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Abstract

The occurrence of Harmful algal blooms (HABS) is a prominent environmental issue
that pose significant threats to marine ecosystems, seafood safety, and human health.
Over recent decades, the increasing frequency, intensity, and global distribution of
HABs have underscored the urgency of understanding their ecological dynamics and
associated risks. Beyond natural seawater, human-induced substrates such as plastics
also provide a novel habitat, “the plastisphere” (a microecosystem with plastics as the
matrix) for microalgal communities in the coastal ecosystem. However, the ecological
dynamics and associated risks of microalgal communities in both seawater and
plastisphere, as well as the associations between these two habitats, remain largely
unexplored. Moreover, the absence of a specific and comprehensive sequence database
for harmful and toxic microalgae has hindered the accurate identification and
monitoring of these species. To address these gaps, this study developed the harmful
and toxic microalgae database (HTMaDB) to reveal the ecological dynamics and

microalgae-associated risks in the coastal ecosystem.

We constructed the HTMaDB, a comprehensive resource that consolidates 1,346 18S
full-length reference sequences from public repositories. A total of 79 harmful and toxic
species were identified in the typical coastal city Hong Kong surface seawaters with the
application of curated database. The results revealed that dinoflagellates and diatoms

constitute most of the toxic and harmful taxa, respectively. Seasonal variations in algal



community structures were observed. Specifically, temperature was found to be the
primary factor shaping seasonal patterns of toxic algal communities, with increased
toxic species abundance during the dry season. The dominance of causative taxa in this
period was consistent with the higher prevalence of algal toxins, supporting the
reliability of the database. These findings highlight the potential for escalating risks
associated with toxic microalgae under a warming climate, as differential responses of
specific species to temperature fluctuations contribute to the complexity of HAB
occurrences. Species such as Alexandrium spp., Dinophysis spp., Prorocentrum spp.,
and Karenia spp. were identified as the primary toxin producers, underscoring the
critical need for targeted management strategies to mitigate their ecological and health

impacts.

In addition to exploring the ecological patterns of algal communities in the surface
seawater, this study further investigated the ecological dynamics and associated risks
of microalgal communities within the plastisphere. Plastic pollution has become a
global environmental challenge, with millions of tonnes of plastic waste entering the
oceans annually. The plastisphere provides a durable and hydrophobic surface that
facilitates the colonization and transport of microorganisms, including harmful and
toxic algae. By analyzing 92 paired samples of plastic debris and ambient water
collected from coastal ecosystems, this research revealed that the plastisphere
selectively harbors distinct algal communities compared to the surrounding waters. The

relative abundance of Chlorophyta increased significantly, while that of Dinoflagellata
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decreased within the plastisphere. Furthermore, the plastisphere exhibited significantly
higher alpha diversity, indicating its potential to shelter unique or alien microalgal taxa
transported from upstream systems. These results suggest that the plastisphere serves
as a microhabitat that enables the selective assembly, enrichment, and transport of

harmful and toxic algae across ecosystems.

The study also found that harmful and toxic diatoms, such as Pseudo-nitzschia
cuspidata, Chaetoceros socialis, and Skeletonema marinoi, thrived within the
plastisphere. Some harmful algal taxa were exclusively detected on plastic debris but
absent from the surrounding water, highlighting the potential of plastics to act as vectors
for the transport of harmful algae. Environmental factors such as temperature and
salinity were positively associated with the abundance of risk-associated microalgae,
whereas pH exhibited a negative correlation. These findings demonstrate that plastic
pollution not only alters the composition and diversity of microalgal communities but
also amplifies the ecological risks associated with HABs by facilitating the spread and
enrichment of harmful algae and their toxins. The potential for plastics to carry harmful
algal species across marine ecosystems poses significant challenges for managing HAB

risks in the context of increasing plastic pollution.

This integrated study bridges critical knowledge gaps by systematically investigating
the pelagic microalgal communities in the coastal ecosystem. By developing HTMaDB,

this research provides a valuable resource for improving the accuracy and efficiency of
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HAB monitoring and identification. The findings highlight the role of environmental
factors, particularly temperature, in driving the seasonal dynamics of toxic algal
communities and emphasize the impact of climate change on HAB risks. Additionally,
the investigation into the plastisphere offers novel insights into how plastic debris
assembled a distinct microalgal community compared to the seawater community and
increased the risks associated with harmful and toxic algae. These findings contribute
to a comprehensive ecological view of pelagic microalgal communities in the coastal

ecosystem.
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Chapter 1 Introduction

1.1 Background

The global range, regional intensity, and frequency of harmful algal blooms (HABs)
have increased over the last few decades in coastal areas (Dai et al. 2023a). Some of
HABs-forming species can release toxins leading to fish death, shellfish poisoning, and
even human illnesses after consuming contaminated seafood (Berdalet et al. 2016). To
date, over 300 phycotoxins and Furthermore, a number of seafood poisoning cases
caused by algal toxins have been reported worldwide (Holmes & Teo 2002; Hossen et
al. 2011; Jiang et al. 2017; Kim et al. 2010; Mackenzie 2019; Mafra et al. 2019; Visciano
et al. 2016). These seafood toxins accounted for nearly half of total HAB events, and
over the past three decades, an increase in the global frequency of causative organisms,
such as Dinophysis spp., Alexandrium spp., and Pseudo-nitzschia spp. was observed
according to the global HAB status report 2021. Some nontoxic microalgae form high
biomass blooms and cause mortality of aquatic organisms by clogging gills or triggering
hypoxia/anoxia conditions in the ambient water (Anderson et al. 2021a). This global
ecological phenomenon has resulted in remarkable socioeconomic losses due to

massive fish kills and fishery closure (Boyce et al. 2017).

Microalgae are not only found in natural water bodies, growing attention has been paid
to the colonization in artificial or human-disturbed niches, such as the "plastisphere"

(microbial habitat with plastic as the matrix) (Amaral-Zettler et al. 2020; Zettler et al.
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2013). These non-traditional niches also participate in the dynamics of pelagic
communities and have an important impact on their structure and function. The
buoyancy, durability, and hydrophobic properties of plastics enable them to act as
vectors for the transport and enrichment of harmful species like disease-causing
microorganisms and antibiotic resistant bacteria (Bergmann et al. 2022; Bhagwat et al.
2021; Dey et al. 2022). These studies on plastisphere microbiology and associated risks
mainly focus on bacteria, with comparatively less attention given to eukaryotes. Other
life forms, such as microalgae, a key component of aquatic ecosystems, are poorly
understood in the plastisphere. Uncovering the full picture of this novel, unique habitat
generated in the Anthropocene and the associated potential ecological threats will help
to achieve a more comprehensive understanding of plastic pollution risks and the
influence of human activities on the Earth’s microbiome (Li et al. 2024b; Rillig et al.
2024a). A previous investigation shows that one square centimeter of the plastic surface
can harbor more than 80,000 diatom cells, pinpointing that marine plastispheres act as
a suitable habitat for microalgae containing substantial microalgal biomass (Casabianca
et al. 2019). However, the compositional dynamics and associated ecological risks of
microalgal communities within distinct habitats, namely, the seawater and the
plastisphere, remain poorly understood. Furthermore, the potential interactions,
convergences, or divergences between these two ecological niches have not been
thoroughly investigated, leaving a critical gap in our understanding of how microalgal

populations function and evolve in anthropogenically influenced marine environments.
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Metabarcoding monitoring efforts are highly beneficial for early HAB species detection
and risk assessment due to robust sensitivity and specificity when compared to
traditional time-consuming, labor-intensive morphology-based approach (Feist &
Lance 2021). Many microalgal species with small sizes are difficult to distinguish via
their morphology (Huang et al. 2021; Pearson et al. 2021). The accuracy of DNA
metabarcoding will fluctuate depending on the reference database, however, there is no

specific harmful and toxic microalgae sequence database till now.

Collectively, this PhD thesis provides significant contributions to the field of marine
ecology by establishing a comprehensive database of harmful and toxic microalgae,
exploring the ecological dynamics and risks of pelagic microalgae communities
including surface seawater and plastisphere, and the interactions between these two
habitats in the coastal ecosystem. Moreover, the exploration of the plastisphere reveals
new insights into the role of plastic debris in altering microalgal community
composition, thereby increasing the risks associated with harmful and toxic algae. The
findings advance our understanding of how environmental and anthropogenic factors
influence algal blooms and their ecological consequences. This work not only enhances
our ability to monitor and manage HABs effectively but also underscores the emerging
environmental challenge posed by plastic debris in marine ecosystems. Continued
research and adaptive management strategies are essential to mitigate these ecological

threats and protect marine biodiversity.
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1.2 Research objectives

This thesis aims at conducting an in-depth examination of the ecological pattern of
microalgal communities and the associated risks in coastal ecosystems. The specific

objectives of this study are as follows:

a) To develop and apply a comprehensive database (HTMaDB) containing taxonomic
information on harmful and toxic microalgae, thereby enabling accurate identification

and effective monitoring of HAB species;

b) To analyze the spatiotemporal distribution patterns of harmful and toxic algae
associated with key algal toxins in coastal surface seawater, in order to validate the

reliability and applicability of the newly constructed database;

c¢) To investigate the characteristics of microalgal communities within the plastisphere
compared to the seawater microalgal community, with a particular focus on the

enrichment of HAB species and their implications for marine ecosystem; and

d) To determine what are the key environmental factors governing HAB community

dynamics and the potential implications of climate change on the HAB community.

1.3 Organization

This thesis is structured into seven chapters, including “Introduction,” “Literature
Review,” “Methodology,” two results and discussion chapters, and a concluding chapter
with “Conclusions and Recommendations.” Chapter 1 introduces the background of the
study, focusing on HABs and their ecological and economic impacts, as well as the
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emerging challenges of plastic pollution and the plastisphere. Furthermore, the thesis
structure is outlined as guidelines for the reader, and the research objectives are set out.
Chapter 2 summarizes existing knowledge on phytoplankton communities in coastal
ecosystems regarding their ecological impacts and environmental drivers. Several
monitoring and detection techniques, traditional and DNA-based, molecular and HAB-
specific database development, are discussed. The chapter then looks at the plastisphere
as a new microhabitat, how it forms, the ecological risks associated with living in it,
and the emerging issue of the proliferation of HAB species within this microhabitat.
Chapter 3 details the methodologies employed in the thesis. It includes the construction
of the database (HTMaDB), covering the collection, taxonomic, and diversity of HAB
species. It also describes marine sampling campaigns, including sampling strategies,
environmental parameter measurements, DNA extraction, and sequencing techniques.
Statistical analyses to quantify algal community patterns and chemical analyses for
LATs are also described. In chapter 4 HTMaDB is applied to analyze distribution
dynamics of microalgal communities in coastal seawater to validate the reliability of
the dataset. Specifically, it maps harmful and toxic microalgae and evaluates
environmental factors, such as temperature, shape toxic algal communities. It further
explores the linkage among environmental parameters, non-toxic species interactions,
and toxic algal community variations, identifying distribution pattern of potential
causative taxa linked with lipophilic algal toxins (LATs). Chapter 5 examines the
microalgal communities and associated risks in the plastisphere in coastal ecosystems,

focusing on ecological shifts induced by plastic debris. It reveals how plastics
24



selectively enrich HAB species, their interactions with the environmental factors, as
well as the potential risks posing to marine biodiversity and ecosystem dynamics.
Finally, Chapter 6 summarizes the major findings and limitations of the current research,
as well as provides a future perspective on advancing the study of microalgal

communities and their associated risks in coastal ecosystems.
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Chapter 2 Literature Review

Given the growing ecological threats posed by HABs and plastic pollution in coastal
ecosystems, this chapter provides a comprehensive review of the interactions between
HABs, plastic debris, and microalgal communities under a climate change world. The
review focuses on understanding the ecological impacts and potential risks associated
with these environmental challenges. From an ecological and environmental health
perspective, this review emphasizes the role of toxigenic microalgae and how plastic
pollution may influence the spread and dynamics of harmful algal species. It further
explores the mechanisms driving the formation of HABs and plastisphere communities,
their spatiotemporal variations, sources, and risk assessments, highlighting critical
research gaps and guiding future studies toward effective monitoring and management

strategies.
2.1 The phytoplankton in the coastal ecosystems

2.1.1 HABs and ecological impact

HABEs, consisting of over-proliferation of algae in both marine and freshwater systems,
represent a critical and escalating global environmental challenge. The frequency,
regional intensity, and geographic distribution of HABs have increased over the last
few decades in coastal areas, posing threats to ecosystems and human health (Anderson
et al. 2021b; Dai et al. 2023b; McKenzie et al. 2021; Yu et al. 2023b). Of the nearly
5,000 documented marine phytoplankton species inhabiting global waters, researchers

have identified more than 100 distinct variants that endanger human populations by
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generating harmful toxins. These bioactive compounds compromise both food safety
through contaminated marine harvests and public health via direct exposure risks
(Hallegraeff et al. 2021a,b). The poisonous compounds directly impact aquatic
ecosystems by triggering mass mortality events in both natural and farmed fish
populations. Their presence disrupts coastal recreational activities and inflicts
substantial financial damage on marine industries. Even non-toxic algal species
contribute to harmful blooms when excessive growth leads to visible water
discoloration, oxygen depletion, or sticky mucus production - all capable of severely
disrupting ecological balance and coastal livelihoods. The Harmful Algal Event
Database (HAEDAT) serves as the sole global repository documenting toxic bloom
incidents across marine and freshwater systems, with significant disparities in regional
reporting accuracy. Its records categorize algae-related phenomena that trigger
regulatory interventions, incur financial losses, or alter ecosystem dynamics. These
incidents encompass four operational definitions: water surface anomalies like colored
patches or foam linked to socioeconomic disruptions from algal presence (toxic or
benign); seafood contamination exceeding human safety thresholds from accumulated
biotoxins; precautionary closures of fisheries or recreational areas due to algal
overgrowth risks; and any algae-driven impacts on organisms, regardless of direct
human health implications. Seafood biotoxin incidents (48%.) accounted for nearly half
of total HAEDAT events across the globe. Among all events associated with seafood
poisoning syndromes, Paralytic Shellfish Toxins (PST) contributed 35%, Diarrhetic

Shellfish Toxins (DST) 30%, Ciguatera Poisoning (CP) and toxins from marine and
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brackish water cyanobacteria each accounted for 9%, Amnesic Shellfish Toxins (AST)

represented 7%, and other toxins made up the remaining 10%. (Fig.1) (Hallegraeft et

al. 2021b).
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globe. Toxic incidents that have led to human poisoning are represented on the map
with shellfish icons, whose sizes correspond to the severity of the events. The first
number shows the number of poisonings, the second number indicates fatalities.
Specifically, for ASP, the notation 150/3 denotes 150 clinical cases with three fatalities)

(Hallegraeff et al. 2021b).

The ecological impacts of HABs are profound and multifaceted. Toxins produced by
harmful algae can bioaccumulate in marine organisms, such as fish, shellfish, and other
invertebrates, leading to mass mortalities in marine life (Karlson et al. 2021). These
toxins can also be transferred through the food web, impacting top predators, including
marine mammals, seabirds, and even humans (Turner et al. 2021). Ingesting
contaminated seafood can lead to a variety of shellfish poisoning illnesses. These
conditions can lead to severe health complications and even death in some cases.
Furthermore, some HABs are associated with aerosolized toxins that can be inhaled by
people, causing respiratory issues, particularly in coastal communities (Patterson et al.
2016). For example, Karenia brevis, the species responsible for red tides in the Gulf of
Mexico, can release toxic aerosols that cause respiratory irritation and exacerbate
conditions like asthma in people living near affected areas (Jang et al. 2025). The socio-
economic consequences of HABs are staggering. In regions heavily dependent on
fisheries and aquaculture, HABs can result in massive losses. The red tide event along

U.S. West Coast in 2015 led to an estimated $48.3 million losses (Anderson et al. 2021¢).
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Similarly, in Asia, coastal communities rely on shellfish harvesting and aquaculture,
which can be severely impacted by HABs. The presence of toxins in seafood can lead
to closures of fisheries, tourist beach restrictions, and the contamination of commercial

seafood, all of which result in significant economic losses.

2.1.2 Environmental drivers of HABs

Microalgal communities in marine and coastal ecosystems are highly sensitive to
environmental changes, with temperature, salinity, and nutrient availability being the
most influential factors shaping their structure, diversity, and functionality. These
factors not only regulate the growth and composition of microalgal populations but also
play a pivotal role in the formation and intensity of HABs. Understanding how these
environmental variables interact with microalgal communities is critical for predicting
ecosystem responses to natural and anthropogenic disturbances, including climate

change and nutrient pollution.

Temperature is one of the most significant environmental drivers of microalgal
dynamics. In general, temperature significantly influences the physiology and
metabolism of phytoplankton (Falkowski et al. 2004). Various species of microalgae
thrive at specific temperatures. For instance, widely cultivated algal species like
Chlorella,  Scenedesmus, Chlorella  vulgaris, Navicula,  Chlamydomonas,

Haematococcus, and Monoraphidium typically flourish in temperatures between 15 and
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35°C (Singh & Singh 2015). Microalgal communities react differently to specific
temperatures based on their strain's optimal temperature, exhibiting negative, neutral,
or positive responses (Kholssi et al. 2023). Rising water temperatures are expected to
enhance both the abundance and diversity of Gambierdiscus and Fukuyoa species in
the Gulf of Mexico and along the southeastern U.S. Atlantic coast. In contrast, species
adapted to lower temperatures in the Caribbean Sea would likely decline in prevalence.
However, their distribution is projected to extend further north into the Gulf of Mexico
and potentially reach the western Atlantic (Kibler et al. 2015). Elevated temperatures
can also disrupt predator-prey relationships, reduce grazing pressure on microalgae, and
shift competitive advantages among species, thereby altering community dynamics
(Anderson et al., 2002). Additionally, warmer temperatures often lead to stronger water
column stratification, reducing vertical mixing and nutrient exchange, which can

further stimulate harmful algal species that are adapted to low-nutrient conditions.

Temperature and salinity are two environmental factors which are closely related to
climate change. With the increase of seawater temperature, the salinity changes
accordingly (Frame & Stone 2013). Salinity significantly influences the distribution
and composition of microalgal communities, especially in estuarine and coastal regions
where freshwater and seawater interact. Changes in salinity can create osmotic stress,
limiting the growth of some species while promoting the dominance of halotolerant or
halophilic species. For example, Prorocentrum minimum and Karlodinium veneficum
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are known to tolerate wide salinity ranges, enabling them to bloom in estuarine
environments (Ajani et al. 2018; Zhang et al. 2008). Fluctuations in salinity caused by
heavy rainfall, river discharge, or drought conditions can disrupt existing microalgal
assemblages and facilitate the introduction and establishment of invasive or harmful

species (Lazrak et al. 2024; Réthig et al. 2023).

Nutrient enrichment is another critical factor regulating microalgal community
structure. Key nutrients, particularly nitrogen (N) and phosphorus (P), serve as essential
resources for microalgal growth. Coastal eutrophication, often driven by agricultural
runoff, wastewater discharge, and urbanization, can lead to excessive nutrient loading
in aquatic ecosystems (Lie et al. 2011). The form and ratio of nutrients (e.g., N:P ratio)
also influence species composition, with certain species favoring either nitrate- or
ammonium-rich conditions (Lagus et al. 2004; Nhu 'Y et al. 2019). Moreover, nutrient
limitation or imbalance can trigger toxin production in certain species such as
Prorocentrum hoffmannianum, further elevating ecological and health risks (Accoroni

et al. 2018).

The combined effects of temperature, salinity, and nutrients often interact in complex
ways, amplifying their influence on microalgal community dynamics. Warming
temperatures can intensify nutrient-driven eutrophication effects by accelerating

nutrient cycling and stimulating harmful algal species adapted to high nutrient and
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warm conditions. Similarly, altered precipitation patterns due to climate change can
modify salinity regimes and nutrient inputs, creating conditions conducive to HAB
outbreaks. Therefore, it is essential to consider the synergistic effects of these

environmental factors when assessing microalgal community responses.

2.1.3 Assembly process in shaping the algal community

Understanding the relative contribution of different assembly processes in shaping
microalgal communities over spatiotemporal scales is crucial for understanding how
these communities respond to local, regional, and global changes (Skouroliakou et al.
2022). Deterministic and stochastic processes explain the assembly of microbial
communities (Nemergut et al. 2013; Zhou & Ning 2017). Deterministic processes
generally refer to factors that affect community structure through environmental
selection and species interactions (Chesson 2000; Fargione et al. 2003). Environmental
filtering plays a key role in deterministic processes by emphasizing how environmental
factors like temperature, salinity, light, and nutrient availability influence the
distribution of species. Water temperature directly affects the growth and reproduction
of algal species (Matula et al. 2022). While some algae species are thermally sensitive,
thermotolerant algae (cyanobacteria, green algae, certain species of dinoflagellates, etc.)
can prevail in communities, especially in warmer waters (Rossi et al. 2023). Being more
tolerant to high temperatures than other algae, they tend to increase reproduction at

higher temperatures, which modulates the composition of the community. The
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distribution of different species also depends on salinity variations; some species of
algae perform better under low salinity while others are adapted to high salinity (Mo et
al. 2021). Nutrient concentration is another critical environmental factor directly
affecting algal growth rates and community composition, especially the concentrations
of nitrogen and phosphorus, which often determine the prosperity of certain algal
populations. In addition to environmental factors, species interactions are also a
significant component of deterministic processes (Zhou & Ning 2017). The community
structure is often affected by competitive, predatory, and symbiotic interactions among
species (Solomon et al. 2022). Certain algal species may dominate specific ecological
niches through competitive advantages, inhibiting the growth of other species. Some
algae enhance their survivability through symbiotic relationships with microbial
communities, obtaining nutrients. Additionally, predatory pressures can alter algal
community structures, especially when planktonic predators consume algae

(Behrenfeld et al. 2021; Thompson et al. 2024).

Stochastic ecological processes including dispersal, speciation, and ecological drift,
which typically drive species composition and diversity (Chase & Myers 2011; Stegen
et al. 2012). Dispersal refers to the movement of species across different areas, while
speciation describes the generation of new genetic variation. Ecological drift, on the
other hand, is the random fluctuations in the abundance of species over time, driven by
stochastic processes (Fodelianakis et al. 2021). Fluctuations in the abundance of some
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species within such communities may take place without any reference to
environmental selection, and, hence, be purely due to random factors, when
communities are in dynamic equilibrium. For instance, some algal species might
rapidly occupy ecological niches due to initial accidental advantages (such as fewer
predators or higher initial biomass), becoming dominant in the community, a
phenomenon known as the priority effect (Debray et al. 2022; Reijenga et al. 2021).
Gene flow is also part of stochastic processes, especially when there is genetic exchange
between multiple communities (Arnold et al. 2022). Genetic diversity among species
can be promoted by gene flow, and thus community structure and function (Irwin et al.
2022). Additionally, dispersal events are an important part of stochastic processes,
particularly in open waters or large water bodies, where species dispersal is often
unpredictable (Albright & Martiny 2018). Some algae may enter new habitats due to
random dispersal events, profoundly impacting community structure. Deterministic and
stochastic processes are not independent of each other but are intertwined and
complementary (Skouroliakou et al. 2022). Environmental selection and species
interactions usually collaborate with stochastic processes in shaping community
structures in most ecosystems (Li et al. 2022b; Menéndez-Serra et al. 2023). For
example, in ecosystems with stable environmental conditions, such as temperature and
salinity, deterministic processes might be the dominant force, but in dynamic, fast-
changing ecosystems, stochastic processes might play a larger role. In community
succession, During community succession, deterministic and stochastic processes

might gradually transition over time (Hanusch et al. 2022; Méren et al. 2017). During
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the early stages of a community, stochastic processes may be the principal dynamic
processes due to high species diversity and unstable environmental conditions.
However, as the community reaches a stable phase, deterministic processes may
become the dominating force as the impact of environmental factors on species
selection becomes more pronounced. At this stage, the competitive and cooperative

relationships among species will determine the final form of the community structure.

2.2 Advances in monitoring and detection techniques for HABs species

2.2.1 Traditional morphological identification

The identification and monitoring of microalgal species, particularly in the context of
HABs, have historically relied on traditional morphological methods. Traditional
morphological identification is based on the microscopic examination of physical and
structural characteristics of algal cells (Manoylov 2014). Current taxonomy and
ecology of algae have been based on this approach, for the most important information
of species diversity and ecological functions. However, the efficacy of this method is
limited by several factors. Firstly, the morphological features of many microalgae can
be highly variable, depending on environmental conditions, which can lead to
misidentification (Fawley & Fawley 2020). Moreover, some algal species exhibit
minimal morphological variations, which complicates the identification of closely
related species or different life stages within the same species (Krivina & Temraleeva

2020). Furthermore, traditional microscopy is labor intensive, requiring taxonomic
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expertise, and can be time-consuming, which is impractical during urgent assessments

of HABs where rapid response is critical.

2.2.2 DNA-based molecular techniques

Advances in molecular techniques have significantly transformed the landscape of algal
research, offering new insights and overcoming many limitations inherent in traditional
methods. The application of DNA barcoding as a tool for species identification has
become routine use across the biological fields including phycology (Kowalska et al.
2019; Steinhagen et al. 2023). DNA barcoding refers to sequencing a short, standard
length of DNA from a sample and matching it against reference sequences in a database
(Antil et al. 2023). This technique allows for precise species identification, regardless
of the life stage or condition of the organism, thereby addressing some of the key
challenges of morphological methods. In microalgal research, commonly targeted
genes for barcoding include the 16S rRNA for prokaryotic cyanobacteria and the 18S

rRNA gene for eukaryotic algae (Karlusich et al. 2022).

Metabarcoding extends the principles of DNA barcoding to community-level
assessments, enabling the identification of multiple species within environmental
samples simultaneously (Jiménez-Garcia et al. 2023) . This technique combines high-
throughput sequencing with specific molecular markers to identify and quantify the

diversity of microbial communities. High-throughput sequencing (HTS) techniques,
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including metabarcoding, offer significant advantages for the early detection and
monitoring of HABs (Zaytsev et al. 2024). HTS can process numerous samples quickly
and provide data on species composition and abundance at a much finer scale than
traditional methods (Lopes Dos Santos et al. 2022). This rapid processing capability is
crucial for the timely management of HABs, allowing for early warning and mitigation
measures to be implemented before blooms reach harmful levels. Moreover, HTS can
detect low-abundance species that might be overlooked by microscopy, providing an
early indication of a potential bloom (Wang et al. 2022). The development of
comprehensive, curated databases containing reference sequences is critical for the
success of metabarcoding. Such databases allow researchers to assign taxonomy to the
vast amounts of sequence data generated, facilitating rapid assessments of biodiversity
and community structure. Databases such as the SILVA (ribosomal RNA sequences)
and the Protist Ribosomal Reference database (PR2) have been instrumental in storing
and providing access to reference sequences that enhance the accuracy and efficiency

of species identification (Quast et al. 2013; Guillou et al. 2013).

In addition to 18S amplicon sequencing, metagenomic sequencing and
metatranscriptome sequencing have also become essential molecular tools for
analyzing the structural and functional characteristics of microalgal communities. 18S
amplicon sequencing achieves high-throughput analysis of microalgae diversity and
community composition in environmental samples by specifically amplifying the

conserved region of the small subunit ribosomal RNA gene. This technology has

38



advantages of low cost, simple operation process and the ability to process large-scale
samples, and is suitable for ecological monitoring, geographical distribution pattern
analysis and time series research. However, limited by the species resolution of the 18S
rRNA gene, some microalgae groups with similar systematic classification positions or
highly conserved gene sequences are difficult to accurately distinguish by this method.
In addition, the bias in the PCR amplification process may lead to bias in population
abundance estimation, and this technology only provides "existence" information and
cannot reveal the functional characteristics of microalgae. In contrast, metagenomic
sequencing directly extracts the total DNA of all organisms in environmental samples
without the need for specific primer amplification, thereby reducing amplification bias
and being able to comprehensively depict the population composition of microalgae
and their associated microorganisms, while analyzing their potential functional
genomic characteristics (Aplakidou et al. 2024). Metagenomic data allows researchers
to reconstruct partial or complete microalgae genomes (i.e., MAGs), and then conduct
in-depth studies on metabolic pathways, environmental adaptation mechanisms, and
microbial interaction networks. However, since environmental samples usually have
extremely high biological complexity, especially in microalgae communities
accompanied by a large number of bacteria, fungi, and viruses, the assembly and
directional binning process of metagenomic data is extremely complex, and the
coverage of low-abundance microalgae populations is often insufficient, resulting in
the risk of information loss in subsequent analysis (Navgire et al. 2022). At the same

time, the high cost of metagenomic sequencing also limits its application in large-scale
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sample screening. In contrast, metatranscriptome sequencing starts with total RNA, and
high-throughput sequencing is performed after rRNA removal or mRNA enrichment,
which can capture the active expression profiles of microalgae and related
microorganisms in the environment under specific spatiotemporal conditions (Wahl et
al. 2022). Metatranscriptome data not only reveals the level of "who is active", but also
provides dynamic information at the functional level, which helps to analyze the
transcriptional response of microalgae to environmental changes (such as light,
temperature, salinity, nutrient changes, etc.), as well as the symbiotic, parasitic, or
competitive relationship between microalgae and other microorganisms (Berman et al.
2020). However, since mRNA is easily degraded, metatranscriptomics have extremely
high requirements for sample collection, preservation, and RNA extraction and
purification. At the same time, there are still a large number of rRNA residues in
environmental transcriptome data, resulting in a limited proportion of effective
information. In addition, changes in gene expression levels may be due to
environmental induction or fluctuations in community structure, which adds additional
complexity to data interpretation. Therefore, in actual research design, the three
technologies are often used in a reasonable combination according to research
objectives and resource conditions: if the main focus is on the species diversity and
community structure changes of microalgae, 18S amplicon sequencing is still the first
choice with high cost performance; if the research focus is on the genomic
characteristics and metabolic potential of microalgae and their associated

microorganisms, metagenomic sequencing is more suitable; if it is necessary to reveal
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the functional dynamics of microalgae under environmental stress or ecological
interaction, metatranscriptome sequencing is indispensable. It is worth noting that with
the development of sequencing technology and the continuous improvement of multi-
omics joint analysis methods, future microalgae research will tend to integrate and
analyze amplicon, metagenomic and metatranscriptome data to build a panoramic

understanding from community structure to functional dynamics.

2.2.3 The database construction of HAB species

The downstream interpretation of molecular surveys relies heavily on the accuracy and
completeness of the reference databases used for classifying taxonomy (Leray et al.
2022). The construction of comprehensive reference databases for harmful and
toxigenic microalgae has emerged as a critical component in the effective monitoring
and management of HABs. These databases not only facilitate accurate species
identification but also enhance our understanding of the ecological impacts associated
with algae. A comprehensive and accurate database should contain well-curated, vetted
sequences that cover a wide range of known microalgal species, including those that
are less common but potentially harmful. The quality of the database entries, including
the correctness of the sequence data and the taxonomic resolution, directly impacts the
success of molecular identification techniques such as DNA barcoding and
metabarcoding. Mistakes in sequence annotation or the inclusion of poorly resolved

sequences can lead to erroneous species identification, which in turn affects ecological
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studies and management decisions.

