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Abstract

The prosperous development of intelligent transportation has heightened the demand
for precise positioning of autonomous vehicles in dense urban environments like building
canyons and viaducts, where satellite signals are unavailable. Intelligent vehicles typically
utilize navigation and positioning functions by employing an inertial-based multiple-sensor
integrated system (INMS) for navigation, which combines inertial navigation with satel-
lite systems, odometers, and optical sensors. However, the integration of more sensors
increases the likelihood of data errors and outliers due to challenging urban conditions,
impacting the performance of state estimation methods and noise statistics identification
that rely on Gaussian noise assumptions. In addition to the accuracy, autonomous driv-
ing must evaluate the confidence of position solution to ensure quick system responses
and safe mode switches when position solution is unreliable, thereby reducing accident
risks and enhancing safety. Integrity is crucial for assessing position confidence, yet most
current INMS integrity monitoring methods are derived from aviation satellite navigation
techniques. Due to heavier-tailed noise distributions and higher outlier rates, the unique
challenges of multi-failure, non-Gaussian integrity monitoring in urban environments have
been insufficiently explored. Consequently, the following key issues have been addressed
to improve navigation accuracy and reliability in an urban environment.

To address the problem of INMS state estimation performance degradation due to
mismatched noise assumptions in urban environments, a robust resampling-free filtering
algorithm based on the adaptive kernel-sizes maximum correntropy criterion is proposed.
The cost function of the resampling-free update framework is constructed based on the
maximum correntropy criterion, which effectively exploits the non-Gaussian moments of
the state distribution caused by the non-closed mapping, ensuring the resampling-free es-
timation optimality and preventing the loss of the higher-order moment information from
Gaussian reconstruction. Subsequently, an adaptive method for kernel size of correntropy
is developed to realize the online optimal adjustment of the kernel size and ensure robust-
ness against outliers. The simulation experiment demonstrates that the proposed algorithm
can optimize the correntropy kernel size and improve the INMS state’s estimation perfor-
mance under non-Gaussian noise in urban environments compared with existing robust
filters.

To mitigate outlier interference with the measurement noise covariance matrix (MNCM)
estimation, a robust noise adaptation algorithm is proposed based on a posterior smooth-
ing variational approximation. The inverse Wishart distribution is used as the conjugate



prior model of the MNCM, and a joint variational approximation analytical solution of the
MNCM and smoothing state is derived. Then, the inverse Wishart distribution’s inverse
scale matrix is reconstructed based on the correntropy matrix to suppress the interference of
measurement outliers on the MNCM estimation. The simulation experiment demonstrates
that the proposed algorithm can effectively suppress the interference of measurement out-
liers on MNCM estimation and accurately identify the measurement noise statistics.

To quantitatively assess the reliability of INMS state estimates in urban environments,
an autonomous integrity monitoring (IM) algorithm based on multiple fault-missing de-
tection assumptions is proposed. A consistency factor in the state domain is calculated
using the sequential probability ratio over sliding windows. Under the multi-fault missing
detection assumption, the horizontal protection level is calculated based on the maximum
eigenvalue combined with the consistency factor to quantitatively assess the confidence of
the position solution. The simulation experiment demonstrates that the proposed algorithm
can effectively quantitatively evaluate the confidence of the position solution and monitor
the navigation integrity in the case of measurement outlier disturbance.

To validate the effectiveness of proposed algorithms in practical engineering, an in-
vehicle experiment is conducted. The experimental results demonstrate that: 1) The pro-
posed robust state estimation algorithm reduces the root mean square error (RMSE) of the
horizontal position estimation by more than 5.0% compared with the existing robust esti-
mation methods and has a higher robust state estimation accuracy in adverse urban areas;
2) The proposed noise adaptation algorithm provides a smoother and reliable MNCM es-
timation, which reduces the corresponding position RMSE by more than 13.6% compared
to the existing methods and effectively suppresses the interference of measurement out-
liers on the MNCM adaptation; 3) Compared to the existing IM methods, the proposed
IM algorithm has the higher reliability of protection level (99.85%) and does not produce
any hazardous misleading events, which can effectively assess the position confidence and
monitor the navigation integrity. Therefore, the experiment verifies the effectiveness of the
proposed algorithm in practical engineering applications.
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Chapter 1

Introduction

1.1 Research Background and Motivation

With the swift development of intelligent transportation systems, autonomous driving
has attracted much attention, serving as a key technology for intelligent vehicle applica-
tions. In urban environments, the complex road conditions and dense buildings present
greater challenges for route navigation and planning for intelligent vehicles. This further
increases the dependency of autonomous driving on positioning and navigation services,
and places higher demands on the accuracy, reliability, and safety of navigation systems.
The global navigation satellite system (GNSS) is indispensable for autonomous driving
to provide efficient positioning and navigation services with the advantages of low-cost,
high-accuracy, and all-day availability [1, 2]. However, in dense urban areas, such as ur-
ban canyons and viaducts (as shown in Fig. 1.1 ), it is challenging to fulfill the demand for
high-accuracy navigation and positioning due to the susceptibility of the satellite signal to
be blocked.

Figure 1.1: Intelligent vehicles in adverse
urban environment

Figure 1.2: Inertial-based multiple sensors
navigation system

With a strap-down inertial navigation system (SINS) serving as the host system, SINS/-
GNSS integration can effectively overcome the shortcomings of poor environmental appli-
cability of GNSS and enhance the reliability of the navigation system. However, due to the
accumulation of errors in SINS, the integration of SINS/GNSS is still unable to provide
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reliable positioning services in adverse urban areas with frequent GNSS rejections. An
inertial-based multiple-sensor integrated system (INMS) is an effective complement to the
SINS/GNSS. Based on the multi-source information fusion technique, INMS utilizes the
redundant data collected from several sensors to ensure positioning accuracy and improve
the robustness of the system in the adverse urban scene [3, 4, 5]. Therefore, INMS has
become an important research direction in autonomous driving [6].

Currently, INMS of intelligent vehicles (as shown in Fig. 1.2 and Appendix B for
operating principles) is often constructed based on SINS composed of an inertial measure-
ment unit (IMU) as the host system, equipped with such GNSS, odometer (OD), optical
sensors, e.g., polarizer camera (POLA). INMS fuses the data from each sensor to correct
the SINS and provides highly accurate and reliable positioning services in adverse urban
areas. Although multiple sensors provide more redundant data, it also presents new chal-
lenges. As the number and types of INMS sensors increase, so does the likelihood of data
errors and outlier interference in urban areas. For example, GNSS can be affected by the
frequent multi-path reflection effect, the odometers can be affected by uneven road condi-
tions, and optical sensors can be interfered with by light sources. These interference tend to
result in a heavily non-Gaussian distributed noise. The existing robust estimation methods
for non-Gaussian noise rely on the multivariate Gaussian approximation assumption for
state vectors. In addition, the existing non-stationary sensor noise statistical identification
method does not take into account the interference of outliers. As a result, the estimation
accuracy and robustness cannot be guaranteed in this case, which limits the performance
of navigation and positioning of intelligent vehicles.

Furthermore, while pursuing high-accuracy positioning for high-level autonomous
driving, it is also necessary to effectively quantitatively evaluate the confidence of the
position solution and indicate the potential risks of estimation uncertainty. Integrity is a
representative indicator of the confidence of the state estimate. When the position infor-
mation is unreliable due to data errors or outlier interference, the integrity monitoring (IM)
can ensure that the vehicle can react quickly and switch to a safe driving mode (e.g., man-
ual driving, reducing speed). Thus, IM reduces the potential risk of accidents (e.g., route
deviation or collision) caused by inaccurate position and improves the navigation safety
of intelligent vehicles. However, the majority of current IM methods for INMS are based
on GNSS developed for aviation applications. The multi-failure, non-Gaussian integrity
monitoring issues of INMS caused by the heavier-tailed distribution and higher outlier rate
of noise in urban applications have received little research attention. It cannot effectively
monitor the position integrity and cannot guarantee the navigation safety of intelligent ve-
hicles.
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Based on the above analysis, the navigation reliability and safety issues faced by
INMS in urban environments hinder the development of higher-level autonomous driving.
To this end, the thesis focuses on the requirements of high-accuracy robust state estima-
tion and autonomous integrity monitoring for intelligent vehicles in urban environments.
The thesis proposes a robust state estimation algorithm, a robust noise adaptation algo-
rithm, and an autonomous integrity monitoring algorithm to address the issues of state es-
timation under mismatched noise assumptions, noise adaptation under outlier interference,
and position confidence assessment, respectively. The research allows the advantageous
complementation of multiple sensors and redundant information fusion, thereby improv-
ing the navigation accuracy and reliability of the intelligent vehicle navigation system.
Furthermore, the research includes experimental verification of theoretical studies, as well
as demonstrations of the proposed algorithms’ practical significance for INMS.

1.2 Review of Related Research

1.2.1 Inertial-based Navigation State Estimation

INMS takes the SINS navigation parameter error as the primary state vector and con-
structs a state prediction model based on the error propagation equation. Furthermore, the
system’s state is estimated using the measurement information of external sensors to cor-
rect the navigation parameters. Therefore, as an essential branch of information fusion,
the state estimator plays a critical role in INMS. Kalman Filter (KF) is a widely applica-
ble state estimator. Based on Bayes’ rule, KF achieves the optimal state estimation in the
sense of the minimum mean square error (MMSE) criterion by combining a priori state and
measurement information [7]. By its reliable estimation accuracy and economic computa-
tional efficiency, KF has been widely used in the navigation field [8, 9, 10]. However, the
application conditions of KF are only applicable when the system model is linear, and the
sensor noise is stationary with an accurately known statistical distribution, which makes
the state estimation performance not guaranteed in practical applications due to nonlinear-
mapping observation and unexpected outliers interference. Therefore, many filter variants
and improved algorithms based on the KF framework have been developed to solve the
navigation state estimation problem for different application scenarios and requirements.

(1) Nonlinear state estimation with non-resampling updates

In practical engineering, the navigation sensors’ noise distribution is generally mod-
eled by Gaussian distribution. Since the Gaussian model is enclosed under linear mapping,
i.e., it has the same probability density distribution function (PDF) after linear mapping, the
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KF can provide the optimal estimate solution under the linear Gaussian model. However,
in multiple sensor applications, due to the different observation principles of sensors, the
measurement may map nonlinearly to the state, which leads to a nonlinear system model.
Furthermore, since the Gaussian distribution is non-closed under the nonlinear mapping,
it is infeasible to calculate the analytic optimal solution for nonlinear cases as the closed-
form Gaussian distribution is violated by nonlinear mapping [11]. Although the model
can be linearised with lesser error assumption, it is not applicable in adverse urban areas
because the state estimation accuracy cannot be guaranteed, and error assumptions cannot
be met. Moreover, since INMS adopts the feedback correction, larger state estimate errors
also degrade the linearization accuracy of the model in adverse urban areas. Therefore,
many Gaussian approximation filters (GAF) were developed for nonlinear closed-form so-
lutions by linearizing models or numerical-integration approaches [12, 13]. The details are
as follows.

As an extension of KF, the extended KF (EKF) achieves nonlinear state estimation
through the first-order linearization of the nonlinear model and is widely used due to
its simplicity and computational efficiency [14, 15, 16]. Nevertheless, the linearization-
induced higher-order truncation error and weak convergence limit the application of EKF
to INMS in adverse urban areas. Furthermore, in the case of the coupling between mea-
surement and the high-dimensional state of INMS, it is challenging to derive the Jacobi
matrix, which also increases the implementation burden. In light of the considerations
above, Gaussian weighted integral (GWI) filters were devised on the foundation of approx-
imate state distributions as opposed to approximate models [17, 18, 19, 20]. In GWI, the
state PDF is approximated by the weighted integration of a series of deterministic sam-
pling points, demonstrating superior convergence stability and filtering accuracy compared
to EKF. Among the numerous GWI filters, the cubature Kalman filter (CKF) has been
developed for high-dimensional systems and has attracted widespread attention for com-
putational cost-effectiveness with sufficient accuracy and numerical stability [21, 22, 23].

However, as with other GWI-based filters, CKF depends on the resampling operation.
Under Gaussian assumption, the resampling operation is carried out to renew the sampling
points for recursively calculating Gaussian moments (i.e., mean and covariance) at each
filtering period. Although the resampling operation maintains the closed Gaussian property
of the state distribution, keeping the availability of analytic solutions, it only spreads the
Gaussian moments and discards the high-order non-Gaussian information contained in the
sampling points PDF [24], limiting the performance of GAF in INMS.

Inspired by the non-resampling method in particle filtering [25], some resampling-free
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update (RFU) strategies for GWI have been proposed to overcome the drawbacks of re-
sampling. The research introduced a pure propagation unscented Kalman filter [26], which
directly modifies the sampling points to incorporate additive noise without resampling op-
eration. While this approach preserves the higher-order moments of the state PDF, it is
computationally intractable as it requires solving an additional continuous Riccati equa-
tion. Then, another RFU framework was presented in [27], which modifies the sampling
points by a transformation matrix without solving the Riccati equation, ensuring computa-
tional efficiency while avoiding the resampling operation under Gaussian assumption.

Moreover, as an alternative to the modification of sampling points through matrix
transformation, a study [28] presented sampling points error-based resampling-free update
framework (SUF) inspired by the work [29]. The SUF introduces the posterior error matrix
formulated by the linear transformation of state prediction residual to modify the sampling
points. Compared to the method in [27], SUF is more computationally efficient as it does
not require posterior updating for all sampling points. Further, several SUF-based variant
filters have been successively developed by its robust estimation against suboptimal ob-
servation through more accurately capturing the state estimate mean square error matrix
(EMSE) by reusing the diffused sampling points[30]. Moreover, by extending the SUF to
account for the likelihood approximation error, an improved SUF (ISUF) was proposed
in [31], where the posterior error matrix of sampling points is corrected by the measure-
ment error matrix in addition to the state prior error matrix. With more accurate capture
of a higher-order moment of state PDF, some ISUF-based filters have been developed to
improve the estimation performance and robustness [32, 33].

While ISUF avoids the Gaussian reconstruction of state distribution to keep the high-
order moments, it also tends to yield a significant deviation of the non-closed state distri-
bution from the Gaussian assumption after multiple nonlinear propagations. This occurs
because the nonlinear mapping breaks the closure property of state PDF (i.e., maintains the
same PDF form after mapping). As a result, the heavy non-Gaussian property of state dis-
tribution compromises the estimation optimality of the MMSE in ISUF under the Gaussian
assumptions, thereby degrading the estimation performance. Furthermore, ISUF requires
multiple triangular (Cholesky) decompositions of the state covariance matrix. Due to the
INMS state unit, the difference in the eigenvalues of the covariance matrix is too large (e.g.,
the velocity error differs from the gyro constant-bias covariance eigenvalue by a factor of
108), which tends to cause matrix singularities and reduces the numerical stability of the
Cholesky decomposition.

(2) Robust state estimation for non-Gaussian noise
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Reliable state estimation is critical for navigation systems. However, measurements
are often disturbed by unexpected outliers in non-open dense urban areas, leading to the
noise following a non-Gaussian heavy-tailed distribution (i.e., the tailed probability of
the noise is higher than that of a standard Gaussian distribution). For example, in ur-
ban canyons and viaducts, the propagation of navigation satellite signals is susceptible to
multi-path effects, thus inducing non-Gaussian heavy-tailed distribution noise. In this case,
measurement noise does not satisfy the Gaussian distribution condition of KF, which leads
to degradation of the state estimation performance. Outlier elimination is efficient when
dealing with prominent outliers that deviate significantly from the overall data distribution.
However, in the case of smaller outliers with high frequency, it tends to loss of available
measurement information, affecting the accuracy of statistical analysis and modeling. The
robust filtering method dynamically adjusts the weights of the measurement information
according to outlier magnitude by adopting a robust optimization criterion or introducing a
robustness metric. In the case of prominent outliers, the weight is reduced to zero to elim-
inate the interference completely. In contrast, in the case of smaller outliers, the weight is
decreased to a lesser extent to retain more useful information. Therefore, robust filtering
can adapt to various dynamic scenarios and noise types, thereby improving the adaptability
and reliability of the navigation system.

Many robust filters have been proposed to achieve robust state estimation, such as
particle filtering, Huber’s M-estimation-based Kalman filter (HMKF), robust student’s t

distribution-based Kalman filter (RSTKF), and its related variants. Particle filtering can
approximate arbitrary noise distributions by sequential Monte Carlo methods, but it is
inevitably limited by the computational burden under INMS high-dimensional systems
[34, 35]. The HMKF constructs the Huber cost function to ensure the boundary of the filter
residual to attenuate the outlier’s interference on the state estimation by minimizing the
L1 and L2 norm [36, 37]. However, the HMKF cost function value does not drop down,
which retains the weight of poorer-quality measurement information and reduces the state
estimation accuracy. The RSTKF models the measurement noise disturbed by anomalies
with the Student’s t distribution [38, 39, 40, 41]. However, in order to maintain the closed
form of the tdistribution of the posterior probability distribution, the RSTKF captures only
the first-two orders of the moment information of the state posterior distribution and loses
the higher-order moment information.

Information-theoretic learning has recently gained more attention due to its efficacy
in robust state estimation. The correntropy can capture the high-order moments as an op-
timization cost for local similarity measures (MMSE optimization criterion used by KF
captures only second-order moments) [42, 43]. The maximum correntropy criteria (MCC)
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is used to replace MMSE as the optimal criterion for designing the maximum correntropy
Kalman filter (MCKF) that exhibits more robustness to impulsive non-Gaussian noise due
to its truncation effect [44]. However, MCKF must Cholesky decompose EMSE, which
is susceptible to numerical instability in INMS due to excessive disparity between EMSE
eigenvalues. Thus, this prompts some variants to execute recursion based on the square-
root form of the covariance matrix [45]. In another derivation idea, MCC is used to com-
bine weighted least squares (WLS) to form the MCC-filter [46], where the correntropy is
calculated by the squared Mahalanobis distance, which avoids the decomposition of the
covariance matrix and the numerical stability is guaranteed, and further variations on non-
linear state estimation are developed [45, 47].

Although the feasibility of MCC-based filters for resisting outliers has been demon-
strated, the selection of kernel size limits the implementation in practical engineers. MCC
with a wrong kernel size fails to improve robustness against outliers and may even cause
filtering divergence [48, 49]. Therefore, some adaptive methods are proposed for adjust-
ing the kernel size online through the filtering parameters related to the innovation term or
state error covariance matrix [50, 51, 52]. Although these methods can optimize the kernel
size, the correctness of the kernel size cannot be guaranteed if the filter has a larger initial
state error or has not yet converged. The present adaptive factor construction method can
effectively keep the kernel size within the correctness range [53]. However, the decreasing
properties of adaptive kernel size tend to cause excessive convergence under the continuous
disturbance of outliers, i.e., the kernel size continuously converges to a small value, which
can lead to a loss of adjustability of the kernel size for various noises.

(3) Adaptive state estimation for non-stationary noise

A filter’s robust estimation performance depends on accurate prior statistical knowl-
edge of the noise, which can be effectively represented by the measurement noise co-
variance matrix (MNCM). However, in practical INMS applications, MNCM is usually
unknown or time-varying due to the variable measurement environment external to the
sensors. An incorrect MNCM not only reduces state estimation accuracy due to model-
actual mismatch but also affects the detection of outliers by the filter, deteriorating the
robustness against outliers. Also, it interferes with the effective monitoring of navigation
integrity. Therefore, it is necessary to estimate the MNCM adaptively online.

Many adaptive filters have been developed to estimate the MNCM [54, 55, 56]. The
Sage-Husa based adaptive filter (SHA) is an approximate covariance matching method that
obtains optimal estimates of the MNCM based on the maximum posterior criterion [57].
However, SHAKF does not guarantee that the MNCM estimates converge to the true value,
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nor does the positive definition, leading to filtering divergence. The variational Bayesian-
based adaptive filter (VBA) models the diagonal elements of the MNCM using an inverse
gamma distribution. By employing the variational approximation, it achieves online joint
estimation of the MNCM diagonal elements and the state vector [58]. Furthermore, a VB
method based on the Inverse Wishart (IW) distribution is proposed to estimate the non-
diagonal noise covariance matrix [54, 58, 59]. This method uses the IW distribution as
the conjugate prior for the MNCM and utilizes the state estimation mean and mean square
error matrix to obtain more accurate MNCM estimates. Additionally, to further improve
the estimation performance of the MNCM, a sliding window-based VB variant has been
proposed [60, 61]. This method employs the RTS fixed-interval smoother to obtain the
smoothed posterior distribution of the state vector and uses a variational approximation
to compute the MNCM, thereby avoiding the single-point iteration of VB and achieving
better estimation accuracy.

Existing adaptive filtering methods can achieve effective estimation of MNCM under
Gaussian noise. However, when the measurements are disturbed to outliers, the measure-
ment noise exhibits a non-Gaussian heavy-tailed distribution, and the adaptive methods
based on the Gaussian assumption cannot estimate the MNCM accurately. Inaccurate
MNCM estimates, in turn, affect the robust filter’s ability to suppress outliers and mon-
itor the integrity of the navigation state. Therefore, it is necessary to mitigate the effect of
measurement outliers on the MNCM estimation. The literature [62, 63] addresses this issue
by removing outliers to reduce their interference with the VB adaptive method. However,
in dense urban areas with frequent disturbances, such as frequent turbulence or satellite
signal occlusion, the occurrence of measurement anomalies is high. Removing outliers
can lead to the loss of valuable information, changing the original information distribution
characteristics and affecting the accuracy of MNCM estimation.

Robust enhancement methods can adapt to various dynamic scenarios and noise types.
However, current robust enhancement methods for measurement outliers primarily focus
on state estimation, with less attention paid to the adaptive estimation of MNCM. A ro-
bust MNCM adaptive method is proposed based on a Gaussian-Gamma mixture distribu-
tion [64], which models the heavy-tailed measurement likelihood PDF using a Gaussian-
Gamma mixture distribution to address the issue of inaccurate MNCM estimation in the
presence of measurement anomalies. However, this distribution requires pre-specifying
the number of Gamma mixture components, and each component needs different tuning
parameters. Given that the measurement noise types and anomaly disturbance intensities
of the INMS system vary across different dynamic scenarios, a noise distribution relying
on fixed model parameters is not applicable for non-Gaussian noise MNCM estimation
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in the INMS. Additionally, an outlier-robust adaptation method (ORA) is proposed[65].
Unlike the approach of modeling non-Gaussian noise, ORA constructs a hybrid cost func-
tion based on statistical similarity measures and maximizes the hybrid cost function as an
optimization criterion to achieve MNCM estimation under outlier disturbances. However,
ORA adopts a Gaussian conjugate IW distribution to model the MNCM, which cannot ac-
curately characterize the covariance matrix of non-Gaussian noise, thereby failing to ensure
robust MNCM estimation accuracy.

1.2.2 Navigation Autonomous Integrity Monitoring

The INMS plays a crucial role in autonomous driving by providing accurate position-
ing solutions. However, in challenging urban areas (such as urban canyons and tunnels),
it is intractable to guarantee estimation accuracy for INMS due to outlier contamination
[66]. For autonomous driving, while striving for high accuracy, it also needs to effectively
assess the confidence of positioning information to ensure that the vehicle system responds
promptly and switches to a safe (such as manual) driving mode when positioning infor-
mation is unreliable, thus ensuring the safe navigation and reducing the potential accident
risk caused by inaccurate positioning information. Integrity is a representative indicator
for assessing the confidence of positioning estimation [67, 68, 69, 70]. Initially, integrity
monitoring techniques were extensively researched and developed for aviation applications
with extremely high positioning safety requirements. Subsequently, due to the increased
demand for positioning reliability in the intelligent transportation sector, integrity moni-
toring techniques have also gradually gained attention in the field of autonomous driving
[71, 72, 73]. IM includes fault detection and exclusion (FDE) and the horizontal protec-
tion level (HPL) calculation. After eliminating measurement faults by FDE, the HPL is
calculated as a quantitative indicator to assess the confidence level of the position solution
[74, 75]. As a statistical upper limit of horizontal position error (HPE), HPL sets up a
safety boundary around the vehicle, meeting a certain integrity risk probability. Once HPL
exceeds the horizontal alarm limit (HAL), i.e., the maximum tolerated positioning error,
the system will issue an alarm to the user in time [76, 77]. The relationship between HPL,
HPE, and HAL is shown in Fig. 1.3 .

As the KF is an indispensable component of INMS, the KF-based IM has gained at-
tention in recent years [78, 73]. The IM approach depends on reliable HPL calculations.
Based on the definition of HPL, it is feasible that taking the filtering EMSE to characterize
the position estimation effect, which gives rise to the k-Sigma method [79, 80, 81]. In
k-Sigma, the root EMSE of sequential KF is regarded as the standard deviation of HPE
that is approximated as a Gaussian distribution [80]. Then, the HPL is obtained by scaling
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Figure 1.3: The relationship between HPL, HPE, and HAL

root EMSE using a quantile corresponding to a specific confidence region. Although the
k-Sigma is simple to execute, in challenging urban areas, the Gaussian distribution mod-
els fail to accurately characterize tail error disturbed by unexpected outliers, resulting in
a non-consistency in estimation and HPL failing to overbound the position error (PE). To
cope with the problem, the KF integrated HPL method based on Student’s t distribution is
proposed [81, 82, 83]. The estimated HPE is modeled dynamically as a zero-mean mul-
tivariate t-distribution. The HPL is then calculated by the independent propagation and
integration of the t-distributed-based HPE for each epoch. Although the assumption of
thick-tailed distribution is more reasonable in adverse GNSS scenarios compared to Gaus-
sian distribution in urban, it is computationally intractable to update the tuning parameters
and maintain the closure of the t-distribution in each epoch.

Inspired by receiver autonomous integrity monitoring (RAIM), the approach to deter-
mine HPL by overbounding HPE instead of characterizing the distribution of HPE has been
a focus of research in KF-based IM [84, 85, 86]. RAIM is a classical method in GNSS for
ensuring aviation safety to assess the reliability of receiver positioning results [87, 88, 89].
RAIM determines the measurement source most susceptible to fault missed detection based
on the maximum slope, which is the ratio of the statistically independent estimated HPE
to the detection statistic. The upper limit of the HPE caused by fault missed detection is
then used as an HPL to overbound the actual HPE. Based on the RAIM, a KF sequential-
based IM (KSIM) is developed [90, 91]. KSIM reconstructs the state-space model of the
sequential filter into a regression model, and then the HPL is determined by the maximum
slope and the minimum detectable bias. However, since the HPL of RAIM is subject to
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the number of hypothesized fault biases (i.e., outliers) in missed detection, the single-fault
hypothesis developed for GNSS aviation applications is not applicable in INMS in urban
due to its susceptibility to frequent multiple outliers, leading to HPL does not effectively
reflect HPE.

