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Abstract

Rapid urbanization dramatically changed the land surface properties, including the
increase of impervious surfaces and encroachment of natural land, and thereby
induced substantial thermal environment problems. Buildings and green space within
built-up areas are crucial components of urban ecosystems and significantly influence
the urban thermal environments. Therefore, investigating the interaction between
buildings, green space, and urban thermal environment is crucial for deepening the
understanding of urban ecosystems and promoting the mitigation of heat-related

environmental problems.

However, due to the complexity of the interactions between buildings, green space,
and urban thermal environment, there are still several unresolved issues: (1) The
influence of building morphology, particularly three-dimensional building
morphology, on vegetation greening has not been fully explored; (2) Previous studies
have mostly examined how the size, shape, and complexity of green space affect
urban thermal environment, while other important factors like height and green
volume, which also play an essential role in cooling, have been overlooked on the
macroscale and mesoscale; (3) Combined direct and indirect effect of 2D/3D building

and green space on thermal environment have not yet been investigated.

Based on remote sensing data and LiDAR data, herein we analyzed interactions
among buildings, green space, and urban thermal environments from both the 2D and

3D perspectives. This study first examined how 2D and 3D urban morphological
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indexes influence vegetation greening in Hong Kong by employing Pearson
correlation analysis and the boosted regression tree (BRT) model, with a focus on
urban-rural differences. Then, we further investigated how 2D/3D building and green
space affect urban thermal environment across multiple spatial scales employing

stepwise regression and path analysis, both directly and indirectly.

In assessing the impact of 2D and 3D building morphology on vegetation greening
trends, results indicated a general increase in vegetation greenness from 2010 to 2020,
with a slope of 0.0024, and more pronounced greening observed in rural areas.
Although the correlation between building morphology and vegetation greening was
relatively weak, it remained statistically significant. The impact varied substantially
between urban and rural areas and exhibited strong nonlinearity, with 3D indices
exerting a greater influence than 2D indexes. The sky view factor (SVF) was the main
driver in urban areas, accounting for 23.60 %, while the landscape shape index (LSI)
also contributed a significant amount to rural areas (27.30%). According to marginal
trends, mean building height (MBH) and SVF changed from negative to positive
results. In contrast, the edge density (ED) and landscape patch index (LPI) shifted in
the opposite direction. The inflection points of marginal curves of these indices varied
with urban and rural areas. The landscape shape index (LSI) revealed a complex
influence that changed from a negative-positive-negative pattern in urban areas and
displayed a negative-to-positive pattern in rural areas. Building volume density

(BVD) changed from beneficial to detrimental in urban settings, while the pattern for
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rural areas was the opposite.

In analyzing the direct and indirect impacts of 2D/3D buildings and green space
morphology on the thermal environment, we observed significant spatial
heterogeneity and scale differences in summer LST. 2D/3D buildings and green
spaces effectively enhance the explanatory power of LST variations. Notably, at the
district scale, this enhancement in explanatory power was observed to be 0.038. The
explanatory power of 3D indicators was found to exceed that of 2D indicators. Our
analysis found that terrain had a direct negative influence on LST and concurrently
exerted a stronger indirect negative effect by influencing 2D/3D buildings and green
spaces, resulting in a total negative effect ranging from -0.698 to -0.615. 2D buildings
not only positively affected LST but also further enhanced LST by influencing 2D/3D
green spaces. On the other hand, 3D buildings negatively impacted LST and, at the
pixel scale, intensified this negative effect by influencing 2D/3D green spaces. Both
2D and 3D green spaces were found to have a negative effect on LST, with the impact
of 3D green space being insignificant at the district scale. The identified complicated
interaction between 2D/3D buildings, green space, and urban thermal environment
would enhance our understanding of the interaction mechanism of the urban
ecosystem, which can also inform 2D/3D urban morphology optimization and UHI

mitigation toward sustainable development.
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Chapter 1. Introduction

1.1 Research background

The rapid urbanization process, changing natural landscapes with built-up
environments, has brought many complex changes to urban ecosystems over the past
half century (He et al., 2019; Yang and Huang, 2021). Among them, buildings and
green spaces have undergone significant variations (Luo et al., 2021). Buildings have
expanded outwards and upwards, becoming taller and more densely packed (Frolking
et al., 2024; Mahtta et al., 2019). Green space coverage has decreased and
fragmentation has increased. These changes have had significant effects on the
microclimate and surface energy balance, including lowering albedo and latent heat
flux, lowering solar radiation absorption and sensible heat flux, and contributing to
many urban thermal issues (Wang et al., 2021; Wang et al., 2016). The worsening of
the urban thermal environment has posed a major risk to environmental quality and
public health (Wong et al., 2017). For instance, it has been demonstrated that UHI is
associated with significant heat-related mortality, particularly when extreme heat
events occur (Cuerdo-Vilches et al., 2023; Ho et al., 2023). The heat-related mortality
burden is predicted to increase in the future due to the ongoing degradation of the
thermal environment (Esper et al., 2024; Masselot et al., 2025; Shahmohamadi et al.,
2011). To develop effective strategies to address thermal problems and the associated
negative effects, it is necessary to investigate the interactions between buildings,

green space, and the thermal environment.
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Green spaces are critical components of terrestrial ecosystems. They perform vital
functions including a role in carbon sequestration, hydrological regulation, and energy
flow maintenance (Ballantyne et al., 2017; Haberl et al., 2007). Recent research
demonstrates that vegetation has experienced dynamic transformations. Research has
demonstrated that enhanced vegetation greenness significantly contributes to
temperature regulation and microclimate mitigation (Baniya et al., 2019; Chen et al.,
2021; Zeng et al., 2017). A recent study found that vegetation greening can
significantly cool cities (Li et al., 2025). Analyzing vegetation changes over time and

influencing factors helps cities develop better green space plans to reduce heat.

Compared to natural landscapes, vegetation growth in built-up areas faces more
complex challenges and is affected by many different factors (Liu et al., 2023).
Although extensive research has examined vegetation responses to natural and
anthropogenic factors (Fan et al., 2023; Li et al., 2020), the role of building
morphology in influencing greening trends remains understood. Building morphology
can influence ambient temperature (Azhdari et al., 2018; Han et al., 2023; Li and Hu,
2022), airflow patterns such as wind speed and direction (He et al., 2022; Zahid Igbal
and Chan, 2016), the spatial distribution of light and shading (Tan and Ismail, 2015;
Wang et al., 2024; Wu et al., 2024), and humidity levels (Cao et al., 2021; Kamal et
al., 2021). The above-mentioned factors strongly influence vegetation growth by
regulating physiological processes such as transpiration, photosynthesis, and

metabolic activity (Chang et al., 2021; Rawson et al., 1977; Serbin et al., 2015).



Understanding how building morphology affects vegetation growth is crucial for
understanding its underlying mechanisms and enhancing its potential to alleviate

urban heat.

Building morphology influences urban thermal environments by altering shading and
modification of heat capacity, reflection, absorption, and ventilation (Adelia et al.,
2019; Kotharkar et al., 2023). The impacts of building morphology on urban thermal
environments have been widely studied from horizontal and vertical perspectives
(Khoshnoodmotlagh et al., 2021; Yang et al., 2021). For example, Huang et al.
(Huang and Wang, 2019) proved that a dispersed and high-rise buildings layout can
reduce LST. Chen et al. (Chen et al., 2022) showed that building morphology-LST
interaction is seasonal dependent. Green spaces are also vital to alleviate heat by
providing canopy shading, absorbing heat, and facilitating heat loss through
evaporative processes. From existing knowledge, there is a significant negative
connection between heat environments and green space coverage (Basu and Das,
2023; Yang et al., 2017; Yao et al., 2020). The size, shape, connectivity, and
complexity of green spaces were also highly correlated with the heat condition (Lin et
al., 2023; Maimaitiyiming et al., 2014; Masoudi and Tan, 2019). For instance, Du et
al. (Du et al., 2017) showed that the landscape shape index (LSI) of green space has a
negative influence on LST and the high complexity of green space could reduce LST.
However, heat conditions are simultaneously affected by building and green spaces in

practice, and their interaction is generally complex (Yuan et al., 2021; Zhang et al.,



2022). Thus, the effects of buildings or green space on the thermal environment are a
combination of direct impacts (e.g., immediate effects of specific factors) and indirect
impacts (where an influencing factor affects the thermal environment by influencing
other elements). Identifying the direct and indirect impacts of building and green
spaces on thermal conditions would inform building and green space optimization

toward effective and efficient heat mitigation.

Scale effects are commonly observed in geographic contexts, including both natural
and social environments (gimové and Gdulova, 2012; Turner et al., 1989). Analysis of
landscape patterns and driving factors at different scales can lead to distinct
assessment results, affecting the scientific understanding and generalization of
arguments (Guo et al., 2025; Jia et al., 2024). Some studies have confirmed that the
relationship between LST and affecting elements also exhibits scale effects (Chen et
al., 2023; Jia et al., 2024). According to Estoque et al. (Estoque et al., 2017), the
association between building density and LST appears to strengthen at coarse scales,
while at fine scales the connection between green space coverage and LST increases.
Consequently, the scale effect is an essential aspect that should be thoughtfully
addressed when examining urban thermal environments and their driving factors.
Moreover, effective solutions for the mitigation of the urban thermal environment

may benefit from insights gained from multiple spatial scales.



1.2 Research objectives

Hence, the overarching aim of this study is to examine the interaction between
buildings, green space, and urban thermal environments.

This study first employs boosted regression tree (BRT) models to quantify the relative
importance and marginal effects of 2D and 3D building morphology on vegetation
greening in Hong Kong between 2010 and 2020, with a particular focus on urban-
rural disparities. Detailed objectives of the first case study are threefold: 1) to
characterize the spatiotemporal patterns of vegetation greening and examine urban-
rural variations during the 2010-2020 period; 2) to evaluate the relative contributions
and marginal effect of 2D and 3D building morphology on vegetation greening; and
3) to compare how these building morphology indexes influences differ between
urban and rural settings. The findings are expected to enhance our understanding of

how built environment characteristics shape vegetation dynamics over time.

Second, this study utilizes stepwise regression and path analysis to assess the direct
and indirect impact of both 2D/3D buildings and green space on summer LST at
different spatial scales in Hong Kong. Specific objectives of the second case study
are: 1) to investigate the differences of spatial patterns in the summer LST across
various scales (pixel scales and district scale); 2) to assess the performances of 2D/3D
building and green space in explaining LST variations at different scales employing
the stepwise regression model; 3) to untangle the direct and indirect impacts of 2D/3D

building and green space on LST across multi-scales using path analysis. This study



would provide scientific support for the design of building and green space structures

aimed at efficient climate mitigation and adaptation at both pixel and district scales.

1.3 Structure of the thesis

This thesis is structured into six chapters. In this chapter, the research background,
research aim, and specific objectives have been demonstrated. The rest of the thesis
comprises the literature review about the interaction of buildings, green space, and
urban thermal environments, the methodology for two case studies, the main findings
concluded from two case studies, discussion, conclusions, and suggestions for future

research. Specifically, the subsequent chapters of this thesis are organized as follows:

In Chapter 2, the literature on the relationship between buildings, green space, and
urban thermal environments is reviewed. Besides, research gaps are pinpointed. In
Chapter 3, this thesis presents the methods for data retrieval and processing regarding
the investigation of the impact of 2D and 3D building morphology on vegetation
growth, and the analysis of the direct and indirect impact of 2D/3D buildings and
green spaces on LST. In Chapter 4, the preliminary results and analysis, and
discussion part of the impact of 2D/3D building morphology on vegetation growth are
presented. Limitations of the first study and suggestions for future study are also
presented. In Chapter 5, this thesis provided the results and discussion of the direct
and indirect influences of 2D/3D building and green space on LST. The limitations
and recommendations for future research are also discussed. In Chapter 6, this thesis

concludes key findings are reported.



Chapter 2. Literature review

2.1 Overview

Previous research on the interaction of buildings, green space, and urban thermal
environments is comprehensively examined in this chapter. Urbanization-induced
changes in buildings, green space, and urban thermal environments are summarized
(Section 2.2). The associations between building and green space, building and LST,
and green space and LST are also reviewed in this chapter (Section 2.3, 2.4, 2.5).
Development in related studies in subtropical high-density regions is reported
(Section 2.6). This chapter also provides an overview of urban-rural differences and
scale effects existing in buildings, green space, and urban thermal environments
(Section 2.7). Drawing from the review of existing literature, critical research gaps are

pinpointed and outlined (Section 2.8).

2.2 Urbanization-induced alterations in building, green space, and

urban thermal environments

The world has undergone rapid urban expansion over the last three decades (Antrop,
2004; Streule et al., 2020). Accelerated urbanization is leading to significantly
sophisticated and diverse changes to land cover and ecosystems (Oke, 1982). The
urbanization process is generally accompanied by the expansion of impervious
surfaces, increasing population, and encroachment of natural surfaces (Byomkesh et
al., 2012). The largest contributor to the increase in impervious surface is building

growth, while green space loss is the dominant change in the natural surface (Li et al.,
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2019).

Under rapid urbanization, buildings have experienced multi-dimensional changes
(Reba and Seto, 2020; Xu and Chi, 2019). The typologies of building evolution in the
process of urbanization are primarily categorized as : (1) outward and infilling
expansion, and these expansions contribute to increased building density, enhanced
connectivity between buildings, and a more compact urban environment (Yang and
Zhao, 2022). It is claimed that many urban areas witnessed two dynamic types of
urbanization: expansive built-up areas through leapfrog development and infill
development, accompanied by substantial population growth (Tian et al., 2022); (2)
upward expansion, which results in an increase of high-rise buildings. For example, a
recent study has highlighted a significant trend in global urban development,
presenting a notable transition from urban expansion towards vertical construction
(Frolking et al., 2024); (3) Complexification, the urban development requires a
diverse range of functions from buildings, leading to increased complexity in building

morphology and structures (Wang et al., 2022).

