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Abstract 

Background: Radiomics has shown promise in cancer diagnosis and treatment 

decision making. However, the reliability of radiomic features and models remains a 

critical challenge. While feature repeatability has been extensively studied, the 

relationship between feature stability and model reliability is not well understood. 

Furthermore, understanding feature repeatability across imaging and data modalities 

and its relationship with image characteristics is essential for developing robust clinical 

prediction tools. Current research lacks comprehensive evaluation of feature 

repeatability across different imaging scenarios, its systematic correlation with image 

properties, and how feature reliability translates to model stability. 

Purpose: This thesis systematically investigates feature repeatability and its impact on 

radiomics modeling through multi-institutional multi-modality analysis in head and 

neck cancer. The research encompasses three primary objectives: 1) to systematically 

quantify and compare feature repeatability across CT and MRI modalities in 

nasopharyngeal carcinoma, 2) to compare the feature repeatability in CT radiomics and 

dosiomics features and elucidate the relationships with image characteristics, 3) to 

validate the beneficial impact of feature repeatability on model performance and 

reliability through multi-institutional analysis. 

Methods and Materials: A multi-institutional investigation of radiomics feature 

repeatability was conducted across three retrospective cohorts totaling 2,053 patients 

and nine institutions. Three imaging modalities were utilized including computed 
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tomography (CT), magnetic resonance imaging (MRI), and radiation dose maps. The 

study collected pre-treatment CT images of head-and-neck cancer patients from seven 

institutions via The Cancer Imaging Archive (TCIA), CT and MRI data of 

nasopharyngeal carcinoma patients from Queen Elizabeth Hospital (2012-2016), and 

planning CT and dose distributions of cervical cancer patients (2012-2022) from Peking 

University Third Hospital. A comprehensive perturbation framework was implemented 

to evaluate feature robustness, incorporating geometric transformations (rotation: ±20°, 

translation: 0-0.8 pixels) and contour randomization through deformation vector fields. 

Radiomics features were extracted using PyRadiomics, encompassing first-order 

statistics, morphological metrics, and texture characteristics derived from original, 

Laplacian-of-Gaussian, and wavelet-decomposed images. Feature stability was 

quantified using intraclass correlation coefficients (ICC), with stratified thresholds (0-

0.9) for repeatability assessment. The impact of feature reliability on model 

performance was evaluated through internal cross-validation and external institutional 

validation using Cox proportional hazards regression. Model discrimination was 

assessed via concordance indices (C-index), while risk stratification significance was 

determined through Kaplan-Meier survival analysis. For the cervical cancer cohort, 

comparative analyses between radiomics and dosiomics feature stability were 

conducted across multiple regions of interest, providing insights into data modality-

specific feature robustness. All feature extraction algorithms were implemented using 

standardized computational frameworks adherent to the Image Biomarker 

Standardization Initiative. 
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Results: Quantitative assessment of feature stability across imaging modalities 

demonstrated superior repeatability in shape-based features (mean ICC: 0.92, 95% CI: 

0.89-0.94), with MRI-derived radiomic features exhibiting significantly higher stability 

compared to CT-derived features (86.8% vs 42.3% features achieving ICC>0.9, 

P<0.001). In the comparative analysis of CT-radiomics and dosiomics features in 

cervical cancer specimens, CT radiomic features demonstrated superior repeatability 

metrics (mean ICC: 0.81, 95% CI: 0.78-0.84) compared to dosiomics features (mean 

ICC: 0.67, 95% CI: 0.63-0.71), particularly in features extracted from rectum and 

femoral ROIs (mean ICC: 0.85, 95% CI: 0.82-0.88). Feature repeatability demonstrated 

strong correlations with image characteristics, specifically entropy (r=0.76, P<0.001), 

uniformity (r=-0.72, P<0.001), and variance (r=0.74, P<0.001) across all modalities.  

The integration of highly repeatable features (ICC ≥ 0.9) consistently enhanced 

prognostic model performance across different head and neck cancer datasets, 

demonstrating improved validation metrics (ΔC-index: +0.02 to +0.05, P<0.01) and 

enhanced model generalizability. Notably, stringent repeatability criteria effectively 

mitigated performance degradation in heterogeneous datasets, suggesting that feature 

stability is crucial for robust model development. 

Conclusions: Our work presents a comprehensive investigation of radiomic feature 

reliability across multiple imaging and data modalities and institutions in head and neck 

cancer patients. Through our rigorous multi-institutional analyses and systematic 

evaluation of feature stability patterns, we characterized the intrinsic relationships 

between image characteristics and feature repeatability and developed a robust 
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framework for reliable radiomics modeling. Our findings demonstrate that pre-

screening and incorporation of high-reliable features significantly enhances model 

performance and generalizability, advancing the theoretical and practical foundations 

of radiomics. Our work establishes a methodological framework for developing more 

reliable radiomics models and facilitates their translation into clinical practice. 
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The advent of radiomics represents a significant advancement in precision medicine, 

leveraging machine learning algorithms to elucidate the complex relationships between 

cancer imaging phenotypes and their corresponding genotypes or clinical outcomes [1, 

2]. This burgeoning field, which has witnessed exponential growth in scholarly 

publications [3], employs sophisticated computational analyses of medical imaging 

modalities, including computed tomography (CT), magnetic resonance imaging (MRI), 

and positron emission tomography (PET), to extract and analyze hand-crafted features 

that characterize tumor heterogeneity [4]. While radiomics has demonstrated 

remarkable potential in tumor characterization, diagnostic assessment [5], and 

treatment outcome prediction [6], thereby enhancing clinical decision-making 

processes [7], the translation of radiomic models from research laboratories to clinical 

practice faces substantial challenges regarding reliability and generalizability. This 

study addresses these critical limitations through the implementation of simulated 

perturbations, aiming to enhance the robustness and broader applicability of radiomic 

models in clinical settings. 

Medical imaging has traditionally relied on qualitative visual assessment, leaving 

vast amounts of potentially valuable data unexplored. Radiomics has emerged as an 

innovative analytical framework that combines the prefix 'radio-' (medical imaging) 

Chapter 1. Literature Review 

1.1. Introduction 

1.2. Clinical Value of Radiomics 
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with '-omics' (comprehensive characterization), representing a paradigm shift in how 

we analyze medical images. This approach integrates sophisticated feature extraction 

methodologies with advanced machine learning algorithms to unlock previously 

inaccessible insights from imaging data [8]. 

The radiomics workflow consists of two fundamental components: high-

dimensional feature extraction and computational analysis [9]. During feature 

extraction, medical images are transformed into large-scale quantitative datasets, 

capturing subtle patterns and characteristics that may escape visual detection. These 

extracted features are then analyzed using machine learning algorithms [10], which can 

identify complex patterns and relationships within the data to generate predictive 

models. 

Consider a common clinical scenario: two lung cancer patients with matching TNM 

staging, histological profiles, and similar ages may experience significantly different 

outcomes (Table 1). This observation highlights the limitations of conventional 

prognostic factors in capturing the full complexity of disease progression. The untapped 

potential within medical imaging data may hold the key to explaining such divergent 

outcomes. 

A landmark study demonstrated that tumors exhibit distinct phenotypic 

characteristics that can be captured non-invasively through medical imaging [11]. 

These phenotypic differences manifest in various ways, including tumor morphology, 

density distributions (measured in Hounsfield units), and textural patterns, as illustrated 

in Figure 1. By quantifying these characteristics through radiomics analysis, 
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researchers can potentially identify novel patient subgroups and optimize treatment 

strategies accordingly. 

The synergy between radiomics and machine learning algorithms, such as decision 

trees, enables the transformation of complex imaging data into clinically actionable 

insights. This approach aligns with the growing emphasis on precision medicine, 

offering a data-driven pathway to personalized treatment strategies based on 

comprehensive imaging analysis. Radiomics thus represents a promising avenue for 

advancing precision oncology by extracting and analyzing the wealth of information 

embedded within medical images. 

This quantitative imaging analysis framework has gained significant traction in 

radiology and radiation oncology [1], offering a systematic approach to mining 

previously underutilized imaging data. By enabling the high-throughput extraction of 

quantitative features from routine medical imaging, radiomics has the potential to 

enhance clinical decision support systems and improve patient care through more 

precise characterization of disease states. 

  



 

4 

 

Table 1. An example of inadequate biomarkers for predicting survival based on clinical 

characteristics in non-small cell lung cancer (NSCLC) patients is illustrated by two 

individuals who, despite being of similar age, having the same TNM staging, histology, 

and gender, experienced different survival outcomes. Traditional clinical characteristics 

failed to provide consistent risk stratification between these two patients. 

ID Age T N M 
Overall 

Stage 
Gender 

Survival 

(days) 

Survival 

Status 
 

1 71 4 3 0 IIIb female 2119 alive  

2 62 4 2 0 IIIb female 261 dead  
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Although radiomics has demonstrated remarkable potential in oncology with an 

exponential increase in publications, the reliability of radiomic models remains a 

fundamental challenge [12]. The radiomics workflow begins with the quantification of 

features from medical images within regions of interest (ROIs) using predefined 

mathematical formulations [13, 14]. This quantification process is inherently 

susceptible to variations in both image acquisition and ROI delineation, with multiple 

sources of variability introduced throughout the radiomics workflow, from image 

acquisition to processing. 

The importance of reliability in radiomics has been recognized since the field's 

inception. Early pioneering studies in radiomics intentionally utilized test-retest 

datasets, such as RIDER Lung CT [15], to evaluate feature repeatability and 

reproducibility. However, the practical limitations of medical imaging, including 

radiation exposure concerns in CT and PET, and the time-intensive nature of MRI 

acquisitions, have restricted the widespread collection of test-retest data. Moreover, the 

precision of radiomic feature values is influenced by numerous factors, including 

imaging protocols and acquisition parameters. 

Recent years have seen intensive investigation into the repeatability and 

reproducibility of radiomics features. Factors affecting feature reproducibility, such as 

imaging protocols and acquisition parameters, have been categorized as controllable 

factors [16], suggesting they could theoretically be minimized through standardized 

1.3. Challenges in Radiomics Workflow 
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protocols. However, achieving such standardization across different institutions 

remains challenging, as these variations typically do not significantly impact routine 

clinical imaging interpretation. 

The radiomics workflow encompasses several distinct steps (Figure 1), each 

presenting unique challenges. These steps include: 1. image acquisition and 

reconstruction, 2. ROI segmentation, 3. feature extraction, and 4. radiomic modeling. 

Understanding and addressing the variations introduced at each step is crucial for 

developing reliable and generalizable radiomic models. 
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Figure 1. The comprehensive radiomics workflow encompasses multiple sequential 

steps: image data acquisition, three-dimensional volume reconstruction, region of 

interest (ROI) segmentation, feature extraction, and machine learning-based modeling. 

Each step introduces potential sources of variation that may significantly impact the 

reproducibility and repeatability of extracted features and ultimately affect the 

consistency of radiomic model outputs. These variations represent critical challenges 

that must be addressed to ensure reliable and generalizable radiomic models in clinical 

applications.  
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1.3.1. Challenges in Image Acquisition and Reconstruction 

Contemporary radiomics research primarily employs CT, MR, and PET modalities 

for image acquisition and reconstruction. However, the standardization of imaging 

protocols demonstrates significant heterogeneity across institutions. While these 

protocol variations may not substantially impact conventional diagnostic interpretation, 

they significantly affect radiomic analyses due to the voxel-level quantification inherent 

in radiomics [17]. Such variations modulate image noise and texture characteristics, 

potentially resulting in inconsistent predictions when validating radiomic models across 

different institutional datasets. Moreover, reconstruction algorithms can substantially 

affect image quantification and subsequent model performance [18]. 