To assess the confidence level of the position estimates in multiple fault scenarios,
a multi-fault bias hypothesis-based IM is proposed [92]. However, the approach is still
not applied to INMS since it is designed for optimization rather than sequential filtering
principles. In addition, as with other IM variants extended from RAIM for aviation scenar-
ios, it does not account for the interference of unexpected outliers on the protection level
(PL) in challenging environments, which is crucial for the positioning safety of the vehi-
cle. Moreover, the advanced receiver autonomous integrity monitoring (ARAIM) based
on the solution separation is also developed into a KF-based integrated navigation system
[93, 94, 95]. The ARAIM applies a consistency check with the multiple-stage filters in the
position domain. HPL is determined by assigning the integrity risk between the main filter
and each sub-filter, enabling the monitoring with multiple fault scenarios. However, since
a prior probability of fault occurrences needs to be specified, it is hardly applicable to the
kinematic in-vehicle positioning because the likelihood of outliers occurring is unavailable
in different environments. In addition, the number of parallel sub-filters increases with
the hypothesized fault biases (outliers) and measurement sources, which leads to a heavy
computation burden (e.g., nsf = C1

n + ...+Cm
n with maximum hypothesized faults m and

measurement sources n).

1.3 Research Objectives and Contributions

According to the above research review, there are still research gaps to achieve high-
accuracy robust state estimation and autonomous integrity monitoring of INMS in dense
urban areas, which are summarised below:

(1) Gap 1: Optimality and robustness of resampling-free filtering for INMS state
estimation cannot be guaranteed in urban environments.

The heavy non-Gaussian noise degrades the performance of robust state estimation
methods that rely on the Gaussian approximation assumption in dense urban areas.
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The RFU-based filter can eliminate the Gaussian approximation assumption and pre-
vent the loss of higher order moment information caused by the Gaussian reconstruc-
tion, thereby improving the estimation performance. However, the nonlinear map-
ping violates the non-closure property, causing the state distribution to deviate signif-
icantly from the Gaussian approximation assumption after a few nonlinear mappings.
This deviation renders the MMSE based on the Gaussian assumption inapplicable in
resampling-free filters, preventing optimal state estimation. The MCC optimal cri-
terion can effectively captures higher-order moment information, fully exploits the
non-Gaussian moment information in the RFU filter, ensures the optimality of the
RFU estimation, and improves the robustness of the estimation. However, the perfor-
mance of MCC is limited by its tuning parameter, i.e., the kernel size. An appropriate
kernel size would reduce the filter estimation performance or even cause it to diverge.
Therefore, how to ensure the optimality of non-resampling filter estimation while op-
timally tuning the MCC tuning parameters is a challenge to improve the accuracy of
INMS state estimation in urban areas.

(2) Gap 2: MNCM cannot be estimated accurately by existing adaptive filters due to
the outlier interference in urban environments.

Robust INMS state estimation and reliable integrity monitoring are dependent on ac-
curate knowledge of MNCM. In INMS applications, the MNCM is typically unknown
or time-varying due to the variable measurement conditions outside the sensors. Exist-
ing adaptive filters can accurately estimate the MNCM under Gaussian noise. How-
ever, in dense urban areas, frequent signal blocks and outliers frequently result in
non-Gaussian heavy-tailed noise distributions, so the MNCM cannot be estimated
accurately. An inaccurate MNCM can reduce robust state estimation accuracy due
to model-actual mismatch and interfere with effective integrity monitoring. Outlier
elimination techniques cannot ensure effective noise adaptation. In contrast, robust
enhancement methods can prevent the loss of valuable information and improve noise
adaptation performance. However, the Gaussian conjugate Inverse Wishart (IW) dis-
tribution used in existing robust noise-adaptive methods does not accurately represent
the MNCM of non-Gaussian noise, resulting in suboptimal robust MNCM estimation
under outlier disturbances. Therefore, how to accurately estimate the MNCM in the
presence of measurement outliers is a challenge to ensure the state estimation perfor-
mance and effective integrity monitoring of INMS.

(3) Gap 3: Existing IM methods cannot calculate reliable HPL due to the severe
outlier interference in urban environments.
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Integrity monitoring methods for filtering sequential framework in INMS are exten-
sions of the RAIM methods developed for aviation applications in GNSS, which rely
on the assumption of a maximum number of missing detection biases. Unlike aviation
applications, where the low failure rate of satellites allows a single-fault assumption to
satisfy integrity risk requirements, the increasing number and types of INMS sensors
raise the likelihood of data errors and outlier disturbances, rendering the single-fault
assumption inapplicable for INMS in urban areas. Furthermore, in the presence of
outliers, the Gaussian assumption used by existing IM methods cannot accurately
characterize the actual noise distribution, making it impossible to compute reliable
HPL for assessing position reliability. Therefore, how to compute reliable HPL under
severe outlier interference in urban areas is a challenge to monitor navigation integrity
and ensure navigation safety.

This thesis aims to fill the research gaps mentioned above. The main contributions of
the thesis are summarized as follows.

(1) A robust resampling-free filtering algorithm based on MCC is proposed. First, a
kernel size optimization method of MCC is designed, and an objective function of
the resampling-free estimation framework is constructed based on the MCC, which
effectively utilizes the higher-order moment information of non-Gaussian state and
measurement noise, ensures the resampling-free estimation optimality, improves the
robustness against heavy noise-Gaussian noise. Finally, the algorithm can improve
navigation estimation accuracy under heavy mismatched noise assumptions in urban
areas.

(2) A robust noise adaptation algorithm is proposed based on a smoothing variational ap-
proximation. First, a joint variational approximation analytical solution of the MNCM
and smoothing state is derived. Then, the inverse scale matrix of the IW distribution
is reconstructed based on the correntropy matrix to suppress the interference of mea-
surement outliers on the MNCM estimation. Finally, the algorithm achieves robust
noise adaptation in the presence of outlier disturbances.

(3) A sequential IM method is proposed based on the assumptions of multiple fault biases
missing detection. First, an estimation consistency factor in state domain is calcu-
lated using the sequential probability ratio over sliding windows. Then, a horizontal
protection level calculation method is designed based on the maximum eigenvalue
under multi-fault assumptions. Finally, the algorithm can quantitatively evaluate the
confidence of the position solution and improve navigation safety.
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1.4 Structure of the Thesis

The thesis focuses on the requirements for high accuracy, robust state estimation,
and autonomous integrity monitoring for intelligent vehicles in urban areas. The thesis
proposes a robust state estimation algorithm, a robust noise adaptation algorithm, and an
autonomous integrity monitoring algorithm to improve the navigation accuracy and safety
of the intelligent vehicle by advantageous complementation of multiple sensors and re-
dundant information fusion. The block diagram outlining the research content is shown
in Fig. 1.4 , and the correlation between each content is illustrated in Fig. 1.5 . The main
research content can be summarized as follows:

Figure 1.4: The block diagram of the research content of the thesis

• Chapter 2: Research on robust state estimation algorithms. To address the prob-
lem of INMS state estimation performance degradation due to the mismatched noise
assumptions in urban areas, a robust resampling-free filter based on the adaptive
kernel-sizes MCC is proposed. The cost function of the non-resampling estimation
framework is constructed based on the maximum correntropy criterion, which effec-
tively exploits the non-Gaussian moments of the state distribution caused by the non-
closed mapping, ensuring the resampling-free estimation optimality and preventing
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Figure 1.5: Connection between the different research contents

the loss of the higher-order moment information from Gaussian reconstruction. Then,
an adaptive method for kernel size of correntropy is developed to realize the online
optimal adjustment of kernel size and ensure robustness against outliers. Finally, sim-
ulation experiments are conducted to verify the effectiveness of the proposed robust
estimation method.

• Chapter 3: Research on robust MNCM adaptation algorithm. To suppress the
interference of outliers on the MNCM estimation in urban areas, a robust noise adap-
tation algorithm based on a smoothing variational approximation is proposed. The
IW distribution is used as the conjugate prior model of the MNCM, and a joint varia-
tional approximate analytical solution for the MNCM and smoothing state is derived.
Then, the inverse scale matrix of the IW distribution is reconstructed based on the cor-
rentropy matrix to suppress the interference of measurement outliers on the MNCM
estimation. The proposed method is validated by simulation experiments. Finally,
simulation experiments are conducted to verify the effectiveness of the proposed noise
adaptation method.

• Chapter 4: Research on autonomous integrity monitoring algorithm. To moni-
tor the navigation integrity for INMS in urban areas, a sequential IM method based on
multiple fault bias missing detection assumption is proposed. The IM dynamic regres-
sion model is constructed by a consistent posterior estimate provided by the proposed
robust filter. A consistency factor in state domain is calculated using the sequential
probability ratio over sliding windows. Under the multi-fault missing detection as-
sumption, the horizontal protection level is calculated based on the maximum eigen-
value combined with the consistency factor to quantitatively assess the confidence
of the position solution. Finally, simulation experiments are conducted to verify the
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effectiveness of the proposed IM method.

• Chapter 5: INMS algorithm validation experiment. Based on the above research,
the performance of the proposed robust state estimation, robust noise adaptation, and
autonomous integrity monitoring algorithms for practical applications are validated
through in-vehicle experiments equipped with the multiple sensors platform.

• Chapter 6: Conclusion and recommendations. The conclusions of the research
are drawn, including findings and contributions. Moreover, the recommendations are
given for future research work.
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Chapter 2

Robust State Estimation Algorithm for
INMS Noise Assumption Mismatch

2.1 Introduction

The state estimation under the traditional Kalman filter framework relies on a Gaus-
sian noise distribution assumption. However, in adverse urban areas, the interference from
outliers can cause noise to exhibit a heavy-tailed non-Gaussian distribution. For example,
GNSS can be affected by the frequent multi-path reflection effect; the odometers can be
affected by uneven road conditions. This results in a mismatch between the actual noise
probability distribution and the system noise model, i.e., the noise assumption mismatch.
On the one hand, the noise assumption mismatch makes the MMSE optimal estimation
criterion relying on a Gaussian distribution inapplicable, which reduces the state estima-
tion method’s performance. On the other hand, the noise assumption mismatch disrupts
the state Gaussian reconstruction process of the filter under Gaussian assumptions, which
reduces the covariance matrix propagation accuracy, resulting in non-consistency of the
estimation. The MCC optimal criterion effectively captures higher-order moment infor-
mation, fully exploits the non-Gaussian moment information in the RFU filter, ensures the
optimality of the RFU estimation, and improves the estimation’s robustness. However, the
MCC’s performance is limited by its tuning parameter, the kernel size. An appropriate
kernel size would reduce the filter estimation performance or even cause it to diverge.

This chapter presents a robust state estimation algorithm to address the problem of
INMS state estimation performance degradation due to noisy assumption mismatch in ur-
ban areas. First, the problem of state estimation for INMS is formulated. The principle
of RFU-based filters is illustrated, and its limitation in INMS is analyzed. Then, a robust
resampling-free filter based on the adaptive kernel-sizes MCC is proposed. The cost func-
tion of the RFU framework is constructed based on the MCC, which effectively exploits
the non-Gaussian moments of the non-closed state distribution, ensuring the resampling-
free estimation optimality and preventing the loss of the higher-order moment information
from the Gaussian reconstruction. An adaptive method for MCC kernel size is developed
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to achieve online optimal adjustment of kernel size and ensure robustness against outliers.
Finally, the effectiveness of the proposed method is verified by simulation experiments.

2.2 Analysis of the INMS State Estimation Problem

This section presents the state estimation issue in INMS. The CKF under the Gaussian
approximation assumption is given, and the numerical integration accuracy is analyzed in
the high-dimensional INMS model, which induces the significance of the resampling-free
filtering. First, a discrete-time stochastic dynamic system is considered as{

xk = fk (xk−1)+wk−1

zk = hk (xk)+ vk
(2.1)

where xk ∈ Rn and zk ∈ Rm are the state vector and the measurement vector at discrete-
time step k, respectively; fk (·) : Rn ⇒ Rn and hk (·) : Rn ⇒ Rm are the state dynamic
function and measurement function, respectively; wk−1 ∼ N(0,Qk−1) and vk ∼ N(0,Rk)

are the uncorrelated process and measurement noise with known covariance matrix Qk−1

and Rk, respectively.

To calculate the posterior state PDF, i.e., p (xk | z̄k) with z̄k = {z j,1⩽ j ⩽ k}, the states
and measurement are assumed as Gaussian distributions for ensuring analytical solutions
in closed form, then the joint PDF of state and measurement vector is calculated as [96, 97]

p (xk,zk | z̄k−1) = N

([
xk

zk

]
;

[
x̂k|k−1

ẑk|k−1

]
,

[
Pk|k−1 Pxz

k|k−1

(Pxz
k|k−1)

T Pzz
k|k−1

])
(2.2)

where the prior state mean x̂k|k−1 and covariance matrix Pk|k−1 are the Gaussian (i.e., the
first-two orders) moments of p (xk | z̄k−1); The predicted measurement ẑk|k−1 and covari-
ance matrix Pzz

k|k−1 are the Gaussian moments of p (zk | z̄k−1); Pxz
k|k−1 is the cross-covariance

matrix of state and measurement, i.e., Pxz
k|k−1 = E[x̃k|k−1z̃T

k|k−1], where x̃k|k−1 and z̃k|k−1 are
the prior state and the measurement estimation error.

Then, according to the Bayesian rule, the posterior state PDF p (xk | z̄k) is approxi-
mated as a Gaussian distribution and formulated based on Eq. (2.2) as follows [98] (Deriva-
tion details are given in the Appendix A):

p (xk | z̄k) =
p (xk,zk | z̄k−1)

p (zk | z̄k−1)
≈ N (xk; x̂k,Pk) . (2.3)
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The calculation of N (xk; x̂k,Pk) relies on some conditional variable PDF that needs to
be obtained through GWI, such as x̂k|k−1. Since the analytical solution of GWI is generally
computationally intractable, the numerical integration rule is used to approximate the GWI,
which is formulated in a uniform form as∫

Rn
u(xk)N(xk; x̂k,Pk)dx ≈

ns

∑
i=1

w(i)u(x(i)k ) (2.4)

where x(i) and w(i) are the sampling points and the corresponding weights, respectively;
ns is the number of sampling points. In the spherical-radial cubature rule, the number of
cubature points is ns = 2n; The weight is w(i) = {1/ns,1 ⩽ i ⩽ ns}; The sampling points
(referred as cubature points) are generated as [99, 100]

x(i)k = chol (Pk)ξ i + x̂k, for i = 1, · · · ,ns (2.5)

where Pk denotes the state mean square error matrix; chol (·) denotes the lower triangu-
lar matrix calculated by Cholesky decomposition; ξ

(i) denotes the i-th column of ξ =
√

n [ In − In] with the n-dimensional identity matrix In. The implementation of CKF is
formulated in Algorithm 1.

Algorithm 1: One-time step implementation of CKF
Input: x̂k−1,Pk−1,Qk−1,Rk

Output: x̂k,Pk

/* Time Update */

1: x(i)k−1 = chol (Pk−1) ¸i + x̂k−1, for i = 1, · · · ,ns

2: x̂k|k−1 = ∑
ns
i=1 w(i)fk(x

(i)
k−1)

3: Pk|k−1 = ∑
ns
i=1 w(i)fk(x

(i)
k−1)fk(x

(i)
k−1)

T − x̂k|k−1x̂T
k|k−1 +Qk−1

/* Measurement Update */

4: x(i)k|k−1 = chol
(
Pk|k−1

)
¸i + x̂k|k−1, for i = 1, · · · ,ns

5: ẑk|k−1 = ∑
N
i=1 w(i)hk

(
x(i)k|k−1

)
6: Pzz

k|k−1 = ∑
N
i=1 w(i)hk

(
x(i)k|k−1

)
hk

(
x(i)k|k−1

)T
− ẑk|k−1ẑT

k|k−1 +Rk

7: Pxz
k|k−1 = ∑

N
i=1 w(i)x(i)k|k−1hk

(
x(i)k|k

)T
− x̂k|k−1ẑT

k|k−1

8: Gk = Pxz
k|k−1(P

zz
k|k−1)

−1

9: x̂k = x̂k|k−1 +Gk
(
zk − ẑk|k−1

)
10: Pk = Pk|k−1 −GkPzz

k|k−1GT
k

The estimation accuracy of CKF is analyzed qualitatively based on the propagation of
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cubature points in the high-dimensional INMS model. The subscript moment k is omitted
from the following analysis for simplicity of presentation. Considering a general function
h(·), there are

ẑ =
∫

Rn
h(x)N(x; x̂,P)dx ≈

ns

∑
i=1

w(i)h(x(i)) (2.6)

A multivariate Taylor series expansion of the cubature point x(i) in Eq. (2.6) at x̂ gives

h(x(i)) = h(x̂)+
∞

∑
l=1

1
l!

Dl
ei

h (2.7)

where Dl
ei

h =
[
∑

n
j=1 ei, j

∂

∂x j

]l
h(x)

∣∣∣∣
x=x̂

; ei = x(i) − x̂ = chol (P)ξ i; ∂ /∂x j is the partial

derivative of j-th element of the x; l is the expansion order of the Taylor series. As seen
from Eq. (2.5), the sampling locations of the cubature points are symmetrically distributed
around x̂, so bringing Eq. (2.7) into Eq. (2.6), the state mean and covariance matrix propa-
gated through the cubature points are denoted as

ẑct =h(x̂)+
1
2
(
∇

TP∇
)

h(x)
∣∣
x=x̂ + rm(n)

Pct =H(x̂)PHT(x̂)− 1
4
(
∇

TP∇
)

h(x)
∣∣∣∣
x=x̂

[(
∇

TP∇
)

h(x)
∣∣
x=x̂

]T
+ rcov(n)

(2.8)

where ∇T = [∂ /∂x1 · · · ∂ /∂xn]; H(x̂) = ∂h/∂xT
∣∣
x=x̂; rm(n) is a Taylor series higher

order term (greater than or equal to the fourth order), denoted by

rm(n) =
1

2n

ns

∑
i=1

∞

∑
l=2

1
(2l)!

D2l
ei

h = nl−1
ns

∑
i=1

∞

∑
l=2

[
1

(2l)!

n

∑
j=1

Pl(i, j)

]
(2.9)

where Pl(i, j) is the covariance of j-th element of ei, j; rcov(n)is the sum of higher order
terms in the Taylor series expansion, denoted by

rcov (n) =
1
4

E
[
D2

e h
(
D2

e h
)T
]
+

1
2×3!

E
[
D2

e h
(
D3

e h
)T
]
+ · · · (2.10)

Furthermore, the actual state mean and covariance matrix are denoted as [101, 102]
ẑ t =h(x̂)+

1
2
(
∇

TP∇
)

h(x)
∣∣∣∣
x=x̂

+E

[
D4

δxh
4!

+
D6

δxh
6!

+ · · ·

]

Pt =H(x̂)PHT(x̂)− 1
4
(
∇

TP∇
)

h(x)
∣∣∣∣
x=x̂

[(
∇

TP∇
)

h(x)
∣∣
x=x̂

]T − rtcov(n)

(2.11)

where rtcov(n) = E
[
∑

∞
i=1 ∑

∞
j=1

1
(2i)!(2 j)!

(
D2i

δxh
)(

D2i
δxh
)T
]
+ E∑

∞
i=2 ∑

∞
j=2
(
Di

δxh
)(

Di
δxh
)T; δx is

the expansion point x̂ offset from the actual mean.

Comparing the Taylor expansion of the state means and covariances based on the
propagation of cubature points in Eq. (2.8) with their actual values in Eq. (2.11), it can be
given that:
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(1) The state mean ẑct based on the cubature transformation introduces an approximation
error starting from the higher-order term rm(n). Similarly, the state covariance P̂ct

introduces approximation errors from the higher order terms rcov(n). Since rm(n)

and rcov(n) are proportional to the exponential of the system dimension n, the ap-
proximation error increases with the system dimension. For the high-dimensional
system of INMS (n = 18 for the model), a large approximation error occurs, result-
ing in a degradation of the filtering accuracy.

(2) In the cubature transformation process, the posterior analytical solution is obtained
by assuming that the state follows a Gaussian distribution. Furthermore, the cubature
points x(i) are tied to the coordinate axes by ξ i, which results in a cubature point dis-
tribution that retains only the Gaussian moment, discards the available non-Gaussian
higher-order moment information, destroys the original state probability distribution,
and limits the state estimation performance.

2.3 Resampling-Free Gaussian Approximation Filter

To overcome the above mentioned limitations of GAF, the section introduces the
resampling-free filtering and analyzes its problems in INMS.

2.3.1 RFU Based on the Center Matrix of the Cubature Points

(1) Brief Principle: The principle of resampling-free update is given [25]. First, the
sampling point centre matrix is defined as Eq. (2.12). The sampling point is updated by the
centre matrix rather than regeneration based on Gaussian assumptions.

X̃ =
[
x(1)− x̂ · · · x(ns)− x̂

]
. (2.12)

In detail, the prior center matrix is denoted as X̃− with covariance matrix P−. The
posterior center matrix is denoted as X̃+ with covariance matrix P+. According to the
definitions of X̃+ and X̃−, there are

X̃+w = X̃−w = 0

P− = X̃−W
(
X̃−)T

P+ = X̃+W
(
X̃+
)T

= P−+R

(2.13)

where W = diag (w)) denotes the diagonal matrix; w is a vector constructed by the weights
of each cubature point, i.e., w= [w(1) · · · w(ns)]T; R is the uncertainty due to random noise.
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To update the posterior sampling points sets, a posterior centre matrix needs to be
calculated based on the known prior centre matrix in a recursive process. Consider the
relationship between them as

X̃+ = EX̃− (2.14)

Taking Eq. (2.14) into Eq. (2.13) yields

EL− (L−)T E T = L+
(
L+
)T (2.15a)

P+ = EX̃−W
(
EX̃−)T

= E
(
P−)ET (2.15b)

where L ∈
{

L+,L−} denote the lower triangular matrix of P ∈
{

P+,P−}. Thus, E can be
calculated as

E = L+M
(
L−)−1

= chol
(
P−+R

)
Mchol

(
P−)−1 (2.16)

where M denotes any orthogonal matrix, i.e., MMT = I. Once X̃+ is obtained using E in
Eq. (2.14), a posterior sample point set is updated according to Eq. (2.12) to avoid regener-
ating based on Gaussian assumption.

(2) RFU Filter: Based on the above principle, a RFU-based filter is proposed [103].
The posterior state centre matrix X̃k is calculated by the prior centre matrix X̃k|k−1 and
measurement centre matrix Z̃k|k−1. In detail, the posterior error matrix at time-step k is
calculated as

X̃k = αkEkX̃k|k−1 −αkGkZ̃k|k−1 (2.17)

where the prior state and measurement error matrix are calculated as

ϑ̃ k|k−1 =
[
ϑ
(1)
k|k−1 − ϑ̂ k|k−1 · · · ϑ

(ns)
k|k−1 − ϑ̂ k|k−1

]
, (2.18)

where ϑ ∈ {x,z}; Ek and αk are calculated by

Ek = chol
(
Pk|k−1

)
chol

(
Pk|k−1 −Qk−1

)−1 (2.19a)

αk = chol (Pk)Mk chol(Pk −GkRkGT
k )

−1 (2.19b)

where the term Pk −GkRkGk denotes the posterior covariance matrix without the effect
of additive measurement noise; A particular solution can be obtained by setting Mk as the
identity matrix In. Then, the cubature points are modified by the posterior error matrix as

x(i)k = x̂k + X̃i,k, for i = 1, · · · ,ns. (2.20)
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The updated posterior cubature points are used to input the recursive filtering for the
next time-step and remove the dependence on Gaussian assumption, retaining the informa-
tive high-order moments contained in the original state distribution.

2.3.2 Limitations Analysis for RFU in INMS

Although ISUF removes the dependence on Gaussian assumption through a non-
resampling operation, it still has the following limitations in INMS:

(1) It still adopts the MMSE based on the Gaussian assumption as the optimal estimation
criterion to fuse the a priori state and measurement information in the posterior up-
dating process. However, since the nonlinear mapping violates the closure property
of the state PDF without Gaussian reconstruction, it tends to produce a significant
deviation of the state distribution from the Gaussian assumption after multiple nonlin-
ear propagations. This results in a severely non-Gaussian distribution and renders the
MMSE inapplicable in resampling-free filters, thus preventing estimation optimality.

(2) To compute the posterior error matrix, multiple Cholesky decompositions of the EMSE
are performed in Eq. (2.19). However, without Gaussian reconstruction, the differ-
ences in state magnitudes in INMS can lead to significant gaps between eigenvalues
of EMSE (e.g., a factor of 108 between velocity error and gyro zero-bias covariance
eigenvalues), making the EMSE matrix singular. Cholesky decomposition in this case
can lead to numerical instability or even filter divergence.

2.4 Robust RFU Filter Based on Maximum Correntropy
Criterion

To address the limitations of RFU in INMS, the section proposes a robust resampling-
free filtering algorithm based on MCC. First, the definition of MCC is given. Then, an RFU
filtering framework based on MCC is constructed, and the kernel size adjustment method
of MCC is proposed. Finally, the theoretical performance of the proposed algorithm is
analyzed.

2.4.1 Maximum Correntropy Criterion

The correntropy is a metric of similarity between two variables. Given two random
variables x,y ∈ Rn with the joint probability distribution p (x,y), the correntropy is defined
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as:
C (x,y) = E [ϖ (x,y)] =

∫
Rn

ϖ (x,y)dp (x,y) (2.21)

where E [ · ] is the expectation operator; $ (x,y) denotes the kernel function satisfying the
Mercer theory. The Gaussian kernel is chosen as the kernel function due to its infinite
approximation ability to a nonlinear model, which is expressed as [42, 43]:

ϖ (x,y) = Gσ (x−y) = exp
(
−
∥ x−y ∥2

W
2σ2

)
(2.22)

where Gσ (·) ∈ (0,1] is positive and bounded; σ > 0 is the kernel size. ∥ · ∥2
W = (·)TW(·)

denotes the squared-weighted Mahalanobis distance with W as the weights matrix. Gen-
erally, p (x,y) is computationally intractable, and only a finite amount of data is available.
So the correntropy is calculated by the mean of a sample.

