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Abstract 

The rapid development of machine learning methods in recent years has provided 

researchers with alternative approaches to explain the physical world solely through data. 

These advanced data-driven methods offer great flexibility in handling various physical 

problems and have demonstrated superiority over traditional model-based methods in many 

fields. As a result, there is now a growing tendency to utilize these machine learning methods 

to tackle difficult problems in science and engineering, especially in physical problems 

involving uncertain systems. However, existing data-driven methods still face some limitations. 

Machine learning models trained from data are often hobbled by noise, imbalance, and sparsity 

in the training data, posing challenges to the generalization of the models. Additionally, since 

the intrinsic laws of physical systems are only represented at a shallow level from the training 

data, the trained machine learning models may produce physically implausible result 

predictions that violate the governing laws of physical systems. 

Given the challenges existing in these data-driven methods, this study delves deeply into 

the application of physics-informed machine learning (PIML) in engineering physical systems. 

PIML is an emerging machine learning concept that aims to couple various prior physical 

constraints into the training of machine learning models, thereby enhancing the physical 

feasibility of the models and improving their generalization and robustness. The focus of this 

thesis is on the application of PIML in structural dynamic response and structural damage 

monitoring. Several PIML frameworks are proposed to integrate machine learning models and 

physical knowledge to address the difficulties encountered by current data-driven and 
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traditional physics-driven methods. 

First, a framework named structural dynamics learner (SDL) is proposed to solve the 

forward problem of structural dynamics by integrating physical information with neural 

network models. In SDL, a novel recurrent convolutional neural network framework that 

integrates physical information described as the implicit Crank-Nicolson form of the system's 

motion equations is established to predict the dynamic response of linear/nonlinear structural 

systems. Afterward, the focus of this thesis shifted to the research of inverse problems in 

structural dynamics. The first inverse problem investigated is the reconstruction of external 

forces and dynamic responses of structures, where a physics-informed Markov parameters (PI-

MP) framework is proposed to accurately reconstruct the external excitations and dynamic 

responses from partial vibration measurement data. Here, the neural network with strong 

characterization ability for reconstructing unknown external force input is coordinated with the 

Markov parameter for describing the motion equation of the structure in the state space to 

predict the acceleration response of the structure. By minimizing the deviation between the 

predicted structural acceleration response and the measured vibration response, PI-MP can 

locate and reconstruct the external excitation input of the structure and predict the vibration 

response of all nodes of the structure. Then, the application of PIML for structural damage 

identification with unknown external forces from vibration measurements is further 

investigated. A physics-informed Fourier feature neural networks (PI-FFNN) framework 

integrates Fourier neural networks with excellent multi-frequency characterization capabilities 

and the Newmark-beta scheme of the motion equation as physical information is presented to 

achieve this research goal. The integration of physical information makes this method 
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unsupervised learning, which can be trained to accurately detect structural damage from 

vibration measurements without relying on any damage-related data labels. Finally, based on 

the physics-informed neural networks framework, we propose a PIML framework that can 

simultaneously identify the structural mechanical parameters, reconstruct the unknown 

external excitation on the structure, and establish a surrogate model for nonlinear systems. In 

this framework, two neural network models are employed to represent the structure's unknown 

external excitation and nonlinear internal restoring forces respectively, and the mechanical 

parameters of the structure are also updated together with the neural network model as trainable 

parameters. The physical information of the structural vibration equations is seamlessly 

integrated into the proposed machine learning framework through a set of mathematical 

equations that describe the Newmark-beta relations of the dynamic system. By minimizing the 

difference between the predicted structural response and the structural vibration observation, 

both the external excitation and the internal nonlinear restoring force of the structure can be 

reconstructed simultaneously and the exact values of the structural parameters can be 

discovered. 

This thesis presents several innovative PIML frameworks for solving forward and inverse 

problems in structural dynamics. Under the constraints of physical information, these 

frameworks demonstrate the independence of complex and large training data and achieve 

efficient and accurate model training in a physically constrained search space. The embedding 

of physical information also gives the predictions of the proposed PIML frameworks with 

physical interpretation, outstanding noise robustness, and excellent generalization for physical 

systems in a variety of environments. The results of simulation analysis and real physical 
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experiments show that the proposed PIML frameworks have outstanding ability and 

performance to accurately model real physical systems. Looking ahead, more in-depth research 

is still needed to apply the promising PIML method to more complex physical systems, 

involving large structural degrees of freedom and complex nonlinearities. 
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Chapter 1 Introduction 

1.1 Background and Motivation 

In modern society, the safety and reliability of infrastructure are crucial to ensuring 

economic development and people's quality of life. In-service buildings, bridges, 

transportation systems, and other structures not only bear the load of daily operations 

but also face the impact of natural disasters, environmental changes, and human factors. 

Due to the ageing and fatigue of the structure and the wear and corrosion caused by the 

environment, potential damage and failure may lead to serious safety risks and 

economic losses. Therefore, regular monitoring and evaluation of structural health 

status is an important engineering task. 

Structural health monitoring (SHM) is a comprehensive process that uses a series 

of technical tools and methods to evaluate and manage the safety and performance of 

structures. The main goal of SHM is to detect damage and deterioration in structures 

promptly to prevent potential safety risks and economic losses. The SHM process 

usually involves installing sensors on the structure to continuously collect data on its 

stress, strain, acceleration, and environmental conditions. These data can be analyzed 

and processed to identify the structural health status and evaluate the structural response 

under specific loading and environmental conditions.  

In the SHM field, structural analysis is usually the basic process because it 

provides the necessary theoretical basis and data support for damage identification, 
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performance evaluation, and maintenance decisions by establishing structural models. 

Traditional structural analysis methods usually rely on physical models and empirical 

formulas. These methods perform well when dealing with simple linear systems but are 

often insufficient when faced with complex nonlinear behaviors, dynamic responses, 

and changing environmental conditions. For example, although the classic finite 

element analysis (FEA) can accurately describe the physical processes in the structural 

system, it is computationally expensive and requires detailed material and geometric 

data. In practical applications, obtaining accurate data is often difficult and time-

consuming. 

With the advancement of sensor technology and data collection methods, a large 

amount of structural monitoring data has been obtained. This data provides a rich 

foundation for data-driven methods such as machine learning. Machine learning 

enables models to adapt to complexity and uncertainty by learning patterns and 

relationships from data. However, pure data-driven methods have some drawbacks, 

such as a lack of physical interpretation, overfitting, and performance degradation in 

data-scarce conditions. 

In this context, physics-informed machine learning (PIML) has been proposed and 

has received increasing attention. PIML provides a new solution by incorporating 

physical laws and constraints into machine learning models. This approach not only 

combines the flexibility of data-driven methods but also ensures that the model follows 

the basic laws of physics, thereby improving the accuracy and interpretability of the 
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model. 

A major advantage of PIML is its ability to maintain good prediction performance 

even when data is limited or of low quality. By leveraging physical knowledge, PIML 

can more effectively capture the nonlinear characteristics of structural response and the 

changes in structural parameters while reducing the reliance on large amounts of 

training data. This feature is particularly important for SHM and response prediction, 

as obtaining high-quality, comprehensive, and balanced data is often a challenge in 

practical applications. 

In real-world applications, PIML can provide structural engineers and designers 

with more advanced tools to help them make more scientific decisions during design 

and maintenance. With enhanced predictive capabilities, PIML can support timely 

maintenance measures, thereby extending the service life of structures, reducing 

maintenance costs, and improving the safety of public infrastructure. As the demand for 

structural health monitoring increases, the PIML method that combines physical 

knowledge with machine learning provides new perspectives and possibilities for 

addressing the limitations of traditional methods. This approach not only provides a 

stronger theoretical basis for structural response prediction but also provides data-

driven support for strategies to maintain and manage infrastructure. 

In light of these research motivations, this thesis delves into the development of 

PIML frameworks for structural response prediction and health monitoring. This work 

starts with the introduction of a novel machine learning framework that integrates PIML 
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and convolutional neural networks (CNN) to predict the response of linear or nonlinear 

structural systems under dynamic forces. Then, PIML is further investigated by 

integrating physics-informed neural networks (PINNs) with the Markov parameters 

method in structural dynamics. A physics-informed Markov parameters (PI-MP) 

method is proposed to reconstruct force and structural response from the measurement 

of structural vibrations. After that, the research of the PIML method is extended to 

structural damage identification from partial response observations of the structure. In 

this part, a novel vibration-based structural health monitoring method is proposed for 

vibration-based structural damage identification with unknown external forces. Finally, 

the focus of this work shifts to the structural identification of linear/nonlinear structural 

systems. A physics-informed neural networks framework based on the Newmark-beta 

numerical method is proposed to identify system parameters and unknown external 

forces from vibration measurements of nonlinear structural systems. 

1.2 Research Objectives 

This study is intended to develop novel frameworks of PIML to accurately predict 

the dynamic response and detect the damage of linear and nonlinear structural systems. 

The detailed research objectives are: 

1) To develop a novel PIML framework that successfully combines physical 

information and deep neural networks to accurately predict the dynamic 

response of linear and nonlinear structures under dynamic forces.  

2) To develop a PIML framework for inverse problems of structural dynamics, 
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which can identify and reconstruct the external forces and responses of 

structures from partial structural vibration observations. 

3) To expand the PIML framework for inverse problems of structural dynamics 

to detect damage based on vibration observations with unknown external 

forces. 

4) To develop a novel PIML framework adapted to linear and nonlinear 

structural system identification.  

1.3 Thesis Outline 

This thesis consists of the following seven chapters: 

Chapter 1 gives the research motivation, research objectives, and the outline of 

the thesis. 

Chapter 2 presents a comprehensive review of research efforts on PIML, followed 

by the introduction of the latest applications of PIML in structural response prediction 

and PIML for structural health monitoring. The advantages and challenges of the 

existing PIML methods for structural dynamics are also discussed. 

Chapter 3 develops a novel PIML framework called Structural Dynamics Learner 

(SDL) that integrates PIML and convolutional neural networks (CNN) to predict the 

response of linear or nonlinear structural systems under dynamic forces. After proper 

training, SDL can serve as a surrogate model of the structural system, capable of 

predicting the next dynamic response based on the current state. The governing 

equations of structural vibrations are incorporated into SDL to provide prior physical 
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knowledge for the training process.  

Chapter 4 invests the physics-informed Markov parameters (PI-MP) method for 

force and structural response reconstruction. By integrating physics-informed neural 

networks and Markov parameters of structural dynamics, PI-MP can localize and 

reconstruct unknown external forces, as well as reconstruct unmeasured dynamic 

responses of the structure, from partial structural response observations.  

Chapter 5 investigates the feasibility of a new framework named physics-

informed Fourier feature neural networks (PI-FFNN) for structural damage detection 

from vibration observation with unknown external forces. Using a neural network 

model containing a Fourier feature layer to represent the unknown external forces and 

the Newmark-beta scheme of the motion equation as physical information, the PI-

FFNN model is proven to accurately identify structural damage. 

Chapter 6 investigates a promising approach for linear/nonlinear structure 

identification via physics-informed neural networks. The governing equations of 

structural motion are integrated as physical information with the neural network. A 

Fourier feature neural network model is utilized to represent the unknown 

external/internal forces of the structure. By minimizing the difference between the 

predicted structural vibration responses and the observed data, the structural 

mechanical parameters are updated to approach the exact values, and the 

external/internal forces of the structure are reconstructed. In addition, based on the 

reconstructed internal forces, a surrogate model can be trained to characterize the 
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nonlinear system in the structure. 

Chapter 7 provides a summary of the thesis, the major conclusions, and the 

potential future work. 
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Chapter 2 Literature Review 

In this section, the current research state on PIML is introduced first, highlighting 

the distinctions between PIML and traditional machine learning methods. Subsequently, 

research efforts to apply PIML for structural response prediction are outlined and 

discussed. Following this, the applications of PIML in SHM are reviewed and 

summarized. Finally, the limitations and challenges of existing PIML methods in the 

realms of structural response prediction and health monitoring are analyzed and 

discussed. 

2.1 Physics-informed machine learning 

In the past decades, great progress has been made in understanding physical 

processes in various fields by numerically solving the governing equations using 

computational methods such as finite difference methods and finite element methods. 

Although these methods can achieve satisfactory results in the analysis of fully 

informed physical systems, they still face severe difficulties for real physical problems 

with missing governing equations, gaps or noisy boundary conditions, and strong 

nonlinearities. In addition, for inverse problems of physical systems, i.e., inferring the 

parameters of the system or unknown physical principles from observed data, 

traditional numerical methods usually rely on expensive iterative procedures or the 

design of new algorithms. 

To overcome these difficulties, people have turned their attention to observational 
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data obtained from actual physical systems. With the explosive growth of various 

sensors and data acquisition equipment installed, a large amount of multi-fidelity 

observational data has been collected, providing soil for the development of data-driven 

methods. Among data-driven methods, machine learning has played a revolutionary 

role in discovering real physical processes from multi-fidelity observational data 

because it can explore huge design spaces, identify multi-dimensional correlations, and 

manage ill-posed problems. In machine learning methods, deep learning methods are 

particularly outstanding as they can naturally extract deep features from observational 

data (Najafabadi et al., 2015). 

Although machine learning methods have great promise and have achieved 

widespread success in various purely data-driven problems, most developed machine 

learning models are unable to obtain interpretable and robust physical information and 

knowledge from these data. In other words, these models usually act as a ‘black box’ to 

merely characterize the mapping relationships in the training data (Burkart & Huber, 

2021). In addition, after well-training, these purely data-driven models may be highly 

consistent with the results of the observed data, but due to inference errors or 

observation biases, the model generalization performance may be poor, and its 

predictions may be physically inconsistent or unconvincing. 

To overcome this shortcoming, a new machine learning concept called PIML was 

proposed in (Karniadakis et al., 2021). PIML is the process of improving the 

performance of machine learning algorithms by using prior knowledge derived from 
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our observations, experiences, physics, or mathematical understanding of the world. By 

providing machine learning models with ‘informative priors,’ i.e., strong theoretical 

constraints and inductive biases on top of observational constraints, PIML can ‘teach’ 

machine learning models about physical processes to integrate basic physical laws and 

domain knowledge. The comparison of the applicable areas of physics-driven methods, 

data-driven methods, and physical machine learning methods is shown in Fig. 2.1. 

 

Figure 2.1 Application areas of physics-driven and data-driven methods 

After PIML was proposed, it received widespread attention and experienced 

vigorous development. Researchers in various fields have designed a lot of different 

PIML frameworks to target specific physical problems according to a wide range of 

task requirements. Among these PIML frameworks, the most widely explored ones are 
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those frameworks that combine physical information with deep learning methods, 

especially PINNs proposed by (Raissi et al., 2019). PINNs use prior knowledge to 

construct the loss function of the deep neural network, thereby reducing the inference 

error of the model and ‘teaching’ the neural network model to learn prior physical 

information. After completing training, PINNs can seamlessly integrate physical 

information and deep neural network models so that the model's predictions are 

consistent with physical constraints. Using physical information, PINNs can solve the 

forward problem of nonlinear partial differential equations (PDEs) without any labeled 

data and can also accurately discover the accurate values of control parameters in the 

governing equations from noisy measurements. A general process of PINNs for solving 

the forward problem of nonlinear PDEs is shown in Fig. 2.2. In other extended studies, 

PINNs can not only solve the forward and inverse problems of PDEs, but their 

application scope has also been extended to fractional PDEs (Pang et al., 2019), 

integral-differential equations (Yuan et al., 2022) and stochastic differential equations 

(Yang et al., 2018, 2020).  
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Figure 2.2 General PINNs framework for forward problems of nonlinear PDEs 

Not only in the multi-layer perception (MLP) model, but physical information is 

also utilized in other deep learning methods to handle special tasks. For images or high-

dimensional input data, the convolutional neural network (CNN) model is widely used 

in visual processing. It is also integrated with physical information into a series of novel 

PIML frameworks. Some typical PI-CNN frameworks have been developed in (Gao et 

al., 2021; Yuan et al., 2024; Zhang et al., 2023; Zhao et al., 2023). In these PI-CNN 

frameworks, the input of the neural network model is no longer (𝑡, 𝑥) shown in Fig. 

2.2 but is changed to multi-dimensional system states or coordinates after mapping the 

equation domain. Compared with the PINNs framework, PI-CNN can have better 

representation capabilities and improve the convergence speed for high-dimensional 

inputs (Fang, 2021; Lei et al., 2025).  

For time series data, the Recurrent neural network (RNN), Gated recurrent unit 

(GRU), and Long Short-Term Memory (LSTM) model show excellent representation 

ability compared to the MLP model, because these models take into account the 

dependencies in the sequence data. When the output of the model is related to time 

series data, physical information can also be employed as prior information to train 

RNN, GRU, and LSTM models. For example, (Tang et al., 2022) proposed a PI-RNN 

model to characterize the time-domain response of optical resonances. (Zheng et al., 

2023) used the PI-RNN model to predict and control the temporal state of nonlinear 



 

13 

 

systems. In (Chen, 2024), the MLP model in PINNs was replaced by a GRU network 

to improve the model's ability to characterize the time evolution of equation features. 

The proposed physical information gated recurrent unit network method (PGNM model) 

was shown to improve prediction accuracy and obtain better long-term prediction 

results. PI-LSTM models have also been developed for response prediction of 

engineering structures (Fangyu Liu et al., 2023; R. Zhang et al., 2020b) and prediction 

and health management of engineering systems (Ma et al., 2023). The results of the 

study show that embedding physics information into the LSTM model can not only 

alleviate the noise overfitting of the purely data-driven LSTM model and improve the 

robustness and generalization ability of the model but also obtain more accurate 

prediction results than the original PINNs model. 

For dynamic processes described by differential equations, neural ordinary 

differential equation (NODE) is a special type of neural network model that treats the 

neural network as a continuous-time dynamic system rather than the traditional 

discrete-time model. NODE is shown to be able to process continuous time series data 

more naturally. In (Lai et al., 2021; O'Leary et al., 2022), physical information is also 

utilized as prior information for NODE training. The core idea of PI-NODEs is to use 

physical laws (usually in the form of differential equations) as part of the loss function 

to guide the learning process of the neural network.  

Not only in deep learning methods, physics-informed concepts are also combined 

with classical kernel methods. The most famous of these is physics-informed Gaussian 
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process (PI-GP) proposed in (Nevin et al., 2021; Tartakovsky et al., 2023; Yang et al., 

2019). Unlike PINNs, which integrates physics information through a specific loss 

function, the implementation of physics information in PI-GP is to design a specific 

kernel function to ensure that the model output conforms to the physics laws. This may 

involve adjusting the covariance matrix according to the physical equations to reflect 

the dynamic behavior of the system. However, compared to PINNs, due to the 

limitations of the kernel function in the Gaussian process, the PI-GP method has 

difficulties in dealing with nonlinear governing equations and high-dimensional space-

time differential operators. A detailed comparison between PI-GP and PINNs can be 

found in (Pang & Karniadakis, 2020).  

Another major direction of PIML extension is to integrate physics information 

with numerical methods and machine learning to form hybrid models. Traditional 

numerical methods for solving partial differential equations, such as finite difference 

method (FDM) and finite element method (FEM), have been successfully developed 

with PIML. (Jiang et al., 2023) utilized finite differences to replace the automatic 

differentiation in the original PINNs to calculate the partial derivatives in the governing 

equations. The results show that finite difference-PINNs can improve the prediction 

accuracy of derivatives and have advantages in boundary condition integration and 

computational cost. (Würth et al., 2024) developed a neural finite element solver for 

non-stationary and nonlinear simulations on arbitrary meshes based on PINNs and 

mesh graph nets. This method has been shown to quickly and accurately solve non-
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stationary and nonlinear PDEs on arbitrary meshes and can scale well to large and 

complex meshes. Some comparisons and discussions between PINNs and FEM 

methods can be found in (Grossmann et al., 2024; Rezaei et al., 2022). Runge-Kutta is 

also a popular numerical research method in PIML. One of the most classic methods is 

the discrete-time PINNs method (Raissi et al., 2019), which uses the output of the neural 

network to approximate the Runge-Kutta hidden step to accurately solve nonlinear 

partial differential equations with large time steps. Another study that combines Runge-

Kutta with PIML is (Zhai et al., 2023), where PINNs are used to represent the force 

term in the equation, thereby using the Runge-Kutta method to solve the integral. 

 In order to implement PIML efficiently, some widely used general libraries for 

machine learning, such as TensorFlow and PyTorch, were used to build the PIML 

framework. In these libraries, neural network graphs and automatic differentiation can 

be easily implemented through built-in functions. On this basis, several specifically 

designed software libraries have also been designed to quickly implement PIML. The 

most famous software is DeepXDE (Lu, Meng, et al., 2021), which is designed based 

on the PINNs framework. DeepXDE can not only be used to solve the forward and 

inverse problems of ordinary differential equations and partial differential equations, 

but also fractional differential equations and integral-differential equations. DeepXDE 

is also adapted to complex nonlinear problems and irregular geometric domain 

problems and is developed to accelerate the operation using high-performance GPUs. 

Other PIML solvers include SimNet (Hennigh et al., 2021), PyDEns (Koryagin et al., 
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2019), NeuroDiffEq (F. Chen et al., 2020), and NeuralPDE (Zubov et al., 2021). 

In the comparative studies of (Grossmann et al., 2024; Karniadakis et al., 2021; 

Rezaei et al., 2022), it is discussed that PIML cannot surpass mature numerical methods 

such as FEM in solving well-posed forward problems of partial differential equations, 

but for ill-posed problems and inverse problems, PIML framework shows superior 

solving ability. Compared with pure data-driven methods and pure physics-driven 

methods, PIML also has obvious advantages in the following directions. The first is that 

in the learning of incomplete physical models or imperfect data, PIML shows stronger 

robustness. For example, PIML can effectively obtain accurate results for unbounded 

problems (Fang et al., 2024) or when boundary conditions are unknown 

(Mahmoudabadbozchelou et al., 2022). (S. Xu et al., 2023) also used PIML to 

reconstruct flow fields from sparse and missing imperfect data. 

The second advantage of PIML is that it can learn generalizable models from a 

small amount of training data. For traditional machine learning models, a large amount 

of balanced training data is critical to improve model performance. However, in (Chen 

et al., 2021; Linka et al., 2022), PIML demonstrates its ability to train effective models 

using physical information from a small amount of sparse data.  

The third strength of PIML is its uncertainty quantification (UQ) capability. In the 

PIML model, the uncertainty in the prediction results can come from three parts: the 

uncertainty of physical information, the uncertainty of training data, and the uncertainty 

of the machine learning model. The uncertainty of physical information usually refers 
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to the uncertainty of the stochastic partial differential equation or the control parameters 

of the equation. Regarding the solution of stochastic PDEs, several new PIML 

frameworks have been designed in (Yang et al., 2018; D. Zhang et al., 2020) using 

generative adversarial networks, the spectral dynamically orthogonal and borthogonal 

methods, respectively. Research on UQ in solving stochastic PDEs can be found in 

(Shin & Choi, 2023; D. Zhang et al., 2019). Some research on how to train PIML 

models under uncertain equation control parameters was conducted in (Zheng & Wu, 

2023). Bayesian PINN (Yang et al., 2021) is a well-known framework based on 

Bayesian neural networks that can use physical laws and scattered noisy measurements 

to provide predictions and quantify the stochastic uncertainty caused by noisy data in a 

Bayesian framework. UQ tasks have also been addressed by developing new 

frameworks in (Yang & Foster, 2022; Yang & Perdikaris, 2019). Finally, due to the 

inference bias of the trained model, PIML's model will also bring uncertainty to the 

predicted results, which was studied in (Psaros et al., 2023; D. Zhang et al., 2019).  

After the rapid development in recent years, researchers have explored the 

advantages of PIML in the above statement but also found that it has the following 

limitations. The first is the adaptability of PIML to multi-scale physical problems 

(Karniadakis et al., 2021). Since PIML relies on machine learning models to express 

the solutions of PDEs, for multi-scale physical processes, it may be difficult to represent 

the entire process using only one learning model. For example, there is a spectral bias 

(Wang et al., 2021) in the fully connected neural networks model, i.e., the model 
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preferentially learns the low-frequency components in the data represented, and may 

ignore the high-frequency components. To overcome this limitation, some 

improvements have been developed, such as the domain decomposition method (Jagtap 

& Karniadakis, 2020; Kharazmi et al., 2021; Shukla et al., 2021), which decomposes 

the equation domain into multiple subdomains, and Fourier neural networks that couple 

Fourier features into neural networks (Song & Wang, 2023; Wang et al., 2021), and 

multi-scale neural network models that can group multi-scales for training (Leung et 

al., 2022; Weng & Zhou, 2022). 

PIML also faces the limitation of ‘soft’ constraints. This is because, in many PIML 

frameworks, the constraints are implemented by penalizing a loss function based on the 

constraints. It is difficult to ensure that this loss function converges to the global optimal 

solution so that the constraints are perfectly satisfied. In order to achieve ‘hard’ 

satisfaction of boundary conditions, some model techniques have been designed, such 

as the augmented Lagrangian method (Lu, Pestourie, et al., 2021b) and a smooth 

function that automatically satisfies boundary conditions (Xiao et al., 2024; Zhu et al., 

2021). By combining the output of the neural network model with these techniques, the 

final prediction result can ‘hard’ satisfy all constraints. 

Another limitation of PIML is the problem of balancing multiple damage functions. 

The loss function of many PIML frameworks is a fixed weighted combination of 

observation data, boundary, and initial constraints, and PDE residuals. It has been 

observed that the training efficiency of the original PINN depends sensitively on the 
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weights associated with different loss terms. Many works focus on adjusting the relative 

importance of each loss term by changing the weights of different loss terms to meet 

the loss-balanced training of PINN. The first proposed improvement measure is the 

non-adaptive weight adjustment (Bai et al., 2023; Wight & Zhao, 2021), which 

determines the optimal weights through multiple tests. Later, the improvement measure 

that can adaptively adjust the weight coefficients was applied in (Hou et al., 2024; E.-

Z. Rui et al., 2023; Xiang et al., 2022). Although adaptive loss function balancing 

techniques can improve the convergence of PIML, the balance between multiple loss 

functions remains an open problem.  

As PIML is experiencing a booming development, hundreds of research papers on 

PIML applications are reported and published every year. Therefore, it is difficult to 

give a detailed and comprehensive review of PIML applications. Here, only some 

important application areas are listed as examples.  

The first and most important applied research area for PIML is computational fluid 

dynamics (CFD), which often involves high-dimensional or strongly nonlinear 

governing equations and complex boundary conditions. The main advantage of PIML 

for CFD problems is that a unified framework can be used to solve both forward and 

inverse problems. Compared with traditional CFD solvers, PINNs are more flexible in 

integrating data and physics. A promising application is fluid visualization (Cai, Wang, 

Fuest, et al., 2021; Raissi et al., 2020) and reconstruction (Hosseini & Shiri, 2024; E.-

Z. Rui et al., 2024; Shu et al., 2023), i.e., inferring the entire flow field from a few fluid 
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measurements. PIML has also been applied to solve various flow problems (Cheng & 

Zhang, 2021; Rao et al., 2020; Wessels et al., 2020), including compressible fluids (Mao 

et al., 2020), fluids in medicine (Arzani et al., 2021; Sen et al., 2024), turbulence 

(Hanrahan et al., 2023; Patel et al., 2024), free boundary (Y. H. Huang et al., 2023; Lu 

et al., 2024) and Stefan (Wang & Perdikaris, 2021) problems. Some detailed review 

reports on PIML for fluids can be found in (Cai, Mao, et al., 2021a; Sharma et al., 2023). 

Another important application area of PIML is in heat conduction problems (Cai, 

Wang, Wang, et al., 2021a; J. Xu et al., 2023). Unknown thermal boundary conditions 

(Bowman et al., 2023; Cai et al., 2020) and multi-media heat conduction (Laubscher, 

2021; B. Zhang et al., 2022), as well as the reconstruction of temperature fields (Zhao 

et al., 2023) are also popular research issues. 

PIML has also been widely studied and applied in other engineering fields. In 

(Huang & Wang, 2022), the applications of PINNs in PIML in power systems are 

summarized, specifically including state/parameter estimation (Lakshminarayana, 

Sthapit, & Maple, 2022; Ngo et al., 2024; Zhao et al., 2022), dynamic analysis (Misyris 

et al., 2020; Stiasny et al., 2024), power flow calculation (Lei et al., 2020; Nellikkath 

& Chatzivasileiadis, 2022; H.-F. Zhang et al., 2024), optimal power flow (Nellikkath & 

Chatzivasileiadis, 2021), anomaly detection and location (Lakshminarayana, Sthapit, 

Jahangir, et al., 2022). Some examples of applications in weather and climate can also 

be found in (Brecht & Bihlo, 2024; Yao et al., 2023; Y. Zhang et al., 2024).  

From the above review, it can be concluded that PIML makes up for the 
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shortcomings of traditional pure data-driven methods in terms of complexity, 

interpretability, and physical consistency by seamlessly combining prior physical laws 

and advanced machine learning models. PIML can make machine learning predictions 

more accurate in a physical perspective and generalization. In fuzzy boundaries, 

complex equation domains, ill-posed and sparse data problems, PIML shows strong 

learning and representation capabilities compared to pure data-driven methods through 

the enhancement of physical information. On the other hand, compared to pure physical 

solvers, PIML can flexibly use observational data to enhance the learning of uncertain 

factors in physical information (such as the control parameters of the equation), thereby 

avoiding the complex process of determining the exact value of the parameters. In 

addition, for the inverse problem of physical systems, pure physical methods are 

complicated to use iterations to continuously update unknown parameters or equation 

terms. In PIML, this is convenient and straightforward by using machine learning 

algorithms to reversely identify unknown parameters or represent unknown equation 

terms as a ‘black box.’ Moreover, for a fuzzy system, PIML can also combine search 

methods to directly discover unknown physical information from the data (Chen et al., 

2021), which is impossible with traditional pure physical methods.  

2.2 PIML for structural response prediction 

In the previous section, the background knowledge and wide application fields of 

PIML are introduced. This section will shift our focus to the prediction of the dynamic 

response of structural systems.  
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Prediction of structural dynamic response is a key step in the design and research 

of infrastructure because infrastructure is inevitably affected by external dynamic 

forces such as wind, earthquake, and human-caused loads. In order to accurately 

analyze these structural dynamic responses, some traditional numerical methods such 

as FDM and FEM have undergone long-term development. For the forward problems 

of linear well-posed structural systems, these numerical methods can accurately solve 

them by directly solving the differential equations that govern the system vibration. 

However, for nonlinear or ill-posed systems, and inverse problems of the structural 

system, these traditional methods require some improvements or a lot of simulation 

analysis. 

In recent years, the explosive development of machine learning technology has led 

to revolutionary changes in many industries. Researchers in the field of structural 

dynamics have also made a lot of attempts to utilize machine learning methods to solve 

such structural response prediction problems. Classic deep learning models, such as 

DNN models (Kim et al., 2019; Stoffel et al., 2018), CNN models (Oh et al., 2020; Wu 

& Jahanshahi, 2019), and LSTM models (Xue & Ou, 2021; R. Zhang et al., 2019) have 

become popular solutions for predicting responses of nonlinear structural systems. 

However, it should be noted that the essence of the above purely data-driven models is 

to represent the relationship in structural response through a ‘black box’ model. Because 

of this inherent foundation, these models always lack physical interpretability, and the 

model's predictions may be inconsistent with the well-known physics laws. In addition, 
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the performance of such models is highly dependent on the quantity and quality of 

training data. Machine learning models tend to have poor generalization in biased and 

noisy learning data. However, obtaining a large amount of high-quality labeled data 

from nonlinear systems is also a challenging task. 

After the publication of the PINNs research results in (Karniadakis et al., 2021; 

Raissi et al., 2019), researchers found that the PIML method shows promising 

application capabilities for problems involving nonlinear systems. Therefore, in order 

to overcome the reliance of pure data-driven models on labeled data, some researchers 

tried to apply the PIML method to the modeling and analysis of nonlinear structural 

systems. The earliest successful application case is the Phy-LSTM model proposed in 

(R. Zhang et al., 2020b). In this study, a physics-informed multi-LSTM network was 

successfully designed for alternative modeling of nonlinear structural systems under 

data scarcity conditions. In this model, the physical laws of the equations of motion, 

state dependence, and hysteresis constitutive relations are used to construct the physical 

loss of the model. By embedding this physical constraint in the loss function to enhance 

model training, the model can accurately capture the potential nonlinear characteristics 

of the system even with limited available training datasets. 

The main difference between the LSTM model and the ordinary RNN model is its 

special architecture that allows learning long-term temporal dependencies. However, in 

(Eshkevari et al., 2021), the Phy-LSTM model is stated to contain a large space of 

trainable variables, requiring a long training process. This problem is also solved in this 
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research by proposing an RNN architecture that uses neural connections inspired by 

exact numerical differential equation solvers to update the state from the current time 

step to the next step. The model is shown to be able to estimate the dynamics of linear 

and nonlinear multi-degree-of-freedom systems given a ground motion and estimate a 

complete set of responses including displacements, velocities, accelerations, and 

internal forces.  

In (Fangyu Liu et al., 2023), a novel physics-based long short-term memory (PI-

LSTM) network was proposed for structural response modeling by incorporating 

physical constraints into deep learning. The physical constraints were modified to 

accommodate the characteristics of linear and nonlinear structural systems. Two 

numerical experiments demonstrated that the improved PI-LSTM in this study has 

higher accuracy. Then, (Jiang et al., 2024) expanded the application of PI-LSTM to 

predict the nonlinear dynamic response of rotor systems by proposing a dynamic 

response prediction method based on a multi-LSTM network of physical information. 

Specifically, two multi-LSTM network architectures based on physical information 

were introduced here, and the physical laws of motion equations, state dependence, and 

hysteresis constitutive relations were considered to construct physical losses, thereby 

enhancing the physical interpretability of deep learning models. Another study on the 

prediction of the dynamic response of nonlinear systems can be found in (Su et al., 

2024). Inspired by the explicit time domain method (ETDM), this study proposed a new 

PINNs framework based on ETDM, called E-PINN. This model can solve the limitation 
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of the traditional PINN model due to the complexity of the global dynamic evolution 

mechanism of nonlinear systems.  

How to effectively utilize the collected sensor data for modeling and predicting 

structural responses under future disasters remains a challenge. Most existing methods 

focus on extracting structural features (e.g., modal features) from the measured data 

and updating the model, such as model updating based on frequency response functions 

(FRF) (Esfandiari et al., 2009; Gang et al., 2014), Kalman filtering (Astroza et al., 2016; 

Song et al., 2020), and Bayesian inference (Rubio et al., 2018; Sun & Betti, 2015). 

However, these methods require excessive computational effort to update the 

simulation model when the model has high fidelity due to the large number of 

parameters that need to be updated and the limited available sensor data. Although low-

fidelity models are more computationally cost-effective, it is difficult to maintain 

accuracy in the presence of uncertainty, especially for nonlinear response modeling. To 

address this shortcoming, some studies have attempted to couple physical information 

and the collected observational data to predict the response of the structure, especially 

under seismic excitation. The first attempt was the physics-guided convolutional neural 

network (PhyCNN) proposed in (R. Zhang et al., 2020a). PhyCNN is an alternative 

model for structural response prediction by training a deep convolutional neural 

network model based on a small amount of seismic input-output datasets and physical 

constraints. Known physical laws (e.g., governing equations of dynamics) can provide 

additional constraints on the output of the network model, alleviating the over-model 
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fitting problem and reducing the need for large training datasets, thereby improving the 

robustness of the trained model for more reliable predictions. The trained surrogate 

models can then be used to perform fragility analysis given certain limit state criteria. 

In recent years, transformers have become increasingly popular in natural language 

processing and time series data analysis due to their inherent self-attention mechanism, 

which can effectively capture the relationship between any position in the sequence. It 

is shown that transformer models can handle long-distance dependency problems 

without being limited by sequence length. A SeisGPT framework combining physics 

information and a transformer has also been developed in (Meng et al., 2024). This is a 

data-driven, large-scale physics information model that leverages deep neural networks 

based on the Generative Pretrained Transformer (GPT) architecture. The proposed 

SeisGPT is employed to predict the dynamic behavior of building structures under 

seismic forces in real-time. 

In addition, due to the low frequency of extreme events such as earthquakes, it is 

difficult to collect enough training data with real labels. In order to reduce the 

dependence on labeled data and improve model accuracy, (Hu et al., 2023) introduced 

a new framework that combines the powerful learning ability of PINNs with the 

effectiveness of pseudo-labeling in data augmentation to improve the accuracy of 

structural seismic response prediction. (Ni et al., 2022) also used a convolutional NN 

to reconstruct the structural response of rare events under small data sets. This model 

takes acceleration at a limited number of locations as input. The output is the 
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displacement, velocity, and acceleration response at all locations. (Malik et al., 2023) 

proposed a new approach to evaluate the dynamic response of multi-degree-of-freedom 

(MDOF) systems using physics-informed recurrent neural networks. The focus of this 

research is on evaluating the seismic response of nonlinear structures under the limited 

availability of training data.  

