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Abstract 

Rapid urbanization dramatically changed the land surface properties, including the 

increase of impervious surfaces and encroachment of natural land, and thereby 

induced substantial thermal environment problems. Buildings and green space within 

built-up areas are crucial components of urban ecosystems and significantly influence 

the urban thermal environments. Therefore, investigating the interaction between 

buildings, green space, and urban thermal environment is crucial for deepening the 

understanding of urban ecosystems and promoting the mitigation of heat-related 

environmental problems. 

However, due to the complexity of the interactions between buildings, green space, 

and urban thermal environment, there are still several unresolved issues: (1) The 

influence of building morphology, particularly three-dimensional building 

morphology, on vegetation greening has not been fully explored; (2) Previous studies 

have mostly examined how the size, shape, and complexity of green space affect 

urban thermal environment, while other important factors like height and green 

volume, which also play an essential role in cooling, have been overlooked on the 

macroscale and mesoscale; (3) Combined direct and indirect effect of 2D/3D building 

and green space on thermal environment have not yet been investigated.  

Based on remote sensing data and LiDAR data, herein we analyzed interactions 

among buildings, green space, and urban thermal environments from both the 2D and 

3D perspectives. This study first examined how 2D and 3D urban morphological 



III 

 

indexes influence vegetation greening in Hong Kong by employing Pearson 

correlation analysis and the boosted regression tree (BRT) model, with a focus on 

urban-rural differences. Then, we further investigated how 2D/3D building and green 

space affect urban thermal environment across multiple spatial scales employing 

stepwise regression and path analysis, both directly and indirectly.  

In assessing the impact of 2D and 3D building morphology on vegetation greening 

trends, results indicated a general increase in vegetation greenness from 2010 to 2020, 

with a slope of 0.0024, and more pronounced greening observed in rural areas. 

Although the correlation between building morphology and vegetation greening was 

relatively weak, it remained statistically significant. The impact varied substantially 

between urban and rural areas and exhibited strong nonlinearity, with 3D indices 

exerting a greater influence than 2D indexes. The sky view factor (SVF) was the main 

driver in urban areas, accounting for 23.60 %, while the landscape shape index (LSI) 

also contributed a significant amount to rural areas (27.30%). According to marginal 

trends, mean building height (MBH) and SVF changed from negative to positive 

results. In contrast, the edge density (ED) and landscape patch index (LPI) shifted in 

the opposite direction. The inflection points of marginal curves of these indices varied 

with urban and rural areas. The landscape shape index (LSI) revealed a complex 

influence that changed from a negative-positive-negative pattern in urban areas and 

displayed a negative-to-positive pattern in rural areas. Building volume density 

(BVD) changed from beneficial to detrimental in urban settings, while the pattern for 
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rural areas was the opposite.  

In analyzing the direct and indirect impacts of 2D/3D buildings and green space 

morphology on the thermal environment, we observed significant spatial 

heterogeneity and scale differences in summer LST. 2D/3D buildings and green 

spaces effectively enhance the explanatory power of LST variations. Notably, at the 

district scale, this enhancement in explanatory power was observed to be 0.038. The 

explanatory power of 3D indicators was found to exceed that of 2D indicators. Our 

analysis found that terrain had a direct negative influence on LST and concurrently 

exerted a stronger indirect negative effect by influencing 2D/3D buildings and green 

spaces, resulting in a total negative effect ranging from -0.698 to -0.615. 2D buildings 

not only positively affected LST but also further enhanced LST by influencing 2D/3D 

green spaces. On the other hand, 3D buildings negatively impacted LST and, at the 

pixel scale, intensified this negative effect by influencing 2D/3D green spaces. Both 

2D and 3D green spaces were found to have a negative effect on LST, with the impact 

of 3D green space being insignificant at the district scale. The identified complicated 

interaction between 2D/3D buildings, green space, and urban thermal environment 

would enhance our understanding of the interaction mechanism of the urban 

ecosystem, which can also inform 2D/3D urban morphology optimization and UHI 

mitigation toward sustainable development.  
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 Chapter 1. Introduction 

1.1 Research background 

The rapid urbanization process, changing natural landscapes with built-up 

environments, has brought many complex changes to urban ecosystems over the past 

half century (He et al., 2019; Yang and Huang, 2021). Among them, buildings and 

green spaces have undergone significant variations (Luo et al., 2021). Buildings have 

expanded outwards and upwards, becoming taller and more densely packed (Frolking 

et al., 2024; Mahtta et al., 2019). Green space coverage has decreased and 

fragmentation has increased. These changes have had significant effects on the 

microclimate and surface energy balance, including lowering albedo and latent heat 

flux, lowering solar radiation absorption and sensible heat flux, and contributing to 

many urban thermal issues (Wang et al., 2021; Wang et al., 2016). The worsening of 

the urban thermal environment has posed a major risk to environmental quality and 

public health (Wong et al., 2017). For instance, it has been demonstrated that UHI is 

associated with significant heat-related mortality, particularly when extreme heat 

events occur (Cuerdo-Vilches et al., 2023; Ho et al., 2023). The heat-related mortality 

burden is predicted to increase in the future due to the ongoing degradation of the 

thermal environment (Esper et al., 2024; Masselot et al., 2025; Shahmohamadi et al., 

2011). To develop effective strategies to address thermal problems and the associated 

negative effects, it is necessary to investigate the interactions between buildings, 

green space, and the thermal environment. 
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Green spaces are critical components of terrestrial ecosystems. They perform vital 

functions including a role in carbon sequestration, hydrological regulation, and energy 

flow maintenance (Ballantyne et al., 2017; Haberl et al., 2007). Recent research 

demonstrates that vegetation has experienced dynamic transformations. Research has 

demonstrated that enhanced vegetation greenness significantly contributes to 

temperature regulation and microclimate mitigation (Baniya et al., 2019; Chen et al., 

2021; Zeng et al., 2017). A recent study found that vegetation greening can 

significantly cool cities (Li et al., 2025). Analyzing vegetation changes over time and 

influencing factors helps cities develop better green space plans to reduce heat.  

Compared to natural landscapes, vegetation growth in built-up areas faces more 

complex challenges and is affected by many different factors (Liu et al., 2023). 

Although extensive research has examined vegetation responses to natural and 

anthropogenic factors (Fan et al., 2023; Li et al., 2020), the role of building 

morphology in influencing greening trends remains understood. Building morphology 

can influence ambient temperature (Azhdari et al., 2018; Han et al., 2023; Li and Hu, 

2022), airflow patterns such as wind speed and direction (He et al., 2022; Zahid Iqbal 

and Chan, 2016), the spatial distribution of light and shading (Tan and Ismail, 2015; 

Wang et al., 2024; Wu et al., 2024), and humidity levels (Cao et al., 2021; Kamal et 

al., 2021). The above-mentioned factors strongly influence vegetation growth by 

regulating physiological processes such as transpiration, photosynthesis, and 

metabolic activity (Chang et al., 2021; Rawson et al., 1977; Serbin et al., 2015). 
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Understanding how building morphology affects vegetation growth is crucial for 

understanding its underlying mechanisms and enhancing its potential to alleviate 

urban heat.  

Building morphology influences urban thermal environments by altering shading and 

modification of heat capacity, reflection, absorption, and ventilation (Adelia et al., 

2019; Kotharkar et al., 2023). The impacts of building morphology on urban thermal 

environments have been widely studied from horizontal and vertical perspectives 

(Khoshnoodmotlagh et al., 2021; Yang et al., 2021). For example, Huang et al. 

(Huang and Wang, 2019) proved that a dispersed and high-rise buildings layout can 

reduce LST. Chen et al. (Chen et al., 2022) showed that building morphology-LST 

interaction is seasonal dependent. Green spaces are also vital to alleviate heat by 

providing canopy shading, absorbing heat, and facilitating heat loss through 

evaporative processes. From existing knowledge, there is a significant negative 

connection between heat environments and green space coverage (Basu and Das, 

2023; Yang et al., 2017; Yao et al., 2020). The size, shape, connectivity, and 

complexity of green spaces were also highly correlated with the heat condition (Lin et 

al., 2023; Maimaitiyiming et al., 2014; Masoudi and Tan, 2019). For instance, Du et 

al. (Du et al., 2017) showed that the landscape shape index (LSI) of green space has a 

negative influence on LST and the high complexity of green space could reduce LST. 

However, heat conditions are simultaneously affected by building and green spaces in 

practice, and their interaction is generally complex (Yuan et al., 2021; Zhang et al., 
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2022). Thus, the effects of buildings or green space on the thermal environment are a 

combination of direct impacts (e.g., immediate effects of specific factors) and indirect 

impacts (where an influencing factor affects the thermal environment by influencing 

other elements). Identifying the direct and indirect impacts of building and green 

spaces on thermal conditions would inform building and green space optimization 

toward effective and efficient heat mitigation. 

Scale effects are commonly observed in geographic contexts, including both natural 

and social environments (Šímová and Gdulová, 2012; Turner et al., 1989). Analysis of 

landscape patterns and driving factors at different scales can lead to distinct 

assessment results, affecting the scientific understanding and generalization of 

arguments (Guo et al., 2025; Jia et al., 2024). Some studies have confirmed that the 

relationship between LST and affecting elements also exhibits scale effects (Chen et 

al., 2023; Jia et al., 2024). According to Estoque et al. (Estoque et al., 2017), the 

association between building density and LST appears to strengthen at coarse scales, 

while at fine scales the connection between green space coverage and LST increases. 

Consequently, the scale effect is an essential aspect that should be thoughtfully 

addressed when examining urban thermal environments and their driving factors. 

Moreover, effective solutions for the mitigation of the urban thermal environment 

may benefit from insights gained from multiple spatial scales. 
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1.2 Research objectives 

Hence, the overarching aim of this study is to examine the interaction between 

buildings, green space, and urban thermal environments.  

This study first employs boosted regression tree (BRT) models to quantify the relative 

importance and marginal effects of 2D and 3D building morphology on vegetation 

greening in Hong Kong between 2010 and 2020, with a particular focus on urban-

rural disparities. Detailed objectives of the first case study are threefold: 1) to 

characterize the spatiotemporal patterns of vegetation greening and examine urban-

rural variations during the 2010–2020 period; 2) to evaluate the relative contributions 

and marginal effect of 2D and 3D building morphology on vegetation greening; and 

3) to compare how these building morphology indexes influences differ between 

urban and rural settings. The findings are expected to enhance our understanding of 

how built environment characteristics shape vegetation dynamics over time. 

Second, this study utilizes stepwise regression and path analysis to assess the direct 

and indirect impact of both 2D/3D buildings and green space on summer LST at 

different spatial scales in Hong Kong. Specific objectives of the second case study 

are: 1) to investigate the differences of spatial patterns in the summer LST across 

various scales (pixel scales and district scale); 2) to assess the performances of 2D/3D 

building and green space in explaining LST variations at different scales employing 

the stepwise regression model; 3) to untangle the direct and indirect impacts of 2D/3D 

building and green space on LST across multi-scales using path analysis. This study 
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would provide scientific support for the design of building and green space structures 

aimed at efficient climate mitigation and adaptation at both pixel and district scales. 

1.3 Structure of the thesis 

This thesis is structured into six chapters. In this chapter, the research background, 

research aim, and specific objectives have been demonstrated. The rest of the thesis 

comprises the literature review about the interaction of buildings, green space, and 

urban thermal environments, the methodology for two case studies, the main findings 

concluded from two case studies, discussion, conclusions, and suggestions for future 

research. Specifically, the subsequent chapters of this thesis are organized as follows: 

In Chapter 2, the literature on the relationship between buildings, green space, and 

urban thermal environments is reviewed. Besides, research gaps are pinpointed. In 

Chapter 3, this thesis presents the methods for data retrieval and processing regarding 

the investigation of the impact of 2D and 3D building morphology on vegetation 

growth, and the analysis of the direct and indirect impact of 2D/3D buildings and 

green spaces on LST. In Chapter 4, the preliminary results and analysis, and 

discussion part of the impact of 2D/3D building morphology on vegetation growth are 

presented. Limitations of the first study and suggestions for future study are also 

presented. In Chapter 5, this thesis provided the results and discussion of the direct 

and indirect influences of 2D/3D building and green space on LST. The limitations 

and recommendations for future research are also discussed. In Chapter 6, this thesis 

concludes key findings are reported. 



7 

 

 Chapter 2. Literature review 

2.1 Overview 

Previous research on the interaction of buildings, green space, and urban thermal 

environments is comprehensively examined in this chapter. Urbanization-induced 

changes in buildings, green space, and urban thermal environments are summarized 

(Section 2.2). The associations between building and green space, building and LST, 

and green space and LST are also reviewed in this chapter (Section 2.3, 2.4, 2.5). 

Development in related studies in subtropical high-density regions is reported 

(Section 2.6). This chapter also provides an overview of urban-rural differences and 

scale effects existing in buildings, green space, and urban thermal environments 

(Section 2.7). Drawing from the review of existing literature, critical research gaps are 

pinpointed and outlined (Section 2.8). 

2.2 Urbanization-induced alterations in building, green space, and 

urban thermal environments 

The world has undergone rapid urban expansion over the last three decades (Antrop, 

2004; Streule et al., 2020). Accelerated urbanization is leading to significantly 

sophisticated and diverse changes to land cover and ecosystems (Oke, 1982). The 

urbanization process is generally accompanied by the expansion of impervious 

surfaces, increasing population, and encroachment of natural surfaces (Byomkesh et 

al., 2012). The largest contributor to the increase in impervious surface is building 

growth, while green space loss is the dominant change in the natural surface (Li et al., 
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2019). 

Under rapid urbanization, buildings have experienced multi-dimensional changes 

(Reba and Seto, 2020; Xu and Chi, 2019). The typologies of building evolution in the 

process of urbanization are primarily categorized as : (1) outward and infilling 

expansion, and these expansions contribute to increased building density, enhanced 

connectivity between buildings, and a more compact urban environment (Yang and 

Zhao, 2022). It is claimed that many urban areas witnessed two dynamic types of 

urbanization: expansive built-up areas through leapfrog development and infill 

development, accompanied by substantial population growth (Tian et al., 2022); (2) 

upward expansion, which results in an increase of high-rise buildings. For example, a 

recent study has highlighted a significant trend in global urban development, 

presenting a notable transition from urban expansion towards vertical construction 

(Frolking et al., 2024); (3) Complexification, the urban development requires a 

diverse range of functions from buildings, leading to increased complexity in building 

morphology and structures (Wang et al., 2022).  

Dramatic urban development also directly imposes pressures on the shape, 

morphology, and spatial distribution of green spaces, which includes the 

encroachment of original green spaces due to outward urban expansion, as well as the 

fragmentation and lower connectivity caused by the dense distribution of buildings. 

By selecting 107 representative cities in China, Wu et al. (Wu et al., 2021) pointed out 

that newly urbanized areas exhibit an extensive browning impact. According to Zhou 



9 

 

et al. (Zhou and Wang, 2011), the sprawl of built-up areas has resulted in the 

reduction of green space. Similarly, Nor et al. (Nor et al., 2017) utilized the land 

change modeler (LCM)-Markov chain models and indicated that the present and 

future urban expansion can both exert a negative effect on the green space structure.  