C (x,y) =
1
ns

ns

∑
i=1

Gσ

(
x(i)−y(i)

)
(2.23)

where {x(i),y(i)}ns
i=1 is the ns samples drawn from p (x,y). Then taking the Taylor series

expansion of the Gaussian kernel function:

C (x,y) =
∞

∑
n=0

(−1)n

2nσ2nn!
E
[
(x−y)2n

]
(2.24)

The correntropy is a weighted sum of all even-order moments of the variable x−y, so
the high-order information of the data can be captured. Since the correntropy is a metric
of similarity, the robust state estimation can be achieved by maximizing the correntropy as
an optimization criterion. The cost function of can be formulated as

JMCC(x) =
n f

∑
i=1

Gσ (zi −hi (x)) (2.25)

where zi = hi (xt) + vi denotes the measurment; xt is the actual state vector. The state
optimal estimate is obtained by maximizing the objective function, i.e.

x̂ = argmax
x

JMCC (x) = argmax
x

n f

∑
i=1

Gσ (zi −hi (x)) (2.26)

MCC-based filtering can effectively capture the higher-order moments information of
the residual ri = zi − hi (x). In addition, in the presence of outliers, the effect of larger
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deviations on the correntropy will be weakened by the thresholding effect of the negative
exponential term based on the kernel size σ , which avoids a state estimation contamination.

2.4.2 A RFU Filtering Framework Based on MCC

The MCC is adopted as the optimization criterion to construct an objective function
to exploit the non-Gaussian moments, and an RFU based on the square-root factor of the
posterior centre matrix is devised, which ensures the estimation optimality and improves
the robustness of the estimation. The details of the derivation are as follows. The imple-
mentation of the proposed MCC-based RFU framework CKF (MRCKF) is formulated in
the Algorithm 2

(1) Time Update

Time update computes state a priori. Modifying the sampling points based on the
posterior centre matrix as

x(i)k−1 = x̂k−1 + X̃i,k−1, for i = 1, · · · ,ns (2.27)

Propagating cubature points and calculating the prior state mean.

x̂k|k−1 =
1
ns

ns

∑
i=1

χ
(i)
k|k−1 =

1
ns

ns

∑
i=1

fk(x
(i)
k−1) (2.28)

Then, the propagating cubature points error matrix is given as

Lk|k−1 =
[

χ
(1)
k|k−1 − x̂k|k−1 · · · χ

(ns)
k|k−1 − x̂k|k−1

]
(2.29)

where state covariance matrix is obtained by Pk|k−1 =
1
ns

Lk|k−1LT
k|k−1 +Qk−1. To avoid the

Cholesky decomposition, it is supposed to operate directly on Lk|k−1. Therefore, based on
the matrix decomposition rules, the square-root factors of Pk|k−1 can be calculated by QR
decomposition of Lk|k−1 as

Dk|k−1 =
1

√
ns

qr
(

LT
k|k−1

)
(2.30a)

Sk|k−1 =
1

√
ns

qr
([

Lk|k−1,
√

nsS
q
k

]T) (2.30b)

where qr (·) denotes the lower triangular matrix calculated by QR decomposition with bet-
ter numerical stability; Sq

k is the square-root factor of the process noise covariance matrix,
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i.e., Qk = Sq
k(S

q
k)

T; Dk|k−1 and Sk|k−1 are the square-root factor of the covariance matrix
without and with process noise, respectively. Then, the scaling matrix is calculated as

Ek = Sk|k−1D−1
k|k−1 = qr

([
Lk|k−1,

√
ns Sq

k

]T)qr
(

LT
k|k−1

)−1
(2.31)

Since the model uncertainty is not considered, Lk|k−1 is scaled by Ek to incorporate
the process noise as

X̃k|k−1 = Ek Lk|k−1. (2.32)

(2) Measurement Update

Modifying the prior state cubature points based on X̃k|k−1 as

x(i)k|k−1 = x̂k|k−1 + X̃i,k|k−1, for i = 1, · · · ,ns (2.33)

Propagating prior cubature points z(i)k|k−1 = hk(x
(i)
k|k−1) and calculating the predicted

measurement mean ẑk|k−1. Then, the measurement error matrix is calculated as

Z̃k|k−1 =
[

z(1)k|k−1 − ẑk|k−1 · · · z(ns)
k|k−1 − ẑk|k−1

]
. (2.34)

The square-root factor of the predicted measurement covariance matrix is calculated
as

Pẑẑ
k|k−1 =

1
ns

Z̃k|k−1Z̃T
k|k−1 (2.35)

The cross-covariance matrix is calculated as

Pxz
k|k−1 =

1
ns

X̃k|k−1Z̃T
k|k−1 (2.36)

Instead of MMSE, the MCC is then adopted as the optimal criterion. The cost function
is constructed as

JMCC (xk) = Gσ

(∥∥xk − x̂k|k−1
∥∥2

P−1
k|k−1

)
+Gσ

(
∥zk −h (xk)∥2

R−1
k

)
(2.37)

where the kernel function Gσ (·) is generally chosen as Gaussian kernel by its infinite
approximation ability in Eq. (2.22). Then, the optimal state estimate in the sense of MCC
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is calculated by maximizing the objective function as

x̂k = argmax
xk

JMCC (xk) (2.38)

Solving the optimization problem by taking the derivative of Eq. (2.37) as

∂JMCC (xk)

∂xk
= Gσ

(
xmd

k

)
∂xmd

k
∂xk

+Gσ

(
zmd

k

)
∂zmd

k
∂xk

= 0 (2.39)

where xmd
k =

∥∥xk − x̂k|k−1
∥∥2

P−1
k|k−1

; zmd
k = ∥zk −h (xk)∥2

R−1
k

. Then, rearranging it yields

Gσ

(
xmd

k

) ∂

[(
xk − x̂k|k−1

)T P−1
k|k−1

(
xk − x̂k|k−1

)]
∂xk

+

Gσ

(
zmd

k

) ∂

[
(zk −h (xk))

T R−1
k (zk −h (xk))

]
∂xk

= 0

(2.40)

Based on the rules of matrix derivation operations, the following equation holds

Gσ

(
xmd

k

)(
xk − x̂k|k−1

)T P−1
k|k−1 = Gσ

(
zmd

k

)
(zk −h (xk))

T R−1
k

∂h (xk)

∂xk
(2.41)

Transform Eq. (2.41), it can be obtained as

xk = g
(

Gσ

(
xmd

k

)
,Gσ

(
zmd

k

)
, x̂k|k−1,zk

)
(2.42)

According to Eq. (2.42), the optimal solution involves the fixed-point iterations of
state xk. Denoting xt

k as the solution at the fixed-point iteration count t, then expanding
h (xk) by Taylor series at the iteration state x̂t

k, it can be obtained as follows

P−1
k|k−1 (xk − x̂t

k)Gσ

(
xmd

k

)
= (Hk)

TR−1
k (z̃t

k −Hk (xk − x̂t
k))Gσ

(
zmd

k

)
(2.43)

where z̃t
k denotes the measurement innovation term, i.e., z̃t

k = zk −h
(
x̂t

k

)
; Hk denotes the

Jacobian matrix of measurement function hk (·) at state vector x̂t
k. Then, Eq. (2.43) is

rearranged as
Ip

k xk = (Hk)
T R−1

k Gσ

(
(zt

k )
md
)

z̃t
k + Ip

k x̂k|k−1 (2.44)
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where Ip
k = P−1

k|k−1Gσ

(
xmd

k

)
+ (Hk)

T R−1
k Gσ

(
zmd

k

)
Hk. By rearranging Eq. (2.44), it can be

obtained as
x̂t+1

k = x̂k|k−1 +Gkz̃t
k, (2.45)

where filter gain is calculated as

Gk = Pk|k−1Gσ

(
xmd

k

)−1
HT

k

(
HkPk|k−1Gσ

(
xmd

k

)−1
HT

k +RkGσ

(
zmd

k

)−1
)−1

(2.46)

Generally, the prior state mean has sufficient accuracy in INMS due to a more accurate
SINS error modeling. Thus, the fixed-point iteration is performed only to calculate the
measurement correntropy to improve robustness. So Gk is calculated by

Gk = Pxz
k|k−1Cz

k

(
Pẑẑ

k|k−1Cz
k +Rk

)−1
, (2.47)

where the correntropy matrix is calculated as

Cz
k = diag

[
Gσ

(∥∥z̃ t
1,k
∥∥2

R−1
1,k

)
, ...,Gσ

(∥∥z̃ t
m,k
∥∥2

R−1
m,k

)]
(2.48)

where R j,k is the j-th diagonal element of Rk; z̃ t
j,k is the j-th element of z̃ t

k.

Once the solution x̂t+1
k is obtained by Eq. (2.45), it is brought into Eq. (2.33) for the

next iteration. At the end of the iteration, the square-root factor of the error matrix without
and with additive measurement noise is calculated separately as

Dk =
1

√
ns

qr
([

X̃k|k−1 −GkZ̃k|k−1
]T) (2.49a)

Sk =
1

√
ns

qr
([

X̃k|k−1 −GkZ̃k|k−1,
√

ns GkSr
k
]T) (2.49b)

where Sr
k denotes the square-root factor of the measurement noise covariance matrix, i.e.,

Rk = Sr
k(S

r
k)

T. Then, the weighting factor αk is calculated as

αk = SkD−1
k . (2.50)

Then, the state posterior error matrix is calculated for the next period of cubature
points update as

X̃k = αkX̃k|k−1 −αkGkZ̃k|k−1. (2.51)
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Algorithm 2: One-time step implementation of proposed MRCKF
Input: x̂0,P0,Qk,Rk; Number of iterations Nm

Output: x̂k, X̃k

/* Time Update */

1: x(i)k−1 = x̂k−1 + X̃i,k−1, for i = 1, · · · ,ns

2: x̂k|k−1 =
1
ns

∑
ns
i=1 χ

(i)
k|k−1 =

1
ns

∑
ns
i=1 fk(x

(i)
k−1)

3: Lk|k−1 =
[

χ
(1)
k|k−1 − x̂k|k−1 · · · χ

(ns)
k|k−1 − x̂k|k−1

]
4: Ek = Sk|k−1D−1

k|k−1 = qr
([

Lk|k−1,
√

ns Sq
k

]T)qr
(

LT
k|k−1

)−1

5: X̃k|k−1 = Ek Lk|k−1

/* Measurement Update */

6: xt
k = x̂k|k−1

7: for it = [1 : Nm] do

8: x(i)k|k−1 = xt + X̃i,k|k−1, for i = 1, · · · ,ns

9: ẑk|k−1 =
1

2n ∑
2n
i=1 z(i)k|k−1

1
2n ∑

2n
i=1 hk(x

(i)
k|k−1)

10: Z̃k|k−1 =
[

z(1)k|k−1 − ẑk|k−1 · · · z(ns)
k|k−1 − ẑk|k−1

]
11: Pẑẑ

k|k−1 =
1
ns

Z̃k|k−1Z̃T
k|k−1

12: Cz
k = diag

[
Gσ

(∥∥z̃ t
1,k

∥∥2
R−1

1,k

)
, ...,Gσ

(∥∥z̃ t
m,k

∥∥2
R−1

m,k

)]
13: Gk = Pxz

k|k−1Cz
k

(
Pẑẑ

k|k−1Cz
k +Rk

)−1

14: x̂t+1
k = x̂k|k−1 +Gk

(
zk − ẑ t

k|k−1

)
15: end

16: Dk =
1√
ns

qr
([

X̃k|k−1 −GkZ̃k|k−1
]T)

17: Sk =
1√
ns

qr
([

X̃k|k−1 −GkZ̃k|k−1,
√

ns GkSr
k

]T)
18: αk = SkD−1

k

19: X̃k = αkX̃k|k−1 −αkGkZ̃k|k−1

2.4.3 Adaptive Method for Correntropy Kernel Sizes

The performance of MCC is affected by the kernel size σ . For the same innova-
tion term, a smaller σ results in a smaller eigenvalue of Cz

k, leading to a reduction of the
gain Gk, which can effectively improve robustness against outliers. However, the filtering
performance will be degraded or even diverge in Gaussian noise. Therefore, an appropri-
ate kernel size is critical to balance filter robustness and accuracy. Some adaptive kernel
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size methods have been proposed. However, these methods suffer from the excessive con-
vergence of kernel size in INMS. Hence, an adaptive kernel size adjustment method for
different noise cases is proposed. First, a theorem is given as follows:

Theorem 2.1. In the presence of outliers, the kernel size has to satisfy an upper bound for

the MCC to outperform the MMSE in estimation accuracy.

Proof. The state mean square error based on MCC and MMSE are compared in [104].
The actual state EMSE of MCC is smaller than that of MMSE and has better estimation
accuracy when the following conditions are satisfied:

Rt
k ⩾ Pẑẑ,k|k−1 + 2Rk (2.52a)

Rt
k ⩽

(
Cz

k

)−1 Pẑẑ,k|k−1Ck + 2Rk
(
Cz

k

)−1 (2.52b)

where Rt
k denotes the true measurement noise covariance matrix, which is different from

Rk used by the filter due to the unmodeled outliers. The heavy-tailed distribution caused
by outlier interference is simplified to a Gaussian distribution with a larger noise variance
to enable subsequent derivation. Then, in the measurement-specific conditions, the j-th
diagonal element of Eq. (2.52) is extracted and rearranged as follows:

P j j,ẑẑ,k|k−1 + 2R j,kGσ j,k

(∥∥z̃ j,k
∥∥2

R−1
j,k

)−1

⩾ Rt
j,k (2.53)

Eq. (2.53) is rearranged to obtain as follows:

Gσ j,k

(∥∥z̃ j,k
∥∥2

R−1
j,k

)
⩽

2R j,k

Rt
j,k −P j j,ẑẑ,k|k−1

(2.54)

Take the negative logarithm of the Eq. (2.54)∥∥z̃ j,k
∥∥2

R−1
j,k

2σ2
j,k

⩾− ln

(
2R j,k

Rt
j,k −P j j,ẑẑ,k|k−1

)
(2.55)

Since g =
2R j,k

Rt
j,k−P j j,ẑẑ,k|k−1

⩽ 1, ln (g) is non-positive, thus Eq. (2.55) can be rearranged as
follows:

σ j,k ⩽

√√√√∥∥z̃ j,k
∥∥2

R−1
j,k

−2ln (g)
(2.56)
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Therefore, for MCC to outperform MMSE with respect to EMSE, the kernel size must
satisfy an upper bound. As the kernel size exceeds the upper bound, the estimation accu-
racy of MCC decreases due to the weakened robustness to outliers. This is also consistent
with the aforementioned theoretical conclusion of kernel size, i.e., MCC degradation to
MMSE occurs when the kernel size is too large.

According to Theorem 2.1, the kernel size should be tuned based on the upper bound.
However, the upper bound of the right term of Eq. (2.56) cannot be calculated quantitatively
because the equivalent MNCM subject to outlier perturbations is unknown. Therefore, to
achieve the measurement-specific outlier processing, the kernel size is adjusted by:

σ j,k = λ j,k ·σmax, for j = 1,2, · · · ,m (2.57)

where λ j,k is the adaptive factor for the j-th element of measurement at time-step k, i.e.,
z j,k; σmax is the setting maximum kernel size (i.e., the upper bound).

According to the definition of the adaptive kernel size, the kernel size can be kept
within a reasonable range by restricting the range of λ j,k, so the adaptive factor must be de-
signed to be appropriately adapted to different noises. Inspired by the chi-squared test, the
relationship between the innovation term and its covariance matrix Pzz,k|k−1 is considered.
α j,k is first formulated as:

α j,k =
Pzz,k|k−1

(z̃ j,k)
2 (2.58)

where P j j,zz,k|k−1 is the j-th diagonal element of the innovation covariance matrix Pzz,k|k−1 =

Pẑẑ,k|k−1 +Rk; z̃ j,k is the j-th element of innovation term z̃k, i.e., z̃ j,k = z j,k − ẑ j,k|k−1. Then
the adaptive factor λ j,k is calculated by

λ j,k = 1− exp (−α j,k) (2.59)

where λ j,k ∈ (0,1) is positive and bounded. Taking λ j,k into Eq. (2.57) to obtain the adap-
tive kernel size. Then, the correntropy matrix in Eq. (2.48) is reconstructed based on adap-
tive kernel sizes as

Cz
k = diag

[
Gσ1,k

(
∥z̃1,k∥2

R−1
1,k

)
, ...,Gσm,k

(
∥z̃m,k∥2

R−1
m,k

)]
(2.60)

Remark: The proposed adjustment method is analyzed numerically. Fig. 2.1 shows
the adaptive kernel size adjustment curve and the corresponding SMD (i.e., measurement
weights). As can be seen from Fig. 2.1 that
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(1) Without large outliers disturbances, the residual z̃2
j,k is smaller. In this case, the kernel

width is kept at a large value, and the measurement weight of MCC is basically the
same as that of the MMSE, maintaining a good estimation accuracy. Conversely, in
the presence of the outliers, z̃2

j,k are large, resulting in smaller kernel size and SMD to
suppress the interference of the contaminated measurements on the state estimation.

(2) The adaptive kernel size is insensitive to the choice of tuning parameter σmax. Sup-
pose σmax is set larger, the innovation z̃ j,k will be large due to insufficient outlier
suppression, which will lead to a decrease in λ j,k. As a result, the kernel size does not
increase as σmax, and becomes smaller to resist the interference of outliers. Therefore,
the proposed method is more stable and convenient in selecting the tuning parameter.

Figure 2.1: Adaptive kernel size and corresponding measurement weights for MMSE and
MCC

2.4.4 Algorithm Performance and Complexity Analysis

(1) Estimation accuracy analysis

The estimation accuracy of the proposed RFU framework-based CKF is analyzed.
First, the prior cubature points are updated based on Eq. (2.31) to Eq. (2.33) as

x(i)k|k−1 = x̂k|k−1 +Sk|k−1D−1
k|k−1

(
fk(x

(i)
k−1)− x̂k|k−1

)
(2.61)

Arranging the above equation gives

x(i)k|k−1 = x̂k|k−1 +Sk|k−1λ
(i)
k (2.62)
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where λ
(i)
k = D−1

k|k−1(fk(x
(i)
k−1)− x̂k|k−1). In addition, the posterior cubature points are updated

based on Eq. (2.51) as

x(i)k = x̂k + X̃i,k−1 = x̂k +αkX̃i,k|k−1 −αkGkZ̃i,k|k−1

= x̂k +αk

(
x(i)k|k−1 − x̂k|k−1

)
−αkGk

(
z(i)k|k−1 − ẑk|k−1

) (2.63)

Then, taking Eq. (2.47) into Eq. (2.63), there gives

x(i)k = x̂k +Sk θ
(i)
k (2.64)

where
θ
(i)
k = D−1

k

(
x(i)k|k−1 − x̂k|k−1

)
−D−1

k Pxz
k|k−1Cz

k×(
Pẑẑ

k|k−1Cz
k +Rk

)−1(
hk

(
x(i)k|k−1

)
− ẑk|k−1

) (2.65)

Then, the GWI based on the sampling points is calculated. In terms of prior estimation
as an example, taking a Taylor expansion of fk(·) at the mean x̂k for x(i)k as

fk(x
(i)
k ) = f(x̂k)+

∞

∑
l=1

1
l!

Dl
ei

fk (2.66)

where Dl
ei

fk =
[
∑

n
j=1 ei, j

∂

∂x j

]l
fk(x)

∣∣∣∣
x=x̂k

; ei = x(i)k − x̂k = Skθ
(i)
k ; l is the order of the Taylor

expansion; ∂ /∂x j is the partial derivation of j-th element of the vector xk. The mean of
GWI is then calculated as

x̂k|k−1 = E

[
ns

∑
i=1

w(i)fk

(
x(i)k

)]
= f(x̂)+

1
2n

ns

∑
i=1

Deifk + y(2)k +
1
2n

ns

∑
i=1

D3
ei

fk + y(hom)
k (2.67)

where y(2)k = 1
2n [∇

TSk(∑
ns
i=1 θ

(i)
k θ

(i)
k

T
)ST

k ∇]f(x̂) is the second-order term in the Taylor expan-
sion; The high-order term is denoted as y(hom)

k = 1
2n ∑

ns
i=1 ∑

∞
l=4

1
l! D

l
ei

fk. In addition, the mean
of CKF with symmetrical sampling points is given as

x̂s
k|k−1 = f(x̂)+ ys(2)

k +
1

2n

ns

∑
i=1

∞

∑
l=4

1
l!

Dl
es

i
fk (2.68)

where ys(2)
k = 1

2n [∇
TSk(∑

ns
i=1 ξ

(i)
ξ
(i)T

)ST
k ∇]f(x̂).

In the resampling process, ξ i is constrained to the unit axis, leading cubature points
cannot capture the higher-order moment of state PDF. Conversely, as can be seen from
Eq. (2.62) and Eq. (2.65), the calcualtion of λ

(i) and θ
(i) depends on the nonlinear model

fk(·), hk(·) and the correntropy matrix Cz
k with higher-order moment of measurement.



34 Chapter 2. Robust State Estimation Algorithm

Furthermore, comparing the Eq. (2.67) and Eq. (2.68), due to the symmetry of the sampling
point locations, x̂s

k|k−1 offsets the odd order of the Taylor expansion term. On the contrary,
x̂k|k−1 preserves odd-order terms due to the asymmetry of the sampling points. Thus, the
cubature point set preserves more model and measurement information and has higher
estimation accuracy.

(2) Estimation consistency analysis

The estimation consistency is defined as the quantitative conformity of the filter mean
square error (MSE) and the actual MSE of state vector [105], which is essential for subse-
quent integrity monitoring approaches. Therefore, the estimation consistency of the pro-
posed filter is analyzed, and the theorem is given as follows.

Theorem 2.2. In the absence of outliers, the consistency for state a posteriori of MRCKF is

comparable to those of MMSE. However, in the presence of fault-biases, MRCKF provides

more consistent state a posteriori estimates than MMSE.

Proof. (1) In the absence of outliers, the consistency of state estimation of different meth-
ods is compared with an accurate MNCM. The state EMSE at time-step k is denoted as

Pmc
k = E

[
x̃kx̃T

k
]
= E

[
(xk − x̂k) (xk − x̂k)

T
]

= Pk|k−1 −Gmc
k

(
Pẑẑ

k|k−1 +Rk

)
(Gmc

k )T
(2.69)

To linearize hk(·) for tractable analysis, the EMSE can be expressed as

Pmc
k = (I−Gmc

k Hk)Pk|k−1 (I−Gmc
k Hk)

T +KkRkKT
k (2.70)

where Gmc
k is the filtering gain of MRCKF. Further, the EMSE inverse matrix can be ex-

pressed based on the matrix inversion lemma as

(Pmc
k )−1 =

(
Pk|k−1

)−1
+HT

k Cz
kR−1

k Hk (2.71)

Then, the EMSE inverse matrix of the MMSE-based filter is computed. The filter has
the same a priori update as the MRCKF and thus has the same Jacobi matrix Hk. Therefore,
the EMSE inverse matrix is expressed as

(Pme
k )−1 =

(
Pk|k−1

)−1
+HT

k R−1
k Hk (2.72)
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The difference between the inverse EMSE matrices of the two filters is expressed as

(Pmc
k )−1 −

(
Psf

k

)−1
= HT

k
(
Cz

kR−1
k −R−1

k

)
Hk (2.73)

In the absence of outliers, the smaller innovation term makes the correntropy matrix
Cz

k close to a unit matrix, then Cz
kR−1

k −R−1
k ≈ 0. Thus, Pmc

k ≈ Pme
k , i.e., the consistency for

state a posteriori of MRCKF is comparable to those of MMSE.

(2) In the presence of outliers, the estimation consistency of different methods is com-
pared. First, the actual noise covariance matrix is equivalently referred to as Rt

k. Then,
according to Eq. (2.69), the actual state MSE is calculated as

Ptmc
k = Pk|k−1 −Gmc

k

(
Pẑẑ

k|k−1 +Rt
k

)
(Gmc

k )T (2.74)

The state MSE error can be calculated as

∆Pmc
k = Pmc

k −Ptmc
k = Gmc

k ∆Rk (Gmc
k )T (2.75)

where ∆Rk = Rt
k −Rk. In the same way, the MSE estimation error of the MMSE-based

filter is expressed as

∆Pme
k = Pme

k −Ptme
k = Gme

k ∆Rk (Gme
k )T (2.76)

where Psf
k and Ptsf

k denotes the estimated MSE and actual MSE of state respectively. Gsf
k

is filter gain. Then, the difference between the MSE estimation errors of the two filters is
expressed as

δPk = ∆Pmc
k −∆Pme

k = Gmc
k ∆Rk (Gmc

k )T −Gme
k ∆Rk (Gme

k )T (2.77)

Extract the j-th diagonal matrix element of δPk for comparison as

δP j = ∆Pmc
k, j −∆Pme

k, j =
(

s
(

Gmc
k, j

)
− s
(

Gme
k, j

))
∆Rd

k (2.78)

where Gsf
k, j and Gmc

k, j denotes the j-th column vector of the filter gain; s (·) ∈ R1×m is the
vector constructed from the squares of each element of the vector; ∆Rd

k ∈ Rm×1 is a vector
constructed from the diagonal elements of ∆Rk, i.e., ∆Rd

k = diag (∆Rk).

According to Eq. (2.78), in the presence of unmodeled outliers, the measurement noise
usually follows a heavy-tailed distribution with second-order moments Rt

k larger than the
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nominal matrix Rk, which causes each element of ∆Rd
k to be greater than 0. Meanwhile,

due to the amplification of the Cz
k for Rk, the each element of s(Gmc

k, j) are reduced. There-
fore, δP j will be less than 0, i.e., ∆Pmc

k, j will be less than ∆Psf
k, j, which means that MRCKF

provides more consistent a posteriori state estimates than the MMSE filter.