The above PIML methods for seismic response prediction all have a basic 

assumption that the equation of motion and mechanical parameters including mass 

matrices 𝑀 and force distribution vector are available. In (Xiong et al., 2024), such a 

type of networks is considered difficult to apply in any real-world structures since the 

premise of availability of those dynamic parameters goes right against the nature of 

system complexity and ambiguity of real-world structures. To address this shortcoming, 

a novel physically informed deep 1D convolutional neural network compiled on top of 

extended state-space fusion (SSM-CNN) is proposed for seismic response modeling in 

this study. In SSM-CNN, an innovative parameter-free physical constraint mechanism 

is designed and embedded to improve performance by constructing differential 

connections of state variables derived from the state-space representation of the initial 

structural response. 

The research scope of PIML has also been expanded in (Shen & Málaga-

Chuquitaype, 2024) to simulate the rocking response of free-standing rigid blocks 

subjected to ground excitation. The proposed framework called PICNN is implemented 

by adding a physics-based component to a data-driven CNN to achieve a more accurate 
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estimation of the rocking response histories of ideally rigid blocks in a hybrid data-

driven way.  

In addition to discretized multi-DOF systems, the application of PIML in structural 

mechanics has also been extended to truss systems or continuum systems such as beams. 

An example of using PIML to study nonlinear trusses is shown in (Mai et al., 2023). 

For complex beam systems, (Kapoor et al., 2023) proposed a new framework using 

PINNs to simulate complex structural systems consisting of single and double Euler–

Bernoulli or Timoshenko beams connected with Winkler foundations. The results 

showed that PINNs are a promising strategy for solving structural engineering and 

machine problems involving beam systems. The nonlinear bending of porous beams 

has also been studied in (Bazmara et al., 2023; Fallah & Aghdam, 2024). (Trinh et al., 

2024) proposed a PINNs analysis model for functionally graded thin-walled beams with 

bi-symmetrical I-shaped and channel sections. To this end, an energy-based PINN 

method was used to determine the vertical displacement and torsion angle of the beam. 

Prediction of early time-dependent behavior of prestressed concrete beams has also 

been learned using PIML in (Park & Hwang, 2023). Specifically, this study proposed a 

PINN model to learn the time-dependent coupling between the effective prestress and 

several factors that affect the time-dependent behavior of beams, such as concrete creep 

and shrinkage, tendon relaxation, and changes in concrete elastic modulus.  

In addition to seismic response prediction, wind-induced structural vibration is 

also an important research area in the forward problem of structural dynamics. (Li & 



 

29 

 

Zhang, 2022) implemented a hybrid approach to simulate the vibration of wind turbines. 

Specifically, the structural characteristics and linearized representation of the wind 

turbine system were used as physical constraints and applied to the recently proposed 

deep residual recurrent neural network (DR-RNN) to form a physics-informed deep 

learning model. (Tsai & Alipour, 2023) proposed a method to simulate wind-induced 

structural response with less training cost. In the proposed method, field monitoring 

data under conventional wind load conditions were used to train an LSTM network. 

However, by coupling physical information, the trained LSTM network can predict the 

wind-induced response under high and extreme wind conditions observed during 

structural monitoring. 

For PIML to predict the dynamic response of structures, how to apply loads to the 

simulated structure is a complex issue, especially for non-uniformly distributed loads 

such as concentrated loads. This problem has been solved in recent studies. The first 

approach proposed in (Y. Li et al., 2024) was designed to use the partial response of the 

structure to estimate the arbitrarily distributed load as an equivalent load. Subsequently, 

the structural response was reconstructed using the finite element model. The modeling 

and analysis of moving loads was studied in (Liang et al., 2024). Here, the PINNs 

method is combined with the Fourier transform to solve partial differential equations in 

the frequency domain, thereby alleviating the spectral bias problem of neural networks 

when simulating multi-frequency functions. 

From the above review, it is known that, for the prediction of structural dynamic 
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response, PIML focuses more on problems that are difficult to solve by numerical 

methods. The first is the modeling problem of nonlinear structural systems (Su et al., 

2024; R. Zhang et al., 2020b). In the published studies, measured data is often employed 

to enhance the model representation of structural nonlinearity. The second study on 

PIML is the problem of inaccurate dynamic equations and mechanical parameters of 

the structure. In this problem, some nonparametric or weak physical information is 

integrated into the model training to enhance the model's learning even for sparse and 

noisy observation data. In both types of problems, the PIML methods demonstrate an 

outstanding ability to seamlessly couple physical information and training data to 

accurately predict the dynamic response of the structure. 

However, some difficulties still exist in the current PIML method, especially 

PINNs, for predicting the dynamic response of structures, such as spectral bias in 

learning models, complex boundary condition representation, and hard boundary 

constraints. Some attempts have also been observed to address the spectral bias problem 

by applying frequency domain concepts (Liang et al., 2024) to PINNs. Another 

difficulty lies in the acquisition of training data. In the research results reported above, 

most PIML models are supervised machine learning models, which rely on high-quality 

training data to improve the results of their models. However, in structural systems, 

high-quality observational data may be difficult to obtain, especially in the design and 

analysis stage of the structure. Theoretically, the PINNs framework has been proven to 

accurately solve nonlinear governing equations without relying on any labeled data. 
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This property has not yet been well developed in structural response prediction. 

Therefore, using the PIML method to forwardly establish a metamodel of 

linear/nonlinear structural systems to predict structural response without any 

observational data is still a promising research area. 

2.3 PIML for structural health monitoring 

With the popularity of various sensors applied to structures, data for structural 

health monitoring has become increasingly abundant, which provides a natural way for 

researchers to turn to the development of data-driven models. In fact, in the field of 

structural health monitoring, the use of data-driven methods such as machine learning 

models to explore the potential information in monitoring data has become very popular. 

Some early publications on the overview of machine learning models for structural 

health monitoring can be found in (Bao & Li, 2021; Worden & Manson, 2007; Yuan et 

al., 2020). Among these machine learning models, neural networks (Dadras Eslamlou 

& Huang, 2022), Gaussian processes (Teimouri et al., 2017), and support vector 

machines (Çevik et al., 2015; Zhou et al., 2021) have been widely used in solving 

classification and regression problems in structural diagnosis. These methods can 

directly learn the complex underlying relationships with structural damage from data, 

without the need for theoretical analysis of these structural systems. However, these 

methods are well-known ‘black box’ models, which reflect that their internal principles 

are unknowable, and their prediction results do not have clear physical meanings.  

In addition, ‘white’ box models, which are completely built on known physical 
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laws, are also used to detect the damaged state of structures. In white-box modeling, 

the mechanical characteristics of a structure are simulated by building an abstract model 

of the structure (Gharehbaghi et al., 2022). Essentially, the actual structure is replaced 

by an idealized model that connects the input and output of the structure. Researchers 

have developed many methods for modeling, such as the finite element method 

(Haidarpour & Kong, 2020), the finite difference method (Lin & Yuan, 2005) and the 

spectral method (Kudela et al., 2020). The most typical application is to detect damage 

by updating the finite element model (Alkayem et al., 2018). During this process, the 

parameters and properties of the model are iteratively adjusted to simulate the damage 

on the structure. By using optimization methods to minimize the output of the model 

and the measured response of the structure, the model can be adjusted to be close to the 

actual state of the structure to detect the damage of the structure. Finite element model 

updating is a mature method that has been developed for many years. Some 

representative studies can be found in (Cheng et al., 2018; Giagopoulos et al., 2019; 

Schommer et al., 2017). However, there are some difficulties in deriving the damage of 

structures from the perspective of a ‘white box,’ i.e., from the perspective of motion 

equations and constitutive relations. The first is the input of the structure, i.e., the 

external force, which is difficult to measure accurately in actual engineering (Prawin & 

Rao, 2018). For example, for a high-rise building in operation, wind loads, machine 

operation, and human-caused loads affect its structural response all the time. Accurately 

measuring these extensive and chaotic loads is an impossible task. Another limitation 
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of physical models is the immeasurability of structural parameters and structural 

properties. Physical models are usually based on some assumptions, such as structural 

linearization and mass concentration, which are usually inconsistent with the 

nonlinearity and complexity of the actual structure. In addition, the parameters of the 

structure, which deeply affect the mechanical characteristics of the structure, may also 

change with time and external forces.  

In recent years, some research on physics-based machine learning methods has 

been conducted to solve some problems in structural health monitoring. The goal of 

these studies is to combine the flexibility and power of state-of-the-art machine learning 

techniques with more structured and insightful physical models based on expertise in 

structural mechanics. These methods that share physics-based components and data-

driven components are called gray-box models. Although the gray-box model is a long-

standing method in the field of structural health monitoring, its early concept is called 

a hybrid model. After PIML was proposed, as a framework that seamlessly combines 

the prior physical laws described by the governing equations and various advanced 

machine learning algorithms, it immediately received widespread attention in the field 

of structural health monitoring. 

Data acquisition of structural response observations is usually the first step in 

SHM. PIML has been applied in the acquisition and analysis of response data, 

especially for compressed sensing and data reconstruction. Compressed sensing and 

data reconstruction are advanced techniques that are usually used to reconstruct and 
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recover the original signal using a small amount of measured data. In (Russell & Wang, 

2022), a novel compressed sensing scheme is proposed to integrate SHM domain 

knowledge such as frequency and mode by combining deep convolutional autoencoders 

(DCAE) with the physical information of local structure. In addition, fault division 

autoencoder multiplexing (FDAM) is proposed to mitigate the negative impact of 

multiple disjoint operating conditions on reconstruction fidelity. The results in two case 

studies show that physics-based DCAE compression shows superiority over popular 

data compression methods such as compressed sensing, principal component analysis 

(PCA), discrete cosine transform (DCT), and DCAE with standard loss functions. 

FDAM is shown to further improve the data reconstruction quality. Another technique 

to reconstruct the global responses of structures from local measurements is presented 

in (Lai et al., 2020). Here, a novel framework called physically informed sparse 

identification is proposed for full-field structural vibration tracking and analysis. The 

framework exploits sparse identification to assimilate the underlying structural 

dynamics in the assembly of a library matrix for characterizing the dynamics of the 

system. The global vibration of the structure can be approximated by a continuously 

expressed analytical function in a full-field manner, rather than being measured point 

by point as with conventional sensors. 

In actual engineering, the external loads on a structural system are usually difficult 

to measure accurately. This is a more feasible path to inversely reconstruct the external 

loads on the structure by measuring the vibration response of the structure with some 
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reconstruction algorithms. The application of PIML in structural load reconstruction 

has also been studied. In (Liu et al., 2024), a PINNs framework was proposed to 

integrate the underlying modal transformation equations into the loss function of a fully 

connected neural network, which can effectively invert the uncertain modal responses. 

This method can use the predicted modal displacement/acceleration responses to 

identify modal loads, showing the advantages of low data requirements and high 

prediction performance. (M. Zhang et al., 2024) proposed a novel physically-informed 

deep learning (PIDL) framework, which consists of a data-driven convolutional neural 

network for structural excitation identification and a physically-informed variational 

autoencoder for explicit time-domain (ETD) vibration analysis, where the unit impulse 

response (UIR) signal of the measured structure is generated. This framework 

successfully combines a deep generative network with structural dynamics knowledge 

and is demonstrated in accurately identifying external excitation signals and underlying 

physical parameters under different damage modes. A case study of using the PIML 

method to identify external forces in actual engineering is presented in (Guo & Fang, 

2024). In this study, the working mechanism of the autoencoder is first combined with 

the unique characteristics of the FRF to give a cross-signature assurance criterion. This 

criterion is then integrated into the loss function of PIML as a constraint to address the 

poor interpretability of pure data-driven methods in solving engineering problems. 

Following this paradigm, a physical information autoencoder (PIAE) network is used 

to reduce the dimensionality of FRF data when extracting key features. The reduced-
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order FRF data is paired with cable forces to form training samples, and the PIAE 

network is directly trained on these samples for cable force identification. Finally, the 

proposed method is verified on actual monitoring data of a cable-stayed bridge and a 

steel tube concrete arch bridge.  

There are two main approaches to using PIML for structural damage identification. 

The first approach to structural damage identification is to directly solve the structural 

mechanics parameters using an approach similar to solving the inverse problem of 

partial differential equations. This approach is applied in (Haywood-Alexander & 

Chatzi, 2024) and (R. Zhang et al., 2024). The former used PINNs as constraint learners 

for system identification and response prediction. PINNs successfully discover the 

control parameters of the system by leveraging their applicability to complex boundary 

conditions, external forces, and governing equations and their ability to learn true data 

estimates from sparse data. The latter developed a physically informed parallel neural 

network (PIPNN) framework, which embeds the system's governing PDE and the 

associated continuity and equilibrium conditions as soft constraints into the neural 

network loss function. PIPNN learns to approximate the PDE and unknown structural 

parameters by minimizing the physically informed loss function. In the context of 

continuous systems, PIPNN successfully estimates the unknown structural parameters, 

which are then used to estimate the complete state of the system. Such system parameter 

identification methods can also be applied in complex structural systems with multi-

physics damping models. In (Liu & Meidani, 2023), a novel physics-informed neural 



 

37 

 

network method for nonlinear structural system identification, called PIDynNet, is 

proposed and is demonstrated in multi-physics situations where the damping term is 

controlled by separate dynamic equations. This method improves the estimation of 

nonlinear structural system parameters by integrating auxiliary physical loss terms.  

The second PIML method for structural damage identification incorporates 

traditional finite element model updating techniques, which use physical information 

and observation data to guide the rapid update of the finite element model. A typical 

attempt is shown in (Zhang & Sun, 2021). Here, physics-guided machine learning is 

implemented through PINNs, and the original modal attribute-based features are 

extended with the damage identification results of the finite element model update. A 

physics-based loss function is designed to evaluate the difference between the output 

of the neural network model and the output of the finite element model update. The 

proposed PIML method successfully combines the advantages of physics-guided 

machine learning with data-driven and physics-based structural health monitoring 

methods, which can improve damage identification performance. 

In terms of specific engineering application cases, PIML frameworks have been 

developed for damage detection of various structures, including MDOF systems, beams, 

plates, bearings, and complex nonlinear structures. The typical PIML framework for 

MDOF systems includes a fully nonlinear spring MDOF damage identification 

algorithm based on PINNs proposed by (Yamaguchi & Mizutani, 2024). This algorithm 

was also applied to an engineering case of a bridge pier to quantitatively evaluate 
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different types of local damage on the pier. Another example of an MDOF system is a 

direct physical information neural network (DPINN) proposed by (Mai et al., 2023) for 

analyzing the stability of truss structures.  

For beam systems, (Yuan et al., 2020) present the results of dynamic modeling of 

beam structures using physics-based artificial neural networks. This study addresses the 

problem of damage identification of beams based on solving the forward and inverse 

problems of partial differential equations. By comparison, it is found that the proposed 

physics-informed approach significantly outperforms the purely data-driven approach 

and avoids overfitting.  (Dat et al., 2023) applied PINNs to solve an inverse problem 

to identify the dynamic structural parameters of a prestressed concrete beam bridge 

built 40 years ago. The model input data are acceleration data measured by three sensors 

under vehicle loads in two states (i.e., before and after external prestressing cable 

reinforcement), combined with the PDE of beam bending and boundary conditions to 

minimize the loss function. The modal properties obtained from the PDE with the 

parameters identified by PINN were compared with the modal properties 

experimentally identified by the eigensystem realization algorithm (ERA) technique. In 

(Tondo et al., 2023), a physically informed GP model for the Timoshenko beam element 

is proposed. The model is constructed as a multi-output GP whose covariance and cross-

covariance kernels are analytically derived based on differential equations for 

deflections, rotations, strains, bending moments, shear forces, and applied loads. 

Stiffness identification is performed in a Bayesian format by maximizing the posterior 
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model via a Markov chain Monte Carlo method, resulting in a stochastic model of the 

structural parameters. 

For damage detection of plate structures, PIML methods are mainly studied from 

the perspective of wave propagation. The Kirchhoff–Love plate theory, which describes 

the physical laws of pressure and displacement in thin-walled plates, is usually 

integrated into PIML as physical information for damage detection of plate structures. 

A classic example is presented in (Zhou & Xu, 2024). This study proposes a baseline-

free plate structure damage identification method using PINNs. By combining the 

Kirchhoff–Love plate theory with PINNs, the local anomalies caused by damage in the 

bending guided wave field of a damaged thin plate can be isolated and enhanced. The 

implementation of multiple boundary conditions of the Kirchhoff–Love plate is critical 

to correctly predict the structural response of the plate. How to improve the 

performance of PINNs in enforcing the boundary conditions of the plate and using 

sensor data at limited locations to capture the overall physical characteristics of the 

system is studied in (Al-Adly & Kripakaran, 2024). Another study using PIML to 

reconstruct the wave field in a plate-like structure is presented in (Zargar & Yuan, 2024). 

In this study, a physics-based deep learning framework is proposed to reconstruct the 

complete scattered spatiotemporal Lamb wave field in a plate-like structure from a set 

of sparse time-series sensor data. This reconstructed scattered wave field contains a 

wealth of information about the wave propagation phenomena, including any 

interactions between the propagating waves and structural damage. In addition to wave 
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fields for detecting structural damage, heat transfer is another research direction to 

detect damage in plates. This direction was studied in (Kulkarni & Sabato, 2024), by 

proposing a novel physically-informed variational autoencoder (PI-VAE) network for 

extending sparse temperature measurements to a full-field representation while 

detecting damage. The effectiveness of the proposed PI-VAE network was evaluated 

through analytical and experimental studies on metal plates under thermal excitation 

with various sizes and types of embedded defects. In an analytical study using finite 

element model data, PI-VAE accurately extended the full-field temperature distribution 

and identified the sizes of cracks, spalling, and hole-like defects. 

PIML technology has also been used in damage detection of other engineering 

structures. Two application cases on bearing damage detection were reported in (Shen 

et al., 2021) and (Ni et al., 2023). In these two studies, physical information was fused 

with deep CNN and residual networks to automatically extract high-level features 

related to damage from the observed data of the bearing. These features were fully 

utilized to predict the health level of the bearing. Concrete structures are also a research 

object of interest in PIML. (Miele et al., 2023) and (Xu & Noh, 2021) studied damage 

monitoring of concrete structures from local and global perspectives, respectively. The 

former used the performance of several PIML models trained with different amounts of 

low-fidelity and high-fidelity data, which used nonlinear dynamics-based diagnostic 

techniques to locate hidden cracks in concrete structures. The latter introduced a new 

framework, namely, the physically informed multi-source domain adversarial network 
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(PhyMDAN), for transferring models learned from other buildings to diagnose 

structural damage states in target buildings without any labels. Damage detection of an 

offshore wind turbine structure was also reported in (Fushun Liu et al., 2023). Here, 

numerical simulations and field data were exploited to quickly and accurately solve the 

eigensystem governed by differential equations through recurrent neural networks. The 

results show that the proposed framework can adaptively identify modal parameters 

with higher computational efficiency than traditional methods, which can be used for 

intelligent monitoring and maintenance of engineering structures.  

After several years of exploration, the PIML method for structural damage 

detection has been used in multiple engineering fields as shown above. Some phased 

summary and review studies have also been published. (Cross et al., 2022) provide an 

overview of various new approaches to PIML for grey-box modeling in a Bayesian 

context. The main machine learning tool discussed in this study is Gaussian process 

regression, and how to incorporate physical assumptions/models via constraints, mean 

functions, and kernel design, and finally in a state-space setting is stated here. A recent 

review report is (Wu et al., 2024). This study provides a comprehensive overview of 

PIML techniques in the context of condition monitoring, with a detailed examination 

of methods that integrate known physical principles into machine learning frameworks 

and their applicability to specific monitoring tasks. The unique advantages and 

limitations of each approach to incorporating physics into data-driven models are also 

detailed here, taking into account factors such as computational efficiency, model 
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interpretability, and generalizability to different systems in condition monitoring and 

fault detection. 

In summary, PIML can couple data-driven techniques with a priori high-

confidence physical information, which has obvious advantages in dealing with SHM 

tasks. In various mathematical and engineering problems, PIML methods have 

demonstrated powerful inverse problem-solving capabilities, which are very suitable 

for SHM problems such as the inverse discovery of system states from observations. 

For continuous structures such as beams and plates and nonlinear systems, PIML also 

shows a promising prospect. 

2.4 Summary 

Due to the limited scope of information search, it is difficult to review all the 

published research related to PIML. The author can only describe the research on 

structural response prediction and structural health monitoring of PIML as detailed as 

possible, from which we can get a glimpse of the current research status. As stated in 

many published research results, PIML has demonstrated desirable capabilities in 

various engineering and research problems, especially those involving differential 

equations. Many proposed PIML frameworks also demonstrate their flexibility to 

develop targeted PIML frameworks for certain specific tasks.  

However, behind these successful cases, there are still some problems that have 

been found in PIML research that need further study. For structural response prediction, 

how to solve the spectral bias and hard implementation of boundary conditions in PIML 
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is still an open question, which will be solved in this study. In addition, how to fully 

expand the unsupervised learning capabilities of PIML that do not rely on any labeled 

data in structural response prediction will also be explored in subsequent studies. For 

the problem of structural health monitoring, the scarcity and imbalance of training data 

are also constraints on the further application of machine learning methods in this field. 

Although the damage of nonlinear structures has been explored in some studies, it is 

still a difficult problem due to its inherent complexity. These issues will be analyzed in 

the following sections as the focus of this study.  
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Chapter 3 Structural dynamics learner framework for 

dynamic response prediction of structural systems 

3.1 Introduction 

Structural dynamics plays a vital role in modern engineering, especially in the 

design and maintenance of buildings, bridges, and other infrastructures. Accurately 

predicting the response of a structure under different dynamic loads not only helps to 

optimize the design but also effectively improves the safety and durability of the 

structure. Traditional structural dynamics analysis methods, such as the finite element 

method (Genikomsou & Polak, 2015) and modal analysis (Peeters & Ventura, 2003), 

are widely used to predict the dynamic response of structures in many applications, but 

they are computationally expensive and have limited adaptability to complex nonlinear 

behaviors. In addition, numerical methods based on numerical integration also face the 

problem of stiffness (Zhang, 2020) in structural dynamics equations, i.e., when solving 

the dynamic response of certain structures, the solver relies on very short time steps to 

maintain the stability of the solution. This not only increases the calculation time but 

also may lead to high demand for computing resources, limiting the scope of application 

of these methods in practical applications. 

With the rapid development of machine learning, data-driven methods have 

gradually attracted attention in structural dynamic response prediction. For the task of 

structural response prediction, popular machine learning methods include Bayesian 
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models (Gardner et al., 2020), support vector machines (Dong et al., 2008), and deep 

neural networks (Stoffel et al., 2020). These methods can learn the dynamic behavior 

of structures from large amounts of data and offer greater flexibility as they do not rely 

on idealized model assumptions. However, a significant drawback of this type of 

approach is the reliance on large amounts of labeled data, especially when training deep 

learning models (Cunha et al., 2023). Obtaining sufficient high-quality labeled data is 

often time-consuming and costly, which limits the effectiveness and scalability of these 

methods in some practical applications. 

Due to the difficulties faced by the above numerical methods and data-driven 

methods, an emerging machine learning framework called PINNs (Raissi et al., 2019) 

has been introduced into the prediction of structural dynamic response. By utilizing 

known physical information, such as partial differential equations, as prior information 

to train neural network models, PINNs thus significantly reduce the reliance on large 

amounts of labeled data in traditional machine learning methods, and the prediction of 

the model will inherently obey the constraints of the physical governing equations. This 

outstanding capability has enabled PINNs to find widespread applications across 

various research and engineering fields, such as in fluid mechanics (E. Z. Rui et al., 

2023; E. Z. Rui et al., 2024; Sharma et al., 2023), heat transfer (Cai, Wang, Wang, et 

al., 2021b; He et al., 2021; Zobeiry & Humfeld, 2021), solid mechanics (Abueidda et 

al., 2021; Haghighat et al., 2021), structural dynamics (Jeong et al., 2023; Fangyu Liu 

et al., 2023; Liu & Meidani, 2023; Preetha Hareendran & Alipour, 2022; Tsai & Alipour, 
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2023) and medical diagnosis (Kissas et al., 2020; Sarabian et al., 2022).  

Although PINNs have achieved positive results in many fields, there are still some 

defects in their practical application in structural dynamics. For example, the spectral 

bias problem (Farhani et al., 2022; Wang et al., 2021) leads to a decrease in the 

prediction accuracy of the model at different frequencies, affecting the overall response 

accuracy. In addition, the ‘soft’ embedding of constraints (Cao et al., 2023; Lu, 

Pestourie, et al., 2021a) limits the application of the model under complex boundary 

conditions and cannot effectively capture the real physical behavior. Finally, the multi-

loss function balance problem (Bai et al., 2023; E. Z. Rui et al., 2023; Xiang et al., 2022) 

makes it difficult to optimize multiple objectives simultaneously during training, 

resulting in the uneven performance of the model on different response characteristics. 

To address these issues, this study proposes a novel framework called the structural 

dynamics learner (SDL) that combines recurrent convolutional neural networks (RCNN) 

and physical information to accurately predict the dynamic response of structural 

systems. This framework is not intended to surpass the well-established numerical 

analysis methods in structural dynamics but rather aims to overcome the limitations of 

existing PINNs by effectively integrating physical knowledge and advanced machine 

learning models. This method can also serve as an alternative to solving structural 

dynamics problems involving stiff equations. Specifically, a recurrent framework is 

established in SDL to predict the dynamic response sequence of the structural system 

at discrete time steps. In each recurrent block of the recurrent framework, a CNN model 
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is employed to predict the structural state at the next step from the current hidden state 

(displacement and velocity) of the structural system and the external force input. The 

implicit scheme of the governing equations of structural vibration is integrated as a 

priori physical information to train the CNN model in each recurrent block. Benefiting 

from physical information, SDL is an unsupervised learning model that does not rely 

on any labeled data for training. After ‘hard’-embedded constraints, the prediction of 

the CNN model is output as the predicted dynamic response of the structure. 

The main contributions of this study can be summarized as: (1) A novel physics-

informed recurrent convolutional neural network framework is proposed to predict 

linear/nonlinear structural dynamic responses based on the Crank-Nicolson scheme of 

motion equations. The key component of this framework is the CNN-based recurrent 

block, which is designed to capture the nonlinearities in the structural response. (2) The 

utilization of recurrent blocks gives the SDL framework a memory mechanism, where 

the CNN model parameters optimized in the previous time step can be used as the initial 

settings for the next time step. In this way, the convergence speed of the model is greatly 

improved, allowing the proposed model to fast and accurately infer structural response 

sequences. (3) The loss function is completely derived from the physical governing 

equations, thus avoiding the problem of balanced convergence of multiple loss 

functions. In addition, the model training can be performed without relying on any 

labeled training data, making the proposed model an unsupervised machine learning 

model and avoiding expensive data collection and data-induced errors. The loss 
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function is constructed based on the Crank-Nicolson scheme of the motion equation, 

which is an implicit numerical integration scheme, thus providing excellent solution 

stability from a mathematical principle. (4) The embedding of initial and boundary 

conditions is carefully designed into the framework to ensure that the prediction results 

of the SDL model rigidly meet the constraints, which also avoids the model prediction 

error on the constraints. Numerical outcomes demonstrate the superiority of the SDL 

framework in terms of mathematical rationality and solution stability and accuracy 

compared to vanilla PINNs solvers. 

The rest of the study is organized as follows. Section 2 outlines the problem of 

structural dynamic response prediction. The details of the proposed SDL framework are 

demonstrated in Section 3. In Section 4, the effectiveness and advantages of the 

proposed SDL framework are verified through several numerical cases. Section 5 

summarizes the research results and conclusions. 

3.2 Problem statement 

Consider a 𝑑 -degree-of-freedom structural system subjected to an external 

dynamic force 𝐹(𝑡) . The vibration of the structural system follows the governing 

equation. 

𝑀𝑢̈(𝑡) +  𝐶𝑢̇(𝑡) +  𝐾𝑢(𝑡) + 𝑓(𝑢, 𝑢̇) =  𝐹(𝑡)                  (3.1) 

Here, M is the 𝑑-dimensional system mass matrix. C is the system damping matrix and 

K is the stiffness matrix. 𝑢, 𝑢̇, 𝑢̈ are the system displacement, velocity, and acceleration 

vectors, respectively. 𝑓(𝑢, 𝑢̇)  is a nonlinear term, usually representing a nonlinear 
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restoring force or nonlinear damping, which depends on system displacement 𝑢 and 

velocity 𝑢̇. 𝐹(𝑡) is the external force acting on the system.  

The general task of dynamic response prediction of structural systems is to 

calculate the structural response [𝑢(𝑡), 𝑢̇(𝑡), 𝑢̈(𝑡)] under various dynamic loads 𝐹(𝑡). 

The structural system can be linear or nonlinear, depending on the existence of the 

nonlinear term 𝑓(𝑢, 𝑢̇) in Eq. (3.1). This study is limited to the forward problem of 

the structural system, i.e., to solve the governing equation in the space-time domain 

mainly by analyzing the physical dynamics forward under the condition that the system 

parameters 𝑀, 𝐶, and 𝐾 are determined. In this study, the entire domain is discretized 

while considering mainly the regular physical domains, where the time domain is 

discretized into uniform time steps and the space domain is discretized into multiple 

degrees of freedom. 

3.3 Methodology 

In this section, a physics-informed machine learning framework based on RCNN 

is proposed for learning the governing equations of structural systems in the 

spatiotemporal domain. Previous studies have shown that CNN models are more 

convenient and efficient than fully connected neural networks (FCNN) in solving time-

dependent differential problems (Qu et al., 2022). The primary goal of this study is not 

to prove that the proposed model outperforms traditional numerical methods, but rather 

to offer new perspectives and alternatives for simulating structural systems that balance 

time efficiency with desirable accuracy. The mathematical concepts, network 
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architecture, and implementation details of the proposed model are discussed in this 

section.  

3.3.1 Crank-Nicolson scheme of motion equation 

The Crank-Nicolson method is a finite difference method based on the trapezoidal 

rule, commonly used to numerically solve the heat equation and partial differential 

equations (Frei & Singh, 2024; Liu & Hao, 2022). It is a second-order implicit method 

in time and has proven to be A-stable, which can overcome the effects of equation 

stiffness and adapt to large time step sizes (Qu & Liang, 2017). For an ordinary 

differential equation 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦)                           (3.2) 

The Crank-Nicolson method can discretize this equation in the time domain and 

recursively solve the equation from the initial value as 

𝑦𝑛+1 = 𝑦𝑛 +
∆𝑡

2
∙ (𝑓(𝑡𝑛, 𝑦𝑛) + 𝑓(𝑡𝑛+1, 𝑦𝑛+1))            (3.3) 

Here, the right side of Eq. (3.3) is also dependent on 𝑦𝑛+1, which shows that the Crank-

Nicolson method is implicit where a system of algebraic equations must be solved to 

obtain the next value 𝑦𝑛+1 at each time step. If the ordinary differential equation is 

nonlinear, the discretized algebraic equation is also nonlinear. 

To apply the Crank-Nicolson scheme to the motion equation of Eq. (3.1), a system 

state 𝑧 is first defined as 𝑧 = [𝑢, 𝑢̇]𝑇 in the state space. Then, the motion equation 

can be written in the form of a first-order differential equation as 

𝑧̇ = 𝐾∗ ∙ 𝑧 + 𝐵∗ ∙ (𝐹(𝑡) − 𝑓(𝑧)) = 𝑔(𝑡, 𝑧, 𝐹(𝑡), 𝑓(𝑧))       (3.4) 
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where, 𝐾∗ = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
]  and 𝐵∗ = [0,𝑀−1]𝑇 . 𝑔  is a function referring to the 

entire right terms, which depends on 𝑡, 𝑧, 𝐹(𝑡) and 𝑓(𝑧). Using the Crank-Nicolson 

method in Eq. (3.3), Eq. (3.4) can be discretized as 

𝑧𝑛+1 = 𝑧𝑛 +
∆𝑡

2
∙ [𝑔(𝑡𝑛, 𝑧𝑛, 𝐹(𝑡𝑛), 𝑓(𝑧𝑛)) + 𝑔(𝑡𝑛+1, 𝑧𝑛+1, 𝐹(𝑡𝑛+1), 𝑓(𝑧𝑛+1))]   (3.5) 

Here, the prediction of the system state 𝑧𝑛+1 is implicit, which depends not only on 

the current structural state 𝑧𝑛 and 𝐹(𝑡𝑛), but also on the next system state 𝑧𝑛+1 and 

external force 𝐹(𝑡𝑛+1)  at time step 𝑛 + 1 . The comparison between the implicit 

numerical scheme and the explicit scheme is shown in Fig. 3.1. In explicit scheme 

methods, such as the Euler forward method and the explicit Runge-Kutta method, the 

system state 𝑧𝑛+1  is predicted using 𝑧𝑛  and 𝐹(𝑡𝑛)  at the current time step with 

simple forward calculation. In the implicit scheme, the information of 𝐹(𝑡𝑛+1)  and 

𝑧𝑛+1 is also required to predict the structural response. In traditional implicit numerical 

methods, iterative calculations are relied upon to make the value of 𝑧𝑛+1 converge to 

the exact value. In this study, machine learning architecture is employed to predict 𝑧𝑛+1. 

The details of the architecture will be described in the next section. 

 
Figure 3.1 The comparison between the explicit scheme and implicit scheme 
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3.3.2 Neural network architecture of SDL 

In this section, the architecture of the proposed SDL framework is outlined. From 

the perspective of architectural form, SDL is a type of recurrent neural network, which 

is composed of a series of CNNs based on a recurrent architecture. The architecture 

diagram is shown in Fig. 3.2, which demonstrates that the SDL framework is composed 

of a series of recurrent blocks. The overall input of the SDL framework is the initial 

system state 𝑧0 and the external force series 𝐹(𝑡), and outputs the system state series 

𝑍(𝑡) of time steps. 

 
Figure 3.2 Neural network architecture of the SDL framework.  

As shown in Fig. 3.2, at each time step, a recurrent block is built to update the 

hidden state ℎ and predict the structural response 𝑧. The hidden state ℎ is defined as 

ℎ = [𝑢, 𝑢̇]𝑇 , which is employed to pass the system state information to the next 

recurrent block. The first recurrent block takes hidden state ℎ0 set to the initial system 

state 𝑧0  and the external force (𝐹0,  𝐹1)  as input to infer new hidden states ℎ1  and 

output the predicted system state 𝑧1 =  [𝑢1, 𝑢̇1]
𝑇 . In the 𝑛 -th recurrent block, the 

hidden state ℎ𝑛−1  from the former step serves as the hidden state together with the 
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external force (𝐹𝑛−1, 𝐹𝑛) as the recurrent block input. The outputs of all 𝑁 recurrent 

blocks are combined into the system state time series 𝑍 = [𝑧0, 𝑧1, 𝑧2, ⋯ , 𝑧𝑁]  as the 

output of the entire SDL model.  

 

Figure 3.3 The CNN model in SDL framework 

In each recurrent block, a CNN model as shown in Fig. 3.3 is utilized to update 

the hidden state. The input of the model is [𝑢𝑛−1, 𝑢̇𝑛−1, 𝐹𝑛−1, 𝐹𝑛]
𝑇with a size of (4, 𝑑). 

After normalization by the hyperbolic tangent function, a convolution layer is utilized 

to perform convolution calculations on the input data. There are two convolution 

kernels in the convolution layer to reduce the input 4-dimensional data to two 

dimensions. The size of the convolution kernels is 3 × 3, the stride and padding are 

one. These two convolution kernels are used to extract the feature information related 

to the structural response 𝑢 and 𝑢̇ respectively. Then, the extracted features of the 

two convolution kernels are passed into an FCNN model separately. FCNN models 

have 𝐿 hidden layers, each containing 𝐻 neurons. The hyperbolic tangent function 
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serves as the activation function to provide a nonlinear representation ability. The input 

and output sizes of the FCNN models are both (1, 𝑑). Then, the outputs from FCNN 

models are merged into an output 𝑂𝐶𝑁𝑁 of size (2, 𝑑), which is also the output of the 

whole CNN model. The trainable parameters of the CNN model include the weights 

and biases of the convolutional layer and the fully connected layers. The model 

hyperparameters include the number of fully connected hidden layers 𝐿  and the 

number of neurons 𝐻. Here, the pooling layer in the traditional CNN model is not used 

as the pooling operation can filter out the feature information of some degrees of 

freedom in the input data. 

In order to make the output of the CNN model rigidly meet the boundary condition 

constraints, a ‘hard’ embedding operation Ω of the boundary conditions is performed 

on the CNN model output 𝑂𝐶𝑁𝑁 . For multi-DOF systems, boundary conditions are 

usually imposed by setting 𝑢  or 𝑢̇  to specific values, for example, 𝑢  and 𝑢̇  of 

nodes on the fixed boundary are constrained to zero. To achieve such a ‘hard’ 

embedding of boundary conditions, the output 𝑂𝐶𝑁𝑁 of the CNN model is processed 

as 

ℎ𝑝𝑟𝑒𝑑 = 𝑀𝑘 ∘ 𝑂𝐶𝑁𝑁 + 𝑉                   (3.6)  

Here, ℎ𝑝𝑟𝑒𝑑 is the predicted hidden state of the recurrent block, and 𝑀𝑘 is a Boolean 

mask matrix of size (2, 𝑑) . The 𝑀𝑘  matrix controls where the 𝑂𝐶𝑁𝑁  matrix is 

constrained by setting the values of the constrained positions are zero and unconstrained 

positions are one. Operator ∘ is the Hadamard product which returns a matrix of the 
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multiplied corresponding elements. 𝑉  is a value matrix of size  (2, 𝑑) , where the 

values of the unconstrained positions are zero, and the values of the constrained 

positions are set according to the boundary conditions. In this way, the predicted hidden 

state ℎ𝑝𝑟𝑒𝑑 is forced to rigidly couple the boundary conditions.  