Databases enable researchers to quickly identify the presence of harmful or toxic
microalgae in water samples using molecular techniques. This capability is crucial for
the early detection of HABs, allowing for timely interventions and mitigation strategies
that can prevent ecological and economic damage. By providing detailed taxonomic
and genetic information, these databases facilitate ecological studies that explore the
distribution, diversity, and dynamics of algal populations. Understanding the impact of
environmental changes on algal biodiversity requires robust baseline data, which well-
maintained databases can provide. Consequently, the development and application of
databases for harmful and toxic microalgae are of great significance in addressing the
global challenge posed by HABs. While there are significant challenges in achieving
accurate species identification, the development of reliable and comprehensive
databases is a critical step forward. These databases not only support effective
monitoring and management but also enhance our scientific understanding of algal
biology and ecology. As molecular techniques continue to advance, the importance of
these databases will only grow, underscoring the need for ongoing investment in their

development and maintenance.

2.3 Plastisphere: a novel microhabitat in coastal ecosystems

The pervasive presence of plastics poses a threat to various ecosystems around the
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world. Their widespread presence is attributed to their ability to travel long distances
by ocean currents or wind, reaching even the most remote areas of the planet. Plastic
debris colonized by biofilm-forming microbial communities are known as the
“plastisphere”. The revelation that this unique substrate can aid microbial dispersal has

piqued interest in the ground of microbial ecology.

2.3.1 Global plastic pollution and the formation of the plastisphere

The relentless accumulation of plastic waste in the world’s oceans represents one of the
most pressing environmental challenges of the 21st century (Geyer et al. 2017; Law
2017). Plastics have become the most common form of marine litter, with increasing
amounts of post-consumer plastic waste inevitably entering the oceans from recycling
and waste streams (MacLeod et al. 2021; Stubbins et al. 2021; Weiss et al. 2021; Li et
al. 2021b). Plastic pollution is pervasive across all marine environments, from the poles
to the equator and from the sea surface to the deep sea sediments (Kanhai et al. 2019).
Plastic debris ranges in size from large, visible items to microplastics less than 5
millimeters in diameter. These plastics originate from both land-based and marine
sources, including consumer and industrial waste that escapes waste management and
treatment processes. Ocean currents carry these plastics across vast distances, leading
to their accumulation in remote areas far from their original source and often
converging in subtropical gyres where they form large floating “garbage patches”

(Lebreton 2022). Currently, over 400 million tonnes of plastic waste are produced
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globally each year. As estimated, approximately 5-13 million tonnes of plastic waste
enter the ocean from coastal land annually (Jambeck et al. 2015). This causes more than
170 trillion pieces weighted approximately 2 million tonnes floating in the world’s
ocean (Eriksen et al. 2023). If no effective action, the plastic stock in the ocean could

triple by 2040 (Lau et al. 2020).

The buoyancy, hydrophobic, organic, and durable surface of plastics in the environment
provide a unique niche for microorganisms, resulting microecosystems with plastic as
the matrix, termed “the plastisphere” (Amaral-Zettler et al. 2020; Zettler et al. 2013)..
The huge stock of plastic waste in the environment, combined with the ongoing
emission, indicates that the plastisphere is a habitat with a vast and expanding total area
(Li et al. 2024a,c). It consists of a variety of microorganisms, including bacteria, algae,
fungi, and small invertebrates (Wang et al. 2021a). These organisms colonize plastics
in a biofilm, a robust layer of cells and extracellular matrix, adhering to the plastic
surface. The formation of the plastisphere begins almost immediately after the plastic
enters the water, with pioneer species attaching to the surface, followed by a succession
of other organisms that form a complex, multi-species community. The community
structure of the plastisphere is distinct from surrounding water column biota, often
harboring species not commonly found in other marine environments (Pang et al. 2023).
Growing evidence shows that the plastisphere may pose critical threats to the ecosystem
function and biological health by enriching biogeochemical process-involved
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microorganisms as well as harmful species like disease-causing microorganisms and
antibiotic resistant bacteria (Bergmann et al. 2022; Bhagwat et al. 2021; Dey et al. 2022).
The unique conditions of the plastisphere, including the availability of new niche spaces
and the presence of plastic additives, might encourage the evolution of novel
biochemical pathways (Yu et al. 2023a). The durability of synthetic polymers, the
building blocks of plastics, ensures that they persist in the marine environment for
decades or even centuries. Unlike natural materials, plastics do not biodegrade but
instead photodegrade under sunlight, breaking down into smaller and smaller pieces
while never completely disappearing. This slow degradation process leads to the
continuous accumulation of microplastics, which are ingested by marine organisms and

can enter the food chain, leading to broader ecological consequences.

2.3.2 Potential ecological risks of the plastisphere

The ecological implications of the plastisphere are profound and multifaceted. Plastics,
due to their durable and persistent nature, provide a unique substrate for microbial
colonization in marine environments. These communities differ significantly from
those found on natural substrates, partly due to the distinct chemical composition of
plastics and their ability to persist and accumulate in marine environments. As the
prevalence of plastic debris continues to increase globally, understanding the ecological

implications of the plastisphere becomes critically important.
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One of the primary ecological risks of the plastisphere is acting as a vector for invasive
species. Plastics can travel long distances across oceans, carrying with them a wide
range of colonizing organisms, which may not naturally occur in the habitats they reach.
Habitat alterations can occur when non-native introduced species either compete with
or displace indigenes marine life leading to the reduction of biodiversity and
interference of local community structures. Moreover, animal, plant, and human
pathogens are enriched in the plastisphere indicate that the plastisphere presents a
significant biosecurity risk and a potential threat to human health (Li et al. 2024a).
Pathogens harbored on plastic debris can infect animals, particularly aquatic species
through filter feeding, adversely impacting their growth, behavior, and dietary habits
(Jacob et al. 2020; Li et al. 2021a). There is evidence that even microplastics can be
ingested and accumulate in terrestrial plants (Li et al. 2020). The exposure of plants to
pathogens associated with the plastisphere could be a key factor behind reports of
diminished crop yields(Zhang et al. 2020). Furthermore, reduced plant biomass has
been linked to the presence of plastic contaminants (Zhang et al. 2022). The prevalence
of pathogens in the plastisphere underscores an elevated risk of disease transmission.
Plastics are known to absorb and concentrate persistent organic pollutants (POPs) from
the marine environment, including PCBs, DDT, and PAHs (Koelmans et al. 2013; Wang
et al. 2021b). Harmful compounds such as the phthalate plasticizers, bisphenol A, and
metal additives such as zinc, copper, and nickel, can be released during plastic degrades
process (Hahladakis et al. 2018). These chemicals can become part of the plastisphere

and enter the food web through microorganisms that colonize plastics. This
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incorporation leads to bioaccumulation and potentially biomagnification as toxins
move up the food chain, reaching higher trophic levels and posing significant risks to
marine wildlife. These pathogens and POPs might not only affect marine organisms but
could also impact coastal communities and industries, such as fisheries and aquaculture,
leading to economic losses and public health concerns. The complex interaction
highlights the extensive impact of plastic pollution on ecosystem and human health (Li

et al. 2024a).

Microbial communities within the plastisphere can significantly impact biogeochemical
processes, particularly those related to carbon, nitrogen, and phosphorus cycling. The
metabolic activities of these microorganisms can alter the rates of biogeochemical
transformations in marine environments, potentially impacting nutrient availability,
primary productivity, and overall ecosystem function. Regions with high plastic
contamination tend to exhibit greater plastic biodegradation potential. Additionally, the
accumulation of plastic residues has been shown to negatively impact soil organic
matter in agricultural lands (Zhang et al. 2020). Another noteworthy discovery is that
the higher degradation rates within the plastisphere may contribute to the release of
greenhouse gases such as CO2 and CH4, which are by-products of plastic decomposition.
The plastisphere also demonstrates enhanced potential for nitrogen-related processes,
including denitrification, nitrogen respiration, and nitrate reduction, particularly within
freshwater ecosystems (Li et al. 2024a). These processes increase the likelihood of
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producing a potent greenhouse gas with a global warming potential, like N>O (Kuypers
et al. 2018; Repo et al. 2009). The metabolites released from the plastisphere into the
surrounding environment disrupt the natural nutrient cycles. The potential for plastic to
alter the metabolism of organic compounds, along with its significant influence on the
nitrogen cycle, indicates that the plastisphere could disrupt biogeochemical processes
and potentially exacerbate climate change (Bhagwat et al. 2021; Su et al. 2022). Beyond
its ecological impacts, the accumulation of plastic waste and the ensuing formation of
the plastisphere can also degrade the natural beauty of marine environments, potentially
impacting tourism and recreational activities. Beaches and coastal areas littered with
plastic waste are less appealing to tourists, which can result in significant economic

losses for communities that rely on tourism revenue.

2.3.3 The HAB species in the plastisphere: emerging concerns

Previous studies on plastisphere microbiology and associated risks mainly focus on
bacteria, with comparatively less attention given to fungi. Other life forms, such as
microalgae, a key component of aquatic ecosystems, are poorly understood in the
plastisphere. The convergence of two significant environmental issues, HABs and
plastic pollution, presents new challenges for marine ecosystems globally. The
plastisphere, a complex microbial community that colonizes floating plastic debris,
provides a unique habitat that can facilitate the spread of harmful algal species and their

toxins. In 2003, marine microplastics were recognized for the first time as potential
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migration vectors for potential harmful dinoflagellates such as Ostreopsis sp. and
Coolia sp. under macroscopic observation (Mercedes et al. 2003). One square
centimeter of the plastic surface can harbor more than 80,000 diatom cells, pinpointing
that marine plastispheres act as a suitable habitat for microalgae containing substantial
microalgal biomass (Casabianca et al. 2019). The stable and durable nature of plastics
offers a persistent platform for these algae, potentially allowing them to thrive and
proliferate outside their usual geographic and temporal boundaries. The long-distance
mobility of plastics across oceanic regions enables them to serve as carriers,
transporting HAB species to previously unaffected areas, where these species may
establish new outbreaks (Do Prado Leite et al. 2022). This capability is particularly
concerning for regions previously unaffected by specific types of HABs, as it could
lead to the introduction of new ecological threats to those ecosystems. Another critical
concern is the accumulation of algal toxins on plastics. Studies have shown that plastics
can adsorb and concentrate not only chemical pollutants but also biotoxins produced by
toxic algae (Pires et al. 2025). This adsorption process can lead to higher concentrations
of toxins on plastic surfaces than in surrounding waters, posing significant risks to
marine life that ingest plastic debris. The ingestion of these toxin-loaded plastics by
marine organisms can lead to bioaccumulation and biomagnification of toxins through
the food web, impacting species up to and including humans. The risk is compounded
by the potential for these toxins to be released into environments where they were
previously absent, carried over vast distances by floating plastics. This scenario not

only spreads the geographic impact of HABs but also complicates efforts to manage
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and mitigate their effects. Moreover, climate change adds a new dimension to this
complex interaction. Global climate change exacerbates the uncertainty of marine
environments, potentially altering basic environmental parameters such as ocean
temperature, salinity, and circulation patterns, which in turn indirectly or directly affect

the distribution and impact of plastic pollution and harmful algal blooms.
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Chapter 3 Methodology

This section provides general information of database construction, sample collection,
and detailed descriptions of the biological, statistical analyses and chemical applied in

this study.

3.1 Construction of HTMaDB

3.1.1 Collection of HAB species

At the Fourth Session of the IOC Intergovernmental Panel on Harmful Algal Blooms,
Vigo, Spain, 30 June-2 July 1997, it was decided to establish a Task Team on Algal
Taxonomy with the aim of providing an agreed reference list of harmful algal species,
including correct citation of the author(s), date of valid publication, and a list of
synonyms. [IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae provides
a reference for the use of names and information on each species of toxic microalgae.
The list contains at the moment species producing toxins or toxic effects, and a few
species suspected to form toxins. Note that a toxic species may not produce toxins
everywhere it occurs. However, the reference list does not include species that cause
harm due to high biomass. To include the harmful bloom-forming but not toxic species,
we conducted literature review by searching publications with keywords ‘“harmful
microalgae” OR “toxic microalgae” OR “HAB species” OR “harmful and toxic algae”
in Web of Science citation database Core Collection. After manually checking the
collected 197 publications (Appendix 1), we further added 101 non-toxic but bloom

causing species to the database. The detailed collected HAB species was provided in
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Table 3-1.

3.1.2 18S sequence database construction for HAB species

3.1.2.1 Introduction of public databases

The International Nucleotide Sequence Database Collaboration (INSDC) is a global
collaboration of independent governmental or non-profit organisations that manage
nucleotide sequence databases capturing and preserving nucleotide sequence
information and annotations to create a comprehensive collection that preserves the
scientific record and enables broad sharing of such data (International Nucleotide
Sequence Database Collaboration). INSDC Participating Databases including
European Molecular Biology Laboratory (EMBL)-Bank, National Center for
Biotechnology Information (NCBI)-GenBank, and DNA Data Bank of Japan (DDBJ).
These three organizations exchange data on a daily basis. Although the three databases
provide a wide range of sequence data, specialized databases such as SILVA and PR2

offer more in-depth and specialized resources in specific fields.

SILVA (from Latin silva, forest) database provides comprehensive, quality checked and
regularly updated datasets of aligned small (16S/18S, SSU) and large subunit (23S/28S,
LSU) ribosomal RNA (rRNA) sequences, which are widely used in microbial
classification and ecological research (Quast et al. 2013). The SILVA databases are

made available as releases, rather than being updated continuously, to enhance the
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comparability of the studies employing these databases. Each release is numbered
according to the EMBL-Bank release from which the sequence data were extracted and
is permanently available for download via the SILVA website. The dataset encompasses
a broad range of biological groups, including bacteria, archaea, and eukaryotes. The
SILVA database includes taxonomic information, sequence data, and relevant
functional annotations, facilitating users in conducting diversity analyses and

phylogenetic studies.

The Protist Ribosomal Reference database (PR2) reference sequence database was
initiated in 2010 in the frame of the BioMarks project from work that had developed in
the previous ten years in the Plankton Group of the Station Biologique of Roscoff. The
PR2 provides a unique access to eukaryotic small sub-unit (SSU) ribosomal RNA and
DNA sequences, with curated taxonomy (Guillou et al. 2013). The database mainly
consists of nuclear-encoded protistan sequences. However, metazoans, land plants,
macrosporic fungi and eukaryotic organelles (mitochondrion, plastid and others) are
also included because they are useful for the analysis of high-throughput sequencing
data sets. Introns and putative chimeric sequences have been also carefully checked.
Taxonomic assignation of sequences consists of nine unique taxonomic fields (from

domain to species).
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3.1.2.2 Collection of 18S full length from public databases

Advances in HTS have led to unprecedented growth in the amount of available
sequencing data. Owing to existing reference databases such as SILVA and PR2, while
widely used, exhibit notable limitations when it comes to the accurate identification and
comprehensive coverage of harmful and toxic microalgae. Several key species known
to be associated with HABs are entirely absent from these repositories. As a result,
sequence alignment and taxonomic assignment using these databases may lead to
incomplete characterization of harmful/toxic microalgal communities. To facilitate
HAB research and related studies, we have developed the HTMaDB, comprehensive
yet specific coverage of harmful and toxic algae taxa extracting from SILVA and PR2,
which provides access to users for searching, downloading, aligning eukaryotic algal
sequencing data. It offers enhanced taxonomic resolution and improved specificity for
HAB-related organisms, thereby minimizing the risk of misidentification. The
HTMaDB represents the first 18S full length sequence database for HAB species. Based
on the scientific accepted species name, we extracted the full-length 18S sequences of
the collected harmful and toxic taxa from eukaryotic microorganism databases (Silva
138.1 SSU and PR2 5.0.0 SSU Ref database). A total of 1346 sequences were obtained.
We reorganized the taxonomic classification of the collected taxa by referring to
AlgaeBase since inconsistent classification methods in different databases (M.D. Guiry
& Guiry, G.M. 2024). The collected 18S full length sequences consist of 238 eukaryotic

HAB species. The construction procedure was provided in Figure 3-1.
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Figure 3-1 Flowchart of 18S sequence database construction of HTMaDB.
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Table 3-1 The HAB species in the HTMaDB.

Type Species
Akashiwo sanguinea Coolia malayensis Gambierdiscus toxicus Prorocentrum concavum Pseudo-nitzschia caciantha
Alexandrium affine Dinophysis acuminata Gonyaulax bohaiensis Prorocentrum cordatum Pseudo-nitzschia calliantha
Alexandrium andersonii Dinophysis acuta Gonyaulax spinifera Prorocentrum emarginatum Pseudo-nitzschia cuspidata
Alexandrium australiense Dinophysis caudata Gymnodinium catenatum Prorocentrum hoffimannianum Pseudo-nitzschia delicatissima
Alexandrium catenella Dinophysis fortii Heterocapsa bohaiensis Prorocentrum leve Pseudo-nitzschia fraudulenta
Alexandrium fragae Dinophysis infundibulum Heterocapsa borneoensis Prorocentrum lima Pseudo-nitzschia fukuyoi
Alexandrium hiranoi Dinophysis miles Heterocapsa circularisquama Prorocentrum mexicanum Pseudo-nitzschia galaxiae
Alexandrium leei Dinophysis norvegica Heterocapsa horiguchii Prorocentrum panamense Pseudo-nitzschia granii
Alexandrium limii Dinophysis tripos Heterocapsa niei Prorocentrum rhathymum Pseudo-nitzschia kodamae
Alexandrium minutum Fukuyoa paulensis Heterocapsa pygmaea Prorocentrum texanum Pseudo-nitzschia lundholmiae
Alexandrium monilatum Fukuyoa ruetzleri Karenia bicuneiformis Protoceratium reticulatum Pseudo-nitzschia multiseries

Toxic Pseudo-nitzschia

Alexandrium ogatae
Alexandrium ostenfeldii
Alexandrium pacificum

Alexandrium
pseudogonyaulax
Alexandrium tamarense
Alexandrium tamiyavanichii
Alexandrium taylorii
Amphidinium carterae

Amphidinium gibbosum

Fukuyoa yasumotoi

Gambierdiscus australes

Gambierdiscus balechii

Gambierdiscus belizeanus

Gambierdiscus caribaeus
Gambierdiscus carolinianus
Gambierdiscus carpenteri
Gambierdiscus cheloniae

Gambierdiscus excentricus

Karenia brevis
Karenia mikimotoi

Karenia papilionacea

Karenia selliformis

Karlodinium veneficum
Lingulodinium polyedra
Margalefidinium fulvescens
Margalefidinium polykrikoides

Ostreopsis ovata
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Protoperidinium crassipes
Pyrodinium bahamense
Pyrodinium bahamense

compressum
Takayama acrotrocha

Vicicitus globosus

Chattonella marina

Chattonella marina var. antiqua
Chattonella marina var. ovata

Chattonella subsalsa

pseudodelicatissima

Pseudo-nitzschia pungens

Pseudo-nitzschia seriata

Pseudo-nitzschia simulans

Pseudo-nitzschia subcurvata
Pseudo-nitzschia turgidula
Chrysochromulina leadbeateri
Phaeocystis globosa

Phaeocystis pouchetii



Amphidinium klebsii
Amphidinium operculatum
Amphidoma languida
Azadinium dexteroporum
Azadinium poporum
Azadinium spinosum
Centrodinium punctatum

Coolia canariensis

Gambierdiscus holmesii
Gambierdiscus honu
Gambierdiscus lapillus
Gambierdiscus lewisii

Gambierdiscus pacificus

Gambierdiscus polynesiensis

Gambierdiscus scabrosus

Gambierdiscus silvae

Ostreopsis rhodesiae
Ostreopsis siamensis
Pfiesteria piscicida
Pfiesteria shumwayae
Phalacroma mitra
Phalacroma rotundatum
Polykrikos hartmannii

Prorocentrum cassubicum

Fibrocapsa japonica
Heterosigma akashiwo
Nitzschia bizertensis
Pseudochattonella farcimen
Pseudochattonella verruculosa
Pseudo-nitzschia australis
Pseudo-nitzschia batesiana

Pseudo-nitzschia brasiliana

Prymnesium calathiferum
Prymnesium faveolatum
Prymnesium parvum
Prymnesium polylepis

Prymnesium zebrinum

Harmful

Alexandrium cohorticula
Alexandrium margalefii
Alexandrium insuetum

Asterionellopsis glacialis

Aureococcus anophagefferens

Aureoumbra lagunensis
Blixaea quinquecornis
Chaetoceros affinis
Chaetoceros atlanticus
Chaetoceros constrictus
Chaetoceros convolutus
Chaetoceros curvisetus
Chaetoceros danicus
Chaetoceros debilis
Chaetoceros decipiens
Chaetoceros diadema

Chaetoceros laevisporus

Chaetoceros pseudocurvisetus

Chaetoceros tenuissimus
Chaetoceros throndsenii
Chaetoceros tortissimus
Chaetoceros lorenzianus
Chaetoceros wighamii
Coscinodiscus radiatus
Coolia monotis
Cylindrotheca closterium
Cyclotella meneghiniana
Dictyocha fibula
Dictyocha speculum
Dinophysis hastata
Phalacroma rapa
Diplopsalis lenticula
Dunaliella salina
Eucampia zodiacus
Eutreptiella gymnastica

Euglena viridis

Gymnodinium aureolum
Gymnodinium impudicum
Protodinium simplex
Guinardia delicatula
Guinardia flaccida
Halamphora coffeiformis
Heterocapsa triquetra
Heterocapsa rotundata
Heterocapsa pygmaea

Lauderia annulata

Lepidodinium chlorophorum

Leptocylindrus danicus
Leptocylindrus minimus

Levanderina fissa

Lithodesmioides polymorpha

Noctiluca scintillans
Nitzschia longissima

Ostreopsis lenticularis
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Proboscia alata
Prorocentrum donghaiense
Prorocentrum micans
Prorocentrum triestinum
Prorocentrum dentatum
Prorocentrum redfieldii
Prorocentrum gracile
Pseudocochlodinium profundisulcus
Pyrophacus steinii
Scrippsiella acuminata
Scrippsiella trochoidea
Skeletonema tropicum
Skeletonema costatum
Skeletonema marinoi
Skeletonema menzelii
Skeletonema pseudocostatum
Takayama pulchella

Takayama xiamenensis

Thalassiosira curviseriata
Thalassiosira rotula
Thalassiosira lundiana
Thalassiosira mala
Thalassiosira minima
Thalassiosira minuscula
Thalassiosira punctigera
Thalassiosira weissflogii
Thalassiosira pseudonana

Thalassiosira gravida

Thalassionema nitzschioides

Tripos dens
Tripos furca
Tripos fusus
Tripos lineatus
Tripos muelleri

Tryblionella compressa



Chaetoceros rostratus Gonyaulax polygramma Paralia sulcata Teleaulax acuta
Chaetoceros socialis Gonyaulax verior Plagioselmis prolonga Tenuicylindrus belgicus

Chaetoceros simplex Gonyaulax digitale Plagioselmis nannoplanctica Thalassiosira allenii
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3.1.3 Taxonomic composition and diversity of the HTMaDB

Among 238 eukaryotic HAB species. 137 toxic microalgae encompass Dinoflagellates
(99), Ochrophyta (30), and Haptophyta (8) with, whereas 101 harmful microalgae
consist of Dinoflagellates (37), Ochrophyta (56), Cryptophyta (3), Chlorophyta (1), and
Euglenozoa (2) at phylum level (Fig.3-2a). This indicates that dinoflagellates are the
dominant contributor of toxins, whereas harmful algal blooms are primarily caused by

Ochrophyta.

Among the toxic and harmful genera in the database, Alexandrium is the most abundant,
with an obvious higher sequence count than others (Fig.3-2b). This well-known toxic
genus is associated with PSTs, posing severe risks to marine organisms such as shellfish
and fish, as well as to human health. Gambierdiscus, ranking second in abundance, is
linked to ciguatoxins, which are major contributors to food chain contamination,
particularly in tropical and subtropical marine ecosystems. Skeletonema and
Prorocentrum, ranked third and fourth, respectively, have distinct ecological impacts.
While Skeletonema, primarily a diatom, can contribute to eutrophication in high
concentrations, Prorocentrum is frequently associated with the production of algal
toxins. Thalassiosira and Heterosigma also exhibit strong presence in the database.
Thalassiosira, a diatom, generally does not produce toxins but can exacerbate
eutrophication when overabundant, whereas Heferosigma is a known toxic genus
capable of producing substances lethal to fish. Genera with lower abundance, such as
Margalefidinium, Pfiesteria, and Cyclotella, are less frequent but still noteworthy. For

instance, Pfiesteria is associated with neurotoxin production, posing a significant threat
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to aquatic life, especially fish. This comprehensive assessment highlights the varying
ecological and toxicological roles of these genera, emphasizing the importance of

monitoring and managing their presence in marine ecosystems to mitigate potential
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Figure 3-2 Taxonomic composition at phylum level (a) and top 20 genera based on

sequence number (b) in constructed HTMaDB.

3.2 Marine sampling campaign

3.2.1 General information of the region studied

Hong Kong, a vibrant and densely populated coastal city in southern China, is known
for its diverse marine ecosystems and thriving aquaculture industry. Its geographical
location is at the mouth of the Pearl River in southern China, bordered by the South
China Sea to the east and the Pearl River to the west, creating a diverse coastline that
spans over 1,600 kilometers and includes various types such as bays, estuaries, beaches,
and rocky shores. This supports a rich biological diversity, housing numerous species

of fish, crustaceans, shellfish, and seaweed, making it an essential marine ecosystem.
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Hong Kong located in the subtropical zone, significantly influenced by monsoon

climate, with seasonal changes impacting the marine ecology and hydrological features.

3.2.2 Samling strategy

In this study, sample collection was first conducted in multiple sites under different
areas during wet and dry seasons, to investigate the spatiotemporal distribution patterns
and underlying mechanisms of the toxic algal community along Hong Kong's coastal
waters using metabarcoding techniques. We collected seawater from 36 sampling sites
of Hong Kong coastal ecosystems in wet and dry seasons (Figure 3-3 and Table 3-2).
Surface seawater samples were collected using stainless-steel buckets and were
transferred to 1-L polypropylene (PP) bottles. The bottles were covered with foil and
kept in a portable icy incubator below 4°C during transportation to the laboratory. At
each sampling location, a total of 5 L seawater samples were collected for the analysis
of LATs (1 L), nutrients (1 L), phytoplankton density (1 L), and phytoplankton
communities (2 L). Three bottles of Milli-Q water were also transported from the
laboratory to the field site and then returned to the laboratory. These bottles served as
field blanks to ensure negligible contamination. The samples were stored in a 4°C fridge
and all samples were analyzed within 1 month. Detailed sampling information is

provided in Appendix 2.
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Figure 3-3 Sampling locations of surface seawater along the coastline of Hong Kong.

Table 3-2 Sampling period and number of samples in this study.

Location Sampling period Sample sites Sample size
Eastern Waters Wet season (August 2022) S1-S15 30
Dry season (February 2023)
Southern Waters Wet season (August 2022) S16-S31 32
Dry season (February 2023)
Western Waters Wet season (August 2022) S32-S36 10
Dry season (February 2023)

To reveal the ecological impacts of microalgae in coastal plastisphere, plastic debris
and its ambient seawater samples were paired collected from coastal areas of Qingdao
and Hong Kong, China, in August 2021 and February 2022. A Manta trawl (mesh size

=333 um) was employed to collect plastic debris. A plastic sample was retrieved every
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30 minutes of trawling. The collected plastic debris from the trawl was transferred into
a 50-mL centrifuge tube. Simultaneously, 2 L of surface seawater was collected in a
sterile glass bottle. All the samples were immediately stored in a 4 °C ice box. A total
of 92 plastic samples and 92 ambient seawater samples were obtained during the field
sampling. Samling information is listed in Table 3-3. Detailed information can be found

in Appendix 2.

Table 3-3 Sampling period and number of samples in this study.

Location Sampling period Sample type Sample size

Hong Kong Wet season (August 2021) Plastic 38
Dry season (February 2022)

Wet season (August 2021) Ambient 38
Dry season (February 2022)

Qingdao Wet season (August 2021) Plastic 54
Dry season (February 2022)

Wet season (August 2021) Ambient 54
Dry season (February 2022)

We visually confirmed that all collected debris pieces were plastic. To verify this
objectively, we randomly selected a subset of debris for polymer identification via
Midinfrared photothermal (MIP) microscopy, also called optical photothermal infrared
(O-PTIR) microscopy, an emerging tool for bond-selective chemical imaging of living
biological and material samples. O-PTIR spectroscopy is utilized to identify plastic
polymer types through spectral analysis. Potential plastic samples are collected and
mounted onto a glass slide without cleaning or peroxide treatment. A laser, set to 48%
IR power and 4.4% probe power, induces photothermal effects to generate an infrared

spectrum based on absorption characteristics. Spectra are recorded across 941-3007
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cm!, including diagnostic bands such as C-H stretching (2900 cm™) and aromatic C-H
bending (700 cm™). Polymer identification is performed by comparing spectral peaks
to the KnowlItAll library (Wiley). This method provides a non-destructive approach for
identifying plastic polymers, enabling rapid characterization of samples. All tested
pieces were confirmed as plastic (Appendix 3). According to our previous study, we
propose a novel, conceptual framework of the “microplastome”, encompassing the
entirety of plastic particles and their associated entities, such as chemicals and microbes,
within a given sample, along with their collective environmental and toxicological (Li
et al. 2024b). In this study, we extracted DNA from all collected plastic samples,
followed by sequencing, in order to provide an integrated perspective to capture the

real-world ecology of plastics.

3.2.3 Determination of environmental parameters

Salinity, temperature, pH, and dissolved oxygen (DO)of seawater in each sampling site
were measured in situ using the Y SI Professional Plus Quatro water quality meter (Y SI
Incorporated, Yellow Springs, OH, USA). Dissolved organic carbon (DOC) was
measured using a total organic carbon analyser (Elementar Acquray TOC cube,
Frankfurt, Germany). Dissolved organic carbon (DOC) was measured using a total
organic carbon analyser (Elementar Acquray TOC cube, Frankfurt, Germany). The
concentrations of nutrients, including NHs*, NO2,, NO;~ SiO3*, and POs* were
determined in the laboratory by a continuous flow autoanalyser (Scalars San++, Skylar

Analytical B.V., Breda, The Netherlands).
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3.3 DNA extraction, sequencing and bioinformatic analysis

This section presents a comprehensive description of the molecular biological analyses

employed in this study, containing the pretreatment of surface seawater samples, DNA

extraction, library generation, 18S amplicon sequencing and (Figure 3-3).
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Figure 3-4 Flow chart of molecular biological analyses.

