/ /bioinformatics sdstate.edu/go/ as of 1 January 2023).

5. Conclusions

Overall, a comprehensive bioinformatics analysis of hypoxia-induced PD-L1 inhibitor
resistance in HCC was performed and revealed that genes such as TPX2, NDC80, POLE2,
GABARAPLI1, and PIK3R1 may be involved in the PI3K-AKT signaling pathway and play
an essential role in the pathological and physiological processes of hypoxia-induced PD-L1
inhibitor resistance. The results of this study may provide potential therapeutic targets
and deepen the understanding of the underlying mechanisms of hypoxia-induced PD-L1
inhibitor resistance.
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EGR?1; PER1; USP36; DUSP1; MAFF; FOSB;

FOS; ALOXE3

RNAseq_Auto

matic_GEO_Signatures

Human_Up

RNAseq_Auto

matic_GEO_Signatures

_Human_Up

RNAseq_Auto

matic_GEO_Signatures

_Human_Up

Table S1. RNAseq GEO Signatures Human enrichment analysis of HSGs and

HRGs.

' *Represents duplicate genes in HSGs and HRGs
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Table S2. The multiple regression model identified 14 effector genes affecting
the PD-L1 expression: Coefficient associated with the expression level of effector

gene, the corresponding t-score and p-value.

Effector gene Co-efficient, b t p
const 0.076 1.897 0.059
DLGAP5 0.443* 36 3.636x10"
NDC80 0.41% 3.292 0.001
LMNB1 0.317* 3.062 0.002
FAM13A 0.261 5.893 8.770x10°
FOS 0.24 5.369 1.434 x107
GABARAPL1 0.23 4.595 6.004x10°
PIK3R1 0.145 257 0.01
EPHA2 0.121 2.503 0.01
NEDD4L -0.096 -2.008 0.045
CABYR -0.123 -2.971 0.003
HGFAC -0.15 -3.599 3.652x10"
ALDH5A1 -0.264 -5.006 8.740 x107
KIF20A -0.418*% -3.472 5.803x10™
TPX2 -0.434* -3.156 0.002

! *Represents PD-L1 regulator genes with the top five coefficient magnitudes

Table S3. Kaplan—Meier survival analysis and ROC of hub genes and PD-L1

regulator genes of hepatocellular carcinoma
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Respons

Gene name  Hub gene  Regression OS PD-L1 RFS PFS DSS PD-L1 ink
CCNB1 " 0.3 1.2 x10™"* 6.9x10" 5.3x107%* 0.3
BUB1B . 0.33 0.014*% 11107 1.2 510™* 0.33
KIF4A e 0.85 0.005* 2.6x10"* 1.7 %107 0.37

KIF11 A 0.51 6.8x 10 * 2.6x10°* 4.0x10"* 0.24
CENPA* J 0.094 0.009* 0.001* 415107 0.22
POLE2* i 0.081 0.77 0.087 0.029* 0.027
KIF20A* ' s 0.14 2.7 x107* 1.8 x 10™* 1.6 x107* 0.22
NDC80* s " 0.024* 0.017* 0.003 0.004* 0.07¢

TPX2* , a 0.03*% 0.001* 6.6x10"* 6.8x10"* 0.28
DLGAP5* S s 0.54 0.006* 1.0 x 107 1.4 %107 0.38

FOS " 0.2 0.47 0.67 071 0.26

FAM13A a 0.92 0.8 0.87 0.77 0.08
ALDHS5A1 s 0.35 0.13 0.033* 0.023* 0.31
GABARAPL1* a 0.096 0.23 0.007* 0.002* 0.016
CABYR " 0.17 0.07 0.089 0.1 0.15
PIK3R1* s 0.74 0.05* 0.13 0.007* 0.04
HGFAC " 0.52 0.023* 0.026* 0.14 0.26
LMNB1* - 0.1 0.03* 0.002* 0.018% 05
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EPHA2 ' 0.88 0.12 0.051 0.22 0.12

NEDD4L " 0.36 0.68 0.91 0.7 0.4

! *Represents hub genes and PD-L1 regulator genes with the top five coefficient
magnitudes
RFS: Relapse-Free Survival; PFS: Progression-Free Survival, DSS:

Disease-Specific Survival

Group
10 Non-Tumor Tissue
5 [ Tumor Tissue

Figure Sla Heatmap for HSG expression levels
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Anoxia
Normoxia

Figure S1b Heatmap for HRG expression levels
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HRGs up-regulated in “microtubule cytoskeleton
organization involved in mitosis”
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Figure S2 Bar chart of expression profiles of HRGs up-regulated in “microtubule cytoskeleton

organization involved in mitosis”
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Hypoxia-related genes and PD-L1 inhibitor resistance in hepatocellular carcinoma.