3.3.3 Loss function and model training 

To train the SDL model, a loss function needs to be constructed to update the 

weights and biases in the CNN model. Different from traditional supervised learning, 

which relies on labeled data of input-output pairs to train the model, inspired by PINNs, 

an unsupervised model training that integrates physical information as prior 

information is utilized in this study. According to the Crank-Nicolson scheme of motion 

equation in Eq. (3.5), a loss function of the 𝑛-th recurrent block is constructed as 

𝑙𝑜𝑠𝑠𝑛 = ‖𝑟𝑒𝑠𝑛‖2
2                         (3.7) 

𝑟𝑒𝑠𝑛 = ℎ𝑛
𝑝𝑟𝑒𝑑

− ℎ𝑛−1 −
∆𝑡

2
∙ [𝑔(𝑡𝑛−1, ℎ𝑛−1, 𝐹𝑛−1, 𝑓(ℎ𝑛−1)) + 𝑔 (𝑡𝑛, ℎ𝑛

𝑝𝑟𝑒𝑑
, 𝐹𝑛, 𝑓(ℎ𝑛

𝑝𝑟𝑒𝑑
))]  (3.8) 

Here, the output ℎ𝑛
𝑝𝑟𝑒𝑑

 of the 𝑛-th recurrent block is combined with the input of the 

recurrent block to construct the loss function 𝑙𝑜𝑠𝑠𝑛. By minimizing 𝑙𝑜𝑠𝑠𝑛, the residual 

of Eq. (3.5) can be gradually reduced, so that the hidden state ℎ𝑛
𝑝𝑟𝑒𝑑

 can approximate 

the true structural response. Although in the SDL framework, all recurrent blocks can 

be trained together like traditional RNN models, it will make model training prone to 

gradient explosion and gradient vanishing (Ribeiro et al., 2020). In addition, as the 

number of time steps increases, the complexity and time consumption of model training 

will also significantly increase, thereby increasing the difficulty of model convergence. 
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Actually, the loss function 𝑙𝑜𝑠𝑠𝑛 described in Eq. (3.7) has the advantage in that the 

loss function of the previous recurrent block is independent of subsequent output. To 

take advantage of this, the SDL framework adopts a sequential training technique, i.e., 

training recurrent blocks in sequence according to the time steps. Specifically, starting 

from the first recurrent block, a gradient descent-based optimizer, such as Adam 

(Kingma, 2014), is employed to minimize 𝑙𝑜𝑠𝑠1 until the relative error 𝜖 converges 

to the defined error tolerance 𝜖𝑡𝑜𝑙. The relative error 𝜖 is defined as  

𝜖 =
√ ‖𝑟𝑒𝑠𝑛‖2

2

√ ‖ℎ𝑛
𝑝𝑟𝑒𝑑

‖
2

2
                          (3.9) 

The error tolerance 𝜖𝑡𝑜𝑙 is a commonly used convergence criterion in implicit methods, 

and the value set is studied in (González--Pinto et al., 2004). In the 𝑛-th time step, the 

optimized CNN model parameters in the previous time step are inherited to initialize 

the CNN model, and the optimizer is employed again to minimize 𝑙𝑜𝑠𝑠𝑛 . This 

inheritance and training process is repeated until all 𝑁-time steps are completed. At 

each time step, the converged ℎ𝑝𝑟𝑒𝑑 will be output as the predicted structural dynamic 

response 𝑧𝑝𝑟𝑒𝑑. 

The sequential training technique has another advantage in that it retains the 

characteristic of the recurrent architecture in capturing short-term dependencies of 

sequence data. This advantage can be fully utilized in structural response prediction 

because the structural responses at adjacent time steps are always evolutionarily similar. 

In the SDL framework, the CNN network of the next recurrent block is initialized with 
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the optimized CNN model parameters in the previous recurrent block, namely the 

memory mechanism. In this way, the CNN model is initialized on the memory of the 

previous recurrent block instead of random initialization, which can greatly accelerate 

the convergence process of the CNN model. 

The SDL framework relies on iterative training to converge the loss function to 

the error tolerance, which means that it is impossible to have an efficiency advantage 

over explicit numerical methods such as the Euler forward method and explicit Runge-

Kutta method. However, the integration of implicit physical information can bring 

excellent stability, as the Crank-Nicolson scheme has been proven to be unconditionally 

stable (Qu & Liang, 2017). This feature is very powerful in structural dynamics 

problems, which always involve stiff equations. In contrast, traditional explicit 

numerical methods rely on extremely short step sizes to keep the solution stable and 

convergent in stiff equations.  

Due to the adaptability of the Crank-Nicolson scheme to nonlinear equations, it is 

convenient to implement the SDL model to solve nonlinear dynamic systems involving 

nonlinear stiffness and damping. Adaptability to nonlinear partial differential equations 

is also an inherent advantage of the PINNs methods. However, the SDL framework also 

breaks through several obstacles that hinder the implementation of PINNs in structural 

response prediction. The first is the spectral bias in the neural network, which is 

manifested by the phenomenon that the neural network model tends to prioritize the 

low-frequency components in the data and ignore the high-frequency components. This 
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shortcoming becomes more serious in the structural response prediction because 

structural responses often consist of multiple components with frequencies spanning a 

wide range. However, this obstacle is overcome in the SDL framework by predicting 

the structural response in the time domain step by step to avoid using a single model to 

represent the information of the entire time domain. The ‘soft’ embedding of constraints 

is also a well-known defect of the PINNs framework. In the prediction of structural 

response, constraints including initial conditions and boundary conditions are vital prior 

information to ensure the uniqueness of the structural response. The residual on the 

constraints also brings additional errors to the prediction results of the structural 

response. In the SDL framework, by directly inputting the initial state to the first 

recurrent block and ‘hard’ embedding of the boundary conditions through Eq. (3.6), the 

constraints are hard embedded without residual, thereby eliminating this constraint 

error. Another benefit of the ‘hard’ embedding of constraints is to avoid the problem of 

balancing multiple loss functions in PINNs. In PINNs, initial conditions, boundary 

conditions, and governing equations are ‘soft’ embedded through defined loss functions, 

and these loss functions are summed as the total loss function. However, research 

results show that in PINNs, it is difficult to maintain balanced convergence of multiple 

loss functions, which is still an unresolved issue in the field of PINNs (Wang et al., 

2022; Xiang et al., 2022). In the SDL framework, since the constraints are ‘hard’-

embedded, there is only a governing equation residual in the loss function, which 

fundamentally avoids the instability caused by the competition of multiple loss 
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functions.  

It is also noted that combining CNN, RNN, or numerical methods such as the 

Runge-Kutta method with PINNs is not innovative. The most well-known include 

PhyCNN (R. Zhang et al., 2020a) and PI-LSTM (Fangyu Liu et al., 2023) for predicting 

the seismic response of structures. However, these models are supervised learning that 

relies on structural response observation for training, and physical information only 

plays an auxiliary role in improving the robustness and generalization ability of the 

model. This study does not intend to show the advantages of the SDL framework over 

these methods but provides an unsupervised learning method that does not require any 

training data to accurately predict the structural response.  

3.3.4 Algorithm and computing platform  

The overall implementation process of SDL framework is shown in Algorithm 3.1. 

Algorithm 3.1. The implementation of SDL framework 

Input: Mass matrix 𝑀, stiffness matrix 𝐾, damping matrix 𝐶 , nonlinear function 𝑓(𝑢, 𝑢̇), 

mask matrix 𝑀𝑘, value matrix 𝑉, initital state 𝑧0, force series 𝐹(𝑡), number of time steps 𝑁, 

time step size 𝑑𝑡 

Parameter: Learning rate 𝑙𝑟, error tolerance 𝜖𝑡𝑜𝑙, CNN model hyperparameters 𝐿 and 𝐻 

Output: Structural system state series 𝑍 

1: Initialize hidden state ℎ0 = 𝑧0, system state list 𝑍[0] = 𝑧0, relative error 𝜖 = 1.0, randomly 

initialize CNN model 

2: for 𝑖 = 1 to 𝑁 do 

3:    Calculate 𝑡𝑖−1 = (𝑖 − 1) ∗ 𝑑𝑡, 𝑡𝑖  =  𝑖 ∗ 𝑑𝑡 

4:    Get external force 𝐹𝑖−1 = 𝐹(𝑡𝑖−1), 𝐹𝑖 =  𝐹(𝑡𝑖) 

5:    Concatenate CNN model input 𝑥𝑖 = [ℎ𝑖−1, 𝐹𝑖−1, 𝐹𝑖] 

6:    while  𝜖 >  𝜖𝑡𝑜𝑙  do 

7:        Forward propagation 𝑂𝐶𝑁𝑁 = 𝐶𝑁𝑁(𝑥𝑖) 
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8:        Predict hidden state ℎ𝑖
𝑝𝑟𝑒𝑑

= 𝑀𝑘 ∘ 𝑂𝐶𝑁𝑁 + 𝑉 with boundary conditions 

9:        Update the CNN model by the optimizer with 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =  𝑙𝑟 

10:      Update the relative error 𝜖 

11:   end while 

12:   Predict the structural response 𝑧𝑖
𝑝𝑟𝑒𝑑

= ℎ𝑖
𝑝𝑟𝑒𝑑

, set 𝑍[𝑖] = 𝑧𝑖
𝑝𝑟𝑒𝑑

 

13:   Update ℎ𝑖−1 = ℎ𝑖
𝑝𝑟𝑒𝑑

,  reset relative error 𝜖 = 1.0 

14: end for 

All codes in this study are compiled in Python 3.8. The neural network framework 

is based on PyTorch (Paszke et al., 2019), a mature deep learning library. All codes are 

run on the Windows platform with an Intel Core i7-10700 CPU and an NVIDIA 

GeForce RTX 3080 Ti GPU.  

3.4 Numerical validation 

In this section, several numerical examples are carried out to demonstrate the 

effectiveness and accuracy of the SDL method. First, a two-degree-of-freedom system 

example involving a stiff equation is calculated to demonstrate the stability of the SDL 

method. Then, the SDL method is employed to predict the seismic response of a 4-story 

frame structure involving nonlinear stiffness. The hyperparameter settings of the SDL 

method are discussed in this example. The improvement of the efficiency of the 

recurrent architecture is also demonstrated here. The third example involving nonlinear 

Bouc-Wen hysteretic models is conducted to demonstrate the applicability of SDL to 

nonlinear hysteretic systems. How to integrate the unobservable variables of the 

nonlinear hysteretic model into the hidden states of the SDL method is also explained 

in this example. Finally, a plane truss example is utilized to demonstrate the ‘hard’ 
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embedding of boundary conditions in the SDL framework. 

3.4.1 2-DOF system 

A linear two-degree-of-freedom system (2-DOF) as shown in Fig. 3.4 is first 

studied. The masses of the two degrees of freedom are set to 𝑀1 = 3.0 𝑘𝑔,  𝑀2 =

2.0 𝑘𝑔. The spring stiffness is  𝑘1 =  10𝑁/𝑚, 𝑘2 =  10𝑁/𝑚, 𝑘3 =  3000𝑁/𝑚. The 

damping coefficients are 𝑐1 =  0.1𝑁/(𝑚/𝑠), 𝑐2 =  0𝑁/(𝑚/𝑠), 𝑐3 =  3.0𝑁/(𝑚/𝑠 ). 

The exact response of this system under harmonic force can be obtained by the modal 

decomposition method (Paz & Kim, 2018).  

 
Figure 3.4 A linear two-degree-of-freedom system 

According to Eq. (3.4), a first-order differential equation describing the motion of 

this 2-DOF system is built as  

𝑧̇ = 𝐾∗ ∙ 𝑧 + 𝐵∗ ∙ 𝐹(𝑡)                   (3.10) 

The four eigenvalues 𝜆 of 𝐾∗ are calculated as [−0.0167 + 2.58𝑗, −0.0167 −

2.58𝑗, −0.750 + 38.8𝑗, −0.750 − 38.8𝑗]. According to the stiff equation criterion in 

(Spijker, 1996), the 𝐾∗  matrix's  
max|𝑅𝑒𝑎𝑙(𝜆)|

min|𝑅𝑒𝑎𝑙(𝜆)|
= 44.9 ≫ 1 , the differential equation 

for this 2-DOF system is stiff.   
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To demonstrate the stability of our proposed method for stiff systems, an SDL 

model is built to first analyze the free vibration of this system with large time steps. The 

external force of this system is first set to 0 and the initial displacement is [0.1, 0]. The 

exact structural dynamic response obtained by the modal decomposition method can 

serve as the benchmark solution, with a time step of 0.01 𝑠 and a calculation duration 

of 1s. The Euler forward method and the fourth-order explicit Runge–Kutta (ERK4) 

method (Iserles, 2008) are also employed to calculate the numerical solution for 

comparison. The time step size of these numerical methods is 0.1 𝑠. The SDL models 

with a time step size of 0.1 𝑠 and 0.5 𝑠 are tested separately. The hyperparameters of 

the CNN model are set as 𝐿 = 1 and 𝐻 = 100. The optimizer Adam is employed to 

train the SDL model with a learning rate 𝑙𝑟 = 0.001. The error tolerance 𝜖𝑡𝑜𝑙 of the 

convergence criterion is set as 1e-4. The calculated results of the displacement response 

of 𝑀1 are compared in Fig. 3.5. 

 
Figure 3.5 The comparison of the predicted 𝑀1 displacement response of the 2-DOF 
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system with SDL model and numerical methods.  

Fig. 3.5 shows that the SDL model can obtain stable converged solutions at both 

0.1 𝑠 and 0.5 𝑠 time step sizes. Affected by the error caused by the large step size, the 

error of the result predicted by the SDL model with a 0.5 𝑠 time step is larger than the 

SDL model with a 0.1 𝑠 time step. The result predicted from the SDL model with a 

0.1 𝑠  time step is highly consistent with the exact solution. The explicit numerical 

methods including Euler forward and ERK4 methods cannot maintain solution stability 

at a time step 𝑑𝑡 = 0.1 𝑠. This case demonstrates that based on the Crank-Nicolson 

scheme, the SDL method shows outstanding stability for stiff systems.  

A forced vibration case of this 2-DOF system is analyzed in order to verify the 

accuracy of the SDL model in predicting the structural response under external force. 

An external force 𝐹(𝑡) =  500 ∙ 𝑠𝑖𝑛(𝜋 /2 ∙  𝑡)  is applied to 𝑀1 to make the system 

vibrate from rest. The benchmark solution is the exact system response obtained by the 

modal decomposition method, with a time step of 0.01 𝑠 and a duration of 1 𝑠. The 

time step of the Euler forward method and ERK4 method is reduced to 0.01 𝑠  to 

improve the solution stability. The time step of the SDL model is also set as 0.01 𝑠, 

and the other parameters of the SDL model are set as the same as the free vibration case. 

The comparison of predicted displacement responses of 𝑀1 with the SDL model and 

numerical methods is shown in Fig. 3.6. 
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Figure 3.6 The comparison of displacement response prediction of 𝑀1 with SDL 

model and numerical methods 

The results of Fig. 3.6 show that the SDL model successfully predicts the 

displacement response of 𝑀1, which shows high consistency with the exact solution. 

To quantify the error with the benchmark solution, the relative L2 error is calculated as 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐿2 =
√‖𝑢𝑝𝑟𝑒𝑑−𝑢𝑒𝑥𝑎𝑐𝑡‖

2

2

√‖𝑢𝑒𝑥𝑎𝑐𝑡‖2
2

                    (3.11) 

According to the calculation results, the relative 𝐿2  error in the predicted 

displacement response 𝑢1
𝑝𝑟𝑒𝑑

 of the SDL model is 0.00506%, while the relative 𝐿2 

errors of the Euler forward method and ERK4 method are 1.74% and 1.42%, 

respectively. In this case, the SDL method shows significantly higher accuracy than 

these two explicit numerical methods. 
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3.4.2 Five-story shear structure  

 

Figure 3.7 A 5-story structure with nonlinear stiffness springs 

The seismic response of a 5-story structure with nonlinear stiffness springs as 

shown in Fig. 3.7 is analyzed with the SDL method. The inter-story stiffnesses and 

masses are also given in Fig. 3.7. The damping of the structure is set to give a damping 

ratio of 1% for the first and second natural frequencies. Cubic stiffness springs 𝑘1
𝑛 and 

𝑘2
𝑛  act on the first and second layers. Then the governing equation of the structure 

vibration can be written as 

𝑀𝑢̈(𝑡) +  𝐶𝑢̇(𝑡) +  𝐾𝑢(𝑡) + 𝐾𝑛 ∙ 𝑢(𝑡)3 =  𝑀𝑢̈𝑔(𝑡)          (3.12) 

Here, 𝐾𝑛 is the cubic stiffness matrix and 𝑢̈𝑔(𝑡) is the ground seismic acceleration. 

This 5-story structure vibrates under the seismic acceleration excitation of EI Centro 
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(N-S) shown in Fig. 3.8. The sampling frequency of seismic acceleration is 50 Hz.  

 

Figure 3.8 The seismic acceleration excitation of EI Centro (N-S) 

The ERK4 method with a time step of 0.001 s is employed to solve the vibration 

response 𝑧 = [𝑢, 𝑢̇] of the structure as the benchmark solution, which is shown in Fig. 

3.9. The total computation duration is 5 s. Since the explicit method does not require 

iterative convergence, a small time step is adopted to ensure the accuracy of the solution. 

In this case, the hyperparameters of the SDL model including the number of hidden 

layers 𝐿 and the number of neurons 𝐻 in the CNN model are first tested. Specifically, 

20 CNN model schemes as shown in Table 3.1 are tested to calculate the seismic 

response of the structure respectively. The time step of the SDL model is set to 0.01 𝑠. 

An Adam optimizer with a learning rate of 0.001 is employed to train the SDL model 

until the relative error 𝜖 converges to the error tolerance 𝜖𝑡𝑜𝑙 of 1e-4. The relative L2 
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error of the structural responses predicted by all CNN model schemes to the benchmark 

solution is calculated as the criterion of model accuracy and the model training time is 

also recorded to evaluate the training efficiency. The results of model accuracy and 

training time are shown in Table 3.1. 

 
Figure 3.9 The benchmark solution of the seismic response of the 5-story structure  

Table 3.1 The comparison of relative L2 error (a) and computation time (b) of 

different CNN model schemes 

(a) 

H\L 1 2 4 8 Avg 

10 4.36% 4.41% 4.24% 4.37% 4.35% 

20 4.29% 4.24% 4.10% 4.49% 4.28% 

40 4.19% 4.24% 4.23% 4.33% 4.25% 

80 4.27% 4.48% 4.10% 4.11% 4.24% 

100 4.34% 4.35% 4.22% 4.16% 4.27% 

Avg 4.29% 4.34% 4.18% 4.29%  

(b) 

H\L 1 2 4 8 Avg 

10 338.51  299.91  389.22  633.46  415.27  

20 270.30  283.81  411.03  682.79  411.98  

40 279.84  345.71  397.29  648.81  417.91  

80 247.14  300.23  383.58  618.81  387.44  

100 268.27  312.13  374.83  603.89  389.78  

Avg 280.81  308.36  391.19  637.55    
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Unit：second 

The results in Table 3.1(a) show that the SDL model of all CNN schemes 

accurately predicts the seismic response of the structure, with the largest relative 𝐿2 

error of 4.49% and the smallest of 4.10%. It is also observed that the accuracy of the 

prediction results with different CNN hyperparameters has no significant difference. 

This means that the accuracy of the prediction results of the proposed SDL model with 

error tolerance 𝜖𝑡𝑜𝑙 as the convergence criterion is not sensitive to the hyperparameters 

𝐿 and 𝐻 settings. The results of calculating time in Table 3.1(b) indicate that as the 

number of fully connected layers 𝐿 increases, the training time of the SDL model also 

increases significantly. But increasing the width of the hidden layer 𝐻  has no 

significant impact on the model efficiency and can slightly improve the accuracy of the 

solution. Therefore a ‘shallow’ but the ‘wide’ FCNN model is a better setting for the 

SDL method. 

Here, the PINNs method proposed in (Raissi et al., 2019) is also employed to 

predict the structural response for comparison. Specifically, in PINNs, an FCNN with 

two inputs (𝑡, 𝑥)  is employed to predict the displacement response 𝑢(𝑡, 𝑥)  of the 

structure. Here 𝑡 is the time domain of the equation, ranging from 0 − 5 𝑠. 𝑥 is the 

number of the system's degrees of freedom, ranging from 1 − 5. The number of hidden 

layers 𝐿 of the neural network model is set to 4, and the number of neurons 𝐻 is 100. 

The hyperbolic tangent function is utilized as the activation function of the neural 

network. Using the governing equation of Eq. (3.12), the loss function of PINNs is 
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constructed as 

𝐿𝑜𝑠𝑠𝑝𝑖𝑛𝑛  = 𝐿𝑜𝑠𝑠𝑖 + 𝐿𝑜𝑠𝑠𝑓                 (3.13) 

where 

 𝐿𝑜𝑠𝑠𝑖 =
1

𝑁𝑖
∑ |𝑢𝑖

𝑝𝑟𝑒𝑑
(0, 𝑥𝑖) − 𝑢𝑖

′(0, 𝑥𝑖)|
2𝑁𝑖

𝑖=1 +
1

𝑁𝑖
∑ |𝑢̇𝑖

𝑝𝑟𝑒𝑑
(0, 𝑥𝑖) − 𝑢̇𝑖

′(0, 𝑥𝑖)|
2𝑁𝑖

𝑖=1   (3.14) 

and  

 𝐿𝑜𝑠𝑠𝑓 =
1

𝑁𝑓
∑ |𝑀𝑢̈𝑖

𝑝𝑟𝑒𝑑
+  𝐶𝑢̇𝑖

𝑝𝑟𝑒𝑑
+  𝐾𝑢𝑖

𝑝𝑟𝑒𝑑
+ 𝐾𝑛 ∙ 𝑢𝑖

𝑝𝑟𝑒𝑑3
−  𝑀𝑢̈𝑔|

2𝑁𝑓
𝑖=1

     (3.15) 

Here, 𝐿𝑜𝑠𝑠𝑖  is the loss function of the initial constraint condition. 𝑁𝑖 = 5  is the 

number of sampling points (0, 𝑥𝑖) sampled on the initial condition of the structural 

system, where 𝑥𝑖  is 1 − 5 . 𝑢′  and 𝑢̇′  are the initial displacement and initial 

velocity of the structure, respectively. Loss function 𝐿𝑜𝑠𝑠𝑓 is defined to constrain the 

satisfaction of the structural governing equation. Here the 𝑁𝑓 collocation points are 

fully sampled on all 5 degrees of freedom with a time step of 0.01 𝑠, totaling 2505 

points. The Adam optimizer with 𝑙𝑟 = 0.001 is employed to minimize the total loss 

𝐿𝑜𝑠𝑠𝑝𝑖𝑛𝑛. The loss function 𝐿𝑜𝑠𝑠𝑝𝑖𝑛𝑛 converges after 100,000 training iterations. The 

structural displacements and velocities of 𝑀1 and 𝑀5 predicted by the SDL model 

and PINNs method are shown in Fig. 3.10 as examples and compared with benchmark 

solutions.  
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Figure 3.10 The comparison of structural displacements and velocities of 𝑀1 and 𝑀5 

predicted by the SDL model and PINNs method.  

Fig. 3.10 shows that the results of the SDL model are consistent with the 

benchmark solution, while the results of PINNs have obvious errors. The relative 𝐿2 

error of the predicted displacement and velocity responses for all degrees of freedom is 

calculated to quantify the accuracy of the SDL and PINNs results. The calculated 

relative 𝐿2  error of the SDL is 4.34%, while that of the PINNs is 36.08%. This 

indicates that SDL can achieve more accurate structural response predictions than the 

PINNs method in this case. To compare the frequency distributions, the Fourier 

transform is performed on the structural displacements and velocities of 𝑀1 and 𝑀5 

shown in Fig. 3.10, and the frequency distribution results are shown in Fig. 3.11. 
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Figure 3.11 The comparison of frequency distribution of structural displacements and 

velocities of 𝑀1 and 𝑀5 predicted by the SDL model and PINNs method. 

Fig. 3.11 shows that even when the dynamic response in this case only involves 

frequency components 𝑓 < 10 𝐻𝑧,  the PINNs method still loses some frequency 

components of 𝑓 > 2 𝐻𝑧 , and preferentially learns frequency components of 𝑓 ≤

2 𝐻𝑧, especially in the predicted 𝑢1 and 𝑢̇1. The SDL method successfully solves the 

defect of the spectral bias in PINNs, which is reflected in the frequency distribution 

consistent with the benchmark solution.  

In this case, we also compared the running efficiency of several algorithms listed 

above by recording their running time. In addition, in order to analyze the improvement 

of the memory mechanism of the recurrent architecture on the efficiency of the SDL 

model, an ablation test without the memory mechanism is conducted. For comparison, 

the most efficient CNN model scheme in Table 3.1 (𝐿 = 1, 𝐻 = 80) is used, but it is 

randomly initialized in each time step instead of being initialized from the memory of 
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the previous time step. The rest settings are the same as the above SDL model. After 

testing, the training time of the model without the memory mechanism is 3051.69 s, 

while the training time with the memory mechanism is 247.14 s. In this case, the 

memory mechanism in the SDL framework can improve the model training efficiency 

by 12.34 times. In comparison, the running time of PINNs is 2318.3 s, while the explicit 

4th-order Runge-Kutta method of the benchmark method only takes 1.5 s. From this, 

we can see that the explicit algorithm that does not require iterative calculations or 

training has an incomparable efficiency advantage. The SDL framework based on the 

memory mechanism also has a significant efficiency advantage over PINNs. 

3.4.3 3-DOF system with Bouc-Wen hysteresis 

The Bouc-Wen model is one of the widely used hysteretic models employed to 

describe the nonlinear hysteretic system. The latent hysteretic displacement has 

dynamics which is governed by a nonlinear differential equation that depends on the 

system’s velocity. The hysteretic dynamics equation of the Bouc-Wen model for an 𝑁-

DOF system can be expressed as: 

𝑀𝑢̈ + 𝐾𝑢 + 𝐶𝑢̇ + 𝐾𝑏𝑤 ∙ 𝑧𝑏𝑤 = 𝐹(𝑡)                (3.16) 

Here, 𝐾𝑏𝑤 is the stiffness between the restoring force of the Bouc-Wen model and the 

latent hysteretic displacement 𝑧𝑏𝑤. 𝑧𝑏𝑤 is the non-observable hysteretic displacement 

that obeys the following nonlinear differential equation with zero initial condition 

(𝑧𝑏𝑤 = 0), which is calculated as: 

𝑧̇𝑏𝑤 = 𝐴𝑢̇ − 𝛽|𝑢̇(𝑡)||𝑧𝑏𝑤(𝑡)|
𝑛−1 ∙ 𝑧𝑏𝑤(𝑡) − 𝛾𝑢̇(𝑡)|𝑧𝑏𝑤(𝑡)|

𝑛       (3.17) 
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Figure 3.12 A 3-DOF system with Bouc-Wen hysteresis 

In this case, a 3-DOF system with Bouc-Wen hysteresis as shown in Fig. 3.12 is 

analyzed. The mass of the system is set as  𝑚1 =  1.0 𝑘𝑔,𝑚2 =  2.0 𝑘𝑔,𝑚3 =  3.0 𝑘𝑔. 

Linear stiffness is set as  𝑘1 =  20𝑁/𝑚, 𝑘2 =   25𝑁/𝑚, 𝑘3 =   30𝑁/𝑚. The damping 

matrix is set as the damping ratio of 1% for the first and second-order natural 

frequencies. Three Bouc-Wen hysteresis models are installed with parameters 𝑘𝑏𝑤 =

25𝑁/𝑚, 𝐴 = 0.5, 𝛽 = 0.5, 𝛾 = 0.5, 𝑛 = 1. In this case, the system state is described 

as 𝑧 = [𝑢, 𝑢̇, 𝑧𝑏𝑤]
𝑇 in state space. According to Eq. (3.16) and (3.17), the system state 

equation can be expressed as 

𝑧̇ = [
𝑢̇
𝑢̈
𝑧̇𝑏𝑤

] = [

𝑢̇
𝑀−1[𝐹(𝑡) − (𝐾𝑢 + 𝐶𝑢̇ + 𝐾𝑏𝑤 ∙ 𝑧𝑏𝑤)]

𝐴𝑢̇𝑏𝑤 − 𝛽|𝑢̇𝑏𝑤||𝑧𝑏𝑤|
𝑛−1 ∙ 𝑧𝑏𝑤 − 𝛾𝑢̇𝑏𝑤|𝑧𝑏𝑤|

𝑛
] = 𝑔(𝑡, 𝑧, 𝐹(𝑡)) (3.18) 

Here 𝑢̇𝑏𝑤 is different from 𝑢̇ in the system state, which is the relative velocity of the 

Bouc-Wen model. 𝑢̇𝑏𝑤 can be calculated as  
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𝑢̇𝑏𝑤 = [
1 −1 0
0 1 −1
0 0 1

] ∙ 𝑢̇                  (3.19) 

𝐾𝑏𝑤 is the hysteretic stiffness matrix, set as 

𝐾𝑏𝑤 = [
25 0 0
−25 25 0
0 −25 25

]                 (3.20) 

This 3-DOF system vibrates from rest under the action of seismic acceleration 

𝑢̈𝑔 = 10𝑠𝑖𝑛(2𝜋 ∙ 𝑡)  +  5𝑠𝑖𝑛(6𝜋 ∙ 𝑡). The ERK4 method with a time step of 0.001s is 

employed to solve Eq. (3. 18) as the benchmark solution. The total calculation duration 

is 5 𝑠.  

In this case, the SDL model is employed to predict the dynamic response with 

additional hidden states including hysteretic displacements. In the SDL model for this 

3-DOF system, the hidden state ℎ of the system is defined as ℎ = [𝑢, 𝑢̇, 𝑧𝑏𝑤]
𝑇. The 

CNN in the SDL model includes a convolutional layer and three FCNN models. The 

input of the convolutional layer is a 5-dimensional matrix as 𝑥𝑛 =

[𝑢𝑛−1, 𝑢̇𝑛−1, 𝑧𝑏𝑤𝑛−1, 𝑓𝑛−1, 𝑓𝑛]
𝑇 , and the output is 3-dimensional. These three 

dimensions in the output are respectively input into an FCNN model with one hidden 

layer of 100 neurons. The outputs of the three FCNNs are combined as the output of 

the CNN model 𝑂𝐶𝑁𝑁 to approximate the hidden state [𝑢, 𝑢̇, 𝑧𝑏𝑤]. Since no boundary 

conditions are embedded, the output 𝑂𝐶𝑁𝑁  is directly used as the predicted system 

hidden state ℎ𝑛
𝑝𝑟𝑒𝑑

. The loss function of the SDL model is also constructed according 

to Eq. (3.7) and Eq. (3.8). The Adam optimizer with a learning rate of 0.001 is employed 

to minimize the loss function until the relative error 𝜖 converges to the error tolerance 



 

75 

 

𝜖𝑡𝑜𝑙 = 1𝑒 − 4. The predicted displacement results of the SDL model and benchmark 

solutions are shown in Fig. 3.13. 

 
Figure 3.13 The comparison of the predicted displacement results of SDL model and 

benchmark solutions 

Fig. 3.13 shows that the displacement responses predicted by the SDL model are 

highly consistent with the benchmark solution. The calculated relative 𝐿2  error 

between the predicted displacement responses and the benchmark solution is 0.271%. 

The restoring forces loops of the three Bouc-Wen hysteresis models are also shown in 

Fig. 3.14. As can be seen from Fig. 3.14, the SDL model also accurately predicts the 

hysteresis force of these three Bouc-Wen models. 

 
Figure 3.14 Restoring force loops for three Bouc-Wen hysteresis models. The three 
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sub-figures are results of model BW 1 (left), BW 2 (mid) and BW 3 (right). 

3.4.4 Plane truss structure 

In order to verify the effectiveness of the SDL framework for ‘hard’ embedding of 

constraint conditions, the dynamic response of a plane truss structure as shown in Fig. 

3.15 is analyzed. This truss consists of 19 rods with a total of 11 nodes. Truss members 

are considered as 2-node linear elements in the X-Y plane with consistent mass matrices. 

The length of the rods is 10 𝑚 and the cross-sectional area is 0.01 𝑚2. The material 

density of the rods is 2000 𝑘𝑔/𝑚3 and the elastic model is 80 𝑀𝑃𝑎. This truss is 

constrained at the left side (node 1 in the X and Y directions) and at the right side (node 

11 in the Y direction). Two Y-direction forced displacements are applied as external 

excitations at nodes 5 and 7 to make the truss vibrate from the static state. The forced 

displacements are 𝑢5
𝑌(𝑡) = 0.1 ∗ sin(2𝜋 ∗ 𝑡) + 0.3 ∗ sin (𝜋 ∗ 𝑡) , 𝑢7

𝑌(𝑡) = 0.25 ∗

sin(2𝜋 ∗ 𝑡) + 0.1 ∗ sin (𝜋 ∗ 𝑡). The external forces on the unconstrained nodes are 0. 

The ERK4 method with 𝑑𝑡 = 0.001 is utilized to calculate the dynamic response of 

the truss structure as the benchmark solution. The calculation duration is 1 s.  

 
Figure 3.15 A plane truss structure 
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An SDL model is constructed to calculate the vibration response of the truss. The 

input of the SDL recurrent block is the hidden state ℎ𝑛−1 = [𝑢𝑛−1, 𝑢̇𝑛−1]
𝑇, and the 

output is 𝑧𝑛 = [𝑢𝑛 , 𝑢̇𝑛]
𝑇 . In each recurrent block, a CNN model with input 

[ℎ𝑛−1, 𝑓𝑛−1, 𝑓𝑛] (size 4 × 22) is employed to predict the output 𝑂𝐶𝑁𝑁 (size 2 × 22). 

Then, the output 𝑂𝐶𝑁𝑁 is processed to integrate the boundary conditions by Eq. (3.6). 

In this case, there are 5 constraint conditions, three of which are boundary conditions 

on nodes 1 and 11, and two are displacement constraints on nodes 5 and 7. Therefore, 

the mapping matrix 𝑀𝑘 has 0 elements in positions of node 1 (X and Y directions), 

and of nodes 5, 7, and 11 (Y direction). The rest elements of matrix 𝑀𝑘  are ones. The 

elements of the value matrix 𝑉  in positions of nodes 5 and 7 (Y direction) are set 

according to the forced displacement, and the other values are 0. In the CNN model, 

there is one hidden layer with 100 neurons. An Adam optimizer with a learning rate of 

0.001 is employed to train the CNN model until the relative error converges to the error 

tolerance 𝜖𝑡𝑜𝑙 = 1e − 4 . The time step size of the SDL model is 0.01 𝑠 , and the 

number of time steps is 100.  