These urbanization-induced land surface changes significantly alter urban ecology 

and microclimate (Chakraborty and Qian, 2024; Huang et al., 2024). Building 

materials used in built-up environments (such as concrete, bricks, and asphalt) 

increase sensible heat flux and altered albedo, which can absorb solar radiation in the 

daytime and delay heat dissipation at night (Luyssaert et al., 2014; Ouyang et al., 

2022). High-density and complex building areas restrict air circulation and weed 

speed, making it difficult for heat dissipation (Liao et al., 2021; Yuan et al., 2020). 

Shrinkage of green space reduces the release of moisture and shade through 

evapotranspiration, decreases latent heat flux, and thereby impairing the cooling 

effects of green spaces (Oliveira et al., 2011). These changes pose significant 

challenges to the urban thermal environment, with urban heat islands (UHI) and heat 

waves being the most emblematic signal (Ferguson and Woodbury, 2007; Livermore 

et al., 2018; Russo et al., 2014). UHI describes the phenomenon whereby urban areas 

exhibit higher air and surface temperatures compared to their surrounding rural 

counterparts (Oke, 1982). Heatwaves are defined as periods during which a region 

experiences abnormally and uncomfortably temperatures (IPCC, 2021). Furthermore, 

the UHI and heat waves have mutual effects and tend to intensify each other (Founda 
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and Santamouris, 2017; Li et al., 2015). These urbanization-induced heat problems 

are increasing the number of people exposed to health-threatening heat (Li and Zha, 

2020; Liu et al., 2017). In recent decades, the extent of exposure has increased 

threefold, significantly exceeding the estimated level in earlier research (Tuholske et 

al., 2021). Therefore, urbanization-induced thermal problems, such as UHIs and heat 

waves, are becoming severe threats to the urban climate and human health. Moreover, 

their adverse effects are projected to intensify in the future (Guo et al., 2017). 

2.3 Relationship between building and green space 

The expansion of built-up areas during the urbanization process has led to a reduction 

in overall green space coverage and increased fragmentation of its spatial structure. 

Hence, the ecosystem service function and cooling effect of green space on heat 

mitigation have been significantly weakened.  

Firstly, considerable effort has been devoted to investigating the response of green 

space coverage to the urbanization process (Haaland and Van Den Bosch, 2015; 

Shahtahmassebi et al., 2021; Zhao et al., 2013). Understanding the relationship 

between green space and urbanization is crucial for green space management toward 

the mitigation of the urban thermal environment. For example, taking Kunming as the 

study area, Zhou et al. (2011) revealed that the rapid growth of built-up areas 

continuously encroached on the agricultural land, forests, and grasslands from 1992 to 

2009 (Zhou and Wang, 2011). Several studies have reported that urban development 

has been widely associated with the reduction of green space. For instance, Siddique 
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et al. (2022) suggested that 51.32 km2 of green spaces were changed into built-up 

areas from 1990 to 2020 in Chattogram (Siddique and Uddin, 2022). Moreover, 

urbanization is expected to increasingly exert a force on green areas with further 

urban expansion (Zhao et al., 2013). At the same time, it is further suggested that 

green areas are a stimulus for driving building sprawling explicitly (Koprowska et al., 

2020; Zhou et al., 2024).  

Moreover, in the previous research, it was established that buildings are significant 

elements of the regulation of the spatial pattern of urban green areas by correlation 

and regression analysis methods (Canedoli et al., 2018; Masoudi et al., 2021; Nor et 

al., 2017). It was noted by Wu et al. (Wu et al., 2019) that the configuration of green 

space stretched less irregularly during the process of urbanization. However, Zhao et 

al. (2013) (Zhao et al., 2013) established an expansion and an aggregation of green 

areas in China. According to landscape ecology theory, fragmentation is the state of 

dividing consistent ecological land, vegetated land, and habitat into smaller isolated 

units called patches (Fan and Myint, 2014). Jiao et al. (Jiao et al., 2017) observed that 

between 1989 and 2013, a period when green space fragmentation became more 

extensive, trends indicated a declining gradient with the distance from the city center. 

With the morphological spatial pattern analysis (MSPA), Rogan et al. (Rogan et al., 

2016) evaluated the town-scale forest fragmentation in Massachusetts, United States, 

and found that urbanization not only caused green space fragmentation but also 

influenced spatial continuity among patches of green space. 
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Some studies also indicated that the built-up environment may foster vegetation 

growth in green spaces (Jia et al., 2018; Zhang et al., 2023). Zhao et al. (Zhao et al., 

2016) found that 86% of regions across 32 major Chinese cities experienced 

vegetation enhancement. According to Jia et al. (Jia et al., 2018), 92.9% of the chosen 

377 areas in America have increased vegetation growth. Further, Li et al. (2024) 

revealed that the built-up land index has a significant influence on vegetation growth, 

such as percentage of landscape (PLAND) and largest patch index (LPI). However, it 

is still relatively underexplored how the three-dimensional building morphology index 

acts on vegetation growth within green space.  

2.4 Relationship between building and urban thermal environments 

Buildings have a strong influence on the thermal properties of the underlying surfaces 

by reducing latent heat flux and increasing sensible heat flux, thus creating a 

fundamental driving factor affecting the urban thermal environment. Much research 

has been carried out to reveal how buildings affect the thermal environment. It has 

been suggested that buildings have a considerable effect on air temperature (Lan and 

Zhan, 2017), land surface temperature (Chen et al., 2020), UHI (Li et al., 2020), 

extreme heat (Nahlik et al., 2017), and heatwaves (Ji et al., 2022).  

Several building morphology indexes have been found to greatly impact the urban 

thermal environment (Han, 2023; Li and Cheng, 2024). Early studies of building 

morphology’s effect on the thermal environment mainly focus on the 2D perspective. 

2D building morphology indicators include the aggregation index (AI), building 
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density (BD), Shannon's diversity index (SHDI), building landscape patch index 

(LPI), edge density (ED), contagion index (CI), patch cohesion index (COHESION), 

and landscape shape index (LSI) (Guo et al., 2015; Li et al., 2011, 2016; Yuan et al., 

2021; Zhang et al., 2023). Recently, scholars have concentrated on studying the 

relationship between 3D building morphology and the urban thermal environment. 

The selected 3D building morphology indices included mean building height (MBH), 

sky view factors (SVF), building volume density (BVD), floor area ratio (FAR), 

frontal area index (FAI), and shape coefficient (SC) (Hu and Wendel, 2019; Huang 

and Wang, 2019; Qiao et al., 2020; Yuan et al., 2024). Tian et al. (Tian et al., 2019) 

reported that the volumes of buildings and the cluster spacing have effects on LST. 

Wu et al. (Wu et al., 2022) proved that 3D building morphology has a great impact on 

the surface heat island intensity. Huang and Wang (Huang and Wang, 2019) revealed 

that building heights affected UHI effects by altering wind speed and heat emission.  

A series of statistical methods have been used in previous research to explore the 

relationship between urban morphology and urban thermal conditions. Chen et al. 

(Chen et al., 2014a) conducted cluster analysis, principal component analysis (PCA), 

and linear regression model to explore key influencing morphology indicators of LST. 

Yu et al. (Yu et al., 2021) employed a geographically weighted regression (GWR) 

model to determine the effect of vertical urban morphology on UHIs in the 

summertime. Many researchers try to use the stepwise multiple linear regression 

(SMLR) model, which involves the selection of the best candidate set of independent 
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variables to predict the response variables (Yin et al., 2018; Zhou et al., 2017). 

However, the SMLR model is unable to estimate individual contributions from 

variables while the recognition of nonlinear associations between multi-dimensional 

indicators (Hu et al., 2020). In contrast, the boosted regression trees (BRT), eXtreme 

gradient boosting (XGBoost), random forest (RF), and convolutional neural networks 

(CNN) enable the detection of nonlinear relationships (Belgiu and Drăguţ, 2016; 

Logan et al., 2020; Peng et al., 2021). Shen et al. (Shen et al., 2022) tested the 

correlation between surface urban heat island intensity (SUHII) and 2D morphology 

indicators by SMLR and RF models, concluding that the latter was more effective (R2 

= 0.80) than the SMLR model (R2 = 0.75). In addition, Logan et al. (Logan et al., 

2020) reviewed both linear and non-linear models and showed that all the non-linear 

models outperformed their linear counterparts significantly.  

2.5 Relationship between green space and urban thermal 

environments 

The cooling effects of green spaces were widely acknowledged by various studies 

(Asgarian et al., 2015; Cheung et al., 2022; Ren et al., 2016). Green spaces can 

change the thermal environment with mechanisms like evapotranspiration, canopy 

shading, and the selective absorption and reflection of solar radiation (Bowler et al., 

2010; Wong and Yu, 2005).  

In particular, the coverage of green spaces plays a positive impact on its cooling effect 

(Du et al., 2017). It is reported that the cooling effect of green spaces varies 
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depending on their spatial morphology (Kong et al., 2014; Li et al., 2013). Some 

empirical evidence has revealed that the composition and configuration of green 

spaces are important in shaping the thermal environment (Chen et al., 2014b; Xu et 

al., 2025). The indexes included total area (TA), percent of landscape (PLAND), 

patch density (PD), largest patch index (LPI), edge density (ED), area-weighted mean 

shape index (SHAPE_AM), area-weighted fractal dimension index, landscape shape 

index (LSI) (Berger et al., 2017; Ke et al., 2021; Zhou et al., 2022; Zhou et al., 2017). 

Guo et al. (Guo et al., 2019) showed that UHI can be reduced not only by creating and 

increasing the amount of green spaces but also by optimizing the spatial configuration 

of these green spaces, which is more effective than the first one. By using a variety of 

regression methods, Li et al. (Li et al., 2012) identified PLAND as the primary 

influencing factor of LST. However, much less effort has been devoted to the 

influence of the 3D green space index on thermal environments.  

2.6 Development in related studies in subtropical high-density regions 

Urbanization and continuing global warming trends have triggered substantial thermal 

problems in many regions around the world, especially in subtropical high-density 

regions (Lau et al., 2019; Shi et al., 2016; Tan et al., 2017). In the subtropical high-

density regions, the local climate is typified by excessive warmth, high humidity, and 

excessive solar radiation, resulting in the retention of excessive heat and moisture (He 

et al., 2023). The densely distributed high-rise buildings lead to compact and narrow 

urban settings, which restricts natural ventilation and hinders effective heat 
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dissipation (He et al., 2022).  

Some of these subtropical high-density cities are experiencing severe thermal 

problems (Giridharan et al., 2004; Tian et al., 2013; Yee and Kaplan, 2022; Zhang and 

Yuan, 2023). Thermal problems experienced in subtropical high-density cities were 

more frequent and intense than elsewhere (Aflaki et al., 2017; Fu et al., 2025; Yue et 

al., 2019). He et al. (He et al., 2023) suggested that Hong Kong experienced a large 

increase in compound hot-wet events from 1961 to 2020 in the territory. The intensity 

and occurrence of extreme heat events have been on the rise. Jiang et al. (Jiang et al., 

2021) found that the night-time minimum temperatures in Singapore have increased 

significantly between 1982 and 2018. 

Building, green space, and thermal environment relationships in subtropical high-

density cities have attracted considerable interest (Giridharan et al., 2007; Giridharan 

and Emmanuel, 2018; Jia et al., 2024; Xu et al., 2017). Building and green space 

morphology have been identified as significant factors that affect the heat problem in 

subtropical high-density cities in prior studies (Chen et al., 2023; Li et al., 2022), with 

the sky view factor regarded by most studies as the primary influencing factor (Xu et 

al., 2024).  

As in other areas, green space is a favorable element to relieve the heat in subtropical 

high-density cities (Ng et al., 2012; Ouyang et al., 2024). Green space growth (e.g., 

more urban trees and street vegetation) is usually unrealistic because there is no spare 

space in dense cities to increase areas of green space (Tan et al., 2013; Tian et al., 
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2012). Numerous investigations have proved that synergistic design of green corridors 

with the buildings, vertical and rooftop greening, together with the modification of the 

existing green space spatial pattern, are more applicable for subtropical high-density 

regions (Li et al., 2023; Tan, 2006). Moreover, the role of green space quantity and the 

spatial structure of green space in the thermal environment of subtropical high-density 

cities was investigated by some previous studies (Bai et al., 2024; Guo et al., 2019; 

Xu et al., 2022). Masoudi et al. (Masoudi et al., 2019) investigated the effect of spatial 

patterns on the cooling effect of green space in Singapore and Hong Kong. They 

indicated that patch density (PD), mean Euclidean nearest neighbor distance 

(ENN_MN), percentage of landscape (PLAND), area-weighted mean shape index 

(SHAPE_AM), and PD are key factors for LST.  

Hong Kong, as a typical high-density subtropical city, has attracted plenty of attention 

to this research field of interaction between buildings, green space, and urban thermal 

environments. Some studies have been conducted on the spatiotemporal 

characteristics of UHI, heatwaves, LST, and air temperature in Hong Kong (Chen et 

al., 2024; Galdies and Lau, 2020; Hua et al., 2021; Li et al., 2023; Liu and Zhang, 

2011; Nichol et al., 2009; Wang et al., 2016; Zheng et al., 2023). Overall, scholars 

have reported that the thermal environment in Hong Kong has degraded due to human 

activities and climate change. The Hong Kong Observatory collects data showing that 

the annual average temperature increase of about 0.12 degrees per decade from 1886 

to 2015 (The Hong Kong Observatory, 2016). Studies also reveal a great interest in 
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building morphology and its impact on the thermal environment in Hong Kong (Ren 

et al., 2020; Wu et al., 2024; Xu et al., 2017). Jia and Wang (Jia and Wang, 2021) 

argued that urban cooling techniques should include the building form. Li et al. (Li et 

al., 2023) studied about association of 2D/3D building morphology with air 

temperature and it was found that SVF was the largest contributor to the variation in 

air temperature. There have been significant studies about design measures of green 

space to provide an effective cooling effect in Hong Kong. Tan et al. (Tan et al., 2016) 

reported that the SVF should be considered during the design of green space in Hong 

Kong. Kong et al. (Kong et al., 2017) verified that the trees in high-density urban 

areas were more efficient for reducing LST compared with those in sparse areas. 

2.7 Urban-rural differences and scale effects 

Spatial heterogeneity both in greening and the urban thermal environment across 

urban and rural areas was reported in previous studies (Ji et al., 2023; Jia and Zhao, 

2020; Yao, 2024). Li et al. (Long Li et al., 2023) discussed a noticeable “V-shaped” 

distinction in the pattern of greenness variation between the urban and rural regions. 

Considerable differences in vegetation density between urban and rural regions also 

created notable temperature differences, which formed the core of the UHI effect 

(Chen et al., 2021; Gallo and Tarpley, 1996; Heinl et al., 2015). In addition, the urban 

and rural areas are very different in terms of land surface characteristics, climatic 

conditions, vegetation composition, community or built environment configuration, 

and human activities (Jia et al., 2021; Wang et al., 2024). These differences could lead 
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to many distinct interactions between buildings, green infrastructure, and the thermal 

environment. Therefore, they necessitate practice-specific planning and management 

strategies tailored to urban, and rural environments.  

