

 I

Abstract

The design of modern transportation systems leads to many challenges and it

makes great impact on societies. The foremost issues concern safety, delays due

to congestion, and vulnerability due to natural and man-made disasters. Com-

puter simulations of transportation system provide a mean to study the system

performance or to evaluate different strategies in order to determine the most

effective solution for a problem. While large-scale computer simulations may

require a long time to complete, decisions often must be made promptly and

therefore, parallel and distributed simulation methods are often used to reduce

the execution-time of such large-scale simulations. High-end supercomputers

had been dominating this field in the past decades, but the high prices of

high-end supercomputers made the common applications impossible. There are

remarkable progresses in the parallel and distributed simulation field recently

and network of workstations or clusters which composed of many workstations

interconnected through a network become a popular method to speedup

large-scale simulation systems.

Cost-effectiveness is the major factor that drives the use of computer clusters

in simulation systems. High-end computer clusters are still not popular due to

the very costly interconnection medium. In this thesis, a computer cluster is pro-

posed, which employs a new interconnection device - the IEEE 1394, or Fire-

wire, as the interconnection media. The IEEE 1394 is relatively low in price,

while good in performance comparing to other interconnection medium. Such

 II

cluster is employed to implement two typical microscopic transportation simula-

tion systems, the performance improvement of the two systems are observed,

and therefore, these systems can accommodate large-scale simulations in shorter

time. This allows the simulation systems to be applied in different aspects in-

cluding decision making or personnel training of the different transportation

systems.

The Firewire system is originally designed for interconnected digital au-

dio/video equipments to a computer and in order to utilize the device as a gen-

eral purpose networking media, a custom-designed communication protocol is

devised. The protocol is tailored for implementing parallel application over the

IEEE 1394 device. The new protocol reduces the communication overhead and

an improvement of around 25% is shown when comparing to the traditional

TCP/IP protocol over the IEEE 1394 device. In order to fully utilize the trans-

mission capacity of the two operation modes of the IEEE 1394 device, and to

support basic QoS (Quality of Service) feature, a fuzzy control mechanism is

applied to the communication protocol. With this fuzzy control mechanism, the

protocol can maximize the overall performance according to the data transmis-

sion format of different applications. The fuzzy controlled communication pro-

tocol shows a speedup factor of up to 20% when comparing to the ordinary

mechanism.

The performance of the IEEE 1394 cluster based on our new protocol is also

compared to the clusters using other interconnection media such as the Ethernet

 III

to illustrate the differences in terms of cost-effectiveness. Case studies of two

typical transportation simulation applications, namely the Railway Operation

Simulation System and the Urban Traffic Simulation System, which run on the

IEEE 1394 cluster were carried out, the results substantiated that these applica-

tions benefit significantly from such a cluster. The communication protocol is

suitable for applications with different data transmission characteristics and this

gives a good prospect in utilizing parallel computing in transportation simula-

tions. Case studies in the thesis are carried out on a cluster, which consists of

only four workstations. A statistical model is developed to estimate the per-

formance of such cluster in a larger scale. The model shows that with a cluster

that consists of 64 workstations, the performance is still acceptable.

 IV

Acknowledgements

I am very grateful to Dr. Yu-fai Fung for his continual support and guidance

throughout the three years. His observations and comments helped me to estab-

lish the overall direction of the research and move forward with investigation in

depth. I thank him for providing me the opportunity to do this research.

I would like to thank Dr. W. L. Cheung who has provided much useful advice

and encouragement.

I would like to thank Dr. P. T. Chan for his valuable direction and help.

I would also like to thank my family for standing by me, supporting me to ac-

complish my research work.

 V

Contents

1 Introduction ... 1

2 The IEEE 1394 interface... 6

2.1 Introduction .. 6

2.2 The IEEE 1394 specifications .. 6

2.3 Cost-effectiveness of the IEEE 1394 cluster ... 12

2.4 Concluding remarks ... 21

3 A communication protocol on IEEE 1394 ... 23

3.1 Introduction .. 23

3.2 Generic networking protocol over the IEEE 1394... 23

3.3 Performance of IP-over-Firewire .. 25

3.4 A new communication protocol ... 31

3.4.1 The Linux1394 driver .. 32

3.4.2 The Transmission feature of IEEE 1394.. 33

3.4.2.1 Asynchronous mode transmission feature .. 36

3.4.2.2 Isochronous mode transmission feature.. 40

3.4.2.3 Mixed mode transmission feature... 42

3.4.3 Services of the protocol ... 45

3.4.4 Implementation of the protocol ... 50

3.4.4.1 Implementing acknowledgement over the isochronous mode.................... 51

3.4.4.2 Packet multiplexing for isochronous mode .. 56

3.5 Concluding remarks ... 60

4 A control mechanism for dynamic performance tuning for cluster application 62

4.1 Introduction .. 62

4.2 Characteristics of throughput and latency for the IEEE 1394 63

4.2.1 Multiple asynchronous mode transmission performance 66

4.2.2 Comparison of the asynchronous and isochronous mode performance................. 71

4.3 The fuzzy transmission mode switching controller.. 75

4.3.1 Analysis and performance metrics of computer cluster system............................. 75

4.3.1.1 Speedup factor .. 75

4.3.1.2 Message-passing computations .. 77

4.3.1.3 Latency and throughput .. 78

4.3.2 Cluster design requirements of transportation simulation systems........................ 83

4.3.3 Principles of fuzzy control... 88

4.3.4 Classification of transmission features of data flow.. 91

4.3.4.1 Multimedia data flow.. 92

4.3.4.2 Latency sensitive data flow .. 97

4.3.4.3 Throughput sensitive data flow... 98

4.3.5 Performance prediction and decision making.. 99

4.3.5.1 Multimedia data flow.. 100

4.3.5.2 Latency sensitive data flow .. 105

4.3.5.3 Throughput sensitive data flow... 108

4.4 Concluding remarks ... 111

 VI

5 Case studies of transportation simulation applications ..113

5.1 Introduction .. 113

5.2 Railway simulation system... 115

5.3 Urban traffic simulation system.. 122

5.4 Concluding remarks ... 129

6 Performance prediction of larger scale IEEE 1394 cluster performance........................... 132

6.1 Introduction .. 132

6.2 Performance modeling ... 134

6.2.1 Speed-up of the urban traffic simulation ... 140

6.2.2 Real time ratio of the urban traffic simulation... 141

6.3 Concluding remarks ... 145

7 Conclusion and future work ... 147

7.1 Conclusion ... 147

7.2 Future directions... 151

Appendix A: The IEEE 1394 basic performance features .. 156

Appendix B: IEEE 1394 architecture ... 162

Appendix C: Fuzzy rules sets .. 169

References ... 171

 1

1 Introduction

Computer simulation methods are widely used in transportation planning, fore-

casting, and decision-making systems, very often in such a system like trans-

portation forecasting, the time required to execute the simulation program is a

crucial factor for the design of such simulation system. A short term transporta-

tion forecast may be required to predict the transportation condition for the next

hour, or for the next 20 minutes [92], [16], [74], [65], [27]. If users want to make

decision based on the simulation results, they may want to do the simulation

dozens of times with different parameters that simulate different traffic condi-

tions. Long-term transportation simulation is often used for the planning of

metropolitan layout design etc. [76], [88], simulation over a very long period of

time in terms of years is often required, while the simulation does not necessar-

ily to be completed within hours, it will consume too much computing time

when running on a general purpose computer and therefore, render the system

not suitable for practical use.

High performance supercomputers are often used to fulfill the computing

requirements demanded by such Microscopic Transportation Simulation systems,

but they are often quite expensive, computer clusters are a cheaper alternative

for supercomputers, but high-end clusters are still expensive and make them dif-

ficult to be widely deployed for simulating a microscopic transportation system.

The networking system is a major element in the implementation of a com-

 2

puting cluster, and the cost and performance of the cluster are greatly affected

by different networking mechanisms. Currently, the most commonly used net-

working technology for a cluster is the Fast Ethernet, which gives a transfer rate

of 100 Mbps. There are also other high-end technologies such as the Gigabit

Ethernet and the Myrinet [1], [8], [64]. Both Gigabit Ethernet and the Myrinet

system can sustain higher bandwidth, 1 Gigabits per second but they are rather

expensive. The IEEE 1394 bus, or the FireWire [37], (through out this thesis, the

term IEEE 1394 and Firewire are used inter-changeably) which has a transfer

rate of 400 Mbps but costs much less than the Gigabit Ethernet, is a suitable

candidate for building a cost-effective computer cluster. Currently, many work-

stations already include an IEEE 1394 link, so networking with the 1394 does

not require additional hardware. Moreover, the new standard, IEEE 1394b [39]

has been defined and the maximum transfer rate for the new standard is up to

3.2Gbps. Currently, the 800 Mbps 1394 device is also available and by compar-

ing the transfer rate, the IEEE 1394 bus is a significant improvement over the

conventional Fast Ethernet so it could be a cost-effective solution for developing

cluster systems. In the near future, when devices based on the IEEE 1394b stan-

dard emerge, then its speed will be compatible to, or even out-perform, the gi-

gabit transfer-rate devices and therefore, it could become a popular networking

device. Studies carried out in this project can be regarded as an initial stage of a

continuous research of the IEEE 1394 devices and will pave the way for future

development and applications of, the more advanced Firewire devices.

 3

The IEEE 1394 interface is a peer-to-peer high-speed serial bus standard. It

was first developed in the mid 1980s by the Apple Computer. As other manu-

facturers gained interest in FireWire, a working committee was formed to create

a formal standard on the architecture. The resulting specification was IEEE

1394-1995 [37]. There was a higher speed 1394 serial bus specification called

the 1394b, which was adopted in the year 2002 and defined serial bus extensions

for running the serial bus at speeds into the gigabit per second range.

The Firewire was originally designed to interface digital audio/video equip-

ments to a computer. In order to support digital audio/video data stream, the de-

vice supports two kinds of transfer modes, namely isochronous and asynchro-

nous. In isochronous transfer, data delivery should be at constant intervals, suit-

able for video signal. These transfers provide for applications where a guaran-

teed quality of service is required, but do not include the retransmission of data

when transmission errors occur. For asynchronous transfers, the delivery of data

does not need to be at a constant rate. Data is retransmitted when an error in its

transmission occurs in the link layer. Therefore, packets are not lost.

The IEEE 1394 draws much attention since its emergence mainly due to its

high throughput of 400 Mbps. There are already studies on utilizing the device

for general networking. However, as the Firewire was not designed to work as a

general purpose networking device therefore, new communication protocol and

control mechanism are required in order to optimize the physical features of the

device. These are the major research directives of this project.

 4

In order to examine the overall performance of a cluster based on the 1394

interface, we implemented two different types of microscopic transportation

simulation systems based on the cluster. Microscopic transportation simulation

represents a computational intensive problem and therefore, is a suitable candi-

date for parallel implementation. Moreover, in simulating the flow of traffic, it

will generate different kinds of data flow, which may be benefit from the two

transfer modes of the Firewire and this is also crucial to our investigation.

The major objectives of this thesis are:

a) To study the mechanism of connecting a cluster of commodity PCs

with the IEEE 1394 interface.

b) To examine the technique of fully employing the data transmission

capacity of the IEEE 1394 interface in parallel computing.

c) To explore the utilization of the IEEE 1394 cluster in transportation

simulation systems to improve their performance.

This thesis includes seven chapters. In the next Chapter, we will first intro-

duce the basic architecture and specification of the IEEE 1394 interface. The

features of the device will be compared with other networking equipments in

order to examine the cost-effectiveness of the interface. In Chapter 3, we will

concentrate on the discussion of the communication mechanism and protocol of

the device. The new communication protocol that we developed can utilize the

full capacity of the Firewire will be discussed in details.

The 1394 interface supports two kinds of communication modes, namely

 5

asynchronous and isochronous. Based on our studies in Chapter 2, and 3, the

overall communication performance can be improved if we can utilize the com-

munication modes properly with respect to the data structure. Therefore, a con-

trol mechanism is implemented to switch between the modes according to the

data structure. Chapter 4 describes the Fuzzy control that we implemented for

the switching mechanism and the overall communication mechanism is also dis-

cussed.

In Chapter 5, we describe the implementation of a computer cluster based on

the IEEE 1394 interface for solving two typical transportation simulation sys-

tems to evaluate how the cluster facilitates the simulation systems and improves

the performance. As our test bed is only based on four computers, therefore, it is

desirable that a model can be developed so that performance of a cluster with a

larger scale can be gauged. Chapter 6 discusses issues related to the performance

modeling and predicted performances of a cluster in different scales are pre-

sented. Finally, in Chapter 7, conclusion of this investigation is given and the

future direction for the development of the IEEE 1394 interface is discussed.

 6

2 The IEEE 1394 interface

2.1 Introduction

The IEEE 1394 interface provides a high transfer-rate of 400 Mbps at a very low

cost; therefore, it could be a cost-effective solution for the implementation of a

high-speed computer cluster. In this Chapter, the specification of the IEEE 1394

will first be described. In Section 2.3, features of different networking devices,

including the Gigabit Ethernet [30] and Myrinet [9], will be compared so that

cost-effectiveness of the FireWire can be evaluated.

2.2 The IEEE 1394 specifications

The IEEE 1394 (also called FireWire) is a peer-to-peer high-speed serial bus

standard [37], [38], [39], [86]. It was first developed in the mid 1980s by the

Apple Computer. As other manufactures gained interest in FireWire, a working

committee was formed to create a formal standard on the architecture. The re-

sulting specification was the IEEE 1394-1995 standard [37]. Different interpre-

tations of the 1995 specification have led to interoperability problems, to clarify

the specification, a supplement to the 1995 specification was developed in 2000,

and it is called 1394a [37]. This supplement included additional features and

made improvements intended to increase performance or usability. In 2002, a

higher speed 1394 serial bus specification called the 1394b [39] was adopted,

which defined serial bus extensions for running the serial bus at speeds into the

 7

gigabit per second range.

The IEEE 1394 specification is similar to the USB standard [96] but it is ca-

pable of higher speeds. The USB standard defines a transfer rate of only 12

Mbps. The original objective of the IEEE 1394 was to interconnect various pe-

ripherals using the same cable. Interconnection between multimedia peripherals

and a computer is one of the many challenges which the specification has to ac-

count for. Hence two transfer modes with different QoS are supported by the

specification to accommodate multimedia data transmission.

IEEE 1394 is a low-cost (issues related to the cost will be discussed in Sec-

tion 2.3) high-performance serial bus standard, it provides low-latency and high

bandwidth communications to cater for multimedia data types [89]. The IEEE

1394 and IEEE 1394a specification defines a maximum data transfer rate at 400

Mbps, and other speed mode, 100 Mbps and 200 Mbps are also allowed. In the

new standard, the IEEE 1394b standard, 800 Mbps, 1.6 Gbps and 3.2 Gbps data

transfer rates are catered. The PCI IEEE 1394 interface cards which follow the

1394b specification and offer a transfer rate of 800 Mbps, are already available

in the commodity market.

The serial bus protocols are described as a set of three stacked layers. As

compared to the OSI 7-layer model [41], these three layers deal with communi-

cations between serial bus devices, as the functions of the lower four layers of

the OSI model. The protocol stack of IEEE 1394 is shown in Figure 2-1.

 8

Figure 2-1: The 1394 Protocol Stack

a) The transaction layer defines a complete request-response protocol to

perform the bus transactions required to support the Control and Status

Registers (CSR) [35], [36] Architecture (the operations of read, write,

and lock). Note that the transaction layer does not add any services for

isochronous data, although it does provide a path for isochronous man-

agement data to get to the Serial Bus management via reads from and

compare-swaps with the isochronous control CSRs.

b) The link layer provides an acknowledged datagram (a one-way data

transfer with confirmation of request) service to the transaction layer. It

������������	
�	�����
�����������������
�	������������������������
�	���������������
������������������������������	��
�������	������

���������	����� ������� ������	�������� �������
���� ������������
������� ������������

 9

provides addressing, data checking, and data framing for packet trans-

mission and reception. The link layer also provides an isochronous data

transfer service directly to the application, including the generation of a

“cycle” signal used for timing and synchronization. One link layer trans-

fer is called a “subaction.”

c) The physical layer has three major functions:

1) It translates the logical symbols used by the link layer into electrical

signals on the different Serial Bus media.

2) It guarantees that only one node at a time is sending data by pro-

viding an arbitration service.

3) It defines the mechanical interfaces for the Serial Bus. There is a

different physical layer for each environment: cable and backplane.

The cable physical layer also provides a data resync and repeat ser-

vice and automatic bus initialization.

The Serial Bus protocols also include Serial Bus management, which provides

the basic control functions and standard CSRs needed to control nodes or to

manage bus resources. The bus manager component is only active at a single

node that exercises management responsibilities over the entire bus. At the

nodes being managed (all those that are not the bus manager), the Serial Bus

management consists solely of the node controller component. An additional

component, the isochronous resource manager, centralizes the services needed

to allocate bandwidth and other isochronous resources.

 10

In the link layer and transaction layer, the serial bus offers two data trans-

fer types:

� Isochronous transfers that require data delivery at constant intervals.

These transfers provide for applications where a guaranteed quality of

service (QoS) is required, but do not include the retransmission of data

when transmission errors occur.

� Asynchronous transfers, where the delivery of data at a constant rate is

not required. Data is retransmitted when an error in its transmission

occurs in the link layer. Therefore, packets are not lost.

Figure 2-2: The IEEE 1394 cycle structure

The IEEE 1394 bus operates in a cycle (isochronous cycle) mode in the Link

layer (Figure 2-2). An isochronous cycle begins after a cycle start signal is sent,

and ends when a subaction gap is detected. During an isochronous cycle, only

isochronous subactions may occur. An isochronous cycle begins every 125µs,

 11

on average. The isochronous packets can use up to 100µs of the total 125µs cy-

cle time. Asynchronous packets can transfer on the bus only after a subaction

gap is detected. That is, the isochronous transfer mode has absolutely higher

priority than the asynchronous transfer mode.

This cycle structure of the serial bus makes the performance characteristic of

the two transmission modes totally different. In contrast to conventional

I/O-based communication, asynchronous transfer is based on memory read/write

communication architecture. Addressing of the IEEE 1394 serial bus follows the

CSR architecture for 64-bit fixed addressing [35], [36]. The 64-bit node ID is

further divided into a 10-bit wide bus ID and a 6-bit wide physical ID. Therefore

up to 1023 busses, each can have up to 63 nodes, may be interconnected (Figure

2-3). The remaining 48 bits are used for the spaces of node-memory and regis-

ters. The Open Host Controller Interface (OHCI) Specification for IEEE 1394,

which specifies the link layer implementation of the IEEE 1394 architecture, is

available. This specification provides a feature for writing to remote memory

that is called Physical Write. This feature automatically becomes effective when

the address in the packet header indicates the physical memory space of a target

node. The Physical Write is carried out by a DMA on the IEEE 1394 host

adapter and thus does not interrupting the host processor. This feature can be

used to achieve lower transmitting latency. For an IEEE 1394 device which is

compliant with the IEEE 1394a standard, the nominal maximum throughput is

400 Mbps, and minimum latency is around 50µs.

 12

Figure 2-3: The IEEE 1394 addressing

2.3 Cost-effectiveness of the IEEE 1394 cluster

As discussed in section 2.2, although the IEEE 1394 has a nominal bandwidth of

400 Mbps, it is shared on the whole bus, if there are many nodes on the IEEE

1394 bus, the bandwidth that one node can utilize is fairly low. So if using one

single bus to interconnect all the nodes of the cluster, the cluster performance

may be no better than a 100 Mbps Ethernet interconnected cluster [70]. In the

next Chapter, a study on the performance of the IEEE 1394 when using as a ge-

neric networking device will be discussed and we will show that when the num-

ber of nodes in the network is less than 8, then the overall performance of the

IEEE 1394 is still better than a common Fast Ethernet system. In addition, the

IEEE 1394 bus is especially suitable for some specific parallel applications; take

 13

the railway simulation system for example.

Figure 2-4 depicts the cluster structure of the railway simulation system.

Since this system is for training purposes, the system runs in the same time scale

as in the real-world environment, and it employs 3D animations to display the

simulated railway system in real-time. Thus between the central simulator and

the graphical workstations that runs the virtual reality display, there are strong

data communications. Such data communications are in constant time interval

and almost in a steady throughput.

Figure 2-4: The railway simulation system structure

The performance of such a system implemented on an Ethernet cluster is barely

acceptable; the rendering rate of the 3D animations averaged about 15 frames

per second (fps). Even on a 100M Fast Ethernet cluster, when there are more

 14

than five virtual reality displays connected, the average rendering rate will be-

come fewer than 20 fps, since many copies of the same data have to be trans-

ferred repeatedly on the network. The 3D animation display observed is some-

times not very smooth, because of the unsteady delivery time of the data pack-

ets.

Since IEEE 1394 is designed to carry multimedia data, with the isochronous

mode of the IEEE 1394 bus, the above problems can be resolved. The guaran-

teed constant delivery time of the Isochronous mode makes the 3D animation

display steady, and the broadcasting nature, if utilized properly, can enable the

system to accommodate much more virtual reality displays, since only one copy

of each frame has to be sent on the bus. In Chapter 5, detail description of the

implementation of the railway simulation system with the IEEE 1394 will be

given.

In the cluster as shown in Figure 2-4, there are a huge volume of data inter-

changing between the center simulator and the virtual reality displays, while

data interchange between other nodes is limited, a single IEEE 1394 bus con-

nects all nodes of the cluster will be a suitable network structure. So each node

must include a IEEE 1394 card, currently an IEEE 1394 interface card costs

about USD 25, a cluster that consists of 20 nodes will cost USD 500 on the in-

terconnection. While the price is somewhat expensive than the 100M Ethernet,

the performance will be much better (details given in Chapter 5), especially in

terms of the 3D animations.

 15

Urban traffic simulation is another popular parallel application that runs on a

cluster. In an urban traffic system, vehicles travel on the roads just like network

data transfer on the network links. A common parallelization of such system is

to divide an urban area into sub-areas, and one program modules simulate a

member of the sub-areas, and runs on one node of a cluster. The architecture of

the cluster for implementing such a system is shown in Figure 2-5.

Figure 2-5: the cluster structure using IEEE 1394

Vehicles in the urban traffic system exchange frequently between adjacent

sub-areas, so on the corresponding cluster, there will be heavy data communica-

tions between one node and all its neighbors, while low data communications

rate between the node and other non-neighboring nodes, this makes a

point-to-point network topology an ideal solution for such simulation architec-

 �� !"#$%&%�'(�� !"#$%&%�'(
�� !"#$%&%�'(�� !"#$%&%�'(

)*+,)*+,-./0 -./0-./0-./0)*+,)*+,

 16

ture. While a switched network like Ethernet is not suitable for this kind of

point-to-point topology, the cheap IEEE 1394 device is an ideal option for con-

structing such a cluster.

Figure 2-6 shows a cluster of 4 * 4 nodes, each node has direct links to all its

neighbors, when applying the point-to-point network topology, each link must

have two IEEE 1394 cards on its two ends, thus for a 4 * 4 nodes cluster, 48

IEEE 1394 cards are needed. So the cost for the interconnection of such a cluster

is 48 * USD25, which is USD1200.

Figure 2-6: A sample cluster of 4 * 4 nodes

It is understood that a cluster computing platform will provide a cheaper alterna-

tive to high cost and high performance computers. As an example, the IBM

RS/6000 F80 high performance computer with 6 RISC 450 MHz CPUs, 8 G

memory, costs around 50,000 USD, while a cluster with 9 PCs, each PC with a

 17

3.0 GHz Intel P4 CPU, 1 G memory, and a total of 24 IEEE 1394 interface cards,

costs about 7,800 USD. The IBM RISC CPU is claimed to be 4 times faster than

Pentium CPU, so this total frequency of the IBM high performance computer

should be compatible to 450 * 6 * 4 = 10.8 GHz Intel CPU. For the PC cluster,

the total frequency is 3.0 * 9 = 27 GHz. The total CPU power of the PC cluster

is much higher than the IBM high performance computer, even through the la-

tency introduced by the interconnection network will diminish the performance

of the cluster, it is reasonable to guess that the cluster can offer comparable per-

formance to the IBM high performance computer, but at a much lower price.

While the cost of cluster is much lower than the cost of high performance com-

puter, it also varies significantly mainly depending on the choice of the inter-

connection network. In this thesis, the cost-effectiveness comparison between

clusters which are constructed by different interconnection networks is studied.

Gigabit Ethernet is commonly used for interconnection of clusters [111],

[60], [17], [12], [52]. As the descendent of Fast Ethernet, its nominal bandwidth

is increased to 1 Gbps. If Gigabit Ethernet is employed for the interconnection

of the cluster as shown in Figure 2-5, connecting such 16 nodes cluster will need

16 Gigabit Ethernet cards and 1 Gigabit Ethernet switch with 16 ports. A Giga-

bit Ethernet cards cost about USD80, and a 16 ports Gigabit Ethernet switch

cost around USD500 at the time of writing this, so the overall interconnection

would cost around USD1780. The Gigabit Ethernet is more expensive than the

IEEE 1394. While some motherboards may already have a build-in Gigabit

 18

Ethernet interface, such motherboards are often more expensive than others, so

using Gigabit Ethernet is still an expensive solution. Although when connected

by the Gigabit Ethernet, each node can have a nominal bandwidth of 1Gbps, the

bandwidth has to be shared by data transfers to all the directions (there can be 2,

3 and 4 directions). While using the IEEE 1394 point-to-point topology, trans-

fers to each direction can have a bandwidth of 400 Mbps exclusively. Since data

transfer distribution between nodes in a traffic simulation application is quite

even, the application can benefit a lot from the IEEE 1394 cluster, and the per-

formances are expected to be comparable with the Gigabit Ethernet cluster, de-

tails given in Chapter 5. Moreover the IEEE 1394 of 800 Mbps is now available

in the market, and it will offer even higher data transfer rate of 1.6 Gbps and 3.2

Gbps in the near future, so applying the IEEE 1394 for cluster interconnection is

a promising option.