Dramatic urban development also directly imposes pressures on the shape,
morphology, and spatial distribution of green spaces, which includes the
encroachment of original green spaces due to outward urban expansion, as well as the
fragmentation and lower connectivity caused by the dense distribution of buildings.
By selecting 107 representative cities in China, Wu et al. (Wu et al., 2021) pointed out

that newly urbanized areas exhibit an extensive browning impact. According to Zhou



et al. (Zhou and Wang, 2011), the sprawl of built-up areas has resulted in the
reduction of green space. Similarly, Nor et al. (Nor et al., 2017) utilized the land
change modeler (LCM)-Markov chain models and indicated that the present and

future urban expansion can both exert a negative effect on the green space structure.

These urbanization-induced land surface changes significantly alter urban ecology
and microclimate (Chakraborty and Qian, 2024; Huang et al., 2024). Building
materials used in built-up environments (such as concrete, bricks, and asphalt)
increase sensible heat flux and altered albedo, which can absorb solar radiation in the
daytime and delay heat dissipation at night (Luyssaert et al., 2014; Ouyang et al.,
2022). High-density and complex building areas restrict air circulation and weed
speed, making it difficult for heat dissipation (Liao et al., 2021; Yuan et al., 2020).
Shrinkage of green space reduces the release of moisture and shade through
evapotranspiration, decreases latent heat flux, and thereby impairing the cooling
effects of green spaces (Oliveira et al., 2011). These changes pose significant
challenges to the urban thermal environment, with urban heat islands (UHI) and heat
waves being the most emblematic signal (Ferguson and Woodbury, 2007; Livermore
et al., 2018; Russo et al., 2014). UHI describes the phenomenon whereby urban areas
exhibit higher air and surface temperatures compared to their surrounding rural
counterparts (Oke, 1982). Heatwaves are defined as periods during which a region
experiences abnormally and uncomfortably temperatures (IPCC, 2021). Furthermore,

the UHI and heat waves have mutual effects and tend to intensify each other (Founda



and Santamouris, 2017; Li et al., 2015). These urbanization-induced heat problems
are increasing the number of people exposed to health-threatening heat (Li and Zha,
2020; Liu et al., 2017). In recent decades, the extent of exposure has increased
threefold, significantly exceeding the estimated level in earlier research (Tuholske et
al., 2021). Therefore, urbanization-induced thermal problems, such as UHIs and heat
waves, are becoming severe threats to the urban climate and human health. Moreover,

their adverse effects are projected to intensify in the future (Guo et al., 2017).

2.3 Relationship between building and green space

The expansion of built-up areas during the urbanization process has led to a reduction
in overall green space coverage and increased fragmentation of its spatial structure.
Hence, the ecosystem service function and cooling effect of green space on heat

mitigation have been significantly weakened.

Firstly, considerable effort has been devoted to investigating the response of green
space coverage to the urbanization process (Haaland and Van Den Bosch, 2015;
Shahtahmassebi et al., 2021; Zhao et al., 2013). Understanding the relationship
between green space and urbanization is crucial for green space management toward
the mitigation of the urban thermal environment. For example, taking Kunming as the
study area, Zhou et al. (2011) revealed that the rapid growth of built-up areas
continuously encroached on the agricultural land, forests, and grasslands from 1992 to
2009 (Zhou and Wang, 2011). Several studies have reported that urban development

has been widely associated with the reduction of green space. For instance, Siddique
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et al. (2022) suggested that 51.32 km? of green spaces were changed into built-up
areas from 1990 to 2020 in Chattogram (Siddique and Uddin, 2022). Moreover,
urbanization is expected to increasingly exert a force on green areas with further
urban expansion (Zhao et al., 2013). At the same time, it is further suggested that
green areas are a stimulus for driving building sprawling explicitly (Koprowska et al.,

2020; Zhou et al., 2024).

Moreover, in the previous research, it was established that buildings are significant
elements of the regulation of the spatial pattern of urban green areas by correlation
and regression analysis methods (Canedoli et al., 2018; Masoudi et al., 2021; Nor et
al., 2017). It was noted by Wu et al. (Wu et al., 2019) that the configuration of green
space stretched less irregularly during the process of urbanization. However, Zhao et
al. (2013) (Zhao et al., 2013) established an expansion and an aggregation of green
areas in China. According to landscape ecology theory, fragmentation is the state of
dividing consistent ecological land, vegetated land, and habitat into smaller isolated
units called patches (Fan and Myint, 2014). Jiao et al. (Jiao et al., 2017) observed that
between 1989 and 2013, a period when green space fragmentation became more
extensive, trends indicated a declining gradient with the distance from the city center.
With the morphological spatial pattern analysis (MSPA), Rogan et al. (Rogan et al.,
2016) evaluated the town-scale forest fragmentation in Massachusetts, United States,
and found that urbanization not only caused green space fragmentation but also

influenced spatial continuity among patches of green space.
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Some studies also indicated that the built-up environment may foster vegetation
growth in green spaces (Jia et al., 2018; Zhang et al., 2023). Zhao et al. (Zhao et al.,
2016) found that 86% of regions across 32 major Chinese cities experienced
vegetation enhancement. According to Jia et al. (Jia et al., 2018), 92.9% of the chosen
377 areas in America have increased vegetation growth. Further, Li et al. (2024)
revealed that the built-up land index has a significant influence on vegetation growth,
such as percentage of landscape (PLAND) and largest patch index (LPI). However, it
is still relatively underexplored how the three-dimensional building morphology index

acts on vegetation growth within green space.

2.4 Relationship between building and urban thermal environments

Buildings have a strong influence on the thermal properties of the underlying surfaces
by reducing latent heat flux and increasing sensible heat flux, thus creating a
fundamental driving factor affecting the urban thermal environment. Much research
has been carried out to reveal how buildings affect the thermal environment. It has
been suggested that buildings have a considerable effect on air temperature (Lan and
Zhan, 2017), land surface temperature (Chen et al., 2020), UHI (Li et al., 2020),

extreme heat (Nahlik et al., 2017), and heatwaves (Ji et al., 2022).

Several building morphology indexes have been found to greatly impact the urban
thermal environment (Han, 2023; Li and Cheng, 2024). Early studies of building
morphology’s effect on the thermal environment mainly focus on the 2D perspective.

2D building morphology indicators include the aggregation index (Al), building
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density (BD), Shannon's diversity index (SHDI), building landscape patch index
(LPI), edge density (ED), contagion index (CI), patch cohesion index (COHESION)),
and landscape shape index (LSI) (Guo et al., 2015; Li et al., 2011, 2016; Yuan et al.,
2021; Zhang et al., 2023). Recently, scholars have concentrated on studying the
relationship between 3D building morphology and the urban thermal environment.
The selected 3D building morphology indices included mean building height (MBH),
sky view factors (SVF), building volume density (BVD), floor area ratio (FAR),
frontal area index (FAI), and shape coefficient (SC) (Hu and Wendel, 2019; Huang
and Wang, 2019; Qiao et al., 2020; Yuan et al., 2024). Tian et al. (Tian et al., 2019)
reported that the volumes of buildings and the cluster spacing have effects on LST.
Wu et al. (Wu et al., 2022) proved that 3D building morphology has a great impact on
the surface heat island intensity. Huang and Wang (Huang and Wang, 2019) revealed

that building heights affected UHI effects by altering wind speed and heat emission.

A series of statistical methods have been used in previous research to explore the
relationship between urban morphology and urban thermal conditions. Chen et al.
(Chen et al., 2014a) conducted cluster analysis, principal component analysis (PCA),
and linear regression model to explore key influencing morphology indicators of LST.
Yuetal (Yuetal, 2021) employed a geographically weighted regression (GWR)
model to determine the effect of vertical urban morphology on UHIs in the
summertime. Many researchers try to use the stepwise multiple linear regression

(SMLR) model, which involves the selection of the best candidate set of independent
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variables to predict the response variables (Yin et al., 2018; Zhou et al., 2017).
However, the SMLR model is unable to estimate individual contributions from
variables while the recognition of nonlinear associations between multi-dimensional
indicators (Hu et al., 2020). In contrast, the boosted regression trees (BRT), eXtreme
gradient boosting (XGBoost), random forest (RF), and convolutional neural networks
(CNN) enable the detection of nonlinear relationships (Belgiu and Dragut, 2016;
Logan et al., 2020; Peng et al., 2021). Shen et al. (Shen et al., 2022) tested the
correlation between surface urban heat island intensity (SUHII) and 2D morphology
indicators by SMLR and RF models, concluding that the latter was more effective (R?
= 0.80) than the SMLR model (R? = 0.75). In addition, Logan et al. (Logan et al.,
2020) reviewed both linear and non-linear models and showed that all the non-linear

models outperformed their linear counterparts significantly.

2.5 Relationship between green space and urban thermal

environments

The cooling effects of green spaces were widely acknowledged by various studies
(Asgarian et al., 2015; Cheung et al., 2022; Ren et al., 2016). Green spaces can
change the thermal environment with mechanisms like evapotranspiration, canopy
shading, and the selective absorption and reflection of solar radiation (Bowler et al.,

2010; Wong and Yu, 2005).

In particular, the coverage of green spaces plays a positive impact on its cooling effect

(Du et al., 2017). It is reported that the cooling effect of green spaces varies
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depending on their spatial morphology (Kong et al., 2014; Li et al., 2013). Some
empirical evidence has revealed that the composition and configuration of green
spaces are important in shaping the thermal environment (Chen et al., 2014b; Xu et
al., 2025). The indexes included total area (TA), percent of landscape (PLAND),
patch density (PD), largest patch index (LPI), edge density (ED), area-weighted mean
shape index (SHAPE AM), area-weighted fractal dimension index, landscape shape
index (LSI) (Berger et al., 2017; Ke et al., 2021; Zhou et al., 2022; Zhou et al., 2017).
Guo et al. (Guo et al., 2019) showed that UHI can be reduced not only by creating and
increasing the amount of green spaces but also by optimizing the spatial configuration
of these green spaces, which is more effective than the first one. By using a variety of
regression methods, Li et al. (Li et al., 2012) identified PLAND as the primary
influencing factor of LST. However, much less effort has been devoted to the

influence of the 3D green space index on thermal environments.

2.6 Development in related studies in subtropical high-density regions

Urbanization and continuing global warming trends have triggered substantial thermal
problems in many regions around the world, especially in subtropical high-density
regions (Lau et al., 2019; Shi et al., 2016; Tan et al., 2017). In the subtropical high-
density regions, the local climate is typified by excessive warmth, high humidity, and
excessive solar radiation, resulting in the retention of excessive heat and moisture (He
et al., 2023). The densely distributed high-rise buildings lead to compact and narrow

urban settings, which restricts natural ventilation and hinders effective heat
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dissipation (He et al., 2022).

Some of these subtropical high-density cities are experiencing severe thermal
problems (Giridharan et al., 2004; Tian et al., 2013; Yee and Kaplan, 2022; Zhang and
Yuan, 2023). Thermal problems experienced in subtropical high-density cities were
more frequent and intense than elsewhere (Aflaki et al., 2017; Fu et al., 2025; Yue et
al., 2019). He et al. (He et al., 2023) suggested that Hong Kong experienced a large
increase in compound hot-wet events from 1961 to 2020 in the territory. The intensity
and occurrence of extreme heat events have been on the rise. Jiang et al. (Jiang et al.,
2021) found that the night-time minimum temperatures in Singapore have increased

significantly between 1982 and 2018.

Building, green space, and thermal environment relationships in subtropical high-
density cities have attracted considerable interest (Giridharan et al., 2007; Giridharan
and Emmanuel, 2018; Jia et al., 2024; Xu et al., 2017). Building and green space
morphology have been identified as significant factors that affect the heat problem in
subtropical high-density cities in prior studies (Chen et al., 2023; Li et al., 2022), with
the sky view factor regarded by most studies as the primary influencing factor (Xu et

al., 2024).

As in other areas, green space is a favorable element to relieve the heat in subtropical
high-density cities (Ng et al., 2012; Ouyang et al., 2024). Green space growth (e.g.,
more urban trees and street vegetation) is usually unrealistic because there is no spare

space in dense cities to increase areas of green space (Tan et al., 2013; Tian et al.,
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2012). Numerous investigations have proved that synergistic design of green corridors
with the buildings, vertical and rooftop greening, together with the modification of the
existing green space spatial pattern, are more applicable for subtropical high-density
regions (Li et al., 2023; Tan, 2006). Moreover, the role of green space quantity and the
spatial structure of green space in the thermal environment of subtropical high-density
cities was investigated by some previous studies (Bai et al., 2024; Guo et al., 2019;
Xu et al., 2022). Masoudi et al. (Masoudi et al., 2019) investigated the effect of spatial
patterns on the cooling effect of green space in Singapore and Hong Kong. They
indicated that patch density (PD), mean Euclidean nearest neighbor distance
(ENN_MN), percentage of landscape (PLAND), area-weighted mean shape index

(SHAPE_AM), and PD are key factors for LST.

Hong Kong, as a typical high-density subtropical city, has attracted plenty of attention
to this research field of interaction between buildings, green space, and urban thermal
environments. Some studies have been conducted on the spatiotemporal
characteristics of UHI, heatwaves, LST, and air temperature in Hong Kong (Chen et
al., 2024; Galdies and Lau, 2020; Hua et al., 2021; Li et al., 2023; Liu and Zhang,
2011; Nichol et al., 2009; Wang et al., 2016; Zheng et al., 2023). Overall, scholars
have reported that the thermal environment in Hong Kong has degraded due to human
activities and climate change. The Hong Kong Observatory collects data showing that
the annual average temperature increase of about 0.12 degrees per decade from 1886

to 2015 (The Hong Kong Observatory, 2016). Studies also reveal a great interest in
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building morphology and its impact on the thermal environment in Hong Kong (Ren
et al., 2020; Wu et al., 2024; Xu et al., 2017). Jia and Wang (Jia and Wang, 2021)
argued that urban cooling techniques should include the building form. Li et al. (Li et
al., 2023) studied about association of 2D/3D building morphology with air
temperature and it was found that SVF was the largest contributor to the variation in
air temperature. There have been significant studies about design measures of green
space to provide an effective cooling effect in Hong Kong. Tan et al. (Tan et al., 2016)
reported that the SVF should be considered during the design of green space in Hong
Kong. Kong et al. (Kong et al., 2017) verified that the trees in high-density urban

areas were more efficient for reducing LST compared with those in sparse areas.