(3) Computational complexity analysis

The computational complexity of the proposed MRCKF is analyzed in term of the
floating-point operations (FLOPs). The following operations are equivalent by FLOPs: For
A∈Rn×n, FLOPs of A−1 and chol(A) is n3 and n3/3, respectively; For A∈Rn×m, FLOPs
of QR decomposition based on Householder transformation is 2nm2 − 2/3m3. fk (·) and
hk (·) are surrogated through the linear matrix mapping. The FLOPs for the main filtering
parameters are listed in Tab. 2.1 . the FLOPs of the proposed MRCKF is determined as

FMRCKF =
100
3

n3 +(8Nmm+ 16m+ 2Nm −1)n2+(
8Nmm2 + 2m2 + 2Nmm−m

)
n+ 3Nmm3 + 5Nmm

(2.79)

where Nm is the number of iterations in MCC. Further, the computation complexity with
FLOPs of ISFU are given for comparison as

FISUF =
64
3

n3 +(16m+ 5)n2 +
(
10m2 +m

)
n+m3 +m2 +m (2.80)

Table 2.1: FLOPs for the main filtering parameters

Parameter FLOPs Parameter FLOPs

x(i)k−1 2n2 Z̃k|k−1 2mn

x(i)k|k−1 4n3 −2n2 Pxz
k|k−1 4mn2

x̂k|k−1 2n2 Pẑẑ
k|k−1 4m2n

Lk|k−1 2n2 Cz 5m

Ek|k−1 35/3n3 Gk 4m2n−2mn+ 3m3

X̃k|k−1 4n3 −2n2 x̂k 2mn

x(i)k|k−1 2n2 Sk 10/3n3 + 6mn2 + 2nm2

z(i)k|k−1 4mn2 −2mn Dk 10/3n3 + 4mn2

ẑk|k−1 2mn X̃k 4n3 −2n2 + 6mn2 −mn

The computational complexity of ISUF and the proposed MRCKF are both O(n3)

and O(m3). The computational complexity of MRCKF is higher than that of ISUF due
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to the QR decomposition and fixed-point iteration. However, due to the high accuracy
of the state model constructed with the SINS error equations in INMS, the initial state in
the fixed-point iteration is more accurate, allowing the iterations to quickly converge to an
optimal solution in a few cycles, reducing the computational burden.

2.5 Simulation Verification Experiment

This section presents a verification of the proposed algorithm through simulation ex-
periments. First, the simulation conditions are established, including the maneuvering
trajectory, sensor specifications and noise distribution, filter parameters, and performance
evaluation indexes. The INMS filter model is constructed in Appendix B. Finally, the sim-
ulation results of the proposed algorithm are analyzed.

2.5.1 Simulation Condition Setting

(1) Maneuvering Track: The initial kinematic state of the carrier is set. Initial po-
sition latitude L = 45.73◦, longitude λ = 126.63◦, altitude h = 149.05m; Initial velocity
0m/s; Initial horizontal attitude θ = 0◦, γ = 0◦, and the initial heading is ψ = −10◦. Ini-
tial misalignment angle is set to φe = 30

′
, φn = 30

′
, φu = 180

′
. Then, the carrier motion is

simulated, and the trajectory and kinematic parameters are shown in Fig. 2.2 .

Figure 2.2: The trajectory of the carrier and the corresponding kinematic parameters

(2) Sensor Specification and Noise: According to the kinematic parameters, the
specific force, angular velocity, forward velocity, heading, etc., are obtained through the
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inverse SINS algorithm. Then, the sensor output is simulated based on the observation
model. The specification parameter settings of each sensor are shown in Tab. 2.2 .

Table 2.2: Specifications of sensors

Sensor Specification Index

IMU

Gyro constant bias 10 ◦/h

Angular random walk 1 ◦√h

Acc. constant bias 200µg

Velocity random walk 20µg/
√

Hz

Odometer

Scale factor error 0.01

Installation error [60
′
;60′;180′]

Velocimetry accuracy 1%

GNSS Horizontal positioning accuracy 5m (1σ)

Polarizer Heading accuracy 1 ◦ (1σ)

In order to verify the proposed algorithm’s effectiveness in noise assumption mis-
match, the sensors are simulated to be disturbed by different types of non-Gaussian noise.
First, the GNSS and odometer are disturbed by outliers. The noise exhibit a heavy-tailed
distribution, and the probability density are denoted as

p{wk}= (1− pdisb )N (0,Rk)+ pdisb N (0,25Rk) (2.81)

where pdisb denotes the probability of outliers disturbances; Rk = diag (rk)
2 are the noise

covariance matrix. In terms of GNSS, it is disturbed by outliers with probability pdisb = 0.2
during the simulation from 200 s to 700 s; and with probability pdisb = 0.4 during the
simulation from 1000 s to 1300 s. In addition, rk = [5m 5m] denotes the standard deviation
of the GNSS latitude and longitude noise based on the sensor specification. OD is subject
to the probability pdisb = 0.05 for the outlier interference. rod

k = 0.01vod based on the
sensor specification, where vod is the odometer velocity.

Further, the polarized heading is affected not only by the sensor noise but also by
the external horizontal inclination and solar elevation angle, and so on. Therefore, the
sensor noise is modeled based on the Markov process [106, 107, 108], and the probability
distribution is expressed as follows.

p{wk}= (1− pdisb) Nmr (0, tau,Rk)+ pdisb Nmr (0,9Rk) (2.82)
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where Nmr (t,Σ) is a first-order Markov process sequence with correlation time t and co-
variance Σ. The correlation time is set to tau = 10s, and the heading noise variance is set
Rk = 1deg2 based on the sensor specification. According to the noise distribution settings,
the noise and probability density distribution are shown in Fig. 2.3 .

Figure 2.3: Sensor noise and probability density distribution

(3) Filter Settings: The system state is estimated by a filter based on the model estab-
lished in Appendix B. The time update frequency of the filter is set to 100 Hz, the same as
the IMU output frequency; the measurement update frequency of the GNSS position is set
to 1 Hz; the measurement update frequency of the odometer velocity is set at 10 Hz; and
the measurement update frequency of the polarizer heading is set to 1 Hz.

The proposed MRCKF is compared with the following existing classical methods
mentioned in the research review to verify the effectiveness: 1) CKF; 2) RFU-Cubature
Kalman Filter (RFCKF), i.e., ISUF framework [31] combined with CKF; 3) RSTKF [38];
4) HMKF [36]; 5) MCKF [45, 109] that adopts the proposed kernel size adaptive method.
The tuning parameters of the above filters are set empirically as follows: The degree-
of-freedom in the RSTKF is set to ϖ = 6 ; the tuning parameter in the HMCKF is set
to γ = 1.345; the upper bound on the kernel size is set to σmax = 20. In addition, the
measurement noise covariance matrix Rk, the process noise covariance matrix Qk, and the
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initial state mean-square error matrix Pk of the above filter are set as follows

Pk = diag
([

φ k δvk δpk ε ∇ δxod
k

]T
)2

(2.83a)

Qk = diag
(
[ε r ∇r 01×9]

T
)2

(2.83b)

Rk = diag
([

rgnss
k rod

k rpola
k

]T
)2

(2.83c)

where ε r = [1◦√h 1◦√h 1◦√h]T; ∇r = [20µg/
√

Hz 20µg/
√

Hz 20µg/
√

Hz]T; φ k =

[30 ′ 30 ′ 180 ′]T; δvk = [0.1m/s 0.1m/s 0.1m/s]T; δpk = [10m 10m 10m]T; ε =

[10◦/h 10◦/h 10◦/h]T; ∇ = [200µg 200µg 200µg]T; δxod
k = [60 ′ 0.1 180 ′]T; rgnss

k =

[5m 5m]T; rod
k = 0.1m/s; rpola

k = 1deg.

(4) Evaluation Indicators: To compare the state estimation performance of the pro-
posed filter and other filters, 30 Monte Carlo (MC) tests are performed in this simulation
to eliminate the randomness of the experiment results (the sensor noise varies for each MC
simulation). The root mean square error (RMSE) and the averaged root mean square error
(ARMSE), which are usually based on the results of multi-group MC tests, are used as
evaluation metrics of the state estimation accuracy[103, 65, 110], which is defined as

RMSEk =

√√√√ 1
Nmc

Nmc

∑
s=1

(
x̂s

k −xs
k

)2 (2.84a)

ARMSE =

√√√√ 1
NtNmc

Nt

∑
k=1

Nmc

∑
s=1

(
x̂s

k −xs
k

)2 (2.84b)

where Nmc is the number of MC trials; Nt is the total number of states; x̂s
k and xs

k are the
estimated state and the actual state at time-step k, respectively.

In addition, when comparing and analyzing the simulation results: i) Since the attitude
and velocity errors are integrated into the position error, the position estimation can reflect
the overall estimation effect to some extent. Therefore, the simulation analysis focuses on
the RMSE (or ARMSE) of the horizontal position to reflect the estimation performance of
different filtering algorithms; ii) To more intuitively compare the estimation effects of dif-
ferent filters, the percentage increase in ARMSE is used as a relative comparison indicator.
For example, if x is p% higher than y, then p = abs(x− y)/y×100%.
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2.5.2 Simulation Results and Analysis

This section verifies the proposed algorithm. Since the kernel size is employed in
the robust RFU filtering framework, the proposed adaptive kernel size method is initially
validated. Next, the proposed robust RFU filtering framework is validated.

(1) Analysis and validation of the proposed adaptive kernel size method

Fig. 2.4 shows the adaptive kernel size of the existing and proposed adjustment meth-
ods, where the existing Methods 1 and 2 are proposed in [52] and [53], respectively. The
noise characteristics for GNSS latitude are similar to those for longitude, so the analysis
of its adaptive kernel size is not included here. The cumulative probability distribution of
the adaptive kernel size of the proposed method is shown in Fig. 2.5 . In addition, the influ-
ence of the tuning parameter of the proposed adaptive kernel size method (i.e., the upper
bound σmax) is analyzed. Fig. 2.6 shows the ARMSE of the horizontal position estimation
of the MRCKF with different upper bounds σmax. Meanwhile, the results of the horizon-
tal position estimation of the MRCKF with different fixed kernel sizes are also shown in
Fig. 2.6 .

Figure 2.4: Comparison of existing and proposed adaptive kernel size method

As can be seen from Fig. 2.4 , due to the direct use of the state mean square error
(MSE) of the filter, the kernel size in the existing Method 1 quickly converges to a smaller
value before the MSE has fully converged during the initial filtering phase. Similarly,
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Figure 2.5: Cumulative probability distribution for the adaptive kernel size of the proposed
method

in Method 2, the kernel size also converges quickly and remains small due to the mono-
tonically decreasing adjustment of the adaptive factor, leading to the problem of over-
convergence. This over-convergence problem causes the kernel size to lose its subsequent
adjustment capability, which reduces the weight of useful measurement information in the
state estimation, ultimately resulting in the divergence of the filter estimation. In contrast,
the proposed method can effectively adjust the kernel size according to different noise
cases, thus avoiding the over-convergence problem. For example, due to the vehicle ve-
locity affecting the magnitude of odometer measurement noise, the OD is not disturbed by
measurement outliers when the vehicle is stationary (e.g., from 1450 s to 1500 s). At this
time, the corresponding kernel size remains large (close to the upper bound), which ensures
the estimation accuracy. Conversely, when the vehicle is in motion (e.g., from 1100 s to
1300 s, when the vehicle velocity is at its maximum), the OD is frequently perturbed by
significant measurement outliers, resulting in a smaller kernel size to enhance the robust-
ness against outliers. Similarly, in the presence of GNSS and POLA outliers, the kernel
size also generally decreases to suppress outliers interference.

In addition, the cumulative probability distribution of the adaptive kernel width is ana-
lyzed. As shown in Fig. 2.5 , for the proposed adaptive kernel size method, the smaller ker-
nel widths (generally less than 3) for each measurement are on the order of 10−2 throughout
the experiment, which is consistent with the actual outlier interference settings. Further-
more, the cumulative probability of smaller kernel size values for GNSS measurements
is higher than that for OD and POLA, indicating that GNSS is relatively more frequently
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subjected to significant outlier interference, which is consistent with the set probabilities
and magnitudes of outliers for each measurement. Therefore, the result further validates
the effectiveness of the proposed adaptive kernel size method.

Figure 2.6: Horizontal position ARMSE corresponding to different tuning parameters

Furthermore, an analysis of the effect of the tuning parameters on the proposed adap-
tive kernel size method was performed. As shown in Fig. 2.6 , different kernel sizes sig-
nificantly affect the estimation performance without the online kernel size optimization.
Both excessively large and tiny kernel sizes would reduce the filter estimation accuracy,
with an ARMSE range (difference between the maximum and minimum values) reaching
7.834 m. In contrast, the choice of the kernel size upper bound σmax slightly impacts the
estimation performance of the proposed filter. Within the interval [10, 60], the estima-
tion accuracy remains relatively stable, with an ARMSE range of 0.129 m. This stability
is due to the fact that when σmax is set larger, it leads to insufficient suppression of out-
liers by the MCC. Consequently, the innovation will inevitably be disturbed and increase.
However, the increase in innovation will cause the adaptive factor λ j,k to decrease, which
prevents the adaptive kernel size from increasing with σmax, and will maintain a relatively
small kernel size to suppress the outliers interference on state estimation to some extent.
Therefore, the proposed filter demonstrates good stability and convenience in selecting the
tuning parameters.

(2) Analysis and validation of the proposed robust RFU filter

Fig. 2.7 , Fig. 2.8 , and Fig. 2.9 show the RMSE of the vehicle’s attitude, velocity, and
position estimated by various filters, respectively. Considering that the horizontal position



44 Chapter 2. Robust State Estimation Algorithm

error can reflect the overall state estimation performance, Fig. 2.10 presents the RMSE
of horizontal position estimation and its cumulative probability distribution. Additionally,
the ARMSE of each navigation parameter throughout the simulation is listed in Tab. 2.3 .
Further, Fig. 2.11 provides the horizontal position ARMSE in different simulation intervals
to analyze the estimation performance for various noise cases. In addition, Fig. 2.12 shows
the computation time for each filtering epoch for the different filters.

Figure 2.7: Attitude and heading estimation RMSE

As can be seen from Fig. 2.7 to Fig. 2.11 and Tab. 2.3 , the heading and position nav-
igation parameters ARMSE of the RFCKF are smaller than CKF, indicating that the esti-
mation accuracy of RFCKF is improved to a certain extent over CKF. This improvement
is due to the fact that, unlike CKF, which discards non-Gaussian higher-order moment in-
formation during Gaussian reconstruction, RFCKF removes the Gaussian assumption by
resampling-free update, thereby avoiding the loss of higher-order moment information in
the original state distribution caused by Gaussian reconstruction. As a result, RFCKF ex-
hibits better estimation accuracy compared to CKF in the case of Gaussian assumption
mismatch induced by the INMS nonlinear measurement function mapping.

Then, as shown in Fig. 2.11 , compared to CKF and RFCKF, the navigation parameter
errors of the robust filters RSTKF and HMKF are significantly reduced in the presence of
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Figure 2.8: Velocity estimation RMSE

Figure 2.9: Position estimation RMSE

outliers, indicating that the robust filters effectively suppress the interference of measure-
ment outliers on state estimation. Due to the truncation effect of the MCC based proposed
adaptive kernel size method, the horizontal position ARMSE of MCKF (1.899 m) is lower
than that of RSTKF (1.955 m) and HMKF (2.115 m) during the outlier interference inter-
val. Furthermore, MRCKF based on MCKF, through the resampling-free framework based
on adaptive MCC, not only enhances the robustness of the estimation, but also more ef-
fectively utilizes the higher-order moment information in the sampling points distribution
and measurement data. This results in a reduction of the horizontal position ARMSE to
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Figure 2.10: Horizontal position estimation RMSE and its cumulative probability distri-
bution

1.684 m during the simulation interval with outlier interference, which is a reduction of
13.9%, 20.4%, and 11.3% compared to RSTKF, HMKF, and MCKF, respectively. Addi-
tionally, the cumulative probability of the horizontal position error of MRCKF within 2 m
throughout the simulation is the highest at 90.2%, compared to 74.8% for RSTKF, 74.8%
for HMKF, and 82.1% for MCKF. Therefore, the above analysis verifies the effectiveness
of the proposed improved robust RFU framework-based MRCKF.

In addition, in the outlier interference cases, the position ARMSE of CKF and RFCKF
based on the MMSE resampling-free update framework are 6.431 m and 6.370 m, respec-
tively. The accuracy improvement of RFCKF over CKF is relatively small. However,

Table 2.3: Navigation parameter estimation ARMSE in simulation

ARMSE
Pitch Roll Heading Vel.E. Vel.N. Lati. Longi. HPE

(deg) (deg) (deg) (m/s) (m/s) (m) (m) (m)

CKF 0.083 0.056 0.515 0.090 0.095 3.570 3.532 5.021

RFCKF 0.083 0.056 0.465 0.088 0.093 3.541 3.487 4.964

RSTKF 0.059 0.053 0.365 0.053 0.057 1.393 1.235 1.863

HMKF 0.058 0.052 0.365 0.052 0.053 1.366 1.348 1.916

MCKF 0.058 0.052 0.380 0.052 0.053 1.310 1.218 1.791

MRCKF 0.058 0.052 0.363 0.049 0.050 1.248 1.107 1.657
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Figure 2.11: Horizontal position error ARMSE for each filter under different noises

through the proposed resampling-free update framework, MRCKF improves the estima-
tion accuracy by 11.3% compared to MCKF, indicating a higher degree of performance
improvement. It is shown that with the MCC optimization criteria, the non-Gaussian
moment information retained by the resampling-free update is more effectively utilized,
which further validates the effectiveness of the proposed MCC-based resampling-free up-
date framework.

Figure 2.12: Time consuming for each filtering cer of different filters

Finally, Fig. 2.12 visually quantifies the computational burden of different filters. As
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shown in Fig. 2.12 , under the current computer hardware configuration (CPU Intel Core i7-
12700H), although the MRCKF based on the proposed RFU framework has a higher time
consumption compared to other filters (except RFCKF), it still meets real-time computa-
tional requirements. It is noteworthy that, unlike the theoretical complexity analysis based
on FLOPs, the computational time includes both the computational complexity of the filter
and data quality factors (e.g., longer decomposition time of the state mean square error
matrix under outlier interference). Therefore, the time consumption of MCKF combined
with the proposed kernel size adaptive method is lower compared to CKF.

2.6 Summary

This chapter addresses the problem of INMS state estimation performance degrada-
tion due to the mismatched noise assumptions in urban areas. First, the principles of nav-
igation state estimation and resampling-free filtering are formulated. Then, a robust RFU
filter based on the adaptive kernel-sizes MCC is proposed to address the limitations of
RFU in INMS. The cost function of the resampling-free estimation framework is con-
structed based on the MCC, which effectively exploits the non-Gaussian moments of the
non-closed state distribution, ensuring the optimality of the resampling-free estimation and
preventing the loss of the higher-order moment information from the Gaussian reconstruc-
tion. An adaptive kernel size method is developed to realize the online optimal adjustment
of the kernel size while maintaining robustness against outliers.

Finally, simulation experiments validate the proposed adaptive kernel size method and
the robust MCC-based RFU filter. The experimental results indicate that: 1). Compared
to existing methods, the proposed adaptive kernel size method can effectively adjust the
kernel size for different noise cases while avoiding the over-convergence problem. Fur-
thermore, the cumulative distribution probability of smaller kernel sizes is consistent with
the outlier occurrence probability settings. Within the interval of kernel size upper bound
[10, 60], the range of position ARMSE for MRCKF is 0.129 m, maintaining relatively sta-
ble estimation accuracy. It exhibits good stability in tuning parameter selection, validating
the effectiveness of the proposed adaptive kernel size method; 2). In the presence of out-
liers (not the whole experiment), the position ARMSE of proposed MRCKF is reduced by
13.9%, 20.4%, and 11.3% compared to the existing robust RSTKF, HMKF and MCKF,
respectively. Additionally, the cumulative probability of position estimation error within
2 m throughout the simulation is 90.2%, which is higher than RSTKF (74.8%), HMKF
(74.8%), and MCKF (82.1%), indicating better robust estimation performance. It validates
the effectiveness of the proposed robust MCC-based RFU framework.
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Chapter 3

Robust Noise Adaptation Algorithm for
Measuring Outliers Interference

3.1 Introduction

As a crucial factor affecting autonomous driving performance, navigation reliability
and safety are technically subject to system-state robust estimation and integrity moni-
toring. Both techniques rely on accurately known prior knowledge of sensor noise, i.e.,
MNCM. In INMS applications, the MNCM is typically unknown or time-varying due to
the variable measurement conditions outside the sensors. Existing adaptive filters can ac-
curately estimate the MNCM under Gaussian noise. However, frequent signal blocks and
outliers result in non-Gaussian heavy-tailed noise distributions in dense urban areas, so the
MNCM cannot be estimated accurately. An inaccurate MNCM can reduce robust estima-
tion accuracy due to model-actual mismatch and interfere with effective integrity monitor-
ing, potentially severely impacting autonomous driving function. Outlier elimination tech-
niques cannot ensure effective noise adaptation. In contrast, robust enhancement methods
can prevent the loss of valuable information and improve noise adaptation performance.
However, the Gaussian conjugate IW distribution used in existing robust noise-adaptive
methods does not accurately represent the MNCM of non-Gaussian noise, resulting in sub-
optimal robust MNCM estimation under outlier disturbances.

This chapter presents a robust noise adaptation algorithm to suppress outlier interfer-
ence in the MNCM estimation. First, the problem of INMS noise adaptation is formulated.
The joint variational approximation principle is introduced, and its limitation in INMS is
analyzed. Then, a robust variational approximation adaptation algorithm based on MCC
is proposed. A joint variational approximation analytical solution for the MNCM and
smoothing state is derived. The inverse scale matrix of the IW distribution is reconstructed
based on the correntropy matrix to suppress the interference of measurement outliers on
the MNCM estimation. Finally, simulation experiments are conducted to verify the effec-
tiveness of the proposed method.
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3.2 Analysis of the INMS Noise Adaptation Problem

In INMS, the inertial navigation error is generally used as the primary state vector to
construct the system model. Since the state kinetic model built by the inertial navigation
error equations is relatively accurate, the process noise has little effect on the estimation
performance. Due to computational efficiency and coupling issues, only the measurement
noise of the external sensors is usually concerned. However, the performance of each ex-
ternal sensor is affected by the observation environment, resulting in a difference between
the nominal specifications of the sensor and its actual measurement accuracy in practical
applications. When reflected in the system state-space model, this difference implies that
the MNCM is unknown or time-varying. Therefore, this section analyzes the impact of
MNCM errors on state estimation and integrity monitoring. For simplicity, the linear KF is
used as an example to facilitate the analysis process, which does not affect the qualitative
analysis results.

First, the nominal and actual MNCM are denoted as Rk and Rt
k at time-step k, respec-

tively. The relationship is expressed as Rk = Rt
k + ∆Rk, where ∆Rk is the MNCM error.

Then, the KF filter gain is redefined as

Gk = Pk|k−1HT
k
(
HkPk|k−1HT

k +Rt
k +∆Rk

)−1
(3.1)

Assuming Nk = HkPk|k−1HT
k +Rt

k, it can be obtained according to the principle of ma-
trix inversion as follows

(Nk +∆Rk)
−1 = N−1

k −Ck (3.2)

where Ck = (Nk +∆Rk)
−1 ∆RkN−1

k . Thus, Eq. (3.1) is rearrange as

Gk = Pk|k−1HT
k
(
N−1

k −Ck
)
= Gt

k +∆Gt
k (3.3)

where ∆Gt
k = −Pk|k−1HT

k Ck. The posterior mean of the state is calculated as

x̂k = x̂k|k−1 +Gt
kz̃k +∆Gkz̃k (3.4)

As a result, the posterior state estimation error caused by ∆Rk is formulated as

∆x̂k = −Pk|k−1HT
k (Nk +∆Rk)

−1 ∆RkN−1
k z̃k (3.5)

Furthermore, the effect of ∆Rk on the posterior EMSE Pk is analyzed. If Pk =
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(I−Gt
kHk)Pk|k−1 − (∆GkHk)Pk|k−1 = Pt

k +∆Pk, then the EMSE error caused by ∆Rk is cal-
culated as follows

∆Pk = Pk|k−1HT
k (Nk +∆Rk)

−1 ∆RkN−1
k HkPk|k−1 (3.6)

Then, the covariance matrix of the innovation term at time-step k is calculated as

Pzz
k+1 = Hk+1Fk+1 (Pk +∆Pk)FT

k+1HT
k+1 +Rt

k +∆Rk (3.7)

Assuming Θk+1 = Hk+1Fk+1Pk|k−1HT
k , then the covariance matrix error of the innova-

tion term is expressed as

∆Pzz
k+1 = Θk+1 (Nk +∆Rk)

−1 ∆RkN−1
k ΘT

k+1 +∆Rk (3.8)

As can be seen from Eq. (3.5) and Eq. (3.8), through the recursive propagation of
the filter, the MNCM error ∆Rk induces not only state estimation errors ∆x̂k, but also
innovation covariance errors ∆Pzz

k+1. Although different robust filters operate on varying
principles, most rely on the consistency of the innovation covariance matrix for outlier
detection [111]. Therefore, MNCM errors reduce not only the accuracy of state estimation
but also the robustness. In addition, these errors affect the reliable navigation integrity
monitoring. Consequently, it is necessary to estimate the MNCM while estimating the
state.

3.3 Variational Bayes Based Noise Adaptation Method

This section first presents the principle of Bayesian variational approximation estima-
tion for the joint inference of the state and MNCM, and then analyzes the limitations of the
method in INMS.

3.3.1 Conjugate distribution selection and joint variational approxi-
mation

The variational approximation method is a technique that utilizes prior and measure-
ment information to derive the joint PDF analytical solution for states and unknown param-
eters (referring to MNCM in this study) [112]. Specifically, since the analytical solution
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for the joint posterior PDF p(x,ρ |z) is computationally intractable, the variational distri-
bution with free factored form q (x,ρ) is conducted to approximate the joint posterior PDF,
i.e., q (x,ρ) ≈ p(x,ρ|z), where ρ is an unknown parameter. To achieve the approximate
calculation above, the following steps are carried out:

(1) First, choose a reasonable PDF. Since Rk is estimated jointly with xk, it is neces-
sary to choose a prior probability distribution for Rk. The prior conjugate distribution of
the likelihood function ensures that the posterior distribution of the unknown parameters
after Bayesian inference has the same probability density form as the a priori so that an an-
alytical posterior solution can be obtained. Therefore, the prior distribution of the MNCM
is generally chosen as the conjugate distribution of the likelihood function. In INMS, the
probability distribution of the likelihood function p (zk | xk,Rk) follows a Gaussian dis-
tribution. Hence, its conjugate prior distribution, the Inverse Wishart (IW) distribution,
is adopted as the model for the MNCM. The probability density function is expressed as
follows [113, 114, 115].