The statistical distributions of geographic processes and variables (such as mean, 

variance, and relationships among multi-variables), the spatial patterns of geographic 

phenomena (spatial heterogeneity, spatial correlations among different variables), and 

the relationships among evolutionary processes and their influencing factors may all 

exhibit scale effects. Zhang et al. (Zhang et al., 2023) stated that the building density 

index is the most influential factor for LST at the block scale in Chinese megacities. 

Han et al. (Han et al., 2023) presented that 2D indicators showed a stronger impact on 

LST in warmer seasons, while Ezimand et al. (Ezimand et al., 2021) argued that 3D 

urban structures can better explain the changes in LST than 2D structures. This 

inconsistency in the literature suggests the need for multi-scale studies with different 

indicators to provide more evidence that supports drawing general conclusions.  

2.8 Research gaps 

Many studies have analyzed the relationship between buildings, green space, and the 

urban thermal environment at various scales using different approaches. However, due 

to the complex interactions of buildings, green space, and urban thermal environment, 

there remain some issues that need to be addressed:  

(1) The effect of building morphology, especially that of 3D buildings, on 

vegetation greening in green space remains underexplored. Previous studies have 
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only examined the relationship between vegetation greening and 2D building 

morphology (L. Zhang et al., 2022; Zhao et al., 2016; W. Zhou et al., 2023). For 

example, Li et al. (Li et al., 2024) analyzed the nonlinear effects of horizontal 

built-up land patterns on vegetation growth in Kunming. However, 3D building 

morphology significantly influences local microclimates (Salvati et al., 2019; 

Yang et al., 2023), an aspect that remains largely neglected in current research on 

vegetation greening. 

(2) Moreover, while urban and rural areas differ greatly in their building and 

vegetation contexts, the differences in the influence of 2D/3D building indexes on 

vegetation greening across urban and rural settings have not been studied. 

(3) The individual influence of buildings and green space morphology on the 

thermal environment has been investigated extensively. After summarizing the 

available literature, we concluded the potential interaction between buildings, 

green space, and urban thermal environment (Figure 2.1). However, we found that 

there is a lack of research on direct and indirect interaction between buildings, 

green space, and urban thermal environments from horizontal and vertical 

perspectives, especially at multiple scales (like pixel scale and district scale). 

(4) 3D green space landscape pattern was ignored in macroscale and mesoscale 

analysis. Only a few studies have examined 3D green space patterns based on on-

site measurement data, whose limited spatial coverage and representativeness 

hinder a thorough understanding of the relationship between buildings, green 

space, and thermal environments. Previous macroscale and mesoscale analysis 
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have mainly centered on the effects of two-dimensional (2D) features of green 

spaces on the urban thermal environment, while other important factors like 

height, which also serve a significant function in cooling, have been overlooked. 

 

Figure 2.1 Potential interactions between buildings, green space, and urban thermal 

environments 

  



22 

 

Chapter 3. Methodology 

3.1 Overview 

This chapter presents the study areas and outlines the data sources, along with the 

methods for data retrieval and processing. It also gives a full introduction and 

description of the research methods, which are categorized into five categories: (1) 

Study area (Section 3.2); (2) Data and pre-processing (Section 3.3); (3) Method for 

the analysis of the impact of 2D/3D building morphology on vegetation greening 

(Section 3.4); (4) Method for the analysis of the direct and indirect effects between 

building, green space, and urban thermal environments (Section 3.5).  

3.2 Study area 

Located on the southern seaboard of China (22°08′-22°35′, 113°49′-114°31′), Hong 

Kong occupies an area of about 1106 km2 (Figure 3.1). Hong Kong is subject to a 

subtropical monsoon climate, with temperate winters and summers that are typically 

hot, humid, and high precipitation. Hills cover more than 80% of the total area, 

leaving only 20% of the space available to accommodate over seven million residents. 

Hong Kong has experienced rapid urbanization within the context of limited land 

resources since the mid-19th century. This has led to the development of densely 

packed high-rise structures and complex building morphology, which substantially 

changes the local microclimate in Hong Kong. Moreover, with Hong Kong entering a 

mature phase of urban development, large-scale urban expansion has barely expanded 

since 2010. Instead, there are areas where existing buildings have remained 
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unchanged, with relatively fixed green space. Moreover, high-density impervious 

surfaces, densely populated buildings, and highly concentrated populations resulted in 

drastic changes in the surface structure and properties in Hong Kong. As a 

consequence, these factors cause a more prominent UHI effect and increased surface 

temperatures in Hong Kong. Therefore, Hong Kong is a beneficial area for studying 

the impact of buildings, green space, and urban thermal environment. By this 

measure, the study provides insight into other cities, particularly those that are 

increasingly high-density and quickly developing. 

 

Figure 3.1 Hong Kong as seen from GaoFen-1 high-resolution image (a), distribution 

of buildings with heights (b), zoomed-in high-resolution image (c, e), and 

corresponding building height data (d, f). Data sources: GaoFen-1 high-resolution 

image acquired on 22 Feb 2020 from https://www.cresda.com/.  

 

https://www.cresda.com/
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3.3 Data and pre-processing 

This study analyzed Hong Kong vegetation greening trends from 2010 to 2020 using 

16-day composite Enhanced Vegetation Index (EVI) data acquired from the MODIS 

Terra Vegetation Index Version 6 product with three spatial resolutions: 250 m 

(MOD13Q1), 500 m (MOD13A1), and 1,000 m (MOD13A2). The EVI has been 

proven more effective than others in capturing vegetation dynamics because it reduces 

the effects of cloud cover, atmospheric aerosols, and signal saturation (Huete et al., 

2002). In this study, annual average EVI was calculated platform using monthly max 

composite during the growing season (June 1 to September 30 each year) for the 

period 2010–2020, based on the work of Ru et al. (Ru et al., 2018). Data acquisition 

was carried out based on the Google Earth Engine (GEE) platform with low-

confidence pixels being excluded utilizing the quality assessment (QA) layer.  

Building height data in 2010 and 2020 were generated using building footprint data, 

digital surface models (DSM), and digital terrain models (DTM) obtained from the 

Hong Kong Common Spatial Data Infrastructure (CSDI) platform 

(https://www.csdi.gov.hk/zh-hk). DSM and DTM data were generated by the light 

detection and ranging (LiDAR) data of 2010 and 2020. Then, by subtracting the DTM 

from the DSM, the first layer called normalized DSM (nDSM) will be generated for 

the height of the above-ground feature. Next, the building heights were determined for 

2010 and 2020 by executing the zonal statistical analysis by overlaying the 

normalized DSM (nDSM) with the building footprint data. Finally, to avoid the 

https://www.csdi.gov.hk/zh-hk
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influence of changes in built-up and vegetation coverage, only areas that did not make 

any changes in building footprint and height during the period of 2010–2020 were 

selected as the unit of analysis. 

Urban and rural areas in 2010 were delineated using the Global Urban Boundary 

(GUB) dataset, which is derived from the 30 m-resolution Global Artificial 

Impervious Area (GAIA) product (Gong et al., 2020). To match the spatial resolution 

of the EVI data, all datasets were resampled into 250 m, 500 m, and 1,000 m.  

The following scenes of Landsat 8 Collection 2 Tier 1 remote sensing data were used 

to derive LST: row 44/column122, row 45/column122, and row 45/column121. Due 

to substantial cloud contamination in images during the summer in Hong Kong, the 

number of available images is limited. Therefore, this study selected median value 

composite images acquired from Google Earth Engine (GEE) 

(https://earthengine.google.com/) platform date from 1 June to 30 September 2019, 

2020, 2021 was to represent the summer land surface temperature in 2020. These 

images have a spatial resolution of 30 meters (bands 10 and 11 have a resolution of 

100 meters). All data were projected in the UTM coordinate system based on the 

WGS84 datum. All selected pixels used for the inversion of land surface temperature 

had a cloud cover of less than 10%. 

Green space coverage and height data in 2020 were extracted from the light detection 

and ranging (LiDAR) provided by the Hong Kong Civil Engineering and 

Development (https://www.cedd.gov.hk/eng/home/index.html). By subtracting the 

https://earthengine.google.com/
https://www.cedd.gov.hk/eng/home/index.html
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DTM from the DSM, the normalized DSM (nDSM) layer was created to represent the 

height of the above-ground feature. Then, the vegetation height data in 2020 was 

generated by overlaying the green space coverage and nDSM data. 

3.4 Method for analysis of the impacts of 2D/3D building morphology 

on vegetation greening 

3.4.1 Overall workflow 

 

Figure 3.2 The overall workflow of the first case study 

The first case study aimed to investigate the influence of 2D and 3D building 

morphology on vegetation greening trends across urban and rural areas in Hong 

Kong. The overall research workflow is presented in Figure 3.2. Initially, vegetation 

greening trends between 2010 and 2020 were derived. To minimize the effects of land 

cover changes on vegetation dynamics, areas that exhibited no variation in building 
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height over the study period were selected. Subsequently, static 2D and 3D building 

morphology indicators were calculated based on 2020 data. Finally, correlation and 

nonlinear analyses were conducted to assess the relationships between building 

morphology and vegetation greening across urban and rural areas.  

3.4.2 Detection of vegetation greening trends from 2010 to 2020  

In this study, vegetation greening trends from 2010 to 2020 were assessed using the 

Theil–Sen median method combined with the annual composite EVI data. The Theil–

Sen approach is a robust nonparametric statistical method widely used for detecting 

monotonic trends in long-term geospatial time series. Theil–Sen median method 

computes the median of all possible pairwise slopes between data points, thereby 

reducing sensitivity to outliers. The mathematical formulation of the Theil–Sen 

estimator is given as follows: 

        𝐸𝑉𝐼𝑠𝑙𝑜𝑝𝑒 = 𝑀𝑒𝑑𝑖𝑎𝑛 (
𝐸𝑉𝐼𝑏−𝐸𝑉𝐼𝑎

𝑏−𝑎
), 2010 < b < a < 2020              (1) 

where 𝐸𝑉𝐼𝑠𝑙𝑜𝑝𝑒 is the Theil-Sen median, EVIb and EVIa represent the average growing 

season EVI values of the years a and b. 𝐸𝑉𝐼𝑠𝑙𝑜𝑝𝑒 ＞0 means a greening trend, and  

𝐸𝑉𝐼𝑠𝑙𝑜𝑝𝑒 ＜0 means a browning trend in vegetation. 

The Mann–Kendall (MK) test was used to test the significance of the vegetation 

greening and browning trends. The MK test is one of the most commonly used 

methods for trend analysis in time series data. The test statistics are computed as 

follows: 

                 𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝐸𝑉𝐼𝑏 − 𝐸𝑉𝐼𝑎)
𝑛
𝑏=𝑎+1

𝑛−1
𝑎=1                (2) 
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𝑠𝑔𝑛(𝐸𝑉𝐼𝑏 − 𝐸𝑉𝐼𝑎) = {

+1, 𝐸𝑉𝐼𝑏 − 𝐸𝑉𝐼𝑎 > 0
0, 𝐸𝑉𝐼𝑏 − 𝐸𝑉𝐼𝑎 = 0
−1,𝐸𝑉𝐼𝑏 − 𝐸𝑉𝐼𝑎 < 0

}               (3) 

  𝑉𝑎𝑟(𝑆) =
𝑛(𝑛−1)(2𝑛+5)

18
= 𝜎2                  (4) 

                     𝑍 =

{
 
 

 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
, 𝑆 > 0

0, 𝑆 = 0
𝑆−1

√𝑉𝑎𝑟(𝑆)
,   𝑆 < 0

}
 
 

 
 

                      (5) 

where n represents the length of the EVI time series; σ is the standard deviation of the 

test statistic; a trend is considered statistically significant at the 0.05 level if |Z|>1.96. 

3.4.3 Delineation of urban and rural areas 

A binary approach was adopted for mapping urban and rural areas. The delineation 

was based on the Global Urban Boundary (GUB) dataset (Li et al., 2020). This was 

derived from the 30 m Global Artificial Impervious Area (GAIA) data, which was 

created using Landsat time series imagery and a machine learning algorithm. The 

overall accuracy of the GAIA is over 90%, so this dataset can be used reliably for 

global impervious surface mapping. The GUB dataset presents strong agreement with 

other maps made through other remote sensing approaches and manual analysis that 

shows it can also be used effectively for identifying urban-rural boundaries. The GUB 

dataset delineates urban areas as the proportion of impervious surface coverage within 

a given neighborhood distance exceeds 20%. Rural areas are the regions that fall 

outside the delineated definition of city boundaries. The GUB dataset shows great 

accuracy in delimiting urban extents, specifically when compared with high-

resolution Google Earth images. Comparatively, other datasets (e.g., NTL-derived 
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urban extent) are less accurate and provide less precise urban boundary delineations, 

especially in areas of transition that are situated along the urban edge. Due to such 

advantages, GUB has been used in numerous studies on urban-rural mapping (Ji et al., 

2023). This study defined urban areas as pixels located within the boundaries of the 

GUB dataset, while rural areas were those situated outside these delineated urban 

extents. 

3.4.4 Calculation of 2D/3D building morphology indexes 

Table 3.1 2D/3D building morphology metrics considered in this case study 

Dimension Metrics Abbreviations       Formula Description 

2D 

Largest patch 

index  
LPI 

𝐿𝑃𝐼 =
max (𝐴𝑖)

𝑆𝑔
× 100 Measures the percentage of the total grid 

area comprised of the largest patch 

Building 

coverage ratio  
BCR 

𝐵𝐶𝑅 =
1

𝑆𝑔
∑ 𝐴𝑖

𝑛

𝑖=1
 

Measures the ratio between the total area 

of buildings within a grid and the total 

grid area 

Landscape 

shape index 
LSI 𝐿𝑆𝐼 =

𝐸

min𝐸
 Measures the degree of landscape shape 

complexity 

Edge density  ED 𝐸𝐷 =
∑ 𝑃𝑖
𝑛
𝑖=1

𝐴
 

Measures the total lengths of all building 

patch edges within a grid 

3D 

Building 

volume 

density  

BVD 
𝐵𝑉𝐷 =

1

𝑆𝑔
∑ 𝑉𝑖

𝑛

𝑖=1
 

Measures the ratio between the total 

volume of the buildings in a grid and the 

total grid area 

Sky view 

factor  
SVF 

𝑆𝑉𝐹

= 2𝜋 [1 −
∑ sin𝛼𝑗
𝑛
𝑖=1

𝑛
] 

𝛼 is the vertical angle of the horizon in 

the direction j 

Mean building 

height  
MBH 𝑀𝐵𝐻 =

∑ 𝐻𝑖
𝑛
𝑖=1

𝑛
 

Measures the mean height of the 

buildings in a grid 

Floor area 

ratio  
FAR 𝐹𝐴𝑅 =

∑ (𝑐 × 𝐴𝑖)
𝑛
𝑖

𝑆𝑔
 

Measures the total building floor area 

compared to the land area it occupies in a 

grid 

Note: n is the number of buildings within a grid; Sg is the total area of the grid; Ai, Pi, Vi, Hi, 
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c are the area, perimeter, volume, height, and the number of floors for the ith building, 

respectively; θ is the wind direction angle. 

