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Abstract

The rapid development of machine learning methods in recent years has provided
researchers with alternative approaches to explain the physical world solely through data.
These advanced data-driven methods offer great flexibility in handling various physical
problems and have demonstrated superiority over traditional model-based methods in many
fields. As a result, there is now a growing tendency to utilize these machine learning methods
to tackle difficult problems in science and engineering, especially in physical problems
involving uncertain systems. However, existing data-driven methods still face some limitations.
Machine learning models trained from data are often hobbled by noise, imbalance, and sparsity
in the training data, posing challenges to the generalization of the models. Additionally, since
the intrinsic laws of physical systems are only represented at a shallow level from the training
data, the trained machine learning models may produce physically implausible result
predictions that violate the governing laws of physical systems.

Given the challenges existing in these data-driven methods, this study delves deeply into
the application of physics-informed machine learning (PIML) in engineering physical systems.
PIML is an emerging machine learning concept that aims to couple various prior physical
constraints into the training of machine learning models, thereby enhancing the physical
feasibility of the models and improving their generalization and robustness. The focus of this
thesis is on the application of PIML in structural dynamic response and structural damage
monitoring. Several PIML frameworks are proposed to integrate machine learning models and

physical knowledge to address the difficulties encountered by current data-driven and



traditional physics-driven methods.

First, a framework named structural dynamics learner (SDL) is proposed to solve the
forward problem of structural dynamics by integrating physical information with neural
network models. In SDL, a novel recurrent convolutional neural network framework that
integrates physical information described as the implicit Crank-Nicolson form of the system's
motion equations is established to predict the dynamic response of linear/nonlinear structural
systems. Afterward, the focus of this thesis shifted to the research of inverse problems in
structural dynamics. The first inverse problem investigated is the reconstruction of external
forces and dynamic responses of structures, where a physics-informed Markov parameters (PI-
MP) framework is proposed to accurately reconstruct the external excitations and dynamic
responses from partial vibration measurement data. Here, the neural network with strong
characterization ability for reconstructing unknown external force input is coordinated with the
Markov parameter for describing the motion equation of the structure in the state space to
predict the acceleration response of the structure. By minimizing the deviation between the
predicted structural acceleration response and the measured vibration response, PI-MP can
locate and reconstruct the external excitation input of the structure and predict the vibration
response of all nodes of the structure. Then, the application of PIML for structural damage
identification with unknown external forces from vibration measurements is further
investigated. A physics-informed Fourier feature neural networks (PI-FFNN) framework
integrates Fourier neural networks with excellent multi-frequency characterization capabilities
and the Newmark-beta scheme of the motion equation as physical information is presented to

achieve this research goal. The integration of physical information makes this method
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unsupervised learning, which can be trained to accurately detect structural damage from
vibration measurements without relying on any damage-related data labels. Finally, based on
the physics-informed neural networks framework, we propose a PIML framework that can
simultaneously identify the structural mechanical parameters, reconstruct the unknown
external excitation on the structure, and establish a surrogate model for nonlinear systems. In
this framework, two neural network models are employed to represent the structure's unknown
external excitation and nonlinear internal restoring forces respectively, and the mechanical
parameters of the structure are also updated together with the neural network model as trainable
parameters. The physical information of the structural vibration equations is seamlessly
integrated into the proposed machine learning framework through a set of mathematical
equations that describe the Newmark-beta relations of the dynamic system. By minimizing the
difference between the predicted structural response and the structural vibration observation,
both the external excitation and the internal nonlinear restoring force of the structure can be
reconstructed simultaneously and the exact values of the structural parameters can be
discovered.

This thesis presents several innovative PIML frameworks for solving forward and inverse
problems in structural dynamics. Under the constraints of physical information, these
frameworks demonstrate the independence of complex and large training data and achieve
efficient and accurate model training in a physically constrained search space. The embedding
of physical information also gives the predictions of the proposed PIML frameworks with
physical interpretation, outstanding noise robustness, and excellent generalization for physical

systems in a variety of environments. The results of simulation analysis and real physical
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experiments show that the proposed PIML frameworks have outstanding ability and
performance to accurately model real physical systems. Looking ahead, more in-depth research
is still needed to apply the promising PIML method to more complex physical systems,

involving large structural degrees of freedom and complex nonlinearities.
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Chapter 1 Introduction

1.1 Background and Motivation

In modern society, the safety and reliability of infrastructure are crucial to ensuring
economic development and people's quality of life. In-service buildings, bridges,
transportation systems, and other structures not only bear the load of daily operations
but also face the impact of natural disasters, environmental changes, and human factors.
Due to the ageing and fatigue of the structure and the wear and corrosion caused by the
environment, potential damage and failure may lead to serious safety risks and
economic losses. Therefore, regular monitoring and evaluation of structural health
status is an important engineering task.

Structural health monitoring (SHM) is a comprehensive process that uses a series
of technical tools and methods to evaluate and manage the safety and performance of
structures. The main goal of SHM is to detect damage and deterioration in structures
promptly to prevent potential safety risks and economic losses. The SHM process
usually involves installing sensors on the structure to continuously collect data on its
stress, strain, acceleration, and environmental conditions. These data can be analyzed
and processed to identify the structural health status and evaluate the structural response
under specific loading and environmental conditions.

In the SHM field, structural analysis is usually the basic process because it

provides the necessary theoretical basis and data support for damage identification,



performance evaluation, and maintenance decisions by establishing structural models.
Traditional structural analysis methods usually rely on physical models and empirical
formulas. These methods perform well when dealing with simple linear systems but are
often insufficient when faced with complex nonlinear behaviors, dynamic responses,
and changing environmental conditions. For example, although the classic finite
element analysis (FEA) can accurately describe the physical processes in the structural
system, it is computationally expensive and requires detailed material and geometric
data. In practical applications, obtaining accurate data is often difficult and time-
consuming.

With the advancement of sensor technology and data collection methods, a large
amount of structural monitoring data has been obtained. This data provides a rich
foundation for data-driven methods such as machine learning. Machine learning
enables models to adapt to complexity and uncertainty by learning patterns and
relationships from data. However, pure data-driven methods have some drawbacks,
such as a lack of physical interpretation, overfitting, and performance degradation in
data-scarce conditions.

In this context, physics-informed machine learning (PIML) has been proposed and
has received increasing attention. PIML provides a new solution by incorporating
physical laws and constraints into machine learning models. This approach not only
combines the flexibility of data-driven methods but also ensures that the model follows

the basic laws of physics, thereby improving the accuracy and interpretability of the
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model.

A major advantage of PIML is its ability to maintain good prediction performance
even when data is limited or of low quality. By leveraging physical knowledge, PIML
can more effectively capture the nonlinear characteristics of structural response and the
changes in structural parameters while reducing the reliance on large amounts of
training data. This feature is particularly important for SHM and response prediction,
as obtaining high-quality, comprehensive, and balanced data is often a challenge in
practical applications.

In real-world applications, PIML can provide structural engineers and designers
with more advanced tools to help them make more scientific decisions during design
and maintenance. With enhanced predictive capabilities, PIML can support timely
maintenance measures, thereby extending the service life of structures, reducing
maintenance costs, and improving the safety of public infrastructure. As the demand for
structural health monitoring increases, the PIML method that combines physical
knowledge with machine learning provides new perspectives and possibilities for
addressing the limitations of traditional methods. This approach not only provides a
stronger theoretical basis for structural response prediction but also provides data-
driven support for strategies to maintain and manage infrastructure.

In light of these research motivations, this thesis delves into the development of
PIML frameworks for structural response prediction and health monitoring. This work

starts with the introduction of a novel machine learning framework that integrates PIML
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and convolutional neural networks (CNN) to predict the response of linear or nonlinear
structural systems under dynamic forces. Then, PIML is further investigated by
integrating physics-informed neural networks (PINNs) with the Markov parameters
method in structural dynamics. A physics-informed Markov parameters (PI-MP)
method is proposed to reconstruct force and structural response from the measurement
of structural vibrations. After that, the research of the PIML method is extended to
structural damage identification from partial response observations of the structure. In
this part, a novel vibration-based structural health monitoring method is proposed for
vibration-based structural damage identification with unknown external forces. Finally,
the focus of this work shifts to the structural identification of linear/nonlinear structural
systems. A physics-informed neural networks framework based on the Newmark-beta
numerical method is proposed to identify system parameters and unknown external
forces from vibration measurements of nonlinear structural systems.
1.2 Research Objectives
This study is intended to develop novel frameworks of PIML to accurately predict
the dynamic response and detect the damage of linear and nonlinear structural systems.
The detailed research objectives are:
1) To develop a novel PIML framework that successfully combines physical
information and deep neural networks to accurately predict the dynamic
response of linear and nonlinear structures under dynamic forces.

2) To develop a PIML framework for inverse problems of structural dynamics,
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which can identify and reconstruct the external forces and responses of
structures from partial structural vibration observations.

3) To expand the PIML framework for inverse problems of structural dynamics
to detect damage based on vibration observations with unknown external
forces.

4) To develop a novel PIML framework adapted to linear and nonlinear
structural system identification.

1.3 Thesis Outline

This thesis consists of the following seven chapters:

Chapter 1 gives the research motivation, research objectives, and the outline of
the thesis.

Chapter 2 presents a comprehensive review of research efforts on PIML, followed
by the introduction of the latest applications of PIML in structural response prediction
and PIML for structural health monitoring. The advantages and challenges of the
existing PIML methods for structural dynamics are also discussed.

Chapter 3 develops a novel PIML framework called Structural Dynamics Learner
(SDL) that integrates PIML and convolutional neural networks (CNN) to predict the
response of linear or nonlinear structural systems under dynamic forces. After proper
training, SDL can serve as a surrogate model of the structural system, capable of
predicting the next dynamic response based on the current state. The governing

equations of structural vibrations are incorporated into SDL to provide prior physical
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knowledge for the training process.

Chapter 4 invests the physics-informed Markov parameters (PI-MP) method for
force and structural response reconstruction. By integrating physics-informed neural
networks and Markov parameters of structural dynamics, PI-MP can localize and
reconstruct unknown external forces, as well as reconstruct unmeasured dynamic
responses of the structure, from partial structural response observations.

Chapter 5 investigates the feasibility of a new framework named physics-
informed Fourier feature neural networks (PI-FFNN) for structural damage detection
from vibration observation with unknown external forces. Using a neural network
model containing a Fourier feature layer to represent the unknown external forces and
the Newmark-beta scheme of the motion equation as physical information, the PI-
FFNN model is proven to accurately identify structural damage.

Chapter 6 investigates a promising approach for linear/nonlinear structure
identification via physics-informed neural networks. The governing equations of
structural motion are integrated as physical information with the neural network. A
Fourier feature neural network model is utilized to represent the unknown
external/internal forces of the structure. By minimizing the difference between the
predicted structural vibration responses and the observed data, the structural
mechanical parameters are updated to approach the exact values, and the
external/internal forces of the structure are reconstructed. In addition, based on the

reconstructed internal forces, a surrogate model can be trained to characterize the
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nonlinear system in the structure.
Chapter 7 provides a summary of the thesis, the major conclusions, and the

potential future work.



Chapter 2 Literature Review

In this section, the current research state on PIML is introduced first, highlighting
the distinctions between PIML and traditional machine learning methods. Subsequently,
research efforts to apply PIML for structural response prediction are outlined and
discussed. Following this, the applications of PIML in SHM are reviewed and
summarized. Finally, the limitations and challenges of existing PIML methods in the
realms of structural response prediction and health monitoring are analyzed and
discussed.

2.1 Physics-informed machine learning

In the past decades, great progress has been made in understanding physical
processes in various fields by numerically solving the governing equations using
computational methods such as finite difference methods and finite element methods.
Although these methods can achieve satisfactory results in the analysis of fully
informed physical systems, they still face severe difficulties for real physical problems
with missing governing equations, gaps or noisy boundary conditions, and strong
nonlinearities. In addition, for inverse problems of physical systems, i.e., inferring the
parameters of the system or unknown physical principles from observed data,
traditional numerical methods usually rely on expensive iterative procedures or the
design of new algorithms.

To overcome these difficulties, people have turned their attention to observational



data obtained from actual physical systems. With the explosive growth of various
sensors and data acquisition equipment installed, a large amount of multi-fidelity
observational data has been collected, providing soil for the development of data-driven
methods. Among data-driven methods, machine learning has played a revolutionary
role in discovering real physical processes from multi-fidelity observational data
because it can explore huge design spaces, identify multi-dimensional correlations, and
manage ill-posed problems. In machine learning methods, deep learning methods are
particularly outstanding as they can naturally extract deep features from observational
data (Najafabadi et al., 2015).

Although machine learning methods have great promise and have achieved
widespread success in various purely data-driven problems, most developed machine
learning models are unable to obtain interpretable and robust physical information and
knowledge from these data. In other words, these models usually act as a ‘black box’ to
merely characterize the mapping relationships in the training data (Burkart & Huber,
2021). In addition, after well-training, these purely data-driven models may be highly
consistent with the results of the observed data, but due to inference errors or
observation biases, the model generalization performance may be poor, and its
predictions may be physically inconsistent or unconvincing.

To overcome this shortcoming, a new machine learning concept called PIML was
proposed in (Karniadakis et al., 2021). PIML is the process of improving the

performance of machine learning algorithms by using prior knowledge derived from
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our observations, experiences, physics, or mathematical understanding of the world. By
providing machine learning models with ‘informative priors,’ i.e., strong theoretical
constraints and inductive biases on top of observational constraints, PIML can ‘teach’
machine learning models about physical processes to integrate basic physical laws and
domain knowledge. The comparison of the applicable areas of physics-driven methods,

data-driven methods, and physical machine learning methods is shown in Fig. 2.1.
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Figure 2.1 Application areas of physics-driven and data-driven methods

After PIML was proposed, it received widespread attention and experienced
vigorous development. Researchers in various fields have designed a lot of different
PIML frameworks to target specific physical problems according to a wide range of

task requirements. Among these PIML frameworks, the most widely explored ones are
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those frameworks that combine physical information with deep learning methods,
especially PINNs proposed by (Raissi et al., 2019). PINNs use prior knowledge to
construct the loss function of the deep neural network, thereby reducing the inference
error of the model and ‘teaching’ the neural network model to learn prior physical
information. After completing training, PINNs can seamlessly integrate physical
information and deep neural network models so that the model's predictions are
consistent with physical constraints. Using physical information, PINNs can solve the
forward problem of nonlinear partial differential equations (PDEs) without any labeled
data and can also accurately discover the accurate values of control parameters in the
governing equations from noisy measurements. A general process of PINNs for solving
the forward problem of nonlinear PDEs is shown in Fig. 2.2. In other extended studies,
PINNs can not only solve the forward and inverse problems of PDEs, but their
application scope has also been extended to fractional PDEs (Pang et al., 2019),
integral-differential equations (Yuan et al., 2022) and stochastic differential equations

(Yang et al., 2018, 2020).
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Figure 2.2 General PINNs framework for forward problems of nonlinear PDEs

Not only in the multi-layer perception (MLP) model, but physical information is
also utilized in other deep learning methods to handle special tasks. For images or high-
dimensional input data, the convolutional neural network (CNN) model is widely used
in visual processing. It is also integrated with physical information into a series of novel
PIML frameworks. Some typical PI-CNN frameworks have been developed in (Gao et
al., 2021; Yuan et al., 2024; Zhang et al., 2023; Zhao et al., 2023). In these PI-CNN
frameworks, the input of the neural network model is no longer (t,x) shown in Fig.
2.2 but is changed to multi-dimensional system states or coordinates after mapping the
equation domain. Compared with the PINNs framework, PI-CNN can have better
representation capabilities and improve the convergence speed for high-dimensional
inputs (Fang, 2021; Lei et al., 2025).

For time series data, the Recurrent neural network (RNN), Gated recurrent unit
(GRU), and Long Short-Term Memory (LSTM) model show excellent representation
ability compared to the MLP model, because these models take into account the
dependencies in the sequence data. When the output of the model is related to time
series data, physical information can also be employed as prior information to train
RNN, GRU, and LSTM models. For example, (Tang et al., 2022) proposed a PI-RNN
model to characterize the time-domain response of optical resonances. (Zheng et al.,

2023) used the PI-RNN model to predict and control the temporal state of nonlinear
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systems. In (Chen, 2024), the MLP model in PINNs was replaced by a GRU network

to improve the model's ability to characterize the time evolution of equation features.

The proposed physical information gated recurrent unit network method (PGNM model)
was shown to improve prediction accuracy and obtain better long-term prediction

results. PI-LSTM models have also been developed for response prediction of
engineering structures (Fangyu Liu et al., 2023; R. Zhang et al., 2020b) and prediction

and health management of engineering systems (Ma et al., 2023). The results of the
study show that embedding physics information into the LSTM model can not only
alleviate the noise overfitting of the purely data-driven LSTM model and improve the

robustness and generalization ability of the model but also obtain more accurate

prediction results than the original PINNs model.

For dynamic processes described by differential equations, neural ordinary
differential equation (NODE) is a special type of neural network model that treats the
neural network as a continuous-time dynamic system rather than the traditional
discrete-time model. NODE is shown to be able to process continuous time series data
more naturally. In (Lai et al., 2021; O'Leary et al., 2022), physical information is also
utilized as prior information for NODE training. The core idea of PI-NODEs is to use
physical laws (usually in the form of differential equations) as part of the loss function
to guide the learning process of the neural network.

Not only in deep learning methods, physics-informed concepts are also combined

with classical kernel methods. The most famous of these is physics-informed Gaussian
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process (PI-GP) proposed in (Nevin et al., 2021; Tartakovsky et al., 2023; Yang et al.,
2019). Unlike PINNs, which integrates physics information through a specific loss
function, the implementation of physics information in PI-GP is to design a specific
kernel function to ensure that the model output conforms to the physics laws. This may
involve adjusting the covariance matrix according to the physical equations to reflect
the dynamic behavior of the system. However, compared to PINNs, due to the
limitations of the kernel function in the Gaussian process, the PI-GP method has
difficulties in dealing with nonlinear governing equations and high-dimensional space-
time differential operators. A detailed comparison between PI-GP and PINNs can be
found in (Pang & Karniadakis, 2020).

Another major direction of PIML extension is to integrate physics information
with numerical methods and machine learning to form hybrid models. Traditional
numerical methods for solving partial differential equations, such as finite difference
method (FDM) and finite element method (FEM), have been successfully developed
with PIML. (Jiang et al., 2023) utilized finite differences to replace the automatic
differentiation in the original PINNs to calculate the partial derivatives in the governing
equations. The results show that finite difference-PINNs can improve the prediction
accuracy of derivatives and have advantages in boundary condition integration and
computational cost. (Wiirth et al., 2024) developed a neural finite element solver for
non-stationary and nonlinear simulations on arbitrary meshes based on PINNs and

mesh graph nets. This method has been shown to quickly and accurately solve non-
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stationary and nonlinear PDEs on arbitrary meshes and can scale well to large and
complex meshes. Some comparisons and discussions between PINNs and FEM
methods can be found in (Grossmann et al., 2024; Rezaei et al., 2022). Runge-Kutta is
also a popular numerical research method in PIML. One of the most classic methods is
the discrete-time PINNs method (Raissi et al., 2019), which uses the output of the neural
network to approximate the Runge-Kutta hidden step to accurately solve nonlinear
partial differential equations with large time steps. Another study that combines Runge-
Kutta with PIML is (Zhai et al., 2023), where PINNs are used to represent the force
term in the equation, thereby using the Runge-Kutta method to solve the integral.

In order to implement PIML efficiently, some widely used general libraries for
machine learning, such as TensorFlow and PyTorch, were used to build the PIML
framework. In these libraries, neural network graphs and automatic differentiation can
be easily implemented through built-in functions. On this basis, several specifically
designed software libraries have also been designed to quickly implement PIML. The
most famous software is DeepXDE (Lu, Meng, et al., 2021), which is designed based
on the PINNs framework. DeepXDE can not only be used to solve the forward and
inverse problems of ordinary differential equations and partial differential equations,
but also fractional differential equations and integral-differential equations. DeepXDE
is also adapted to complex nonlinear problems and irregular geometric domain
problems and is developed to accelerate the operation using high-performance GPUs.

Other PIML solvers include SimNet (Hennigh et al., 2021), PyDEns (Koryagin et al.,
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2019), NeuroDiffEq (F. Chen et al., 2020), and NeuralPDE (Zubov et al., 2021).

In the comparative studies of (Grossmann et al., 2024; Karniadakis et al., 2021;
Rezaei et al., 2022), it is discussed that PIML cannot surpass mature numerical methods
such as FEM in solving well-posed forward problems of partial differential equations,
but for ill-posed problems and inverse problems, PIML framework shows superior
solving ability. Compared with pure data-driven methods and pure physics-driven
methods, PIML also has obvious advantages in the following directions. The first is that
in the learning of incomplete physical models or imperfect data, PIML shows stronger
robustness. For example, PIML can effectively obtain accurate results for unbounded
problems (Fang et al., 2024) or when boundary conditions are unknown
(Mahmoudabadbozchelou et al., 2022). (S. Xu et al., 2023) also used PIML to
reconstruct flow fields from sparse and missing imperfect data.

The second advantage of PIML is that it can learn generalizable models from a
small amount of training data. For traditional machine learning models, a large amount
of balanced training data is critical to improve model performance. However, in (Chen
et al., 2021; Linka et al., 2022), PIML demonstrates its ability to train effective models
using physical information from a small amount of sparse data.

The third strength of PIML is its uncertainty quantification (UQ) capability. In the
PIML model, the uncertainty in the prediction results can come from three parts: the
uncertainty of physical information, the uncertainty of training data, and the uncertainty

of the machine learning model. The uncertainty of physical information usually refers
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to the uncertainty of the stochastic partial differential equation or the control parameters
of the equation. Regarding the solution of stochastic PDEs, several new PIML
frameworks have been designed in (Yang et al., 2018; D. Zhang et al., 2020) using
generative adversarial networks, the spectral dynamically orthogonal and borthogonal
methods, respectively. Research on UQ in solving stochastic PDEs can be found in
(Shin & Choi, 2023; D. Zhang et al., 2019). Some research on how to train PIML
models under uncertain equation control parameters was conducted in (Zheng & Wu,
2023). Bayesian PINN (Yang et al., 2021) is a well-known framework based on
Bayesian neural networks that can use physical laws and scattered noisy measurements
to provide predictions and quantify the stochastic uncertainty caused by noisy data in a
Bayesian framework. UQ tasks have also been addressed by developing new
frameworks in (Yang & Foster, 2022; Yang & Perdikaris, 2019). Finally, due to the
inference bias of the trained model, PIML's model will also bring uncertainty to the
predicted results, which was studied in (Psaros et al., 2023; D. Zhang et al., 2019).
After the rapid development in recent years, researchers have explored the
advantages of PIML in the above statement but also found that it has the following
limitations. The first is the adaptability of PIML to multi-scale physical problems
(Karniadakis et al., 2021). Since PIML relies on machine learning models to express
the solutions of PDEs, for multi-scale physical processes, it may be difficult to represent
the entire process using only one learning model. For example, there is a spectral bias

(Wang et al., 2021) in the fully connected neural networks model, i.e., the model
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preferentially learns the low-frequency components in the data represented, and may
ignore the high-frequency components. To overcome this limitation, some
improvements have been developed, such as the domain decomposition method (Jagtap
& Karniadakis, 2020; Kharazmi et al., 2021; Shukla et al., 2021), which decomposes
the equation domain into multiple subdomains, and Fourier neural networks that couple
Fourier features into neural networks (Song & Wang, 2023; Wang et al., 2021), and
multi-scale neural network models that can group multi-scales for training (Leung et
al., 2022; Weng & Zhou, 2022).

PIML also faces the limitation of ‘soft’ constraints. This is because, in many PIML
frameworks, the constraints are implemented by penalizing a loss function based on the
constraints. It is difficult to ensure that this loss function converges to the global optimal
solution so that the constraints are perfectly satisfied. In order to achieve ‘hard’
satisfaction of boundary conditions, some model techniques have been designed, such
as the augmented Lagrangian method (Lu, Pestourie, et al., 2021b) and a smooth
function that automatically satisfies boundary conditions (Xiao et al., 2024; Zhu et al.,
2021). By combining the output of the neural network model with these techniques, the
final prediction result can ‘hard’ satisfy all constraints.

Another limitation of PIML is the problem of balancing multiple damage functions.
The loss function of many PIML frameworks is a fixed weighted combination of
observation data, boundary, and initial constraints, and PDE residuals. It has been

observed that the training efficiency of the original PINN depends sensitively on the
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weights associated with different loss terms. Many works focus on adjusting the relative
importance of each loss term by changing the weights of different loss terms to meet
the loss-balanced training of PINN. The first proposed improvement measure is the
non-adaptive weight adjustment (Bai et al., 2023; Wight & Zhao, 2021), which
determines the optimal weights through multiple tests. Later, the improvement measure
that can adaptively adjust the weight coefficients was applied in (Hou et al., 2024; E.-
Z. Rui et al., 2023; Xiang et al., 2022). Although adaptive loss function balancing
techniques can improve the convergence of PIML, the balance between multiple loss
functions remains an open problem.

As PIML is experiencing a booming development, hundreds of research papers on
PIML applications are reported and published every year. Therefore, it is difficult to
give a detailed and comprehensive review of PIML applications. Here, only some
important application areas are listed as examples.

The first and most important applied research area for PIML is computational fluid
dynamics (CFD), which often involves high-dimensional or strongly nonlinear
governing equations and complex boundary conditions. The main advantage of PIML
for CFD problems is that a unified framework can be used to solve both forward and
inverse problems. Compared with traditional CFD solvers, PINNs are more flexible in
integrating data and physics. A promising application is fluid visualization (Cai, Wang,
Fuest, et al., 2021; Raissi et al., 2020) and reconstruction (Hosseini & Shiri, 2024; E.-

Z. Rui et al., 2024; Shu et al., 2023), i.e., inferring the entire flow field from a few fluid
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measurements. PIML has also been applied to solve various flow problems (Cheng &
Zhang, 2021; Rao et al., 2020; Wessels et al., 2020), including compressible fluids (Mao
et al., 2020), fluids in medicine (Arzani et al., 2021; Sen et al., 2024), turbulence
(Hanrahan et al., 2023; Patel et al., 2024), free boundary (Y. H. Huang et al., 2023; Lu
et al., 2024) and Stefan (Wang & Perdikaris, 2021) problems. Some detailed review
reports on PIML for fluids can be found in (Cai, Mao, et al., 2021a; Sharma et al., 2023).

Another important application area of PIML is in heat conduction problems (Cali,
Wang, Wang, et al., 2021a; J. Xu et al., 2023). Unknown thermal boundary conditions
(Bowman et al., 2023; Cai et al., 2020) and multi-media heat conduction (Laubscher,
2021; B. Zhang et al., 2022), as well as the reconstruction of temperature fields (Zhao
et al., 2023) are also popular research issues.

PIML has also been widely studied and applied in other engineering fields. In
(Huang & Wang, 2022), the applications of PINNs in PIML in power systems are
summarized, specifically including state/parameter estimation (Lakshminarayana,
Sthapit, & Maple, 2022; Ngo et al., 2024; Zhao et al., 2022), dynamic analysis (Misyris
et al., 2020; Stiasny et al., 2024), power flow calculation (Lei et al., 2020; Nellikkath
& Chatzivasileiadis, 2022; H.-F. Zhang et al., 2024), optimal power flow (Nellikkath &
Chatzivasileiadis, 2021), anomaly detection and location (Lakshminarayana, Sthapit,
Jahangir, et al., 2022). Some examples of applications in weather and climate can also
be found in (Brecht & Bihlo, 2024; Yao et al., 2023; Y. Zhang et al., 2024).

From the above review, it can be concluded that PIML makes up for the
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shortcomings of traditional pure data-driven methods in terms of complexity,
interpretability, and physical consistency by seamlessly combining prior physical laws
and advanced machine learning models. PIML can make machine learning predictions
more accurate in a physical perspective and generalization. In fuzzy boundaries,
complex equation domains, ill-posed and sparse data problems, PIML shows strong
learning and representation capabilities compared to pure data-driven methods through
the enhancement of physical information. On the other hand, compared to pure physical
solvers, PIML can flexibly use observational data to enhance the learning of uncertain
factors in physical information (such as the control parameters of the equation), thereby
avoiding the complex process of determining the exact value of the parameters. In
addition, for the inverse problem of physical systems, pure physical methods are
complicated to use iterations to continuously update unknown parameters or equation
terms. In PIML, this is convenient and straightforward by using machine learning
algorithms to reversely identify unknown parameters or represent unknown equation
terms as a ‘black box.” Moreover, for a fuzzy system, PIML can also combine search
methods to directly discover unknown physical information from the data (Chen et al.,
2021), which is impossible with traditional pure physical methods.
2.2 PIML for structural response prediction

In the previous section, the background knowledge and wide application fields of
PIML are introduced. This section will shift our focus to the prediction of the dynamic

response of structural systems.
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Prediction of structural dynamic response is a key step in the design and research
of infrastructure because infrastructure is inevitably affected by external dynamic
forces such as wind, earthquake, and human-caused loads. In order to accurately
analyze these structural dynamic responses, some traditional numerical methods such
as FDM and FEM have undergone long-term development. For the forward problems
of linear well-posed structural systems, these numerical methods can accurately solve
them by directly solving the differential equations that govern the system vibration.
However, for nonlinear or ill-posed systems, and inverse problems of the structural
system, these traditional methods require some improvements or a lot of simulation
analysis.

In recent years, the explosive development of machine learning technology has led
to revolutionary changes in many industries. Researchers in the field of structural
dynamics have also made a lot of attempts to utilize machine learning methods to solve
such structural response prediction problems. Classic deep learning models, such as
DNN models (Kim et al., 2019; Stoffel et al., 2018), CNN models (Oh et al., 2020; Wu
& Jahanshahi, 2019), and LSTM models (Xue & Ou, 2021; R. Zhang et al., 2019) have
become popular solutions for predicting responses of nonlinear structural systems.
However, it should be noted that the essence of the above purely data-driven models is
to represent the relationship in structural response through a ‘black box’ model. Because
of this inherent foundation, these models always lack physical interpretability, and the

model's predictions may be inconsistent with the well-known physics laws. In addition,
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the performance of such models is highly dependent on the quantity and quality of
training data. Machine learning models tend to have poor generalization in biased and
noisy learning data. However, obtaining a large amount of high-quality labeled data
from nonlinear systems is also a challenging task.