Myrinet [8], [64] is a high performance packet communication and switch-

ing technology that is widely used to interconnect clusters of workstations, PCs,

servers, or single board computers. The Myrinet 2000 provides full-duplex 2

Gbps data rate links, switch ports, and interface ports. As a network technology

that is designed specifically for the requirements of high performance or high

availability clustering, Myrinet provides excellent performance and features for

cluster interconnection. It provides flow control, error control, and low latency.

The Myrinet switch networks can scale to tens of thousands of hosts, and can

also provide alternative communication paths between hosts. The host interfaces

 19

of Myrinet can execute a control program to interact directly with host processes

and bypassing the operating system for low-latency communication, and directly

with the network to send, receive and buffer packets [46]. Figure 2-7 depicts the

performance of Myrinet 2000. With message size greater than 1000 Bytes,

Myrinet 2000 can sustain a data rate approaching 250 MByte/s (2 Gbit/s).

Figure 2-7: Sustained one-way throughput of Myrinet 2000

The very high performance of Myrinet technology also results in very high cost

of the devices. The Myrinet components are implemented with

full-custom-VLSI CMOS chips technology, a PCI network interface card with

one fiber port costs about 600 USD. The CLOS type of switch is adopted in

Myrinet to support direct n-to-n nodes communication; one of such switch with

8 fiber ports costs about 4000 USD. Even a 1m long fiber cable costs 70 USD.

Table 2-1 gives a further cost-effectiveness comparison of various network

interfaces. Since it is difficult to examine the performances of all these networks

 20

interfaces, the performance figure given here are all derived from the nominal

performance, and the latencies listed here are regarding to the hardware layers

only.

Table 2-1: The cost-effectiveness comparison of network interfaces

 Fast

Ethernet

Gigabit

Ethernet

Myrinet IEEE

1394a

IEEE

1394b

Max.

throughput

100

Mbps

1 Gbps 2 Gbps 400 Mbps 800 Mbps

Network

structure

Bus Bus Switched Bus Bus

Latency 20µs 20µs 5µs 7.5µs n/a

Cost/Link 20USD 200USD 1170USD 25USD 100USD

Cost/Mbps 0.2USD 0.2USD 0.6USD 0.06USD 0.12USD

In general a Fast Ethernet PCI card costs 10 to 30 USD, a typical 16 ports Fast

Ethernet switch's price is around 120 USD, so the cost per link for Fast Ethernet

is around 20 USD. With the appearance of non-optical technology, the price for

Gigabit Ethernet drops dramatically. While 32-bit PCI Gigabit Ethernet card is

low in price, it is reported that it is hard to achieve gigabit performance on such

devices [17]. The 64-bit PCI card has to be employed to pursue the nominal 1

gigabit throughput of the Gigabit Ethernet. A typical copper Gigabit Ethernet

64-bit PCI Card costs about 150 USD, and a 8 ports copper Gigabit Ethernet

switch costs about 300 USD, so the per link cost is around 200 USD. The Giga-

bit Ethernet architecture is still an expensive option. As for the Myrinet, though

its price dropped a little recently, it is still very expensive comparing to other

devices. As we have discussed, a Myrinet-Fiber/PCI interface card cost 600

USD, an 8-port switch with Fiber ports costs 4,000 USD, and a 1m long Myri-

 21

net-2000 fiber cables costs 70USD, so the per link cost for Myrinet is at least

1,170USD. While for Firewire, a 400 Mbps PCI Firewire card costs around

20-30 USD. The 800 Mbps IEEE 1394b PCI card is just coming forth recently, a

bundle of the card and an 800 Mbps cable cost about 100USD.

It is obvious that Myrinet is the most expensive one considering the per link

cost, and Fast Ethernet and IEEE 1394a (400Mbps) is among the most inexpen-

sive ones. The per Mbps cost can be further derived from the per link cost, and it

can be used as a major factor for the cost-effectiveness feature of the various

interconnection network interfaces. IEEE 1394a is observed to be the most in-

expensive one among all the networks interfaces, even lower than the Fast

Ethernet. Myrinet, although supports much better throughput, is still the most

expensive interface. Gigabit Ethernet seems offer good performance with fairly

low cost per Mbps cost, but in practice, it is difficult to achieve its nominal

throughput, as shown in Figure 3-1, the TCP throughput is only 30% higher than

that of the IEEE 1394a. The cost per Mbps of IEEE 1394b interface is higher

than that of the IEEE 1394a interface, but it is better than all other interfaces. So

the IEEE 1394 family interfaces are much better in cost-effectiveness than other

network interfaces.

2.4 Concluding remarks

In this Chapter, the performance and cost issues of several interconnection meth-

ods for building computer clusters are studied. Myrinet can provide very high

 22

level of performance, but is very expensive in comparison with other network

interfaces. Gigabit Ethernet provides high bandwidth, but its latency time is not

ideal. Moreover, the complementary hardware, including the switching hub,

makes it an expensive device. Fast Ethernet is readily available at a low cost.

However, as a network for connecting nodes of a cluster, its performance is also

not very good.

IEEE 1394, however, provides good performance at low cost. It provides

less than half of the latency of Fast Ethernet and a 400 Mbps maximal link speed,

yet it is as inexpensive as Fast Ethernet, if considering the cost per Mbps, IEEE

1394 is the most cost-effective one among all the network systems (Table 2-1).

Certainly IEEE 1394 is inferior to Myrinet in terms of performance, and par-

ticularly in terms of link speed. It does, however, have some features that are

useful for a cluster system, such as remote memory write and reliability of the

link layer. The IEEE 1394 is thus a good solution for implementing low-cost

cluster systems. In addition, its performance will become even better in the near

future, because transfer rates of 800 Mbps, 1.6 and 3.2 Gbps are described in the

next generation specification of the IEEE 1394b, and PCI card that support 800

Mbps data rate has emerged, at a rather low price of only 100 USD. We can ex-

pect that the price will be even lower as the Fast Ethernet device and the 400

Mbps IEEE 1394 interface card had experienced. So IEEE 1394 is definitely a

promising device for interconnecting a computer cluster.

 23

3 A communication protocol on IEEE 1394

3.1 Introduction

In Chapter 2, general features and properties of the IEEE 1394 device have been

discussed. The Firewire (IEEE 1394) was originally designed for multimedia

data transfer between a PC and other digital AV devices; it attracted immediate

attention as a generic network transmission media because of its high perform-

ance/cost ratio. The most straightforward approach of employing the Firewire

device for network transmission is to implement the TCP/IP protocol stack over

it directly, and this is often called IP-over-Firewire [81]. By enabling

IP-over-FireWire, the Firewire device becomes a general physical network in-

terface, and then the legacy applications based on the TCP/IP protocol can run

on it directly. However, in our studies, we found that such method is not very

effective and therefore, a novel communication protocol was devised in order to

fully utilize the device’s capacity. This Chapter presents an in-depth evaluation

of the IEEE 1394 basic data transmission features, and discusses the implemen-

tation of a communication protocol over IEEE 1394, which is designed to meet

the cluster computing demand.

3.2 Generic networking protocol over the IEEE 1394

IP-over-FireWire is a generic networking protocol for IEEE 1394 and

 24

IP-over-FireWire provides many useful features. One can use IP-over-FireWire

to connect two or more computer systems by FireWire for file sharing, Internet

sharing, or for the use of other IP-based services. Many commodity computer

products have build-in 10/100 Ethernet and FireWire 400 interfaces. The nomi-

nal 400 Mbps throughput of Firewire, which is much higher than that of Fast

Ethernet, makes FireWire a competing option for local area network.

There are several IP-over-Firewire implementations on different operating

systems. The Windows 2000 offers a build-in Ethernet emulator over the Fire-

wire [55], so the TCP/IP protocol stack can use the Firewire device as an

Ethernet device, all legacy TCP/IP applications can use the Firewire as a stan-

dard networking interface without any modifications in programming. Unibrain

offers a software driver called the FireNet, a commercial product, on the Win-

dows and Macintosh operating systems [95], which is also one of such imple-

mentations. An internet RFC archive, RFC 2734, defines an implementation of

IPv4 over IEEE 1394 [81], this document specifies how to use IEEE Std

1394-1995 Standard for the transport of Internet Protocol Version 4 (IPv4) data-

gram. It defines the necessary methods, data structures and codes for such pur-

pose. It includes not only packet formats, encapsulation methods for datagram,

but also an Address Resolution Protocol (1394 ARP) and a Multicast Channel

Allocation Protocol (MCAP). Both 1394 ARP and MCAP are specific to a Se-

rial Bus; the latter permits management of Serial Bus resources when used by IP

multicast groups, however, the above two IP-over-Firewire implementations do

 25

not follow this RFC document. There is a Linux driver project for IEEE 1394

[33], and it offers two modules namely: ip1394 and eth1394. The ip1394 mod-

ule is the first attempt to implement an IP-over-Firewie under Linux. It partly

follows the RFC 2734. The eth1394 module is more recent when comparing to

the ip1394 module, while it does not follow the RFC 2734, it emulates the IEEE

1394 device as an Ethernet device, so that the TCP/IP protocol stack can utilize

the IEEE 1394 device just like an Ethernet NIC. In the following sections, we

will examine the different implementations of the IP-over-Firewire methodol-

ogy.

3.3 Performance of IP-over-Firewire

The FireNet from Unibrain supports only the Windows and Macintosh plat-

form, it is a full Ethernet emulation network and works seamlessly with all ex-

isting Ethernet compatible software and hardware. As claimed by Unibrain,

when running at 400 Mbps, FireNet over TCP/IP is significantly faster than 100

baseT Ethernet and comparable to the Gigabit Ethernet (see Figure 3-1 and Ta-

ble 3-1 [95]) [54]. The results depicted in Figure 3-1 were obtained by initiating

FTP downloading and uploading of a 1.17GBytes file between two Pentium 4

workstations (1.7GHz, 512 RAM, and 60 GB HDD - 7200rpm).

 26

1213141
51611621631641651211

789: ;:<=>?=: 7@>=A=:BC;;;6DE3F G@H8I@:;:<=>?=:
JKLMNOKPNQ
RSTPUV

W=8X 6Y6ZG[\>@:= 6Y6ZG[

Figure 3-1: Performance of FireNet

Table 3-1: Performance of FireNet

 Read 1.17GB Write 1.17GB

Fast Ethernet 63.68 Mbps 60.8 Mbps

FireNet(IEEE

1394)

130 Mbps 144 Mbps

Gigabit Ethernet 172.8 Mbps 187.2 Mbps

The Linux 1394 project provides a more complete device driver set to support

the 1394 device. It supports both OHCI and PCILynx type hardware, both are

implementations of the IEEE 1394 specification, and most new IEEE 1394 de-

vices are based on the OHCI type only. The Linux 1394 implements

IP-over-Firewire by two modules: ip1394 and eth1394. In [48], bandwidth of

both ip1394 and eth1394 against the packet size were provided (Figure 3-2). The

data were collected by initiating TCP write() method between two computers,

 27

and the resulting data is the average of 4096 consecutive write() operations. As

shown in Figure 3-2, the peak performances of the two drivers are almost the

same as that of the FireNet. By comparing the performance data of FireNet,

ip1394 and eth1394, we can observe that although they can achieve a good per-

formance, by comparing to the standard Ethernet, they all cannot exceed a

throughput limit which is around 140 Mbps. The 140 Mbps limit is far lower

than the nominal 400 Mbps bandwidth of the Firewire device which is defined

by IEEE 1394-1995 standard [37]. As defined in the IEEE 1394, the bandwidth

of the asynchronous transfer mode is around 130 Mbps, which is close to the

maximum bandwidth obtained in FireNet, ip1394 and eth1394. This may imply

that only the asynchronous transfer mode is utilized in these IP-over-Firewire

implementations.

 28

Figure 3-2: Performance of ip1394 and eth1394

When we consider using the Firewire as an interconnection interface for cluster

computing, IP-over-Firewire may not be an ideal option. The TCP/IP protocol is

designed to be a general purpose protocol, and to satisfy the demand for internet

connections. There is a large overhead in the TCP/IP protocols to support inter-

net addressing, options etc [82]. As an example, there is always a 20-byte IP

header for each packet regardless of the size of the payload, and a 20-byte

header for TCP or UDP mechanism (Figure 3-3). While these headers do not

impose a real problem for internet data transfer as a data packet is often several

kilobytes in length, however, it may become a major overhead if the payload is

only consisted of tens of, or hundreds of, bytes, which is quite common in cer-

tain kind of cluster computing applications. In the TCP mechanism, it uses some

form of generic flow control mechanism such as Sliding Window and Delay

ACK [82] to enhance the performance for stream transport, but this also makes

TCP especially not suitable for short message transportation, because it is quite

 29

likely that there will not be enough data packets to trigger the Delayed ACK,

and data that is waiting for transmission has to wait for time out which is often

in the scale of hundreds of millisecond. Most of the applications for cluster

computing cannot tolerate such long latencies. Although there is no such flow

control scheme in UDP, the overhead is still a significant factor, so a protocol

that is specifically designed for the interconnection of cluster systems is re-

quired.

Figure 3-3: TCP Header Format

There are a few techniques to reduce the overhead, given in [108], [59], [32],

most of them are based on the Linux1394 driver, and by modifying the protocol

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

 +-+

 | Source Port | Destination Port |

 +-+

 | Sequence Number |

 +-+

 | Acknowledgment Number |

 +-+

 | Data | |U|A|P|R|S|F| |

 | Offset| Reserved |R|C|S|S|Y|I| Window |

 | | |G|K|H|T|N|N| |

 +-+

 | Checksum | Urgent Pointer |

 +-+

 | Options | Padding |

 +-+

 | data |

 +-+

 30

stack to optimize the performance for specific demands. In [108], they proposed

a priority queuing system based on the linux1394 driver to support guaranteed

QoS. In [32], they develop a new link layer IC module to avoid the overhead of

the IEEE 1394 protocol, so that the maximum capability of the IEEE 1394

physical layer can be used. Figure 3-4 and 3-5 show the IEEE 1394 round-trip

time and throughput data given by [32], they used their own communication li-

brary called CheFcat (CF) on a real-time Linux operation system, working be-

yond the Linux 1394 driver. In this way the TCP/IP protocol is bypassed and

related overhead is reduced. The feature of remote memory write that is sup-

ported by the OHCI interface [91] is used to improve the performance. As re-

ported in [32], a minimum round-trip time of 18.8 microseconds, and a maxi-

mum throughput approaching 300 Mbps, can be achieved and this is very close

to the maximum transfer rate, 400 Mbps, stipulated in the 1394 standard. More-

over, it also out-performs the results obtained from the FireNet, ip1394, or

eth1394.

Figure 3-4: The round-trip time of CF on IEEE 1394

 31

Figure 3-5: The throughput of CF on IEEE 1394

From the above results, we can observe that although IP-over-Firewire is readily

available, it is not suitable for cluster computing, a new protocol which is de-

signed specifically for the IEEE 1394 device and cluster computing environment

is needed. As proved by [32], a transfer-rate of 300 Mbps can be achieved com-

paring to only 140 Mbps obtained in the standard approach. In the following

section, the implementation details of a network transmission protocol which is

developed for the Linux system is described, and the performance of the proto-

col is evaluated.

3.4 A new communication protocol

We adopted the Linux OS as the implementation platform, and the Linux1394

driver is employed as the underlying layer to implement our communication

 32

protocol. It is because of the open-source policy of the Linux OS. So the library

program development of the communication protocol can be carried-out more

easily.

3.4.1 The Linux1394 driver

The Linux1394 device driver is now an official Linux driver project, which is

included in Linux versions from 2.2 to 2.6. It supports Texas Instruments

PCILynx/PCILynx2 and OHCI compliant chips (produced by various compa-

nies). The driver is now under active development in the Linux kernel of version

2.6.

Figure 3-6 shows the hierarchy of the Linux1394 driver. The core of the en-

tire 1394 subsystem is the module ieee1394, as shown in Figure 3-6. It manages

all high and low-level drivers in the subsystem, handles transactions, and pro-

vides a mechanism for event triggering. Underneath the ieee1394 module are the

low-level (hardware) driver modules. There are two low-level drivers, which are

hardware dependent. In our test environment, all the interface cards are

OHCI1394 compatible so we use the ohci1394 module to interface with the

1394 interface card. It is possible to have all three low-level driver modules

loaded and activated at the same time. All low-level drivers can control more

than one card (the default maximum is four per low-level driver). Above the

ieee1394 module are the high-level driver modules. One such high-level driver

 33

is the “raw1394”, which provides an interface for user-space applications to ac-

cess the raw 1394 bus. To access the raw 1394 bus from user-space, one can in-

teract with the raw1394 modules through the device file /dev/raw1394, or

choose to link applications with a programming library called libraw1394,

which handles the communication with the raw1394 high-level driver, to ease

the manipulation of the device file. In our preliminary tests, we use the li-

braw1394 to control the IEEE 1394 bus.

Figure 3-6: The Linux 1394 Driver Modules’ Architecture

3.4.2 The Transmission feature of IEEE 1394

As discussed in Section 2.2, the IEEE 1394 device supports two basic data trans-

fer services, namely the asynchronous data transfer and isochronous data trans-

]̂_̂̀ab_cd̂_e

 34

fer.

The asynchronous data transfer service provides a packet delivery protocol

for variable length packets to an explicit address and return of an acknowledg-

ment. Transactions are multithreaded, in that more than one transaction can be

started by a requester before the corresponding response is returned. These are

called a split-response transaction. The isochronous data transfer service pro-

vides a broadcast packet delivery protocol for variable-length packets that are

transferred at regular intervals. As shown in Figure 2-1, the asynchronous data

transfer service uses the transaction layer, whereas isochronous data transfer

service is application driven, thus the isochronous transfer has fewer overload

than the asynchronous transfer.

As shown in Figure 2-2, the IEEE 1394 bus operates in a cycle mode,

isochronous transmissions always occur before all asynchronous transmissions.

The isochronous cycle begins after a cycle start signal is sent on the bus, and

ends when a subaction gap is detected. During an isochronous cycle, only

isochronous subactions can be active. An isochronous cycle occurs every 125µs,

on average. For the asynchronous transmission, the Serial Bus architecture lim-

its the maximum number of data bytes in a transaction to the largest

power-of-two such that the whole asynchronous link-layer packet transmission

takes less than 62µs (this is half the isochronous cycle time, and restricting

asynchronous subaction to such value can help minimizing buffer requirements

in the IEEE 1394 interface card). If we consider the bus operating at 100 Mbps

 35

data rate, this means that the data payload of asynchronous packets is limited to

512 bytes. Longer packets can be sent at higher data rates and shorter packets at

lower data rates. If the bus is operating at 400 Mbps data rate, the maximum

payload size is 2048 bytes (Table 3-2).

Table 3-2: Maximum payload size for IEEE 1394 asynchronous packets

Data rate Maximum payload size (bytes)

100 Mbps 512

200 Mbps 1024

400 Mbps 2048

The different definitions of the asynchronous mode and isochronous mode in the

1394 standard induce totally different transmission features for the two modes.

The isochronous mode always takes higher priority than the asynchronous mode,

therefore, if the two modes are competing for the bus, the isochronous mode is

guaranteed to occupy most of the bandwidth, and only a few of the asynchro-

nous mode transmission can be completed. The asynchronous mode’s packet

size is restricted so that a single asynchronous mode transmission cannot exceed

half of the bus’s bandwidth, even when there is no isochronous mode applica-

tions is competing with it.

In order to evaluate the basic performance of the IEEE 1394, a series of ex-

periments was performed based on the Linux1394 driver with the raw1394 in-

terface; we concentrated on the maximum throughput and latency of the asyn-

chronous and isochronous modes. Our tests were conducted on a simple network

 36

of 2 generic workstations, and the hardware configuration of the workstations

included Pentium III 500MHz microprocessor, 128M RAM of memory, and

each has an IEEE 1394a PCI interface installed, with a maximum data transfer

rate of 400 Mbps, the OS is Linux 2.6 with the latest IEEE 1394 driver, con-

figuration of the test bed is shown in Figure 3-7.

Figure 3-7: The test-bed for IEEE 1394 transmission feature

3.4.2.1 Asynchronous mode transmission feature

There are three different transaction types of the asynchronous mode transmis-

sion.

a) Read—data at a particular address within a responder is transferred to a

requester.

b) Write—data is transferred from a requester to an address within one or

more responders.

c) Lock—data is transferred from a requester to a responder, processed with

data at a particular address within the responder, and then transferred back

fghijklmnopqpglh fghijklmnopqpglh
rsss tuvw xio

 37

to the requester.

Read and write transactions are mandatory in the IEEE 1394 standard, and they

are for block data payload transmission. Lock transaction is optional in the stan-

dard and is designed for data manipulation on data of either 32 bits or 64 bits.

As we are interested in transmitting block data through the IEEE 1394 bus,

therefore, we concentrate on testing the performance of the read and write trans-

actions.

The asynchronous write transaction’s feature was evaluated first. We want to

examine the relationships between throughput and latency with respect to the

packet size. The test was carried out by running two programs on two worksta-

tions, one of the programs was responding to send data to the other program

through the IEEE 1394 bus. Data received by the other program was verified,

but no acknowledgment was return, as this will introduce extra dataflow on the

bus. The packet size varied from 8 bytes to the most significant value defined,

which is 2048 bytes for the 400 Mbps IEEE 1394 card. For each packet size, the

write transaction was performed 1024 * 100 times back-to-back, the starting

time and the ending time of the operation were recorded, and the resultant la-

tency and throughput were the average of the 1024 * 100 transactions.

Figure 3-8 and Figure 3-9 show results obtained from the tests (referring to

Appendix A, Table A-1 and Table A-2 for detailed results). Figure 3-8 depicts

latencies of the write transaction corresponding to different sizes of data packet.

The minimum latency obtained is 50 µs, which is obtained at the minimum

 38

packet size (eight bytes). Based on our results, the latency is linearly increased

with the packet size. When the packet size is 2048 bytes, the maximum value,

the latency reaches a maximum value of 125 µs. This is because if one packet

occupies all the allowable bus transmitting time with the maximum packet size

in one cycle (20% of the whole cycle time [3]), the following packet has to wait

for the next cycle time in order to initiate a transfer, which is exactly 125 µs

from the cycle structure of the IEEE 1394 bus (Figure 2-2). Figure 3-9 depicts

the throughputs of the write transaction with respect to the different data packet

sizes. The throughput increases when the packet size increases, and the maxi-

mum throughput reaches 125 Mbps when packet size is also the maximum, i.e.

2048 bytes, and this is the limiting throughput that a single asynchronous mode

transaction can obtain.

yzy{y
|y}y~yy~zy~{y

y �yy ~yyy ~�yy zyyy z�yy������ ���� �������
���������
��

Figure 3-8: Latency of the asynchronous write transaction

 39

�����
�������������

� ��� ���� ���� ���� ���� ¡¢£¤¥ ¦§¨¤ ©ª«¥¤¬
®̄°±²³́̄²µ
¶·̧́¹º

Figure 3-9: Throughput of the asynchronous write transaction

Tests for asynchronous read transaction were also conducted, and the results are

listed in Table 3-3. Basically the asynchronous read transaction shows a similar

characteristic as that of the asynchronous write transaction. The minimum la-

tency time is around 50µs while the maximum is 125µs. The maximum through-

put is also around 125 Mbps.

Table 3-3: Latency and throughput vs. packet size of the asynchronous read

transaction

Packet Size Latency(µs) Throughput(Mbps)

8 50.776045 1.202046

16 52.636934 2.3191

32 50.950156 4.791754

64 56.195713 8.688941

128 57.586152 16.958287

256 62.513848 31.243078

512 62.965928 62.03752

768 75.679121 77.42393

1024 83.425527 93.646396

 40

1280 95.567822 102.185283

1536 104.431104 112.315131

1792 113.312256 120.656631

2048 125.402773 124.59852

3.4.2.2 Isochronous mode transmission feature

Based on the same test-bed, the performance of the isochronous transfer mode

was also examined. During the tests, there were also two programs running on

the two workstations, one of the programs initiated an isochronous data flow to

a specific isochronous channel (an isochronous channel is an identifier to a

group of nodes of the IEEE 1394 bus, all nodes which listen on the same chan-

nel receive data that are sent to this channel); the bus speed was set to 400 Mbps.

The other program which was running on the other workstation received data

flowing on the same isochronous channel, only necessary data validation was

made and no acknowledgment was returned. A total of 1024 * 30 packets were

sent back-to-back, the latency and throughput value were once again the average

value of the 1024 * 30 packets. The results are shown in Figure 3-10 (detailed

results show in Appendix A, Table A-4), since the packet size limit for isochro-

nous mode is 4096 bytes at 400 Mbps transfer rate, a single isochronous mode

transfer data rate can reach a maximum throughput of 250 Mbps at 4096 bytes

packet size. Figure 3-11 shows that the latency, around 125µs, of the isochro-

nous transfer mode is almost unaffected by the changes in packet size. This is

because as defined in the IEEE 1394 standard, when the isochronous mode is

 41

transferring at the speed of 400 Mbps; the actual packet that is transferred in the

physical layer should always be 4096 bytes long, which occupies all the allo-

cated time of a cycle. The user packet which is sent from an application to the

IEEE 1394 bus interface will always be padded to 4096 bytes, so the different

packet length makes almost no difference in the test.

»¼»½»»½¼»¾»»¾¼»¿»»

À ½»¾Á ¾»ÁÀ Á»ÂÃÄÅÆÇÈÉ ÊËÌÈ ÍÎÏÉÈÐÑ
ÒÓÔÕÖ×ÓØÖÙ
ÚÛÜØÝÞ

Figure 3-10: Throughput of the isochronous mode transmission vs. packet

size

»¾»Á»
Ã»À»½»»½¾»½Á»

À ½¾À ½»¾Á Á»ÂÃÄÅÆÇÈÉ ÐËÌÈ ÍÎÏÉÈÐÑ
ßàÙáâãäÚå
ÝÞ

Figure 3-11: Latency of the isochronous mode transmission vs. packet size

 42

According to our test results, the maximum throughput for the asynchronous

mode is about 125 Mbps, which is similar to results presented by other studies,

including [73], [32]. On the other hand, for isochronous mode, the maximum

throughput is 250 Mbps, which is far better than the asynchronous transfer mode.