The development of institution-independent features represents a crucial foundation 

for building generalizable models across institutions. A comprehensive investigation 

employed a phantom study across 17 CT scanners with varying manufacturers and 

thoracic imaging protocols, demonstrating significant variations in radiomic features 

under different acquisition parameters [19]. However, most studies remain limited to 

single tumor sites and imaging modalities, leaving uncertainty regarding feature 

reliability generalizability across different datasets of interest. Notable studies include 

a multi-center and multi-vendor investigation examining feature reliability using 

apparent diffusion coefficient (ADC) maps [20], and research evaluating radiomic 

feature reproducibility and repeatability in T2-weighted MRI of cervical cancer patients 

across three distinct settings [21]. These investigations have provided thorough 

analyses of acquisition parameters' impact on radiomic features and documented 
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comprehensive feature reliability metrics. 

A comprehensive review of literature pertaining to image acquisition and 

reconstruction is presented in Table 2. Analysis of 21 publications revealed systematic 

investigations into the effects of inter-scanner variability, test-retest reliability, image 

acquisition parameters, and reconstruction algorithms on radiomics feature 

reproducibility. A consistent finding across these studies indicated that texture features 

demonstrate greater susceptibility to variations in image acquisition and reconstruction 

compared to intensity (first-order) features. 

However, significant limitations exist in translating these findings to clinical-

oriented investigations. The primary challenge lies in quantifying feature reliability and 

incorporating it effectively into feature selection processes for clinical applications. 

While seminal work established a methodology utilizing feature reliability and outcome 

relevance indices for feature ranking, two major constraints persist. First, the majority 

of studies failed to provide comprehensive tabulation of reproducibility indices for 

individual features. Second, the requirement for scanner access presents a substantial 

barrier for many research groups, limiting their ability to conduct independent feature 

reliability assessments. These limitations underscore the need for more accessible and 

standardized approaches to feature reliability assessment in clinical radiomics research. 
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Table 2. The literature examining the image acquisition and reconstruction in CT and 

MRI. (FO – First Order Feature, TA – Texture Analysis) 

Author Disease 
Modality 

Investigated 
Sources of variation 

Feature 

Categories 

Cabini,2022 [22] 
 

Lung CT Image acquisition parameters Shape, FO, TA 

Carbonell,2022 

[23] 
Liver MR 

1.Test-retest repeatability 

2. Inter-scanner 

3. Inter-observer segmentation 

Shape, FO, TA 

Chen,2021 

[24] 
Hematoma CT 

1. Test-retest repeatability 

2. Image acquisition parameters  
FO, TA 

Chen,2022 
[25] 

Phantom CT 

1. Test-retest repeatability 

2. Scanning modes 

3. Inter-scanners 

FO, TA 

Crombe,2021 

[26] 
Abdomen MR T2-w acquisition methods FO, TA 

Emaminejad,2021 

[27] 
CA Lung CT 

1. Dose level variation 

2. Reconstruction kernel 

3. Slice thickness variation 

FO, TA 

Euler,2021 
[28] 

Phantom CT 

1. Image acquisition parameters 

2. Radiation dose  

 3. DECT approach 

Shape, FO, TA 

Fiset,2019 

[21] 
Cervix MR 

1. Test-retest repeatability 

2. Acquisition protocols 
3. Inter-observer segmentation 

Shape, FO, TA 

Gao,2022 

[29] 

Pulmonary 
nodules  

Lung 

CT 
1. Radiation dose 

2. Reconstruction kernels 
Shape, FO, TA 

Granzier,2022 
[30] 

Breast  MR Test-retest repeatability FO, TA 

Ibrahim,2021 

[31] 

HCC 

Liver 
CT Imaging phases Shape, FO, TA 
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Ibrahim,2021 
[32] 

Phantom CT 
1. Inter-scanners 

2. Scanning parameters 
Shape, FO, TA 

Lee,2021 

[33] 
Phantom MR 

1. MRI scanning protocols parameters 

2. Scanner types 
FO, TA 

Lennartz,2022 

[34] 
Phantom DECT Inter-scanners FO, TA 

Mahon,2019 
[35] 

NSCLC 
Lung 

4DCT,   
MR 

Test-retest repeatability FO, TA 

McHugh,2021 

[36] 

Colorectal 
Cancer 

Liver 

Metastases 

MR 

1. MR sequences 

2. Pre- and post-contrast 
3. Image normalization 

Shape, FO, TA 

Meyer,2019 

[37] 

Metastatic 
liver 

lesions 

CT 
1. Radiation dose  

2. Reconstruction settings 
Shape, FO, TA 

Mitchell-

Hay,2022 

[38] 

Brain MR 
1. Inter-scanner 

2. Test-retest repeatability for weeks 
FO, TA 

Reiazi,2021 

[39] 

Oropharyng

eal Cancer 

Oropharynx 

CT Inter-scanners Shape, FO, TA 

Rinaldi,2022 

[40] 

NSCLC 

Lung 
CT 

1. Tube voltage, scanner model 

2. Reconstruction algorithm 
Shape, FO, TA 

Alis,2020 
[41] 

Heart MR 

1. Inter-observer reproducibility of 

radiomics features 

2. Cardiac cycle 

FO, TA 
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1.3.2. Challenges in Segmentation 

ROI delineation constitutes a fundamental component in radiomics methodology, 

particularly in determining the precise boundaries for subsequent feature extraction. 

Contemporary radiation oncology studies predominantly focus on delineating the 

visible or gross tumor volume (GTV) [42]. Although expert manual contours by 

radiation oncologists serve as the reference standard, this methodology presents 

inherent challenges, including substantial time requirements and susceptibility to 

delineation variability. As demonstrated in Figure 2, significant variations exist in 

GTV delineation among oncologists analyzing prostate cancer CT images, leading to 

potential inconsistencies in subsequent radiomic feature calculations[43]. 

Alternative approaches utilizing computational methods for tumor volume 

delineation have demonstrated promising results regarding consistency and operational 

efficiency. Notable research has documented superior feature stability using automated 

approaches compared to manual delineation in non-small cell lung cancer cases [44]. 

However, automated segmentation methodologies face significant constraints. Their 

efficacy is primarily demonstrated in anatomically distinct regions with high contrast 

differentiation, such as pulmonary or prostatic malignancies. More challenging 

anatomical sites, particularly head-and-neck carcinomas (HNC), where structural 

complexity is heightened, continue to demonstrate inferior performance compared to 

expert manual delineation, thus restricting their widespread clinical adoption. 
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Figure 2. Inter-observer variability in penile bulb delineation is illustrated through CT 

image examples from two patients. The central axial slices demonstrate how manual 

segmentation of the penile bulb varies significantly when performed by different 

oncologists [43]. This comparison highlights the inherent challenges and 

inconsistencies in organ delineation even among experienced clinicians. The images 

are reproduced from previous publications with appropriate permissions and no 

copyright conflicts.  
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Assessment of radiomic feature stability under segmentation variability has been 

approached through multiple methodologies. Inter-observer and intra-observer 

reproducibility studies have evaluated feature robustness using multiple delineations, 

either from different oncologists or repeated segmentations by the same observer. To 

address the resource-intensive nature of traditional reproducibility assessments, 

Zwanenburg et al. introduced an innovative super-voxel methodology for estimating 

potential segmentation variations [45]. However, these approaches present notable 

limitations: they fail to account for inherent image variations, and in the case of manual 

segmentation studies, the substantial resource requirements pose significant challenges 

for widespread implementation in research settings. Furthermore, the labor-intensive 

nature of multiple-observer studies may impede their practical application in larger-

scale investigations. 

Table 3 summarizes 12 studies that investigated feature reproducibility in relation 

to segmentation variability. While most research primarily examined the impact of 

inter-observer variability on radiomic features, some also explored intra-observer 

variability. Only a small number of studies combined the analysis of inter-observer 

variability with test-retest imaging. These studies share similar limitations as discussed 

in section 1.3.1: many failed to provide explicit quantitative results, and their findings, 

often tied to specific clinical contexts, are not directly transferable to other radiomic 

studies. Additionally, conducting inter-observer variability analysis for radiomic 

features requires substantial manual effort, making it impractical for routine 

implementation in every radiomic study. 
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Table 3. Literatures investigating the impact of segmentation variability on radiomic 

feature reproducibility and repeatability. 

Author Site Modalities Sources of variation Feature category 

Bianconi, 2021 

[45] 
Lung CT 

1. Inter-observer variability 

2. Image quantization method 
FO, TA 

Carbonell, 2022 

[23] 
Liver 

T1-w MR, 

T2-w MR, 

ADC 

1. Inter-scanner 

2. Inter-observer segmentation 
Shape, FO, TA 

Chen, 2021 

[46] 
CA Cervix DWI 

1. Inter-observer segmentation 

2. Intra-observer segmentation 
Shape, FO, TA 

Duan, 2022 

[47] 

HCC 

Liver 

CT, T1-w 

MR, T2-w 
MR 

Inter-observer segmentation FO, TA 

Granzier, 2020 

[48] 
Bresat 

DCE T1-w 

MR 
Inter-observer variability Shape, FO, TA 

Haniff, 2021 

[49] 

HCC 

Liver 
T1-w MR Segmentation method  Shape, FO, TA 

Jensen, 2021 

[50] 
Phantom 

CT, T1-w 
MR, T2-w 

MR 

ROI Size FO, TA 

Kocak, 2019 

[51] 
Kidney CT 

1. Inter-observer segmentation 

2. Intra-observer segmentation 
FO, TA 

Müller-Franzes, 
2022 

[52] 

Lung, 

Liver, 

Kidney, 
Brain 

CT, FLAIR 

MR 

1. Inter-observer segmentation 

2. Intra-observer segmentation 
Shape, FO, TA 

Urraro, 2021 

[53] 

CA 

Prostate 

T2-w MR, 

ADC 
Inter-observer segmentation Shape, FO, TA 

Wang,2020 

[54] 
Stomach CT 

1. Intra-observer segmentation  

2. Inter-observer segmentation 
Shape, FO, TA 
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1.3.3. Challenges in Image Preprocessing 

Following image acquisition and ROI delineation, radiomic feature extraction is 

implemented through several established platforms, including PyRadiomics, LIFEx, 

CERR, and IBEX. Research has demonstrated that feature reliability exhibits 

significant platform dependency, with computational parameters substantially 

influencing feature calculations [55]. Despite international efforts toward 

standardization of feature computation [56], challenges persist regarding parametric 

variables in feature extraction, including resampling methodologies, image 

interpolation algorithms, and magnetic resonance bias correction protocols. 

The Image Biomarker Standardization Initiative (IBSI), a collaborative 

international endeavor, has established standardized protocols for qualitative image 

feature definition and implementation, incorporating reference datasets for consensus 

calculations [56]. This comprehensive initiative, engaging 25 research teams utilizing 

diverse software platforms, achieved exceptional reproducibility in over 97% of 

investigated features. While this standardization significantly reduced inter-platform 

feature variability, notable limitations persist. Specifically, the IBSI framework does 

not encompass standardization protocols for filtered image features, including Log-

Gaussian and wavelet transformations, despite their demonstrated utility in radiomic 

investigations. These filtered approaches have shown significant predictive value in 

various radiomic applications, highlighting a critical area for future standardization 

efforts. 
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Table 4 presents a review of 10 studies examining the influence of image 

preprocessing on radiomic features. The majority of these studies investigated the 

effects of image discretization methods, while others explored normalization 

techniques, and a smaller subset analyzed the impact of image resampling approaches. 

Although these studies face similar limitations as discussed in Sections 1.3.1 and 1.3.2, 

replicating preprocessing variations is relatively more straightforward compared to 

studying image acquisition or region of interest (ROI) variability.  
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Table 4. Literatures investigating the impact of image preprocessing on radiomic 

feature reproducibility and repeatability.  