After the publication of the PINNs research results in (Karniadakis et al., 2021;
Raissi et al., 2019), researchers found that the PIML method shows promising
application capabilities for problems involving nonlinear systems. Therefore, in order
to overcome the reliance of pure data-driven models on labeled data, some researchers
tried to apply the PIML method to the modeling and analysis of nonlinear structural
systems. The earliest successful application case is the Phy-LSTM model proposed in
(R. Zhang et al., 2020b). In this study, a physics-informed multi-LSTM network was
successfully designed for alternative modeling of nonlinear structural systems under
data scarcity conditions. In this model, the physical laws of the equations of motion,
state dependence, and hysteresis constitutive relations are used to construct the physical
loss of the model. By embedding this physical constraint in the loss function to enhance
model training, the model can accurately capture the potential nonlinear characteristics
of the system even with limited available training datasets.

The main difference between the LSTM model and the ordinary RNN model is its
special architecture that allows learning long-term temporal dependencies. However, in
(Eshkevari et al., 2021), the Phy-LSTM model is stated to contain a large space of

trainable variables, requiring a long training process. This problem is also solved in this
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research by proposing an RNN architecture that uses neural connections inspired by
exact numerical differential equation solvers to update the state from the current time
step to the next step. The model is shown to be able to estimate the dynamics of linear
and nonlinear multi-degree-of-freedom systems given a ground motion and estimate a
complete set of responses including displacements, velocities, accelerations, and
internal forces.

In (Fangyu Liu et al., 2023), a novel physics-based long short-term memory (PI-
LSTM) network was proposed for structural response modeling by incorporating
physical constraints into deep learning. The physical constraints were modified to
accommodate the characteristics of linear and nonlinear structural systems. Two
numerical experiments demonstrated that the improved PI-LSTM in this study has
higher accuracy. Then, (Jiang et al., 2024) expanded the application of PI-LSTM to
predict the nonlinear dynamic response of rotor systems by proposing a dynamic
response prediction method based on a multi-LSTM network of physical information.
Specifically, two multi-LSTM network architectures based on physical information
were introduced here, and the physical laws of motion equations, state dependence, and
hysteresis constitutive relations were considered to construct physical losses, thereby
enhancing the physical interpretability of deep learning models. Another study on the
prediction of the dynamic response of nonlinear systems can be found in (Su et al.,
2024). Inspired by the explicit time domain method (ETDM), this study proposed a new

PINNSs framework based on ETDM, called E-PINN. This model can solve the limitation
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of the traditional PINN model due to the complexity of the global dynamic evolution
mechanism of nonlinear systems.

How to effectively utilize the collected sensor data for modeling and predicting
structural responses under future disasters remains a challenge. Most existing methods
focus on extracting structural features (e.g., modal features) from the measured data
and updating the model, such as model updating based on frequency response functions
(FRF) (Esfandiari et al., 2009; Gang et al., 2014), Kalman filtering (Astroza et al., 2016;
Song et al., 2020), and Bayesian inference (Rubio et al., 2018; Sun & Betti, 2015).
However, these methods require excessive computational effort to update the
simulation model when the model has high fidelity due to the large number of
parameters that need to be updated and the limited available sensor data. Although low-
fidelity models are more computationally cost-effective, it is difficult to maintain
accuracy in the presence of uncertainty, especially for nonlinear response modeling. To
address this shortcoming, some studies have attempted to couple physical information
and the collected observational data to predict the response of the structure, especially
under seismic excitation. The first attempt was the physics-guided convolutional neural
network (PhyCNN) proposed in (R. Zhang et al., 2020a). PhyCNN is an alternative
model for structural response prediction by training a deep convolutional neural
network model based on a small amount of seismic input-output datasets and physical
constraints. Known physical laws (e.g., governing equations of dynamics) can provide

additional constraints on the output of the network model, alleviating the over-model
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fitting problem and reducing the need for large training datasets, thereby improving the
robustness of the trained model for more reliable predictions. The trained surrogate
models can then be used to perform fragility analysis given certain limit state criteria.
In recent years, transformers have become increasingly popular in natural language
processing and time series data analysis due to their inherent self-attention mechanism,
which can effectively capture the relationship between any position in the sequence. It
is shown that transformer models can handle long-distance dependency problems
without being limited by sequence length. A SeisGPT framework combining physics
information and a transformer has also been developed in (Meng et al., 2024). This is a
data-driven, large-scale physics information model that leverages deep neural networks
based on the Generative Pretrained Transformer (GPT) architecture. The proposed
SeisGPT is employed to predict the dynamic behavior of building structures under
seismic forces in real-time.

In addition, due to the low frequency of extreme events such as earthquakes, it is
difficult to collect enough training data with real labels. In order to reduce the
dependence on labeled data and improve model accuracy, (Hu et al., 2023) introduced
a new framework that combines the powerful learning ability of PINNs with the
effectiveness of pseudo-labeling in data augmentation to improve the accuracy of
structural seismic response prediction. (Ni et al., 2022) also used a convolutional NN
to reconstruct the structural response of rare events under small data sets. This model

takes acceleration at a limited number of locations as input. The output is the
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displacement, velocity, and acceleration response at all locations. (Malik et al., 2023)
proposed a new approach to evaluate the dynamic response of multi-degree-of-freedom
(MDOF) systems using physics-informed recurrent neural networks. The focus of this
research is on evaluating the seismic response of nonlinear structures under the limited
availability of training data.

The above PIML methods for seismic response prediction all have a basic
assumption that the equation of motion and mechanical parameters including mass
matrices M and force distribution vector are available. In (Xiong et al., 2024), such a
type of networks is considered difficult to apply in any real-world structures since the
premise of availability of those dynamic parameters goes right against the nature of
system complexity and ambiguity of real-world structures. To address this shortcoming,
a novel physically informed deep 1D convolutional neural network compiled on top of
extended state-space fusion (SSM-CNN) is proposed for seismic response modeling in
this study. In SSM-CNN, an innovative parameter-free physical constraint mechanism
is designed and embedded to improve performance by constructing differential
connections of state variables derived from the state-space representation of the initial
structural response.

The research scope of PIML has also been expanded in (Shen & Malaga-
Chuquitaype, 2024) to simulate the rocking response of free-standing rigid blocks
subjected to ground excitation. The proposed framework called PICNN is implemented

by adding a physics-based component to a data-driven CNN to achieve a more accurate
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estimation of the rocking response histories of ideally rigid blocks in a hybrid data-
driven way.

In addition to discretized multi-DOF systems, the application of PIML in structural
mechanics has also been extended to truss systems or continuum systems such as beams.
An example of using PIML to study nonlinear trusses is shown in (Mai et al., 2023).
For complex beam systems, (Kapoor et al., 2023) proposed a new framework using
PINNSs to simulate complex structural systems consisting of single and double Euler—
Bernoulli or Timoshenko beams connected with Winkler foundations. The results
showed that PINNs are a promising strategy for solving structural engineering and
machine problems involving beam systems. The nonlinear bending of porous beams
has also been studied in (Bazmara et al., 2023; Fallah & Aghdam, 2024). (Trinh et al.,
2024) proposed a PINNs analysis model for functionally graded thin-walled beams with
bi-symmetrical I-shaped and channel sections. To this end, an energy-based PINN
method was used to determine the vertical displacement and torsion angle of the beam.
Prediction of early time-dependent behavior of prestressed concrete beams has also
been learned using PIML in (Park & Hwang, 2023). Specifically, this study proposed a
PINN model to learn the time-dependent coupling between the effective prestress and
several factors that affect the time-dependent behavior of beams, such as concrete creep
and shrinkage, tendon relaxation, and changes in concrete elastic modulus.

In addition to seismic response prediction, wind-induced structural vibration is

also an important research area in the forward problem of structural dynamics. (Li &
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Zhang, 2022) implemented a hybrid approach to simulate the vibration of wind turbines.
Specifically, the structural characteristics and linearized representation of the wind
turbine system were used as physical constraints and applied to the recently proposed
deep residual recurrent neural network (DR-RNN) to form a physics-informed deep
learning model. (Tsai & Alipour, 2023) proposed a method to simulate wind-induced
structural response with less training cost. In the proposed method, field monitoring
data under conventional wind load conditions were used to train an LSTM network.
However, by coupling physical information, the trained LSTM network can predict the
wind-induced response under high and extreme wind conditions observed during
structural monitoring.

For PIML to predict the dynamic response of structures, how to apply loads to the
simulated structure is a complex issue, especially for non-uniformly distributed loads
such as concentrated loads. This problem has been solved in recent studies. The first
approach proposed in (Y. Li et al., 2024) was designed to use the partial response of the
structure to estimate the arbitrarily distributed load as an equivalent load. Subsequently,
the structural response was reconstructed using the finite element model. The modeling
and analysis of moving loads was studied in (Liang et al., 2024). Here, the PINNs
method is combined with the Fourier transform to solve partial differential equations in
the frequency domain, thereby alleviating the spectral bias problem of neural networks
when simulating multi-frequency functions.

From the above review, it is known that, for the prediction of structural dynamic
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response, PIML focuses more on problems that are difficult to solve by numerical
methods. The first is the modeling problem of nonlinear structural systems (Su et al.,
2024; R. Zhang et al., 2020b). In the published studies, measured data is often employed
to enhance the model representation of structural nonlinearity. The second study on
PIML is the problem of inaccurate dynamic equations and mechanical parameters of
the structure. In this problem, some nonparametric or weak physical information is
integrated into the model training to enhance the model's learning even for sparse and
noisy observation data. In both types of problems, the PIML methods demonstrate an
outstanding ability to seamlessly couple physical information and training data to
accurately predict the dynamic response of the structure.

However, some difficulties still exist in the current PIML method, especially
PINNSs, for predicting the dynamic response of structures, such as spectral bias in
learning models, complex boundary condition representation, and hard boundary
constraints. Some attempts have also been observed to address the spectral bias problem
by applying frequency domain concepts (Liang et al., 2024) to PINNs. Another
difficulty lies in the acquisition of training data. In the research results reported above,
most PIML models are supervised machine learning models, which rely on high-quality
training data to improve the results of their models. However, in structural systems,
high-quality observational data may be difficult to obtain, especially in the design and
analysis stage of the structure. Theoretically, the PINNs framework has been proven to

accurately solve nonlinear governing equations without relying on any labeled data.
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This property has not yet been well developed in structural response prediction.
Therefore, using the PIML method to forwardly establish a metamodel of
linear/nonlinear structural systems to predict structural response without any
observational data is still a promising research area.
2.3 PIML for structural health monitoring

With the popularity of various sensors applied to structures, data for structural
health monitoring has become increasingly abundant, which provides a natural way for
researchers to turn to the development of data-driven models. In fact, in the field of
structural health monitoring, the use of data-driven methods such as machine learning
models to explore the potential information in monitoring data has become very popular.
Some early publications on the overview of machine learning models for structural
health monitoring can be found in (Bao & Li, 2021; Worden & Manson, 2007; Yuan et
al., 2020). Among these machine learning models, neural networks (Dadras Eslamlou
& Huang, 2022), Gaussian processes (Teimouri et al., 2017), and support vector
machines (Cevik et al., 2015; Zhou et al., 2021) have been widely used in solving
classification and regression problems in structural diagnosis. These methods can
directly learn the complex underlying relationships with structural damage from data,
without the need for theoretical analysis of these structural systems. However, these
methods are well-known ‘black box’ models, which reflect that their internal principles
are unknowable, and their prediction results do not have clear physical meanings.

In addition, ‘white’ box models, which are completely built on known physical
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laws, are also used to detect the damaged state of structures. In white-box modeling,
the mechanical characteristics of a structure are simulated by building an abstract model
of the structure (Gharehbaghi et al., 2022). Essentially, the actual structure is replaced
by an idealized model that connects the input and output of the structure. Researchers
have developed many methods for modeling, such as the finite element method
(Haidarpour & Kong, 2020), the finite difference method (Lin & Yuan, 2005) and the
spectral method (Kudela et al., 2020). The most typical application is to detect damage
by updating the finite element model (Alkayem et al., 2018). During this process, the
parameters and properties of the model are iteratively adjusted to simulate the damage
on the structure. By using optimization methods to minimize the output of the model
and the measured response of the structure, the model can be adjusted to be close to the
actual state of the structure to detect the damage of the structure. Finite element model
updating is a mature method that has been developed for many years. Some
representative studies can be found in (Cheng et al., 2018; Giagopoulos et al., 2019;
Schommer et al., 2017). However, there are some difficulties in deriving the damage of
structures from the perspective of a ‘white box,’ i.e., from the perspective of motion
equations and constitutive relations. The first is the input of the structure, i.e., the
external force, which is difficult to measure accurately in actual engineering (Prawin &
Rao, 2018). For example, for a high-rise building in operation, wind loads, machine
operation, and human-caused loads affect its structural response all the time. Accurately

measuring these extensive and chaotic loads is an impossible task. Another limitation

32



of physical models is the immeasurability of structural parameters and structural
properties. Physical models are usually based on some assumptions, such as structural
linearization and mass concentration, which are usually inconsistent with the
nonlinearity and complexity of the actual structure. In addition, the parameters of the
structure, which deeply affect the mechanical characteristics of the structure, may also
change with time and external forces.

In recent years, some research on physics-based machine learning methods has
been conducted to solve some problems in structural health monitoring. The goal of
these studies is to combine the flexibility and power of state-of-the-art machine learning
techniques with more structured and insightful physical models based on expertise in
structural mechanics. These methods that share physics-based components and data-
driven components are called gray-box models. Although the gray-box model is a long-
standing method in the field of structural health monitoring, its early concept is called
a hybrid model. After PIML was proposed, as a framework that seamlessly combines
the prior physical laws described by the governing equations and various advanced
machine learning algorithms, it immediately received widespread attention in the field
of structural health monitoring.

Data acquisition of structural response observations is usually the first step in
SHM. PIML has been applied in the acquisition and analysis of response data,
especially for compressed sensing and data reconstruction. Compressed sensing and

data reconstruction are advanced techniques that are usually used to reconstruct and
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recover the original signal using a small amount of measured data. In (Russell & Wang,
2022), a novel compressed sensing scheme is proposed to integrate SHM domain
knowledge such as frequency and mode by combining deep convolutional autoencoders
(DCAE) with the physical information of local structure. In addition, fault division
autoencoder multiplexing (FDAM) is proposed to mitigate the negative impact of
multiple disjoint operating conditions on reconstruction fidelity. The results in two case
studies show that physics-based DCAE compression shows superiority over popular
data compression methods such as compressed sensing, principal component analysis
(PCA), discrete cosine transform (DCT), and DCAE with standard loss functions.
FDAM is shown to further improve the data reconstruction quality. Another technique
to reconstruct the global responses of structures from local measurements is presented
in (Lai et al., 2020). Here, a novel framework called physically informed sparse
identification is proposed for full-field structural vibration tracking and analysis. The
framework exploits sparse identification to assimilate the underlying structural
dynamics in the assembly of a library matrix for characterizing the dynamics of the
system. The global vibration of the structure can be approximated by a continuously
expressed analytical function in a full-field manner, rather than being measured point
by point as with conventional sensors.

In actual engineering, the external loads on a structural system are usually difficult
to measure accurately. This is a more feasible path to inversely reconstruct the external

loads on the structure by measuring the vibration response of the structure with some
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reconstruction algorithms. The application of PIML in structural load reconstruction
has also been studied. In (Liu et al., 2024), a PINNs framework was proposed to
integrate the underlying modal transformation equations into the loss function of a fully
connected neural network, which can effectively invert the uncertain modal responses.
This method can use the predicted modal displacement/acceleration responses to
identify modal loads, showing the advantages of low data requirements and high
prediction performance. (M. Zhang et al., 2024) proposed a novel physically-informed
deep learning (PIDL) framework, which consists of a data-driven convolutional neural
network for structural excitation identification and a physically-informed variational
autoencoder for explicit time-domain (ETD) vibration analysis, where the unit impulse
response (UIR) signal of the measured structure is generated. This framework
successfully combines a deep generative network with structural dynamics knowledge
and is demonstrated in accurately identifying external excitation signals and underlying
physical parameters under different damage modes. A case study of using the PIML
method to identify external forces in actual engineering is presented in (Guo & Fang,
2024). In this study, the working mechanism of the autoencoder is first combined with
the unique characteristics of the FRF to give a cross-signature assurance criterion. This
criterion is then integrated into the loss function of PIML as a constraint to address the
poor interpretability of pure data-driven methods in solving engineering problems.
Following this paradigm, a physical information autoencoder (PIAE) network is used

to reduce the dimensionality of FRF data when extracting key features. The reduced-
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order FRF data is paired with cable forces to form training samples, and the PIAE
network is directly trained on these samples for cable force identification. Finally, the
proposed method is verified on actual monitoring data of a cable-stayed bridge and a
steel tube concrete arch bridge.

There are two main approaches to using PIML for structural damage identification.
The first approach to structural damage identification is to directly solve the structural
mechanics parameters using an approach similar to solving the inverse problem of
partial differential equations. This approach is applied in (Haywood-Alexander &
Chatzi, 2024) and (R. Zhang et al., 2024). The former used PINNSs as constraint learners
for system identification and response prediction. PINNs successfully discover the
control parameters of the system by leveraging their applicability to complex boundary
conditions, external forces, and governing equations and their ability to learn true data
estimates from sparse data. The latter developed a physically informed parallel neural
network (PIPNN) framework, which embeds the system's governing PDE and the
associated continuity and equilibrium conditions as soft constraints into the neural
network loss function. PIPNN learns to approximate the PDE and unknown structural
parameters by minimizing the physically informed loss function. In the context of
continuous systems, PIPNN successfully estimates the unknown structural parameters,
which are then used to estimate the complete state of the system. Such system parameter
identification methods can also be applied in complex structural systems with multi-

physics damping models. In (Liu & Meidani, 2023), a novel physics-informed neural
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network method for nonlinear structural system identification, called PIDynNet, is
proposed and is demonstrated in multi-physics situations where the damping term is
controlled by separate dynamic equations. This method improves the estimation of
nonlinear structural system parameters by integrating auxiliary physical loss terms.

The second PIML method for structural damage identification incorporates
traditional finite element model updating techniques, which use physical information
and observation data to guide the rapid update of the finite element model. A typical
attempt is shown in (Zhang & Sun, 2021). Here, physics-guided machine learning is
implemented through PINNs, and the original modal attribute-based features are
extended with the damage identification results of the finite element model update. A
physics-based loss function is designed to evaluate the difference between the output
of the neural network model and the output of the finite element model update. The
proposed PIML method successfully combines the advantages of physics-guided
machine learning with data-driven and physics-based structural health monitoring
methods, which can improve damage identification performance.

In terms of specific engineering application cases, PIML frameworks have been
developed for damage detection of various structures, including MDOF systems, beams,
plates, bearings, and complex nonlinear structures. The typical PIML framework for
MDOF systems includes a fully nonlinear spring MDOF damage identification
algorithm based on PINNs proposed by (Yamaguchi & Mizutani, 2024). This algorithm

was also applied to an engineering case of a bridge pier to quantitatively evaluate
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different types of local damage on the pier. Another example of an MDOF system is a
direct physical information neural network (DPINN) proposed by (Mai et al., 2023) for
analyzing the stability of truss structures.

For beam systems, (Yuan et al., 2020) present the results of dynamic modeling of
beam structures using physics-based artificial neural networks. This study addresses the
problem of damage identification of beams based on solving the forward and inverse
problems of partial differential equations. By comparison, it is found that the proposed
physics-informed approach significantly outperforms the purely data-driven approach
and avoids overfitting. (Dat et al., 2023) applied PINNSs to solve an inverse problem
to identify the dynamic structural parameters of a prestressed concrete beam bridge
built 40 years ago. The model input data are acceleration data measured by three sensors
under vehicle loads in two states (i.e., before and after external prestressing cable
reinforcement), combined with the PDE of beam bending and boundary conditions to
minimize the loss function. The modal properties obtained from the PDE with the
parameters identified by PINN were compared with the modal properties
experimentally identified by the eigensystem realization algorithm (ERA) technique. In
(Tondo et al., 2023), a physically informed GP model for the Timoshenko beam element
is proposed. The model is constructed as a multi-output GP whose covariance and cross-
covariance kernels are analytically derived based on differential equations for
deflections, rotations, strains, bending moments, shear forces, and applied loads.

Stiffness identification is performed in a Bayesian format by maximizing the posterior
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model via a Markov chain Monte Carlo method, resulting in a stochastic model of the
structural parameters.

For damage detection of plate structures, PIML methods are mainly studied from
the perspective of wave propagation. The Kirchhoff—Love plate theory, which describes
the physical laws of pressure and displacement in thin-walled plates, is usually
integrated into PIML as physical information for damage detection of plate structures.
A classic example is presented in (Zhou & Xu, 2024). This study proposes a baseline-
free plate structure damage identification method using PINNs. By combining the
Kirchhoff-Love plate theory with PINNS, the local anomalies caused by damage in the
bending guided wave field of a damaged thin plate can be isolated and enhanced. The
implementation of multiple boundary conditions of the Kirchhoff-Love plate is critical
to correctly predict the structural response of the plate. How to improve the
performance of PINNs in enforcing the boundary conditions of the plate and using
sensor data at limited locations to capture the overall physical characteristics of the
system 1is studied in (Al-Adly & Kripakaran, 2024). Another study using PIML to
reconstruct the wave field in a plate-like structure is presented in (Zargar & Yuan, 2024).
In this study, a physics-based deep learning framework is proposed to reconstruct the
complete scattered spatiotemporal Lamb wave field in a plate-like structure from a set
of sparse time-series sensor data. This reconstructed scattered wave field contains a
wealth of information about the wave propagation phenomena, including any

interactions between the propagating waves and structural damage. In addition to wave
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fields for detecting structural damage, heat transfer is another research direction to
detect damage in plates. This direction was studied in (Kulkarni & Sabato, 2024), by
proposing a novel physically-informed variational autoencoder (PI-VAE) network for
extending sparse temperature measurements to a full-field representation while
detecting damage. The effectiveness of the proposed PI-VAE network was evaluated
through analytical and experimental studies on metal plates under thermal excitation
with various sizes and types of embedded defects. In an analytical study using finite
element model data, PI-VAE accurately extended the full-field temperature distribution
and identified the sizes of cracks, spalling, and hole-like defects.

PIML technology has also been used in damage detection of other engineering
structures. Two application cases on bearing damage detection were reported in (Shen
et al., 2021) and (Ni et al., 2023). In these two studies, physical information was fused
with deep CNN and residual networks to automatically extract high-level features
related to damage from the observed data of the bearing. These features were fully
utilized to predict the health level of the bearing. Concrete structures are also a research
object of interest in PIML. (Miele et al., 2023) and (Xu & Noh, 2021) studied damage
monitoring of concrete structures from local and global perspectives, respectively. The
former used the performance of several PIML models trained with different amounts of
low-fidelity and high-fidelity data, which used nonlinear dynamics-based diagnostic
techniques to locate hidden cracks in concrete structures. The latter introduced a new

framework, namely, the physically informed multi-source domain adversarial network
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(PhyMDAN), for transferring models learned from other buildings to diagnose
structural damage states in target buildings without any labels. Damage detection of an
offshore wind turbine structure was also reported in (Fushun Liu et al., 2023). Here,
numerical simulations and field data were exploited to quickly and accurately solve the
eigensystem governed by differential equations through recurrent neural networks. The
results show that the proposed framework can adaptively identify modal parameters
with higher computational efficiency than traditional methods, which can be used for
intelligent monitoring and maintenance of engineering structures.

After several years of exploration, the PIML method for structural damage
detection has been used in multiple engineering fields as shown above. Some phased
summary and review studies have also been published. (Cross et al., 2022) provide an
overview of various new approaches to PIML for grey-box modeling in a Bayesian
context. The main machine learning tool discussed in this study is Gaussian process
regression, and how to incorporate physical assumptions/models via constraints, mean
functions, and kernel design, and finally in a state-space setting is stated here. A recent
review report is (Wu et al., 2024). This study provides a comprehensive overview of
PIML techniques in the context of condition monitoring, with a detailed examination
of methods that integrate known physical principles into machine learning frameworks
and their applicability to specific monitoring tasks. The unique advantages and
limitations of each approach to incorporating physics into data-driven models are also

detailed here, taking into account factors such as computational efficiency, model
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interpretability, and generalizability to different systems in condition monitoring and
fault detection.

In summary, PIML can couple data-driven techniques with a priori high-
confidence physical information, which has obvious advantages in dealing with SHM
tasks. In various mathematical and engineering problems, PIML methods have
demonstrated powerful inverse problem-solving capabilities, which are very suitable
for SHM problems such as the inverse discovery of system states from observations.
For continuous structures such as beams and plates and nonlinear systems, PIML also
shows a promising prospect.

2.4 Summary

Due to the limited scope of information search, it is difficult to review all the
published research related to PIML. The author can only describe the research on
structural response prediction and structural health monitoring of PIML as detailed as
possible, from which we can get a glimpse of the current research status. As stated in
many published research results, PIML has demonstrated desirable capabilities in
various engineering and research problems, especially those involving differential
equations. Many proposed PIML frameworks also demonstrate their flexibility to
develop targeted PIML frameworks for certain specific tasks.

However, behind these successful cases, there are still some problems that have
been found in PIML research that need further study. For structural response prediction,

how to solve the spectral bias and hard implementation of boundary conditions in PIML
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is still an open question, which will be solved in this study. In addition, how to fully
expand the unsupervised learning capabilities of PIML that do not rely on any labeled
data in structural response prediction will also be explored in subsequent studies. For
the problem of structural health monitoring, the scarcity and imbalance of training data
are also constraints on the further application of machine learning methods in this field.
Although the damage of nonlinear structures has been explored in some studies, it is
still a difficult problem due to its inherent complexity. These issues will be analyzed in

the following sections as the focus of this study.
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Chapter 3 Structural dynamics learner framework for

dynamic response prediction of structural systems

3.1 Introduction

Structural dynamics plays a vital role in modern engineering, especially in the
design and maintenance of buildings, bridges, and other infrastructures. Accurately
predicting the response of a structure under different dynamic loads not only helps to
optimize the design but also effectively improves the safety and durability of the
structure. Traditional structural dynamics analysis methods, such as the finite element
method (Genikomsou & Polak, 2015) and modal analysis (Peeters & Ventura, 2003),
are widely used to predict the dynamic response of structures in many applications, but
they are computationally expensive and have limited adaptability to complex nonlinear
behaviors. In addition, numerical methods based on numerical integration also face the
problem of stiffness (Zhang, 2020) in structural dynamics equations, i.e., when solving
the dynamic response of certain structures, the solver relies on very short time steps to
maintain the stability of the solution. This not only increases the calculation time but
also may lead to high demand for computing resources, limiting the scope of application
of these methods in practical applications.

With the rapid development of machine learning, data-driven methods have
gradually attracted attention in structural dynamic response prediction. For the task of

structural response prediction, popular machine learning methods include Bayesian
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models (Gardner et al., 2020), support vector machines (Dong et al., 2008), and deep
neural networks (Stoffel et al., 2020). These methods can learn the dynamic behavior
of structures from large amounts of data and offer greater flexibility as they do not rely
on idealized model assumptions. However, a significant drawback of this type of
approach is the reliance on large amounts of labeled data, especially when training deep
learning models (Cunha et al., 2023). Obtaining sufficient high-quality labeled data is
often time-consuming and costly, which limits the effectiveness and scalability of these
methods in some practical applications.

Due to the difficulties faced by the above numerical methods and data-driven
methods, an emerging machine learning framework called PINNs (Raissi et al., 2019)
has been introduced into the prediction of structural dynamic response. By utilizing
known physical information, such as partial differential equations, as prior information
to train neural network models, PINNs thus significantly reduce the reliance on large
amounts of labeled data in traditional machine learning methods, and the prediction of
the model will inherently obey the constraints of the physical governing equations. This
outstanding capability has enabled PINNs to find widespread applications across
various research and engineering fields, such as in fluid mechanics (E. Z. Rui et al.,
2023; E. Z. Rui et al., 2024; Sharma et al., 2023), heat transfer (Cai, Wang, Wang, et
al., 2021b; He et al., 2021; Zobeiry & Humfeld, 2021), solid mechanics (Abueidda et
al., 2021; Haghighat et al., 2021), structural dynamics (Jeong et al., 2023; Fangyu Liu

etal.,2023; Liu & Meidani, 2023; Preetha Hareendran & Alipour, 2022; Tsai & Alipour,
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2023) and medical diagnosis (Kissas et al., 2020; Sarabian et al., 2022).

Although PINNs have achieved positive results in many fields, there are still some
defects in their practical application in structural dynamics. For example, the spectral
bias problem (Farhani et al., 2022; Wang et al., 2021) leads to a decrease in the
prediction accuracy of the model at different frequencies, affecting the overall response
accuracy. In addition, the ‘soft’ embedding of constraints (Cao et al., 2023; Lu,
Pestourie, et al., 2021a) limits the application of the model under complex boundary
conditions and cannot effectively capture the real physical behavior. Finally, the multi-
loss function balance problem (Bai et al., 2023; E. Z. Rui et al., 2023; Xiang et al., 2022)
makes it difficult to optimize multiple objectives simultaneously during training,
resulting in the uneven performance of the model on different response characteristics.

To address these issues, this study proposes a novel framework called the structural
dynamics learner (SDL) that combines recurrent convolutional neural networks (RCNN)
and physical information to accurately predict the dynamic response of structural
systems. This framework is not intended to surpass the well-established numerical
analysis methods in structural dynamics but rather aims to overcome the limitations of
existing PINNs by effectively integrating physical knowledge and advanced machine
learning models. This method can also serve as an alternative to solving structural
dynamics problems involving stiff equations. Specifically, a recurrent framework is
established in SDL to predict the dynamic response sequence of the structural system

at discrete time steps. In each recurrent block of the recurrent framework, a CNN model
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is employed to predict the structural state at the next step from the current hidden state
(displacement and velocity) of the structural system and the external force input. The
implicit scheme of the governing equations of structural vibration is integrated as a
priori physical information to train the CNN model in each recurrent block. Benefiting
from physical information, SDL is an unsupervised learning model that does not rely
on any labeled data for training. After ‘hard’-embedded constraints, the prediction of
the CNN model is output as the predicted dynamic response of the structure.