However, the design of the isochronous mode transfer is not ideal for general

purpose networking applications therefore, further studies are required. In addi-

tion, we would like to investigate techniques to fully utilize the device’s maxi-

mum capacity by operating in both transfer modes.

3.4.2.3 Mixed mode transmission feature

In this section, the performance feature of a mixed mode transmission will be

studied. We will examine how the asynchronous mode and isochronous mode

transmissions influence each other when they are both active on the same IEEE

1394 bus. In order to test the mixed mode features, an asynchronous mode

transmission and an isochronous mode transmission were initiated between two

workstations at the same time. The bus rate was set to 400 Mbps, an isochronous

mode data flow of 4096 bytes size was sustained between the two workstations.

The reason that we used a constant packet size for the isochronous mode was

based on the results discussed in Section 3.4.2.2, which shows the performance

features of the isochronous mode are almost unaffected by the variation of the

isochronous packet size. At the same time, an asynchronous write data flow be-

tween the two workstations was also active, the packet size of the write transac-

 43

tion varied from 8 to 2048 bytes. Latency and throughput corresponding to each

packet size were obtained by averaging the results of 1024 * 100 transactions

obtained at each packet size.

Figure 3-12 and Figure 3-13 depict the throughput results of this mixed

mode transmission, with respect to the variation of the packet size of the asyn-

chronous mode transmission (the packet size of the isochronous mode transmis-

sion was fixed at 4096 bytes). As shown in Figure 3-12 and Figure 3-13, the

isochronous mode transfer is hardly influenced by the concurrent asynchronous

mode transmission at all, its latency is at a steady state at around 125µs, and the

throughput is sustained at around 250 Mbps. On the contrary, the asynchronous

mode transmission is highly affected by the isochronous mode transmission. The

asynchronous mode latency goes beyond 300µs even at the 8 bytes packet size.

Although a single asynchronous mode transmission shows much lower latency

than that of the single isochronous mode, its latency is much higher when com-

peting with an isochronous mode transmission, even higher than that of the

isochronous mode, which is the bus cycle time, 125µs. This implies that the

asynchronous mode transmission which can formerly be accomplished with one

bus cycle, is now required three or more bus cycle time to accomplish. The

maximum throughput of the asynchronous mode can only reach 28 Mbps at the

mixed mode transmission. These phenomena are predictable since the isochro-

nous mode is designed to be of higher priority than the asynchronous mode.

Also from Figure 3-12, we can observe that the sum the two transfer mode gives

 44

an overall throughput of 278 Mbps, which is quite close to the IEEE 1394

maximum nominal rate of 400 Mbps.

0

50

100

150

200

250

300

8

1

6

3

2

6

4

1

2

8

2

5

6

5

1

2

7

6

8

1

0

2

4

1

2

8

0

1

5

3

6

1

7

9

2

2

0

4

8

Asynchronous Packet Size (bytes)

T
h
r
o
u
h
p
u
t

(
M
b
p
s
)

Asynchronous mode Isochronous mode

Figure 3-12: Throughput of mixed mode transmission vs. asynchronous

mode packet size

0

100

200

300

400

500

600

8

1

6

3

2

6

4

1

2

8

2

5

6

5

1

2

7

6

8

1

0

2

4

1

2

8

0

1

5

3

6

1

7

9

2

2

0

4

8

Asynchronous packet size (bytes)

L
a
t
e
n
c
y

(
μ

s
)

Asynchronous mode Isochronous mode

Figure 3-13: Latency of mixed mode transmission vs. asynchronous mode

packet size

 45

3.4.3 Services of the protocol

In the last section, we examined many aspects of the transmission features of the

IEEE 1394 bus. The asynchronous mode supports guaranteed data delivery, it

transmits data in low latency, but it can only sustain a maximum throughput of

125 Mbps. The isochronous mode can sustain much higher throughput around

250 Mbps, but it does not support guaranteed data delivery, and it operates only

in broadcasting mode. Comparing to the performance of IP-over-Firewire, the

isochronous mode certainly provides much higher throughput, but cannot pro-

vide guaranteed data delivery service. To fully utilize the IEEE 1394 device’s

bandwidth, we proposed a communication protocol which utilizes the through-

put of the isochronous mode of the IEEE 1394 device, while at the same time

supports the guaranteed data delivery service, and facilitates parallel computing

of transportation systems on the IEEE 1394 cluster. In order to achieve this, we

need two basic services, including send service and receive service.

Sending and receiving messages by processes are the basic communication

mechanism of the protocol. The basic point-to-point communication operations

are fw_send and fw_receive. Their uses are illustrated in the example, as shown

in Figure 3-14.

In this example, process zero (myprocessID = 0) sends a message to process

one using the send operation fw_send. The operation specifies a send buffer in

the sender memory from which the message data is taken. In the example above,

the send buffer consists of the storage containing the variable message in the

 46

memory of process zero. The location and size of the send buffer are specified

by the two parameters of the send operation. The message sent will contain the

13 characters of this variable. In addition, the send operation associates an en-

velope with the message. This envelope specifies the message destination and

contains distinguishing information that can be used by the receive operation for

selecting a particular message. The last two parameters of the send operation

specify the envelope for the message sent.

Figure 3-14: Sample code of the send and receive services

Process one (myprocessID = 1) receives this message with the receive operation

fw_receive. The message to be received is selected according to the value of its

envelope, and the message data is stored in the receive buffer. In the above ex-

main(argc, argv)
int argc;
char **argv;
{
char message[20];
int myprocessID;
int mygroupID=10;
int status;
fw_Init(&argc, &argv);
fw_setGroupID(myhostID);
fw_getProcessID(&myprocessID);
if (myprocessID == 0) /* code for process zero */
{
strcpy(message,"Hello, there");
fw_send(message, strlen(message), 1, mygroupID);
}
else /* code for process one */
{
fw_receive(message, 20, 0, mygroupID);
printf("received :%s:\n", message);
}
fw_finalize();
}

 47

ample, the receive buffer consists of the storage containing the string message in

the memory of process one. The first two parameters of the receive operation

specify the location and size of the receive buffer. The last two parameters are

used for selecting the incoming message.

The protocol provides the user-space program with reliable message trans-

mission. A message sent is always received correctly, and the user does not re-

quire to check for transmission errors, time-outs, or other error conditions. In

another word, the protocol does not provide mechanisms for dealing with fail-

ures in the communication system. Since the isochronous mode transmission of

IEEE 1394 is an unreliable data transmission mechanism, Acknowledgment

mechanism should be implemented in the protocol to insulate users from this

unreliable feature.

The send and receive procedures devised can operate in the following two

modes:

Non-blocking

The procedure may return before an operation completes, and therefore

the user is allowed to re-use resources (such as buffers) specified in the

non-blocking call.

Blocking

Return from the procedure indicates that a user is allowed to re-use re-

sources specified in the call.

Although implementation of the blocking mode is much easier than that of the

 48

non-blocking mode, the non-blocking mode has to be implemented to improve

the performance in some cases. Another subtle issue arises because of the nature

of asynchronous communications of the non-blocking mode: the protocol called

may initiate operations that continue asynchronously after the call returns. Thus,

the operation may return with a code indicating successful completion, yet later

causes an error exception to be raised. If there is a subsequent call that relates to

the same operation (e.g., a call that verifies that an asynchronous operation has

completed) then the error argument associated with this call will be used to in-

dicate the nature of the error. In a few cases, the error may occur after all calls

that relate to the operation have completed, so that no error value can be used to

indicate the nature of the error. Such an error must be treated as fatal, since in-

formation cannot be returned for the user to recover from it. In the previous

paragraphs, we described the send and receive services. In the following, we

continue with the description of the syntax of the functions based on services

devised above.

The syntax of the fw_send operation is given below.

The fw_send call is blocking. It does not return until the message data and en-

int fw_send (buf, count, dest, group)

buf initial address of send buffer

count number of bytes in send buffer (nonnegative integer)

dest destination process ID(integer)

group destination group ID(integer)

 49

velope have been safely stored away so that the sender is free to access and

overwrite the send buffer. The message might be copied directly into the match-

ing receive buffer, or it might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking

send can complete as soon as the message is buffered, even if no matching re-

ceive has been executed by the receiver yet. On the other hand, message buffer-

ing can be expensive, as it entails additional memory-to-memory copying, and it

requires the allocation of memory for buffering. Our protocol offers the choice

of several communication modes that allow one to control the choice of the

communication protocol.

The send call does not define the message buffering behavior. It is up to the

protocol to decide whether outgoing messages will be buffered. The protocol

may buffer outgoing messages. In such a case, the send call may complete be-

fore a matching receive is invoked. On the other hand, buffer space may be un-

available, or the protocol may choose not to buffer outgoing messages, for per-

formance reasons. In this case, the send call will not complete until a matching

receive has been posted, and the data has been moved to the receiver.

Thus, a send can be started whether or not a matching receive has been

posted. It may complete before a matching receive is posted. The standard mode

send is non-local, successful completion of the send operation may depend on

the occurrence of a matching receive.

 50

The receive buffer consists of the storage containing a counter of consecutive

bytes of data, starting at address buf. The length of the received message must be

less than or equal to the length of the receive buffer. An overflow error occurs if

all incoming data does not fit, without truncation, into the receive buffer. If a

message that is shorter than the receive buffer arrives, then only those locations

corresponding to the (shorter) message are modified.

The receive operation is blocking; it returns only after the receive buffer

contains the newly received message. A receive can complete before the match-

ing send has finished (of course, it can finished only after the corresponding

send has started).

3.4.4 Implementation of the protocol

In the above sections, we have described the major features of the send/receive

functions. In order to support the reliabilities of the services as described above,

an acknowledgement mechanism over the IEEE 1394 isochronous transmission

mode is developed so that the success of data delivery can be guaranteed while

at the same time higher throughput can be achieved. A packet multiplexing

int fw_receive (buf, count, source, group)

buf initial address of receive buffer

count number of bytes in receive buffer (nonnegative integer)

source source process ID(integer)

group source group ID(integer)

 51

mechanism over the isochronous mode will also be introduced so that the

isochronous mode can be used to carry data between random nodes instead of

broadcasting data.

3.4.4.1 Implementing acknowledgement over the isochronous mode

We use the asynchronous mode to implement the Acknowledgement. The data

payload is fitted into a packet, together with a packet header. The packet header

includes a Source field (Src), that indicates which node in the bus is the sender,

and a Sequence Number field (SN), that shows the sequence number of the

packet, and the SN field is increased by one after each operation. Figure 3-15

depicts the acknowledgement mechanism.

Figure 3-15: The acknowledgement mechanism

When two nodes are communicating, data packets are sent through the isochro-

 52

nous transfer, on a channel number that is previously negotiated. The receiver

receives the data packet at the same channel number, with each success delivery

of the packet, an acknowledgement to that packet, with the SN number that is

obtained from the SN field, will be returned through the asynchronous mode to

the sender, which is obtained from the Src field. Since an acknowledgement is

normally a small packet, this should incur little interference to the isochronous

transfer.

A simple sliding window mechanism like in the TCP protocol [82] is also

employed in our implementation of the acknowledgement, so that the data send-

ing processes can overlap, i.e., an isochronous packet can always be sent without

waiting for the acknowledgement of the packet which is sent before it. Since

when packets are sending out, the sequence numbers are in sequence, the ac-

knowledgements that are received by the sender should also be in sequence. So

an out of sequence acknowledgement means that a packet lost or damage of

packet has occurred, and all unacknowledged packets are then resent, which is

an automatic process already included in our communication protocol.

Figure 3-16 illustrates the overlapped data sending mechanism. We high-

lighted that the isochronous data transmission time of a packet is 125µs, as we

obtained in previous test. The data transmission time for an asynchronous mode

acknowledgement packet is 50µs, which is the time of sending an asynchronous

mode packet with only 8 bytes payload. From this figure, we can see that the

accomplishment of an isochronous data packet sending time with the acknowl-

 53

edgement, or latency, can be calculated as 125µs + 50µs + processing time on

both sides, which is around 180µs in our empirical results. Although the ac-

knowledgement mechanism increases the latency, the sliding windows mecha-

nism enables overlapped data sending and the protocol can initiate next packet

data sending as soon as the bus can be used, thus the throughput is almost not

affected by the acknowledgement mechanism.

Figure 3-16: The illustration of the overlapped data transmission

æçèé êëìíçî è
ïçìçðñç êëìíçî èæçèé èëìíèòóôçéõçöçèîïçìçðñç èëìíèòóôçéõçöçèî

÷øù
µú

ùû

µúæçèé êëìíçî èüý
ïçìçðñç êëìíçî èüýæçèé èüýëìíèòóôçéõçöçèîïçìçðñç èüýëìíèòóôçéõçöçèî

 54

Upon utilizing such acknowledgement mechanism in our communication library,

we can now use the isochronous transfer to obtain higher throughput, and the

success of data delivery can be guaranteed at the same time. We conduct a sim-

ple test of the isochronous mode throughput with the acknowledgement mecha-

nism using our library. The test is carried out on a simple network with two

nodes linked by an IEEE 1394a, and nodes’ configurations are the same, in-

cluding a Pentium 4 2.4GHz CPU with 256M memory.

In this test, we send back-to-back isochronous data packets from one node to

the other, the data packet sizes are set to be 1024, 2048, 2072, 4096 bytes re-

spectively, and the result is shown in Figure 3-17.

Figure 3-17: The throughput of isochronous mode with acknowledgement

mechanism

From the results, we can observe that the throughput is almost linearly related to

 55

the isochronous packet size, with the maximum throughput of 262.3 Mbps

which is achieved at the packet size of 4096 bytes. Such a result is very close to

the throughput result of the bare isochronous mode without the acknowledge-

ment given in Figure 3-10.

Another possible method that can be used to improve the network through-

put is to use multiple asynchronous mode data flows. Although as shown in Sec-

tion 3.4.2.1, a single asynchronous mode transfer can only achieve 125 Mbps

throughput at the maximum allowed asynchronous packet size of 2048 bytes, we

can use multiple asynchronous transfers at the same time between the commu-

nicating nodes, so that the overall throughput can be improved.

Such a test was carried out on the same network. In a single data flow, the

asynchronous packet size is set to 2048 bytes, the throughput of 1 to 4 data

flows are recorded. The results are shown in Figure 3-18. We can see that as we

expected, using multiple asynchronous transfer improved the overall throughput,

but the maximum throughput is achieved when using 3 asynchronous transfers

at the same time, using more concurrent transfers cannot increase the overall

throughput. Most importantly, the maximum throughput that can be achieved in

such a mode is only 180 Mbps which is still less than the maximum throughput,

262 Mbps that can be achieved in the isochronous mode with acknowledgement.

The reason for such a result could be due to the arbitration process of the

asynchronous mode, since arbitration for the bus must be performed before each

asynchronous packet transmission, and no data can be transferred during the ar-

 56

bitration process, so the time is consumed during the arbitration. The multiple

asynchronous transfers incur more unused bus transmission time, and when the

concurrent asynchronous transfers are too frequent, the competition among these

transfers will increase the overhead and therefore the overall throughput will be

degraded.

Figure 3-18: The throughput of multiple asynchronous transfers

3.4.4.2 Packet multiplexing for isochronous mode

With the acknowledgement mechanism imposed on the isochronous transfer,

our communication protocol can offer better throughput with guaranteed data

delivery. But there is a drawback of the isochronous transfer, when there are

several isochronous transfers in the IEEE 1394 bus at the same time, the sum of

the packet size of all the transfers cannot exceed 4096 bytes. If one wants to ac-

commodate 8 isochronous transfers on the bus at the same time, each transferred

 57

packet size can only be 512 bytes. Such packet size is too small for applications

in many cases, and that will cause too much protocol overhead when transfer-

ring random size application data. In order to minimize such shortcoming, we

introduce a multiplexing mechanism in our communication library, by taking

advantage of the broadcasting nature of the isochronous mode. As shown in

Figure 3-19, node 1 is broadcasting isochronous data through a specific channel,

and the other three nodes all listen to this channel, so that all the data can be re-

ceived at every node. Node 1 initiates all data sending request to the three nodes,

and multiplex those request packets into one single IEEE 1394 physical packet

if possible. Since all other nodes can see and examine the whole physical packet,

while extracting the upper layer packet that is bound for them.

Figure 3-19: The multiplexing of the isochronous mode

IEEE 1394 bus

Node 1

Node 3
Node 2 Node 4

payloacDest = 3

Broadcasted

Dest is me,

packet is received

payloacDest = 3

Physical ISO. packet

Physical ISO. packet seen by node 3

 58

With such multiplexing mechanism, one node needs only one isochronous mode

transfer to send data to all other nodes. This makes carrying data packet in dif-

ferent sizes more flexible, large size protocol packet can occupy the whole

physical packet, while small size protocol packet can be multiplexed into one

physical packet to reduce the waiting time, and larger physical packet size is

achieved by reducing the overall Isochronous mode transfer number. Such mul-

tiplexing mechanism is especially suitable for the Railway Simulation cluster as

in Figure 2-4, where a single isochronous transfer with multiplexing as well as

acknowledgement can be used to send animation data from the central simulator

to multiple virtual reality display terminals, details are discussed in Chapter 5.

The throughput of such multiplexing mechanism is tested on an IEEE 1394

network with 4 nodes. We tested the throughput with fixed packet size, from 1

sender to 2 receivers, packet size is 2048 bytes, and 1 sender to 3 receivers,

packet size is two 1024 bytes and one 2048 bytes, and 2 senders each sending

data to 2 receivers, packet size of each is 1024 bytes respectively. The results are

depicted in Figure 3-20.

We also tested the throughput with random data packet size on the network,

we sent packets from one node to the other three, using the isochronous mode,

with the acknowledgement and multiplexing mechanism. The data flow charac-

teristic in the test is rather simple, the physical packet size is always 4096 bytes,

at each time the sending node needs to send 3 protocol packets to the 3 nodes

respectively, and the packet size is sampled from a uniform random distribution.

 59

In our tests, 4 distributions were tested, in test No.1, the packet size of each

dataflow was uniformly distributed between 128 - 2048. In test No.2, the packet

size of each dataflow was uniformly distributed between 1024- 2048. In test

No.3, the packet size of each dataflow was uniformly distributed from 2000 to

2048. In test No.4, the packet size of each dataflow was fixed at 2048. The test

results are given in Figure 3-21.

Figure 3-20: The multiplexing throughput of the isochronous mode with

fixed packet size

In Figure 3-20 and 3-21, we can see that with the fixed packet size, maximum

throughput is around 260 Mbps, that is almost the same as using bare Isochro-

nous mode, but when data flows that transfer simultaneously is 4, the perform-

ance drops, this shows that such a mechanism cannot accommodate too many

data transfers, but considering the IEEE 1394 is being used in a point-to-point

structure as shown in Figure 2-5, it should not be a major problem. With the

random packet size, the throughput is around 160 – 200 Mbps, it is still better

than using the asynchronous mode. In test No.2 we get the minimum throughput,

 60

that maybe due to the inefficient utilization of the physical packet size intro-

duced by the multiplexing at that point.

Figure 3-21: The multiplexing throughput of the isochronous mode with

random packet size

3.5 Concluding remarks

In this Chapter we discussed the implementation details of a new communica-

tion protocol over the IEEE 1394 device. Message passing mechanism is offered

in the communication protocol, so that the protocol can be used to build the in-

terconnections of cluster using the IEEE 1394 bus. This enables parallel applica-

tions which employ the message passing mechanism to run on an IEEE 1394

cluster. By identifying the IEEE 1394 data transmission features of different

transmission modes, we chose to implement an acknowledgement mechanism

over the isochronous mode of IEEE 1394, to enable the isochronous mode

 61

transmission to support reliable data transmission. The maximum throughput

which we can achieve with our protocol is around 250 Mbps, and conforms to

the study in [69]. This throughput is much higher than that of other implementa-

tions like the IP-over-Firewire under Windows or Linux. The minimum latency

of our protocol is around 50µs, and is far lower than that of IP-over-Firewire. In

[32] they achieved lower latency around 20µs and higher throughput around 280

Mbps, but their implementation is based on a customized real-time Linux oper-

ating system, and using a customized hardware layer beyond the standard IEEE

1394 interface card. This certainly will increase the cost for building such a sys-

tem in addition; it also restricts the type of applications which can run on the

system.

The performance of our protocol is much better than that of the Fast

Ethernet, and is comparable with the Gigabit Ethernet, by comparing to Figure

3-1. When our communication protocol achieves better reliable delivery

throughput using the isochronous mode, there are cases that using asynchronous

mode can achieve better throughput, and different cluster applications may have

different requirements for the interconnections, such as the throughput factor

sometimes is not as important as the latency factor. In general, both transfer

modes are needed to optimize the performance. In the next Chapter, we will in-

troduce a control mechanism integrated into our communication protocol which

employs the two transfer modes to fulfill the various requirements for cluster

applications.

 62

4 A control mechanism for dynamic performance tuning

for cluster application

4.1 Introduction

In Chapter 3, the communication protocol that we devised for optimizing the

communication performance of the IEEE 1394 was described in details. We

have identified that the isochronous mode is more effective in terms of

throughput; however, there are cases, where the asynchronous mode can also

sustain a high throughput. In this Chapter, we try to identify the different data

transmission characteristics of the IEEE 1394 asynchronous mode and isochro-

nous mode, and propose a control mechanism for the communication protocol

over IEEE 1394 to dynamically switch between the two transmission modes of

the device, by doing so, we can maximize the overall performance. Fuzzy logic

is employed in the mode switching process for identifying the proper switching

point, so that the performance of IEEE 1394 device under different application

specific data transmission features can be optimized.

Performance analysis and optimization of network system of computer clus-

ters, or grids are well studied problems, and many works have addressed this

issue. Queuing theory and stochastic process were the prevail methods in com-

puter network modeling and analysis [87], [99], or the computer cluster model-

ing and analysis [101], [112], [77]. But the queuing theory is proved to be not

suitable for the modeling of computer networks in some cases [57].

 63

The fuzzy logic and fuzzy control have been used in the study and control of

the computer network [7], [80], [5], [20], [31], and fuzzy logic analysis of the

performance was seen recently [13], [51], [52]. In [98], [18], fuzzy logic is used

in performance monitoring of parallel and distributed programs, and in [93],

[94], the fuzzy logic is used to exploit in data analysis techniques of computer

clusters performance classification etc.. While the fuzzy logic performance

analysis in these works is often employed in analyzing performance related data

after applications finish running on the cluster, we employ the fuzzy logic in

real-time performance analyzing and performance tuning. The fuzzy logic con-

trol mechanism is proved to be an ideal approach for these purposes.

4.2 Characteristics of throughput and latency for the IEEE

1394

In section 3.4.2, we identified that the asynchronous mode has different trans-

mission features when comparing to the isochronous mode. The asynchronous

mode transmits data in low latency, but it can only sustain a maximum through-

put of 125 Mbps. The isochronous mode can sustain much higher throughput

around 250 Mbps, but in higher latency. This is due to the different arbitration

methods applied when the two modes are transmitting on the bus.

Since the IEEE 1394 is a bus system, before a node can transmit data over

the bus, it has to arbitrate for the resource, so that it can gain control of the bus.

 64

As shown in Figure 4-1, for an asynchronous subactions, the source node sends

a data prefix signal (including a speed code, if needed) to the bus, addresses of

the source and destination nodes, a transaction code, a transaction label, a retry

code, data, one or two cyclic redundancy checks (CRCs) and a packet termina-

tion (either another data prefix or a data end signal). Isochronous subactions in-

clude a short channel identifier rather than source or destination addresses and

do not have the transaction label or retry code.

Acknowledgment must be returned for an asynchronous subaction which is

destined to a unique destination. Acknowledgments are also preceded by a data

prefix and terminated by another data prefix or a data end. All asynchronous

subactions are normally separated by idle bus cycle period called “subaction

gaps”. A gap opens up on the bus between the packet transmission and ac-

knowledgment reception. This “ack gap” is of varying lengths depending on the

location of the receiver in the bus relative to the senders of the link request and

acknowledgment (ack). However, the maximum length of the ack gap is suffi-

ciently shorter than a subaction gap to ensure that other nodes on the bus will

not begin arbitration before the acknowledgment has been received. Table 4-1

gives a detailed Arbitration gap times of the IEEE 1394.

Similarly, isochronous subactions are separated by periods of idle bus called

“isoch gaps,” as shown in Figure 4-2. The subaction gap is much longer than the

isoch gap and this makes asynchronous mode consumes more bus time than the

isochronous mode. The Serial Bus architecture limits the maximum number of

 65

data bytes in a transaction to the largest power-of-two such that the whole asyn-

chronous link-layer packet transmission takes less than 62µs. This means that

the data payload of asynchronous packets is limited to 512 bytes at the cable

base rate of 98.304 Mbps, longer packets can be sent at higher data rates and

shorter packets at lower data rates, for the 400 Mbps rate, the asynchronous

packet is limited to be 2048 bytes.

Figure 4-1: Asynchronous subactions

Figure 4-2: Isochronous subactions

As shown in Table 4-1, the arbitration gap time of the asynchronous mode, i.e.

the subaction gap, is around 10µs, which is far greater than that of the isochro-

nous gap, which is only 0.05µs. Most importantly, the maximum packet size of

the asynchronous mode is restricted to half of the packet size of the isochronous

mode. For the 400Mbit/s 1394 device, the maximum packet size for asynchro-

nous mode is 2048 bytes, while for isochronous mode, it is 4096 bytes. The ex-

 66

tra arbitration time and the restriction of the maximum packet size make the

asynchronous mode transmission throughput incomparable with that of the

isochronous mode.