A range of indicators has been proposed to characterize building morphology. In this 

study, there were selected four 2D building morphology indexes and four 3D building 

morphology indexes to represent building morphology. 2D building morphology 

indexes included the largest patch index (LPI) (Yuan et al., 2021), building coverage 

ratio (BCR) (Zeng et al., 2022), landscape shape index(LSI) (Liu et al., 2017), and 

edge density (ED) (Zhou et al., 2011). For the 3D building morphology, the indicators 

chosen were the building volume density (BVD), sky view factor (SVF) (Daramola 

and Balogun, 2019), mean building height (MBH) (Alexander, 2021), and floor area 

ratio (FAR) (Chen et al., 2022). These indicators were selected due to three main 

criteria: (1) the ability to describe building morphology from several directions, (2) 

the representativeness and commonness of indicators found in existing literature, and 

(3) a relatively low degree of redundancy (Li and Wu, 2004; Li et al., 2012). BCR is 

frequently used to measure building density. It is widely reported that BCR had a 

considerable impact on the microclimate conditions (Rhee et al., 2014; Zhang et al., 

2022). LPI, LSI, and ED are commonly used to estimate spatial features such as 

landscape connectivity, shape complexity, and fragmentation. The variations in these 

metrics were strongly associated with the distinctions in thermal environments and air 

flow (Han et al., 2023). SVF contributes largely to the 3D urban environment analysis 

since it substantially affects solar radiation, wind flow, and thermal environment (Li 
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and Hu, 2022). Furthermore, BVD, MBH, and FAR were also commonly used to 

estimate the spatial characteristics of building volume and height. These metrics have 

been identified as pivotal determinants of environmental variables such as air 

temperature, land surface temperatures, wind dynamics, and relative humidity (Cao et 

al., 2021). The definitions and abbreviations of all selected building morphology 

indicators are presented in Table 3.1. The spatial patterns of 2D and 3D building 

morphology indexes across scales are presented in Figure 3.3-3.5. 
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Figure 3.3 Spatial distribution of 2D/3D building morphology indexes at 250m scale 
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Figure 3.4 Spatial distribution of 2D/3D building morphology indexes at 500m scale 
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Figure 3.5 Spatial distribution of 2D/3D building morphology indexes at 1000m scale 
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3.4.5 Analysis of the impacts of 2D/3D building morphology on vegetation 

greening  

This study combined traditional statistical techniques with advanced machine learning 

methods to investigate the influence of 2D/3D building morphology on vegetation 

greening. Initially, Pearson correlation analysis was conducted to assess the linearity 

between 2D/3D building morphology metrics and vegetation greening trends. This 

coefficient denotes the degree and direction of correlation between building 

morphology and vegetation greening (Pearson, 1908). Second, the boosted regression 

tree (BRT) model was applied to investigate the effects of 2D and 3D building 

morphology on vegetation greening trends in Hong Kong. BRT is a machine learning 

method that combines the traditional regression tree technique with boosting that 

improves model robustness and predictive accuracy (De’ath, 2007). Unlike standard 

linear regression, BRT uses recursive binary splitting to accommodate any 

interactions between observers and forms several regression trees to explain 

complicated and nonlinear relationships. Model output results consist of the relative 

contribution curve and the marginal effect curve. Relative contribution expresses how 

each morphological variable contributes to greening trends. Marginal effect 

demonstrates how the impact of each variable varies as a function of their magnitude. 

In the marginal effect curves generated by the BRT model, the relative influence value 

of zero indicates no effect, values below zero indicate negative effects, and values 

above zero are positive associations. One of the key strengths of BRT is its ability to 

be flexible enough to handle different types of data without making prior assumptions 
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about interaction between classes or other variables, while delivering estimates that 

can be easily interpreted, such as variable importance, marginal response (Pouteau et 

al., 2011). That is why BRT has been widely used in urban ecological studies (Han et 

al., 2022; Hu et al., 2020). To reduce the noise introduced by changes in the building 

and vegetation coverages, spatial analysis tools were used to detect all areas where the 

building footprint and orientation height were the same in the period between 2010 

and 2020. The dependent variables were set as the vegetation greening slope in every 

unchanging spatial unit. The independent variables were set as eight static 2D/3D 

building morphology indexes found within each unchanging unit. After much 

debugging and optimization, the final parameters for the BRT model were set: 

learning rate = 0.005, bag fraction = 0.5, and tree complexity = 5. For model training, 

we employed a 50% random sampling strategy of the dataset while implementing 10-

fold cross-validation to ensure robust performance evaluation. 

. 
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3.5 Method for analysis of the direct and indirect effects of 2D/3D 

building and green space on urban thermal environments 

3.5.1 Overall workflow 

Figure 3.6 The overall workflow of the second case study 

This study utilizes stepwise regression and path analysis to assess the direct and 

indirect influence of 2D/3D buildings and green space on summer land surface 

temperatures across pixel and district scales in Hong Kong in 2020 (Figure 3.6). The 

first step is the LST inversion and spectral indices extraction by using the Landsat 8 

OLI images based on the GEE platform. The second step is the extraction of 2D/3D 

building and green space features based on the LiDAR-derived green space data, 

building footprint, and surface elevation data (DSM/DTM). The third step is the 

generation of multiple scales: pixel scales and tertiary planning unit (TPU) scales. 
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Finally, stepwise regression and path analysis are used to explore the interaction 

between buildings, green space, and LST. 

3.5.2 Land surface temperature inversion based on Landsat 8 OLI images 

With the development of remote sensing techniques, LST has been largely adopted as 

an indicator for the thermal environment due to its large coverage area and cheaper 

acquisition costs than air temperature data (Chang et al., 2025; Fu and Weng, 2016; 

Weng et al., 2014). Hence, this study chose the LST to represent the thermal 

environment.  

Land surface temperature inversion algorithms are mainly divided into three 

categories according to different thermal infrared remote sensing data: single-channel 

algorithms, multi-channel algorithms, and split-window algorithms. Single-channel 

algorithms include the radiative transfer equation method (Sobrino et al., 2004), the 

Jiménez-Muñoz single-channel algorithm (Jimenez-Munoz et al., 2009), and the Qin 

Zhihao single-window algorithm (Qin et al., 2001). Multi-channel algorithms mainly 

include the gray body emissivity method (Barducci and Pippi, 1996), the day/night 

method (Jimenez-Munoz et al., 2009), and the temperature emissivity separation 

method (Gillespie et al., 1998). Among them, split-window algorithms are primarily 

used for surface temperature inversion with NOAA-AVHRR data, TERRA-MODIS 

data, Landsat-TIRS data, and ASTER data. Therefore, the split-window algorithm was 

selected for LST retrieval (unit: °C). The formula is as shown in equations (7)–(9): 

     𝑇𝑠 = {𝑎(1 − 𝐶 − 𝐷) + [𝑏(1 − 𝐶 − 𝐷) + 𝐶 + 𝐷] ∗ 𝑇10 − 𝐷𝑇𝑎}/𝐶     (7) 
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                                                   𝐶 = τε                              (8) 

                     𝐷 = (1 − 𝜏)[(1 − 𝜀)𝜏]                       (9)   

where 𝑇𝑠 is the derived LST value (℃), The coefficients 𝑎 and 𝑏 are defined with 

values a = −67.355351 and b = 0.458606. C and D represent intermediate variables. 

T10 is the brightness temperature of the 10th band of TIRS. 𝑇𝑎 is the average 

atmospheric action temperature. τ is the atmospheric transmittance. 𝜀 is the land 

surface emissivity. 

3.5.3 Extraction of 2D/3D buildings, green space structure, and controlling 

factors 

Drawing on previous research, a total of 16 factors were selected as explanatory 

variables of summer land surface temperature in this study, including spectral 

information, 2D/3D building morphology information, 2D/3D green space structure 

information, and terrain and location information. 2D/3D building morphology 

information includes building coverage ratio (BCR) (Song et al., 2020), building 

volume density (BVD) (Azhdari et al., 2018; Zhou et al., 2022b), building sky view 

factor (BSVF) (Li et al., 2021), mean building height (Mean_BH) (C. Chen et al., 

2022), and maximum height of buildings (Max_BH) (Chen et al., 2022). 2D/3D green 

space structure information includes green space coverage ratio (GCR) (Yao et al., 

2020), green space volume (GVD) (Handayani et al., 2018; Hecht et al., 2008), green 

space sky view factor (GSVF) (Chiang et al., 2023), mean green space height 

(Mean_GH) (Alexander, 2021), and maximum height of green space (Max_GH) 
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(Alexander, 2021). In this study, these indices were carefully selected for three key 

characteristics: they can (1) explain building morphology and green space structural 

attributes from several perspectives comprehensively, (2) serve widespread and stable 

representation in urban environmental studies, (3) have been firmly recognized as 

major contributing factors in previous studies (Wang et al., 2025b; Yuan et al., 2024). 

BCR stands for building density and has been reported as positively correlated with 

LST in the previous (Song et al., 2020). BVD refers to the degree to which the 

building utilizes vertical space. It can influence LST by changing wind environments, 

shade conditions, and land surface roughness (Wu et al., 2025). BSVF shows the 

extent to which the sky is covered by the building, affecting shade and heat 

dissipation (Gong et al., 2018; Wang et al., 2025a). Mean_BH and Max_BH represent 

vertical structure features of the building environment from average height and 

maximum height perspectives. It can influence the ventilation condition and shading 

conditions (Chen et al., 2022). GCR is the density of green space, and it shows the 

negative impact on LST. GVD is the density of green space volume (Jia et al., 2024). 

GSVF delineates the degree to which the sky is obstructed by green space (Chiang et 

al., 2023). GVD and GSVF are associated with evapotranspiration and shading 

conditions. Mean_GH and Max_GH reflect vertical structure features of green space 

from the average height and maximum height perspectives and can impact the shading 

effect of green space (Alexander, 2021). 

Spectral information includes normalized difference built-up index (NDBI), 

normalized difference vegetation index (NDVI), and modified normalized difference 
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water index (MNDWI). Terrain and location information includes elevation terrain 

model (DEM), slope (SL), and latitude (LAT). We chose spectral information and 

terrain and location information as controlling factors in the regression model to 

figure out whether 2D/3D building and green space indexes are conducive to 

increasing the explanatory power of LST variation compared to factors that are 

already widely recognized as having a significant influence on LST. Selected indexes 

for spectral, terrain and location information are commonly used and have been 

identified as basic impact factors in previous LST-related research. Table 3.2 provides 

a detailed description of the selected indexes in this study, and the spatial maps of 

those indexes are shown in Figure 3.7-21. 
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Table 3.2 The explanatory variables used in this study 

Dimension Metrics Abbreviations       Formula Description 

Spectral 

information 

Normalized 

difference 

built-up index   

NDBI 𝑁𝐷𝐵𝐼 =
(SWIR −  NIR)

(𝑆𝑊𝐼𝑅 +  𝑁𝐼𝑅)
 Quantifies built-up areas in satellite 

images 

Normalized 

difference 

vegetation 

index 

NDVI 𝑁𝐷𝑉𝐼 =
(NIR − R)

(𝑁𝐼𝑅 + 𝑅)
 Quantifies vegetation coverage, 

density, and growth condition 

Modified 

normalized 

difference 

water index 

MNDWI 𝑀𝑁𝐷𝑊𝐼 =
(SWIR −  NIR)

(𝑆𝑊𝐼𝑅 +  𝑁𝐼𝑅)
 Quantifies water coverage, density, 

and quality 

2D/3D 

building 

information 

Building 

coverage ratio 
BCR 

𝐵𝐶𝑅 =
1

𝑆𝑔
∑ 𝐵𝐴𝑖

𝑛

𝑖=1
 

Measures the ratio between the total 

area of buildings within a spatial unit 

and the area 

Building 

volume 

density  

BVD 
𝐵𝑉𝐷 =

1

𝑆𝑔
∑ 𝐵𝑉𝑖

𝑛

𝑖=1
 

Measures the ratio between the total 

volume of the buildings in a spatial 

unit and the area 

Building sky 

view factor  
BSVF 𝑆𝑉𝐹 = 2𝜋 [1 −

∑ sin 𝛼𝑗
𝑛
𝑖=1

𝑛
] 𝛼 is the vertical angle of the horizon 

in the direction j 

Mean building 

height  
Mean_BH 𝑀𝐵𝐻 =

∑ 𝐵𝐻𝑖
𝑛
𝑖=1

𝑛
 

Measures the mean height of the 

buildings in a spatial unit 

Maximum 

height of 

buildings 

Max_BH 𝑀𝐴𝑋_𝐵𝐻 = max (𝐵𝐻𝑖) 
Measures the maximum height of the 

buildings in a spatial unit 

2D/3D 

green space 

information 

Green space 

coverage ratio 
GCR 

𝐺𝐶𝑅 =
1

𝑆𝑔
∑ 𝐺𝐴𝑖

𝑚

𝑖=1
 

Measures the ratio between the total 

area of green space within a spatial 

unit and the area 

Green space 

volume 
GVD 

𝐺𝑉𝐷 =
1

𝑆𝑔
∑ 𝐺𝑉𝑖

𝑚

𝑖=1
 

Measures the ratio between the total 

volume of the green space in a 

spatial unit and the area 

Green space 

sky view 

factor 

GSVF 𝐺𝑆𝑉𝐹 = 2𝜋 [1 −
∑ sin 𝛼𝑗
𝑚
𝑖=1

𝑚
] 𝛼 is the vertical angle of the horizon 

in the direction j 

Mean green 

space height 
Mean_GH 𝑀𝐺𝐻 =

∑ 𝐺𝐻𝑖
𝑚
𝑖=1

𝑚
 

Measures the mean height of the 

green space in a spatial unit 

Maximum 

green space 
Max_GH 𝑀𝐴𝑋_𝐺𝐻 = max (𝐺𝐻𝑖) 

Measures the maximum height of the 

green space in a spatial unit 
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height 

Terrain and 

location 

Digital 

elevation 

model 

DEM - Measures the height of the land's 

surface over a spatial unit 

Slope SL 

𝑆𝑙𝑜𝑝𝑒

= Arctan (
𝐷𝑇𝑀𝑎 −𝐷𝑇𝑀𝑏

√(𝑦𝑎−𝑦𝑏)
2 + (𝑥𝑎−𝑥𝑏)

2
) 

Measures the steepness or incline of 

a terrain surface in a spatial unit 

Latitude  LAT - - 

Note: n is the number of buildings within a spatial unit; m is the number of green space pixels 

within a spatial unit; Sg is the total area of the spatial unit; BAi, BVi, BHi, are the area, 

volume, and height for the ith building, respectively; GAi, GVi, GHi, are the area, volume, 

and height for the ith green space pixel; θ is the wind direction angle. a and b are the pixels 

needed to calculate the slope; ya, yb and xa, xb are the horizontal and vertical project 

coordinates. 
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Figure 3.7 Spatial distribution of NDBI at 30m (a), 300m (b), 600m (c), district (d) 