Author Site Modalities Sources of variation Feature category 

Duron,2019 

[57] 
Breast MR Image discretization methods TA 

Fornacon,2020 

[55] 

H&N  

Lung 
CT Different feature extraction platforms Shape, FO, TA 

Gao,2022 

[29] 
Lung CT Image preprocessing Shape, FO, TA 

Hoebel,2021 

[58] 

Glioblastoma 

Brain 
MR Pre-processing Methods Shape, FO, TA 

Li,2020 
[59] 

Phantom CT Image preprocessing parameters Shape, FO, TA 

McHugh,2021 

[36] 
Liver MR 

1. MR sequence 

2. Normalization 
Shape, FO, TA 

Moradmand,202

0 

[60] 

Glioblastoma 

Brain 
MR Intensity inhomogeneity correction Shape, FO, TA 

Scalco,2020 
[61] 

CA Prostate MR Image normalization techniques FO, TA 

Schwier,2019 

[62] 
CA Prostate MR 

1. Image normalization techniques 

2. Image discretization 
Shape, FO, TA 

Simpsons,2020 

[63] 

 Human+ 

Phantom 
MR Image discretization methods TA 
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1.3.4. Challenges in Modeling 

Radiomic modeling encompasses two fundamental components: feature selection 

and model construction. Feature selection aims to reduce dimensionality through dual 

criteria: maximizing outcome correlation while minimizing inter-feature redundancy. 

Model construction leverages advanced machine learning algorithms to optimize 

outcome prediction accuracy. 

Contemporary machine learning methodologies facilitate the extraction of clinically 

relevant information from radiomic features to support medical decision-making. 

However, model performance demonstrates significant sensitivity to both feature 

selection strategies and modeling methodologies. This phenomenon was notably 

documented by Parmar et al., who demonstrated variable model performance across 

unseen testing cohorts using different feature selection approaches and classification 

algorithms[64]. Despite this finding, comparative analyses of feature selection and 

modeling methodologies remain underrepresented in radiomic literature. The absence 

of universally optimal modeling approaches suggests dataset-specific optimization 

requirements [65]. 

It is crucial to distinguish between methodological variations in feature selection 

and model construction versus those encountered in image acquisition, reconstruction 

(section 1.3.1), segmentation (section 1.3.2), and preprocessing (section 1.3.3). While 

earlier workflow stages introduce variations in feature values, modeling methodology 
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variations manifest as differences in model performance metrics. This distinction is 

fundamental, as diverse feature selection approaches may emphasize different data 

characteristics, representing complementary rather than problematic methodological 

diversity. 

1.3.5. Summary of Current Challenge 

The clinical implementation of radiomic models necessitates consideration of 

output reliability within acceptable error margins for routine application. The radiomics 

workflow inherently incorporates multiple sources of variability at each 

methodological stage, representing a fundamental challenge in the field. This intrinsic 

vulnerability was recognized during the early development of radiomics, as illustrated 

in Figure 3, which demonstrates the cascade of variations throughout the workflow. 

Despite the exponential growth in radiomic literature, systematic evaluation and 

reporting of feature reliability have often been inadequately addressed by investigators. 

The absence of comprehensive reliability assessments for individual radiomic features 

presents a significant impediment to clinical translation. These persistent concerns 

regarding reliability and reproducibility have substantially decelerated methodological 

innovation in radiomics and constrained its potential for clinical implementation. 
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Figure 3. Sources of Variation Throughout the Radiomics Workflow 
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Despite the proliferation of radiomics research, significant challenges persist in 

developing robust and generalizable radiomic models for clinical applications. The 

absence of a standardized, resource-efficient methodology for assessing feature 

stability and model reliability across diverse imaging modalities and patient cohorts has 

impeded the translation of radiomics into clinical practice. 

Conventional approaches for evaluating radiomic feature reliability, such as test-

retest studies, are often impractical due to resource constraints and ethical 

considerations regarding additional patient radiation exposure. While alternative 

methods have been proposed, including the utilization of publicly available datasets or 

multi-observer segmentations, these approaches are limited in their generalizability or 

scope, and may not adequately capture the full spectrum of variability inherent in 

radiomics studies. 

The potential of simulation-based perturbation methods to evaluate feature 

reliability without additional image acquisition has been recognized in recent literature. 

However, the application of such methods in assessing comprehensive model reliability 

and enhancing model generalizability, particularly in the context of heterogeneous head 

and neck cancers across multiple imaging modalities, remains insufficiently explored. 

Furthermore, there is a dearth of comprehensive studies comparing the stability of 

Chapter 2. Research Objectives 

2.1. Research Gap 
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radiomics and dosiomics features in head and neck cancers. The potential synergy of 

these features for enhanced prognostic modeling warrants rigorous investigation, 

especially considering the complex interplay between tumor characteristics and 

radiation dose distribution in this anatomical region. 

While the significance of feature selection in radiomic modeling is well-established, 

there is a critical need for a systematic, data-driven approach to identify and eliminate 

low-reliability features prior to model development. The establishment of a robust, 

multi-institutional feature robustness databank to guide feature selection across 

different cancer types and imaging modalities represents a significant lacuna in current 

research. 

Additionally, the impact of feature reliability on model generalizability across 

diverse patient cohorts and institutional settings remains inadequately characterized. 

This knowledge gap hinders the development of radiomic models that can perform 

consistently across heterogeneous clinical scenarios, a prerequisite for widespread 

clinical adoption. 

The interplay between feature stability, model reliability, and clinical outcomes in 

head and neck cancers has not been thoroughly elucidated. Understanding these 

relationships is crucial for developing radiomics-based prognostic and predictive 

models that can meaningfully impact clinical decision-making. 

Addressing these research gaps is imperative for advancing the field of radiomics 

and facilitating its integration into evidence-based clinical workflows. There is a clear 
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exigency for a comprehensive, multi-faceted framework that can rigorously assess 

feature stability, guide judicious feature selection, and substantially improve model 

reliability and generalizability across different head and neck cancer subtypes and 

multimodal imaging paradigms.  

The primary aim of this research was to establish and validate a comprehensive 

methodological framework for quantifying and enhancing radiomic feature reliability 

through multi-institutional, multi-modality analysis in head and neck cancer. Utilizing 

three retrospectively collected cohorts comprising 2,053 patients, we implemented a 

systematic perturbation-based approach to investigate feature repeatability patterns 

across diverse imaging protocols and institutional settings. This investigation uniquely 

synthesizes multi-modal imaging data to elucidate the intrinsic relationships between 

feature stability, image characteristics, and model performance. Through rigorous 

statistical analysis and validation, we sought to develop robust strategies for optimizing 

model reliability and generalizability. To our knowledge, this represents the first 

comprehensive investigation integrating multi-institutional and multi-modality 

analyses to systematically evaluate the impact of feature repeatability on radiomics 

model performance, thereby establishing a theoretical and practical framework for 

advancing reliable radiomics toward clinical implementation. 

 

 

2.2. Research Aim 
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2.3.1. Objective 1: To systematically quantify and compare feature 

repeatability across CT and MRI modalities in nasopharyngeal 

carcinoma. 

We aimed to develop and evaluate a comprehensive framework using image 

perturbation to assess radiomics feature stability across different imaging modalities. 

Despite the radiomics community's recognition of feature stability importance, 

standardized methods for direct measurement across modalities have been lacking. Our 

study addresses this gap by providing a data-specific, practical method for evaluating 

feature reliability in nasopharyngeal carcinoma across CT and MRI modalities. The 

framework simulates variations in imaging and segmentation, quantifying feature 

stability through statistical measures. This approach offers a more practical alternative 

to resource-intensive test-retest methods, potentially advancing the field's ability to 

develop reliable and generalizable radiomic models. While our method shows promise, 

further validation against conventional approaches may be necessary to establish its 

efficacy in assessing radiomics feature reliability. 

2.3.2. Objective 2: To evaluate and compare the feature repeatability in 

CT radiomics and dosiomics features and elucidate the relationships 

with image characteristics through comprehensive perturbation 

analysis. 

This investigation aims to systematically assess and compare the stability of features 

2.3. Research Objectives 
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extracted from planning CT images and radiation dose maps in cervical cancer patients. 

Through the implementation of image perturbation and contour randomization 

methodologies, we seek to quantify feature repeatability across different organs at risk 

(OARs) and analyze their associations with underlying image and dose characteristics. 

By establishing the first comprehensive reference for dosiomics feature repeatability 

while simultaneously elucidating confounding factors affecting reproducibility, this 

study aims to develop robust guidelines for reliable feature selection in both radiomics 

and dosiomics analyses, ultimately advancing our understanding of their 

complementary roles in predictive modeling and facilitating the development of more 

reliable clinical prediction models. 

2.3.3. Objective 3: To validate the beneficial impact of feature 

repeatability on model performance and reliability through multi-

institutional analysis. 

This investigation aims to systematically quantify the impact of incorporating 

highly repeatable radiomics features on model performance and reliability through 

rigorous internal and external validation frameworks. Through the implementation of 

progressive ICC thresholds in feature selection and comprehensive analysis of their 

effects on model discrimination and generalizability across diverse head and neck 

cancer cohorts, we seek to establish the fundamental relationship between feature 

stability and model robustness. The study endeavors to demonstrate that the strategic 

prioritization of repeatable features in the modeling process enhances prognostic 

performance and strengthens the reliability of clinical predictions, with particular 
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emphasis on scenarios characterized by limited sample sizes, thereby advancing the 

development of more robust and clinically applicable radiomics models. 
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Medical imaging is widely used and has an important role in clinical oncology 

practice. Biomarkers based on medical imaging can be used for screening, staging, 

intervention planning, and treatment outcome prediction [11, 66-68]. In the current 

practice of manual evaluation of medical images, radiologists only semantically 

annotate a small number of clinically significant radiological features. Tumor 

phenotypes embedded in medical images may contain more information that cannot be 

easily processed by the naked eyes [68-71]. Radiomics is a computer-based technology 

for extracting and analyzing quantitative features from medical images. It surpasses the 

level of details available to the naked eyes and aims to automatically mark clinically 

significant tumor phenotypes [72]. 

There are potential pitfalls in radiomics analysis that could jeopardize the 

generalizability and robustness of established biomarkers. Several approaches have 

been proposed to reduce the risk of false discovery [73-75]. In particular, repeatability 

and reproducibility are the first and foremost criteria towards clinical utility. 

"Repeatability" refers to features that remain the same when imaged multiple times in 

the same subject. "Reproducibility" refers to features that remain the same when imaged 

Chapter 3. Assessment of Radiomics Feature Repeatability and 

Reproducibility and Their Generalizability Across Image 

Modalities by Perturbation in Nasopharyngeal Carcinoma 

Patients 

3.1. Introduction 
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using different equipment, different software, different image acquisition settings, or 

different processing settings. They should be incorporated into feature pre-selection 

strategy and downstream predictive model construction in any radiomic studies. On top 

of that, identifying the stability of radiomics features (RFs) across different image 

modalities will provide the radiomics community with direct perceptivity for selecting 

reliable radiomic features and building robust predictive models for implementing 

precision medicine. 

Efforts attempting to bridge this important gap in knowledge have been mainly 

focused on test-retest experiments [45, 76], which have considerable shortcomings. 

First, the impact of tumor segmentation variation is often missed in test-retest studies. 

However, tumor segmentation variability can propagate into significant variability in 

radiomics feature stability [77, 78]. Two published studies [49, 79] have shown that 

MR RFs displayed better stability than CT under segmentation variability. Additionally, 

the limited sample size owing to the need for recruiting consented patients renders their 

conclusions less statistically convincible. Last but not least, multi-modality and multi-

center based RFs stability study is ignored by the limited dataset. 

To address these limitations, we attempted to deploy our in-house developed 

perturbation(image perturbation and contour randomization) framework, taking 

reference from previous work by Zwanenburg et al [45], to mimic a vast amount of 

scanning position and tumor segmentation stochasticity via large patient cohorts of 

nasopharyngeal carcinoma (NPC) patients. Furthermore, we also compared the RF 

stability under perturbation across three imaging modalities, which is yet to be explored. 
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Accordingly, the objectives of this study are: (i) to ascertain the repeatability and 

reproducibility of radiomics features via perturbation; and (ii) to examine their 

generalizability across imaging modalities for NPC patients.  

3.2.1. Overview 

Fig. 4 illustrates the overall study workflow. An internal NPC cohort of 397 patients 

which consists of contrast-enhanced computed tomography (CECT), contrast-enhanced 

T1 weighted (CET1-w) MR, and T2 weighted (T2-w) MR were enrolled in this study. 

Each image modality dataset was processed through preprocessing, image perturbations 

(rotation and translation), contour randomization and RF extraction before stability 

evaluation. By comparing the RF stability between CT and MRI, we assess differences 

in RF stability performance across these imaging modalities. 