Table 4-1: The IEEE 1394 Arbitration gap times

Detection time

Gap type Minimum Maximum Comment

Acknowledge gap

Isochronous gap
0.04µs 0.05µs

~4/BASE_RATE

Subaction gap
(27 + gap_count *

16) / BASE_RATE

(29 + gap_count *

16) / BASE_RATE

After two resets,

gap_count is 63, so

subaction gaps are

~10µs

Arb reset gap
(51 + gap_count *

32) / BASE_RATE

(53 + gap_count *

32) / BASE_RATE

After two resets,

~20µs

4.2.1 Multiple asynchronous mode transmission performance

Although the Serial Bus architecture limits the maximum number of data bytes

in a transaction to the largest power-of-two such that the whole asynchronous

link-layer packet transmission takes less than 62µs, it does allow multiple trans-

actions to be initiated in one bus cycle time, so that we can improve the overall

performance of the asynchronous mode by initiating multiple transactions at the

same instance. Examination of the multiple asynchronous mode transmission

performance with fixed packet size was described in Section 3.4.4. In this sec-

tion, we carry out experiments of multiple asynchronous mode transmission

with various packet sizes to examine the performance features in detail.

Four experiments were conducted on the same test bed, to study the overall

 67

throughput from two to five concurrent asynchronous mode transmissions at the

same time. Experiments show that many transaction failures occur if more

than five concurrent asynchronous mode transmissions were initiated between

two nodes, which made the IEEE 1394 bus unusable, so those results are not in-

cluded. Only asynchronous write transaction was used in all the tests, since as

discussed in section 3.4.2, the performance features of the read transaction and

write transaction are similar. We will compare results in this section with those

of the single write transaction’s which we have already shown in section 3.4.2.

The experiments were carried out by running two programs on two worksta-

tions, as shown in Figure 4-3. Each program initiated threads to handle the data

sending and receiving. For the experiment of two concurrent asynchronous

transmissions, the sending program initiated two threads (send_th), and each of

them kept sending data to the other program through the IEEE 1394 bus, the

other program which ran on the other workstation also initiated two threads

(rec_th), received data which was sent from the two corresponding threads

(send_th), and verified the correctness of the received data. The size of the

packet being sent varied from 8 bytes to the most significant value defined

(2048 bytes for 400 Mbps IEEE 1394 device). For each packet size, the write

transaction was performed around 10
5
 times back-to-back, and data transmis-

sions in all the threads were started and stopped at the same time so that the two

concurrent data transmission were active through out the same testing period.

The throughput and latency results were calculated based on these conditions.

 68

Figure 4-3: Test bed of multiple asynchronous mode transmissions

For the experiment of three, four and five concurrent asynchronous transmis-

sions, three to five threads pairs are initiated in the two programs separately, the

throughput and latency results are shown in Figure 4-4 and Figure 4-5 respec-

tively.

Figure 4-4 shows the throughput results of the experiments, the throughput

results in the figure are the sum of all the concurrent transmissions executed in

the experiment. Since every single asynchronous transmission of the concurrent

transmissions almost shares the same performance features, their details are not

shown in the figure. Generally speaking, throughputs in these experiments are

improved by initiating multiple asynchronous transmissions on the IEEE 1394

bus and the maximum throughput occurs at the packet size of 2048 bytes and

send_th

Sending program

on workstation 1

send_th

send_th

rec_th

rec_th

rec_th

Receiving program

on workstation 2

IEEE 1394 bus

 69

with three concurrent transmissions. The overall throughput of two asynchro-

nous transmissions is significantly improved when comparing with that of a sin-

gle asynchronous transmission. Therefore, adding more concurrent transmis-

sions can improve the throughput further, but with four concurrent transmissions,

the performance gain is reduced and is below that of the three concurrent trans-

missions case when the packet size is around 1024 bytes. For the five concurrent

transmissions case, one can observe that the performance is only improved with

very small packet size, less than 500 bytes, it becomes lower than that of the

single asynchronous transmission’s throughput when the packet size is greater

than 512 bytes. With even larger packet sizes, the excessive concurrent data

transmission will overload the bus and cause the bus to perform a reset action,

thus rendering the bus unusable for further data transmission.

By further examining the throughput results of Figure 4-4, we find that the

throughput increases rapidly when the packet size is small, say around 512 bytes.

But the increase in throughput becomes slower when the packet size is larger

than 1000 bytes. The throughput almost situates when more concurrent trans-

missions are active, and even drops with five concurrent transmissions.

 70

0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500 2000 2500

Packet Size (Bytes)

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

1 asynchronous transmission 2 asynchronous transmissions

3 asynchronous transmissions 4 asynchronous transmissions

5 asynchronous transmissions

Figure 4-4: Throughput of multiple asynchronous mode transmission at the

same time, comparing with the throughput of single asynchronous mode

transmission.

Figure 4-5 depicts the latencies corresponding to various data packet sizes of

these experiments. We can observe that the latencies are always around 50 µs

when the packet size is very small (smaller than 128 bytes), even with five con-

current asynchronous transmission. When the packet size is greater than 128

bytes, the latencies increase almost linearly. The maximum latency is close to

400 µs with five concurrent asynchronous transmissions when the packet size is

2048 bytes, except in the case of five concurrent asynchronous transmissions,

where latencies increase very rapidly with an increase in the packet size with a

small packet size (768 bytes), the latency is already very close to 400µs.

 71

þÿþþ�þþ�þþ�þþ�þþ
þ �þþ ÿþþþ ÿ�þþ �þþþ ��þþ�����	
��� ��	�����������

���
ÿ ������� � !� 	����"���� �� ������� � !� 	����"���� ��� ������� � !� 	����"���� ��� ������� � !� 	����"���� ��� ������� � !� 	����"���� ��

Figure 4-5: Latency of multiple asynchronous mode transmission at the

same time, comparing with the latency of single asynchronous mode trans-

mission

4.2.2 Comparison of the asynchronous and isochronous mode

performance

As discussed in Section 3.4.4, the performance of the isochronous mode trans-

mission with acknowledgement included in our communication library resem-

bles that of the bare isochronous mode transmission. The latency is around 180

µs and does not affect much by the packet size. The throughput feature is almost

the same as that of the bare isochronous mode transmission, because a sliding

window system is used in the data transmission, so that data transmission can be

 72

overlapped, thus the extra latency which is introduced by the acknowledgement

packet causes very little overhead, and the throughput is almost the same as that

of the bare isochronous mode transmission. The comparison of the performance

features of the isochronous and asynchronous modes transmissions is shown is

Figure 4-6 and Figure 4-7.

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

Packet Size (Bytes)

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

1 asynchronous transmission

2 asynchronous transmissions

3 asynchronous transmissions

4 asynchronous transmissions

5 asynchronous transmissions

Single isochronous transmission

Figure 4-6: The throughput comparison of the asynchronous and isochro-

nous mode transmissions

Referring to Figure 4-6, we can see that the throughput of the isochronous mode

increases linearly with the packet size. The maximum packet size of the isochro-

nous mode is 4096 bytes, and the maximum throughput is obtained at this point,

 73

which is close to 250 Mbps. Considering the maximum throughput, the asyn-

chronous mode transmission is not comparable with the isochronous mode

transmission. Even though employing multiple concurrent asynchronous trans-

missions can improve the overall throughput, the maximum throughput that can

obtain is only 180 Mbps, which is about 30% lower than the maximum through-

put of the isochronous mode transmission. However, if we consider the through-

put corresponding to packet size that is smaller than 2048 (see Figure 4-6), it is

clear that in most cases, the throughput of the single asynchronous mode trans-

mission is better than that of the isochronous mode transmission.

Figure 4-7 represents the latency induced in the different transmission

modes and it is obvious that the latency of the isochronous mode transmission is

in a steady-state for all packet sizes, which is around 180µs. Latencies of the

asynchronous mode transmission vary with respect to the packet size. The single

asynchronous mode transmission latency is always below the isochronous mode

latency, while for other multiple concurrent asynchronous modes, the latencies

increase steadily and almost proportional to the packet size. For example, in the

case of a 3 asynchronous transmissions, when the packet size is less than 1000

bytes then the asynchronous mode is superior, however, when the packet size

gets larger (over 1000 bytes) then the latency becomes higher than the isochro-

nous case.

 74

0

100

200

300

400

500

0 1000 2000 3000 4000 5000

Packet Size (Bytes)

L
a
t
e
n
c
y

(
μ

s
)

1 asynchronous transmission

2 asynchronous transmissions

3 asynchronous transmissions

4 asynchronous transmissions

5 asynchronous transmissions

Single isochronous transmission

Figure 4-7: The latency comparison of the asynchronous and isochronous

mode transmissions

From the above discussion, we found that both the asynchronous mode trans-

mission and isochronous mode transmission have advantages and disadvantages.

The asynchronous mode transmission has a lower latency, but its throughput is

restricted, although the throughput can be improved by using multiple concur-

rent transmissions, it still can not compete with the throughput of the isochro-

nous mode transmission when the packet size is large. While the isochronous

mode transmission is better in throughput, its latency is higher than that of the

asynchronous mode transmission in most cases. It is obvious that if we can use

both transmission modes of IEEE 1394 device, and use the suitable transmission

mode under different network conditions, or traffic, then the utilization of the

 75

bus can be greatly improved. In this Chapter, we proposed to include a control

mechanism in our communication protocol to dynamically monitor the data

transmission situation of the IEEE 1394 bus. The control mechanism will switch

the bus to use appropriate transmission modes in order to carry the data to better

serve the application that runs on the network.

4.3 The fuzzy transmission mode switching controller

In this section, we will first introduce the design requirements, the trade off be-

tween lower latency and higher throughput. We will discuss details of fuzzy

control for mode switching.

4.3.1 Analysis and performance metrics of computer cluster sys-

tem

4.3.1.1 Speedup factor

“How much faster can the cluster solve the problem under consideration?” This

question is perhaps the first point of interest when developing software solutions

on a cluster system. In doing this comparison, one would use the best solution

on the single computer, that is, the best sequential algorithm on the single com-

puter system to compare against the parallel algorithm under investigation on

the cluster. If we identify the number of computers or processors as p, the

speedup factor [101], [85],)(pS , is a measure of relative performance, which is

 76

defined as:

() s

p

t
S p

t
= (4.1)

Where st is the execution time of the best sequential algorithm running on a

single processor and pt is the execution time for solving the same problem on

a multiprocessor.)(pS gives the increase in speed in using the multiprocessor.

Note that the underlying algorithm for the parallel implementation might not be

the same as the algorithm on the single-processor system, and in most cases, it is

different.

In a theoretical analysis, the speedup factor can also be presented in terms of

computational steps:

)(pS =
Number of computational steps using one processor

Number of parallel computational steps with processorsp
 (4.2)

It is easy to understand that the maximum speedup possible is usually p with p

processors (linear speedup). The speedup of p would be achieved when the

computation can be divided into equal-duration processes, with one process

mapped onto one processor and no additional overhead in the parallel solution.

()
/

s

p

t
S p p

t p
≤ = (4.3)

Super-linear speedup, where S(p) > p, may be seen on occasion, but usually this

is due to using a suboptimal algorithm. One common reason for super-linear

speedup is extra memory in the multiprocessor system. For example, suppose

the main memory associated with each processor in the multiprocessor system is

the same as that associated with the processor in a single-processor system.

 77

Then, the total main memory in the multiprocessor system is larger than that in

the single-processor system, and can hold more of the problem data at any in-

stant, which leads to less disk memory traffic.

4.3.1.2 Message-passing computations

Several factors will appear as overhead in the parallel computing and limit the

speedup, notably

a) Periods when not all the processors can be performing useful work

and are simply idle.

b) Extra computations in the parallel version not appearing in the se-

quential version; for example, to recomputed constants locally.

c) Communication time between processes.

Among these factors, a) and c) are highly related to message-passing of a cluster

parallel computing system, and they can cause significant overhead in the com-

putation. In message-passing computation, messages are sent between processes

to pass data and for synchronization purposes. Thus,

p comm compt t t= + (4.4)

Where commt is the communication time, and compt is the computation time. As

we divided the problem into parallel parts, the computation time of the parallel

parts generally decreases because the parts become smaller, and the communica-

tion time between the parts generally increases (as there are more parts commu-

nicating). At some point, the communication time will dominate the overall exe-

 78

cution time and the parallel execution time will actually increase. It is essential

to reduce the communication overhead because of the significant time taken by

inter-processor communication.

From (4.1) and (4.4), we have:

() s

comm comp

t
S p

t t
=

+
 (4.5)

In this thesis, our main concern is the communication time commt of the IEEE

1394 interconnection network.

4.3.1.3 Latency and throughput

The communication time will depend on the number of messages being trans-

mitted, the size of each message, the underlying interconnection structure, and

the mode of transfer. The communication time of each message will depend on

many factors, including network structure and network contention. For a first

approximation, we will use the following equation for the communication time

of a message:

comm startup datat t wt= + (4.6)

Where startupt is the startup time, sometimes called the message latency. The

startup time is essentially the time needed to send a message with no data. It in-

cludes the time to pack the message at the source and unpack the message at the

destination. The term latency is also used to describe a complete communication

delay, i.e. commt can also be called latency. The startup time is assumed to be

constant. The term datat is the transmission time to send one data word, also

 79

assumed to be constant, and there are w data words. The transmission rate, or

throughput, is usually measured in bits/second and would be / datab t

bits/second when there are b bits in the data word. The equation shows a linear

relationship between communication time commt and data bits w. The latency of

the asynchronous mode transmission of IEEE 1394 vs. packet size given in Fig-

ure 3-8 resembles the result from equation (4.6), but not a perfect linear rela-

tionship. It is because in a real system, many factors can affect the communica-

tion time, like the arbitration for using the IEEE 1394 bus.

In (4.6), datat , which is the transmission time to send one data word, can also

be noted as:

1
data

data

t
r

= (4.7)

Where datar is the data rate of the interconnection network, or throughput.

Thus (4.6) becomes:

comm startup

data

w
t t

r
= + (4.8)

Although in theory the latency datat , and the throughput datar , are inversely pro-

portional, it may not be held in some cases. The latency and throughput are two

key factors of a network system. A network can obtain low latency often imply

that it can also sustain a high throughput, but this is not always true. As we have

seen, the IEEE 1394 can achieve low latency when using the asynchronous

mode transmission (from 50 µs to 125 µs with packet size varies from 8 bytes to

2048 bytes, as shown in Figure 3-8), but it can not achieve very high throughput

 80

at the same time (125 Mbps maximum), because the packet size of the asyn-

chronous mode is restricted to 2048 bytes (for 400 Mbps IEEE 1394 card). On

the other hand, the IEEE 1394 can achieve high throughput when using the

isochronous mode transmission (250 Mbps maximum as shown in Figure 3-10),

but it cannot achieve low latency by using this transmission mode (125 µs fixed),

because in order to simplify the hardware implementation, the IEEE 1394 device

physical layer only sends fixed sized packet in isochronous mode [37], [59].

While considering the parallel applications which run on a cluster of computers,

different applications may have different demands on the data transmission fea-

tures of the network system. For example, a parallel sorting program [58] ex-

changes very few data after each computation step, but a parallel weather simu-

lation system [25] often exchanges considerable amount of data after each com-

putation step.

Interactive simulation systems for education, industrial training [106] and

entertainment (multiplayer games [1], [2]) are one common type of application

which runs on computer clusters. Such applications often are highly interactive

real-life simulators, and support fine grain, close to instantaneous control of

player actions and a high degree of interaction among players in a detailed, 3D

virtual world. As we know, when a movie is playing at 24 frames per second, it

is smooth to observers’ eyes. Likely for 3D animations, to avoid the frame

changing of a 3D scene to be observed by players, the application needs to ren-

der at least 24 to 30 frames per second. This frequency defines the time step for

 81

each iteration, resulting in 30 to 40 ms time step for each iteration. So the de-

mand of these applications, in terms of interconnection network features, is of-

ten low application to application latencies, but not necessary high throughput

[1]. Because the data exchange of each time step between client and server is

often a few Kbytes/s, so increasing number of clients often makes the system

reach the bottleneck of the server’s CPU processing cycles rather than the bottle

neck of the network system. Another key factor of the network system which

has to be taken into account is the variation of the latencies (or jitter), because

big jitters will cause appreciable unsmooth refresh of the 3D scenes.

Unlike interactive simulation systems, other applications which run on the

cluster system may require different latency and throughput features of the in-

terconnection system. The requirement for the interconnection system may even

change during the system run time. These requirements are all related to the fac-

tors of the communication time commt and the computation time compt as in

(4.5), and the ratio

Computation/communication ratio =
Computation time

Communication time

comp

comm

t

t
= (4.9)

can be used as another metric to evaluate the cluster performance.

Figure 4-8 illustrates hypothetical samples of three applications of different

computation/communication ratios. In each application two cases are considered,

and the optimized communication time in one case is half of the other.

For sample application 1, compt is much higher than commt , it is obvious that

reducing the commt to half of its original value does not have much influence on

 82

the overall processing time. Scientific computation applications often show such

computational features where sophisticated mathematical computation consumes

much of the processing time while parameter exchanges between computing

nodes are usually small. This may also imply that the computing time can be

reduced by using more computational nodes in the cluster. As shown in equation

(4.6), if the data word w is small enough so that wtdata is near to or less than

tstartup, then the latency will be an important proportion in commt , and thus greatly

influence the overall performance.

Figure 4-8: The computation/communication ratio of three different appli-

cations and comparison after the communication time is optimized to half

of the original

 83

For sample applications 2 and 3, communication time commt is close to or even

higher than the computation time compt , so the interconnection network plays an

important role in the total processing time. Under these circumstances, reducing

the communication time commt will reduce the overall processing time signifi-

cantly. In application 3, the communication time commt is much longer than the

computation time compt , and dominates the total processing time. This may im-

ply that the number of computing nodes in the cluster is unnecessarily high and

introduce too much interconnection overload. At this time, much higher

throughput of the interconnection network system is demanded to improve the

overall cluster performance.

In the above, we have analyzed issues related to the two components, com-

munication time and computing time, in affecting the effectiveness of cluster

computing applications. Different applications which run on a computer cluster

often incur different network transmission features, and have different demands

in terms of system performance. To meet the requirements demanded by these

applications, a control mechanism is needed to optimize the performance of the

IEEE 1394 network. In the following sections, we will discuss two sample ap-

plications and their requirements for the proposed control mechanism.

4.3.2 Cluster design requirements of transportation simulation

systems

The railway simulation system and the urban traffic simulation system are the

 84

two target systems which will run on our cluster. The original objective of rail-

way simulation system is to provide a simulation platform for the training of

railway technical process operations [106], so the 2D and 3D graphical interface

and human-machine interaction are of great importance in the system, but the

system is often running in the same time scale as in the real-world, which means

speedup is not a major design concern. In such a system, low data transmission

latency, as well as low jitter in latency is crucial for the interconnection network

of the cluster, so that frequent interaction of such a system can be guaranteed.

Although high throughput is not required for the railway simulation system un-

der such consideration, the system is under fast evolution, and it may be used to

carry out prediction or verification of large scale transportation planning in the

future. Speedup will become an issue when the system is used to perform those

tasks, thus the requirements of the interconnection network need to be adjusted

in the future.

The urban traffic simulation system is often for the purpose of transportation

planning or forecasting [14], [92], [16]. Urban traffic problems often involve

many human activities, and are hard to be modeled precisely, thus computer

simulation is often employed. The most preferable approach for traffic simula-

tion is a “microscopic” approach [67], in which individual traveler and trans-

portation vehicle are modeled separately. Considering a big city with a popula-

tion of over ten millions, simulating the traffic of such a city will be a challeng-

ing problem for most contemporary computers, so parallel computing for the

 85

simulation of traffic system prevails. To understand the urban traffic situation of

a single day, it may be necessary to simulate activities of that day hundreds of

times. In order to predict the traffic situation for the next ten minutes of an urban

area, it is reasonable to complete the prediction in about three minutes. This

means that the speedup factor is a crucial factor of such kind of urban traffic

simulation systems.

To facilitate the implementation of these applications on the IEEE 1394

cluster, our transmission protocol must meet the demands of various application

features, which may vary during the runtime of an application, and the require-

ments of the control mechanism in the protocol are defined below:

a) Identify the transmission features of the application.

b) Monitor the performance of the application (in terms of speedup,

jitter etc.)

c) Switching between the IEEE 1394 transmission modes to improve

the network performance.

The requirement a) is to investigate the data transmissions of the application

which is running on the cluster, and find out the type of application, that is,

whether the application needs low latency and low jitter rather than high

throughput, or it needs high speedup factor and high throughput.

The requirement b) is to monitor the transmission factors of the application,

namely latency, jitter, throughput, and speedup.

The requirement c) is to tune the IEEE 1394 network performance to meet

 86

the demand of the preconceived application.

The control mechanism is encapsulated in the protocol, so that it is trans-

parent to applications. The application needs no knowledge about the underlying

IEEE 1394 network system and the optimization is achieved by the control

mechanism automatically. The control mechanism runs in a loop and keeps

monitoring the network performance so that tuning of the network parameters

can be performed. Figure 4-9 illustrates the logic of the control mechanism.

The control mechanism runs in parallel with the data transmission of the

protocol, but in a lower priority so that the performance of the data transmission

is not influenced by the controller.

Figure 4-9 depicts how the control mechanism can achieve the objective of

maximizing the overall throughput of an application. If throughput is the most

preferred transmission feature, this control mechanism tries to offer the maxi-

mum throughput under all condition, by initiating various numbers of concurrent

asynchronous mode transmissions, or by switching between the asynchronous

mode and isochronous mode. The control reaction is supposed to be only related

to the packet size, the bold line, as shown in Figure 4-10, gives the optimized

maximum throughput.

 87

Identify the
transmission
features of the
application

Monitor the
performance of
the application

Switching
between the
IEEE 1394
transmission
modes (if
necessary)

#$%$%&$'()*(
(*+' ,-. /012304 5./-617859:;<;=>?@A

B@?=?C?D

Figure 4-9: The control mechanism in the protocol

In practice, the maximum throughput that can be achieved at run time may vary

from the result that we obtain from an experiment as shown in Figure 4-10,

since network condition, the CPU usage and other factors may vary from time to

time, thus the maximum throughput may not be equal to the value that we meas-

ured. This uncertainty of the transmission features makes it difficult for a crisp

control mechanism to be implemented and to adapt to changes of the cluster sys-

tem, so the fuzzy control is employed in our control mechanism. Another reason

for using the fuzzy control mechanism is that to perform statistical analysis on

the network transmission data and to make a control decision based on that will

 88

be time consuming, and unnecessarily occupy the CPU cycles and memory, both

of which are sacred resources in any parallel computing systems.

0

50

100

150

200

250

300

0 1000 2000 3000 4000 5000

Packet Size (Bytes)

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

1 asynchronous transmission

2 asynchronous transmissions

3 asynchronous transmissions

4 asynchronous transmissions

5 asynchronous transmissions

Single isochronous transmission

The optimized transmission

Figure 4-10: A sample objective of the control mechanism for throughput

optimization

4.3.3 Principles of fuzzy control

Fuzzy control is a combination of control theory and fuzzy logic [109], [110].

When traditional mathematics was unable to solve complex practical problems,

fuzzy logic is filling the gap and with tremendous success in areas including

home appliances, aircraft control, production systems, medical applications and

 89

much more.

Fuzzy logic assumes that there are propositions with an infinite number of

truth values in infinitely varying degrees. Any logic then is just a subset of fuzzy

logic. There are two extreme values, 1 (totally true) and 0 (totally false), and a

continuum in between that justifies the term “fuzzy”.

Fuzzy logic, like probability theory, deals with uncertainty, but this uncer-

tainty is masked in somatic and subjective ambiguity. Unlike probability theory,

fuzzy logic deals with degrees of occurrence, whereas probability theory deals

only with occurrence. It deals with degrees of truth that are provided in the con-

text of fuzzy sets by what is called membership functions. To be able to perform

logical, albeit fuzzy, reasoning, fuzzy operator such as OR, AND, IF, and THEN

ought to be defined.

Fuzzy control systems are rule-based systems in which a set of rules, called

fuzzy rules, defines a control mechanism to adjust the system. Figure 4-11

shows the block diagram of a fuzzy logic controller that comprises of four prin-

cipal components: a fuzzification interface, a rule base, and decision making en-

gine, and a defuzzification interface.

As illustrated in Figure 4-11, a fuzzy rule-based system receives a number of

crisp inputs, which describe the system that is controlled through a set of pa-

rameters, and suggests an action as a response to these inputs. In order to ac-

complish this, the system first “fuzzifies” the crisp numerical values that it re-

ceives from the input, according to a set of selected rules that are derived from

 90

experience and the desired response of the system. Each rule’s consequence then

contributes to the final results to the degree that its descendent is true. A de-

fuzzification process translates the fuzzy value back to a crisp, numerical value

(or set of values for systems with more than one output), to provide the final re-

sult. So in practice the controller uses the crisp value to perform the control task.

The fuzzification is performed by membership functions which map crisp sets

into fuzzy sets. Triangular or trapezoidal membership functions and Gaussian

membership functions are frequently used. There are several defuzzification

methods, e.g. center of gravity, height method etc. [29]. Height method is con-

venient and advantageous when using triangular or trapezoidal membership

functions, center of gravity is recommended when using Gaussian membership

functions.

Figure 4-11: Block diagram of a fuzzy controller

 91

4.3.4 Classification of transmission features of data flow

The first task of the control mechanism is the classification of data flow. As we

mentioned before, different applications have different transmission require-

ments, therefore, we need to identify the transmission features of the application

and make control decision accordingly. Moreover, this task is important because

the requirements of transmission parameters for a given application may change

during the application’s run-time. As in a parallel transportation simulation ap-

plication, the number of vehicles in the simulated area often varies on a large

scale during the simulation, and the data transmitting between the cluster nodes

will change accordingly.

Fuzzy logic is employed in classifying the transmission patterns of data flow

in our control mechanism, in that it supports fast reasoning and decision making

than other analytical, statistical or stochastic queuing theories.

As discussed in Section 4.3.2, there are three distinct types of data flows

which need to be classified, namely:

a) Multimedia data flow of 3D animation.

b) Data flow that requires low latency but not high throughput.

c) Data flow that requires high throughput but not necessarily low la-

tency.