3.3.1 DNA extraction

For the extraction of total algal DNA, the seawater was filtered through a 0.45 um MCE

membrane. All filters were then stored at -80 °C until DNA extraction. The total DNA

was extracted from the filters using FastSpinKit for soil (MP Biomedicals, Santa Ana,

CA) following the manufacturer’s instructions. Briefly, the membranes were cut with
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sterile scissors and transferred to a lysing matrix E tube. Homogenize with the FastPrep
instrument for 40 seconds at a speed setting of 6.0 m s with 978 pL sodium phosphate
buffer and 122 pL MT buffer in it to mechanical disruption of algal cell walls and
releasing nucleic acids into the protective buffer. The supernatant was transferred to a
clean 2 mL microcentrifuge tube after centrifuge to pellet debris. Two hundred 50 pL
of protein precipitation solution was added to separate the solubilized nucleic acids
from the cellular debris and lysing matrix. The supernatant was transferred to a clean
15 mL tube after centrifuge to pellet precipitate for removal of flocculated proteins.
Binding matrix solution (1 mL) was added for binding nucleic acids. The DNA solution
was transferred to a spin filter tube and empty catch tube. The prepared SEWS-M
solution was added to wash the spin filter for removing impurities by centrifuging
through the filter while the purified DNA is still bound to the silica. The binding matrix
in spin filter was resuspended in 100 pL elution buffer after the spin filter had been air
dried for 5 minutes at room temperature for removal of residual ethanol. Purified DNA
solution was ready after centrifuge. The concentration of DNA was measured using a
NanoDrop One Microvolume UV-Vis Spectrophotometer (Thermo Fisher Scientific,

Waltman, MA, USA).

3.3.2 18S amplicon sequencing and bioinformatic analysis

The 18S ¥rDNA V9 region was amplified using the universal primers: 1380F (5'-
CCCTGCCHTTTGTACACAC-3") and 1510R (5'-CCTTCYGCAGGTTCACCTAC-3')
(Cheung et al. 2010; Zimmermann et al. 2011). The amplicons were paired-end
sequenced using an DNBSEQ-G400 platform. Paired-end sequences were merged

using USEARCH v10.0.240 (Edgar & Bateman 2010). Primer-cut from merged reads
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and quality control was performed using “fastx_filter” command by VSEARCH v2.15
(Rognes et al. 2016). The quality-filtered reads of each sample were dereplicated using
the “derep fulllength” command, and less than 8 reads were removed from all samples
as the potential sequence errors. The amplicon sequence variants (ASVs) were
generated by denoising with unoise3 in USEARCH (Labouyrie et al. 2023; Li et al.
2022a). Taxonomic information of ASVs was annotated based on the SILVA database
(Quast et al. 2013). Phytoplankton taxonomic assignment of ASVs was classified
against the Silva Database (Release 123) (Liu et al. 2020). The harmful and toxic taxa
in our samples were identified by aligning our sequences to the HTMaDB with a
threshold of 0.8 using VSEARCH. Rarefaction curves were generated to assess the
degree of sample saturation using picante and vegan function packages of R4.2.1

(Figure 3-4 and Figure 3-5).
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Figure 3-5 Rarefaction curves of the richness in the wet and dry seasons reach the
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saturation stage with means and standard errors under 1% - 100%, indicating that the

number of samples in our study is sufficient to capture most microorganisms in each

season.
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Figure 3-6 Rarefaction curves of detected phytoplankton richness from the plastisphere
and the ambient environment in coastal ecosystem reach saturation stage with

increasing sequencing depth.

3.4 Statistical analyses

3.4.1 The difference of the phytoplankton community in Hong Kong coastal

seawater and plastisphere

Principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarity was performed
to evaluate the spatiotemporal pattern of phytoplankton community structure in Hong
Kong coastal seawater. Permutational multivariate analysis of variance (PERMANOVA)

was used to investigate differences in phytoplankton communities between sampling
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seasons. Similarly, PCoA was utilized to illustrate the compositional difference between
the plastisphere microalgal community and the ambient community, with the
PERMANOVA used to test the statistical significance. The richness and Shannon
indexes were calculated using the “vegan” package to reflect the alpha diversity of
microalgal communities. Furthermore, Bray-Curtis distances between each two
samples in each group were calculated to reflect the beta diversity of the communities
with the “vegan” package. Differences in the abundances of ASVs between the
plastisphere and the ambient microalgal community were analyzed using the “edgeR”
package and were depicted in a Manhattan plot. For the identified harmful and toxic
algal taxa, the differences of their abundances in the plastisphere community and the

ambient community were assessed using the Wilcoxon rank-sum test.

3.4.2 Quantifying ecological stochasticity and niche breadth in the microalgal

community

Understanding the community assembly mechanisms controlling biodiversity patterns
is a central issue in ecology. An index, normalized stochasticity ratio (NST) was
developed to quantify ecological stochasticity under different situations by considering
abiotic filtering, competition, environmental noise, and spatial scales (Ning et al. 2019).
Accuracy and precision of stochasticity estimation decreased when application to a
global scale. Modified Stochasticity Ratio (MST) is a special form of NST, making it
more general (Liang et al. 2020). Niche breadth is an important indicator of species
adaptability to the environment within a community (von Meijenfeldt et al. 2023).

Ecological niche breadth was calculated the Levins’ niche breadth index (Levins 1968).
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B, = 1
l T (Pij)?

Equation 3-1

In the above equation, Bi refers to the niche breadth of species i. Pij means the
proportion of species i at a given location j. r is the number of locations. If a species has
a higher B value, it indicates that the species has a greater niche breadth, with a wider,
more even, and larger distribution. Conversely, a lower B value for a species suggests

that its distribution is less frequent and more uneven (Pandit et al. 2009).

The MST and habitat niche breadth were estimated to reveal the underlying community
assembly mechanisms of microalgal community using “NST” package. The MST
model is typically applied to quantify the relative importance of stochasticity and
determinism in the community assembly process. The values of MST range from 0 to
1, with 0.5 as the boundary defining deterministic (MST < 0.5) or stochastic (MST >
0.5) dominated assembly processes (Ning et al. 2019). To uncover the patterns of
assembly process and their influence on microalgal communities across different
habitats, we further calculated the niche breadth index of each species in the community.
The habitat niche breadth was estimated based on the average niche width across all
species within a community (Jiao et al. 2020; Richard 1968; Wu et al. 2018a). The

analysis was conducted using the “niche.width” function in “spaa” package in R.

3.4.3 Identification of specialist algal taxa

Specificity refers to the average abundance of species (S) in the samples of a group (H);
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and occupancy represents the relative frequency of occurrence of S in the samples of H
(See Equation 3-2). Nindividuals  represents the average number number of individual
species S across all samples in group H, while Nindividuals is the total mean number of
individual S across all groups; Nsitess  refers to the count of samples in H where S is
present, whereas Nsitesy refers to the total number of samples in H (Dufréne &

Legendre 1997; Gweon et al. 2021).

Specificit Nindividualsg g
ecificity =
P Y= Nindividualss
0 Nsitesg
ccupancy = ————
upancy Nsitesy

Equation 3-2

In our study, we calculated the specificity and occupancy of each toxic species across
seasons to identify specialist taxa. Specificity is defined as the mean abundance of a
species in the samples of a season, while occupancy is characterized as the relative
frequency with which species occur within the same season. Species with specificity
and occupancy of 0.7 or higher were classified as specialist species, indicating their

preference for a particular season (Kang et al. 2024).

3.4.4 Associations between environmental factors and microalgal community

The correlation between toxic taxa and environmental factors in Hong Kong coastal
seawater was demonstrated based on the spearman test. Redundancy analysis (RDA)

was employed to identify potential environmental driving factors of the plastisphere

71



microalgal community and its ambient community. The Mantel test was carried out to
investigate the potential driving environmental factors of plastisphere microalgal
communities. Linear regression models were employed to determine relationships
between the plastisphere microalgal risk and environmental factors. Procrustes analysis
was performed to analyze the associations between the plastisphere community and the

ambient community.

3.4.5 Quantifying the relative contribution of biotic and abiotic factors to

microalgal community

Variation Partitioning Analysis (VPA) is a statistical technique used in ecology to assess
the contribution of various environmental factors to the variability in biological data
(Figure 3-10). Variation partitioning analysis results are typically shown using a Venn
diagram, displaying the variance percentage explained by each data set. In a case where
we are partitioning the variation among two explanatory matrices, the result could be
represented as Figure 3-11. Fraction [a + b + c] represents the explained variance by
both Xland X2, calculated through an RDA of Y with both X1 + X2. Fraction [d]
indicates the unexplained variance by X1and X2, derived from the same RDA. Fraction
[a] represents the explained variance by X1 alone, calculated through a partial RDA of
Y by X1|X2 (controlling for X2). Fraction [c] represents the explained variance by X2
alone, calculated using a partial RDA of Y by X2|X1 (controlling for X1). Fraction [b]
is determined by subtraction: b= [a + b] + [b + c]- [a + b + c]. Because [b] is not the
result of an RDA, it cannot be tested for significance. It can also be negative, which
indicates that the response matrix is better explained by the combination of X1and X2
than by either matrix on its own (Peres-Neto et al. 2006; Tedersoo et al. 2016; Lai et al.

2022). Here we employed VPA to explain the contribution of the community variations
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to co-occurring species interaction and environmental factors using the ‘vegan’ package

in R (Labouyrie et al. 2023; Tedersoo et al. 2016).

SPECIES VARIABLES VARIABLES
m ) [,
1Y | ~4 X1 [+ X2
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Figure 3-7 The basic structure of variation partitioning.
VARIATION EXPLAINED
BY X1 AND X2
(SIMULTANEOUSLY)
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EXPLAINED BY X1 EXPLAINED BY X2

[d] UNEXPLAINED VARIATION (RESIDUAL)

Figure 3-8 Representing variation partitioning results.

3.5 Chemical analysis

3.5.1 Methods for extracting LATs

For LATs extraction, seawater samples were filtered through 0.45 um glass microfiber
filters (GF/A, Whatman Schleicher & Schuell, Maidstone, England) to remove visible
particulate matter and algal cells. SPE was performed using Oasis HLB cartridges (200
mg, 6 mL, Waters, Medford, MA, USA), following the procedure outlined in a previous
study (Li et al. 2014). The cartridges were pre-conditioned with 4 mL of ammonium

hydroxide/methanol (3:1000, v:v), followed by 4 mL of methanol and 4 mL of
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deionized water. Then, 250 mL of seawater samples were passed through each cartridge
at a flow rate of 1 mL-min-1. Afterward, the cartridges were rinsed with 4 mL of
methanol/water (15:85, v:v) and dried by centrifugation at 3500 rpm for 2 minutes. The
extracts were obtained by eluting the cartridge three times with 3 mL of ammonium
hydroxide/methanol (3:1000, v:v). The extracts were then evaporated until dry under a

gentle nitrogen stream at 40°C, reconstituted with 100 uL of methanol, centrifuged at

3500 rpm for 3 minutes, and transferred to an analysis vial. For extraction of SPM, each
filter loaded with suspended particulate matter was cut off in pieces and placed in 50
mL centrifuges. Samples were extracted with 8 mL 26 mM Ammonia-MeOH by 30
mins ultrasonication. The liquid from the centrifuge tube was transferred to a 5 mL
syringe, filtered through a PTFE filter membrane (0.22um) into a centrifuge tube (15
mL). Conduct other 2 extractions with 5 mL 26 mM Ammonia-MeOH separately. The
extract was dried under a gentle nitrogen stream, reconstituted with 100 pL of methanol,
and filtered through a 0.22 um PTFE filter before being transferred to an analysis vial.

The samples were then stored at -20°C until further analysis.

Seawater Solid phase Chemical analysis
filtration extraction

Figure 3-9 Surface seawater treatment for algal toxins.

The standards of gymnodium (GYM), okadaic acid (OA), pectenotoxin-2 (PTX-2),
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dinophysistoxin-1 and -2 (DTX-1 and -2), and azaspiracid-1 and -2 (AZA-1 and -2)
were purchased from the National Research Council, Institute for Marine Biosciences
(Halifax, Nova Scotia, Canada). The properties of algal toxins were shown in Table 3-
4. The standards were stored at -20°C. Acetonitrile and methanol of gradient grade were
purchased from Merck (Darmstadt, Germany). Ammonium hydroxide (= 25%) of MS
grade was purchased from SUPELCO (Bellefonte, PA, USA). Ultrapure water was

obtained from a Milli-Q water-purification system (Millipore, Billerica, MA, USA).
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Table 3-4 Molecular weight, molecular formula, and octanol-water partition coefficient of the LATs.

Compound CAS number Molecular Weight Molecular Formula Log Kow
(g'mol™) (Takahashi et al. 2007)
OA 78111-17-8 805.0 CasHesO13 5.05
DTX-1 81720-10-7 819.0 CasH70013 6.88
DTX-2 139933-46-3 805.0 C44HesO13 5.61
PTX-2 97564-91-5 857.0 C47H70014 6.47
GYM 173792-58-0 507.7 C32HasNO4 6.64
AZA-1 214899-21-5 842.1 C47H71NO12 7.54
AZA-2 265996-92-7 856.1 C4sH73NO12 8.18




3.5.2 Instrumental analysis of LATs

Separation of the seven LATs in seawater samples was conducted on an ExionLC
UHPLC system (Sciex, Foster City, CA, USA) with an ACQUITY UPLC BEH C18
Column (2.1 mm % 50 mm, 1.7 pm particles, Waters, Medford, MA, USA), maintained
at 40°C. The gradient condition began with 5% solvent B, increasing to 45% at 3.5
minutes, followed by a linear rise to 55% at 6.5 minutes, and finally reaching 100% at
7.5 minutes. After 1 minute, the gradient returned to the initial conditions at 9.5 minutes
and was held for 2 minutes. The total run time was 11.5 minutes, with 10 pL injected

for each sample. During analysis, the autosampler's sample illumination was turned off.

The MS method was developed and optimized for maximum sensitivity using the
6500+ QTRAP (Garcia-Altares et al. 2013). Instrumental data were acquired and
processed with Analyst 1.6.3 software (Sciex, Foster City, CA, USA). Chromatographic
analysis employed dual fragment ions derived from parent ions for compound
verification, with quantification based on the higher-intensity transition. Retention time
alignment combined with parent-fragment ion transitions provided three-dimensional
confirmation of chromatographic peaks. Seawater analyte concentrations were
determined using external calibration curves matching established reference standards.
Detailed parameters can be found in Table 3-5 and Table 3-6. The QA/QC measures
included evaluating for method limits of detection (LODs), quantification (LOQs),
calibration curves, procedure blanks. Each sample was extracted and analyzed in
duplicate, and for every batch of real samples, procedural blank (n = 2), and blank-

spiked recoveries (n = 2) were also included.
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Table 3-5 Source parameters in negative mode and positive mode.

Parameters Negative mode Positive mode
Curtain Gas 25 25
Collision Gas Low Low
Voltage (V) -4500 5000
Temperature (°C) 550 550
Gas 1 (psi) 60 60
Gas 2 (psi) 60 60

Table 3-6 Optimized mass spectrometry parameters for LATs detection: Transitions
monitored, dwell times, declustering potentials (DP), entrance potentials (EP), collision

cell entrance potentials (CEP) and collisions energies (CE)

Transitions Time DP EP CE CXP Precursor
(m/z) (ms) ~ " » V) ion

803.1>255.1 40 140 -10 -60  -20
OA [M-HT
803.1>563.1 40 140 -10 -58  -25

Compound

803.5>255.2 40 140 -10 -60  -38
DTX-2 [M-HJ
803.5>563.2 40 140 -10 -58  -17

817.6>255.2 40 140 -10 -60  -15
DTX-1 [M-HJ
817.6>563.2 40 140 -10 -58  -30

570.4>467.2 40 140 -10 -40  -28
YTX [M-2H]>
570.4>501.8 40 140 -10 31  -30

508.3>490.3 40 140 10 32 26
GYM 508.3>392.3 40 140 10 46 30 [M+H]"
508.3>202.4 40 140 10 50 10

876.6>823.3 40 140 10 34 20
PTX-2 [M+NH4]"
876.6>805.3 40 140 10 37 20
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842.5>824.6 40 140 10 43 27
AZA-1 [M+H]"
842.5>806.2 40 140 10 46 35
856.7>838.4 40 140 10 41 38
AZA-2 [M+H]"
856.7>820.5 40 140 10 49 40

To determine the LODs and LOQs for LATs, we conducted the same extraction

procedure with real environment samples on 11 blank samples. The standard deviation

(SD) of the signals was calculated, LOD and LOQ can be estimated to 3 times and 10

times of the standard deviation respectively (Table 3-7). Calibration curves for the

seven LATs had concentrations (seven data points) with correlation coefficients ranging

from 0.9977 to 0.9999. Recoveries of the 7 LATs varied from 52.9% to 92.5% in

seawater and from 89.3% to 116.3% in suspended particulate matters (SPM) samples

(Figure 3-10). Importantly, none of the 7 target LATs were found in procedure blanks.

The reported LATs concentrations were not surrogate recovery corrected.

Table 3-7 Limits of detection, limits of quantification, correlation coefficients of the

external calibration (1), and recoveries of the targeted LATs.

LATS LOD LOQ 2 Recovery Mean Recovery Mean

(pg L) (pg L (SW) (SPM)

PTX-2 2.83 9.43 0.9977 81.2% 116%
AZA-2 0.58 1.94 0.9988 52.9% 91.2%
GYM 1.15 3.83 0.9993 66.3% 89.3%
AZA-1 0.66 2.20 0.9999 56.3% 101%
OA 9.60 32.0 0.9984 84.7% 105%
DTX-1 3.12 10.4 0.9988 63.0% 96.9%
DTX-2 2.54 8.46 0.9980 92.5% 108%
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Figure 3-10 Recovery of targeted LATs.
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Chapter 4 Ecological pattern of microalgal communities in
coastal ecosystems — An application of HTMaDB in Hong
Kong

For better identification of harmful and toxic microalgae, we constructed a HTMaDB,
which contained 1346 18S full-length reference sequences. With marine field sampling
campaign, the spatiotemporal variations in microalgal communities were investigated
along Hong Kong coastal zone during wet (August 2022) and dry seasons (February
2023). The phytoplankton community was far more affected by seasonal change
compared with spatial distribution. Based on the application of HTMaDB, we revealed
the driving factors of toxic algal community and potential causative organisms of

targeted toxins.

4.1 Distinct seasonal pattern of phytoplankton community across Hong Kong

coastal seawater

A total of 1,649 ASVs were identified as eukaryotic microalgae based on amplicon data.
PCoA and PERMANOVA was conducted to discern disparities in spatiotemporal
distribution of the structure of the eukaryotic phytoplankton community in Hong Kong
coastal surface seawater (Figure 3-1a). Our results unveiled a notable differentiation in
taxonomic compositions among two sampling seasons compared to different regions,
suggesting a greater influence of seasonality over spatial factors on a small localize
scale (R%eason = 0.3164 > R%cgion = 0.057). Given this seasonal variation, we further
characterized taxonomic richness across the two sampling seasons. An increase was

observed in taxonomic richness in dry season compared to wet season (Figure 4-1b).
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Figure 4-1 Significant seasonal pattern of community structure. a, Unconstrained
principal coordinate analysis (PCoA) with permutational multivariate analysis of
variance (PERMANOVA) showing a significant compositional difference between the
wet and dry seasons. b, Differences in the Richness index between the wet and dry

seasons (***p <0.001; Wilcoxon rank-sum test).

Distinct patterns in phytoplankton composition during different seasons (Figure 4-2).
The eukaryotic phytoplankton were categorized into 7 phyla (Dinoflagellata,
Ochrophyta, Chlorophyta, Haptophyta, Cryptophyta, Rhodophyta, and Cercozoa).
Dinoflagellates and Ochrophyta predominated in taxonomic composition, accounting
for more than 70% in both seasons. The relative abundance of dinoflagellates was

highest in the dry season, whereas Ochrophyta peaked in the wet season.
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Figure 4-2 Taxonomic composition of phytoplankton community.

4.2 The deterministic process shaping phytoplankton community

Community assembly describes how different ecological processes shape microbial
community composition and structure. Modified Stochasticity Ratio (MST) was
calculated based on the null model to assess the relative importance of deterministic
and stochastic processes. The importance of phytoplankton communities was shaped

by different assembly processes during two sampling periods (Figure 4-3).

*k%
1
1.004 ‘
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o
0.254 |
0.00 T I
Dry Wet

Figure 4-3 Assembly process based on modified stochasticity ratio (MST). The MST
index has a boundary of 50% to distinguish between more deterministic (<50%) and

more stochastic (>50%) assembly (***p < 0.001; Wilcoxon rank-sum test).
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4.2 Mapping harmful and toxic microalgae using HTMaDB

Out of 1,649 ASVs, a total of 403 were identified as eukaryotic harmful and toxic
microalgae in Hong Kong coastal seawater, belonging to the 9 class Dinophyceae,
Diatomea, Coccolithophyceae, Raphidophyceae, Prymnesiophyceae, Chlorophyceae,
Cryptophyceae, Pelagophyceae, and Dictyochophyceae (Figure 4-4a). Dinophyceae
and Diatomea were the dominant class of toxic and harmful taxa, respectively. In the
case of toxic ASVs, Coccolithophyceae represented a significant proportion as well.
For harmful ASVs, both Chlorophyceae and Cryptophyceae also constituted
considerable proportions. The relative abundance of 192 toxic ASVs and 211 harmful
ASVs displayed different seasonal patterns. Toxic algae were prevalent in the dry

season, whereas harmful taxa were relatively stable across seasons (Figure 4-4b).
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Figure 4-4 The composition and relative abundance of identified harmful and toxic
ASVs using HTMaDB. The proportion of classified ASV numbers at class level (a),

significantly higher relative abundance of all toxic taxa in dry season (b).

The abundance of 22 harmful and toxic algal genera in wet and dry seasons was showed

in Figure 4-5. Among HAB algal taxa, the diatom in the genus of Pseudo-nitzschia
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displayed the highest absolute abundance, indicating the potential of bloom forming
and toxin contamination of DA especially in the wet season. A higher number of
dinoflagellates were identified for the genera of Alexandrium, Dinophysis,
Gymnodinium, and Prorocentrum. Additionally, the genera of Chrysochromulina,
Phaeocystis, and Prymnesium in Haptophyta were also detected. These harmful and
toxic algal taxa result in varied harmful effects on marine ecosystems. The occurrence
of water discolorations and oxygen depletion owed to harmful bloom-forming species,

for example, most diatom taxa and some of the dinoflagellates.

| Dry | Wet | 1
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Protoceratium 0
Akashiwo 40
Margalefidinium I 20
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Chrysochromulina
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Protoperidinium
Prorocentrum
Polykrikos
Dinophysis
Alexandrium
Karlodinium
Karenia
Gymnodinium
Pfiesteria

Prymnesium
£- . Pseudochattonella

Figure 4-5 Temporal distribution of harmful and toxic taxa at genus level in two

S€asons.

The identified 22 HAB genera belonged to the 30 toxic and 49 harmful algal species
(Table 4-1). Toxic algal taxa pose a threat to fish and shellfish and may cause mass
mortality in aquaculture organisms, such as ichthyotoxic dinoflagellates
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Margalefidinium polykrikoides and M. fulvescens (previously known as Cochlodinium
polykrikoides and C. fulvescens) (Hofmann et al. 2021). Alexandrium spp. are the major
producers of PSP toxin (Valbi et al. 2019). A total of twenty-six ASVs were attributed
to five species of Alxandrium, all of them (including A. andersonii, A. hiranoi, A. leei,
A. ostenfeldii, and A. tamarense) were proven to be PSP producers (Lassus et al. 2016).
Pseudo-nitzschia spp., the only producers of domoic acid (DA), such as Pseudo-
nitzschia australis and P. pungens, can lead to ASP (Wang et al. 2023). Dinophysis spp.
and Prorocentrum spp. are source organisms of PTX-2, OA and its derivatives DTX-1,
which are responsible for DSP (Marzidovsek et al. 2024). Azadinium. spp were
associated with AZP. Karenia mikimotoi can produce the brevetoxins, which cause NSP
(Li et al. 2024d). Diverse yessotoxin (YTX) producers, including Gonyaulax spinifera
and Protoceratium reticulatum, were identified in coastal waters. The widespread
species Prymnesium parvum, primarily in coastal waters, but also found in rivers and
marine environments, have been reported with large-scale fish mortality events globally
(Wagstaff et al. 2021). Furthermore, recent study indicates that prymnesins, rather than
organic micropollutants, possess strong in vitro neurotoxic effects (Escher et al. 2024).

A total of 49 harmful algal taxa were identified, most of them are diatoms.
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Table 4-1 The identified HAB species in coastal seawater.

Phylum Species Impacts Phylum Species Impacts
Akashiwo sanguinea Toxic Heterosigma akashiwo Toxic
Alexandrium andersonii Toxic Fibrocapsa japonica Toxic
Alexandrium hiranoi Toxic Pseudo-nitzschia australis Toxic
Alexandrium leei Toxic Pseudo-nitzschia cuspidata Toxic
Amphidinium klebsii Toxic Pseudo-nitzschia delicatissima Toxic
Alexandrium ostenfeldii Toxic Pseudochattonella verruculosa Toxic
Alexandrium tamarense Toxic Asterionellopsis glacialis Harmful
Amphidinium klebsii Toxic Aureococcus anophagefferens Harmful
Dinophysis acuminata Toxic Chaetoceros affinis Harmful
Dinophyta Ochrophyta
Dinophysis miles Toxic Chaetoceros debilis Harmful
Gambierdiscus scabrosus Toxic Chaetoceros diadema Harmful
Gonyaulax spinifera Toxic Chaetoceros lorenzianus Harmful
Gymnodinium catenatum Toxic Chaetoceros pseudocurvisetus Harmful
Karenia mikimotoi Toxic Chaetoceros rostratus Harmful
Karlodinium veneficum Toxic Chaetoceros simplex Harmful
Lingulodinium polyedra Toxic Chaetoceros socialis Harmful
Margalefidinium fulvescens Toxic Chaetoceros tenuissimus Harmful
Margalefidinium polykrikoides Toxic Chaetoceros throndsenii Harmful
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Pfiesteria piscicida Toxic
Polykrikos hartmannii Toxic
Prorocentrum cordatum Toxic
Prorocentrum rhathymum Toxic
Protoceratium reticulatum Toxic
Protoperidinium crassipes Toxic
Gonyaulax polygramma Harmful
Gymnodinium impudicum Harmful
Heterocapsa rotundata Harmful
Heterocapsa triquetra Harmful
Noctiluca scintillans Harmful
Pseudocochlodinium profundisulcus Harmful
Prorocentrum triestinum Harmful
Protodinium simplex Harmful
Pyrophacus steinii Harmful
Tripos furca Harmful
Prymnesium parvum Toxic
Haptophyta Chrysochromulina leadbeateri Toxic
Prymnesium polylepis Toxic
Cryptophyta Plagioselmis prolonga Harmful

88

Coscinodiscus radiatus
Cyclotella meneghiniana
Cylindrotheca closterium

Guinardia flaccida
Lepidodinium chlorophorum
Levanderina fissa
Dictyocha fibula
Eucampia zodiacus
Lauderia annulata
Leptocylindrus danicus
Nitzschia longissima
Paralia sulcata
Proboscia alata
Skeletonema marinoi
Tenuicylindrus belgicus
Thalassiosira allenii
Thalassiosira curviseriata
Thalassiosira mala
Thalassiosira pseudonana

Thalassiosira punctigera

Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful

Harmful



Teleaulax acuta Harmful Thalassiosira weissflogii Harmful

Chlorophyta Dunaliella salina Harmful
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4.3 Deterministic processes driven by temperature shaping toxic algal

communities

To explore the complexities of toxic algal communities and the assembly processes
shaping them, it is crucial to delve deeper into how these processes are modulated by
environmental stress, particularly temperature fluctuations. Deterministic processes are
pivotal in defining the community structure of phytoplankton by favoring species that
can adapt to prevailing conditions, thus reducing community stochasticity and

increasing predictability in species composition.

4.3.1 The deterministic process shaping toxic algal community

As mentioned above, toxic algae displayed a significant seasonal difference in sampling
period. The proportion of deterministic process increased with increasing abundance of
toxic microalgae from wet season to dry season (Figure 4-3). The difference in toxic
microalgae abundance was significantly negatively correlated with stochasticity for the
toxic algal community (R?<0.01, p=0.025), suggesting the importance of
deterministic process increased with the toxic microalgae stress, which align with the
theoretical framework of deterministic assembly increases as stress increases (Figure
4-6) (Ning et al. 2024). High stress usually imposes strong selective pressure. As stress
increases, many species will be more suppressed, but those with higher tolerance or
adaptation to the stressor(s) will thrive, leading to more deterministic community
assembly. Determinism indicates that selection is the primary force that shapes
microbiomes, including environmental filtering and species interactions (Kang et al.

2024).
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Figure 4-6 Relationships of the stochasticity and the difference of toxic algal

abundance.

Environmental factors such as temperature and light directly influence the growth and
metabolic activities of algae (Deutsch et al. 2008; Liao 2024). When environmental
conditions shift to favor the growth of specific toxic algae, these organisms can rapidly
proliferate, thereby increasing their abundance within the community. For instance,
toxic algae, such as Dinophysis spp., flourish in warm water conditions (Fiorendino et
al. 2020). Nutrient conditions also exert significant selective pressure. An increase in
specific nutrients, such as phosphates and nitrates, can enhance the growth of certain
toxic algae, which may be more sensitive to or capable of more effectively utilizing
resources (Bonilla 2023). When referring to the species interaction, toxic algae reduce
the risk of predation by producing toxins, a defensive mechanism that can decrease
predator pressure and allow toxic algae to occupy a larger proportion within the

community (Borrell 2010).
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Moreover, some toxic algae engage in symbiotic relationships with other
microorganisms, such as bacteria (Higashi et al. 2016). These relationships are mutually
beneficial, as the associated microorganisms can assist the algae in more efficiently
utilizing available nutrients or even provide other survival benefits (Fei et al. 2025;
Gajardo et al. 2023). Such symbiotic interactions not only help toxic algae thrive in
their existing environments but also enhance their adaptability to changing ecological

conditions, thereby reinforcing their presence in the ecosystem.

4.3.2 The relationship between environmental factors and toxic algal community

Network correlation test was applied to further elucidate the major influencing
environmental variables, including salinity, pH, temperature, DO, NO2", NOs", SiO3%,
PO.*, and NH4". Significant correlations were identified linking toxic algal taxa with
temperature, salinity, pH, and concentrations of PO4’" and SiOs* (Figure 4-7a).

Responses to environmental drivers varied among different algal taxa.