For comparison, a PINNs model with ‘soft’ constraint embedding is also built to 

predict the vibration response of the truss. The input of the FCNN model in PINNs is 

𝑡 and 𝑥, and the output is the predicted node displacement 𝑢𝑝𝑟𝑒𝑑(𝑡, 𝑥). 𝑡 ranges from 

0 − 1𝑠, and 𝑥 is the degree of freedom of the structure numbered from 1 to 22. The 

degrees of freedom of the 𝑛-th node in the X direction are numbered 2𝑛 − 1, and the 

degrees of freedom in the Y direction are numbered 2𝑛. The FCNN model has 4 hidden 
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layers with 200 neurons. The activation function between layers is the hyperbolic 

tangent function. In this case, the loss function 𝐿𝑜𝑠𝑠𝑝𝑖𝑛𝑛 of PINNs consists of 4 parts 

as  

𝐿𝑜𝑠𝑠𝑝𝑖𝑛𝑛 = 𝐿𝑜𝑠𝑠𝑖  +  𝐿𝑜𝑠𝑠𝑏  + 𝐿𝑜𝑠𝑠𝑢  + 𝐿𝑜𝑠𝑠𝑓         (3.21)  

Here, 𝐿𝑜𝑠𝑠𝑖 , 𝐿𝑜𝑠𝑠𝑏 , 𝐿𝑜𝑠𝑠𝑢 , and 𝐿𝑜𝑠𝑠𝑓  are loss functions of the initial conditions, 

boundary conditions, displacement constraints and governing equations, respectively, 

which are calculated as 

𝐿𝑜𝑠𝑠𝑖 =
1

𝑁𝑖
∑ (|𝑢

𝑝𝑟𝑒𝑑
(0, 𝑥𝑖)|

2
+ |𝑢̇

𝑝𝑟𝑒𝑑
(0, 𝑥𝑖)|

2
)

𝑁𝑖
𝑖=1              (3.22) 

𝐿𝑜𝑠𝑠𝑏 =
1

𝑁𝑏
∑ (|𝑢

𝑝𝑟𝑒𝑑(𝑡𝑖, 1)|
2
+ |𝑢

𝑝𝑟𝑒𝑑(𝑡𝑖, 2)|
2
+ |𝑢

𝑝𝑟𝑒𝑑
(𝑡𝑖, 22)|

2
)

𝑁𝑏
𝑖=1      (3.23) 

𝐿𝑜𝑠𝑠𝑢 =
1

𝑁𝑢
∑ (|𝑢

𝑝𝑟𝑒𝑑(𝑡𝑖, 10) − 𝑢
𝑒𝑥𝑎𝑐𝑡(𝑡𝑖, 10)|

2
+ |𝑢

𝑝𝑟𝑒𝑑(𝑡𝑖, 14)− 𝑢
𝑒𝑥𝑎𝑐𝑡(𝑡𝑖, 14)|

2
)

𝑁𝑢
𝑖=1  (3.24)  

and  

𝐿𝑜𝑠𝑠𝑓 =
1

𝑁𝑓
∑ |𝑀𝑢̈

𝑝𝑟𝑒𝑑
(𝑡𝑖, 𝑥𝑖) +  𝐶𝑢̇𝑖

𝑝𝑟𝑒𝑑
(𝑡𝑖, 𝑥𝑖) +  𝐾𝑢𝑖

𝑝𝑟𝑒𝑑
(𝑡𝑖, 𝑥𝑖)|

2𝑁𝑓
𝑖=1

     (3.25) 

Here, 𝑁𝑖 sampling points of initial conditions are sampled on 22 degrees of freedom 

at 𝑡 = 0. 𝑁𝑏 sampling points of the boundary condition are sampled at node 1 (X, Y 

direction) and node 11 (Y direction). 𝑁𝑢 sampling points of displacement constraint 

are sampled at node 5 (Y direction) and node 7 (Y direction). 𝑢𝑒𝑥𝑎𝑐𝑡(𝑡𝑖 , 10)  and 

𝑢𝑒𝑥𝑎𝑐𝑡(𝑡𝑖 , 14)  are the exact displacements from the constraint conditions. 𝑁𝑓 

collocation points are sampled on all unconstrained degrees of freedom. The partial 

derivatives of 𝑢  are calculated using the automatic differentiation technique in the 

PINNs framework. In the time domain, the sampling is uniform with 𝑑𝑡 = 0.01𝑠. The 

Adam optimizer with 𝑙𝑟 = 0.001 is employed to train the PINNs model for 100,000 
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iterations. The displacement responses of nodes 5, 6, and 7 in the Y direction predicted 

by the trained SDL model, PINNs model, and benchmark solution are shown in Fig. 

3.16. 

 
Figure 3.16 Comparison of the Y displacements of nodes 5, 6, and 7 predicted by the 

SDL model and the PINNs model with the benchmark solution 

Fig. 3.16 shows that benefiting from ‘hard’ constraint embedding, the SDL model 

accurately expresses the displacement constraints at nodes 5 and 7, while PINNs failed 

to successfully satisfy these two constraints. The SDL model also successfully predicts 

the displacement response of node 6 with a relative L2 error of 0.898%. The reason for 

the failure of PINNs is the imbalance of multiple loss functions as shown in Fig. 3.17. 

Fig. 3.17 shows that in PINNs, the optimizer prioritizes minimizing 𝐿𝑜𝑠𝑠𝑖, 𝐿𝑜𝑠𝑠𝑏, and 

𝐿𝑜𝑠𝑠𝑓, while 𝐿𝑜𝑠𝑠𝑢 is not significantly reduced. 
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Figure 3.17 Convergence process of multiple loss functions in PINNs 

3.5 Summary 

In this study, a novel recurrent convolutional neural network framework named 

the structural dynamics learner (SDL) is proposed to predict the dynamic response of 

linear/nonlinear structural systems. A recurrent architecture consisting of a series of 

recurrent blocks containing convolutional neural network models is built to accurately 

predict the unknown structural response at discrete time steps with the system state and 

external force inputs. The implicit Crank-Nicolson form of the system's motion 

equations is incorporated into the SDL framework as physical information, which also 

provides excellent stiff equation stability for the framework. A ‘hard’ embedding of 

boundary conditions is adopted to ensure the rigid satisfaction of constraints and 

eliminate the residual errors of constraints. Several numerical examples are carried out 

to demonstrate the accuracy and stability of the proposed framework. In the vibration 

analysis of a 2-DOF system, the SDL framework shows better stability for the structural 
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system involving stiff equations, compared with explicit numerical algorithms such as 

the Euler forward method and the explicit Runge-Kutta method. The accuracy 

comparison between the PINNs method and the SDL framework is carried out on a 5-

DOF system involving nonlinear stiffness. The results show the improved accuracy of 

SDL over the PINNs method and address the spectral bias drawback of PINNs. How to 

integrate other hidden states of the structural system such as hysteretic displacements 

into the SDL framework is also demonstrated in an example of a 3-DOF system with 

Bouc-Wen hysteresis. Finally, the benefits of ‘hard’ embedding of boundary conditions 

are also verified in an example of a plane truss. The results of the numerical examples 

demonstrate the excellent ability of the SDL framework as a reliable alternative to 

simulate vibration responses of the structural systems. 
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Chapter 4 PI-MP framework for force localization and 

structural response reconstruction 

4.1 Introduction 

Accurate knowledge of the dynamic forces acting on a structure is the foundation 

for structural vibration prediction, structural design, and structural health monitoring. 

Generally, for a structural system, predicting the structural response using known 

structural system parameters and external forces is referred to as a forward problem. 

Many mature methods have been established to solve these forward problems, which 

can accurately calculate the structural response. Unfortunately, in actual engineering 

projects, it is often difficult to directly measure the external forces acting on the 

vibrating structure. Although advanced force sensors have been developed, directly 

installing them on the structure or in the force transmission path can inevitably affect 

the properties of the system and the acting forces. In this case, an alternative approach 

to estimating these forces is to measure the structural response and then reconstruct the 

forces using computational methods, which points to an important inverse problem 

known as force reconstruction. 

In recent years, various methods for force reconstruction have been proposed, 

which can be broadly divided into three groups: direct calculation, regularization 

method, and probabilistic method (Sanchez & Benaroya, 2014). The direct calculation 

method establishes a mathematical or physical relationship between the structural 
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response and the external forces, then directly computes the external forces using this 

mapping and the measured structural response. For example, Jacquelin and Hamelin 

(Jacquelin & Hamelin, 2003) successfully calculated the external forces on a bar by 

establishing a relationship between the force and the strain of the Hopkinson bar and 

measuring the three-dimensional strain of the bar. Other direct calculation methods 

have also been developed for Bernoulli-Euler beams (Law et al., 1997). While direct 

calculation methods are computationally efficient, they are highly sensitive to the 

measuring noise, which is unavoidable in real-world vibration data due to sensor errors 

or environmental influences. 

To address the sensitivity to noise inherent in direct calculation methods, 

regularization approaches have been developed. These methods incorporate additional 

mathematical or physical constraints to suppress the influence of noise (Qiao et al., 

2020; Wang et al., 2019). The most widely used regularization methods in recent years 

are the truncated singular value decomposition (TSVD) (Shi et al., 2024; Yang, 2024) 

and the Tikhonov regularization (Li Wang et al., 2020) method based on L2-norm 

penalty. For instance, (Ren et al., 2019) employed an improved Tikhonov regularization 

method to identify dynamic forces between a conical pick and a coal seam. (H. P. Zhu 

et al., 2014) combined the transmissibility concept in the state-space domain with 

Tikhonov regularization to find the unknown input excitation of a structure. (Chen & 

Chan, 2017) proposed a truncated generalized singular value decomposition (TGSVD) 

method to obtain a more stable solution to the ill-posed problem in load identification, 
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making the results less sensitive to noise disturbances.  

Among the probabilistic methods, the most commonly used is the Bayesian 

method, which assumes that the external force obeys a prior distribution, such as 

Gaussian distribution, and uses Bayesian reasoning to obtain the posterior probability 

distribution of the external force using the response observation according to the 

relationship between the structural response and the external force. Some studies based 

on Bayesian methods to reconstruct forces can be found in (Li & Lu, 2019), (Feng et 

al., 2020), and (Chen et al., 2023). Another classic probabilistic method is the Kalman 

filter, which uses the current structural response measurement and the previous 

structural state estimate to calculate the optimal current system state estimate through 

the Kalman gain. Then, based on the current state estimate and state equation, the 

unknown input force at the current moment can be inferred. The application and 

improvements of Kalman filter methods are discussed in (Niu et al., 2015), (Lourens et 

al., 2012), (Wei et al., 2022), and (Petersen et al., 2022). For a more comprehensive 

review of force reconstruction methods, the work of (Sanchez & Benaroya, 2014) and 

(Beltran Carbajal, 2012) provides further discussions. 

With the rapid advancements in machine learning, various deep learning 

techniques have been explored for reconstructing forces acting on structures. Recent 

studies have demonstrated the potential of deep neural networks (Liu et al., 2022; Lei 

Wang et al., 2020), graph neural networks (C. Huang et al., 2023), and long short-term 

memory (Denkena et al., 2020) networks in tackling the inverse problem of force 
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reconstruction. These data-driven machine learning approaches have shown promising 

results, highlighting the broad applicability of deep learning methods in this domain. 

Recently, a class of novel machine learning frameworks known as physics-informed 

machine learning (Karniadakis et al., 2021) has gained significant attention across 

diverse scientific and engineering disciplines. By seamlessly integrating physical 

information, often described by partial differential equations or integro-differential 

equations, with powerful deep learning architectures, PIML has highlighted remarkable 

application prospects. Prominent examples include successful deployments in fluid 

mechanics (Sharma et al., 2023), heat conduction (Cai, Wang, Wang, et al., 2021a), and 

material design (Zheng et al., 2022). The key advantage of PIML lies in its ability to 

effectively combine data and physical models, even when the models are nonlinear, 

partially informed, or high-dimensional. Moreover, PIML has also demonstrated strong 

adaptability in solving ill-posed problems and inverse problems in the presence of noisy 

data (Gao et al., 2022; Raissi et al., 2019). 

In this study, we propose a physics-informed Markov parameters (PI-MP) 

framework to reconstruct the structural external force by integrating the Markov 

parameters of the structural vibration governing equations with the physics-informed 

neural networks (PINNs) in the state space. Specifically, in the PI-MP framework, a 

deep neural network is built to predict the unknown external forces of the structure. 

Then, the governing equations of structural vibration are employed to derive the 

relationship between the structural vibration responses and the external forces, 
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represented by Markov parameters. The calculated Markov parameters are integrated 

into the neural network model as prior physical information to guide the model training. 

With the external forces predicted by the neural network model and Markov parameters, 

the predicted structural responses can be calculated and then used to construct a loss 

function by calculating the residuals from the measured structural responses. A 

regularization term based on the derivatives of the predicted forces is also added to the 

loss function to improve solution smoothness and avoid noise overfitting. By 

minimizing the loss function, the predicted structural responses of PI-MP tend to be 

consistent with the measured responses, and the reconstructed external forces can 

approach the true values. With the reconstructed external forces, the responses of the 

entire structure can also be reconstructed. In addition, for the case where the force 

location is also unknown, by considering an 𝐿1 norm of the force mapping matrix in 

the loss function and designing a special optimization algorithm to minimize the loss 

function, the force location on the structure can also be discovered. 

The rest of this study is organized as follows: In Section 2, the background 

knowledge of the proposed method is introduced briefly. In Section 3, our proposed PI-

MP framework is described in detail. In Sections 4 and 5, we validate the proposed PI-

MP framework in three numerical cases and an experimental case, respectively. Lastly, 

some conclusions are summarized in Section 6. 
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4.2 Background 

4.2.1 Motion equations for structural system 

For a linear, time-invariant structural system subjected to dynamic forces, the 

equation of motion can be written as 

[𝑀]{𝑥̈} + [𝐶]{𝑥̇} + [𝐾]{𝑥} = [𝐿]{𝐹}                      (4.1) 

where 𝑀, 𝐶, and 𝐾 are the mass, damping, and stiffness matrices, respectively. The 

matrix 𝐿 is the mapping matrix for the external forces, which is a diagonal Boolean 

matrix with diagonal elements of 0 (without external forces) or 1 (with external forces). 

𝑥̈, 𝑥̇, and 𝑥 represent the system's acceleration, velocity, and displacement responses, 

respectively. The vector 𝐹  represents the external forces acting on the structural 

system. By defining the state vector of the structural system as 𝑋 =  [𝑥, 𝑥̇] in the state 

space, Eq. (4.1) can be rewritten as 

𝑋̇ = 𝐾∗𝑋 + 𝐵∗𝐿𝐹                           (4.2) 

where，𝐾∗ = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
], 𝐵∗ = [

0
𝑀−1]. The response observation 𝑦 is set as 

𝑦 = 𝑅𝑎 ∗ 𝑥̈  +  𝑅𝑣 ∗ 𝑥̇  +  𝑅𝑥 ∗ 𝑥                    (4.3) 

where, 𝑅𝑎 , 𝑅𝑣, 𝑅𝑥  are diagonal Boolean mapping matrices of acceleration, velocity, 

and displacement observations, respectively. Each of these matrices has diagonal 

elements of 1 (observed) or 0 (not observed). Using Eq. (4.1), Eq. (4.3) can be expressed 

as 

𝑦 = 𝑅𝑋 + 𝐷𝐿𝐹                              (4.4) 

where 𝑅 = [𝑅𝑥 − 𝑅𝑎𝑀
−1𝐾, 𝑅𝑣 − 𝑅𝑎𝑀

−1𝐶]  and 𝐷 = 𝑅𝑎𝑀
−1 . According to the 
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exponential matrix algorithm, Eq. (4.2) and (4.4) can be expressed as 

𝑋𝑗+1 = 𝐴𝑋𝑗 + 𝐵𝐿𝐹𝑗                           (4.5) 

𝑦𝑗 = 𝑅𝑋𝑗 + 𝐷𝐿𝐹𝑗  ， 𝑗 = 1, 2,⋯ , 𝑁                   (4.6) 

where, 𝐴 = exp (𝐾∗ℎ) and 𝐵 = 𝐾∗−1(𝐴 − 𝐼)𝐵∗. Here, ℎ is the time step length and 

𝑁 is the number of time steps. Following Eq. (4.5) and Eq. (4.6), the state 𝑋𝑗 at time 

step 𝑗 can be calculated as 

𝑋𝑗 = ∑ 𝐴𝑘𝐵𝐿𝐹𝑗−𝑘−1
𝑗−1
𝑘=0 + 𝐴𝑗𝑋0, 𝑗 = 1, 2,⋯ ,𝑁              (4.7) 

Then the observation 𝑦𝑗 at time step 𝑗 is 

𝑦𝑗 = ∑ 𝐻𝑘𝐿𝐹𝑗−𝑘
𝑗
𝑘=0 + 𝑅𝐴𝑗𝑋0, 𝑗 = 1, 2,⋯ ,𝑁                 (4.8) 

where, 𝐻0 = 𝐷  and 𝐻𝑘 = 𝑅𝐴𝑘−1𝐵 . Here 𝐻𝑘  are called Markov parameters, which 

represent the structural response of the external force at the previous time steps. For a 

linear system, Markov parameters are unique and represent the inherent characteristics 

of the system in response to external forces. Eq. (4.8) can be expressed in Toeplitz 

matrix form as 

{

𝑦(0)
𝑦(1)
⋮

𝑦(𝑁)

} = [

𝐻0 0
𝐻1 𝐻0

⋯ 0
⋯ 0

⋮ ⋮
𝐻𝑁 𝐻𝑁−1

⋱ ⋮
⋯ 𝐻0

] [

𝐿
𝐿
⋮
𝐿

]{

𝐹(0)
𝐹(1)
⋮

𝐹(𝑁)

} + [

𝑅𝐴0

𝑅𝐴1

⋮
𝑅𝐴𝑁

]𝑋0       (4.9) 

Eq. (4.9) can also be simplified as 

𝑌 = 𝐻𝐿𝐹 + 𝐴𝑅𝑋0                    (4.10) 

where 𝐻𝐿 and 𝐴𝑅 are the corresponding Toeplitz and state transition matrices. 

4.2.2 Force and response reconstruction 

When the external forces on the system are unobservable, an alternative approach 
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is to reconstruct the external forces by measuring the vibration response of the structure. 

If we know the initial state 𝑋0  of the system and obtain some observation data 𝑌 , 

according to Eq. (4.10), theoretically, the external force can be inversely reconstructed 

by 

𝐹𝑟𝑒𝑐 = 𝐻𝐿
+(𝑌 − 𝐴𝑅𝑋0)                      (4.11) 

Here, 𝐻𝐿
+ is the pseudo-inverse of 𝐻𝐿. This approach, however, is a well-known ill-

posed problem due to limitations in the number of measurement points, as well as the 

presence of noise and measurement errors (Mao et al., 2010; H. P. Zhu et al., 2014). 

Another way to reconstruct the unknown external force is to minimize the error by the 

ordinary least squares (OLS) method as 

𝑚𝑖𝑛 ‖𝐻𝐿𝐹𝑟𝑒𝑐 + 𝐴𝑅𝑋0 − 𝑌‖2
2                      (4.12) 

After obtaining the predicted external force, Eq. (10) can also be employed to 

reconstruct the unobserved structural response. Through defining the observed 

structural response as 𝑌1 and the unobserved structural response as 𝑌2, according to Eq. 

(4.10), the derivation relationships between 𝑌1, 𝑌2 and 𝐹 are listed as 

{
𝑌1 = 𝐻𝐿1𝐹 + 𝐴𝑅𝑋0
𝑌2 = 𝐻𝐿2𝐹 + 𝐴𝑅𝑋0

                             (4.13) 

With the external force 𝐹𝑟𝑒𝑐  reconstructed from Eq. (4.12), the unknown structural 

response 𝑌2 can be reconstructed as 

𝑌2𝑟 = 𝐻𝐿2𝐹𝑟𝑒𝑐 + 𝐴𝑅𝑋0                         (4.14) 

4.2.3 Tikhonov regularization 

Regularization is a commonly used technique in optimization problems to ensure 
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smoothness and convergence of solutions by adding additional constraints. In the study 

of force reconstruction, noise in the measured data may significantly degrade the 

accuracy of the external force reconstructed from Eq. (4.12). A technique called 

Tikhonov regularization (Gockenbach, 2016) is often applied to keep the solution stable 

and reduce the influence of noise. The force reconstruction with Tikhonov 

regularization (Mao et al., 2010) is calculated as 

𝑚𝑖𝑛‖𝐻𝐿𝐹𝑟𝑒𝑐 + 𝐴𝑅𝑋0 − 𝑌‖2
2 + 𝛼‖𝐿𝐹𝑟𝑒𝑐‖2

2            (4.15) 

Here, 𝛼 is the regularization parameter which controls the balance between the 

goodness of fitness and the regularization term. The classic method to determine the 

optimal value of parameter 𝛼 is the L-curve method (Johnston & Gulrajani, 2000). By 

setting various 𝛼 values and employing an optimizer to solve Eq. (4.15), a series of 

value pairs (𝑙𝑜𝑔(‖𝐻𝐿𝐹𝑟𝑒𝑐 + 𝐴𝑅𝑋0 − 𝑌‖2
2), 𝑙𝑜𝑔(‖𝐿𝐹𝑟𝑒𝑐‖2

2))  for different 𝛼  values is 

obtained. These value pairs can be plotted and fit into an L-shaped curve. On one side 

of this curve, the method can fit the observed data well, but the solution may be less 

smooth, potentially indicating overfitting to noise. On the other hand, the solution is 

smoother, but the fit to the observed data is reduced. The optimal value of 𝛼 is typically 

chosen as the value corresponding to the "corner" of the L-curve, where the trade-off 

between data fit and solution smoothness is balanced. 

4.2.4 Physics-informed neural networks 

Physics-informed neural networks are a popular class of physics-informed 

machine learning methods that aim to incorporate physical information into deep neural 



 

91 

 

network models (Raissi et al., 2019). The key idea behind PINNs is to define a neural 

network 𝑁𝑁(𝑥, 𝑡)  that can approximate the solution 𝑢(𝑥, 𝑡)  of a mathematical 

governing equation. 

𝐷(𝑢(𝑥, 𝑡), 𝜃) = 𝑓(𝑥, 𝑡)                      (4.16) 

where 𝐷 is a mathematical operator controlled by parameter 𝜃, which can be a linear 

or nonlinear partial differential operator, integral differential operator, etc. To train the 

PINNs model for the forward problem, i.e., predicting the exact value of 𝑢(𝑥, 𝑡) given 

some constraints, a total loss function that consists of two parts is defined as 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑓 + 𝐿𝑜𝑠𝑠𝑢                     (4.17) 

where, 𝐿𝑜𝑠𝑠𝑓 is the loss function that penalizes the deviation of the neural network 

output from satisfying the governing equation as 

𝐿𝑜𝑠𝑠𝑓 =
1

𝑁𝑓
∑ ‖𝐷(𝑢(𝑥𝑓 , 𝑡𝑓), 𝜃) − 𝑓(𝑥𝑓 , 𝑡𝑓)‖

2𝑁𝑓
𝑖=1

          (4.18) 

Here, 𝑁𝑓 is the number of collocation points randomly sampled in the domain of the 

governing equation. The second term 𝐿𝑜𝑠𝑠𝑢 of Eq. (4.17) enforces the neural network 

output to satisfy the defined constraints by 

𝐿𝑜𝑠𝑠𝑢 =
1

𝑁𝑢
∑ ‖𝑢(𝑥𝑢, 𝑡𝑢) − 𝑢

∗(𝑥𝑢, 𝑡𝑢)‖
2𝑁𝑢

𝑖=1              (4.19) 

where, 𝑁𝑢 is the number of randomly sampled points on the constraints. 𝑢∗(𝑥𝑢, 𝑡𝑢) is 

the exact value given by the defined constraints. By minimizing the total loss 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 

using an optimizer, the PINNs model can learn to approximate the exact solution of the 

governing equation while satisfying the given constraints. 

For the inverse problem, where the goal is to discover the unknown parameter 𝜃 
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in the governing equation through some observations 𝑢∗(𝑥𝑚, 𝑡𝑚), the PINNs model can 

treat the unknown parameters 𝜃 as trainable variables that are initialized and learned 

alongside the neural network weights and biases. The total loss function for the inverse 

problem is defined as 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑓 + 𝐿𝑜𝑠𝑠𝑚                      (4.20) 

Here, 𝐿𝑜𝑠𝑠𝑓 is calculated by following Eq. (4.18) to enforce the neural network output 

to satisfy the governing equation (4.16). The additional term 𝐿𝑜𝑠𝑠𝑚  penalizes the 

deviation between the neural network predictions 𝑢(𝑥𝑚, 𝑡𝑚) and the observed values 

𝑢∗(𝑥𝑚, 𝑡𝑚) by 

𝐿𝑜𝑠𝑠𝑚 =
1

𝑁𝑚
∑ ‖𝑢(𝑥𝑚, 𝑡𝑚) − 𝑢

∗(𝑥𝑚, 𝑡𝑚)‖
2𝑁𝑚

𝑖=1             (4.21) 

where, 𝑁𝑚 is the number of observation points. By minimizing the total loss 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 

using an optimizer, the PINNs model can learn to approximate both the solution 𝑢(𝑥, 𝑡) 

and the unknown parameters 𝜃 in the governing equation of Eq. (4.16). The implanted 

mathematical constraints will guide the parameter 𝜃 to approach its exact value that 

best fits the observations 𝑢∗(𝑥𝑚, 𝑡𝑚). 

4.3 Methodology 

Consider a linear time-invariant structural system with 𝑑 degrees of freedom. The 

relationship between the system's dynamic response and the external force can be 

expressed using the Markov parameters described in Eq. (4.10). We propose a novel 

neural network framework called physics-informed Markov parameters (PI-MP) that 

combines the strengths of PINNs and the Markov parameters to reconstruct the external 
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force and the system response. The overall framework of PI-MP is shown in Fig. 4.1. 

 
Figure 4.1 The overall framework of the physics-informed Markov parameters 

As shown on the left side of Fig. 4.1, a deep neural network model is utilized to 

predict the external force 𝑓 acting on all degrees of freedom with the input of time 𝑡. 

In the filtering step, the predicted external force 𝑓 is transformed using the mapping 

matrix 𝐿  defined in Eq. (4.1) to obtain the filtered external force 𝐹𝐿  acting on the 

system. The matrix 𝐿  can be either determined (if the force location is known) or 

undetermined, in which case it can be discovered using the method described below. 

Next, the PI-MP framework employs automatic differentiation of the neural network 

model to calculate the derivative of 𝐹𝐿  with respect to the input 𝑡 . This derivative 

information will be used to construct the loss function in the next optimization step.  

The total loss function of the PI-MP framework consists of three parts. The first 

part is the loss function of the Markov parameters, calculated as the mean square error 

of the residual of Eq. (4.10) by 

𝐿𝑜𝑠𝑠𝑚𝑝 = ‖𝐻𝐿𝐹𝑝𝑟𝑒𝑑 + 𝐴𝑅𝑋0 − 𝑌𝑚‖2
2
                 (4.22) 
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where 𝐹𝑝𝑟𝑒𝑑 is the external force predicted by the neural network model, and 𝑌𝑚 is 

the measured structural response. By changing the settings of the 𝑅𝑎, 𝑅𝑣 and 𝑅𝑥 in 

Eq. (4.3), we can adapt Eq. (4.22) to different structural response (displacement, 

velocity, and acceleration) measurements. To prevent the neural network model from 

overfitting the noise in the measured data, a regularization term which penalizes the 

second-order derivative of 𝐹𝐿 with respect to time 𝑡 is introduced as 

𝐿𝑜𝑠𝑠𝑟𝑒𝑔 = ‖
𝜕2(𝐿𝐹𝑝𝑟𝑒𝑑)

𝜕𝑡2
‖
2

2

                        (4.23) 

When the 𝐿 matrix is not determined, i.e., the force application points are unknown, 

following the assumption that only a few degrees of freedom are subject to external 

forces, an additional term is added to the loss function to promote sparsity in the 𝐿 

matrix, as defined in 

𝐿𝑜𝑠𝑠𝐿 = ‖𝐿‖1                            (4.24) 

Finally, the total loss function of the PI-MP framework is the weighted sum of these 

three terms as  

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = ‖𝐻𝐿𝐹𝑝𝑟𝑒𝑑 + 𝐴𝑅𝑋0 − 𝑌𝑚‖2
2
+ 𝛼 ∙ ‖

𝜕2(𝐿𝐹𝑝𝑟𝑒𝑑)

𝜕𝑡2
‖
2

2

+ 𝛽 ∙ ‖𝐿‖1    (4.25) 

where, 𝛼  and 𝛽  are the weights of the regularization term and the 𝐿  matrix norm, 

respectively. 𝛼 controls the balance between the goodness of fit and smoothness of the 

predicted forces, which can be determined by the L-curve method described in Section 

4.2.3. 𝛽 controls the sparsity of the 𝐿 matrix, which is set to 0.01 according to our 

tests. 

When the 𝐿 matrix is determined, the 𝐿𝑜𝑠𝑠𝐿 also becomes a fixed value. To omit 
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this fixed value term in the loss function, the corresponding weight 𝛽 is set as 0. Then, 

a gradient descent-based optimizer such as Adam (Kingma & Ba, 2014) is employed to 

minimize the total loss function 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙, so that the outputs of the neural network 

model can approximate the exact external force. However, when the 𝐿 matrix is not 

determined, the optimal problem of 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 becomes more challenging. Due to the 

sparsity and the discontinuity of the diagonal values in the 𝐿 matrix, it is difficult to 

directly use a gradient descent-based optimizer to minimize 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙. To address this 

problem, in the PI-MP framework, we use a greedy algorithm combined with the Adam 

optimizer, as outlined in Algorithm 4.1, to minimize the total loss function 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙. 

After training the model using this optimization strategy, the PI-MP framework can 

accurately locate the position of the external force and predict the external force 𝐹𝑝𝑟𝑒𝑑 

from the neural network model. These predicted forces can then be used to reconstruct 

all unknown structural responses by following Eq. (4.10). 

Algorithm 4.1 Greedy algorithm with Adam optimizer for minimizing 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 

1. Initialize 𝐿 as a zero matrix 

2. Repeat 

Use Adam to minimize 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙, record the minimum loss as 𝐿𝑜𝑠𝑠𝑚𝑖𝑛  

Set 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 

For each inactivated diagonal element 𝐿𝑖𝑖 in 𝐿 matrix (i.e., 𝐿𝑖𝑖 = 0): 

        Activate 𝐿𝑖𝑖 by setting 𝐿𝑖𝑖 = 1, resulting in matrix 𝐿𝑖 
        Use Adam to minimize 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙, record the matrix 𝐿𝑖 and minimum loss 

𝐿𝑜𝑠𝑠𝑖 
    If 𝑚𝑖𝑛(𝐿𝑜𝑠𝑠𝑖) < 𝐿𝑜𝑠𝑠𝑚𝑖𝑛: 

        Update 𝐿 matrix by setting matrix 𝐿 = 𝐿𝑖, 𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐿𝑜𝑠𝑠𝑖) 
        Set 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑇𝑟𝑢𝑒 

3. Until 𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 

4. Return final 𝐿 matrix 

In the above PI-MP framework, we have described the processes to locate the 
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positions of external forces, reconstruct the time series of external forces, and 

reconstruct the unobserved structural responses using partial system response 

observations. However, there is still a challenge that needs further analysis. As the size 

of the Toeplitz matrix defined in Eq. (4. 9) increases linearly with the number of time 

steps and the degree of freedom of the structure, for long-term response observation of 

structures with large degrees of freedom, the entire Toeplitz matrix will consume a 

significant amount of computer memory resources, which will reduce the computation 

efficiency. To address this issue, in the PI-MP framework, we employ a moving window 

technique to decompose the entire long time series data into short fragments. 

Specifically, the long-term structural response data is divided into windows of hundreds 

or thousands of time steps (depending on the size of available computer memory), with 

a certain overlap between adjacent windows. Within each window, the PI-MP 

framework is employed to reconstruct the corresponding external forces and structural 

responses. Finally, the external forces and responses from all the windows are spliced 

together to obtain the results for the entire time series. This moving window technique 

avoids the need to compute the entire Toeplitz matrix at once, which helps to conserve 

computer memory resources and maintain the efficiency of the PI-MP framework. 

4.4 Numerical cases 

To assess the accuracy and capabilities of the proposed PI-MP framework, three 

numerical examples are presented in this section. We first consider a 4-degree-of-

freedom system and compare the performance of the PI-MP framework against the 
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ordinary least squares method (described in Section 4.2.2) and the Tikhonov 

regularization method (described in Section 4.2.3). The impact of factors such as the 

number and positions of structural response measurement points, as well as the noise 

level in the response data, on the reconstruction accuracy are also investigated. 

Additionally, this case also illustrates how to accurately identify the force location when 

it is unknown. The second case involves reconstructing the external forces and dynamic 

responses of a cantilever beam from noisy measurements. In the third case of a truss 

system, the PI-MP framework is used to discover the external force location and 

reconstruct the external forces and structural responses from noisy measurements. For 

all three numerical experiments, a neural network model with two hidden layers of 100 

neurons and a sine activation function is built to approximate the unknown external 

forces, respectively. The Adam optimizer with a learning rate of 0.001 is employed to 

minimize the total loss function. 
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4.4.1 4-degree-of-freedom system 

 
Figure 4.2 4-degree-of-freedom system 

Consider a 4-degree-of-freedom system as shown in Fig. 4.2. The mass of each 

degree of freedom and the stiffness of the connections are presented in the figure. The 

damping of the structure is set as 𝐶 =  0.005 ∗  𝐾 +  0.001 ∗  𝑀. The system vibrates 

under the external force action on 𝑀4  as shown in Fig. 4.3. Using the Newmark 

method with a time step of 0.001 s, the structural response is calculated for a duration 

of 1 s, which serves as the observation data. To simulate observation data with different 

noise levels, Gaussian noise is added to the calculated response data as  

𝑦𝑛𝑜𝑖𝑠𝑒 = 𝑦𝑐𝑎𝑙 ∗ (1 + 𝜂 ∗ 𝑁(𝑛, 𝑚))                   (4.26) 

where, 𝑦𝑛𝑜𝑖𝑠𝑒 is the noisy observed data, 𝑦𝑐𝑎𝑙 is the calculated data from the Newmark 
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method,and 𝜂  is the noise level ranging from 0 to 1. 𝑁(𝑛,𝑚)  is a random number 

matrix of shape (𝑛,𝑚) generated using a standard Gaussian distribution. Here, 𝑛 is 

the length of the input data, and 𝑚 is the system degree of freedom as 𝑚 = 4. 

Let us first consider the case where the point of force application is known, i.e., 

𝐿=diag (0, 0, 0, 1). The calculated acceleration data of M1 and M3 are used as the 

observation data, with noise levels of 0%, 1%, 5%, and 10%, respectively. Using the L-

curve test, the weight of the regularization term 𝛼 is set to 10−8, and the weight of 

the 𝐿  matrix norm 𝛽  is set to 0.01. The Adam optimizer is employed for 20,000 

iterations to minimize the total loss function. Since the input data has only 1,000 time 

steps and 4 degrees of freedom, the entire input data can be used as a single window for 

the calculations. For comparison, the ordinary least squares method described in Eq. 

(4.12) and the Tikhonov regularization method described in Eq. (4.15) are also applied 

to predict the unknown force. The weight of the regularization term in the Tikhonov 

regularization method is set to 10−7. The reconstructed external forces using the three 

methods are plotted in Fig. 4. 3, with 0% and 10% noisy input data, respectively. 
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Figure 4.3 Reconstructed external forces (Top: 0% noise input, bottom: 10% noise 

input) 

Fig. 4.3 shows that when the input data is noise-free, all three methods are able to 

accurately reconstruct the unknown external force. However, when there is 10% noise 

in the input data, the OLS method and Tikhonov regularization method tend to overfit 

the noise, while the PI-MP method can effectively suppress the noise overfitting. To 

quantify the accuracy of the results, the relative L2 error of the solutions is calculated 

by following Eq. (4.27). The relative L2 errors of the three methods with input data of 

different noise levels are shown in Table 4.1. 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐿2 =
√∑(𝑓𝑝𝑟𝑒𝑑−𝑓𝑒𝑥𝑎𝑐𝑡)

2

√∑𝑓𝑒𝑥𝑎𝑐𝑡
2

                   (4.27) 

Table 4.1 Relative L2 errors in reconstructed external forces 
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Method 
Noise level 

0% 1% 5% 10% 

OLS 11.147% 11.126% 21.785% 51.774% 

Tikhonov regularization 9.088% 9.355% 17.936% 31.246% 

PI-MP 3.502% 4.394% 7.410% 9.104% 

 

The results in Table 4.1 show that as the noise level increases, the errors in the 

external forces reconstructed by the three methods also increase. However, the PI-MP 

method consistently achieves more accurate results than the other two methods. In order 

to compare the computational efficiency of the above methods, the computation time 

of the proposed PI-MP method and benchmark methods including the OLS method and 

Tikhonov regularization method was recorded. The results show that the PI-MP method 

took 83.69 seconds to complete 20,000 iterations, while the OLS method and Tikhonov 

regularization method took 104.64 seconds and 105.80 seconds to complete 20,000 

iterations respectively. In terms of computational efficiency, PI-MP has a slight 

advantage over the OLS method and Tikhonov regularization. 

To further analyze the impact of the number and positions of measurement points 

on the accuracy of the PI-MP method, 15 different measurement point schemes are set 

up, as listed in Table 4.2. The input data for these schemes is the noise-free 

measurement of the acceleration at the positions indicated in the table. 

Table 4.2 Relative L2 error of external force reconstruction for different measurement 

point schemes 

Measurement 

location 

Relative L2 

error 
  

Measurement 

location 

Relative L2 

error 

1 79.573%  2,4 0.266% 
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2 33.770%  3,4 0.236% 

3 3.085%  1,2,3 3.619% 

4 0.250%  1,2,4 0.239% 

1,2 37.809%  1,3,4 0.279% 

1,3 3.257%  2,3,4 0.226% 

1,4 0.276%  1,2,3,4 0.245% 

2,3 3.502%       

 

From Table 4.2, it is observed that increasing the number of measurement points 

can significantly improve the accuracy of force reconstruction of the PI-MP method. 

When the number of measurement points is limited, the accuracy of force 

reconstruction can also be improved by bringing the measurement points closer to the 

point of force application.  