The classification of these data flows all involves the following factors:

packet size of an individual data packet, variation of packet size, interval of

back-to-back data packet, variation (jitter) of the interval, throughput of the data

 92

flow, variation of the throughput.

In the next section, we will present the classification criteria and member-

ship functions for these three distinct data flows, which are derived by examin-

ing the performance features discussed in the Chapter 2, 3 and Section 4.2.

4.3.4.1 Multimedia data flow

Multimedia data flow of 3D animation often exhibits a rather “smooth” charac-

teristic. The packet size of individual packet is usually not very large. In the case

of the railway simulation system, it is in the order of tens of kilo-bytes. In addi-

tion, there are packet size variations, sometimes the variations can be very sig-

nificant (imagine a train passing through the simulated station at very high

speed), but this kind of burst variation is not frequent. The most significant

characteristic of the multimedia data flow is that the variation of packet interval

is often very small, and packet interval is often short (<30ms), although the ac-

tual packet interval may be longer due to the congestion of the network, we can

measure the interval between which the application initiates the two data send-

ing procedure of the protocol instead. Since the throughput is not an important

factor for such an application, the throughput factor is not taken into account to

these criteria. If we note t∆ to be the measured time period, a fuzzy set of the

input vector is defined as

^

, , , ,
p

X p p i i
t

 ∆
= ∆ ∆

∆

where X1 = p is the packet size, X2 = p∆ is the variation of packet size during

 93

t∆ in absolute value, X3 =
p

t

∆

∆
 is the frequency of burst packet size variation

in absolute value, X4 = i is the interval between packets, X5 = i∆ is the varia-

tion of interval, in absolute value.

Let L(Xi) be a set of linguistic values (words) characterizing any measure-

ment over Xi . We define these as

1

2

3

4

5

() { (), (), ()}

() { (), ()}

() { (), ()}

() { (), ()}

() { (), ()}

L X Small S Big B Very Big VB

L X Small S Big B

L X Nonfrequent NF Frequent F

L X Short S Long L

L X Small S Big B

=

=

=

=

=

From above criteria we have the following rules:

Rule 1:
1 2 3 4 5 ,if X is S and X is S and X is NF and X is Short and X is S

then the result is YES

Rule 2:
1 2 3 4 5 ,if X is B and X is S and X is NF and X is Short and X is S

then the result is LIKELY YES

Rule 3:
1 2 3 4 5 ,if X is B and X is B and X is NF and X is Short and X is S

then the result is LIKELY NO

These three rules are given as examples. The full rule set can be derived simi-

larly, see Appendix C for details.

The membership functions of the input variables are chosen to be triangular.

The functional forms of the membership functions of these values depend on the

corresponding input and will be determined according to the criteria and rules

derived above (Figure 4-12).

The physical domain for the packet size (X1 = p) is [0, +∞). The differentia-

tion between Small, Big, Very Big is 15, 25, 30 Kbytes respectively. These val-

 94

ues are defined based on a preliminary test on the transmission data of the rail-

way simulation system, where the packet sizes are mainly distributed between

1K – 25Kbytes.

Figure 4-12: Membership function for packet size (X1)

The membership function of variation of packet size X2 = p∆ is depicted as in

Figure 4-13, the differentiation of term small and big is at 1 Kbytes and 20

Kbytes, which are defined based on the same test, in which the variation of

packet size is often around several kilo-bytes, while with a burst of around 20

kilo-bytes.

Figure 4-13: Membership function for variation of packet size (X2)

E X
1
 = pFGHII JKL MNOP JKL

QRSTUVWX

2X p= ∆

 95

The membership function of X3 =
p

t

∆

∆
, the frequency of burst packet size

variation, is shown in Figure 4-14, the differentiation of 0.005 and 0.1 Hz are

defined based on the observation that the burst variation of packet often happens

within 1 to 3 minutes intervals.

Figure 4-14: Membership function for frequency of burst packet size varia-

tion (X3)

The membership function of interval between packets X4 = i is shown in Figure

4-15, Since the interval between packets is corresponding to the rendering rate,

if we assume that the rending rate between [10, 100] fps is a reasonable value

for the 3D application, the interval boundary then should be around [10, 100] ms,

with 30ms interval in the middle, which is the preferred time interval.

3

p
X

t

∆
=
∆

8

 96

Figure 4-15: Membership function for interval between packets (X4)

The membership function of variation of interval between packets X5 = i∆ is

depicted in Figure 4-16. The differentiation for big is 20ms, which will delay a

rendering rate from 30fps to 20fps, which we regarded as a significant changes

to the rendering rate.

Figure 4-16: Membership function for variation of interval (X5)

We have described the membership functions for the five parameters of multi-

media data flow. In the next section, we will discuss the membership functions

4X i=

8

Y 5X i= ∆

Z[\]^ _`

8

FGHII JKL

 97

for additional parameters that is required for identifying latency sensitive data

flow.

4.3.4.2 Latency sensitive data flow

Some applications require prompt response to specific messages, such as mes-

sages which convey control information. Take the railway simulation system

[106] as an example, if a button is pressed on the control terminal, the corre-

sponding message is sent to a central simulator and a response is expected to be

returned promptly. These data flows are latency sensitive. The classification of

the latency sensitive data flow is based on the classification in the former section,

if the data flow does not fall into the category of multimedia data flow, we need

to further identify whether it is a latency sensitive data flow.

The control mechanism tries to identify whether there is a prompt response

to a given data packet at the receiver side to decide whether the data flow re-

quires low latency. We define X6 = r, where r is the response interval between

the receiving of a data packet and the sending of a response packet. Thus the

rule for classifying a data flow as latency sensitive one is:

,if r is short then the data flow is latency sensitive .

The membership function of r is given in Figure 4-17.

 98

Figure 4-17: Membership function for r (X6)

4.3.4.3 Throughput sensitive data flow

A throughput sensitive data flow is identified by monitoring the internal buffer

queue length of our protocol. If a packet sending operation is initiated and the

buffer is not empty, the data flow is considered to be throughput sensitive. The

control mechanism is required to arrange more throughput capacity to the data-

flow.

Since in a realistic cluster computing condition, the arriving of data packet is

often in groups, once the queue is not empty, it is likely that the data will keep

coming-in and the queue length will keep growing. Considering an M/M/1

queuing system, a solution given in [84] shows that the possibility of queue

length Pn is related to the utilization ρ of the queuing system. The possibility of

P(n>3) is less than 0.13 for ρ less than 60%, and it increases to 0.66 when ρ is

90%. This underlies that if the queue length is found greater than three, it is

a 6X r=

bcdefg

8

hijkl mjno
ag

 99

probably that the utilization is between 60-90%. According to this, we set the

queue length of three as the key point for differentiating the queue length as long.

The queue length is defined as X7 = q, then the rule for classifying a throughput

sensitive data flow is

,if q is long then the data flow is throughput sensitive

The membership function of X7 = q is given by Figure 4-18.

Figure 4-18: Membership function for q (X7)

4.3.5 Performance prediction and decision making

Once the data flow is classified into the above categories, the fuzzy controller

makes decisions of mode switching based on the data flow category and its cur-

rent transmission performance. The fuzzy controller monitors the performance

features such as packet size and packet size variation, and derives a prediction of

the future performance from the current performance. Although it is impossible

to make an exact network status forecast of cluster running various applications,

7X q=

8

 100

we still can make the prediction based on some criteria like minimum variance,

which is referred to as minimum variance prediction [100]. The mode switching

decision is made by the fuzzy controller based on the predicted future perform-

ance and the category of a specified data flow. Since there are considerable un-

certainties in the network data transmission, the fuzzy controller is expected to

yield better performance over the same cluster network than a traditional con-

troller which is based on a mathematical model and makes mode switching on

some threshold. In the next section, we describe the performance prediction and

decisions making of data flows in three categories, results are presented to illus-

trate how the fuzzy controller can improve the performance of the cluster sys-

tem.

4.3.5.1 Multimedia data flow

As we have described in section 3.4.2, the isochronous mode of IEEE 1394 bus

supports guaranteed delivery time, and is designed to carry multimedia data.

When a data flow is classified as a multimedia data flow, the controller should

switch the IEEE 1394 bus to use isochronous mode to carry this data flow, pro-

vide that there is available isochronous resources. Figure 4-19 illustrates the to-

pology of the controller for multimedia data flow.

 101

Figure 4-19: Controller topology for multimedia data flow

As shown in Figure 4-19, after the fuzzy classifier identifies a data flow as mul-

timedia data flow, the performance predictor keeps monitoring the data flow and

provides performance prediction. The mode switching is carried out with refer-

ence to the performance prediction. For the multimedia data flow, the IEEE

1394 bus can operate in three modes: isochronous mode S100 (with 62.5 Mbps

throughput), isochronous mode S200 (with 125 Mbps throughput) and isochro-

nous mode S400 (with 250 Mbps throughput).

To predict the future performance for a multimedia data flow, we define a

fuzzy variable X8 = A as the arrival data rate of the multimedia data flow, and a

fuzzy variable X9 = dA/dt as the rate of change of A. Figure 4-20 and Figure 4-21

show the membership functions of the two variables.

 102

Figure 4-20: Membership function for arrival rate (X8)

Figure 4-21: Membership function for rate of change of A (X9)

As shown in Figure 4-20, two thresholds 62.5 Mbps and 125 Mbps categorize

the variable X8 = A into three areas. In Figure 4-21, the rate of change of A is

differentiated into negative and positive to represent the changing trend of the

arrival rate. Four rules can be derived from these variables and their values, one

example rule is:

1, / ,if A is T and dA dt is positive the predicted performance is medium

9 /X dA dt=

 103

The mode switching decision is thus to be switching the IEEE 1394 bus to

isochronous mode S200.

We carry out an experiment to verify the improvement of the latency per-

formance. As shown in Figure 4-22, we initiate one multimedia dataflow and a

control data flow between two workstations at the same time. One frame of the

multimedia data flow is about 150 Kbytes, and there are 50 frames of data per

second (to offer better 3D animation performance, the frame rate is double of the

ordinary 25 fps), so the workload of the multimedia data flow is around 7500

Kbyte/s. The throughput of the control data varies from 10 Kbytes/s, 100

Kbyte/s to 1 Mbyte/s. Each of the Data flow lasts for 2000 seconds.

0

2000

4000

6000

8000

0 2000 4000 6000

Time (second)

W
o
k
lo
ad
 (
K
B
y
te
s/
s)

Multimedia data Control data

Figure 4-22: Workload of multimedia and control dataflow

Figure 4-23 and Figure 4-24 depict the comparison latency of the multimedia

data flow without and with the fuzzy controller. In Figure 4-23, with no fuzzy

controller, the multimedia data flow is transmitted in asynchronous mode. The

 104

result shows that the multimedia data flow is influenced significantly by the

control data. The variation in latency is quite clear even when the control data is

only 10 Kbyte/s. Both latency and variation of latency increase when the control

data throughput increases. When the throughput of control data is around 1

Mbyte/s, the latency of the multimedia data is sometimes over 35ms, and intro-

duces perceivable jitter in the animation for multimedia data. In Figure 4-24,

with the fuzzy controller, the multimedia data flow is identified and the trans-

mission mode is switched from asynchronous mode to isochronous mode, since

the throughput of the multimedia data flow is 7500 Kbyte/s, the fuzzy controller

uses the S100 isochronous mode to carry the data flow, this makes the latency

increase from 10ms to 18ms, but the variation of latency drops dramatically

when comparing to Figure 4-23, and the variation is still very low when the

throughput of control data flow increases to 1 Mbyte/s. This result shows that

the multimedia data flow benefits a lot from the fuzzy controller.

0

10

20

30

40

0 2000 4000 6000

Time (second)

L
at
en
cy
 (
m
s)

Figure 4-23: Latency of the multimedia data flow without fuzzy controller

 105

0

10

20

30

40

0 2000 4000 6000

Time (second)

L
at
en
cy
 (
m
s)

Figure 4-24: Latency of the multimedia data flow with fuzzy controller

4.3.5.2 Latency sensitive data flow

When the data flow is latency sensitive, the fuzzy controller chooses to use

asynchronous mode to carry the data flow, and the single-way latency of this

data flow is monitored, so that when the latency is increased beyond a given

point, 180 µs as we have measured in Section 3.4.2, the bus will be switched to

isochronous mode to carry the data flow, because the asynchronous mode cannot

offer better latency than the isochronous mode.

Since the asynchronous mode performance is often influenced greatly by the

isochronous mode, the mode switching for latency sensitive data flow depends

greatly on the network conditions. Figure 4-25 shows the results for the empiri-

cal latency performance of latency sensitive data flow against packet size. The

packet size of the data flow varies from 8 bytes to 4096 bytes. Three different

conditions are studied, i.e. latency sensitive data flow with no isochronous data

 106

flow, S100 isochronous data flow, and S200 isochronous data flow respectively.

As shown in Figure 4-25, when there is no isochronous mode transmission, the

latency sensitive data flow can benefit from asynchronous mode when the

packet size is smaller than 2048 bytes, and only have to switch to isochronous

mode when the packet size is greater. When there is a S100 isochronous mode

data transfer accompanied with the latency sensitive data flow, the latency of the

data flow carrying with asynchronous mode increases greatly, and when the

packet size is around 1500 bytes, the fuzzy controller switches to isochronous

mode to transfer the data flow, the latency is around 180 µs when packet size is

smaller than 3072 bytes, but increases sharply after that, which is because the

packet cannot be carried in one isochronous cycle, and has to use the next cycle.

When there is a S200 isochronous mode data transfer accompanies with the la-

tency sensitive data flow, the latency of the data flow increases greatly from

small packet size, and the fuzzy controller switches to use isochronous mode

when packet size is around 500 bytes. The latency is around 180µs when the

packet size is smaller than 2048 bytes, and there is a sharp increase when the

packet size is larger, it is because when there is a S200 isochronous mode, the

other isochronous mode carrying the latency sensitive data flow can only use

2048 bytes in an isochronous cycle, and have to use the next cycle to carry the

packet. Table 4-2 summarizes the comparison of latency performance of the data

flow with various network conditions.

 107

0

50

100

150

200

250

300

350

0 2000 4000

Message Size (Bytes)

L
at
en
cy
 (
µ
s)

With no isoch. With S100 isoch. With S200 isoch.

Figure 4-25: Latency of the latency-sensitive data flow with various net-

work conditions

Table 4-2: Comparison of latency with various network conditions

Network condition Mode used (packet size) Latency Performance

Light loaded Asynchronous (<2000)

Isochronous (>2000)

Low

Fairly low

Medium loaded Asynchronous (<1500)

Isochronous (>1500)

Low

Acceptable

Heavy loaded Asynchronous (<500)

Isochronous (>500)

Fairly low

Acceptable

By applying the fuzzy controller in the communication protocol, we can offer

latency sensitive data flow a best-effort service, when the packet size is small,

the protocol can achieve very low latency by utilizing the asynchronous mode,

when the packet size increases, the protocol can still achieve acceptable latency

by utilizing isochronous mode.

 108

4.3.5.3 Throughput sensitive data flow

If the data flow is throughput sensitive, the fuzzy controller switches between

modes to offer maximized throughput for the data flow. As we have shown in

Figure 4-6, the throughput of asynchronous mode is higher when packet size is

smaller than 2048 bytes, and the throughput of isochronous mode is presumably

better when packet size is greater than 2048 bytes. But with the communication

protocol which supports reliable delivery by acknowledgment, the latency of

isochronous mode is increased to 180 µs. So using multithread asynchronous

mode can sometimes offer better performance when packet size is greater than

2048 bytes. Figure 4-26 shows that when the packet size is between 2048 and

3000 bytes, the multithread asynchronous mode throughput is higher than the

isochronous mode throughput. When the packet size is greater than 3000 bytes,

the isochronous mode throughput is better. The fuzzy controller needs to moni-

tor the packet size of a throughput sensitive data flow, and to choose the suitable

mode according to the packet size.

Real time ratio (RTR) is an important factor for describing the performance

of parallel simulation on clusters, it describes how much faster the simulation is

than the reality. An RTR of 100 means that 100 minutes of reality events are

simulated in 1 minute of computing time. Throughput of the interconnection in a

computer cluster is the dominant factor for the real time ratio of parallel discrete

 109

event simulation system. Urban traffic simulation is one of such systems.

0

20

40

60

80

100

120

140

160

180

200

0 1000 2000 3000 4000

Packet Size (Bytes)

T
h
r
o
u
g
h
p
u
t

(
M
b
p
s
)

Asyn. mode Isoch. mode

Figure 4-26: Maximized throughput by employing the fuzzy controller

Consider a very simple cluster which consists of two nodes and one IEEE 1394

link and Fast Ethernet link respectively, we can derive the real time ratio of a

parallel simulation application regarding to interchanging packet size between

nodes directly from the throughput of the interconnection device. To observe the

real time ratio of the two nodes cluster using Gigabit Ethernet, we use the Giga-

bit Ethernet performance data from the study of [11] and [28] about data trans-

mitting through MPI over TCP. The time for computation on each of the com-

putation node (compt) is 1ms. Figure 4-27 shows the result.

 110

pqpprppspptppuppvppwppxppyppqppp

p qpppp rpppp spppp tppppz{|}~� ���~ ����~��
��������
����� ���� qsyt�{�� ���~��~����{��� ���~��~�

Figure 4-27: Real time ratio of two nodes cluster interconnected by IEEE

1394, Fast Ethernet, Gigabit Ethernet

As shown in Figure 4-27, the real time ratio of IEEE 1394 is better than that of

the Gigabit Ethernet when the packet size is smaller than 10 Kbytes, and it drops

lower than the real time ratio of the Gigabit Ethernet when the packet size is

greater than 10 Kbytes. Both the real time ratio of IEEE 1394 and Gigabit

Ethernet are better than that of the Fast Ethernet. This result shows that by em-

ploying our light weight communication protocol and the fuzzy controller, the

IEEE 1394 can achieve high throughput when the packet size is relatively small,

and can outperform the Gigabit Ethernet. But when packet size becomes larger,

the performance of IEEE 1394 drops and cannot compete with the Gigabit

Ethernet. Under all condition, the IEEE 1394 performance is much better than

the Fast Ethernet. Software overhead is the main reason for the performance of

 111

the Gigabit Ethernet is not as good as the nominal value – 1 Gbps. This over-

head introduces extra latencies and causes the performance significantly slow

when the packet size is small.

4.4 Concluding remarks

In this Chapter, we discussed the fuzzy logic data flow analysis and classifica-

tion, and the fuzzy control mechanism to optimize the IEEE 1394 network for

cluster computing. Although the fuzzy logic performance analysis of the cluster

or grid system was address by several works, dynamic performance monitoring

and tuning mechanism of the computer cluster system is unseen. We have im-

plemented a control mechanism which intelligently controls the underlying

IEEE 1394 network and tunes the network to provide optimized cluster per-

formance.

Look-up table is another approach that can achieve the control task. The

look-up table approach is usually faster and incurs shorter latency than the fuzzy

decision approach for small number of combination. But in our case, there are

many possible parameters, and the number of combinations is enormous, so the

look-up table approach may be not faster than the fuzzy decision approach.

Above all, the fuzzy decision is easy to adapt to real world communications, it is

a more appropriate approach for decision making in the communication protocol

than the look-up table approach.

 112

Three types of data flow on the cluster can be classified by the fuzzy control

mechanism, namely the multimedia data flow, the latency sensitive data flow

and the throughput sensitive data flow. Dynamic mode switching is carried out

by the control mechanism to optimize the performance for a specific data flow

type. Results show that the jitter in latency of multimedia data flow is alleviated

by switching to isochronous mode. Transmission latency for latency sensitive

data flow is optimized intelligently with various packet sizes and different net-

work conditions, latency lower than 125 µs can always be achieved when the

packet size is less than 4 Kbytes under different network conditions. Throughput

with various packet sizes is improved for the throughput sensitive data flow. By

employing the control mechanism, the real time ratio of the IEEE 1394 cluster is

comparable to that of the Gigabit Ethernet cluster when the packet size is less

than 20 Kbytes. This control mechanism is proved to be valuable in utilizing the

IEEE 1394 cluster for parallel computing.

 113

5 Case studies of transportation simulation applications

5.1 Introduction

In this Chapter, we present two case studies of transportation simulation appli-

cations on the IEEE 1394 cluster system. Comparisons are made between

Ethernet cluster and IEEE 1394 cluster, running the same applications. The re-

sults are presented to illustrate the advantages of adopting the IEEE 1394 cluster

over the Ethernet Cluster.

Transportation research is concerned with the analysis of phenomena occur-

ring in real world traffic. As the amount of people traveling, as well as transport

of goods, is increasing continuously, existing transportation resources such as

roads and vehicles get more and more overloaded, resulting in congestion or

breakdown of resources. The situation is poor in an urban traffic system, where

a limited amount of road capacity must accommodate an increasing amount of

traffic. Transportation research can help to understand the characteristics of traf-

fic and propose solutions for existing problems. To achieve these goals, com-

puter simulation of traffic is an important tool. Many works have been carried

out in the past to develop simulation models appropriately representing the real-

ity of the transportation system [66], [10], [21], [23], [24], [50], [78], [79], [97].

There are two fundamentally different types of models in traffic simulation

namely macroscopic model and microscopic model. Macroscopic models try to

 114

characterize traffic flow with fluid-dynamic approaches [25], giving an aggre-

gated view of the problem. Microscopic models, in contrast, represent all enti-

ties (e.g. persons, vehicles, traffic lights, intersections) of the simulated system

as individual objects. Besides more accurate simulation results, this has the ad-

vantage that individual choices of travelers can be considered. A straightforward

approach is to describe the movement of vehicles by equations, directly or indi-

rectly derived from physical laws. In order to reduce the computation time, there

are other approaches which model traffic as cellular automata [103], where the

dynamic behavior of a vehicle is discretely modeled in time and space. Such an

approach is recognized as simple and computationally efficient, yet exhibiting

realistic behavior.

Due to the nature of Microscopic Transportation Simulation systems, a huge

number of individual entities are needed to be simulated at the same time, the

computational demands of such a large-scale traffic simulation can be very high,

leading to the need for parallelization. High performance supercomputers are

one choice to fulfill the requirement for microscopic transportation simulation

systems [62], [63], but they are often very expensive. Recently, computer clus-

ters, which are cheaper alternatives for supercomputers, become popular for

solving parallel problems. But high-end clusters are still expensive and this

makes it difficult to be widely deployed in a microscopic transportation simula-

tion systems.

The networking system is a major element in the construction of a comput-

 115

ing cluster, cost and performance of the cluster are greatly affected by different

networking mechanisms. The IEEE 1394 bus, or the FireWire, which has a

transfer rate of 400 Mbps but costs much less than the Gigabit Ethernet, is a

suitable candidate for building a cost-effective computer cluster. In previous

chapters, we have already devised different techniques to further improve the

overall performance of the device, and in this Chapter, we will deploy the device

in two microscopic transportation simulation problems. The two different types

of microscopic transportation simulation problems are the railway simulation

system and the urban traffic system. These two systems show different charac-

teristics and thus have different demands for the computer cluster. In the fol-

lowing sections, we first discuss the railway simulation system, and followed by

the urban traffic simulation system. Comparison of implementation results ob-

tained from an Ethernet cluster and the IEEE 1394 cluster are presented for each

system.

5.2 Railway simulation system

The railway simulation system is a distributed interactive simulation system for

the demonstration and training of railway operations. Most major railway opera-

tion procedures are included in the simulation system, like operation of the gen-

eral railway stations and the dispatching process of railway marshalling station

[105], [106], [107], [45].

In our case study, we consider only a marshalling station simulation system.

 116

Marshalling stations are key stations in railway network. Located in the

joint-point of several lines of the network, marshalling stations perform the sort-

ing work of freight trains. Wagons that are bounded to different destinations are

decoupled from a fleet and those are bounded to the same direction aggregate

together and form a new train. To offer a better platform for the training purpose,

the system employs 3D animations in the marshalling yard simulation. Figure

5-1 shows a screen-shot of the 3D animation for the marshalling yard of the

marshalling station simulation system. As shown in the figure, a 3D animation

system displays the marshalling yard situation in real-time, trainees looking at

the screen can make control decision such as to brake the wagons according to

the wagons’ sliding speed from the 3D animation. Figure 5-2 depicts the system

structure. There are usually two symmetric marshalling systems in a large mar-

shalling station for the up and down train running directions, only the down di-

rection system is shown in Figure 5-2. The marshalling yard simulator is re-

sponsible for the computation for all states including moving objects like wag-

ons, signal lights as well as rail switches. The statuses of these objects are dis-

played concurrently on many virtual reality displays on different locations on

the network. Obviously, the moving objects – the wagons’ data must be trans-

mitted in real-time over the network, so between the central simulator and the

graphical workstations that run the virtual reality displays, there are huge vol-

ume of data communications (heavy communications). Such data communica-

tions are in constant time interval and almost in a steady throughput. They also

 117

have the broadcasting nature, or can benefit from broadcasting. Other than the

marshalling yard, there are other yards like the receiving yard and the departure

yard. Technical process on such yards is limited so no virtual reality display is

needed. There are only small amount of random data communications (often

train handing over between stations and control panel status changes, so it is re-

garded as light communications) between the connected receiving yard, depar-

ture yard and marshalling yard.