Temperature emerged as the most influential factor among all the environmental
parameters evaluated, with 5 toxic algal taxa, including the genera Dinophysis,
Fibrocapsa, Herterosigma, Protoperidinium, and Pseudo-nitzschia, primarily
displaying a positive correlation with temperature except for the Dinophysis. The genus
of dinoflagellates, Dinophysis, were more abundant at the cooler temperatures observed
during the dry season (18-20°C) may owing to their optimal growth at temperatures

ranging from 18 to 24°C (Fiorendino et al. 2020).
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Figure 4-7 Major driving environmental factors shaping toxic community. (a)
Relationships between identified communities and environmental factors. When
p<0.05, a significant correlation is represented by a line. Different colors are used to
distinguish between positive and negative correlations (red: positive; blue: negative).
(b) The size of the circles represents magnitude of the correlation coefficient, with larger
circles indicating a greater impact. Relationships between temperature and toxic algal

community alpha diversity.

Growth responses towards temperature change were very variable and remained
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inconsistent across the different algal groups, species and strains, reflecting
evolutionary constraints and past adaptations to its environmental regime (Boyd et al.
2013; Brandenburg et al. 2019). Species that thrive at higher optimal growth
temperatures typically exhibit faster growth under favorable conditions compared to
those with lower optimal temperatures (Suzuki & Takahashi). When the temperature
exceeds a species' optimal range, growth rates tend to decline sharply (Garcia et al.
2018). However, evolution surveys have demonstrated that phytoplankton species can
rapidly adapt to higher temperatures. Diatom species have increased their temperature
optima by 1 °C, with adjust their metabolic pathways to optimize resource utilization at
different temperatures (Hattich et al. 2024). This adaptation driven by evolutionary
changes in baseline gene expression, a process known as transcriptional investment or

divestment (Liang et al. 2019).

Linear regression analysis also confirmed that temperature significantly affected the
alpha diversity of the toxic algal community (Figure 4-7b). Under elevated temperature
stress, both species richness and Shannon diversity index of toxic algal community
displayed a significant positive correlation. This suggests that increasing environmental
stress fosters toxic algal assemblages, potentially due to the enhanced selection for
thermotolerant and opportunistic species that thrive under changing conditions. The
negative correlations between 3 algal taxa with salinity levels were observed,
suggesting the possibility of presence of salinity stress. The growth of diatoms (Pseudo-
nitzschia), Dinoflagellate (4kashiwo), and Heterokontophyta (Herterosigma) were
promoted with increasing nutrients of PO4* and SiO3* on a limited scale. The risk of

HABs and toxin contamination could be more severe by eutrophication of coastal zones.
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Biotic filtering processes such as species competition, facilitation and predation, and

abiotic filtering where functional differences between individual species play a central

role (Yuan et al. 2021). The occupancy and specificity analysis revealed that the

numbers of keystone toxic species in dry and wet season were 25 and 7, respectively

(Figure 4-8 and Table 4-2). Specialist species in the dry season were mostly

dinoflagellates, including Alexandrium, Dinophysis, Karlodinium, Polykrikos, and

Prorocentrum, whereas Pseudo-nitzschia, belonging to diatoms accounted for nearly

half of specialist species in the wet season. The increasing abundance of toxic algal

community in the dry season could be attributed to these characteristic dinoflagellate

species.
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Figure 4-8 The specificity-occupancy plot shows the distribution and specificity of the

abundant toxic species with a mean relative abundance higher than 0.01% in each

season. Species with specificity and occupancy greater or equal to 0.7 are specialist
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species.

Table 4-2 Specialist species in the dry and wet seasons.

NO. Season OTU Specificity Occupancy Species
1 Wet ASV 342 1 0.805555556 Akashiwo sanguinea
2 Wet ASV_1576 0.910852713 0.75 Fibrocapsa japonica
3 Wet ASV_292 0.904225352 0.833333333 Karlodinium veneficum
4 Wet ASV 438 0.733333333 0.861111111 Prymnesium parvum
5 Wet ASV 337 1 0.888888889 Pseudo-nitzschia cuspidata
6 Wet ASV_641 0.863829787 0.777777778 Pseudo-nitzschia cuspidata
7 Wet ASV_13 0.905371556 1 Pseudo-nitzschia delicatissima
8 Dry ASV_209 0.951785714 0.944444444 Alexandrium andersonii
9 Dry ASV 634 0.911111111 0.888888889 Alexandrium andersonii
10 Dry ASV 115 0.854388635 0.972222222 Alexandrium hiranoi
11 Dry ASV 153 0.888530928 1 Alexandrium tamarense
12 Dry ASV 525 0.825174825 0.944444444 Alexandrium tamarense
13 Dry ASV 574 0.909482759 0.833333333 Alexandrium tamarense
14 Dry ASV 431 0.893548387 0.833333333 Alexandrium tamarense
15 Dry ASV_726 0.974358974 0.75 Dinophysis miles
16 Dry ASV_701 0.991836735 0.805555556 Karenia mikimotoi
17 Dry ASV 290 0.776990649 1 Karlodinium veneficum
18 Dry ASV_460 0.992025518 0.833333333 Polykrikos hartmannii
19 Dry ASV 503 0.925816024 0.888888889 Prorocentrum cordatum
20 Dry ASV_989 0.860606061 0.805555556 Prorocentrum cordatum
21 Dry ASV_70 0.917433538 1 Prorocentrum rhathymum
22 Dry ASV 117 0.830131827 1 Prymnesium parvum
23 Dry ASV 163 0.937427578 1 Prymnesium parvum
24 Dry ASV 111 0.988690476 1 Prymnesium parvum
25 Dry ASV 353 0.985887097 0.916666667 Prymnesium parvum
26 Dry ASV 173 0.990983607 1 Prymnesium parvum
27 Dry ASV 451 0.882926829 1 Prymnesium parvum
28 Dry ASV _763 0.966292135 0.777777778 Prymnesium parvum
29 Dry ASV 881 0.704761905 0.75 Prymnesium parvum
30 Dry ASV 1178 0.887096774 0.722222222 Prymnesium parvum
31 Dry ASV 308 0.970260223 0.722222222 Prymnesium polylepis
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Dry ASV 225 0.949579832 0.972222222 Pseudo-nitzschia australis
Dry ASV 105 0.995830438 0.916666667 Pseudochattonella verruculosa
Dry ASV 254 0.88558952 0.972222222 Pseudochattonella verruculosa

4.3.2 The contribution of environmental factors and non-toxic species interactions

to toxic algal community variation.

VPA was used to further quantify the contribution of environmental factors and non-
toxic species interactions to toxic algal community variation. A combined 47% of the
variation in toxic algal community could be explained, with non-toxic algal taxa
accounting for 12%, environmental factors for 2%, together for 33%; the remaining 53%
of variation was unexplained (Figure 4-9). The unaccounted variability in toxic algal
distribution, as indicated by the VPA, might also be influenced by complex interactions
between viruses, bacteria, and algae. Symbiotic relationships between
Planctomycetaceae bacteria and diatoms can play a significant role in the resurgence
of algal blooms (Ma et al. 2022). These bacteria not only provide essential nutrients
that aid algal growth but may also indirectly affect algae by modifying environmental
conditions through changes in bacterial physiological traits (Seymour et al. 2017).
Therefore, a more thorough investigation into the myriad interactions that impact toxic
taxa is essential. To effectively protect marine ecosystems and ensure public health and
safety, a comprehensive understanding of the composition, ecological dynamics, and
toxin production mechanisms of harmful algae, as well as the pathways through which

they spread, is crucial.
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Unexplained = 53 %

Figure 4-9 Variation partitioning showed the effects (%) of co-occurring nontoxic algal
taxa and environmental factors (temperature, salinity, pH, DO, and nutrients) on the

spatiotemporal distribution of toxic community.

4.4 Potential causative taxa of targeted LATSs

Toxic algal taxa exhibited the same seasonal pattern as targeted LATs (Figure 4-10).
LATs are of high priority due to their bioaccumulation effects. We further investigated
the levels of typical LATs in surface seawaters of Hong Kong. Out of the seven targeted
LATs, PTX-2, OA, GYM, and DTX-1 were present in Hong Kong waters. In contrast,
DTX-2, AZA-1, and AZA-2 were undetected at all sampling sites (Appendix 3). The
majority of LATs were detected in the dissolved seawater phase, with the only exception
of PTX-2, which was more prevalent in SPM during the dry season. Within the
dissolved phase, PTX-2 and OA emerged as the dominant toxins, collectively
accounting for approximately 80% of the total concentrations of the detected LATs.
These patterns mirror those found in the nearby waters of the Pearl River Estuary (Liu
et al. 2020) and the northern South China Sea (Li et al. 2022a). Notably, PTX-2 and OA
concentrations surged during the dry season compared to the wet season. DTX-1 was
observed exclusively in the dry season. GYM concentrations remained no significant

seasonal fluctuation. Notably, Dinophysis spp. are the sole known producers of PTX-2,
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and they exhibit optimal growth at temperatures ranging from 18 to 24°C, which could
explain the higher concentrations of PTX-2 observed during the dry season. In contrast,
OA and DTX-1 maintain stability in seawater, resulting in less pronounced seasonal
variations in their distribution when compared to the distribution pattern of PTX-2

(Garcia-Altares et al. 2016).
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Figure 4-10 Seasonal patterns of targeted LATs.

PTXs are synthesized by toxic Dinophysis species, which are also capable of producing
OA and DTXs (Reguera et al. 2012). Six ASVs related to Dinophysis spp. were
identified as D. acuminata and D. mils. PTX-2, in particular, has been linked to D.
acuminata and D. mils. These potential producers have been observed in Hong Kong
waters, their toxin profiles are not yet fully understood (Lu & Hodgkiss 2004). OA and
DTX-1 are primarily produced by Dinophysis spp., and epibenthic dinoflagellates
Prorocentrum (Lee et al. 2020). ASVs linked to Prorocentrum species in this study,

including P. cordatum and P. rhathymum, P. rhathymum have been reported to produce

99



OA. GYM toxins are associated with Karenia mikimotoi (formerly Gymnodinium
mikimotoi) and Alexandrium ostenfeldii in our study (Molgo6 et al. 2017). Toxic algae
related to detected toxins were summarized in Table 4-3. The relative abundance of
toxic algal species was significantly higher in the dry season, sharing the same seasonal
pattern with corresponding LATs (Figure 4-11). Accordingly, these can be assumed as

potential causative organisms of LATs in Hong Kong coastal waters.
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Figure 4-11 Seasonal patterns of potential producers.

Beyond the primary focus on specific LATs and their direct producers, it is imperative
to also consider the broader influence of other harmful algal species present in Hong
Kong's marine waters. For example, species within the Prorocentrum group have been
linked to fish mortality events, causing hypoxia or anoxia that can lead to massive fish
kills (Lu & Hodgkiss 2004). Equally concerning is the production of ciguatoxins by
Gambierdiscus scabrosus, which are notable for their bioaccumulation through the
marine food web-from herbivorous to carnivorous reef fish-and the consequent health
risks they pose to humans upon consumption of contaminated fish (Pisapia et al.
2017). Further research is necessary to identify the toxin profiles of the prevailing algal
species in the region.
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Table 4-3 Toxic algae related to detected toxins.

Phylum Class Order Family Genus Species Toxin References
Dinoflagellate  Dinophyceae = Dinophysiales  Dinophysaceae Dinophysis D. acuta OA, (Fux et al. 2010)
DTX-2, PTX-2,
PYX-2sa
OA, (Lee et al. 1989)
DTX-1
D. acuminata OA (Lee et al. 1989)
DTX-1, (Kamiyama & Suzuki 2009)
PTX-2
D.caudate OA, PTX-2, (Fernandez et al. 2006)
PTX-2sa
D. fortii OA, (Lee et al. 1989)
DTX-1,
PTX-2
D. miles OA, DTX-1 (Marasigan et al. 2001)
D. sacculus OA, DTX-1 (Giacobbe et al. 2000)
D. norvegica OA, (Lee et al. 1989)
DTX-1
PTX-2 (Suzuki et al. 2009)
D. mitra DTX-1 (Lee et al. 1989)
D. rotundata DTX-1 (Lee et al. 1989)
D. tripos DTX-1 (Lee et al. 1989)
Prorocentrales  Prorocentraceae  Prorocentrum P. lima OA (Murakami et al. 1982)
OA, (Lee et al. 1989)
DTX-1
P. faustiae OA, (Morton 1998)
DTX-1
P. concavum OA (Zou et al. 2020)
P. OA (Accoroni et al. 2018)
hoffmannianum
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P. maculosum OA (Zhou & Fritz 1993)
P. belizeanum OA (Cruz et al. 2006)
P. porosum OA (Arteaga-Sogamoso et al.
2023)
P. rhathymum OA (Luo et al. 2017)
Gymnodiniales Kareniaceae Karenia K. selliformis GYM (Seki et al. 1995)
(Gymnodinium GYM, (Miles et al. 2000)
selliforme,) GYM-B
Gonyaulacales  Ostreopsidaceae  Alexandrium A. ostenfeldii 12-methyl (Wagoner et al. 2011)
(A. peruvianum) GYM
GYM, (Waal et al. 2015)
12-methyl
GYM
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4.5 Summary

This chapter investigated the distribution dynamics of microalgae communities, mainly
focused on harmful and toxic algal community in coastal seawater using the self-

constructed HTMaDB to verify reliability. The major findings are as follows:

A total of 1,649 amplicon sequence variants (ASVs) representing eukaryotic microalgae
were identified. Principal coordinate analysis (PCoA) revealed that seasonal variation
(R?season = 0.3164) played a greater role than spatial variation (R*region = 0.057) in
shaping the phytoplankton community structure. Taxonomic richness was significantly
higher during the dry season than the wet season, with dinoflagellates and Ochrophyta
dominating both seasons. Dinoflagellates were more abundant in the dry season, while
Ochrophyta peaked during the wet season. The modified stochasticity ratio (MST)
suggested that deterministic processes, such as environmental filtering, became more
pronounced with increasing toxic algal abundance. Out of the 1,649 ASVs, 403 were
identified as harmful and toxic microalgae, belonging to nine classes, including
Dinophyceae and Diatomea as dominant classes. Toxic algae, such as Pseudo-nitzschia
spp., Alexandrium spp., and Dinophysis spp., were more prevalent in the dry season,
whereas harmful, non-toxic taxa were relatively stable across seasons. Species like
Pseudo-nitzschia australis, Alexandrium ostenfeldii, and Prorocentrum cordatum were
identified as major toxin producers, contributing to PSP, ASP, and DSP. These harmful
and toxic taxa have significant ecological impacts, including hypoxia, anoxia, and fish

mortality.
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The abundance of toxic algae increased during the dry season, correlating with
temperature-driven deterministic processes. Key environmental factors influencing the
toxic algal community included temperature, salinity, pH, and nutrients such as
phosphate (PO+*") and silicate (Si0s*"). Temperature emerged as the most influential
factor, with some toxic genera, such as Dinophysis, Pseudo-nitzschia, and Fibrocapsa,
displaying positive correlations with temperature. Controlling inputs of nutrients like
phosphates could effectively suppress the proliferation of harmful algae such as
Akashiwo, reducing bloom risks. Monitoring salinity changes could aid in predicting
the distribution of specific algal taxa. Regulating key environmental factors could
mitigate threats posed by algal toxins to aquaculture and human health. Specialist
species such as Alexandrium and Prorocentrum were more abundant in the dry season,
driving the seasonal increase in toxic algal abundance. VPA showed that 47% of the
variation in the toxic algal community could be attributed to environmental factors (2%)
and non-toxic algal interactions (12%), with the remaining 53% unexplained, possibly

due to complex interactions with bacteria and viruses.

The strong alignment between toxin profiles and the relative abundance of toxic taxa
highlights the robustness and reliability of our curated dataset. Beyond the targeted
toxins, other harmful species such as Gambierdiscus scabrosus, associated with
ciguatoxins, and hypoxia-inducing diatoms and dinoflagellates were identified. These
species can have cascading ecological impacts, including bioaccumulation through
food webs and large-scale fish mortality events. Improved identification of harmful and
toxic species (via HTMaDB) and understanding of their environmental triggers enable

early warning systems, supporting the development of effective management and
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mitigation strategies to minimize their impacts on ecosystems and human health.
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Chapter 5 Microalgae and associated risks in coastal
plastisphere

With the application of our newly constructed database, we explored the spatiotemporal
distribution pattern and major driving factors of toxic microalgal communities in
coastal ecosystem in chapter 4. The continued input of plastic waste into the ocean can
alter marine microalgal community. Microbial risks stemming from the plastisphere (a
microecosystem with plastics as the matrix) intensify the complexity and danger of
marine plastic pollution. To further explore the ecological pattern and risk of microalgal
community in the plastisphere, we collected 92 paired samples from Hong Kong and
an additional coastal city, Qingdao, providing insights into the role of plastic debris as
a novel habitat for microalgae in this chapter. Based on the amplicon sequencing data,
the contrast in microalgal community structure among plastisphere and ambient are
discussed. Additionally, the interactions between environmental factors such as
temperature, salinity, and nutrients, and their impact on the abundance and diversity of
microalgae within the plastisphere, are explored. Furthermore, the potential ecological
risks posed by the proliferation of toxic microalgae within the plastisphere are discussed
considering climate change and rising plastic pollution. By highlighting the growing
concerns over algal blooms in the plastisphere, this chapter aims to provide a deeper
understanding of how plastic pollution may exacerbate HABs in coastal ecosystems

and contribute to the broader ecological challenges in marine environments.

5.1 Characteristics of microalgal communities in plastispheres
Overall, the composition of the plastisphere microalgal community and its ambient
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community was significantly different (Figure 5-1a-b). Ochrophyta (64.3%, 61.3%),
Dinoflagellata (10.3%, 21.0%), and Chlorophyta (18.8%, 11.6%) were the dominant
phyla in both the plastisphere and the seawater. However, the abundances of
Chlorophyta were significantly higher in the plastisphere, while the abundance of
Dinoflagellata was notably lower. (Figure 5-1c-d). Among 1270 ASVs, 423 ASVs
showed significant changes in abundance with 170 ASVs (40.2%) significantly
enriched in the plastisphere after filtering for an average relative abundance below 0.01%

(Figure 5-1e).
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Figure 5-1 Characteristics of the plastisphere microalgal community. (a)
Unconstrained principal coordinate analysis (PCoA) with permutational multivariate
analysis of variance (PERMANOVA) showing a significant compositional difference
between the plastisphere microalgal community and its ambient community. (b) The

taxonomic composition at the phylum level of microalgal communities in each site in
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the plastisphere and the ambient. (¢) The taxonomic proportion of the microalgal
community in the plastisphere and its ambient environment. (d) The difference of
dominant phylum in the plastisphere and its ambient environment. (€) Manhattan plots
showing differences in ASVs between the plastisphere and the ambient. Each circle or
triangle represents a single ASV. An upward and filled triangle represents an ASV
significantly enriched in the plastisphere, a downward and empty triangle represents an
ASV significantly depleted in the plastisphere, while a circle represents an ASV with a
nonsignificant difference between the two habitats (*p <0.05; Wilcoxon rank-sum test).

CPM, counts per million.

Both richness and Shannon indexes indicated that the plastisphere microalgal
community, rather than its ambient community, exhibited a significantly higher level of
alpha-diversity (Fig. 1d). Additionally, more unique ASVs were found in the
plastisphere and a considerable proportion of ASVs was only detected in the
plastisphere (Fig. 1e). These results suggest that the plastisphere could harbor alien
microalgae from upstream systems into coastal ecosystems, potentially posing
microalgal invasion risks. The plastisphere microalgal community also exhibited a
significantly lower beta-diversity, suggesting that the plastisphere provides a shelter
with less variations in environmental conditions for microalgae (Fig. 1f). The
heightened microbial diversity observed within plastisphere communities cannot be
attributed solely to passive accumulation of ambient microorganisms. This enrichment
implies that plastic debris actively facilitates the transport and survival of non-
indigenous species from upstream environments to new habitats, intensifying concerns
over ecological colonization by foreign taxa. Notably, the presence of non-native algal

species within plastispheres introduces critical ecological uncertainties. The prolonged
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retention and potential release of these algae into nutrient-rich coastal zones may induce
localized HABs. Such proliferation events risk destabilizing native trophic networks
through toxin-mediated species displacement and oxygen depletion, potentially
triggering cascading disruptions across coastal ecosystems—from benthic community

collapse to fisheries resource degradation.

Microalgae represent the primary productivity of marine ecosystems and regulate many
biogeochemical cycling processes (Sommeria-Klein et al. 2021; De Vargas et al. 2015;
Worden et al. 2015; Arrigo 2005). With the ever-increasing emission of plastic waste
into the ocean, the density of plastisphere-associated microalgal communities with
distinct compositions and higher taxonomic diversity will increase in the ocean. As a
result, the overall structure and diversity of marine microalgal communities could be
altered, and the associated ecological processes and biodiversity within marine

ecosystems could be influenced.
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Figure 5-2 Taxonomic diversity in the plastisphere. (a) Differences in the alpha-
diversity indexed by Richness and Shannon between the plastisphere microalgal
community and its ambient community (**p < 0.01, **p < 0.001; Wilcoxon rank-sum
test). (b) Overlap ASVs between plastisphere and ambient algal community. (c)
Compositional dissimilarity between the plastisphere microalgal community and its

ambient community based on Bray-Curtis distance.

5.2 The plastisphere provide a shelter to microalgal community

We then explored assembly mechanisms of the plastisphere microalgal community. The
MST model showed that the assembly of both the plastisphere microalgal community
and its ambient community was dominated by deterministic processes (MST < 0.5), but
stochastic assembly played a more important role in the plastisphere community

assembly than in the ambient community assembly (Figure 5-3a). Additionally, the
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habitat-level niche breadth was found to be significantly higher in the plastisphere
(Figure 5-3b), suggesting that microalgae in the plastisphere might be less affected by

environmental filtering (Li et al. 2021c; Wu et al. 2018Db).
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Figure 5-3 Community assembly mechanism of plastisphere microalgal community
and its ambient community. (a) The modified stochasticity ratio (MST) model showing
the relative importance of the stochastic process in the plastisphere and ambient
microalgal community assembly (***p < 0.001; Wilcoxon rank-sum test). (b) Habitat
niche breadth in the plastisphere and ambient microalgal community (*p < 0.05;

Wilcoxon rank-sum test).

Procrustes analysis demonstrated that a significant correlation existed between the
plastisphere microalgal community and its ambient community (M? = 0.746; p <0.001;
Figure 5-4a), indicating the plastisphere microalgal community was noteworthy shaped
by surrounding community composition. The RDA result revealed that all detected
physicochemical parameters were significantly associated with the microalgal
community in seawater (Figure 5-4b). However, only pH, salinity, temperature, and
phosphate concentration showed strong associations with the plastisphere microalgal
community composition, while concentrations of nitrate and DOC did not (Figure 5-

4c). The detected physicochemical factors explained 10.7% of variations in the
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plastisphere microalgal community, much less than the 19.6% explained in the ambient
community. VPA was employed to further quantify the contribution of environmental
factors and ambient species interactions to plastisphere algal community variation. A
combined 25% of the variation in algal community could be explained, with non-toxic
algal taxa accounting for 6%, environmental factors for 2%, and their combined effects
for 17%; the remaining 75% of variation was unexplained (Figure 5-4d). The
unexplained variability in the plastisphere algal community might also be influenced
by intricate interactions among viruses, bacteria, and algae. These microbes not only
supply crucial nutrients that promote algal growth but may also indirectly influence
algae by altering environmental conditions through their physiological changes (Ma et

al. 2022; Seymour et al. 2017).
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Figure 5-4 Potential driving factors shaping the plastisphere microalgal community and
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its ambient community. (a) Significant correlation of microalgal community profile in
the plastisphere with the ambient seawater based on Procrustes analysis (***p < 0.001).
(b) Redundancy analysis between environmental variables and ambient algal
communities (*p < 0.05). (c) Redundancy analysis between environmental variables
and plastisphere algal communities (*p < 0.05). (d) Variation partition analysis showing
the variations in the plastisphere microalgal community explained by ambient

microalgal community and environmental factors.

The phenomenon of reduced environmental filtering effects on microalgae within the
plastisphere is potentially due to the formation of biofilms by microalgae in conjunction
with other microorganisms on plastic surfaces, which offer protective benefits,
enhancing their resilience against adverse environmental conditions (Yan et al. 2024).
The relatively stable microenvironments provided in the plastisphere can mitigate
fluctuations in factors such as light, temperature, and water flow, facilitating easier
adaptation and reproduction of microalgae, thereby further reducing the intensity of
environmental filtering (Schaum 2019). Additionally, the adsorption and accumulation
of organic matter from surrounding environmental media on plastic surfaces make the
plastisphere a nutrient-rich environment (Bowley et al. 2021). This microenvironmental
condition diminishes the reliance of microalgae on traditional environmental
constraints, enabling them to survive and reproduce in relatively nutrient-poor marine
ecosystems. This could explain why the microalgal community in the plastisphere was
not affected by nitrate and DOC. The enhanced stochasticity and the reduced
environmental filtering within the plastisphere reflect the unique and resource-rich

growth environment provided by plastic surfaces. This environment facilitates the
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survival and reproduction of microalgae, particularly in nutrient-depleted marine
ecosystems, thereby altering the dynamics and ecological functions of microbial
communities. These findings provide crucial insights into understanding the impacts of
plastic pollution on marine ecosystems and underscore the significance of the

plastisphere as a new habitat influencing algal community structure.

5.3 Microalgal hazards harbored by plastispheres

Using our constructed database HTMaDB, a total of 373 ASVs among 1270 ASVs
(29%) from our samples were identified as harmful/toxic microalgae. It is reasonable
to expect that there are some taxa (2.4% ASVs) observed in the ambient community
that were not detected in the plastisphere because some taxa may not have been exposed
to or were not adapted to the plastisphere microenvironment. However, notably, 14
(3.8%) HAB ASVs were only detected in the plastisphere and were absent from the
ambient community (Figure 5-5a). This result indicates that the plastisphere could
harbor harmful/toxic microalgae from upstream environments entering coastal
ecosystems, which may potentially trigger harmful algal blooms, thereby disturbing the
balance and functioning of coastal ecosystems. The identified harmful/toxic ASVs
attribute to 30 toxic and 44 harmful microalgal species (Figure 5-5b), primarily
belonging to Diatomea (58.0%), Dinophyceae (28.3%), and Chlorophyceae (6.25%)

(Figure 5-5¢).
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Figure 5-5 Harmful and toxic microalgal taxa. (a) The overlap of ASVs between the

plastisphere and the bulk environment. (b) Top 20 relative abundance of harmful and

toxic microalgae species in the two habitats. (¢c) The taxonomic composition of harmful

and toxic algal community in the plastisphere and the ambient.
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Figure 5-6 Comparison total abundance of HAB taxa in the two habitats.

Although the total abundance of these taxa was lower in the plastisphere (Figure 5-6),
many harmful and toxic algal taxa were enriched in the plastisphere compared to the
ambient community (Figure 5-7), The most abundant taxa were all diatoms in the
plastisphere. Of the top 18 abundant harmful/toxic species, seven were enriched in the
plastisphere, namely Chaetoceros socialis, Cylindrotheca closterium, Halamphora
coffeiformis, Nitzschia longissima, Skeletonema marinoi, Pseudo-nitzschia cuspidate
and Thalassiosira allenii. Notably, all these plastisphere-enriched harmful/toxic
microalgae belong to diatoms. Most studies have reported that diatoms are common
and primary residents of the plastisphere (Nava & Leoni 2021). A similar finding was
observed for marine plastic debris collected from both pelagic and benthic
environments along the Mediterranean coastal waters of Greece, Italy, and Spain,
reporting that diatoms were present on nearly 100% of the plastic debris samples (Maso

et al. 2016).In general, diatoms could be classified as centric (radial) or pennate
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(bilateral) according to their valve symmetry (Williams & Kociolek 2011). Pennate
diatoms including C. Closterium, H. coffeiiformis, N. longissimi and P. cuspidate in our
study were found to be abundant in both benthic and planktonic environment and
capable of adhesion and motility on natural or artificial substrata. In contrast, centric
diatoms are predominantly planktonic and are rarely observed in sediments or attached
to various surfaces. However, a few centric diatom taxa, such as C. socialis, S. marinoi,
and 7. allenii, were found to be enriched within the plastisphere, suggesting that they
can adapt to specialized habitats, such as the microenvironment provided by the

plastisphere.
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Figure 5-7 The enrichment of specific algal species in the plastisphere (*p < 0.05, **p

<0.01, ***p <0.001; Wilcoxon rank-sum test).
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The successful colonization of diatoms in the plastisphere is owing to their exceptional
adhesion capabilities (Casabianca et al. 2019). Diatoms possess specialized structures,
including a unique surface roughness from their nanoporous silica, which facilitates
their attachment to various substrates, including plastic surfaces (Khan et al. 2020). The
secretion of extracellular polymeric substances (EPS) by members of diatoms such as
Chaetoceros and Thalassiosira during growth plays a crucial role in this process,
creating a sticky matrix that allows diatoms to firmly anchor to the plastic (Vidal-
Melgosa et al. 2021). This strong adhesion not only enables diatoms to resist
detachment from the substrate but also promotes the formation of biofilms (Wright et
al. 2020). Plastispheres are typically nutrient-rich environments, since they can sorb
organic matter from the surrounding environment and leach organics from their interior
(Rillig et al. 2024b; Sheridan et al. 2022), providing nutrient sources for diatoms

(Christie-Oleza et al. 2017).

Diatoms typically exhibit rapid growth and reproduction rates, enabling them to occupy
available ecological niches quickly (Inomura et al.; Taurozzi et al. 2024). This
competitive advantage facilitates the establishment of dense populations on plastic
surfaces. In contrast, dinoflagellates have slower growth rates and longer generation
times, which may hinder their ability to compete effectively for resources in the
dynamic environment of the plastisphere. The ability of diatoms to rapidly respond to
environmental changes, such as fluctuations in light availability and nutrient

concentration, enhances their competitiveness in these novel niches (Zhou et al. 2021).

Moreover, the interactions between diatoms and other microorganisms present in the

plastisphere may further contribute their adaptation in the plastisphere. The ability of
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diatoms to form complex biofilms with bacteria enhances their nutrient acquisition and
provides protection against predation (Flemming & Wingender 2010; Sun et al. 2023).
These biofilms create a microenvironment that can stabilize nutrient availability,

thereby supporting the growth of diatoms.

Together, the enhanced ability of diatoms to colonize the plastisphere can be attributed
to their superior adhesion capabilities, rapid growth rates, efficient nutrient utilization,
broad ecological adaptability, and beneficial interactions with other microorganisms.
As plastic debris continues to accumulate in marine environments, the proliferation of
diatoms in the plastisphere may have far-reaching implications for nutrient cycling,

food web dynamics, and ecosystem health.

Coastal plastispheres enriched with harmful/toxic microalgae pose critical threats to
biological health. For example, the plastisphere-enriched species Pseudo-nitzschia
cuspidate is a producer of domoic acid (DA), a kind of neurotoxin that can cause animal
seizures, disorientation, and even death (Cook et al. 2015). The widespread and long-
distance transport of plastic debris facilitates the proliferation of toxic algal blooms. A
High concentration of DA exposure have been linked to increased stranding events of
California sea lions, with substantial impacts on their population dynamics (Scholin et

al. 2000).