When the L matrix is unknown, i.e., the force application points are undetermined, 

PI-MP can be employed to identify the exact force location. In this test case, external 

forces are applied to M2 and M4, and the Newmark method is used to calculate the 

vibration responses of the structure under these external forces. The total calculation 

duration is 1s, with a time step of 0.001 s. The calculated acceleration data at M1 and 

M3 are used as the noise-free measurement data, and 1% noise is added to make the 

noisy input data for the PI-MP method. Using the greedy algorithm and Adam optimizer 

described in Algorithm 1, the PI-MP method successfully identified the exact value of 

the 𝐿  matrix to discover the exact force location. The detailed discovery process is 

shown in Fig. 4.4. 
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Figure 4.4 Process of discovering the L matrix 

(The settings of force positions are shown in brackets, and the numbers below 

represent the corresponding loss values) 

4.4.2 Cantilever beam  

In this case, a cantilever beam structure shown in Fig. 4.5 is considered. The length, 

width, and thickness of the beam are 1 𝑚 , 50 𝑚𝑚 , and 5 𝑚𝑚 , respectively. The 

material of the beam is steel, with a density of 7850 𝑘𝑔/𝑚3 and an elastic modulus of 

206 𝐺𝑃𝑎. Using the finite element model, this cantilever beam is discretized into 10 

elements. The beam elements are considered as two-node Euler-Bernoulli beams with 

a consistent mass matrix. This beam model has 11 nodes and 22 degrees of freedom 

(vertical displacement and rotation). The damping ratio of the first two modes is set to 

0.5%. The displacement and rotation of the cantilever beam are constrained at the left 

end (node 0), and a vertical dynamic force is applied on the right end (node 10) to 

induce vibration. Using the Newmark method, the vibration response of the beam under 

the external force shown in Fig. 4.6 is calculated. The total calculation duration is 2s, 

and the time step is 0.0001 s. To simulate observation data with noise, different levels 
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of Gaussian noise are added to the calculation results according to Eq. (4.26).  

 
Figure 4.5 Finite element model of the cantilever beam 

Let us first consider the case where the point of force application is known, i.e., 

the 𝐿 matrix is determined. The calculated vertical acceleration data of nodes 5 and 9 

are used as the observation data, with noise levels of 0%, 1%, 5%, and 10%, respectively. 

According to the L-curve test, the weight 𝛼 of the regularization term is set as 10−6, 

and the weight 𝛽 of the 𝐿 matrix norm is set to 0. The Adam optimizer with a learning 

rate of 0.001 is used to minimize the total loss function, and the number of iterations is 

10,000.  

Since the input data has 20,000 time steps and 22 degrees of freedom, it cannot be 

directly calculated as a single window due to our computer memory limitations. 

Therefore, the calculation is performed in windows of 1,000 time steps with a 50% 

overlap rate, resulting in a total of 40 windows covering the 2-second duration. Using 

the input data with different noise levels, the external force is successfully reconstructed 

as shown in Fig. 4.6. The relative L2 errors of the reconstructed external force compared 

to the exact data with 0%, 1%, 5%, and 10% noise input are 2.240%, 4.090%, 12.594%, 

and 23.990%, respectively. It is found that as the noise level in the data increases, the 
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error in the reconstructed force also increases. At low noise levels (≤1%), the PI-MP 

method can accurately reconstruct the external force time series.  

 
Figure 4.6 Reconstructed external force with input data of different noise levels 

With the reconstructed external forces shown in Fig. 4.6, the unmeasured node 

responses of the cantilever beam can be reconstructed by following Eq. (4.14). For 

example, Fig. 4.7 shows the predicted vertical displacements of all nodes and the errors 

in the predicted values when using 1% noise input data. Fig. 4.7 shows that the 

reconstructed displacements from the PI-MP method are highly consistent with the 

exact values. 



 

106 

 

 
 

Figure 4.7 Reconstructed vertical displacement (top) of the cantilever beam and error 

in the reconstructed vertical displacement (bottom)  

4.4.3 Plane truss 

Consider a two-dimensional plane truss system composed of 15 rods as shown in 

Fig. 4.8. Each rod is 10 𝑚 long and made of steel with a density of 7850 𝑘𝑔/𝑚3 and 

an elastic modulus of 210 𝐺𝑃𝑎. The cross-section of the rods is 5 cm*5 cm. The truss 

is supported at the left and right corners as the lateral and vertical displacements of 

nodes 0 and 4 are fixed. A finite element model of this truss is established with 9 nodes 

and 18 degrees of freedom. Truss members are considered as 2-node linear elements in 

the X-Y plane with consistent mass matrices. The damping ratio of the first two modes 

of the truss is set to 0.5%. The truss vibrates under the action of a force at a random 

location. The Newmark method is used to calculate the vibration response of the truss 
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as the observation data, with a duration of 1 s and a time step of 0.0001 s. The vertical 

acceleration data of nodes 5 and 6 with 1% noise is used as observations. Since the 

position of the force is unknown, the PI-MP method is used to first discover the exact 

𝐿 matrix to determine the force position and then reconstruct the time series of the 

external force. 

 
Figure 4.8 A plane truss system 

Due to computer memory limitations, the calculation is performed in windows of 

1,000 time steps with a 50% overlap, resulting in a total of 20 windows. The first 

window is used to discover the 𝐿  matrix, and then the entire external force is 

reconstructed by sequentially calculating 20 windows. According to the L-curve test, 

the weight of the regularization term 𝛼 in the loss function is set to 10−8, and the 

weight of the 𝐿 matrix norm 𝛽 is set to 0.01. The iteration number in each window is 

10,000. The process of discovering the force position is shown in Fig. 4.9. 
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Figure 4.9 The search process of the force position 

(The nodes and directions of the force settings are in brackets, and the numbers 

below are the corresponding loss values) 

Through the search process shown in Fig. 4.9, it is successfully discovered that the 

force is acting on node 2 in the 𝑦 direction. Using the discovered 𝐿 matrix, the entire 

time series of the external force is reconstructed through 20 windows and plotted in Fig. 

4.10. 

 
Figure 4.10 Reconstructed external forces using the PI-MP method 
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From Fig. 4.10, it is shown that the PI-MP method accurately reconstructs the 

entire time series of the external forces. Using the reconstructed external force, other 

unmeasured responses of the truss are also accurately reconstructed, such as the vertical 

displacement and velocity of nodes 2 and 3, as shown in Fig. 4.11. 

 
Figure 4.11 Reconstructed vertical displacement (top) and velocity (bottom) of nodes 

2 and 3 
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4.5 Experimental validation 

 
Figure 4.12 Vibration test of a beam 

A vibration test of a beam is carried out in the laboratory as shown in Fig. 4.12. 

The mechanical model of the beam is also shown in Fig. 4.13. The total length of the 

beam is 130 cm, and the free section length is 126 cm. The beam width is 31 mm, and 

the thickness is 5 mm. The material of the beam is aluminum alloy with a density 

measured as 2774 𝑘𝑔/𝑚3  and an initial elastic modulus set to 68.5 𝐺𝑃𝑎 . The 

damping of the structure is set as  𝐶 =  𝑎 ∗  𝑀 +  𝑏 ∗  𝐾 , where 𝑎  and 𝑏  are the 

damping parameters to be determined. The beam is fixed to the supports with bolts at 

the left and right ends. Four accelerometers are installed on the beam to measure the 

vertical vibration, and a shaker equipped with a force sensor is installed to generate 

dynamic force to make the beam vibrate. The specific location and mass of the sensors 

are shown in Table 4.3. All acceleration and force data are collected by a Dewesoft data 

logger with a sampling frequency of 5,000 Hz. 

A finite element model of the beam is built by discretizing the free section of the 
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beam into 2 cm beam elements. The beam element is a 2-node Euler-Bernoulli beam 

element with a consistent mass matrix. The model has a total of 63 elements, 64 nodes, 

and 128 degrees of freedom. The vertical displacement of the leftmost node 0 and the 

rightmost node 63 is constrained to 0. Semi-rigidity at the two supports is considered 

as rotational springs. The weights of the four accelerometers and the force sensor are 

also considered as additional masses at the nodes in the finite element model. 

 
Figure 4.13 Mechanical model of the test beam 

Table 4.3 Sensor positions and weights 

Sensor 𝑥 
Weight 

 (Including mounting base) 

Accelerometer 1 30 cm 24.3 g 

Accelerometer 2 64 cm 24.3 g 

Accelerometer 3 84 cm 24.4 g 

Accelerometer 4 104 cm 24.6 g 

Force sensor 74 cm 24.4 g 

We first input a white noise excitation to the beam and record the structural 

response measured by four accelerometers for finite element model update. The 

frequency response function curve of the measured acceleration data is calculated, and 

the 10-100 Hz interval is set as the benchmark to update the parameters of the finite 

element model. Fig. 4.14 shows the FRF curve calculated by the finite element model 

after the model update and the measured benchmark. Table 4.4 shows the parameter 
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settings after the model update. 

 
 Figure 4.14 Measured FRF and calculated FRF from FEM model  

 (from left to right: accelerometers 1, 2, 3, 4) 

Table 4.4 Parameter settings after model update 

Parameter Initial value Scaling factor 
Updated 

value 

Elastic modulus 68.500 𝐺𝑃𝑎 0.8764 60.03 𝐺𝑃𝑎 

Damping coefficient 𝑎 0.005 1.6189 0.00809 

Damping coefficient 𝑏 0.005 0.0184 0.0000919 

Rotational stiffness of left 

support 
100 𝑘𝑁/𝑚 0.0650 6.50 𝑘𝑁/𝑚 

Rotational stiffness of right 

support 
100 𝑘𝑁/𝑚 0.0946 9.46 𝑘𝑁/𝑚 

After the model is updated, we input another white noise excitation to the structure 

again and measure the acceleration responses with the four accelerometers as shown in 

Fig. 4.15. The data duration is 0.1 s, the sampling frequency is 5,000 Hz, and the data 

length is 500 time steps. The structural vibration collected by accelerometers 1, 2, and 

3 as the input of the PI-MP method is used to reconstruct the dynamic force applied by 

the shaker to the structure. The force data collected by the force sensor is used as the 

benchmark for the force reconstruction result. 
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Figure 4.15 Measurement values from four accelerometers 

We divide the above 500 time steps into 10 windows of length 100 time steps and 

an overlap of 50%. In each window, a neural network model with 2 hidden layers of 

100 neurons is employed to predict the unknown external force, and the activation 

function of the neural network model is the sine function. The optimizer Adam with a 

learning rate of 0.001 is employed to minimize the loss function. In the loss function, 

according to the L curve test, the weight 𝛼 of the regularization term is set to 10−8. 

Since the 𝐿 matrix has been determined, the weight 𝛽 of the L matrix norm is set to 0. 

In each window, the neural network model is trained for 20,000 iterations.  

The reconstructed external force and measured values are shown in Fig. 4.16. It is 

shown that the reconstructed external force is highly consistent with the measured value, 

but there are still some numerical errors, which may come from the finite element model 
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and measurement noise. Using the reconstructed external force, the acceleration 

response at accelerometer 4 is also successfully reconstructed, which is shown in Fig. 

4.17. 

 
Figure 4.16 Reconstructed external force and measured external force 

 
Figure 4.17 Reconstructed acceleration response and measured values of 

accelerometer 
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4.6 Summary 

This study presents a novel method called physics-informed Markov parameters 

(PI-MP) for reconstructing structural dynamic forces and responses by integrating 

physics-informed neural networks (PINNs) and Markov parameters in the state space. 

In the PI-MP framework, the strong representational capability of deep neural networks 

is leveraged to predict unknown external forces. By simultaneously minimizing a loss 

function based on Markov parameters and a regularization term of the second-order 

derivative of predicted forces, PI-MP successfully couples the measured structural 

responses to reconstruct the unknown forces while maintaining smoothness and 

avoiding noise over-fitting. Using the reconstructed forces and the Markov parameters, 

all the dynamic responses of the structure can also be reconstructed. Furthermore, by 

adding an L1 norm term of the force mapping matrix to the total loss function and 

designing an optimization strategy coupling a greedy algorithm and the Adam optimizer, 

PI-MP can successfully locate the force positions when they are unknown. 

Through a four-degree-of-freedom case, PI-MP is demonstrated to achieve more 

accurate force reconstruction results even in noisy inputs than traditional methods such 

as ordinary least squares and Tikhonov regularization. Increasing the number of 

response measurement points and moving the measurement points closer to the force 

application point can increase the accuracy of PI-MP reconstruction. Additional 

numerical cases of a cantilever beam and a planar truss, as well as an experimental case 

on a beam, have also been conducted to demonstrate the effectiveness and accuracy of 
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the proposed method. 
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Chapter 5 PI-FFNN for vibration based structural damage 

identification with unknown external forces  

5.1 Introduction 

In-service infrastructure inevitably suffers from damage caused by environmental 

factors and inherent material degradation. These external or internal damages lead to a 

decline in the mechanical performance of the structure and pose a threat to its normal 

functionality. Structural health monitoring technologies, which can timely detect and 

assess the severity of damage at an early stage, have been widely applied in various 

infrastructures. By utilizing SHM technologies, damaged engineering structures can be 

repaired in a timely manner, which can reduce maintenance costs and prevent structural 

failures, thereby improving the safety and reliability of structural systems. Over the past 

decade, vibration-based damage detection (Avci et al., 2021; Das et al., 2016; Sun et 

al., 2023) has been extensively researched due to its ease of implementation and 

capability for global damage detection. These vibration-based damage detection 

methods are based on the fact that structural damage will lead to changes in the 

vibration characteristics of the structure, which is reflected in the natural frequency 

(Yang & Wang, 2010), mode shape (Yazdanpanah1a & Seyedpoor, 2015) and vibration 

data (Shang et al., 2021). Based on this, researchers have conducted studies to try to 

explore the vibration features that represent the occurrence of structural damage. The 

majority of existing methods can be broadly divided into two categories: physics-driven 
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methods and data-driven methods. 

Physics-driven methods primarily exploit the physical laws of the structural 

system, such as motion equations and constitutive models, to extract information about 

the structural damage evolution from measured data. The most common practice of 

physics-driven structural damage identification method is finite element model (FEM) 

updating (Arora, 2011). In the model updating approach, a FEM that describes the 

physical laws of the structural system is first constructed to predict the dynamic 

response of the structure with measured external forces input. In the FEM, the structural 

mechanical parameters are updated by minimizing the difference between the predicted 

vibration response and the measured data. By comparing the updated model parameters 

with the parameters of the structural health state, whether the structure is damaged can 

be identified. This process was carried out by (Hua et al., 2009) to detect structural 

damage in cable-stayed bridges and achieved satisfactory results. Additionally, 

Jafarkhani and Masri (Jafarkhani & Masri, 2011) developed a stochastic optimization 

algorithm to improve the global optimization process of model updating, which 

enhances the accuracy of damage identification. Model updating has also been utilized 

in (Mousavi et al., 2021), with the detection results validated through numerical and 

laboratory tests.  

Although the physics-driven approach has been extensively studied and has 

formed a mature implementation process, as mentioned in (Ereiz et al., 2022), the 

foundation of the physics-driven approach relies on an accurate FEM model that can 
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correctly reflect the structural vibration characteristics. However, this is difficult to 

achieve due to the uncertainties and complex interactions in real structural systems. 

Another limitation of the physics-driven approach is that it is an input-output damage 

detection method (Wang et al., 2018), which means that not only the vibration response 

of the structure but also the external force input of the structure needs to be accurately 

measured. However, in-service engineering structures are often affected by complex 

external forces, and it is impossible to obtain precise information on all the external 

forces applied. In addition, due to the limitations of the observation equipment, the 

noise and uncertainty in the measurement data will also seriously affect the performance 

of physics-driven damage identification (Hua et al., 2012). 

On the other hand, data-driven methods represented by machine learning (ML) 

have developed rapidly in recent years. ML models such as support vector machines 

(Gui et al., 2017) and neural network models (Pan & Yang, 2020), rely on measurement 

data for training, studying, and solving structural damage identification by considering 

it as a pattern recognition problem. Unlike physics-driven models, ML methods no 

longer rely on precise physical models but directly discover the potential relationship 

between the vibration characteristics of observed data and structural damage. This 

feature enables ML models to identify structural damage more accurately than physics-

driven methods under the influence of fuzzy physical models and noisy measurement 

data. For example, Ghiasi et al. (Ghiasi et al., 2016) took advantage of this feature of 

ML methods and built a least square support vector machine to detect damage in a four-
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story steel structure and a 120-bar dome truss. Delgadillo and Casas (Delgadillo & 

Casas, 2022) also successfully discovered the degradation of the mechanical properties 

of the bridge structure from noise measurements based on the ML method of the 

improved completed ensemble empirical mode decomposition. 

Although data-driven methods have made some promising progress, the 

drawbacks from data scarcity, low fidelity, and tedious feature engineering still pose 

challenges to their reliability. Generally, training a stable and reliable ML model 

requires a large amount of training data, which is often difficult to obtain in practical 

engineering. Even if researchers collect enough training data, the generalization ability 

of machine learning models is easily affected by the imbalance of damage severity. For 

example, for engineering structures that are frequently maintained such as rails and 

bridge cables, vibration measurement data of the healthy state of the structure is easy 

to obtain, while training data of multiple damage states is very scarce. In addition, noise 

from sensors, acquisition equipment, and the environment can also have a negative 

impact on the accuracy of model predictions (Ding et al., 2019). The uncertainty in 

model predictions comes not only from noisy training data, but also from the inherent 

‘black’ box mechanism of machine learning models, where the physical laws of the 

model are unknown and the predicted output depends on data fitting (Rudin, 2019). 

Lastly, how to select appropriate damage-related features and machine learning models 

is also an open question worth studying for data-driven methods (Peng et al., 2022). 

Currently, this problem usually relies on researchers' prior knowledge and experience 
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to determine, which also poses challenges to the application of ML models.  

In order to address the above challenges in existing ML methods, a promising 

solution is to incorporate physical knowledge into the deep learning process, which is 

also called physics-informed machine learning (PIML). By seamlessly integrating the 

ML framework with physical information described as prior information of various 

equations, PIML has demonstrated strong applicability in many fields of physics and 

engineering. Recently, the application of PIML in dynamic response prediction and 

structural damage identification in structural engineering has also received increasing 

attention. (Lai et al., 2021) exploits a new physics-informed neural ordinary differential 

equations (NODE) to perform linear/nonlinear structure identification. The research 

results show that the NODE model integrating physical information can successfully 

learn the highly nonlinear behaviors of complex systems. (Jeong et al., 2023) proposes 

a novel physics-informed neural network-based topology optimization framework that 

can obtain optimized topology without labeled data or FEA, even in various types of 

complex domains. (R. Zhang et al., 2020b) introduces an innovative physics-informed 

multi-LSTM network model for metamodeling of nonlinear structural systems with 

scarce data. Experimental results show that embedded physics can alleviate the 

overfitting problem in regular LSTM models, reduce the need for large training datasets, 

and improve the robustness of trained models, leading to more reliable predictions with 

extrapolation capabilities. (Fangyu Liu et al., 2023) applied a physics-informed long 

short-term memory (PI-LSTM) network to structural response modeling by 
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incorporating physics constraints into regular LSTM. Through an SDOF system and a 

six-story building case, the proposed PI-LSTM network exhibited a more concentrated 

and higher accuracy performance. 

Although these developed PIML methods for structural dynamics successfully 

integrate physical information and machine learning frameworks to enable models to 

be trained from small amounts of observed data. However, these methods still cannot 

get rid of their dependence on data and are still semi-supervised or supervised learning 

methods. In these existing PIML methods for damage identification, training data with 

structural damage labels still need to be obtained from simulations or laboratory tests, 

which significantly limits the applicability of such algorithms to actual engineering. To 

address these limitations, this study proposes a physics-informed Fourier feature neural 

network (PI-FFNN) framework to reversely identify the structural damages from 

vibration response observations without any damage labels and force measurement. In 

this framework, a Fourier-featured neural network is employed to represent the 

unknown external force input. The structural damage index is embedded in the neural 

network model as a trainable parameter and trained together with the model parameters. 

The physical information described as the governing equations of structural vibration 

is integrated into the framework as prior information by building a mapping relationship 

between external forces, structural parameters, and calculated vibration responses. The 

neural network model and damage index are trained by minimizing the difference 

between the calculated structural response and the vibration observation. The PI-FFNN 
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framework is an output-only detection method that does not require measurements of 

external forces as input. By integrating the governing equation into the neural network 

model, the PI-FFNN framework can complete stable training without relying on any 

labeled data. The basic mechanism of PINNs in the framework also enhances the 

robustness of the PI-FFNN framework to noisy measurement data.  

The main contributions of this study are: (1) A new neural network framework that 

incorporates physics knowledge into deep learning to identify structural damage 

without damage label data. This physics and data-coupled architecture can explore and 

retain damage-sensitive characteristics while complying with the physical laws of the 

structural system. (2) The proposed method does not require external force 

measurement. In contrast, the force can be reconstructed from the output of the FFNN 

model. (3) The embedding of the Fourier feature layer in the neural network enhances 

the multi-frequency feature capability of the PINNs model, which can improve the 

model's representation of the complex external force. (4) Numerical studies on beam 

and plane truss structures and experimental tests have demonstrated the accuracy and 

stability of the proposed PI-FFNN framework. Test results prove that the PI-FFNN can 

accurately detect structural damage from only a small amount of vibration measurement 

even noise.  

The rest of this study is organized as follows: In Section 2, the basics of structural 

motion equations and PINNs are briefly introduced. Section 3 detailly introduces our 

proposed PI-FFNN framework for damage detection. Two numerical experiments are 
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carried out in Section 4 and a laboratory test is presented in Section 5. Lastly, the whole 

study is concluded in section 6. 

5.2 Background 

5.2.1 Motion equation of structural system 

The motion equation of a linear structure system with 𝑛 degrees of freedom can 

be expressed as 

𝑀𝑥̈(𝑡) + 𝐶𝑥̇(𝑡) + 𝐾𝑥(𝑡) = 𝐿 ∙ 𝐹(𝑡)               (5.1) 

where 𝑀, 𝐾, and 𝐶 are the mass matrix, stiffness matrix, and damping matrix of the 

structure, 𝐹(𝑡)  is the external forces vector applied to the structure, and 𝐿  is the 

mapping matrix for the forces, which is a diagonal Boolean matrix to determine where 

the force acts. 𝑥̈ , 𝑥̇ , and 𝑥  represent the acceleration, velocity, and displacement 

responses of the structure, respectively. Traditionally, numerical integration methods 

are utilized to obtain the vibration response of the structure by solving Eq. (5.1). Among 

these numerical methods, the Newmark-beta method is widely applied due to its good 

numerical stability and ease of use. In this study, the Newmark-beta method is also 

adopted to calculate the vibration response of the structure. At each time step in the 

Newmark-beta method, the following four equations are established as 

𝑀𝑥̈𝑛 + 𝐶𝑥̇𝑛 + 𝐾𝑥𝑛 = 𝑓𝑛                      (5.2) 

𝑥̇𝑛+1 = 𝑥̇𝑛 + (1 − 𝛾) ∆𝑡 𝑥̈𝑛 + 𝛾 ∆𝑡 𝑥̈𝑛+1             (5.3) 

𝑥𝑛+1 = 𝑥𝑛 + ∆𝑡 𝑥̇𝑛 +
∆𝑡2

2
((1 − 2𝛽) 𝑥̈𝑛 + 2𝛽 𝑥̈𝑛+1)       (5.4) 

and 
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𝑀𝑥̈𝑛+1 + 𝐶𝑥̇𝑛+1 + 𝐾𝑥𝑛+1 = 𝑓𝑛+1              (5.5) 

Here, 0 ≤ 𝛾 ≤ 1 and 0 ≤ 2𝛽 ≤ 1 are the control parameters of the Newmark-beta 

method. By solving the above four equations, the structural response (𝑥𝑛+1 , 𝑥̇𝑛+1 , 

𝑥̈𝑛+1 ) can be recursively calculated using the current structural state (𝑥𝑛 , 𝑥̇𝑛 ) and 

external force input (𝑓𝑛, 𝑓𝑛+1). By setting different value combinations of 𝛾 and 𝛽, 

the Newmark-beta can become an explicit or implicit method, such as the explicit 

central difference scheme (𝛾 = 0.5, 𝛽 = 0) and implicit average acceleration scheme 

(𝛾 = 0.5, 𝛽 = 0.25).  

Vibration-based structural damage identification usually assumes that structural 

damage will cause changes in structural parameters (such as stiffness, mass, and 

damping), which in turn will change the vibration characteristics of the structure. In this 

study, the stiffness reduction is considered as damage to the structure. A set of scalar 

variables is utilized to represent the stiffness reduction rate of the given structure. The 

damaged stiffness is updated as 

𝑘𝑖
𝑑 = (1 − 𝑧𝑖) ∗ 𝑘𝑖

0                       (5.6) 

Here，𝑘𝑖
𝑑  is the damaged stiffness value of the 𝑖 th element and 𝑘𝑖

0  is the initial 

stiffness value. The 𝑧𝑖  represents the stiffness reduction index, ranging from 0 (no 

damage) to 1 (complete damage). In general, the vibration-based structural damage 

detection method is designed to iteratively update the physical parameters by 

minimizing the differences between the calculated vibration characteristics (frequency 

and mode shape) or time series with the measured response. However, in the physics-
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data coupling method, the calculated structural response will not only be consistent with 

the measured data, but also inherently satisfy the governing equation, thereby 

improving the accuracy and reliability of damage identification.  

5.2.2 Physics informed neural networks 

PINNs (Raissi et al., 2019) is a deep learning framework designed to solve forward 

and inverse problems of linear and nonlinear partial differential equations as 

𝐷(𝑢(𝑥, 𝑡), 𝑥, 𝑡;  𝜃) = 𝑓(𝑢(𝑥, 𝑡), 𝑥, 𝑡)                     (5.7) 

Here, 𝐷 is a differential operator controlled by the parameter 𝜃. 𝑢(𝑥, 𝑡) is the solution 

of the equation dependent on variables 𝑥  and 𝑡 , and 𝑓  is the source term. In the 

forward problem of partial differential equations, where boundary and initial conditions 

are imposed to calculate the solution of 𝑢 , the PINNs framework utilizes a neural 

network to approximate 𝑢(𝑥, 𝑡)  with inputs 𝑥  and 𝑡 . A loss function is formulated 

based on the residual of the governing equation, defined as 

ℒ𝑓 = ∑ [𝐷(𝑢𝑝𝑟𝑒𝑑(𝑥𝑖
𝑓
,  𝑡𝑖

𝑓
), 𝑥𝑖

𝑓
, 𝑡𝑖
𝑓
;  𝜃) − 𝑓(𝑢𝑝𝑟𝑒𝑑(𝑥𝑖

𝑓
, 𝑡𝑖
𝑓
), 𝑥𝑖

𝑓
, 𝑡𝑖
𝑓
)]
2𝑁𝑓

𝑖=1
   (5.8) 

Here, (𝑥𝑖
𝑓
,  𝑡𝑖

𝑓
) are collocation points sampled from the equation's definition domain 

to measure the residual error of the model predictions 𝑢𝑝𝑟𝑒𝑑  on the governing 

equations. Additionally, a constraint-based loss function is defined to measure the 

residual error of the model prediction on the constraints as 

ℒ𝑐 = ∑ [𝑢𝑝𝑟𝑒𝑑(𝑥𝑖
𝑐,  𝑡𝑖

𝑐) − 𝑢𝑒𝑥𝑎𝑐𝑡(𝑥𝑖
𝑐,  𝑡𝑖

𝑐)]
2𝑁𝑐

𝑖=1                (5.9) 

Here, (𝑥𝑖
𝑐 ,  𝑡𝑖

𝑐) are points sampled on the constraints, and 𝑢𝑒𝑥𝑎𝑐𝑡 (𝑥𝑖
𝑐 ,  𝑡𝑖

𝑐) represents 

the exact solution obtained from these constraints. The total loss function of the PINNs 
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model combines both losses as 

ℒ𝑝𝑖𝑛𝑛𝑠 = ℒ𝑓 + ℒ𝑐                        (5.10) 

By employing a gradient descent-based optimizer to minimize ℒ𝑝𝑖𝑛𝑛𝑠, the neural 

network model can be trained so that the model output can gradually satisfy both the 

governing equation and the defined constraints, thereby approaching the exact solution 

of the equation. 

In the PINNs framework for inverse problems, the objective is to identify unknown 

parameters 𝜃 from measurement data while ensuring that the underlying physical laws 

are satisfied. The inverse problem can be formalized as modifying the loss function to 

incorporate both the data-driven approach and the physics-informed constraints. To 

achieve this, a data loss function ℒ𝑑  that quantifies the difference between the 

predicted solution from the neural network 𝑢𝑝𝑟𝑒𝑑(𝑥𝑖
𝑑 ,  𝑡𝑖

𝑑)  and the observed data 

𝑢𝑜𝑏𝑠(𝑥𝑖
𝑑 ,  𝑡𝑖

𝑑) is defined as 

ℒ𝑑 = ∑ [𝑢𝑝𝑟𝑒𝑑(𝑥𝑖
𝑑 ,  𝑡𝑖

𝑑) − 𝑢𝑜𝑏𝑠(𝑥𝑖
𝑑 ,  𝑡𝑖

𝑑)]
2𝑁𝑑

𝑖=1               (5.11) 

In addition to the data loss, the governing equation loss ℒ𝑓 defined in Eq. (5.11) 

is also included to ensure that the predicted solution adheres to the physical laws. The 

total loss function of the PINNs model for inverse problems is constructed as 

ℒ𝑝𝑖𝑛𝑛𝑠 = ℒ𝑓 + ℒ𝑑                              (5.12) 

The unknown parameter 𝜃 in Eq. (5.10) is initialized and trained together with 

the neural network model as a trainable variable. By minimizing ℒ𝑝𝑖𝑛𝑛𝑠  using a 

gradient descent-based optimizer, the PINNs can not only learn to approximate the 
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observed data but also adjust the parameters 𝜃 to fit the governing equation, which 

means that parameters 𝜃 will approach the exact value.  

Based on the principles introduced above, the integration of data-driven insights 

with physical principles makes PINNs a powerful tool for solving forward and inverse 

problems across various applications, including fluid dynamics (Cai, Mao, et al., 

2021b), material analysis (E. Zhang et al., 2022), and other fields where data and 

physical laws intersect. 

5.3 Methodology 

Consider a multi-degree-of-freedom (MDOF) structural system with stiffness 

reduction damage. The goal of vibration-based structural damage identification is to 

inversely discover the location and severity of stiffness reduction using the measured 

vibration response. In this study, a PI-FFNN framework is proposed to achieve this goal 

by using physical information described by structural motion equations and vibration 

response measurements as input. The overall framework of PI-FFNN is shown in Fig. 

5.1. 
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Figure 5.1 The overall framework of PI-FFNN 

In Fig. 5.1, it is shown that the PI-FFNN framework takes vibration response 

measurements 𝑥̈𝑚 as inputs, and outputs the identified damaged structural stiffness 

𝐾𝑑 and the reconstructed external force 𝐹𝑟𝑒𝑐. The core component of the PI-FFNN 

framework is a Fourier feature neural network (FFNN) model, which aims to inversely 

reconstruct the external force with physical information of the motion equation 

parameterized by mechanical parameters 𝜃 = [𝑀,𝐾, 𝐶]. The physical relationship of 

the FFNN model can be expressed as 𝐹𝐹𝑁𝑁(𝑥̈𝑚, 𝜃) → 𝐹𝑟𝑒𝑐. Spectral bias (Chai et al., 

2024; Xu et al., 2024) is a well-known defect of neural networks, which is manifested 

in that neural networks preferentially learn the low-frequency components in the data 

and ignore the high-frequency components. Because the external force of the structure 

is usually a mixture of multiple frequency components, using a traditional PINNs model 

to represent the external force is prone to the difficulty of spectral bias. The FFNN 

proposed in (Jin et al., 2024; Sallam & Fürth, 2023; Song & Wang, 2023; Wang et al., 
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2021) has been proven to effectively eliminate the spectral bias of the neural network 

by using a Fourier feature layer to extract the broad frequency characteristics of the 

input data. Inspired by this, a Fourier feature layer is embedded in the PINNs model in 

the proposed method to balance the convergence speed of various frequencies, thereby 

reducing the spectral bias and improving the overall model’s representing performance. 

Specifically, the Fourier feature layer is implemented by 

𝐿𝐹𝐹(𝑡,𝑊) = [
cos (2𝜋𝑊𝑇𝑡)

sin (2𝜋𝑊𝑇𝑡)
]                    (5.13) 

Here, the input of the Fourier feature layer is 𝑡, and the output is multiple frequency 

features of 𝑡. The trainable parameter of the Fourier feature layer is weight 𝑊, which 

is initialized as a Gaussian distribution 𝑁(0, 𝜎2) , where 𝜎  is the hyperparameter 

controlling the value distribution of 𝑊. In the proposed PI-FFNN framework, 𝜎 is 

determined according to the frequency range of the structural vibration measurements.  

Through Eq. (5.13), multiple frequency features of input 𝑡 are established. Then, 

these features are input to a fully connected neural network (FCNN) model, which 

outputs the reconstructed structural external force 𝐹𝑟𝑒𝑐. The FCNN model has 𝐿𝑁𝑁 

hidden layers, each with 𝐻𝑁𝑁 neurons. The width of the Fourier layer, i.e., the size of 

𝑊, is also set to the width 𝐻. In addition, a damage index vector 𝑧 is defined to update 

the damaged mechanical parameters according to Eq. (5.6). The values of 𝑧 are limited 

to [0, 1]. Using these reconstructed external forces and updated structural mechanical 

parameters, the Newmark-beta method is employed to calculate the structural response 

𝑥̈𝑝𝑟𝑒𝑑 and maintain the differentiability of the structural response output to the neural 
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network parameters, which will be utilized for the backpropagation of the loss function. 

The physical relationship of the Newmark-beta method can be expressed as 

𝑁𝑒𝑤𝑚𝑎𝑟𝑘(𝐹𝑟𝑒𝑐 , 𝜃) → 𝑥̈𝑝𝑟𝑒𝑑. By calculating the residual between the structural response 

obtained from the Newmark-beta method and the vibration measurement, a loss 

function 𝑙𝑜𝑠𝑠𝑎 is defined as 

𝑙𝑜𝑠𝑠𝑎 =
1

𝑁
∑(𝑥̈𝑝𝑟𝑒𝑑 − 𝑥̈𝑚)

2
               (5.14) 

In addition, to improve the sparsity of the identification result of 𝑧 and improve the 

robustness of PI-FFNN to noise, a regularization term of 𝑧 is defined as  

𝑙𝑜𝑠𝑠𝑧 = ∑ |𝑧|                       (5.15) 

The loss function of PI-FFNN is set as the weighted sum of these two losses 

 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑎 + 𝛼 ∗ 𝑙𝑜𝑠𝑠𝑧                  (5.16) 

where 𝛼 controls the weight of the regularization term, which can be determined by 

analyzing the L-curve of 𝑙𝑜𝑠𝑠𝑧 / 𝑙𝑜𝑠𝑠𝑎 (Hansen & O’Leary, 1993). Using a gradient 

descent-based optimizer to update the parameters of the neural network and the damage 

index 𝑧 by minimizing the 𝑙𝑜𝑠𝑠, the structural response calculated by Newmark-beta 

will be close to the vibration response measurements 𝑥̈𝑚. In this way, the output of the 

neural network will reconstruct the external force of the structure, and the damage index 

can characterize the location and severity of damage in the structure. The specific 

implementation process of the PI-FFNN framework is illustrated in Algorithm 5.1. 

Algorithm 5.1: The implementation process of PI-FFNN framework 

Input: Initial parameters 𝑀0, 𝐾0, 𝐶0, initial state 𝑢0, 𝑣0, vibration measurement 

𝑥̈𝑚, force mapping matrix 𝐿, vibration mapping matrix 𝑅, time step 𝑑𝑡 
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Parameter: Neural network hyperparameters 𝐿𝑁𝑁 , 𝐻𝑁𝑁  and 𝜎 , Newmark-beta 

parameters 𝛽, 𝛾 , regularization weight 𝛼 , number of iterations 𝑁𝑖𝑡  and learning 

rate 𝑙𝑟 

Output: Identified damage index 𝑧𝑖𝑑𝑓 and reconstructed external force 𝐹𝑟𝑒𝑐 

1: Initialize 𝑧 to an all zero vector. Set 𝑖 = 1. Randomly initialize the FFNN model 

2: while 𝑖 ≤  𝑁𝑖𝑡 do: 

3:   Forward propagation FFNN model to obtain the reconstructed force 𝐹𝑟𝑒𝑐, and 

filter into 𝐹𝐿
𝑟𝑒𝑐 with the mapping matrix 𝐿 

4:   Update the mechanical parameters as 𝐾𝑑 = (1 − 𝑧) ∙ 𝐾0 

5:   Calculate 𝑥̈𝑝𝑟𝑒𝑑 with Newmark-beta method and filter with mapping matrix R 

6:   Calculate the 𝑙𝑜𝑠𝑠𝑎,  𝑙𝑜𝑠𝑠𝑧 and sum as 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑎 + 𝛼 ∗ 𝑙𝑜𝑠𝑠𝑧 

7:   Back propagate 𝑙𝑜𝑠𝑠 to calculate gradients of FFNN parameters and 𝑧 

8:   Employ the optimizer to update the FFNN model and 𝑧 

9:   Limit the value of 𝑧 in the range [0, 1], update 𝑖 = 𝑖 + 1 

10: end while 

11: Output the identified damage index 𝑧𝑖𝑑𝑓 = 𝑧 and reconstructed force 𝐹𝐿
𝑟𝑒𝑐 

According to the above introduction, the PI-FFNN framework is established for 

identifying structural damage from vibration measurements without knowledge of the 

external force on the structure. The hyperparameters of the framework include 

parameter 𝜎 of the Fourier layer, the depth 𝐿𝑁𝑁 and width 𝐻𝑁𝑁 of the FCNN model, 

and the weight 𝛼 of the regularization term. This should also be noted that to ensure 

the solvability and uniqueness of this inverse problem, the number of structural 

vibration measurements must exceed the number of unknown forces acting on the 

structure.  