IW(Σ;v,Ψ) =
|Ψ| v

2 |Σ|−
(v+m+1)

2

2
vm
2 Γm(

v
2)

exp
{
−1

2
tr
(
ΨΣ−1)} (3.9)

where v is the degree of freedom (DOF); Ψ is the inverse scale matrix; tr (·) is the trace
of a matrix; Γd(·) denotes the gamma function. For IW, there is E [Σ] = Ψ/v. Thus,
p (Rk | z1:k−1) is modeled by IW distribution as follows

p (Rk | z1:k−1) = IW
(
Rk; ûk|k−1, Ûk|k−1

)
(3.10)

(2) Then, the joint probability density is approximated by a variational factor. Since
the state x and the unknown parameters ρ are coupled, it is necessary to decouple the joint
probability density to solve for the state vector independently x and nd the parameters ρ .
The variational approximation method assumes that the probability distributions between
the state and the unknown parameters are independent. According to the mean-field theory,
the joint probability density function can be approximated as the product of the variational
factors of each parameter [54, 116], i.e., p (x,ρ) ≈ q (x)q (ρ), and solving the problem of
coupling the calculation of the joint posterior PDF.

(3) Finally, compute the posterior variational approximate PDF for each parameter.
To achieve the approximation of q (x,ρ) to p(x,ρ |z), it is necessary to quantitatively eval-
uate the degree of approximation between q (x,ρ) and p(x,ρ |z). The Kullback-Leibler
divergence (KLD) is a metric that quantitatively assesses the similarity of two probability
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distributions. Thus, the KLD is used to quantitatively evaluate the degree of approximation
between q (x,ρ) and p(x,ρ |z), and the corresponding objective function is constructed by
minimizing the KLD, which is expressed as [60]

{q̂(x), q̂(ρ)}= argminKLD
{q(x),q(ρ)}

(q(x)q(ρ)||p(x,ρ | z)) (3.11)

where KLD (·) denotes the KLD. Then, KLD (q(x)q(ρ)||p(x,ρ | z)) is expressed as

KLD(q(x)q(ρ) ∥ p(x,ρ | z)) =
∫∫

q(x)q(ρ) log
q(x)q(ρ)
p(x,ρ |z)

dxdρ (3.12)

Since the joint probability density p(x,ρ |z) is unavailable, the log-likelihood function
is calculated first according to the Bayesian rule as

log p(z) = log
p(x,ρ ,z)
p(x,ρ |z)

=
∫∫

q(x)q(ρ) log
p(x,ρ ,z)
p(x,ρ |z)

dxdρ

=
∫∫

q(x)q(ρ) log
p(x,ρ ,z)
q(x)q(ρ)

dxdρ +
∫∫

q(x)q(ρ) log
q(x)q(ρ)
p(x,ρ |z)

dxdρ

= F(q(x)q(ρ))+KLD(q(x)q(ρ) || p(x,ρ |z))

(3.13)

where F(q(x)q(ρ)) denotes the lower bound of the variance dispersion function, which
can be further expressed as

F(q(x)q(ρ)) =
∫∫

q(x)q(ρ) log
p(x,ρ ,z)
q(x)q(ρ)

dxdρ

=
∫∫

q(x)q(ρ) log p(x,ρ ,z)dxdρ −
∫∫

q(x)q(ρ) logq(x) logq(ρ)dxdρ

=
∫∫

q(x)q(ρ) log p(x,ρ ,z)dxdρ −
∫

q(x) logq(x)dx−
∫

q(ρ) logq(ρ)dρ

(3.14)

Since the log-likelihood function log p(z) is a constant term that is independent of
q(x) and q(ρ), when F(q(x)q(ρ)) is maximized, KLD(q(x)q(ρ) || p(x,ρ |z)) is mini-
mized according to Eq. (3.13). Therefore, it can be further transformed into the following
optimization problem

{q̂(x), q̂(ρ)}= argmaxF
{q(x),q(ρ)}

(q(x)q(ρ)) (3.15)
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Figure 3.1: The relationship between the log-likelihood function, the KLD and the lower
bound function

To solve the optimization problem in Eq. (3.15), the following logarithmic density
function is defined log p̃(x) =

∫
q(ρ) log p(x,ρ ,z)dρ + cx

log p̃(ρ) =
∫

q(x) log p(x,ρ ,z)dx+ cρ

(3.16)

Compute q(x) such that F(q(x)q(ρ)) is maximized. Taking log p̃(x) into Eq. (3.14)
gives that

F(q(x)q(ρ)) =
∫

q(x) log p̃(x)dx−
∫

q(x) logq(x)dx− cx

= −
∫

q(x) log
q(x)
p̃(x)

dx− cx

= −KLD(q(x) ∥ p̃(x))− cx

(3.17)

where cx =
∫

q(ρ) logq(ρ)dρ is a constant term. Since KLD (·)⩾ 0, in order to maximize
F(q(x)q(ρ)), it is necessary to make KLD(q(x) ∥ p̃(x)) = 0, i.e., q(x) = p̃(x). Therefore,
the logarithmic density function of q(x) is expressed as

logq(x) =
∫

q(ρ) log p(x,ρ ,z)dρ (3.18)

Furthermore, to maximize F(q(x)q(ρ)) with respect to q(ρ), bring log p̃(ρ) into
Eq. (3.14) to obtain

F(q(x)q(ρ)) =
∫

q(ρ) log p̃(ρ)dρ −
∫

q(ρ) logq(ρ)dρ − cp

= −
∫

q(x) log
q(ρ)
p̃(ρ)

dρ − cp

= −KLD(q(ρ) ∥ p̃(ρ))− cp

(3.19)
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where cp =
∫

q(x) logq(x)dx is a constant term. Similarly, it is necessary q(ρ) = p̃(ρ) for
maximum F(q(x)q(ρ)). Hence, the logarithmic density function of q(ρ) is expressed as

logq(ρ) =
∫

q(x) log p(x,ρ ,z)dx (3.20)

From Eq. (3.18) and Eq. (3.20), it can be seen that the state vector and the unknown
parameters are coupled with each other, and the analytical solution cannot be calculated
directly. Therefore, a fixed-point iteration is necessary. Based on the aforementioned
variational inference principle, Alg. 3 provides an MNCM estimation method based on
variational Bayesian. For the specific derivation, refer to the literature [117].

Algorithm 3: One-time step implementation of VB
Input: x̂k−1,Pk−1,uk−1,Uk−1

Output: x̂k,Pk,uk,Uk

1: Calculate the prior state mean x̂k|k−1 and MSE Pk|k−1

2: ûk|k−1 = ρ (ûk−1 −m−1)+m+ 1

3: Ûk|k−1 = ρÛk−1

4: for i = [1 : N] do

5: A(i)
k =

(
zk −hk

(
x(i)k

))(
zk −hk

(
x(i)k

))T
+HkP(i)

k HT
k

6: û(i)k = ûk|k−1 + 1, Û(i)
k = A(i)

k + Ûk|k−1

7: R̂(i)
k = Û(i)

k

(
û(i)k −m−1

)−1

8: Using R̂(i)
k to update the posterior state x̂(i)k and P(i)

k

9: end

10: x̂k = x̂(N)
k , Pk = P(N)

k , ûk = û(N)
k , Ûk = Û(N)

k

3.3.2 Limitations Analysis for VB in INMS

Although the VB adaptive method can achieve joint online estimation of the MNCM
and state, there are still the following limitations in INMS applications:

(1) Outliers interfere with MNCM estimation. In INMS, as the number and types of
external sensors increase, the probability of outliers occurrence and data errors also
increases. Although robust filtering can mitigate outliers disturbance on state estima-
tion, the likelihood function cannot follow the Gaussian distribution in the presence
of outliers, and the IW cannot serve as the corresponding conjugate prior distribution.
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In this case, modeling MNCM with IW distribution will lead to the inability to ac-
curately compute the inverse scale matrix Ûk, which will affect the estimation effect
of MNCM. Inaccurate MNCM will further deteriorate the next VB iteration, and also
interfere with state robustness estimation and integrity monitoring. Fig. 3.2 shows the
MNCM estimation based on VB under the outliers interference.

(2) The historical information is not fully exploited. In Alg. 3 , the state variables and
MNCM are coupled, so fixed-point iteration is used to achieve joint estimation, which
increases the computational burden. More importantly, VB uses only the current mea-
surement information to repeat the iteration, discarding the historical data. Consider-
ing that the MNCM of the INMS sensor changes slowly, historical measurements and
a posteriori state estimation over a period of time can be used to estimate the MNCM
more accurately and smoothly.

Figure 3.2: VB-based MNCM estimation with measurement outliers interference

3.4 Robust Smooth VB Noise Adaptation Based on MCC

To address the aforementioned issues, this section proposes a robust smooth varia-
tional Bayesian adaptation (RSVBA) method. First, the analytical form of the smoothed
posterior state and MNCM joint variational approximation is derived. Then, the inverse
scale matrix of the IW distribution is reconstructed based on the correntropy matrix to
suppress the interference of measurement outliers on the MNCM estimation. Finally, the
theoretical performance of the proposed adaptation method is analyzed. The specific struc-
ture of the proposed method is shown in Fig. 3.3 .
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Figure 3.3: Structure of the proposed RSVBA

3.4.1 MNCM and Smoothing State Joint Variational Approximation

To make full use of historical data (including measurement and a posterior state), the
variational approximation of the joint probability density of MNCM and the smoothed pos-
terior state in the fixed interval [k−L,k] is solved. The mean of the probability distribution
of the MNCM in the interval [k−L,k] is expressed as RL

k . Considering that the actual engi-
neering MNCM generally changes slowly, RL

k can be regarded as the smoothed value of the
MNCM in the fixed interval obtained using historical data. To get the analytical solution
of the joint PDF of the smoothed posterior state and the MNCM p

(
xk−L:k,RL

k | z1:k
)
, it is

approximated by the variational form according to the mean-field theory as follows

p
(
xk−L:k, ,RL

k | z1:k
)
≈ q (xk−L:k)q

(
RL

k
)

(3.21)

The optimal solution is obtained by minimizing the KLD between the actual joint
probability distribution and the approximated variational factor, i.e.

{
q̂ (xk−L:k) , q̂

(
RL

k
)}

= argminKLD
{q(xk−L:k),q(RL

k)}

(
q (xk−L:k)q

(
RL

k
)
∥ p
(
xk−L:k, ,RL

k | z1:k
))

(3.22)

Then, based on Eq. (3.18) and Eq. (3.20), the optimal solution of Eq. (3.22) satisfies
the following equation {

logq(ϑ ) = E
Ξ(−ϑ ) [log p (Ξ,z1:k)]+ cϑ

s.t. Ξ ≜
{

xk−L:k, RL
k
} (3.23)

where Ξ represents the set consisting of xk−L:k and RL
k ; ϑ represents any element in Ξ;

Ξ(−ϑ ) denotes the elements of the set Ξ other than ϑ ; cϑ is a constant independent of ϑ .
Since the variational factors q(xk−L:k) and q(RL

k ) are coupled, they are solved by fixed-
point iteration. First, according to the conditional independence of the Gaussian-IW state
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space model, the joint probability distribution p (Ξ,z1:k) can be decomposed as follows

p (Ξ,z1:k) =
k

∏
i=k−L

p
(
zk | xi,RL

k
)

p (xi | z1:k−1) p
(
RL

k | z1:k−1
)

p (z1:k−1) (3.24)

According to Eq. (3.10), taking MNCM PDF into Eq. (3.24) gives

p (Ξ,z1:k) =
k

∏
i=k−L

N
(
zi;hi (xi) ,RL

k
)

N
(
xi; x̂i|i−1,Pi|i−1

)
IW
(
Rk; ûk|k−1, Ûk|k−1

)
p (z1:k−1) (3.25)

Further, taking the logarithm of p (Ξ,z1:k), the log-density function is expressed as

log p (Ξ,z1:k) = ∑
k
i=k−L logN

(
zi;hi (xi) ,RL

k

)
+ logN

(
xi; x̂i|i−1,Pi|i−1

)
+ logIW

(
Rk; ûk|k−1, Ûk|k−1

)
+ log p (z1:k−1)

(3.26)

Expand Eq. (3.26) to get

log p (Ξ,z1:k) =
k

∑
i=k−L

log
(
(2π)−

m
2
∣∣RL

k

∣∣− 1
2

)
− 1

2
(zi − (hi (xi)))

T (RL
k
)−1

(zi − (hi (xi)))

+ log
(
(2π)−

n
2
∣∣Pi|i−1

∣∣− 1
2
)
− 1

2
(
xi − x̂i|i−1

)T P−1
i|i−1

(
xi − x̂i|i−1

)
+ log

∣∣Ûk|k−1
∣∣ ûk|k−1

2
∣∣RL

k

∣∣− (ûk|k−1+m+1)

2

2
mûk|k−1

2 Γm(
ûk|k−1

2 )

− 1
2

tr
(
Ûk|k−1(RL

k )
−1)+ cΞ

(3.27)

Rearranging the index term in the above equation gives

log p (Ξ,z1:k) = (L+ 1)
((

−m
2

)
log(2π)+

(
−1

2

)
log
(∣∣RL

k

∣∣))+(L+ 1)
(
−n

2

)
log(2π)

+
k

∑
i=k−L

(
−1

2
(zi −hi (xi))

T (RL
k
)−1

(zi −hi (xi))

)
+

(
−1

2

)
log
(∣∣Pi|i−1

∣∣)
+

k

∑
i=k−L

(
−1

2
(
xi − x̂i|i−1

)T P−1
i|i−1

(
xi − x̂i|i−1

))

+

(
−
(
ûk|k−1 +m+ 1

)
2

)
log (|Rk|)+ log

 ∣∣Ûk|k−1
∣∣ ûk|k−1

2

2
mûk|k−1

2 Γm(
ûk|k−1

2 )


+

(
−1

2
tr
(
Ûk|k−1(RL

k )
−1))+ cΞ

(3.28)
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Eq. (3.28) can be arranged as follows

log p (Ξ,z1:k) =− 1
2
(
L+ ûk|k−1 +m+ 2

)
log
(∣∣RL

k

∣∣)− 1
2

tr
(
Ûk|k−1(RL

k )
−1)

− 1
2

k

∑
i=k−L

{(
xi − x̂i|i−1

)T P−1
i|i−1

(
xi − x̂i|i−1

)
+ log

(∣∣Pi|i−1
∣∣)}

− 1
2

k

∑
i=k−L

(zi −hi (xi))
T (RL

k
)−1

(zi −hi (xi))+ c

(3.29)

where cΞ is a constant term independent of the set Ξ, and is expressed as

cΞ = log p (z1:k−1)−
L
2
(m+ n) log (2π)+ log

 ∣∣Ûk|k−1
∣∣ ûk|k−1

2

2
mûk|k−1

2 Γm(
ûk|k−1

2 )

 (3.30)

Then, by taking Eq. (3.29) into Eq. (3.23) and letting ϑ = xk−L:k gives

logq (xk−L:k) =− 1
2
(
L+ ûk|k−1 +m+ 2

)
E
[
log
(∣∣RL

k
∣∣)]− 1

2
E
[
tr
(
Ûk|k−1(RL

k )
−1)]

− 1
2

log
(∣∣Pi|i−1

∣∣)− 1
2

k

∑
i=k−L

{(
xi − x̂i|i−1

)T P−1
i|i−1

(
xi − x̂i|i−1

)}
− 1

2

k

∑
i=k−L

(zi −hi (xi))
T E
[(

RL
k
)−1
]
(zi −hi (xi))+ cx

(3.31)

Simplifying the above equation gives

logq (xk−L:k) =− 1
2

k

∑
i=k−L

(zi −hi (xi))
T E
[(

RL
k
)−1
]
(zi −hi (xi))

− 1
2

k

∑
i=k−L

{(
xi − x̂i|i−1

)T P−1
i|i−1

(
xi − x̂i|i−1

)}
+ cx

(3.32)

where E(i+1)
[
R−1

k

]
is calculated according to the mean definition in the IW distribution as

E
[(

RL
k
)−1
]
= ûL

k
(
ÛL

k
)−1

(3.33)

Then, the exponential operation is performed on Eq. (3.32), and q (xk−L:k) is calcu-
lated as

q (xk−L:k) ∝

k

∏
i=k−L

N
(
zi;hi (xi) ,RL

k
)

N
(

xi; x̂i|i−1,Pi|i−1

)
(3.34)
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According to the principle of maximum a posteriori estimation, there is

q (xk−L:k) = N
(

xk−L:k; x̂k−L:k|k,Pk−L:k|k

)
(3.35)

where the posterior smooth state vector x̂k−L:k|k and its covariance matrix Pk−L:k|k are ob-
tained by the smooth estimator RTS. Then, Eq. (3.29) is substituted into Eq. (3.23), and let
ϑ = Rk, there is

logq
(
RL

k
)
= −1

2
(
L+ ûk|k−1 +m+ 2

)
log
(∣∣RL

k

∣∣)− 1
2

tr

((
k

∑
i=k−L

Ai + Ûk|k−1

)
(RL

k )
−1

)

−1
2

k

∑
i=k−L

E
[
log
(∣∣Pi|i−1

∣∣)]− 1
2

k

∑
i=k−L

E
[(

xi − x̂i|i−1
)T P−1

i|i−1

(
xi − x̂i|i−1

)]
+ cR

(3.36)

where

Ai = E
[
(zi −hi (xi)) (zi −hi (xi))

T
]

= E
[(

zi −hi
(
x̂i|k
)
+hi

(
x̂i|k
)
−hi (xi)

)(
zi −hi

(
x̂i|k
)
+hi

(
x̂i|k
)
−hi (xi)

)T
]

=
(
zi −hi

(
x̂i|k
))(

zi −hi
(
x̂i|k
))T

+HiE
[(

xi − x̂i|k
)(

xi − x̂i|k
)T
]

HT
i

= z̃s
i (z̃

s
i )

T +HiPi|kHT
i

(3.37)

where z̃s
i = zi −hi

(
x̂i|k
)
; Hi represents the Jacobian matrix of the measurement function

hk expanded at x̂i|k. Due to the conjugate distribution property, q
(
RL

k

)
also follows an IW

distribution, and its PDF is expressed as

q
(
RL

k
)
= IW

(
RL

k ; ûL
k , ÛL

k
)

(3.38)

where ûL
k and ÛL

k are calculated from q (xk−L:k) asûL
k = ûL

k|k−1 +L+ 1

ÛL
k = ÛL

k|k−1 +∑
k
i=k−L Ai

(3.39)

3.4.2 IW distribution Reconstruction Based on Correntropy for GNSS
latitude Matrix

The previous section provided the analytical solution for the variational approximation
of MNCM. In this section, a robust posterior estimation of the MNCM is performed based
on this solution. First, the prior IW distribution parameters of the MNCM are calculated.
Then, the posterior IW distribution of the MNCM is updated, and the inverse scale matrix
is reconstructed based on the corresponding correntropy matrix. The relationship between
the prior and posterior IW distributions of the MNCM is shown in Fig. 3.4 .
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Figure 3.4: The relationship between the MNCM a priori and a posteriori IW distributions

(1) Determine a priori IW distribution: First, the a priori IW distribution of MNCM
is updated. In recursive filtering, the PDF of the MNCM at the previous time step is
assumed to follow an IW distribution given by

q
(
RL

k−1
)
= IW

(
RL

k−1; ûL
k−1, ÛL

k−1
)

(3.40)

To determine the prior distribution of Rk, the prior parameters ûk|k−1 and Ûk|k−1 need
to be specified. Based on the full-probability rule, p (Rk | z1:k−1) can be further expressed
as

q
(

RL
k|k−1

)
=
∫

q
(
RL

k | RL
k−1
)

q
(
RL

k−1
)

dRk−1

=
∫

q
(
RL

k | RL
k−1
)

IW
(
RL

k−1; ûk−1, Ûk−1
)

dRk−1

= IW
(

RL
k|k−1; ûL

k|k−1, ÛL
k|k−1

) (3.41)

where q
(
RL

k | RL
k−1

)
is the dynamic model of the MNCM. The model needs to be able to

make the prior q
(

RL
k|k−1

)
follow an IW distribution. Since the MNCM changes slowly

in practical engineering, the prior propagation of the MNCM is performed using constant
coefficients. Therefore, the dynamic parameters of the prior IW distribution ûL

k|k−1 and
ÛL

k|k−1 are calculated as follows

ûL
k|k−1 = ρ ûL

k−1 (3.42a)

ÛL
k|k−1 = ρÛL

k−1 (3.42b)

where ρ ∈ [0.9,1] is a time-varying expansion factor of the MNCM.

(2) Determine a posterior IW distribution: First, the IW inverse scale matrix is
updated. Based on the measurements at multiple moments within a fixed interval and the
posterior state, the Cubature Kalman Smoother (CKS) is used to compute the variational



62 Chapter 3. Robust Noise Adaptation Algorithm

approximation of the smoothed posterior state q (xk−L:k), which is denoted as

Pxx,k|k−1 =
1
ns

ns

∑
i=1

x(i)k−1x(i)Tk|k−1 − x̂k−1x̂T
k|k−1 (3.43a)

Gs
i−1 = Pxx,i|i−1P−1

i|i−1 (3.43b)

x̂s
i−1|k = x̂i−1 +Gs

j−1

(
x̂s

i|k − x̂i|i−1

)
(3.43c)

Ps
i−1|k = Pi−1 +Gs

i−1

(
Ps

i|k −Pi|i−1

)
(Gs

i−1)
T (3.43d)

Then, according to Eq. (3.37), the parameters Ai are calculated using the smooth mean
x̂k−L:k|k and covariance matrix Pk−L:k|k of q (xk−L:k). Meanwhile, the correntropy matrix
based on the adaptive kernel size is used to eliminate outliers interference.

Ac
i = Cz

i z̃
s
i (z̃

s
i )

T (Cz
i )

T +HiPi|kHT
i (3.44)

where Cz
i is the correntropy matrix based on the adaptive multi-kernel size at time-step i

in MRCKF. Then, the degrees of freedom and the reconstructed inverse scale matrix of the
posterior IW distribution are calculated asûL

k = ρ ûk−1 +L+ 1

ÛL
k = ρÛk−1 +∑

k
i=k−L Ac

i

(3.45)

Further, the MNCM is calculated based on the posterior IW distribution as follows

R̂L
k = ÛL

k /ûL
k (3.46)

The pseudocode of the proposed RSVBA method is given in Alg. 4 . RSVBA uses the
smooth posterior state and measurement data in a fixed interval to improve the accuracy of
MNCM estimation. In addition, it uses a correntropy matrix based on adaptive kernel sizes
to suppress the outlier’s interference on the IW inverse scale matrix, thereby achieving a
robust estimation of MNCM in the presence of an outlier.

3.4.3 Smooth Robust Adaptation Executed in INMS

In this section, the proposed RSVBA robust adaptation method is applied to INMS.
The structure of the algorithm is depicted in Fig. 3.5 . In INMS, the state posterior is
initially computed by MRCKF, which not only corrects the navigation parameters but also
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Algorithm 4: One-time step implementation of RSVBA
Input: x̂k−1, Pk−1, zk, ûL

k−1, UL
k−1

Output: x̂k, Pk, ûL
k , UL

k

/* Forward robust filtering */

1: [x̂k,Pk,Gk,Cz
k, ] = MRCKF

[
x̂k−1,Pk−1,zk, ûL

k−1,UL
k−1

]
/* Backward smoothing */

2: for j = [k : −1 : k−L] do

3: Gs
i−1 = Pxx,i|i−1P−1

i|i−1

4: x̂s
i−1|k = x̂i−1 +Gs

j−1

(
x̂s

i|k − x̂i|i−1

)
5: Ps

i−1|k = Pi−1 +Gs
i−1

(
Ps

i|k −Pi|i−1

)
(Gs

i−1)
T

6: end

/* MNCM robust estimator */

7: Ac
i = Cz

i z̃
s
i (z̃s

i )
T (Cz

i )
T +HiPi|kHT

i

8: Ak = ∑
k
i=k−L Ac

i

9: ûL
k|k−1 = ρ ûL

k−1, ÛL
k|k−1 = ρÛL

k−1

10: ûL
k = ûL

k|k−1 +L+ 1

11: ÛL
k = ÛL

k|k−1 +∑
k
i=k−L Ac

i

12: R̂k = ÛL
k /ûL

k

Figure 3.5: Online smoothing RTS structure for INMS systems

provides data to RSVBA for sliding window MNCM estimation. Subsequently, the MNCM
estimated by RSVBA is used for subsequent state estimation and integrity monitoring. In
RSVBA, the measurement matrix can be derived using the post-statistical linearization
method, avoiding the calculation of the Jacobian matrix. Specifically, based on the defini-
tion of the state prediction covariance Pk,k−1 and the cross-covariance matrix Pxz,k,k−1 in
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MRCFK, the following relationship holds

Pk,k−1 = E
[
(xk − x̂k) (xk − x̂k)

T
]

(3.47a)

Pxz,k,k−1 = E
[
(xk − x̂k) (zk − ẑk)

T
]
≜ Pk,k−1HT

k (3.47b)

Then, the pseudo-measurement matrix is calculated as

Hk = PT
xzP

−1
k,k−1 (3.48)

3.4.4 Algorithm Performance and Complexity Analysis

(1) MNCM estimation stability analysis

The numerical stability of the proposed adaptation method is analyzed. First, accord-
ing to Eq. (3.45), the posterior mean of the MNCM based on the IW distribution in the
interval [k−L,k] is calculated as [103]

R̂k =
ÛL

k

ûL
k
=

ρÛk−1 +∑
k
i=k−L Ac

i

ρ ûk−1 +L+ 1
=

ρÛk−1 +Ac
s

ρ ûk−1 +L+ 1
(3.49)

In addition, assuming the last cycle R̂k−1 = ÛL
k−1/ûL

k−1 in the interval [k−L−1,k−1],
then substituting it into Eq. (3.49) gives

R̂k =
ρ ûL

k−1R̂k−1 +Ac
s

ρ ûL
k−1 +L+ 1

(3.50)

Furthermore, according to Eq. (3.42a) and Eq. (3.45), ûL
k−1 is expressed as

ûL
k−1 = ρ

k−1ûL
0 +ρ

k−2 (L+ 1)+ ...+ρ (L+ 1)+ (L+ 1) (3.51)

Rearrange it to get

ûL
k−1 = ρ

k−1ûL
0 +

1−ρk−1

1−ρ
(L+ 1) (3.52)

Bringing Eq. (3.52) into Eq. (3.50) gives

R̂k =
g (ρ ,k) R̂k−1 +Ac

s
g (ρ ,k)+L+ 1

(3.53)
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where g (ρ ,k) = ρkûL
0 +

ρ−ρk

1−ρ
(L+ 1). From Eq. (3.53), it can be obtained

lim
k→+∞

g(ρ ,k) = ρ/(1−ρ) (3.54)

Based on Eq. (3.53) and Eq. (3.54), g (ρ ,k) is actually the weighting factor for R̂k−1

and Ac
s . Once the filter converges, g (ρ ,k) is a monotonically increasing function of the

MNCM expansion coefficient ρ , which means that the influence of the previous estimate
R̂k−1 on the current R̂k can be controlled by ρ . The smaller ρ , the less influence R̂k−1 has
on R̂k. Conversely, the larger ρ , the more R̂k−1 is used. Furthermore, there is

ηk =
g (ρ ,k)

g (ρ ,k)+L+ 1
(3.55)

Bk =
Ac

s
g (ρ ,k)+L+ 1

(3.56)

Then Eq. (3.53) is re-expressed as follows

R̂k = ηkR̂k−1 +Bk (3.57)

R̂k can be denoted by the initial MNCM R̂0 as

R̂k =

(
k

∏
i=1

ηi

)
R̂0 +

k

∑
i=1

(
k

∏
j=i+1

η j

)
Bi (3.58)

Since Cz
i ∈ (0,I) in Eq. (3.44), Ac

i > 0 and Bi > 0. In addition, due to ηi ∈ (0,1), the
MNCM estimate R̂k > 0 is positive definite in the current interval. Therefore, the numerical
stability of the MNCM estimated by the proposed adaptive method is guaranteed.