 

Figure 3.8 Spatial distribution of NDVI at 30m (a), 300m (b), 600m (c), district (d) 
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Figure 3.9 Spatial distribution of MNDWI at 30m (a), 300m (b), 600m (c), district (d) 

 

Figure 3.10 Spatial distribution of BCR at 30m (a), 300m (b), 600m (c), district (d) 
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Figure 3.11 Spatial distribution of BVD at 30m (a), 300m (b), 600m (c), district (d) 

 

Figure 3.12 Spatial distribution of BSVF at 30m (a), 300m (b), 600m (c), district (d) 
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Figure 3.13 Spatial distribution of Mean_BH at 30m (a), 300m (b), 600m (c), district (d) 

 

Figure 3.14 Spatial distribution of Max_BH at 30m (a), 300m (b), 600m (c), district (d) 
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Figure 3.15 Spatial distribution of GCR at 30m (a), 300m (b), 600m (c), district (d) 

 

Figure 3.16 Spatial distribution of GVD at 30m (a), 300m (b), 600m (c), district (d) 
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Figure 3.17 Spatial distribution of GSVF at 30m (a), 300m (b), 600m (c), district (d) 

 

Figure 3.18 Spatial distribution of Mean_GH at 30m (a), 300m (b), 600m (c), district (d) 
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Figure 3.19 Spatial distribution of Max_GH at 30m (a), 300m (b), 600m (c), district (d) 

 

Figure 3.20 Spatial distribution of DEM at 30m (a), 300m (b), 600m (c), district (d) 
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Figure 3.21 Spatial distribution of Slope at 30m (a), 300m (b), 600m (c), district (d) 

3.5.4 Scale analysis 

To analyze whether research findings are influenced by the spatial scales and support 

multi-scale urban planning, a multi-scale analysis was carried out by utilizing the 

pixel scales and district scale to examine the performances of 2D/3D building and 

green space in improving the explanatory power of LST variations and the direct and 

indirect impacts of 2D/3D building and green space on LST. We created 300m×300m 

and 600m×600m fishnets to conduct the analysis at pixel scales and employed the 

vector data of tertiary planning units provided by the Hong Kong government to 

represent the district scale. We chose these three scales for the following reasons: (1) 

the initial spatial resolution of the derived LST was 100 m, scales based on multiples 

of initial spatial resolution can help to maximize data accuracy and reduce data errors; 
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(2) original 100m grid size may introduce more noise in the data due to higher surface 

heterogeneity; (3) if the spatial is too large, the number of samples will be limited and 

lead to biased and unreliable results; (4) several local studies have indicated that 

buildings within 300m presented strongest autocorrelation in Hong Kong (Lau et al., 

2015; Zheng et al., 2018). Based on this, we further extended the analysis to a 600m 

scale; (5) since policy and planning decisions are often made based on administrative 

boundaries, this study also conducted analysis at the district scale to better support 

decision-making. LST in each analysis unit across different spatial scales was 

represented by the average summer LST in 2020. The explanatory variables shown in 

Table 3.2 in each unit at different scales were calculated using ArcGIS Pro. 

3.5.5 Statistical analysis 

A stepwise multiple linear regression model was utilized to examine the ability of 

2D/3D building and green space indexes to improve the explanatory power of LST 

variations across different scales. The stepwise multiple linear regression model is an 

advanced version of the traditional multiple linear regression. It combines the forward 

and backward selection approach to identify the best-fitting model while avoiding 

collinearity (Efroymson, 1960). Given the potential collinearity among the proposed 

multiple independent variables (Table 3.2), and to ensure the best goodness of model 

fitting, the stepwise multiple linear regression model is considered the most suitable 

regression model for evaluating the capability of 2D/3D building and green space 

morphology in improving explanatory power of LST variation. The dependent 
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variable of stepwise multiple linear regression in each spatial unit was average 

summer LST. The independent variables were the proposed spectral indexes, 2D/3D 

building structures, 2D/3D green space structures, and terrain in each spatial unit. We 

perform the stepwise multiple linear regression with the “MASS” package of R. First, 

we only included spectral indexes and terrain as independent variables and recorded 

the Adjusted R2 for the fitted model. Then, we added the 2D building structure, 2D 

green space structures, 3D building structures, 3D green space structures, 2D/3D 

building structures, 2D/3D green space structures, and 2D/3D building and green 

space structures gradually to evaluate the performance of the 2D/3D building and 

green space structures in improving the explanatory power of LST variations, which 

was represented by the improved Adjusted R2.  

Furthermore, the path analysis (PA) method was conducted at each spatial scale to 

investigate the direct and indirect impacts of the 2D/3D building and green space on 

summer LST. Unlike traditional regression models, path analysis allows the detection 

of the direct and indirect impacts of independent variables on dependent variables and 

the investigation of interactions between independent variables (Wright, 1934). Path 

analysis consists of the construction of a hypothetical model and the analysis of the 

built hypothetical model. The created prior causal conceptual structure is shown in 

Figure 3.22. First, we selected the BCR to represent the 2D building structure, BVD 

to represent the 3D building structure, GCR to represent the 2D green space structure, 

and GVD to represent the 3D green space structure for their higher standardized 
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coefficient. We calculated the average of DEM and slope to represent the terrain. 

Next, we assumed that both the terrain, 2D building structure, 3D building structure, 

2D green space structure, and 3D green space structure directly impact the LST. Then, 

we hypothesized that terrain can indirectly affect the LST by influencing the 2D/3D 

building and green space structure. Finally, we hypothesized that 2D building 

structures and 3D building structures indirectly affect LST by influencing 2D and 3D 

green space structures.  

 

Figure 3.22 The created prior causal conceptual structure of path analysis 
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Chapter 4. Impacts of 2D/3D building morphology on vegetation 

greening 

4.1 Overview 

In this chapter, we present the preliminary results and analysis (Section 4.2), and 

discussion (Section 4.3) part of the impact of 2D/3D building morphology on 

vegetation growth. Further, we provide the spatiotemporal patterns of vegetation 

greening trends from 2010 to 2020 (Section 4.2.1), the correlation between 2D/3D 

building morphology and vegetation greening (Section 4.2.2), and the relative 

contribution and marginal effects of 2D/3D building morphology on vegetation 

greening trends (Section 4.2.3). In the Discussion part, we discuss the complexity of 

the building morphology - vegetation greening relationship (Section 4.3.1), 

distinctions in urban and rural greening mechanisms (Section 4.3.2), and limitations 

and future research directions (Section 4.3.3). 

4.2 Results 

4.2.1 Spatial-temporal patterns of vegetation greening trends 

Overall, a widespread increase in vegetation greening was observed across Hong 

Kong between 2010 and 2020, with approximately 69.10% of the area exhibiting a 

positive greening trend. This trend was more evident than that observed in urban 

regions across all three spatial scales. As the scale increases, the trend of vegetation 

greening becomes more apparent.   
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Figure 4.1 Spatial pattern of vegetation greenness changes trend at 250m (a), 500m 

(c), and 1000m (e) scales, and greenness change slope at 250m (b), 500m (d), and 
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1000m (f) scales 

Specifically, at the 250m scale, the overall EVI trend exhibited a positive slope of 

0.0015. Areas exhibiting significant greening and significant browning accounted for 

11.89% and 4.30% of the total area, with mean slopes of 0.0078 and -0.0083, 

respectively. Areas exhibiting non-significant greening and non-significant browning 

comprised 52.23% and 31.42% of the total area, respectively, reflected by average 

EVI slopes of 0.0034 and -0.0027 (Table 4.1). At the 500m scale, the study area 

exhibited an overall positive vegetation trend (mean slope = 0.0026), characterized by 

marked spatial heterogeneity. 19.57% of the area demonstrated statistically significant 

greening (mean slope = 0.0068), contrasting with 1.58% showing significant 

browning (mean slope = -0.0073). More extensive but less pronounced changes were 

observed in non-significant vegetation changes, where 59.48% of pixels displayed 

greening tendencies (mean slope = 0.0029) and 19.38% exhibited browning trends 

(mean slope = -0.0019). Vegetation trend analysis at the 1km spatial scale also 

demonstrated an overall enhancement in greenness (mean EVI slope = 0.0030). 

19.63% of the study area showed statistically significant improvement (mean slope = 

0.0076) and 1.15% exhibited notable degradation (mean slope = -0.0067). 58.88% of 

pixels displayed non-significant greening trends (mean slope = 0.0034) and 20.20% 

showed insignificant browning trends (mean slope = -0.0017).  
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Table 4.1 Overall vegetation changes trends in built-up environments 

Scale Classification Criterion Percentage (%) Averaged Slope 

MOD13Q1 

(250m) 

Significant greening |Z|>1.96, slope>0 11.89 0.0078 

Significant browning |Z|>1.96, slope<0 4.30 -0.0083 

No change slope=0 0.16 0 

Not significant greening |Z|<1.96, slope>0 52.23 0.0034 

Not significant browning |Z|<1.96, slope<0 31.42 -0.0027 

MOD13A1 

(500m) 

Significant greening |Z|>1.96, slope>0 19.57 0.0068 

Significant browning |Z|>1.96, slope<0 1.58 -0.0073 

No change slope=0 0.04 0 

Not significant greening |Z|<1.96, slope>0 59.48 0.0029 

Not significant browning |Z|<1.96, slope<0 19.38 -0.0019 

MOD13A2 

(1000m) 

Significant greening |Z|>1.96, slope>0 19.63 0.0076 

Significant browning |Z|>1.96, slope<0 1.15 -0.0067 

No change slope=0 0.14 0 

Not significant greening |Z|<1.96, slope>0 58.88 0.0034 

Not significant browning |Z|<1.96, slope<0 20.20 -0.0017 

Substantial differences in both the average EVI slope and the proportion of vegetation 

greening and browning were observed between urban and rural areas (Table 4.2). At 

the 250m scale, urban areas exhibited a greening extent of 62.71%, with a 

corresponding mean slope of 0.0035, while browning occupied 37.22% with an 

average negative trend of -0.0031. Rural areas exhibited a higher proportion of 

vegetation greening (65.38%) and a greater degree of greening, as reflected by a mean 

EVI slope of 0.0050. Conversely, the proportion of browning was relatively smaller 

(34.60%), yet its average slope was slightly higher (-0.0037). At the 500m scale, in 

urban areas, greening trends covered 80.56% of the area with a mean slope of 0.0049, 

while browning occupied 19.44% (average slope: -0.0046). In rural areas, the 

percentage of greening was 78.09% with higher slope values in contrast to urban areas 

(0.0065), and the browning percentage was 20%, showing a greater degree of 
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browning compared to urban areas. At the 1000m scale, urban areas exhibited 80.56% 

vegetation greening with a slope of 0.0057, whereas vegetation browning made up 

19.44% with a browning slope of -0.0033. In contrast, rural regions displayed 78.26% 

greening (0.0069) in contrast to urban areas, and 21.45% browning with a browning 

slope of -0.0054. 

Table 4.2  Features of overall vegetation changes in urban and rural areas 

Scale Greenness and its changes indexes Urban Rural 

MOD13Q1 

(250m) 

Averaged slope of greening 0.0035 0.005 

Averaged slope of browning -0.0031 -0.0037 

Percentage of greening (%) 62.71 65.38 

Percentage of browning (%) 37.22 34.60 

MOD13A1 

(500m) 

Averaged slope of greening 0.0049 0.0065 

Averaged slope of browning -0.0046 -0.0070 

Percentage of greening (%) 80.56 78.09 

Percentage of browning (%) 19.44 21.85 

MOD13A2 

(1000m) 

Averaged slope of greening 0.0057 0.0069 

Averaged slope of browning -0.0033 -0.0054 

Percentage of greening (%) 79.17 78.26 

Percentage of browning (%) 20.83 21.45 

4.2.2 Correlation between 2D/3D building morphology and vegetation greening 

trends 

As shown in Table 4.3, the Pearson correlation analysis revealed a relatively low yet 

statistically significant relationship between 2D/3D building morphology and 

vegetation greening trends at the 250 m and 500 m spatial resolutions, with correlation 

coefficients ranging from -0.20 to 0.10. The correlation results at the 1000m scale 

were not presented because most of the indexes were not significantly correlated with 

the vegetation greening trends. Furthermore, at the 250m scale, 2D building 

morphology exhibited a stronger correlation with vegetation greening compared to 3D 
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morphology, as indicated by higher mean absolute correlation coefficients of 0.19 and 

0.12, respectively. Specifically, the SVF demonstrated a low positive correlation with 

vegetation greening trends, reflected by a correlation coefficient of 0.10. In contrast, 

BCR, LPI, LSI, ED, BVD, and FAR were negatively correlated with greening, 

whereas MBH was not significantly related to vegetation greening trends. At the 

500m scale, the correlation between 2D building morphology and vegetation greening 

remained stronger than that of 3D morphology. However, the correlation degree with 

2D morphology indexes declined compared to the 250 m scale, while the correlation 

with 3D morphology indexes increased. Similarly, the SVF showed a positive 

correlation with vegetation greening, while variables such as BCR, LPI, LSI, ED, 

BVD, and FAR were negatively correlated with vegetation greening. 

Table 4.3 Correlation between vegetation greening and 2D/3D building morphology 

Scale 2D building 

morphology 

Correlation 

coefficient 

3D building 

morphology 

Correlation 

coefficient 

MOD13Q1 

(250m) 

BCR -0.21** BVD -0.17** 

LPI -0.16** SVF 0.17** 

LSI -0.17** MBH -0.13** 

ED -0.20** FAR -0.17** 

Average absolute 

value of 2D metrics 

0.19 Average absolute 

value of 3D metrics 

0.16 

MOD13A1 

(500m) 

BCR -0.17** BVD -0.11** 

LPI -0.11** SVF 0.18** 

LSI -0.15** MBH -0.08 

ED -0.15** FAR -0.11** 

Average absolute 

value of 2D metrics 

0.15 Average absolute 

value of 3D metrics 

0.13 

Note: ** means the level of significance at 0.01. 
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4.2.3 Impact of 2D/3D building morphology on vegetation greening trends 

4.2.3.1 Relative contribution of 2D/3D building morphology on vegetation 

greening trends 

As illustrated in Figures 4.2 and Figure 4.3, the relative contribution of 2D and 3D 

building morphology on vegetation greening trends exhibited notable differences 

between urban and rural settings at both the 250 m and 500 m spatial scales. At 250m 

scale, in urban areas, the SVF emerged as the most influential variable, contributing 

23.60%. Subsequent contributors included the LPI at 20.10%, MBH at 19.00%, BVD 

at 12.00%, LSI at 11.50%, and ED at 13.30%. FAR and BCR made only negligible 

contributions to vegetation greening. In rural areas, LSI had the greatest impact on 

vegetation greening (27.30%). The second and third most influential variables were 

the SVF (22.80%) and MBH (17.50%), respectively. The contributions of ED, LPI, 

BVD, FAR, and BCR showed only minor contributions to vegetation greening.  
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Figure 4.2 Relative contributions (%) of 2D/3D building morphology to vegetation 

greening trends in urban and rural areas at 250m scale 

At the 500m scale within urban environments, SVF was the most significant 

contributor to vegetation greening, contributing 32.7%, followed by the BCR at 

17.2%, MBH at 14.7%, LSI at 12.1%, BVD at 9.5%, LPI at 7.75%, and ED at 5.3%. 