Beyond the enrichment of diatom species in the plastisphere, ichthyotoxic
dinoflagellates such as Margalefidinium polykrikoides and Prymnesium parvum were
also detected (Fig. S4) (Hofmann et al. 2021; Wagstaff et al. 2021). The presence of
Alexandrium spp., Dinophysis spp., Prorocentrum spp., Azadinium spp., and Karenia

spp. pose a threat to various shellfish poisoning (Lassus et al. 2016; Li et al. 2024d;
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Marzidovsek et al. 2024; Valbi et al. 2019). A previous study has reported that the
cultured A. pacificum strains isolated from plastic debris could produce paralytic
shellfish toxins (Casabianca et al. 2019). The incidence of shellfish poisoning due to
the consumption of contaminated seafood warrants attention, as it poses direct health
risks to humans and further complicates the ecological ramifications of plastic pollution
in marine ecosystems (Trainer et al. 2012). Additionally, many species of
dinoflagellates such as Alexandrium spp. are able to form resting cysts (Dai et al. 2020),
which are particularly relevant to survival and transport of these species on plastic
debris. These interconnected issues underscore the urgency of addressing plastic debris
and its role in the proliferation of harmful algal blooms, as well as the consequent

effects on marine life and human health.

Monitoring data reveal that the frequency and intensity of harmful algal bloom events
are increasing with human activities in the Anthropocene (Dai et al. 2023b). According
to our findings, it is reasonable to hypothesize that the ever-increasing emission of
plastic waste and its long-distance, cross-ecosystem transportable property may be an
overlooked contributor to the increasing harmful algal bloom outbreaks. Further
monitoring and more modeling evidence are needed to test this hypothesis. If confirmed,
controlling plastic pollution will become a crucial strategy for managing and preventing

algal bloom outbreaks in coastal ecosystems.

5.4 Risks associated with toxic and harmful communities under the background

of climate change

We performed the Mantel test to investigate the major driving environmental drivers of
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the harmful and toxic algal community in the plastisphere. The result showed that
harmful and toxic algal communities in both the plastisphere and its ambient seawater
were significantly associated with temperature, pH, and salinity, with temperature
showing the largest correlation coefficient (Figure 5-8a). Linear regression models were
further applied to uncover how the total abundance of harmful and toxic microalgae
responds to environmental factors (Figure 5-8b). The result indicated that the total
abundance of harmful and toxic microalgae in both the plastisphere and its ambient was
positively associated with temperature, while it was negatively associated with pH
levels. In the future, the interwoven challenges of global changes, including climate
warming leading to a warmer ocean, increasing CO; levels resulting in a more acidic
ocean, and the ever-increasing trajectory of plastic emissions, may exacerbate the
microalgal risk in coastal ecosystems (Simmer et al. 2023). Although current results
provide valuable preliminary insights into the microalgal-associated risks with plastics,
their application in risk assessment remains limited. Beyond species identification,
future investigations should incorporate functional assessments, including toxin
production, pathogenicity, and microbial viability analyses, to better understand the
actual risk potential of these organisms. Ultimately, addressing the complex challenges
posed by microplastic pollution and the associated biological risks will require
interdisciplinary collaboration across microbiology, ecology, oceanography, toxicology,
and public health sectors. Only through such concerted efforts can we better quantify
risks and design targeted interventions to mitigate the impacts of plastic pollution on

marine ecosystems.
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Figure 5-8 Associations between environmental factors and the microalgal risk. (a)
Correlations of the plastisphere and ambient algal community with environmental
factors using Mantel test. (b) Linear regression analysis between the driving
environmental factors and total abundance of harmful and toxic microalgae in the
plastisphere and ambient seawater. Environmental factors showing significant
associations with harmful and toxic microalgal community structure in the Mantel test
were all included in the linear regression models (*p < 0.05, **p < 0.01, ***p < 0.001,

NS = not significant).

5.5 Summary

This chapter investigated the composition, diversity, and ecological risks associated
with microalgae in the coastal plastisphere, providing new insights into the potential
impacts of plastic pollution on marine ecosystems. The study focused on the
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differentiation of microalgal communities between the plastisphere and ambient
seawater, the environmental drivers influencing these communities, and the enrichment

of harmful and toxic taxa in the plastisphere. Key findings are summarized below:

The microalgal community composition in the plastisphere was significantly different
from that in ambient seawater. Ochrophyta, Dinoflagellata, and Chlorophyta were the
dominant phyla in both environments; however, Chlorophyta were significantly
enriched in the plastisphere, whereas Dinoflagellata were notably less abundant. Of the
1,270 ASVs identified, 423 showed significant abundance changes, with 170 ASVs
enriched in the plastisphere. Both richness and Shannon indexes indicated higher alpha-
diversity in the plastisphere, which also harbored unique ASVs not present in ambient
seawater. These findings suggest that the plastisphere serves as a stable and nutrient-
rich microhabitat capable of harboring alien microalgae, potentially introducing
invasion risks into coastal ecosystems. The assembly of plastisphere microalgal
communities was shaped by both deterministic and stochastic processes, with
stochasticity playing a larger role compared to ambient seawater. The broader habitat-
level niche breadth observed in the plastisphere indicated reduced environmental
filtering effects, likely due to the stable microenvironment and biofilm formation on
plastic surfaces. Procrustes analysis revealed a strong correlation between plastisphere
and ambient microalgal communities, while RDA showed that pH, salinity, temperature,
and phosphate concentrations were key factors influencing plastisphere community
composition. However, the overall contribution of environmental factors to plastisphere
community variation was much lower than that for ambient seawater, highlighting the

unique ecological dynamics of the plastisphere.
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Using the HTMaDB database, 373 harmful and toxic ASVs were identified, including
14 taxa exclusively detected in the plastisphere. Most harmful and toxic taxa belonged
to diatoms, such as Pseudo-nitzschia cuspidate, Chaetoceros socialis, and Skeletonema
marinoi. These species are known producers of toxins like DA, posing significant risks
to marine ecosystems and human health. The enhanced colonization of diatoms in the
plastisphere was attributed to their strong adhesion capabilities, rapid growth rates, and
ability to form biofilms. In addition to diatoms, harmful dinoflagellates were also
detected, raising concerns about the plastisphere’s role in exacerbating HABs. The
plastisphere’s ability to enrich harmful and toxic microalgae poses significant
ecological and health risks. The proliferation of toxin-producing algae in the
plastisphere can disrupt nutrient cycling, food web dynamics, and ecosystem functions,
potentially exacerbating the frequency and intensity of HABs. The presence of harmful
algae, such as Pseudo-nitzschia cuspidate, in the plastisphere highlights its role in
facilitating long-distance transport and proliferation of toxic algal blooms, which have
been linked to mass mortality events in marine life and human shellfish poisoning

incidents.

The Mantel test identified temperature, pH, and salinity as major environmental drivers
of harmful and toxic algal communities in the plastisphere, with temperature showing
the strongest correlation. Linear regression models further revealed that the abundance
of harmful and toxic algae was positively associated with temperature and negatively
associated with pH. These findings suggest that ongoing global changes, including

ocean warming, acidification, and increasing plastic pollution, could amplify the risks
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posed by harmful algae in coastal ecosystems.

In summary, this chapter revealed significant compositional differences and higher
diversity in plastisphere microalgal communities compared to ambient seawater. The
plastisphere serves as a unique and nutrient-rich microhabitat that facilitates the
survival, enrichment, and transport of harmful and toxic algae. The findings underscore
the critical ecological risks posed by the plastisphere, particularly in exacerbating
HABSs and associated toxin production. The reduced environmental filtering effects and
enhanced stochasticity within the plastisphere highlight its role as a novel ecological
niche influencing marine microalgal dynamics. However, a large proportion of the
observed variation in plastisphere algal communities remains unexplained, likely due
to intricate interactions among algae, bacteria, and viruses. Future research should focus
on these complex interactions and their implications for ecosystem health. Additionally,
the role of the plastisphere in amplifying the impacts of climate change and plastic
pollution on marine ecosystems warrants further investigation. Continued monitoring
and management efforts are essential to mitigate the ecological and public health risks

posed by the plastisphere and its associated harmful microalgae.
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Chapter 6 Conclusions and Recommendations

6.1 Overall summary and major conclusions

This thesis undertook a comprehensive examination of the ecological patterns and
driving mechanisms of microalgal community and associated risks in coastal
ecosystems with our curated database. The research focused on understanding the
dynamics and underlying mechanism of HAB species, as well as their colonization
characteristic within the plastisphere-the unique ecological niche formed on the
surfaces of plastic debris. This niche not only serves as a habitat for diverse microalgal
communities but also significantly alters their composition and diversity. The main

findings of the thesis are as follows:

1. Construction of a comprehensive 18S full length database: The utilization of the
HTMaDB has significantly enhanced the capacity for accurately identifying and
monitoring harmful and toxic microalgae. This tool is instrumental in assessing the
diversity and distribution of algal species in affected marine regions, providing a
crucial resource for researchers and policymakers aiming to mitigate the impacts of

HAB:sS.

2. Ecological impact of the plastisphere: The studies highlighted the plastisphere's role
as a distinct ecological niche that selectively enriches and alters the composition of
microalgal communities. Microalgal communities in the plastisphere were less
constrained by ambient physicochemical factors, enabling the shelter role of the
plastisphere for microalgae. Compared to its ambient community, the microalgal
community in the plastisphere harbored a higher diversity of algal species,
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including prevelance of harmful and toxic diatoms (e.g., Pseudo-nitzschia cuspidate,
Chaetoceros socialis, and Skeletonema marinoi). The plastisphere could facilitate
the proliferation of these species by providing a stable habitat that is somewhat
insulated from environmental stressors typically present in the surrounding marine

environment.

3. Influence of environmental factors: Temperature and salinity are identified as
critical environmental factors that influence algal community dynamics. The
findings underscore that these abiotic factors, especially temperature, drive the
seasonal patterns of algal communities and enhance the prevalence of HABs during
certain times of the year. This relationship suggests that changes in these
environmental variables due to climate change could potentially exacerbate the

occurrence and severity of HABs.

4. Potential for increased HAB occurrences: By providing a refuge and a means of
transport, plastic debris may increase the frequency and geographic spread of HABs.
The ability of the plastisphere to act as a vector for harmful algae and their toxins
introduces new dynamics into marine ecosystems, potentially facilitating the spread
of these organisms beyond their natural geographic boundaries and leading to new

outbreaks of HABs in previously unaffected areas.

The findings highlight the need for a paradigm shift in managing harmful algal blooms

(HABs) — moving from reactive suppression strategies to proactive measures
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addressing plastic pollution. One approach is to designate high-risk regions, such as the
Pearl River estuaries, as "HAB-plastic control zones," where stringent regulations on
plastic use and disposal would be enforced. Additionally, developing chitosan-based
coatings to prevent diatom adhesion without contributing to microplastic pollution
represents a promising solution. This work provides a scientific foundation for
incorporating plastic pollution management as an integral part of HAB mitigation
efforts, which is essential for advancing toward Sustainable Development Goal 14 (Life

Below Water) in the face of escalating global environmental challenges.

6.2 Limitations of the current study and future perspectives

Although the research study provided significant contributions to the field of marine
ecology by establishing a comprehensive database of harmful and toxic microalgae,
which enhance our ability to monitor and manage HABs effectively. It also highlighted
the emerging environmental challenge posed by plastic debris in marine ecosystems.
However, there are limitations that must be acknowledged to refine future research and
interventions. These limitations, coupled with suggested future perspectives, can help
guide subsequent studies aiming to further unravel the complexities of HAB dynamics

and the plastisphere.

The current research is primarily focused on surface seawater, neglecting the
investigation of harmful and toxic algae in the benthic layers. This oversight can lead
to an incomplete understanding of the spatial distribution and full ecological impacts of

HABES, as different environmental conditions and algal communities may exist in deeper
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waters. Sampling was conducted only during the dry and wet seasons, which does not
allow for continuous, long-term monitoring of phytoplankton dynamics. This limitation
restricts the ability to capture seasonal variations fully and understand long-term trends
and fluctuations in phytoplankton communities, which are crucial for predicting and
managing algal blooms effectively. In the case of VPA, only interactions among algal
species were considered. This approach overlooks the potential influence of other
biological factors such as bacteria and viruses, which can significantly impact algal
growth and community dynamics through various interactions, including symbiosis,
competition, and predation. The current work mainly relies on culture-independent
approaches, such as high-throughput qPCR and 18SrRNA gene amplicon sequencing.
Correlation analysis was conducted between the microbial community and
environmental factors. It will be more important to set up lab experiments to validate if
there is causality, rather than correlation. The study did not include measurements of
algal toxins and quantification of microalgae-associated risk within the plastisphere.
This is a significant oversight, as plastics can absorb and concentrate toxins produced
by harmful algae. Without assessing the presence and concentration of toxins on plastic
debris, it is difficult to fully understand the role that the plastisphere plays in the
distribution and potential enhancement of algal toxin risks in marine environments. This
limitation hinders the ability to evaluate the health risks posed by toxin-laden plastics
to marine life and, by extension, to human health through bioaccumulation and the food

chain.

To overcome these limitations, future studies should aim to include deeper water layers

in their sampling regimen to provide a more holistic view of the algal communities
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across different marine strata. Additionally, extending the monitoring periods to
encompass multiple seasons or even continuous year-round sampling could offer a more
detailed picture of phytoplankton dynamics and their responses to environmental
changes. Including a broader range of biological interactions in the analysis,
particularly with non-algal microorganisms like bacteria and viruses, would also enrich
the understanding of community dynamics and ecological balances. It might be relevant
to isolate representative harmful and toxic taxa from seawater samples by employing
culture-dependent methods to further consolidate the conclusions. Finally, quantifying
the impacts of plastic pollution on marine microalgal communities and bloom events
through simulation experiments and big-data modelling could yield more precise data
on how different plastics affect marine life, thereby facilitating more targeted mitigation

strategies against plastic pollution.
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Appendix 1

This section provides detailed database information in this study.

1 Source of eukaryotic toxic and harmful microalgae species.

Public website

IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae, Lundholm, N.; Churro, C.; Escalera, L.; Fraga, S.; Hoppenrath, M.; Iwataki, M.; Larsen, J.; Mertens, K.; Moestrup, O.;

3]

Murray, S.; Tillmann, U.; Zingone, A. (Eds) (2009 onwards). IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae. Accessed at https://www.marinespecies.org/hab on 2024-10-
26. doi:10.14284/362

Paper search

Number Author Full Names Article Title Source Title
Roselli, Leonilde; Caroppo, Carmela; Bevilacqua, Stanislao; | Harmful algae and pressure-impact relationship: Noxious blooms | MARINE ENVIRONMENTAL
Ciciriello, Pierangelo Cosimo; Ungaro, Nicola; Vadrucci, | and toxic microalgae occurrence from coastal waters of the Apulia | RESEARCH

1 Maria Rosaria region (Adriatic and lonian Seas, Mediterranean)

2 Hargraves, PE; Maranda, L Potentially toxic or harmful microalgae from the northeast coast NORTHEASTERN NATURALIST
Hernandez-Becerril, David U.; Alonso-Rodriguez, Rosalba; | Toxic and harmful marine phytoplankton and microalgae (habs) in | JOURNAL OF ENVIRONMENTAL
Alvarez-Gongora, Cynthia; Baron-Campis, Sofia A.; | Mexican Coasts SCIENCE AND HEALTH PART A-
Ceballos-Corona, Gerardo; Herrera-Silveira, Jorge; Del TOXIC/HAZARDOUS
Castillo, Maria E. Meave; Juarez-Ruiz, Norma; Merino- SUBSTANCES &
Virgilio, Fanny; Morales-Blake, Alejandro; Ochoa, Jose L.; ENVIRONMENTAL ENGINEERING
Orellana-Cepeda, Elizabeth; Ramirez-Camarena, Casimiro;

3 Rodriguez-Salvadoro, Raciel
Rodriguez-Palacio, M. C.; Crisostomo-Vazquez, L.; | Strains of toxic and harmful microalgae, from waste water, marine, | FOOD ADDITIVES AND
Alvarez-Hernandez, S.; Lozano-Ramirez, C. brackish and fresh water CONTAMINANTS PART A-

CHEMISTRY ANALYSIS CONTROL

4 EXPOSURE & RISK ASSESSMENT
Zingone, A; Siano, R; D'Alelio, D; Sarno, D Potentially toxic and harmful microalgae from coastal waters of the | HARMFUL ALGAE

5 Campania region (Tyrrhenian Sea, Mediterranean Sea)

Zhang, Angqi; Liu, Honghan; Li, Chenhong; Chen, | Relationship between toxic and harmful microalgae and | JOURNAL OF OCEANOLOGY AND

6 Changping; Liang, Junrong; Sun, Lin; Gao, Yahui environmental factors in typical mariculture areas of East China Sea | LIMNOLOGY

7 Hofbauer, Wolfgang Karl Toxic or Otherwise Harmful Algae and the Built Environment TOXINS

8 Vershinin, A. O.; Orlova, T. Yu. Toxic and harmful algae in the coastal waters of Russia OCEANOLOGY

9 Yoshida, Takashi Molecular-physiological and -ecological studies on toxic and | NIPPON SUISAN GAKKAISHI
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harmful algae

Brown, Emily R.; Moore, Sam G.; Gaul, David A.; Kubanek, | Differentiating toxic and nontoxic congeneric harmful algae using | HARMFUL ALGAE
10 Julia the non-polar metabolome
Casabianca, Silvia; Cornetti, Luca; Capellacci, Samuela; | Genome complexity of harmful microalgae HARMFUL ALGAE
11 Vernesi, Cristiano; Penna, Antonella
12 Daranas, AH; Norte, M; Fernandez, JJ Toxic marine microalgae TOXICON
Bertin, Matthew J.; Zimba, Paul V.; Beauchesne, Kevin R.; | Identification of toxic fatty acid amides isolated from the harmful | HARMFUL ALGAE
13 Huncik, Kevin M.; Moeller, Peter D. R. alga Prymnesium parvum carter
Zhang, Huajun, Wang, Hui; Zheng, Wei; Yao, Zhiyuan; | Toxic Effects of Prodigiosin Secreted by Hahella sp KA22 on | FRONTIERS IN MICROBIOLOGY
Peng, Yun; Zhang, Su; Hu, Zhong; Tao, Zhen; Zheng, | Harmful Alga Phaeocystis globosa
14 Tianling
Ignatiades, Lydia; Gotsis-Skretas, Olympia A Review on Toxic and Harmful Algae in Greek Coastal Waters (E. | TOXINS
15 Mediterranean Sea)
16 Tester, Patricia A.; Litaker, R. Wayne; Berdalet, Elisa Climate change and harmful benthic microalgae HARMFUL ALGAE
Wikfors, Gary H.; Hegaret, Helene; Galimany, Eve; Sunila, | Hemocyte responses in bivalve molluscs exposed to harmful or toxic | JOURNAL OF SHELLFISH
17 Inke; Soudant, Philippe; Shumway, Sandra E. algae:: Overview and preliminary synthesis RESEARCH
Fernandes-Salvador, Jose A.; Davidson, Keith; Sourisseau, | Current Status of Forecasting Toxic Harmful Algae for the North- | FRONTIERS IN MARINE SCIENCE
Marc; Revilla, Marta; Schmidt, Wiebke; Clarke, Dave; | East Atlantic Shellfish Aquaculture Industry
Miller, Peter I.; Arce, Paola; Fernandez, Raul; Maman, Luz;
Silva, Alexandra; Whyte, Callum; Mateo, Maria; Neira,
Patricia; Mateus, Marcos; Ruiz-Villarreal, Manuel; Ferrer,
18 Luis; Silke, Joe
Shi, Xinguo; Zou, Yazhen; Zhang, Yingjiao; Ding, | Salinity decline promotes growth and harmful blooms of a toxic alga | GLOBAL CHANGE BIOLOGY
19 Guangmao; Xiao, Yuchun; Lin, Senjie; Chen, Jianfeng by diverting carbon flow
Bhat, S. R. Reflections on the discovery of toxic species of marine micro-algae | CURRENT SCIENCE
20 known to form harmful blooms
Chuong, Jeremy Jason Chin Chwan; Rahman, Mahbubur; | Harmful Microalgae Detection: Biosensors versus Some | SENSORS
Ibrahim, Nadiah; Heng, Lee Yook; Tan, Ling Ling; Ahmad, | Conventional Methods
21 Asmat
Toebe, Kerstin Whole cell hybridisation for monitoring harmful marine microalgae | ENVIRONMENTAL SCIENCE AND
22 POLLUTION RESEARCH
Topal, M.; Topal, E. I. Arslan; Obek, E. A green algae Cladophora fracta for accumulation of toxic/harmful | INTERNATIONAL JOURNAL OF
pollutants causing environmental pollution in mine gallery waters ENVIRONMENTAL SCIENCE AND
23 TECHNOLOGY
24 WAGNER, KH; SIDDIQI, I Toxic components of microalgae scenedesmus obliquus NATURWISSENSCHAFTEN
Mafra Jr., Luiz L. Mafra; Sunesen, Ines; Pires, Estela; | Benthic harmful microalgae and their impacts in South America HARMFUL ALGAE
Nascimento, Silvia Mattos; Alvarez, Gonzalo, Mancera-
Pineda, Jose Ernesto; Torres, Gladys; Carnicer, Olga;
25 Galindo, Jose Alexis Huamani; Ramirez, Sonia Sanchez;
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Martinez-Goicoecheaj, Ana; Morales-Benavides, Dilcia;
Valerio-Gonzalez, Lorelys

Zhao, Ting; Cao, Huidi; Jia, Yanfen; Han, Xiaotian; Yan,

Information standardization for typical toxic and harmful algae in

JOURNAL OF OCEANOLOGY AND

26 Tian; Yu, Rencheng China's coastal waters-a case study of Karenia mikimotoi LIMNOLOGY
Lee, SJ; Kim, Y; Kim, HG; Seo, GM; Jeong, JH; Hong, YK | Algalytic activity of a-mannosidase on harmful marine microalgae JOURNAL OF APPLIED
27 PHYCOLOGY
CHEUNG, KC; CHU, LM; WONG, MH Toxic effect of landfill leachate on microalgae WATER AIR AND SOIL
28 POLLUTION
Gol'din, Evgeny B. Marine microalgae and their biocidal features in harmful organisms | PHYCOLOGIA
29 control
Pearson, Leanne A.; D'Agostino, Paul M.; Neilan, Brett A. Recent developments in quantitative PCR for monitoring harmful | HARMFUL ALGAE
30 marine microalgae
Maso, Mercedes; Garces, Esther Harmful microalgae blooms (HAB);: problematic and conditions | MARINE POLLUTION BULLETIN
31 that induce them
32 Fukuyo, Yasywo Toxic benthic microalgae in the western Pacific region NIPPON SUISAN GAKKAISHI
Gustafsson, S.; Hultberg, M.; Figueroa, R. I.; Rengefors, K. | On the control of HAB species using low Dbiosurfactant | HARMFUL ALGAE
33 concentrations
Dolapsakis, Nicolas P.; Tzovenis, loannis; Kantourou, | Potentially harmful microalgae from lagoons of the NW Ionian sea, | JOURNAL OF BIOLOGICAL
34 Paraskevi; Bitis, loannis; Economou-Amilli, Athena Greece RESEARCH-THESSALONIKI
Shurtleff, James; Rich, Phillip; Johnson, Tyler; Bettridge, | Direct microalgae harvesting to prevent harmful algae blooms and | ABSTRACTS OF PAPERS OF THE
35 Austin; Allred, Blake produce renewable biofuel AMERICAN CHEMICAL SOCIETY
Guo, Ruoyu; Lu, Douding; Liu, Chenggang; Hu, Jiarong; | Toxic effect of nickel on microalgae Phaeodactylum tricornutum | ECOTOXICOLOGY
36 Wang, Pengbin; Dai, Xinfeng (Bacillariophyceae)
Garr, Amber L.; Laramore, Susan; Krebs, William Toxic Effects of Oil and Dispersant on Marine Microalgae BULLETIN OF ENVIRONMENTAL
CONTAMINATION AND
37 TOXICOLOGY
Nagasaki, Keizo Physiology, ecology, and molecular biology of viruses infecting | NIPPON SUISAN GAKKAISHI
38 harmful bloom-forming microalgae
Penna, Antonella; Bertozzini, Elena; Battocchi, Cecilia; | Monitoring of HAB species in the Mediterranean Sea through | JOURNAL OF PLANKTON
Galluzzi, Luca; Giacobbe, Maria Grazia; Vila, Magda; | molecular methods RESEARCH
39 Garces, Esther; Luglie, Antonella; Magnani, Mauro
Dhib, Amel; Fertouna-Bellakhal, Mouna; Turki, Souad; | Harmful planktonic and epiphytic microalgae in a Mediterranean | HARMFUL ALGAE
Aleya, Lotfi Lagoon: The contribution of the macrophyte Ruppia cirrhosa to
40 microalgae dissemination
Liu, Fuguo; Zhang, Chunyun; Wang, Yuanyuan; Chen, | A review of the current and emerging detection methods of marine | SCIENCE =~ OF THE  TOTAL
41 Guofu harmful microalgae ENVIRONMENT
Magaletti, Erika; Borrello, Patrizia; Spada, Emanuela; | Surveillance of Potentially Toxic Benthic Microalgae Along the | JOURNAL OF COASTAL
42 Bataloni, Stefano; Di Girolamo, Irene; Giani, Michele Italian Coast RESEARCH
43 Oloketuyi, S. F.; Mazzega, E.; Bernardinelli, G.; Hogberg, | Application of peroxidase-mimicking dnazyme-nanobody conjugate | FEBS OPEN BIO
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B.; de Marco, A.

for the detection of harmful microalgae

Illoul, Hassina; Maso, Mercedes; Fortuno, Jose-Manuel;

Potentially harmful microalgae in coastal waters of the Algiers area

CRYPTOGAMIE ALGOLOGIE

44 Cros, Lluisa; Morales-Blake, Alejandro; Seridji, Rabea (Southern Mediterranean Sea)
Burkholder, JM Implications of harmful microalgae and heterotrophic | ECOLOGICAL APPLICATIONS
45 dinoflagellates in management of sustainable marine fisheries
Mangoni, Olga; Imperatore, Concetta; Tomas, Carmelo R.; | The New Carotenoid Pigment Moraxanthin Is Associated with Toxic | MARINE DRUGS
46 Costantino, Valeria; Saggiomo, Vincenzo; Mangoni, Alfonso | Microalgae
Dizaji, Somayeh Zahedi; Fariman, Gilan Attaran; Zahedi, | Pigment content analysis in two HAB forming dinoflagellate species | JOURNAL OF APPLIED
47 Mir Mahdi during the growth period PHYCOLOGY
Tan, Toh Hii; Leaw, Chui Pin; Leong, Sandric Chee Yew; | Marine micro-phytoplankton of Singapore, with a review of harmful | RAFFLES BULLETIN OF
Lim, Lay Peng; Chew, Siew Moon; Teng, Sing Tung; Lim, | microalgae in the region ZOOLOGY
48 Po Teen
NIELSEN, MV; STROMGREN, T Shell growth-response of mussels (mytilus-edulis) exposed to toxic | MARINE BIOLOGY
49 microalgae
Mardones, Jorge 1.; Shabala, Lana; Shabala, Sergey; | Fish gill damage by harmful microalgae newly explored by | HARMFUL ALGAE
Dorantes-Aranda, Juan Jose; Seger, Andreas; Hallegraeff, | microelectrode ion flux estimation techniques
50 Gustaaf M.
Ben Gharbia, Hela; Yahia, Ons Kefi-Daly; Cecchi, Philippe; | New insights on the species-specific allelopathic interactions | PLOS ONE
Masseret, Estelle; Amzil, Zouher; Herve, Fabienne; | between macrophytes and marine HAB dinoflagellates
Rovillon, Georges; Nouri, Habiba; M'Rabet, Charaf; Couet,
51 Douglas; Triki, Habiba Zmerli; Laabir, Mohamed
Yu, Lili; Xia, Wei; Du, Hao The toxic effects of petroleum pollutants to microalgae in marine | MARINE POLLUTION BULLETIN
52 environment
Mantzorou, A.; Navakoudis, E.; Paschalidis, K.; Ververidis, | Microalgae: a potential tool for remediating aquatic environments | INTERNATIONAL JOURNAL OF
F. from toxic metals ENVIRONMENTAL SCIENCE AND
53 TECHNOLOGY
UPITIS, V; PAKALNE, D; SULCE, 1 Optimal and toxic levels of elements for the cultivation of | 6TH INTERNATIONAL TRACE
54 microalgae ELEMENT SYMP 1989, VOLS 1-5
Ryu, Byung-Gon; Kim, Jungmin; Yoo, Gursong; Lim, Jun- | Microalgae-mediated simultaneous treatment of toxic thiocyanate | BIORESOURCE TECHNOLOGY
55 Tack; Kim, Woong; Han, Jong-In; Yang, Ji-Won and production of biodiesel
Wang, Changyou; Li, Hongli; Wang, Xiulin; Zhang, Yong Estimating Toxic Effect of Copper on Population of Microalgae | BULLETIN OF ENVIRONMENTAL
Through a Three-dimensional Toxic Effect Growth Model CONTAMINATION AND
56 TOXICOLOGY
He, N.; Duan, L. Y.; Sun, D.; Zhu, B.; An, M.; Duan, S. S. Inhibitory effects of aqueous extracts of Eucalyptus tereticornis on | ALLELOPATHY JOURNAL
57 HAB causing specie, Prorocentrum donghaiense
Mohamed, Zakaria A. Potentially harmful microalgae and algal blooms in the Red Sea: | MARINE ENVIRONMENTAL
58 Current knowledge and research needs RESEARCH
Maso, M; Garceés, E; Pages, F; Camp, J Drifting plastic debris as a potential vector for dispersing Harmful | SCIENTIA MARINA
59 Algal Bloom (HAB) species
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Ryu, J. A.; Park, S. J.; Kim, I. H.; Hwang, H. J.; Kim, C. H.;