(2) Computational complexity analysis

This section uses FLOPs to analyze the computational complexity of the proposed
RSVBA. The equivalent FLOPs for several matrix operations involved are given in Chapter
2. The FLOPs required for the main parameters of the proposed method are given in
Tab. 3.1 . According to Tab. 3.1 , the FLOPs of the RSVBA is calculated as follows

FRSVBA = 7Ln3 +(4Lm+ 2L−2m)n2 +(L−2Lm)n

−6mn+ 2m3 +(2L+ 6)m2 +(L+ 13)m
(3.59)
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According to the above FLOPs analysis, the computational complexity of RSVBA is
O(n3) and O(m3). However, due to the fixed-interval smoothing operation, the FLOPs
of RSVBA are approximately proportional to the fixed-interval size L, so the computa-
tional complexity of the proposed filter increases linearly with L. Therefore, it is generally
recommended to choose the sliding window size L in the range [5,20] to achieve a more
appropriate computational efficiency and estimation accuracy.

Table 3.1: FLOPs for the main adaptation parameters

Parameter FLOPs Parameter FLOPs

Gs
i−1 3n3 −n2 x̂s

i−1|k 2n2 + n

Ps
i−1|k 4n3 R̂k m2

ÛL
k|k−1 m2 ÛL

k (L+ 1)m2

Ac
i 2mn2 + 2m2n−mn+ 4m3 −3m2 −m

3.5 Simulation Verification Experiment

3.5.1 Simulation Condition Setting

The vehicle trajectory and sensors specifications in the simulation are the same as
those in the section 2.5.1. Then, the sensor noise, filter parameters, and evaluation metrics
are set as follows.

(1) Sensor Noise Settings: To verify the effectiveness of the proposed RSVBA for
time-varying MNCM estimation, different sensor noise magnitudes and distributions are
set for various periods. An example of sensor noise is shown in Fig. 3.6 (the noise varies
in different MC simulations). The specific noise settings are as follows.

• Period 1: From 0 s to 500 s, the sensors are not disturbed by outliers. The probability
distribution of the sensor noise is given by

p
(

wgnss
p1

)
= N

(
0,Rgnss

k

)
, p
(
wod

p1
)
= N

(
0,Rod

k
)

, p
(

wpola
p1

)
= Nmr

(
0, tau,Rpola

k

)
(3.60)

where GNSS positioning noise covariance matrix Rgnss
k = diag

(
rgnss

k

)2, according to the
sensor specifications, there are rgnss

k = [5m 5m]; OD velocity noise variance Rod
k =

diag
(
rod

k

)2 with rod
k = 0.01vod based on sensor specifications; POLA heading noise

variance Rpola
k = (rpola

k )2 with rpola
k = 1deg and the related time tau = 10s.
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• Period 2: GNSS, odometer, and POLA are subject to outliers interference during the
simulation from 500 s to 1000 s. The noise probability distribution is given byp

(
wgsod

p2

)
= (1− pdisb) N

(
0,Rgsod

k

)
+ pdisb N

(
0,25Rgsod

k

)
p
(

wpola
p2

)
= (1− pdisb)Nmr

(
0, tau,Rpola

k

)
+ pdisb Nmr

(
0, tau,9Rpola

k

) (3.61)

where wgsod
p2 = [wgnss

p2 wod
p2]

T; Rgsod
k = diag

([
rgnss

k rod
k

])2; pdisb = 0.1 indicates the likeli-
hood of outliers interference.

• Period 3: Within 1000 s to 1500 s, the accuracy of GNSS and the POLA decreases due
to observation blockage, and the noise standard deviation increases to three times the
nominal value, i.e., Rgsod

k = diag
([

3rgnss
k 3rod

k

])2. In addition, each sensor is disturbed
by outliers. Thus, the probability density distribution is denoted as followsp

(
wgsod

p3

)
=(1− pdisb) N

(
0,Rgsod

k

)
+ pdisb N

(
0,25Rgsod

k

)
p
(

wpola
p3

)
=(1− pdisb) Nmr

(
0, tau,9Rpola

k

)
+ pdisb Nmr

(
0, tau,9Rpola

k

) (3.62)

Figure 3.6: Example of sensors noise

(2) Adaptation Methods: The proposed RSVBA is compared with the following
existing classical methods to verify its effectiveness: 1) SHA; 2) VBA; 3) ORA[65]. The
tuning parameters for the above methods are empirically specified as follows: In the Sage-
Husa method, the MNCM initial is R0 = diag ([5m 5m 0.05m/s 1deg])2, and the damping
factor is set to b = 0.95; in VBA, the initial of the degree of freedom parameter is uk =

10, the initial of the inverse scaling matrix is Uk = (uk −m−1)R0 and the expansion
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coefficient ρ = 0.95. ORA uses the square-root similarity function, and the degree of
freedom parameters are set to ϖ = 5 and τR = 2. The sliding window size in the proposed
RSVBA is set to 10.

(3) Evaluation Indicators: To compare the performance of the proposed method with
other methods, 30 MC trials were performed in this simulation to eliminate the randomness
of the simulation results (the sensor noise is different in each MC simulation). The root
mean square (RMS) is used as the estimation result of MNCM, and the RMSE and ARMSE
are used as the evaluation indicators of the estimation accuracy. The RMS is defined as

rRMS
k =

√√√√ 1
Nmc

Nmc

∑
s=1

(
r̂s

k

)2 (3.63)

where Nmc is the number of MC trials; r̂s
k represents the MNCM estimate at time-step k of

the s-th MC trial, reflected in the form of the square root of the diagonal elements, i.e., the
noise standard deviation (STD).

3.5.2 Simulation Results and Analysis

The simulation is performed according to the aforementioned settings. First, the
MNCM estimation results are analyzed. Then, the robust state estimation results corre-
sponding to the MNCM estimation are analyzed.

(1) Analysis of MNCM adaptation estimation. Fig. 3.7 shows the MNCM es-
timation of GNSS in the form of noise standard deviations. Similarly, Fig. 3.8 shows
the MNCM estimation of OD and POLA. Furthermore, Fig. 3.7 shows the RMSE of the
MNCM estimation for GNSS, and Fig. 3.10 shows the RMSE of the MNCM estimation
for OD and POLA. In addition, the ARMSE of the MNCM estimation for GNSS, OD and
POLA at different periods are shown in Fig. 3.11 and Fig. 3.12 , respectively.

As shown in Fig. 3.7 and Fig. 3.8 , during period 1, when there is no interference from
outliers, each adaptive method can effectively estimate the MNCM, i.e., the noise standard
deviation, and achieve accurate identification of the noise statistical parameters. However,
in the presence of outliers, each adaptive method exhibits different estimation effects. Dur-
ing period 2, the classical SHA and VBA adaptive methods cannot accurately estimate the
MNCM. In detail, as shown in Fig. 3.11 and Fig. 3.12 , the ARMSEs of the SHA method
for MNCM estimation of GNSS latitude and longitude are 11.571 m and 11.366 m, respec-
tively. The ARMSEs of SHA for OD and POLA MNCM estimation are 0.151ṁ/s and
0.940 deg, respectively. VB has similar MNCM estimation effects to SHA because both
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Figure 3.7: MNCM estimation of GNSS

Figure 3.8: MNCM estimation of OD and POLA

SHA and VB rely on accurate noise modeling. However, measurement outliers cause the
noise model to mismatch the actual noise cases, resulting in a heavy-tailed distribution
of the innovation term. Thus, IW cannot be used as a conjugate prior for the likelihood
function, which prevents SHA and VB from accurately identifying the noise statistics.

The ORA method, designed for handling outliers, has a better MNCM estimation ef-
fect than SHA in period 2. During this period, the ARMSEs of ORA for GNSS latitude
and longitude noise standard deviation estimation are 4.125 m and 4.039 m, respectively,
which are 64.4% and 64.5% lower than those of SHA. Additionally, the ARMSEs of ORA
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Figure 3.9: RMSE of MNCM estimation for GNSS

Figure 3.10: RMSE of MNCM estimation for OD and POLA

for OD velocity and POLA heading estimation are 0.067 m/s and 0.517 deg, respectively,
which are 55.6% and 45.0% lower than that of SHA, respectively, indicating its robust
adaptation ability to MNCM against outlier interference. Furthermore, compared with
ORA, the proposed RSVBA method demonstrates superior MNCM adaptive performance
under outlier interference. In period 2, the RSVBA estimates of MNCM of GNSS latitude
and longitude are 0.751 m and 0.838 m, which are close to the estimation results in non-
interference period 1 (0.910 m and 0.775 m), indicating that RSVBA can achieve robust
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MNCM estimation under outlier interference. Similarly, for OD velocity and POLA head-
ing in period 2, the MNCM estimates of RSVBA are 0.013 m/s and 0.315 deg, respectively,
which are similar to the results of period 1 (0.015 m and 0.301 deg), confirming the robust
estimation effect of RSVBA on MNCM in the presence of outliers.

Figure 3.11: ARMSE of MNCM estimation for GNSS with different periods

Figure 3.12: ARMSE of MNCM estimation for OD and POLA with different periods
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Table 3.2: ARMSE of MNCM estimation

Index Method Period 1 Period 2 Period 3 Total

GNSS

Latitude (m)

SHA 0.782 11.571 35.143 15.832

VBA 0.992 11.939 36.402 16.445

ORA 1.213 4.125 12.041 5.793

RSVBA 0.910 0.751 2.845 1.502

GNSS

Longitude (m)

SHA 0.663 11.366 34.741 15.590

VBA 0.872 11.763 35.701 16.112

ORA 1.161 4.039 11.754 5.651

RSVBA 0.775 0.838 2.959 1.524

OD

Velocity (m/s)

SHA 0.011 0.151 0.228 0.130

VBA 0.013 0.154 0.226 0.131

ORA 0.021 0.067 0.095 0.061

RSVBA 0.015 0.013 0.021 0.016

POLA

Heading (deg)

SHA 0.244 0.940 2.566 1.250

VBA 0.306 1.010 2.771 1.364

ORA 0.388 0.517 1.450 0.783

RSVBA 0.301 0.315 0.918 0.511

Furthermore, during period 3, the outliers interference further increased, significantly
reducing the accuracy of the SHA and VBA methods for estimating MNCM. For in-
stance, the ARMSEs of SHA and VBA for the GNSS latitude noise standard deviation are
35.143 m and 36.402 m, respectively. The ARMSEs of SHA and VBA for POLA heading
noise standard deviation are 2.566 deg and 2.771 deg, respectively. As a result, an accurate
estimation of MNCM is not achievable. While the adaptation accuracy of the ORA method
is improved compared to SHA and VBA, the ARMSE of the ORA method for GNSS lati-
tude and POLA heading is 12.041 m and 1.450 deg, respectively, which still does not meet
the accuracy requirements in practical applications. In comparison with other methods,
the proposed RSVBA can consistently and accurately estimate MNCM even under severe
outlier disturbances. Its ARMSEs for the MNCM estimation of GNSS latitude and lon-
gitude are only 2.845 m and 2.959 m, and the MNCM of OD velocity and POLA heading
are 0.021 m/s and 0.918 deg, respectively, thereby achieving a more accurate estimation of
MNCM.

(2) Analysis of robust state estimation corresponding to MNCM estimation. Fig. 3.13



3.5. Simulation Verification Experiment 73

shows the correntropy values of each measurement under three different cases: the with-
out MNCM adaptation, VBA-based MNCM adaptation, and the proposed RSVBA robust
MNCM adaptation method. The cumulative probability distribution of the correspond-
ing correntropy values for each measurement is depicted in Fig. 3.14 . The analysis fo-
cuses only on GNSS latitude due to its similar noise distribution and analysis results to
GNSS longitude. Considering that the position error reflects the overall estimation perfor-
mance, Fig. 3.15 presents the position estimation results corresponding to different adap-
tation methods.

Figure 3.13: Correntropy for each measurement in different cases

Figure 3.14: Cumulative probability distribution of correntropy for each measurement

As shown in Fig. 3.13 , during period 1, when there is no outlier perturbation, the cor-
rentropy values of the measurements under different adaptation methods are close to 1, so
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the measurement is fully explored to optimize the state estimation. However, if the mea-
surement is disturbed by outliers, the correntropy values are distinct for different adaptation
methods. For example, in period 3 (i.e., 1000 s to 1500 s), the correntropy without MNCM
adaptation is significantly smaller overall. This is because the noise amplitude increases
in period 3, but the MNCM does not adaptation and still maintains a small nominal value,
resulting in a significant innovation statistical value. As a result, the measurement tends to
be considered an outlier, resulting in a small correntropy value.

In contrast, in the case of MNCM adaptation, the distribution of the correntropy is
significantly larger compared to the situation without MNCM adaptation. This is because
the MNCM adaptation is disturbed by the outliers, leading to a larger MNCM estimate
than the actual value (seen Fig. 3.7 and Fig. 3.8 ). The larger MNCM makes the statistics
of the filtering innovation smaller, and the outliers tend to be ignored, ultimately resulting
in a large correntropy. Furthermore, when employing the proposed RSVBA method to
robustly estimate the MNCM, the distribution of the correlation can match the simulation
setting probability for the outliers. This is due to RSVBA’s ability to provide accurate
MNCM estimates and utilize filtering innovation statistics to detect outliers accurately,
thus calculating reliable correntropy and suppressing the interference of outliers on MNCM
estimation.

Figure 3.15: Position error for different adaptation methods

As shown in Fig. 3.15 , the position ARMSE is 2.144 m without MNCM estimation.
Due to the inaccurate estimation of MNCM under outlier interference, both SHA and VBA
not only fail to improve the state estimation accuracy, but also decrease the robustness of
position estimation. In contrast, since the interference of measurement outliers on MNCM
estimation is accurately suppressed, robust adaptive MNCM estimation is achieved. The
position ARMSE of RSVBA is reduced to 1.920 m, which is 26.3%, 24.6%, and 10.2%
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lower than that of SHA (2.606 m), VBA (2.546 m), ORA (2.138 m) respectively, with bet-
ter robust estimation accuracy. This verifies the effectiveness of the proposed adaptation
algorithm.

3.6 Summary

This chapter presents a robust noise adaptation algorithm to suppress outlier perturba-
tions on the MNCM estimation. First, the problem of INMS noise adaptation is formulated,
and the joint variational approximation principle and its limitation in INMS are analyzed.
Then, a robust variational approximation adaptation algorithm based on MCC is proposed.
A joint variational approximation analytical solution for the MNCM and smoothing state
is derived. The inverse scale matrix of the IW distribution is reconstructed based on the
correntropy matrix to suppress the interference of measurement outliers on the MNCM
estimation. Meanwhile, the performance of the proposed adaptive method is analyzed
theoretically. Finally, simulation experiments are conducted to verify the effectiveness of
the proposed method. The experimental results show that, compared to the SHA, VBA,
and ORA methods, the proposed RSVBA has higher estimation accuracy for MNCM in
the presence of outliers, and the corresponding position estimation ARMSE is reduced
by 26.3%, 24.6%, and 10.2%, respectively, indicating better robust estimation accuracy.
This demonstrates that the proposed RSVBA can effectively suppress the interference of
measurement outliers on MNCM estimation and verifies its effectiveness.
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Chapter 4

Autonomous State Integrity Monitoring
Algorithm for Multiple Fault
Assumption

4.1 Introduction

In addition to high-accuracy positioning, it is also necessary to effectively quantita-
tively evaluate the confidence of the position solution through integrity monitoring to en-
sure vehicle navigation safety in adverse urban areas. IM methods for filtering sequential
framework in INMS are extensions of the RAIM methods developed for aviation applica-
tions in GNSS, which rely on the assumption of a maximum number of missing detection
biases. Unlike aviation applications, where the low failure rate of satellites allows a single-
fault assumption to satisfy integrity risk requirements, the increasing number and types of
INMS sensors raise the likelihood of data errors and outlier disturbances, rendering the
single-fault assumption inapplicable for INMS in urban areas. Furthermore, in the pres-
ence of outliers, the Gaussian assumption used by existing IM methods cannot accurately
characterize the actual noise distribution, making it impossible to compute reliable HPL
for assessing position reliability.

This chapter presents a sequential IM method based on multiple fault-missing de-
tection assumptions to effectively assess the position estimation of INMS in urban areas.
First, the integrity monitoring problem is formulated. The maximum slope-based IM is in-
troduced, and its limitations in INMS are analyzed. Then, a sequential IM method based on
multiple fault assumptions is proposed. The IM dynamic regression model is built using a
consistent posterior estimate provided by the proposed robust filter. A consistency factor in
the state domain is calculated using the sequential probability ratio over sliding windows.
Under the multiple fault-missing detection assumption, the HPL is calculated based on the
maximum eigenvalue combined with the consistency factor to quantitatively evaluate the
confidence of the position solution. Finally, simulation experiments are conducted to verify
the effectiveness of the proposed method.
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4.2 Analysis of the INMS Integrity Monitoring Problem

IM includes the FDE process and the HPL calculation. First, the severe fault bias is
eliminated through FDE. Then, the HPL is calculated as a quantitative indicator to assess
the confidence level of the position solution. Therefore, as a key technique for IM, this
section focuses on the analysis of horizontal protection level calculation issues. The HPL
calculation principle is given in Fig. 4.1 .

Figure 4.1: HPL calculation principle

(1) First, determine the relationship between the state estimation error and the detec-
tion statistics raised by the measurement noise bias. Consider the following regression
observation equation as

yk = Ckxk + vk (4.1)

where yk is the measurement vector at time-step k; vk is the measurement noise and is
assumed to follow a Gaussian distribution vk ∼ N (0,Vk). Therefore, the state estimation
can be obtained by the weighted least squares algorithm as [74]

x̂k = Akyk =
(
CT

k WkCk
)−1 CT

k Wkyk (4.2)

where Ak =
(
CT

k WkCk
)−1 CT

k Wk represents the mapping matrix from the measurement do-
main to the state domain; Wk = V−1

k indicates the measurement weighting matrix. Based
on Eq. (4.2), the state estimation error is calculated as Eq. (4.3). This equation essentially
reveals the state estimation error caused by the measurement noise bias vk.

x̃k = x̂k −xk =
(
CT

k WkCk
)−1 CT

k Wk (yk −Ckxk) = Akvk (4.3)

Furthermore, the measurement residuals calculated from the state estimation are

rk = yk −Ckx̂k = Ckxk + vk −Ckx̂k = (I−CkAk)vk (4.4)

Then, the detection statistic is calculated as

sk = rT
k Wkrk = vT

k Skvk (4.5)
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where Sk = (I−CkAk)
T Wk (I−CkAk). The relationship between the state estimation error

and the detection statistics raised by the measurement noise bias is determined by Eq. (4.3)
and Eq. (4.5).

(2) The minimum detectable bias is the detection statistic of the outlier bias that cannot
be detected under the specified false alarm rate and missed detection rate. First, the fault
detection threshold Td is determined at a specified false alarm rate. Then, the minimum
detectable bias is determined based on Td and the specified missed detection rate. Specifi-
cally, a binary hypothesis is defined: a) The hypothesis of outlier-free in the measurement
H0; and b) The hypothesis of outlier bias in measurement H1. For different hypotheses, the
statistic sk follows different distributions, specified as followsH0 : E [vk] = 0, sk ∼ χ2 (v)

H1 : E [vk] ̸= 0, sk ∼ χ2 (v,λ )
(4.6)

where χ2 (v) denotes the central chi-square distribution with v degrees of freedom; χ2 (v,λ )
denotes the non-central chi-square distribution with v degrees of freedom and a non-central
parameter λ = E [vk].

Figure 4.2: Center and non-center Chi-square probability distribution

a) Under the H0 hypothesis, if a fault bias is detected, it refers to a false alarm. With a
specified false alarm rate Pfa, sk satisfies the following [77]

P (sk < Td |H0) =
∫ Td

0
pχ2(v)(x)dx = 1−Pfa (4.7)
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where pχ2(v) (x) =
1

2
v
2 Γ( v

2 )
x

v
2−1 exp

(
−1

2 x
)

denotes the PDF of central chi-square distribu-

tion with degrees of freedom v [118]; The Γ (·) is the Gamma function; Td represents
the threshold for fault detection, i.e. the quantile of pχ2(v) at a confidence level of
1−Pfa. Td can be uniquely determined for a specified Pfa.

b) Under the hypothesis of H1, the IM accounts for the missing detection of fault bias,
i.e., these are faults that are not detected. In detail, if the measurement is disturbed by
a fault bias fk, then according to Eq. (4.5), sk is calculated as

sk = (vk + fk)
T Sk (vk + fk) (4.8)

where sk follows a non-central chi-square distribution. Then, with a specified missed
detection rate Pmd, sk satisfies the following

P (sk < Td |H1) =
∫ Td

0
p

χ2
(v,λ )

(x)dx = Pmd (4.9)

where p
χ2
(v,λ )

(x) = 1
2

( x
λ

) v−2
4 exp

[
−1

2 (x+λ )
]

I v
2−1(

√
λx) indicating a non-central chi-square

distribution PDF. The non-central parameter λ can be determined by half-search meth-
ods, etc., while Td and Pmd are specified.

Fig. 4.2 plots the above central and non-central chi-square probability distributions.
With specified Pfa and Pmd, the non-central chi-square distribution p

χ2
(v,λ )

and the corre-

sponding non-central parameter λ are uniquely determined. Comparing the two non-
central chi-square probability curves, once the detection statistic λ1 is greater than λ ,
the corresponding missed detection rate Pmd1 will be less than Pmd, which cannot meet
the specified missed detection rate. Therefore, λ essentially represents the minimum de-
tectable bias (or the maximum undetectable bias) of missing detection.

(3) Based on the minimum detectable bias, the maximum potential (position) error,
i.e., the HPL, can be calculated under the fault missing detection assumption. Since the
actual HPE is known, the HPL is used to evaluate the unknown HPE by providing a reliable
range for the vehicle position and reflecting the confidence in the position solution. Fig. 4.3
shows the relationship between HPL, HPE, and HAL. As shown in Fig. 4.3 , with a certain
integrity risk, the position solution will generally be within the HPL boundary in case 1.
If the HPL is unreliable, it may be unable to effectively overbound the HPE, i.e., the HPE
is greater than the HPL in case 2, so the HPL cannot reflect the confidence of the position
solution. In the worst case, the HPE exceeds the HAL, but the HPL is still less than the
HAL, which will lead to hazardous misleading information (HMI) in case 3. In this case,
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the position solution is not unreliable, but the system still cannot issue an alarm and switch
to the safe driving mode, which seriously undermines navigation safety.

Figure 4.3: The relationship between HPL, HPE, and HAL

4.3 Integrity Monitoring Method With Biases Projections

This section presents the common integrity monitoring used in filter frames for multi-
sensor integrated navigation. Then, the limitations of its application in INMS are analyzed.

4.3.1 Protection Level Calculation Based on Maximum Slope

The HPL calculation is the key technique in IM. In IM applied to multi-sensor inte-
grated navigation, the HPL calculation is common based on the maximum slope method
developed in RAIM. It defines the slope as the ratio of statistically independent HPE and
filtering innovation detection statistics [119]. The measurement with the maximum slope
is most susceptible to missing detection. Then, the HPL is calculated by the maximum
slope and the maximum undetectable bias λ . Specifically, the method relies on the single-
fault assumption of the observation source, i.e., there is a missed fault in observation after
FDE. Assuming that there is a missed fault bias bi in the i-th observation at moment k, and
expressing the fault vector as fk = Tz

i bi, thus the detection statistic is calculated based on
Eq. (4.5) as

sk = E
[
(vk + fk)

T Sk (vk + fk)
]
= Sii,kb2

i (4.10)

where Sii,k denotes the i-th diagonal element of Sk. Further, the HPE caused by fault bias
bi is calculated. Based on Eq. (4.3), the state estimation error induced by bi is denoted as

x̃b
k = Akfk = AkTz

i bi (4.11)
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In INMS, the position error vector p̃k =
[
δ pe

k δ pn
k

]T is obtained by

p̃k = Tx
px̃b

k = Tx
pAkTz

i bi (4.12)

where Tx
p denotes the mapping matrix of p̃k from the state vector x̃b

k . Then the HPE is
calculated by p̃k as

δ pb =
√

p̃T
k p̃k = bi

√
(Tz

i )
T AT

k

(
Tx

p
)T Tx

pAkTz
i = bi

√
A2
(pe,i),k +A2

(pn,i),k (4.13)

where A(pe,i),k and A(pn,i),k denote the elements (pe, i) and (pn, i) of the mapping matrix
Ak, respectively. Then, the linear mapping ratio (i.e., the slope) between the detection
statistic and potential position error caused by bi can be obtained based on Eq. (4.10) and
Eq. (4.13) as [80, 91]

SLOPi =

√√√√A2
(pe,i),k

+A2
(pn,i),k

Sii,k
(4.14)

The measurement element with the maximum slope has the smallest detection statis-
tic, which is the most likely to be missed in FDE. Therefore, the maximum slope SLOPmax

is used to calculate the HPL. In addition, with the specified Pfa and Pmd, the non-central
parameter λ is uniquely determined as the maximum undetectable bias. Therefore, HPL is
calculated as

HPL = SLOPmax
√

λ (4.15)

4.3.2 Limitations Analysis for Integrity Monitoring in INMS

The IM method based on RAIM has limitations when it comes to implementing INMS
in urban areas. These limitations are as follows.