2.7 Urban-rural differences and scale effects

Spatial heterogeneity both in greening and the urban thermal environment across
urban and rural areas was reported in previous studies (Ji et al., 2023; Jia and Zhao,
2020; Yao, 2024). Li et al. (Long Li et al., 2023) discussed a noticeable “V-shaped”
distinction in the pattern of greenness variation between the urban and rural regions.
Considerable differences in vegetation density between urban and rural regions also
created notable temperature differences, which formed the core of the UHI effect
(Chen et al., 2021; Gallo and Tarpley, 1996; Heinl et al., 2015). In addition, the urban
and rural areas are very different in terms of land surface characteristics, climatic
conditions, vegetation composition, community or built environment configuration,

and human activities (Jia et al., 2021; Wang et al., 2024). These differences could lead
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to many distinct interactions between buildings, green infrastructure, and the thermal
environment. Therefore, they necessitate practice-specific planning and management

strategies tailored to urban, and rural environments.

The statistical distributions of geographic processes and variables (such as mean,
variance, and relationships among multi-variables), the spatial patterns of geographic
phenomena (spatial heterogeneity, spatial correlations among different variables), and
the relationships among evolutionary processes and their influencing factors may all
exhibit scale effects. Zhang et al. (Zhang et al., 2023) stated that the building density
index is the most influential factor for LST at the block scale in Chinese megacities.
Han et al. (Han et al., 2023) presented that 2D indicators showed a stronger impact on
LST in warmer seasons, while Ezimand et al. (Ezimand et al., 2021) argued that 3D
urban structures can better explain the changes in LST than 2D structures. This
inconsistency in the literature suggests the need for multi-scale studies with different

indicators to provide more evidence that supports drawing general conclusions.

2.8 Research gaps

Many studies have analyzed the relationship between buildings, green space, and the
urban thermal environment at various scales using different approaches. However, due
to the complex interactions of buildings, green space, and urban thermal environment,

there remain some issues that need to be addressed:

(1) The effect of building morphology, especially that of 3D buildings, on

vegetation greening in green space remains underexplored. Previous studies have
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only examined the relationship between vegetation greening and 2D building
morphology (L. Zhang et al., 2022; Zhao et al., 2016; W. Zhou et al., 2023). For
example, Li et al. (Li et al., 2024) analyzed the nonlinear effects of horizontal
built-up land patterns on vegetation growth in Kunming. However, 3D building
morphology significantly influences local microclimates (Salvati et al., 2019;
Yang et al., 2023), an aspect that remains largely neglected in current research on
vegetation greening.

(2) Moreover, while urban and rural areas differ greatly in their building and
vegetation contexts, the differences in the influence of 2D/3D building indexes on
vegetation greening across urban and rural settings have not been studied.

(3) The individual influence of buildings and green space morphology on the
thermal environment has been investigated extensively. After summarizing the
available literature, we concluded the potential interaction between buildings,
green space, and urban thermal environment (Figure 2.1). However, we found that
there is a lack of research on direct and indirect interaction between buildings,
green space, and urban thermal environments from horizontal and vertical
perspectives, especially at multiple scales (like pixel scale and district scale).

(4) 3D green space landscape pattern was ignored in macroscale and mesoscale
analysis. Only a few studies have examined 3D green space patterns based on on-
site measurement data, whose limited spatial coverage and representativeness
hinder a thorough understanding of the relationship between buildings, green

space, and thermal environments. Previous macroscale and mesoscale analysis
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have mainly centered on the effects of two-dimensional (2D) features of green
spaces on the urban thermal environment, while other important factors like

height, which also serve a significant function in cooling, have been overlooked.
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Figure 2.1 Potential interactions between buildings, green space, and urban thermal

environments
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Chapter 3. Methodology

3.1 Overview

This chapter presents the study areas and outlines the data sources, along with the
methods for data retrieval and processing. It also gives a full introduction and
description of the research methods, which are categorized into five categories: (1)
Study area (Section 3.2); (2) Data and pre-processing (Section 3.3); (3) Method for
the analysis of the impact of 2D/3D building morphology on vegetation greening
(Section 3.4); (4) Method for the analysis of the direct and indirect effects between

building, green space, and urban thermal environments (Section 3.5).

3.2 Study area

Located on the southern seaboard of China (22°08'-22°35’, 113°49'-114°31"), Hong
Kong occupies an area of about 1106 km? (Figure 3.1). Hong Kong is subject to a
subtropical monsoon climate, with temperate winters and summers that are typically
hot, humid, and high precipitation. Hills cover more than 80% of the total area,
leaving only 20% of the space available to accommodate over seven million residents.
Hong Kong has experienced rapid urbanization within the context of limited land
resources since the mid-19th century. This has led to the development of densely
packed high-rise structures and complex building morphology, which substantially
changes the local microclimate in Hong Kong. Moreover, with Hong Kong entering a
mature phase of urban development, large-scale urban expansion has barely expanded

since 2010. Instead, there are areas where existing buildings have remained
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unchanged, with relatively fixed green space. Moreover, high-density impervious
surfaces, densely populated buildings, and highly concentrated populations resulted in
drastic changes in the surface structure and properties in Hong Kong. As a
consequence, these factors cause a more prominent UHI effect and increased surface
temperatures in Hong Kong. Therefore, Hong Kong is a beneficial area for studying
the impact of buildings, green space, and urban thermal environment. By this
measure, the study provides insight into other cities, particularly those that are

increasingly high-density and quickly developing.
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Figure 3.1 Hong Kong as seen from GaoFen-1 high-resolution image (a), distribution
of buildings with heights (b), zoomed-in high-resolution image (c, €), and
corresponding building height data (d, f). Data sources: GaoFen-1 high-resolution

image acquired on 22 Feb 2020 from https://www.cresda.com/.
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3.3 Data and pre-processing

This study analyzed Hong Kong vegetation greening trends from 2010 to 2020 using
16-day composite Enhanced Vegetation Index (EVI) data acquired from the MODIS
Terra Vegetation Index Version 6 product with three spatial resolutions: 250 m
(MOD13Q1), 500 m (MOD13A1), and 1,000 m (MOD13A2). The EVI has been
proven more effective than others in capturing vegetation dynamics because it reduces
the effects of cloud cover, atmospheric aerosols, and signal saturation (Huete et al.,
2002). In this study, annual average EVI was calculated platform using monthly max
composite during the growing season (June 1 to September 30 each year) for the
period 2010-2020, based on the work of Ru et al. (Ru et al., 2018). Data acquisition
was carried out based on the Google Earth Engine (GEE) platform with low-

confidence pixels being excluded utilizing the quality assessment (QA) layer.

Building height data in 2010 and 2020 were generated using building footprint data,
digital surface models (DSM), and digital terrain models (DTM) obtained from the
Hong Kong Common Spatial Data Infrastructure (CSDI) platform

(https://www.csdi.gov.hk/zh-hk). DSM and DTM data were generated by the light

detection and ranging (LiDAR) data of 2010 and 2020. Then, by subtracting the DTM
from the DSM, the first layer called normalized DSM (nDSM) will be generated for
the height of the above-ground feature. Next, the building heights were determined for
2010 and 2020 by executing the zonal statistical analysis by overlaying the

normalized DSM (nDSM) with the building footprint data. Finally, to avoid the
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influence of changes in built-up and vegetation coverage, only areas that did not make

any changes in building footprint and height during the period of 2010-2020 were

selected as the unit of analysis.

Urban and rural areas in 2010 were delineated using the Global Urban Boundary
(GUB) dataset, which is derived from the 30 m-resolution Global Artificial
Impervious Area (GAIA) product (Gong et al., 2020). To match the spatial resolution

of the EVI data, all datasets were resampled into 250 m, 500 m, and 1,000 m.

The following scenes of Landsat 8 Collection 2 Tier 1 remote sensing data were used
to derive LST: row 44/column122, row 45/column122, and row 45/columnl21. Due
to substantial cloud contamination in images during the summer in Hong Kong, the
number of available images is limited. Therefore, this study selected median value
composite images acquired from Google Earth Engine (GEE)

(https://earthengine.google.com/) platform date from 1 June to 30 September 2019,

2020, 2021 was to represent the summer land surface temperature in 2020. These
images have a spatial resolution of 30 meters (bands 10 and 11 have a resolution of
100 meters). All data were projected in the UTM coordinate system based on the
WGS84 datum. All selected pixels used for the inversion of land surface temperature

had a cloud cover of less than 10%.

Green space coverage and height data in 2020 were extracted from the light detection
and ranging (LiDAR) provided by the Hong Kong Civil Engineering and

Development (https://www.cedd.gov.hk/eng/home/index.html). By subtracting the
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DTM from the DSM, the normalized DSM (nDSM) layer was created to represent the
height of the above-ground feature. Then, the vegetation height data in 2020 was

generated by overlaying the green space coverage and nDSM data.

3.4 Method for analysis of the impacts of 2D/3D building morphology

on vegetation greening

3.4.1 Overall workflow
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Figure 3.2 The overall workflow of the first case study

The first case study aimed to investigate the influence of 2D and 3D building
morphology on vegetation greening trends across urban and rural areas in Hong
Kong. The overall research workflow is presented in Figure 3.2. Initially, vegetation
greening trends between 2010 and 2020 were derived. To minimize the effects of land

cover changes on vegetation dynamics, areas that exhibited no variation in building
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height over the study period were selected. Subsequently, static 2D and 3D building
morphology indicators were calculated based on 2020 data. Finally, correlation and
nonlinear analyses were conducted to assess the relationships between building

morphology and vegetation greening across urban and rural areas.

3.4.2 Detection of vegetation greening trends from 2010 to 2020

In this study, vegetation greening trends from 2010 to 2020 were assessed using the
Theil-Sen median method combined with the annual composite EVI data. The Theil—
Sen approach is a robust nonparametric statistical method widely used for detecting
monotonic trends in long-term geospatial time series. Theil-Sen median method
computes the median of all possible pairwise slopes between data points, thereby
reducing sensitivity to outliers. The mathematical formulation of the Theil-Sen
estimator is given as follows:

EVI,—EVI,

EVIgope = Median ( ).2010 <b <a <2020 (1)

where EVIg,p. is the Theil-Sen median, EVI, and EVI, represent the average growing

season EVI values of the years @ and b. EVI,,, =0 means a greening trend, and

EVIgope <<0 means a browning trend in vegetation.

The Mann—Kendall (MK) test was used to test the significance of the vegetation
greening and browning trends. The MK test is one of the most commonly used
methods for trend analysis in time series data. The test statistics are computed as

follows:

S = TRISRguq sgn(EVI, — EVI,) @)
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where n represents the length of the EVI time series; o is the standard deviation of the

test statistic; a trend is considered statistically significant at the 0.05 level if |Z|>1.96.

3.4.3 Delineation of urban and rural areas

A binary approach was adopted for mapping urban and rural areas. The delineation
was based on the Global Urban Boundary (GUB) dataset (Li et al., 2020). This was
derived from the 30 m Global Artificial Impervious Area (GAIA) data, which was
created using Landsat time series imagery and a machine learning algorithm. The
overall accuracy of the GAIA is over 90%, so this dataset can be used reliably for
global impervious surface mapping. The GUB dataset presents strong agreement with
other maps made through other remote sensing approaches and manual analysis that
shows it can also be used effectively for identifying urban-rural boundaries. The GUB
dataset delineates urban areas as the proportion of impervious surface coverage within
a given neighborhood distance exceeds 20%. Rural areas are the regions that fall
outside the delineated definition of city boundaries. The GUB dataset shows great
accuracy in delimiting urban extents, specifically when compared with high-

resolution Google Earth images. Comparatively, other datasets (e.g., NTL-derived
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urban extent) are less accurate and provide less precise urban boundary delineations,
especially in areas of transition that are situated along the urban edge. Due to such
advantages, GUB has been used in numerous studies on urban-rural mapping (Ji et al.,
2023). This study defined urban areas as pixels located within the boundaries of the
GUB dataset, while rural areas were those situated outside these delineated urban

extents.

3.4.4 Calculation of 2D/3D building morphology indexes

Table 3.1 2D/3D building morphology metrics considered in this case study

Dimension Metrics Abbreviations Formula Description
Largest patch LPI LPI = max—(AL-) x 100 Measures the percentage of the total grid
index 9 area comprised of the largest patch

oy 1 —n Measures the ratio between the total area
Building BCR = < Z A,
g i=1

. BCR of buildings within a grid and the total
coverage ratio i
D grid area
Landscape LSl LS] = E Measures the degree of landscape shape
shape index min £ complexity
. ED = i=1 P; Measures the total lengths of all building
Edge density ED -4 oy .
patch edges within a grid
Building 1 Measures the ratio between the total
volume BVD BVD = S Lt volume of the buildings in a grid and the
g =1
density total grid area
SVF
Sky view SVF i Y7, sina; a is t.he v.ertu.:al angle of the horizon in
factor =<am n the direction j
3D
M(:’:an building MEH MBH = i=1 Hi Méas.ures .the me?an height of the
height n buildings in a grid
n Measures the total building floor area
Floor area FAR = Li(c x A) g o
; FAR S compared to the land area it occupies in a
ratio

grid

Note: n is the number of buildings within a grid; Sg is the total area of the grid; Ai, Pi, Vi, Hi,
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c are the area, perimeter, volume, height, and the number of floors for the ith building,

respectively; 0 is the wind direction angle.