In traditional numerical methods such as finite element analysis, both model 

parameters and external force input are required to calculate the response of the 

structure. Therefore, the damage identification method based on these numerical 

methods must input the measurement of the external force, which may not be feasible 
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in some practical projects. Other damage detection methods based on no external forces, 

such as the sensitivity method (H.-P. Zhu et al., 2014), usually use the physics model 

of the initial structural parameters to reconstruct the external force from part of the 

response and then use the reconstructed external force to update the damage index based 

on another part of the response. However, accurate structural parameters and accurate 

external force reconstruction are interdependent. Errors in structural parameters will 

lead to incorrect estimation of external forces, which may in turn increase the errors in 

structural parameter identification. This interdependent mechanism will reduce the 

convergence and stability of these traditional damage detection methods. In addition, 

the noise in vibration measurement will introduce errors to the reconstructed external 

forces, which will also affect the accuracy of damage identification. In the PI-FFNN 

framework, the reconstructed external forces and damage index are trained 

simultaneously. By using an optimizer to minimize these two errors simultaneously, the 

PI-FFNN framework can ensure the synchronous convergence of the interdependent 

force reconstruction and parameter identification processes. Compared with common 

supervised machine learning models for structural damage detection, by directly 

inputting the time domain signal of vibration responses, PI-FFNN can avoid the reliance 

on a large amount of measurement data, which can be costly in structural health 

monitoring. By using physical information to train the neural network model instead of 

relying on damage-labeled data, as an unsupervised model, PI-FFNN can also be better 

implemented on actual engineering structures whose damage labels are difficult to 
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obtain. In addition, feature engineering (Chegeni et al., 2022; Guo et al., 2020; Pan et 

al., 2019), which plays a key role in the performance of traditional machine learning 

models, is completely eliminated here to improve the ease of use of PI-FFNN. 

5.4 Numerical cases 

In this section, two numerical examples are carried out to verify the effectiveness 

and accuracy of the proposed PI-FFNN framework. The first is a cantilever beam 

structure case, where the hyperparameter settings of the PI-FFNN framework are 

explained and analyzed. In this case, the results of the PI-FFNN framework are also 

compared with the classical numerical algorithm without force measurement and the 

original PINNs model for damage identification and force reconstruction in noise-free 

and noisy data. In the second case, the stiffness reduction of a planar truss is identified, 

where the robustness of PI-FFNN to noise in the measured data is demonstrated. 

5.4.1 Cantilever beam 

 
Figure 5.2 The finite element model of the cantilever beam  

To demonstrate the performance of the proposed PI-FFNN framework, a cantilever 

beam is analyzed as a numerical example in this section. The length, width, and 

thickness of the cantilever beam are 1 𝑚 , 50 𝑚𝑚 , and 5 𝑚𝑚  respectively. The 
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material of the beam is steel with a density of 7850 𝑘𝑔/𝑚3 and an elastic modulus of 

206 𝐺𝑃𝑎. The finite element model of the beam is presented in Fig. 5.2, where the 

cantilever beam is numerically modeled as 10 elements, each of which is 0.1 m long. 

Using the finite element model, this cantilever beam is discretized into 10 elements. 

The beam elements are considered as two-node Euler-Bernoulli beams with a consistent 

mass matrix. This beam model has 11 nodes and 22 degrees of freedom (vertical 

displacement and rotation). The vertical displacement and rotation of the beam are 

constrained to 0 at the left end of the beam (node 0). A vertical dynamic force is applied 

to the right end of the beam (node 10) to make the beam vibrate. The damping of the 

beam is set to a damping ratio of 0.5% for the first two order natural frequencies. 

Elements 4 and 8 are assumed to be damaged with stiffness reduction of 15% and 20%, 

respectively. The first five-order natural frequencies of the intact and damaged beams 

are listed in Table 5.1. To obtain vibration response for model training, the explicit 

fourth-order Runge-Kutta method (ERK4) (Iserles, 2008) is utilized to calculate the 

vibration response of the damaged beam under the external force shown in Fig. 5.3. The 

time step of the calculation is 0.00001 s and the duration is 1s.  

Table 5.1 The natural frequencies of the undamaged and damaged beams (Hz)  

 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 

Undamaged Beam 4.14 25.93 72.62 142.41 235.79 

Damaged Beam 4.10 25.51 69.99 139.35 231.67 
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Figure 5.3 The external force acting on the cantilever beam 

In actual engineering, it is difficult to accurately measure the rotation of the beam 

compared to the vertical vibration. So, the rotation is set as the unobservable structural 

response in this test. The vibration accelerations of three nodes are recorded to simulate 

the accelerometer measurement. In order to obtain the optimal sensor placement, kinetic 

energy matrix rank optimization (KEMRO) (Castro-Triguero et al., 2013; Heo & Jeon, 

2016) for optimal sensor placement (OSP) is carried out. According to the analysis 

results of KEMRO, the optimal sensor locations of the three vertical acceleration 

sensors are nodes 4, 7, and 10. 

5.4.1.1 Hyperparameter testing 

The PI-FFNN model involves several hyperparameters including the weight 𝛼 of 

the regularization term, the hyperparameter 𝜎 of the Fourier feature layer, the width 

𝐻𝑁𝑁, and the depth 𝐿𝑁𝑁 of the FCNN model. Before evaluating the performance of 

the PI-FFNN model, how to set these hyperparameters is studied first. In addition, other 
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parameters in the PI-FFNN model are also determined here. The parameters of the 

Newmark-beta method are set to 𝛽 = 1/4, 𝛾 = 1/2 (average acceleration method). 

A gradient descent optimizer Adam (Kingma, 2014) is chosen to train the FFNN model 

with a learning rate of 0.001. The FFNN model is trained for 10,000 iterations, where 

the loss function is observed to have converged. 

 
Figure 5.4 Vibration data of the three accelerations (a) and the frequency spectrum (b) 

Consider the acceleration data of the three nodes (Y4, Y7, Y10) shown in Fig. 

5.4(a) as the input data of the PI-FFNN model. The frequency spectrum analysis of the 

acceleration data is also demonstrated in Fig. 5.4(b). It is observed that the main 

frequency range of the three accelerations is 0-100 Hz. Accordingly, the hyperparameter 

𝜎 of the FFNN model is set to 100 to establish the frequency characteristics of the input. 

In order to improve computational efficiency, the vibration data recorded from the 
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ERK4 method is resampled to 10000 Hz. The first 500 time steps are utilized as training 

data. Both noise-free and noisy training data are considered. The data calculated by the 

ERK4 method is considered noise-free. The noisy data are generated by adding 

Gaussian noise to the noise-free data by 

 𝑥̈𝑛𝑜𝑖𝑠𝑒 = 𝑥̈𝑒𝑥𝑎𝑐𝑡 +  𝜂 ∙ 𝒩(0, 𝜎𝑒𝑥𝑎𝑐𝑡
2 )               (5.17) 

Here, 𝑥̈𝑒𝑥𝑎𝑐𝑡  is the calculated noise-free data, 𝜂  is the noise level, and 

𝒩(0, 𝜎𝑒𝑥𝑎𝑐𝑡
2 )  represents Gaussian noise with a mean of 0 and a variance of 𝜎𝑒𝑥𝑎𝑐𝑡

2  . 

𝒩(0, 𝜎𝑒𝑥𝑎𝑐𝑡
2 ) has the same shape as 𝑥̈𝑒𝑥𝑎𝑐𝑡. 𝜎𝑒𝑥𝑎𝑐𝑡 is the standard deviation of 𝑥̈𝑒𝑥𝑎𝑐𝑡. 

In this case, the noise of 𝜂 = 1% is added to the noise-free data to generate noisy data. 

The hyperparameter 𝛼 is investigated in both noise-free and noisy vibration data. A 

simple FFNN model with 𝐿𝑁𝑁 = 2, 𝐻𝑁𝑁 = 40 is utilized first to test the setting of 𝛼 

values. A total of 14 schemes are tested, with 𝛼 values of [1.0, 1e-1, 1e-2, 1e-3, 1e-4, 

1e-5, 0.0] in both noise-free and noisy data. All 14 schemes are trained with 10,000 

iterations, and the converged 𝑙𝑜𝑠𝑠𝑎 and 𝑙𝑜𝑠𝑠𝑧 are recorded and plotted as curves in 

Fig. 5.5. 
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Figure 5.5 𝑙𝑜𝑠𝑠𝑧 - 𝑙𝑜𝑠𝑠𝑎 of 14 test schemes. (left) noise-free input data, (right) input 

data with 1% noise. The values of 𝛼 is given in brackets. 

Fig. 5.5(a) shows that in the case of noise-free input data, as the 𝛼 value gradually 

decreases from 0.1 to 0, the value of 𝑙𝑜𝑠𝑠𝑧 shows a gradually increasing trend. While 

 𝑙𝑜𝑠𝑠𝑎 decreases first as the 𝛼 value gradually decreases and then increases when 𝛼 

is less than 1e-3. Fig. 5.5(b) shows the changes of 𝑙𝑜𝑠𝑠𝑧 and  𝑙𝑜𝑠𝑠𝑎 with 𝛼 value in 

input data with 1% noise, which also shows similar trends as in Fig. 5.5(a). According 

to Fig. 5.5, it can be inferred that in this case when 𝛼 is set to 0.1 and 0.01, the PI-

FFNN model is underfitting where damage is underestimated, and when 𝛼 is less than 

1e-3, the model is overfitting where PI-FFNN overestimates the structural damage. The 

result of the identification 𝑧𝑖𝑑𝑓 also supports this inference. When 𝛼 is 0.1 or 0.01, 

the value of 𝑧𝑖𝑑𝑓 is smaller than the exact value and when 𝛼 is less than 1e-3, the 

sparsity of 𝑧𝑖𝑑𝑓 decreases significantly. Therefore, in this case, 𝛼=1e-3 is considered 

the optimal hyperparameter setting.  
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Figure 5.6 Result of stiffness reduction identification 

In the scheme of 𝛼=1e-3, the result of the identified 𝑧𝑖𝑑𝑓 is shown in Fig. 5.6. 

The result shows that in the vibration observation data with no noise and 1% noise, the 

PI-FFNN model successfully identified the decrease in structural stiffness. To quantify 

the overall accuracy of the identified stiffness reduction index 𝑧𝑖𝑑𝑓, the average error 

is calculated as 

𝜀𝑧 =
1

𝑁
∑ |𝑧𝑖

𝑖𝑑𝑓
− 𝑧𝑖

𝑒𝑥𝑎𝑐𝑡|𝑁
𝑖=1                (5.18) 

The average error of the stiffness reduction identification result of the noise-free 

input data is calculated to be 0.133%, while the error of the input data with 1% noise is 

0.886%. The external force acting on node 10 is also reconstructed by the PI-FFNN 

model as plotted in Fig. 5.7.   
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Figure 5.7 Results of external force reconstruction 

Fig. 5.7 demonstrates that with both noise-free and noisy input data the PI-FFNN 

model accurately reconstructs the external forces of the structure. In order to quantify 

the accuracy of the external force reconstruction, the relative L2 error is calculated 

according to  

𝜀𝑓 =
√∑(𝐹𝑟𝑒𝑐−𝐹𝑡𝑟𝑢𝑒)2

√∑𝐹𝑡𝑟𝑢𝑒
2

                     (5.19) 

According to the calculation, the relative L2 error of the reconstructed external 

force from the noise-free vibration data is only 0.323%, while that from the 1% noisy 

data is 3.536%. The hyperparameters 𝐿𝑁𝑁  and 𝐻𝑁𝑁  of the FCNN model are also 

investigated in this case. With the noise-free vibration measurement as input, the 16 

neural network model schemes listed in Table 5.2 are tested respectively and the 

average error of damage identification results and the relative L2 error of force 

reconstruction are calculated. The running time is also recorded to evaluate the 
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efficiency of the models. The results are shown in Table 5.2. 

Table 5.2 Test results of hyperparameters 𝐿𝑁𝑁 and 𝐻𝑁𝑁. 

(a) average error of damage identification results (%), (b) relative L2 error of force 

reconstruction (%), (c) running time (unit: s) 

(a) 

𝐻𝑁𝑁/𝐿𝑁𝑁 1 2 4 8 Avg 

20 0.294 0.139 1.040 3.030 1.126 

40 0.355 0.276 1.191 0.953 0.694 

80 0.932 0.148 1.451 2.186 1.179 

160 1.210 1.818 0.972 3.388 1.847 

Avg 0.698 0.595 1.163 2.389  

(b) 

𝐻𝑁𝑁/𝐿𝑁𝑁 1 2 4 8 Avg 

20 0.084 0.114 0.185 0.551 0.233 

40 0.180 0.155 0.196 0.131 0.166 

80 0.418 0.195 0.170 0.322 0.276 

160 0.359 0.371 0.150 1.093 0.493 

Avg 0.260 0.209 0.175 0.525  

(c) 

𝐻𝑁𝑁/𝐿𝑁𝑁 1 2 4 8 Avg 

20 1406.03 1381.22 1385.22 1470.39 1410.72 

40 1386.29 1374.57 1391.04 1457.25 1402.29 

80 1373.56 1373.60 1414.82 1526.02 1422.00 

160 1408.60 1401.25 1482.35 1737.13 1507.33 

Avg 1393.62 1382.66 1418.36 1547.70  

 

From Table 5.2, it is observed that as 𝐻𝑁𝑁 and 𝐿𝑁𝑁 increase, the errors in both 



 

143 

 

the identified damage and the reconstructed force increase. This shows that increasing 

the width and depth of the FCNN model has a negative effect on improving the accuracy 

of PI-FFNN. In addition, as the number of hidden layers 𝐿𝑁𝑁 increases, the model 

training time will become significantly longer, so the efficiency will decrease. 

Therefore, based on the test results, a small FCNN model, such as 𝐿𝑁𝑁 = 2  and 

𝐻𝑁𝑁 = 40, is a better parameter setting for building the PI-FCNN model. 

5.4.1.2 Comparative experiments 

Since the external force input of the beam model is unknown, traditional finite 

element model updating and frequency response function-based methods are not 

applicable in this case. In addition, since no labels related to damage severity are 

collected, all supervised machine learning frameworks are also not feasible due to the 

lack of training datasets. For comparison, classic Markov parameters with Tikhonov 

regularization utilized in (H.-P. Zhu et al., 2014) and the original PINN for the inverse 

problem proposed in (Raissi et al., 2019) are also employed to detect damage on the 

beam structure with noise-free and 1% noise input data.  

Markov parameters with Tikhonov regularization (Mao et al., 2010; H.-P. Zhu et 

al., 2014) are a classic method to detect structural damage without the need for external 

force measurements. In the state space, by defining the state vector as 𝑋(𝑡) =

[𝑥(𝑡), 𝑥̇(𝑡)]𝑇, Eq. (5.1) can be transformed into a standard state equation as 

𝑋̇(𝑡) = 𝐾∗𝑋(𝑡) + 𝐵∗𝐿𝐹(𝑡)                        (5.20) 

where, system matrix 𝐾∗ = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
] , control matrix 𝐵∗ = [

0
𝑀−1] . 
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According to the system state and input, the output variable 𝑦(𝑡) is defined as 

𝑦(𝑡) = 𝑅𝑋(𝑡) + 𝐷𝐿𝐹(𝑡)                      (5.21) 

where output matrix 𝑅 = [𝑅𝑑 − 𝑅𝑎𝑀
−1𝐾, 𝑅𝑣 − 𝑅𝑎𝑀

−1𝐶]  and feed-forward matrix 

𝐷 = 𝑅𝑎𝑀
−1 . 𝑅𝑎 , 𝑅𝑣 , and 𝑅𝑑  correspond to the mapping matrices of acceleration, 

velocity, and displacement, respectively. These mapping matrices are all diagonal 

matrices whose diagonal elements are 0 (not output) or 1 (output). According to the 

exponential matrix algorithm, adjacent system states can be transitioned by following 

𝑋𝑡+1 = 𝐴𝑋𝑡 + 𝐵𝐿𝐹𝑡                        (5.22) 

where, state transition matrix 𝐴 = exp (𝐾∗ ∙ ℎ) and 𝐵 = 𝐾∗−1(𝐴 − 𝐼)𝐵∗. Here, ℎ is 

the time step length. With Eq. (5.22), the system state at time step 𝑗 can be calculated 

from the initial state 𝑋0 as 

𝑋𝑗 = ∑ 𝐴𝑘𝐵𝐿𝐹𝑗−𝑘−1
𝑗−1
𝑘=0 + 𝐴𝑗𝑋0, 𝑗 = 1, 2,⋯ ,𝑁         (5.23) 

Here, 𝑁 is the number of time steps. Then the observation 𝑦𝑗 at time step 𝑗 can be 

calculated according to 

𝑦𝑗 = ∑ 𝑅𝐴𝑘𝐵𝐿𝐹𝑗−𝑘−1
𝑗−1
𝑘=0 + 𝑅𝐴𝑗𝑋0 +  𝐷𝐿𝐹𝑗 , 𝑗 = 1, 2,⋯ ,𝑁      (5.24) 

Let 𝐻0 = 𝐷 and 𝐻𝑘 = 𝑅𝐴𝑘−1𝐵 (𝑘 > 0), then Eq. (5.24) can be expressed as 

𝑦𝑗 = ∑ 𝐻𝑘𝐿𝐹𝑗−𝑘
𝑗
𝑘=0 + 𝑅𝐴𝑗𝑋0, 𝑗 = 1, 2,⋯ ,𝑁         (5.25) 

Here 𝐻𝑘 is called the Markov parameters of the state-space model, which is a structural 

intrinsic property that represents the response relationship of the structural system to 

external forces. Eq. (5.25) can be expressed in Toeplitz matrix form as 



 

145 

 

{

𝑦(0)
𝑦(1)
⋮

𝑦(𝑁)

} = [

𝐻0 0
𝐻1 𝐻0

⋯ 0
⋯ 0

⋮ ⋮
𝐻𝑁 𝐻𝑁−1

⋱ ⋮
⋯ 𝐻0

] [

𝐿
𝐿
⋮
𝐿

]{

𝐹(0)
𝐹(1)
⋮

𝐹(𝑁)

} + [

𝑅𝐴0

𝑅𝐴1

⋮
𝑅𝐴𝑁

]𝑋0     (5.26) 

Eq. (5.26) can be rewritten simply as 

𝑌 = 𝐻𝐿𝐹 + 𝐴𝑅𝑋0                              (5.27) 

where 𝐻𝐿 and 𝐴𝑅 are the corresponding Toeplitz matrix and transition matrices of the 

initial state. Assume that the measured structural response is divided into two data sets, 

namely 𝑌1  and 𝑌2 . Then the following mapping relationship can be established 

between them and the external force: 

{
 𝑌1 = 𝐻𝐿1𝐹 + 𝐴𝑅𝑋0
 𝑌2 = 𝐻𝐿1𝐹 + 𝐴𝑅𝑋0

                         (5.28) 

The first equation in Eq. (5.28) gives the reconstructed external force 𝐹𝑟𝑒𝑐 as: 

𝐹𝑟𝑒𝑐 = 𝐻𝐿1
+ (𝑌1 − 𝐴𝑅𝑋0)                       (5.29) 

Here, 𝐻𝐿1
+   is the pseudo-inverse matrix of 𝐻𝐿1 . Then 𝑌2  can be reconstructed 

according to:  

𝑌2
𝑟𝑒𝑐 = 𝐻𝐿2𝐹

𝑟𝑒𝑐 + 𝐴𝑅𝑋0 = 𝐻𝐿2 ∙ 𝐻𝐿1
+ (𝑌1 − 𝐴𝑅𝑋0) + 𝐴𝑅𝑋0    (5.30) 

But Eq. (5.29) and Eq. (5.30) are well-known ill-posed problems. Therefore, 

regularization techniques are used to add additional constraints to obtain stable 

solutions. Tikhonov regularization is the most commonly used regularization technique, 

which solves 𝐹𝑟𝑒𝑐 by adding an L2 norm to 𝐹 as: 

𝐹𝑟𝑒𝑐 = 𝑚𝑖𝑛{‖𝐻𝐿1𝐹 + 𝐴𝑅𝑋0 −  𝑌1‖2
2 + 𝛼2 ∙ ‖𝐿𝐹‖2

2}        (5.31) 

The reconstruction force 𝐹𝑟𝑒𝑐 is obtained by minimizing the above residual 

and regularization term by employing an optimizer. Using this reconstruction force, 
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𝑌2 can be reconstructed according to:   

𝑌2
𝑟𝑒𝑐 = 𝐻𝐿2𝐹

𝑟𝑒𝑐 + 𝐴𝑅𝑋0                  (5.32) 

Now assume that the structure is damaged and its damage is quantified by a damage 

index vector 𝜆, so that the Markov Parameter and transition matrices of the initial state 

of the structure are controlled by 𝜆  as 𝐻𝑘(𝜆)  and 𝐴𝑅(𝜆) . By minimizing the 

deviation between the reconstructed 𝑌2  and the observed value as Eq. (5.33), the 

damage index vector 𝜆 of the structural system can approximate the true structural 

damage and thus detect the damage of the structure.  

λ = min (‖𝑌2
𝑟𝑒𝑐(𝜆) − 𝑌2

𝑜𝑏𝑠‖
2

2
)               (5.33) 

Markov parameters with Tikhonov regularization have one hyperparameter 𝛼 , 

which controls the weight of the regularization term and can be determined by the L-

curve method.  

In the cantilever beam case of this study, the vertical accelerations of node 4 and 

node 10 of the cantilever beam are used as data set 1 𝑌1 to reconstruct the unknown 

force, and the vertical acceleration the node 5 is used as data set 2 𝑌2 to detect the 

damage of the structure. According to the L-curve method test, the value of 𝛼  is 

determined to be 0.001. The observation data without noise and with a noise level of 1% 

are used as input data to detect the damage of the structure. The damage results detected 

by the Markov parameters method with Tikhonov regularization are listed in Table 5.3. 

Table 5.3 Identified damage results of Markov parameters method with Tikhonov 

regularization  
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Noise level Element 
 1 2 3 4 5 6 7 8 9 10 

0% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.454 

1% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.462 

 

Table 5.3 shows that the Markov parameters method with the Tikhonov 

regularization method failed to detect the damage of elements 4 and 8, and incorrectly 

located the damage location as element 10. The error 𝜀𝜆  of damage detection is 

calculated to be 8.035% (noiseless data) and 8.124% (1% noise data). The reconstructed 

external forces are also shown in Fig. 5.8.   

 
Figure 5.8 Reconstructed external force prediction by Markov parameters 

method with Tikhonov regularization 

As shown in Fig. 5.8, the external force predicted by the Markov parameters 

method with Tikhonov regularization deviates from the exact value of the external force, 

and the relative L2 error is calculated to be 11.136% (0% noise) and 11.096% (1% 
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noise).  

Physics-informed neural networks (PINNs) are a framework proposed by (Raissi 

et al., 2019) for solving direct and inverse problems of partial differential equations. 

PINNs show a remarkable ability to discover unknown parameters in differential 

equations. For a differential equation, its governing equation is described as: 

𝑁(𝑢(𝑡, 𝑥), 𝑡, 𝑥; 𝜆) = 𝑓(𝑡, 𝑥)                  (5.34) 

Where 𝑁 is a differential operator parameterized by 𝜆. 𝑢(𝑡, 𝑥) is the solution to the 

equation. 𝑓(𝑡, 𝑥) is the force term of the equation. The inverse problem of Eq. (5.34) 

is to discover the unknown parameter 𝜆  in the governing equation inversely given 

some measured values of 𝑢𝑜𝑏𝑠(𝑡, 𝑥). In the PINNs framework, a neural network model 

is employed to predict 𝑢𝑜𝑏𝑠(𝑡, 𝑥) with inputs 𝑡 and 𝑥. The unknown parameter 𝜆 is 

also initialized and updated together with the neural network model. The derivatives of 

the differential operator can be calculated by a technique called automatic 

differentiation (Baydin et al., 2018) of the neural network. A loss function based on the 

observed data is defined as Eq. (5.35) to quantify the residual between the neural 

network output and the observed data. A loss function based on the governing equation 

is also defined as Eq. (5.36) to quantify the residual of the governing equation.  

𝐿𝑜𝑏𝑠 =
1

𝑁𝑚
∑ ‖𝑢𝑝𝑟𝑒𝑑(𝑡𝑚, 𝑥𝑚) − 𝑢𝑜𝑏𝑠(𝑡𝑚, 𝑥𝑚)‖2

2𝑁𝑚
𝑖=1          (5.35) 

𝐿𝑓 =
1

𝑁𝑓
∑ ‖𝑁(𝑢𝑝𝑟𝑒𝑑(𝑡𝑓 , 𝑥𝑓), 𝑡𝑓 , 𝑥𝑓; 𝜆) − 𝑓(𝑡𝑓 , 𝑥𝑓)‖

2

2𝑁𝑓
𝑖=1

      (5.36) 

Here 𝑁𝑚  is the number of observation points (𝑡𝑚 , 𝑥𝑚) . 𝑢𝑝𝑟𝑒𝑑(𝑡𝑚, 𝑥𝑚)  and 

𝑢𝑜𝑏𝑠(𝑡𝑚, 𝑥𝑚) are the predicted value and observed value of the neural network at the 
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observation point (𝑡𝑚, 𝑥𝑚). 𝑁𝑓 is the number of collocation points (𝑡𝑓 , 𝑥𝑓), which 

are randomly sampled in the domain of the equation. These two loss functions will be 

summed as 𝐿𝑝𝑖𝑛𝑛 = 𝐿𝑜𝑏𝑠 + 𝐿𝑓 as the loss function of the PINNs model. The output of 

the neural network model can gradually approach the exact solution of the equation and 

the unknown parameter 𝜆 will gradually approach its accurate value by utilizing an 

optimizer to minimize the loss function.  

In this case, the PINNs method is also utilized to detect the structural damage of 

the cantilever beam. Since the external force is also unknown, two neural network 

models are built to predict the external force 𝑓(𝑡, 𝑥) and the displacement response 

𝑢(𝑡, 𝑥) of the structure, respectively. The neural network models have 2 inputs (𝑡, 𝑥) 

and 20 outputs. Here 𝑥 is the node number from 0 to 10. The neural network models 

have 2 hidden layers of 100 neurons. Through the automatic differentiation of the neural 

network, the displacement response 𝑢𝑝𝑟𝑒𝑑(𝑡, 𝑥) predicted by the neural network can 

inversely calculate the velocity response 𝑣𝑝𝑟𝑒𝑑(𝑡, 𝑥)  and the acceleration response 

prediction 𝑎𝑝𝑟𝑒𝑑(𝑡, 𝑥). The acceleration response prediction can be combined with the 

observed data 𝑎𝑜𝑏𝑠(𝑡𝑚, 𝑥𝑚) to construct the loss function as 

𝐿𝑜𝑏𝑠 =
1

𝑁𝑚
∑ ‖𝑎𝑝𝑟𝑒𝑑(𝑡𝑚, 𝑥𝑚) − 𝑎𝑜𝑏𝑠(𝑡𝑚, 𝑥𝑚)‖2

2𝑁𝑚
𝑖=1           (5.37) 

Here 𝑁𝑚 is the number of observed data (𝑡𝑚, 𝑥𝑚) of the acceleration response. In 

addition, according to the initial conditions (𝑢0, 𝑣0) , the loss function of the initial 

conditions is constructed as 

𝐿𝑖𝑛𝑖 = ‖𝑢𝑝𝑟𝑒𝑑(0, 𝑥0) − 𝑢0‖2
2 + ‖𝑣𝑝𝑟𝑒𝑑(0, 𝑥0) − 𝑣0‖2

2      (5.38) 
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The governing equations of the structural system are also used as physical 

information to train the neural network model using a loss function as 

𝐿𝑓 =
1

𝑁𝑓
∑ ‖𝑀 ∙ 𝑎𝑝𝑟𝑒𝑑(𝑡𝑓 , 𝑥𝑓) + 𝐶 ∙ 𝑣𝑝𝑟𝑒𝑑(𝑡𝑓 , 𝑥𝑓) + 𝐾(𝜆) ∙ 𝑢𝑝𝑟𝑒𝑑(𝑡𝑓 , 𝑥𝑓) − 𝑓(𝑡𝑓 , 𝑥𝑓)‖

2

2𝑁𝑓
𝑖=1

 (5.39) 

Here, 𝑁𝑓 is the number of collocation points (𝑡𝑓 , 𝑥𝑓) of the acceleration response. 

The collocation points are generated according to the predetermined time step and full 

sampling of degrees of freedom. Finally, the loss function of PINNs is the sum of the 

above three loss functions as 

𝐿𝑝𝑖𝑛𝑛 = 𝐿𝑜𝑏𝑠 + 𝐿𝑖𝑛𝑖 + 𝐿𝑓                     (5.40) 

By using a gradient descent-based Adam optimizer to minimize 𝐿𝑝𝑖𝑛𝑛 to reduce 

the residual of the neural network output to the observation data and the governing 

equation, the output of the neural network model will theoretically gradually approach 

the unknown external force and the true response of the structural system. The noise-

free observation data and the observation data of 1% noise are used as the observation 

data of PINNs, respectively. After training 1e5 times, the loss function of PINNs has 

converged. Fig. 5.9 shows the convergence process of the PINNs loss function when 

the noise-free observation data is used as the input data.  
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Figure 5.9 Convergence process of loss function of PINNs 

After the loss function converges, the damage of the structure predicted by PINNs 

is extracted as shown in Table 5.4. 

Table 5.4 Damage results identified by PINNs model 

Noise level 
Element 

1 2 3 4 5 6 7 8 9 10 

0% 0.010 0.010 0.011 0.013 0.014 0.016 0.015 0.014 0.012 0.012 

1% 0.010 0.017 0.016 0.016 0.018 0.018 0.017 0.015 0.013 0.012 

Exact  0 0 0 0.15 0 0 0 0.2 0 0 

 

As shown in Table 5.4, PINN fails to detect the damage of the structure. The error 

between its detection results and the true result is 4.241% (0% noise) and 4.388 % (1% 

noise). Fig. 5.10 shows the structural external forces predicted by the PINNs model. 
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Figure 5.10 Structural external forces predicted by the PINNs model 

As shown in Fig. 5.10, the PINNs model also fails to reconstruct the unknown 

structural external forces on the cantilever beam. The relative L2 errors between the 

reconstructed external forces and the true values are 152.618% (0% noise) and 183.350% 

(1% noise). Overall, the comparison results of average error 𝜀𝑧 of identified damage 

index and relative L2 error 𝜀𝑓 of reconstructed external force are listed in Table 5.5. 

Table 5.5 The results of the comparative experiment 

Method Noise level 𝜺𝑧 𝜺𝒇 

PI-FFNN 
0% 0.133% 0.323% 

1% 0.886% 3.536%. 

Tikhonov 
0% 8.035% 11.136% 

1% 8.124% 11.096% 

PINNs 
0% 4.241% 152.618% 

1% 4.388% 183.350% 

 

Table 5.5 shows that the proposed PI-FFNN method can achieve more accurate 

results than Markov parameters with Tikhonov regularization and the original PINN in 
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both noisy and noiseless observation data in this case. In addition, the Tikhonov method 

took 9340 seconds to calculate 1000 iterations, while the PINNs took 3340 seconds to 

train 100,000 iterations. The PI-FFNN method successfully identified the damage of 

the structure in only 1375 seconds, showing higher efficiency. 

5.4.2 Plane truss 

A plane truss structure as shown in Fig. 5.11 is considered as the second numerical 

example. The truss consists of 19 bars and 11 nodes. The bars are all 10 m long and 

have a rectangular cross-section of 5 𝑐𝑚 × 5 𝑐𝑚 . The bar material is steel with a 

density of 7850 𝑘𝑔/𝑚3 and an elastic modulus of 210 𝑀𝑃𝑎. The 12 truss elements 

are considered as 2-node linear truss elements with consistent mass matrices. The truss 

is set to vibrate in the X-Y plane and is constrained in the X and Y directions at node 0 

and in the Y direction at node 10. Under the constraints, the truss has a total of 19 

degrees of freedom. Considering that the truss is damaged in bars 5, 9, and 12, with the 

stiffness reduction of 15%, 20%, and 25% respectively. The damping ratio of the truss 

is considered to be 0.5% of the first two-order natural modes. The first ten natural 

frequencies of the healthy truss and damaged truss are shown in Table 5.6. 

 
Figure 5.11 Structure of the plane truss 
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Table 5.6 First ten natural frequencies of the plane truss (Hz) 

 
𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10 

Intact 8.05 16.06 26.54 46.57 50.07 71.79 76.91 81.98 95.13 101.45 

Damaged 7.90 15.76 26.22 45.82 48.54 69.45 75.34 81.88 93.16 99.25 

The truss vibrates under the action of the 𝐹4
𝑌 (Y-direction force on node 4) and 

the 𝐹7
𝑋  (X-direction force on node 7). 𝐹4

𝑌  =  30 𝑠𝑖𝑛(20𝜋 ∙ 𝑡) +  10 𝑠𝑖𝑛(70𝜋 ∙

𝑡) 𝑘𝑁 ,𝐹7
𝑋 = 25 𝑠𝑖𝑛(30𝜋 ∙ 𝑡) +  7.5  𝑠𝑖𝑛(80𝜋 ∙  𝑡) 𝑘𝑁 . According to the calculation 

results of KEMRO for the optimal sensor position, the optimal positions of the four 

sensors are node 4 in the Y direction (4Y), node 5 in the X direction (5X), node 9 in the 

Y direction (9Y) and node 10 in the X direction (10X). The vibration response is 

calculated as the observation using the ERK4 method with a time step of 0.0001 s. The 

observation data of the four accelerations and the frequency spectrum are shown in Fig. 

5.12. 

 
Figure 5.12 Acceleration observation data (a) and frequency spectrum (b)  

A PI-FFNN model is built to reversely detect the damage of the plane truss, where 
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an FFNN model with 𝐿𝑁𝑁 = 2, 𝐻𝑁𝑁 = 40 is employed to approximate the unknown 

nodal forces. According to the frequency spectrum shown in Fig. 5.12, the frequency 

of the vibration response is mainly distributed in 0-100 Hz. So, the hyperparameter 𝜎 

of the Fourier feature layer is set to 100 to establish the frequency characteristics of the 

external force. 𝛼 is set to 1e-3 to maintain the balanced convergence of 𝑙𝑜𝑠𝑠𝑎 and the 

regularization term 𝑙𝑜𝑠𝑠𝑧. The parameters of the Newmark-beta method are set to 𝛽 =

1/4, 𝛾 = 1/2. A gradient descent optimizer Adam is chosen to train the FFNN model 

with a learning rate of 0.001. The FFNN model is trained for 5000 iterations, where the 

loss function is observed to have converged. In this case, vibration observation data 

without noise and with 1% and 5% noise are studied, respectively. The time step length 

is 0.0001 s, and the input data length is 500 time steps. After training, three calculation 

schemes with observation data of different noise levels identify the structural damage. 

The specific identified stiffness reduction values are shown in Fig. 5.13. 

 
Figure 5.13 Identified results of stiffness reduction 



 

156 

 

From Fig. 5.13, it is shown that PI-FFNN can accurately identify the stiffness 

reduction of the plane truss from vibration observations with no noise, 1% noise, and 

5% noise. The errors of the damage identification results are calculated to be 0.321% 

(noiseless), 0.375% (1% noise), and 0.483% (5% noise) respectively. In this case, the 

robustness of the PI-FFNN method to the noise in the measurement data is 

demonstrated. The outputs of the Fourier feature neural network model also 

successfully reconstruct the unknown external forces on the truss. As an example, Fig. 

5.14 shows the reconstructed external forces from noise-free input data. To quantify the 

accuracy of the force reconstruction, the relative L2 error 𝜀𝑓  of the reconstructed 

external forces is calculated. The errors of the external force reconstruction are 

calculated to be 3.00% (noise-free), 3.03% (1% noise), and 4.07% (5% noise) 

respectively. This case shows that the PI-FFNN method can accurately detect the 

damage of this plane truss and reconstruct the external forces even in noisy 

measurements.  
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Figure 5.14 External forces of the plane truss reconstructed by PI-FFNN method 

5.5 Experimental verifications 

A vibration test of aluminum beams shown in Fig. 5.15 was carried out in the 

laboratory to verify the proposed PI-FFNN method. An intact and a damaged aluminum 

beam were respectively installed and vibration tested. The testing of the intact 

aluminum beam was designed to determine the initial stiffness of the beam, while the 

damaged aluminum beam was utilized to identify the stiffness reduction based on the 

initial stiffness. The model of the aluminum beams and supports is shown in Fig. 5.16. 