(1) The above IM method assumes a single-fault missing case based on Eq. (4.10). How-
ever, in urban areas with an increasing number and types of INMS sensors, the likeli-
hood of data errors and outlier interference rises, making the single-fault assumption
invalid. Consequently, the IM method cannot calculate a reliable HPL for evaluating
position solution confidence and monitoring navigation integrity.

(2) The slope calculation relies on an assumption of noisy Gaussian distribution with
known statistics based on Eq. (4.2) and Eq. (4.14). However, in the presence of out-
liers, the Gaussian assumption used by existing IM methods cannot accurately char-
acterize the actual noise distribution, resulting in an inaccurate covariance matrix due
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to the inconsistent state a posteriori estimation. In this case, it is infeasible to calculate
a reliable HPL for evaluating position solution confidence.

(3) The HPL is mainly dominated by protecting against potential fault biases under fault-
bias missed detection assumptions. Indeed, the position estimation uncertainty (i.e.,
MSE) during the iterations of sequential filtering also plays an important role for PL.
Therefore, HPL should protect against both fault bias and position uncertainty based
on estimation consistency.

4.4 Sequential Multiple Fault-Biases based Integrity Mon-
itoring

The above common IM principle is based on the RAIM developed for aviation ap-
plications, where the HPL is mainly dominated by protecting against potential fault biases
under missed detection assumptions. Indeed, position estimation uncertainty (i.e., MSE)
during the iterations of sequential filtering also plays an important role for HPL. Based
on the definition, the estimation consistency can reflect the characterization effect of filter-
MSE on the actual PE distribution. Therefore, with higher consistency, HPL can be pri-
marily dominated by the MSE as a statistical bound for PE. In practice, however, factors
such as a mismatch of noise models due to fault interference or incorrect filter parameters
can lead to poor estimation consistency, making the MSE-induced HPL fail to evaluate
the actual PE. Moreover, faults are more likely to be missing-detected because the state
estimate has been contaminated by outliers. Therefore, in addition to the estimation uncer-
tainty, it is necessary to protect against PE induced by potential multi-fault further based
on the consistency level. This approach, which is based on the consistency level, provides
a more reliable and accurate HPL to envelop the PE while reducing the redundancy space
of HPL, improving the IM availability under multi-fault assumptions. Therefore, based on
this motivation, the principle of HPL calculation is formulated as [120]

HPL = argmax
sk∈(0,Td)

{
(δ pn |H0)+w (η)

(
δ pb |H1

)}
(4.16)

where the term δ pn is the MSE-induced HPL against the estimation uncertainty; δ pb is
the HPL against the multiple fault biases. Different from aviation applications, due to
the outlier disturbances and a priori state errors in challenging urban areas, the missing
assumption of multiple fault biases needs to be considered for reliable HPL; w (·) is a
weight function for δ pb regarding the consistency level indicator η .
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Based on the above motivation, we propose a multi-biases sequential integrity mon-
itoring method (MSIM) in the section. First, the IM dynamic regression model is con-
structed by a consistent posterior estimate provided by the proposed robust filter. Then, the
estimation consistency in the state domain is detected based on the sequential probability
ratio over sliding windows. PL is determined based on the innovation-based maximum
eigenvalue under multi-fault assumption combined with the consistency factor. Fig. 4.4
shows the structure of the proposed IM method.

Figure 4.4: The diagram of the proposed method

4.4.1 IM Regression Model Based on Consistent Estimation

The estimation consistency is defined as the quantitative conformity of the filter MSE
and the actual MSE of state vector [105], which is essential for protection level. A pos-
terior state estimation consistency of the proposed MRCKF is analyzed in the Theorem
2.2. It is demonstrated that the MRCKF provides more consistent a posteriori estimation
results. Therefore, the IM regression model is constructed based on MRCKF. Specifically,
the filter-based state space model is first converted to a least-squares regression model.
Consider the following discrete-time stochastic state space model as{

xk = fk(xk−1)+wx
k−1

zk = hk(xk)+wz
k

(4.17)
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where xk ∈ Rn and zk ∈ Rm are the state and the measurement vector at discrete-time step
k; wx

k−1 ∼ N(0,Qk−1) and wz
k−1 ∼ N(0,Rk) are the uncorrelated process and measurement

noise with known covariance matrix Qk−1 and Rk, respectively. Then, the prior state mean
x̂k|k−1 and its covariance matrix Pk|k−1 are obtained as

x̂k|k−1 =
∫

Rn
fk (xk−1)N (x̂k−1,Pk−1)dxk−1 (4.18a)

Pk|k−1 =
∫

Rn
fk (xk−1) fT

k (xk−1)N (x̂k−1,Pk−1)dxk−1 − x̂k|k−1x̂T
k|k−1 +Qk−1 (4.18b)

where N (x̂k−1,Pk−1) is obtained by MRCKF. Then, the prior state estimate is regarded as
an additional measurement vector, and the state space model Eq. (4.17) is constructed as a
regression model for the weighted least squares form, i.e.[

zk

x̂k|k−1

]
=

[
Hk

In

]
xk +

[
wz

k

wx
k

]
(4.19)

where Hk is the Jacobi matrix expanded at x̂k|k−1 for hk(·), which can be computed by
the posterior statistical linearization method of section 3.4.3 . Further, Eq. (4.19) can be
expressed in the following form

yk = Ckxk + vk (4.20)

where yk ∈ Rm+n denotes the joint observation vector of a prior state and measurement at
time-step k; vk is the joint observation noise, which follows the distribution as

vk ∼ N (0,Vk) , Vk =

[
Rk 0
0 Pk|k−1

]
(4.21)

4.4.2 Estimation Consistency Detection Based on Sequential Proba-
bility Ratio in State-Domain

The common method for consistency detection is to check the measurement inno-
vation using a distribution whiteness test (e.g., chi-square test). Still, it suffers from the
following problems: 1) the consistency level of the measurement domain is not equivalent
to the state (position) domain of interest in IM, so it is not feasible to indirectly reflect the
consistency of the position estimation through the innovation sequence [105]; 2) the chi-
square test has reliable detection performance against mutation error. However, under the
slowly growing error that is hardly suppressed by robust filters, the chi-square test cannot
effectively detect the estimation consistency level. To this end, we propose a state-domain
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consistency detection method based on the sequential probability ratio over a sliding win-
dow against challenging slowly growing errors.

First, in the presence of outliers, the measurement is modeled at time-step i∈ [k−L+ 1,k]

within the sliding window as follows

zi = Hi xi +wz
i + fz

i (4.22)

where fz
i is a faults-bias. Then, based on Algorithm 4, the difference between state a priori

and a posteriori is calculated as

dxi = x̂i − x̂i|i−1 = δxi −δxi|i−1 + fx
i (4.23)

where fx
i = Gifz

i . Then, a sequence {dxi|i = k−L+ 1, ...,k} is used to detect consistency with
computational efficiency more reliably. In case without error disturbance in the sequence
(i.e., fx

i = 0), the consistency is optimal and the sequence mean is E [dx] = 0. Thus, dxi

follows a zero-mean Gaussian distribution with covariance Pdx
i , i.e., dxi ∼ N

(
0,Pdx

i
)
. Con-

versely, when estimation is inconsistent due to slowly growing errors, there is

E [dx] = f̄x
i ̸= 0,E

[
(dxi − f̄x

i )
T
(dxi − f̄x

i )
]
= Pdx

i (4.24)

Then, a binary hypothesis is defined as 1) Hc
0: The hypothesis of consistency; 2)

Hc
1: The hypothesis of inconsistency. Based on the above distribution, dxi has different

probability functions under different hypotheses, as follows.

P (dxi | Hc
0) = Ui · exp (− 1

2
dxT

i (P
dx
i )−1dxi) (4.25)

P (dxi | Hc
1) = Ui · exp (− 1

2
(dxi − f̄x

i )
T(Pdx

i )−1(dxi − f̄x
i )) (4.26)

where Ui = 2π−ns/2(Pdx
i )−1/2; f̄x

i = ∑
k
j=k−L+1 dx j/L; The covariance matrix is obtained by

proposed MRCKF as

Pdx
k = E

[
dx dxT | zk

]
= E

[
(Gk (zk − ẑk)) (Gk (zk − ẑk))

T
]

= Gk
(
HkPk|k−1HT

k +Rk(Cz
k)

−1)GT
k

(4.27)

Thus, the probability ratio of the two hypotheses over the sliding window is given by
[121]

p̄k =
P (dxk−L+1, · · · ,dxk | Hc

1)

P
(
dxk−L+1, · · · ,dxk | Hc

0
) = k

∏
i=k−L+1

P (dxi | Hc
1)

P
(
dxi | Hc

0
) (4.28)
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Furthermore, the logarithmic operation on p̄k yields

r̄k = |ln ( p̄k)|=
k

∑
i=k−L+1

|∆ri| (4.29)

where the ratio increment ∆ri is calculated as

∆ri =
1
2

dxT
i (P

dx
i )−1dxi −

1
2
(dxi − f̄x

i )
T(Pdx

i )−1(dxi − f̄x
i ) (4.30)

The probability ratio calculation is illustrated in Fig. 4.5 . Then, the consistency factor
is defined as

η = r̄k ·T−1
cons (4.31)

where Tcons is the consistency detection threshold, obtained by [122]

Tcons = ln
(

1−Pmd

Pfa

)
(4.32)

The factor η quantifies the consistency of the estimates. As η becomes smaller, the
consistency of the estimates improves. Conversely, if η is greater than 1, the estimates
are inconsistent, indicating that the filter MSE does not represent the actual state error
distribution.

Figure 4.5: Testing statistics for state consistency within sliding windows

4.4.3 PL Calculation Based on Maximum Eigenvalue against Multi-
Biases

As an upper bound on the potential HPE, the HPL is determined under the multiple
fault-biases missed detection hypothesis. Based on Eq. (4.16), HPL includes protection
against estimation uncertainty and multiple fault biases, which are separately calculated as
follows.

(1) HPL against estimate uncertainty: Under the faults-free hypothesis, HPE is ap-
proximated to follow a Gaussian distribution. i.e., δ pk ∼N

(
0,Pδ pk

)
, where Pδ pk ≈

(
σ2

n,k +σ2
e,k

)
,
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σn,k and σe,k are the standard deviation of east and north PE. In the case of consistent state
estimation, the covariance of actual PE covariance is equivalent to the filter-indicated MSE.
Therefore, the HPL for estimation uncertainty is calculated as

δ pn
k = −Q−1

(
Pfa

2

)√
Pe

k +Pn
k (4.33)

where Q−1 (·) denotes the inverse function of the normal distribution CDF that determines
the quantile; Pe

k and Pn
k are the filter-indicated MSE of the east and north position error,

respectively. In fact, δ pn
k can be regarded as the protection for the random noise part of the

PE with error bias when subjected to outlier interference. Furthermore, the protection for
the maximum PE error bias is given below.

(2) HPL against multiple fault biases: First, a mapping relationship is established
between the HPE and the detection statistics caused by multi-fault biases. Then, based on
the mapping relationship, the HPL is computed by a non-central parameter λ . Specifically,
assuming there are r measurement error biases and denoted by fb ∈ Rr, the fault vector is
then denoted by

fk = Tz
k fb

k (4.34)

where Tz
k denotes the mapping matrix from the multi-fault bias projects to the fault vector.

Then, the measurement vector is denoted as

yk = Ckxk + vk + fk (4.35)

Based on Eq. (4.3), the state estimation error caused by outliers is

x̃b
k = Akfk = AkTz

k fb
k (4.36)

Thus, the position error vector p̃k = [δ pe
k δ pn

k ]
T is calculated as

p̃k = Tx
px̃b

k = Tx
pAkTz

k fb
k (4.37)

The HPL arising from the multiple fault biases is calculated as

δ pb =
√

p̃T
k p̃k =

√
(fb

k)
T
(
Tz

k

)T DkTz
k fb

k (4.38)

where Dk = AT
k

(
Tx

p
)T Tx

pAk = WkCk
(
CT

k WkCk
)−1 (Tx

p
)T Tx

p
(
CT

k WkCk
)−1 CT

k Wk. Further, the
detection statistic due to the multiple fault biases is determined. According to Eq. (4.29),
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the residual is calculated as
rk = (I−CkAk) fk (4.39)

Based on the established dynamic regression model, the residual rk consists of state
and measurement residuals. Since the sensor outliers only interfere with the measurement,
the residuals need to be extracted in rk, i.e.,

rz
k = Lzrk (4.40)

For example, when latitude and longitude (error) are used as the external measure-
ment, the extraction matrix is expressed as

Lz =

[
1 0 01×n

0 1 01×n

]
2×(m+n)

(4.41)

Thus, the statistic caused by the outlier disturbance is calculated as

sz
k = (rz

k)
TWz

krz
k = (fb

k)
T (Tz

k

)T Sz
kTz

k fb
k (4.42)

where Wz
k = (Rk)

−1; Sz
k is calculated as

Sz
k = (I−CkAk)

T LT
z Wz

kLz (I−CkAk) (4.43)

In addition, the non-central parameter λ can be uniquely determined with a specified
Pfa and Pmd by such as the half-interval search method, which is formulated as

λ = inf
{∫ Td

0
f
χ2
(n,λ )

(x)dx ⩽ Pmd

}
(4.44)

where Td =
√

χ
−2
n (1−Pfa) is a quantile corresponding Pfa; χ−2

n (·) is the inverse chi-squared
CDF with n degrees of freedom. From the previous analysis in Eq. (4.10), λ is essentially
the maximum undetectable bias subject to Pfa and Pmd. Therefore, due to the statistical
independence [80] between the HPE and the statistics value, the following constraint prob-
lem holds by Eq. (4.38) and Eq. (4.42) as

δ pb = max
Tz

k∈Tk

√
(fb

k)
T
(
Tz

k

)T DkTz
k fb

k

s.t. ⇒ (fb
k)

T (Tz
k

)T Sz
kTz

k fb
k = λ

(4.45)
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By offsetting the fault vector fb
k , Eq. (4.45) can be transformed into the unconstrained

problem, which is
δ pb

k =
√

Λmax (Σk)
√

λ (4.46)

where Λmax (·) denotes the maximum eigenvalue; Σk is calculated as

Σk =
(
Tz

k

)T DkTz
k

((
Tz

k

)T Sz
kTz

k

)−1
(4.47)

Based on Eq. (4.46), the maximum position error under the multi-fault bias missing
detection assumption, i.e., HPL, is determined by the non-central parameter λ . Fig. 4.6
shows the relationship of PL for multiple fault biases, eigenvalue, and the non-central
parameter. It can be seen from Fig. 4.6 that by numerically solving for the maximum
eigenvalue, PL against the multiple fault biases can be determined based on the non-central
parameter λ .

Figure 4.6: The relationship of PL for multiple fault-biases, eigenvalue, and the non-
central parameter

(3) Overall HPL determination: Under the multi-fault assumption, the HPL δ pn
k and

δ pb
k protect the random noise and error bias terms of the PE, respectively. Therefore, based

on Eq. (4.33) and Eq. (4.46), the overall PL is obtained by combining the consistency factor
η , which is given by

HPL = δ pn
k +w (η) ·δ pb

k (4.48)

where the weighting function is defined as

w (η) = min
(
η

2,1
)

(4.49)
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When the consistency factor is small, the weight of δ pb
k is also smaller, so HPL can

be primarily dominated by the MSE-induced δ pn
k since the filter-indicated MSE can effec-

tively represent the distribution of the actual position error. Conversely, as the consistency
factor increases, due to unexpected non-Gaussian noise interference as well as a priori state
error bias, the weight of δ pb

k also increases to protect against the potential bias of the HPE
in addition to the protecting HPE against random noise via the MSE-induced δ pn

k .

Algorithm 5: One-time step calculation of HPL
Input: x̂k, Pk, Pfa, Pmd, Degrees of freedom v, Consistency factor η

Output: Protection level HPL

/* Calculate non-center parameter */

1: [λ ,Td] = ncx2ncp (Pfa,Pmd,v)

/* Calculate HPL */

2: δ pn
k = −Q−1

(Pfa
2

)√
Pe

k +Pn
k

3: Ck =
[
HT

k In
]T, Wk = diag

([
Rk Pk|k−1

])−1

4: Ak =
(
CT

k WkCk
)−1 CT

k Wk

5: Dk = AT
k

(
Tx

p
)T Tx

pAk

6: Sz
k = (I−CkAk)

T LT
z Wz

kLz (I−CkAk)

7: Σk = (Tz
k)

T DkTz
k

(
(Tz

k)
T Sz

kTz
k

)−1

8: δ pb
k =

√
Λmax (Σk)

√
λ

9: HPL = δ pn
k +min

(
η2,1

)
·δ pb

k

10: Function [λ ,Td] = ncx2ncp (Pfa,Pmd,v)

11: Td = chi2inv (1−Pfa,v)

12: λmin = 0,λ = λmax = 500

13: Pcdf = ncx2cdf(Td,v,λ )

14: while abs(Pcdf−Pmd) > 0.01Pmd do

15: if Pcdf > Pmd then λmin = λ ;

16: else λmax = λ ;

17: λ = (λmax +λmin)/2

18: Pcdf = ncx2cdf(Td,v,λ )

19: end

20: end
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4.4.4 Multi-Fault Mapping Matrix Determination

In order to calculate the HPL using the equation Eq. (4.34), it is necessary to determine
the number of missing faults and the corresponding mapping matrix. In the state-of-the-art
methods, the number of missing faults is determined by assigning a prior fault probability
to each sensor based on the integrity risk [93]. The fault mapping matrix is then determined
by permutations. For example, with a missing fault r, it is necessary to compute Nf =

1+C1
m+ ...+Cr

m permutations corresponding to the position error and choose the maximum
among them as the HPL. However, in the case of INMS in urban areas, the fault prior
probability of each sensor is not available due to changes in dynamic observation scenarios.
Furthermore, with the increase in the number and types of INMS sensors in urban areas,
so does the likelihood of data errors and outlier interference, resulting in a greater number
of fault permutations and imposing a heavy computational burden.

The purpose of determining the fault mapping matrix is to find the combination of
fault measurements that causes the largest position error. In GNSS, the effect of mea-
surements on the position varies according to the satellite’s spatial position. Whereas the
measurement model is fixed in INMS. Therefore, the combination of measurement infor-
mation can be determined based on the degree of observability of the measurement with
respect to state (i.e., position error in INMS). To this end, the number of fault biases is first
determined. Given the robustness against outlier of the front-end robust filtering and the
accurate state a priori propagation of INMS, the faults outliers are detected by a chi-square
test based on the filtering innovation term, and the detection statistic is calculated as

sf
i,k = z̃2

i,kP−1
ii,zz , for i ∈ [1,m] (4.50)

where z̃i,k denotes the i-th element of the innovation z̃k; Pii,zz is the i-th diagonal element of
the covariance matrix of the innovation. The number of faults is determined by comparing
sf

i,k with the fault detection threshold Td. The method determines the multi-fault mapping
matrix while avoiding the permutations, thus improving the computational efficiency.

4.5 Simulation Verification Experiment

4.5.1 Simulation Condition Setting

The vehicle trajectory and sensors specifications in the simulation are the same as
those in the section 2.5.1. Then, the sensor noise, IM method parameters, and evaluation
metrics are set as follows.
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(1) Sensor Noise Settings: Integrity monitoring focuses more on the reliability of
HPL in adverse scenarios, i.e., the ability to overbound and quantitatively evaluate the HPE
to ensure navigation safety. To this end, this experiment simulates a more adverse noise
condition to verify the reliability of HPL. Specifically, two sets of simulation experiments
with different noise types and disturbances are set up as follows.

Case 1: GNSS, OD, and POLA are disturbed by outliers during different periods. The
noise probability distribution is expressed asp

(
wgsod

k

)
= (1− pdisb) N (0,Rk)+ pdisb N (0,100Rk)

p
(

wpola
k

)
= (1− pdisb)Nmr

(
0, tau,Rpola

k

)
+ pdisb Nmr

(
0, tau,25Rpola

k

) (4.51)

where wgsod
k =

[
wgnss

k wod
k

]T; Rk = diag
([

rgnss
k rod

k

])2, based on sensors specifications, there is
rgnss

k = [5m 5m], rod
k = 0.01vod; Rpola

k = (rpola
k )2 is the heading noise covariance, rpola

k = 1deg,
relevant time setting tau = 10s; The pdisb denotes the probability of outlier interference,
which is pdisb = 0.1 for 0 s to 1000 s and increases to pdisb = 0.5 for 1000 s to 1500 s. An
example of noise for case 1 is shown in Fig. 4.7 .

Figure 4.7: Example of sensor noise for case 1

Case 2: GNSS, OD, and POLA are disturbed by outliers during different periods, and
the noise probability distribution is the same as case 1. Nevertheless, from 600 s to 900 s,
GNSS and POLA are blocked and cannot provide measurement data. An example of noise
for case 2 is shown in Fig. 4.8 .

(2) IM Methods: The proposed MSIM is compared with the following methods to
validate its effectiveness: 1) k-Sigma [80, 81], which calculates the PL directly using the
state covariance matrix of CKF based on a fixed state-space model; 2) KSIM [90], which
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Figure 4.8: Example of sensor noise of case 2

employs a maximum slope-based single-fault hypothesis method within the filtering frame-
work, incorporating the maximum possible position bias along with the estimation uncer-
tainty of CKF; 3) RSIM, which utilizes the consistent state covariance matrix provided by
MRCKF, applying the single-fault assumption method that combines the maximum pos-
sible position bias with the estimation uncertainty of MRCKF. The settings for the filter
parameters are the same as in subsection 2.5.1. The IM parameters are then set as follows:
In k-sigma, the scalar factor is set to k = 4; The false alarm rate is set to Pfa = 10−4; The
missing detection rate is set to Pmd = 10−4; With the specified Pfa and Pmd, the non-central
parameter for the INMS model is λ = 102.41. In addition, the HAL for in-vehicle route
navigation is set to HAL=20 m according to the U.S. Federal Radionavigation Program
[123].

(3) Evaluation Indicators: In contrast to the overall error distribution concerned in
state estimation accuracy, IM requires a reasonable overbound of HPL to HPE and focuses
on whether HPL can effectively evaluate the position confidence. Therefore, the protection
level reliability (PLR) and the probability of HMI event are used to assess the IM algorithm
[124, 94]. Specifically, HPL reliability is the probability that the HPL can effectively
overbound the HPE. The higher the PLR is, the more reliable the HPL is. Moreover, the
HMI event refers to a case where the PE exceeds the AL, but the PL is still less than the AL,
which is defined in section 4.2. In this case, the position solution is not unreliable, but the
system still cannot issue an alarm and switch to the safe mode, which seriously undermines
navigation safety. Therefore, the probability of HMI should be as low as possible to ensure
navigation safety. Fig. 4.9 reflects the relationship of the above indicator. These indicators
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are defined as 
PPLR =

N{HPL>HPE}
Ne

×100%

PHMI =
N{HPE>HAL}∩{HPL<HAL}

Ne
×100%

(4.52)

where PPLR and PHMI are the HPL reliability and the probability of the HMI event, respec-
tively; N{·} denotes the number of cases; Ne denotes total number of epochs.

Figure 4.9: IM Stanford diagram

4.5.2 Simulation Results and Analysis

(1) Results and analysis of Case 1: Fig. 4.10 shows the HPE and HPL results of
a single MC trial in case 1 to intuitively demonstrate the relationship between HPL and
HPE. In addition, Fig. 4.11 shows the cumulative probability distributions of the difference
between HPL and HPE (combined MC test results) for different IM methods to reflect the
reliability of HPL in case 1. Fig. 4.12 plots the Stanford diagram for the different IM
methods. In addition, the indicators of different IM methods are listed in Tab. 4.1 .

From Fig. 4.10 , in the presence of unmodeled outliers, there is an estimation incon-
sistency of the CKF due to the inability to incorporate the effect of the outliers on the
state estimation. As a result, the HPL of the k-Sigma method cannot overbound and eval-
uate the HPE of the CKF, especially in the presence of severe outlier disturbances (i.e.,
between 1000 s and 1500 s). This means that k-Sigma cannot accurately evaluate position
confidence and monitor the navigation integrity of INMS. In comparison, KSIM provides a
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reliable HPL. However, KSIM only considers the maximum potential position error based
on the predetermined statistical model and does not consider the impact of unmodeled out-
liers. Consequently, the HPL of KSIM still falls short of bounding the HPE in the presence
of outliers, and the confidence of the position solution cannot be effectively evaluated.

Compared to CKF, which calculates the state MSE using a predetermined statistical
model, MRCKF has improved estimation consistency by dynamically adjusting the state
MSE based on external noise situations. Therefore, the HPL of RSIM based on MRCKF
can efficiently exceed the HPE from 0 s to 1000 s. However, for severe outliers (1000 s
to 1500 s), the RSIM method cannot effectively evaluate the HPE because it only con-
siders the single fault missing detection. Then, MSIM provides a more reliable HPL by
considering multiple fault assumptions and position estimation uncertainty. Consequently,
MSIM can effectively evaluate the HPE and monitor position integrity, thereby enhancing
navigation safety.