Figure 5-1: The running railway simulation system with 3D display and a

control panel

 118

�������� ¡¢ £��¤� ¥¦��§¨�©ª«��§¦�ª £��¤� ¥¦��§¨� ¬ªª ® ¡¢ £��¤� ¥¦��§¨�

¯¨¡§�¨� °¨±ª� ²³ �§¦���ª�� §£¤ �«��£¯¨¡§�¨� ´�¡ª�
¯¨¡§�¨� °¨±ª�³ �§¦���ª�� §£¤ �«��£¯¨¡§�¨� ´�¡ª�

µ¡�«ª§¨�³ �§¦���ª�� §£¤ �«��£
¶ª�®£ ¨¥¥¦¡ �§ ¨¡· ¢�§ ¨¥¥¦¡ �§ ¨¡

©¨±¡ ¤ �ª§ ¨¡¸« ¤ �ª§ ¨¡

Figure 5-2: The railway simulation system structure

The railway simulation system is originally implemented on a Fast Ethernet

cluster. We sampled the data communication requirements for the railway simu-

lation system. Using these data, we simulated the performance of such a system

on both Fast Ethernet network and the IEEE 1394 network. The strong data

communications consist of data to render every 3D scene. These data include the

3D x-y-z axial locations and stance angles for wagons and engines, light status

of signals and opening directions of switches etc. For a given marshalling yard,

the number of signal and switches are fixed, so the data size for the description

of those objects is also fixed, in our example, the data size for these objects is

around 1 Kbytes. Number of wagons and engines in the yard, on the other hand,

vary all the time. When a fleet of wagons is being pushed into the yard the num-

ber increases, and when wagons are led out of the yard the number decreases.

Since these processes often are carried out at the same time, the number of wag-

 119

ons and engines in the yard is actually random. Different number of wagons and

engines incur different amount of 3D scene data, and thus influences the per-

formance of the system. In order to observe the performance under various con-

ditions, the data sample we used in the test (Figure 5-3) is excerpted from an

empirical simulation. The data was collected from the marshalling station repre-

senting situations when the station is empty to when it is almost saturated (about

500 wagons in the yard in this sample), when fleets arrive faster than fleets de-

part. Given that the data for the description of a wagon is around 100 bytes, the

resulting data frame of each 3D scene, as in Figure 5-3, increases gradually from

1 Kbytes to 50 Kbytes. The light communications are sampled using a random

distribution, with an average of 0.5 Kbytes/s, simulating the control signal in-

formation that is exchanged between yards; in addition, short burst of 20

Kbytes/s, which simulates the trains’ information exchange when a train is pass-

ing through stations is applied. With such data, we simulated the railway simu-

lation system running on a Fast Ethernet cluster, and on the IEEE 1394 cluster

with our communication protocol. Results of the network transfer latencies are

shown in Figure 5-4.

There are distinctions between the heavy communications and light commu-

nications. The heavy communications carry data for 3D animation, and require

low jitter in latency; the light communications carry data for control messages,

and require low latency. Since there is no QoS service in Fast Ethernet to facili-

tate different types of communication, for the Fast Ethernet cluster, we use the

 120

typical Ethernet topology, and all data are transferred directly on the cluster us-

ing the UDP protocol. The IEEE 1394 cluster is also using a simple structure.

All nodes are connected to the same bus. But different from the Fast Ethernet

cluster, in the IEEE 1394 cluster, the strong communications are transferred us-

ing the isochronous mode, by employing our communication protocol, the

communication pattern of the data flow is recognized by the fuzzy controller and

the mode is then switched to isochronous mode. Broadcasting is also used so

that a single sending function will distribute data to all the destinations. While

the light communications, also identified by the protocol, are transferred using

the asynchronous mode.

The performance of such a system on an Ethernet cluster is rather poor, the

rendering rate (equals to the strong communication data frame delivery speed)

of the 3D animations averaged about 20 frames per second (fps), even on a

100M Fast Ethernet cluster, although its throughput is theoretically sufficient for

the data sample as shown in Figure 5-3, but when there is more than 3 virtual

reality displays connected, the average rendering rate will be under 20 fps, be-

cause many copies of the same data have to be transferred repeatedly on the

network and the burst transfer also interferes the network traffic. At the same

time, the 3D animation display sometimes is not very smooth, because of the

unsteady delivery time of the data packets. While the IEEE 1394 result is very

satisfactory comparing to the Fast Ethernet result. The rendering rate of the vir-

tual reality displays is almost steadily at around 30fps, and the latencies of the

 121

IEEE 1394 cluster are ranging from 1 ms to around 2.5 ms, as shown in Figure

5-4 (see Appendix A, Table A-8 for details), this is almost unperceivable by

human eyes.

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Sample time (Min.)

D
a
ta
 s
iz
e
 p
e
r
fr
a
m
e
 (
K
B
y
te
s
)

Figure 5-3: The data sample for the railway simulation test

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Sample time (Min.)

L
a
te
n
c
y
 p
e
r
fr
a
m
e
 d
a
ta
 (
m
s
)

IEEE 1394 Fast Ethernet

Figure 5-4: The latency results of the railway simulation test

 122

This case study shows that although the Fast Ethernet is presumably to be capa-

ble of simulating the railway system, it is not ideal to carry the 3D animation

data. The IEEE 1394 cluster shows its excellence in carrying multimedia data by

using the isochronous mode. Although when the data packet size is small, the

latency of IEEE 1394 is greater than that of the Fast Ethernet, it is still tolerable.

During the testing period, the IEEE 1394 cluster retains very low jitter in deliv-

ering time for each data packet, that is crucial for carrying multimedia data.

5.3 Urban traffic simulation system

Many researchers addressed issues regarding parallel simulation of urban traffic

system on computer clusters [68], [83]. There are two important factors describ-

ing the speed of a parallel system, i.e. real time ratio and speed-up. Speed-up, as

in equation (4.1), describes how the running time is shortened when a program

runs in parallel comparing to the program runs in serial. Real time ratio is a ma-

jor concern of simulation systems; it is described as the real world running time

of a system divided by the simulation time of the system on a computer cluster.

In [14], [15], they reported Beowulf clusters (clusters of Pentium computers

with Linux operation system) can be used successfully for large scale problems.

The latency of Ethernet communication sets a hard limit on computing speed to

about 150 simulation time steps per second (if one time step simulates one sec-

ond of real world time, the real time ratio is 150), no matter what the problem

 123

size is. They further showed that the use of Myrinet communications technology

overcomes this problem. A real-time ratio of 180 was reached on 64 CPUs

Myrinet clusters. In [27], they describe an implementation of transport simula-

tion based on a graphical parallel programming environment called P-GRADE.

The transport simulator called MadCity, simulates a specific road network of a

city and shows cars moving on the roads. They achieved a speed-up around 6

with a 16 nodes cluster, which means the simulation time is 6 times shorter run-

ning on the cluster than running on a single computer.

The urban traffic simulation system is a microscopic simulation system that

is used for transportation forecasting and planning. The simulation is not carried

out by abstracting vehicles into traffic flows, but by simulating each vehicle as

an individual object. Each vehicle is represented by a corresponding data struc-

ture, as shown in Figure 5-5. The vehicle is identified by the traveler’s unique

ID. There are data fields which describe the vehicle’s movement status (velocity,

acceleration, etc.), and data fields which describe the vehicle’s location on the

road (road ID, lane ID, etc.). There are also other data fields related to the origi-

nation and destination of the traveler, travel plan and strategy of the traveler, etc.

The data structure for describing a vehicle under different simulation models can

be different. In our simulation, we use a data structure that is around 100 Bytes.

When vehicle travels from one location to another, the corresponding data is

sent through the network from one node to another. Since there will be typically

millions of cars running in a metropolitan traffic network, a vast amount of

 124

memory is needed for such a system, also very high network throughput is re-

quired. Such system is a typical application for a cluster system, and they often

use a domain decomposition method to divide the problem as in [15], [16]. The

metropolitan road map is divided into several domains, and each domain is han-

dled by one node in the computing cluster, as is illustrated in Figure 5-6. The

traffic zone consists of intersections and roads. Symbols of the road intersec-

tions are in different shapes, intersections with the same shape and the roads

connected to them are partitioned to the same computation node. Thus the traffic

zone in Figure 5-6 is partitioned to four computation nodes.

The sample cluster structure of our urban traffic simulation system is shown

in Figure 5-7. We tested both the Fast Ethernet cluster and IEEE 1394 cluster. In

our test, each cluster consists of four computation nodes.

 For the Fast Ethernet cluster, the structure is the simple bus type, for the

IEEE 1394 cluster, we use one IEEE 1394 bus for each link. In the urban traffic

system, the whole system status is updated step by step, with one step represents

1-second time in the simulated world. The time that is consumed in updating the

system status for one step follows a uniform distribution, with limits between

0.5 ms to 1.5 ms and with a mean of 1 ms. The data that is exchanged between

nodes (vehicle travels across computing node’s border) at the end of each step

are ranging from 8 Bytes to 50 Kbytes.

 125

Figure 5-5: Vehicle data object

Figure 5-6: The road network and domain decomposition

int ID; //Traveler ID

double V; //Vehicle velocity

double A; //Vehicle acceleration

int locID; //The road ID the Vehicle is on

int locX; //Which Lane is the Vehicle on

float locY; //Location start from road end

int OrgID; //The traveler’s origination ID

int DestID; // The traveler’s destination ID

List travelPlan; //The traveler’s plan of roads to go to reach the destination

List travelStrategy; //The strategies the traveler use to make decisions upon “cirCondi-

tion”

List cirCondition; //The pointers to circumstances factors that may influence the travel-

ing plan of the traveler (weather; road condition from traveler’s observation, other public

media or ITS system; random instance etc.)

.

// other internal data

.

 126

¹º»¼½¾¿ÀÁÀºÂÃ ¹º»¼½¾¿ÀÁÀºÂÃ
¹º»¼½¾¿ÀÁÀºÂÃ ¹º»¼½¾¿ÀÁÀºÂÃ

ÄÅÆÇ ÄÅÆÇÈÉÊË ÈÉÊËÈÉÊËÈÉÊË ÄÅÆÇÄÅÆÇ

Figure 5-7: The cluster structure

We first tested the performance of the Ethernet cluster and the IEEE 1394 clus-

ter based on the original Linux driver. The results are shown in Figure 5-8 and

5-9. In Figure 5-8, the Ethernet performance is compared with the performance

of the IEEE 1394 cluster using isochronous mode only.

0

50

100

150

200

250

300

350

400

450

500

8 1000 2000 10000 30000 50000

Data size(Bytes)

R
e
a
l

t
i
m
e

r
a
t
i
o

Ethernet

Firewire

Figure 5-8: Real time ratio of the Fast Ethernet cluster and IEEE 1394 clus-

ter using isochronous mode

The real time ratio (RTR) is determined by the number of steps that can be up-

 127

dated in 1-second, so a higher RTR value implies a better performance. For the

Fast Ethernet cluster, the maximum RTR is 330, and drops below 100 when data

size becomes 50 Kbytes. For the IEEE 1394 cluster, the maximum speed up is

480, and also drops when data size increases, but a RTR around 300 can be

achieved when data size is 50 Kbytes. The RTR of IEEE 1394 is much higher

than the Fast Ethernet cluster, and even more than double when the packet size

is larger than 10 Kbytes.

The RTR is not as high as expected for the IEEE 1394 when the data size is

small; it is because for the isochronous mode latency cannot be less than 125 µs

even when the data size is smaller than 4 Kbytes. In Figure 5-9, anther test using

asynchronous mode is carried out, the result shows the RTR improves greatly

when the packet size is small, with the maximum value near 800. While the

RTR drops very fast comparing to the isochronous mode value, when the data

size is around 20 Kbytes, it drops below the isochronous value.

Since data size ranging from 10 Kbytes to 50 Kbytes is the typical value in

the real simulation system, it is necessary to switch between the transmission

modes so that we can sustain maximum RTR in all conditions.

 128

ÌÍÌÌÎÌÌÏÌÌÐÌÌÑÌÌÒÌÌÓÌÌÔÌÌÕÌÌÍÌÌÌ

Ì ÍÌÌÌÌ ÎÌÌÌÌ ÏÌÌÌÌ ÐÌÌÌÌ ÑÌÌÌÌÖ×Ø× ÙÚÛÜ ÝÞßØÜàáÖ×Ø× ÙÚÛÜ ÝÞßØÜàáÖ×Ø× ÙÚÛÜ ÝÞßØÜàáÖ×Ø× ÙÚÛÜ ÝÞßØÜàá
âãäåæçèãéä
æçê
âãäåæçèãéä
æçê
âãäåæçèãéä
æçê
âãäåæçèãéä
æçê

ëìíîïðñòîòóì ôòõö ÷ìòïðñòîòóì ôòõö

Figure 5-9: RTR of the IEEE 1394 cluster using asynchronous mode com-

paring to using isochronous mode

Figure 5-10 shows the result when running the urban traffic simulation system

on the IEEE 1394 cluster with our new communication protocol. The real time

ratio decreases when the data size increases. The maximum RTR is around 800,

with the smallest data size at 8 bytes. When the data size is between 2000 bytes

to 10000 bytes, the performance with the new protocol is slightly better than us-

ing asynchronous mode, this is because the fuzzy controller uses two concurrent

asynchronous mode transmissions to carry the data payload. The figure shows

that using our protocol the overall performance of the urban traffic simulation is

optimized, very high real time ratio can be achieved by utilizing the asynchro-

nous mode. When the asynchronous mode cannot improve the performance with

packet size greater than 10000 bytes, isochronous mode is used to improve the

performance. So advantages of both asynchronous and isochronous mode con-

tribute to the overall performance.

 129

øùøøúøøûøøüøøýøøþøøÿøø�øø�øø

ø ùøøøø úøøøø ûøøøø üøøøø ýøøøø���� ���� 	
����
��������
�����

Isochronous mode Asynchornous mode

Dynamically switched

Figure 5-10: Speedup of the IEEE 1394 cluster using the control mechanism

in the protocol, with comparing to the isochronous mode and asynchronous

mode

5.4 Concluding remarks

In the case study of the railway simulation system, the IEEE 1394 cluster shows

its excellence in carrying multimedia data by using the isochronous mode. The

performance of 3D animation which is previously suffered from the big jitter of

the Ethernet network is greatly reduced. Other type of data, such as data carry-

ing control messages also can benefit from the high throughput nature of the

IEEE 1394 bus.

In the case study of the urban traffic simulation system, we achieved much

better real time ratio when using the IEEE 1394 cluster than using the Fast

 130

Ethernet cluster. We can achieve a maximum real time ratio of around 960 with

our new protocol, which is even better than the real time ratio, 800, which is re-

ported in [15] by using a 64 computing nodes Myrinet cluster. Although it is

hard to compare the two results directly because we used a different prototype of

the simulation system and employed a different scale cluster. This still shows

that the IEEE 1394 cluster has great potential in the high-speed networking area.

The IEEE 1394 cluster was employed in solving transportation problems in

these case studies. The same cluster can be applied to other parallel computation

problems and only a few minor alterations of the data transmission code of those

problems are needed as is shown in Figure 5-11. With the API similar to MPI or

socket programming, other problems can easily adopt this communication pro-

tocol.

There may be cases that the data transmission features of other types of

problem are different from the categories we have discussed, therefore, our

communication protocol cannot produce optimized results. In such cases, tuning

of the fuzzy control mechanism is needed and the communication protocol can

adapt to these parallel computation problems after tuning. While the IEEE 1394

cluster is suitable for urban traffic simulation problem and problems which can

benefit from the domain decomposition approach like atmosphere simulation

etc., it may not be suitable for other problems like parallel sorting, in which

non-adjacent nodes may exchange data frequently, and sophisticated routing

problems arise. A switched network would be more suitable for those problems.

 131

Figure 5-11: Data transmission codes to be altered in a parallel computa-

tion problem.

Problem which uses socket API

func()

{

.

.

.

initsock();

.

.

sendto(socket, message, len,0, &to, len);

recvfrom(socket, message,len,0,&from,&len);

.

.

closesocket(socket);

.

.

}

Problem which uses the Protocol over 1394

func()

{

.

.

.

fw_Init(0, 0);

.

.

fw_send(message, len, did, gid);

fw_receive(message, len, sid, gid);

.

.

fw_finalize();

.

.

}

 132

6 Performance prediction of larger scale IEEE 1394

cluster performance

6.1 Introduction

In Chapter 3 and Chapter 5, we presented results obtained from an IEEE 1394

cluster for various conditions, including in the case study of the emulation of

macroscopic traffic simulation. Our results are based on a test-bed that consists

of only four workstations. Certainly, such a small scale system is only suitable

for experimental purposes; most likely system in a much larger scale is required

for solving real life problems, for example system consists of 64 nodes is used to

implement a traffic simulation system [14]. However, due to the limitation in

terms of resources, it is not possible to implement a full-scale cluster with 64

nodes to carry out our test, so it is necessary to provide a performance prediction

for larger scale clusters.

Stochastic process and queuing theory models are widely used in the per-

formance analysis of computer systems. Such as Erlang's formulas [22] were

heavily used to study resources requirement for a telephone network, and Jack-

son's theory for networks of queues [42], [43] was used to study the perform-

ance of the ARPANET, a precursor of the Internet. These models provide simple

formulas that can be used directly to evaluate the performance of single-server

systems and some of the simplest models of multi-server systems such as those

 133

studied by Erlang and Jackson. These explicit formulas not only can be evalu-

ated numerically but also can give us good intuition on how the system parame-

ters affect the performance. But stochastic process and queuing theory are not

always ideal solutions for performance modeling. On one hand, these models are

often based on strict assumptions, such as a Markov process must has the

Markov property, i.e. in such a process, the past is irrelevant for predicting the

future given knowledge of the present, while this assumption may be true for a

telephone network, it is often not the case for a traffic network in which adjacent

persons’ activity apparently influenced by each other. Furthermore, these mod-

els may not be held in some cases even the assumptions are met [57]. On the

other hand, when employing such stochastic theory for more complex models,

the formulas obtained become more complex. This is particularly true for mod-

eling the performance of multi-node computer clusters which are often sophisti-

cate multi-server systems. Multidimensional Markov chains may be used to pre-

dict the performance of computer clusters, but these modules result in very

complicated expressions that are difficult to evaluate numerically [71], [49], [47],

[56], and often have to resort to simulation method to reduce numerical results

[102]. Though it is difficult to model the performance of a computer cluster with

stochastic process and queuing theory, it is still possible to systematically pre-

dict the performance with simplified stochastic model [40], [44], [72], and if the

network transmission features of a specific application are taken into account,

the performance prediction for that specific application can produce ideal result.

 134

In this Chapter, we will present a model to predict the performance of the

IEEE 1394 cluster under different configurations, mainly with different numbers

of nodes. Performance prediction of different kinds of applications on clusters is

a sophisticated problem, and is related to specific application features. On the

other hand, performance of larger scale cluster is not a major concern for appli-

cations that require short latency and low throughput like the railway simulation

system. In this Chapter, we will concentrate on the performance prediction of

parallel micro-simulation, taking the urban traffic simulation system as a proto-

type. With the help of such a model, users can gauge the performance of the

IEEE 1394 and determine a suitable scale for the cluster for the corresponding

application.

6.2 Performance modeling

In order to systematically predict the performance of a parallel simulation sys-

tem, several assumptions about the computer architecture need to be made. In

the following, we demonstrate how to derive predictive equations for coupled

workstations and for parallel computers based on the study of [66].

The method for this is to systematically calculate the time for one simulation

time step of the micro-simulation. Assume that the time for one time step in-

cludes components in computation, Tcomp, and communication, Tcomm. If these do

not overlap, as it is reasonable to assume for coupled workstations, we have

 135

() () ()comp commT p T p T p= + (6.1)

Where p is the number of computation nodes.

Time for computation is assumed to the following:

1() (1 () ())comp ovr dmn

T
T p f p f p

p
= + + (6.2)

Where T1 is the time of the same code on one computation node (assuming a

problem size that fits on available computer memory), p is the number of com-

mutation nodes, fovr includes overhead effects (e.g., split links need to be admin-

istered by both computation nodes), fdmn includes the effect of unequal domain

sizes.

Time for communication typically has two factors: latency and bandwidth.

Latency is the time required to initiate the communication, as a result it is inde-

pendent of the message size. Bandwidth describes the number of bytes that can

be communicated per second. So the time for one message is

msg

msg lt

S
T T

b
= + (6.3)

Where Tlt is the latency, Smsg is the message size, and b is the bandwidth.

However, for many of today’s computer architectures, bandwidth is given by

at least two contributions: node bandwidth, and network bandwidth. Node band-

width is the bandwidth of the connection between the computation node and the

network. If two computers communicate with each other through the network,

this is the maximum bandwidth that they can reach. Because of this, it is some-

times also called the “point-to-point” bandwidth.

 136

The network bandwidth is governed by the technology and topology of the

network. Typical technologies are bus topologies (Fast Ethernet, IEEE 1394

etc.), switched topologies, two-dimensional topologies (e.g. grid/torus), hyper-

cube topologies, etc. A traditional local area network uses Fast Ethernet, and it

has a shared bus topology. In a shared bus topology, all communication goes

through the same medium; i.e., if several pairs of computers communicate with

each other, they have to share the bandwidth.

For example in a 100 Mbps Fast Ethernet network, the node bandwidth was

found to be about bnd = 40 Mbit [6]. It implies that if two computers communi-

cate point-to-point at the node bandwidth, the Fast Ethernet network can ac-

commodate four computers to communicate in this pattern at the same time, i.e.

using 80% of the 100 Mbit/s, while more computers were limited by the net-

work bandwidth. For example, ten computers could maximally get 100/5=20

Mbit/s each.

A switched topology is similar to a bus topology, except that the network

bandwidth is determined by the backplane of the switch. Very often, the back-

plane bandwidth is high enough to have all nodes communicate with each other

at full node bandwidth, and for practical purposes one can thus neglect the net-

work bandwidth effect for switched networks.

If computers become massively parallel, switches with enough backplane

bandwidth become too expensive, an 8-port small Myrinet CLOS type switch

(support direct n-to-n parallel full speed transmission) costs more than 4000

 137

USD [64]. As a compromise, such clusters usually use a communication topol-

ogy where communication to “nearby” nodes can be done at full node band-

width, whereas global communication suffers some performance degradation.

Since we partition our traffic simulations in a way that communication is local,

we can assume that we do communication with full node bandwidth on a cluster.

That is, on a parallel cluster, we can neglect constraints of the network band-

width. This assumes, however, that the allocation of street network partition to

computational nodes is done in some intelligent way which maintains locality.

As a result of the above discussion, we can assume that the communication

time per time step is

()
() () ()

spl bnd bnd
comm nb lt spl

nd net

N p S S
T p n p T N p

p b b
= + + (6.4)

The term nnb is the number of neighbor domains that each computation node

should talk to, all information which goes to the same computation node is pre-

sumed to be collected and sent as a single message, thus incurring the latency

only once per neighbor domain. For p = 1, nnb is zero since there is no other do-

main being connected. Since we use a 2D mesh for the cluster topology (Figure

6-1), nnb can be 2 for nodes in the corner, 3 for nodes on the border and 4 for

nodes in the middle.

 138

n
nb
 =3

n
nb
 =2

n
nb
 =4

Figure 6-1: A 2D mesh cluster

Tlt is the latency (or start-up time) of each message. Tlt between 50 and 200

µs are typical values for our communication protocol over the IEEE 1394 clus-

ter.

Nspl(p) is the number of split links (split links is roads which are split and

located in adjacent computation nodes, as in Figure 6-2) in the whole urban traf-

fic simulation system, this will depend on the simulated road network and the

domain decomposition. Accordingly, Nspl(p)/p is the number of split links per

computational node. Sbnd is the size of the message per split link. bnd and bnet are

the node and network bandwidths, as discussed above.

From above, the combined time for one time step is

1
()

() (1 () ()) () ()
spl bnd bnd

ovr dmn nb lt spl

nd net

N p S ST
T p f p f p n p T N p

p p b b
= + + + + + (6.5)

For the 2D mesh topology, for p →∞ the number of neighbor scales as nnb ~ 4

and the number of split links in the simulation scales as ~splN p . If fovr and

fdmn are small enough, we have:

� For a share or bus topology, bnet is relatively small and constant, and thus

 139

1 1
()~ 1T p p p

p p
+ + + → (6.6)

� For a switched or a parallel cluster topology, we assume netb = ∞ and ob-

tain

1 1
()~ 1 1T p

p p
+ + → (6.7)

Thus, in a shared topology, adding computation nodes will eventually increase

the simulation time and make the simulation slower. In a non-shared topology,

adding computation nodes will not make the simulation any faster, but at least

will not be detrimental to the computational speed. The dominant term in a

shared topology for p →∞ is the network bandwidth, while the dominant term

in a non-shared topology is the latency.

1

p
−

Figure 6-2: A prototype urban traffic simulation on p nodes cluster

 140

6.2.1 Speed-up of the urban traffic simulation

If we consider a simple prototype urban traffic simulation system, in which all

the road are straight lines and evenly distributed in the urban area, the Nspl(p)

can be calculated as

() (1)2splN p p l= − (6.8)

Where l is the number of roads along one of the edges of the square urban area.

For the given application, we assume that in a single node environment, time

used for one simulation step is T(1) = 0.1s, and the speed-up factor can be ob-

tained as
(1)

()
()

T
speedup p

T p
= . For the IEEE 1394 cluster, Tlt is 50µs, bnd is 31

Mbytes/s. For the Fast Ethernet cluster, Tlt is 0.8 ms, bnd is 12 Mbytes/s. then we

have the performance prediction as in Figure 6-3.

0

5

10

15

20

25

30

35

40

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

Number of computation nodes

S
p
e
e
d
-
u
p

IEEE 1394 Fast Ethernet

Figure 6-3: The speed-up factor of IEEE 1394 and Fast Ethernet cluster

 141

The speed-up for the IEEE 1394 cluster of 4 computation nodes is 3.69, which is

proved by our empirical study in the previous Chapter. The result shows that the

speed-up of the IEEE 1394 cluster is much better than that of the Fast Ethernet

cluster. Considering that the cost of building a IEEE 1394 cluster is almost the

same as that of building the Fast Ethernet cluster when the computation node is

less than 64, the IEEE 1394 cluster is definitely a better option to carry out such

a large scale urban traffic simulation system.

6.2.2 Real time ratio of the urban traffic simulation

Speed-up describes how much faster the parallel application runs on a parallel

computer than the application uses the same algorithm runs on a single com-

puter. For a discrete-event simulation system similar to the urban traffic simula-

tion, real time ratio is often another important factor which describes how much

faster the parallel simulation runs on a parallel computer than the simulated sys-

tem. Consider an urban traffic simulation system which performs the traffic pre-

diction of an urban area, it is reasonable to expect a simulation for 1 hour traffic

in the future should be finished with 5 minutes, in which the real time ratio is

60min/5min = 12.