The total length of the aluminum beams is 126 𝑐𝑚 , and the free section length is 

120 𝑐𝑚 . The thickness of the intact beam is 5 𝑚𝑚 , and the width is 30 𝑚𝑚 . The 

measured mass of the intact beam is 506.7 g, while the mass of the damaged beam is 

497.1 g. The calculated densities are 2683.08 𝑘𝑔/𝑚3  and 2644.43 𝑘𝑔/𝑚3 

respectively. The initial elastic modulus is considered to be 65.0 𝐺𝑃𝑎. The left and 

right ends of the installed beam were bolted to the supports. The vertical displacement 

at both ends of the beam is considered to be constrained to 0, and the angular semi-

rigidity of the supports is considered with an initial stiffness of 1000𝑁 ∙ 𝑚/𝑟𝑎𝑑. The 

damping of the aluminum beam is considered to be Rayleigh damping, set as 𝐶 =  𝑎 ∙

𝑀 + 𝑏 ∙ 𝐾, where 𝑎 and 𝑏 are also parameters to be identified. In the finite element 

model of the aluminum beam, the beam is divided into 12 2-node Euler-Bernoulli beam 

elements with consistent mass matrices. Each element is 10 𝑐𝑚 long. So, the finite 
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element model of the aluminum beam has a total of 12 elements, 13 nodes, and 26 

degrees of freedom. 

 
Figure 5.15 The vibration test of an aluminum beam 

 
Figure 5.16 The model of the aluminum beam and supports  

Five accelerometers were used to record the acceleration response of the structure, 

and a hammer with a force sensor was utilized to apply force at the mid-span to generate 

vibration. The installation positions and weights of all accelerometers are listed in Table 

5.7. A Dewesoft data logger and laptop displayed in Fig. 5.17 were used to record the 

data of all sensors, with a sampling frequency of 10000 Hz.  

Table 5.7 The installation positions and weights of accelerometers 

Sensor ID 
Installation 

position 

Weight (including 

magnet mount) 

A1 𝑥 = 20 𝑐𝑚 29.3 g 
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A2 𝑥 = 40 𝑐𝑚 31.8 g 

A3 𝑥 = 60 𝑐𝑚 29.6 g 

A4 𝑥 = 80 𝑐𝑚 35.8 g 

A5 𝑥 = 100 𝑐𝑚 29.5 g 

 

 
Figure 5.17 Data acquisition and storage equipment 

5.5.1 Initial parameter identification  

In the first step, the intact beam was installed and tested to determine the initial 

mechanical parameters of the beam model. The vibration test of the beam was repeated 

three times to enhance the reliability of the data. As an example, the vibration signals 

collected by the five accelerometers in the first test are shown in Fig. 5.18. 
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Figure 5.18 Measured acceleration response (top) and frequency spectrum (bottom) 

At this stage, the beam is assumed to be homogeneous and each element has the 

same mass and stiffness. The elastic modulus 𝐸, the damping coefficients 𝑎 and 𝑏 

of the beam and the rotational stiffnesses 𝑘1  and 𝑘2  of the two supports are 

considered as updateable parameters. The initial values and updated coefficient ranges 

of these parameters are listed in Table 5.8.  

A PI-FFNN model is built to update these parameters with structural vibration 

measurements. According to the frequency spectrum shown in Fig. 5.18, the main 

distribution of the vibration response is 0-1000 Hz. Therefore, the hyperparameter 𝜎 

of the FFNN is set to 1000. The depth 𝐿𝑁𝑁 of the FFNN model is set to 2, and the 

width 𝐻𝑁𝑁 is set to 40. Since all beam elements are intact, there is no need to increase 

the sparsity of the results, so 𝛼 is set to 0. The input data of the model are the first 200 

time steps of the vibration measurements of the five accelerometers with 𝑑𝑡 =

0.0001 𝑠. The vibration measurements collected from three tests are respectively input 
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into the model for parameter update. The force mapping matrix is set to have external 

forces only on the mid-span nodes. The Newmark-beta method with 𝛽 = 1/4, 𝛾 =

1/2 is set to calculate the vibration response of the beam. The FFNN model is trained 

for 5,000 iterations with an Adam optimizer of 0.001 learning rate. The parameter 

update results of the three tests are listed in Table 5.8. 

Table 5.8 Results of mechanical parameter update 

Parameter Initial value 
Coefficient 

range 

Test 

ID 

Identified 

coefficient 

Updated 

value 

Average 

value 

E 6.50E+10 [0.5, 1.5] 

1 1.0771 7.001E+10 

6.988E+10 2 1.0747 6.986E+10 

3 1.0736 6.978E+10 

a 1.00E-01 [1E-2, 1E2] 

1 40.176 4.018E+00 

3.821E+00 2 39.574 3.957E+00 

3 34.872 3.487E+00 

b 1.00E-05 [1E-2, 1E2] 

1 0.406 4.057E-06 

4.925E-06 2 0.400 4.003E-06 

3 0.672 6.716E-06 

𝑘1 1.00E+03 [1E-2, 1E2] 

1 1.133 1.133E+03 

1.271E+03 2 1.407 1.407E+03 

3 1.274 1.274E+03 

𝑘2 1.00E+03 [1E-2, 1E2] 

1 13.939 1.394E+04 

1.363E+04 2 13.822 1.382E+04 

3 13.136 1.314E+04 

 

Table 5.8 shows that the results of the structural mechanical parameter update in 

the three tests are stable and close. The average values of the updated mechanical 

parameters will be used as the initial values for structural damage identification in the 

next section. 
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5.5.2 Damage detection of damaged beams 

 
Figure 5.19 Location and depth of damage on the aluminum beam 

In the second phase of laboratory testing, a damaged aluminum beam was installed 

and tested. The damage location and severity of the aluminum beam are shown in Fig. 

5.19. The damage of the aluminum beam was simulated by reducing the width of the 

aluminum beam by 40% at 𝑥 = 47 − 51 𝑐𝑚  and 20% at 𝑥 = 79 − 83𝑐𝑚 . This 

damage will cause the stiffness of elements 5 and 8 in the beam model to decrease by 

40% and 20%, respectively. The same five accelerometers were installed on this 

damaged aluminum beam to record the vibration signals. The hammer applied a force 

at the mid-span to make the beam vibrate from rest. 

A PI-FFNN model with the same parameters as in the undamaged beam case is 

built to detect beam damage. The elastic modulus 𝐸 and damping coefficients 𝑎, 𝑏 

of the model are set as the updated values in Table 5.8. Since the damaged beam was 

newly installed on the supports, the tightening force of the bolts may have changed 

compared to the case of the intact beam. So, the support rotational stiffnesses are trained 

again and the initial values are set to the updated values in Table 5.8. A 10-element 
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damage index vector 𝑧 is defined to quantify the stiffness reduction of the aluminum 

beam element, and its value range is 0.01-1.0. Another 2-element vector 𝛾 is defined 

to update the support rotational stiffnesses, and its value range is [0.01, 100]. The 𝑧 

vector and 𝛾 vector are trained together with the neural network model. The first 200 

time steps of the five acceleration observations are utilized as the input data of the PI-

FFNN model. To improve the sparsity and noise robustness of damage identification, 

according to the L-curve test, the weight of the regularization term 𝛼 is set to 10. After 

training 5000 iterations using the Adam optimizer with a learning rate of 0.001, the loss 

function of the PI-FFNN model has converged.  

 
Figure 5.20 Results of stiffness reduction identified by the PI-FFNN model 

Fig. 5.20. shows the result of structural damage detected by the PI-FFNN after 

model training. It shows that the PI-FFNN model successfully located and detected two 

damages on the aluminum beam. Due to the integration of regularization terms in the 



 

164 

 

loss function, the identified results maintain a very high sparsity. The detected stiffness 

reduction values are 40.869% (element 5) and 22.238% (element 8) respectively, with 

errors of 0.869% and 2.238% compared to the accurate values of 40% and 20%. 

According to Eq. (18), the overall error 𝜀𝑧 of the damage detection result is calculated 

to be 0.370%. In addition, PI-FFNN also reconstructed the external force from the 

hammer as shown in Fig. 5.21. It shows that the forces reconstructed from the PI-FFNN 

model show a high consistency with the measured values. Since external force is 

difficult to measure accurately, it is difficult to judge whether the measurement value 

from the force sensor or the reconstructed force is more accurate. For reference only, 

the relative L2 error between the reconstructed external force and the measured force 

is calculated to be 14.784%.  

 
Figure 5.21 External force of the beam reconstructed by the PI-FFNN model 

5.6 Summary 

This study proposes a physics-informed Fourier feature neural networks (PI-
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FFNN) framework for vibration-based structural damage identification with unknown 

external forces. In this framework, the external forces and damages of the structure are 

identified simultaneously without the input of external forces. A Fourier feature neural 

network is employed as the core of the framework to predict the external forces of the 

structure. The Fourier feature layer, which is proven to alleviate the spectral bias of the 

neural network model, is utilized to accurately express the multi-frequency 

characteristics of the external forces. PI-FFNN is a physical data coupled model that 

can utilize the Newmark-beta scheme of the motion equation as physical information 

to train the neural network model. A regularization term is also added to the loss 

function to improve the sparsity and noise robustness of the identification results. The 

integration of physical information enables PI-FFNN to train the model without any 

labeled data of structural damage, making it an unsupervised learning model. 

Numerical examples of a cantilever beam and a plane truss are employed to verify 

the performance of the proposed method. The local damage and external forces on both 

structures are accurately identified even in the noisy data. In the cantilever beam case, 

the proposed method is also compared with the Markov parameters method with 

Tikhonov regularization and the original PINNs. The results show that PI-FFNN can 

obtain more accurate results in structural damage identification and force reconstruction. 

Afterward, a laboratory test is conducted on a beam structure. A PI-FFNN model is built 

to first identify the initial mechanical parameters of the intact beam and then accurately 

identify the damaged beam based on the identified initial mechanical parameters. The 
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external forces on the beam are also successfully identified showing a high agreement 

with the measured values.  
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Chapter 6 Structural identification from unknown input 

excitations with physics-informed neural networks  

6.1 Introduction 

Structural identification (Alvin et al., 2003; Noël & Kerschen, 2017) is the reverse 

modeling process of determining the characteristics and state of an unknown structure 

by analyzing the dynamic response and behavior of the structure. This process is crucial 

in the fields of engineering and infrastructure because it helps engineers assess the 

health of structures and detect potential damage and degradation in a timely manner. In 

recent years, with the rapid development of various advanced sensing methods and 

machine learning, a wide range of machine learning-based structural identification 

methods have been developed and applied in many engineering fields (D. Liu et al., 

2023; Worden & Manson, 2007). 

In theory, structural identification can be conceptualized as the inverse problem of 

discovering the intrinsic characteristics and behaviors of a structure from the observed 

data of the structure. Since the vibration acceleration response is easier to obtain than 

displacement and velocity, most methods of structural identification and structural 

damage detection are performed by analyzing the vibration response of the structure, 

which is the so-called vibration-based method (Avci et al., 2021; Fan & Qiao, 2011). 

After obtaining the vibration data, researchers will try to use various data analysis 

methods to process the measurement data. These analysis methods can be roughly 
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divided into two categories: physics-driven methods and data-driven methods. The 

former characterizes the physical characteristics of the structure by establishing 

physical models of the structure, such as the governing equations or finite element 

models (Girardi et al., 2020). Then the measured data is utilized to update the physical 

model so that the model can accurately represent the actual engineering structure. After 

decades of development, research work in the physical-driven direction has matured 

and has been successfully applied in many projects. For example, in (Arora et al., 2009), 

a damped finite element model updating procedure is proposed and tested with the 

objective that the proposed model is able to predict the measured FRFs accurately in a 

fixed beam structure and an F-shape structure.  

The data-driven method has developed rapidly in recent years, with the explosive 

growth of machine learning and deep learning. In the data-driven method, structural 

identification is regarded as a pattern recognition problem, a problem that has been 

widely studied in the field of machine learning (Zhang et al., 2008). By establishing the 

characteristics of the structural vibration response related to the intrinsic properties of 

the structure, such as structural stiffness, the parameters of the structure are inversely 

identified by analyzing the characteristics of the vibration response. Among them, 

classic data-driven methods include Bayesian optimization (Z. Chen et al., 2020; Zuo 

& Guo, 2022), blind source separation (Sadhu et al., 2017; Zhou & Chelidze, 2007), 

and deep learning algorithms (Yu et al., 2019). 

In the research that has been carried out, the external force input of the structure 
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is usually an important prior knowledge, which is used to input the physical model to 

predict the response in the physical-driven method and to extract the characteristics of 

the structural vibration in the data-driven method (Pan & Yu, 2019). However, in 

practical applications, the input excitations (such as earthquakes, wind loads, etc.) to 

the structure are often unknown, which poses a major challenge to existing structural 

identification. The dynamic characteristics and variability of these excitations make it 

difficult to accurately infer the true stress and deformation conditions of the structure 

based solely on the structural response data. Especially in the face of extreme weather 

or emergencies, failure to accurately identify the input excitation may lead to 

misjudgment of the health status of the structure, thereby affecting safety assessments 

and maintenance decisions. Therefore, solving the challenges brought by unknown 

input excitations is crucial to improving the accuracy and reliability of structural 

identification. 

In order to deal with the limitations of unknown input excitation, we explored the 

feasibility of applying a new method called physics-informed neural networks (PINNs) 

in structural identification. PINNs framework is a new physics and data-coupled deep 

learning method proposed to solve the direct and inverse problems of nonlinear systems 

(Raissi et al., 2019). In PINNs, physical information described as various equations is 

seamlessly integrated into the training of machine learning models as prior information. 

Unlike purely data-driven methods, physics information is also considered as part of 

the model constraints to make the model's predictions endogenously consistent with 
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physical laws and improve the generalization and robustness of the model. The 

excellent performance of PINNs has been successfully obtained in many fields of 

physics and engineering, such as fluid mechanics (Mao et al., 2020), thermal analysis 

(He et al., 2021), and structural analysis (Abueidda et al., 2021). In this study, we 

develop a PINNs-based approach for structural identification from structural vibration 

measurements under unknown input excitations. In the proposed method, physical 

information is utilized to construct the mapping relationship between external loads and 

structural responses. A neural network model is employed to represent the unknown 

external excitations. The neural network model and the mechanical parameters of the 

structure are simultaneously updated to perform structural identification and external 

force reconstruction by minimizing the deviation between the predicted structural 

response and the vibration measurements. The nonlinearity in the structure can also be 

modeled by another neural network model to present the internal nonlinear restoring 

forces, which can also be identified together with the vibration response measurements. 

The proposed framework contributes to the field of structural identification and 

health monitoring in terms of: (1) A PINNs framework is proposed to learn the 

governing dynamic characteristics of structural systems. The inherent physical laws of 

the model can be learned instead of just establishing an uninterpretable mapping 

relationship between input and output data. (2) The proposed method can perform 

structural identification under unknown external excitations using only the vibration 

response of the structure. This avoids the difficulty and cost of accurately measuring 
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external excitations. (3) The proposed method is applicable to both linear and nonlinear 

systems, forming a universal method in structural identification problems. The 

mechanical parameters of linear structural systems such as stiffness and damping can 

be directly inverted to discover the exact values. The nonlinear components can be 

modeled by establishing a surrogate model to characterize the nonlinear restoring forces.  

The rest of the study is organized as follows: Section 2 introduces the background 

of the research. Section 3 presents the proposed method in detail. Section 4 and Section 

5 verify the proposed method using numerical and experimental examples, respectively. 

Finally, the study is concluded in Section 6. 

6.2 Background 

6.2.1 Motion equation of structural system 

Consider a multi-degree-of-freedom structural system whose motion equation is 

𝑀𝑥̈ + 𝐶𝑥̇ + 𝐾𝑥 + 𝑓(𝑥, 𝑥̇) = 𝐹(𝑡)                (6.1) 

Here 𝑀  is the mass matrix, 𝐶  and 𝐾  are the damping matrix and stiffness 

matrix of the structure. 𝑓(𝑥, 𝑥̇) is the internal nonlinear restoring force, generated by 

the nonlinear stiffness or energy dissipation device. Eq. (6.1) is a second-order ordinary 

differential equation, which is usually solved by a numerical method to obtain the 

response of the structure (𝑥, 𝑥̇, 𝑥̈)  with the external force input 𝐹 . Among these 

numerical methods, Newmark-beta is widely utilized because of its good numerical 

stability, flexibility, and accuracy. Specifically, the Newmark-beta method lists the 

following 4 equations at each time step and solves 𝑥𝑛+1 and 𝑥̇𝑛+1 by inputting the 
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current state 𝑥𝑛, 𝑥̇𝑛, and the external forces 𝐹𝑛 and 𝐹𝑛+1. 

𝑀𝑥̈𝑛 + 𝐶𝑥̇𝑛 + 𝐾𝑥𝑛 + 𝑓(𝑥𝑛, 𝑥̇𝑛) = 𝐹𝑛                      (6.2) 

𝑀𝑥̈𝑛+1 + 𝐶𝑥̇𝑛+1 + 𝐾𝑥𝑛+1 + 𝑓(𝑥𝑛+1, 𝑥̇𝑛+1) = 𝐹𝑛+1             (6.3) 

𝑥̇𝑛+1 = 𝑥̇𝑛 + ∆𝑡 ∙ ((1 − 𝛾) ∙ 𝑥̈𝑛 + 𝛾 ∙ 𝑥̈𝑛+1)               (6.4) 

and 

𝑥𝑛 = 𝑥𝑛 + ∆𝑡 ∙ 𝑥̇𝑛 +
1

2
∆𝑡2 ∙ ((1 − 2𝛽) ∙ 𝑥̈𝑛 + 2𝛽 ∙ 𝑥̈𝑛+1)         (6.5) 

Here, 0 ≤ 𝛽 ≤ 0.5  and 0 ≤ 𝛾 ≤ 1  are the parameters of the Newmark-beta 

method. By setting different combinations of values of 𝛽 and 𝛾, the Newmark method 

can be different schemes, such as the explicit central difference scheme (𝛽=0, 𝛾=0.5) 

and the average acceleration scheme (𝛽 =0.25, 𝛾 =0.5). In this study, the average 

acceleration scheme is used due to the advantages of its superior stability.  

It is noted that the basis for using these numerical methods to solve Eq. (6.1) to 

obtain the structural response is that the structural parameters 𝑀,𝐶, 𝐾, and the external 

force time series 𝐹(𝑡) are all known. In general, the structural 𝑀 matrix is easy to 

determine through weight measurement. However, the 𝐾  and 𝐶  matrices, as 

unobservable parameters of the structural system, usually need to be inversely 

determined through vibration testing. In addition, in actual engineering, the external 

forces of the structures are always difficult to measure accurately through sensors. The 

external forces also need to be inversely reconstructed through other measurement data. 

These studies on identifying structural parameters and reconstructing external forces 

from measurement data point to a research field called structural identification. 
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Theoretically, the purpose of structural identification is to estimate the physical 

parameters of the structure and identify unknown external excitations acting on the 

structure, such as earthquakes, wind loads, or other dynamic loads, by analyzing the 

dynamic response of the structure. 

6.2.2 Physics informed neural networks 

Physics-informed neural networks (PINNs) (Raissi et al., 2019) are a type of 

neural network that integrates physical information as prior information to train the 

neural network, thereby reducing the demand for training data and increasing 

robustness to data sparsity and noise. For a physical system with the governing equation: 

𝑁(𝑡, 𝑥, 𝑢(𝑡, 𝑥);  𝜃) = 𝑓(𝑡, 𝑥)                   (6.6) 

where 𝑁(∙)  is a differential operator parameterized by 𝜃 , and 𝑓(𝑡, 𝑥)  is the force 

term of the equation. PINNs can predict the exact value of 𝑢(𝑡, 𝑥) given the parameter 

𝜃  and sufficient constraints, which is called the forward problem of the equation. 

PINNs can also use partial observations of 𝑢(𝑡, 𝑥)  to reversely discover the exact 

value of 𝜃, which is called the inverse problem. In solving the forward problem, unlike 

traditional deep neural networks, the loss function of PINNs is no longer defined as the 

residual between the predicted value and the training data, but is replaced by a physical 

loss function calculated as the residual of the governing equation as 

𝐿𝑜𝑠𝑠𝑓 = ∑ [𝑁(𝑡𝑖
𝑓
, 𝑥𝑖

𝑓
, 𝑢(𝑡𝑖

𝑓
, 𝑥𝑖

𝑓
);  𝜃) − 𝑓(𝑡𝑖

𝑓
, 𝑥𝑖

𝑓
)]
2𝑁𝑓

𝑖=1
         (6.7) 

Here, 𝑁𝑓 is the number of sampling points (𝑡𝑖
𝑓
, 𝑥𝑖

𝑓
) in the equation domain, at 

which the residual of the governing equation is calculated. The constraints are also 
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embedded through a loss function calculated as 

𝐿𝑜𝑠𝑠𝑢 = ∑ [ 𝑢(𝑡𝑖
𝑢, 𝑥𝑖

𝑢) − 𝑢′(𝑡𝑖
𝑢, 𝑥𝑖

𝑢)]2𝑁𝑢
𝑖=1              (6.8) 

Here, 𝑁𝑢 is the number of sampling points (𝑡𝑖
𝑢, 𝑥𝑖

𝑢) on the equation constraints, and 

𝑢′ is the exact value on the constraint conditions of the equation. By employing an 

optimizer to minimize 𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑓 + 𝐿𝑜𝑠𝑠𝑢 , the 𝑢(𝑡, 𝑥)  predicted by PINNs can 

gradually satisfy both the governing equation and the constraints, thus approaching the 

exact equation solution. With the support of physical information of the governing 

equation, PINNs can solve the forward problem of the physical system without any 

training data.  

For the inverse problem, the residual of the governing equation referred to in Eq. 

(6.7) will also be utilized as part of the loss function. However, since the value of 𝜃 is 

unknown, it is an ill-posed problem to discover the 𝜃 value only with the governing 

equation. For this reason, some measurement points are recorded to form a loss function 

𝐿𝑜𝑠𝑠𝑢 as 

𝐿𝑜𝑠𝑠𝑚 = ∑ [ 𝑢(𝑡𝑖
𝑚, 𝑥𝑖

𝑚) − 𝑢𝑚(𝑡𝑖
𝑚, 𝑥𝑖

𝑚)]2𝑁𝑚
𝑖=1              (6.9) 

Here 𝑁𝑚  is the number of observations, and 𝑢𝑚  is the observed value at the 

observation point (𝑡𝑖
𝑚, 𝑥𝑖

𝑚) . Similarly, using an optimizer to minimize 𝐿𝑜𝑠𝑠 =

𝐿𝑜𝑠𝑠𝑓 + 𝐿𝑜𝑠𝑠𝑚, the 𝑢(𝑡, 𝑥) predicted by PINNs can gradually approach the observed 

data and satisfy the physical information constraints described by the governing 

equations. In this way, PINNs can successfully discover the accurate value of 𝜃 using 

only a small amount of observed data. Due to the constraints of physical information, 
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rather than relying solely on observed data, PINNs also show strong noise robustness 

(Arzani et al., 2021). 

6.3 Methodology 

In this section, we will develop a framework based on PINNs for structural 

identification. In reality, structures are often forced to vibrate due to external forces or 

displacement excitations rather than simply free vibrations. These external excitations, 

such as wind loads and water impacts, are difficult to measure accurately. Due to the 

inertia of the sensor, using the sensor directly in the path of the excitation will also 

affect the excitation on the structure. In addition, the internal restoring forces generated 

by the nonlinearity of the structure are also difficult to observe through sensors. These 

unobservable factors will restrict the application of traditional physical methods that 

rely on accurate force measurements, such as finite element model updating, on actual 

structures. Therefore, inspired by PINNs, in our proposed method, two neural network 

models are designed to represent the unknown external forces and internal restoring 

forces on the structure to fully utilize the powerful representation capabilities of the 

neural network model. Specifically, two neural network models with the input of time 

𝑡 output the external force and internal restoring force of the structure, respectively. 

Their physical relationships can be expressed as 𝑁𝑁𝑒𝑥(𝑡) → 𝐹𝑡
𝑒𝑥  and 𝑁𝑁𝑖𝑛(𝑡) →

𝐹𝑡
𝑖𝑛 respectively.  

Spectral bias (Wang et al., 2021) is a well-known shortcoming of neural networks, 

which manifests itself as neural networks preferentially learning low-frequency 
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components in the data and ignoring high-frequency components. Time series data of 

external forces and internal restoring forces of the structure are mostly composed of a 

mixture of multiple frequency components, which will easily fall into the trap of 

spectral bias when neural network models are utilized to represent these forces. Fourier 

feature layer (Wang et al., 2021) technology which has been proven to be an effective 

and simple way to mitigate the spectral bias of neural networks, has been applied and 

analyzed in (Sallam & Fürth, 2023; Song & Wang, 2023). In order to improve the ability 

of 𝑁𝑁𝑒𝑥 and 𝑁𝑁𝑖𝑛(𝑡) models to represent multiple frequencies in the reconstructed 

force, a Fourier feature layer is established in both 𝑁𝑁𝑒𝑥  and 𝑁𝑁𝑖𝑛  models. The 

mathematical relationship of the Fourier feature layer can be expressed as  

𝐿𝐹𝐹(𝑥,𝑊) = [
cos (2𝜋𝑊 ∙ 𝑡)
sin (2𝜋𝑊 ∙ 𝑡)

]                 (6.10) 

Here 𝐿𝐹𝐹  is the output of the Fourier feature layer, and 𝑡  is the input of the 

𝑁𝑁𝑒𝑥 model. 𝑊 is the trainable parameter, the weight of the Fourier feature layer, 

which is initialized according to the distribution 𝑁(0, 𝜎2). 𝜎 is a hyperparameter that 

controls the distribution range of 𝑊  to determine the frequency distribution of the 

features established by the Fourier layer. The value of 𝜎  can be determined by 

observing the frequency spectrum of the vibration measurement data. Subsequently, the 

output from the Fourier feature layer is input into a fully connected neural network 

(FCNN) for nonlinear mapping. The FCNN model of 𝑁𝑁𝑒𝑥  outputs unknown 

excitations on the structure, which are acceleration or external force of one or several 

degrees of freedom, or ground acceleration. The FCNN model of 𝑁𝑁𝑖𝑛  is used to 
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reconstruct the internal restoring force of one or several degrees of freedom. Both 

FCNN models consist of 𝐿  hidden layers and one output layer. Each hidden layer 

includes 𝐻  neurons. The hyperbolic tangent function is utilized as the activation 

function to provide nonlinear expression capabilities to FCNN models. It is worth 

noting that for time-invariant systems, the internal restoring force usually depends on 

the state of the structure (𝑥, 𝑥̇) rather than on the time 𝑡, so this model will be replaced 

by another neural network model that takes the system state as input to discover the 

potential relationship between the structural state and the internal force after 

successfully reconstructing the internal restoring force.  

In order to identify the accurate stiffness of the structural system, a stiffness update 

vector 𝑧𝑘 is defined to update the stiffness of structural components. Assuming that 

the structure consists of 𝑁𝑖 components and the initial stiffness of the 𝑖-th element is 

𝑘𝑖
0. Then the component stiffness can be updated by 

  𝑘𝑖
𝑧 = 𝑧𝑖

𝑘 ∙ 𝑘𝑖
0                        (6.11) 

The 𝑧𝑘 vector is initialized to an all-ones vector. The updated stiffness matrix 𝐾𝑧 

can be constructed using the updated stiffness of the components. The accurate mass 

matrix 𝑀 is considered to be available, so it does not need to be updated. The damping 

matrix of the system is set to Rayleigh damping, which is calculated as 

𝐶𝑧 = 𝑧1
𝑐 ∙ 𝑎0 ∙ 𝑀 + 𝑧2

𝑐 ∙ 𝑏0 ∙ 𝐾𝑧                  (6.12) 

Here, 𝑧𝑐 = [𝑧1
𝑐, 𝑧2

𝑐 ]  is a damping coefficient update vector with a size of 2 and 

initialized to an all-ones vector. 𝑎0 and 𝑏0 are the initial damping systems, and 𝐶𝑧 
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is the updated damping matrix. 𝑧𝑘  and 𝑧𝑐  are two trainable vectors that will be 

updated together with the neural network model. 

Now, the unknown external forces and internal restoring forces in Eq. (6.1) are 

represented by the neural network, and the 𝐾 and 𝐶 matrices are set as the updated 

𝐾𝑧, 𝐶𝑧. Then the predicted structural response can be calculated according to Eq. (6.1). 

Here, the mature numerical solver Newmark-beta method is utilized to estimate the 

predicted response of the structure to take full advantage of its efficiency and stability. 

Although PINNs have also been proven to be able to solve differential equations, the 

accuracy of the solution cannot be guaranteed due to the ‘soft’ embedding of constraints 

(X. Li et al., 2024) and the unbalanced convergence speed of multiple loss functions 

(Wang et al., 2022). Using the structural response calculated from the Newmark-beta 

method, a loss function is constructed by measuring the deviation between the 

calculated and measured values as 

𝐿𝑜𝑠𝑠𝑝𝑖𝑛𝑛 = ∑ [ 𝑥̈𝑝𝑟𝑒𝑑(𝑡𝑖
𝑚) − 𝑥̈𝑚(𝑡𝑖

𝑚)]2𝑁𝑚
𝑖=1             (6.13) 

Here, 𝑁𝑚  is the number of observations. 𝑥̈𝑝𝑟𝑒𝑑  is the predicted value of the 

acceleration response obtained from the Newmark-beta method, and 𝑥̈𝑚  is the 

measured value of the structural vibration response. By using a gradient descent-based 

optimizer, such as Adam (Kingma, 2014) to minimize the loss function, the output of 

the neural network 𝑁𝑁𝑒𝑥 will approach the true external force and the output of 𝑁𝑁𝑖𝑛 

will be close to the true internal restoring force. 𝑍𝑘 and 𝑍𝑐 will update 𝐾𝑧 and 𝐾𝑐 

to discover the true parameters of the system, thereby completing system parameter 
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identification and internal and external forces estimation. The overall framework of the 

proposed method is shown in Fig. 6.1. 

 
Figure 6.1 The overall framework of the PINNs method for structural identification.  

In Fig. 6.1, model 𝑁𝑁𝑒𝑥 and model 𝑁𝑁𝑖𝑛 are the neural network models for 

predicting external excitation and internal restoring force, respectively. 𝐿𝑒𝑥 and 𝐿𝑖𝑛 

are the mapping matrices of external excitation and internal restoring force, respectively.  

It is noted that to ensure that the problem of structure identification is well-posed, 

the number of response observations needs to be greater than the number of unknown 

external and internal excitations. The unknown external forces and unknown internal 

restoring forces should not act on the same degree of freedom to avoid mutual 

interference. After successfully reconstructing the time series data of the system's 

internal restoring force, the identified structural model cannot be utilized to predict the 

structural response under new external loads. This is because the internal restoring force 
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usually depends on the structural system state (𝑥, 𝑥̇), rather than on 𝑡. Therefore, it is 

necessary to establish a mapping relationship between internal restoring force and 

structural system state (𝑥, 𝑥̇)  so that the identified model can predict the dynamic 

response of the structure under new loads. Generally, it is a feasible path to learn the 

mapping relationship between internal restoring force and structural state by 

establishing a new neural network model. However, the internal force we reconstruct 

usually has only a small number of time steps, typically a few hundred to a few thousand. 

The neural network model learned based on such a small number of samples will have 

a large deviation from the real physical relationship. Here, the advantage of PIML in 

learning physical mapping relationships from sparse data by using physical information 

enhancement is again utilized. An FCNN model as shown in Fig. 6.2 with the structural 

state (𝑥, 𝑥̇) as input is established to approximate the internal restoring force of the 

structure, and its physical relationship can be expressed as 𝐹𝐶𝑁𝑁𝑖𝑛(𝑥𝑡, 𝑥̇𝑡) → 𝑓𝑡 . 

Known physical information, such as the cubic relationship between internal force and 

displacement or the hysteresis governing equation, is utilized to provide prior physical 

information for the training of the 𝐹𝐶𝑁𝑁𝑖𝑛  model. The reconstructed internal 

restoring force data from the 𝑁𝑁𝑖𝑛  model is also used to determine the unknown 

parameter in the physical information. Specifically, the loss functions of 𝐹𝐶𝑁𝑁𝑖𝑛 

model are constructed as 

𝐿𝑜𝑠𝑠𝑝ℎ𝑦 = ∑ [ 𝑁(𝑥𝑡, 𝑥̇𝑡;  𝜃) − 𝑓
𝑟𝑒𝑐(𝑡)]2

𝑁𝑚
𝑖=1           (6.14) 

𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 = ∑ [ 𝑓𝑝𝑟𝑒𝑑(𝑥𝑡, 𝑥̇𝑡) − 𝑓
𝑟𝑒𝑐(𝑡)]2

𝑁𝑚
𝑖=1          (6.15) 
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and  

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑝ℎ𝑦 + 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎                 (6.16) 

 
Figure 6.2 The architecture of the 𝐹𝐶𝑁𝑁𝑖𝑛 model 

Here 𝑁𝑚 is the number of reconstructed internal restoring forces, 𝑓𝑝𝑟𝑒𝑑 is the 

restoring force predicted by the 𝐹𝐶𝑁𝑁𝑖𝑛  model, and 𝑓𝑟𝑒𝑐  is the restoring force 

reconstructed from the 𝑁𝑁𝑖𝑛  model shown in Fig. 6.1. 𝑁(∙)  is a known physical 

relationship, with the unknown control parameter 𝜃. The unknown parameters 𝜃 are 

also trained and updated together with the neural network model. A similar gradient 

descent-based optimizer is employed to minimize the loss function 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙, so that 

the 𝐹𝐶𝑁𝑁𝑖𝑛  model can successfully represent the internal restoring force and the 

value of the control parameter 𝜃  in the physical relation 𝑁(∙)  can be discovered. 

After training, the discovered control parameters 𝜃  and physical information 𝑁(∙) 

can be used to estimate the internal restoring force depending on the state of the 

structure (𝑥, 𝑥̇). At this point, the PINNs framework proposed has the ability to predict 

the structural response under new external excitations. By inputting new external forces 
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to the PINNs framework and employing the discovered physical information 

𝑁(𝑥, 𝑥̇, 𝜃) to predict the internal restoring force, the response of the structure can be 

predicted by the Newmark-beta method with the updated structural parameters 𝐾𝑧 and 

𝐶𝑧. 

It is noted that our proposed PINNs method is not the first study on physics-

informed machine learning (PIML) for structure identification. Several PIML 

frameworks for structural dynamic response prediction and structure damage detection 

have been published, among which the most well-known one for structure identification 

is the physics-informed neural ordinary differential equations (PI-NODE) framework 

(Lai et al., 2021). For comparison, the differences between our proposed framework 

and PI-NODE are summarized in Table 6.1. 

Table 6.1 Summary of the differences between proposed framework and PI-NODE 

 PI-NODE Proposed framework 

Model input  
Structural state (displacement 

and velocity), external force 
Vibration response 

Mechanical 

parameters  
Exact value  Initial guess 

Neural network  NODE  FFNN, FCNN 

Solver  ODE solver Newmark-beta method 

 

In structural identification, pure data-driven machine learning algorithms use the 

measured vibration responses of multiple degrees of freedom as training data to learn 

their potential mapping relationships and then use model extrapolation to predict the 

output. However, changes in the initial conditions of the structure and the external force 
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input will cause the mapping relationship to change, resulting in the failure of data-

driven model prediction. The method we proposed is different from the simple input-

output mapping relationship fitting of machine learning. The proposed method aims to 

explore the intrinsic physical information of the structural system, so as to more 

accurately reflect the fundamental dynamic characteristics of the system. In addition, 

due to the integration of the governing equation, the proposed method can adapt well 

to changes in structural input and initial conditions. In addition, physics-driven methods, 

such as finite element model updating and sensitivity-based methods, are input-output 

methods. This means that accurate measurement of the external excitation of the model 

is required, which is always difficult in actual engineering. Moreover, the difficulty in 

adapting to nonlinear restoring forces in the physics-driven methods also limits their 

scope of use. 