The main contributions of this study can be summarized as: (1) A novel physics-
informed recurrent convolutional neural network framework is proposed to predict
linear/nonlinear structural dynamic responses based on the Crank-Nicolson scheme of
motion equations. The key component of this framework is the CNN-based recurrent
block, which is designed to capture the nonlinearities in the structural response. (2) The
utilization of recurrent blocks gives the SDL framework a memory mechanism, where
the CNN model parameters optimized in the previous time step can be used as the initial
settings for the next time step. In this way, the convergence speed of the model is greatly
improved, allowing the proposed model to fast and accurately infer structural response
sequences. (3) The loss function is completely derived from the physical governing
equations, thus avoiding the problem of balanced convergence of multiple loss
functions. In addition, the model training can be performed without relying on any
labeled training data, making the proposed model an unsupervised machine learning

model and avoiding expensive data collection and data-induced errors. The loss
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function is constructed based on the Crank-Nicolson scheme of the motion equation,
which is an implicit numerical integration scheme, thus providing excellent solution
stability from a mathematical principle. (4) The embedding of initial and boundary
conditions is carefully designed into the framework to ensure that the prediction results
of the SDL model rigidly meet the constraints, which also avoids the model prediction
error on the constraints. Numerical outcomes demonstrate the superiority of the SDL
framework in terms of mathematical rationality and solution stability and accuracy
compared to vanilla PINNs solvers.

The rest of the study is organized as follows. Section 2 outlines the problem of
structural dynamic response prediction. The details of the proposed SDL framework are
demonstrated in Section 3. In Section 4, the effectiveness and advantages of the
proposed SDL framework are verified through several numerical cases. Section 5
summarizes the research results and conclusions.

3.2 Problem statement

Consider a d -degree-of-freedom structural system subjected to an external
dynamic force F(t). The vibration of the structural system follows the governing
equation.

Mii(t) + Cu(t) + Ku(t) + f(u,u) = F(t) (3.1)
Here, M is the d-dimensional system mass matrix. C is the system damping matrix and
K is the stiffness matrix. u,, U are the system displacement, velocity, and acceleration

vectors, respectively. f(u,1) is a nonlinear term, usually representing a nonlinear
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restoring force or nonlinear damping, which depends on system displacement u and
velocity . F(t) is the external force acting on the system.

The general task of dynamic response prediction of structural systems is to
calculate the structural response [u(t), @ (t),i(t)] under various dynamic loads F(t).
The structural system can be linear or nonlinear, depending on the existence of the
nonlinear term f(u, %) in Eq. (3.1). This study is limited to the forward problem of
the structural system, i.e., to solve the governing equation in the space-time domain
mainly by analyzing the physical dynamics forward under the condition that the system
parameters M, C,and K are determined. In this study, the entire domain is discretized
while considering mainly the regular physical domains, where the time domain is
discretized into uniform time steps and the space domain is discretized into multiple
degrees of freedom.

3.3 Methodology

In this section, a physics-informed machine learning framework based on RCNN
is proposed for learning the governing equations of structural systems in the
spatiotemporal domain. Previous studies have shown that CNN models are more
convenient and efficient than fully connected neural networks (FCNN) in solving time-
dependent differential problems (Qu et al., 2022). The primary goal of this study is not
to prove that the proposed model outperforms traditional numerical methods, but rather
to offer new perspectives and alternatives for simulating structural systems that balance

time efficiency with desirable accuracy. The mathematical concepts, network
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architecture, and implementation details of the proposed model are discussed in this
section.
3.3.1 Crank-Nicolson scheme of motion equation
The Crank-Nicolson method is a finite difference method based on the trapezoidal
rule, commonly used to numerically solve the heat equation and partial differential
equations (Frei & Singh, 2024; Liu & Hao, 2022). It is a second-order implicit method
in time and has proven to be A-stable, which can overcome the effects of equation
stiffness and adapt to large time step sizes (Qu & Liang, 2017). For an ordinary
differential equation
T =fty) (32)
dt
The Crank-Nicolson method can discretize this equation in the time domain and
recursively solve the equation from the initial value as
Vst = Yn + 5 (F(tw Yn) + f(tnrs, Yns1)) (3.3)
Here, the right side of Eq. (3.3) is also dependent on y,,, 1, which shows that the Crank-
Nicolson method is implicit where a system of algebraic equations must be solved to
obtain the next value y,,; at each time step. If the ordinary differential equation is
nonlinear, the discretized algebraic equation is also nonlinear.
To apply the Crank-Nicolson scheme to the motion equation of Eq. (3.1), a system
state z is first defined as z = [u,1]” in the state space. Then, the motion equation

can be written in the form of a first-order differential equation as

z=K"-z+B*: (F(t) — f(z)) =g(t,z F(t), f(2) (3.4)
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0 I

where, K* = [—M‘lK _M-ic

] and B*=[0,M™1]T. g is a function referring to the
entire right terms, which depends on t,z, F(t) and f(z). Using the Crank-Nicolson
method in Eq. (3.3), Eq. (3.4) can be discretized as

Zny1 =Zn t+ %' [g(tn’zn»F(tn)’f(Zn)) + g(tn+1,zn+1,F(tn+1),f(zn+1))] (3.5)
Here, the prediction of the system state z,,; is implicit, which depends not only on
the current structural state z, and F(t,), but also on the next system state z,,,; and
external force F(t,;,) at time step n+ 1. The comparison between the implicit
numerical scheme and the explicit scheme is shown in Fig. 3.1. In explicit scheme
methods, such as the Euler forward method and the explicit Runge-Kutta method, the
system state z,,, is predicted using z, and F(t,) at the current time step with
simple forward calculation. In the implicit scheme, the information of F(t,,;) and
Zn+1 18 also required to predict the structural response. In traditional implicit numerical
methods, iterative calculations are relied upon to make the value of z,,,; converge to

the exact value. In this study, machine learning architecture is employed to predict z,, ;.

The details of the architecture will be described in the next section.

Explicit scheme Implicit scheme

Z Zn+1 Zn F2 ... Zn Zn n+2 ..

n +1
Syst ¢ { Syst t t
w—e-e—e—> LT e--e--e—»

External External
Sforee . At . At . > Jorce At At >
~ p F. F. - E F . Fo.

Figure 3.1 The comparison between the explicit scheme and implicit scheme

51



3.3.2 Neural network architecture of SDL

In this section, the architecture of the proposed SDL framework is outlined. From
the perspective of architectural form, SDL is a type of recurrent neural network, which
is composed of a series of CNNs based on a recurrent architecture. The architecture
diagram is shown in Fig. 3.2, which demonstrates that the SDL framework is composed
of a series of recurrent blocks. The overall input of the SDL framework is the initial
system state z, and the external force series F(t), and outputs the system state series
Z(t) of time steps.

------ Z‘n, =Z Quiput

ZO _"’h()_\

Input: F= [ Fy F, F,

Figure 3.2 Neural network architecture of the SDL framework.

As shown in Fig. 3.2, at each time step, a recurrent block is built to update the
hidden state h and predict the structural response z. The hidden state h is defined as
h = [u,u]", which is employed to pass the system state information to the next
recurrent block. The first recurrent block takes hidden state h, set to the initial system
state z, and the external force (F,, F;) as input to infer new hidden states h; and
output the predicted system state z; = [uy,1,]7. In the n-th recurrent block, the

hidden state h,,_; from the former step serves as the hidden state together with the
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external force (F,,_1, F,) as the recurrent block input. The outputs of all N recurrent
blocks are combined into the system state time series Z = [zg, 24,2, ***, Zy] as the

output of the entire SDL model.

Deep CNN model with parameter:  ={W, b}

Input data Conv Layer FC Layers Output data
Size: 4 < d Input size: 4 < d Input size: 1xd Size: 2 d
Quiput size: 2 d Qulput size: 1 d
Uy Uy fx-J fx Uy Uy

Figure 3.3 The CNN model in SDL framework

In each recurrent block, a CNN model as shown in Fig. 3.3 is utilized to update
the hidden state. The input of the model is [uy,_1, y_1, Fy_1, F,]T with a size of (4,d).
After normalization by the hyperbolic tangent function, a convolution layer is utilized
to perform convolution calculations on the input data. There are two convolution
kernels in the convolution layer to reduce the input 4-dimensional data to two
dimensions. The size of the convolution kernels is 3 X 3, the stride and padding are
one. These two convolution kernels are used to extract the feature information related
to the structural response u and u respectively. Then, the extracted features of the
two convolution kernels are passed into an FCNN model separately. FCNN models

have L hidden layers, each containing H neurons. The hyperbolic tangent function
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serves as the activation function to provide a nonlinear representation ability. The input
and output sizes of the FCNN models are both (1, d). Then, the outputs from FCNN
models are merged into an output O.yy of size (2, d), which is also the output of the
whole CNN model. The trainable parameters of the CNN model include the weights
and biases of the convolutional layer and the fully connected layers. The model
hyperparameters include the number of fully connected hidden layers L and the
number of neurons H. Here, the pooling layer in the traditional CNN model is not used
as the pooling operation can filter out the feature information of some degrees of
freedom in the input data.

In order to make the output of the CNN model rigidly meet the boundary condition
constraints, a ‘hard’ embedding operation () of the boundary conditions is performed
on the CNN model output Ocpyy. For multi-DOF systems, boundary conditions are
usually imposed by setting u or u to specific values, for example, u and u of
nodes on the fixed boundary are constrained to zero. To achieve such a ‘hard’
embedding of boundary conditions, the output O.yy of the CNN model is processed
as

hPTed = M, 0o Ocyy +V (3.6)
Here, hP"®? is the predicted hidden state of the recurrent block, and M, is a Boolean
mask matrix of size (2,d). The M, matrix controls where the O, yy matrix is
constrained by setting the values of the constrained positions are zero and unconstrained

positions are one. Operator o is the Hadamard product which returns a matrix of the
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multiplied corresponding elements. V' is a value matrix of size (2,d), where the
values of the unconstrained positions are zero, and the values of the constrained
positions are set according to the boundary conditions. In this way, the predicted hidden
state hP"¢? is forced to rigidly couple the boundary conditions.
3.3.3 Loss function and model training

To train the SDL model, a loss function needs to be constructed to update the
weights and biases in the CNN model. Different from traditional supervised learning,
which relies on labeled data of input-output pairs to train the model, inspired by PINNs,
an unsupervised model training that integrates physical information as prior
information is utilized in this study. According to the Crank-Nicolson scheme of motion
equation in Eq. (3.5), a loss function of the n-th recurrent block is constructed as

loss, = |[res,ll3 (3.7)

resy = R = hn_y =5 [9(tnt hnc, Facs F(hno) + g (60 R4 By F(REE))] (3.8)

Here, the output hﬁred

of the n-th recurrent block is combined with the input of the
recurrent block to construct the loss function loss,,. By minimizing loss,,, the residual
of Eq. (3.5) can be gradually reduced, so that the hidden state h2"*? can approximate
the true structural response. Although in the SDL framework, all recurrent blocks can
be trained together like traditional RNN models, it will make model training prone to
gradient explosion and gradient vanishing (Ribeiro et al., 2020). In addition, as the

number of time steps increases, the complexity and time consumption of model training

will also significantly increase, thereby increasing the difficulty of model convergence.
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Actually, the loss function loss,, described in Eq. (3.7) has the advantage in that the
loss function of the previous recurrent block is independent of subsequent output. To
take advantage of this, the SDL framework adopts a sequential training technique, i.e.,
training recurrent blocks in sequence according to the time steps. Specifically, starting
from the first recurrent block, a gradient descent-based optimizer, such as Adam
(Kingma, 2014), is employed to minimize loss; until the relative error € converges

to the defined error tolerance €;,;. The relative error € is defined as

/ lresnll3
€ = tY—r— (3.9)

ezl
n 2

The error tolerance €;,; is a commonly used convergence criterion in implicit methods,
and the value set is studied in (Gonzalez--Pinto et al., 2004). In the n-th time step, the
optimized CNN model parameters in the previous time step are inherited to initialize
the CNN model, and the optimizer is employed again to minimize loss, . This
inheritance and training process is repeated until all N-time steps are completed. At
each time step, the converged hP"®? will be output as the predicted structural dynamic
response zP"é¢,

The sequential training technique has another advantage in that it retains the
characteristic of the recurrent architecture in capturing short-term dependencies of
sequence data. This advantage can be fully utilized in structural response prediction
because the structural responses at adjacent time steps are always evolutionarily similar.

In the SDL framework, the CNN network of the next recurrent block is initialized with
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the optimized CNN model parameters in the previous recurrent block, namely the
memory mechanism. In this way, the CNN model is initialized on the memory of the
previous recurrent block instead of random initialization, which can greatly accelerate
the convergence process of the CNN model.

The SDL framework relies on iterative training to converge the loss function to
the error tolerance, which means that it is impossible to have an efficiency advantage
over explicit numerical methods such as the Euler forward method and explicit Runge-
Kutta method. However, the integration of implicit physical information can bring
excellent stability, as the Crank-Nicolson scheme has been proven to be unconditionally
stable (Qu & Liang, 2017). This feature is very powerful in structural dynamics
problems, which always involve stiff equations. In contrast, traditional explicit
numerical methods rely on extremely short step sizes to keep the solution stable and
convergent in stiff equations.

Due to the adaptability of the Crank-Nicolson scheme to nonlinear equations, it is
convenient to implement the SDL model to solve nonlinear dynamic systems involving
nonlinear stiffness and damping. Adaptability to nonlinear partial differential equations
is also an inherent advantage of the PINNs methods. However, the SDL framework also
breaks through several obstacles that hinder the implementation of PINNs in structural
response prediction. The first is the spectral bias in the neural network, which is
manifested by the phenomenon that the neural network model tends to prioritize the

low-frequency components in the data and ignore the high-frequency components. This
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shortcoming becomes more serious in the structural response prediction because
structural responses often consist of multiple components with frequencies spanning a
wide range. However, this obstacle is overcome in the SDL framework by predicting
the structural response in the time domain step by step to avoid using a single model to
represent the information of the entire time domain. The ‘soft’ embedding of constraints
is also a well-known defect of the PINNs framework. In the prediction of structural
response, constraints including initial conditions and boundary conditions are vital prior
information to ensure the uniqueness of the structural response. The residual on the
constraints also brings additional errors to the prediction results of the structural
response. In the SDL framework, by directly inputting the initial state to the first
recurrent block and ‘hard’ embedding of the boundary conditions through Eq. (3.6), the
constraints are hard embedded without residual, thereby eliminating this constraint
error. Another benefit of the ‘hard’ embedding of constraints is to avoid the problem of
balancing multiple loss functions in PINNs. In PINNSs, initial conditions, boundary
conditions, and governing equations are ‘soft’ embedded through defined loss functions,
and these loss functions are summed as the total loss function. However, research
results show that in PINNSs, it is difficult to maintain balanced convergence of multiple
loss functions, which is still an unresolved issue in the field of PINNs (Wang et al.,
2022; Xiang et al., 2022). In the SDL framework, since the constraints are ‘hard’-
embedded, there is only a governing equation residual in the loss function, which

fundamentally avoids the instability caused by the competition of multiple loss
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functions.

It is also noted that combining CNN, RNN, or numerical methods such as the
Runge-Kutta method with PINNs is not innovative. The most well-known include
PhyCNN (R. Zhang et al., 2020a) and PI-LSTM (Fangyu Liu et al., 2023) for predicting
the seismic response of structures. However, these models are supervised learning that
relies on structural response observation for training, and physical information only
plays an auxiliary role in improving the robustness and generalization ability of the
model. This study does not intend to show the advantages of the SDL framework over
these methods but provides an unsupervised learning method that does not require any
training data to accurately predict the structural response.

3.3.4 Algorithm and computing platform

The overall implementation process of SDL framework is shown in Algorithm 3.1.

Algorithm 3.1. The implementation of SDL framework

Input: Mass matrix M, stiffness matrix K, damping matrix C, nonlinear function f(u,),
mask matrix M;, value matrix V, initital state z,, force series F(t), number of time steps N,
time step size dt

Parameter: Learning rate [, error tolerance €;,;, CNN model hyperparameters L and H

Output: Structural system state series Z

1: Initialize hidden state h, = z,, system state list Z[0] = z,, relative error € = 1.0, randomly
initialize CNN model

2:for i=1to N do

3: Calculate t;_; = (i— 1) =dt, t; = i =dt

4: Get external force F;_, = F(t;—1), F; = F(t;)

5: Concatenate CNN model input x; = [h;_4, Fi_1, Fi]
6: while € > €, do

7 Forward propagation Ogyy = CNN(x;)
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8: Predict hidden state hP"** = Mj, o Ocyy + V with boundary conditions

9: Update the CNN model by the optimizer with learning rate = L,
10: Update the relative error €
11:  end while

12:  Predict the structural response z”"°* = h?™*?, set Z[i] = z""*¢

13:  Update h;_; = h’™%, reset relative error € = 1.0

14: end for

All codes in this study are compiled in Python 3.8. The neural network framework
is based on PyTorch (Paszke et al., 2019), a mature deep learning library. All codes are
run on the Windows platform with an Intel Core i7-10700 CPU and an NVIDIA
GeForce RTX 3080 Ti GPU.

3.4 Numerical validation

In this section, several numerical examples are carried out to demonstrate the
effectiveness and accuracy of the SDL method. First, a two-degree-of-freedom system
example involving a stiff equation is calculated to demonstrate the stability of the SDL
method. Then, the SDL method is employed to predict the seismic response of a 4-story
frame structure involving nonlinear stiffness. The hyperparameter settings of the SDL
method are discussed in this example. The improvement of the efficiency of the
recurrent architecture is also demonstrated here. The third example involving nonlinear
Bouc-Wen hysteretic models is conducted to demonstrate the applicability of SDL to
nonlinear hysteretic systems. How to integrate the unobservable variables of the
nonlinear hysteretic model into the hidden states of the SDL method is also explained

in this example. Finally, a plane truss example is utilized to demonstrate the ‘hard’
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embedding of boundary conditions in the SDL framework.
3.4.1 2-DOF system

A linear two-degree-of-freedom system (2-DOF) as shown in Fig. 3.4 is first
studied. The masses of the two degrees of freedom are set to M; = 3.0 kg, M, =
2.0 kg. The spring stiffness is k; = 10N/m,k, = 10N/m,k; = 3000N/m. The
damping coefficients are ¢; = 0.1N/(m/s),c, = ON/(m/s),c3 = 3.0N/(m/s).
The exact response of this system under harmonic force can be obtained by the modal

decomposition method (Paz & Kim, 2018).
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Figure 3.4 A linear two-degree-of-freedom system

According to Eq. (3.4), a first-order differential equation describing the motion of

this 2-DOF system is built as
Zz=K"-z+B"-F(t) (3.10)
The four eigenvalues A of K* are calculated as [—0.0167 + 2.58j,—0.0167 —

2.58j,—0.750 + 38.8j,—0.750 — 38.8j]. According to the stiff equation criterion in

max|Real(1)|

(Spijker, 1996), the K* matrix's minlReal(D)]

= 449 > 1, the differential equation

for this 2-DOF system is stiff.
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To demonstrate the stability of our proposed method for stiff systems, an SDL
model is built to first analyze the free vibration of this system with large time steps. The
external force of this system is first set to 0 and the initial displacement is [0.1, 0]. The
exact structural dynamic response obtained by the modal decomposition method can
serve as the benchmark solution, with a time step of 0.01 s and a calculation duration
of 1s. The Euler forward method and the fourth-order explicit Runge—Kutta (ERK4)
method (Iserles, 2008) are also employed to calculate the numerical solution for
comparison. The time step size of these numerical methods is 0.1 s. The SDL models
with a time step size of 0.1 s and 0.5 s are tested separately. The hyperparameters of
the CNN model are set as L =1 and H = 100. The optimizer Adam is employed to
train the SDL model with a learning rate [, = 0.001. The error tolerance €;,; of the
convergence criterion is set as 1e-4. The calculated results of the displacement response

of M, are compared in Fig. 3.5.
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Figure 3.5 The comparison of the predicted M; displacement response of the 2-DOF
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system with SDL model and numerical methods.

Fig. 3.5 shows that the SDL model can obtain stable converged solutions at both
0.1s and 0.5s time step sizes. Affected by the error caused by the large step size, the
error of the result predicted by the SDL model with a 0.5 s time step is larger than the
SDL model with a 0.1 s time step. The result predicted from the SDL model with a
0.1 s time step is highly consistent with the exact solution. The explicit numerical
methods including Euler forward and ERK4 methods cannot maintain solution stability
at a time step dt = 0.1 s. This case demonstrates that based on the Crank-Nicolson
scheme, the SDL method shows outstanding stability for stiff systems.

A forced vibration case of this 2-DOF system is analyzed in order to verify the
accuracy of the SDL model in predicting the structural response under external force.
An external force F(t) = 500-sin(w /2 t) is applied to M; to make the system
vibrate from rest. The benchmark solution is the exact system response obtained by the
modal decomposition method, with a time step of 0.01 s and a duration of 1s. The
time step of the Euler forward method and ERK4 method is reduced to 0.01s to
improve the solution stability. The time step of the SDL model is also set as 0.01 s,
and the other parameters of the SDL model are set as the same as the free vibration case.
The comparison of predicted displacement responses of M; with the SDL model and

numerical methods is shown in Fig. 3.6.
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Figure 3.6 The comparison of displacement response prediction of M; with SDL

model and numerical methods

The results of Fig. 3.6 show that the SDL model successfully predicts the

displacement response of M;, which shows high consistency with the exact solution.

To quantify the error with the benchmark solution, the relative L2 error is calculated as

Relative L2 =

”upred_uexactui

,”uexact”%

(3.11)

According to the calculation results, the relative L2 error in the predicted

displacement response u

pred

of the SDL model is 0.00506%, while the relative L2

errors of the Euler forward method and ERK4 method are 1.74% and 1.42%,

respectively. In this case, the SDL method shows significantly higher accuracy than

these two explicit numerical methods.
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3.4.2 Five-story shear structure
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Figure 3.7 A 5-story structure with nonlinear stiffness springs

The seismic response of a 5-story structure with nonlinear stiffness springs as
shown in Fig. 3.7 is analyzed with the SDL method. The inter-story stiffnesses and
masses are also given in Fig. 3.7. The damping of the structure is set to give a damping
ratio of 1% for the first and second natural frequencies. Cubic stiffness springs ki and
k%7 act on the first and second layers. Then the governing equation of the structure
vibration can be written as

Mii(t) + Cu(t) + Ku(t) + K™ -u(t)® = Miiy(t) (3.12)
Here, K™ is the cubic stiffness matrix and i, (t) is the ground seismic acceleration.

This 5-story structure vibrates under the seismic acceleration excitation of EI Centro
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(N-S) shown in Fig. 3.8. The sampling frequency of seismic acceleration is 50 Hz.
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Figure 3.8 The seismic acceleration excitation of EI Centro (N-S)

The ERK4 method with a time step of 0.001 s is employed to solve the vibration
response z = [u, 1] of the structure as the benchmark solution, which is shown in Fig.
3.9. The total computation duration is 5 s. Since the explicit method does not require
iterative convergence, a small time step is adopted to ensure the accuracy of the solution.
In this case, the hyperparameters of the SDL model including the number of hidden
layers L and the number of neurons H inthe CNN model are first tested. Specifically,
20 CNN model schemes as shown in Table 3.1 are tested to calculate the seismic
response of the structure respectively. The time step of the SDL model is set to 0.01 s.
An Adam optimizer with a learning rate of 0.001 is employed to train the SDL model
until the relative error € converges to the error tolerance €;,; of 1e-4. The relative L2
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error of the structural responses predicted by all CNN model schemes to the benchmark
solution is calculated as the criterion of model accuracy and the model training time is
also recorded to evaluate the training efficiency. The results of model accuracy and

training time are shown in Table 3.1.
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Figure 3.9 The benchmark solution of the seismic response of the 5-story structure

Table 3.1 The comparison of relative L2 error (a) and computation time (b) of

different CNN model schemes

(a)
H\L 1 2 4 8 Avg
10 4.36% 4.41% 4.24% 4.37% 4.35%
20 4.29% 4.24% 4.10% 4.49% 4.28%
40 4.19% 4.24% 4.23% 4.33% 4.25%
80 4.27% 4.48% 4.10% 4.11% 4.24%
100 4.34% 4.35% 4.22% 4.16% 4.27%
Avg 4.29% 4.34% 4.18% 4.29%
(b)
H\L 1 2 4 8 Avg
10 338.51 299.91 389.22 633.46 415.27
20 270.30 283.81 411.03 682.79 411.98
40 279.84 345.71 397.29 648.81 417.91
80 247.14 300.23 383.58 618.81 387.44
100 268.27 312.13 374.83 603.89 389.78
Avg 280.81 308.36 391.19 637.55
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Unit: second

The results in Table 3.1(a) show that the SDL model of all CNN schemes
accurately predicts the seismic response of the structure, with the largest relative L2
error of 4.49% and the smallest of 4.10%. It is also observed that the accuracy of the
prediction results with different CNN hyperparameters has no significant difference.
This means that the accuracy of the prediction results of the proposed SDL model with
error tolerance €;,; as the convergence criterion is not sensitive to the hyperparameters
L and H settings. The results of calculating time in Table 3.1(b) indicate that as the
number of fully connected layers L increases, the training time of the SDL model also
increases significantly. But increasing the width of the hidden layer H has no
significant impact on the model efficiency and can slightly improve the accuracy of the
solution. Therefore a ‘shallow’ but the ‘wide’ FCNN model is a better setting for the
SDL method.

Here, the PINNs method proposed in (Raissi et al., 2019) is also employed to
predict the structural response for comparison. Specifically, in PINNs, an FCNN with
two inputs (t,x) is employed to predict the displacement response u(t,x) of the
structure. Here t is the time domain of the equation, ranging from 0 —5s. x is the
number of the system's degrees of freedom, ranging from 1 — 5. The number of hidden
layers L of the neural network model is set to 4, and the number of neurons H is 100.
The hyperbolic tangent function is utilized as the activation function of the neural

network. Using the governing equation of Eq. (3.12), the loss function of PINNSs is
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constructed as
Lossyinn = Loss; + Lossy (3.13)

where

Loss; = Niizli\’:i1|ufred(0, x;) — u; (0, xi)|2 + Niizﬁﬁlmfm(o, x;) — 1 (0, xl-)|2 (3.14)
and

1 Ny ..pred .pred pred n . pred3 .12

Lossy —N—fzi=1|Mui + Cu;  + Ku; — + K"y - Mug| (3.15)
Here, Loss; is the loss function of the initial constraint condition. N; =5 is the
number of sampling points (0,x;) sampled on the initial condition of the structural
system, where x; is 1 —5. u' and @' are the initial displacement and initial
velocity of the structure, respectively. Loss function Loss; is defined to constrain the
satisfaction of the structural governing equation. Here the Ny collocation points are
fully sampled on all 5 degrees of freedom with a time step of 0.01 s, totaling 2505
points. The Adam optimizer with [, = 0.001 is employed to minimize the total loss
LoSSpiny- The loss function Lossyi,, converges after 100,000 training iterations. The
structural displacements and velocities of M; and Mg predicted by the SDL model

and PINNs method are shown in Fig. 3.10 as examples and compared with benchmark

solutions.
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Figure 3.10 The comparison of structural displacements and velocities of M; and Mjs

predicted by the SDL model and PINNs method.

Fig. 3.10 shows that the results of the SDL model are consistent with the
benchmark solution, while the results of PINNs have obvious errors. The relative L2
error of the predicted displacement and velocity responses for all degrees of freedom is
calculated to quantify the accuracy of the SDL and PINNs results. The calculated
relative L2 error of the SDL is 4.34%, while that of the PINNs is 36.08%. This
indicates that SDL can achieve more accurate structural response predictions than the
PINNs method in this case. To compare the frequency distributions, the Fourier
transform is performed on the structural displacements and velocities of M; and Mjg

shown in Fig. 3.10, and the frequency distribution results are shown in Fig. 3.11.
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Figure 3.11 The comparison of frequency distribution of structural displacements and

velocities of M; and My predicted by the SDL model and PINNs method.

Fig. 3.11 shows that even when the dynamic response in this case only involves
frequency components f < 10 Hz, the PINNs method still loses some frequency
components of f > 2 Hz, and preferentially learns frequency components of f <
2 Hz, especially in the predicted u; and ;. The SDL method successfully solves the
defect of the spectral bias in PINNs, which is reflected in the frequency distribution
consistent with the benchmark solution.

In this case, we also compared the running efficiency of several algorithms listed
above by recording their running time. In addition, in order to analyze the improvement
of the memory mechanism of the recurrent architecture on the efficiency of the SDL
model, an ablation test without the memory mechanism is conducted. For comparison,
the most efficient CNN model scheme in Table 3.1 (L =1, H = 80) is used, but it is

randomly initialized in each time step instead of being initialized from the memory of
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the previous time step. The rest settings are the same as the above SDL model. After
testing, the training time of the model without the memory mechanism is 3051.69 s,
while the training time with the memory mechanism is 247.14 s. In this case, the
memory mechanism in the SDL framework can improve the model training efficiency
by 12.34 times. In comparison, the running time of PINNs is 2318.3 s, while the explicit
4th-order Runge-Kutta method of the benchmark method only takes 1.5 s. From this,
we can see that the explicit algorithm that does not require iterative calculations or
training has an incomparable efficiency advantage. The SDL framework based on the
memory mechanism also has a significant efficiency advantage over PINNSs.
3.4.3 3-DOF system with Bouc-Wen hysteresis

The Bouc-Wen model is one of the widely used hysteretic models employed to
describe the nonlinear hysteretic system. The latent hysteretic displacement has
dynamics which is governed by a nonlinear differential equation that depends on the
system’s velocity. The hysteretic dynamics equation of the Bouc-Wen model for an N-
DOF system can be expressed as:

Mii + Ku + Cu + Ky, * Zpyy = F(t) (3.16)

Here, Kj,, is the stiffness between the restoring force of the Bouc-Wen model and the
latent hysteretic displacement z,,. z;,,, isthe non-observable hysteretic displacement
that obeys the following nonlinear differential equation with zero initial condition

(zpw = 0), which is calculated as:

Zpw = At = BIU() | Zpy, O™ - Zpy, () — v ()| 2pw (O™ (3.17)
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Figure 3.12 A 3-DOF system with Bouc-Wen hysteresis

In this case, a 3-DOF system with Bouc-Wen hysteresis as shown in Fig. 3.12 is
analyzed. The mass of the systemissetas m; = 1.0 kg,m, = 2.0 kg,m; = 3.0 kg.
Linear stiffness is setas k; = 20N/m,k, = 25N/m,k; = 30N /m. The damping
matrix is set as the damping ratio of 1% for the first and second-order natural
frequencies. Three Bouc-Wen hysteresis models are installed with parameters k?% =
25N/m, A= 0.5, =0.5y =0.5n = 1. In this case, the system state is described
as z = [u,1,zp,]7 in state space. According to Eq. (3.16) and (3.17), the system state

equation can be expressed as

u u
7 = [ i | = M_I[F(t)—(Ku+Cll+KbW'ZbW)] =g(t,z,F(t)) (3.18)
Zpw Aty — Blipw 1 Zpw ™™ * Zpw — Vitpw | Zpw ™

Here 1,,, is different from 1 in the system state, which is the relative velocity of the

Bouc-Wen model. 1;,, can be calculated as
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1 -1 0
Upw = [o 1 —1] 1 (3.19)
0 0 1

K, is the hysteretic stiffness matrix, set as

25 0 0
Kywy=1|-25 25 0 (3.20)
0 —-25 25

This 3-DOF system vibrates from rest under the action of seismic acceleration
iy = 10sin(2m - t) + 5sin(67 - t). The ERK4 method with a time step of 0.001s is
employed to solve Eq. (3. 18) as the benchmark solution. The total calculation duration
is 5s.