In the last section, the time for one time step simulation T(p) is derived

based on the time of running the same system on a single computer, and the data

size which is exchanged between nodes. While these factors for the computation

 142

of T(p) is excerpt from an existing urban traffic simulation system [66], simula-

tion using other algorithms or even simulation using the same algorithm while

simulating different urban areas may behave quite differently. It is difficult to

predict performance of other simulations from the existing one. In this section,

probability theory is employed to describe the performance of discrete-event

simulation, so that performance prediction can be carried out when detailed in-

formation about the system is not available.

Synchronous iterative algorithm [61], [75], [104] is used in discrete-event

simulations. In the simulation, each processor performs a portion of the required

computation of each iteration, and barrier synchronization separates every itera-

tion from previous and subsequent iterations. If Ti(p) i=1,2,…,p is the iteration

time for the processor i, then max(Ti(p) | 1≤i≤p) governs the iteration time for

the whole system.

If we set the assumption that the iteration times for each node are independ-

ent and identically distributed (i.i.d.), from order statistics [19], if i.i.d. random

variables T1(p), T2(p), …, Tp(p) have a mean (µ) and a variance (σ) then

1
[max () |1]

(2 1)
i

p
E T p i p

p
µ σ

−
≤ ≤ ≤ +

−
 (6.9)

From this equation, an upper bound for the iteration time can be obtained. This

equation requires that only the mean and variance of the iteration time are

known. If information is available about the nature of the iteration time distribu-

tion, the upper bound can be tightened. If T1(p), T2(p), …, Tp(p) are i.i.d. random

variables distributed exponentially with parameter λ, then from extreme value

 143

theory[4],

ln
[max () |1]i

p
E T p i p

γ
λ
+

≤ ≤ ≈ (6.10)

where γ is Euler’s constant (0.5772). If the variable are uniformly distributed

between a and b then

[max () |1]i

b a
E T p i p b

p

−
≤ ≤ ≈ − . (6.11)

If the variable are normally distributed with parameters µ and σ then

ln(ln) ln 4
[max () |1] [2 ln]

2 2ln 2ln
i

p
E T p i p p

p p

π γ
µ σ

+
≤ ≤ ≈ + − + . (6.12)

We use these functions to model the communication time Tcomm(p) of a cluster

system. If the Tcomm(p) is an i.i.d. random variable, where for p=1, µ=600 µs and

σ=30 for the IEEE 1394 cluster, and µ=2000 µs and σ=100 for the Fast Ethernet

cluster. Figure 6-5 depicts the prediction based on equation (6.12). The Ethernet

result is also given in the figure.

�������������������������

� �� �� �� �� ���� !"#$%$& ' ' ()*� !"#$%$& ' ' ()*� !"#$%$& ' ' ()*� !"#$%$& ' ' ()*
+,-./01,2-
/03
+,-./01,2-
/03
+,-./01,2-
/03
+,-./01,2-
/03

4555 6789 :;<=>?@ AB=> 5>C?@D?> :;<=>?@

Figure 6-4: The real time ratio factor of IEEE 1394 and Fast Ethernet clus-

ter

 144

In Figure 6-4, we can observe that both of the IEEE 1394 cluster and the Fast

Ethernet cluster can benefit from the increase of computation nodes. The real

time ratio increases when the number of computation node increases. The in-

crease is faster when the number of computation nodes is less than 20, and be-

comes slower after that. Due to the slower transmission speed and larger vari-

ance of the Fast Ethernet interface, the drop in the increasing rate is much larger

than that of the IEEE 1394 interface. The real time ratio of the IEEE 1394 clus-

ter is over 100% higher than that of the Fast Ethernet cluster for all numbers of

computation node.

To observe the effect of the variance of the communication time, Figure 6-5

illustrates the IEEE 1394 cluster real time ratio with µ=600 µs and σ changed

from 30, 60, 60, to 300. This result shows that the variance of the communica-

tion time has limited effects on the real time ratio when the number of computa-

tion node is under 9, but it influences the real time ratio greatly after that. Com-

paring the real time ratio when computation node number is 100, the result of

σ=30, almost double the result of σ=90. With a very large σ=300, the increase

of real time ratio is almost flat after computation node number greater than 20.

 145

EFEEEGEEEHEEEIEEEJEEEKEEE

E GE IE KE LE FEEMNOPQRSRTNU UNVWXMNOPQRSRTNU UNVWXMNOPQRSRTNU UNVWXMNOPQRSRTNU UNVWX
YZ[\]̂_Z̀[
]̂a
YZ[\]̂_Z̀[
]̂a
YZ[\]̂_Z̀[
]̂a
YZ[\]̂_Z̀[
]̂a

bcHE bcKE bcdE bcHEE

Figure 6-5: The real time ratio factor of IEEE 1394 cluster with different

variance of communication time

6.3 Concluding remarks

In this Chapter, we have presented techniques to predict of the performance of

the IEEE 1394 cluster with more computation nodes. Comparison of the IEEE

1394 cluster with the Fast Ethernet cluster is also given. The performance pre-

diction is aimed at a specific type of parallel applications, i.e. urban traffic

simulation applications. Features of these applications are used in the perform-

ance prediction, this makes the prediction agrees better to such applications, but

also makes it hard to generalize it to predict the performance for other applica-

tions. Order statistics is used to derive the upper bound for the time of simula-

tion iteration; this is based on the assumptions that the time is i.i.d random vari-

ables, and follows a known distribution, the prediction will be inaccurate if ei-

ther of the two assumptions is violated.

 146

Results show that the speed-up factor of IEEE 1394 cluster is much higher

than that of the Fast Ethernet (more than 200% higher in the case of using 64

computation nodes). The real time ratio of the IEEE 1394 cluster is also better

than that of the Fast Ethernet cluster; it is often 100% higher for the IEEE 1394

cluster than the Fast Ethernet cluster. The data transmission pattern of a parallel

simulation is shown as an important factor to the cluster performance. If the

message size variance of each iteration of a parallel simulation is very large, at

some point, increasing the number of computation node eventually cannot im-

prove the overall system performance.

 147

7 Conclusion and future work

7.1 Conclusion

Computer clusters attract many attentions for implementing software simulation

for transportation problems. Usually Fast Ethernet cluster in the low-end and

Myrinet cluster in the high-end are employed in such problems [12], [6]. While

the performance of the Fast Ethernet cluster is limited, and Myrinet cluster is

quite expensive, we propose to employ the IEEE 1394 device as a new method

to build a cost-effective computation cluster.

In this thesis, we compared the cost-effectiveness of implementing a com-

puter cluster based on the IEEE 1394 device, as well as using the Fast Ethernet,

Gigabit Ethernet and the Myrinet. Initially, we only tested the device based on

the available software drivers, such as IP-over-Firewire, and our results showed

that the communication bandwidth is only about 120 Mbps, which is much

lower than the nominal value of 400 Mbps. After further investigations, we

found that the communication modes (isochronous mode and asynchronous

mode) supported by the IEEE 1394 have different characteristics and the total

bandwidth can be improved by proper utilization of the communication modes.

Basically, the isochronous mode can deliver higher bandwidth; however, it does

not include features such as acknowledgement, or re-send, which are very im-

portant for implementing a computer cluster.

 148

A new communication protocol is implemented in order to further exploit

the capacity of the 1394 device. Message passing mechanism is supported in our

devised protocol, so that it can be used to deploy a generic computer cluster us-

ing the IEEE 1394 bus. This enables parallel applications which employ the

message passing mechanism to run on an IEEE 1394 cluster. We implemented

an acknowledgement mechanism over the isochronous mode of the IEEE 1394

to enable the isochronous mode transmission to support reliable data transmis-

sion. The maximum throughput based on our new protocol is around 250 Mbps,

which is much higher than that of other implementations like the

IP-over-Firewire under Windows and Linux. The minimum latency of our pro-

tocol is around 50µs, and is far lower than that of IP-over-Firewire. The per-

formance of our protocol is much better than that of the Fast Ethernet, and is

comparable to the Gigabit Ethernet, as described in Chapter 4. The real time ra-

tio of the IEEE 1394 cluster is even better than that of the Gigabit Ethernet clus-

ter when considering the implementation of the traffic simulator when the

amount of data being exchanged is small. While the performance is not compa-

rable with that of the Myrinet, but the cost of IEEE 1394 is much lower, and

therefore, IEEE 1394 is still a cost-effectiveness solution for high-speed net-

working. The cost of alternative high-speed networking devices such as Myrinet

has been dropping and this makes these devices less expensive in the future, but

the situation for the IEEE 1394 device is similar. Since high-speed networking

devices like Myrinet are in nature expensive, for example, an 8-port Myrinet fi-

 149

ber switch costs about 4000 USD, we can predict that the cost of the IEEE 1394

device will still be relatively low when comparing to these high-speed network-

ing devices, therefore, the IEEE 1394 device will still be a cost-effective solu-

tion for high-speed networking in the future.

Although the bandwidth of the isochronous mode is higher than that of the

asynchronous mode, there are cases where, the asynchronous mode can give a

better performance. Therefore, techniques to switch between the two communi-

cation modes were investigated. A fuzzy control mechanism to optimize the

IEEE 1394 network for cluster computing was proposed. This mechanism en-

ables the dynamic performance monitoring and tuning of the computer cluster

system. We developed a control mechanism which can intelligently control the

underlying IEEE 1394 network and can tune the network to provide optimized

performance. This control mechanism was proved to be valuable in supporting

the IEEE 1394 cluster for parallel computing as described in our case studies.

In order to evaluate the actual performance of a computer cluster based on

the 1394 devices, embodying the new communication protocol as well as the

control mechanism, two types of existing transportation simulation systems

were migrated to our IEEE 1394 cluster and their performance were examined.

In the case of the railway simulation system, the IEEE 1394 cluster shows its

advantages in carrying multimedia data by using the isochronous mode. The

performance of 3D animation which was formerly suffered from jitters due to

communication latency of the Ethernet network was greatly improved. Other

 150

types of data can also benefit from the IEEE 1394 cluster. In the case study of

the urban traffic simulation system, we achieved much better real time ratio us-

ing the IEEE 1394 cluster than using the Fast Ethernet cluster. We achieved a

maximum real time ratio of around 960 steps with our new protocol, which is

even better than the real time ratio about 800 steps, that is reported in [15] by

using a 64 computing nodes Myrinet cluster. Although it is difficult to compare

the two results directly since we use a different prototype of the simulation sys-

tem and employing cluster system with different scales, it still reflects that the

IEEE 1394 cluster is an alternative option to the Myrinet cluster.

We further investigated methods to predict the performance of the IEEE

1394 clusters when more computation nodes are required. The results show that

the speed-up and real time ratio of the IEEE 1394 cluster is much better than

that of the Fast Ethernet cluster. Considering that the cost of building a IEEE

1394 cluster is no higher than building the Fast Ethernet cluster when the com-

putation node is less than 64, the IEEE 1394 cluster is definitely a better option

to carry out such large scale urban traffic simulation system.

The main contributions of this thesis are given below:

• A new communication protocol over the IEEE 1394 device for in-

terconnecting PCs into a computer cluster.

• A novel control mechanism in the communication protocol to fully

utilize the capacity of the IEEE 1394 device.

• A study of two different structured IEEE 1394 cluster applied in two

 151

types of transportation simulation systems.

• A performance prediction of urban traffic simulation system on a lar-

ger scale IEEE 1394 cluster.

In conclusion, our investigations proved that the IEEE 1394 device can be

applied in implementing a cost-effective high-speed network. In order to fully

utilize the device’s capacity, a new protocol and a control mechanism have been

devised. Our case studies further substantiated our findings.

7.2 Future directions

A full featured MPI interface over the IEEE 1394 cluster

The MPI message passing library [90] which is designed specifically for parallel

computing on parallel computers, defines a full-set of functions to support mes-

sage passing. The communication protocol that was implemented in our work,

which contains basic send, receive, and initialization functions, is a subset of the

MPI standard. The two studied transportation simulation systems have to be

modified in the message passing part so that they can utilize our protocol to ex-

change messages. If we want to deploy other application which is designed spe-

cifically for the MPI library, it has to be modified as well. But to modify an ex-

isting computer program is often a time consuming task, and sometimes it is not

even possible if the one who wants to deploy the application does not possess

the source code of the software. Although there are IP-over-Firewire implemen-

 152

tations which enable TCP/IP on the IEEE 1394 interface, and the MPI can util-

ize the IEEE 1394 interface via IP-over-Firewire, results show that the MPI over

TCP/IP suffers a lot from the protocol overhead and delivers poor performance.

This has made it difficult to let the IEEE 1394 cluster to accommodate more ap-

plications. Some MPI implementations offer an open architecture, therefore, it is

possible to adopt our protocol to the open architecture and enable MPI call on

the IEEE 1394 cluster.

The future IEEE 1394b cluster

The IEEE 1394b device that can communicate in a higher speed (800 Mbps) has

emerged in the commodity market. The new IEEE 1394b device is different

from the IEEE 1394-1995 device not only in the throughput, but also in the bus

arbitration mechanism. This new mechanism lifts the restriction that asynchro-

nous mode data transmission must not occupy more than half of the bus cycle

time. It enables the asynchronous mode transmission to fully utilize the bus ca-

pability, so that it can offer both reliable data transmission and high throughput.

This improvement of the IEEE 1394b device changes the communication fea-

tures of the asynchronous and isochronous mode, so new measures need to be

taken in our protocol which is previously designed for IEEE 1394a device to

better utilize the advantages of both modes of the IEEE 1394b device, so that the

IEEE 1394b capacity can be explored to support higher speed parallel comput-

ing.

 153

A preliminary experiment is conducted to study the basic performance of the

IEEE 1394b device. The test bed consists of two workstations which are directly

connected by an IEEE 1394b link, and the netio toolkit is employed to perform

data transmission. The Unibrain IP-over-Firewire driver and the Windows XP

build-in 1394 driver are employed to measure the data transmission throughput

against packet size. Figure 7-1 illustrates the results.

efeegeeheeieejeekeelee

e j fe fj ge gj he hjmnopqr stuq vwxyrqz{|}~���}����
�����

��tx�nt� �qr���p �m ��t��t� fh�i �qr���p

Figure 7-1: TCP performance over IEEE 1394

As documented in [81], only the asynchronous mode is use in the data transmis-

sion for IP-over-Firewire implementation. Figure 7-1 shows that using the asyn-

chronous mode, the Windows XP build-in driver can sustain a throughput of

400Mbps, and the Unibrain IP-over-Firewire can sustain a throughput of up to

600 Mbps, which is a very high utilization rate of the IEEE 1394b bus (800

Mbps nominal bit rate).

While the IEEE 1394b device is excellent in performance, it is not expensive

 154

in price. The IEEE 1394b PCI interface cards costs less than 100 USD, and per

Mbps cost of it is as low as 0.12 USD/Mbps, which is far lower than other net-

working interfaces (Table 2-1). As the asynchronous mode can fully utilize the

IEEE 1394b bandwidth, and support reliable data delivery, the IEEE 1394b de-

vice can be deployed as a generic network interface with fewer customizations

than the IEEE 1394a device as what has been done in our communication pro-

tocol. Since the IEEE 1394b device supports data transmission speed of up to

800 Mbps, performance of computer clusters interconnected with it are expected

to be comparable to that of the Gigabit Ethernet clusters or even the high-end

Myrinet clusters, but for a much lower price. This situation makes the IEEE

1394 bus series a competing device for the computer cluster interconnection

with impressive cost-effectiveness, and will stimulate the employment of paral-

lel systems in various applications such as the transportation research and appli-

cations.

Features to enhance the IEEE 1394 device

Since the IEEE 1394 is originally designed for the interconnection of computer

peripherals, not for the interconnection of network, it does not include features

for networking. Such as no switching device is defined in the IEEE 1394 speci-

fication, and only the bus structure can be used in the network. This makes the

IEEE 1394 devices less scalable for the interconnection of a large scale network.

In this thesis we have discussed directly connected mesh structure for parallel

 155

computing, but the number of interface card is increased as the square of the

number of computing node. If we can use IEEE 1394 switch for the intercon-

nection, only one interface card for each computing node is needed. So an IEEE

1394 switch device can both simplify the structure of the network, and reduce

the cost of the network. Another important aspect is, in the bus structure, the

bandwidth is shared by all nodes, if there are many nodes on the same bus, the

performance will drops significantly. If an IEEE 1394 switch device which can

support parallel transmission is available then the performance can be greatly

improved. However, the cost of such a switch device could be quite expensive.

Another suggested change in the IEEE 1394 is an enhanced asynchronous

mode that can fully utilize the capacity of IEEE 1394. As we observed in the

thesis, the asynchronous mode transmission cannot fully utilize the capacity of

IEEE 1394 device. If the asynchronous mode can fully utilize the capacity, it

will be easier to implement the communication protocol over the IEEE 1394. By

applying these changes, the IEEE 1394 will be even more effective as a generic

network interconnection device, and will provide higher performance in a com-

puter cluster.

 156

Appendix A: The IEEE 1394 basic performance features

Table A-1: Latency and throughput vs. packet size of the asynchronous

read transaction

Packet Size Latency(us) Throughput(Mbps)

8 50.861602 1.200024

16 51.272139 2.380831

32 52.356807 4.663016

64 54.954912 8.885125

128 59.216045 16.491518

256 62.525 31.237505

512 67.32085 58.024372

768 76.716006 76.377477

1024 83.939365 93.073137

1280 94.556592 103.278098

1536 104.268408 112.390226

1792 114.17584 119.744028

2048 125.025439 124.974566

Table A-2: Latency and throughput vs. packet size of the asynchronous

write transaction

Packet Size Latency(µs) Throughput(Mbps)

8 50.776045 1.202046

16 52.636934 2.3191

32 50.950156 4.791754

 157

64 56.195713 8.688941

128 57.586152 16.958287

256 62.513848 31.243078

512 62.965928 62.03752

768 75.679121 77.42393

1024 83.425527 93.646396

1280 95.567822 102.185283

1536 104.431104 112.315131

1792 113.312256 120.656631

2048 125.402773 124.59852

Table A-3: Latency and throughput vs. packet size of the roundtrip (asyn-

chronous read & write) transaction

Packet Size Latency(us) Throughput(Mbps)

8 102.135303 1.195182

16 103.357529 2.362098

32 105.53709 4.626632

64 112.757471 8.660734

128 111.772178 17.474161

256 125.053398 31.236656

512 131.993857 59.18836

768 156.775547 74.748583

1024 184.710977 84.591616

1280 193.22415 101.080791

1536 214.941045 109.041528

1792 236.277871 115.727088

 158

2048 250.195723 124.902215

Table A-4: Latency and throughput vs. packet size of the isochronous mode

Packet Size Latency(us) Throughput(Mbps)

8 124.9914 0.488315

128 125.1209 7.804951

1024 124.9682 62.51589

4096 124.9475 250.1051

Table A-5: Latency and throughput vs. packet size of mix modes

Packet Size Asynchronous

Latency(us)

Asynchronous

Throughput

Isochronous

mode Latency

Isochronous mode

throughput

8 321.123232 0.190068 124.9192 250.1617

16 321.095986 0.380168 124.9507 250.0985

32 320.866328 0.76088 124.9383 250.1234

64 321.238525 1.519996 124.9284 250.1432

128 320.813857 3.044016 124.9521 250.0957

256 320.680781 6.090558 124.9452 250.1097

512 346.648291 11.268626 124.9669 250.0662

768 380.604082 15.394935 124.9474 250.1053

1024 414.22542 18.860504 124.9283 250.1435

1280 448.681699 21.765151 124.9579 250.0841

1536 482.849766 24.269971 124.9378 250.1245

1792 521.85377 26.198671 124.9571 250.0859

2048 556.010752 28.101975 124.9466 250.1069

 159

Table A-6: Throughput of multiple asynchronous mode transmission at the

same time

Throughput
Packet size

1 asynchronous 2 asynchronous 3 asynchronous 4 asynchronous

8 1.200024 2.4 3.6 4.8

16 2.380831 4.7 7.1 9.2

32 4.663016 9.3 13.8 18.5

64 8.885125 17.4 26 32

128 16.491518 30.8 40 57.9

256 31.237505 57 72 88.8

512 58.024372 85 102.8 116

768 76.377477 105.6 123.4 132.7

1024 93.073137 122.4 139 144.9

1280 103.278098 138.3 152 150.6

1536 112.390226 148.6 164 157.9

1792 119.744028 157.9 172.9 164

2048 124.974566 162 180 169.2

Table A-7: Latency of multiple asynchronous mode transmission at the

same time

Latency
Packet size

1 asynchronous 2 asynchronous 3 asynchronous 4 asynchronous

8 50.861602 53. 16083395 53.33457639 53.60323122

16 51.272139 54.46808511 54.08450704 55.65217391

32 52.356807 55.05376344 55.65217391 55.35135135

 160

64 54.954912 58.85057471 59.07692308 64

128 59.216045 66.49350649 76.8 70.74265976

256 62.525 71.85964912 85.33333333 92.25225225

512 67.32085 96.37647059 119.5330739 141.2413793

768 76.716006 116.3636364 149.3679092 185.1996986

1024 83.939365 133.8562092 176.8057554 226.142167

1280 94.556592 148.0838756 202.1052632 271.9787517

1536 104.268408 165.3835801 224.7804878 311.2856238

1792 114.17584 181.5832806 248.7449393 349.6585366

2048 125.025439 202.2716049 272.5333333 387.3286052

Table A-8: The latency results of the railway simulation test

Data size IEEE 1394 Latency Ethernet Latency

1 1.0725 0.155

2.5 1.12125 0.2975

2.5 1.12125 0.2975

2.5 1.12125 0.2975

5 1.2025 0.535

5 1.2025 0.535

4.5 1.18625 0.4875

4 1.17 0.44

3 1.1375 0.345

8 1.3 0.82

7.5 1.28375 0.7725

7 1.2675 0.725

6.5 1.25125 0.6775

9 1.3325 0.915

 161

11.5 1.41375 1.1525

13 1.4625 1.295

15.5 1.54375 1.5325

18.5 1.64125 1.8175

18.5 1.64125 1.8175

18 1.625 1.77

17.5 1.60875 1.7225

17 1.5925 1.675

20 1.69 1.96

19.5 1.67375 1.9125

19 1.6575 1.865

18 1.625 1.77

21 1.7225 2.055

24 1.82 2.34

27 1.9175 2.625

26 1.885 2.53

29 1.9825 2.815

30 2.015 2.91

33 2.1125 3.195

38 2.275 3.67

41 2.3725 3.955

46 2.535 4.43

45 2.5025 4.335

44 2.47 4.24

43 2.4375 4.145

48 2.6 4.62

47.5 2.58375 4.5725

46.5 2.55125 4.4775

47 2.5675 4.525

 162

Appendix B: IEEE 1394 architecture

Communication model

The protocol layers are defined to simplify the implementation of hardware and

software. Each layer has an associated set of services defined to support com-

munications between the application and the 1394 protocol layers, and for con-

figuration and bus management.

The protocol consists of the:

� Bus Management layer – supports bus configuration and management

activities for each node.

� Transaction layer – supports the CSR architecture request-response pro-

tocol for read, write, and lock operations related to asynchronous trans-

fers. Note that a transaction layer exists in both the requester and re-

sponder. Note also that the transaction layer does not provide any ser-

vices for isochronous transfers. Instead, isochronous transfers are

driven directly by the application.

� Link layer – provides the translation of a transaction layer request or

response into a corresponding packet, or subaction, to be delivered over

the serial bus. This layer also provides address and channel number

decoding for incoming asynchronous or isochronous packets. CRC er-

ror checking is also performed here.

� Physical layer – provide the electrical and mechanical interface re-

 163

quired for transmission and reception of data bits (packets) transferred

across the serial bus. The physical layer also implements an arbitration

process to ensure that only one node at a time transfers data across the

bus.

Each of the layers is described in more detail in the following sections.

����������������� ¡�¢� ��£¢¤ £�£��¥ ���¡� ���� ¡�¢�¦�§�¢¤ £�£��¥ ���¡� ���� ¡�¢�
��������� ��£¢¤ £�£��¨��£� ¢������� ©§¢ª������
«£¬�©£�� £ªª�

�����������§� ®� ¯°¢�� ¥ ����¢�°£��§� ®� ¯°¢��
°�± �§� ®� ¯°¢��
²¤§�°¢�ª �§� ®� ¯°¢��

Figure B-1: The protocol layers

 164

Bus management layer

Nodes implement the bus management layer to support a variety of functions

including configuration and the application of power. The exact bus manage-

ment support included depends on the capabilities of the node. All nodes must

include support for automatic bus configuration, while other bus management

functions are optional. For example, a given node may require power from the

bus for its functional unit (e.g. video camera) and consequently will include bus

management support for applying bus power.

Some nodes also participate in global bus management to ensure that the

family of nodes residing on the bus live in harmony and can perform their func-

tions efficiently. This global management consists of:

� Channel number and bus bandwidth allocation for isochronous transfers.

� Controlling the intervals at which isochronous transactions are performed.

� Verifying that all bus powered nodes have sufficient bus power.

� Tuning the bus to enhance performance (dependent on the bus topology).

� Providing services to other nodes (e.g. specifying the maximum speed at

which two nodes can communicate with each other).

The 1394 specification identifies three global bus management roles that provide

the support for a completely managed bus.

 165

� Cycle Master

� Isochronous Resource Manager

� Bus Manager

Note that these roles may be performed by three separate nodes or one node may

perform all three roles. Depending on the capabilities of the node residing on the

bus, these roles may not be supported; thus, global bus management may be lim-

ited or may not occur at all.

Transaction layer

The transaction layer supports only asynchronous transfers. As discussed in the

previous chapter, the 1394 bus supports three basic asynchronous transaction

types:

� Read

� Write

� Lock

The asynchronous transaction model is based on communication between a re-

quester node and response subaction, with the link and physical layers operation

between the requester and responder transaction layer.