 

 

Figure 4. Overall Study Workflow. 

 

 

3.2. Materials and Methods 
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3.2.2. Patient Cohort 

A total of 397 biopsy-proven (Stage I-IVB) NPC patients who received cancer 

treatment at the Department of Clinical Oncology of Queen Elizabeth Hospital (QEH) 

between 2012 and 2016 were retrospectively screened, and 331 patients who had same-

institution MR images and eligible target contours were enrolled in the study.  

3.2.3. Image Acquisition & Image Preprocessing 

All imaging data were acquired in a Digital Imaging and Communications in 

Medicine (DICOM) format archived using Picture Archiving and Communication 

System (PACs). All the calculations were performed by our in-house developed 

Python-based (3.7.3) pipeline using the SimpleITK (1.2.4) [80] and PyRadiomics (2.2.0) 

package [9]. The detailed workflow is illustrated in Figure 5(a). For MR images, the 

signal intensity was normalized using the brainstem as a reference structure, and N4B 

bias correction from SimpleITK was employed for MRI inhomogeneity correction. 

3.2.4. Perturbation  

We designed the contour randomization as randomized deformation of the original 

contour. A randomized deformation vector field (DVF) is first generated, followed by 

normalization and gaussian smoothing controlled by the adjustable kernel size. The 

deformation field projection on the z-axis is kept constant for the same slice to mimic 

the slice-by-slice contouring. The final DVF is then scaled by a user-defined factor to 

control the intensity of the randomization. Finally, the original contour is deformed by 

the randomized DVF to acquire the randomized contour. The contour randomization 
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will be repeated multiple times, and radiomics features will be extracted from the image 

masked by the perturbed contours. 

Image perturbations and contour randomizations were both applied to each pair of 

the preprocessed original-resolution image and mask during isotropic (1 mm x 1 mm x 

1 mm) resampling after Gaussian anti-aliasing filtering. 

Two image perturbation modes, rotation (θ ∈ [-20˚, 20˚], step size = 5, around 

central z-axis) and translation (µ ∈  [0.00, 0.80], step size = 0.2, along all three 

dimensions) were implemented following the procedures proposed by Alex et al. [45] 

to mimic variations in scanning setup positions during image acquisition.  

The contour randomization intensity was tuned based on the resulting randomized 

contour Dice similarities and Hausdorff Distance. For one complete perturbation, the 

three image perturbation modes are applied to the original image simultaneously using 

one set of parameters chosen from the total of 125x5x4=2500 combinations. The 

contour was randomized independently in addition to the image perturbation. Choices 

of parameters for different patients were independent to generate the broadest range of 

perturbations with the minimum computational cost.  

3.2.5. Feature Extraction 

Feature computation was performed on the perturbed images using PyRadiomics. 

Before feature extraction, the perturbed images were preprocessed by isotropic 

resampling to 1 mm x 1 mm x 1 mm, and the pixel values were shifted by the same off-

set value of 2000 and further discretized into a fixed bin width of 5. In addition to 
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feature extraction on the original image, Laplacian-of-Gaussian (LoG) filters (Sigma 

values of 1, 2, 3, 4 and 6 mm) and coilf1 wavelet filters (HHH, HLL, LHL, LLH, LHH, 

HLH, HHL, LLL) were applied to yield advanced features. The entire set of radiomics 

features, except shape features, were extracted using the widely used Python package 

PyRadiomics. 

A total of 1288 features were computed for each image. The main groupings of 

texture analysis features were (1) First-order statistics based on pixel gray-level 

histograms, 18 features; (2) Shape metrics, 14 features; (3) Statistical features derived 

from texture matrices including gray-level co-occurrence matrix (GLCM), gray-level 

size zone matrix (GLSZM), gray-level dependence matrix (GLDM), gray-level run 

length matrix (GLRLM), neighboring gray tone difference matrix (NGTDM), 73 

features; (4) Statistical features derived from texture matrices in Laplacian-of-Gaussian 

(LoG) filtered domain, 455 features; and (5) Statistical features derived from texture 

matrices in wavelet filtered domains, 728 features. 

3.2.6. Statistical Analysis 

Feature stability was quantified using the intraclass correlation coefficient (ICC). 

Since the perturbation parameters were independently applied to images and masks of 

different patients, the lower 95% confidence interval of one-way, random, absolute ICC 

was employed to assess RF repeatability. The calculation was performed by our in-

house developed algorithm following the equations presented by McGraw et al[81]. In 

our study, median ICC values (mICC) under patient subsampling were adopted as the 

final metric for assessing RF stability to minimize the potential impacts of outlier 
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patients. In detail, all patients were partitioned into subgroups of 40 patients, which was 

repeated 20 times with shuffling, resulting in around 200 patient subgroups. Here, an 

ICC of ≥ 0.75–0.89 was considered good reproducibility and an ICC ≥ 0.90 was 

considered excellent reproducibility as recommended by Koo et al. [82]. 

To compare RFs repeatability performance in different image modalities under 

contour randomization, we adopted the pairwise Wilcoxon signed-rank test on the ICC 

value of RFs in each modality. The p-values of the statistical test for all the modalities 

were tabulated. The tests were one-sided, p-value <.05 was considered as significant. 

The Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) were used as 

evaluation metrics for the spatial overlap accuracy of the randomized contours for the 

perturbation images. A Dice Similarity Coefficient of 0 indicated no overlap and a value 

of 1 corresponded to exact overlap [83]. The Hausdorff Distance which is smaller than 

6mm is considered as good overlap accuracy. 

 

Figure 5. Detailed workflows of (a) radiomics feature extraction under perturbation 
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and (b) evaluation of its stability 

The Dice Similarity Coefficients and Hausdroff Distance were calculated 

respectively for the perturbed images on each patient. The Dice Similarity coefficients 

and Hausdroff Distance were 0.82 IQR [0.79, 0.85] and 3.2 mm IQR [3, 4.2]. 

 

Figure 6. One example of random displacement field of one slice on the three 

directions were shown in (a), where the original and the corresponding randomized 

contour were shown by the red and light green lines respectively. A total of 5 

randomized contours in changing colors were superimposed in (b). Similar variations 

3.3. Results 
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in manuals contours were observed, as shown in (c). 

The number of RFs that fell within either the "good" (0.9 > mICC ≥ 0.75) or 

"excellent" (mICC ≥ 0.9) category for each modality is presented in Table 5. All the 

shape metrics features fell into the "excellent" category in both CT and MRI. Overall, 

the CT-based RFs showed the fewest percentage with "excellent" category, 41.7% of 

all features. This contrasts with the MRI-based RFs from which 77.6% and 80.2% of 

features had "excellent" stability in CET1-w and T2-w respectively. Across all three 

imaging modalities, 1069 common features out of the total 1288 features (including all 

image domains) had a "good" mICC value ≥ 0.75, and 497 features had an "excellent" 

mICC value ≥ 0.9. 
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Table 5. Number of features(n) and percentage of their groups (%) which fall into the 

"excellent" category (mICC≥0.9) and "good" category (mICC≥0.75) for all features and 

distinct feature types (first-order, shape, texture, LoG filtered and Wavelet filtered) 

 CECT CET1-w T2-w 

n % n % n % 

All features (1288) 

mICC ≥0.9 537 41.7 1000 77.6 1033 80.2 

mICC ≥ 0.75 1086 84.3 1235 95.9 1229 95.4 

First-order (18) 

mICC ≥ 0.9 10 55.5 17 94.4 18 100 

mICC ≥ 0.75 16 88.9 18 100 18 100 

Shape Metrix (14) 

mICC ≥ 0.9 14 100 14 100 14 100 

mICC ≥ 0.75 14 100 14 100 14 100 

Texture (73) 

mICC ≥ 0.9 23 31.5 61 83.5 72 98.6 

mICC ≥ 0.75 69 94.5 71 97.3 72 98.6 

LoG (455) 

mICC ≥ 0.9 178 39.1 365 80.2 391 85.9 

mICC ≥ 0.75 400 87.9 444 97.5 440 96.7 

Wavelet (728) 

mICC ≥ 0.9 312 42.9 543 74.6 541 74.3 
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mICC ≥ 0.75 587 80.6 688 94.5 684 94 

 

 

Figure 7. 3D line chart illustrating the for the shape (n = 14), first-order (n = 18) and 

texture features (n = 73) derived from original image for CT and MR 

 

First-order and texture features were calculated in 13 image domains: the original 

image, 5 images with LoG filter with kernel sizes(1,2,3,4,6mm), and 8 images from the 

wavelet decompositions. To explore any variation in feature stability (mICC) by image 

domains, mICCs for the 18 first-order and 73 texture features were combined by image 

domain in Fig. 7. The mICCs from the features for the original image are included in 

the graph for comparison. 
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Figure 8. Boxplot of ICC distribution and p-value between each two modalities divided 

by different image modalities and filter categories. In each small cell, the three boxplots 

represent CT, T1 and T2 from left to right. The p-values below are calculated by CT-
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T1, CT-T2, and T1-T2 in turn. 

The CT RFs demonstrated significantly lower mICCs in most LoG-filtered image 

domains and Wavelet-filtered domains(p-value<0.01). However, in LoG-filtered 

domains, the percentage of stable MR RFs decreased from 94% to 77% and from 92% 

to 71% when the kernel size changed from 1mm to 6mm. Furthermore, the percentage 

of stable MR RFs ranges from 50% to 99% and from 97% to 55% under different 

wavelet decomposition filters. In particular, the CT and MR RFs exhibited similar 

stability in LoG-6mm and Wavelet-HHH domains (p-value > 0.1). 
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Radiomics has emerged as a means of image-based prognostication. Ensuring 

radiomic feature stability is imperative to the external generalizability of downstream 

predictive models. It is anticipated that this study could provide actionable insights in 

the selection of stable radiomic features by providing the information of feature 

repeatability and reproducibility of radiomic features across different imaging 

modalities. Specially, the two perturbation modes adopted mimicked the variation 

during image acquisition and tumor segmentation. The image perturbation aims to 

simulate unavoidable random positional variations during image acquisition. 

Meanwhile, contour randomization evaluates the random errors derived from manual 

tumor delineations in clinical scenario. 

Three conclusions can be drawn from this study. Firstly, shape features 

demonstrated the highest repeatability and reproducibility in all modalities. Shape 

features are generally reported as highly repeatable and reproducible in the literature 

and were shown to be less sensitive to CT segmentation variation in a phantom study 

[84]. Further, MRI-based shape features were found to be stable in test-retest of cervical 

cancer [85, 86]. A recent systematic review, mostly based on CT studies, concluded 

that shape features showed higher reproducibility than texture features [87]. 

Secondly, CT-based RFs are more sensitive to scanning position and tumor 

segmentation variation than MRI-based RFs. The MRI-based RFs were more stable 

3.4. Discussion 
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than CT-based RFs. Specifically, the number of repeatable features derived from CT 

was fewer than the other two modalities. Of the 537 stable features in CT, 92.5% was 

also stable in the other two modalities. Furthermore, the MRI-based RFs have 

overwhelming performance when comparing mICC to CT-based RFs with 86.8% and 

83.9% RFs with higher mICC from CET1-w and T2-w respectively. However, it is 

challenging to compare our findings to previous literatures as multi-modalities features 

were uncommonly studied, especially considering the variation in both image 

acquisition and ROI delineation. 

Thirdly, there is no substantial difference in feature stability between the original 

and filtered image domains. Wavelet and LoG-filtered images showed both better and 

worse reproducibility than the original images in the three modalities in this study. 