Harmful Microalgae, Amphidinium cartarae, Regulates the IGF-IR

ENDOCRINE REVIEWS

60 Nam, T. J. Signaling Pathway in Human Colon Cancer Cells.
Dyble, J.; Tester, P. A.; Litaker, R. W. Effects of light intensity on cylindrospermopsin production in the | AFRICAN JOURNAL OF MARINE
61 cyanobacterial HAB species Cylindrospermopsis raciborskii SCIENCE
Fu, Zhengxu; Piumsomboon, Ajcharaporn; Punnarak, | Diversity and distribution of harmful microalgae in the Gulf of | HARMFUL ALGAE
Porntep; Uttayarnmanee, Praderm; Leaw, Chui Pin; Lim, Po | Thailand assessed by DNA metabarcoding
62 Teen; Wang, Aijun; Gu, Haifeng
Yamaguchi, M Mechanisms of the outbreak of Harmful Algal Blooms - A threat of | NIPPON NOGEIKAGAKU KAISHI-
microalgae in marine environment JOURNAL OF THE JAPAN
SOCIETY FOR  BIOSCIENCE
BIOTECHNOLOGY AND
63 AGROCHEMISTRY
Yu, Zhiming; Wang, Zhongshi; Liu, Lidong Electrophysiological techniques in marine microalgae study: A new | HARMFUL ALGAE
64 perspective for harmful algal bloom (HAB) research
Maltsev, Y.; Maltseva, S.; Kulikovskiy, M. Toxic effect of copper on soil microalgae: experimental data and | INTERNATIONAL JOURNAL OF
critical review ENVIRONMENTAL SCIENCE AND
65 TECHNOLOGY
Booij, Petra; Sjollema, Sascha B.; van der Geest, Harm G.; | Toxic pressure of herbicides on microalgae in Dutch estuarine and | JOURNAL OF SEA RESEARCH
Leonards, Pim E. G.; Lamoree, Marja H.; de Voogt, W. Pim; | coastal waters
66 Admiraal, Wim; Laane, Remi W. P. M.; Vethaak, A. Dick
Spatharis, Sofie; Dolapsakis, Nicolas P.; Economou-Amilli, | Dynamics of potentially harmful microalgae in a confined | HARMFUL ALGAE
67 Athena; Tsirtsis, George; Danielidis, Daniel B. Mediterranean Gulf-Assessing the risk of bloom formation
Giacobbe, M. G.; Penna, A.; Gangemi, E.; Maso, M.; | Recurrent high-biomass blooms of Alexandrium taylorii | HYDROBIOLOGIA
68 Garces, E.; Fraga, S.; Bravo, I.; Azzaro, F.; Penna, N. (Dinophyceae), a HAB species expanding in the Mediterranean
El Amrani Zerrifi, Soukaina; El Khalloufi, Fatima; Oudra, | Seaweed Bioactive Compounds against Pathogens and Microalgae: | MARINE DRUGS
69 Brahim; Vasconcelos, Vitor Potential Uses on Pharmacology and Harmful Algae Bloom Control
Dorantes-Aranda, Juan Jose; Waite, T. David; Godrant, | Novel application of a fish gill cell line assay to assess | HARMFUL ALGAE
Aurelie; Rose, Andrew L.; Tovar, Cesar D.; Woods, Gregory | ichthyotoxicity of harmful marine microalgae
70 M.; Hallegraeff, Gustaaf M.
Tas, S.; Yilmaz, I. N. Potentially harmful microalgae and algal blooms in a eutrophic | MEDITERRANEAN MARINE
71 estuary in the Sea of Marmara (Turkey) SCIENCE
Nan, Chunrong; Zhang, Haizhi; Lin, Shaozhen; Zhao, | Allelopathic effects of Ulva lactuca on selected species of harmful | AQUATIC BOTANY
72 Guanggiang; Liu, Xueying bloom-forming microalgae in laboratory cultures
[Anonymous] Metabolic pathways by which bay scallops modify phytosterols: | JOURNAL OF SHELLFISH
73 Experimental approach and possible disruptions by hab species. RESEARCH
Khokhar, Farah Naz; Naz, Tahira; Burhan, Zaib-Un-Nisa; | Occurrence of HAB / toxic Dinoflagellates species from the coast of | INDIAN JOURNAL OF GEO-
74 Abassi, Muhammad Jawed; Siddiqui, Pirzada Jamal Ahmed | Karachi, Pakistan (Northern Arabian Sea) MARINE SCIENCES
Cao, Qingsheng; Jiang, Yun; Yang, Hui; Zhang, Yingying; | Comprehensive toxic effects of povidone iodine on microalgae | AQUACULTURE RESEARCH
75 Wei, Wenzhi Chlorella pyrenoidosa under different concentrations
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Zhang, Huajun; An, Xinli; Zhou, Yanyan; Zhang, Bangzhou; | Effect of Oxidative Stress Induced by Brevibacterium sp BSO1 ona | PLOS ONE

Zhang, Su; Li, Dong; Chen, Zhangran; Li, Yi; Bai, Shijie; | HAB Causing Species-Alexandrium tamarense
76 Lv, Jinglin; Zheng, Wei; Tian, Yun; Zheng, Tianling

Siripornadulsil, S; Traina, S; Verma, DPS; Sayre, RT Molecular mechanisms of proline-mediated tolerance to toxic heavy | PLANT CELL
77 metals in transgenic microalgae

Romero, Y; Lodeiros, C; Esclapés, M; Marin, N; Guevara, | Toxic effects of cadmium on microalgae isolated from the | INTERCIENCIA
78 M; Morales, E northeastern region of Venezuela

Liu, Dongyang; Qv, Mingxiang; Dai, Dian; Wang, Xu; Zhu, | Toxic responses of freshwater microalgae Chlorella sorokiniana due | CHEMOSPHERE
79 Liandong to exposure of flame retardants

Baldev, E.; MubarakAli, D.; Ilavarasi, A.; Pandiaraj, D.; | Degradation of synthetic dye, Rhodamine B to environmentally non- | COLLOIDS AND SURFACES B-
80 Ishack, K. A. Sheik Syed; Thajuddin, N. toxic products using microalgae BIOINTERFACES

Li, Jiping; Li, Wei; Liu, Naisen; Du, Chenggong Chronic toxic effects of erythromycin and its photodegradation | AQUATIC TOXICOLOGY
81 products on microalgae Chlorella pyrenoidosa

Wang Renjun; Wang You; Tang Xuexi Identification of the toxic compounds produced by Sargassum | CHINESE JOURNAL OF
82 thunbergii to red tide microalgae OCEANOLOGY AND LIMNOLOGY

Vila, Magda; Camp, Jordi; Berdalet, Elisa TOXIC MICROALGAE AND GLOBAL CHANGE Why have | METODE  SCIENCE  STUDIES
83 proliferations increased along the Mediterranean coast? JOURNAL

Wang, Liping; Yan, Tian; Zhou, Mingjiang Impacts of HAB species Heterosigma akashiwo on early | AQUACULTURE
84 development of the scallop Argopecten irradians Lamarck

Meng, Xiangying; Chen, Cao; Bai, Mindong; Zhang, Zhitao; | Effect of hydroxyl radical on harmful microalgae: a potential | INDIAN JOURNAL OF GEO-
85 Cheng, Chao; Ma, Bin; Li, Jiaxin technology for treatment of ship's ballast water MARINE SCIENCES

Antonella, Penna; Luca, Galluzzi The quantitative real-time PCR applications in the monitoring of | ENVIRONMENTAL SCIENCE AND
86 marine harmful algal bloom (HAB) species POLLUTION RESEARCH

Yang, Hyun Jun; Seo, Hye Jin; Kim, Yun Hee; Yun, Geon; | Effects of harmful microalgae on the behavior and morphology of | MARINE POLLUTION BULLETIN

Lee, Moo Joon; Yoo, Yeong Du; Shin, Kyong Ho; Choi, | ephyrae of the moon jellyfish Aurelia aurita
87 Keun-Hyung; Jang, Se Hyeon

Kumar, Vinod; Kumar, Sanjay; Chauhan, P. K.; Verma, | Low-temperature catalyst based Hydrothermal liquefaction of | SCIENTIFIC REPORTS

Monu; Bahuguna, Vivekanand; Joshi, Harish Chandra; | harmful Macroalgal blooms, and aqueous phase nutrient recycling

Ahmed, Waseem; Negi, Poonam; Sharma, Nishesh; Ramola, | by microalgae
88 Bharti; Rautela, Indra; Nanda, Manisha; Vlaskin, Mikhail S.

Zhao, Yan; Wu, Xuexue; Chang, Wenjuan; Che, Wenlu; Liu, | A novel magnetic buoyant-bead flotation method for the removal of | JOURNAL OF ENVIRONMENTAL
89 Yi; Li, Yanpeng typical microalgae from harmful algal blooms CHEMICAL ENGINEERING

Cerejo, M.; Dias, J. M. Tidal transport and dispersal of marine toxic microalgae in a shallow, | MARINE ENVIRONMENTAL
90 temperate coastal lagoon RESEARCH

Loera-Quezada, Maribel M.; Leyva-Gonzalez, Marco | Phosphite cannot be used as a phosphorus source but is non-toxic for | PLANT SCIENCE
91 Antonio; Lopez-Arredondo, Damar; Herrera-Estrella, Luis microalgae

GARNHAM, GW; AVERY, SV; CODD, GA; GADD, GM Interactions of microalgae and cyanobacteria with toxic metals and | CHANGES IN FLUXES IN

radionuclides: Physiology and environmental implications ESTUARIES: IMPLICATIONS

92 FROM SCIENCE TO
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MANAGEMENT

Zhang, Cai; Chen, Xiaohua; Wang, Jiangtao; Tan, Liju

Toxic effects of microplastic on marine microalgae Skeletonema

ENVIRONMENTAL POLLUTION

93 costatum: Interactions between microplastic and algae
Zhang Fengying; Shi Yanhong; Jiang Keji; Xu Zhaoli; Ma | Sensitive and rapid detection of two toxic microalgae Alexandrium | ACTA OCEANOLOGICA SINICA
94 Lingbo by loop-mediated isothermal amplification
Sildever, Sirje; Kawakami, Yoko; Kannoa, Nanako; Kasai, | Toxic HAB species from the Sea of Okhotsk detected by a | HARMFUL ALGAE
95 Hiromi; Shiomoto, Akihiro; Katakura, Seiji; Nagai, Satoshi | metagenetic approach, seasonality and environmental drivers
Zhang, Chunyun; Chen, Guofu; Wang, Yuanyuan; Sun, Rui; | MHBMDAA: Membrane-based DNA array with high resolution and | HARMFUL ALGAE
96 Nie, Xiaoli; Zhou, Jin sensitivity for toxic microalgae monitoring
Shin, HyeonSeok; Lee, Eunju; Shin, Jongoh; Ko, So-Ra; Oh, | Elucidation of the bacterial communities associated with the harmful | SCIENTIFIC REPORTS
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97 Kwan; Cho, Suhyung polykrikoides using nanopore sequencing
Tang, Ying Zhong; Kang, Yoonja; Berry, Dianna; Gobler, | The ability of the red macroalga, Porphyra purpurea | JOURNAL OF APPLIED
Christopher J. (Rhodophyceae) to inhibit the proliferation of seven common | PHYCOLOGY
98 harmful microalgae
Wang, Zhaohui; Liu, Lei; Tang, Yali; Li, Aifeng; Liu, Chao; | Phytoplankton community and HAB species in the South China Sea | HARMFUL ALGAE
99 Xie, Changliang; Xiao, Lijuan; Lu, Songhui detected by morphological and metabarcoding approaches
Mohd-Din, Monaliza; Hii, Kieng Soon; Abdul-Wahab, | Spatial-temporal variability of microphytoplankton assemblages | MARINE ENVIRONMENTAL
Mohd Firdaus; Mohamad, Shaza Eva; Gu, Haifeng; Leaw, | including harmful microalgae in a tropical semi-enclosed strait | RESEARCH
100 Chui Pin; Lim, Po Teen (Johor Strait, Malaysia)
Yuan, A.; Wang, B.; Li, J.; Lee, Joseph H. W. A low-cost edge Al-chip-based system for real-time algae species | WATER RESEARCH
101 classification and HAB prediction
Manzo, S.; Buono, S.; Rametta, G.; Miglietta, M.; Schiavo, | The diverse toxic effect of sio2 and tio2 nanoparticles toward the | ENVIRONMENTAL SCIENCE AND
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Natarajan, Lokeshwari; Omer, Sonal; Jetly, Nishta; Jenifer, | Eco-corona formation lessens the toxic effects of polystyrene | ENVIRONMENTAL RESEARCH
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Poot-Delgado, Carlos Antonio; Okolodkov, Yuri B.; | Spatio-temporal Variation of Harmful Planktonic Microalgae and | BULLETIN OF ENVIRONMENTAL
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Establishment of a multiplex polymerase chain reaction detection

ENVIRONMENTAL SCIENCE AND
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2 The taxonomic composition and sequence number of toxic algal species in HTMaDB.

Species_database Kingdom Phylum Class Order Family Genus SeqNumber
Akashiwo_sanguinea Alveolata Dinoflagellata Dinophyceae Gymnodiniphycidae Gymnodiniaceae Akashiwo 15
Alexandrium_affine Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 9
Alexandrium_andersonii Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 5
Alexandrium_australiense Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 1
Alexandrium_catenella Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 23
Alexandrium_fragae Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 1
Alexandrium_hiranoi Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 2
Alexandrium_leei Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 1
Alexandrium_limii Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 2
Alexandrium_minutum Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 11
Alexandrium_monilatum Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 1
Alexandrium_ogatae Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 2
Alexandrium_ostenfeldii Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 50
Alexandrium_pacificum Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 2
Alexandrium_pseudogonyaulax Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 6
Alexandrium_tamarense Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 59
Alexandrium_tamiyavanichii Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 1
Alexandrium_taylorii Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 1
Amphidinium_carterae Alveolata Dinoflagellata Dinophyceae Gymnodiniphycidae Amphidiniaceae Amphidinium 8
Amphidinium_gibbosum Alveolata Dinoflagellata Dinophyceae Gymnodiniphycidae Amphidiniaceae Amphidinium 1
Amphidinium_klebsii Alveolata Dinoflagellata Dinophyceae Gymnodiniphycidae Amphidiniaceae Amphidinium 1
Amphidinium_operculatum Alveolata Dinoflagellata Dinophyceae Gymnodiniphycidae Amphidiniaceae Amphidinium 2
Amphidoma_languida Alveolata Dinoflagellata Dinophyceae Gonyaulacales Amphidomataceae Amphidoma 3
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Azadinium_dexteroporum
Azadinium_poporum
Azadinium_spinosum
Centrodinium_punctatum
Coolia_canariensis
Coolia_malayensis
Dinophysis_acuminata
Dinophysis_acuta
Dinophysis_caudata
Dinophysis_fortii
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Dinophysis_tripos
Fukuyoa paulensis
Fukuyoa_ruetzleri
Fukuyoa_yasumotoi
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Gambierdiscus_honu
Gambierdiscus_lapillus
Gambierdiscus_lewisii
Gambierdiscus_pacificus
Gambierdiscus_polynesiensis
Gambierdiscus_scabrosus
Gambierdiscus_silvae
Gambierdiscus_toxicus
Gonyaulax_bohaiensis
Gonyaulax_spinifera
Gymnodinium_catenatum
Heterocapsa_bohaiensis
Heterocapsa_borneoensis
Heterocapsa_circularisquama
Heterocapsa_horiguchii
Heterocapsa_niei
Heterocapsa_pygmaea
Karenia_bicuneiformis
Karenia_brevis
Karenia_mikimotoi
Karenia_papilionacea
Karenia_selliformis
Karlodinium_veneficum
Lingulodinium_polyedra
Margalefidinium_fulvescens
Margalefidinium_polykrikoides
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Ostreopsis_ovata
Ostreopsis_rhodesiae
Ostreopsis_siamensis
Pfiesteria_piscicida
Pfiesteria_shumwayae
Phalacroma_mitra
Phalacroma_rotundatum
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Prorocentrum_leve
Prorocentrum_lima
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Chattonella_marina_var._antiqua
Chattonella_marina_var._ovata
Chattonella_subsalsa
Fibrocapsa_japonica
Heterosigma_akashiwo
Nitzschia_bizertensis
Pseudochattonella_farcimen
Pseudochattonella_verruculosa
Pseudo-nitzschia_australis
Pseudo-nitzschia_batesiana
Pseudo-nitzschia_brasiliana
Pseudo-nitzschia_caciantha
Pseudo-nitzschia_calliantha
Pseudo-nitzschia_cuspidata
Pseudo-nitzschia_delicatissima
Pseudo-nitzschia_fraudulenta
Pseudo-nitzschia_fukuyoi
Pseudo-nitzschia_galaxiae
Pseudo-nitzschia_granii
Pseudo-nitzschia_kodamae
Pseudo-nitzschia_lundholmiae
Pseudo-nitzschia_multiseries
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Pseudo-nitzschia_subcurvata
Pseudo-nitzschia_turgidula
Chrysochromulina_leadbeateri
Phaeocystis_globosa
Phaeocystis_pouchetii
Prymnesium_calathiferum
Prymnesium_faveolatum
Prymnesium_parvum
Prymnesium_polylepis

Prymnesium_zebrinum
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Prymnesiophyceae
Coccolithophyceae
Coccolithophyceae
Coccolithophyceae
Coccolithophyceae
Coccolithophyceae

Bacillariophytina
Bacillariophytina
Prymnesiales
Phaeocystales
Phaeocystales
Prymnesiales
Prymnesiales
Prymnesiales
Prymnesiales

Prymnesiales

Bacillariophyceae
Bacillariophyceae
Chrysochromulinaceae
Phaeocystaceae
Phaeocystaceae
Prymnesiaceae
Prymnesiaceae
Prymnesiaceae
Prymnesiaceae

Prymnesiaceae

Pseudo-nitzschia
Pseudo-nitzschia
Chrysochromulina
Phaeocystis
Phacocystis
Prymnesium
Prymnesium
Prymnesium
Prymnesium

Prymnesium

152



3 The taxonomic composition and sequence number of harmful algal species in HTMaDB.

Species_database Kingdom Phylum Class Order Family Genus SeqNumber
Alexandrium_cohorticula Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 1
Alexandrium_margalefii Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 1
Alexandrium_insuetum Alveolata Dinoflagellata Dinophyceae Gonyaulacales Pyrocystaceae Alexandrium 2
Asterionellopsis_glacialis Stramenopiles Ochrophyta Diatomea Bacillariophytina Bacillariophyceae Asterionellopsis 4
Aureococcus_anophagefferens Stramenopiles Ochrophyta Pelagophyceae Pelagomonadales Pelagomonadaceae Aureococcus 20
Aureoumbra_lagunensis Stramenopiles Ochrophyta Pelagophyceae Sarcinochrysidales Sarcinochrysidaceae Aureoumbra 3
Blixaea_quinquecornis Alveolata Dinoflagellata Dinophyceae Peridiniphycidae Peridiniales Blixaca 2
Chaetoceros_affinis Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 1
Chaetoceros_atlanticus Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 1
Chaetoceros_constrictus Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 2
Chaetoceros_convolutus Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 1
Chaetoceros_curvisetus Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 1
Chaetoceros_danicus Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 4
Chaetoceros_debilis Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 3
Chaetoceros_decipiens Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 1
Chaetoceros_diadema Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 1
Chaetoceros_laevisporus Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 3
Chaetoceros_pseudocurvisetus Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 2
Chaetoceros_rostratus Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 5
Chaetoceros_socialis Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 2
Chaetoceros_simplex Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 1
Chaetoceros_tenuissimus Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 1
Chaetoceros_throndsenii Stramenopiles Ochrophyta Diatomea Chaetocerotales Chaetocerotaceae Chaetoceros 4
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Chaetoceros_tortissimus
Chaetoceros_lorenzianus
Chaetoceros_wighamii
Coscinodiscus_radiatus
Coolia_monotis
Cylindrotheca_closterium
Cyclotella_meneghiniana
Dictyocha_fibula
Dictyocha_speculum
Dinophysis_hastata
Diplopsalis_lenticula
Dunaliella_salina
Eucampia_zodiacus
Eutreptiella_gymnastica
Euglena_viridis
Gonyaulax_digitale
Gonyaulax_polygramma
Gonyaulax_verior
Gymnodinium_aureolum
Gymnodinium_impudicum
Guinardia_delicatula
Guinardia_flaccida
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Coscinodiscaceae
Gonyaulacales
Bacillariophyceae
Mediophyceae
Dictyochaceae
Dictyochaceae
Dinophysaceae
Peridiniales
Dunaliellaceae
Mediophyceae
Eutreptiaceae
Euglenaceae
Gonyaulacales
Gonyaulacales
Gonyaulacales
Gymnodiniaceae
Gymnodiniaceae
Rhizosolenids
Rhizosolenids
Bacillariophyceae
Peridiniales
Peridiniales

Peridiniales

Chaetoceros
Chaetoceros
Chaetoceros
Coscinodiscus
Coolia
Cylindrotheca
Cyclotella
Dictyocha
Dictyocha
Dinophysis
Diplopsalopsis
Dunaliella
Eucampia
Eutreptiella
Euglena
Gonyaulax
Gonyaulax
Gonyaulax
Gymnodinium
Gymnodinium
Guinardia
Guinardia
Halamphora
Heterocapsa
Heterocapsa

Heterocapsa

46
29

D L DD 0 WL L,



Lauderia_annulata
Lepidodinium_chlorophorum
Leptocylindrus_danicus
Leptocylindrus _minimus
Levanderina_fissa
Lithodesmioides_polymorpha
Noctiluca_scintillans
Nitzschia_longissima
Ostreopsis_lenticularis
Paralia_sulcata
Phalacroma_rapa
Plagioselmis_prolonga
Plagioselmis_nannoplanctica
Proboscia_alata
Prorocentrum_dentatum
Prorocentrum_donghaiense
Prorocentrum_gracile
Prorocentrum_micans
Prorocentrum_redfieldii
Prorocentrum_triestinum
Protodinium_simplex
Pseudocochlodinium_profundisulcus
Pyrophacus_steinii
Scrippsiella_acuminata
Scrippsiella_trochoidea

Skeletonema_tropicum

Stramenopiles
Alveolata
Stramenopiles
Stramenopiles
Alveolata
Stramenopiles
Alveolata
Stramenopiles
Alveolata
Stramenopiles
Alveolata
Chromista
Chromista
Stramenopiles
Alveolata
Alveolata
Alveolata
Alveolata
Alveolata
Alveolata
Alveolata
Alveolata
Alveolata
Alveolata
Alveolata

Stramenopiles

Ochrophyta
Dinoflagellata
Ochrophyta
Ochrophyta
Dinoflagellata
Ochrophyta
Dinoflagellata
Ochrophyta
Dinoflagellata
Ochrophyta
Dinoflagellata
Cryptophyta
Cryptophyta
Ochrophyta
Dinoflagellata
Dinoflagellata
Dinoflagellata
Dinoflagellata
Dinoflagellata
Dinoflagellata
Dinoflagellata
Dinoflagellata
Dinoflagellata
Dinoflagellata
Dinoflagellata
Ochrophyta

Diatomea
Dinophyceae
Diatomea
Diatomea
Dinophyceae
Diatomea
Dinophyceae
Diatomea
Dinophyceae
Diatomea
Dinophyceae
Cryptophyceae
Cryptophyceae
Diatomea
Dinophyceae
Dinophyceae
Dinophyceae
Dinophyceae
Dinophyceae
Dinophyceae
Dinophyceae
Dinophyceae
Dinophyceae
Dinophyceae
Dinophyceae

Diatomea

Bacillariophytina
Gymnodiniphycidae
Coscinodiscophytina
Coscinodiscophytina
Gymnodiniphycidae
Bacillariophytina
Noctilucales
Bacillariophytina
Gonyaulacales
Coscinodiscophytina
Dinophysiales
Pyrenomonadales
Pyrenomonadales
Coscinodiscophytina
Prorocentrales
Prorocentrales
Prorocentrales
Prorocentrales
Prorocentrales
Prorocentrales
Gymnodiniphycidae
Dinophyceae ordo incertae sedis
Gonyaulacales
Peridiniphycidae
Peridiniphycidae
Bacillariophytina
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Mediophyceae
Gymnodiniaceae
Rhizosolenids
Rhizosolenids
Gymnodiniales familia incertae sedis
Mediophyceae
Noctilucaceae
Bacillariophyceae
Pyrocystaceae
Melosirids
Oxyphysiaceae
Geminigeraceae
Geminigeraceae
Rhizosolenids
Prorocentraceae
Prorocentraceae
Prorocentraceae
Prorocentraceae
Prorocentraceae
Prorocentraceae
Suessiaceae
Dinophyceae familia incertae sedis
Pyrocystaceae
Thoracosphaeraceae
Thoracosphaeraceae

Mediophyceae

Lauderia
Lepidodinium
Leptocylindrus
Leptocylindrus

Levanderina

Lithodesmioides

Noctiluca
Nitzschia
Ostreopsis
Paralia
Phalacroma
Plagioselmis
Plagioselmis
Proboscia
Prorocentrum
Prorocentrum
Prorocentrum
Prorocentrum
Prorocentrum
Prorocentrum

Protodinium

Pseudocochlodinium

Pyrophacus
Scrippsiella
Scrippsiella

Skeletonema
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Skeletonema_costatum
Skeletonema_marinoi
Skeletonema_menzelii
Skeletonema_pseudocostatum
Takayama_pulchella
Takayama_xiamenensis
Teleaulax_acuta
Tenuicylindrus_belgicus
Thalassiosira_allenii
Thalassiosira_curviseriata
Thalassiosira_gravida
Thalassiosira_lundiana
Thalassiosira_mala
Thalassiosira_minima
Thalassiosira_minuscula
Thalassionema_nitzschioides
Thalassiosira_pseudonana
Thalassiosira_punctigera
Thalassiosira_rotula
Thalassiosira_weissflogii
Tripos_dens

Tripos_furca

Tripos_fusus
Tripos_lineatus
Tripos_muelleri

Tryblionella_compressa

Stramenopiles
Stramenopiles
Stramenopiles
Stramenopiles
Alveolata
Alveolata
Chromista
Stramenopiles
Stramenopiles
Stramenopiles
Stramenopiles
Stramenopiles
Stramenopiles
Stramenopiles
Stramenopiles
Stramenopiles
Stramenopiles
Stramenopiles
Stramenopiles
Stramenopiles
Alveolata
Alveolata
Alveolata
Alveolata
Alveolata

Stramenopiles

Ochrophyta
Ochrophyta
Ochrophyta
Ochrophyta
Dinoflagellata
Dinoflagellata
Cryptophyta
Ochrophyta
Ochrophyta
Ochrophyta
Ochrophyta
Ochrophyta
Ochrophyta
Ochrophyta
Ochrophyta
Ochrophyta
Ochrophyta
Ochrophyta
Ochrophyta
Ochrophyta
Dinoflagellata
Dinoflagellata
Dinoflagellata
Dinoflagellata
Dinoflagellata
Ochrophyta

Diatomea
Diatomea
Diatomea
Diatomea
Dinophyceae
Dinophyceae
Cryptophyceae
Diatomea
Diatomea
Diatomea
Diatomea
Diatomea
Diatomea
Diatomea
Diatomea
Diatomea
Diatomea
Diatomea
Diatomea
Diatomea
Dinophyceae
Dinophyceae
Dinophyceae
Dinophyceae
Dinophyceae

Diatomea

Bacillariophytina
Bacillariophytina
Bacillariophytina
Bacillariophytina
Gymnodiniphycidae
Gymnodiniphycidae
Pyrenomonadales
Coscinodiscophytina
Bacillariophytina
Bacillariophytina
Bacillariophytina
Bacillariophytina
Bacillariophytina
Bacillariophytina
Bacillariophytina
Bacillariophytina
Bacillariophytina
Bacillariophytina
Bacillariophytina
Bacillariophytina
Gonyaulacales
Gonyaulacales
Gonyaulacales
Gonyaulacales
Gonyaulacales

Bacillariophytina

Mediophyceae
Mediophyceae
Mediophyceae
Mediophyceae
Kareniaceae
Kareniaceae
Geminigeraceae
Rhizosolenids
Mediophyceae
Mediophyceae
Mediophyceae
Mediophyceae
Mediophyceae
Mediophyceae
Mediophyceae
Mediophyceae
Mediophyceae
Mediophyceae
Mediophyceae
Mediophyceae
Ceratiaceae
Ceratiaceae
Ceratiaceae
Ceratiaceae
Ceratiaceae

Bacillariophyceae

Skeletonema
Skeletonema
Skeletonema
Skeletonema
Takayama
Takayama
Teleaulax
Tenuicylindrus
Thalassiosira
Thalassiosira
Thalassiosira
Thalassiosira
Thalassiosira
Thalassiosira
Thalassiosira
Thalassionema
Thalassiosira
Thalassiosira
Thalassiosira
Thalassiosira
Tripos
Tripos

Tripos

Tripos
Tripos
Tryblionella
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Appendix 2

This section provides detailed sampling information in this study.

1 The detailed information of sampling locations in Hong Kong coastal seawater.

Sample ID Description Longitude Latitude
S1 Eastern Waters 114.218333 22.408611
S2 Eastern Waters 114.205 22.450556
S3 Eastern Waters 114.274167 22.46

S4 Eastern Waters 114.275278 22.434444
S5 Eastern Waters 114.335 22.476944
S6 Eastern Waters 114.3071 22.523683
S7 Eastern Waters 114.3618 22.57305
S8 Eastern Waters 114.40945 22.48765
S9 Eastern Waters 114.289444 22.343056
S10 Eastern Waters 114.296389 22.286111
S11 Eastern Waters 114.3325 22.276111
S12 Eastern Waters 114.343333 22.249722
S13 Eastern Waters 114.304167 22.289444
S14 Eastern Waters 114.379722 22.265
S15 Eastern Waters 114.394167 22.355
S16 Southern Waters 114.322222 22.366667
S17 Southern Waters 114.257222 22.234167
S18 Southern Waters 114.256389 22.205
S19 Southern Waters 114.286389 22.155278
S20 Southern Waters 114.175556 22.1875
S21 Southern Waters 114.189444 22.227222
S22 Southern Waters 114.130833 22.228056
S23 Southern Waters 114.073333 22.278333
S24 Southern Waters 114.055 22.353333
S25 Southern Waters 114.119722 22.331667
S26 Southern Waters 114.117222 22.311667
S27 Southern Waters 114.1525 22.299167
S28 Southern Waters 114.009722 22.238889
S29 Southern Waters 114.002778 22.188056
S30 Southern Waters 113.939444 22.185556
S31 Southern Waters 113.881389 22.166944
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S32
S33
S34
S35
S36

Western Waters
Western Waters
Western Waters
Western Waters

Western Waters

113.827983
113.975
113.875
113.919722
113.905278

22.224317
22.323056
22.289722
22.431944
22.361111
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2. The detailed information of sampling locations of coastal plastisphere.