In this case, the SDL model is employed to predict the dynamic response with
additional hidden states including hysteretic displacements. In the SDL model for this
3-DOF system, the hidden state h of the system is defined as h = [u, 1, z,,]”. The
CNN in the SDL model includes a convolutional layer and three FCNN models. The
input of the convolutional layer is a 5-dimensional matrix as x, =
[Un—1, Un—1, Zbwp,_1» fr—1 f»]' , and the output is 3-dimensional. These three
dimensions in the output are respectively input into an FCNN model with one hidden
layer of 100 neurons. The outputs of the three FCNNs are combined as the output of
the CNN model Oy to approximate the hidden state [u, 1, z,,]. Since no boundary
conditions are embedded, the output O.yy is directly used as the predicted system
hidden state h?"®?. The loss function of the SDL model is also constructed according
to Eq. (3.7) and Eq. (3.8). The Adam optimizer with a learning rate of 0.001 is employed

to minimize the loss function until the relative error € converges to the error tolerance
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€t01 = le — 4. The predicted displacement results of the SDL model and benchmark

solutions are shown in Fig. 3.13.
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Figure 3.13 The comparison of the predicted displacement results of SDL model and

benchmark solutions

Fig. 3.13 shows that the displacement responses predicted by the SDL model are
highly consistent with the benchmark solution. The calculated relative L2 error
between the predicted displacement responses and the benchmark solution is 0.271%.
The restoring forces loops of the three Bouc-Wen hysteresis models are also shown in
Fig. 3.14. As can be seen from Fig. 3.14, the SDL model also accurately predicts the

hysteresis force of these three Bouc-Wen models.
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Figure 3.14 Restoring force loops for three Bouc-Wen hysteresis models. The three
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sub-figures are results of model BW 1 (left), BW 2 (mid) and BW 3 (right).

3.4.4 Plane truss structure

In order to verify the effectiveness of the SDL framework for ‘hard’ embedding of
constraint conditions, the dynamic response of a plane truss structure as shown in Fig.
3.15 is analyzed. This truss consists of 19 rods with a total of 11 nodes. Truss members
are considered as 2-node linear elements in the X-Y plane with consistent mass matrices.
The length of the rods is 10 m and the cross-sectional area is 0.01 m?. The material
density of the rods is 2000 kg/m?3 and the elastic model is 80 MPa. This truss is
constrained at the left side (node 1 in the X and Y directions) and at the right side (node
11 in the Y direction). Two Y-direction forced displacements are applied as external
excitations at nodes 5 and 7 to make the truss vibrate from the static state. The forced
displacements are uf(t) = 0.1xsin(2m*t) + 0.3 xsin(r=t) , u’(t) =0.25=*
sin(2m * t) + 0.1 * sin (7 * t). The external forces on the unconstrained nodes are 0.
The ERK4 method with dt = 0.001 is utilized to calculate the dynamic response of

the truss structure as the benchmark solution. The calculation duration is 1 s.

Figure 3.15 A plane truss structure
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An SDL model is constructed to calculate the vibration response of the truss. The
input of the SDL recurrent block is the hidden state h,_; = [ty_1,1,—1]", and the
output is z, = [uy,1,]7 . In each recurrent block, a CNN model with input
[Mn—1, fr—1, fn] (size 4 X 22) is employed to predict the output Oqyy (size 2 X 22).
Then, the output Oy is processed to integrate the boundary conditions by Eq. (3.6).
In this case, there are 5 constraint conditions, three of which are boundary conditions
on nodes 1 and 11, and two are displacement constraints on nodes 5 and 7. Therefore,
the mapping matrix Mj, has 0 elements in positions of node 1 (X and Y directions),
and of nodes 5, 7, and 11 (Y direction). The rest elements of matrix M;, are ones. The
elements of the value matrix V' in positions of nodes 5 and 7 (Y direction) are set
according to the forced displacement, and the other values are 0. In the CNN model,
there is one hidden layer with 100 neurons. An Adam optimizer with a learning rate of
0.001 1s employed to train the CNN model until the relative error converges to the error
tolerance €, = le — 4. The time step size of the SDL model is 0.01 s, and the
number of time steps is 100.

For comparison, a PINNs model with ‘soft’ constraint embedding is also built to
predict the vibration response of the truss. The input of the FCNN model in PINNS is
t and x, and the output is the predicted node displacement uP®%(¢, x). t ranges from
0 — 1s, and x is the degree of freedom of the structure numbered from 1 to 22. The
degrees of freedom of the n-th node in the X direction are numbered 2n — 1, and the

degrees of freedom in the Y direction are numbered 2n. The FCNN model has 4 hidden
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layers with 200 neurons. The activation function between layers is the hyperbolic
tangent function. In this case, the loss function L0sSy;,, of PINNs consists of 4 parts
as
Lossyinn = Loss; + Loss, + Loss, + Lossy (3.21)
Here, Loss;, Lossy, Loss,, and Lossy are loss functions of the initial conditions,
boundary conditions, displacement constraints and governing equations, respectively,
which are calculated as
Loss; =~ 1%, (", |+ [0, %)) (3.22)
Loss), = Nin'i\':”l(|u””d(ti, DI + [ )|+ [, 22)] ) (3.23)
Loss, = Niuzﬁvglqumd(ti, 10) — us* (¢, 10)|2 + U (8, 14) — ut 14)|2) (3.24)
and
Loss; = Nifzﬁvzflwl'imd(ti, x) + Cil Nt x) + Kut (e, xl-)|2 (3.25)
Here, N; sampling points of initial conditions are sampled on 22 degrees of freedom
at t = 0. N, sampling points of the boundary condition are sampled at node 1 (X, Y
direction) and node 11 (Y direction). N, sampling points of displacement constraint
are sampled at node 5 (Y direction) and node 7 (Y direction). u®**<‘(t;,10) and
u®¥t(t;,14) are the exact displacements from the constraint conditions. N¢
collocation points are sampled on all unconstrained degrees of freedom. The partial
derivatives of u are calculated using the automatic differentiation technique in the
PINNs framework. In the time domain, the sampling is uniform with dt = 0.01s. The

Adam optimizer with [, = 0.001 is employed to train the PINNs model for 100,000
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iterations. The displacement responses of nodes 5, 6, and 7 in the Y direction predicted
by the trained SDL model, PINNs model, and benchmark solution are shown in Fig.

3.16.

0.5

0.4 4

0.3

U5Y_Benchmark
UBY_Benchmark
U7Y_Benchmark
USY_PINNs
UBY_PINNs

g ~
v N ~ U7Y_PINNs
_ 'y N ~ — - U5Y_SDL
E 02 //, \\ - U6Y_SDL
% ,__..z,fsr::::_:__ \ ~._ — - uivsDL
E o014, # I T ~
u S AN - _ -
4 / N\ == ~—
% %4 AN “::‘ Se—
a 0.0+ \ S
\ N
i
b s
-0.1 h -

0.5 0.6 0.7 0.8 0.9

Time (s)

0.1 0.2 0.3 0.4 1.0

Figure 3.16 Comparison of the Y displacements of nodes 5, 6, and 7 predicted by the

SDL model and the PINNs model with the benchmark solution

Fig. 3.16 shows that benefiting from ‘hard’ constraint embedding, the SDL model
accurately expresses the displacement constraints at nodes 5 and 7, while PINNs failed
to successfully satisfy these two constraints. The SDL model also successfully predicts
the displacement response of node 6 with a relative L2 error of 0.898%. The reason for
the failure of PINNS is the imbalance of multiple loss functions as shown in Fig. 3.17.
Fig. 3.17 shows that in PINNSs, the optimizer prioritizes minimizing Loss;, Lossp,and

Lossg, while Loss,, is not significantly reduced.
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Figure 3.17 Convergence process of multiple loss functions in PINNs

3.5 Summary

In this study, a novel recurrent convolutional neural network framework named
the structural dynamics learner (SDL) is proposed to predict the dynamic response of
linear/nonlinear structural systems. A recurrent architecture consisting of a series of
recurrent blocks containing convolutional neural network models is built to accurately
predict the unknown structural response at discrete time steps with the system state and
external force inputs. The implicit Crank-Nicolson form of the system's motion
equations is incorporated into the SDL framework as physical information, which also
provides excellent stiff equation stability for the framework. A ‘hard” embedding of
boundary conditions is adopted to ensure the rigid satisfaction of constraints and
eliminate the residual errors of constraints. Several numerical examples are carried out
to demonstrate the accuracy and stability of the proposed framework. In the vibration

analysis of a 2-DOF system, the SDL framework shows better stability for the structural
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system involving stiff equations, compared with explicit numerical algorithms such as
the Euler forward method and the explicit Runge-Kutta method. The accuracy
comparison between the PINNs method and the SDL framework is carried out on a 5-
DOF system involving nonlinear stiffness. The results show the improved accuracy of
SDL over the PINNs method and address the spectral bias drawback of PINNs. How to
integrate other hidden states of the structural system such as hysteretic displacements
into the SDL framework is also demonstrated in an example of a 3-DOF system with
Bouc-Wen hysteresis. Finally, the benefits of ‘hard” embedding of boundary conditions
are also verified in an example of a plane truss. The results of the numerical examples
demonstrate the excellent ability of the SDL framework as a reliable alternative to

simulate vibration responses of the structural systems.
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Chapter 4 PI-MP framework for force localization and

structural response reconstruction

4.1 Introduction

Accurate knowledge of the dynamic forces acting on a structure is the foundation
for structural vibration prediction, structural design, and structural health monitoring.
Generally, for a structural system, predicting the structural response using known
structural system parameters and external forces is referred to as a forward problem.
Many mature methods have been established to solve these forward problems, which
can accurately calculate the structural response. Unfortunately, in actual engineering
projects, it is often difficult to directly measure the external forces acting on the
vibrating structure. Although advanced force sensors have been developed, directly
installing them on the structure or in the force transmission path can inevitably affect
the properties of the system and the acting forces. In this case, an alternative approach
to estimating these forces is to measure the structural response and then reconstruct the
forces using computational methods, which points to an important inverse problem
known as force reconstruction.

In recent years, various methods for force reconstruction have been proposed,
which can be broadly divided into three groups: direct calculation, regularization
method, and probabilistic method (Sanchez & Benaroya, 2014). The direct calculation

method establishes a mathematical or physical relationship between the structural
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response and the external forces, then directly computes the external forces using this
mapping and the measured structural response. For example, Jacquelin and Hamelin
(Jacquelin & Hamelin, 2003) successfully calculated the external forces on a bar by
establishing a relationship between the force and the strain of the Hopkinson bar and
measuring the three-dimensional strain of the bar. Other direct calculation methods
have also been developed for Bernoulli-Euler beams (Law et al., 1997). While direct
calculation methods are computationally efficient, they are highly sensitive to the
measuring noise, which is unavoidable in real-world vibration data due to sensor errors
or environmental influences.

To address the sensitivity to noise inherent in direct calculation methods,
regularization approaches have been developed. These methods incorporate additional
mathematical or physical constraints to suppress the influence of noise (Qiao et al.,
2020; Wang et al., 2019). The most widely used regularization methods in recent years
are the truncated singular value decomposition (TSVD) (Shi et al., 2024; Yang, 2024)
and the Tikhonov regularization (Li Wang et al., 2020) method based on L2-norm
penalty. For instance, (Ren et al., 2019) employed an improved Tikhonov regularization
method to identify dynamic forces between a conical pick and a coal seam. (H. P. Zhu
et al., 2014) combined the transmissibility concept in the state-space domain with
Tikhonov regularization to find the unknown input excitation of a structure. (Chen &
Chan, 2017) proposed a truncated generalized singular value decomposition (TGSVD)

method to obtain a more stable solution to the ill-posed problem in load identification,
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making the results less sensitive to noise disturbances.

Among the probabilistic methods, the most commonly used is the Bayesian
method, which assumes that the external force obeys a prior distribution, such as
Gaussian distribution, and uses Bayesian reasoning to obtain the posterior probability
distribution of the external force using the response observation according to the
relationship between the structural response and the external force. Some studies based
on Bayesian methods to reconstruct forces can be found in (Li & Lu, 2019), (Feng et
al., 2020), and (Chen et al., 2023). Another classic probabilistic method is the Kalman
filter, which uses the current structural response measurement and the previous
structural state estimate to calculate the optimal current system state estimate through
the Kalman gain. Then, based on the current state estimate and state equation, the
unknown input force at the current moment can be inferred. The application and
improvements of Kalman filter methods are discussed in (Niu et al., 2015), (Lourens et
al., 2012), (Wei et al., 2022), and (Petersen et al., 2022). For a more comprehensive
review of force reconstruction methods, the work of (Sanchez & Benaroya, 2014) and
(Beltran Carbajal, 2012) provides further discussions.

With the rapid advancements in machine learning, various deep learning
techniques have been explored for reconstructing forces acting on structures. Recent
studies have demonstrated the potential of deep neural networks (Liu et al., 2022; Lei
Wang et al., 2020), graph neural networks (C. Huang et al., 2023), and long short-term

memory (Denkena et al., 2020) networks in tackling the inverse problem of force
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reconstruction. These data-driven machine learning approaches have shown promising
results, highlighting the broad applicability of deep learning methods in this domain.
Recently, a class of novel machine learning frameworks known as physics-informed
machine learning (Karniadakis et al., 2021) has gained significant attention across
diverse scientific and engineering disciplines. By seamlessly integrating physical
information, often described by partial differential equations or integro-differential
equations, with powerful deep learning architectures, PIML has highlighted remarkable
application prospects. Prominent examples include successful deployments in fluid
mechanics (Sharma et al., 2023), heat conduction (Cai, Wang, Wang, et al., 2021a), and
material design (Zheng et al., 2022). The key advantage of PIML lies in its ability to
effectively combine data and physical models, even when the models are nonlinear,
partially informed, or high-dimensional. Moreover, PIML has also demonstrated strong
adaptability in solving ill-posed problems and inverse problems in the presence of noisy
data (Gao et al., 2022; Raissi et al., 2019).

In this study, we propose a physics-informed Markov parameters (PI-MP)
framework to reconstruct the structural external force by integrating the Markov
parameters of the structural vibration governing equations with the physics-informed
neural networks (PINNs) in the state space. Specifically, in the PI-MP framework, a
deep neural network is built to predict the unknown external forces of the structure.
Then, the governing equations of structural vibration are employed to derive the

relationship between the structural vibration responses and the external forces,
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represented by Markov parameters. The calculated Markov parameters are integrated
into the neural network model as prior physical information to guide the model training.
With the external forces predicted by the neural network model and Markov parameters,
the predicted structural responses can be calculated and then used to construct a loss
function by calculating the residuals from the measured structural responses. A
regularization term based on the derivatives of the predicted forces is also added to the
loss function to improve solution smoothness and avoid noise overfitting. By
minimizing the loss function, the predicted structural responses of PI-MP tend to be
consistent with the measured responses, and the reconstructed external forces can
approach the true values. With the reconstructed external forces, the responses of the
entire structure can also be reconstructed. In addition, for the case where the force
location is also unknown, by considering an L1 norm of the force mapping matrix in
the loss function and designing a special optimization algorithm to minimize the loss
function, the force location on the structure can also be discovered.

The rest of this study is organized as follows: In Section 2, the background
knowledge of the proposed method is introduced briefly. In Section 3, our proposed PI-
MP framework is described in detail. In Sections 4 and 5, we validate the proposed PI-
MP framework in three numerical cases and an experimental case, respectively. Lastly,

some conclusions are summarized in Section 6.
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4.2 Background
4.2.1 Motion equations for structural system

For a linear, time-invariant structural system subjected to dynamic forces, the
equation of motion can be written as

(M1} + [Cl{x} + [K]{x} = [LI{F} (4.1)

where M, C, and K are the mass, damping, and stiffness matrices, respectively. The
matrix L is the mapping matrix for the external forces, which is a diagonal Boolean
matrix with diagonal elements of 0 (without external forces) or 1 (with external forces).
X, x,and x represent the system's acceleration, velocity, and displacement responses,
respectively. The vector F represents the external forces acting on the structural
system. By defining the state vector of the structural system as X = [x,x] in the state

space, Eq. (4.1) can be rewritten as

X =K'X+ B*LF (4.2)

h . _ 0 I «_1 0 . :
where, K* = [—M‘lK —M‘lC]’ B* = [M_l].Theresponse observation y is setas
Yy=Rg*X + R,*x + R, xx (4.3)

where, Ry, R,, R, are diagonal Boolean mapping matrices of acceleration, velocity,
and displacement observations, respectively. Each of these matrices has diagonal
elements of 1 (observed) or 0 (not observed). Using Eq. (4.1), Eq. (4.3) can be expressed
as

y = RX + DLF (4.4)

where R = [R, — R;M™*K,R, — R;M~'C] and D =R,M™! . According to the
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exponential matrix algorithm, Eq. (4.2) and (4.4) can be expressed as
Xj+1 = AX; + BLF; (4.5)
yi =RX;+DLF; , j=1,2,--,N (4.6)
where, A = exp (K*h) and B = K*"1(A — I)B*. Here, h is the time step length and
N is the number of time steps. Following Eq. (4.5) and Eq. (4.6), the state X; at time
step j can be calculated as
X; = X1 VA*BLF;_,_ + AVXo,j = 1,2, ,N (4.7)
Then the observation y; at time step j is
yj =Yl _oHLF_x + RAIXy,j = 1,2, N (4.8)
where, Hy = D and H, = RA*"'B. Here H, are called Markov parameters, which
represent the structural response of the external force at the previous time steps. For a
linear system, Markov parameters are unique and represent the inherent characteristics
of the system in response to external forces. Eq. (4.8) can be expressed in Toeplitz

matrix form as

y(0) Ho 0 - 07rLy(F(OY [RA°
YOS e R TP R @)
y(N) HN HN—l HO L F(N) RAN
Eq. (4.9) can also be simplified as
Y = H F + AgX, (4.10)

where H; and Ay are the corresponding Toeplitz and state transition matrices.
4.2.2 Force and response reconstruction

When the external forces on the system are unobservable, an alternative approach
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is to reconstruct the external forces by measuring the vibration response of the structure.
If we know the initial state X, of the system and obtain some observation data Y,
according to Eq. (4.10), theoretically, the external force can be inversely reconstructed
by
Frec = Hf (Y — AgXo) (4.11)
Here, H;" is the pseudo-inverse of H,. This approach, however, is a well-known ill-
posed problem due to limitations in the number of measurement points, as well as the
presence of noise and measurement errors (Mao et al., 2010; H. P. Zhu et al., 2014).
Another way to reconstruct the unknown external force is to minimize the error by the
ordinary least squares (OLS) method as
min ||HyFrec + ApXo — Y13 (4.12)
After obtaining the predicted external force, Eq. (10) can also be employed to
reconstruct the unobserved structural response. Through defining the observed
structural response as Y; and the unobserved structural response as Y,, according to Eq.
(4.10), the derivation relationships between Y;, Y, and F are listed as

{Yl = HLlF +ARXO (4 13)

YZ = HLZF +ARX0

With the external force F... reconstructed from Eq. (4.12), the unknown structural
response Y, can be reconstructed as

Yor = HioFrec + ArXo (4.14)
4.2.3 Tikhonov regularization

Regularization is a commonly used technique in optimization problems to ensure

89



smoothness and convergence of solutions by adding additional constraints. In the study
of force reconstruction, noise in the measured data may significantly degrade the
accuracy of the external force reconstructed from Eq. (4.12). A technique called
Tikhonov regularization (Gockenbach, 2016) is often applied to keep the solution stable
and reduce the influence of noise. The force reconstruction with Tikhonov
regularization (Mao et al., 2010) is calculated as
min||H Fec + ApXo = Y13 + @lILFcll (4.15)

Here, a is the regularization parameter which controls the balance between the
goodness of fitness and the regularization term. The classic method to determine the
optimal value of parameter a is the L-curve method (Johnston & Gulrajani, 2000). By
setting various a values and employing an optimizer to solve Eq. (4.15), a series of
value pairs (log(||H,Erec + ArXo — YI3), log(|ILEcc|3)) for different a values is
obtained. These value pairs can be plotted and fit into an L-shaped curve. On one side
of this curve, the method can fit the observed data well, but the solution may be less
smooth, potentially indicating overfitting to noise. On the other hand, the solution is
smoother, but the fit to the observed data is reduced. The optimal value of a 1is typically
chosen as the value corresponding to the "corner" of the L-curve, where the trade-off
between data fit and solution smoothness is balanced.
4.2.4 Physics-informed neural networks

Physics-informed neural networks are a popular class of physics-informed

machine learning methods that aim to incorporate physical information into deep neural
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network models (Raissi et al., 2019). The key idea behind PINNSs is to define a neural
network NN(x,t) that can approximate the solution u(x,t) of a mathematical
governing equation.

D(u(x,t),8) = f(x,t) (4.16)
where D is a mathematical operator controlled by parameter 8, which can be a linear
or nonlinear partial differential operator, integral differential operator, etc. To train the
PINNs model for the forward problem, i.e., predicting the exact value of u(x,t) given
some constraints, a total loss function that consists of two parts is defined as

LosStotqr = Lossy + Lossy, (4.17)
where, Lossg is the loss function that penalizes the deviation of the neural network
output from satisfying the governing equation as

1 Nf 2
Lossy = N—fzi=1||D(u(xf, tr),0) — f(xs to)| (4.18)
Here, N is the number of collocation points randomly sampled in the domain of the
governing equation. The second term Loss, of Eq. (4.17) enforces the neural network
output to satisfy the defined constraints by
Loss, = - S0 luCey, t) = Ge, 811 (4.19)
where, N, is the number of randomly sampled points on the constraints. u*(x,, t,) is
the exact value given by the defined constraints. By minimizing the total loss LoSS;y¢q;
using an optimizer, the PINNs model can learn to approximate the exact solution of the
governing equation while satisfying the given constraints.

For the inverse problem, where the goal is to discover the unknown parameter 6
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in the governing equation through some observations u* (X, t,,), the PINNs model can
treat the unknown parameters 6 as trainable variables that are initialized and learned
alongside the neural network weights and biases. The total loss function for the inverse
problem is defined as
Losstotqr = Lossy + Lossy, (4.20)
Here, Lossy is calculated by following Eq. (4.18) to enforce the neural network output
to satisfy the governing equation (4.16). The additional term Loss,, penalizes the
deviation between the neural network predictions u(x,,, t,,) and the observed values
u* (X, tm) by
Lossm = 7= Bl 1uCm, tim) = " G, t) 1 4.21)
where, N,, is the number of observation points. By minimizing the total loss L0oSS;,¢a:
using an optimizer, the PINNs model can learn to approximate both the solution u(x, t)
and the unknown parameters 6 in the governing equation of Eq. (4.16). The implanted
mathematical constraints will guide the parameter 8 to approach its exact value that
best fits the observations u* (X, ty).
4.3 Methodology
Consider a linear time-invariant structural system with d degrees of freedom. The
relationship between the system's dynamic response and the external force can be
expressed using the Markov parameters described in Eq. (4.10). We propose a novel
neural network framework called physics-informed Markov parameters (PI-MP) that

combines the strengths of PINNs and the Markov parameters to reconstruct the external

92



force and the system response. The overall framework of PI-MP is shown in Fig. 4.1.

L Matrix  Automatic
Deep neural networks Filter  differentiation Loss Function

Total loss function
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2

Loss function of L matrix
Loss, =Ll

| s

Update w, b

Optimizer

Figure 4.1 The overall framework of the physics-informed Markov parameters

As shown on the left side of Fig. 4.1, a deep neural network model is utilized to
predict the external force f acting on all degrees of freedom with the input of time t.
In the filtering step, the predicted external force f is transformed using the mapping
matrix L defined in Eq. (4.1) to obtain the filtered external force F; acting on the
system. The matrix L can be either determined (if the force location is known) or
undetermined, in which case it can be discovered using the method described below.
Next, the PI-MP framework employs automatic differentiation of the neural network
model to calculate the derivative of F; with respect to the input t. This derivative
information will be used to construct the loss function in the next optimization step.

The total loss function of the PI-MP framework consists of three parts. The first
part is the loss function of the Markov parameters, calculated as the mean square error
of the residual of Eq. (4.10) by

L0SSyp = ||HyFprea + ArXo — Yl (4.22)
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where Fj.q is the external force predicted by the neural network model, and Y, is
the measured structural response. By changing the settings of the R,, R, and R, in
Eq. (4.3), we can adapt Eq. (4.22) to different structural response (displacement,
velocity, and acceleration) measurements. To prevent the neural network model from
overfitting the noise in the measured data, a regularization term which penalizes the
second-order derivative of F; with respect to time t is introduced as

LoSSyeq =

”a (LFpred)” (4.23)

at2

When the L matrix is not determined, i.e., the force application points are unknown,
following the assumption that only a few degrees of freedom are subject to external
forces, an additional term is added to the loss function to promote sparsity in the L
matrix, as defined in

Loss; = ||L]|; (4.24)
Finally, the total loss function of the PI-MP framework is the weighted sum of these

three terms as

LoSStotar = |y Forea + Ano = Yol + - | 2022 " 4 g, (a25)
where, a and [ are the weights of the regularization term and the L matrix norm,
respectively. a controls the balance between the goodness of fit and smoothness of the
predicted forces, which can be determined by the L-curve method described in Section
4.2.3. [ controls the sparsity of the L matrix, which is set to 0.01 according to our

tests.

When the L matrix is determined, the Loss; also becomes a fixed value. To omit
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this fixed value term in the loss function, the corresponding weight £ is set as 0. Then,
a gradient descent-based optimizer such as Adam (Kingma & Ba, 2014) is employed to
minimize the total loss function LoSS;,tq;, SO that the outputs of the neural network
model can approximate the exact external force. However, when the L matrix is not
determined, the optimal problem of LosS;,tq; becomes more challenging. Due to the
sparsity and the discontinuity of the diagonal values in the L matrix, it is difficult to
directly use a gradient descent-based optimizer to minimize L0SS;qtq;. To address this
problem, in the PI-MP framework, we use a greedy algorithm combined with the Adam
optimizer, as outlined in Algorithm 4.1, to minimize the total loss function LoSS;¢q;-
After training the model using this optimization strategy, the PI-MP framework can
accurately locate the position of the external force and predict the external force Fypeq
from the neural network model. These predicted forces can then be used to reconstruct

all unknown structural responses by following Eq. (4.10).

Algorithm 4.1 Greedy algorithm with Adam optimizer for minimizing L0SS;,¢q
1. Initialize L as a zero matrix
2. Repeat
Use Adam to minimize LOSStqtq;, tecord the minimum loss as LosSy,in
Set updated = False
For each inactivated diagonal element L;; in L matrix (i.e., L; = 0):
Activate L;; by setting L;; = 1, resulting in matrix L;
Use Adam to minimize L0SS;y¢q;, record the matrix L; and minimum loss

Loss;
If min(Loss;) < LoSSpin:
Update L matrix by setting matrix L = L;, i = argmin(Loss;)
Set updated = True
3. Until updated = False
4. Return final L matrix

In the above PI-MP framework, we have described the processes to locate the
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positions of external forces, reconstruct the time series of external forces, and
reconstruct the unobserved structural responses using partial system response
observations. However, there is still a challenge that needs further analysis. As the size
of the Toeplitz matrix defined in Eq. (4. 9) increases linearly with the number of time
steps and the degree of freedom of the structure, for long-term response observation of
structures with large degrees of freedom, the entire Toeplitz matrix will consume a
significant amount of computer memory resources, which will reduce the computation
efficiency. To address this issue, in the PI-MP framework, we employ a moving window
technique to decompose the entire long time series data into short fragments.
Specifically, the long-term structural response data is divided into windows of hundreds
or thousands of time steps (depending on the size of available computer memory), with
a certain overlap between adjacent windows. Within each window, the PI-MP
framework is employed to reconstruct the corresponding external forces and structural
responses. Finally, the external forces and responses from all the windows are spliced
together to obtain the results for the entire time series. This moving window technique
avoids the need to compute the entire Toeplitz matrix at once, which helps to conserve
computer memory resources and maintain the efficiency of the PI-MP framework.
4.4 Numerical cases

To assess the accuracy and capabilities of the proposed PI-MP framework, three
numerical examples are presented in this section. We first consider a 4-degree-of-

freedom system and compare the performance of the PI-MP framework against the
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ordinary least squares method (described in Section 4.2.2) and the Tikhonov
regularization method (described in Section 4.2.3). The impact of factors such as the
number and positions of structural response measurement points, as well as the noise
level in the response data, on the reconstruction accuracy are also investigated.
Additionally, this case also illustrates how to accurately identify the force location when
it is unknown. The second case involves reconstructing the external forces and dynamic
responses of a cantilever beam from noisy measurements. In the third case of a truss
system, the PI-MP framework is used to discover the external force location and
reconstruct the external forces and structural responses from noisy measurements. For
all three numerical experiments, a neural network model with two hidden layers of 100
neurons and a sine activation function is built to approximate the unknown external
forces, respectively. The Adam optimizer with a learning rate of 0.001 is employed to

minimize the total loss function.
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4.4.1 4-degree-of-freedom system

LLTALLFLAATLLALTAAL LA A TLLL LA A,

Figure 4.2 4-degree-of-freedom system

Consider a 4-degree-of-freedom system as shown in Fig. 4.2. The mass of each
degree of freedom and the stiffness of the connections are presented in the figure. The
damping of the structure is setas C = 0.005 * K + 0.001 * M. The system vibrates
under the external force action on M4 as shown in Fig. 4.3. Using the Newmark
method with a time step of 0.001 s, the structural response is calculated for a duration
of 1 s, which serves as the observation data. To simulate observation data with different
noise levels, Gaussian noise is added to the calculated response data as

Ynoise = Yeat * (1 + 1% N(n, m)) (4.26)

where, V,.ise 1S the noisy observed data, y.,; is the calculated data from the Newmark
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method,and 7 is the noise level ranging from 0 to 1. N(n,m) is a random number
matrix of shape (n,m) generated using a standard Gaussian distribution. Here, n is
the length of the input data, and m is the system degree of freedom as m = 4.