Similarly, Schwier et al. demonstrated no significant improvement in reproducibility 

with a certain LoG-filter or wavelet decomposition [88]. On the other hand, Timmeren 

et al. reported that wavelet features were less reproducible than the unfiltered image 

features in a test-retest scenario [89]. The number of stable RFs (mICC ≥ 0.9) derived 

from CECT increased from 24 (26.4%) to 55 (60.4%) when the kernel size changed 

from 1mm to 6mm in LoG-filtered image domains whereas this number decreased for 

MRI-based RFs, 78 (85.7%) to 67 (73.6%) in CET1-w and 81 (89%) to 72 (79.1%) in 

T2-w. Additionally, Fave et al. reported coarseness, gray length nonuniformity and run 

length nonuniformity as reproducible for NSCLC cone-beam CT [90]. Leijenaar et al. 

reported that GLCM and GLRLM were more reproducible than GLSZM, each of which 

encompasses at least one feature which appeared in our study as reproducible [91]. 
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We acknowledge limitations in our study. First, our perturbation algorithm may not 

fully mimic the variation in clinical scenarios owing to technical challenges in fully 

simulating all the variables. In recent studies, image acquisition, preprocessing, and 

feature extraction such as image acquisition setting and image reconstruction algorithm 

were shown to have more significant influence on RFs stability [92]. In addition, this 

was a single-institutional retrospective study that may not be representative of other 

institutions or patients. Despite the validation of the PyRadiomics platform, results may 

differ from other radiomic feature extraction platforms. Additionally, although we used 

commonly reported cut-offs from the literature for ICC categories (0.75 and 0.9), they 

may not represent the ideal thresholds for feature inclusion in prognostic models. 

Finally, considering the similar anatomic environment within head and neck cancer, 

further investigation of other cancer types (e.g., Oropharyngeal cancer) is warranted.  

Our work is the first study to intentionally scrutinize RF robustness disparity against 

scanning position and segmentation variations in multi-modality imaging datasets with 

big sample sizes. In conclusion, CT-based and MRI-based RFs of NPC were evaluated 

for their repeatability and reproducibility. Shape features emerged as the most stable 

both in CT and MRI. CT-based RFs displayed higher sensitivity against the scanning 

position and tumor segmentation stochasticity than MR-based RFs, highlighting the 

importance of careful feature selection for radiomics generalizability. The feature 

repeatability results identified by the rather conservative randomizations in this study 

can be used as the fundamental requirements for building reliable radiomic models in 

3.5. Conclusions 
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future studies.  

Chapter 4. Comparative Analysis of Repeatability in CT Radiomics 

and Dosiomics Features under Image Perturbation: A Study in 

Cervical Cancer Patients  

4.1. Introduction 

Cervical cancer poses a significant healthcare burden, underscoring the necessity 

for precise and individualized treatment approaches [93]. Texture analysis (TA) 

technology allows for the evaluation of spatial and statistical voxel intensity 

distributions within an image, thereby providing valuable information about patterns 

and voxel correlations [68]. In the context of cervical cancer, TA has demonstrated 

promising potential in improving diagnostic precision, predicting treatment response, 

and facilitating personalized treatment planning [93-96]. 

Radiomics has emerged as a critical component in tailoring personalized treatment 

strategies and monitoring treatment response by analyzing an extensive array of 

quantitative features extracted from medical images [9, 72, 97-99]. Chiappa et al. 

extracted radiomics features from the preoperative ultrasound images and developed 

machine learning models to accurately predict the malignancies of ovarian masses in 

the AROMA pilot study [100]. Promising performance of radiomics diagnosis was also 

reported by the same group in classifying the malignancies of uterine mesenchymal 

lesions [101]. Radiomics has also demonstrated potential in treatment response 

prediction, such as the neoadjuvant chemotherapy response for patients with cervical 
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cancer [102]. Dosiomics, a nascent field built upon principles developed in radiomics, 

focuses on extracting high-dimensional data from three-dimensional radiation dose 

distributions to aid in clinical decision-making [103]. The integration of dosiomics in 

radiation therapy has received significant attention due to its potential applications in 

modeling normal tissue complications, predicting radiation-induced toxicity, and 

forecasting tumor control outcomes [104, 105]. Dosiomics entails the quantitative 

evaluation of dosimetric parameters, including maximum dose, mean dose, and dose 

homogeneity, to comprehensively assess the spatial and dosimetric attributes of the 

tumor and surrounding tissues during radiation therapy. These features offer insights 

into the intricate details of dose distribution within the treatment region. Simultaneously, 

radiomics delves into the complexities of medical images, extracting texture, shape, 

and intensity features that furnish valuable information about tumor heterogeneity, 

microenvironment, and underlying molecular characteristics [106, 107]. 

Notwithstanding the potential advantages of dosiomic and radiomic features in the 

management of cervical cancer, it is imperative to conduct a comprehensive 

investigation into their stability. Variations in imaging acquisition protocols, 

encompassing variances in scanners, imaging parameters, and segmentation 

methodologies, have the potential to introduce inherent variability into the extracted 

features [108]. Furthermore, the presence of image noise, stemming from factors such 

as suboptimal image quality or motion artifacts, can significantly influence the stability 

and reproducibility of dosiomic and radiomic features [109]. Gaining a comprehensive 

understanding of the repeatability of dosiomics and radiomics features is crucial for 
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their successful integration into routine clinical practice [110]. This knowledge ensures 

the reliability and consistency of feature extraction, enabling accurate and robust 

analysis for tasks such as treatment response prediction, treatment planning 

optimization, and patient stratification [111, 112]. Ultimately, such insights have 

profound implications for improving treatment outcomes and optimizing personalized 

care for cervical cancer patients. While existing research has predominantly focused on 

the repeatability of radiomics features derived from CT and MR images using test-retest 

imaging and multiple delineation, limited attention has been given to studying 

dosiomics features due to the challenges associated with obtaining repeated 

measurements [113]. Furthermore, inconsistent repeatability results have been 

observed across different image modalities and cancer sites, thus limiting the 

generalizability of these findings to new radiomics studies [12, 114]. 

In this study, we aim to investigate the repeatability of dosiomics and radiomics 

features extracted from planning CT and dose maps of patients with cervical cancer. 

We first assessed the repeatability of radiomics and dosiomics features using image 

perturbation and contour randomizations on different organs at risk (OARs). They were 

compared both continuously and in binary forms as repeatable and non-repeatable 

features, followed by analyzing their associations with image/dose appearance. Our 

findings will provide the first reference of dosiomics feature repeatability for cervical 

cancer and reveal the confounding factors for radiomics feature reproducibility. This 

will guide the reproducible dosiomics feature selection for further research endeavors 

and help to reach a consensus on radiomics feature repeatability under different 
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scenarios. 
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4.2. Material and Methods 

4.2.1. Patient Dataset 

We retrospectively recruited cervical cancer patients with age >18 years old and re-

ceived complete curative radiotherapy courses from 2012 to 2022. Patients with 

missing treatment planning CT and dose data and metal artifact in the planning CT 

except from intrauterine contraceptive device were excluded. A total of 304 patients 

were included in this study, and the planning CT images and dose maps were collected 

from the treatment planning system in DICOM format. All CT scans were conducted 

using a Brilliance Big Bore CT scanner (Philips Healthcare, Amsterdam, The 

Netherlands). The scanning parameters included a tube voltage of 120 kV, an exposure 

of 300/325 mAs, an image resolution of 512 × 512, a pixel size of 0.98 × 0.98 mm2, 

and a slice thickness of 5 mm. Five distinct Regions of Interest (ROIs) were delineated 

manually by radiation oncologists with over 5 years of experience. These ROIs 

comprised the clinical tumor volume (CTV), Bladder, Rectum, Left Femoral 

(LFemoral), and Right Femoral (RFemoral). The contouring of the CTV adhered to the 

updated RTOG protocol released in 2021 [115]. 

4.2.2. Image Perturbation 

Image perturbations were performed by random translations and rotations 

accompanied by contour randomizations. Each image was translated by 0, 0.4, or 0.8 

pixel and rotated by –20, 0, or 20 degrees 40 times. The translation and rotation 

parameters were chosen randomly for each perturbation. Contour randomizations 
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simulate multiple delineations of the same structure. A 3D random displacement field 

deforms the segmented mask and results in a randomized contour. The approach for 

generating random displacement fields is derived from the methodology introduced by 

Simard et al. [116]. In this adaptation, random vector components for the x and y 

dimensions were randomly generated following a uniform distribution ranging from −1 

to 1 for each voxel point. Notably, no deformations were introduced along the z-axis 

due to the slice-by-slice contouring procedure typically employed in clinical settings. 

Subsequently, these field vectors were normalized across all three dimensions using the 

root mean square method. To ensure a smooth and continuous transition in the random 

displacement fields and prevent abrupt changes in the deformed contours, a Gaussian 

filter with a sigma value of 5 was applied. Figure 9 shows one example of random 

displacement field for the studied ROIs (except RFemoral since it is highly symmetrical 

to LFemoral), and the original and the corresponding randomized contour are visualized 

by the red and green lines, respectively. Four randomized contours in different colors 

and the original contour in red are superimposed in the second row of Figure 9. An in-

house developed Python program was used to perform image perturbation. 
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Figure 9. The first row shows rRandom displacement fields (white arrows) in CTV, 

bladder, rectum, and LFemoral (first row) and two randomized contours for the four 

ROIs (red: original contour, light green: randomized contour) overlayed with the CT 

image. The second row shows four different randomized contours with different 

colored lines in addition to the original contour (red line) (second row) of one example 

patient. 

4.2.3. Radiomics Feature Extraction 

The same set of radiomics features were extracted from the CT and dose maps for 

the five ROIs on each pair of the perturbed images and segmentation. Features extracted 

from the dose maps were considered as dosiomics in this study. The extracted features 

encompassed a comprehensive set, including 18 first-order statistics, 24 gray level co-

occurrence matrix (GLCM) features, 14 gray level dependency matrix (GLDM) 

features, 16 gray level run length matrix (GLRLM) features, 16 gray level size zone 

matrix (GLSZM) features, and 5 neighboring gray-tone difference matrix (NGTDM) 

features. Each CT image/dose map was filtered using three-dimensional Laplacian-of-
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Gaussian (LoG) filters with five different sigma values (1, 2, 3, 4, and 5 mm), as well 

as the complete set of eight coif1 wavelet filters (different combinations of high- and 

low-pass on each dimension) [117]. All the original and filtered images were further 

discretized by a fixed bin number of 32. One example of preprocessed CT and dose 

images under different filters is shown in Figure 10. In total, 1302 features were 

extracted for each CT/dose map, ROI, and perturbation. The open-source Python 

package PyRadiomics (version 3.0.0) was used to perform radiomics feature extraction. 

 

 

Figure 10. The original, Laplacian-of-Gaussian (LoG) filtered (sigma = 1 and 5 mm), 

and wavelet (LLL, HHH) filtered images of CT and dose maps within CTV, bladder, 

rectum, and LFemoral of one example patient. All the images were preprocessed by a 

32-bin-number gray level discretization with the final pixel values ranging from 0 to 

31. A jet colormap was used to present the voxel values with blue colors for smaller 

values and red colors for larger values. 
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4.2.4. Feature Repeatability Analysis 

The one-way, random, absolute intra-class correlation coefficient (ICC) was used 

to assess the repeatability of each radiomics/dosiomics feature against the 40 

perturbations. The binarized feature repeatability was measured using the ICC 

threshold of 0.9, where a feature was considered high-repeatable if ICC ≥ 0.9 and low-

repeatable if ICC < 0.9. The threshold was determined based on previous publications 

[82] on radiomics feature repeatability analysis. 

 

4.2.5. Statistical Analysis 

We compared the radiomics and dosiomics repeatability in both continuous and 

binarized forms. The average ICC value for each image filter and feature class was first 

calculated and compared. Comparisons on binarized feature repeatability were 

presented by highlighting the ratios of commonly high-/low-repeatable features and 

disagreements between CT and dose on different image filters and feature classes. In 

order to explain the similarities and differences among different image filters and 

between the two data modalities, we analyzed the correlations between inherent image 

characteristics and feature repeatability. The mean values of the entropy, uniformity, 

and variance of the preprocessed image among all the patients were calculated for each 

image filter and ROI. These three metrics measure the complexity, heterogeneity, and 

contrast level, respectively, and were directly acquired from the original first-order 
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radiomics features. Their definitions can be found in the PyRadiomics documentation. 