A range of indicators has been proposed to characterize building morphology. In this
study, there were selected four 2D building morphology indexes and four 3D building
morphology indexes to represent building morphology. 2D building morphology
indexes included the largest patch index (LPI) (Yuan et al., 2021), building coverage
ratio (BCR) (Zeng et al., 2022), landscape shape index(LSI) (Liu et al., 2017), and
edge density (ED) (Zhou et al., 2011). For the 3D building morphology, the indicators
chosen were the building volume density (BVD), sky view factor (SVF) (Daramola
and Balogun, 2019), mean building height (MBH) (Alexander, 2021), and floor area
ratio (FAR) (Chen et al., 2022). These indicators were selected due to three main
criteria: (1) the ability to describe building morphology from several directions, (2)
the representativeness and commonness of indicators found in existing literature, and
(3) arelatively low degree of redundancy (Li and Wu, 2004; Li et al., 2012). BCR is
frequently used to measure building density. It is widely reported that BCR had a
considerable impact on the microclimate conditions (Rhee et al., 2014; Zhang et al.,
2022). LPI, LSI, and ED are commonly used to estimate spatial features such as
landscape connectivity, shape complexity, and fragmentation. The variations in these
metrics were strongly associated with the distinctions in thermal environments and air
flow (Han et al., 2023). SVF contributes largely to the 3D urban environment analysis

since it substantially affects solar radiation, wind flow, and thermal environment (Li
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and Hu, 2022). Furthermore, BVD, MBH, and FAR were also commonly used to
estimate the spatial characteristics of building volume and height. These metrics have
been identified as pivotal determinants of environmental variables such as air
temperature, land surface temperatures, wind dynamics, and relative humidity (Cao et
al., 2021). The definitions and abbreviations of all selected building morphology
indicators are presented in Table 3.1. The spatial patterns of 2D and 3D building

morphology indexes across scales are presented in Figure 3.3-3.5.
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Figure 3.3 Spatial distribution of 2D/3D building morphology indexes at 250m scale
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Figure 3.4 Spatial distribution of 2D/3D building morphology indexes at 500m scale
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Figure 3.5 Spatial distribution of 2D/3D building morphology indexes at 1000m scale
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3.4.5 Analysis of the impacts of 2D/3D building morphology on vegetation

greening

This study combined traditional statistical techniques with advanced machine learning
methods to investigate the influence of 2D/3D building morphology on vegetation
greening. Initially, Pearson correlation analysis was conducted to assess the linearity
between 2D/3D building morphology metrics and vegetation greening trends. This
coefficient denotes the degree and direction of correlation between building
morphology and vegetation greening (Pearson, 1908). Second, the boosted regression
tree (BRT) model was applied to investigate the effects of 2D and 3D building
morphology on vegetation greening trends in Hong Kong. BRT is a machine learning
method that combines the traditional regression tree technique with boosting that
improves model robustness and predictive accuracy (De’ath, 2007). Unlike standard
linear regression, BRT uses recursive binary splitting to accommodate any
interactions between observers and forms several regression trees to explain
complicated and nonlinear relationships. Model output results consist of the relative
contribution curve and the marginal effect curve. Relative contribution expresses how
each morphological variable contributes to greening trends. Marginal effect
demonstrates how the impact of each variable varies as a function of their magnitude.
In the marginal effect curves generated by the BRT model, the relative influence value
of zero indicates no effect, values below zero indicate negative effects, and values
above zero are positive associations. One of the key strengths of BRT is its ability to

be flexible enough to handle different types of data without making prior assumptions
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about interaction between classes or other variables, while delivering estimates that
can be easily interpreted, such as variable importance, marginal response (Pouteau et
al., 2011). That is why BRT has been widely used in urban ecological studies (Han et
al., 2022; Hu et al., 2020). To reduce the noise introduced by changes in the building
and vegetation coverages, spatial analysis tools were used to detect all areas where the
building footprint and orientation height were the same in the period between 2010
and 2020. The dependent variables were set as the vegetation greening slope in every
unchanging spatial unit. The independent variables were set as eight static 2D/3D
building morphology indexes found within each unchanging unit. After much
debugging and optimization, the final parameters for the BRT model were set:
learning rate = 0.005, bag fraction = 0.5, and tree complexity = 5. For model training,
we employed a 50% random sampling strategy of the dataset while implementing 10-

fold cross-validation to ensure robust performance evaluation.
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3.5 Method for analysis of the direct and indirect effects of 2D/3D

building and green space on urban thermal environments

3.5.1 Overall workflow

,'Step 1: LST and spectral indices derived ﬁom Step 2: 2D/3D building and green space mﬁmmtron ™~ .
Landsat 8 OLI extraction ‘

Landsat — - Mono-window
Tmages —( Pre-processing) — Algorithm

Calculation

Green space Building
coverage footprint

2D/3D building ;
and green space information

< Step 4: Statistical analysis

Improvement of
explanatory power

300m  600m | Stepwise regression | _

i - L e e
!!!igg;gi!; |.'.| Pixelscale ; {213 building) CD bulldmz !

1
1 |
~ury z i - = :
z _~\_information mfoml atl on | Direct/ ||
= . ; 1 . . !
it Terrain f=: — indirect |
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District-scale ! information information |
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Figure 3.6 The overall workflow of the second case study

This study utilizes stepwise regression and path analysis to assess the direct and
indirect influence of 2D/3D buildings and green space on summer land surface
temperatures across pixel and district scales in Hong Kong in 2020 (Figure 3.6). The
first step is the LST inversion and spectral indices extraction by using the Landsat 8
OLI images based on the GEE platform. The second step is the extraction of 2D/3D
building and green space features based on the LiIDAR-derived green space data,
building footprint, and surface elevation data (DSM/DTM). The third step is the
generation of multiple scales: pixel scales and tertiary planning unit (TPU) scales.
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Finally, stepwise regression and path analysis are used to explore the interaction

between buildings, green space, and LST.

3.5.2 Land surface temperature inversion based on Landsat 8 OLI images

With the development of remote sensing techniques, LST has been largely adopted as
an indicator for the thermal environment due to its large coverage area and cheaper
acquisition costs than air temperature data (Chang et al., 2025; Fu and Weng, 2016;
Weng et al., 2014). Hence, this study chose the LST to represent the thermal

environment.

Land surface temperature inversion algorithms are mainly divided into three
categories according to different thermal infrared remote sensing data: single-channel
algorithms, multi-channel algorithms, and split-window algorithms. Single-channel
algorithms include the radiative transfer equation method (Sobrino et al., 2004), the
Jiménez-Muiioz single-channel algorithm (Jimenez-Munoz et al., 2009), and the Qin
Zhihao single-window algorithm (Qin et al., 2001). Multi-channel algorithms mainly
include the gray body emissivity method (Barducci and Pippi, 1996), the day/night
method (Jimenez-Munoz et al., 2009), and the temperature emissivity separation
method (Gillespie et al., 1998). Among them, split-window algorithms are primarily
used for surface temperature inversion with NOAA-AVHRR data, TERRA-MODIS
data, Landsat-TIRS data, and ASTER data. Therefore, the split-window algorithm was
selected for LST retrieval (unit: °C). The formula is as shown in equations (7)—(9):

T, ={a(1—C—D)+[b(1—C—D)+C+D] Ty, — DT,}/C (7)
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C =r1¢e (8)

D=1-D[1-e)1] ©)

where Ty is the derived LST value (°C), The coefficients a and b are defined with
values a =—67.355351 and b = 0.458606. C and D represent intermediate variables.
Tio is the brightness temperature of the 10th band of TIRS. T, is the average
atmospheric action temperature. 7 is the atmospheric transmittance. ¢ is the land

surface emissivity.

3.5.3 Extraction of 2D/3D buildings, green space structure, and controlling

factors

Drawing on previous research, a total of 16 factors were selected as explanatory
variables of summer land surface temperature in this study, including spectral
information, 2D/3D building morphology information, 2D/3D green space structure
information, and terrain and location information. 2D/3D building morphology
information includes building coverage ratio (BCR) (Song et al., 2020), building
volume density (BVD) (Azhdari et al., 2018; Zhou et al., 2022b), building sky view
factor (BSVF) (Li et al., 2021), mean building height (Mean BH) (C. Chen et al.,
2022), and maximum height of buildings (Max_BH) (Chen et al., 2022). 2D/3D green
space structure information includes green space coverage ratio (GCR) (Yao et al.,
2020), green space volume (GVD) (Handayani et al., 2018; Hecht et al., 2008), green
space sky view factor (GSVF) (Chiang et al., 2023), mean green space height

(Mean_GH) (Alexander, 2021), and maximum height of green space (Max_GH)
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(Alexander, 2021). In this study, these indices were carefully selected for three key
characteristics: they can (1) explain building morphology and green space structural
attributes from several perspectives comprehensively, (2) serve widespread and stable
representation in urban environmental studies, (3) have been firmly recognized as
major contributing factors in previous studies (Wang et al., 2025b; Yuan et al., 2024).
BCR stands for building density and has been reported as positively correlated with
LST in the previous (Song et al., 2020). BVD refers to the degree to which the
building utilizes vertical space. It can influence LST by changing wind environments,
shade conditions, and land surface roughness (Wu et al., 2025). BSVF shows the
extent to which the sky is covered by the building, affecting shade and heat
dissipation (Gong et al., 2018; Wang et al., 2025a). Mean BH and Max BH represent
vertical structure features of the building environment from average height and
maximum height perspectives. It can influence the ventilation condition and shading
conditions (Chen et al., 2022). GCR is the density of green space, and it shows the
negative impact on LST. GVD is the density of green space volume (Jia et al., 2024).
GSVF delineates the degree to which the sky is obstructed by green space (Chiang et
al., 2023). GVD and GSVF are associated with evapotranspiration and shading
conditions. Mean GH and Max_GH reflect vertical structure features of green space
from the average height and maximum height perspectives and can impact the shading
effect of green space (Alexander, 2021).

Spectral information includes normalized difference built-up index (NDBI),

normalized difference vegetation index (NDVI), and modified normalized difference
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water index (MNDWI). Terrain and location information includes elevation terrain
model (DEM), slope (SL), and latitude (LAT). We chose spectral information and
terrain and location information as controlling factors in the regression model to
figure out whether 2D/3D building and green space indexes are conducive to
increasing the explanatory power of LST variation compared to factors that are
already widely recognized as having a significant influence on LST. Selected indexes
for spectral, terrain and location information are commonly used and have been
identified as basic impact factors in previous LST-related research. Table 3.2 provides
a detailed description of the selected indexes in this study, and the spatial maps of

those indexes are shown in Figure 3.7-21.
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Table 3.2 The explanatory variables used in this study

Dimension Metrics Abbreviations Formula Description
Normalized . . . .
. NDBI = (SWIR — NIR) Quantifies built-up areas in satellite
difference NDBI (SWIR + NIR) imaces
built-up index £
Normalized
Spectral difference NDVI NDVI = (NIR —R) Quantifies vegetation coverage,
ectra : NIR + R . ..
. pf G vegetation ( ) density, and growth condition
information |
index
Modified
normalized _ (SWIR — NIR) Quantifies water coverage, density
MNDWI = ——— P 5
_ MNDWI SWIR + NIR .
difference ( ) and quality
water index
Buildi 1 Measures the ratio between the total
uildin, =— . oy o . .
8 t' BCR BCR = S ileAl area of buildings within a spatial unit
coverage ratio
8 and the area
Building 1 —n Measures the ratio between the total
volume BVD BvD = gszV" volume of the buildings in a spatial
density unit and the area
2D/3D — S sina . . .
building Building sky BSVE SVF = 21 [1 _ &i=1 j ] a is the vertical angle of the horizon
information View factor " in the direction j
Mean building Mean BH MBH = i=1 BH; Measures the mean height of the
ean =
height - n buildings in a spatial unit
Maximum . .
height of Max BH MAX_BH = max (BH,) Measures the maximum height of the
builds - buildings in a spatial unit
uildings
G 1 —m Measures the ratio between the total
reen space =— . o .
P p GCR GCR = Sy ,-=1GA‘ area of green space within a spatial
coverage ratio
g unit and the area
G 1 —m Measures the ratio between the total
reen space =— . .
| P GVD GVD = Sy ,-=1GV1 volume of the green space in a
volume i )
2D/3D spatial unit and the area
Green space .
green space o vi p GSVE GSVF = 21 [1 _ Zizysin 0‘1‘] a is the vertical angle of the horizon
: . sky view
information . yt m in the direction j
actor
Mean green Mean GH MGH = Xit, GH; Measures the mean height of the
ean =
space height - mn green space in a spatial unit
Maximum Max GH MAX_GH = max (GH,) Measures the maximum height of the
ax -
green space - green space in a spatial unit
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height

Digital
elevation DEM
model

Terrain and

location Slope SL
Latitude LAT

Slope
DTM, — DTM,

= Arctan(
\/(Ya—YD)Z + (xa—xb)z

)

Measures the height of the land's
surface over a spatial unit

Measures the steepness or incline of
a terrain surface in a spatial unit

Note: n is the number of buildings within a spatial unit; m is the number of green space pixels

within a spatial unit; Sg is the total area of the spatial unit; BAi, BVi, BHi, are the area,

volume, and height for the ith building, respectively; GAi, GVi, GHi, are the area, volume,

and height for the ith green space pixel; 0 is the wind direction angle. a and b are the pixels

needed to calculate the slope; ya, y» and xa, X» are the horizontal and vertical project

coordinates.
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Figure 3.7 Spatial distribution of NDBI at 30m (a), 300m (b), 600m (c), district (d)
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Figure 3.8 Spatial distribution of NDVI at 30m (a), 300m (b), 600m (c), district (d)
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Figure 3.9 Spatial distribution of MNDWTI at 30m (a), 300m (b), 600m (c), district (d)

Figure 3.10 Spatial distribution of BCR at 30m (a), 300m (b), 600m (c), district (d)
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Figure 3.11 Spatial distribution of BVD at 30m (a), 300m (b), 600m (c), district (d)
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Figure 3.12 Spatial distribution of BSVF at 30m (a), 300m (b), 600m (c), district (d)
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Figure 3.13 Spatial distribution of Mean_BH at 30m (a), 300m (b), 600m (c), district (d)
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Figure 3.14 Spatial distribution of Max_BH at 30m (a), 300m (b), 600m (c), district (d)
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Figure 3.15 Spatial distribution of GCR at 30m (a), 300m (b), 600m (c), district (d)
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Figure 3.16 Spatial distribution of GVD at 30m (a), 300m (b), 600m (c), district (d)
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Figure 3.17 Spatial distribution of GSVF at 30m (a), 300m (b), 600m (c¢), district (d)
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Figure 3.18 Spatial distribution of Mean GH at 30m (a), 300m (b), 600m (c), district (d)
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Figure 3.19 Spatial distribution of Max_GH at 30m (a), 300m (b), 600m (c), district (d)

N (a)

o, as
)
i DEM

M
T 957(m) o.00 I 0 913(m)

D
2.0 I

DEM

o0 T 865(m) 250 I T 439(m)

Figure 3.20 Spatial distribution of DEM at 30m (a), 300m (b), 600m (c), district (d)

50



Figure 3.21 Spatial distribution of Slope at 30m (a), 300m (b), 600m (c), district (d)

3.5.4 Scale analysis

To analyze whether research findings are influenced by the spatial scales and support
multi-scale urban planning, a multi-scale analysis was carried out by utilizing the
pixel scales and district scale to examine the performances of 2D/3D building and
green space in improving the explanatory power of LST variations and the direct and
indirect impacts of 2D/3D building and green space on LST. We created 300mx300m
and 600mx600m fishnets to conduct the analysis at pixel scales and employed the
vector data of tertiary planning units provided by the Hong Kong government to
represent the district scale. We chose these three scales for the following reasons: (1)
the initial spatial resolution of the derived LST was 100 m, scales based on multiples

of initial spatial resolution can help to maximize data accuracy and reduce data errors;
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(2) original 100m grid size may introduce more noise in the data due to higher surface
heterogeneity; (3) if the spatial is too large, the number of samples will be limited and
lead to biased and unreliable results; (4) several local studies have indicated that
buildings within 300m presented strongest autocorrelation in Hong Kong (Lau et al.,
2015; Zheng et al., 2018). Based on this, we further extended the analysis to a 600m
scale; (5) since policy and planning decisions are often made based on administrative
boundaries, this study also conducted analysis at the district scale to better support
decision-making. LST in each analysis unit across different spatial scales was
represented by the average summer LST in 2020. The explanatory variables shown in

Table 3.2 in each unit at different scales were calculated using ArcGIS Pro.