Let us first consider the case where the point of force application is known, i.e.,
L=diag (0, 0, 0, 1). The calculated acceleration data of M1 and M3 are used as the
observation data, with noise levels of 0%, 1%, 5%, and 10%, respectively. Using the L-
curve test, the weight of the regularization term a is set to 1078, and the weight of
the L matrix norm f is set to 0.01. The Adam optimizer is employed for 20,000
iterations to minimize the total loss function. Since the input data has only 1,000 time
steps and 4 degrees of freedom, the entire input data can be used as a single window for
the calculations. For comparison, the ordinary least squares method described in Eq.
(4.12) and the Tikhonov regularization method described in Eq. (4.15) are also applied
to predict the unknown force. The weight of the regularization term in the Tikhonov
regularization method is set to 1077, The reconstructed external forces using the three

methods are plotted in Fig. 4. 3, with 0% and 10% noisy input data, respectively.
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Figure 4.3 Reconstructed external forces (Top: 0% noise input, bottom: 10% noise

input)

Fig. 4.3 shows that when the input data is noise-free, all three methods are able to
accurately reconstruct the unknown external force. However, when there is 10% noise
in the input data, the OLS method and Tikhonov regularization method tend to overfit
the noise, while the PI-MP method can effectively suppress the noise overfitting. To
quantify the accuracy of the results, the relative L2 error of the solutions is calculated
by following Eq. (4.27). The relative L2 errors of the three methods with input data of

different noise levels are shown in Table 4.1.

2 _ Jz(fpred_fexact)z

,Z fexact?

Table 4.1 Relative L2 errors in reconstructed external forces

Relative L

(4.27)
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Noise level

Method 0% 1% 5% 10%
OLS 11.147% 11.126%  21.785%  51.774%
Tikhonov regularization ~ 9.088% 9.355% 17.936% 31.246%
PI-MP 3.502% 4.394% 7.410% 9.104%

The results in Table 4.1 show that as the noise level increases, the errors in the
external forces reconstructed by the three methods also increase. However, the PI-MP
method consistently achieves more accurate results than the other two methods. In order
to compare the computational efficiency of the above methods, the computation time
of the proposed PI-MP method and benchmark methods including the OLS method and
Tikhonov regularization method was recorded. The results show that the PI-MP method
took 83.69 seconds to complete 20,000 iterations, while the OLS method and Tikhonov
regularization method took 104.64 seconds and 105.80 seconds to complete 20,000
iterations respectively. In terms of computational efficiency, PI-MP has a slight
advantage over the OLS method and Tikhonov regularization.

To further analyze the impact of the number and positions of measurement points
on the accuracy of the PI-MP method, 15 different measurement point schemes are set
up, as listed in Table 4.2. The input data for these schemes is the noise-free
measurement of the acceleration at the positions indicated in the table.

Table 4.2 Relative L2 error of external force reconstruction for different measurement

point schemes

Measurement Relative L2 Measurement Relative L2
location error location error
1 79.573% 2,4 0.266%
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2 33.770% 3.4 0.236%

3 3.085% 1,2,3 3.619%
4 0.250% 1,2,4 0.239%
1,2 37.809% 1,3,4 0.279%
1,3 3.257% 2,34 0.226%
1,4 0.276% 1,2,3,4 0.245%
2,3 3.502%

From Table 4.2, it is observed that increasing the number of measurement points
can significantly improve the accuracy of force reconstruction of the PI-MP method.
When the number of measurement points is limited, the accuracy of force
reconstruction can also be improved by bringing the measurement points closer to the
point of force application.

When the L matrix is unknown, i.e., the force application points are undetermined,
PI-MP can be employed to identify the exact force location. In this test case, external
forces are applied to M2 and M4, and the Newmark method is used to calculate the
vibration responses of the structure under these external forces. The total calculation
duration is 1s, with a time step of 0.001 s. The calculated acceleration data at M1 and
M3 are used as the noise-free measurement data, and 1% noise is added to make the
noisy input data for the PI-MP method. Using the greedy algorithm and Adam optimizer
described in Algorithm 1, the PI-MP method successfully identified the exact value of
the L matrix to discover the exact force location. The detailed discovery process is

shown in Fig. 4.4.
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Figure 4.4 Process of discovering the L matrix

(The settings of force positions are shown in brackets, and the numbers below

represent the corresponding loss values)

4.4.2 Cantilever beam

In this case, a cantilever beam structure shown in Fig. 4.5 is considered. The length,
width, and thickness of the beam are 1m, 50 mm, and 5 mm, respectively. The
material of the beam is steel, with a density of 7850 kg/m3 and an elastic modulus of
206 GPa. Using the finite element model, this cantilever beam is discretized into 10
elements. The beam elements are considered as two-node Euler-Bernoulli beams with
a consistent mass matrix. This beam model has 11 nodes and 22 degrees of freedom
(vertical displacement and rotation). The damping ratio of the first two modes is set to
0.5%. The displacement and rotation of the cantilever beam are constrained at the left
end (node 0), and a vertical dynamic force is applied on the right end (node 10) to
induce vibration. Using the Newmark method, the vibration response of the beam under
the external force shown in Fig. 4.6 is calculated. The total calculation duration is 2s,

and the time step is 0.0001 s. To simulate observation data with noise, different levels
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of Gaussian noise are added to the calculation results according to Eq. (4.26).

L=1m

\L{ b=5cm

h=5mm

Figure 4.5 Finite element model of the cantilever beam

Let us first consider the case where the point of force application is known, i.e.,
the L matrix is determined. The calculated vertical acceleration data of nodes 5 and 9
are used as the observation data, with noise levels of 0%, 1%, 5%, and 10%, respectively.
According to the L-curve test, the weight « of the regularization term is set as 107,
and the weight [ ofthe L matrix norm is set to 0. The Adam optimizer with a learning
rate of 0.001 is used to minimize the total loss function, and the number of iterations is
10,000.

Since the input data has 20,000 time steps and 22 degrees of freedom, it cannot be
directly calculated as a single window due to our computer memory limitations.
Therefore, the calculation is performed in windows of 1,000 time steps with a 50%
overlap rate, resulting in a total of 40 windows covering the 2-second duration. Using
the input data with different noise levels, the external force is successfully reconstructed
as shown in Fig. 4.6. The relative L2 errors of the reconstructed external force compared
to the exact data with 0%, 1%, 5%, and 10% noise input are 2.240%, 4.090%, 12.594%,

and 23.990%, respectively. It is found that as the noise level in the data increases, the
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error in the reconstructed force also increases. At low noise levels (<1%), the PI-MP

method can accurately reconstruct the external force time series.
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Figure 4.6 Reconstructed external force with input data of different noise levels

With the reconstructed external forces shown in Fig. 4.6, the unmeasured node
responses of the cantilever beam can be reconstructed by following Eq. (4.14). For
example, Fig. 4.7 shows the predicted vertical displacements of all nodes and the errors
in the predicted values when using 1% noise input data. Fig. 4.7 shows that the
reconstructed displacements from the PI-MP method are highly consistent with the

exact values.
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Figure 4.7 Reconstructed vertical displacement (top) of the cantilever beam and error

in the reconstructed vertical displacement (bottom)

4.4.3 Plane truss

Consider a two-dimensional plane truss system composed of 15 rods as shown in
Fig. 4.8. Eachrod is 10 m long and made of steel with a density of 7850 kg/m3 and
an elastic modulus of 210 GPa. The cross-section of the rods is 5 cm*5 cm. The truss
is supported at the left and right corners as the lateral and vertical displacements of
nodes 0 and 4 are fixed. A finite element model of this truss is established with 9 nodes
and 18 degrees of freedom. Truss members are considered as 2-node linear elements in
the X-Y plane with consistent mass matrices. The damping ratio of the first two modes
of the truss is set to 0.5%. The truss vibrates under the action of a force at a random

location. The Newmark method is used to calculate the vibration response of the truss
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as the observation data, with a duration of 1 s and a time step of 0.0001 s. The vertical
acceleration data of nodes 5 and 6 with 1% noise is used as observations. Since the
position of the force is unknown, the PI-MP method is used to first discover the exact
L matrix to determine the force position and then reconstruct the time series of the

external force.

’ 5 6 7 8
L2

0 4
R 1 2 3 e

Figure 4.8 A plane truss system

Due to computer memory limitations, the calculation is performed in windows of
1,000 time steps with a 50% overlap, resulting in a total of 20 windows. The first
window is used to discover the L matrix, and then the entire external force is
reconstructed by sequentially calculating 20 windows. According to the L-curve test,
the weight of the regularization term « in the loss function is set to 1078, and the
weight of the L matrix norm f is set to 0.01. The iteration number in each window is

10,000. The process of discovering the force position is shown in Fig. 4.9.
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Figure 4.9 The search process of the force position

(The nodes and directions of the force settings are in brackets, and the numbers

below are the corresponding loss values)

Through the search process shown in Fig. 4.9, it is successfully discovered that the
force is acting on node 2 in the y direction. Using the discovered L matrix, the entire

time series of the external force is reconstructed through 20 windows and plotted in Fig.

4.10.
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Figure 4.10 Reconstructed external forces using the PI-MP method
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From Fig. 4.10, it is shown that the PI-MP method accurately reconstructs the
entire time series of the external forces. Using the reconstructed external force, other
unmeasured responses of the truss are also accurately reconstructed, such as the vertical

displacement and velocity of nodes 2 and 3, as shown in Fig. 4.11.
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Figure 4.11 Reconstructed vertical displacement (top) and velocity (bottom) of nodes

2 and 3
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4.5 Experimental validation

A vibration test of a beam is carried out in the laboratory as shown in Fig. 4.12.
The mechanical model of the beam is also shown in Fig. 4.13. The total length of the
beam is 130 cm, and the free section length is 126 cm. The beam width is 31 mm, and
the thickness is 5 mm. The material of the beam is aluminum alloy with a density
measured as 2774 kg/m3 and an initial elastic modulus set to 68.5 GPa. The
damping of the structure is set asC = a* M + b * K, where a and b are the
damping parameters to be determined. The beam is fixed to the supports with bolts at
the left and right ends. Four accelerometers are installed on the beam to measure the
vertical vibration, and a shaker equipped with a force sensor is installed to generate
dynamic force to make the beam vibrate. The specific location and mass of the sensors
are shown in Table 4.3. All acceleration and force data are collected by a Dewesoft data
logger with a sampling frequency of 5,000 Hz.

A finite element model of the beam is built by discretizing the free section of the
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beam into 2 cm beam elements. The beam element is a 2-node Euler-Bernoulli beam
element with a consistent mass matrix. The model has a total of 63 elements, 64 nodes,
and 128 degrees of freedom. The vertical displacement of the leftmost node 0 and the
rightmost node 63 is constrained to 0. Semi-rigidity at the two supports is considered
as rotational springs. The weights of the four accelerometers and the force sensor are

also considered as additional masses at the nodes in the finite element model.

1300 mm
¥ romr r
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Figure 4.13 Mechanical model of the test beam

Table 4.3 Sensor positions and weights

Sensor X . Weight .
(Including mounting base)
Accelerometer 1 30 cm 243 g
Accelerometer 2 64 cm 243 g
Accelerometer 3 84 cm 244 g
Accelerometer 4 104 cm 246 g
Force sensor 74 cm 244 g

We first input a white noise excitation to the beam and record the structural
response measured by four accelerometers for finite element model update. The
frequency response function curve of the measured acceleration data is calculated, and
the 10-100 Hz interval is set as the benchmark to update the parameters of the finite
element model. Fig. 4.14 shows the FRF curve calculated by the finite element model

after the model update and the measured benchmark. Table 4.4 shows the parameter
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settings after the model update.
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Figure 4.14 Measured FRF and calculated FRF from FEM model

(from left to right: accelerometers 1, 2, 3, 4)

Table 4.4 Parameter settings after model update

Parameter Initial value  Scaling factor Updated
value
Elastic modulus 68.500 GPa 0.8764 60.03 GPa
Damping coefficient a 0.005 1.6189 0.00809
Damping coefficient b 0.005 0.0184 0.0000919
Rotational stiffness of left 100 kN/m 0.0650 6.50 kN/m
support
Rotational stiffness of right 100 kN/m 0.0946 9.46 kN/m
support

After the model is updated, we input another white noise excitation to the structure
again and measure the acceleration responses with the four accelerometers as shown in
Fig. 4.15. The data duration is 0.1 s, the sampling frequency is 5,000 Hz, and the data
length is 500 time steps. The structural vibration collected by accelerometers 1, 2, and
3 as the input of the PI-MP method is used to reconstruct the dynamic force applied by
the shaker to the structure. The force data collected by the force sensor is used as the

benchmark for the force reconstruction result.
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Figure 4.15 Measurement values from four accelerometers

We divide the above 500 time steps into 10 windows of length 100 time steps and
an overlap of 50%. In each window, a neural network model with 2 hidden layers of
100 neurons is employed to predict the unknown external force, and the activation
function of the neural network model is the sine function. The optimizer Adam with a
learning rate of 0.001 is employed to minimize the loss function. In the loss function,
according to the L curve test, the weight a of the regularization term is set to 1078,
Since the L matrix has been determined, the weight  of the L matrix norm is set to 0.
In each window, the neural network model is trained for 20,000 iterations.

The reconstructed external force and measured values are shown in Fig. 4.16. It is
shown that the reconstructed external force is highly consistent with the measured value,

but there are still some numerical errors, which may come from the finite element model
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and measurement noise. Using the reconstructed external force, the acceleration

response at accelerometer 4 is also successfully reconstructed, which is shown in Fig.

4.17.
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Figure 4.16 Reconstructed external force and measured external force
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Figure 4.17 Reconstructed acceleration response and measured values of

accelerometer
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4.6 Summary

This study presents a novel method called physics-informed Markov parameters
(PI-MP) for reconstructing structural dynamic forces and responses by integrating
physics-informed neural networks (PINNs) and Markov parameters in the state space.
In the PI-MP framework, the strong representational capability of deep neural networks
is leveraged to predict unknown external forces. By simultaneously minimizing a loss
function based on Markov parameters and a regularization term of the second-order
derivative of predicted forces, PI-MP successfully couples the measured structural
responses to reconstruct the unknown forces while maintaining smoothness and
avoiding noise over-fitting. Using the reconstructed forces and the Markov parameters,
all the dynamic responses of the structure can also be reconstructed. Furthermore, by
adding an L1 norm term of the force mapping matrix to the total loss function and
designing an optimization strategy coupling a greedy algorithm and the Adam optimizer,
PI-MP can successfully locate the force positions when they are unknown.

Through a four-degree-of-freedom case, PI-MP is demonstrated to achieve more
accurate force reconstruction results even in noisy inputs than traditional methods such
as ordinary least squares and Tikhonov regularization. Increasing the number of
response measurement points and moving the measurement points closer to the force
application point can increase the accuracy of PI-MP reconstruction. Additional
numerical cases of a cantilever beam and a planar truss, as well as an experimental case

on a beam, have also been conducted to demonstrate the effectiveness and accuracy of
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the proposed method.
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Chapter 5 PI-FFNN for vibration based structural damage

identification with unknown external forces

5.1 Introduction

In-service infrastructure inevitably suffers from damage caused by environmental
factors and inherent material degradation. These external or internal damages lead to a
decline in the mechanical performance of the structure and pose a threat to its normal
functionality. Structural health monitoring technologies, which can timely detect and
assess the severity of damage at an early stage, have been widely applied in various
infrastructures. By utilizing SHM technologies, damaged engineering structures can be
repaired in a timely manner, which can reduce maintenance costs and prevent structural
failures, thereby improving the safety and reliability of structural systems. Over the past
decade, vibration-based damage detection (Avci et al., 2021; Das et al., 2016; Sun et
al., 2023) has been extensively researched due to its ease of implementation and
capability for global damage detection. These vibration-based damage detection
methods are based on the fact that structural damage will lead to changes in the
vibration characteristics of the structure, which is reflected in the natural frequency
(Yang & Wang, 2010), mode shape (Yazdanpanahla & Seyedpoor, 2015) and vibration
data (Shang et al., 2021). Based on this, researchers have conducted studies to try to
explore the vibration features that represent the occurrence of structural damage. The

majority of existing methods can be broadly divided into two categories: physics-driven
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methods and data-driven methods.

Physics-driven methods primarily exploit the physical laws of the structural
system, such as motion equations and constitutive models, to extract information about
the structural damage evolution from measured data. The most common practice of
physics-driven structural damage identification method is finite element model (FEM)
updating (Arora, 2011). In the model updating approach, a FEM that describes the
physical laws of the structural system is first constructed to predict the dynamic
response of the structure with measured external forces input. In the FEM, the structural
mechanical parameters are updated by minimizing the difference between the predicted
vibration response and the measured data. By comparing the updated model parameters
with the parameters of the structural health state, whether the structure is damaged can
be identified. This process was carried out by (Hua et al., 2009) to detect structural
damage in cable-stayed bridges and achieved satisfactory results. Additionally,
Jafarkhani and Masri (Jafarkhani & Masri, 2011) developed a stochastic optimization
algorithm to improve the global optimization process of model updating, which
enhances the accuracy of damage identification. Model updating has also been utilized
in (Mousavi et al., 2021), with the detection results validated through numerical and
laboratory tests.

Although the physics-driven approach has been extensively studied and has
formed a mature implementation process, as mentioned in (Ereiz et al., 2022), the

foundation of the physics-driven approach relies on an accurate FEM model that can
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correctly reflect the structural vibration characteristics. However, this is difficult to
achieve due to the uncertainties and complex interactions in real structural systems.
Another limitation of the physics-driven approach is that it is an input-output damage
detection method (Wang et al., 2018), which means that not only the vibration response
of the structure but also the external force input of the structure needs to be accurately
measured. However, in-service engineering structures are often affected by complex
external forces, and it is impossible to obtain precise information on all the external
forces applied. In addition, due to the limitations of the observation equipment, the
noise and uncertainty in the measurement data will also seriously affect the performance
of physics-driven damage identification (Hua et al., 2012).

On the other hand, data-driven methods represented by machine learning (ML)
have developed rapidly in recent years. ML models such as support vector machines
(Gui et al., 2017) and neural network models (Pan & Yang, 2020), rely on measurement
data for training, studying, and solving structural damage identification by considering
it as a pattern recognition problem. Unlike physics-driven models, ML methods no
longer rely on precise physical models but directly discover the potential relationship
between the vibration characteristics of observed data and structural damage. This
feature enables ML models to identify structural damage more accurately than physics-
driven methods under the influence of fuzzy physical models and noisy measurement
data. For example, Ghiasi et al. (Ghiasi et al., 2016) took advantage of this feature of

ML methods and built a least square support vector machine to detect damage in a four-
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story steel structure and a 120-bar dome truss. Delgadillo and Casas (Delgadillo &
Casas, 2022) also successfully discovered the degradation of the mechanical properties
of the bridge structure from noise measurements based on the ML method of the
improved completed ensemble empirical mode decomposition.

Although data-driven methods have made some promising progress, the
drawbacks from data scarcity, low fidelity, and tedious feature engineering still pose
challenges to their reliability. Generally, training a stable and reliable ML model
requires a large amount of training data, which is often difficult to obtain in practical
engineering. Even if researchers collect enough training data, the generalization ability
of machine learning models is easily affected by the imbalance of damage severity. For
example, for engineering structures that are frequently maintained such as rails and
bridge cables, vibration measurement data of the healthy state of the structure is easy
to obtain, while training data of multiple damage states is very scarce. In addition, noise
from sensors, acquisition equipment, and the environment can also have a negative
impact on the accuracy of model predictions (Ding et al., 2019). The uncertainty in
model predictions comes not only from noisy training data, but also from the inherent
‘black’ box mechanism of machine learning models, where the physical laws of the
model are unknown and the predicted output depends on data fitting (Rudin, 2019).
Lastly, how to select appropriate damage-related features and machine learning models
is also an open question worth studying for data-driven methods (Peng et al., 2022).

Currently, this problem usually relies on researchers' prior knowledge and experience
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to determine, which also poses challenges to the application of ML models.

In order to address the above challenges in existing ML methods, a promising
solution is to incorporate physical knowledge into the deep learning process, which is
also called physics-informed machine learning (PIML). By seamlessly integrating the
ML framework with physical information described as prior information of various
equations, PIML has demonstrated strong applicability in many fields of physics and
engineering. Recently, the application of PIML in dynamic response prediction and
structural damage identification in structural engineering has also received increasing
attention. (Lai et al., 2021) exploits a new physics-informed neural ordinary differential
equations (NODE) to perform linear/nonlinear structure identification. The research
results show that the NODE model integrating physical information can successfully
learn the highly nonlinear behaviors of complex systems. (Jeong et al., 2023) proposes
a novel physics-informed neural network-based topology optimization framework that
can obtain optimized topology without labeled data or FEA, even in various types of
complex domains. (R. Zhang et al., 2020b) introduces an innovative physics-informed
multi-LSTM network model for metamodeling of nonlinear structural systems with
scarce data. Experimental results show that embedded physics can alleviate the
overfitting problem in regular LSTM models, reduce the need for large training datasets,
and improve the robustness of trained models, leading to more reliable predictions with
extrapolation capabilities. (Fangyu Liu et al., 2023) applied a physics-informed long

short-term memory (PI-LSTM) network to structural response modeling by
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incorporating physics constraints into regular LSTM. Through an SDOF system and a
six-story building case, the proposed PI-LSTM network exhibited a more concentrated
and higher accuracy performance.

Although these developed PIML methods for structural dynamics successfully
integrate physical information and machine learning frameworks to enable models to
be trained from small amounts of observed data. However, these methods still cannot
get rid of their dependence on data and are still semi-supervised or supervised learning
methods. In these existing PIML methods for damage identification, training data with
structural damage labels still need to be obtained from simulations or laboratory tests,
which significantly limits the applicability of such algorithms to actual engineering. To
address these limitations, this study proposes a physics-informed Fourier feature neural
network (PI-FFNN) framework to reversely identify the structural damages from
vibration response observations without any damage labels and force measurement. In
this framework, a Fourier-featured neural network is employed to represent the
unknown external force input. The structural damage index is embedded in the neural
network model as a trainable parameter and trained together with the model parameters.
The physical information described as the governing equations of structural vibration
is integrated into the framework as prior information by building a mapping relationship
between external forces, structural parameters, and calculated vibration responses. The
neural network model and damage index are trained by minimizing the difference

between the calculated structural response and the vibration observation. The PI-FFNN
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framework is an output-only detection method that does not require measurements of
external forces as input. By integrating the governing equation into the neural network
model, the PI-FFNN framework can complete stable training without relying on any
labeled data. The basic mechanism of PINNs in the framework also enhances the
robustness of the PI-FFNN framework to noisy measurement data.

The main contributions of this study are: (1) A new neural network framework that
incorporates physics knowledge into deep learning to identify structural damage
without damage label data. This physics and data-coupled architecture can explore and
retain damage-sensitive characteristics while complying with the physical laws of the
structural system. (2) The proposed method does not require external force
measurement. In contrast, the force can be reconstructed from the output of the FFNN
model. (3) The embedding of the Fourier feature layer in the neural network enhances
the multi-frequency feature capability of the PINNs model, which can improve the
model's representation of the complex external force. (4) Numerical studies on beam
and plane truss structures and experimental tests have demonstrated the accuracy and
stability of the proposed PI-FFNN framework. Test results prove that the PI-FFNN can
accurately detect structural damage from only a small amount of vibration measurement
even noise.

The rest of this study is organized as follows: In Section 2, the basics of structural
motion equations and PINNs are briefly introduced. Section 3 detailly introduces our

proposed PI-FFNN framework for damage detection. Two numerical experiments are
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carried out in Section 4 and a laboratory test is presented in Section 5. Lastly, the whole
study is concluded in section 6.
5.2 Background
5.2.1 Motion equation of structural system

The motion equation of a linear structure system with n degrees of freedom can
be expressed as

MX(t) + Cx(t) + Kx(t) =L-F(t) (5.1

where M, K, and C are the mass matrix, stiffness matrix, and damping matrix of the
structure, F(t) is the external forces vector applied to the structure, and L is the
mapping matrix for the forces, which is a diagonal Boolean matrix to determine where
the force acts. ¥, x, and x represent the acceleration, velocity, and displacement
responses of the structure, respectively. Traditionally, numerical integration methods
are utilized to obtain the vibration response of the structure by solving Eq. (5.1). Among
these numerical methods, the Newmark-beta method is widely applied due to its good
numerical stability and ease of use. In this study, the Newmark-beta method is also
adopted to calculate the vibration response of the structure. At each time step in the

Newmark-beta method, the following four equations are established as

M, + Cx, + Kx, = [, (5.2)
Xny1 = Xp + (L —y) At Xy + ¥ AL ¥y (5.3)
. At? . .
Xn+1 = Xn + At Xn + T ((1 - 2.3) Xn + 2.3 xn+1) (5-4)

and
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M3%pyq + Cxpyr + Kxnyg = fraa (5.5)
Here, 0 <y <1 and 0 <2 <1 are the control parameters of the Newmark-beta
method. By solving the above four equations, the structural response (X,4+1, Xn+1>
Xn4+1) can be recursively calculated using the current structural state (x,, X,) and
external force input (f,,, fn4+1). By setting different value combinations of y and f£,
the Newmark-beta can become an explicit or implicit method, such as the explicit
central difference scheme (y = 0.5, f = 0) and implicit average acceleration scheme
(y =0.5, g =0.25).

Vibration-based structural damage identification usually assumes that structural
damage will cause changes in structural parameters (such as stiffness, mass, and
damping), which in turn will change the vibration characteristics of the structure. In this
study, the stiffness reduction is considered as damage to the structure. A set of scalar
variables is utilized to represent the stiffness reduction rate of the given structure. The
damaged stiffness is updated as

k=1 —z)*k{ (5.6)
Here, kid is the damaged stiffness value of the ith element and kio is the initial
stiftness value. The z; represents the stiffness reduction index, ranging from 0 (no
damage) to 1 (complete damage). In general, the vibration-based structural damage
detection method is designed to iteratively update the physical parameters by
minimizing the differences between the calculated vibration characteristics (frequency

and mode shape) or time series with the measured response. However, in the physics-
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data coupling method, the calculated structural response will not only be consistent with
the measured data, but also inherently satisfy the governing equation, thereby
improving the accuracy and reliability of damage identification.
5.2.2 Physics informed neural networks
PINNSs (Raissi et al., 2019) is a deep learning framework designed to solve forward
and inverse problems of linear and nonlinear partial differential equations as
D(u(x,t),x,t; 0) = f(u(x,t),x,t) (5.7)
Here, D is a differential operator controlled by the parameter 6. u(x,t) is the solution
of the equation dependent on variables x and t, and f is the source term. In the
forward problem of partial differential equations, where boundary and initial conditions
are imposed to calculate the solution of u, the PINNs framework utilizes a neural
network to approximate u(x,t) with inputs x and t. A loss function is formulated
based on the residual of the governing equation, defined as
L= 2&1[1) (upred(xif' t{)'xif' t{; 9) - f(upred(xif' tlf)’xl'f’ t{)]z (5.8)
Here, (xlf , tlf ) are collocation points sampled from the equation's definition domain
to measure the residual error of the model predictions u,,.q on the governing
equations. Additionally, a constraint-based loss function is defined to measure the
residual error of the model prediction on the constraints as
Lo = 2 [preaCef, ) = torace 65, )] (5:9)
Here, (x{, t{) are points sampled on the constraints, and Ugyqer (Xf, tf) represents

the exact solution obtained from these constraints. The total loss function of the PINNs
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model combines both losses as
Lyinns = L + L (5.10)

By employing a gradient descent-based optimizer to minimize Ly;nns, the neural
network model can be trained so that the model output can gradually satisfy both the
governing equation and the defined constraints, thereby approaching the exact solution
of the equation.

In the PINNs framework for inverse problems, the objective is to identify unknown
parameters 8 from measurement data while ensuring that the underlying physical laws
are satisfied. The inverse problem can be formalized as modifying the loss function to
incorporate both the data-driven approach and the physics-informed constraints. To
achieve this, a data loss function L; that quantifies the difference between the
predicted solution from the neural network uy,eq (xid, tl-d) and the observed data
uobs(xid, tid) is defined as

Lq = T4 [tprea(xd, ) = ops (2, t)]° (5.11)

In addition to the data loss, the governing equation loss L; defined in Eq. (5.11)
is also included to ensure that the predicted solution adheres to the physical laws. The
total loss function of the PINNs model for inverse problems is constructed as

Lpinns = Lr + Lg (5.12)

The unknown parameter 6 in Eq. (5.10) is initialized and trained together with

the neural network model as a trainable variable. By minimizing L,;,ns using a

gradient descent-based optimizer, the PINNs can not only learn to approximate the
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observed data but also adjust the parameters 6 to fit the governing equation, which
means that parameters 6 will approach the exact value.

Based on the principles introduced above, the integration of data-driven insights
with physical principles makes PINNs a powerful tool for solving forward and inverse
problems across various applications, including fluid dynamics (Cai, Mao, et al.,
2021b), material analysis (E. Zhang et al., 2022), and other fields where data and
physical laws intersect.

5.3 Methodology

Consider a multi-degree-of-freedom (MDOF) structural system with stiffness
reduction damage. The goal of vibration-based structural damage identification is to
inversely discover the location and severity of stiffness reduction using the measured
vibration response. In this study, a PI-FFNN framework is proposed to achieve this goal
by using physical information described by structural motion equations and vibration
response measurements as input. The overall framework of PI-FFNN is shown in Fig.

5.1.
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Figure 5.1 The overall framework of PI-FFNN

In Fig. 5.1, it is shown that the PI-FFNN framework takes vibration response
measurements X,, as inputs, and outputs the identified damaged structural stiffness
K% and the reconstructed external force F7¢¢. The core component of the PI-FFNN
framework is a Fourier feature neural network (FFNN) model, which aims to inversely
reconstruct the external force with physical information of the motion equation
parameterized by mechanical parameters 8 = [M, K, C]. The physical relationship of
the FFNN model can be expressed as FFNN (X,,, ) — F"¢¢. Spectral bias (Chai et al.,
2024; Xu et al., 2024) is a well-known defect of neural networks, which is manifested
in that neural networks preferentially learn the low-frequency components in the data
and ignore the high-frequency components. Because the external force of the structure
is usually a mixture of multiple frequency components, using a traditional PINNs model
to represent the external force is prone to the difficulty of spectral bias. The FFNN

proposed in (Jin et al., 2024; Sallam & Fiirth, 2023; Song & Wang, 2023; Wang et al.,
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2021) has been proven to effectively eliminate the spectral bias of the neural network
by using a Fourier feature layer to extract the broad frequency characteristics of the
input data. Inspired by this, a Fourier feature layer is embedded in the PINNs model in
the proposed method to balance the convergence speed of various frequencies, thereby
reducing the spectral bias and improving the overall model’s representing performance.