6.4 Numerical cases 

6.4.1 4-degree-of-freedom system 

To demonstrate the proposed method, a 4-degree-of-freedom (4-DOF) dynamical 

system with cubic nonlinearity is studied as a numerical example. The system is shown 

in Fig. 6.3 as a spring-mass model commonly used in structural dynamic simulation. A 

nonlinear spring with cubic stiffness is added on 𝑚1. 
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Figure 6.3 4-DOF structural dynamic system 

The equation of motion for this 4-DOF structure can be expressed as 

{
 
 

 
 𝑚1𝑥̈1(𝑡) + (𝑘1 + 𝑘2)𝑥1(𝑡) − 𝑘2𝑥2(𝑡) + (𝑐1 + 𝑐2)𝑥̇1(𝑡) − 𝑐2𝑥̇2(𝑡) + 𝑘𝑛𝑥1

3(𝑡) = 𝑚1𝑥̈𝑔(𝑡)

𝑚2𝑥̈2(𝑡) − 𝑘2𝑥1(𝑡) + (𝑘2 + 𝑘3)𝑥2(𝑡) − 𝑘3𝑥3(𝑡) − 𝑐2𝑥̇1(𝑡) + (𝑐2 + 𝑐3)𝑥̇2(𝑡) − 𝑐3𝑥̇3(𝑡) = 𝑚2𝑥̈𝑔(𝑡)

𝑚3𝑥̈3(𝑡) − 𝑘3𝑥2(𝑡) + (𝑘3 + 𝑘4)𝑥3(𝑡) − 𝑘4𝑥4(𝑡) − 𝑐3𝑥̇2(𝑡) + (𝑐3 + 𝑐4)𝑥̇3(𝑡) − 𝑐4𝑥̇4(𝑡) = 𝑚3𝑥̈𝑔(𝑡)

𝑚4𝑥̈4(𝑡) − 𝑘4𝑥3(𝑡) + 𝑘4𝑥4(𝑡) − 𝑐4𝑥̇3(𝑡) + 𝑐4𝑥̇4(𝑡) = 𝑚4𝑥̈𝑔(𝑡)

   (6.17) 

Here, 𝑥 , 𝑥̇ , 𝑥̈  are displacement, velocity, and acceleration, respectively. The 

linear stiffness system is 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 100 . The cubic stiffness of the 

nonlinear spring is 𝑘𝑛 = 1000. The masses of the four degrees of freedom are 𝑚1 =

𝑚2 = 2.0  and 𝑚3 = 𝑚4 = 1.0 . The damping matrix 𝐶  is defined as 𝐶 = 0.45 ∙

𝑀 + 0.018 ∙ 𝐾 . Assume that the structure vibrates from rest due to the ground 

acceleration. The ground acceleration is 𝑥̈𝑔 = 10𝑠𝑖𝑛(2𝜋𝑡) + 3𝑠𝑖𝑛(4𝜋𝑡) +

 2𝑠𝑖𝑛(6𝜋𝑡). An implicit second-order Runge-Kutta method (Iserles, 2008) is utilized as 

a numerical solver to calculate the vibration response of the structure as training data. 

The training time step is 𝑑𝑡 =  0.01 𝑠 and the calculation duration is 5.0 𝑠. The time 

series data and frequency spectrum of the calculated vibration response are shown in 

Fig. 6.4. 
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Figure 6.4 (a) Vibration response and (b) frequency spectrum of the structure 

calculated by the numerical solver 

Assuming that the mass of the structure is known and the vibration responses of 

the four degrees of freedom as shown in Fig. 6.4 is recorded, a PINNs framework for 

structural identification as shown in Fig. 6.1 is built to reversely discover the accurate 

values of 𝐾 and 𝐶 and reconstruct the restoring force of the nonlinear stiffness spring. 

The initial guess of the stiffness of all linear springs is set to 50, and the initial value of 

the damping coefficients 𝑎 and 𝑏 is set to 0.1 and 0.001. Two update vectors 𝑧𝑘 and 

𝑧𝑐 are initialized and trained to update the stiffness matrix 𝐾 and damping matrix 𝐶 

of the structure. Two FFNN models are established to represent the unknown ground 

acceleration and the restoring force of the nonlinear spring, respectively. According to 

the frequency spectrum of the vibration response, the hyperparameter 𝜎 of the Fourier 

layer in the FFNN model is set to 10. The number of fully connected hidden layers in 

the FFNN is 2, and each layer contains 100 neurons. Using the ground acceleration and 
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internal restoring force predicted by the two FFNNs, as well as the updated 𝐾𝑧 and 

𝐶𝑧 matrices, the response of the structure is predicted using the Newmark-beta method, 

and the loss function is constructed with the vibration response of the structure. Here, 

the noise-free vibration data of 0 − 2 𝑠  is first considered as the training data. A 

gradient descent-based optimizer Adam is employed to minimize the loss function with 

a learning rate of 0.001. The entire framework is trained with 50,000 iterations, and the 

convergence process of the loss function is shown in Fig. 6.5. The entire training 

process of the model took 3563.16 seconds. 

 
Figure 6.5 Convergence process of loss function 

After training, Fig. 6.6 shows the predicted structural displacement, velocity, and 

acceleration responses of four degrees of freedom from 0 to 2 seconds. The results show 

that the prediction of the structural response of (0-2 s) is very close to the ground truth, 

which means that our framework successfully learns the input data of the model and 

reconstructs the velocity and displacement responses of the structural system.  
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Figure 6.6 Structural displacement, velocity, and acceleration predicted by the model 

From the output of the 𝑁𝑁𝑒𝑥 model, the acceleration response of the ground is 

also reconstructed and is shown in Fig. 6.7. The results show that the 𝑁𝑁𝑒𝑥 model 

successfully reconstructs the time series of ground acceleration based on the vibration 

measurements. 

 
Figure 6.7 Ground acceleration reconstructed by the model 
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The structural stiffness discovered from the PINNs framework are 𝑘1 =72.67, 

𝑘2 = 100.00 , 𝑘3 =100.00, 𝑘4 =100.00. The discovered results show that the PINNs 

framework accurately discovered the accurate value of the structural stiffness of 𝑘2, 

𝑘3, and 𝑘4. The discovered damping coefficients 𝑎 = 0.450 and 𝑏 = 0.018 are also 

consistent with the true value. The value of 𝑘1 is not accurately found because the 

partial restoring force of the linear spring 𝑘1 is also included in the force reconstructed 

by the 𝑁𝑁𝑖𝑛 model together with the restoring force of the cubic spring. To show the 

total restoring force of the nonlinear springs 𝑘𝑛  and 𝑘1 , the predicted nonlinear 

restoring force output of the 𝑁𝑁𝑖𝑛 model and the predicted linear restoring force of 

𝑘1 are summed as the total restoring force. The time series data of the internal restoring 

force reconstructed by 𝑁𝑁𝑖𝑛 model, the linear restoring force of 𝑘1, and their sum 

values are shown in Fig. 6.8. 

 
Figure 6.8 The time series data of the internal restoring force  
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Fig. 6.8 shows that the sum of the internal restoring force reconstructed by the 

𝑁𝑁𝑖𝑛 model and the linear restoring force of 𝑘1 successfully reconstructs the total 

internal restoring force of the structure generated by linear springs and nonlinear 

springs. In order to make the PINNs model have the ability to extrapolate, i.e., to predict 

the structural response under a new external force, an FCNN model with input of the 

structural state is established to replace the 𝑁𝑁𝑖𝑛  model to predict the internal 

restoring force. This FCNN has 4 hidden layers, each consisting of 100 neurons. The 

prior physical knowledge of the linear and cubic relationship between the internal 

restoring force and the structural displacement response is utilized to train the FCNN 

model. The loss function of the FCNN model can be expressed as: 

𝐿𝑜𝑠𝑠𝑝ℎ𝑦 = ∑ [ 𝜃1 ∙ 𝑥𝑖
3 + 𝜃2 ∙ 𝑥𝑖 − 𝑓

𝑟𝑒𝑐(𝑡𝑖)]
2𝑁𝑚

𝑖=1           (6.18) 

𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 = ∑ [ 𝑓𝑝𝑟𝑒𝑑(𝑥𝑖) − 𝑓
𝑟𝑒𝑐(𝑡𝑖)]

2𝑁𝑚
𝑖=1             (6.19) 

and  

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑝ℎ𝑦 + 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎                 (6.20) 

Here 𝑁𝑚 = 200  represents the reconstructed internal restoring force for 200 

steps shown in Fig. 6.8. 𝜃 = (𝜃1, 𝜃2) are unknown parameters trained together with 

the FCNN model. 𝑓𝑟𝑒𝑐  is the reconstructed internal restoring force in Fig. 6.8 and 

𝑓𝑝𝑟𝑒𝑑  is the restoring force predicted by the FCNN model. The Adam optimizer is 

employed to train this FCNN model 10,000 times with a learning rate of 0.001 until the 

loss function converges. After training, 𝜃1  and 𝜃2  converge to 995.56 and 27.14 

respectively, and the restoring force of the nonlinear spring is identified as 𝑓1
𝑖𝑛 =
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995.56 ∙ 𝑥1
3 + 99.81 ∙ 𝑥1, which is close to the true value 𝑓1

𝑖𝑛 = 1000 ∙ 𝑥1
3 + 100 ∙

𝑥1. 

Now, the identified expression for the nonlinear spring can be employed to predict 

the internal restoring forces according to the state of the structure, which enables PINNs 

to predict the structural response of this 4-DOF system under new forces. To verify the 

performance of PINNs, the ground acceleration of 2-5 s will be used as the external 

force and the calculation results of 2-5 s in Fig. 6.4 are used as ground truth. Here, the 

identified expression for the nonlinear spring is used to predict the internal restoring 

force 𝐹𝑡
𝑖𝑛 of the structure, and the external force 𝐹𝑡

𝑒𝑥 is applied by ground acceleration. 

The parameters of the structure are set according to the discovered structural stiffness 

and damping coefficients. The Newmark-beta method in the PINNs framework is also 

utilized to predict the vibration response of the structure. The acceleration responses of 

this 4-DOF system predicted by PINNs are shown in Fig. 6.9. The results show that 

PINNs can accurately predict the seismic response of this 4-DOF structure under the 

ground acceleration.  
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Figure 6.9 The acceleration responses predicted by PINNs model 

We further discuss the performance of the proposed framework with noisy 

measured data. The above system identification process is performed on the training 

data containing 1% and 5% Gaussian noise. Table 6.2 shows the identified structural 

parameters from the noise measurement. The results show that the error of structural 

parameter identification increases with the increase of noise level. The damping 

coefficient 𝑎  is more sensitive to noise than the stiffness 𝑘  and the damping 

coefficient 𝑏. In the training data with 1% noise, the error of stiffness identification is 

less than 0.2%, and the damping coefficient 𝑏 is accurately identified. In the training 

data with 5% noise, the error of stiffness identification is less than 3%, and the relative 

error of the damping coefficient 𝑏  is 5.56%. The proposed method demonstrates 

excellent noise robustness in this case. 

Table 6.2 Structural parameters identified from noisy training data 



 

192 

 

Noise level 𝒌𝟐 𝒌𝟑 𝒌𝟒 𝒂 𝒃 

1% 100.15 100.11 99.98 0.498 0.018 

5% 98.68 97.12 100.44 0.260 0.019 

Exact 100.00 100.00 100.00 0.450 0.018 

 

In the cases of noisy training data, the internal restoring forces of the nonlinear 

springs are also reconstructed through the prediction of the 𝑁𝑁𝑖𝑛 model. Similarly, 

the total internal restoring forces are calculated as the sum of the internal restoring 

forces predicted by the 𝑁𝑁𝑖𝑛 model and the restoring force of the identified linear 

spring 𝑘1. The results of total internal restoring force in the cases of noisy training data 

are shown in Fig. 6.10. The result shows that the nonlinear internal restoring forces of 

the structural system are successfully reconstructed in the cases of noisy training data. 

As the noise level in the training data increases, the error in the identified internal 

restoring forces increases.  

 
Figure 6.10 Internal restoring force reconstructed from noisy training data 
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Similar to the case of training data without noise, an FCNN model is also 

employed to learn the mapping between the internal restoring force and the 

displacement of 𝑚1  in the noisy training data. The linear and cubic relationship 

between the restoring force and displacement response of the nonlinear spring is used 

as prior physical information to train this FCNN model. The loss functions of the FCNN 

model are shown in (Eq. 6.17) – (Eq. 6.19). After 20,000 training iterations, the value 

of the unknown parameter theta has converged. The internal restoring forces of the 

identified nonlinear spring are 𝑓1
𝑖𝑛 = 949.92 ∙ 𝑥1

3 + 105.82 ∙ 𝑥1  (1% noise) and 

𝑓1
𝑖𝑛 = 762.07 ∙ 𝑥1

3 + 110.63 ∙ 𝑥1  (5% noise). It is seen here that as the noise level 

increases, the error in the identified structure will also increase. After successful 

training, this identified expression of the restoring force is utilized to predict the internal 

restoring force of the structure so that the PINNs framework can predict the response 

of the structure under new external excitations. Similarly, the ground acceleration of 2-

5 s is input as an external force and the calculated acceleration response results of the 

two noise cases are shown in Fig. 6.11. The results show that the identified structure 

can successfully and accurately predict the dynamic response of the structure under new 

external loads. 
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Figure 6.11 The calculated structural acceleration response of noisy cases 

6.4.2 Bouc-Wen hysteresis system 

 
Figure 6.12 3-DOF system with Bouc-Wen hysteresis model 

A 3-DOF system with Bouc-Wen hysteresis model as shown in Fig. 6.12 is 

analyzed as a numerical case for structural identification. The masses of the three 
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degrees of freedom are 𝑀1 = 1𝑘𝑔, 𝑀2 = 2𝑘𝑔, 𝑀3 = 3𝑘𝑔. The stiffness of the linear 

springs is 𝑘1 = 20𝑁/𝑚 , 𝑘2 = 25𝑁/𝑚 , 𝑘3 = 15𝑁/𝑚 . The hysteresis force of the 

Bouc-Wen hysteresis model is calculated according to 

𝐹𝐵𝑊 = 𝑘𝐵𝑊 ∗ 𝑧(𝑡)                        (6.21) 

Here 𝑘𝐵𝑊 is the Bouc-Wen stiffness set to 15 𝑁/𝑚, 𝑧(𝑡) is the unobservable 

hysteresis displacement, which obeys a nonlinear differential equation with initial 

condition 𝑧(0) = 0, as 

𝑧̇(𝑡) = 𝑢̇(𝑡) − 𝛽|𝑢̇(𝑡)||𝑧(𝑡)|𝑛−1𝑧(𝑡) − 𝛾𝑢̇(𝑡)|𝑧(𝑡)|𝑛      (6.22) 

Here, the Bouc-wen parameters are set as 𝛽 = 0.75 , 𝛾 = 0.5 , 𝑛 = 2.0 . This 

structural system vibrates under seismic acceleration of the amplified EI-Centro 

earthquake (Ha et al., 2004), as shown in Fig. 6.13. A second-order implicit Runge-

Kutta method (Iserles, 2008) is used to calculate the vibration response of the structure, 

with a time step of 0.01s and a calculation time of 5s. The time domain curves and 

frequency distribution of the acceleration response of the three degrees of freedom are 

shown in Fig. 6.14. 
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Figure 6.13 The amplified EI-Centro seismic acceleration 

 
Figure 6.14 The time domain curves (a) and frequency distribution (b) of the 

acceleration response of the 3DOF system 

Using the known mass matrix 𝑀 and the calculated acceleration response as the 

measured vibration data, a PINNs model is established to identify the stiffness matrix 

𝐾 of the structure and reconstruct the external seismic acceleration and the internal 

restoring force generated by the Bouc-Wen model. The stiffness of linear springs is 

initialized to 10 𝑁/𝑚, and a three-element update vector 𝑧𝑘 is defined and initialized 

to an all-ones vector to update the stiffness of the linear springs by Eq. 6.11. Two FFNN 

models are established to represent the unknown ground acceleration and the restoring 

force of the Bouc-Wen system, respectively. According to the frequency spectrum of 

the vibration response shown in Fig. 6.14, the hyperparameter 𝜎 of the Fourier layer 

in the FFNN model is set to 10. The number of fully connected hidden layers in the 

FFNN is 2, and each layer contains 100 neurons. Using the ground acceleration and 
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internal restoring force predicted by the two FFNN models, as well as the updated 𝐾𝑧 

matrix, the response of the 3-DOF system is predicted using the Newmark-beta method, 

and the loss function is constructed with the vibration response of the structure. Here, 

the noise-free vibration data of 0 − 5 𝑠 is considered as the training data. A gradient 

descent-based optimizer Adam is employed to minimize the loss function with a 

learning rate of 0.001. The entire framework is trained with 30,000 iterations, and the 

convergence process of the loss function is shown in Fig. 6.15. 

 
Figure 6.15 The convergence process of the loss function 

After training, the displacement response of the 3-DOF system is also 

reconstructed as shown in Fig. 6.16 by the Newmark-beta method with the ground 

acceleration and internal restoring force predicted by the two FFNN models. This result 

shows that the reconstructed system responses are consistent with the benchmark 

solution. The ground acceleration is also reconstructed by 𝑁𝑁𝑒𝑥 as shown in Fig. 6.17. 
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The results show that our proposed PINNs also successfully reconstructed the unknown 

seismic acceleration on this 3-DOF system using the measurement of the structural 

vibration response. 

 
Figure 6.16 The reconstructed displacement response of the 3-DOF system  

 
Figure 6.17 The reconstructed ground acceleration from 𝑁𝑁𝑒𝑥 model  

Using the updated vector 𝑧𝑘, the stiffness of the three linear springs is identified 

as 𝑘1 = 20.00𝑁/𝑚, 𝑘2 = 24.99𝑁/𝑚, 𝑘3 = 13.57𝑁/𝑚 , which is close to the true 

value of the spring stiffness. 𝑁𝑁𝑖𝑛  also reconstructs the internal restoring force 
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generated by the Bouc-Wen model, as shown in Fig. 6.18.  

 
Figure 6.18 The reconstructed internal restoring force generated by the Bouc-Wen 

model 

Fig. 6.18 shows that the identified hysteresis force of the Bouc-Wen is close to the 

calculated result as the ground truth, but there is still some error, which is considered 

to be caused by the inclusion of part of the linear restoring force in the identified 

hysteresis force. In order to make the PINNs model have the ability to predict the 

structural response under a new external force, an FCNN model with input of the 

structural state is established to replace the 𝑁𝑁𝑖𝑛  model to predict the internal 

restoring force generated by the Bouc-Wen model. This FCNN has 4 hidden layers, 

each consisting of 100 neurons. The input of the neural network model is 𝑡, and the 

output is the hysteresis displacement 𝑧(𝑡)  of the Bouc-Wen model. So, the loss 

function of the FCNN model is defined as 

𝐿𝑜𝑠𝑠𝑝ℎ𝑦 = ∑ [ 𝑧̇(𝑡𝑖) − (𝑢̇(𝑡𝑖) − 𝜃1|𝑢̇(𝑡𝑖)||𝑧(𝑡𝑖)|
𝜃3−1𝑧(𝑡𝑖) − 𝜃2𝑢̇(𝑡𝑖)|𝑧(𝑡𝑖)|

𝜃3)]
2𝑁𝑚

𝑖=1  (6.23) 
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𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎 = ∑ [𝜃4𝑧(𝑡𝑖) − 𝑓
𝑟𝑒𝑐(𝑡𝑖)]

2𝑁𝑚
𝑖=1           (6.24) 

and  

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑝ℎ𝑦 + 𝐿𝑜𝑠𝑠𝑑𝑎𝑡𝑎                 (6.25) 

Here 𝑁𝑚 = 500  represents the reconstructed internal restoring force for 500 

steps shown in Fig. 6.18. 𝑧(𝑡𝑖) is the hysteresis displacement predicted by the FCNN 

model. 𝑧̇(𝑡𝑖)  is calculated by the finite difference method as 𝑧̇(𝑡𝑖) =
𝑧(𝑡𝑖+1)−𝑧(𝑡𝑖)

∆𝑡
 . 

𝑢̇(𝑡𝑖)  is the reconstructed velocity response from the Newmark-beta method. 𝜃 =

(𝜃1, 𝜃2, 𝜃3, 𝜃4)  are unknown parameters representing the parameters 𝛽, 𝛾, 𝑛, 𝑘𝐵𝑊 

respectively, which are trained together with the FCNN model. 𝑓𝑟𝑒𝑐  is the 

reconstructed internal restoring force in Fig. 6.18. The Adam optimizer is employed to 

train this FCNN model 50,000 times with a learning rate of 0.001 until the loss function 

converges.  

After training, 𝜃 converges to (0.678, 0.389, 1.769, 16.466). The results show 

that the parameters of the Bouc-Wen model are successfully identified as 𝑘𝐵𝑊 =

16.466 N/m , 𝛽 = 0.678 , 𝛾 = 0.389 , 𝑛 = 1.769 . Now the structural system has 

been fully identified and has the ability to predict the response of the structure under 

new loads. A new seismic acceleration of the Chi-Chi earthquake as shown in Fig. 6.19 

is applied to the 3-DOF system. The identified structural system is used to predict the 

response of the structure, and the structural vibration response calculated by the second-

order implicit Runge-Kutta method is set as the benchmark solution. The structural 

vibration response predicted by the identified structural system is shown in Fig. 6.20. 
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Figure 6.19 The seismic acceleration of Chi-Chi earthquake 

 
Figure 6.20 The structural vibration response predicted by the identified structural 

system  

The results in Fig. 6.20 show that the identified structural system successfully and 

accurately predicts the vibration response of the structure under the new seismic 

acceleration. Fig. 6.21 shows the hysteresis force calculated by the identified Bouc-
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Wen model. The results show that the hysteresis force generated by the Bouc-Wen 

model is also successfully characterized by the identified structural system.  

 

Figure 6.21 The hysteresis force calculated by the identified Bouc-Wen model 

6.5 Experimental case 

In order to further verify the proposed method through experimental data, a beam 

vibration test was carried out in the laboratory. As shown in Fig. 6.22, an aluminum 

beam mounted on two supports was tested. The size of the beam is 1260 ∗ 30 ∗ 5𝑚𝑚. 

The material is aluminum with a measured density of 2683.08 𝑘𝑔/𝑚3. Both ends of 

the beam are bolted to the supports, and the length of the connecting section on each 

side is 30 𝑚𝑚 . These connections are considered rotational semi-rigid, where the 

beam displacement on the supports is constrained to 0, while the rotation is not 0. The 

angular moments of the supports on the beam are identified as the internal restoring 

forces. A hammer with a force sensor is used to apply a dynamic force at the mid-span 
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of the beam to make the beam vibrate. Five accelerometers are installed to measure the 

vibration response of the beam. The installation positions of the accelerometers and the 

additional weights added to the beam are listed in Table 6.3.  

 

Figure 6.22 Vibration test of aluminum beam 

Table 6.3 Installation position and weight of accelerometers 

Sensor ID Position (mm) Weight (g) 

A1 230 29.3 

A2 430 31.8 

A3 630 29.6 

A4 830 35.8 

A5 1030 29.5 

A Dewesoft data logger and a laptop were used to collect and record the 

measurement data, with a sampling frequency of 10000 Hz. The beam vibrated from 

rest by applying a force with a hammer at the mid-span. The vibration responses of the 

five accelerometers were collected and Fourier transformed to analyze their frequency 

distribution. The results are shown in Fig. 6.23. 
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Figure 6.23 The collected vibration responses and frequency spectrum 

The finite element model of the aluminum beam is constructed by discretizing it 

into 12 Euler-Bernoulli beam elements with consistent mass matrices. The length of the 

elements is 100 mm. The finite element model has a total of 13 nodes, 12 elements, and 

24 degrees of freedom. A PINNs framework as shown in Fig. 6.1 is built to perform the 

structural identification of the beam. Since the aluminum beam is a homogeneous 

material and the cross-sectional size is consistent, a stiffness update coefficient 𝑧𝑘 is 

used to update the elastic modulus of all beam elements to update the stiffness matrix. 

Here, the initial value of the elastic modulus is set as 𝐸 = 65 𝐺𝑃𝑎. Rayleigh damping 

is also employed to model the damping of the beam, with 𝐶 = 𝑎 ∙ 𝑀 + 𝑏 ∙ 𝐾. Here 𝑎 

and 𝑏 are updated by a two-element damping update vector 𝑧𝑐. The initial values of 

𝑎 and 𝑏 are set to 1e-1 and 1e-5, respectively. 

Two FFNN neural network models are constructed to represent the external force 

at the mid-span and the internal restoring force from the two supports, respectively. 
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Both models have two fully connected hidden layers, each containing 100 neurons. 

According to the frequency distribution of the vibration response, the hyperparameter 

𝜎 of the Fourier layer is set to 1000. In both FFNNs, the model 𝑁𝑁𝑒𝑥 for predicting 

the external force at the mid-span takes as input 𝑡 and outputs the external force 𝐹𝑒𝑥 

of the structure. The model 𝑁𝑁𝑖𝑛 for predicting the angular moment from the supports 

takes 𝑡 as input and outputs the angular moment of the two supports. The parameters 

of the two models, the stiffness update coefficient 𝑧𝑘 and the damping update vector 

𝑧𝑐 are the trainable parameters of this PINNs framework. The first 200 time steps of 

the vibration measurement are input as the training data for the models. An Adam 

optimizer with a learning rate of 0.001 is employed to minimize the loss function of the 

model, which is calculated as the mean squared error between the predicted structural 

vibration and the measured data. The training is performed for 10,000 iterations, where 

the loss function is observed to converge. After the model is trained, the predicted 

structural vibration response at the accelerometer locations is shown in Fig. 6.24. The 

results show that the PINNs framework represents the structural vibration measurement 

data well. 
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Figure 6.24 The comparison of the structural vibration response predicted by the 

model (blue) and measured data (red) 

After training, the model parameters identified by PINNs are 𝐸𝑘 = 70.213𝐺𝑃𝑎, 

𝑎 =2.483and 𝑏 = 4.814𝑒 − 6. PINNs also reconstructed the support angular moment 

and external force input as shown in Fig. 6.25. The measurement value from the force 

sensor of the hammer is also used as the reference for the external force input, although 

it is difficult to determine whether this measurement value is accurate. The results show 

that the external force reconstructed by PINNs is consistent with the measured data. 
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Figure 6.25 Reconstructed moments from supports (top) and reconstructed external 

force input (bottom) 

In order to enable the PINNs framework to predict the structural response under 

new inputs, two FCNN models with input as the rotation angle of the support are built 

to replace the 𝑁𝑁𝑖𝑛 model. FCNN models contain 4 hidden layers, each consisting of 

100 neurons. The input of the model is the rotation angle at the support, and the output 

is the rotation moment of the support. The training data of the model is the reconstructed 

rotation moment shown in Fig. 18. The Adam optimizer is also used to minimize the 

difference between the moment predicted by the model and the reconstructed data. The 

model is trained 10,000 times with a learning rate of 0.001. Using the updated structural 

mechanics parameters and the trained FCNN model to predict the rotation moment, the 

PINNs model can now predict the structural response of this beam under the new 

external force. We conducted a new hammer test and input the external force recorded 

by the hammer into the PINNs. The comparison of the structural vibration response 

predicted by PINNs and the measured value is shown in Fig. 6.26. 
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Figure 6.26 The comparison of the structural vibration response predicted by PINNs 

(blue) and the measured value (red) 

Fig. 6.26 shows that under the new external excitation, the structural vibration 

response predicted by PINNs is highly consistent with the accelerometer measurements. 

which proves that PINNs successfully identify the dynamic characteristics of the 

structure. 

6.6 Summary 

This study investigates a promising approach for linear/nonlinear structure 

identification via physics-informed neural networks. The physical information of the 

structural vibration equations is seamlessly integrated into the proposed machine 

learning framework through a set of mathematical equations that describe the 

Newmark-beta derived relations of the dynamic system. By representing the external 

force input of the structure through a neural network, the proposed method can invert 
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the mechanical parameters of the structure based solely on the observed vibration 

response of the structure. For nonlinear structural systems involving nonlinear stiffness 

or damping, the internal restoring forces generated by the nonlinear components can 

also be accurately captured by another neural network model. To alleviate the spectral 

bias defect in neural networks, the Fourier feature layer is incorporated into the neural 

network model to form a Fourier feature neural network to improve the representation 

capability of multi-frequency features. A numerical example of a multi-degree-of-

freedom system involving cubic stiffness is tested to demonstrate the effectiveness of 

the proposed method. Based only on the vibration acceleration measurement data of the 

structure, the proposed method is shown to accurately reconstruct the unknown ground 

acceleration of the structural system and the restoring force generated by the nonlinear 

spring, and successfully identify the mechanical parameters of the structural system. 

Using these identified system parameters and the constructed surrogate model of the 

nonlinear spring, the response of the structure under new inputs is predicted and shown 

to be consistent with the ground truth. Another laboratory test of a beam with semi-

rigid supports is carried out as a practical case to verify the proposed method. The 

results show that with a small number of vibration observations, the proposed method 

can accurately model the dynamic characteristics of the beam and predict the vibration 

response of the beam under new external excitations. 
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Chapter 7 Conclusions and recommendations 

7.1 Conclusions 

After a decade of development, data-driven machine learning methods have 

become a preferred approach for researchers in many research fields due to their 

flexibility and powerful characterization capabilities. However, these purely data-

driven methods still face some difficulties in solving forward and inverse problems in 

real physical systems. Since the machine learning model trained by various 

observational data can only fit the input-output mapping relationship at a shallow level, 

but cannot explore deeper physical characteristics, this shortcoming is reflected in the 

unsatisfactory generalization ability of the model, and the deviation between the 

predicted results and the real physical laws. Recently, a framework for seamlessly 

integrating physical information with machine learning models called physics-informed 

machine learning (PIML) has been developed to improve the ability of data-driven 

approaches to characterize physical constraints. Although PIML has been successful in 

many research and engineering fields, there are still some shortcomings to be solved in 

applying the existing PIML method directly to the forward and inverse problems of 

structural dynamics. First, the defects of spectral bias, ‘soft’ constraint embedding, and 

multi-loss convergence imbalance in PIML will be amplified in the structural dynamic 

response prediction, leading to prediction failure or obvious error. The inverse problem 

of structural damage identification from unknown forces makes the implementation of 
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PIML difficult because of the unknown force terms in its governing equations. The 

uncertain nonlinearity of structures also poses some challenges to the accurate modeling 

of existing PIML methods. 

In order to expand the research and application of PIML in structural dynamics, 

the research goal of this thesis is to develop advanced PIML methods for structural 

dynamic response prediction and structural damage identification. First, a PIML 

method of integrating physical information with a neural network model is proposed to 

solve the forward problem of structural dynamics. Here, how to accurately predict the 

vibration response of known linear/nonlinear physical systems under external 

excitation is first studied. To be specific, a novel recurrent convolutional neural network 

(RCNN) framework named structural dynamics learner (SDL) is proposed to predict 

the dynamic response of linear/nonlinear structural systems by employing an RCNN 

model to represent the physical state of the structure and incorporating the implicit 

Crank-Nicolson form of the system's motion equations into the SDL framework as 

physical information. The implicit Crank-Nicolson form of the motion equations gives 

SDL two significant advantages, including endogenous adaptability to linear and 

nonlinear systems and excellent numerical stability, especially in problems involving 

stiff equations. The RNN-based framework also makes SDL break through the defects 

of spectral bias, ‘soft’ constraint embedding and convergence imbalance of loss 

functions in the original PINNs, and improves the convergence speed of the model with 

the memory mechanism brought by its recurrent architecture. Several numerical cases 
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involving nonlinear, stiff equations, hysteretic systems, and complex boundary 

conditions are carried out to validate the proposed framework, and the results are 

compared with traditional explicit numerical methods and original PINNs methods, 

respectively. 

After that, the focus of this thesis turned to the research of inverse problems in 

structural mechanics. The reconstruction of structural external forces and dynamic 

responses is investigated first through a PIML framework that combines physical 

information with Markov parameters called physics-informed Markov parameters (PI-

MP). The purpose of this research is to try to solve the problem often faced in practical 

structural engineering, i.e., how to accurately obtain the external excitation of the 

structure and how to reconstruct the unmeasured dynamic response through other 

measurement data when only part of the structure is observable. Here, the powerful 

representational power of neural networks is leveraged to represent the unknown 

external input of a structure. The motion equation of the structure, described as the 

Markov parameter in the state space, is integrated into the training of the neural network 

model as the prior physical information. By minimizing the deviation between the 

predicted structural acceleration response and the measured vibration response, PI-MP 

can reconstruct the external excitation input of the structure and predict the vibration 

response of all parts of the structure based on the reconstrated excitations. Even when 

the force points are unknown, PI-MP can also locate the exact force position by 

designing an optimization strategy that couples a greedy algorithm. Through two 
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numerical cases and a laboratory test, the effectiveness and noise robustness of the 

proposed method are demonstrated.  

The application of physical information machine learning for structural damage 

identification with unknown external forces from vibration measurements is further 

investigated. A physics-informed Fourier feature neural networks (PI-FFNN) 

framework is proposed to achieve this goal. In this framework, from vibration response 

measurements, the external forces and damages of the structure are identified 

simultaneously. A Fourier feature neural network, which is equipped with a Fourier 

feature layer to reduce the spectral bias of the model, is employed as the core of the 

framework to predict the external forces of the structure. Newmark-beta scheme of the 

motion equation as physical information to train the neural network model with a 

regularization term synergy to improve the sparsity and noise robustness of the 

identification results. The integration of physical information makes this approach an 

unsupervised learning method, the training of which does not rely on any damage-

related data labels. Two numerical experiments of beams and trusses and a laboratory 

test were carried out to verify the performance of the proposed method. The results 

show that the PI-FFNN method can locate and detect the structural damage and the 

external force of the reconstruction structure more accurately than the sensitivity-based 

method and the original PINNs method, even in the vibration measurement of noise. 

Finally, our research focuses on the problem of structure identification of nonlinear 

vibration systems. Based on PINNs, we propose a framework for simultaneously 
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identifying structural mechanical parameters, reconstructing unknown external 

excitations on structures, and establishing alternative models for nonlinear systems. In 

this framework, two neural network models are employed to represent the structure's 

unknown external excitation and nonlinear internal restoring force, respectively. The 

mechanical parameters of the structure are updated along with the neural network 

model as trainable parameters. The physical information of the structural vibration 

equations is seamlessly integrated into the proposed machine learning framework 

through a set of mathematical equations that describe the Newmark-beta derived 

relations of the dynamic system. By minimizing the difference between the predicted 

structural response and the structural vibration observation, both the external excitation 

and the internal nonlinear restoring force of the structure can be reconstructed 

simultaneously and the exact values of the structural parameters can be discovered. In 

a numerical case and a laboratory test, the proposed framework successfully identifies 

the mechanical parameters of the structure and accurately predicts the vibration 

response of the structure under the new external excitation by learning from the 

observed data. 

 

7.2 Recommendations for Further Research 

This thesis presents several innovative PIML frameworks for solving forward and 

inverse problems in structural dynamics. Under the constraints of physical information, 

these frameworks demonstrate the independence of complex and large training data and 
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achieve excellent noise robustness and generalization. However, these methods are still 

based on theoretical assumptions of PIML. In PIML, researchers assume that the 

research object always obeys our established governing equations, such as the structural 

vibration equations. This assumption is obtained by simplifying the complex physical 

world into simple physical models. However, in the real physical world, material 

nonlinearity, inhomogeneity and the complexity of constraints are widespread. These 

complex characteristics are difficult to describe with a simple governing equation. And 

more complex physical relationships are difficult to exactly discover, so our proposed 

method is still based on this assumption and still faces limitations in the knowability 

and accuracy of exact physical laws. In addition to this assumption, our proposed 

method still faces the following limitations in practical applications. 

The first limitation lies in the structural complexity of the PIML method. Unlike 

mature numerical analysis methods such as the finite element method, which can easily 

solve analysis problems involving millions of degrees of freedom, PIML, which relies 

on training machine learning models such as neural networks to solve the governing 

equations of the structure, has a model complexity far exceeding that of numerical 

analysis methods. Therefore, current research focuses only on problems with no more 

than a few hundred degrees of freedom. Limited by the available computing resources, 

it is still difficult to use these PIML methods to analyze large engineering structures. 

Fortunately, recent breakthroughs in large machine learning models, especially large 

language models, are expected to provide a new and promising path for the simulation 
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of large structures using machine learning and even PIML. This is a research direction 

worthy of further exploration in future studies. 

The second limitation of the developed PIML for practical engineering 

applications is the computational efficiency of the model. In the proposed frameworks, 

neural network models such as convolutional neural networks, recurrent neural 

networks or Fourier eigen-neural networks need to be trained iteratively to reach 

convergence. Like the various deep neural network trainings applied in other research 

fields, the training process of these models takes a lot of time and computing resources, 

which is less efficient than traditional numerical analysis methods. This efficiency 

disadvantage will also limit its wider research and application. In future research, how 

to improve the training efficiency of the model is also a crucial bottleneck for the PIML 

method in structural dynamics. This problem may be alleviated by designing more 

efficient neural network frameworks and more advanced optimizers to train neural 

network models. 

The third limitation is the applicability of PIML to big data. Current PIML 

methods, including our proposed frameworks, can still only process a small amount of 

training data, usually only several thousand time steps. However, in actual engineering, 

with the development of advanced sensors and data acquisition designs, the data 

acquisition frequency has reached several thousand hertz, which has accumulated a 

large amount of observation data in engineering. How to extract the long-term features 

of training data and couple the physical information to improve PIML's learning ability 
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of a large amount of training data over a long time is also a problem worth exploring in 

the future. 

The last limitation is the convergence of the loss function of PIML methods. Since 

PIML methods rely entirely on the loss function to train the neural network model to 

approach the exact solution. The convergence of the loss function is a crucial criterion 

to ensure the accuracy of the results. However, in the existing framework, it is still 

difficult to ensure the convergence of the solution due to the imbalance of multiple loss 

functions or the non-convexity of the neural network model training problem. In recent 

years, some new techniques, such as energy-based loss functions, have been used to 

reduce the non-convexity of the model search space, thereby improving the 

convergence of the solution. These techniques have shown promising results to ensure 

the accuracy of the solution. Therefore, in future research, whether the several model 

frameworks proposed in this study can be improved from the perspective of energy-

based loss functions is a direction worthy of further exploration. 
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