Sample ID Group Description Region Longitude Latitude
EnvHKSumMcl Ambient Marine Culture Hong Kong 114.32278 22.36583
EnvHKSumMR1 Ambient Marine Reserve Hong Kong 114.27630 22.25900
EnvHKSumMR2 Ambient Marine Reserve Hong Kong 114.27630 22.25900
EnvHKSumMR3 Ambient Marine Reserve Hong Kong 114.27630 22.25900
EnvHKSumMR4 Ambient Marine Reserve Hong Kong 114.27630 22.25900
EnvHKSumPort1 Ambient Port Hong Kong 114.27446 22.38152
EnvHKSumWWTP2 Ambient WWTP Hong Kong 114.11727 22.31137
EnvHKWinBeach1 Ambient Beach Hong Kong 114.18930 22.23140
EnvHKWinBeach2 Ambient Beach Hong Kong 114.18930 22.23140
EnvHKWinBeach3 Ambient Beach Hong Kong 114.18930 22.23140
EnvHKWinEs1 Ambient Estuary Hong Kong 114.21694 22.40194
EnvHKWinEs2 Ambient Estuary Hong Kong 114.21694 22.40194
EnvHKWinEs4 Ambient Estuary Hong Kong 114.21694 22.40194
EnvHKWinEs5 Ambient Estuary Hong Kong 114.21694 22.40194
EnvHKWinMcl Ambient Marine Culture Hong Kong 113.98209 22.46892
EnvHKWinMc10 Ambient Marine Culture Hong Kong 114.32278 22.36583
EnvHKWinMc11 Ambient Marine Culture Hong Kong 114.13045 22.22385
EnvHKWinMc12 Ambient Marine Culture Hong Kong 114.13045 22.22385
EnvHKWinMc13 Ambient Marine Culture Hong Kong 114.13045 22.22385
EnvHKWinMc15 Ambient Marine Culture Hong Kong 114.13045 22.22385
EnvHKWinMc2 Ambient Marine Culture Hong Kong 113.98209 22.46892
EnvHKWinMc3 Ambient Marine Culture Hong Kong 113.98209 22.46892
EnvHKWinMc4 Ambient Marine Culture Hong Kong 113.98209 22.46892
EnvHKWinMc5 Ambient Marine Culture Hong Kong 113.98209 22.46892
EnvHKWinMc6 Ambient Marine Culture Hong Kong 114.32278 22.36583
EnvHKWinMc7 Ambient Marine Culture Hong Kong 114.32278 22.36583
EnvHKWinMc8 Ambient Marine Culture Hong Kong 114.32278 22.36583
EnvHKWinMc9 Ambient Marine Culture Hong Kong 114.32278 22.36583
EnvHKWinMR1 Ambient Marine Reserve Hong Kong 114.27632 22.25902
EnvHKWinPortl Ambient Port Hong Kong 114.27446 22.38152
EnvHKWinPort2 Ambient Port Hong Kong 114.27446 22.38152
EnvHKWinPort3 Ambient Port Hong Kong 114.27446 22.38152
EnvHKWinPort4 Ambient Port Hong Kong 114.27446 22.38152
EnvHKWinPort5 Ambient Port Hong Kong 114.27446 22.38152
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EnvHKWinWWTP1
EnvHKWinWWTP2
EnvHKWinWWTP3
EnvHKWinWWTP4
EnvQDSumBeachl
EnvQDSumBeach2
EnvQDSumBeach4
EnvQDSumBeach5
EnvQDSumEsl1
EnvQDSumEs2
EnvQDSumEs3
EnvQDSumMcl
EnvQDSumMc2
EnvQDSumMc4
EnvQDSumMc5
EnvQDSumMR1
EnvQDSumMR2
EnvQDSumMR3
EnvQDSumPort1
EnvQDSumPort2
EnvQDSumPort3
EnvQDSumPort4
EnvQDSumPort5
EnvQDSumWWTP1
EnvQDSumWWTP2
EnvQDSumWWTP3
EnvQDSumWWTP4
EnvQDSumWWTP5
EnvQDWinBeach1
EnvQDWinBeach2
EnvQDWinBeach3
EnvQDWinBeach4
EnvQDWinBeach5
EnvQDWinEs1
EnvQDWinEs2
EnvQDWinEs3
EnvQDWinEs4

Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient

WWTP
WWTP
WWTP
WWTP

Beach

Beach

Beach

Beach

Estuary
Estuary
Estuary
Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Reserve
Marine Reserve
Marine Reserve
Port

Port

Port

Port

Port

WWTP
WWTP
WWTP
WWTP
WWTP

Beach

Beach

Beach

Beach

Beach

Estuary
Estuary
Estuary
Estuary
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Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong

114.11727
114.11727
114.11727
114.11727
120.49433
120.49433
120.49433
120.49433
120.31518
120.31518
120.31518
120.23318
120.23318
120.23318
120.23318
120.17625
120.17625
120.17625
120.30023
120.30023
120.30023
120.30023
120.30023
120.34792
120.34792
120.34792
120.34792
120.34792
120.49433
120.49433
120.49433
120.49433
120.49433
120.31518
120.31518
120.31518
120.31518

22.31137
22.31137
22.31137
22.31137
36.09085
36.09085
36.09085
36.09085
36.25501
36.25501
36.25501
36.19174
36.19174
36.19174
36.19174
35.88025
35.88025
35.88025
36.07129
36.07129
36.07129
36.07129
36.07129
36.15289
36.15289
36.15289
36.15289
36.15289
36.09085
36.09085
36.09085
36.09085
36.09085
36.25501
36.25501
36.25501
36.25501



EnvQDWinEs5
EnvQDWinMcl
EnvQDWinMc2
EnvQDWinMc3
EnvQDWinMc4
EnvQDWinMc5
EnvQDWinMR1
EnvQDWinMR2
EnvQDWinMR3
EnvQDWinMR4
EnvQDWinMRS5
EnvQDWinPort1
EnvQDWinPort2
EnvQDWinPort3
EnvQDWinPort4
EnvQDWinPort5
EnvQDWinWWTP1
EnvQDWinWWTP2
EnvQDWinWWTP3
EnvQDWinWWTP4
EnvQDWinWWTP5
PlaHK SumMc1
PlaHKSumMR1
PlaHKSumMR2
PlaHKSumMR3
PlaHKSumMR4
PlaHK SumPort1
PlaHKSumWWTP2
PlaHKWinBeachl
PlaHKWinBeach2
PlaHKWinBeach3
PlaHKWinEs1
PlaHKWinEs2
PlaHKWinEs4
PlaHKWinEs5
PlaHKWinMcl
PlaHKWinMc10

Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Ambient
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere

Estuary

Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Reserve
Marine Reserve
Marine Reserve
Marine Reserve
Marine Reserve
Port

Port

Port

Port

Port

WWTP
WWTP

WWTP
WWTP

WWTP

Marine Culture
Marine Reserve
Marine Reserve
Marine Reserve
Marine Reserve
Port

WWTP

Beach

Beach

Beach

Estuary
Estuary
Estuary
Estuary

Marine Culture
Marine Culture
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Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong

120.31518
120.23318
120.23318
120.23318
120.23318
120.23318
120.17625
120.17625
120.17625
120.17625
120.17625
120.30023
120.30023
120.30023
120.30023
120.30023
120.34792
120.34792
120.34792
120.34792
120.34792
114.32278
114.27630
114.27630
114.27630
114.27630
114.27446
114.11727
114.18930
114.18930
114.18930
114.21694
114.21694
114.21694
114.21694
113.98209
114.32278

36.25501
36.19174
36.19174
36.19174
36.19174
36.19174
35.88025
35.88025
35.88025
35.88025
35.88025
36.07129
36.07129
36.07129
36.07129
36.07129
36.15289
36.15289
36.15289
36.15289
36.15289
22.36583
22.25900
22.25900
22.25900
22.25900
22.38152
22.31137
22.23140
22.23140
22.23140
22.40194
22.40194
22.40194
22.40194
22.46892
22.36583



PlaHKWinMc11
PlaHKWinMc12
PlaHKWinMc13
PlaHKWinMc15
PlaHKWinMc2
PlaHKWinMc3
PlaHKWinMc4
PlaHKWinMc5
PlaHK WinMc6
PlaHKWinMc7
PlaHKWinMc8
PlaHKWinMc9
PlaHKWinMR1
PlaHKWinPortl
PlaHKWinPort2
PlaHKWinPort3
PlaHKWinPort4
PlaHKWinPort5
PlaHKWinWWTP1
PlaHKWinWWTP2
PlaHKWinWWTP3
PlaHKWinWWTP4
PlaQDSumBeach1
PlaQDSumBeach?2
PlaQDSumBeach4
PlaQDSumBeach5
PlaQDSumEsl
PlaQDSumEs2
PlaQDSumEs3
PlaQDSumMc1
PlaQDSumMc2
PlaQDSumMc4
PlaQDSumMc5
PlaQDSumMR1
PlaQDSumMR?2
PlaQDSumMR3
PlaQDSumPortl1

Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere

Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Reserve
Port

Port

Port

Port

Port

WWTP
WWTP
WWTP
WWTP

Beach

Beach

Beach

Beach

Estuary
Estuary
Estuary

Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Reserve
Marine Reserve
Marine Reserve

Port
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Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Hong Kong
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao

114.13045
114.13045
114.13045
114.13045
113.98209
113.98209
113.98209
113.98209
114.32278
114.32278
114.32278
114.32278
114.27632
114.27446
114.27446
114.27446
114.27446
114.27446
114.11727
114.11727
114.11727
114.11727
120.49433
120.49433
120.49433
120.49433
120.31518
120.31518
120.31518
120.23318
120.23318
120.23318
120.23318
120.17625
120.17625
120.17625
120.30023

22.22385
22.22385
22.22385
22.22385
22.46892
22.46892
22.46892
22.46892
22.36583
22.36583
22.36583
22.36583
22.25902
22.38152
22.38152
22.38152
22.38152
22.38152
22.31137
22.31137
22.31137
22.31137
36.09085
36.09085
36.09085
36.09085
36.25501
36.25501
36.25501
36.19174
36.19174
36.19174
36.19174
35.88025
35.88025
35.88025
36.07129



PlaQDSumPort2
PlaQDSumPort3
PlaQDSumPort4
PlaQDSumPort5
PlaQDSumWWTP1
PlaQDSumWWTP2
PlaQDSumWWTP3
PlaQDSumWWTP4
PlaQDSumWWTP5
PlaQDWinBeachl
PlaQDWinBeach2
PlaQDWinBeach3
PlaQDWinBeach4
PlaQDWinBeach5
PlaQDWinEs1
PlaQDWinEs2
PlaQDWinEs3
PlaQDWinEs4
PlaQDWinEs5
PlaQDWinMcl
PlaQDWinMc2
PlaQDWinMc3
PlaQDWinMc4
PlaQDWinMc5
PlaQDWinMR1
PlaQDWinMR2
PlaQDWinMR3
PlaQDWinMR4
PlaQDWinMRS5
PlaQDWinPort1
PlaQDWinPort2
PlaQDWinPort3
PlaQDWinPort4
PlaQDWinPort5
PlaQDWinWWTP1
PlaQDWinWWTP2
PlaQDWinWWTP3

Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere
Plastisphere

Port

Port

Port

Port

WWTP
WWTP
WWTP
WWTP
WWTP

Beach

Beach

Beach

Beach

Beach

Estuary
Estuary
Estuary
Estuary
Estuary

Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Culture
Marine Reserve
Marine Reserve
Marine Reserve
Marine Reserve
Marine Reserve
Port

Port

Port

Port

Port

WWTP
WWTP
WWTP
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Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao
Qingdao

120.30023
120.30023
120.30023
120.30023
120.34792
120.34792
120.34792
120.34792
120.34792
120.49433
120.49433
120.49433
120.49433
120.49433
120.31518
120.31518
120.31518
120.31518
120.31518
120.23318
120.23318
120.23318
120.23318
120.23318
120.17625
120.17625
120.17625
120.17625
120.17625
120.30023
120.30023
120.30023
120.30023
120.30023
120.34792
120.34792
120.34792

36.07129
36.07129
36.07129
36.07129
36.15289
36.15289
36.15289
36.15289
36.15289
36.09085
36.09085
36.09085
36.09085
36.09085
36.25501
36.25501
36.25501
36.25501
36.25501
36.19174
36.19174
36.19174
36.19174
36.19174
35.88025
35.88025
35.88025
35.88025
35.88025
36.07129
36.07129
36.07129
36.07129
36.07129
36.15289
36.15289
36.15289



PlaQDWinWWTP4 Plastisphere WWTP Qingdao 120.34792 36.15289
PlaQDWinWWTP5 Plastisphere WWTP Qingdao 120.34792 36.15289
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Appendix 3

This section provides a database of the experimental results of the thesis.

1 In situ environmental parameters and nutrients in Hong Kong coastal seawater

Sample ID In-situ parameters Nutrients (ug-L™")
Temp (°C) Salinity pH DO NOs NO; NHs" POs SiOz*
(mg L)

Wet_S1 30.2 17.5 822 5.52 16.7 747 421 315 1487
Wet _S2 33.1 249 8.50 2.39 735 152 558 482 605
Wet S3 329 27.2 835 8.75 696 133 31.6 454 263
Wet_S4 313 26.2 838 5.55 7.89 194 417 10.8 478
Wet S5 30.7 31.9 826 5.57 733 1.60 332 826 189
Wet_S6 30.8 32.1 8.18 8.21 7.05 123 260 516 206
Wet S7 30.9 30.2 823 5283 7.15 146 485 183 157
Wet_ S8 30.4 30.5 825 555 733 139 402 818 114
Wet S9 31.6 31.9 8.19 9.50 6.59 1.06 359 39.1 228
Wet _S10 30.4 32.6 8.24 9.60 6.75 1.17 555 173 121
Wet S11 30.4 325 829 9.70 6.76 138 426 112 126
Wet S12 30.2 31.5 824 10.2 658 0 474 7.05 100
Wet S13 30.3 32.6 8.25 10.0 6.66 1.18 571 104 89.2
Wet S14 30.4 31.6 825 10.1 6.79 185 472 118 813
Wet _S15 30.7 32.0 8.27 9.80 6.80 152 31.1 9.03 955
Wet S16 31.5 32.4 8.06 8.10 6.67 1.17 399 16.0 189
Wet S17 28.1 31.3 8.08 5.56 143 106 62.0 11.8 129
Wet S18 27.9 31.1 8.10 5.83 151 114 523 199 127
Wet S19 28.9 30.5 8.17 6.48 11.0 633 412 17.8 100
Wet S20 29.0 29.6 8.15 6.39 179 143 429 195 114
Wet _S21 28.8 29.7 8.15 6.65 173 125 386 19.0 110
Wet S22 28.4 28.5 8.06 5.07 43.1 390 66.1 179 250
Wet S23 29.0 27.3 8.14 6.00 474 43.1 758 349 311
Wet_S24 293 24.5 7.96 4.78 864 852 792 64.6 642
Wet S25 28.1 28.2 7.95 3.74 46.7 429 130 49.6 447
Wet _S26 28.1 273 7.74 3.27 66.7 64.6 2101 103.0 635
Wet S27 28.6 28.2 797 5.96 39.9 364 120 17.1 380
Wet S28 29.3 28.0 8.15 5.95 113 115 127 775 864
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Wet_S29
Wet_S30
Wet S31
Wet_S32
Wet S33
Wet_S34
Wet S35
Wet_S36
Dry_S1

Dry S2

Dry S3

Dry S4

Dry S5

Dry S6

Dry S7

Dry S8

Dry S9

Dry S10
Dry_S11
Dry S12
Dry S13
Dry S14
Dry S15
Dry_S16
Dry S17
Dry S18
Dry S19
Dry_S20
Dry S21
Dry S22
Dry S23
Dry S24
Dry S25
Dry_S26
Dry S27
Dry S28
Dry_S29

29.6
30.1
30.1
30.8
30.2
30.4
30.6
31.0
19.7
20.2
19.6
19.7
19.1
20.1
19.6
18.9
18.8
20.0
19.5
19.5
19.5
19.2
19.1
19.3
18.3
18.2
20.4
18.2
18.5
19.2
18.4
18.7
18.8
18.6
18.9
18.8
18.5

27.9
28.2
27.7
21.3
221
234
20.3
18.8
31.8
31.9
32.0
32.1
32.6
32.8
32.9
33.0
333
33.6
33.6
33.9
33.7
33.9
33.6
333
33.1
334
34.0
333
33.0
32.7
33.1
32.7
325
33.0
31.4
32.6
32.2

8.31
8.31
8.14
7.94
7.90
7.96
7.81
7.88
7.76
7.82
7.83
7.67
7.90
8.07
7.98
8.06
7.92
7.89
7.88
7.73
7.88
7.72
7.83
7.79
7.86
7.19
7.78
7.68
7.85
7.82
7.72
8.06
7.91
7.87
7.80
7.87
7.78

7.80
7.17
6.67
5.48
5.74
5.48
5.29
6.52
6.74
6.18
591
6.57
6.54
5.92
5.86
5.74
5.47
5.78
5.72
5.54
5.87
5.75
5.84
5.99
5.90
5.87
6.05
6.12
6.74
6.18
5.91
6.57
6.54
5.92
5.86
5.74
5.47
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34.9
23.9
18.0
271
168

122

113

149

8.12
3.02
2.93
2.30
2.24
1.84
1.72

2.33
2.53
5.65
3.82
4.97
7.29
6.42
2.11
6.28
8.62
3.05
4.84
2.66
2.79
4.99
4.76
5.61
7.22
9.53
6.55
4.22

29.0
20.1
13.0
22.0
175

125

114

153

7.33
2.40
1.69
1.42
1.56
0.95
0.42
0.93
0.93
1.44
4.28
3.02
3.79
6.05
542
1.96
5.69
7.90
2.32
4.21
2.01
2.53
4.26
4.42
4.98
6.12
8.85
5.59
3.50

99.6
66.9
31.1
1.7
243
27.6

53.4
85.7
34.1
13.1
13.5
11.7
20.5
28.9
15.8
45.2
34.9
51.9
26.2
64.5
50.7
52.5
523
74.2
85.3
52.8
43.1
46.7
125
144
141
226
127
1212
135
113

42.7
47.8
24.9

86.7
473
34.9
91.2
4.80
3.10
2.99
6.36
8.86
4.57
5.62
4.20
2.89
7.61
8.63
4.91
7.70
7.67
7.53
5.95
6.51
12.0
543
7.84
5.90
10.2
7.87
16.4
13.1
6.36
12.7
3.81
0.12

306
207
143
170
1181
660
681
992
258
99
105
139
123
87.6
63.4
63.3
74.6
89.6
113
82.6
108
114
125
96.1
62.4
129
92.6
113
75.0
69.7
79.2
75.5
74.1
67.6
165
111
82.4



Dry S30
Dry S31
Dry S32
Dry S33
Dry S34
Dry S35
Dry S36

19.1
19.1
18.9
19.6
19.1
19.7
19.4

33.0
332
329
30.8
329
30.6
30.4

7.88
7.86
7.83
7.95
7.91
7.85
8.04

5.78
5.72
5.54
5.87
5.75
5.84
5.99

3.78
4.67
5.17
9.63
4.27
7.69
10.8

3.38
3.92
4.72
8.58
3.50
6.80
9.63

72.0
72.7
72.7
152
45.2
108
135

2.45
1.91
3.18
10.2
1.28
9.61
8.43

75.0
81.8
81.1
52.1
78.2
61.9
76.0
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2 Concentrations of LATs in dissolved seawater and SPM in sampling location.

Wet season (ng L")

Dry season (ng L")

Sample
NV Dissolved phase SPM Dissolved phase SPM

PTX-2 OA GYM DTX-1 | PTX-2 OA GYM DTX-1 | PTX-2 OA GYM DTX-1 | PTX-2 OA GYM DTX-1
S1 0.85 068 0.18 <LOD 0.16 <LOD 0.01 <LOD 0.31 123 143 0.03 0.18 0.00 0.03 <LOD
S2 0.31 1.12 031 <LOD 0.06 <LOD 0.01 <LOD 0.69 194 1.76 0.04 0.22 0.00 0.05 <LOD
S3 138 0.78 0.18 <LOD 0.07 <LOD 0.01 <LOD 1.01 1.10  0.98 0.05 0.36 0.00 0.07 <LOD
S4 1.39 1.02 029 <LOD 0.04 <LOD 0.02 <LOD 1.08 1.89  1.68 0.06 0.29 0.00 0.02 <LOD
S5 1.97 1.03 0.16 <LOD 0.01 <LOD 0.00 <LOD 1.06 1.64 1.39 0.11 0.53 0.00 0.02 <LOD
S6 1.56 1.54 023 <LOD 0.05 <LOD 0.03 <LOD 5.38 1.60  0.45 0.64 1.89 0.00 0.01 <LOD
S7 0.10 031 0.01 <LOD 0.04 <LOD 0.02 <LOD 0.90 0.63  0.30 0.10 1.21 0.10 0.01 <LOD
S8 0.87 1.51 0.06 <LOD 0.04 <LOD 0.01 <LOD 0.93 037 0.26 0.09 1.78 0.11  0.01 <LOD
S9 1.13 048 034 <LOD 0.11 <LOD 0.00 <LOD 0.58 0.57 0.05 0.06 0.63 0.03 0.00 <LOD
S10 1.83 098 046 <LOD 0.00 <LOD 0.00 <LOD 0.15 0.18  0.00 0.03 1.69 0.05 0.02 0.11
S11 144 044 0.74 <LOD 0.28 <LOD 0.01 <LOD 0.41 0.52  0.00 0.04 0.97 0.02  0.00 0.05
S12 1.51 0.11 0.51 <LOD 0.20 <LOD 0.01 <LOD 0.24 0.34  0.06 0.02 0.08 0.01 0.00 <LOD
S13 097 046 0.78 <LOD 0.20 <LOD 0.01 <LOD 0.65 031 0.18 0.04 0.79 0.01 0.00 <LOD
S14 129 031 032 <LOD 0.24 <LOD 0.03 <LOD 0.09 0.18  0.09 0.01 1.25 0.02 0.00 <LOD
S15 1.00 039 055 <LOD 0.25 <LOD 0.01 <LOD 0.58 032 0.00 0.09 1.73 0.04 0.00 <LOD
S16 1.03 062 043 <LOD 0.18 <LOD 0.01 <LOD 0.93 094 0.11 0.12 0.69 0.03 0.00 <LOD
S17 050 0.17 034 <LOD 0.23 <LOD 0.01 <LOD 1.46 0.73  0.13 0.14 0.58 0.03 0.00 <LOD
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S18
S19
S20
S21
S22
S23
S24
S25
S26
S27
S28
S29
S30
S31
S32
S33
S34
S35
S36

0.63
0.68
0.48
0.64
0.59
0.78
0.21
0.19
0.55
0.38
0.25
0.2
0.11
0.55
0.12
0.18
0.35
0.2
0.19

0.09
0.19
0.07
0.08
0.21
0.18
0.37
0.15
0.26
0.38
0.33
0.33
0.15
0.26
0.15
0.08
0.12
0.16
0.12

0.14
0.16
0.08
0.13
0.14
0.09
0.01
0.05
0.05
0.05
0.02
0.01
0.01
0.05
0.01
0.04
0.02
0.02
0.01

<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD

0.02
0.14
0.03
0.03
0.05
0.12
0.07
0.07
0.05
0.02
0.10
0.09
0.09
0.14
0.05
0.04
0.05
0.04
0.03

<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD

0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.02
0.00
0.01
0.02
0.00
0.00
0.02
0.00
0.00
0.00
0.00
0.00

<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD

0.51
0.02
0.64
0.93
0.88
0.18
0.70
0.18
0.21
1.47
0.19
0.30
0.23
0.57
0.35
0.29
0.35
0.29
0.58

0.45
0.03
0.38
0.86
1.07
0.56
0.67
0.37
0.34
0.58
0.40
0.33
0.31
0.47
0.42
0.71
0.32
0.79
0.75

0.10
0.01
0.00
0.00
0.00
0.00
0.01
0.11
0.17
0.17
0.22
0.15
0.10
0.15
0.12
0.03
0.11
0.01
0.00

0.09
0.00
0.06
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.03
0.02
0.04
0.02
0.06
0.01
0.06
0.10

0.32
0.09
1.69
0.88
2.37
0.80
1.56
0.89
0.84
1.14
0.37
0.82
0.57
1.15
4.90
1.14
1.08
0.74
1.36

0.00
0.00
0.04
0.03
0.04
0.03
0.03
0.00
0.00
0.00
0.00
0.02
0.00
0.03
0.00
0.02
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
<LOD
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3 In situ environmental parameters and nutrients of plastisphere surrounding

environment.
Sample ID Temp pH Salinity DOC NOs POs*
EnvHKSumMc1 27.8 8.3 32 3.274 2 0.44
EnvHKSumMR 1 30.1 8.2 32 7.297 24 0.21
EnvHKSumMR?2 30.2 811 33 5.681 2.9 0.21
EnvHKSumMR3 30.2 8.16 29 19.6 2 0.24
EnvHKSumMR4 30.3 8.16 29 13.48 1.1 0.28
EnvHKSumPort] 314 8.01 23 12.97 1.7 0.15
EnvHKSumWWTP2 30.8 744 27 3.829 2.6 0.22
EnvHKWinBeachl 18.967 7.81  35.63 5.138 33 0.19
EnvHKWinBeach2 18.966 7.8 35.66 5.128 23 0.37
EnvHKWinBeach3 18.985 7.81  35.68 5.294 1.5 0.3
EnvHKWinEs1 20.071 7.95 3495 7.056 1 0.36
EnvHKWinEs2 20.047 791 3498 7.015 1.5 0.28
EnvHKWinEs4 20.02 7.89  34.89 3.996 0.5 0.05
EnvHKWinEs5 19.92 7.9 35.27 4.555 1.2 0.04
EnvHKWinMc1 22.134 7.59  29.54 7.467 1.6 1.71
EnvHKWinMc10 16.164 79 34.54 2.81 1.8 0.18
EnvHKWinMc11 17.81 7.99 3544 2.647 1.7 0.53
EnvHKWinMc12 17.93 797  35.48 2.653 1.8 0.57
EnvHKWinMc13 17.998 8.01 3547 2.656 1 0.35
EnvHKWinMc15 17.982 8 35.43 2.727 1 0.33
EnvHKWinMc2 22.278 7.6 29.43 9.211 1.3 1.59
EnvHKWinMc3 22.345 7.56  29.44 7.804 1.3 1.54
EnvHKWinMc4 21.869 741 2941 8.466 1.8 1.21
EnvHKWinMc5 22.026 7.53  29.69 17.86 1.4 1.15
EnvHKWinMc6 16.185 795 3433 4.122 1.3 0.27
EnvHKWinMc7 16.158 791 3454 3.753 1.8 0.15
EnvHKWinMc8 16.189 7.86  34.54 3.813 1.6 0.27
EnvHKWinMc9 16.099 7.88  34.54 2.73 1.4 0.08
EnvHKWinMR1 15.652 8.01 3421 2.809 1.7 0.65
EnvHKWinPortl1 17.456 7.89  26.19 2.792 1.1 1.65
EnvHKWinPort2 18.402 7.99  34.07 2.751 1 0.46
EnvHKWinPort3 18.689 8.09 3335 3.046 1.2 0.41

EnvHKWinPort4 18.569 8.02  34.42 2.396 1 0.69
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EnvHKWinPort5
EnvHKWinWWTP1
EnvHKWinWWTP2
EnvHKWinWWTP3
EnvHKWinWWTP4
EnvQDSumBeachl
EnvQDSumBeach?2
EnvQDSumBeach4
EnvQDSumBeach5
EnvQDSumEsl
EnvQDSumEs2
EnvQDSumEs3
EnvQDSumMcl
EnvQDSumMc2
EnvQDSumMc4
EnvQDSumMc5
EnvQDSumMRI1
EnvQDSumMR2
EnvQDSumMR3
EnvQDSumPortl
EnvQDSumPort2
EnvQDSumPort3
EnvQDSumPort4
EnvQDSumPort5
EnvQDSumWWTP1
EnvQDSumWWTP2
EnvQDSumWWTP3
EnvQDSumWWTP4
EnvQDSumWWTPS5
EnvQDWinBeachl
EnvQDWinBeach2
EnvQDWinBeach3
EnvQDWinBeach4
EnvQDWinBeach5
EnvQDWinEs1
EnvQDWinEs2
EnvQDWinEs3

18.16
17.881
17.894
18.35
18.113
27.5
27.7
27.8
28
30.8
30.8
303
30.7
313
31.1
31.6
28.7
28.2
28
27.8
29.5
28.2
28.9
27.8
30.8
28.5
28.4
28.1
28

6.2

6.6

6.1
7.2
1.5
7.2

7.99
7.84
7.84
7.83
7.8
8.3
8.2
8.2
8.3
8.6
8.7
8.9
8.2
8.2
8.2
8.2
8.3
8.3
8.3
8.1
8.1
8.2
8.2
8.3
7.9
8.2
8.2
8.1
8.2
8.5
8.49
8.52
8.51
8.5
8.08
8.1
8.37

35.34
35.03
34.58
34.08
33.95
24.5
24
24.4
23.9
19.6
18.2
20.6
23.2
23.1
23.6
23.4
24.6
24.4
24.7
23.5
24.1
243
24.2
243
243
243
24.6
24.8
24.8
27.8
27.7
27.7
27.7
27.8
11.2
8.44
13.7
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4.131
3.843
3.611
4.325
4.191
1.3821
1.066
2.1802
1.1783
3.0857
3.1053
1.564
1.8028
1.7373
1.5619
1.685
2.2215
1.3169
0.6398
0.6984
1.5084
1.6302
0.5761
0.08
2.1985
0.9544
1.0662
1.0851
1.0615
6.11
6.155
5.297
5.67
5.807
19.015
19.468
20.168

1.2
0.9
0.8
1.6
1.5
0.171
0.035
0.039
0.085
0.498
0.619
0.34
0.099
0.104
0.081
0.086
0.009
0.009
0.009
0.02
0.075
0.201
0.069
0.005
0.272
0.183
0.143
0.076
0.051
0.008
0.008
0.228
0.016
0.011
2.701
5.555
5.08

0.31
0.47
0.58
0.36
0.52
0.189
0.318
0.19
0.239
0.134
0.142
0.222
0.211
0.308
0.293
0.2
0.245
0.267
0.332
0.209
0.218
0.151
0.272
0.32
0.166
0.223
0.262
0.21
0.273
0.108
0.128
0.12
0.082
0.003
0.098
0.166
0.116



EnvQDWinEs4 7.4 842 872 19.153  8.502 0.14
EnvQDWinEs5 7.6 8.38  8.66 18.007 3.181 0.099
EnvQDWinMc1 4.5 849 273 6.836 0.045 0.152
EnvQDWinMc2 4.6 8.5 28.1 6.532 0.025 0.12
EnvQDWinMc3 5.1 852 2738 6.154 0.042 0.117
EnvQDWinMc4 5 8.5 27.5 4.525 0.027 0.098
EnvQDWinMc5 6.8 8.52 269 6.406 0.075 0.106
EnvQDWinMR1 6.2 8.5 27 4.551 0.017 0.001
EnvQDWinMR2 5.5 8.52 268 5.511 0.007 0.002
EnvQDWinMR3 6.3 849 27.6 5.877 0.001 0.001
EnvQDWinMR4 5.6 8.53 272 5.215 0.008 0.003
EnvQDWinMR5 6.1 849 269 5.876 0.01 0.001
EnvQDWinPortl 6.1 846 269 7.147 0.008 0.001
EnvQDWinPort2 5.9 845 273 7.658 0.018 0.001
EnvQDWinPort3 5.7 844  27.6 11.553 0.036 0.001
EnvQDWinPort4 6.3 849 277 3.473 0.066 0.001
EnvQDWinPort5 5.7 846 272 3.855 0.121 0.001
EnvQDWinWWTP1 5.7 842 27 8.437 0.251 0.079
EnvQDWinWWTP2 6.3 8.44  26.7 7.571 0.285 0.093
EnvQDWinWWTP3 6 8.44  26.7 8.144 0.357 0.074
EnvQDWinWWTP4 6.7 8.44  26.7 7.348 0.327 0.081
EnvQDWinWWTP5 6.2 842  26.7 7.878 0.245 0.117
4 Polymer identification of plastics.