Specifically, the Fourier feature layer is implemented by

cos (2nWTt)

Ler (&, W) = [sin QrwTt)

(5.13)
Here, the input of the Fourier feature layer is t, and the output is multiple frequency
features of t. The trainable parameter of the Fourier feature layer is weight W, which
is initialized as a Gaussian distribution N(0,5?), where ¢ is the hyperparameter
controlling the value distribution of W. In the proposed PI-FFNN framework, o is
determined according to the frequency range of the structural vibration measurements.

Through Eq. (5.13), multiple frequency features of input t are established. Then,
these features are input to a fully connected neural network (FCNN) model, which
outputs the reconstructed structural external force F"°¢. The FCNN model has Lyy
hidden layers, each with Hyy neurons. The width of the Fourier layer, i.e., the size of
W, is also set to the width H. In addition, a damage index vector z is defined to update
the damaged mechanical parameters according to Eq. (5.6). The values of z are limited
to [0, 1]. Using these reconstructed external forces and updated structural mechanical

parameters, the Newmark-beta method is employed to calculate the structural response

Xpreq and maintain the differentiability of the structural response output to the neural
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network parameters, which will be utilized for the backpropagation of the loss function.
The physical relationship of the Newmark-beta method can be expressed as
Newmark(F"¢¢,0) - %,y.q. By calculating the residual between the structural response
obtained from the Newmark-beta method and the vibration measurement, a loss
function loss, is defined as
lossq =~ % (¥prea — im) (5.14)
In addition, to improve the sparsity of the identification result of z and improve the
robustness of PI-FFNN to noise, a regularization term of z is defined as
loss, = |z| (5.15)
The loss function of PI-FFNN is set as the weighted sum of these two losses
loss = loss, + a * loss, (5.16)
where a controls the weight of the regularization term, which can be determined by
analyzing the L-curve of loss, / loss, (Hansen & O’Leary, 1993). Using a gradient
descent-based optimizer to update the parameters of the neural network and the damage
index z by minimizing the loss, the structural response calculated by Newmark-beta
will be close to the vibration response measurements X,,. In this way, the output of the
neural network will reconstruct the external force of the structure, and the damage index
can characterize the location and severity of damage in the structure. The specific

implementation process of the PI-FFNN framework is illustrated in Algorithm 5.1.

Algorithm 5.1: The implementation process of PI-FFNN framework

Input: Initial parameters M°, K°, C°, initial state u,, vy, vibration measurement
Xm, force mapping matrix L, vibration mapping matrix R, time step dt
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Parameter: Neural network hyperparameters Lyy, Hyy and o, Newmark-beta
parameters f3,y, regularization weight a, number of iterations N;; and learning
rate [,

Output: Identified damage index z'“/ and reconstructed external force FTec
1: Initialize z to an all zero vector. Set i = 1. Randomly initialize the FFNN model
2:while i < N;; do:

3:  Forward propagation FFNN model to obtain the reconstructed force F"¢¢, and
filter into F;®¢ with the mapping matrix L

Update the mechanical parameters as K¢ = (1 — z) - K°

Calculate X,,.q with Newmark-beta method and filter with mapping matrix R

4
5
6: Calculate the loss,, loss, and sum as loss = loss, + a * loss,
7:  Back propagate loss to calculate gradients of FFNN parameters and z
8 Employ the optimizer to update the FFNN model and z

9 Limit the value of z in the range [0, 1], update i =i+ 1

10: end while

11: Output the identified damage index z'*/ = z and reconstructed force F/¢¢

According to the above introduction, the PI-FFNN framework is established for
identifying structural damage from vibration measurements without knowledge of the
external force on the structure. The hyperparameters of the framework include
parameter o of the Fourier layer, the depth Lyy and width Hyy of the FCNN model,
and the weight a of the regularization term. This should also be noted that to ensure
the solvability and uniqueness of this inverse problem, the number of structural
vibration measurements must exceed the number of unknown forces acting on the
structure.

In traditional numerical methods such as finite element analysis, both model
parameters and external force input are required to calculate the response of the
structure. Therefore, the damage identification method based on these numerical

methods must input the measurement of the external force, which may not be feasible
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in some practical projects. Other damage detection methods based on no external forces,
such as the sensitivity method (H.-P. Zhu et al., 2014), usually use the physics model
of the initial structural parameters to reconstruct the external force from part of the
response and then use the reconstructed external force to update the damage index based
on another part of the response. However, accurate structural parameters and accurate
external force reconstruction are interdependent. Errors in structural parameters will
lead to incorrect estimation of external forces, which may in turn increase the errors in
structural parameter identification. This interdependent mechanism will reduce the
convergence and stability of these traditional damage detection methods. In addition,
the noise in vibration measurement will introduce errors to the reconstructed external
forces, which will also affect the accuracy of damage identification. In the PI-FFNN
framework, the reconstructed external forces and damage index are trained
simultaneously. By using an optimizer to minimize these two errors simultaneously, the
PI-FFNN framework can ensure the synchronous convergence of the interdependent
force reconstruction and parameter identification processes. Compared with common
supervised machine learning models for structural damage detection, by directly
inputting the time domain signal of vibration responses, PI-FFNN can avoid the reliance
on a large amount of measurement data, which can be costly in structural health
monitoring. By using physical information to train the neural network model instead of
relying on damage-labeled data, as an unsupervised model, PI-FFNN can also be better

implemented on actual engineering structures whose damage labels are difficult to
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obtain. In addition, feature engineering (Chegeni et al., 2022; Guo et al., 2020; Pan et
al., 2019), which plays a key role in the performance of traditional machine learning
models, is completely eliminated here to improve the ease of use of PI-FFNN.
5.4 Numerical cases

In this section, two numerical examples are carried out to verify the effectiveness
and accuracy of the proposed PI-FFNN framework. The first is a cantilever beam
structure case, where the hyperparameter settings of the PI-FFNN framework are
explained and analyzed. In this case, the results of the PI-FFNN framework are also
compared with the classical numerical algorithm without force measurement and the
original PINNs model for damage identification and force reconstruction in noise-free
and noisy data. In the second case, the stiffness reduction of a planar truss is identified,
where the robustness of PI-FFNN to noise in the measured data is demonstrated.

5.4.1 Cantilever beam

VIO 6|66 |0 ®|O® 0

y
s

Figure 5.2 The finite element model of the cantilever beam

To demonstrate the performance of the proposed PI-FFNN framework, a cantilever
beam is analyzed as a numerical example in this section. The length, width, and

thickness of the cantilever beam are 1m, 50 mm, and 5 mm respectively. The
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material of the beam is steel with a density of 7850 kg/m? and an elastic modulus of
206 GPa. The finite element model of the beam is presented in Fig. 5.2, where the
cantilever beam is numerically modeled as 10 elements, each of which is 0.1 m long.
Using the finite element model, this cantilever beam is discretized into 10 elements.
The beam elements are considered as two-node Euler-Bernoulli beams with a consistent
mass matrix. This beam model has 11 nodes and 22 degrees of freedom (vertical
displacement and rotation). The vertical displacement and rotation of the beam are
constrained to 0 at the left end of the beam (node 0). A vertical dynamic force is applied
to the right end of the beam (node 10) to make the beam vibrate. The damping of the
beam is set to a damping ratio of 0.5% for the first two order natural frequencies.
Elements 4 and 8§ are assumed to be damaged with stiffness reduction of 15% and 20%,
respectively. The first five-order natural frequencies of the intact and damaged beams
are listed in Table 5.1. To obtain vibration response for model training, the explicit
fourth-order Runge-Kutta method (ERK4) (Iserles, 2008) is utilized to calculate the
vibration response of the damaged beam under the external force shown in Fig. 5.3. The

time step of the calculation is 0.00001 s and the duration is 1s.

Table 5.1 The natural frequencies of the undamaged and damaged beams (Hz)

f f2 f3 fa f5
Undamaged Beam  4.14 25.93 72.62 14241 23579

Damaged Beam 4.10 25.51 69.99 139.35 231.67
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Figure 5.3 The external force acting on the cantilever beam

In actual engineering, it is difficult to accurately measure the rotation of the beam
compared to the vertical vibration. So, the rotation is set as the unobservable structural
response in this test. The vibration accelerations of three nodes are recorded to simulate
the accelerometer measurement. In order to obtain the optimal sensor placement, kinetic
energy matrix rank optimization (KEMRO) (Castro-Triguero et al., 2013; Heo & Jeon,
2016) for optimal sensor placement (OSP) is carried out. According to the analysis
results of KEMRO, the optimal sensor locations of the three vertical acceleration

sensors are nodes 4, 7, and 10.
5.4.1.1 Hyperparameter testing

The PI-FFNN model involves several hyperparameters including the weight a of
the regularization term, the hyperparameter o of the Fourier feature layer, the width
Hyy, and the depth Lyy of the FCNN model. Before evaluating the performance of

the PI-FFNN model, how to set these hyperparameters is studied first. In addition, other
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parameters in the PI-FFNN model are also determined here. The parameters of the
Newmark-beta method are set to f = 1/4, y = 1/2 (average acceleration method).
A gradient descent optimizer Adam (Kingma, 2014) is chosen to train the FFNN model
with a learning rate of 0.001. The FFNN model is trained for 10,000 iterations, where

the loss function is observed to have converged.
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Figure 5.4 Vibration data of the three accelerations (a) and the frequency spectrum (b)

Consider the acceleration data of the three nodes (Y4, Y7, Y10) shown in Fig.
5.4(a) as the input data of the PI-FFNN model. The frequency spectrum analysis of the
acceleration data is also demonstrated in Fig. 5.4(b). It is observed that the main
frequency range of the three accelerations is 0-100 Hz. Accordingly, the hyperparameter
o of the FFNN model is set to 100 to establish the frequency characteristics of the input.

In order to improve computational efficiency, the vibration data recorded from the

137



ERK4 method is resampled to 10000 Hz. The first 500 time steps are utilized as training
data. Both noise-free and noisy training data are considered. The data calculated by the
ERK4 method is considered noise-free. The noisy data are generated by adding
Gaussian noise to the noise-free data by
Rnoise = Xexact + 1 N (0, 00xqct) (5.17)
Here, X.xqc: 18 the calculated noise-free data, n is the noise level, and
N(0,02,40¢) represents Gaussian noise with a mean of 0 and a variance of 62,4.;.
N(0,02,40¢) has the same shape as Xoyqer. Oexact 1S the standard deviation of ¥oyqct.
In this case, the noise of 17 = 1% is added to the noise-free data to generate noisy data.
The hyperparameter « is investigated in both noise-free and noisy vibration data. A
simple FFNN model with Lyy = 2, Hyy = 40 is utilized first to test the setting of «
values. A total of 14 schemes are tested, with a values of [1.0, le-1, le-2, 1e-3, le-4,
le-5, 0.0] in both noise-free and noisy data. All 14 schemes are trained with 10,000
iterations, and the converged loss, and loss, are recorded and plotted as curves in

Fig. 5.5.
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Figure 5.5 loss, - loss, of 14 test schemes. (left) noise-free input data, (right) input

data with 1% noise. The values of a is given in brackets.

Fig. 5.5(a) shows that in the case of noise-free input data, as the a value gradually
decreases from 0.1 to 0, the value of loss, shows a gradually increasing trend. While
loss, decreases first as the a value gradually decreases and then increases when «
is less than 1e-3. Fig. 5.5(b) shows the changes of loss, and loss, with a value in
input data with 1% noise, which also shows similar trends as in Fig. 5.5(a). According
to Fig. 5.5, it can be inferred that in this case when « is set to 0.1 and 0.01, the PI-
FFNN model is underfitting where damage is underestimated, and when a 1is less than
le-3, the model is overfitting where PI-FFNN overestimates the structural damage. The
result of the identification z‘4/ also supports this inference. When a is 0.1 or 0.01,
the value of z'%/ is smaller than the exact value and when a is less than le-3, the
sparsity of z'%/ decreases significantly. Therefore, in this case, a=1le-3 is considered

the optimal hyperparameter setting.
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Figure 5.6 Result of stiffness reduction identification

In the scheme of a=1e-3, the result of the identified z'%/ is shown in Fig. 5.6.

The result shows that in the vibration observation data with no noise and 1% noise, the

PI-FFNN model successfully identified the decrease in structural stiffness. To quantify

the overall accuracy of the identified stiffness reduction index z'“/, the average error
is calculated as

g, =~ 2, |7}V — zpract (5.18)

The average error of the stiffness reduction identification result of the noise-free

input data is calculated to be 0.133%, while the error of the input data with 1% noise is

0.886%. The external force acting on node 10 is also reconstructed by the PI-FFNN

model as plotted in Fig. 5.7.
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Figure 5.7 Results of external force reconstruction

Fig. 5.7 demonstrates that with both noise-free and noisy input data the PI-FFNN
model accurately reconstructs the external forces of the structure. In order to quantify
the accuracy of the external force reconstruction, the relative L2 error is calculated

according to

Sf =
’Z Ftruez

According to the calculation, the relative L2 error of the reconstructed external

(5.19)

force from the noise-free vibration data is only 0.323%, while that from the 1% noisy
data is 3.536%. The hyperparameters Lyy and Hyy of the FCNN model are also
investigated in this case. With the noise-free vibration measurement as input, the 16
neural network model schemes listed in Table 5.2 are tested respectively and the
average error of damage identification results and the relative L2 error of force

reconstruction are calculated. The running time is also recorded to evaluate the

141



efficiency of the models. The results are shown in Table 5.2.

Table 5.2 Test results of hyperparameters Lyy and Hyy.

a) average error of damage identification results (%), (b) relative L2 error of force
(a) g g (%), (b)

reconstruction (%), (c) running time (unit: s)

(a)
HNN/LNN 1 2 4 8 AVg
20 0.294 0.139 1.040 3.030 1.126
40 0.355 0.276 1.191 0.953 0.694
80 0.932 0.148 1.451 2.186 1.179
160 1.210 1.818 0.972 3.388 1.847
Avg 0.698 0.595 1.163 2.389
(b)
Hyn/Lyn 1 2 4 8 Avg
20 0.084 0.114 0.185 0.551 0.233
40 0.180 0.155 0.196 0.131 0.166
80 0418 0.195 0.170 0.322 0.276
160 0.359 0.371 0.150 1.093 0.493
Avg 0.260 0.209 0.175 0.525
(c)
Hyw/Lyy 1 2 4 8 Avg

20 1406.03  1381.22 138522 147039 1410.72
40 1386.29  1374.57 1391.04 1457.25 1402.29
80 1373.56  1373.60 1414.82  1526.02  1422.00
160 1408.60  1401.25  1482.35 1737.13  1507.33
Avg 1393.62  1382.66 1418.36  1547.70

From Table 5.2, it is observed that as Hyy and Ly increase, the errors in both
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the identified damage and the reconstructed force increase. This shows that increasing
the width and depth of the FCNN model has a negative effect on improving the accuracy
of PI-FFNN. In addition, as the number of hidden layers Ly increases, the model
training time will become significantly longer, so the efficiency will decrease.
Therefore, based on the test results, a small FCNN model, such as Lyy = 2 and

Hyy = 40, is a better parameter setting for building the PI-FCNN model.
5.4.1.2 Comparative experiments

Since the external force input of the beam model is unknown, traditional finite
element model updating and frequency response function-based methods are not
applicable in this case. In addition, since no labels related to damage severity are
collected, all supervised machine learning frameworks are also not feasible due to the
lack of training datasets. For comparison, classic Markov parameters with Tikhonov
regularization utilized in (H.-P. Zhu et al., 2014) and the original PINN for the inverse
problem proposed in (Raissi et al., 2019) are also employed to detect damage on the
beam structure with noise-free and 1% noise input data.

Markov parameters with Tikhonov regularization (Mao et al., 2010; H.-P. Zhu et
al., 2014) are a classic method to detect structural damage without the need for external
force measurements. In the state space, by defining the state vector as X(t) =

[x(t),x(t)]T, Eq. (5.1) can be transformed into a standard state equation as

X(t) = K*X(t) + B*LF(t) (5.20)
where, system matrix K~ =[ 0 ! control matrix B* = | 0 ]
’ —M'k —M~icl’ M-
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According to the system state and input, the output variable y(t) is defined as
y(t) = RX(t) + DLF(t) (5.21)
where output matrix R = [R; — R;M™*K,R, — R;M~1C] and feed-forward matrix
D=R,M™ R,, R,, and R, correspond to the mapping matrices of acceleration,
velocity, and displacement, respectively. These mapping matrices are all diagonal
matrices whose diagonal elements are 0 (not output) or 1 (output). According to the
exponential matrix algorithm, adjacent system states can be transitioned by following
X1 = AX; + BLF; (5.22)
where, state transition matrix A = exp (K*+h) and B = K*~'(4 — I)B*. Here, h is
the time step length. With Eq. (5.22), the system state at time step j can be calculated
from the initial state X, as
X; = YI L A*BLF; 4 + AVXo,j = 1,2,-+,N (5.23)
Here, N is the number of time steps. Then the observation y; at time step j can be
calculated according to
yj = Z{(_:t RA¥BLF;_j_; + RA'X, + DLF;,j=1,2,+,N (5.24)
Let Hy = D and Hy = RA¥"1B (k > 0), then Eq. (5.24) can be expressed as
Vi = Z{;:o HiLFj_x + RAXo,j = 1,2,-+,N (5.25)
Here Hj is called the Markov parameters of the state-space model, which is a structural
intrinsic property that represents the response relationship of the structural system to

external forces. Eq. (5.25) can be expressed in Toeplitz matrix form as
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y(0) Hy O o 01rL7 (F(0) RAO
YDA | o ONLIPFID R TRA ) (5.26)
y(N) Hy Hy_y -+ HplL4\F(N) RAN
Eq. (5.26) can be rewritten simply as
Y ES HLF + ARXO (5.27)

where H; and Ay are the corresponding Toeplitz matrix and transition matrices of the
initial state. Assume that the measured structural response is divided into two data sets,
namely Y; and Y,. Then the following mapping relationship can be established
between them and the external force:

{leHLlF-I_ARXO (5 28)

YZ - HLlF +ARX0

The first equation in Eq. (5.28) gives the reconstructed external force F"¢¢ as:
Fre¢ = Hf'1 (Y1 — ArXo) (5.29)
Here, H;; is the pseudo-inverse matrix of H;;. Then Y, can be reconstructed
according to:
Y% = HipF7°¢ + AgXy = Hyp - Hi; (Y — AgXo) + ArXo (5.30)
But Eq. (5.29) and Eq. (5.30) are well-known ill-posed problems. Therefore,
regularization techniques are used to add additional constraints to obtain stable
solutions. Tikhonov regularization is the most commonly used regularization technique,
which solves F"®“ by adding an L2 norm to F as:
Fre¢ = min{||H 1 F + AgXo — Y1113 + @® - |[LF||3} (5.31)
The reconstruction force F"®¢ is obtained by minimizing the above residual

and regularization term by employing an optimizer. Using this reconstruction force,
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Y, can be reconstructed according to:
Y7 ¢ = H,F™¢¢ + AgX, (5.32)
Now assume that the structure is damaged and its damage is quantified by a damage
index vector A, so that the Markov Parameter and transition matrices of the initial state
of the structure are controlled by A as Hp(4) and Agz(4). By minimizing the
deviation between the reconstructed Y, and the observed value as Eq. (5.33), the
damage index vector A of the structural system can approximate the true structural
damage and thus detect the damage of the structure.
A= min (||[y7e¢() — 22 |) (5.33)

Markov parameters with Tikhonov regularization have one hyperparameter «,
which controls the weight of the regularization term and can be determined by the L-
curve method.

In the cantilever beam case of this study, the vertical accelerations of node 4 and
node 10 of the cantilever beam are used as data set 1 Y; to reconstruct the unknown
force, and the vertical acceleration the node 5 is used as data set 2 Y, to detect the
damage of the structure. According to the L-curve method test, the value of a is
determined to be 0.001. The observation data without noise and with a noise level of 1%
are used as input data to detect the damage of the structure. The damage results detected

by the Markov parameters method with Tikhonov regularization are listed in Table 5.3.

Table 5.3 Identified damage results of Markov parameters method with Tikhonov

regularization
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Noise level Element
1 2 3 4 5 6 7 8 9 10
0% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.454
1% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.462

Table 5.3 shows that the Markov parameters method with the Tikhonov
regularization method failed to detect the damage of elements 4 and 8, and incorrectly
located the damage location as element 10. The error &; of damage detection is

calculated to be 8.035% (noiseless data) and 8.124% (1% noise data). The reconstructed

external forces are also shown in Fig. 5.8.
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Figure 5.8 Reconstructed external force prediction by Markov parameters

method with Tikhonov regularization

As shown in Fig. 5.8, the external force predicted by the Markov parameters
method with Tikhonov regularization deviates from the exact value of the external force,

and the relative L2 error is calculated to be 11.136% (0% noise) and 11.096% (1%
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noise).

Physics-informed neural networks (PINNs) are a framework proposed by (Raissi
et al., 2019) for solving direct and inverse problems of partial differential equations.
PINNs show a remarkable ability to discover unknown parameters in differential
equations. For a differential equation, its governing equation is described as:

N(u(t,x),t,x; 1) = f(t, x) (5.34)
Where N is a differential operator parameterized by A. u(t,x) is the solution to the
equation. f(t,x) is the force term of the equation. The inverse problem of Eq. (5.34)
is to discover the unknown parameter A in the governing equation inversely given
some measured values of u°?S(t, x). In the PINNs framework, a neural network model
is employed to predict u°?*(t,x) with inputs t and x. The unknown parameter A is
also initialized and updated together with the neural network model. The derivatives of
the differential operator can be calculated by a technique called automatic
differentiation (Baydin et al., 2018) of the neural network. A loss function based on the
observed data is defined as Eq. (5.35) to quantify the residual between the neural
network output and the observed data. A loss function based on the governing equation

is also defined as Eq. (5.36) to quantify the residual of the governing equation.

Lops = ﬁzﬁﬁq [uPred(tm x™) — yObs (™, x™)||2 (5.35)

1 N 2
Ly = 5 S INGTea (W 2N, xS ) — D, (5:36)
Here N,, is the number of observation points (t™,x™). uP™®@(t™,x™) and

u°bs(t™,x™) are the predicted value and observed value of the neural network at the
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observation point (t™,x™). Ny is the number of collocation points (tf,x7), which
are randomly sampled in the domain of the equation. These two loss functions will be
summed as Lpinn = Lops + Ly as the loss function of the PINNs model. The output of
the neural network model can gradually approach the exact solution of the equation and
the unknown parameter A will gradually approach its accurate value by utilizing an
optimizer to minimize the loss function.

In this case, the PINNs method is also utilized to detect the structural damage of
the cantilever beam. Since the external force is also unknown, two neural network
models are built to predict the external force f(t, x) and the displacement response
u(t, x) ofthe structure, respectively. The neural network models have 2 inputs (t, x)
and 20 outputs. Here x is the node number from 0 to 10. The neural network models
have 2 hidden layers of 100 neurons. Through the automatic differentiation of the neural
network, the displacement response uP"®4(t,x) predicted by the neural network can
inversely calculate the velocity response vP"®4(t,x) and the acceleration response
prediction aP"®%(t, x). The acceleration response prediction can be combined with the
obs(¢m

observed data a x™) to construct the loss function as

1
Lops = o= Zi a7 (€7, x™) = @b (™, x™) 3 (537)

Here N, is the number of observed data (t™,x™) of the acceleration response. In
addition, according to the initial conditions (ug, V), the loss function of the initial
conditions is constructed as

Lini = [uPTe(0,x°) — oI5 + llvPme4(0,x°) — voll3 (5.38)
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The governing equations of the structural system are also used as physical
information to train the neural network model using a loss function as
Ly = Nifzfzfl M- aPred(tf,xF) + C - vPre(t 0 + K(Q) - uPTe (1) — F(t,x DS (5.39)
Here, Ny is the number of collocation points (t/,xT) of the acceleration response.
The collocation points are generated according to the predetermined time step and full
sampling of degrees of freedom. Finally, the loss function of PINNs is the sum of the
above three loss functions as
Lpinn = Lops + Lini + Ly (5.40)
By using a gradient descent-based Adam optimizer to minimize Ly, to reduce
the residual of the neural network output to the observation data and the governing
equation, the output of the neural network model will theoretically gradually approach
the unknown external force and the true response of the structural system. The noise-
free observation data and the observation data of 1% noise are used as the observation
data of PINNSs, respectively. After training 1e5 times, the loss function of PINNs has
converged. Fig. 5.9 shows the convergence process of the PINNs loss function when

the noise-free observation data is used as the input data.
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Figure 5.9 Convergence process of loss function of PINNs

After the loss function converges, the damage of the structure predicted by PINNs

is extracted as shown in Table 5.4.

Table 5.4 Damage results identified by PINNs model

Noise level Element
1 2 3 4 5 6 7 8 9 10
0% 0.010 0.010 0.011 0.013 0.014 o0.016 0.015 0.014 0.012 o0.012
1% 0.010 0.017 0.016 0.016 0.018 0.018 0.017 0.015 0.013 0.012
Exact 0 0 0 0.15 0 0 0 0.2 0 0

As shown in Table 5.4, PINN fails to detect the damage of the structure. The error
between its detection results and the true result is 4.241% (0% noise) and 4.388 % (1%

noise). Fig. 5.10 shows the structural external forces predicted by the PINNs model.
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Figure 5.10 Structural external forces predicted by the PINNs model

As shown in Fig. 5.10, the PINNs model also fails to reconstruct the unknown
structural external forces on the cantilever beam. The relative L2 errors between the
reconstructed external forces and the true values are 152.618% (0% noise) and 183.350%
(1% noise). Overall, the comparison results of average error ¢, of identified damage

index and relative L2 error & of reconstructed external force are listed in Table 5.5.

Table 5.5 The results of the comparative experiment

Method Noise level £, Ef
0% 0.133% 0.323%
PI-FFNN 1% 0.886% 3.536%.
khonoy 0% 8.035%  11.136%
1% 8.124%  11.096%
0% 4241%  152.618%
PINNs 1% 4388%  183.350%

Table 5.5 shows that the proposed PI-FFNN method can achieve more accurate

results than Markov parameters with Tikhonov regularization and the original PINN in
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both noisy and noiseless observation data in this case. In addition, the Tikhonov method
took 9340 seconds to calculate 1000 iterations, while the PINNs took 3340 seconds to
train 100,000 iterations. The PI-FFNN method successfully identified the damage of
the structure in only 1375 seconds, showing higher efficiency.
5.4.2 Plane truss

A plane truss structure as shown in Fig. 5.11 is considered as the second numerical
example. The truss consists of 19 bars and 11 nodes. The bars are all 10 m long and
have a rectangular cross-section of 5cm X 5 cm. The bar material is steel with a
density of 7850 kg/m3 and an elastic modulus of 210 MPa. The 12 truss elements
are considered as 2-node linear truss elements with consistent mass matrices. The truss
is set to vibrate in the X-Y plane and is constrained in the X and Y directions at node 0
and in the Y direction at node 10. Under the constraints, the truss has a total of 19
degrees of freedom. Considering that the truss is damaged in bars 5, 9, and 12, with the
stiffness reduction of 15%, 20%, and 25% respectively. The damping ratio of the truss
is considered to be 0.5% of the first two-order natural modes. The first ten natural

frequencies of the healthy truss and damaged truss are shown in Table 5.6.

~ F
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Figure 5.11 Structure of the plane truss
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Table 5.6 First ten natural frequencies of the plane truss (Hz)

fi

f2

i fa

fs

fe 17

fe

f9 f10

Intact

8.05

Damaged 7.90

16.06 26.54 46.57 50.07 71.79 76091
15.76 26.22 45.82 48.54 69.45 7534 81.88 93.16 99.25

81.98 95.13

101.45

The truss vibrates under the action of the F; (Y-direction force on node 4) and

the FjF (X-direction force on node 7). FY = 30sin(20m-t) + 10 sin(70m -

t) kN ,F¥ = 25sin(30m - t) + 7.5 sin(80m - t) kN . According to the calculation

results of KEMRO for the optimal sensor position, the optimal positions of the four

sensors are node 4 in the Y direction (4Y), node 5 in the X direction (5X), node 9 in the

Y direction (9Y) and node 10 in the X direction (10X). The vibration response is

calculated as the observation using the ERK4 method with a time step of 0.0001 s. The

observation data of the four accelerations and the frequency spectrum are shown in Fig.

5.12.
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Figure 5.12 Acceleration observation data (a) and frequency spectrum (b)

A PI-FFNN model is built to reversely detect the damage of the plane truss, where
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an FFNN model with Lyy = 2, Hyy = 40 is employed to approximate the unknown
nodal forces. According to the frequency spectrum shown in Fig. 5.12, the frequency
of the vibration response is mainly distributed in 0-100 Hz. So, the hyperparameter o
of the Fourier feature layer is set to 100 to establish the frequency characteristics of the
external force. a issetto le-3 to maintain the balanced convergence of loss, and the
regularization term loss,. The parameters of the Newmark-beta method are setto f =
1/4, y = 1/2. A gradient descent optimizer Adam is chosen to train the FFNN model
with a learning rate of 0.001. The FFNN model is trained for 5000 iterations, where the
loss function is observed to have converged. In this case, vibration observation data
without noise and with 1% and 5% noise are studied, respectively. The time step length
15 0.0001 s, and the input data length is 500 time steps. After training, three calculation
schemes with observation data of different noise levels identify the structural damage.