3.5.5 Statistical analysis

A stepwise multiple linear regression model was utilized to examine the ability of
2D/3D building and green space indexes to improve the explanatory power of LST
variations across different scales. The stepwise multiple linear regression model is an
advanced version of the traditional multiple linear regression. It combines the forward
and backward selection approach to identify the best-fitting model while avoiding
collinearity (Efroymson, 1960). Given the potential collinearity among the proposed
multiple independent variables (Table 3.2), and to ensure the best goodness of model
fitting, the stepwise multiple linear regression model is considered the most suitable
regression model for evaluating the capability of 2D/3D building and green space

morphology in improving explanatory power of LST variation. The dependent
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variable of stepwise multiple linear regression in each spatial unit was average
summer LST. The independent variables were the proposed spectral indexes, 2D/3D
building structures, 2D/3D green space structures, and terrain in each spatial unit. We
perform the stepwise multiple linear regression with the “MASS” package of R. First,
we only included spectral indexes and terrain as independent variables and recorded
the Adjusted R? for the fitted model. Then, we added the 2D building structure, 2D
green space structures, 3D building structures, 3D green space structures, 2D/3D
building structures, 2D/3D green space structures, and 2D/3D building and green
space structures gradually to evaluate the performance of the 2D/3D building and
green space structures in improving the explanatory power of LST variations, which

was represented by the improved Adjusted R?.

Furthermore, the path analysis (PA) method was conducted at each spatial scale to
investigate the direct and indirect impacts of the 2D/3D building and green space on
summer LST. Unlike traditional regression models, path analysis allows the detection
of the direct and indirect impacts of independent variables on dependent variables and
the investigation of interactions between independent variables (Wright, 1934). Path
analysis consists of the construction of a hypothetical model and the analysis of the
built hypothetical model. The created prior causal conceptual structure is shown in
Figure 3.22. First, we selected the BCR to represent the 2D building structure, BVD
to represent the 3D building structure, GCR to represent the 2D green space structure,

and GVD to represent the 3D green space structure for their higher standardized
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coefficient. We calculated the average of DEM and slope to represent the terrain.
Next, we assumed that both the terrain, 2D building structure, 3D building structure,
2D green space structure, and 3D green space structure directly impact the LST. Then,
we hypothesized that terrain can indirectly affect the LST by influencing the 2D/3D
building and green space structure. Finally, we hypothesized that 2D building
structures and 3D building structures indirectly affect LST by influencing 2D and 3D

green space structures.

2D Building
Structure

3D Building
structure

Terrain

2D Green space -

structure

3D Green space
structure

Figure 3.22 The created prior causal conceptual structure of path analysis

54



Chapter 4. Impacts of 2D/3D building morphology on vegetation

greening

4.1 Overview

In this chapter, we present the preliminary results and analysis (Section 4.2), and
discussion (Section 4.3) part of the impact of 2D/3D building morphology on
vegetation growth. Further, we provide the spatiotemporal patterns of vegetation
greening trends from 2010 to 2020 (Section 4.2.1), the correlation between 2D/3D
building morphology and vegetation greening (Section 4.2.2), and the relative
contribution and marginal effects of 2D/3D building morphology on vegetation
greening trends (Section 4.2.3). In the Discussion part, we discuss the complexity of
the building morphology - vegetation greening relationship (Section 4.3.1),
distinctions in urban and rural greening mechanisms (Section 4.3.2), and limitations

and future research directions (Section 4.3.3).

4.2 Results

4.2.1 Spatial-temporal patterns of vegetation greening trends

Overall, a widespread increase in vegetation greening was observed across Hong
Kong between 2010 and 2020, with approximately 69.10% of the area exhibiting a
positive greening trend. This trend was more evident than that observed in urban
regions across all three spatial scales. As the scale increases, the trend of vegetation

greening becomes more apparent.
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Figure 4.1 Spatial pattern of vegetation greenness changes trend at 250m (a), 500m

(c), and 1000m (e) scales, and greenness change slope at 250m (b), 500m (d), and
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1000m (f) scales

Specifically, at the 250m scale, the overall EVI trend exhibited a positive slope of
0.0015. Areas exhibiting significant greening and significant browning accounted for
11.89% and 4.30% of the total area, with mean slopes of 0.0078 and -0.0083,
respectively. Areas exhibiting non-significant greening and non-significant browning
comprised 52.23% and 31.42% of the total area, respectively, reflected by average
EVI slopes of 0.0034 and -0.0027 (Table 4.1). At the 500m scale, the study area
exhibited an overall positive vegetation trend (mean slope = 0.0026), characterized by
marked spatial heterogeneity. 19.57% of the area demonstrated statistically significant
greening (mean slope = 0.0068), contrasting with 1.58% showing significant
browning (mean slope = -0.0073). More extensive but less pronounced changes were
observed in non-significant vegetation changes, where 59.48% of pixels displayed
greening tendencies (mean slope = 0.0029) and 19.38% exhibited browning trends
(mean slope =-0.0019). Vegetation trend analysis at the 1km spatial scale also
demonstrated an overall enhancement in greenness (mean EVI slope = 0.0030).
19.63% of the study area showed statistically significant improvement (mean slope =
0.0076) and 1.15% exhibited notable degradation (mean slope = -0.0067). 58.88% of
pixels displayed non-significant greening trends (mean slope = 0.0034) and 20.20%

showed insignificant browning trends (mean slope = -0.0017).
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Table 4.1 Overall vegetation changes trends in built-up environments

Scale Classification Criterion Percentage (%) Averaged Slope
Significant greening |Z|>1.96, slope>0 11.89 0.0078
Significant browning |Z|>1.96, slope<0 4.30 -0.0083
MOD13Q1
(250m) No change slope=0 0.16 0
m
Not significant greening |Z|<1.96, slope>0 52.23 0.0034
Not significant browning |Z|<1.96, slope<0 31.42 -0.0027
Significant greening |Z|>1.96, slope>0 19.57 0.0068
Significant browning |Z|>1.96, slope<0 1.58 -0.0073
MOD13A1
No change slope=0 0.04 0
(500m) . :
Not significant greening |Z|<1.96, slope>0 59.48 0.0029
Not significant browning |Z|<1.96, slope<0 19.38 -0.0019
Significant greening |Z|>1.96, slope>0 19.63 0.0076
Significant browning |Z|>1.96, slope<0 1.15 -0.0067
MODI13A2
No change slope=0 0.14 0
(1000m) . .
Not significant greening |Z|<1.96, slope>0 58.88 0.0034
Not significant browning |Z|<1.96, slope<0 20.20 -0.0017

Substantial differences in both the average EVI slope and the proportion of vegetation
greening and browning were observed between urban and rural areas (Table 4.2). At
the 250m scale, urban areas exhibited a greening extent of 62.71%, with a
corresponding mean slope of 0.0035, while browning occupied 37.22% with an
average negative trend of -0.0031. Rural areas exhibited a higher proportion of
vegetation greening (65.38%) and a greater degree of greening, as reflected by a mean
EVI slope of 0.0050. Conversely, the proportion of browning was relatively smaller
(34.60%), yet its average slope was slightly higher (-0.0037). At the 500m scale, in
urban areas, greening trends covered 80.56% of the area with a mean slope of 0.0049,
while browning occupied 19.44% (average slope: -0.0046). In rural areas, the
percentage of greening was 78.09% with higher slope values in contrast to urban areas
(0.0065), and the browning percentage was 20%, showing a greater degree of
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browning compared to urban areas. At the 1000m scale, urban areas exhibited 80.56%
vegetation greening with a slope of 0.0057, whereas vegetation browning made up
19.44% with a browning slope of -0.0033. In contrast, rural regions displayed 78.26%
greening (0.0069) in contrast to urban areas, and 21.45% browning with a browning

slope of -0.0054.

Table 4.2 Features of overall vegetation changes in urban and rural areas

Scale Greenness and its changes indexes Urban Rural
Averaged slope of greening 0.0035 0.005
MOD13Q1 Averaged slope of browning -0.0031 -0.0037
(250m) Percentage of greening (%) 62.71 65.38
Percentage of browning (%) 37.22 34.60
Averaged slope of greening 0.0049 0.0065
MOD13A1 Averaged slope of browning -0.0046 -0.0070
(500m) Percentage of greening (%) 80.56 78.09
Percentage of browning (%) 19.44 21.85
Averaged slope of greening 0.0057 0.0069
MOD13A2 Averaged slope of browning -0.0033 -0.0054
(1000m) Percentage of greening (%) 79.17 78.26
Percentage of browning (%) 20.83 21.45

4.2.2 Correlation between 2D/3D building morphology and vegetation greening

trends

As shown in Table 4.3, the Pearson correlation analysis revealed a relatively low yet
statistically significant relationship between 2D/3D building morphology and
vegetation greening trends at the 250 m and 500 m spatial resolutions, with correlation
coefficients ranging from -0.20 to 0.10. The correlation results at the 1000m scale
were not presented because most of the indexes were not significantly correlated with
the vegetation greening trends. Furthermore, at the 250m scale, 2D building

morphology exhibited a stronger correlation with vegetation greening compared to 3D
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morphology, as indicated by higher mean absolute correlation coefficients of 0.19 and
0.12, respectively. Specifically, the SVF demonstrated a low positive correlation with
vegetation greening trends, reflected by a correlation coefficient of 0.10. In contrast,
BCR, LPI, LSI, ED, BVD, and FAR were negatively correlated with greening,
whereas MBH was not significantly related to vegetation greening trends. At the
500m scale, the correlation between 2D building morphology and vegetation greening
remained stronger than that of 3D morphology. However, the correlation degree with
2D morphology indexes declined compared to the 250 m scale, while the correlation
with 3D morphology indexes increased. Similarly, the SVF showed a positive
correlation with vegetation greening, while variables such as BCR, LPI, LSI, ED,

BVD, and FAR were negatively correlated with vegetation greening.

Table 4.3 Correlation between vegetation greening and 2D/3D building morphology

Scale 2D building Correlation 3D building Correlation
morphology coefficient morphology coefficient
BCR -0.21%* BVD -0.17**
LPI -0.16%* SVF 0.17**
MOD13Ql LSI -0.17** MBH -0.13**
(250m) ED -0.20%* FAR -0.17**
Average absolute 0.19 Average absolute 0.16
value of 2D metrics value of 3D metrics
BCR -0.17** BVD -0.11%*
LPI -0.11%* SVF 0.18%*
MODI13A1 LSI -0.15%* MBH -0.08
(500m) ED -0.15%* FAR -0.11%*
Average absolute 0.15 Average absolute 0.13
value of 2D metrics value of 3D metrics

Note: ** means the level of significance at 0.01.

60



4.2.3 Impact of 2D/3D building morphology on vegetation greening trends

4.2.3.1 Relative contribution of 2D/3D building morphology on vegetation

greening trends

As illustrated in Figures 4.2 and Figure 4.3, the relative contribution of 2D and 3D
building morphology on vegetation greening trends exhibited notable differences
between urban and rural settings at both the 250 m and 500 m spatial scales. At 250m
scale, in urban areas, the SVF emerged as the most influential variable, contributing
23.60%. Subsequent contributors included the LPI at 20.10%, MBH at 19.00%, BVD
at 12.00%, LSI at 11.50%, and ED at 13.30%. FAR and BCR made only negligible
contributions to vegetation greening. In rural areas, LSI had the greatest impact on
vegetation greening (27.30%). The second and third most influential variables were
the SVF (22.80%) and MBH (17.50%), respectively. The contributions of ED, LPI,

BVD, FAR, and BCR showed only minor contributions to vegetation greening.