Site Polymer HQI Site Polymer HQI
Beach Resin 81.22 WWTP Polystyrene 72.73

Ethylene  propylene 81.24 Polypropylenes 72.89

copolymer

Polypropylenes 82.93 Polypropylenes 78.85

Polypropylenes 86.63 Propylene-ethylene 85.7

copolymer
Polypropylenes 91.8 Polypropylene-co- 94.18
ethylene

Reserve Propylene-ethylene 74.43  Port-1 Polystyrene 79.85

copolymer

Polyethylene 76.65 Ethylene-Propylene 82.67

terephthalate copolymer

Polyethylenes 82.9 Polyethylenes 85.68

Polyamide-6,6 91.6 Polypropylenes 86.96

Low-moecular 91.82 Polyethylenes 88.67
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Port-2

Estuary-2

Marine
culture-5

Marine
culture-10

polyethylene
Polyethylenes

Polyethylene-co-
Propylene copolymer
Polypropylenes
Polyethylene
Terephthalate
Polyethylenes

Polyethylenes
Polypropylenes

Polyethylene
Terephthalate
Polyethylenes

Polyethylenes
Polystyrene
Polypropylenes
Polyester
Polypropylenes

Butadiene rubber
Polyethylene-co-
Propylene copolymer
Ethylene-propylene
copolymer
Polystyrene

Polyester urethane
Polyethylenes
Polypropylenes
Polypropylenes
Polyethylenes

76.74

81.87

88.33
91.33

92.28

81.21

85.46

90.05

90.47

90.72

72.75

79.7

81.05

82

84.82
92.72

93.78

74.07

74.77
82.21
85.62
90.83
90.9

Estuary-1

Marine
culture-1

Marine
culture-6

Polyethylene,
chlorinated

Polyethylenes

Ethylene copolymer
Polyethylenes

Polypropylene
isotactic
Low-molecular
polyethylene
Polypropylene

Polyethylenes

Polyethylene
Terephthalate
Propylene-ethylene
copolymer
Polypropylenes

Polyethylene-co-
Propylene copolymer
Ethylene-propylene
copolymer
Polyethylene
Terephthalate
Polypropylenes
Polystyrenes

Polypropylenes

Polypropylenes

73.38

86.42

87.78
90.04

90.85

91.42

79.74

81.71

82.12

83.88

84.54

89.68

93.53

70.28

80
81.09

89.8

93.12
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Appendix 4

This section provides bioinformatic and statistical results of the thesis.

1 The differential ASVs between the plastisphere (enriched) and the ambient (depleted) phytoplankton community.

ID log;CPM  Level ID log;CPM  Level ID log;CPM  Level ID log;CPM  Level

ASV 51 1427694  Enriched  ASV_873 9.04205 Enriched ASV 1195 7.8738 Depleted  ASV_686  9.07972 Depleted
ASV 29 14.8988 Enriched  ASV 2505 7.04359 Enriched  ASV 277 10.64113  Depleted  ASV 1315 7.44628 Depleted
ASV 370 11.0917 Enriched  ASV_792 8.70156 Enriched ASV_745 8.30355 Depleted  ASV_279 10.26384  Depleted
ASV_239 12.184 Enriched ASV_1885 7.89681 Enriched ASV 304 10.29413  Depleted  ASV_998 8.64273 Depleted
ASV 135 12.90295  Enriched  ASV 3181 6.74108 Enriched  ASV_160  11.56931  Depleted  ASV 932  7.85574 Depleted
ASV 44 14.19868  Enriched  ASV 2933  6.77713 Enriched  ASV_1080 7.7326 Depleted  ASV 493  9.3872 Depleted
ASV 190  12.09706  Enriched  ASV_195 11.08615  Enriched  ASV 663  8.69255 Depleted  ASV 682  8.0979 Depleted
ASV 38 14.87331  Enriched =~ ASV_ 2281 7.11727 Enriched  ASV_1068  7.48669 Depleted  ASV_1211  7.79563 Depleted
ASV 249 12.07192  Enriched ASV_985 8.51717 Enriched ASV_15 15.23821  Depleted  ASV_1555 7.23997 Depleted
ASV 1358 8.28062 Enriched  ASV _1326 8.17306 Enriched  ASV_653  8.94893 Depleted  ASV_4271 9.31407 Depleted
ASV 457 10.44725  Enriched  ASV_1152 7.91642 Enriched  ASV 1239 7.31894 Depleted  ASV_126  11.1056 Depleted
ASV 828  9.12886 Enriched  ASV_644 12.09975  Enriched  ASV 639  9.81806 Depleted  ASV 1047  7.83228 Depleted
ASV 827  9.39247 Enriched  ASV_561 9.64329 Enriched  ASV_1304 7.33697 Depleted  ASV_1117  7.7183 Depleted
ASV_162 12.36436  Enriched ASV 902 8.86777 Enriched ASV 247 10.6357 Depleted  ASV 318 10.18774  Depleted
ASV 423 11.49086  Enriched  ASV_1161 8.11915 Enriched  ASV 555  9.03394 Depleted  ASV_ 1222  7.40094 Depleted
ASV_707  9.44698 Enriched  ASV 2244  7.06992 Enriched  ASV 810  8.99102 Depleted  ASV 1034 7.69751 Depleted
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ASV_208
ASV_55
ASV_118
ASV_70
ASV_137
ASV 240
ASV_363
ASV 36
ASV_1324
ASV_1467
ASV_171
ASV 18
ASV 224
ASV 1287
ASV_150
ASV 499
ASV_405
ASV_117
ASV 1888
ASV_1380
ASV 229
ASV_1433

12.20323
14.93803
13.03003
13.84342
12.55404
11.36267
10.78133
15.05311
8.22985
8.26929
12.5131
15.20766
11.94717
7.99647
12.21365
10.18812
10.17404
12.93695
7.28229
8.38098
11.11439
7.73095

Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched

ASV_188
ASV_492

ASV_246

ASV_1249
ASV_1032
ASV_705

ASV_1614
ASV 933

ASV_1656
ASV_1512
ASV_325

ASV 2056
ASV_1591
ASV 1357
ASV_1010
ASV 4278
ASV_1146
ASV_1708
ASV 2144
ASV_2020
ASV_1009
ASV_1806

12.1253
9.78311
11.80886
8.07863
9.29455
9.02664
7.26577
8.63138
7.59571
7.49688
10.38047
7.2178
9.32573
8.20289
8.64459
6.85903
8.40051
7.53906
7.07713
7.37874
8.19085
7.39647

Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched

ASV_168
ASV_634
ASV_861
ASV_788
ASV_552
ASV_60
ASV_352
ASV_765
ASV_502
ASV 336
ASV_64
ASV_1140
ASV_367
ASV_749
ASV 287
ASV 438
ASV_726
ASV_440
ASV_942
ASV_223
ASV 631
ASV 214
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11.43672
8.73382
8.10797
8.07142
8.75201
12.75308
10.32539
8.8643
9.39861
10.81066
12.96203
7.6471
10.37899
8.2248
10.48627
10.61921
8.57128
9.12727
7.89887
10.52093
8.97038
11.40476

Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted

ASV_1038
ASV 972
ASV 288
ASV 1054
ASV_167
ASV 1434
ASV_940
ASV_627
ASV_521
ASV 916
ASV 384
ASV 1042
ASV 1115
ASV 148
ASV_856
ASV_1063
ASV_812
ASV_800
ASV 63
ASV_329
ASV 1345
ASV_599

7.57413
8.37969
10.61649
7.94009
12.09774
7.51513
7.9978
8.80169
9.55057
7.97616
9.94556
7.9035
8.0868
11.30772
8.18199
7.67085
8.32538
8.53142
13.04906
10.30281
7.2506
9.24836

Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted



ASV_121
ASV_761
ASV_922
ASV_1506
ASV_677
ASV 337
ASV_799
ASV 477
ASV_1605
ASV 1341
ASV_376
ASV 204
ASV_955
ASV 1962
ASV_1302
ASV 189
ASV_93
ASV_387
ASV 850
ASV_1457
ASV_1090
ASV_ 1446

13.10264
9.28349
8.37668
8.05922
9.45154
10.97035
9.01338
10.05915
7.60851
8.15287
10.24316
11.89785
9.02952
7.30342
8.91889
11.96604
12.77542
10.82676
8.89894
7.78917
7.91257
7.80209

Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched

ASV 28
ASV_2967
ASV_1791
ASV_259
ASV 2774
ASV_179
ASV_886
ASV_1124
ASV_1170
ASV_703
ASV_1739
ASV 572
ASV_583
ASV_2969
ASV_2046
ASV 157
ASV_6
ASV_107
ASV 22
ASV 221
ASV 98
ASV_116

13.84634
7.0915
7.43835
10.94241
6.71779
13.61298
8.7673
8.5722
8.22554
9.3964
10.1386
9.76255
7.45696
6.76876
7.53915
11.94915
16.18883
12.29854
14.12823
10.75624
12.41815
12.17288

Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted

ASV_197
ASV 443
ASV_192
ASV_69
ASV_925
ASV_672
ASV_754
ASV_306
ASV 210
ASV_750
ASV_756
ASV_658
ASV_365
ASV 1355
ASV_713
ASV 737
ASV_193
ASV_1391
ASV_149
ASV_533
ASV 481
ASV 297
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11.10437
9.45095
10.75176
12.29824
7.50168
9.17364
8.29847
10.52432
10.36778
8.45302
8.37702
8.72319
10.15589
7.51093
8.13642
7.85495
11.65696
7.07378
11.83658
9.17069
8.92712
10.81258

Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted

ASV 814
ASV_1029
ASV 673
ASV_1027
ASV 935
ASV 1427
ASV_99
ASV 772
ASV_1127
ASV 1217
ASV_1374
ASV 512
ASV_1060
ASV 693
ASV_453
ASV 581
ASV_995
ASV_1182
ASV 1252
ASV_1228
ASV 130
ASV 4

8.12084
7.9115
8.37615
7.77894
7.92239
7.28252
11.51951
8.80826
7.52184
7.91768
7.42831
9.81602
7.76186
8.61299
9.65067
9.35887
8.43104
7.43642
7.7411
7.72285
12.18017
16.76444

Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted



ASV_1774
ASV 219
ASV_592
ASV_734
ASV_1296
ASV 747
ASV 324
ASV 49
ASV_1366
ASV 202
ASV_422
ASV_1996
ASV_392
ASV 963
ASV_428
ASV 1294
ASV_787
ASV_299
ASV_83
ASV 951
ASV 1441
ASV 2189

7.27277
11.78763
9.83439
9.30324
7.89483
9.35401
11.04965
14.0219
7.6314
12.00932
10.03416
7.39775
10.116
8.85196
10.63665
8.00758
9.17344
11.20664
13.25921
8.50808
7.8537
7.2164

Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched

ASV_410
ASV 432
ASV 341
ASV 434
ASV_87
ASV 271
ASV 1022
ASV 265
ASV_586
ASV 522
ASV_258
ASV 147
ASV_447
ASV 20
ASV 23
ASV 429
ASV 2
ASV 268
ASV 1181
ASV_73
ASV 1052
ASV 338

9.72433
9.70195
9.8971
10.00243
12.62018
10.63706
9.38931
15.26419
11.34399
9.45322
10.82056
13.94487
9.67732
14.17246
14.51835
9.61736
17.01591
10.70847
7.37858
13.06342
8.03395
9.64991

Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted

ASV_565
ASV 217
ASV_742
ASV_1259
ASV_1580
ASV_250
ASV_1095
ASV 511
ASV_248
ASV 253
ASV_735
ASV_100
ASV 411
ASV 233
ASV_452
ASV 997
ASV_266
ASV_957
ASV 1186
ASV_1238
ASV 151
ASV_1024
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8.60153
10.65817
8.02348
7.50861
7.38008
10.78597
7.67141
9.24796
10.82689
11.20338
8.32936
12.40005
10.2753
11.36921
9.52771
7.96913
10.75849
7.47824
7.27626
7.12332
12.02405
7.86271

Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted

ASV_882
ASV 1162
ASV_636
ASV 1462
ASV_905
ASV_460
ASV 675
ASV 1103
ASV_1153
ASV_1305
ASV_500
ASV 21
ASV_1093
ASV 305
ASV_591
ASV 559
ASV 371
ASV_946
ASV 731
ASV_1521
ASV 541
ASV_1201

8.23296
8.04574
8.57681
7.1069
7.983
9.36927
8.40292
7.86694
7.99099
7.54442
9.69932
15.04211
8.1428
8.62823
9.43978
9.34428
10.42992
8.52128
8.8513
7.96726
9.28014
7.56929

Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig



ASV_496
ASV 2018
ASV_1317
ASV_1267
ASV_1050
ASV_1670
ASV_1338
ASV_1501
ASV_444
ASV 2199
ASV_790
ASV 1248
ASV_710
ASV 758
ASV 2130
ASV 1882
ASV_868
ASV_720
ASV 1482
ASV 977
ASV 818
ASV 1114

9.81768
7.04847
7.59799
8.12369
8.25887
7.81662
8.24955
8.21046
10.10465
7.14436
9.25156
8.03812
9.47399
9.12953
7.21328
7.37305
8.66584
9.42483
7.48312
8.62317
8.3949
8.00708

Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched

ASV_85
ASV_456
ASV_725
ASV_775
ASV_865
ASV_466
ASV_529
ASV 216
ASV_628
ASV 19
ASV_1213
ASV 1137
ASV_475
ASV 446
ASV 212
ASV 364
ASV 7
ASV 312
ASV 515
ASV_43
ASV 391
ASV 201

12.67127
9.70514
8.15868
8.74411
7.70372
9.49389
9.44002
10.98475
8.75981
14.22622
7.50203
7.89911
10.12785
9.92227
11.57344
10.12793
16.24191
10.15841
15.25519
13.36514
10.07661
10.75577

Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted

ASV_1236
ASV_1048
ASV_1370
ASV_59
ASV_468
ASV 732
ASV_588
ASV 907
ASV_662
ASV_506
ASV 274
ASV 825
ASV 417
ASV 519
ASV_1025
ASV_205
ASV_926
ASV_822
ASV_154
ASV 971
ASV 401
ASV_920
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7.45118
8.46731
7.14949
12.40503
9.29335
8.64161
9.2224
8.05547
9.19416
9.81204
10.91048
8.65034
10.13119
9.23832
7.75219
11.11638
8.17798
8.77058
11.92886
7.99359
10.25279
8.03871

Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted

ASV_895
ASV_965
ASV_296
ASV 1447
ASV_538
ASV 1311
ASV_1531
ASV 1527
ASV_630
ASV 885
ASV 571
ASV 323
ASV 574
ASV 733
ASV_1330
ASV_1766
ASV_1126
ASV_1573
ASV 1843
ASV_1189
ASV 349
ASV_56

8.16899
8.41456
10.75604
7.41949
9.87408
8.06813
7.30823
7.55005
9.71509
8.49645
8.82669
10.7291
9.55941
8.3549
7.18894
7.32748
7.89449
7.38997
7.24919
8.25312
8.76482
10.98571

NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig



ASV_1454
ASV 2831
ASV 261
ASV 2420
ASV_199
ASV 1171
ASV_1129
ASV 927
ASV_290
ASV_504
ASV_1207
ASV 1478
ASV_778

7.9037
6.80028
10.45364
8.03003
11.16654
8.19338
8.35357
8.66013
10.93584
8.12233
8.00318
7.84489
8.92695

Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched
Enriched

ASV 585
ASV 412
ASV_697
ASV_448
ASV 373
ASV 615
ASV_608
ASV_664
ASV_437
ASV_763
ASV 284
ASV 234
ASV_528

8.92592
12.24663
8.54856
9.53378
9.98695
8.5363
9.20426
8.4753
9.54993
8.50829
10.4765
11.16498
8.75337

Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted

ASV_441
ASV_689
ASV_1588
ASV_1764
ASV_1119
ASV_779
ASV_131
ASV_80
ASV_485
ASV 326
ASV_540
ASV 381
ASV_209

9.60772
9.11577
7.34621
7.15589
7.36238
8.7877
11.99109
12.96885
9.87469
10.24109
9.59456
10.4144
11.20881

Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted
Depleted

ASV_158
ASV_602
ASV_1172
ASV 235
ASV 276
ASV 1312
ASV_1877
ASV 836
ASV_721
ASV 1183

11.60468
9.2051
7.94028
8.73525
8.55702
7.96585
7.27459
8.00303
8.21536
7.91912

NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
NotSig
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2 Identified harmful and toxic ASVs in plastisphere and ambient seawater.

ID Species Type ID Species Type ID Species Type
ASV 19 Akashiwo sanguinea Toxic ASV 3021 Dunaliella salina Harmful ASV 214 Leptocylindrus danicus Harmful
ASV 3137  Akashiwo sanguinea Toxic ASV 3079 Dunaliella salina Harmful — ASV 2803 Leptocylindrus danicus Harmful
ASV 1222 Alexandrium andersonii Toxic ASV 3131 Dunaliella salina Harmful ASV 126  Levanderina fissa Harmful
ASV 3341  Alexandrium andersonii Toxic ASV 3115 Dunaliella salina Harmful  ASV 1349  Lingulodinium polyedra Toxic
ASV 2215  Alexandrium cohorticula Harmful = ASV 3164 Dunaliella salina Harmful  ASV 2274  Lingulodinium polyedra Toxic
ASV 754  Alexandrium hiranoi Toxic ASV 3187 Dunaliella salina Harmful  ASV 3681 Margalefidinium fulvescens Toxic
ASV 233 Alexandrium ostenfeldii Toxic ASV 3301 Dunaliella salina Harmful  ASV 800  Margalefidinium polykrikoides ~ Toxic
ASV_686  Alexandrium ostenfeldii Toxic ASV 3348 Dunaliella salina Harmful  ASV 1189  Nitzschia longissima Harmful
ASV 167  Alexandrium tamarense Toxic ASV 3358 Dunaliella salina Harmful  ASV 1739  Nitzschia longissima Harmful
ASV_485  Alexandrium tamarense Toxic ASV 3363 Dunaliella salina Harmful ASV_69 Noctiluca scintillans Harmful
ASV 2400 Amphidinium klebsii Toxic ASV 3405 Dunaliella salina Harmful ASV_100  Noctiluca scintillans Harmful
ASV 814  Asterionellopsis glacialis Harmful = ASV 3584  Dunaliella salina Harmful = ASV 223 Noctiluca scintillans Harmful
ASV_1589  Aureococcus anophagefferens ~ Harmful  ASV 3631 Dunaliella salina Harmful  ASV 3551 Noctiluca scintillans Harmful
ASV 1809  Aureococcus anophagefferens  Harmful = ASV 3840 Dunaliella salina Harmful ASV _107  Plagioselmis prolonga Harmful
ASV 3590 Aureococcus anophagefferens  Harmful = ASV 3884  Dunaliella salina Harmful ASV_441 Plagioselmis prolonga Harmful
ASV 935  Azadinium poporum Toxic ASV 3891 Dunaliella salina Harmful  ASV_1115  Plagioselmis prolonga Harmful
ASV 336  Chaetoceros curvisetus Harmful  ASV 3925 Dunaliella salina Harmful  ASV 1335  Plagioselmis prolonga Harmful
ASV 1788  Chaetoceros debilis Harmful =~ ASV 3943  Dunaliella salina Harmful  ASV 304  Polykrikos hartmannii Toxic
ASV 212 Chaetoceros diadema Harmful ~ ASV 3956  Dunaliella salina Harmful ASV 411 Prorocentrum cordatum Toxic
ASV 3005 Chaetoceros diadema Harmful ~ ASV 4094  Dunaliella salina Harmful ASV 452 Prorocentrum cordatum Toxic
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ASV 2221
ASV_4750
ASV_3399
ASV 2824
ASV_2330
ASV_2883
ASV 2
ASV_2533
ASV_3299
ASV 4113
ASV_4878
ASV_296
ASV_1236
ASV_2862
ASV_6
ASV_99
ASV_148
ASV 216
ASV_438
ASV_810
ASV 4422
ASV_118
ASV_179
ASV_189

Chaetoceros lorenzianus

Chaetoceros pseudocurvisetus

Chaetoceros rostratus
Chaetoceros simplex
Chaetoceros socialis
Chaetoceros socialis
Chaetoceros tenuissimus

Chaetoceros throndsenii

Chrysochromulina leadbeateri
Chrysochromulina leadbeateri

Chrysochromulina leadbeateri

Coscinodiscus radiatus

Coscinodiscus radiatus

Coscinodiscus radiatus

Cyclotella meneghiniana
Cyclotella meneghiniana
Cyclotella meneghiniana
Cyclotella meneghiniana
Cyclotella meneghiniana
Cyclotella meneghiniana
Cyclotella meneghiniana
Cylindrotheca closterium
Cylindrotheca closterium

Cylindrotheca closterium

Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Toxic

Toxic

Toxic

Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful

Harmful

ASV 4181
ASV_4193
ASV_4194
ASV_4205
ASV_4211
ASV 4277
ASV 4311
ASV 4338
ASV 4383
ASV_4406
ASV 4437
ASV_4459
ASV_4704
ASV 4743
ASV 4772
ASV 4947
ASV 4993
ASV 5114
ASV_160

ASV 453

ASV_1162
ASV 365

ASV 1576
ASV_2055

Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina

Dunaliella salina

Eucampia zodiacus
Eucampia zodiacus
Eucampia zodiacus
Fibrocapsa japonica
Fibrocapsa japonica

Fibrocapsa japonica
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Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Toxic

Toxic

Toxic

ASV 512
ASV_572

ASV_733

ASV_731

ASV_749

ASV 1038
ASV 1315
ASV_ 1464
ASV 1812
ASV_1877
ASV 2213
ASV_2506
ASV 2784
ASV 2869
ASV 3347
ASV 3481
ASV 3488
ASV_3605
ASV_3689
ASV 3816
ASV_4252
ASV 4310
ASV 4350
ASV_4451

Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum
Prorocentrum cordatum

Prorocentrum cordatum

Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic

Toxic



ASV 246
ASV_423
ASV 559
ASV_631
ASV_799
ASV 778
ASV 873
ASV 1341
ASV 1467
ASV_1882
ASV_1946
ASV_2966
ASV_2985
ASV 4397
ASV 4496
ASV 4847
ASV 234
ASV 3130
ASV 4797
ASV_1580
ASV 4135
ASV_85
ASV_193
ASV 204

Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Cylindrotheca closterium
Dictyocha fibula
Dinophysis acuminata
Dinophysis acuminata
Dinophysis miles
Dinophysis miles
Dunaliella salina
Dunaliella salina

Dunaliella salina

Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Toxic

Toxic

Toxic

Toxic

Harmful
Harmful

Harmful

ASV_2536
ASV 3897
ASV_4922
ASV 2319
ASV_3954
ASV 3287
ASV_586
ASV_1182
ASV_1511
ASV 3218
ASV_171
ASV_208
ASV 239
ASV_370
ASV_538
ASV_707
ASV_720
ASV_747
ASV 955
ASV_965
ASV 1114
ASV_1124
ASV_1172
ASV_1207

Fibrocapsa japonica
Fibrocapsa japonica
Gonyaulax polygramma
Gonyaulax spinifera
Gonyaulax spinifera
Gonyaulax verior
Guinardia flaccida
Gymnodinium catenatum
Gymnodinium catenatum
Gymnodinium catenatum
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
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Toxic
Toxic
Harmful
Toxic
Toxic
Harmful
Harmful
Toxic
Toxic
Toxic
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful

Harmful

ASV 4910
ASV_636
ASV_1859
ASV 2415
ASV_265
ASV 1837
ASV 4514
ASV 20
ASV 284
ASV_448
ASV 2431
ASV_3445
ASV_693
ASV 1399
ASV 1425
ASV 1944
ASV 2234
ASV 3232
ASV_3670
ASV_4166
ASV 4424
ASV_4967
ASV_4972
ASV_5053

Prorocentrum cordatum
Prorocentrum rhathymum
Prorocentrum rhathymum
Prorocentrum rhathymum
Prorocentrum triestinum
Prorocentrum triestinum
Protoceratium reticulatum
Protodinium simplex
Protodinium simplex
Protodinium simplex
Protodinium simplex
Protoperidinium crassipes
Prymnesium parvum
Prymnesium parvum
Prymnesium parvum
Prymnesium parvum
Prymnesium parvum
Prymnesium parvum
Prymnesium parvum
Prymnesium parvum
Prymnesium parvum
Prymnesium parvum
Prymnesium parvum

Prymnesium parvum

Toxic
Toxic
Toxic
Toxic
Harmful
Harmful
Toxic
Harmful
Harmful
Harmful
Harmful
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic

Toxic



ASV_229
ASV 253
ASV 274
ASV 364
ASV 417
ASV 437
ASV_506
ASV_585
ASV_599
ASV_634
ASV_663
ASV_662
ASV_689

ASV 822

ASV 827

ASV_825

ASV 972
ASV_998

ASV_1024
ASV_1051
ASV_1291

Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina

Dunaliella salina

Dunaliella salina

Dunaliella salina

Dunaliella salina

Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina

Dunaliella salina

Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful

Harmful

Harmful

Harmful

Harmful

Harmful
Harmful
Harmful
Harmful

Harmful

ASV_1248
ASV_1287
ASV_1312
ASV_1324
ASV_1358
ASV_1501
ASV_1854
ASV_1962
ASV_2056
ASV 2141
ASV 2268
ASV_2295
ASV_2526

ASV 2542

ASV_2580

ASV_2799

ASV_3046
ASV 3074
ASV 3281
ASV 3513
ASV 3613

Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis

Halamphora coffeiformis

Halamphora coffeiformis

Halamphora coffeiformis

Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
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Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful

Harmful

Harmful

Harmful

Harmful

Harmful
Harmful
Harmful
Harmful

Harmful

ASV_653
ASV_1137
ASV_2682
ASV_4585
ASV_1119
ASV_2571
ASV_571
ASV 23
ASV_4271
ASV_4448
ASV_4662
ASV_4901
ASV_266

ASV 2484

ASV_ 3202

ASV 5111

ASV_1195
ASV_64
ASV_259
ASV_73
ASV_197

Prymnesium polylepis
Prymnesium polylepis
Prymnesium polylepis
Prymnesium polylepis
Pseudo-nitzschia australis
Pseudo-nitzschia australis
Pseudo-nitzschia cuspidata
Pseudo-nitzschia delicatissima
Pseudo-nitzschia delicatissima
Pseudo-nitzschia delicatissima
Pseudo-nitzschia delicatissima
Pseudo-nitzschia delicatissima
Pseudochattonella verruculosa
Pseudocochlodinium
profundisulcus
Pseudocochlodinium
profundisulcus
Pseudocochlodinium
profundisulcus

Pyrophacus steinii
Skeletonema marinoi
Skeletonema marinoi
Teleaulax acuta

Teleaulax acuta

Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic

Toxic

Harmful

Harmful

Harmful

Harmful
Harmful
Harmful
Harmful

Harmful



ASV_1323
ASV_1347
ASV_1352
ASV_1474
ASV_1449
ASV_1539
ASV_1614
ASV_1632
ASV_1645
ASV_1724
ASV_1735
ASV_1906
ASV_1890
ASV_1952
ASV_1983
ASV 2018
ASV_2081
ASV 2197
ASV 2235
ASV_2244
ASV_2284
ASV 2283
ASV 2361
ASV_2406

Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina
Dunaliella salina

Dunaliella salina

Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful

Harmful

ASV 3712
ASV_3779
ASV_3869
ASV 3872
ASV_3940
ASV 3969
ASV 4210
ASV 4964
ASV 147

ASV_456

ASV_1153
ASV_1441
ASV_1531
ASV 1643
ASV 1774
ASV 1956
ASV 2126
ASV 2632
ASV 3861
ASV_4028
ASV 4072
ASV_4558
ASV_4647
ASV_4783

Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Halamphora coffeiformis
Heterocapsa triquetra
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo
Heterosigma akashiwo

Heterosigma akashiwo
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Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic
Toxic

Toxic

ASV 287
ASV_697

ASV_985

ASV_1656
ASV_1754
ASV_1751
ASV_1876
ASV_1926
ASV_2074
ASV_2086
ASV_2257
ASV_2299
ASV 2324
ASV_2472
ASV_3337
ASV_3534
ASV_4279
ASV 4441
ASV 4515
ASV_4793
ASV_5052
ASV_1101
ASV_349

ASV_1183

Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Teleaulax acuta
Tenuicylindrus belgicus

Thalassiosira allenii

Thalassiosira curviseriata

Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful
Harmful

Harmful



ASV 2481  Dunaliella salina Harmful = ASV 5082  Heterosigma akashiwo Toxic ASV 3440 Thalassiosira curviseriata Harmful

ASV 2587  Dunaliella salina Harmful ASV 932  Karenia mikimotoi Toxic ASV 3827 Thalassiosira curviseriata Harmful
ASV 2651 Dunaliella salina Harmful ASV_1117  Karenia mikimotoi Toxic ASV 21 Thalassiosira mala Harmful
ASV 2620 Dunaliella salina Harmful = ASV 861  Karlodinium veneficum Toxic ASV 158  Thalassiosira mala Harmful
ASV 2689  Dunaliella salina Harmful  ASV_1025 Karlodinium veneficum Toxic ASV_765 Thalassiosira pseudonana Harmful
ASV 2690 Dunaliella salina Harmful = ASV 2572  Karlodinium veneficum Toxic ASV 279  Thalassiosira weissflogii Harmful
ASV 2714 Dunaliella salina Harmful = ASV 4856 Karlodinium veneficum Toxic ASV 1550  Thalassiosira weissflogii Harmful
ASV_2765 Dunaliella salina Harmful = ASV 1510 Lauderia annulata Harmful  ASV 2823  Thalassiosira weissflogii Harmful
ASV 2774  Dunaliella salina Harmful = ASV 205  Lepidodinium chlorophorum Harmful  ASV 4168 Thalassiosira weissflogii Harmful
ASV 2860 Dunaliella salina Harmful  ASV 312  Lepidodinium chlorophorum Harmful — ASV 466  Tripos fusus Harmful
ASV 2933 Dunaliella salina Harmful  ASV 502  Lepidodinium chlorophorum  Harmful

ASV 3016 Dunaliella salina Harmful = ASV 4183 Lepidodinium chlorophorum  Harmful
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