The specific identified stiffness reduction values are shown in Fig. 5.13.
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Figure 5.13 Identified results of stiffness reduction
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From Fig. 5.13, it is shown that PI-FFNN can accurately identify the stiffness
reduction of the plane truss from vibration observations with no noise, 1% noise, and
5% noise. The errors of the damage identification results are calculated to be 0.321%
(noiseless), 0.375% (1% noise), and 0.483% (5% noise) respectively. In this case, the
robustness of the PI-FFNN method to the noise in the measurement data is
demonstrated. The outputs of the Fourier feature neural network model also
successfully reconstruct the unknown external forces on the truss. As an example, Fig.
5.14 shows the reconstructed external forces from noise-free input data. To quantify the
accuracy of the force reconstruction, the relative L2 error & of the reconstructed
external forces is calculated. The errors of the external force reconstruction are
calculated to be 3.00% (noise-free), 3.03% (1% noise), and 4.07% (5% noise)
respectively. This case shows that the PI-FFNN method can accurately detect the

damage of this plane truss and reconstruct the external forces even in noisy

measurements.
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Figure 5.14 External forces of the plane truss reconstructed by PI-FFNN method

5.5 Experimental verifications

A vibration test of aluminum beams shown in Fig. 5.15 was carried out in the
laboratory to verify the proposed PI-FFNN method. An intact and a damaged aluminum
beam were respectively installed and vibration tested. The testing of the intact
aluminum beam was designed to determine the initial stiffness of the beam, while the
damaged aluminum beam was utilized to identify the stiffness reduction based on the
initial stiffness. The model of the aluminum beams and supports is shown in Fig. 5.16.
The total length of the aluminum beams is 126 cm, and the free section length is
120 cm. The thickness of the intact beam is 5 mm, and the width is 30 mm. The
measured mass of the intact beam is 506.7 g, while the mass of the damaged beam is
497.1 g. The calculated densities are 2683.08 kg/m3® and 2644.43 kg/m3
respectively. The initial elastic modulus is considered to be 65.0 GPa. The left and
right ends of the installed beam were bolted to the supports. The vertical displacement
at both ends of the beam is considered to be constrained to 0, and the angular semi-
rigidity of the supports is considered with an initial stiffness of 1000N - m/rad. The
damping of the aluminum beam is considered to be Rayleigh damping, setas C = a -
M + b - K, where a and b are also parameters to be identified. In the finite element
model of the aluminum beam, the beam 1s divided into 12 2-node Euler-Bernoulli beam

elements with consistent mass matrices. Each element is 10 cm long. So, the finite
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element model of the aluminum beam has a total of 12 elements, 13 nodes, and 26

degrees of freedom.

X ' Accelerometer

Figure 5.16 The model of the aluminum beam and supports

Five accelerometers were used to record the acceleration response of the structure,
and a hammer with a force sensor was utilized to apply force at the mid-span to generate
vibration. The installation positions and weights of all accelerometers are listed in Table
5.7. A Dewesoft data logger and laptop displayed in Fig. 5.17 were used to record the

data of all sensors, with a sampling frequency of 10000 Hz.

Table 5.7 The installation positions and weights of accelerometers

Sensor ID Installation Weight (including
position magnet mount)
Al x =20 cm 293¢
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A2 x=40cm 318 ¢

A3 x =60cm 296 ¢g
A4 x=80cm 358¢
AS x =100 cm 295¢g

y

| Figure 5. 17 Data acquisition and storage equipment

5.5.1 Initial parameter identification

In the first step, the intact beam was installed and tested to determine the initial
mechanical parameters of the beam model. The vibration test of the beam was repeated
three times to enhance the reliability of the data. As an example, the vibration signals

collected by the five accelerometers in the first test are shown in Fig. 5.18.
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Figure 5.18 Measured acceleration response (top) and frequency spectrum (bottom)

At this stage, the beam is assumed to be homogeneous and each element has the
same mass and stiffness. The elastic modulus E, the damping coefficients a and b
of the beam and the rotational stiffnesses k; and k, of the two supports are
considered as updateable parameters. The initial values and updated coefficient ranges
of these parameters are listed in Table 5.8.

A PI-FFNN model is built to update these parameters with structural vibration
measurements. According to the frequency spectrum shown in Fig. 5.18, the main
distribution of the vibration response is 0-1000 Hz. Therefore, the hyperparameter o
of the FFNN is set to 1000. The depth Lyy of the FFNN model is set to 2, and the
width Hyy is set to 40. Since all beam elements are intact, there is no need to increase
the sparsity of the results, so a is set to 0. The input data of the model are the first 200
time steps of the vibration measurements of the five accelerometers with dt =
0.0001 s. The vibration measurements collected from three tests are respectively input
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into the model for parameter update. The force mapping matrix is set to have external
forces only on the mid-span nodes. The Newmark-beta method with f =1/4, y =
1/2 is set to calculate the vibration response of the beam. The FFNN model is trained
for 5,000 iterations with an Adam optimizer of 0.001 learning rate. The parameter

update results of the three tests are listed in Table 5.8.

Table 5.8 Results of mechanical parameter update

. Coefficient Test Identified Updated Average
Parameter  Initial value range 1D coefficient value value

1 1.0771 7.001E+10

E 6.50E+10 [0.5,1.5] 2 1.0747 6.986E+10  6.988E+10
3 1.0736 6.978E+10
1 40.176 4.018E+00

a 1.00E-01 [1E-2, 1E2] 2 39.574 3.957E+00  3.821E+00
3 34.872 3.487E+00
1 0.406 4.057E-06

b 1.00E-05 [1E-2, 1E2] 2 0.400 4.003E-06 4.925E-06
3 0.672 6.716E-06
1 1.133 1.133E+03

ky 1.00E+03 [1E-2, 1E2] 2 1.407 1.407E+03 1.271E+03
3 1.274 1.274E+03
1 13.939 1.394E+04

k, 1.00E+03 [1E-2, 1E2] 2 13.822 1.382E+04 1.363E+04
3 13.136 1.314E+04

Table 5.8 shows that the results of the structural mechanical parameter update in
the three tests are stable and close. The average values of the updated mechanical
parameters will be used as the initial values for structural damage identification in the

next section.
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5.5.2 Damage detection of damaged beams

|
EI 44
Unit: cm

Figure 5.19 Location and depth of damage on the aluminum beam

In the second phase of laboratory testing, a damaged aluminum beam was installed
and tested. The damage location and severity of the aluminum beam are shown in Fig.
5.19. The damage of the aluminum beam was simulated by reducing the width of the
aluminum beam by 40% at x =47 —51cm and 20% at x = 79 — 83cm. This
damage will cause the stiffness of elements 5 and 8 in the beam model to decrease by
40% and 20%, respectively. The same five accelerometers were installed on this
damaged aluminum beam to record the vibration signals. The hammer applied a force
at the mid-span to make the beam vibrate from rest.

A PI-FFNN model with the same parameters as in the undamaged beam case is
built to detect beam damage. The elastic modulus E and damping coefficients a, b
of the model are set as the updated values in Table 5.8. Since the damaged beam was
newly installed on the supports, the tightening force of the bolts may have changed
compared to the case of the intact beam. So, the support rotational stiffnesses are trained

again and the initial values are set to the updated values in Table 5.8. A 10-element
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damage index vector z is defined to quantify the stiffness reduction of the aluminum
beam element, and its value range is 0.01-1.0. Another 2-element vector y is defined
to update the support rotational stiffnesses, and its value range is [0.01, 100]. The z
vector and y vector are trained together with the neural network model. The first 200
time steps of the five acceleration observations are utilized as the input data of the PI-
FFNN model. To improve the sparsity and noise robustness of damage identification,
according to the L-curve test, the weight of the regularization term a is set to 10. After
training 5000 iterations using the Adam optimizer with a learning rate of 0.001, the loss

function of the PI-FFNN model has converged.
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Figure 5.20 Results of stiffness reduction identified by the PI-FFNN model

Fig. 5.20. shows the result of structural damage detected by the PI-FFNN after
model training. It shows that the PI-FFNN model successfully located and detected two

damages on the aluminum beam. Due to the integration of regularization terms in the
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loss function, the identified results maintain a very high sparsity. The detected stiffness
reduction values are 40.869% (element 5) and 22.238% (element 8) respectively, with
errors of 0.869% and 2.238% compared to the accurate values of 40% and 20%.
According to Eq. (18), the overall error ¢, of the damage detection result is calculated
to be 0.370%. In addition, PI-FFNN also reconstructed the external force from the
hammer as shown in Fig. 5.21. It shows that the forces reconstructed from the PI-FFNN
model show a high consistency with the measured values. Since external force is
difficult to measure accurately, it is difficult to judge whether the measurement value
from the force sensor or the reconstructed force is more accurate. For reference only,
the relative L2 error between the reconstructed external force and the measured force

is calculated to be 14.784%.
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Figure 5.21 External force of the beam reconstructed by the PI-FFNN model

5.6 Summary

This study proposes a physics-informed Fourier feature neural networks (PI-
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FFNN) framework for vibration-based structural damage identification with unknown
external forces. In this framework, the external forces and damages of the structure are
identified simultaneously without the input of external forces. A Fourier feature neural
network is employed as the core of the framework to predict the external forces of the
structure. The Fourier feature layer, which is proven to alleviate the spectral bias of the
neural network model, is utilized to accurately express the multi-frequency
characteristics of the external forces. PI-FFNN is a physical data coupled model that
can utilize the Newmark-beta scheme of the motion equation as physical information
to train the neural network model. A regularization term is also added to the loss
function to improve the sparsity and noise robustness of the identification results. The
integration of physical information enables PI-FFNN to train the model without any
labeled data of structural damage, making it an unsupervised learning model.
Numerical examples of a cantilever beam and a plane truss are employed to verify
the performance of the proposed method. The local damage and external forces on both
structures are accurately identified even in the noisy data. In the cantilever beam case,
the proposed method is also compared with the Markov parameters method with
Tikhonov regularization and the original PINNs. The results show that PI-FFNN can
obtain more accurate results in structural damage identification and force reconstruction.
Afterward, a laboratory test is conducted on a beam structure. A PI-FFNN model is built
to first identify the initial mechanical parameters of the intact beam and then accurately

identify the damaged beam based on the identified initial mechanical parameters. The
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external forces on the beam are also successfully identified showing a high agreement

with the measured values.
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Chapter 6 Structural identification from unknown input

excitations with physics-informed neural networks

6.1 Introduction

Structural identification (Alvin et al., 2003; No€l & Kerschen, 2017) is the reverse
modeling process of determining the characteristics and state of an unknown structure
by analyzing the dynamic response and behavior of the structure. This process is crucial
in the fields of engineering and infrastructure because it helps engineers assess the
health of structures and detect potential damage and degradation in a timely manner. In
recent years, with the rapid development of various advanced sensing methods and
machine learning, a wide range of machine learning-based structural identification
methods have been developed and applied in many engineering fields (D. Liu et al.,
2023; Worden & Manson, 2007).

In theory, structural identification can be conceptualized as the inverse problem of
discovering the intrinsic characteristics and behaviors of a structure from the observed
data of the structure. Since the vibration acceleration response is easier to obtain than
displacement and velocity, most methods of structural identification and structural
damage detection are performed by analyzing the vibration response of the structure,
which is the so-called vibration-based method (Avci et al., 2021; Fan & Qiao, 2011).
After obtaining the vibration data, researchers will try to use various data analysis

methods to process the measurement data. These analysis methods can be roughly
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divided into two categories: physics-driven methods and data-driven methods. The
former characterizes the physical characteristics of the structure by establishing
physical models of the structure, such as the governing equations or finite element
models (Girardi et al., 2020). Then the measured data is utilized to update the physical
model so that the model can accurately represent the actual engineering structure. After
decades of development, research work in the physical-driven direction has matured
and has been successfully applied in many projects. For example, in (Arora et al., 2009),
a damped finite element model updating procedure is proposed and tested with the
objective that the proposed model is able to predict the measured FRFs accurately in a
fixed beam structure and an F-shape structure.

The data-driven method has developed rapidly in recent years, with the explosive
growth of machine learning and deep learning. In the data-driven method, structural
identification is regarded as a pattern recognition problem, a problem that has been
widely studied in the field of machine learning (Zhang et al., 2008). By establishing the
characteristics of the structural vibration response related to the intrinsic properties of
the structure, such as structural stiffness, the parameters of the structure are inversely
identified by analyzing the characteristics of the vibration response. Among them,
classic data-driven methods include Bayesian optimization (Z. Chen et al., 2020; Zuo
& Guo, 2022), blind source separation (Sadhu et al., 2017; Zhou & Chelidze, 2007),
and deep learning algorithms (Yu et al., 2019).

In the research that has been carried out, the external force input of the structure
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is usually an important prior knowledge, which is used to input the physical model to
predict the response in the physical-driven method and to extract the characteristics of
the structural vibration in the data-driven method (Pan & Yu, 2019). However, in
practical applications, the input excitations (such as earthquakes, wind loads, etc.) to
the structure are often unknown, which poses a major challenge to existing structural
identification. The dynamic characteristics and variability of these excitations make it
difficult to accurately infer the true stress and deformation conditions of the structure
based solely on the structural response data. Especially in the face of extreme weather
or emergencies, failure to accurately identify the input excitation may lead to
misjudgment of the health status of the structure, thereby affecting safety assessments
and maintenance decisions. Therefore, solving the challenges brought by unknown
input excitations is crucial to improving the accuracy and reliability of structural
identification.

In order to deal with the limitations of unknown input excitation, we explored the
feasibility of applying a new method called physics-informed neural networks (PINNs)
in structural identification. PINNs framework is a new physics and data-coupled deep
learning method proposed to solve the direct and inverse problems of nonlinear systems
(Raissi et al., 2019). In PINNSs, physical information described as various equations is
seamlessly integrated into the training of machine learning models as prior information.
Unlike purely data-driven methods, physics information is also considered as part of

the model constraints to make the model's predictions endogenously consistent with
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physical laws and improve the generalization and robustness of the model. The
excellent performance of PINNs has been successfully obtained in many fields of
physics and engineering, such as fluid mechanics (Mao et al., 2020), thermal analysis
(He et al., 2021), and structural analysis (Abueidda et al., 2021). In this study, we
develop a PINNs-based approach for structural identification from structural vibration
measurements under unknown input excitations. In the proposed method, physical
information is utilized to construct the mapping relationship between external loads and
structural responses. A neural network model is employed to represent the unknown
external excitations. The neural network model and the mechanical parameters of the
structure are simultaneously updated to perform structural identification and external
force reconstruction by minimizing the deviation between the predicted structural
response and the vibration measurements. The nonlinearity in the structure can also be
modeled by another neural network model to present the internal nonlinear restoring
forces, which can also be identified together with the vibration response measurements.

The proposed framework contributes to the field of structural identification and
health monitoring in terms of: (1) A PINNs framework is proposed to learn the
governing dynamic characteristics of structural systems. The inherent physical laws of
the model can be learned instead of just establishing an uninterpretable mapping
relationship between input and output data. (2) The proposed method can perform
structural identification under unknown external excitations using only the vibration

response of the structure. This avoids the difficulty and cost of accurately measuring
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external excitations. (3) The proposed method is applicable to both linear and nonlinear
systems, forming a universal method in structural identification problems. The
mechanical parameters of linear structural systems such as stiffness and damping can
be directly inverted to discover the exact values. The nonlinear components can be
modeled by establishing a surrogate model to characterize the nonlinear restoring forces.

The rest of the study is organized as follows: Section 2 introduces the background
of the research. Section 3 presents the proposed method in detail. Section 4 and Section
5 verify the proposed method using numerical and experimental examples, respectively.
Finally, the study is concluded in Section 6.
6.2 Background
6.2.1 Motion equation of structural system

Consider a multi-degree-of-freedom structural system whose motion equation is

MX 4+ Cx + Kx + f(x,x) = F(t) (6.1)

Here M is the mass matrix, € and K are the damping matrix and stiffness
matrix of the structure. f(x,x) is the internal nonlinear restoring force, generated by
the nonlinear stiffness or energy dissipation device. Eq. (6.1) is a second-order ordinary
differential equation, which is usually solved by a numerical method to obtain the
response of the structure (x,x,X) with the external force input F. Among these
numerical methods, Newmark-beta is widely utilized because of its good numerical
stability, flexibility, and accuracy. Specifically, the Newmark-beta method lists the

following 4 equations at each time step and solves x,,; and X,,; by inputting the
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current state Xx,, X,, and the external forces F, and F, ;.

M3, + Cx,, + Kxp + f(xp, %) = E, (6.2)
M3pyq + Chpyq + KxXpyq + f (g1, Xne1) = Fopa (6.3)
X1 = Xn + AL (L —y) "%y + 7 - Xpyq) (6.4)
and
Xp = Xy + AL %, + %Atz (1 =2B) %y + 2B - %n11) (6.5)

Here, 0 < <0.5 and 0 <y <1 are the parameters of the Newmark-beta
method. By setting different combinations of values of f and y, the Newmark method
can be different schemes, such as the explicit central difference scheme (=0, y=0.5)
and the average acceleration scheme (f=0.25, y=0.5). In this study, the average
acceleration scheme is used due to the advantages of its superior stability.

It is noted that the basis for using these numerical methods to solve Eq. (6.1) to
obtain the structural response is that the structural parameters M, C, K, and the external
force time series F(t) are all known. In general, the structural M matrix is easy to
determine through weight measurement. However, the K and C matrices, as
unobservable parameters of the structural system, usually need to be inversely
determined through vibration testing. In addition, in actual engineering, the external
forces of the structures are always difficult to measure accurately through sensors. The
external forces also need to be inversely reconstructed through other measurement data.
These studies on identifying structural parameters and reconstructing external forces

from measurement data point to a research field called structural identification.
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Theoretically, the purpose of structural identification is to estimate the physical
parameters of the structure and identify unknown external excitations acting on the
structure, such as earthquakes, wind loads, or other dynamic loads, by analyzing the
dynamic response of the structure.
6.2.2 Physics informed neural networks
Physics-informed neural networks (PINNs) (Raissi et al., 2019) are a type of
neural network that integrates physical information as prior information to train the
neural network, thereby reducing the demand for training data and increasing
robustness to data sparsity and noise. For a physical system with the governing equation:
N(t, x,u(t,x); 0) = f(t,x) (6.6)
where N(-) is a differential operator parameterized by 8, and f(t,x) is the force
term of the equation. PINNSs can predict the exact value of u(t,x) given the parameter
6 and sufficient constraints, which is called the forward problem of the equation.
PINNs can also use partial observations of u(t,x) to reversely discover the exact
value of 6, which is called the inverse problem. In solving the forward problem, unlike
traditional deep neural networks, the loss function of PINNSs is no longer defined as the
residual between the predicted value and the training data, but is replaced by a physical
loss function calculated as the residual of the governing equation as
Lossy = ZIiV;l[N(t{,x[,u(t[,x{ ; 9) - f(tlf,xif)]2 (6.7)
Here, Ny is the number of sampling points (t{ , xif ) in the equation domain, at

which the residual of the governing equation is calculated. The constraints are also
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embedded through a loss function calculated as

Loss, = Yo [u(tt, x) —uw' (6, x)]? (6.8)
Here, N, is the number of sampling points (t}*,x}*) on the equation constraints, and
u’ is the exact value on the constraint conditions of the equation. By employing an
optimizer to minimize Loss = Lossy + Loss,,, the u(t,x) predicted by PINNs can
gradually satisfy both the governing equation and the constraints, thus approaching the
exact equation solution. With the support of physical information of the governing
equation, PINNs can solve the forward problem of the physical system without any
training data.

For the inverse problem, the residual of the governing equation referred to in Eq.
(6.7) will also be utilized as part of the loss function. However, since the value of 6 is
unknown, it is an ill-posed problem to discover the 6 value only with the governing
equation. For this reason, some measurement points are recorded to form a loss function
Loss, as

Lossy, = Y[ u(t™, x™) — u™(t™, x™)]? (6.9)

Here N, is the number of observations, and u™ is the observed value at the
observation point (", x"). Similarly, using an optimizer to minimize Loss =
Lossy + Lossy,, the u(t,x) predicted by PINNs can gradually approach the observed
data and satisfy the physical information constraints described by the governing
equations. In this way, PINNs can successfully discover the accurate value of 6 using

only a small amount of observed data. Due to the constraints of physical information,
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rather than relying solely on observed data, PINNs also show strong noise robustness
(Arzani et al., 2021).
6.3 Methodology

In this section, we will develop a framework based on PINNs for structural
identification. In reality, structures are often forced to vibrate due to external forces or
displacement excitations rather than simply free vibrations. These external excitations,
such as wind loads and water impacts, are difficult to measure accurately. Due to the
inertia of the sensor, using the sensor directly in the path of the excitation will also
affect the excitation on the structure. In addition, the internal restoring forces generated
by the nonlinearity of the structure are also difficult to observe through sensors. These
unobservable factors will restrict the application of traditional physical methods that
rely on accurate force measurements, such as finite element model updating, on actual
structures. Therefore, inspired by PINNS, in our proposed method, two neural network
models are designed to represent the unknown external forces and internal restoring
forces on the structure to fully utilize the powerful representation capabilities of the
neural network model. Specifically, two neural network models with the input of time
t output the external force and internal restoring force of the structure, respectively.
Their physical relationships can be expressed as NN®*(t) - Ff* and NN™(t) —
F/™ respectively.

Spectral bias (Wang et al., 2021) is a well-known shortcoming of neural networks,

which manifests itself as neural networks preferentially learning low-frequency
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components in the data and ignoring high-frequency components. Time series data of
external forces and internal restoring forces of the structure are mostly composed of a
mixture of multiple frequency components, which will easily fall into the trap of
spectral bias when neural network models are utilized to represent these forces. Fourier
feature layer (Wang et al., 2021) technology which has been proven to be an effective
and simple way to mitigate the spectral bias of neural networks, has been applied and
analyzed in (Sallam & Fiirth, 2023; Song & Wang, 2023). In order to improve the ability
of NN®* and NN™(t) models to represent multiple frequencies in the reconstructed
force, a Fourier feature layer is established in both NN®* and NN models. The
mathematical relationship of the Fourier feature layer can be expressed as
sty =[5 610
Here Lgp is the output of the Fourier feature layer, and t is the input of the
NN®* model. W is the trainable parameter, the weight of the Fourier feature layer,
which is initialized according to the distribution N(0,02). o is a hyperparameter that
controls the distribution range of W to determine the frequency distribution of the
features established by the Fourier layer. The value of o can be determined by
observing the frequency spectrum of the vibration measurement data. Subsequently, the
output from the Fourier feature layer is input into a fully connected neural network
(FCNN) for nonlinear mapping. The FCNN model of NN®* outputs unknown

excitations on the structure, which are acceleration or external force of one or several

degrees of freedom, or ground acceleration. The FCNN model of NN is used to
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reconstruct the internal restoring force of one or several degrees of freedom. Both
FCNN models consist of L hidden layers and one output layer. Each hidden layer
includes H neurons. The hyperbolic tangent function is utilized as the activation
function to provide nonlinear expression capabilities to FCNN models. It is worth
noting that for time-invariant systems, the internal restoring force usually depends on
the state of the structure (x, x) rather than on the time ¢, so this model will be replaced
by another neural network model that takes the system state as input to discover the
potential relationship between the structural state and the internal force after
successfully reconstructing the internal restoring force.

In order to identify the accurate stiffness of the structural system, a stiftness update
vector z® is defined to update the stiffness of structural components. Assuming that
the structure consists of N; components and the initial stiffness of the i-th element is
k?. Then the component stiffness can be updated by

k? =zF -k (6.11)

The z* vector is initialized to an all-ones vector. The updated stiffness matrix KZ
can be constructed using the updated stiffness of the components. The accurate mass
matrix M is considered to be available, so it does not need to be updated. The damping
matrix of the system is set to Rayleigh damping, which is calculated as

C?=2z{-a° M+z5-b°-K? (6.12)
Here, z€ = [z{,z5] is a damping coefficient update vector with a size of 2 and

initialized to an all-ones vector. a® and b° are the initial damping systems, and C?
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is the updated damping matrix. zX and z¢ are two trainable vectors that will be
updated together with the neural network model.

Now, the unknown external forces and internal restoring forces in Eq. (6.1) are
represented by the neural network, and the K and C matrices are set as the updated
K?, C*.Then the predicted structural response can be calculated according to Eq. (6.1).
Here, the mature numerical solver Newmark-beta method is utilized to estimate the
predicted response of the structure to take full advantage of its efficiency and stability.
Although PINNs have also been proven to be able to solve differential equations, the
accuracy of the solution cannot be guaranteed due to the ‘soft’ embedding of constraints
(X. Li et al., 2024) and the unbalanced convergence speed of multiple loss functions
(Wang et al., 2022). Using the structural response calculated from the Newmark-beta
method, a loss function is constructed by measuring the deviation between the
calculated and measured values as

LoSSpinn = T3 [ £P74(t]) = £ (¢ (6.13)

Here, N,, is the number of observations. ¥P7¢? is the predicted value of the
acceleration response obtained from the Newmark-beta method, and X™ is the
measured value of the structural vibration response. By using a gradient descent-based
optimizer, such as Adam (Kingma, 2014) to minimize the loss function, the output of
the neural network NN®* will approach the true external force and the output of NN

will be close to the true internal restoring force. Z* and Z¢ will update K% and K¢

to discover the true parameters of the system, thereby completing system parameter
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identification and internal and external forces estimation. The overall framework of the

proposed method is shown in Fig. 6.1.

NN " model

-

| FF laver — FC layers

Figure 6.1 The overall framework of the PINNs method for structural identification.

In Fig. 6.1, model NN®* and model NN are the neural network models for
predicting external excitation and internal restoring force, respectively. L¢* and L™
are the mapping matrices of external excitation and internal restoring force, respectively.

It is noted that to ensure that the problem of structure identification is well-posed,
the number of response observations needs to be greater than the number of unknown
external and internal excitations. The unknown external forces and unknown internal
restoring forces should not act on the same degree of freedom to avoid mutual
interference. After successfully reconstructing the time series data of the system's
internal restoring force, the identified structural model cannot be utilized to predict the

structural response under new external loads. This is because the internal restoring force
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usually depends on the structural system state (x, x), rather than on t. Therefore, it is
necessary to establish a mapping relationship between internal restoring force and
structural system state (x,x) so that the identified model can predict the dynamic
response of the structure under new loads. Generally, it is a feasible path to learn the
mapping relationship between internal restoring force and structural state by
establishing a new neural network model. However, the internal force we reconstruct
usually has only a small number of time steps, typically a few hundred to a few thousand.
The neural network model learned based on such a small number of samples will have
a large deviation from the real physical relationship. Here, the advantage of PIML in
learning physical mapping relationships from sparse data by using physical information
enhancement is again utilized. An FCNN model as shown in Fig. 6.2 with the structural
state (x,x) as input is established to approximate the internal restoring force of the
structure, and its physical relationship can be expressed as FCNN™(x., %) - f;.
Known physical information, such as the cubic relationship between internal force and
displacement or the hysteresis governing equation, is utilized to provide prior physical
information for the training of the FCNN™ model. The reconstructed internal
restoring force data from the NN model is also used to determine the unknown
parameter in the physical information. Specifically, the loss functions of FCNN™
model are constructed as

Losspry = Lo [ NCxe, 25 6) = fT(0)]? (6.14)

LosSgata = Xom [ £ (xp, 1) — £7e6(8)]? (6.15)
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and

LosStotar = LOSSppy + LOSSgata (6.16)

Loss function

Unknown
paramefers:

- I

Figure 6.2 The architecture of the FCNN™ model

Here N,, is the number of reconstructed internal restoring forces, fP"¢¢ is the
restoring force predicted by the FCNN™ model, and f7¢¢ is the restoring force
reconstructed from the NN model shown in Fig. 6.1. N(-) is a known physical
relationship, with the unknown control parameter 8. The unknown parameters 6 are
also trained and updated together with the neural network model. A similar gradient
descent-based optimizer is employed to minimize the loss function LoSS;ytq;, SO that
the FCNN™ model can successfully represent the internal restoring force and the
value of the control parameter 6 in the physical relation N(-) can be discovered.
After training, the discovered control parameters 6 and physical information N(-)
can be used to estimate the internal restoring force depending on the state of the
structure (x, x). At this point, the PINNs framework proposed has the ability to predict

the structural response under new external excitations. By inputting new external forces
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to the PINNs framework and employing the discovered physical information
N(x,x,0) to predict the internal restoring force, the response of the structure can be
predicted by the Newmark-beta method with the updated structural parameters K# and
C*.

It is noted that our proposed PINNs method is not the first study on physics-
informed machine learning (PIML) for structure identification. Several PIML
frameworks for structural dynamic response prediction and structure damage detection
have been published, among which the most well-known one for structure identification
is the physics-informed neural ordinary differential equations (PI-NODE) framework
(Lai et al., 2021). For comparison, the differences between our proposed framework

and PI-NODE are summarized in Table 6.1.

Table 6.1 Summary of the differences between proposed framework and PI-NODE

PI-NODE Proposed framework

Structural state (displacement

Model input and velocity), external force Vibration response
Mechanical Exact value Initial guess
parameters
Neural network NODE FFNN, FCNN
Solver ODE solver Newmark-beta method

In structural identification, pure data-driven machine learning algorithms use the
measured vibration responses of multiple degrees of freedom as training data to learn
their potential mapping relationships and then use model extrapolation to predict the
output. However, changes in the initial conditions of the structure and the external force
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input will cause the mapping relationship to change, resulting in the failure of data-
driven model prediction. The method we proposed is different from the simple input-
output mapping relationship fitting of machine learning. The proposed method aims to
explore the intrinsic physical information of the structural system, so as to more
accurately reflect the fundamental dynamic characteristics of the system. In addition,
due to the integration of the governing equation, the proposed method can adapt well
to changes in structural input and initial conditions. In addition, physics-driven methods,
such as finite element model updating and sensitivity-based methods, are input-output
methods. This means that accurate measurement of the external excitation of the model
is required, which is always difficult in actual engineering. Moreover, the difficulty in
adapting to nonlinear restoring forces in the physics-driven methods also limits their
scope of use.
6.4 Numerical cases
6.4.1 4-degree-of-freedom system

To demonstrate the proposed method, a 4-degree-of-freedom (4-DOF) dynamical
system with cubic nonlinearity is studied as a numerical example. The system is shown
in Fig. 6.3 as a spring-mass model commonly used in structural dynamic simulation. A

nonlinear spring with cubic stiffness is added on m;.
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Figure 6.3 4-DOF structural dynamic system

The equation of motion for this 4-DOF structure can be expressed as

( my Xy () + (kg + k) (8) — a2, () + (op + )%, (8) — €2, (t) + ka3 (8) = my Xy ()
myx, () — kpxy (£) + (kg + k3)x, () — kaxs(8) — 2%, (8) + (¢ + c3) %, (1) — c3%3(t) = mypXy (2) (6 17)
m3X5(t) — kyxy (£) + (K3 + ka)x3(6) — kaxa () — 3%, () + (c3 + €2)%3(8) — cu %4 (t) = m3%, () )
My ¥4 (t) — ka3 (8) + kaxs () — cu%3(0) + ¢, (1) = myX, ®

Here, x, x, X are displacement, velocity, and acceleration, respectively. The
linear stiffness system is k; = k, = k3 =k, = 100. The cubic stiffness of the
nonlinear spring is k, = 1000. The masses of the four degrees of freedom are m,; =
m, = 2.0 and m3; = m, = 1.0. The damping matrix C is defined as C = 0.45-
M + 0.018 - K. Assume that the structure vibrates from rest due to the ground
acceleration. The ground acceleration is X, = 10sin(2mt) + 3sin(4nt) +
2sin(6mt). An implicit second-order Runge-Kutta method (Iserles, 2008) is utilized as
a numerical solver to calculate the vibration response of the structure as training data.
The training time step is dt = 0.01 s and the calculation duration is 5.0 s. The time
series data and frequency spectrum of the calculated vibration response are shown in

Fig. 6.4.
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Figure 6.4 (a) Vibration response and (b) frequency spectrum of the structure

calculated by the numerical solver

Assuming that the mass of the structure is known and the vibration responses of
the four degrees of freedom as shown in Fig. 6.4 is recorded, a PINNs framework for
structural identification as shown in Fig. 6.1 is built to reversely discover the accurate
values of K and C and reconstruct the restoring force of the nonlinear stiffness spring.
The initial guess of the stiffness of all linear springs is set to 50, and the initial value of
the damping coefficients a and b is setto 0.1 and 0.001. Two update vectors z* and
z¢ are initialized and trained to update the stiffness matrix K and damping matrix C
of the structure. Two FFNN models are established to represent the unknown ground
acceleration and the restoring force of the nonlinear spring, respectively. According to
the frequency spectrum of the vibration response, the hyperparameter ¢ of the Fourier
layer in the FFNN model is set to 10. The number of fully connected hidden layers in

the FFNN is 2, and each layer contains 100 neurons. Using the ground acceleration and
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internal restoring force predicted by the two FFNNSs, as well as the updated K# and
C? matrices, the response of the structure is predicted using the Newmark-beta method,
and the loss function is constructed with the vibration response of the structure. Here,
the noise-free vibration data of 0 —2 s is first considered as the training data. A
gradient descent-based optimizer Adam is employed to minimize the loss function with
a learning rate of 0.001. The entire framework is trained with 50,000 iterations, and the
convergence process of the loss function is shown in Fig. 6.5. The entire training

process of the model took 3563.16 seconds.
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Figure 6.5 Convergence process of loss function

After training, Fig. 6.6 shows the predicted structural displacement, velocity, and
acceleration responses of four degrees of freedom from 0 to 2 seconds. The results show
that the prediction of the structural response of (0-2 s) is very close to the ground truth,
which means that our framework successfully learns the input data of the model and

reconstructs the velocity and displacement responses of the structural system.
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Figure 6.6 Structural displacement, velocity, and acceleration predicted by the model

From the output of the NN¢* model, the acceleration response of the ground is
also reconstructed and is shown in Fig. 6.7. The results show that the NN¢* model
successfully reconstructs the time series of ground acceleration based on the vibration

measurements.