The Pearson correlation coefficient (r) was then used to quantify the correlations 

between the image characteristic evaluations and the average ICC values of the 

radiomics features [82]. 
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4.3. Results 

4.3.1. Feature Reliability and Predictability 

In general, we have observed higher ICC values of radiomics and dosiomics 

features extracted from the original, large-sigma LoG filtered, and LLL-/LLH-wavelet 

filtered images. The rest of the wavelet filters yielded significantly lower feature 

repeatability with average ICC < 0.75, as shown in Figure 11. Fluctuations of mean 

ICC values were also observed across different feature classes. Specifically, the first-

order features exhibited the highest repeatability while the GLSZM features had the 

lowest. Compared with CT radiomics features, dosiomics feature repeatability were 

lower, especially after small-sigma LoG and wavelet filtering, and experienced larger 

deviations across different image filters. One exception on the bladder is that dosiomics 

features had higher mean ICCs under large-sigma (≥3) LoG filtering. On the contrary, 

Figure 11 illustrates that the feature class had a minimum impact on the consistencies 

between CT radiomics and dosiomics feature repeatability in terms of mean ICC values. 
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Figure 11. Continuous intraclass correlation coefficient (ICC) comparisons between CT 

radiomics and dosiomics features on CTV, bladder, rectum, LFemoral, and RFemoral. 

The mean ICC values averaged on each image filter (left column) and feature class 

(right column) were plotted as purple (CT) and green (dose) dots with bars indicating 

the standard deviation. In general, higher mean ICCs were achieved by the CT 

radiomics compared to dosiomics. Original, large sigma LoG filters, and low-pass 

wavelet filters resulted in higher mean ICCs compared to other image filters. Rather 

consistent ICCs were found for different feature classes.  
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Similar trends can be observed after binarizing the ICC values by the threshold of 

0.9, as visualized in Figure 12. More repeatable features were found on the original, 

large-sigma LoG filtered, and LLL-/LLH-wavelet filtered images. Increasing the sigma 

values of the LoG filter resulted in more repeatable features. On the other hand, 

minimum repeatable features were found on the rest of the wavelet filtered images. For 

feature classes, the first-order class had the largest number of repeatable features while 

the GLSZM features had the smallest. When comparing the binary consistencies of 

repeatability between CT radiomics and dosiomics features, large deviations (light 

green/purple bars) can be observed mostly on CTV, bladder, and rectum. Different 

image filters also affected the consistency patterns. For example, features that are 

repeatable in dose but non-repeatable in CT (light green) were mostly found in the 

original image of the three ROIs, which is different from the mean ICC results. Features 

that are only repeatable in CT (light purple) were more prevalent in CTV under large-

sigma LoG filtering and Rectum under small-sigma LoG filtering. 
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Figure 12. Comparisons of radiomic feature repeatability between CT and planning 

dose, binarized by the ICC threshold of 0.9. High consistencies can be mostly observed 

on rectum, LFemoral, and RFemoral for RFs extracted from the original, large sigma 

(≥3) LoG filtered, and wavelet filtered images/dose maps. Different feature classes 

demonstrated high consistencies regardless of the ROIs analyzed. 
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Strong correlations between entropy, uniformity, and variance between the 

preprocessed images and feature repeatability were discovered, regardless of the data 

modality (Figure 13). The mean entropy, which measures the randomness of the 

images, had positive correlations with feature repeatability on both CT (r = 0.513) and 

dose (r = 0.682). A high positive correlation of mean variance (r = 0.617, 0.741) was 

also observed on CT and dose. On the other hand, uniformity, which measures the 

image homogeneity, had a negative correlation (r = −0.450, −0.599). 

 

 

Figure 13. Correlations of mean entropy, uniformity, and variance of preprocessed 

images with average ICC values of radiomics features at different image filters and 

ROIs. The Pearson correlation coefficient r and its p-value were given on each plot. 



 

60 

 

4.4. Discussion 

This study, for the first time, assessed and compared the repeatability of radiomics 

and dosiomics features from the planning CT and dose maps of primary cervical cancer 

patients using image perturbation. Features extracted from five different ROIs, 

including CTV, bladder, rectum, LFemoral, and RFemoral, were independently 

analyzed. A new contour randomization method was introduced to mimic the manual 

contouring variations by random deformations. In general, features from large-sigma 

LoG filtered and LLL-/LLH-wavelet filtered images had higher repeatability, both by 

absolute and binarized ICC. CT radiomics features presented smaller ICC fluctuations 

across image filters and had higher repeatability compared to dosiomics, especially on 

small-sigma LoG filtered and wavelet filtered images. Features from different ROIs 

also had distinctive repeatability patterns. Further analysis discovered that feature 

repeatability was highly associated with the randomness, heterogeneity, and contrast of 

the images, regardless of the data modality. Our findings provided a direct reference of 

repeatability for both CT radiomics and dosiomics for cervical cancer. The distinctive 

repeatability patterns for features from different filtered images and different ROIs 

provided valuable guidance for repeatable feature selection, emphasizing the 

importance of careful consideration when choosing image filters and defining ROIs. 

The comparison between CT radiomics and dosiomics shed light on the performance 

and repeatability of features from different image modalities. It further contributed to 

the understanding of the strengths and limitations of radiomics and dosiomics, which 

enables researchers to leverage the rich textural information and clinical relevance of 
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CT radiomics while harnessing the quantitative dose assessment and potential for 

personalized treatment planning offered by dosiomics, ultimately impacting the 

development of personalized treatment strategies and improving the reliability and 

clinical relevance of cancer research. 

Our quantitative analysis of the direct impact of image characteristics on feature 

repeatability may help to explain the different repeatability patterns observed in this 

study. As suggested in Figure 13, features from images with higher entropy, lower 

uniformity, and higher variance are less susceptible to image perturbations. After gray-

level discretization with fixed bin counts, images with a higher pixel complexity, 

heterogeneity, and contrast levels tend to have reduced noise, which can be directly 

observed from the example images in Figure 10. Therefore, the local pixel connectivity 

was enhanced, and the resulting texture matrices were more robust against translation 

and rotation randomizations. Such correlation also raises the importance of image 

preprocessing where, for example, image resegmentation, image thresholding, and 

gray-level discretization settings could greatly impact the pixel heterogeneity and noise 

levels, and careful consideration should be made to balance the repeatability and 

sensitivity of the extracted features. 

For features from LoG filtered images, a higher repeatability was observed as sigma 

values increased. This is evidenced by the higher mean ICC values and larger repeatable 

feature numbers with ICC > 0.9. The LoG filter is commonly used for enhancing the 

visibility of edges and texture in the image. As indicated by Figures 12 and 15, larger 

sigma values resulted in smoother edge enhancements, which increased the pixel 
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complexities, heterogeneities, and contrast levels and eventually improved 

consistencies in the extracted features. The impact of wavelet filters on feature 

repeatability is an important consideration in our study. Wavelet filters decompose an 

image into high/low frequency bands, enabling the identification and study of fine-scale 

details as well as coarse-scale structures. In our study, we found that specific 

combinations of wavelet coefficients, such as LLL, and LLH, exhibited the highest 

repeatability compared to other combinations. This indicates that these coefficients 

effectively captured the relevant structural and textural information while minimizing 

noise and artifacts. However, it is noteworthy that the use of high pass filters in the x 

and y directions resulted in relatively lower feature repeatability; the high pass filters 

tend to enhance noise and fine-scale features, making the extracted features more 

susceptible to variability and less consistent across different images. Moreover, it is 

important to highlight the high repeatability observed even when applying high-pass 

filtering on the z-direction. This can be attributed to the rotation along the axial 

direction, which results in minimal pixel variations along the z-direction. 

For radiomics features from CT, the higher repeatability observed in the rectum, 

RFemoral, and LFemoral ROIs compared to bladder and CTV could stem from the 

inherent anatomical and tissue characteristics of these regions. The rectum and femoral 

regions had more complex tissue compositions with high electron density differences, 

as shown in the example images in Figure 10. Such tissue characteristics were 

consistent with the quantitative image descriptions in Figure 13 where higher entropy, 

lower uniformity, and higher variance were exhibited, which led to more repeatable 
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radiomics features. On the other hand, the bladder and CTV regions may have greater 

complexities in shape but rather similar tissue compositions, leading to increased 

contour variabilities but decreased pixel complexities and subsequently lower 

repeatability in the extracted features. For radiomics features from dose data, the higher 

feature repeatability observed in the rectum and bladder ROIs can be attributed to the 

nature of dosimetry data. Dosiomics involves the analysis of radiation dose distribution 

within the target area and surrounding organs. The rectum and bladder, being adjacent 

to the target area, experienced a sharper dose drop-off and higher dose variance within 

the ROI volume, resulting in the dosiomics features being less susceptible to 

perturbations. 

Several limitations should be acknowledged in this study. Firstly, the relatively 

small sample size may restrict the generalizability of the findings and limit the statistical 

power to detect subtle differences. The single-center design introduces the possibility 

of bias related to patient selection, imaging protocols, and data acquisition techniques, 

which may affect the external validity of the results. Additionally, the absence of 

external validation using an independent dataset limits the ability to confirm the 

repeatability findings in different settings or populations. The focus on specific data 

modalities, such as CT scans and dose maps, overlooks the potential variability and 

repeatability of features derived from other imaging modalities, such as MRI or PET. 

Moreover, the study did not directly assess the clinical impact of feature repeatability 

on treatment outcomes or patient management decisions. Future research should 

address these limitations by incorporating larger and more diverse cohorts, conducting 
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multi-center studies with standardized protocols, performing external validation, 

exploring feature repeatability across various imaging modalities, and investigating the 

clinical implications of feature repeatability in real-world scenarios. 

4.5. Conclusion 

In conclusion, this study investigated the repeatability of CT radiomics and 

dosiomics features under image perturbations. The findings suggest that CT-based 

radiomics features exhibit higher repeatability compared to features derived from dose 

maps. The higher repeatability of CT-based radiomics features highlights their potential 

as reliable and consistent quantitative markers in imaging-based analyses. Our findings 

contribute to the development of more reliable imaging biomarkers for personalized 

cancer treatment planning and response assessment. Further research is needed to 

explore the impact of feature repeatability on predictive performance and clinical utility 

under different settings and patient populations. 
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Radiomics has emerged as a transformative computational approach in precision 

oncology, enabling the high-throughput extraction of quantitative features from 

medical images to support clinical decision-making [118, 119]. This rapidly evolving 

field combines advanced image analysis with machine learning techniques to extract 

potentially thousands of quantitative features from medical images, providing deeper 

insights into tumor phenotypes and biological characteristics that may not be apparent 

to the human eye [120, 121]. In head and neck cancer management, where treatment 

outcomes can vary significantly among patients with similar clinical characteristics, 

radiomics offers particular promise for improved prognostication and personalized 

therapy selection [122, 123]. 

Recent advances in artificial intelligence and computational power have accelerated 

the development of radiomic approaches, leading to improved feature extraction 

methodologies and more sophisticated analysis techniques [124, 125]. However, the 

reliability and reproducibility of radiomic features remain significant challenges in 

developing robust predictive models [56, 126]. These challenges are particularly 

pronounced in multi-institutional settings, where variations in imaging protocols, 

scanner parameters, and reconstruction algorithms can significantly impact feature 

Chapter 5. Systematic Assessment of Feature Repeatability’s 

Impact on Radiomics Model Performance: A Multi-institutional 

Validation Study 

5.1. Introduction 
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stability [127, 128]. 

The stability of radiomic features can be affected by numerous factors throughout 

the imaging and analysis pipeline, including image acquisition parameters, 

preprocessing methods, segmentation variability, and institutional protocols [129]. 

Feature repeatability, typically assessed through metrics such as the Intraclass 

Correlation Coefficient (ICC), has been identified as a crucial factor in model 

performance [16, 17][130, 131]. Despite growing recognition of its importance, the 

relationship between feature repeatability and model generalizability across different 

cohort sizes and institutional settings remains inadequately understood [132]. 

Furthermore, the impact of feature selection strategies incorporating repeatability 

criteria on model performance in large-scale, multi-institutional studies has not been 

systematically investigated [133]. 