The influence of FAR was comparatively minor. Similarly, in rural areas, SVF was 

also the leading factor influencing vegetation greening with a contribution of 39.1%. 

MBH, LPI, and LSI contributed 16.6%, 12.1%, and 11%, respectively. The relative 

contributions of other indicators (BCR, ED, BVD, and FAR) were all below 10%. 
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Figure 4.3 Relative contributions (%) of 2D/3D building morphology to vegetation 

greening trends in urban and rural areas at 500m scale 

The 3D building morphology had stronger contributions to vegetation greening than 

2D indexes both in 250m and 500m scales. This pattern was more profound in urban 

areas at the 250m scale. The relative contributions of 2D and 3D building morphology 

to greening were 42.5% and 57.5% in urban areas, respectively. In rural areas, 2D 

building morphological indicators accounted for 46.20% of the contribution to 

greening, while 3D building morphology metrics contributed 53.8%. However, at the 

500m scale, the phenomenon that 3D building morphology contributes more than 2D 

building morphology was more profound in rural areas. In rural areas, 2D and 3D 

building morphology indicators accounted for 35.8% and 64.2% of total morphology 

contribution to greening, respectively. In urban areas, 2D building morphological 

indicators accounted for 42.30% of the total morphology contribution to greening, 

while 3D indicators occupied 57.7% of the total morphology contribution to greening. 
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4.2.3.2 The marginal effect of 2D/3D building morphology on vegetation greening 

trends 

To investigate the nonlinear influence of individual building morphology indicators 

on vegetation greening, we further examined their marginal effects in urban and rural 

contexts, as illustrated in Figures 4.4 and 4.5, respectively. The marginal effects 

derived from the BRT model reveal how variations in 2D and 3D building 

morphology indicators influence vegetation greening. SVF, LPI, MBH, and ED 

displayed similar marginal effect trends in both urban and rural contexts. The effect of 

SVF on greening transitioned from negative to positive at 0.82 in urban and 0.88 in 

rural areas. This implies that sky visibility of around 80% supports vegetation 

development. LPI had a positive effect on vegetation greening below 15 in urban and 

below 5 in rural areas but became negative beyond these values. MBH shifted from a 

negative to a slightly positive influence at 35 m (urban) and 12 m (rural). ED showed 

a positive impact up to 0.037 m/m² in urban and 0.006 m/m² in rural areas, with a 

negative effect thereafter. The marginal curves of BVD and LSI exhibited distinct 

patterns across urban and rural environments. In urban settings, BVD exhibited a 

positive influence on vegetation greening when values were below 3 m³/m², turned 

negative between 3 m³/m² and 12 m³/m², and became negligible beyond 12 m³/m². 

This suggests that maintaining BVD within 0.1-1.3 m³/m² represents the optimal 

range for promoting vegetation development in urban settings. In rural areas, BVD 

exhibited a negative effect on greening when lower than 0.1 m³/m² and shifted to a 
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positive influence when surpassing 1.3 m³/m². Therefore, for rural areas, the favorable 

conditions for greening occur when BVD values are maintained within the 0.1-1.3 

m³/m² range. LSI transitioned from negative to positive influences on greening when 

exceeding 2.2 in urban areas. In rural areas, the positive effect emerged at 1.05, 

peaked at 1.2, and became negative when LSI exceeded 3.65. LSI quantifies the 

geometric complexity of building forms. A higher landscape shape index (LSI) value 

reflects greater irregularity and complexity in building geometry. Therefore, a 

moderate degree of building shape complexity is favorable for vegetation greening 

(2.2–3.3 times the geometric complexity of a square in urban areas and 1.05–3.65 

times in rural areas). Exceeding these levels is likely to constrain vegetation growth. 

The impacts of FAR and BCR on greening were minimal across both urban and rural 

settings. 
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Figure 4.4 The marginal effect of 2D/3D building morphology on the vegetation 

greening in urban areas at 250m scale 
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Figure 4.5 The marginal effect of 2D/3D building morphology on vegetation greening 

in rural areas at 250m scale 

The marginal effects of 2D and 3D building morphology on greening at 500m scale in 
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urban areas are presented in Figure 4.6. The marginal effect of SVF shifted from 

negative influence to positive influence at the threshold of 0.84. The larger the SVF, 

the stronger its positive impact on vegetation greening. BCR showed a positive effect 

on greening when it was smaller than 0.3 and then presented a negative impact on 

vegetation greening. MBH initially showed a negative effect and transformed to a 

positive effect at the breakpoint of 11m and eventually tended towards having no 

impact on vegetation greening. LSI presented a negative impact before reaching the 

threshold of 9.5 and becomes positive once this threshold is exceeded, indicating that 

more complex building morphologies benefit vegetation greening. The influence of 

BVD on vegetation greening transitions from a positive effect to having negligible 

impact. The marginal effect of LPI transitioned from positive to neutral upon reaching 

a threshold of 0.025, indicating that greater fragmentation in the built landscape 

promotes vegetation growth. The influence of ED and FAR on greening is relatively 

weak, with no clear trends evident.
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Figure 4.6 The marginal effect of 2D/3D building morphology on the vegetation 

greening in urban areas at 500m scale 
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The marginal effects curve of 2D/3D building morphology on greening at 500m scale 

in rural areas is presented in Figure 4.7. The marginal effects of SVF and MBH 

displayed similar trends in contrast to urban areas. Specifically, in rural areas, SVF 

shifted from a negative impact on vegetation growth to a positive effect at a threshold 

of 0.92. The larger the SVF, the stronger its positive impact on vegetation greening. 

MBH initially presented a negative effect and when its value exceeded 13m, it 

appeared to have no impact on vegetation greening. The marginal effects of LPI, LSI, 

and BCR exhibit opposite trends compared to urban areas. LPI first showed a positive 

effect on vegetation greening when its value was below 0.005, and after this value, the 

LPI tended to not affect vegetation greening. LSI has undergone a transition from a 

positive effect to a negative effect at the threshold of 12. This indicates that in rural 

areas, simpler building shapes and lower degrees of building fragmentation are more 

conducive to promoting vegetation growth. BCR illustrated a transition from a 

negative impact to a slight positive impact. An appropriate layout of building density 

may be more conducive to promoting vegetation growth. 
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Figure 4.7 The marginal effect of 2D/3D building morphology on vegetation greening 

in rural areas at 500m scale 
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4.3 Discussion 

4.3.1 The complexity of building morphology - vegetation greening relationship 

While previous research has primarily focused on the relationship between vegetation 

greening and factors such as CO₂ fertilization (Keenan et al., 2013; Ukkola et al., 

2016), climate change (Keenan and Riley, 2018; Nemani et al., 2003), land cover/land 

use transitions (Shen et al., 2023), and nitrogen deposition (Greaver et al., 2016), our 

study emphasizes the significant role of 2D and 3D building morphology. By 

employing Pearson correlation analysis and the BRT model, we provide robust 

evidence that building morphology is closely linked to vegetation growth dynamics. A 

relatively low but significant correlation was found. This finding indicates that 2D 

and 3D building morphology may have a moderate relationship with vegetation 

growth, but it represents only one of several contributing factors. Other environmental 

and anthropogenic variables also play critical roles. Nonetheless, further investigation 

into the impact of urban morphological features on vegetation greening remains 

essential for developing a more holistic understanding of the drivers behind greening 

dynamics. 

Hong Kong is a typical compact city, with high-rise, high-density buildings and 

extremely limited land for green space in a subtropical climate zone. Existing research 

conducted in Hong Kong mostly focused on green space dynamics induced by 

urbanization (Chau and Law, 2023; Feng and Zeng, 2022; Wan and Shen, 2015), 

climate factors for green space conditions (Feng et al., 2023), and the influence of 
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green space on microclimate and human health (Li et al., 2023; Wang et al., 2016). 

Considerable studies have explored the relationship between slope, soil quality, and 

features of green space on vegetation growth conditions and generally found that the 

plants in green areas often suffer from substantial growth challenges because of the 

overcrowded ground (Jim, 1998; Tian et al., 2012). However, few have reported the 

impact of 2D and 3D building morphology on vegetation greening in Hong Kong. In 

contrast, our study addresses this research gap by investigating the influencing 

mechanisms of the 2D/3D building environment on vegetation greening, offering a 

new insight to understanding vegetation greening drivers. Therefore, this study 

expands the current research framework on the drivers of vegetation greening but also 

provides practical insights into the affecting elements of vegetation greening in 

densely packed urban environments like Hong Kong. 

Our findings implied that the impact of 3D building morphology indexes on greening 

was stronger than 2D indexes. 3D indexes had a more essential impact on the urban 

climate environment than 2D building morphology was also proved by Cao et al. (Cao 

et al., 2021). Therefore, the consideration of vertical building morphology in the 

urban climate and vegetation greening analysis should be highlighted and more 3D 

building morphology indexes should be developed for urban climate studies in the 

future. An interesting phenomenon observed was that, based on arguments from 

previous related studies, the BCR was expected to affect vegetation greening trends. 

However, our results showed that despite being a key morphological indicator, BCR 
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appeared to have little to no measurable impact on vegetation greening. Also, the 

impact of 3D building morphology indicators on greening is greater than 2D 

indicators (Figure 4.2). A possible explanation for this finding could be the inclusion 

of 3D indicators in the regression model. These indicators provide a more detailed 

description of building morphology features. Our results point out the importance of 

incorporating an assessment of 3D building morphology on vegetable greening. Given 

the complexity of the built environment, future urban climate research must address 

achieving more physically representative visibility for 3D morphological indicators. 

In addition, we found that the 2D/3D building morphology-vegetation greening 

relationship is not linear but shows a nonlinear pattern that differs from the monotonic 

positive or negative correlation suggested by some studies. Several critical thresholds 

were identified within the building morphology-to-vegetation greening association, 

such as those where the effect switches from positive to negative as well as those 

where the effect reaches its maximum. These thresholds yield important insights into 

the complex connections between building morphology and greening, pointing to 

significant potential for sustainable urban planning.  

In addition, these nonlinear patterns imply that optimal thresholds exist for building 

morphology indicators that optimize the vegetation greening effect. Marginal curves 

showed that SVF and LSI shifted from being negative to positive to vegetation 

greening. These results mean that greater SVF and LSI lead to vegetation greening. 

SVF denotes sky visibility at a specific site. A higher value of SVF allows more 
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exposure to solar radiation and can provide efficient atmospheric ventilation (Cao et 

al., 2021; Chatzipoulka et al., 2018). The effect of LPI and ED was changed from a 

positive to a negative beyond certain thresholds. The LPI thresholds were 15 (urban) 

and 5 (rural), while those for ED were 0.037 and 0.006, respectively. LPI is the 

proportion of the largest building patch and serves as an indicator of spatial 

connectivity. The concentration of large, continuous built-up areas (LPI>15 in urban 

areas, LPI >5 in rural areas) could help to reduce vegetation greening. This may be 

attributed to the fact that larger building clusters can decrease available space for 

vegetation and hinder air circulation, thereby potentially limiting vegetation greening. 

ED quantifies the total length of building edges relative to the total area, representing 

the level of spatial fragmentation of buildings. When ED is below 0.037 m/m2 in 

urban areas and below 0.006 m/m2 in rural areas, it would be beneficial for vegetation 

growth, while greater spatial fragmentation of buildings adversely impacts vegetation 

greening.  

4.3.2 Differences in urban and rural greening mechanism 

Our study reveals significant differences in greening trends and their driving factors 

along the urban-rural gradient. First, rural regions exhibited a greater vegetation 

greening degree in contrast to urban regions (Table 4.2). Such urban-rural disparities 

may lead to unequal distribution of ecosystem services provided by vegetation, 

thereby intensifying climate and ecological risks in urban areas, such as heat hazards, 

drought risk, and pollution exposure (Coleman et al., 2021; Cueva et al., 2022; Li et 
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al., 2024). Hence, assessing different patterns of vegetation greening across urban and 

rural areas, and identifying potential determinants of such difference will be crucial to 

mitigate climate and ecological issues under the context of rapid urbanization. 

Second, we observed a significant difference in the influence features of 2D/3D 

building morphology on vegetation greening along urban-rural gradient. SVF was the 

most influential factor in urban environments, while LSI had the strongest effect on 

vegetation greening in rural areas. This observation highlights the critical need to 

examine urban-rural disparities. Urban-rural differences were also evident in the 

marginal effects of 2D and 3D building morphology on vegetation greening. 

Specifically, the turning points of 2D and 3D building morphology indices varied 

between urban and rural areas, providing valuable insights for context-specific 

morphological optimization. Additionally, LSI exhibited contrasting effects in urban 

and rural settings. These phenomena both underline the different influencing factors 

and characteristics for vegetation greening in urban and rural areas, which should be 

paid attention to in the future. These findings would provide actionable guidance for 

sustainable building morphology design and emphasize the importance of 

differentiated planning strategies across urban and rural contexts. 

4.3.3 Policy implications 

Investigating the impact of 2D and 3D building morphology on vegetation greening is 

essential for fostering green, resilient, and sustainable urban environments, thereby 

contributing to the Sustainable Development Goal (SDG) 11 (Sustainable Cities and 
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Communities). This study provides evidence that the 2D and 3D building morphology 

exerted an influence on vegetation growth. Our findings deepen our understanding of 

the characteristics and extent of building morphology that affected the urban 

ecosystem. Also, this study provides practical information on optimizing building 

morphology for the planning of greener cities and urban renewal, particularly in high-

density cities similar to Hong Kong.  

From the 1999, the Hong Kong government has embarked on massive greening 

programs, such as the Greening Master Plans (GMPs) raised by the Civil Engineering 

and Development Department (CEDD). Despite the achievement, current greening 

strategies and policies in Hong Kong have overlooked the building morphological 

factors in greening frameworks, which are important for the healthy growth of plants. 

This study offers valuable insights into the integration of building morphology with 

greening projects, which would help the local greening program achieve its objective 

of “right-species-at-the-right-place”. Specifically, in the context of green city 

planning, planners and policymakers can promote greener environments by 

optimizing building morphology from 2D and 3D perspectives. This study suggests 

that incorporating metrics such as sky view factor (SVF) and landscape shape index 

(LSI) into the greening program could district-level planning could complement 

existing GMPs by optimizing building layout and selecting locations with suitable 

morphology environments for plants. For example, the relative contribution would 

provide policymakers with factors to prioritize, while the nonlinear association and 
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turning points existing in the relationship between 2D/3D building morphology and 

vegetation greening captured by the BRT method can offer essential information into 

key nodes for building layout planning. Findings on urban-rural disparities provide a 

basis for the differentiated optimization of building morphology, contributing to more 

effective sustainable development practices. Rural areas serve as reserves for future 

urban expansion so that our findings from urban environments can provide essential 

references for rural areas poised for urbanization. Specifically, for urban areas, as the 

SVF is an indispensable element, it is crucial to focus on achieving optimal SVF 

design through judicious building layout while addressing the developmental needs of 

the region. For example, according to the marginal effect curve, it is advisable to 

maintain the SVF above 0.82, as values at or above this threshold can effectively 

contribute to the greening of vegetation. For rural areas, LSI is the primary 

consideration. It is optimal to maintain LSI within 1.05-3.65 to exert its positive 

effect, and when LSI equals 1.2, it has the greatest positive impact on greening in 

rural areas.  