— Acc_exact
10 4 -—- Acc_rec

Acceleration (m/s™2)
(=]
!

~10 4

T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s)

Figure 6.7 Ground acceleration reconstructed by the model
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The structural stiffness discovered from the PINNs framework are k;=72.67,
k, =100.00, k;=100.00, k,=100.00. The discovered results show that the PINNs
framework accurately discovered the accurate value of the structural stiffness of k,,
k3, and k,. The discovered damping coefficients a = 0.450 and b = 0.018 are also
consistent with the true value. The value of k; is not accurately found because the
partial restoring force of the linear spring k; 1is also included in the force reconstructed
by the NN model together with the restoring force of the cubic spring. To show the
total restoring force of the nonlinear springs k, and k,, the predicted nonlinear
restoring force output of the NN model and the predicted linear restoring force of
k, are summed as the total restoring force. The time series data of the internal restoring
force reconstructed by NN™ model, the linear restoring force of k;, and their sum

values are shown in Fig. 6.8.
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Figure 6.8 The time series data of the internal restoring force
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Fig. 6.8 shows that the sum of the internal restoring force reconstructed by the
NN™ model and the linear restoring force of k; successfully reconstructs the total
internal restoring force of the structure generated by linear springs and nonlinear
springs. In order to make the PINNs model have the ability to extrapolate, i.e., to predict
the structural response under a new external force, an FCNN model with input of the
structural state is established to replace the NN model to predict the internal
restoring force. This FCNN has 4 hidden layers, each consisting of 100 neurons. The
prior physical knowledge of the linear and cubic relationship between the internal
restoring force and the structural displacement response is utilized to train the FCNN

model. The loss function of the FCNN model can be expressed as:

Lossppy = Y0m[ 0y - 3 + 0, - x; — fTe6(t)]? (6.18)
LoSSaata = i [ FP70 (xp) — FTo¢(6)]? (6.19)

and
LosStotar = LOSSppy + LOSSgatq (6.20)

Here N,, = 200 represents the reconstructed internal restoring force for 200
steps shown in Fig. 6.8. 6 = (6,,0,) are unknown parameters trained together with
the FCNN model. f7¢¢ is the reconstructed internal restoring force in Fig. 6.8 and
fPred s the restoring force predicted by the FCNN model. The Adam optimizer is
employed to train this FCNN model 10,000 times with a learning rate of 0.001 until the
loss function converges. After training, 6; and 6, converge to 995.56 and 27.14

respectively, and the restoring force of the nonlinear spring is identified as fi" =
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995.56 - x;,° + 99.81 - x;, which is close to the true value fi™ = 1000 - x,3 + 100 -
Xq.

Now, the identified expression for the nonlinear spring can be employed to predict
the internal restoring forces according to the state of the structure, which enables PINNs
to predict the structural response of this 4-DOF system under new forces. To verify the
performance of PINNSs, the ground acceleration of 2-5 s will be used as the external
force and the calculation results of 2-5 s in Fig. 6.4 are used as ground truth. Here, the
identified expression for the nonlinear spring is used to predict the internal restoring
force F™ of the structure, and the external force FE* is applied by ground acceleration.
The parameters of the structure are set according to the discovered structural stiffness
and damping coefficients. The Newmark-beta method in the PINNs framework is also
utilized to predict the vibration response of the structure. The acceleration responses of
this 4-DOF system predicted by PINNs are shown in Fig. 6.9. The results show that
PINNSs can accurately predict the seismic response of this 4-DOF structure under the

ground acceleration.
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Figure 6.9 The acceleration responses predicted by PINNs model

We further discuss the performance of the proposed framework with noisy
measured data. The above system identification process is performed on the training
data containing 1% and 5% Gaussian noise. Table 6.2 shows the identified structural
parameters from the noise measurement. The results show that the error of structural
parameter identification increases with the increase of noise level. The damping
coefficient a is more sensitive to noise than the stiffness k and the damping
coefficient b. In the training data with 1% noise, the error of stiffness identification is
less than 0.2%, and the damping coefficient b is accurately identified. In the training
data with 5% noise, the error of stiffness identification is less than 3%, and the relative
error of the damping coefficient b is 5.56%. The proposed method demonstrates

excellent noise robustness in this case.

Table 6.2 Structural parameters identified from noisy training data
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Noise level k, ks k, a b

1% 100.15 100.11 99.98 0.498 0.018
5% 98.68 97.12 100.44 0.260 0.019
Exact 100.00 100.00 100.00 0.450 0.018

In the cases of noisy training data, the internal restoring forces of the nonlinear
springs are also reconstructed through the prediction of the NN model. Similarly,
the total internal restoring forces are calculated as the sum of the internal restoring
forces predicted by the NN™® model and the restoring force of the identified linear
spring k;. The results of total internal restoring force in the cases of noisy training data
are shown in Fig. 6.10. The result shows that the nonlinear internal restoring forces of
the structural system are successfully reconstructed in the cases of noisy training data.
As the noise level in the training data increases, the error in the identified internal

restoring forces increases.
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Figure 6.10 Internal restoring force reconstructed from noisy training data
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Similar to the case of training data without noise, an FCNN model is also
employed to learn the mapping between the internal restoring force and the
displacement of m; in the noisy training data. The linear and cubic relationship
between the restoring force and displacement response of the nonlinear spring is used
as prior physical information to train this FCNN model. The loss functions of the FCNN
model are shown in (Eq. 6.17) — (Eq. 6.19). After 20,000 training iterations, the value
of the unknown parameter theta has converged. The internal restoring forces of the
identified nonlinear spring are fi™ = 949.92-x,% + 105.82-x; (1% noise) and
it =762.07 - x;° +110.63 - x; (5% noise). It is seen here that as the noise level
increases, the error in the identified structure will also increase. After successful
training, this identified expression of the restoring force is utilized to predict the internal
restoring force of the structure so that the PINNs framework can predict the response
of the structure under new external excitations. Similarly, the ground acceleration of 2-
5 s is input as an external force and the calculated acceleration response results of the
two noise cases are shown in Fig. 6.11. The results show that the identified structure
can successfully and accurately predict the dynamic response of the structure under new

external loads.
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Figure 6.11 The calculated structural acceleration response of noisy cases

6.4.2 Bouc-Wen hysteresis system
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Figure 6.12 3-DOF system with Bouc-Wen hysteresis model

A 3-DOF system with Bouc-Wen hysteresis model as shown in Fig. 6.12 is

analyzed as a numerical case for structural identification. The masses of the three
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degrees of freedom are M; = 1kg, M, = 2kg, M3 = 3kg. The stiffness of the linear
springs is k; = 20N/m, k, = 25N/m, k; = 15N /m. The hysteresis force of the
Bouc-Wen hysteresis model is calculated according to
Fpw = kpw * z(t) (6.21)
Here kg, is the Bouc-Wen stiffness set to 15 N/m, z(t) is the unobservable
hysteresis displacement, which obeys a nonlinear differential equation with initial
condition z(0) = 0, as
2(t) = u(t) — Blu@®z®O"  z() —yu@®)|z@®)" (6.22)
Here, the Bouc-wen parameters are set as f = 0.75, y = 0.5, n = 2.0. This
structural system vibrates under seismic acceleration of the amplified EI-Centro
earthquake (Ha et al., 2004), as shown in Fig. 6.13. A second-order implicit Runge-
Kutta method (Iserles, 2008) is used to calculate the vibration response of the structure,
with a time step of 0.01s and a calculation time of 5s. The time domain curves and
frequency distribution of the acceleration response of the three degrees of freedom are

shown in Fig. 6.14.
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Figure 6.13 The amplified EI-Centro seismic acceleration
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Figure 6.14 The time domain curves (a) and frequency distribution (b) of the

acceleration response of the 3DOF system

Using the known mass matrix M and the calculated acceleration response as the

measured vibration data, a PINNs model is established to identify the stiffness matrix

K of the structure and reconstruct the external seismic acceleration and the internal

restoring force generated by the Bouc-Wen model. The stiffness of linear springs is

initialized to 10 N /m, and a three-element update vector z* is defined and initialized

to an all-ones vector to update the stiffness of the linear springs by Eq. 6.11. Two FFNN

models are established to represent the unknown ground acceleration and the restoring

force of the Bouc-Wen system, respectively. According to the frequency spectrum of

the vibration response shown in Fig. 6.14, the hyperparameter o of the Fourier layer

in the FFNN model is set to 10. The number of fully connected hidden layers in the

FFNN is 2, and each layer contains 100 neurons. Using the ground acceleration and
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internal restoring force predicted by the two FFNN models, as well as the updated K?*
matrix, the response of the 3-DOF system is predicted using the Newmark-beta method,
and the loss function is constructed with the vibration response of the structure. Here,
the noise-free vibration data of 0 — 5 s is considered as the training data. A gradient
descent-based optimizer Adam is employed to minimize the loss function with a
learning rate of 0.001. The entire framework is trained with 30,000 iterations, and the

convergence process of the loss function is shown in Fig. 6.15.
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Figure 6.15 The convergence process of the loss function

After training, the displacement response of the 3-DOF system is also
reconstructed as shown in Fig. 6.16 by the Newmark-beta method with the ground
acceleration and internal restoring force predicted by the two FFNN models. This result
shows that the reconstructed system responses are consistent with the benchmark

solution. The ground acceleration is also reconstructed by NN®* as shown in Fig. 6.17.
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The results show that our proposed PINNs also successfully reconstructed the unknown

seismic acceleration on this 3-DOF system using the measurement of the structural

vibration response.
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Figure 6.16 The reconstructed displacement response of the 3-DOF system
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Figure 6.17 The reconstructed ground acceleration from NN®* model

Using the updated vector z¥, the stiffness of the three linear springs is identified

as ky = 20.00N/m,k, = 24.99N/m, k; = 13.57N/m, which is close to the true

value of the spring stiffness. NN also reconstructs the internal restoring force
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generated by the Bouc-Wen model, as shown in Fig. 6.18.
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Figure 6.18 The reconstructed internal restoring force generated by the Bouc-Wen

model

Fig. 6.18 shows that the identified hysteresis force of the Bouc-Wen is close to the
calculated result as the ground truth, but there is still some error, which is considered
to be caused by the inclusion of part of the linear restoring force in the identified
hysteresis force. In order to make the PINNs model have the ability to predict the
structural response under a new external force, an FCNN model with input of the
structural state is established to replace the NN model to predict the internal
restoring force generated by the Bouc-Wen model. This FCNN has 4 hidden layers,
each consisting of 100 neurons. The input of the neural network model is t, and the
output is the hysteresis displacement z(t) of the Bouc-Wen model. So, the loss

function of the FCNN model is defined as

Losspny = Sim[ 2(8) — ((t) — 04 [a(t)|2(t) 1% 2(t) — B,u(t)|z(¢)1%)] (6.23)
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LoSSqata = Lty [042(t) = FT°(¢)]? (6.24)

and
LoSStotar = LOSSppy + LOSSqqgtq (6.25)
Here N,, = 500 represents the reconstructed internal restoring force for 500

steps shown in Fig. 6.18. z(t;) is the hysteresis displacement predicted by the FCNN

z(tiy1)—2z(t)

model. Z(t;) is calculated by the finite difference method as z(t;) = v

u(t;) is the reconstructed velocity response from the Newmark-beta method. 6 =
(64,0,,05,0,) are unknown parameters representing the parameters fS,y,n, kgy
respectively, which are trained together with the FCNN model. f7°¢ is the
reconstructed internal restoring force in Fig. 6.18. The Adam optimizer is employed to
train this FCNN model 50,000 times with a learning rate of 0.001 until the loss function
converges.

After training, 8 converges to (0.678, 0.389, 1.769, 16.466). The results show
that the parameters of the Bouc-Wen model are successfully identified as kgy, =
16.466 N/m, B =0.678, y = 0.389, n = 1.769. Now the structural system has
been fully identified and has the ability to predict the response of the structure under
new loads. A new seismic acceleration of the Chi-Chi earthquake as shown in Fig. 6.19
is applied to the 3-DOF system. The identified structural system is used to predict the
response of the structure, and the structural vibration response calculated by the second-
order implicit Runge-Kutta method is set as the benchmark solution. The structural

vibration response predicted by the identified structural system is shown in Fig. 6.20.
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Figure 6.19 The seismic acceleration of Chi-Chi earthquake
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Figure 6.20 The structural vibration response predicted by the identified structural

system

The results in Fig. 6.20 show that the identified structural system successfully and
accurately predicts the vibration response of the structure under the new seismic

acceleration. Fig. 6.21 shows the hysteresis force calculated by the identified Bouc-
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Wen model. The results show that the hysteresis force generated by the Bouc-Wen

model is also successfully characterized by the identified structural system.
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Figure 6.21 The hysteresis force calculated by the identified Bouc-Wen model

6.5 Experimental case

In order to further verify the proposed method through experimental data, a beam
vibration test was carried out in the laboratory. As shown in Fig. 6.22, an aluminum
beam mounted on two supports was tested. The size of the beam is 1260 * 30 * S5mm.
The material is aluminum with a measured density of 2683.08 kg/m3. Both ends of
the beam are bolted to the supports, and the length of the connecting section on each
side is 30 mm. These connections are considered rotational semi-rigid, where the
beam displacement on the supports is constrained to 0, while the rotation is not 0. The
angular moments of the supports on the beam are identified as the internal restoring

forces. A hammer with a force sensor is used to apply a dynamic force at the mid-span
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of the beam to make the beam vibrate. Five accelerometers are installed to measure the
vibration response of the beam. The installation positions of the accelerometers and the

additional weights added to the beam are listed in Table 6.3.

Figure 6.22 Vibration test of aluminum beam

Table 6.3 Installation position and weight of accelerometers

Sensor ID Position (mm) Weight (g)
Al 230 293
A2 430 31.8
A3 630 29.6
A4 830 35.8
AS 1030 29.5

A Dewesoft data logger and a laptop were used to collect and record the
measurement data, with a sampling frequency of 10000 Hz. The beam vibrated from
rest by applying a force with a hammer at the mid-span. The vibration responses of the
five accelerometers were collected and Fourier transformed to analyze their frequency

distribution. The results are shown in Fig. 6.23.
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Figure 6.23 The collected vibration responses and frequency spectrum

The finite element model of the aluminum beam is constructed by discretizing it
into 12 Euler-Bernoulli beam elements with consistent mass matrices. The length of the
elements is 100 mm. The finite element model has a total of 13 nodes, 12 elements, and
24 degrees of freedom. A PINNs framework as shown in Fig. 6.1 is built to perform the
structural identification of the beam. Since the aluminum beam is a homogeneous
material and the cross-sectional size is consistent, a stiffness update coefficient z* is
used to update the elastic modulus of all beam elements to update the stiffness matrix.
Here, the initial value of the elastic modulus is set as E = 65 GPa. Rayleigh damping
is also employed to model the damping of the beam, with C =a-M + b - K. Here a
and b are updated by a two-element damping update vector z¢. The initial values of
a and b are setto le-1 and le-5, respectively.

Two FFNN neural network models are constructed to represent the external force

at the mid-span and the internal restoring force from the two supports, respectively.
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Both models have two fully connected hidden layers, each containing 100 neurons.
According to the frequency distribution of the vibration response, the hyperparameter
o of the Fourier layer is set to 1000. In both FFNNSs, the model NN¢* for predicting
the external force at the mid-span takes as input t and outputs the external force F¢*
of the structure. The model NN for predicting the angular moment from the supports
takes t as input and outputs the angular moment of the two supports. The parameters
of the two models, the stiffness update coefficient z*¥ and the damping update vector
z€ are the trainable parameters of this PINNs framework. The first 200 time steps of
the vibration measurement are input as the training data for the models. An Adam
optimizer with a learning rate of 0.001 is employed to minimize the loss function of the
model, which is calculated as the mean squared error between the predicted structural
vibration and the measured data. The training is performed for 10,000 iterations, where
the loss function is observed to converge. After the model is trained, the predicted
structural vibration response at the accelerometer locations is shown in Fig. 6.24. The
results show that the PINNs framework represents the structural vibration measurement

data well.
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Figure 6.24 The comparison of the structural vibration response predicted by the

model (blue) and measured data (red)

After training, the model parameters identified by PINNs are EX = 70.213GPa,
a =2.483and b = 4.814e — 6. PINNSs also reconstructed the support angular moment
and external force input as shown in Fig. 6.25. The measurement value from the force
sensor of the hammer is also used as the reference for the external force input, although
it is difficult to determine whether this measurement value is accurate. The results show

that the external force reconstructed by PINNs is consistent with the measured data.
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Figure 6.25 Reconstructed moments from supports (top) and reconstructed external

force input (bottom)

In order to enable the PINNs framework to predict the structural response under
new inputs, two FCNN models with input as the rotation angle of the support are built
to replace the NN model. FCNN models contain 4 hidden layers, each consisting of
100 neurons. The input of the model is the rotation angle at the support, and the output
is the rotation moment of the support. The training data of the model is the reconstructed
rotation moment shown in Fig. 18. The Adam optimizer is also used to minimize the
difference between the moment predicted by the model and the reconstructed data. The
model is trained 10,000 times with a learning rate of 0.001. Using the updated structural
mechanics parameters and the trained FCNN model to predict the rotation moment, the
PINNs model can now predict the structural response of this beam under the new
external force. We conducted a new hammer test and input the external force recorded
by the hammer into the PINNs. The comparison of the structural vibration response

predicted by PINNs and the measured value is shown in Fig. 6.26.
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Figure 6.26 The comparison of the structural vibration response predicted by PINNs

(blue) and the measured value (red)

Fig. 6.26 shows that under the new external excitation, the structural vibration
response predicted by PINNS is highly consistent with the accelerometer measurements.
which proves that PINNs successfully identify the dynamic characteristics of the
structure.

6.6 Summary

This study investigates a promising approach for linear/nonlinear structure
identification via physics-informed neural networks. The physical information of the
structural vibration equations is seamlessly integrated into the proposed machine
learning framework through a set of mathematical equations that describe the
Newmark-beta derived relations of the dynamic system. By representing the external

force input of the structure through a neural network, the proposed method can invert
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the mechanical parameters of the structure based solely on the observed vibration
response of the structure. For nonlinear structural systems involving nonlinear stiffness
or damping, the internal restoring forces generated by the nonlinear components can
also be accurately captured by another neural network model. To alleviate the spectral
bias defect in neural networks, the Fourier feature layer is incorporated into the neural
network model to form a Fourier feature neural network to improve the representation
capability of multi-frequency features. A numerical example of a multi-degree-of-
freedom system involving cubic stiffness is tested to demonstrate the effectiveness of
the proposed method. Based only on the vibration acceleration measurement data of the
structure, the proposed method is shown to accurately reconstruct the unknown ground
acceleration of the structural system and the restoring force generated by the nonlinear
spring, and successfully identify the mechanical parameters of the structural system.
Using these identified system parameters and the constructed surrogate model of the
nonlinear spring, the response of the structure under new inputs is predicted and shown
to be consistent with the ground truth. Another laboratory test of a beam with semi-
rigid supports is carried out as a practical case to verify the proposed method. The
results show that with a small number of vibration observations, the proposed method
can accurately model the dynamic characteristics of the beam and predict the vibration

response of the beam under new external excitations.
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Chapter 7 Conclusions and recommendations

7.1 Conclusions

After a decade of development, data-driven machine learning methods have
become a preferred approach for researchers in many research fields due to their
flexibility and powerful characterization capabilities. However, these purely data-
driven methods still face some difficulties in solving forward and inverse problems in
real physical systems. Since the machine learning model trained by various
observational data can only fit the input-output mapping relationship at a shallow level,
but cannot explore deeper physical characteristics, this shortcoming is reflected in the
unsatisfactory generalization ability of the model, and the deviation between the
predicted results and the real physical laws. Recently, a framework for seamlessly
integrating physical information with machine learning models called physics-informed
machine learning (PIML) has been developed to improve the ability of data-driven
approaches to characterize physical constraints. Although PIML has been successful in
many research and engineering fields, there are still some shortcomings to be solved in
applying the existing PIML method directly to the forward and inverse problems of
structural dynamics. First, the defects of spectral bias, ‘soft’ constraint embedding, and
multi-loss convergence imbalance in PIML will be amplified in the structural dynamic
response prediction, leading to prediction failure or obvious error. The inverse problem

of structural damage identification from unknown forces makes the implementation of
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PIML difficult because of the unknown force terms in its governing equations. The
uncertain nonlinearity of structures also poses some challenges to the accurate modeling
of existing PIML methods.

In order to expand the research and application of PIML in structural dynamics,
the research goal of this thesis is to develop advanced PIML methods for structural
dynamic response prediction and structural damage identification. First, a PIML
method of integrating physical information with a neural network model is proposed to
solve the forward problem of structural dynamics. Here, how to accurately predict the
vibration response of known linear/nonlinear physical systems under external
excitation is first studied. To be specific, a novel recurrent convolutional neural network
(RCNN) framework named structural dynamics learner (SDL) is proposed to predict
the dynamic response of linear/nonlinear structural systems by employing an RCNN
model to represent the physical state of the structure and incorporating the implicit
Crank-Nicolson form of the system's motion equations into the SDL framework as
physical information. The implicit Crank-Nicolson form of the motion equations gives
SDL two significant advantages, including endogenous adaptability to linear and
nonlinear systems and excellent numerical stability, especially in problems involving
stiff equations. The RNN-based framework also makes SDL break through the defects
of spectral bias, ‘soft’ constraint embedding and convergence imbalance of loss
functions in the original PINNSs, and improves the convergence speed of the model with

the memory mechanism brought by its recurrent architecture. Several numerical cases
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involving nonlinear, stiff equations, hysteretic systems, and complex boundary
conditions are carried out to validate the proposed framework, and the results are
compared with traditional explicit numerical methods and original PINNs methods,
respectively.

After that, the focus of this thesis turned to the research of inverse problems in
structural mechanics. The reconstruction of structural external forces and dynamic
responses is investigated first through a PIML framework that combines physical
information with Markov parameters called physics-informed Markov parameters (PI-
MP). The purpose of this research is to try to solve the problem often faced in practical
structural engineering, i.e., how to accurately obtain the external excitation of the
structure and how to reconstruct the unmeasured dynamic response through other
measurement data when only part of the structure is observable. Here, the powerful
representational power of neural networks is leveraged to represent the unknown
external input of a structure. The motion equation of the structure, described as the
Markov parameter in the state space, is integrated into the training of the neural network
model as the prior physical information. By minimizing the deviation between the
predicted structural acceleration response and the measured vibration response, PI-MP
can reconstruct the external excitation input of the structure and predict the vibration
response of all parts of the structure based on the reconstrated excitations. Even when
the force points are unknown, PI-MP can also locate the exact force position by

designing an optimization strategy that couples a greedy algorithm. Through two
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numerical cases and a laboratory test, the effectiveness and noise robustness of the
proposed method are demonstrated.

The application of physical information machine learning for structural damage
identification with unknown external forces from vibration measurements is further
investigated. A physics-informed Fourier feature neural networks (PI-FFNN)
framework is proposed to achieve this goal. In this framework, from vibration response
measurements, the external forces and damages of the structure are identified
simultaneously. A Fourier feature neural network, which is equipped with a Fourier
feature layer to reduce the spectral bias of the model, is employed as the core of the
framework to predict the external forces of the structure. Newmark-beta scheme of the
motion equation as physical information to train the neural network model with a
regularization term synergy to improve the sparsity and noise robustness of the
identification results. The integration of physical information makes this approach an
unsupervised learning method, the training of which does not rely on any damage-
related data labels. Two numerical experiments of beams and trusses and a laboratory
test were carried out to verify the performance of the proposed method. The results
show that the PI-FFNN method can locate and detect the structural damage and the
external force of the reconstruction structure more accurately than the sensitivity-based
method and the original PINNs method, even in the vibration measurement of noise.

Finally, our research focuses on the problem of structure identification of nonlinear

vibration systems. Based on PINNs, we propose a framework for simultaneously
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identifying structural mechanical parameters, reconstructing unknown external
excitations on structures, and establishing alternative models for nonlinear systems. In
this framework, two neural network models are employed to represent the structure's
unknown external excitation and nonlinear internal restoring force, respectively. The
mechanical parameters of the structure are updated along with the neural network
model as trainable parameters. The physical information of the structural vibration
equations is seamlessly integrated into the proposed machine learning framework
through a set of mathematical equations that describe the Newmark-beta derived
relations of the dynamic system. By minimizing the difference between the predicted
structural response and the structural vibration observation, both the external excitation
and the internal nonlinear restoring force of the structure can be reconstructed
simultaneously and the exact values of the structural parameters can be discovered. In
a numerical case and a laboratory test, the proposed framework successfully identifies
the mechanical parameters of the structure and accurately predicts the vibration
response of the structure under the new external excitation by learning from the

observed data.

7.2 Recommendations for Further Research
This thesis presents several innovative PIML frameworks for solving forward and
inverse problems in structural dynamics. Under the constraints of physical information,

these frameworks demonstrate the independence of complex and large training data and
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achieve excellent noise robustness and generalization. However, these methods are still
based on theoretical assumptions of PIML. In PIML, researchers assume that the
research object always obeys our established governing equations, such as the structural
vibration equations. This assumption is obtained by simplifying the complex physical
world into simple physical models. However, in the real physical world, material
nonlinearity, inhomogeneity and the complexity of constraints are widespread. These
complex characteristics are difficult to describe with a simple governing equation. And
more complex physical relationships are difficult to exactly discover, so our proposed
method is still based on this assumption and still faces limitations in the knowability
and accuracy of exact physical laws. In addition to this assumption, our proposed
method still faces the following limitations in practical applications.

The first limitation lies in the structural complexity of the PIML method. Unlike
mature numerical analysis methods such as the finite element method, which can easily
solve analysis problems involving millions of degrees of freedom, PIML, which relies
on training machine learning models such as neural networks to solve the governing
equations of the structure, has a model complexity far exceeding that of numerical
analysis methods. Therefore, current research focuses only on problems with no more
than a few hundred degrees of freedom. Limited by the available computing resources,
it is still difficult to use these PIML methods to analyze large engineering structures.
Fortunately, recent breakthroughs in large machine learning models, especially large

language models, are expected to provide a new and promising path for the simulation
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of large structures using machine learning and even PIML. This is a research direction
worthy of further exploration in future studies.

The second limitation of the developed PIML for practical engineering
applications is the computational efficiency of the model. In the proposed frameworks,
neural network models such as convolutional neural networks, recurrent neural
networks or Fourier eigen-neural networks need to be trained iteratively to reach
convergence. Like the various deep neural network trainings applied in other research
fields, the training process of these models takes a lot of time and computing resources,
which is less efficient than traditional numerical analysis methods. This efficiency
disadvantage will also limit its wider research and application. In future research, how
to improve the training efficiency of the model is also a crucial bottleneck for the PIML
method in structural dynamics. This problem may be alleviated by designing more
efficient neural network frameworks and more advanced optimizers to train neural
network models.

The third limitation is the applicability of PIML to big data. Current PIML
methods, including our proposed frameworks, can still only process a small amount of
training data, usually only several thousand time steps. However, in actual engineering,
with the development of advanced sensors and data acquisition designs, the data
acquisition frequency has reached several thousand hertz, which has accumulated a
large amount of observation data in engineering. How to extract the long-term features

of training data and couple the physical information to improve PIML's learning ability
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of a large amount of training data over a long time is also a problem worth exploring in
the future.

The last limitation is the convergence of the loss function of PIML methods. Since
PIML methods rely entirely on the loss function to train the neural network model to
approach the exact solution. The convergence of the loss function is a crucial criterion
to ensure the accuracy of the results. However, in the existing framework, it is still
difficult to ensure the convergence of the solution due to the imbalance of multiple loss
functions or the non-convexity of the neural network model training problem. In recent
years, some new techniques, such as energy-based loss functions, have been used to
reduce the non-convexity of the model search space, thereby improving the
convergence of the solution. These techniques have shown promising results to ensure
the accuracy of the solution. Therefore, in future research, whether the several model
frameworks proposed in this study can be improved from the perspective of energy-

based loss functions is a direction worthy of further exploration.
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