1394 applications typically have little knowledge of the intermediate layers

within the 1394 communications model. Rather, they simply issue data transfer

 166

requests the transaction layer. This software layer translates a transfer request

into one or more transaction requests that are transaction type (read, write, or

lock), and if the transaction consists of a write or lock the transaction layer also

supplies data to be transferred during the request.

Note the transaction layer is not involved in isochronous transactions.

Transaction layer services

The transaction layer provides services related to transaction data flow. These

service primitives are defined as:

� Request service – used by the requester to start a transaction (initiates the

request subaction).

� Indication service – notifies the responder of the request (completes the re-

quest subaciton).

� Response service – used by the responder to return status or data to the re-

quester (starts the response subaction).

� Confirmation service – notifies the requester that the response has been re-

ceived (completes the response subaction).

Figure B-2 illustrates the transaction layer services, without regard to the inter-

mediate layers. Note the transaction layer provides the interface between the ap-

plication (function and the 1394 like layer).

 167

Figure B-2: Transaction layer Communication

The 1394 specification adds verification of packet delivery to the transaction

protocol, which is not part of the CSR architecture model. The transaction layer

supplies an acknowledgement for each packet transferred. That is, more packets

transferred across the bus require that a 1-byte acknowledgment packet be re-

turned to the sender to verify successful delivery of the packet. In the event of a

failed transfer, retries can then be performed. The term “most” is used because

two types of packets require no acknowledgement:

1. broadcast packet – the serial bus supports the broadcast of packets that may

target more than one node on the bus. In this case, an acknowledge packet is

not returned to avoid bus contention from multiple nodes simultaneously

returning the acknowledgement.

 168

2. Isochronous packets – delivery of isochronous packet requires a guaranteed

transmission rate, thus any failed packet transmission cannot be retried be-

cause it might result in desynchronized data transfers. Therefore no ac-

knowledgment needs to be sent because no corrective action can be taken in

the event of failed packet transfer.

Link layer

For asynchronous transactions, the link layer provides the interface between the

transaction layer and the physical layer and provides services based on the same

request/response model used by the transaction layer. The requester’s link layer

translates transaction requests from the transaction layer into 1394 packets to be

sent over the 1394 cable. When the packet is received by the responder, it is

translated and forwarded on to its transaction layer.

For isochronous transactions the link layer provides the interface between

the isochronous software driver and the physical layer. During transmission, the

link layer creates the isochronous packets from the cable, decodes the packet’s

channel number and if the packet is destined for this node, the packet is for-

warded to the software driver.

 169

Appendix C: Fuzzy rules sets

Table C-1: Fuzzy rule set for identification of multimedia data flow

X1 X2 X3 X\4 X5 result

S S NF S S Yes

S S NF S B Likely No

S S NF L S Likely No

S S NF L B No

S S F S S Yes

S S F S B Likely Yes

S S F L S Likely No

S S F L B No

S B NF S S Likely No

S B NF S B Likely No

S B NF L S Likely No

S B NF L B Likely No

S B F S S No

S B F S B No

S B F L S No

S B F L B No

B S NF S S Yes

B S NF S B Likely Yes

B S NF L S Likely Yes

B S NF L B Likely No

B S F S S Likely Yes

B S F S B Likely No

B S F L S Likely Yes

B S F L B No

 170

B B NF S S Likely No

B B NF S B Likely No

B B NF L S Likely No

B B NF L B No

B B F S S Likely Yes

B B F S B Likely No

B B F L S Likely No

B B F L B No

VB S NF S S Likely Yes

VB S NF S B Likely No

VB S NF L S No

VB S NF L B No

VB S F S S No

VB S F S B No

VB S F L S No

VB S F L B No

VB B NF S S No

VB B NF S B No

VB B NF L S No

VB B NF L B No

VB B F S S No

VB B F S B No

VB B F L S No

VB B F L B No

 171

References

[1] Abdelkhalek A., Bilas A. and Moshovos A., Behavior and Performance of Interactive

Multi–player Game Servers, Cluster Computing, vol.6, no.4, pp.355-366, Oct 2003.

[2] Abdelkhalek A., Bilas A., Parallelization and Performance of Interactive Multiplayer

Game Servers, Proceedings of the 18th International Parallel and Distributed Proc-

essing Symposium (IPDPS’04), pp.72-82, Santa Fe, New Mexico, USA, 26-30 Apr,

2004.

[3] Anderson D., FireWire System Architecture Second Edition IEEE 1394a, MindShare,

Inc. 1999.

[4] Ang A. H. S. and Tang W. H., Probability Concepts in Engineering Planning and

Designing Vol. II, Rainbow Bridge, 1984.

[5] Ascia G., Catania V., Ficili G., Panno D., A fuzzy buffer management scheme for

ATM and IP networks, Proceedings of INFOCOM 2001, pp.1539-1547, Anchorage,

Alaska, 22-26 Apr, 2001.

[6] Bal H., Hofman R., Verstoep K., A Comparison of Three High Speed Networks for

Parallel Cluster Computing, Proceedings of the 1st International Workshop on Com-

munication and Arch. Support for Network-Based Parallel Computing, pp.184-197,

Jun 1997.

[7] Bello L. L., Kaczyn´ski G. A., and Mirabella O., Improving the Real-Time Behavior

of Ethernet Networks Using Traffic Smoothing, IEEE TRANSACTIONS ON IN-

DUSTRIAL INFORMATICS, vol.1, no.3, pp.151-161, Aug 2005.

[8] Boden N. J., Cohen D., Felderman R. E., Kulawik A. E., Seitz C. L., Seizovic J. N.

and Su W. K., Myrinet – A Gigabit Per Second Local Area Network, IEEE MICRO,

vol.15, no.1 pp.29-36, Feb 1995.

[9] Boszormenyi L., Holzl G. and Pirker E., Parallel Cluster Computing with IEEE 1394

– 1995, Proceedings of the 4th International ACPC Conference Including Special

Tracks on Parallel Numerics (ParNum'99) and Parallel Computing in Image Proc-

essing, Video Processing, and Multimedia, pp.532-552, Salzburg, Austria, Feb 1999.

[10] Cameron G.D.B., Duncan C.I.D., PARAMICS – parallel microscopic simulation of

road traffic, Journal of Supercomputing, vol.10, no.1, pp.25-53, Mar 1996.

[11] Caponetto R., Bello L.L., Mirabella O., Fuzzy Traffic Smoothing: Another Step to-

wards Statistical Real-Time Communication over Ethernet Networks, Proceedings of

the 1st Intl Workshop on Real-Time LANs in the Internet Age, pp.33-36, Vienna, Aus-

tria,18 Jun, 2002.

[12] Chen H. and Wyckoff P., Simulation studies of gigabit Ethernet versus Myrinet using

real application cores, Proceedings of CANPC'00, Workshop of High-Performance

Computer Architecture, pp.130-144, Toulouse, France, Jan 2000.

[13] Cheng R.G., Chang C. J., Design of a Fuzzy traffic controller for ATM networks,

IEEE/ACM Transactions on Networking (TON), vol.4 no.3, pp.460-469, Jun 1999.

[14] Cetin N., Burri A., Nagel K., Parallel Queue Model Approach to Traffic Microsimu-

lations, Proceediengs of Swiss Transport Research Confernce, Monte Verita, Swit-

zerland, Mar 2002.

 172

[15] Cetin N., Burri A., and Nagel K., A large-scale agent-based traffic microsimulation

based on queue model, Proceedings of the 3rd Swiss Transport Research Conference,

pp.42-52, Monte Verita, Switzerland, Mar 2003.

[16] Chrobok R., Wahle J., and Schreckenberg M., Traffic forecast using simulations of

large scale networks, Proceedings of the 4th International IEEE Conference an Intel-

ligent Transportation Systems, pp.434-439, 2001.

[17] Ciaccio G., Marco E. and Schnor B., Exploiting Gigabit Ethernet Capacity for Cluster

Applications, Proceedings of the 27
th

 Annual Conference on Local Computer Net-

works (LCN’ 02), 2002.

[18] Crovella M.E., Performance prediction and tuning of parallel programs, PhD thesis,

University of Rochester, UK, 1994.

[19] David H. A., Order Statistics, 2nd ed. New York: Wiley, 1981.

[20] Douligeris C. and Develekos G., A fuzzy logic approach to congestion control in

ATM networks, Proceedings of the IEEE International Conference on Communica-

tions, ICC, pp.1969-1973, 1995.

[21] DYNAMIT/MITSIM, Massachusetts Institute of Technology, http://its.mit.edu, Cam-

bridge, MA, USA, 1999.

[22] Erlang A. K., Solution of some problems in the theory of probabilities of significance

in automatic telephone exchanges, The Post Office Electrical Engineers' Journal

vol.10, pp.189-197, 1917.

[23] Federal Highway Administration, Traffic Network Analysis with NETSIM – A User

Guide, Washington, DC, USA, 1980.

[24] Ferrer J., Barcelo J., AIMSUN2: advanced interactive microscopic simulator for ur-

ban and non-urban networks, Internal Report, Departemento de Estatdistica e Inves-

tigacion Operattiva, Faclutad de Informatica, Univeritat polittecnica de Catalynya,

1993.

[25] Freitas J. C., Crowley G., Space weather simulation on networks of workstations,

ASME FLUIDS ENG DIV PUBL FED, vol. 250, pp.273-279, 1999.

[26] Gatner N. H. and Wilson N. H. M., editors. Transportation and Traffic Theory, El-

sevier, New York, 1987.

[27] Gourgoulis A., Terstyansky G., Kacsuk P., Winter S., Creating Scalable Traffic

Simulation on Clusters, Proceedings of the 12
th

 Euromicro Conference of Parallel,

Distributed and Network-Based Processing (EUROMICRO-PDP), pp.60-65, 11-13

Feb 2004.

[28] Grove D.A., Coddington P.D., Communication Benchmarking and Performance

Modeling of MPI Programs on Cluster Computers, Proceedings of the 18th Interna-

tional Parallel and Distributed Processing Symposium (IPDPS 2004), 26-30 April

2004, Santa Fe, New Mexico, USA. 2004.

[29] Hellendorn H., Thomas C., Defuzzification in Fuzzy Controllers, Journal of Intelli-

gent and Fuzzy System, Vol. 1, pp.109-123, 1993.

[30] Hesheam E., Mostafa A., Advanced Computer Architecture and Parallel Processing,

Hoboken, N.J., John Wiley, 2005.

[31] Hu R. Q., Petr D. W., A predictive Self-Tuning Fuzzy-logic feedback rate controller.

IEEE/ACM Transactions on Networking, vol.8, no.6, pp.697-709, Dec 2000.

 173

[32] Hyoudou K., Ozaki R. and Nakayama Y., A PC Cluster System Employing the IEEE

1394, Proceedings of The 14th International Conference on Parallel and Distributed

Computing and Systems, pp.489-494, Cambridge, USA, 2002.

[33] IEEE 1394 for Linux, http://www.linux1394.org, 2003.

[34] IEEE Std. 802.3-2002, LAN/MAN CSMA/CD Access Method, 2002.

[35] IEEE Std. 1212-1994, IEEE Standard for a control and Status Registers (CSR) Ar-

chitecture for Microcomputer Buses, 1994.

[36] IEEE Std. 1212-2001, IEEE Standard for a control and Status Registers (CSR) Ar-

chitecture for Microcomputer Buses (Revision of IEEE Std 1212-1994), 2001.

[37] IEEE Std. 1394-1995, IEEE Standard for a High Performance Serial Bus, The Insti-

tute of Electrical and Electronics Engineers, 1996.

[38] IEEE Std. 1394a-2000, IEEE Standard for a High Performance Serial Bus-Amend-

ment 1, 2000.

[39] IEEE Std. 1394b-2002, 1394b IEEE Standard for a High-Performance Serial

Bus-Amendment 2, 2002.

[40] Ipek E., Supionski B.R, Schulz M., and McKee S.A., An Approach to Performance

Prediction for Parallel Applications, Euro-Par 2005, LNCS 3648, pp.196-205, 2005.

[41] ISO/IEC 7498-1:1994 Information technology - Open Systems Interconnection - Ba-

sic Reference Model: The Basic Model, 1994.

[42] Jackson J. R., Networks of waiting lines, Operations Research, vol.5, no.4,

pp.518-521, 1957.

[43] Jackson J. R., Jobshop-like queueing systems, Management Science, vol.10, no.1,

pp.131-142, 1963.

[44] Jarvis S.A., Spooner D.P., Keung H.N.L.C., Cao J., Saini S., Nudd G.R., Perform-

ance prediction and its use in parallel and distributed computing systems, Proceed-

ings of the International Parallel and Distributed Processing Symposium (IPDPS’03),

22-26 Apr, 2003.

[45] Jiang X., Yang Z.X., Du P., Miao J.R., Li H.Y., A research on an open architecture of

integrated railway simulation system, Proceedings of Traffic and Transportation

Studies ICTTS 2002, vol.2, pp.1355-1360, 2002.

[46] Jin H. and Yoo C., Latency Analysis of UDP and BPI on Myrinet, Proceedings of the

18th IEEE International Performance, Computing, and Communication Conference

(IPCCC'99), pp.185-191, Phoenix/Scottsdale, Arizona, USA, Feb 1999.

[47] Kang K., Kim C., Performance analysis of statistical multiplexing of heterogeneous

discrete-time Markovian arrival process in an ATM network, Computer Communica-

tions, vol. 20, no.11, pp.970-978, 1997.

[48] Kevillem K.L., Tompkin R. IEEE 1394 and RFC 2734; a viable HSI for Hypercubes,

Proceedings of the 2001 IEEE International Conference on Cluster Computing

(CLUSTER ’01), pp.155-157, 2001.

[49] Knottenbelt W. J., Parallel Performance analysis of large markov models, PhD The-

sis, Imperial College of Science, Technology and Medicine, University of London,

UK, 1999.

[50] Kosonen I., HUTSIM, PhD Thesis, University of Helsinki, Finland, 1999.

 174

[51] Kunz T. and Seuren M. F. H., Fast Detection of Communication Patterns in Distrib-

uted Executions, Proceedings of the conference of the Centre for Advanced Studies

on Collaborative research, IBM Centre for Advanced Studies Conference, pp.9-269,

1997.

[52] Kurmann C., Rauch F., Stricker T.M. Cost/Performance Tradeoffs in Network Inter-

connects for Clusters of Commodity PCs, Proceedings of Workshop on Communica-

tion Architecture for Clusters, pp.196-198, 22Apr, 2003.

[53] Laamanen V., Lampinen T., Laurikkala M., Koivisto H., A Comparison of Fuzzy

C-means Clustering and Rough Sets Based Classification in Network Data Analysis,

Proceedings of the 3rd WSEAS International Conference on Fuzzy Sets and Fuzzy

Systems, Interlaken, Switzerland, Feb 2002.

[54] Lee C., Jang J., Park E. K., Makki S., A simulation study of TCP performance over

IEEE 1394 home networks, Computer Communications, vol.26, pp.670-678, 2003.

[55] Lee C., Jang J., Park E.K., Makki S., An Analysis of the Performance of TCP over

IEEE 1394 Home Networks, Proceedings of the Eight International Conference on

Computer Communications and Networks, pp.199-203, 1999.

[56] Lee Y. D., van de Liefvoort A., Wallace V.L., Modeling correlated traffic with a gen-

eralized IPP, Performance Evaluation, vol.40, no.1, pp.99-114, 2000.

[57] Li G. L., Li V. O. K., Networks of Queues Myth and Reality, IEEE INFOCOM 2003,

pp.154-158, Dana Point, California, USA, 20-21 Oct, 2003.

[58] Li K.Q., Analyzing the Expected Execution Times of Parallel Programs, Proceedings

of the 1997 ACM symposium on Applied computing, pp.488-495, San Jose, California,

USA, 1997.

[59] Lim H., Park D., Kang S. and Oh B., Priority Queue-Based IEEE1394 Device Driver

Supporting Real-time Characteristics, IEEE TRANSACTIONS ON CONSUMER

ELECTRONICS, vol.46, no.3, pp.825-833, Aug 2000.

[60] Mache J., An Assessment of Gigabit Ethernet as Cluster Interconnect. Proceedings of

The 1st International Workshop on Cluster Computing (IWCC '99), pp.36-42, 2-3

Dec 1999.

[61] Madala S. and Sinclair J.B., Performance of Synchronous Parallel algorithms with

Regular Structures, IEEE Transaction on Parallel and Distributed Systems, vol.2,

no.1, pp.105-116, Jan 1991.

[62] Mahmassani H.S., Jayakrishnan R. and Herman R., Microscopic Simulation of Traf-

fic in Networks: Supercomputer Experience, American Society of Civil Engineers

(ASCE) Journal of Computing in Civil Engineering, vol.4, no.1, pp.1-19, 1990.

[63] Mouskos K. and Mahmassani H.S., Guidelines and Computational Results for Vector

Processing of Network Assignment Codes on Supercomputers, Transportation Re-

search Record 1251, pp.10-16, 1989.

[64] Myricom Inc., http://www.myrinet.com, 2005.

[65] Nagel K. and Rickert M., Parallel implementation of the TRANSIMS mi-

cro-simulation, Parallel Computing, vol.27, pp.1611-1639, 2001.

[66] Nagel K. and Schleicher A., Microscopic traffic modeling on parallel high perform-

ance computers, Parallel Computing, vol.20, pp.125-146, 1994.

 175

[67] Nagel K., Rickert M., Rrye R., Stretz P., Simon P., Jacob R., Barrett C. L., Regional

Transportation Simulations, Proceedings of Advanced Simulation Technologies Con-

ference, Boston, MA, USA, 5-9 Apr 1998.

[68] Nakajo H., Ichikawa A., and Kaneda Y., A Distributed Shared-Memory System on a

Workstation Cluster Using Fast Serial Links, International Journal of Parallel Pro-

gramming, vol.28, no. 2, pp.179-194, Apr 2000.

[69] Norimatsu T., Takagi H., and Gail H.R., Performance Analysis of the IEEE 1394 Se-

rial Bus, Performance Evaluation, vol.50, no.1, pp.1-26, Oct 2002.

[70] Norris R. C. and Miller D. M., Comparing the Performance of IP over Ethernet and

IEEE 1394 on a Java Platform, IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing, pp.481-484, Aug 2001.

[71] Osogami T. Analysis of Multi-server Systems via Dimensionality Reduction of

Markov Chains, PhD Thesis, Carnegie Mellon University, Pittsburgh, USA, 2005.

[72] Ould-Khaoua M., Loucif S., Rabhi F.A., On the performance of multicomputer in-

terconnection networks, Journal of System Architecture. vol.50, no.9, pp.563-574,

Sep 2004.

[73] Park D. and Kang S., IEEE 1394 OHCI Device Driver Architecture for Guarantee

Real-Time Requirement, Proceedings of The 7th International Workshop on

Real-Time Computing and Applications Symposium (RTCSA 2000), pp.389-394,

Cheju Island, South Korea, 12-14 Dec, 2000.

[74] Peeta S. and Zhang P.C., Architecture for Enabling Real-Time Traffic System Opera-

tions, Computer-Aided Civil and Infrastructure Engineering, vol.19, pp.306-323,

2004.

[75] Peterson G.D. and Chamberlain R.D., Beyond Execution Time: Expending the Use of

Performance Models, IEEE Concurrency, vol.2, no.2, pp.37-49, 1994.

[76] Plaisant C., Tarnoff P., Keswani S., Saraf A. and Rose A., Understanding Transporta-

tion Management Systems Performance with a Simulation-Based Learning Environ-

ment, Proceedings of Conference on Intelligent Transportation Systems' 99, Wash-

ington D.C., USA, 1999.

[77] Qin X., Jiang H., Zhu Y., Swanson D. R., Towards Load Balancing Support for

I/O-Intensive Parallel Jobs in a Cluster of Workstations, Proceedings of the IEEE In-

ternational Conference on Cluster Computing, pp.100-107, Dec 2003.

[78] Rakha H.A., Aerde M.W., Comparison of simulation modules of TRANSYT and

INTEGRATION modules, Transportation Research Records, no.1566, pp.1-7, 1996.

[79] Rathi A.K., Santiago A., The new NETSIM simulation program, Traffic Engineering

and Control, pp.317-320, 1990.

[80] Rea S., Pesch D., Multi-Metric Routing Decisions for Ad Hoc Networks using Fuzzy

Logic, Proceedings of the 1st International Symposium on Wireless Communication

Systems, pp.403-407, 20-22 Sep 2004.

[81] RFC 2734 - IPv4 over IEEE 1394, 1999.

[82] RFC: 793 Transmission Control Protocol http://www.ietf.org/rfc/rfc0793.txt, 2002.

[83] Rickert M., Traffic simulation on distributed memory computers, PhD thesis, Univer-

sity of Cologne, Germany,1997.

 176

[84] Robertazzi T.G., Computer Networks and Systems, Queuing Theory and Performance

Evaluation, Second Edition, Springer-Verlag. 1994.

[85] Roosta S. H., Parallel Processing and Parallel Algorithms, Springer, 1999.

[86] Santamaria R., IEEE-1394: A Standard for the Next Millenium, Proceedings of The

18th Digital Avionics Systems Conference, vol.1, pp.1-7, St. Louis, MO, USA, 24-29

Oct, 1999.

[87] Schwartz M., Broadband Integrated Networks. Prentice Hall PTR, 1996.

[88] Stathopoulos A., Long-Term Travel Demand Forecasting in General Dynamic Trans-

portation Networks, Transportation Research Board Annual Meeting, 2003.

[89] Steinberg D., Birk Y., An Empirical Analysis of the IEEE-1394 Serial Bus Protocol,

IEEE Micro, vol.20, no.1, January, 2000.

[90] The Message Passing Interface (MPI) standard, http://www-unix.mcs.anl.gov/mpi/,

2005.

[91] The Promoters of the 1394 Open HCI, 1394 Open Host Controller Interface Specifi-

cation, Release 1.1. 2000.

[92] TRANSIMS ³transportation analysis and simulation system,

http://transims.tsasa.lanl.gov/, 2005.

[93] Truong H. L. and Fahringer T., Soft computing approach to performance analysis of

parallel and distributed programs, Proceedings of 11th International Euro-Par Con-

ference (Euro-Par 2005), LNCS 3648, pp.50-60, Lisboa, Portugal, 30 Aug-2 Sep,

2005.

[94] Truong, H.L., Novel techniques and methods for performance measurement, analysis

and monitoring of cluster and gride application, PhD Thesis, Vienna University of

Technology, Austria, 2005.

[95] Unibrain, http://www.unibrain.com/, 2005.

[96] Universal Serial Bus Specification, Revision 1.1, Copyright © 1998, Compaq Com-

puter Corporation, Intel Corporation, Microsoft Corporation, NEC Corporation, 23

Sep, 1998.

[97] VISIM, Planung Transport uud Verkehr (PTV) GmbH, www.ptv.de, 2005.

[98] Vraalsen F., Aydt R.A., Mendes C.L., Reed D.A., Performance contracts: predicting

and monitoring grid application behavior, Proceedings of the 2nd International

Workshop on Grid Computing, GRID 2001, LNCS, vol.2242, pp.154-165. 2001.

[99] Walrand J., Varaiya P., High-performance communication networks, 2
nd

 Edition,

Morgan Kaufmann, 1996.

[100] Wellstead P.E. and Zarrop M.B., Self-Tuning Systems: Control and Signal Processing,

New York: Wiley, 1991.

[101] Wilkinson B., Allen M., Parallel programming Techniques and Applications Using

Networked Workstations and Parallel computers, 2
nd

 Edition, Prentice Hall, 2005.

[102] Wilmarth T.L., Zheng G.B., Bohm E.J., Mehta Y., Choudhry N., Jagadishprasad P.

and Kale L.V., Performance Prediction using Simulation of Large-scale Interconnec-

tion Networks in POSE, Proceedings of Advanced and Distributed Simulation

(PADS'05), pp.109-118, 2005.

[103] Wolfram S., Theory and Applications of Cellular Automata, World Scientific, Sin-

gapore, 1986.

 177

[104] Xu C.Z., Wang L.Y. and Fong N.T., Stochastic Prediction of Execution Time for

Dynamic Bulk Synchronous Computations, The Journal of Supercomputing, vol.21,

no.1, pp.91-103, 2002.

[105] Yang Z.X., Li H.Y., Jiang X., Yu L., Miao J.R. Du P., A study of railway transporta-

tion simulation system, Proceedings of Traffic and Transportation Studies ICTTS

2002, vol.2, pp.1385-1392, 2002.

[106] Yang Z. X., Jiang X., Yu Y., Tan L. G., Du P., Miao J. R., Simulation system of tech-

nological process at marshalling station, Proceedings of the Conference on Traffic

and Transportation Studies, ICTTS 2000, pp.17-21, 2000.

[107] Yang X. Y., Yang W., Zeng M., and Shi Y., A Novel Network Traffic Analysis

Method Based on Fuzzy Association Rules, Proceedings of Modeling Decisions for

Artificial Intelligence: First International Conference, MDAI 2004, pp.81-91, Barce-

lona, Spain, 2-4 Aug, 2004.

[108] Yoshimoto H., Arita D. and Taniguchi R., Real-Time Image Processing on

IEEE1394-based PC Cluster, Proceedings of The 15th IEEE International Parallel

and Distributed Processing Symposium, pp.1177-1183, Apr 2001.

[109] Zadeh L.A., Fuzzy logic, neural networks, and soft computing, Communications of

the ACM, vol.37, no.3, pp.77-84, 1994.

[110] Zadeh L.A., Fuzzy logic = Computing with Words. IEEE Transactions on Fuzzy Sys-

tems vol.4, no.2, pp.103-111, 1996.

[111] Zhu W., Lee D., Wang C., High Performance Communication Subsystem for Clus-

tering Standard High-Volume Servers Using Gigabit Ethernet, Proceedings of High

Performance Computing in the Asia-Pacific Region, vol.1, pp.184-190, Dec 2000.

[112] Zomaya Y. A., Parallel & Distributed computing handbook, McGraw-Hill, Inc. New

York, NY, USA, 1996.

	theses_copyright_undertaking
	b20592942