4.3.4 Limitations and future research directions 

Despite the valuable insights provided, this study has certain limitations. First, based 

on data from the Hong Kong Herbarium, more than 3,300 vegetation species have 

been identified in Hong Kong. Disparities of the response of vegetation greening to 

building morphology may also exist in various vegetation types. Due to the 

unavailability of high-resolution vegetation type data in Hong Kong, this study was 
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unable to account for the potential influence of vegetation types on the response of 

vegetation greening to 2D/3D building morphology. This limitation restricts us from 

discovering how the renewal of buildings resulted in changes in greenness. In 

addition, due to the lack of high-resolution mapping data on building heights, it 

results in limiting this study to Hong Kong, which restricts the generalizability of the 

findings. To overcome this limitation, future research should develop long-term, high-

resolution building height data that capture continuous temporal changes. Second, this 

study focused on only one representative index of vegetation greenness due to its 

accuracy and widespread use in vegetation trend analysis (Fan et al., 2023; Zhou et 

al., 2023). Numerous other indices also can be used to characterize vegetation 

conditions, such as NDVI, NPP, Gross Primary Productivity (GPP), and the more 

recently introduced kernel NDVI (kNDVI) (Camps-Valls et al., 2021; Wang et al., 

2020; Yuan et al., 2007). Studies on vegetation growth analysis have demonstrated 

that their results are not always consistent, potentially leading to varying conclusions 

depending on the index used (Ding et al., 2020; D. Zhou et al., 2023). For this reason, 

further studies should consider multiple vegetation indices that summarize various 

ecological features. Third, the classification of urban and rural areas in this study is 

based on the Global Urban Boundaries (GUB) data only. GUB data provides high 

precision and accurately classifies urban and rural areas according to the 30m 

artificial impervious surfaces dataset, which is relevant to our study on building 

morphology. However, the classification of urban and rural areas can vary 

substantially depending on the criteria used for classification, e.g., population, gross 
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domestic product, and nighttime light (Florczyk et al., 2019; Li and Zhou, 2017). 

Since different kinds of datasets and classifications may show different responses, 

future research must take multi-dataset integration to achieve a more comprehensive 

evaluation of urban-rural differences. Fourth, this study combines statistical 

correlation analysis with machine learning model to assess the response of vegetation 

greening to 2D/3D building morphology. The combined approach helps mitigate the 

randomness of results compared to relying on a single method. Although the BRT 

model has been identified as a powerful method for nonlinear relationship detection, 

the "black box" characteristics of BRT, such as the absence of statistical significance 

testing and lack of interpretability may potentially introduce uncertainties to the 

results. Finally, this study has provided only a preliminary exploration of the 

nonlinear relationship between 2D/3D building morphology and vegetation greening, 

however, the mechanism of how these 2D/3D building morphology affects vegetation 

greening is sophisticated. There is an obvious need to acquire more insights from 

direct measurement and microclimate simulation to uncover deeper underlying 

mechanisms. 
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Chapter 5. Direct and indirect effects between building, green 

space, and urban thermal environments 

5.1 Overview 

In this chapter, we present the results and analysis (Section 5.2), and discussion 

(Section 5.3) part of the direct and indirect influence of 2D/3D buildings and green 

space on urban thermal environments. Moreover, we provide the spatial patterns of 

summer LST in Hong Kong (Section 5.2.1), the performances of 2D/3D buildings and 

green space in explaining LST across different scales (Section 5.2.2), and the direct 

and indirect influence of 2D/3D building and green space on LST (Section 5.2.3). In 

the Discussion part, we discuss the necessity of introducing both 3D building and 

green space information in LST-related analysis (Section 5.3.1), the scale effect exists 

in the relationship between 2D/3D building, 2D/3D green space, and LST (Section 

5.3.2), implications of direct and indirect effects of 2D/3D building and green space 

on LST (Section 5.3.3), and limitations and future research directions (Section 5.3.4). 

5.2 Results 

5.2.1 Spatial patterns of summer land surface temperature in Hong Kong 

The distribution of LSTs in Hong Kong during the summer across different scales is 

illustrated in Figure 5.1. The overall summer LST in Hong Kong ranged from 24℃ to 

61℃, with an average of 47 ℃. As the scale increases, the minimum value of LST 

increases and the maximum value decreases, thus the overall range of LST differences 

decreases as the scale increases. Furthermore, we observed the significant spatial 
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heterogeneity in LST across different scales in Hong Kong. The spatial distribution of 

surface temperatures generally showed a high northwest-southeast trend and a low 

northeast-southwest trend. The cooler areas were primarily block-shaped and located 

in regions with dense vegetation and water bodies, such as scenic spots, parks, large 

lakes, wetlands, rivers, and mountain areas. Notably, these included the Tai Mo Shan 

Country Park, as well as the Lam Tsuen Country Park, Sai Kung West Country Park, 

Sai Kung East Country Park, Hong Kong Wetland Park, Tai Lam Chung Reservoir, 

Plover Cove Reservoir, Shan Pui River, and Lantau Island. The high-temperature 

regions were primarily observed in the highly developed southeast and northwest 

zones, characterized by dense constructions and factories.  
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Figure 5.1 Spatial distribution of summer LST in Hong Kong at 100m (a), 300m (b), 

600m (c), and district scale (d) 

5.2.2 The performances of 2D/3D building and green space in explaining land 

surface temperature across different scales 

It can be observed from Table 5.1, after controlling the Spectral indexes (NDBI, 

NDVI, and MNDWI) and Terrain and Location (DTM, Slope, and Latitude), the 

combination of 2D/3D building and green space indexes achieved the best R2 across 

different spatial scales. As the spatial analysis unit size increased, the explanatory 

power of the regression model also increased. The introduction of 2D/3D building and 

green space indexes improved 0.027, 0.024, and 0.038 of the explanatory power of the 

regression model at 300m, 600m, and district scale, respectively.  
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Specifically, at the 300m scale, from the perspective of comparing buildings and 

green spaces, regardless of whether in two or three dimensions, the contribution of 

green spaces to the overall explanatory power is always greater than that of buildings. 

The 2D green space indexes enhanced the R2 of the regression model by 0.008, 

whereas the 2D building indexes only contributed to a 0.002 increase in explanatory 

power. The 3D green space indexes improved the explanatory power by 0.014, while 

3D building indexes enhanced the R2 of the model by 0.01. When combining the 

2D/3D green space indexes, there was an enhancement of 0.02 in explanatory power, 

while 2D/3D building indexes improved the explanatory power by 0.01. From the 

perspective of 2D and 3D, for both buildings and green spaces, the 3D indexes 

contributed more to the explanatory power of the regression model compared to the 

2D indexes. 3D building indexes improved the R2 of the regression model by 0.01, 

while 2D building indexes enhanced it by 0.002. 3D green space indexes improved 

the explanatory power by 0.014, while 2D building indexes enhanced it by 0.008.  

At the 600m scale, in contrast to the 300m scale, the combination of 2D and 3D 

building and green space indexes contributes less to the overall explanatory power of 

the model. From the perspective of comparing buildings and green spaces, regardless 

of whether in two or three dimensions, the contribution of green spaces to the overall 

explanatory power is always greater than that of buildings. The 2D green space 

indexes enhanced the explanatory power by 0.006, whereas the 2D building indexes 

only increased it by 0.002. The 3D green space indexes improved the R2 by 0.014, 
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while 3D building indexes boosted it by 0.011. The combination of 2D/3D green 

space indexes enhanced the R2 by 0.017, while 2D/3D building indexes led to a 0.012 

improvement. From the perspective of 2D and 3D, for both buildings and green 

spaces, the 3D indexes contributed more to the explanatory power of the regression 

model compared to the 2D indexes. 3D building indexes raised the R2 by 0.011, 

compared to a 0.002 increase from the 2D building indexes. 3D green space indexes 

improved the R2 by 0.014, while 2D building indexes contributed a 0.006 

enhancement.  

At the district scale, contrary to the analysis results at the pixel level, in both two and 

three dimensions, the contribution of buildings to enhancing the explanatory power 

for LST is always greater than that of green spaces. The 2D building indexes 

enhanced the R2 by 0.015, whereas the 2D green space indexes did not contribute to 

improving the explanatory power. The 3D building indexes contributed a 0.035 

increase, while the 3D green space indexes improved R2 by 0.013. The combined 

2D/3D building indexes led to a 0.035 raise of the R2, while 2D/3D green spaces 

improved the explanatory power by 0.013. From the perspective of 2D and 3D, for 

both buildings and green spaces, the 3D indexes contributed more to the explanatory 

power of the regression model compared to the 2D indexes. 3D building indexes 

improved the R2 by 0.035, while 2D building indexes enhanced it by 0.015. 3D green 

space indexes contributed a 0.013 enhancement of R2, while 2D building indexes did 

not contribute to improving the explanatory power for LST variations. 
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Table 5.1 Adjusted determinant coefficients (R2) of stepwise multiple linear 

regression 

Scale 300m 600m District 

Controlling factors 0.773 0.824 0.826 

Controlling factors + 2D Building 

indexes 

0.775 0.826 0.841 

Controlling factors + 2D Green space 

indexes 

0.781 0.830 0.826 

Controlling factors + 3D Building 

indexes 

0.783 0.835 0.861 

Controlling factors + 3D Green space 

indexes 

0.787 0.838 0.839 

Controlling factors + 2D/3D Green space 

indexes 

0.793 0.841 0.839 

Controlling factors + 2D/3D Building 

indexes 

0.783 0.836 0.861 

Controlling factors + 2D Building and 

Green space indexes 

0.783 0.833 0.841 

Controlling factors + 2D/3D Building 

and Green space indexes 

0.800 0.848 0.864 

5.2.3 Direct and indirect effects of 2D/3D building and green space on LST  

As shown in Table 5.2, the goodness of fit index (GFI), root mean square error of 

approximation (RMSEA), root mean square residual (RMR), comparative fit index 

(CFI), normed fit index (NFI), and non-normed fit index (NNFI) were all meet 

standard criteria across different scales, which indicated that the model achieved a 

good fit.  
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Table 5.2 Evaluation indexes of model fit performance of path analysis at different 

scales 

Scale GFI RMSEA RMR CFI NFI NNFI 

Standard >0.9 <0.1 <0.05 >0.9 >0.9 >0.9 

300m 1 0.000 0.005 1 1 1 

600m 1 0.000 0.005 1 1 1 

District 1 0.000 0.013 1 1 1 

The results of path analysis at 300m were shown in Figure 5.2, on the one hand, 

terrain had a negative influence on LST, with a standardized coefficient of -0.297 

(R2=0.638). 3D building information, 2D green space information, and 3D green 

space information also exhibited a negative impact on LST, characterized by a 

standardized coefficient of -0.243, -0.252, and -0.176 (R2=0.638), respectively. 2D 

building information showed a positive influence on LST, with a standardized 

coefficient of 0.457 (R2=0.638). On the other hand, terrain also impacts LST by 

influencing the 2D building information, 3D building information, 2D green space 

information, and 3D green space information. Specifically, terrain had negative effects 

on 2D building information, and 3D building information, characterized by a 

standardized coefficient of -0.429 (R2=0.184) and -0.269 (R2=0.072). Terrain had 

positive effects on 2D green space information and 3D green space information, with 

standardized coefficients of 0.307 (R2=0.432) and 0.239 (R2=0.122). Also, the path 

analysis illustrated that the 2D/3D building information can affect the 2D/3D green 

space information. 2D building information negatively affected 2D green space 

information, with a standardized coefficient of -0.519 and an R2 of 0.432. Similarly, 

2D building information also had a negative impact on 3D green space information, 
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evidenced by a standardized coefficient of -0.194 and an R2 of 0.122. 3D building 

information had a slight positive effect on both 2D green space information and 3D 

green space information, evidenced by standardized coefficients of 0.077 (R2=0.432) 

and 0.031 (R2=0.122). 

Overall, terrain, 2D building information, and 3D building information can both 

directly and indirectly affect the LST (Table 5.3). The total effect of terrain on LST 

was -0.615, comprising a direct effect of -0.297 and an indirect effect of -0.318. The 

total effect of 2D building information on LST was 0.622, including a direct effect of 

0.457 and an indirect effect of 0.165. Similarly, the total effect of 3D building 

information on LST was -0.268, with a direct effect of -0.243 and an indirect effect of 

-0.025. 2D and 3D green space information only have direct effects, which are -0.252 

and -0.176, respectively. 
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Figure 5.2 Path analysis of the terrain, 2D/3D building/green space, and LST at 300m 

scale 

Figure 5.3 presented the results of path analysis at the 600m scale, similar to the 

results at the 300m scale, the terrain had a negative influence on LST, with a 

standardized coefficient of -0.292 (R2=0.691), while the coefficient decreased 

compared to 300m results. 3D building information, 2D green space information, and 

3D green space information also exhibited a negative impact on LST, characterized by 

a standardized coefficient of -0.263, -0.154, and -0.230 (R2=0.691), respectively. 2D 

building information showed the strongest direct positive impact on LST, with a 

standardized coefficient of 0.566 (R2=0.691). Also, terrain impacted LST by 

influencing the 2D building information, 3D building information, 2D green space 

information, and 3D green space information. Specifically, terrain had negative effects 

on 2D building information, and 3D building information, characterized by 
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standardized coefficients of -0.493 (R2=0.243) and -0.327 (R2=0.107). Terrain had 

positive effects on 2D green space information and 3D green space information, with 

standardized coefficients of 0.312 (R2=0.480) and 0.279 (R2=0.142). The 2D/3D 

building information can affect the 2D/3D green space information at the 600m scale. 

2D building information negatively affected 2D green space information, with a 

standardized coefficient of -0.545 and an R2 of 0.480. Similarly, 2D building 

information also had a negative impact on 3D green space information, evidenced by 

a standardized coefficient of -0.198 and an R2 of 0.142. These values are higher than 

those observed at the 300m scale in terms of both the coefficients and the R2 values. 

3D building information only had a significant positive impact on 2D green space 

with a standardized coefficient of 0.080 (R2=0.480). 3D building information did not 

have a significant impact on 3D green space information at 600m scale. 

Terrain, along with 2D and 3D building information, influences LST both directly and 

indirectly at 600m scale (Table 5.3). Specifically, the terrain has a total effect of -

0.657 on LST, split between a direct effect of -0.292 and an indirect effect of -0.365. 