Huang Mohan, Wing Chi Chan; Health Technology and Informatics, Hong Kong, Hung Hom, Hong Kong; Health Technology and Informatics, Hong Kong, Hong Kong

Background: PD-L1 inhibitor in combination with anti-angiogenic drug has become the first-
line treatment strategy for unresectable hepatocellular carcinoma (HCC). However, PD-L1
inhibitor resistance remains an essential issue in treating HCC. It has been proved in the tumor
microenvironment that hypoxia-induced increase in PD-L1 expression makes a significant
impact on drug resistance. Methods: Two public datasets of gene expression profiles (GSE
14520 and GSE 4166 6) from the Gene Expression Omnibus (GEO) database were analyzed using
bioinformatics: (1) HCC tumor versus adjacent normal tissue (N = 214) and (2) normoxia versus
anoxia of HepG2 cells (N = 6). HCC-signature and hypoxia-related genes were identified as the
differentially expressed genes (DEGs). Gene set enrichment analyses (GSEA) were performed on
the DEGs. Furthermore, multiple regression analysis on the TCGA-LIHC dataset (N=371) and
construction of the protein-protein interaction (PPI) network were performed to investigate
potential PD-L1 regulatory genes and hub genes. Results: A total of 52 genes overlapped in
HCC-signature and hypoxia-related DEGs. Five genes were identified by GSEA as being
concurrently associated with the PD-L1 expression pathways. Multiple regression analysis
results showed 14 potential PD-L1 regulatory genes. Ten hub genes were identified in the PPI
network. Finally, three genes (DLGAP5, KIF204, and TPX2) were found in common and may be
regulatory genes affecting PD-L1 expression. Conclusions: In conclusion, our study provides
new insights into the potential hypoxia-related mechanisms of PD-L1 inhibitor resistance and
contributes to exploring new therapeutic strategies for treating unresectable HCC. Research
Sponsor: None.

') Check for updates
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Machine learning identification of hypoxia-related genes and prognostic risk-
scoring model for effective survival stratification in hepatocellular carcinoma.

Huang Mohan, Wing Chi Chan; Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, Hung Hom, Hong Kong; Department of

Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong, Hong Kong

Background: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related
mortality globally, where treatment and prognostic assessment have important implications in
clinical practice. Hypoxia, as a common feature within solid tumors, can directly change the
tumor microenvironment, which affects the efficacy of cancer treatment and prognosis. In this
study, we constructed and validated a hypoxia-based prognostic model using bioinformatics
and machine learning. Methods: Two public datasets, GSE14520 and GSE41666, were collected
from the Gene Expression Omnibus: (1) HCC tumor tissues compared to adjacent normal tissues
(N = 214) and (2) HepG2 cells under normoxic and hypoxic conditions (N = 6). Differential
expression analysis was performed to identify HCC characteristic genes and hypoxia-related
genes, including their common genes (HCC-Hypoxia Overlap genes, HHOs). Using RNA-seq
data of HCC patients (N = 367) from the TCGA Liver Cancer (LIHC) database, univariate Cox
regression models were identified, and the Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm selected hypoxia-characteristic genes for the multivariate survival model. A
hypoxia-related risk score was calculated based on the model of these characteristic genes and
dichotomized cases into high-risk (HR) and low-risk (LR) groups. The model was validated
using liver cancer cases (N = 232) from the International Cancer Genome Consortium database
(ICGC-LIRI-JP). Results: Through differential expression analysis of the two datasets, we
identified 52 HHOs. Univariate Cox analysis of these HHOs indicated that 21 genes were
significantly associated with HCC patient survival. Through LASSO regression analysis, a total
of 9 characteristic genes, including CENPA, KIF20A, DLGAP5, HMMR, UPB1, AFM, CABYR,
PHLDA2, and N4BP2L1 were ultimately retained in the survival model. Based on these 9 genes,
TCGA-LIHC samples were classified into HR and LR groups, and Kaplan-Meier (KM) analysis
revealed significant differences in survival outcomes (p < 0.032). Risk scoring of the ICGC-
LIRI-JP validation set classified samples into HR and LR. KM analysis showed that the survival
times of patients in the HR group were significantly shorter than those in the LR group (p <
0.0001). Receiver Operating Characteristic Analysis analysis of the survival model showed area
under the curve values of 0.815, 0.774, and 0.771at 1, 2, and 3 years, respectively, demonstrating
high performance in risk stratification. Conclusions: This study established a prognostic risk-
scoring model based on 9 characteristic genes associated with hypoxia. This model can effec-
tively stratify risks among HCC patients and demonstrate excellent performance in predicting
survival. These findings may offer new biomarkers and therapeutic targets for the personalized
treatment of HCC. Research Sponsor: None.

'l) Check for updates
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