61



Urban Rural

30 30
25 25
—~ —~ ]
=X 20 =© 20
S— — ~
= = N
.S =
= 15 5 15
0 el
2 2
g 10 5 10
O o
5 5 I H H
0 [ 0

BCR LPI LSI ED BVD SVF MBH FAR BCR LPI LSI ED BVD SVF MBH FAR
Building morphology indexes Building morphology indexes

Urban Rural

H 2D indexes
, , ) H 3D indexes
0 20 40 60 80 0 20 40 60
Contribution(%o) Contribution(%o)

Figure 4.2 Relative contributions (%) of 2D/3D building morphology to vegetation

greening trends in urban and rural areas at 250m scale

At the 500m scale within urban environments, SVF was the most significant
contributor to vegetation greening, contributing 32.7%, followed by the BCR at
17.2%, MBH at 14.7%, LSI at 12.1%, BVD at 9.5%, LPI at 7.75%, and ED at 5.3%.
The influence of FAR was comparatively minor. Similarly, in rural areas, SVF was
also the leading factor influencing vegetation greening with a contribution of 39.1%.
MBH, LPI, and LSI contributed 16.6%, 12.1%, and 11%, respectively. The relative

contributions of other indicators (BCR, ED, BVD, and FAR) were all below 10%.
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Figure 4.3 Relative contributions (%) of 2D/3D building morphology to vegetation

greening trends in urban and rural areas at 500m scale

The 3D building morphology had stronger contributions to vegetation greening than
2D indexes both in 250m and 500m scales. This pattern was more profound in urban
areas at the 250m scale. The relative contributions of 2D and 3D building morphology
to greening were 42.5% and 57.5% in urban areas, respectively. In rural areas, 2D
building morphological indicators accounted for 46.20% of the contribution to
greening, while 3D building morphology metrics contributed 53.8%. However, at the
500m scale, the phenomenon that 3D building morphology contributes more than 2D
building morphology was more profound in rural areas. In rural areas, 2D and 3D
building morphology indicators accounted for 35.8% and 64.2% of total morphology
contribution to greening, respectively. In urban areas, 2D building morphological
indicators accounted for 42.30% of the total morphology contribution to greening,

while 3D indicators occupied 57.7% of the total morphology contribution to greening.
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4.2.3.2 The marginal effect of 2D/3D building morphology on vegetation greening

trends

To investigate the nonlinear influence of individual building morphology indicators
on vegetation greening, we further examined their marginal effects in urban and rural
contexts, as illustrated in Figures 4.4 and 4.5, respectively. The marginal effects
derived from the BRT model reveal how variations in 2D and 3D building
morphology indicators influence vegetation greening. SVF, LPI, MBH, and ED
displayed similar marginal effect trends in both urban and rural contexts. The effect of
SVF on greening transitioned from negative to positive at 0.82 in urban and 0.88 in
rural areas. This implies that sky visibility of around 80% supports vegetation
development. LPI had a positive effect on vegetation greening below 15 in urban and
below 5 in rural areas but became negative beyond these values. MBH shifted from a
negative to a slightly positive influence at 35 m (urban) and 12 m (rural). ED showed
a positive impact up to 0.037 m/m? in urban and 0.006 m/m? in rural areas, with a
negative effect thereafter. The marginal curves of BVD and LSI exhibited distinct
patterns across urban and rural environments. In urban settings, BVD exhibited a
positive influence on vegetation greening when values were below 3 m*/m?, turned
negative between 3 m*/m? and 12 m?*/m?, and became negligible beyond 12 m3*/m?.
This suggests that maintaining BVD within 0.1-1.3 m*/m? represents the optimal
range for promoting vegetation development in urban settings. In rural areas, BVD

exhibited a negative effect on greening when lower than 0.1 m?/m? and shifted to a
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positive influence when surpassing 1.3 m?*/m?. Therefore, for rural areas, the favorable
conditions for greening occur when BVD values are maintained within the 0.1-1.3
m?/m? range. LSI transitioned from negative to positive influences on greening when
exceeding 2.2 in urban areas. In rural areas, the positive effect emerged at 1.05,
peaked at 1.2, and became negative when LSI exceeded 3.65. LSI quantifies the
geometric complexity of building forms. A higher landscape shape index (LSI) value
reflects greater irregularity and complexity in building geometry. Therefore, a
moderate degree of building shape complexity is favorable for vegetation greening
(2.2-3.3 times the geometric complexity of a square in urban areas and 1.05-3.65
times in rural areas). Exceeding these levels is likely to constrain vegetation growth.
The impacts of FAR and BCR on greening were minimal across both urban and rural

settings.
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Figure 4.4 The marginal effect of 2D/3D building morphology on the vegetation

greening in urban areas at 250m scale
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Figure 4.5 The marginal effect of 2D/3D building morphology on vegetation greening

in rural areas at 250m scale

The marginal effects of 2D and 3D building morphology on greening at 500m scale in
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urban areas are presented in Figure 4.6. The marginal effect of SVF shifted from
negative influence to positive influence at the threshold of 0.84. The larger the SVF,
the stronger its positive impact on vegetation greening. BCR showed a positive effect
on greening when it was smaller than 0.3 and then presented a negative impact on
vegetation greening. MBH initially showed a negative effect and transformed to a
positive effect at the breakpoint of 11m and eventually tended towards having no
impact on vegetation greening. LSI presented a negative impact before reaching the
threshold of 9.5 and becomes positive once this threshold is exceeded, indicating that
more complex building morphologies benefit vegetation greening. The influence of
BVD on vegetation greening transitions from a positive effect to having negligible
impact. The marginal effect of LPI transitioned from positive to neutral upon reaching
a threshold of 0.025, indicating that greater fragmentation in the built landscape
promotes vegetation growth. The influence of ED and FAR on greening is relatively

weak, with no clear trends evident.
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Figure 4.6 The marginal effect of 2D/3D building morphology on the vegetation

greening in urban areas at 500m scale
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The marginal effects curve of 2D/3D building morphology on greening at 500m scale
in rural areas is presented in Figure 4.7. The marginal effects of SVF and MBH
displayed similar trends in contrast to urban areas. Specifically, in rural areas, SVF
shifted from a negative impact on vegetation growth to a positive effect at a threshold
of 0.92. The larger the SVF, the stronger its positive impact on vegetation greening.
MBH initially presented a negative effect and when its value exceeded 13m, it
appeared to have no impact on vegetation greening. The marginal effects of LPI, LSI,
and BCR exhibit opposite trends compared to urban areas. LPI first showed a positive
effect on vegetation greening when its value was below 0.005, and after this value, the
LPI tended to not affect vegetation greening. LSI has undergone a transition from a
positive effect to a negative effect at the threshold of 12. This indicates that in rural
areas, simpler building shapes and lower degrees of building fragmentation are more
conducive to promoting vegetation growth. BCR illustrated a transition from a
negative impact to a slight positive impact. An appropriate layout of building density

may be more conducive to promoting vegetation growth.
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Figure 4.7 The marginal effect of 2D/3D building morphology on vegetation greening

in rural areas at 500m scale
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4.3 Discussion

4.3.1 The complexity of building morphology - vegetation greening relationship

While previous research has primarily focused on the relationship between vegetation
greening and factors such as CO: fertilization (Keenan et al., 2013; Ukkola et al.,
2016), climate change (Keenan and Riley, 2018; Nemani et al., 2003), land cover/land
use transitions (Shen et al., 2023), and nitrogen deposition (Greaver et al., 2016), our
study emphasizes the significant role of 2D and 3D building morphology. By
employing Pearson correlation analysis and the BRT model, we provide robust
evidence that building morphology is closely linked to vegetation growth dynamics. A
relatively low but significant correlation was found. This finding indicates that 2D
and 3D building morphology may have a moderate relationship with vegetation
growth, but it represents only one of several contributing factors. Other environmental
and anthropogenic variables also play critical roles. Nonetheless, further investigation
into the impact of urban morphological features on vegetation greening remains
essential for developing a more holistic understanding of the drivers behind greening

dynamics.

Hong Kong is a typical compact city, with high-rise, high-density buildings and
extremely limited land for green space in a subtropical climate zone. Existing research
conducted in Hong Kong mostly focused on green space dynamics induced by
urbanization (Chau and Law, 2023; Feng and Zeng, 2022; Wan and Shen, 2015),

climate factors for green space conditions (Feng et al., 2023), and the influence of
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green space on microclimate and human health (Li et al., 2023; Wang et al., 2016).
Considerable studies have explored the relationship between slope, soil quality, and
features of green space on vegetation growth conditions and generally found that the
plants in green areas often suffer from substantial growth challenges because of the
overcrowded ground (Jim, 1998; Tian et al., 2012). However, few have reported the
impact of 2D and 3D building morphology on vegetation greening in Hong Kong. In
contrast, our study addresses this research gap by investigating the influencing
mechanisms of the 2D/3D building environment on vegetation greening, offering a
new insight to understanding vegetation greening drivers. Therefore, this study
expands the current research framework on the drivers of vegetation greening but also
provides practical insights into the affecting elements of vegetation greening in

densely packed urban environments like Hong Kong.

Our findings implied that the impact of 3D building morphology indexes on greening
was stronger than 2D indexes. 3D indexes had a more essential impact on the urban
climate environment than 2D building morphology was also proved by Cao et al. (Cao
et al., 2021). Therefore, the consideration of vertical building morphology in the
urban climate and vegetation greening analysis should be highlighted and more 3D
building morphology indexes should be developed for urban climate studies in the
future. An interesting phenomenon observed was that, based on arguments from
previous related studies, the BCR was expected to affect vegetation greening trends.

However, our results showed that despite being a key morphological indicator, BCR
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appeared to have little to no measurable impact on vegetation greening. Also, the
impact of 3D building morphology indicators on greening is greater than 2D
indicators (Figure 4.2). A possible explanation for this finding could be the inclusion
of 3D indicators in the regression model. These indicators provide a more detailed
description of building morphology features. Our results point out the importance of
incorporating an assessment of 3D building morphology on vegetable greening. Given
the complexity of the built environment, future urban climate research must address

achieving more physically representative visibility for 3D morphological indicators.

In addition, we found that the 2D/3D building morphology-vegetation greening
relationship is not linear but shows a nonlinear pattern that differs from the monotonic
positive or negative correlation suggested by some studies. Several critical thresholds
were identified within the building morphology-to-vegetation greening association,
such as those where the effect switches from positive to negative as well as those
where the effect reaches its maximum. These thresholds yield important insights into
the complex connections between building morphology and greening, pointing to

significant potential for sustainable urban planning.

In addition, these nonlinear patterns imply that optimal thresholds exist for building
morphology indicators that optimize the vegetation greening effect. Marginal curves
showed that SVF and LSI shifted from being negative to positive to vegetation
greening. These results mean that greater SVF and LSI lead to vegetation greening.
SVF denotes sky visibility at a specific site. A higher value of SVF allows more
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exposure to solar radiation and can provide efficient atmospheric ventilation (Cao et
al., 2021; Chatzipoulka et al., 2018). The effect of LPI and ED was changed from a
positive to a negative beyond certain thresholds. The LPI thresholds were 15 (urban)
and 5 (rural), while those for ED were 0.037 and 0.006, respectively. LPI is the
proportion of the largest building patch and serves as an indicator of spatial
connectivity. The concentration of large, continuous built-up areas (LPI>15 in urban
areas, LPI >5 in rural areas) could help to reduce vegetation greening. This may be
attributed to the fact that larger building clusters can decrease available space for
vegetation and hinder air circulation, thereby potentially limiting vegetation greening.
ED quantifies the total length of building edges relative to the total area, representing
the level of spatial fragmentation of buildings. When ED is below 0.037 m/m? in
urban areas and below 0.006 m/m? in rural areas, it would be beneficial for vegetation
growth, while greater spatial fragmentation of buildings adversely impacts vegetation

greening.

4.3.2 Differences in urban and rural greening mechanism

Our study reveals significant differences in greening trends and their driving factors
along the urban-rural gradient. First, rural regions exhibited a greater vegetation
greening degree in contrast to urban regions (Table 4.2). Such urban-rural disparities
may lead to unequal distribution of ecosystem services provided by vegetation,
thereby intensifying climate and ecological risks in urban areas, such as heat hazards,

drought risk, and pollution exposure (Coleman et al., 2021; Cueva et al., 2022; Li et
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al., 2024). Hence, assessing different patterns of vegetation greening across urban and
rural areas, and identifying potential determinants of such difference will be crucial to
mitigate climate and ecological issues under the context of rapid urbanization.
Second, we observed a significant difference in the influence features of 2D/3D
building morphology on vegetation greening along urban-rural gradient. SVF was the
most influential factor in urban environments, while LSI had the strongest effect on
vegetation greening in rural areas. This observation highlights the critical need to
examine urban-rural disparities. Urban-rural differences were also evident in the
marginal effects of 2D and 3D building morphology on vegetation greening.
Specifically, the turning points of 2D and 3D building morphology indices varied
between urban and rural areas, providing valuable insights for context-specific
morphological optimization. Additionally, LSI exhibited contrasting effects in urban
and rural settings. These phenomena both underline the different influencing factors
and characteristics for vegetation greening in urban and rural areas, which should be
paid attention to in the future. These findings would provide actionable guidance for
sustainable building morphology design and emphasize the importance of

differentiated planning strategies across urban and rural contexts.

4.3.3 Policy implications

Investigating the impact of 2D and 3D building morphology on vegetation greening is
essential for fostering green, resilient, and sustainable urban environments, thereby

contributing to the Sustainable Development Goal (SDG) 11 (Sustainable Cities and
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Communities). This study provides evidence that the 2D and 3D building morphology
exerted an influence on vegetation growth. Our findings deepen our understanding of
the characteristics and extent of building morphology that affected the urban
ecosystem. Also, this study provides practical information on optimizing building
morphology for the planning of greener cities and urban renewal, particularly in high-

density cities similar to Hong Kong.

From the 1999, the Hong Kong government has embarked on massive greening
programs, such as the Greening Master Plans (GMPs) raised by the Civil Engineering
and Development Department (CEDD). Despite the achievement, current greening
strategies and policies in Hong Kong have overlooked the building morphological
factors in greening frameworks, which are important for the healthy growth of plants.
This study offers valuable insights into the integration of building morphology with
greening projects, which would help the local greening program achieve its objective
of “right-species-at-the-right-place”. Specifically, in the context of green city
planning, planners and policymakers can promote greener environments by
optimizing building morphology from 2D and 3D perspectives. This study suggests
that incorporating metrics such as sky view factor (SVF) and landscape shape index
(LSI) into the greening program could district-level planning could complement
existing GMPs by optimizing building layout and selecting locations with suitable
morphology environments for plants. For example, the relative contribution would

provide policymakers with factors to prioritize, while the nonlinear association and
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turning points existing in the relationship between 2D/3D building morphology and
vegetation greening captured by the BRT method can offer essential information into
key nodes for building layout planning. Findings on urban-rural disparities provide a
basis for the differentiated optimization of building morphology, contributing to more
effective sustainable development practices. Rural areas serve as reserves for future
urban expansion so that our findings from urban environments can provide essential
references for rural areas poised for urbanization. Specifically, for urban areas, as the
SVF is an indispensable element, it is crucial to focus on achieving optimal SVF
design through judicious building layout while addressing the developmental needs of
the region. For example, according to the marginal effect curve, it is advisable to
maintain the SVF above 0.82, as values at or above this threshold can effectively
contribute to the greening of vegetation. For rural areas, LSI is the primary
consideration. It is optimal to maintain LSI within 1.05-3.65 to exert its positive
effect, and when LSI equals 1.2, it has the greatest positive impact on greening in

rural areas.