Previous studies have demonstrated the potential of radiomic features in head and 

neck cancer prognostication [134, 135], but most have been limited by single-institution 

datasets, small sample sizes, or lack of external validation [55, 136]. While some multi-

institutional studies have shown promising results [137], the variability in feature 

extraction methods and the absence of standardized repeatability assessment protocols 

have hampered the clinical translation of these findings [138, 139]. Recent meta-

analyses have highlighted the need for robust validation studies that specifically address 

feature stability across different clinical scenarios and patient populations [140]. 

The standardization of radiomic feature extraction and analysis has become a 

critical focus in the field, with initiatives such as the Image Biomarker Standardization 
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Initiative (IBSI) providing guidelines for reproducible research [1, 11]. However, the 

optimal approach for incorporating feature repeatability assessments into model 

development pipelines, particularly in the context of varying dataset sizes and 

institutional characteristics, remains an open question [141, 142]. Additionally, the 

relationship between feature repeatability and model performance metrics in both 

internal and external validation scenarios requires further investigation [143]. 

This study aims to systematically evaluate the impact of feature repeatability on 

radiomics model performance in head and neck cancer prognostication across multiple 

independent datasets. We hypothesize that incorporating highly repeatable features will 

enhance model generalizability and reduce overfitting, with the magnitude of 

improvement potentially varying by cohort size. By analyzing four distinct datasets 

comprising 1,418 patients, we investigate how different ICC thresholds affect model 

performance in both internal and external validation scenarios. Our comprehensive 

analysis addresses several key gaps in current knowledge: a) The relationship between 

feature repeatability and model performance across varying cohort sizes. b) The impact 

of feature repeatability on model generalizability in multi-institutional settings, c) The 

role of repeatable feature selection in mitigating overfitting and improving external 

validation performance.  
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5.2.1. Patient Cohort 

This retrospective study analyzed a dataset of pre-treatment CT images from 1,441 

head-and-neck cancer patients obtained from TCIA [144]. Specifically, the dataset 

comprised data on patients from seven medical institutions: data on 137 patients from 

the single-institution HEAD-NECK-RADIOMICS-HN1 (HN137) study [11], data on 

606 patients from the single-institution Radiomic Biomarkers in Oropharyngeal 

Carcinoma (OPC606) study [123], data on 298 patients from four institutions in the 

Head-Neck-PET-CT (PETCT298) study [145], and data on 400 patients from the 

single-institution Head and Neck Squamous Cell Carcinoma (HNSCC400) study [146, 

147].  

5.2.2. Image Preprocessing 

The preprocessing pipeline consisted of two main steps to ensure feature 

reproducibility and consistency. Initially, the GTV contours underwent interpolation to 

generate voxel-based segmentation masks. Subsequently, an isotropic resampling 

process was applied at 1 mm × 1 mm × 1 mm resolution, utilizing B-spline interpolation 

for images and nearest-neighbor interpolation for masks. These preprocessing steps 

were implemented using Python v3.8, incorporating the SimpleITK v2.2.0 and 

OpenCV packages. 

 

5.2. Materials and Methods 
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5.2.3. Radiomic Feature Extraction  

Feature extraction was performed using the Image Biomarker Standardization 

Initiative-compliant Pyradiomics v2.2.0 package. The process yielded 5,486 radiomic 

features from each patient's CT scan GTV, derived from twelve different image types: 

one unfiltered image, three Laplacian-of-Gaussian filtered images (σ = 1, 3, 6 mm), and 

eight Coiflet1 wavelet filtered images (LLL, HLL, LHL, LLH, LHH, HLH, HHL, 

HHH). The feature set comprised 14 shape features from GTV segmentation, along 

with 18 first-order and 73 second-order features extracted from each filtered image. 

Texture feature extraction incorporated soft-tissue range re-segmentation (-150 to 180 

HU) and discretization with fixed bin counts of 100. 

5.2.4. Feature Repeatability Assessment 

The robustness of each RF was quantified in terms of a one-way, random, 

absolute-agreement ICC, which was calculated using Equation (1), as follows [82].  

𝐼𝐶𝐶(1,1) =
𝑀𝑆𝑛 −𝑀𝑆𝑊

𝑀𝑆𝑛 + (𝑘 + 1)𝑀𝑆𝑊
(1) 

where 𝑀𝑆𝑛  is the mean square for different patients, 𝑀𝑆𝑊  is the mean square for 

residual sources of variance, and 𝑘 is the number of perturbation times plus one for the 

unperturbed image. The ICC analysis served as a critical quality control measure, 

ensuring the selected features demonstrated consistent behavior and reliability across 

different imaging parameters and acquisition conditions. 
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5.2.5. Feature Selection   

The feature selection methodology incorporated comprehensive repeatability 

assessment utilizing the Intraclass Correlation Coefficient (ICC). Multiple ICC 

thresholds (0, 0.2, 0.5, 0.7, and 0.9) were systematically investigated to evaluate feature 

stability across experimental conditions.  Features demonstrating ICC values below the 

specified threshold were excluded from the feature pool to ensure robust feature 

representation in subsequent analyses. 

To minimize information redundancy within the feature space, inter-feature 

correlations were quantitatively assessed using Pearson correlation coefficient (r). 

Feature pairs exhibiting high correlation (r ≥ 0.7) were identified, and within each 

correlated pair, the feature demonstrating higher mean correlation with the remaining 

feature set was eliminated. This step was crucial in reducing multicollinearity and 

improving model stability. Subsequently, the minimum-Redundancy-Maximum-

Relevance (mRMR) algorithm was employed to select five optimal features from the 

remaining feature pool [148]. The mRMR approach optimizes feature selection by 

simultaneously maximizing the mutual information between selected features and the 

outcome variable while minimizing redundancy among the selected features, thereby 

ensuring a complementary and informative feature subset for predictive modeling. 
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5.2.6. Model Development 

The modeling framework consisted of both internal and external validation 

strategies to comprehensively evaluate the model performance and assess the impact of 

feature repeatability on model reliability. For both validation approaches, Cox 

proportional hazards regression was employed as the primary modeling methodology 

to account for time-to-event outcomes [149]. 

Internal validation was implemented through a three-fold cross-validation scheme 

with 30 repetitions to ensure robust performance assessment. This iterative validation 

approach provided a comprehensive evaluation of the model's predictive capability 

while minimizing the potential impact of data partitioning bias. The internal validation 

process was systematically conducted across different ICC thresholds to investigate the 

relationship between feature repeatability and model overfitting. 

External validation was performed through a leave-one-dataset-out approach, 

where models were iteratively trained on the combined data from all but one dataset 

and validated on the held-out dataset. This validation strategy was implemented across 

different ICC thresholds to evaluate the impact of feature repeatability on model 

generalizability. The external validation framework provided insights into the model's 

ability to maintain predictive performance across heterogeneous patient populations 

and varying institutional protocols. 
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5.2.7. Model Evaluation and Statistical Analysis 

Model performance was comprehensively evaluated using the concordance index 

(C-index), a non-parametric metric that quantifies the model's discriminative ability in 

survival analysis by assessing the concordance between predicted and observed 

survival times. In the internal validation framework, the magnitude of model overfitting 

was systematically assessed through the quantification of discrepancy between training 

and testing C-indices. The relative performance enhancement achieved through 

repeatable feature selection was evaluated by comparing models developed with 

various ICC thresholds (ICC > 0) against the baseline model (ICC = 0) using the Mann-

Whitney U test, providing statistical inference on the significance of performance 

improvements. 

For clinical risk stratification, a threshold-based approach was implemented 

wherein external validation cohorts were dichotomized into high-risk and low-risk 

groups using the median risk score derived from the training cohort as the stratification 

threshold. The prognostic significance of this stratification was evaluated through 

Kaplan-Meier survival analysis, with the statistical significance of survival differences 

assessed through univariate Cox proportional hazards regression. This analysis yielded 

hazard ratios (HRs) and corresponding p-values, providing quantitative measures of the 

magnitude and statistical significance of survival disparities between risk groups, 

thereby establishing the clinical utility of the developed risk stratification framework. 



 

73 

 

 

5.3.1. Model Performance Across ICC Thresholds 

 

Figure 14. Trends of training and internal validation concordance index (C-index) under 

different intra-correlation coefficient (ICC) thresholds during repeatable feature 

selection 

 

  

5.3. Results 
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Analysis of model performance revealed a consistent pattern characterized by 

increasing validation C-indices and decreasing training C-indices across escalating ICC 

thresholds. This trend was particularly pronounced in certain datasets, with HN_137 

demonstrating a substantial improvement in validation performance from a mean C-

index of 0.627 (SD=0.084) at ICC ≥ 0 to 0.678 (SD=0.072) at ICC ≥ 0.9. Similarly, 

the PETCT_298 dataset exhibited notable improvement, with validation C-index 

increasing from 0.569 (SD=0.077) to 0.604 (SD=0.078) across the same ICC threshold 

range. However, the performance enhancement was more modest in the HNSCC_400 

and OPC_606 datasets, where the increment in validation C-index from ICC threshold 

of 0 to 0.9 was less pronounced, with a magnitude of improvement not exceeding 0.02. 

These findings suggest that the impact of feature repeatability on model performance 

may vary across different cohorts, potentially influenced by underlying dataset 

characteristics and heterogeneity. 
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5.3.2. Model Overfitting Assessment 

 

Figure 15. Distributions of C-index difference between training and validation under 

different ICC thresholds during repeatable feature selection (*: p-value < 0.05, **: p-

value < 001, ns: not significant) 

 

Further analysis of model performance metrics revealed a consistent reduction in 

the disparity between training and validation C-indices as ICC thresholds increased 

across all four study datasets. The statistical comparison demonstrated significant 

differences (p-value < 0.05) in these performance gaps between the baseline models 

(ICC ≥ 0) and models incorporating highly repeatable features (ICC ≥ 0.9). This 

observation suggests that the selection of highly repeatable features effectively 

mitigates model overfitting. However, intermediate ICC thresholds (0.2, 0.5, and 0.7) 

did not yield statistically significant differences in performance gaps compared to the 
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baseline, indicating that substantial improvement in model generalizability may require 

stringent feature repeatability criteria. These findings underscore the importance of 

implementing rigorous repeatability thresholds in feature selection to optimize model 

robustness and reliability. 

5.3.3. External Validation  

Analysis of external validation models demonstrated differential improvements in 

model performance metrics between training and testing scenarios. While training C-

indices showed minimal increases across ICC thresholds, testing performance exhibited 

substantially larger improvements. The HN-137 dataset demonstrated the most 

pronounced enhancement in model performance, achieving the highest testing C-index 

of 0.687 and showing the most substantial improvement from its baseline value of 0.618. 