Meanwhile, 2D building information contributes a total effect of 0.695 on LST, with a 

direct effect of 0.566 and an indirect effect of 0.129. In contrast, 3D building 

information has a lesser overall impact, totaling -0.275, consisting of a direct effect of 

-0.263 and an indirect effect of -0.012. Both 2D and 3D green space information 

exerts only direct effects on LST, measuring -0.154 and -0.230, respectively.  
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Figure 5.3 Path analysis of the terrain, 2D/3D building/green space, and LST at 600m 

scale 

As illustrated in Figure 5.4, at the district scale, terrain showed a weaker negative 

influence on LST than pixel scales, with a standardized coefficient of -0.225 

(R2=0.741). The negative impact of 3D building information and 2D green space 

information on LST is amplified at larger scales, as indicated by standardized 

coefficients of -0.514 and -0.676 (R2=0.741), respectively. The impact of 3D green 

space on LST was not significant. The positive effect of 2D building information on 

LST was diminished at the district scale compared to pixel scales, with a standardized 

coefficient of 0.323 (R2=0.741). Meanwhile, terrain also significantly influenced the 

2D building information, 3D building information, 2D green space information, and 

3D green space information. To be specific, the terrain had stronger negative effects 
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on 2D building information and 3D building information, characterized by 

standardized coefficients of -0.602 (R2=0.360) and -0.470 (R2=0.218). Terrain had 

positive effects on 2D green space information and 3D green space information, with 

standardized coefficients of 0.468 (R2=0.772) and 0.571 (R2=0.478). The 2D building 

information only can affect the 2D green space information at the district scale. 2D 

building information negatively affected 2D green space information, with a 

standardized coefficient of -0.501 (R2=0.772). The influence of 2D building 

information on 3D green space and the influence of 3D building on 2D/3D green 

space was not significant. 

 

Figure 5.4 Path analysis of the terrain, 2D/3D building/green space, and LST at 

district scale 

Generally, terrain and 2D buildings affected LST both directly and indirectly at the 
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district scale (Table 5.3). Specifically, the terrain has a total effect of -0.698 on LST, 

including a direct effect of -0.225 and indirect effects of -0.473. 2D building 

contributes a total effect of 0.662 on LST, with a direct effect of 0.323 and an indirect 

effect of 0.339. In contrast, 3D building and 2D green space exert only direct effects 

on LST, measuring -0.514 and -0.676, respectively. 3D green space had no significant 

impact on LST on the district scale. 

Table 5.3 Summary of the direct and indirect effects of variables on LST 

Scale Variable Direct effect Indirect effect Total effect 

300m 

2D building 

information 

0.457** 0.165** 

 

0.622** 

3D building 

information 

-0.243** -0.025** -0.268** 

2D green space 

information 

-0.252** - -0.252** 

3D green space 

information 

-0.176** - -0.176** 

Terrain -0.297** -0.318** -0.615** 

600m 

2D building 

information 

0.566** 0.129** 0.695** 

3D building 

information 

-0.263** -0.012** -0.275** 

2D green space 

information 

-0.154** - -0.154** 

3D green space 

information 

-0.230** - -0.230** 

Terrain -0.292** -0.365** -0.657** 

District 

2D building 

information 

0.323** 0.339** 0.662** 

3D building 

information 

-0.514** - -0.514** 

2D green space 

information 

-0.676** - -0.676** 

3D green space 

information 

-0.058 - -0.058 

Terrain -0.225** -0.473** -0.698** 
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5.3 Discussion 

5.3.1 The necessity of introducing both 2D/3D building and green space 

morphology indexes in LST-related analysis 

Although several studies have emphasized the importance of 2D/3D building and 

green space morphology in influencing LST variation and mitigation (Chen et al., 

2020; Peng et al., 2017), they failed to explicitly quantify the relative contributions of 

these morphological factors when compared to other basic determinants of LST. This 

study demonstrates that the combination of 2D/3D building and green space 

morphology significantly increases the explained variance for LST variation. This 

study found that 3D building and green space indexes contributed more to 

explanations of LST variation than 2D indicators at multiple scales. This contrasts 

with the finding of Xu et al. (2021) (Xu et al., 2024), which reported that 2D 

morphology indexes significantly influence LST. One plausible explanation for this 

difference might be the fact that this study included controlling factors in the 

regression model, while Xu’s study only considered morphology indexes. This could 

lead to bias or uncertainty in the results. Importantly, unlike Xu’s study, which took 

into account only the 3D building morphology indexes, this study includes both 3D 

building and green space indexes, enhancing the insights into how these two indexes 

influence LST. 3D building is significantly correlated with urban ventilation and the 

reception and emission of solar radiation (Li and Hu, 2022; Tian et al., 2019). The 

evaporative cooling effects of 3D green spaces also can significantly influence LST 
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(Yuan et al., 2021). We also found that 3D green space indexes are more helpful in 

enhancing the explanatory power of LST in contrast to 3D building indexes. However, 

due to the lack of high-resolution green space height data, limited research has 

investigated the impact of 3D green space indicators on LST and urban climates 

(Chen et al., 2024). Considering both 2D and 3D impacts of buildings and vegetation 

on LST can enhance our understanding of its underlying mechanisms and strengthen 

the link between urban morphology and microclimatic knowledge. 

5.3.2 Scale-effect in the relationship between 2D/3D building, 2D/3D green space, 

and LST 

This study explored the performances of 2D/3D buildings and green spaces in 

enhancing the explanation of LST variations, as well as their direct and indirect 

effects at different scales. Significant scale effects in the relationship between 2D/3D 

buildings, 2D/3D green spaces, and LST were observed. Scale effects on LST-

influencing factors have also been reported in previous research (Chen et al., 2023; Q. 

Wu et al., 2019; Xiao et al., 2022; Yang et al., 2020). These imply that planning and 

strategies for effective mitigation of heat problems need a scale-based approach, as 

the leading factors may vary with the scale change.  

Our finding demonstrated that spatial scales significantly affect the regression model 

performance, and the relative importance of explanatory variables, and influence the 

degree of explanatory variables. First, as the spatial scale increases, the explanatory 

power of all variables for LST also increases. This indicates that interactions at 
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smaller scales are more complex compared to coarser scales. Second, at pixel scales, 

green spaces contribute more to enhancing the explanatory power of LST than 

buildings. However, at the district scale, buildings contribute more to improving LST 

explanatory power than green spaces. The combination of 2D/3D buildings and green 

spaces exhibits the strongest capability for enhancing LST explanation on the district 

scale. We speculate that this might be because green space indexes better help explain 

LST changes at finer scales, while buildings are more effective in explaining LST 

variations at coarser scales. Third, the direct and indirect effects of 2D/3D building 

and green space on LST also varied across different scales. The total effect of terrain 

on LST increased with scale, primarily due to the increase in indirect effects as the 

scale enlarges, while the direct effects decreased with increasing scale. The total and 

direct effects of 2D building features on LST first increased and then decreased, while 

the indirect effects followed a reverse pattern, decreasing first and increasing 

thereafter. The total and direct effects of 3D buildings on LST exhibited an upward 

trend as the scale increased, whereas the indirect effects showed a downward trend. 

This is primarily due to the insignificance of the influence of 3D buildings on 2D 

green spaces and 3D green spaces at 600m and district scale. The direct effect of 2D 

green spaces is greatest at the district scale and smallest at the 600m scale. The direct 

effect of 3D green spaces on LST shows an increasing trend at the pixel scale but has 

an insignificant impact on the district scale. These scale effects help guide LST 

mitigation strategies at different scales. For instance, when planning green spaces at 

the 300m scale and district level, the focus should be on increasing the 2D area. At the 
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600m scale, the canopy height characteristics of green spaces become more important. 

Across all scales, it is crucial to reduce the coverage of buildings and increase their 

vertical height. 

5.3.3 Implications of direct and indirect effects of 2D/3D building and green 

space on LST 

Unlike previous studies that only considered the effect of 2D/3D buildings and green 

spaces on thermal environments, this study also considered the potential indirect 

effects between 2D/3D buildings and 2D/3D green spaces. Additionally, we have 

considered the potential impact of terrain on 2D/3D buildings and green spaces. Our 

analysis proved that the terrain not only directly affects LST but also further 

modulates LST by influencing the distribution of 2D/3D buildings and green spaces. 

This suggests that terrain plays a complex role in urban climate management, both 

directly affecting LST and indirectly shaping the landscape patterns. In future urban 

planning processes, due consideration can be given to placing suitable buildings in 

areas with slightly higher elevations or slopes, while increasing the height and volume 

of the buildings. In addition, in mountainous or uneven terrain, the implementation of 

vertical gardens or terraced green spaces can be used to increase the overall green 

space. 

Furthermore, our results showed that at the 300m and 600m scale, both 2D and 3D 

building features can significantly influence 2D/3D green spaces. Thus, the 

distribution of buildings and the strategic placement of green spaces must be 
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considered in the planning process. In densely built-up areas, increasing the canopy 

height of green space, implementing green roofs, white roofs, and vertical greening 

can help to cool down the LST. On the district scale, the impact of 2D building on 3D 

green space, and 3D building on 2D/3D green space was insignificant. Only the 2D 

building feature can significantly impact the 2D green space. Therefore, the expansion 

of the building footprint can be minimized by increasing building heights on a 

regional scale. This approach not only reduces the warming effect of 2D building 

structures but also capitalizes on the cooling effect of 3D building features. Moreover, 

it can reduce the negative effects of 2D building structures on green space coverage, 

thereby increasing green spaces and fully utilizing its cooling potential. 

5.3.4 Limitations and future research directions 

There are some limitations in this study. First, given that the heat-related issues are 

most severe in the summer, our analysis focused only on summer LST in Hong Kong. 

However, LST exhibits substantial seasonal variation and morphology variables may 

influence LST differently across seasons. Therefore, investigating the seasonal 

variation of LST and their response to 2D/3D building and green space indexes is a 

necessary direction for future research. Second, due to the availability and spatial 

coverage of LiDAR data, our study was restricted to the high-density city of Hong 

Kong, which hinders the transferability and generalizability of our study to national or 

global scales. Additionally, micro-scale studies (less than 100m) are limited due to the 

scarcity of in situ measurement data. Future research would benefit from integrating 
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remote sensing data and in situ measurement data to enhance the analysis 

perspectives. Another limitation is that although we selected several indicators of 

2D/3D buildings and green spaces that significantly impact LST based on previous 

studies, numerous other potential indicators were not considered. Moreover, while this 

study conducted a multi-scale analysis by selecting 300m, 600m, and district level as 

analysis scales, this study still has not completely overcome the modifiable areal unit 

problem (MAUP). MAUP refers to the statistical bias that occurs in spatial analysis 

when data are aggregated across varying spatial scales (Fotheringham and Wong, 

1991; Wu, 2004). The different spatial scales selection can lead to varying research 

findings although the same analysis is applied to the same data. A wider range of 

spatial scale analysis should be considered in future studies to enhance the robustness 

of the observed relationship. Last, this research was based on static data analysis, 

without considering the change of LST and morphology indexes. Therefore, this study 

failed to consider dynamic interactions between 2D/3D buildings and 2D/3D green 

spaces and their dynamic impact on LST due to a lack of multi-year 3D building and 

green space height data. Fully detangling the dynamic interactions among 2D/3D 

buildings, 2D/3D green spaces, and LST through the use of dynamic data remains one 

of the key challenges for future research. 
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Chapter 6. Conclusions 

In this research, the analysis of the interaction between buildings, green space, and 

urban thermal environments in a high-density city of Hong Kong was conducted. The 

study concentrates its explorations on the following two aspects: (1) Impacts of 

2D/3D building morphology on vegetation greening across the urban-rural gradient, 

and (2) Direct and indirect influence of 2D/3D building and green space features on 

urban thermal environments at various spatial scales.  

In examining the impact of 2D/3D building morphology on vegetation greening, we 

developed an analytical framework to investigate the response of vegetation greening 

to 2D/3D building morphology in Hong Kong, using the Pearson correlation method 

and the BRT model. Overall, between 2010 and 2020, our analysis identified a 

significant trend of vegetation greening in Hong Kong, characterized by a mean slope 

of 0.0024 and greening observed in approximately 69.10% of the total area. 

Significant uneven trends were shown across urban and rural areas. Although the 

correlation between building morphology and vegetation greening was relatively low, 

it remained statistically significant. 3D building morphology exhibited a significantly 

greater influence on vegetation greening compared to 2D building morphology. 

Moreover, the influence of 2D/3D building morphology on greening presented a 

notable urban-rural difference and was highly nonlinear. SVF exerted the greatest 

influence in urban areas, while LSI had the most significant impact in rural areas. 

SVF, MBH, LPI, and ED showed similar marginal patterns across urban and rural 

areas, but their effect directions changed at different thresholds. SVF and MBH 
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transitioned from negative to positive impacts, while LPI and ED exhibited the 

opposite trend. The impact of LSI differed between urban and rural areas, showing a 

transition from negative to positive effects in rural areas and a nonlinear negative–

positive–negative pattern in urban areas. The identified complex relationship enriches 

the current knowledge of how 2D and 3D building morphological characteristics 

influence vegetation greening across urban and rural areas, which provides 

meaningful directions for subsequent research and practical guidance for optimizing 

building layouts for greener city development. 

In the analysis of direct and indirect impacts of 2D/3D building and green space on 

urban thermal environments, we chose the LST to represent the thermal environments 

and selected ten 2D/3D building and green space indexes to disentangle the direct and 

indirect effects of 2D/3D building and green space on LST, using the stepwise 

regression and path analysis method. Overall, the summer LST in Hong Kong ranged 

from 24℃ to 61℃, with an average of 47 ℃. Our study has identified significant 

spatial heterogeneity and scale differences in summer LST across Hong Kong. We 

found that after adding spectral indexes and terrain as the controlling factors, 2D/3D 

buildings and green spaces can still effectively enhance the explanatory power of LST 

variations. Particularly at the district scale, it can increase explanatory power by 

0.038. Furthermore, the explanatory power of 3D indicators surpasses that of 2D 

indicators. At the pixel scale, green spaces demonstrate greater explanatory power 

than buildings, while at the district scale, buildings exhibit higher explanatory power 
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than green spaces. Importantly, our analysis demonstrated terrain, 2D/3D building, 

and 2D/3D green space not only directly impacted LST but also indirectly influenced 

LST through their interactions. Terrain exerted a direct negative effect on LST and 

simultaneously played a stronger indirect negative effect by influencing 2D/3D 

buildings and green spaces, with the total negative effect ranging from -0.698 to -

0.615. 2D buildings not only had a positive effect on LST but also enhanced LST 

further by affecting 2D/3D green spaces. 3D buildings have a negative impact on LST 

and, at the pixel scale, increase their negative effect by influencing 2D/3D green 

spaces. 2D/3D building 2D and 3D green spaces have a negative effect on LST, with 

the impact of 3D green space not being significant at the district scale. By re-

examining the interactions between buildings and green spaces from both 2D and 3D 

perspectives, this research enhances the current understanding of urban thermal 

environment mechanisms provides insights for thermal problem mitigation, and 

guides natural-based solutions. 
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