4.3.4 Limitations and future research directions

Despite the valuable insights provided, this study has certain limitations. First, based
on data from the Hong Kong Herbarium, more than 3,300 vegetation species have
been identified in Hong Kong. Disparities of the response of vegetation greening to
building morphology may also exist in various vegetation types. Due to the

unavailability of high-resolution vegetation type data in Hong Kong, this study was
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unable to account for the potential influence of vegetation types on the response of
vegetation greening to 2D/3D building morphology. This limitation restricts us from
discovering how the renewal of buildings resulted in changes in greenness. In
addition, due to the lack of high-resolution mapping data on building heights, it
results in limiting this study to Hong Kong, which restricts the generalizability of the
findings. To overcome this limitation, future research should develop long-term, high-
resolution building height data that capture continuous temporal changes. Second, this
study focused on only one representative index of vegetation greenness due to its
accuracy and widespread use in vegetation trend analysis (Fan et al., 2023; Zhou et
al., 2023). Numerous other indices also can be used to characterize vegetation
conditions, such as NDVI, NPP, Gross Primary Productivity (GPP), and the more
recently introduced kernel NDVI (kNDVI) (Camps-Valls et al., 2021; Wang et al.,
2020; Yuan et al., 2007). Studies on vegetation growth analysis have demonstrated
that their results are not always consistent, potentially leading to varying conclusions
depending on the index used (Ding et al., 2020; D. Zhou et al., 2023). For this reason,
further studies should consider multiple vegetation indices that summarize various
ecological features. Third, the classification of urban and rural areas in this study is
based on the Global Urban Boundaries (GUB) data only. GUB data provides high
precision and accurately classifies urban and rural areas according to the 30m
artificial impervious surfaces dataset, which is relevant to our study on building
morphology. However, the classification of urban and rural areas can vary

substantially depending on the criteria used for classification, e.g., population, gross
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domestic product, and nighttime light (Florczyk et al., 2019; Li and Zhou, 2017).
Since different kinds of datasets and classifications may show different responses,
future research must take multi-dataset integration to achieve a more comprehensive
evaluation of urban-rural differences. Fourth, this study combines statistical
correlation analysis with machine learning model to assess the response of vegetation
greening to 2D/3D building morphology. The combined approach helps mitigate the
randomness of results compared to relying on a single method. Although the BRT
model has been identified as a powerful method for nonlinear relationship detection,
the "black box" characteristics of BRT, such as the absence of statistical significance
testing and lack of interpretability may potentially introduce uncertainties to the
results. Finally, this study has provided only a preliminary exploration of the
nonlinear relationship between 2D/3D building morphology and vegetation greening,
however, the mechanism of how these 2D/3D building morphology affects vegetation
greening is sophisticated. There is an obvious need to acquire more insights from
direct measurement and microclimate simulation to uncover deeper underlying

mechanisms.
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Chapter 5. Direct and indirect effects between building, green

space, and urban thermal environments

5.1 Overview

In this chapter, we present the results and analysis (Section 5.2), and discussion
(Section 5.3) part of the direct and indirect influence of 2D/3D buildings and green
space on urban thermal environments. Moreover, we provide the spatial patterns of
summer LST in Hong Kong (Section 5.2.1), the performances of 2D/3D buildings and
green space in explaining LST across different scales (Section 5.2.2), and the direct
and indirect influence of 2D/3D building and green space on LST (Section 5.2.3). In
the Discussion part, we discuss the necessity of introducing both 3D building and
green space information in LST-related analysis (Section 5.3.1), the scale effect exists
in the relationship between 2D/3D building, 2D/3D green space, and LST (Section
5.3.2), implications of direct and indirect effects of 2D/3D building and green space

on LST (Section 5.3.3), and limitations and future research directions (Section 5.3.4).

5.2 Results

5.2.1 Spatial patterns of summer land surface temperature in Hong Kong

The distribution of LSTs in Hong Kong during the summer across different scales is
illustrated in Figure 5.1. The overall summer LST in Hong Kong ranged from 24°C to
61°C, with an average of 47 °C. As the scale increases, the minimum value of LST
increases and the maximum value decreases, thus the overall range of LST differences

decreases as the scale increases. Furthermore, we observed the significant spatial
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heterogeneity in LST across different scales in Hong Kong. The spatial distribution of
surface temperatures generally showed a high northwest-southeast trend and a low
northeast-southwest trend. The cooler areas were primarily block-shaped and located
in regions with dense vegetation and water bodies, such as scenic spots, parks, large
lakes, wetlands, rivers, and mountain areas. Notably, these included the Tai Mo Shan
Country Park, as well as the Lam Tsuen Country Park, Sai Kung West Country Park,
Sai Kung East Country Park, Hong Kong Wetland Park, Tai Lam Chung Reservoir,
Plover Cove Reservoir, Shan Pui River, and Lantau Island. The high-temperature
regions were primarily observed in the highly developed southeast and northwest

zones, characterized by dense constructions and factories.
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Figure 5.1 Spatial distribution of summer LST in Hong Kong at 100m (a), 300m (b),
600m (c), and district scale (d)

5.2.2 The performances of 2D/3D building and green space in explaining land

surface temperature across different scales

It can be observed from Table 5.1, after controlling the Spectral indexes (NDBI,
NDVI, and MNDWI) and Terrain and Location (DTM, Slope, and Latitude), the
combination of 2D/3D building and green space indexes achieved the best R? across
different spatial scales. As the spatial analysis unit size increased, the explanatory
power of the regression model also increased. The introduction of 2D/3D building and
green space indexes improved 0.027, 0.024, and 0.038 of the explanatory power of the

regression model at 300m, 600m, and district scale, respectively.
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Specifically, at the 300m scale, from the perspective of comparing buildings and
green spaces, regardless of whether in two or three dimensions, the contribution of
green spaces to the overall explanatory power is always greater than that of buildings.
The 2D green space indexes enhanced the R? of the regression model by 0.008,
whereas the 2D building indexes only contributed to a 0.002 increase in explanatory
power. The 3D green space indexes improved the explanatory power by 0.014, while
3D building indexes enhanced the R? of the model by 0.01. When combining the
2D/3D green space indexes, there was an enhancement of 0.02 in explanatory power,
while 2D/3D building indexes improved the explanatory power by 0.01. From the
perspective of 2D and 3D, for both buildings and green spaces, the 3D indexes
contributed more to the explanatory power of the regression model compared to the
2D indexes. 3D building indexes improved the R? of the regression model by 0.01,
while 2D building indexes enhanced it by 0.002. 3D green space indexes improved

the explanatory power by 0.014, while 2D building indexes enhanced it by 0.008.

At the 600m scale, in contrast to the 300m scale, the combination of 2D and 3D
building and green space indexes contributes less to the overall explanatory power of
the model. From the perspective of comparing buildings and green spaces, regardless
of whether in two or three dimensions, the contribution of green spaces to the overall
explanatory power is always greater than that of buildings. The 2D green space
indexes enhanced the explanatory power by 0.006, whereas the 2D building indexes

only increased it by 0.002. The 3D green space indexes improved the R? by 0.014,
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while 3D building indexes boosted it by 0.011. The combination of 2D/3D green
space indexes enhanced the R? by 0.017, while 2D/3D building indexes led to a 0.012
improvement. From the perspective of 2D and 3D, for both buildings and green
spaces, the 3D indexes contributed more to the explanatory power of the regression
model compared to the 2D indexes. 3D building indexes raised the R? by 0.011,
compared to a 0.002 increase from the 2D building indexes. 3D green space indexes
improved the R? by 0.014, while 2D building indexes contributed a 0.006

enhancement.

At the district scale, contrary to the analysis results at the pixel level, in both two and
three dimensions, the contribution of buildings to enhancing the explanatory power
for LST is always greater than that of green spaces. The 2D building indexes
enhanced the R? by 0.015, whereas the 2D green space indexes did not contribute to
improving the explanatory power. The 3D building indexes contributed a 0.035
increase, while the 3D green space indexes improved R? by 0.013. The combined
2D/3D building indexes led to a 0.035 raise of the R?, while 2D/3D green spaces
improved the explanatory power by 0.013. From the perspective of 2D and 3D, for
both buildings and green spaces, the 3D indexes contributed more to the explanatory
power of the regression model compared to the 2D indexes. 3D building indexes
improved the R? by 0.035, while 2D building indexes enhanced it by 0.015. 3D green
space indexes contributed a 0.013 enhancement of R?, while 2D building indexes did

not contribute to improving the explanatory power for LST variations.
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Table 5.1 Adjusted determinant coefficients (R2) of stepwise multiple linear

regression

Scale 300m 600m District
Controlling factors 0.773 0.824 0.826
Controlling factors + 2D Building 0.775 0.826 0.841
indexes

Controlling factors + 2D Green space 0.781 0.830 0.826
indexes

Controlling factors + 3D Building 0.783 0.835 0.861
indexes

Controlling factors + 3D Green space 0.787 0.838 0.839
indexes

Controlling factors + 2D/3D Green space  0.793 0.841 0.839
indexes

Controlling factors + 2D/3D Building 0.783 0.836 0.861
indexes

Controlling factors + 2D Building and 0.783 0.833 0.841
Green space indexes
Controlling factors + 2D/3D Building 0.800 0.848 0.864

and Green space indexes

5.2.3 Direct and indirect effects of 2D/3D building and green space on LST

As shown in Table 5.2, the goodness of fit index (GFI), root mean square error of
approximation (RMSEA), root mean square residual (RMR), comparative fit index
(CFI), normed fit index (NFT), and non-normed fit index (NNFI) were all meet
standard criteria across different scales, which indicated that the model achieved a

good fit.
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Table 5.2 Evaluation indexes of model fit performance of path analysis at different

scales
Scale GFI RMSEA RMR CFI NFI NNFI
Standard >0.9 <0.1 <0.05 >0.9 >0.9 >0.9
300m 1 0.000 0.005 1 1 1
600m 1 0.000 0.005 1 1 1
District 1 0.000 0.013 1 1 1

The results of path analysis at 300m were shown in Figure 5.2, on the one hand,
terrain had a negative influence on LST, with a standardized coefficient of -0.297
(R?=0.638). 3D building information, 2D green space information, and 3D green
space information also exhibited a negative impact on LST, characterized by a
standardized coefficient of -0.243, -0.252, and -0.176 (R?*=0.638), respectively. 2D
building information showed a positive influence on LST, with a standardized
coefficient of 0.457 (R*=0.638). On the other hand, terrain also impacts LST by
influencing the 2D building information, 3D building information, 2D green space
information, and 3D green space information. Specifically, terrain had negative effects
on 2D building information, and 3D building information, characterized by a
standardized coefficient of -0.429 (R*=0.184) and -0.269 (R?>=0.072). Terrain had
positive effects on 2D green space information and 3D green space information, with
standardized coefficients of 0.307 (R>=0.432) and 0.239 (R?>=0.122). Also, the path
analysis illustrated that the 2D/3D building information can affect the 2D/3D green
space information. 2D building information negatively affected 2D green space
information, with a standardized coefficient of -0.519 and an R? of 0.432. Similarly,

2D building information also had a negative impact on 3D green space information,
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evidenced by a standardized coefficient of -0.194 and an R? of 0.122. 3D building
information had a slight positive effect on both 2D green space information and 3D
green space information, evidenced by standardized coefficients of 0.077 (R?>=0.432)

and 0.031 (R?>=0.122).

Overall, terrain, 2D building information, and 3D building information can both
directly and indirectly affect the LST (Table 5.3). The total effect of terrain on LST
was -0.615, comprising a direct effect of -0.297 and an indirect effect of -0.318. The
total effect of 2D building information on LST was 0.622, including a direct effect of
0.457 and an indirect effect of 0.165. Similarly, the total effect of 3D building
information on LST was -0.268, with a direct effect of -0.243 and an indirect effect of
-0.025. 2D and 3D green space information only have direct effects, which are -0.252

and -0.176, respectively.
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Figure 5.2 Path analysis of the terrain, 2D/3D building/green space, and LST at 300m

scale

Figure 5.3 presented the results of path analysis at the 600m scale, similar to the
results at the 300m scale, the terrain had a negative influence on LST, with a
standardized coefficient of -0.292 (R?>=0.691), while the coefficient decreased
compared to 300m results. 3D building information, 2D green space information, and
3D green space information also exhibited a negative impact on LST, characterized by
a standardized coefficient of -0.263, -0.154, and -0.230 (R?>=0.691), respectively. 2D
building information showed the strongest direct positive impact on LST, with a
standardized coefficient of 0.566 (R?=0.691). Also, terrain impacted LST by
influencing the 2D building information, 3D building information, 2D green space
information, and 3D green space information. Specifically, terrain had negative effects

on 2D building information, and 3D building information, characterized by
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standardized coefficients of -0.493 (R?>=0.243) and -0.327 (R?=0.107). Terrain had
positive effects on 2D green space information and 3D green space information, with
standardized coefficients of 0.312 (R?>=0.480) and 0.279 (R?>=0.142). The 2D/3D
building information can affect the 2D/3D green space information at the 600m scale.
2D building information negatively affected 2D green space information, with a
standardized coefficient of -0.545 and an R? of 0.480. Similarly, 2D building
information also had a negative impact on 3D green space information, evidenced by
a standardized coefficient of -0.198 and an R? of 0.142. These values are higher than
those observed at the 300m scale in terms of both the coefficients and the R? values.
3D building information only had a significant positive impact on 2D green space
with a standardized coefficient of 0.080 (R?=0.480). 3D building information did not

have a significant impact on 3D green space information at 600m scale.