The remaining datasets exhibited more moderate improvements in testing performance, 

with C-indices ranging from 0.595 to 0.656 and absolute improvements ranging from 

0.018 to 0.034 from their respective baselines. These findings suggest that the 

incorporation of repeatable features particularly enhances model generalizability in 

external validation scenarios, with the magnitude of improvement varying across 

different cohorts. 
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Table 6. Training and external testing C-index under different ICC thresholds during 

repeatable feature selection 

 ICC 

threshold 

HN_137 HNSCC_400 OPC_606 PETCT_298 

Training 0 0.678 (0.637-0.717) 0.687 (0.637-0.732) 0.720 (0.675-0.762) 0.705 (0.664-0.745) 

 0.2 0.678 (0.637-0.717) 0.687 (0.637-0.732) 0.720 (0.675-0.762) 0.698 (0.660-0.738) 

 0.5 0.690 (0.652-0.727) 0.674 (0.623-0.720) 0.710 (0.661-0.754) 0.700 (0.660-0.739) 

 0.7 0.694 (0.656-0.731) 0.674 (0.623-0.720) 0.710 (0.661-0.754) 0.719 (0.682-0.756) 

 0.9 0.700 (0.662-0.738) 0.682 (0.632-0.726) 0.720 (0.672-0.760) 0.707 (0.671-0.746) 

External 

testing 

0 

0.618 (0.508-0.714) 0.638 (0.552-0.712) 0.561 (0.498-0.637) 0.570 (0.472-0.664) 

 0.2 0.618 (0.508-0.714) 0.638 (0.552-0.712) 0.561 (0.498-0.637) 0.570 (0.474-0.659) 

 0.5 0.614 (0.512-0.716) 0.659 (0.573-0.727) 0.617 (0.549-0.685) 0.578 (0.485-0.665) 

 0.7 0.626 (0.522-0.731) 0.659 (0.573-0.727) 0.617 (0.549-0.685) 0.614 (0.525-0.692) 

 0.9 0.687 (0.584-0.791) 0.656 (0.569-0.729) 0.595 (0.532-0.657) 0.602 (0.513-0.688) 
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5.3.4. Risk Stratification Analysis 

Kaplan-Meier (KM) survival analysis provided additional evidence for enhanced 

model generalizability through repeatable feature selection. Models incorporating 

highly repeatable features (ICC ≥  0.9) demonstrated statistically significant 

stratification (p-value < 0.05) between risk groups for three datasets: HN_137, 

HNSCC_400, and PETCT_298. In contrast, baseline models (ICC ≥  0) failed to 

achieve significant risk group separation across all datasets. Notably, the OPC_606 

dataset demonstrated an exception to this pattern, showing no significant stratification 

at either baseline or high ICC threshold (≥ 0.9). These findings further support the 

utility of stringent repeatability criteria in feature selection for improving model 

prognostic performance, while also highlighting potential dataset-specific variations in 

the effectiveness of this approach for risk stratification. 

 

Figure 16. Kaplan-Meier curves of the two risk groups stratified by the external survival 

models 
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The differential improvements in validation performance across datasets suggest 

varying benefits of repeatable feature selection. The modest validation C-index 

improvements observed in HNSCC_400 and OPC_606 (increment < 0.02) from ICC 

threshold 0 to 0.9 might be influenced by various factors, including their larger sample 

sizes. These substantial cohorts possibly provide inherent protection against false 

discoveries, potentially contributing to more stable feature selection and robust model 

performance even without strict repeatability criteria. While sample size could be one 

contributing factor aligning with statistical learning theory, where larger samples tend 

to yield more reliable feature-outcome relationships, other unmeasured factors may also 

play important roles in these observations. 

The HN_137 dataset's dramatic improvement in both internal and external 

validation performance underscores the critical role of repeatable feature selection in 

smaller cohorts. The marked enhancement in validation C-index (from 0.627 to 0.678) 

and the highest external testing C-index (0.687) demonstrates that stringent 

repeatability criteria can effectively compensate for the inherent limitations of smaller 

sample sizes. This finding is particularly relevant for radiomics studies, where large, 

homogeneous datasets are often challenging to acquire. The implementation of 

repeatable feature selection appears to serve as a crucial safeguard against overfitting 

in such scenarios, providing a practical solution for developing robust models despite 

limited sample sizes. 

5.4. Discussion 
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The performance patterns observed in the OPC_606 dataset highlight the challenges 

posed by dataset heterogeneity in radiomics modeling. Despite its large sample size, 

this dataset exhibited the lowest external validation C-index and failed to achieve 

significant risk stratification at both baseline and high ICC thresholds. This 

underperformance can be primarily attributed to the mismatch between training and 

testing cohorts - while the training set comprised various head and neck cancer subtypes, 

the testing set was restricted to oropharyngeal cancer (OPC) cases. This observation 

emphasizes that even robust feature selection methods cannot fully overcome 

fundamental differences in patient populations, suggesting that careful consideration of 

cohort characteristics is crucial for successful model deployment. 

These findings suggest that the optimal approach to radiomics model development 

should be tailored to specific study characteristics. For smaller datasets, implementing 

stringent repeatability criteria becomes crucial for model reliability, while larger 

datasets may allow for more flexible feature selection approaches. The impact of dataset 

heterogeneity emphasizes the importance of careful cohort selection and validation 

strategies that account for potential differences in patient characteristics. Future 

research should focus on developing adaptive feature selection strategies that consider 

both sample size and dataset heterogeneity to optimize model performance across 

diverse clinical scenarios. 

Several limitations of this study warrant consideration. While we demonstrated the 

benefits of repeatable feature selection across different sample sizes, our analysis was 

confined to head and neck cancer datasets. The generalizability of these findings to 
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other cancer types or imaging modalities requires further investigation. The binary 

classification of features based on ICC thresholds may oversimplify the complex 

relationship between feature repeatability and model performance. More sophisticated 

approaches, such as weighted feature selection schemes that incorporate continuous 

repeatability measures, could potentially yield further improvements. Additionally, our 

study focused primarily on conventional radiomics features; the integration of deep 

learning-derived features and their repeatability characteristics presents an interesting 

avenue for future research. 

In summary, this study demonstrates that incorporating highly repeatable radiomics 

features can effectively enhance model performance in head and neck cancer 

prognostication. The implementation of strict repeatability criteria led to improved 

model robustness and generalizability across different datasets, though the magnitude 

of improvement varied among cohorts. Notably, we observed that sample size might 

influence the impact of feature repeatability, with smaller datasets showing more 

pronounced benefits from stringent repeatability criteria. While larger cohorts 

demonstrated inherent stability in feature selection, the application of repeatability 

thresholds still contributed to model reliability. Future work should address current 

limitations and explore more sophisticated approaches to feature selection and dataset 

harmonization, ultimately advancing the field toward more reliable and clinically 

applicable radiomics models. 
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This study systematically investigated the impact of feature repeatability on 

radiomics model performance in head and neck cancer prognostication. Our findings 

demonstrate that incorporating highly repeatable features (ICC ≥ 0.9) consistently 

improved model performance across different datasets, with the magnitude of 

improvement varying by cohort size. The enhancement was particularly prominent in 

smaller datasets, where strict repeatability criteria effectively improved both internal 

and external validation performance. While larger cohorts showed more inherent 

stability in feature selection, the utilization of repeatable features still contributed to 

model robustness. These results underscore the importance of feature repeatability 

assessment in radiomics modeling, suggesting that prioritizing stable features in the 

feature selection process can lead to more reliable and generalizable prognostic models. 

The findings provide valuable guidance for optimizing radiomics model development 

strategies and support the integration of repeatability assessment as a crucial step 

toward achieving robust clinical applications in cancer prognostication. 

 

 

 

5.5. Conclusion 
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This investigation's findings have substantial implications for both the theoretical 

foundations of radiomics and its practical clinical applications. The development of our 

perturbation-based framework represents a fundamental shift in how we conceptualize 

and evaluate radiomic model reliability. 

The observed disparity in feature stability between imaging modalities (MRI vs. CT) 

challenges the current paradigm of modality-agnostic feature extraction. While 

previous studies have primarily focused on optimizing feature extraction algorithms 

independently of imaging modalities, our findings suggest that the choice of imaging 

modality should fundamentally influence feature selection strategies. This observation 

raises important questions about the standardization of radiomics across different 

imaging platforms and highlights the need for modality-specific optimization 

approaches. 

The superior stability of certain feature families, particularly in MRI-derived 

features, provides new insights into the relationship between image acquisition physics 

and feature reliability. This finding suggests that the underlying physical principles of 

image formation play a more significant role in feature stability than previously 

recognized. The implications extend beyond mere feature selection, questioning 

fundamental assumptions about the transferability of radiomic models across imaging 

modalities. 

Chapter 6. Discussion 

6.1. Advances in Radiomics 
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Our comparative analysis of CT radiomics and dosiomics features introduces a 

novel perspective on the integration of different data types in predictive modeling. The 

observed differences in feature stability between these domains suggest that the 

traditional approach of treating all quantitative features equally may be suboptimal. 

Instead, our findings support a more nuanced approach that considers the inherent 

characteristics and limitations of different data sources. 

The demonstrated relationship between feature repeatability and model 

generalizability has profound implications for the development of clinical radiomics 

applications. The observation that highly repeatable features contribute to more 

generalizable models challenges the common practice of feature selection based solely 

on predictive performance. This finding suggests a need to reconceptualize the feature 

selection process, incorporating stability metrics as fundamental criteria rather than 

secondary considerations. 

Perhaps most significantly, our work raises important questions about the 

scalability and reproducibility of radiomic models in clinical settings. The observed 

dependence of feature stability requirements on sample size has important implications 

for clinical trial design and the validation of radiomic biomarkers. This relationship 

suggests that the current approach to model validation may need to be revised, 

particularly for rare diseases where large cohorts are unavailable. 

The temporal stability analysis of radiomic features provides new insights into the 

potential role of radiomics in longitudinal monitoring. The identification of features 

that maintain stability over time while remaining sensitive to clinically relevant changes 
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suggests possible applications in treatment response monitoring and disease 

progression assessment. This finding has particular relevance for personalized medicine 

approaches, where regular monitoring and treatment adaptation are essential. 

 

The limitations of this investigation can be categorized into two primary areas: 

implementation challenges and methodological constraints. 

The first major limitation concerns the implementation architecture of our 

perturbation-based framework. Despite its theoretical robustness, the current 

implementation requires substantial computational expertise and lacks integration with 

standardized software platforms. Unlike common radiomics tools that offer user-

friendly interfaces, our framework demands significant programming knowledge and 

manual parameter optimization, creating a barrier to widespread clinical adoption. This 

technical complexity particularly impacts real-time feature stability assessment in 

clinical workflows, where efficiency and accessibility are crucial. The absence of 

automated pipelines and standardized software implementation limits the framework's 

utility for researchers and clinicians who may lack advanced programming expertise. 

The second fundamental limitation relates to the framework's scope in simulating 

radiomics workflow variations. While our approach effectively addresses geometric 

perturbations, it cannot fully capture the complex interplay of variables in clinical 

settings. The framework falls short in simulating several critical sources of variation, 

6.2. Limitations 
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including vendor-specific scanner characteristics, reconstruction algorithm impacts, 

inter-institutional protocol differences, and the interaction between image acquisition 

parameters and tissue characteristics. Moreover, the framework's current 

implementation may not adequately address challenges posed by emerging imaging 

modalities and novel feature extraction methodologies, particularly in the context of 

deep learning-based approaches. While our study demonstrates the importance of 

feature stability for model generalizability, questions remain about the relationship 

between feature stability and biological relevance. This raises important considerations 

about whether the most stable features necessarily represent the most clinically 

meaningful measurements. 

Another notable limitation of this study is the absence of long-term follow-up data, 

which restricts our ability to assess the biological stability of the identified radiomic 

features over extended time periods. While our findings demonstrate promising 

correlations in the short term, the temporal robustness of these imaging biomarkers 

remains uncertain. Long-term stability is crucial for reliable clinical implementation, as 

radiomic signatures may evolve with disease progression or treatment response. 

Additionally, the lack of extended follow-up prevents us from evaluating associations 

between our radiomic features and important distant clinical outcomes such as overall 

survival and disease recurrence patterns. Future work should prioritize longitudinal data 

collection to validate the persistence of these radiomic signatures and their continued 

predictive value across the disease trajectory. 
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This thesis advances the field of radiomics by introducing and validating a 

comprehensive perturbation-based framework for feature stability assessment, 

addressing a critical gap in current radiomics methodology. Through rigorous 

experimental validation across multiple imaging modalities and clinical scenarios, we 

demonstrate that feature stability significantly influences model generalizability and 

clinical applicability. Our findings challenge several established paradigms in 

radiomics, particularly regarding modality-agnostic feature extraction and traditional 

feature selection approaches. The demonstrated relationship between feature stability 

and model performance, coupled with our novel insights into temporal stability and 

modality-specific optimization, provides a foundation for more robust and clinically 

applicable radiomic models. These contributions not only enhance our understanding 

of radiomics feature reliability but also establish practical guidelines for future 

development of quantitative imaging biomarkers, ultimately advancing the field toward 

more standardized and clinically integrated applications. While limitations in 

computational implementation and workflow simulation persist, this work represents a 

significant step toward more reliable and clinically viable radiomics applications, 

setting a new standard for feature stability assessment in quantitative imaging analysis. 

  

Chapter 7. Conclusion  
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