Terrain, along with 2D and 3D building information, influences LST both directly and
indirectly at 600m scale (Table 5.3). Specifically, the terrain has a total effect of -
0.657 on LST, split between a direct effect of -0.292 and an indirect effect of -0.365.
Meanwhile, 2D building information contributes a total effect of 0.695 on LST, with a
direct effect of 0.566 and an indirect effect of 0.129. In contrast, 3D building
information has a lesser overall impact, totaling -0.275, consisting of a direct effect of
-0.263 and an indirect effect of -0.012. Both 2D and 3D green space information

exerts only direct effects on LST, measuring -0.154 and -0.230, respectively.
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Figure 5.3 Path analysis of the terrain, 2D/3D building/green space, and LST at 600m

scale

As illustrated in Figure 5.4, at the district scale, terrain showed a weaker negative
influence on LST than pixel scales, with a standardized coefficient of -0.225
(R?=0.741). The negative impact of 3D building information and 2D green space
information on LST is amplified at larger scales, as indicated by standardized
coefficients of -0.514 and -0.676 (R?>=0.741), respectively. The impact of 3D green
space on LST was not significant. The positive effect of 2D building information on
LST was diminished at the district scale compared to pixel scales, with a standardized
coefficient of 0.323 (R?>=0.741). Meanwhile, terrain also significantly influenced the
2D building information, 3D building information, 2D green space information, and
3D green space information. To be specific, the terrain had stronger negative effects
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on 2D building information and 3D building information, characterized by
standardized coefficients of -0.602 (R?=0.360) and -0.470 (R?=0.218). Terrain had
positive effects on 2D green space information and 3D green space information, with
standardized coefficients of 0.468 (R?=0.772) and 0.571 (R?>=0.478). The 2D building
information only can affect the 2D green space information at the district scale. 2D
building information negatively affected 2D green space information, with a
standardized coefficient of -0.501 (R?>=0.772). The influence of 2D building
information on 3D green space and the influence of 3D building on 2D/3D green

space was not significant.
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Figure 5.4 Path analysis of the terrain, 2D/3D building/green space, and LST at

district scale

Generally, terrain and 2D buildings affected LST both directly and indirectly at the
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district scale (Table 5.3). Specifically, the terrain has a total effect of -0.698 on LST,
including a direct effect of -0.225 and indirect effects of -0.473. 2D building
contributes a total effect of 0.662 on LST, with a direct effect of 0.323 and an indirect
effect of 0.339. In contrast, 3D building and 2D green space exert only direct effects
on LST, measuring -0.514 and -0.676, respectively. 3D green space had no significant

impact on LST on the district scale.

Table 5.3 Summary of the direct and indirect effects of variables on LST

Scale Variable Direct effect  Indirect effect Total effect
2D building 0.457** 0.165%* 0.622%*
information
3D building -0.243%** -0.025** -0.268**
information

300m 2D green space -0.252%* - -0.252%**
information

3D green space -0.176** - -0.176**
information

Terrain -0.297** -0.318** -0.615**

2D building 0.566** 0.129%* 0.695%**
information

3D building -0.263%* -0.012%* -0.275%*
information

600m 2D green space -0.154%%* - -0.154%**
information

3D green space -0.230%** - -0.230%**
information

Terrain -0.292%* -0.365%* -0.657**

2D building 0.323%* 0.339** 0.662**
information

3D building -0.514%* - -0.514%*
information

District 2D green space -0.676** - -0.676**
information

3D green space -0.058 - -0.058

information

Terrain -0.225%%* -0.473%%* -0.698**
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5.3 Discussion

5.3.1 The necessity of introducing both 2D/3D building and green space

morphology indexes in LST-related analysis

Although several studies have emphasized the importance of 2D/3D building and
green space morphology in influencing LST variation and mitigation (Chen et al.,
2020; Peng et al., 2017), they failed to explicitly quantify the relative contributions of
these morphological factors when compared to other basic determinants of LST. This
study demonstrates that the combination of 2D/3D building and green space
morphology significantly increases the explained variance for LST variation. This
study found that 3D building and green space indexes contributed more to
explanations of LST variation than 2D indicators at multiple scales. This contrasts
with the finding of Xu et al. (2021) (Xu et al., 2024), which reported that 2D
morphology indexes significantly influence LST. One plausible explanation for this
difference might be the fact that this study included controlling factors in the
regression model, while Xu’s study only considered morphology indexes. This could
lead to bias or uncertainty in the results. Importantly, unlike Xu'’s study, which took
into account only the 3D building morphology indexes, this study includes both 3D
building and green space indexes, enhancing the insights into how these two indexes
influence LST. 3D building is significantly correlated with urban ventilation and the
reception and emission of solar radiation (Li and Hu, 2022; Tian et al., 2019). The

evaporative cooling effects of 3D green spaces also can significantly influence LST
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(Yuan et al., 2021). We also found that 3D green space indexes are more helpful in
enhancing the explanatory power of LST in contrast to 3D building indexes. However,
due to the lack of high-resolution green space height data, limited research has
investigated the impact of 3D green space indicators on LST and urban climates
(Chen et al., 2024). Considering both 2D and 3D impacts of buildings and vegetation
on LST can enhance our understanding of its underlying mechanisms and strengthen

the link between urban morphology and microclimatic knowledge.

5.3.2 Scale-effect in the relationship between 2D/3D building, 2D/3D green space,

and LST

This study explored the performances of 2D/3D buildings and green spaces in
enhancing the explanation of LST variations, as well as their direct and indirect
effects at different scales. Significant scale effects in the relationship between 2D/3D
buildings, 2D/3D green spaces, and LST were observed. Scale effects on LST-
influencing factors have also been reported in previous research (Chen et al., 2023; Q.
Wu et al., 2019; Xiao et al., 2022; Yang et al., 2020). These imply that planning and
strategies for effective mitigation of heat problems need a scale-based approach, as

the leading factors may vary with the scale change.

Our finding demonstrated that spatial scales significantly affect the regression model
performance, and the relative importance of explanatory variables, and influence the
degree of explanatory variables. First, as the spatial scale increases, the explanatory

power of all variables for LST also increases. This indicates that interactions at
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smaller scales are more complex compared to coarser scales. Second, at pixel scales,
green spaces contribute more to enhancing the explanatory power of LST than
buildings. However, at the district scale, buildings contribute more to improving LST
explanatory power than green spaces. The combination of 2D/3D buildings and green
spaces exhibits the strongest capability for enhancing LST explanation on the district
scale. We speculate that this might be because green space indexes better help explain
LST changes at finer scales, while buildings are more effective in explaining LST
variations at coarser scales. Third, the direct and indirect effects of 2D/3D building
and green space on LST also varied across different scales. The total effect of terrain
on LST increased with scale, primarily due to the increase in indirect effects as the
scale enlarges, while the direct effects decreased with increasing scale. The total and
direct effects of 2D building features on LST first increased and then decreased, while
the indirect effects followed a reverse pattern, decreasing first and increasing
thereafter. The total and direct effects of 3D buildings on LST exhibited an upward
trend as the scale increased, whereas the indirect effects showed a downward trend.
This is primarily due to the insignificance of the influence of 3D buildings on 2D
green spaces and 3D green spaces at 600m and district scale. The direct effect of 2D
green spaces is greatest at the district scale and smallest at the 600m scale. The direct
effect of 3D green spaces on LST shows an increasing trend at the pixel scale but has
an insignificant impact on the district scale. These scale effects help guide LST
mitigation strategies at different scales. For instance, when planning green spaces at

the 300m scale and district level, the focus should be on increasing the 2D area. At the
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600m scale, the canopy height characteristics of green spaces become more important.
Across all scales, it is crucial to reduce the coverage of buildings and increase their

vertical height.

5.3.3 Implications of direct and indirect effects of 2D/3D building and green

space on LST

Unlike previous studies that only considered the effect of 2D/3D buildings and green
spaces on thermal environments, this study also considered the potential indirect
effects between 2D/3D buildings and 2D/3D green spaces. Additionally, we have
considered the potential impact of terrain on 2D/3D buildings and green spaces. Our
analysis proved that the terrain not only directly affects LST but also further
modulates LST by influencing the distribution of 2D/3D buildings and green spaces.
This suggests that terrain plays a complex role in urban climate management, both
directly affecting LST and indirectly shaping the landscape patterns. In future urban
planning processes, due consideration can be given to placing suitable buildings in
areas with slightly higher elevations or slopes, while increasing the height and volume
of the buildings. In addition, in mountainous or uneven terrain, the implementation of
vertical gardens or terraced green spaces can be used to increase the overall green

space.

Furthermore, our results showed that at the 300m and 600m scale, both 2D and 3D
building features can significantly influence 2D/3D green spaces. Thus, the

distribution of buildings and the strategic placement of green spaces must be
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considered in the planning process. In densely built-up areas, increasing the canopy
height of green space, implementing green roofs, white roofs, and vertical greening
can help to cool down the LST. On the district scale, the impact of 2D building on 3D
green space, and 3D building on 2D/3D green space was insignificant. Only the 2D
building feature can significantly impact the 2D green space. Therefore, the expansion
of the building footprint can be minimized by increasing building heights on a
regional scale. This approach not only reduces the warming effect of 2D building
structures but also capitalizes on the cooling effect of 3D building features. Moreover,
it can reduce the negative effects of 2D building structures on green space coverage,

thereby increasing green spaces and fully utilizing its cooling potential.

5.3.4 Limitations and future research directions

There are some limitations in this study. First, given that the heat-related issues are
most severe in the summer, our analysis focused only on summer LST in Hong Kong.
However, LST exhibits substantial seasonal variation and morphology variables may
influence LST differently across seasons. Therefore, investigating the seasonal
variation of LST and their response to 2D/3D building and green space indexes is a
necessary direction for future research. Second, due to the availability and spatial
coverage of LiIDAR data, our study was restricted to the high-density city of Hong
Kong, which hinders the transferability and generalizability of our study to national or
global scales. Additionally, micro-scale studies (less than 100m) are limited due to the

scarcity of in situ measurement data. Future research would benefit from integrating
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remote sensing data and in situ measurement data to enhance the analysis
perspectives. Another limitation is that although we selected several indicators of
2D/3D buildings and green spaces that significantly impact LST based on previous
studies, numerous other potential indicators were not considered. Moreover, while this
study conducted a multi-scale analysis by selecting 300m, 600m, and district level as
analysis scales, this study still has not completely overcome the modifiable areal unit
problem (MAUP). MAUP refers to the statistical bias that occurs in spatial analysis
when data are aggregated across varying spatial scales (Fotheringham and Wong,
1991; Wu, 2004). The different spatial scales selection can lead to varying research
findings although the same analysis is applied to the same data. A wider range of
spatial scale analysis should be considered in future studies to enhance the robustness
of the observed relationship. Last, this research was based on static data analysis,
without considering the change of LST and morphology indexes. Therefore, this study
failed to consider dynamic interactions between 2D/3D buildings and 2D/3D green
spaces and their dynamic impact on LST due to a lack of multi-year 3D building and
green space height data. Fully detangling the dynamic interactions among 2D/3D
buildings, 2D/3D green spaces, and LST through the use of dynamic data remains one

of the key challenges for future research.
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Chapter 6. Conclusions

In this research, the analysis of the interaction between buildings, green space, and
urban thermal environments in a high-density city of Hong Kong was conducted. The
study concentrates its explorations on the following two aspects: (1) Impacts of
2D/3D building morphology on vegetation greening across the urban-rural gradient,
and (2) Direct and indirect influence of 2D/3D building and green space features on
urban thermal environments at various spatial scales.

In examining the impact of 2D/3D building morphology on vegetation greening, we
developed an analytical framework to investigate the response of vegetation greening
to 2D/3D building morphology in Hong Kong, using the Pearson correlation method
and the BRT model. Overall, between 2010 and 2020, our analysis identified a
significant trend of vegetation greening in Hong Kong, characterized by a mean slope
0f 0.0024 and greening observed in approximately 69.10% of the total area.
Significant uneven trends were shown across urban and rural areas. Although the
correlation between building morphology and vegetation greening was relatively low,
it remained statistically significant. 3D building morphology exhibited a significantly
greater influence on vegetation greening compared to 2D building morphology.
Moreover, the influence of 2D/3D building morphology on greening presented a
notable urban-rural difference and was highly nonlinear. SVF exerted the greatest
influence in urban areas, while LSI had the most significant impact in rural areas.
SVF, MBH, LPI, and ED showed similar marginal patterns across urban and rural

areas, but their effect directions changed at different thresholds. SVF and MBH
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transitioned from negative to positive impacts, while LPI and ED exhibited the
opposite trend. The impact of LSI differed between urban and rural areas, showing a
transition from negative to positive effects in rural areas and a nonlinear negative—
positive—negative pattern in urban areas. The identified complex relationship enriches
the current knowledge of how 2D and 3D building morphological characteristics
influence vegetation greening across urban and rural areas, which provides
meaningful directions for subsequent research and practical guidance for optimizing

building layouts for greener city development.

In the analysis of direct and indirect impacts of 2D/3D building and green space on
urban thermal environments, we chose the LST to represent the thermal environments
and selected ten 2D/3D building and green space indexes to disentangle the direct and
indirect effects of 2D/3D building and green space on LST, using the stepwise
regression and path analysis method. Overall, the summer LST in Hong Kong ranged
from 24°C to 61°C, with an average of 47 °C. Our study has identified significant
spatial heterogeneity and scale differences in summer LST across Hong Kong. We
found that after adding spectral indexes and terrain as the controlling factors, 2D/3D
buildings and green spaces can still effectively enhance the explanatory power of LST
variations. Particularly at the district scale, it can increase explanatory power by
0.038. Furthermore, the explanatory power of 3D indicators surpasses that of 2D
indicators. At the pixel scale, green spaces demonstrate greater explanatory power

than buildings, while at the district scale, buildings exhibit higher explanatory power
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than green spaces. Importantly, our analysis demonstrated terrain, 2D/3D building,
and 2D/3D green space not only directly impacted LST but also indirectly influenced
LST through their interactions. Terrain exerted a direct negative effect on LST and
simultaneously played a stronger indirect negative effect by influencing 2D/3D
buildings and green spaces, with the total negative effect ranging from -0.698 to -
0.615. 2D buildings not only had a positive effect on LST but also enhanced LST
further by affecting 2D/3D green spaces. 3D buildings have a negative impact on LST
and, at the pixel scale, increase their negative effect by influencing 2D/3D green
spaces. 2D/3D building 2D and 3D green spaces have a negative effect on LST, with
the impact of 3D green space not being significant at the district scale. By re-
examining the interactions between buildings and green spaces from both 2D and 3D
perspectives, this research enhances the current understanding of urban thermal
environment mechanisms provides insights for thermal problem mitigation, and

guides natural-based solutions.
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