Figure 4.10: HPL and HPE in case 1

In addition, according to Fig. 4.11 , different IM methods have different HPL relia-
bility. Specifically, for the k-sigma and KSIM methods, there is a 40.12% and 25.31%
probability that HPL is lower than HPE (i.e., the gray shaded area on the left), which cor-
responds to HPL reliabilities of 59.88% and 74.69%, respectively. This indicates that HPL
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Figure 4.11: Cumulative probability distribution of difference between HPL and HPE in
case 1

Table 4.1: Indicators for each IM method of Case 1

Index k-Sigma KSIM RSIM MSIM

PLR 59.88% 74.69% 96.85% 99.62%

HMI 0.22% 0.28% 0.00% 0.00%

cannot effectively overbound HPE in evaluating the confidence of the position. In compar-
ison, the RSIM method shows a significantly higher HPL reliability of 96.85%, but fails to
effectively evaluate the HPE under severe outlier disturbances.

The proposed MSIM shows the highest HPL reliability of 99.62% throughout the MC
simulation. In addition, the cumulative probability that the HPL of MSIM exceeds the HPE
is maintained at 97.11% over the 10 m range. This indicates that MSIM provides a more
reliable HPL in INMS applications while avoiding the problem of over-conservatism of the
HPL and more effectively evaluating the confidence of the position solution. Furthermore,
based on Fig. 4.12 , the probability of HMI events for k-Sigma and KSIM is 0.22%, even
higher in adverse urban areas, which does not meet the integrity risk requirements. In
contrast, the proposed MSIM does not generate any HMI event during the whole MC
simulation, which effectively realizes the integrity monitoring and ensures the positioning
safety of the vehicle.

(2) Results and analysis of Case 2: Fig. 4.13 shows the HPE and HPL results from
a single MC trial in case 2. Fig. 4.14 shows the cumulative probability distributions of the
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Figure 4.12: Stanford diagram of case 1

difference between HPL and HPE (combined MC trial results) for different IM methods to
reflect the reliability of HPL of case 2. Fig. 4.15 shows the Stanford plot for the different
IM methods. In addition, the indicators of different IM methods are listed in Tab. 4.2 .

As can be seen from Fig. 4.13 , in the case of GNSS and POLA rejection from 600 s
to 900 s, the HPE still increases even though the spread of the position error is limited to
some extent by the combination of IMU and odometer. In this case, the HPL of the k-Sigma
method cannot evaluate the HPE of the CKF. Although KSIM provides a reliable HPL, it
still falls short of overbounding the HPE and assessing the confidence in the position. In
the case of missing GNSS and POLA data, MRCKF avoids the discarding of information
caused by Gaussian reconstruction and still has better consistency than CKF. Thus, the
HPL of RSIM based on MRCKF can efficiently overbound the HPE from 600 s to 900 s
compared to k-Sigma and KSIM. In addition, MSIM provides a more reliable HPL by con-
sidering multiple fault assumptions and position estimation uncertainty, which improves
the navigation safety of a vehicle.
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Figure 4.13: HPL and HPE in case 2

Figure 4.14: Cumulative probability distribution of difference between HPL and HPE in
case 2

In addition, as shown in Fig. 4.11 , different IM methods have different HPL reliabil-
ity. Specifically, for the k-Sigma and KSIM methods, the reliability of HPL is 79.74% and
90.77%, respectively. This indicates that HPL cannot effectively overbound the HPE to
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Figure 4.15: Stanford diagram of case 2

Table 4.2: Indicators for each IM method of Case 2

Index k-Sigma KSIM RSIM MSIM

PLR 79.74% 90.77% 97.36% 99.84%

HMI 0.24% 0.16% 0.08% 0.00%

evaluate the confidence of the position. In comparison, the RSIM method shows a signifi-
cantly higher HPL reliability of 97.36% but cannot effectively assess the HPE under severe
outlier disturbances. The proposed MSIM shows the highest HPL reliability of 99.84%
throughout the MC simulation. In addition, the cumulative probability that the HPL of
MSIM exceeds the HPE is maintained at 91.77% over the 10 m range. This indicates that
MSIM provides a more reliable HPL in INMS applications while avoiding the problem of
over-conservatism of HPL and more effectively evaluating the confidence of the position
solution. Furthermore, based on Fig. 4.12 , the probability of HMI events for k-Sigma,
KSIM, and RSIM are respectively 0.24%, 0.16%, and 0.08%, even higher in adverse urban
areas, which does not meet the requirements of integrity risk. In contrast, the proposed
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MSIM does not generate any HMI event during the whole MC simulation, which effec-
tively realizes the integrity monitoring and ensures the positioning safety of the vehicle.

4.6 Summary

This chapter presents a sequential IM method based on the assumption of multiple
fault missing detection to effectively monitor the navigation integrity of INMS in urban
areas. First, the integrity monitoring problem is formulated. The maximum slope-based
IM is introduced, and its limitations in INMS are analyzed. Subsequently, a sequential
IM method is proposed. The IM dynamic regression model is constructed by a consis-
tent posterior estimate provided by the proposed robust filter. A consistency factor in state
domain is calculated using the sequential probability ratio over sliding windows. Under
the assumption of multiple fault-missing detection, the HPL is calculated based on the
maximum eigenvalue to quantitatively evaluate the confidence of the position solution. Fi-
nally, simulation experiments are conducted to verify the effectiveness of the proposed IM
method. The experimental results indicate that the k-Sigma, KSIM, and RSIM methods
have the highest HPL reliability of 79.74%, 90.77%, and 97.36%, and the highest proba-
bility of HMI events of 0.24%, 0.22%, and 0.08% respectively, in various simulation cases,
which could not satisfy the integrity risk requirements. In comparison, the proposed MSIM
has an HPL reliability of over 99.62% in various simulation cases and does not generate
any HMI events. This effectively evaluates the reliability of the position estimation and
realizes the integrity monitoring, thus verifying the effectiveness of the proposed method.
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Chapter 5

Verification Experiments for Proposed
INMS Algorithms

5.1 Introduction

To address the problems of robust state estimation, accurate noise adaptation, and au-
tonomous state integrity monitoring for INMS in dense urban areas, this thesis proposes
a robust resampling-free filtering algorithm based on MCC in Chapter 2, a robust MNCM
adaptation algorithm based on VB in Chapter 3, and an autonomous integrity monitoring
algorithm based on the multiple fault-missing detection assumption in Chapter 4. The ef-
fectiveness of the proposed algorithms is preliminarily verified by numerical simulation ex-
periments. Furthermore, in this chapter, an in-vehicle experiment is conducted to validate
the performance of the proposed algorithms in practical engineering applications. First, an
in-vehicle experimental platform is constructed, and the validation scheme is designed and
parameterized. The experiment results are then analyzed.

5.2 In-Vehicle Experiment Platform Construction

A test multi-sensor navigation system is constructed by integrating the micro-electro-
mechanical system (MEMS)-IMU, GNSS, OD, and POLA. Meanwhile, a high-precision
fiber-optic gyro (FOG)-IMU with an RTK integration system serves as a reference sys-
tem to provide benchmark data on navigation parameters with centimeter-level positioning
accuracy. The in-vehicle experiment platform is shown in Fig. 5.1 , and the nominal spec-
ifications of each sensor are listed in Tab. 5.1 . During the experiment, a self-developed
polarizer system was used, which achieved a heading accuracy of 1◦(1σ) in an open scene.
However, the heading accuracy decreases in dense urban areas due to building obstructions,
light pollution, etc.
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Figure 5.1: In-vehicle experiment platform

5.3 In-Vehicle Validation Scheme and Parameterization

First, the proposed robust filtering algorithm MRCKF is validated. Then, the robust
noise adaptation algorithm RSVBA is validated using the state a posteriori estimation re-
sults of MRCKF. Finally, the autonomous integrity monitoring algorithm MSIM is vali-
dated. The specific parameters of each algorithm and evaluation indices are set as follows.

(1) State Estimation Algorithm: As in the 2.5.1 subsection, the proposed MRCKF
is compared with the following classical methods to verify the effectiveness: 1) CKF; 2)
RFCKF; 3) RSTKF; 4) HMKF; and 5) MCKF adopting the proposed kernel size adaptive
method. The tuning parameters of the above filters are set empirically as follows: The
degree-of-freedom in the RSTKF is set to ϖ = 6 ; the tuning parameter in the HMCKF is
set to γ = 1.345; the upper bound on the kernel size is set to σmax = 20. In addition, the
MNCM Rk, the process noise covariance matrix Qk, and the initial state MSE Pk are set as
follows

Pk = diag
([

φ k δvk δpk ε ∇ δxod
k

]T
)2

(5.1a)

Qk = diag
(
[ε r ∇r 01×9]

T
)2

(5.1b)

Rk = diag
([

rgnss
k rod

k rpola
k

]T
)2

(5.1c)

where ε r = [1◦√h 1◦√h 1◦√h]T; ∇r = [20µg/
√

Hz 20µg/
√

Hz 20µg/
√

Hz]T; φ k =

[30 ′ 30 ′ 180 ′]T; δvk = [0.1m/s 0.1m/s 0.1m/s]T; δpk = [10m 10m 10m]T; ε =

[10◦/h 10◦/h 10◦/h]T; ∇ = [200µg 200µg 200µg]T; δxod
k = [60 ′ 0.1 180 ′]T; rgnss

k =

[5m 5m]T; rod
k = 0.1m/s; rpola

k = 1deg.



5.3. In-Vehicle Validation Scheme and Parameterization 103

Table 5.1: Nominal specifications for sensors

Sensor Specification Index

MEMS-IMU

Gyro constant bias stability 10 ◦/h

Angular random walk 1 ◦√h

Acc. constant bias stability 200µg

Velocity random walk 20µg/
√

Hz

FOG-IMU

Gyro constant bias stability 0.05 ◦/h

Angular random walk 0.005 ◦√h

Acc. constant bias stability 10µg

Velocity random walk 1µg/
√

Hz

Odometer
Pulse number 1000

Resolution 2.289e−03m/p

GNSS Horizontal positioning accuracy 5m (1σ)

POLA Heading accuracy 1◦(1σ)

(2) Noise Adaptation Algorithm: The proposed RSVBA is compared with the fol-
lowing existing classical methods to verify its effectiveness: 1) SHA; 2) VBA; and 3)
ORA. The tuning parameters for the above methods are empirically specified as follows:
In the Sage-Husa method, the damping factor is set to b = 0.95, and the MNCM initial is
R0 = diag ([5m 5m 0.05m/s 1deg])2; in VBA, the initial of the degree of freedom pa-
rameter is uk = 10, the initial of the inverse scaling matrix is Uk = (uk −m−1)R0 and
the expansion coefficient ρ = 0.95. ORA uses the square-root similarity function, and the
degree of freedom parameters are set to ϖ = 5 and τR = 2. The sliding window size in the
proposed RSVBA is set to 10.

(3) Integrity Monitoring Algorithm: The proposed MSIM is compared with the
following methods to validate its effectiveness: 1) k-Sigma; 2) KSIM; and 3) RSIM. The
IM parameters are set as follows: In k-sigma, the scalar factor is set to k = 4; The false
alarm rate is set to Pfa = 10−4; The missing detection rate is set to Pmd = 10−4; With the
specified Pfa and Pmd, the non-central parameter for the INMS model is λ = 102.41. In
addition, the HAL for in-vehicle route navigation is set to HAL=20 m according to the
U.S. Federal Radionavigation Program [123].

(4) Evaluation Indicators:

• For the state estimation algorithm, unlike the evaluation metrics based on multiple
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Monte Carlo trials in Chapter 2, this section uses the common single-experiment
RMSE as the evaluation metric, which is defined as

RMSE =

√√√√ 1
Nt

Nt

∑
k=1

(x̂k −xk)
2 (5.2)

where Nt is the total number of states during the experiment; x̂k and xk are the esti-
mated and actual states at time-step k, respectively. The results analysis focuses on
the RMSE of the horizontal position to reflect the estimation performance of different
filtering algorithms.

• For the noise adaptation algorithm, since the statistical characteristics of the actual
non-stationary noise are unavailable, the performance of the algorithm is evaluated
based on the degree of match between the MNCM estimation and the actual noise
situation and the estimation effect before and after adaptation.

• For the IM algorithm, the evaluation metrics are the same as Eq. (4.52) in Section
4.5.1, i.e., the HPL reliability and HMI probability are still used for evaluation.

5.4 Verification Experiment Results and Analysis

This subsection conducts experimental validation of the proposed algorithm. The in-
vehicle experiments are carried out based on the conditions above. Based on the collected
data, this section analyses the experiment results of the robust estimation, MNCM adap-
tation, and integrity monitoring algorithms, respectively, verifying their effectiveness in
practice engineering.

5.4.1 Analysis of Robust State Estimation Results

Fig. 5.2 shows the reference trajectory and GNSS trajectory, and also illustrates a
typical dense urban area during the experiment, i.e., GNSS is blocked by the viaducts and
skyscrapers. Fig. 5.3 gives the velocity and attitude parameters of the reference system.
Fig. 5.4 to Fig. 5.6 show the attitude error, velocity error, and position error of the different
filters, respectively. Since the HPE reflects the overall estimation performance, Fig. 5.7
shows the HPE of the vehicle and its cumulative probability distribution. In addition,
Tab. 5.2 lists the RMSE of each navigation parameter for different filters. Fig. 5.8 and
Fig. 5.9 show the RMSE visually through the radar diagram and histogram.
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Figure 5.2: Reference movement trajectory of in-vehicle experiment

Figure 5.3: Velocity and attitude of reference system

As shown in Fig. 5.2 , the maximum positioning error of GNSS is 141.43 m in the
urban area blocked by the viaduct and high-rise buildings, which cannot provide effective
navigation and positioning services. Fig. 5.3 shows the attitude and velocity of the vehicle
experiment provided by the reference system in the navigation coordinate frame. The
centimetre-level positioning accuracy of RTK and the high-precision smoothing effect of
FOG-INS allow the system to provide high-precision reference information even when
satellite navigation is rejected.

As shown in Fig. 5.4 to Fig. 5.7 and Tab. 5.2 , by fusing redundant data from different
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Figure 5.4: Attitude errors in vehicle-based experiment

Figure 5.5: Velocity errors in vehicle-based experiment

sensors, CKF partially constrains the position, reducing the maximum positioning error to
94.380 m with an RMSE of 7.754 m. The RMSE of RFCKF for HPE is reduced to 7.653 m,
demonstrating improved estimation performance compared to CKF by avoiding the loss of
higher-order moments caused by Gaussian reconstruction. Furthermore, the robust filters
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Figure 5.6: Position errors in vehicle-based experiment

Figure 5.7: HPE and its cumulative probability distribution

RSTKF and HMKF demonstrate superior estimation performance compared to CKF and
RFCKF. For instance, the RMSE of HPE for RSTKF and HMKF is 4.529 m and 4.195 m,
respectively, which is reduced by 41.6% and 45.9% than that of CKF (7.754 m) and signifi-
cantly improves the estimation accuracy. This improvement is attributed to the suppression
of measurement outliers in state estimation by robust filtering against non-Gaussian noise,
such as GNSS multipath effects caused by viaducts and high-rise buildings and outlier in-
terference for OD data when driving over uneven roads. Moreover, with the proposed ker-
nel size adaptive method, MCKF demonstrates superior estimation performance compared
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to RSTKF and HMKF, with a position ARMSE (3.795 m), which is reduced by 16.2%
and 9.5% than RSTKF and HMKF, respectively. This demonstrates the feasibility of the
proposed kernel size optimal method.

Table 5.2: Navigation parameter estimation RMSE

ARMSE
Pitch Roll Heading Vel.E. Vel.N. Lati. Longi. HPE

(deg) (deg) (deg) (m/s) (m/s) (m) (m) (m)

CKF 0.087 0.081 0.404 0.190 0.061 3.941 6.678 7.754

RFCKF 0.084 0.077 0.397 0.182 0.060 3.937 6.563 7.653

RSTKF 0.082 0.042 0.409 0.055 0.043 4.109 1.904 4.529

HMKF 0.082 0.050 0.397 0.074 0.050 3.021 2.911 4.195

MCKF 0.081 0.048 0.395 0.049 0.043 3.380 1.725 3.795

MRCKF 0.077 0.054 0.392 0.049 0.042 3.192 1.674 3.605

Figure 5.8: RMSE radar diagram of naviga-
tion parameters

Figure 5.9: RMSE of HPE for different esti-
mation methods

Further, as seen from Fig. 5.8 and Fig. 5.9 , the proposed MRCKF has a higher overall
estimation accuracy of the navigation parameters than RSTKF and HMKF. For instance,
the position RMSE of MRCKF is 3.605 m, which is reduced by 20.4% and 14.1% com-
pared to that of RSTKF and HMKF, respectively. Then, the estimation accuracy of the hor-
izontal position of MRCKF is improved by 5.0% than MCKF. This improvement is due to
the fact that MRCKF is designed by adopting the proposed adaptive MCC-RFU framework
on MCFK, which captures the non-Gaussian moments in the sampling points distribution
more efficiently, which results in improved estimation performance. This further demon-
strates the effectiveness of the proposed enhanced robust RFU framework. Furthermore,
the cumulative probability of horizontal position estimation error within 10m for MRCKF
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(97.8%) is the highest compared to that of RSTKF (94.6%), HMKF (97.1%), and MCKF
(97.0%), indicating better robust estimation and further validating the effectiveness of the
proposed filter algorithm in handling heavy outliers interference.

5.4.2 Analysis of Robust MNCM Adaptation Results

The robust MNCM adaptive results are analyzed to reflect the estimated MNCM in the
form of noise standard deviation. Then, for assessing the accuracy of the MNCM estimates,
Fig. 5.12 shows a comparison of the MNCM with the actual noise, qualitatively analyzing
the MNCM estimation effect by the degree of match between them. Additionally, Fig. 5.13
and Fig. 5.14 present the position estimation errors and RMSE corresponding to the differ-
ent noise adaptive methods, providing a quantitative analysis of the accuracy of the MNCM
estimation of each method based on the position estimation effect.

Figure 5.10: MNCM estimation of GNSS

As seen from Fig. 5.10 , the estimation results of SHA, VBA, and ORA for MNCM
of GNSS are relatively similar. The proposed RSVBA demonstrates smoother estimation
results than other methods. This is due to the suppression of the interference of outliers for
MNCM estimation and the use of sliding window VB, which combines the state-smoothing
a posteriori and the historical measurement data. In addition, it can be seen from Fig. 5.12
that the MNCM of RSVBA for GNSS closely matches the actual noise. For example,
around 2800 s of the experiment, as the viaduct obstructs the GNSS latitude and longitude
position, the MNCM estimated by RSVBA also increases, aligning with the trend of the
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Figure 5.11: MNCM estimation of OD and POLA

Figure 5.12: Comparison of MNCM estimate with actual noise

actual noise. Furthermore, from Fig. 5.11 , the situation of MNCM estimation for POLA
is similar to that of GNSS, and RSVBA provides smoother estimation results than other
methods. The MNCM estimation is consistent with the actual noise. For example, from
2800 s to 3000 s, the MNCM grows as the POLA heading noise increases.

Further, the odometer is susceptible to outliers when the vehicle drives over uneven
surfaces, such as speed bumps. In this case, the estimation of SHA, VBA, and ORA for
MNCM of OD is disturbed by outliers from Fig. 5.11 . The maximum standard deviation
of the estimation noise is 0.603 m/s, 0.618 m/s, 0.652 m/s, which does not match the ac-
tual sensor noise characteristics. The estimation of MNCM of OD velocity by RSVBA is
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Figure 5.13: HPE of different adaptation
methods

Figure 5.14: RMSE of HPE for different
adaptation methods

Table 5.3: Indicators for each IM method

Index k-Sigma KSIM RSIM MSIM

PLR 88.68% 93.61% 86.23% 99.85%

HMI 1.24% 1.24% 0.00% 0.00%

smoother and more consistent with the actual sensor noise than the methods. This indicates
that RSVBA can effectively suppress the interference of measurement outliers on MNCM
estimation and validates the effectiveness of the proposed robust adaptation method.

Furthermore, the position estimate results are used to quantitatively analyze the MNCM
estimation performance of different methods. As shown in Fig. 5.13 and Fig. 5.14 , the po-
sition RMSE of the MRCKF without MNCM adaptation is 3.605 m. When MNCM is es-
timated, the position RMSE for the SHA, VBA, and ORA is reduced to 3.169 m, 3.180 m,
and 3.347 m, respectively. Further, the proposed RSVBA has a position RMSE of 2.737 m,
which is reduced by 13.63%, 13.93%, and 18.23% compared to SHA, VBA, and ORA,
respectively. These results demonstrate a significant improvement in estimation accuracy
and validate the effectiveness of the proposed RSVBA.

5.4.3 Analysis of State Integrity Monitoring Results

Fig. 5.15 shows HPE and HPL results of different IM methods. Fig. 5.16 shows the
cumulative probability distributions of the difference between HPL and HPE for different
IM methods to reflect the reliability of HPL. Fig. 5.17 plots the Stanford diagram for the
different IM methods. In addition, the indicators of different IM methods are listed in
Tab. 5.3 .
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Figure 5.15: HPL and HPE

Figure 5.16: Cumulative probability distribution of HPL and HPE difference

The k-Sigma and KSIM methods rely on the a posteriori estimation results of the reg-
ular KF method. Based on Fig. 5.15 and Fig. 5.16 , under a predetermined Gaussian noise
model, the HPL reliability of the k-Sigma method is only 88.68%, especially in cases
where GNSS is blocked (around 2800 s), the HPL reliability is even lower. Thus, k-Sigma
cannot accurately evaluate the confidence of the position solution and monitor the navi-
gation integrity due to estimation inconsistency. In comparison, KSIM provides a reliable
HPL. However, KSIM only considers the maximum potential position error based on the



5.4. Verification Experiment Results and Analysis 113

Figure 5.17: Stanford diagram of IM

predetermined statistical model and does not consider the effect of unmodeled outliers. As
a result, the HPL of KSIM still falls short of bounding the HPE, and the confidence of the
position solution cannot be effectively evaluated.

RSIM adopts the same single-fault assumption as KSIM. Furthermore, with the re-
gression model constructed by the consistent a posteriori estimate of MRCKF, RSIM can
dynamically adjust the protection level according to the actual noise situation. However,
the single-fault assumption is not applicable well to vehicle INMS in urban areas due to fre-
quent sensor disturbances. As a result, the HPL reliability of KSIM is only 86.23%, which
cannot quantitatively assess the confidence of the position solution. Moreover, MSIM has
an HPL reliability of 99.85% throughout the experiment and is higher than other exist-
ing HPL calculation methods based on a predetermined model. This demonstrates that
MSIM provides a more reliable HPL by considering multiple fault assumptions with po-
sition estimation uncertainty. Consequently, MSIM can effectively evaluate the HPE and
monitor position integrity, thereby enhancing navigation safety. Further, it can be seen from
Fig. 4.11 that the probability of HMI events for k-Sigma and KSIM is 1.24%, even rises
even higher in adverse urban areas, which does not meet the integrity risk requirements.
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In contrast, the proposed MSIM does not generate any HMI event during the whole MC
simulation, which effectively realizes the integrity monitoring and ensures the positioning
safety of the vehicle.

5.5 Summary

In this chapter, an in-vehicle experiment is conducted using MEMS-IMU, GNSS, OD,
and POLA to verify the practical performance of the proposed algorithm in adverse urban
environment heavily shaded by viaducts and high-rise buildings, etc. The results of the
experiment are as follows.

(1) The proposed robust state estimation algorithm is validated. The experimental re-
sults indicate that the MMSE-based CKF and RFCKF show poor estimation effects in
dense urban areas heavily shaded by viaducts and high-rise buildings subject to non-
Gaussian heavy-tailed noise. Compared to the existing robust filters RSTKF, HMKF,
and MCKF adopting the kernel size optimal method, the proposed MRCKF shows
smaller RMSE for each navigation parameter, and the position RMSE is reduced by
20.4%, 14.1%, and 5.0%, respectively, indicating better robust estimation effect in
adverse urban areas. This validates the proposed MRCKF algorithm in practical ap-
plications.

(2) The proposed robust noise adaptation algorithm is validated. The experimental results
show that compared to SHA, VBA, and ORA methods, the noise MNCM estimation of
the proposed RSVBA is smoother and matches the actual sensor noise characteristics
in adverse urban areas with the presence of outliers. Additionally, the position RMSE
of RSVBA is reduced by 13.6%, 13.9% , and 18.2% compared to SHA, VBA, and
ORA methods, respectively. This indicates that the proposed RSVBA can effectively
suppress the interference of measurement outliers on MNCM estimation and achieve
robust noise adaptation, thus validating the practical performance of the proposed
algorithm.

(3) The proposed autonomous integrity monitoring algorithm is validated. The experi-
mental results show that the HPL reliability of the k-Sigma, KSIM, and RSIM meth-
ods are 88.68%, 93.61%, and 86.23%, respectively, and even lower especially in ad-
verse urban areas. Also, the k-Sigma and KSIM suffer from the HMI events with
a probability of 1.24%. In contrast, the proposed MSIM has the highest HPL reli-
ability (99.85%) throughout the experiment and does not generate any HMI events,
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effectively evaluating the confidence of the position solution and monitoring the in-
tegrity of the INMS. These results verify the practical performance of the proposed
algorithm.
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Chapter 6

Conclusions and Recommendations

The thesis focuses on the requirements for high accuracy, robust navigation, and au-
tonomous integrity monitoring for intelligent vehicles in urban environments. The research
proposes a robust state estimation algorithm, a robust noise adaptation algorithm, and an
autonomous integrity monitoring algorithm to improve the navigation accuracy and safety
for the intelligent vehicle by advantageous complementation of multiple sensors and re-
dundant information fusion. Furthermore, the research includes experimental validation
of theoretical studies and demonstrates the practical significance of the proposed robust
estimation and integrity monitoring algorithms for INMS. The conclusions and recom-
mendations of this thesis are summarized as follows.

6.1 Conclusions

(1) To address the problem of INMS state estimation performance degradation due
to the mismatched noise assumptions in urban areas, a robust RFU state estimation algo-
rithm based on the adaptive MCC is proposed. The cost function of the resampling-free
estimation framework is constructed based on the maximum correntropy criterion, which
effectively exploits the non-Gaussian moments of the state distribution caused by the non-
closed mapping, ensures the resampling-free estimation optimality and avoids the loss of
the higher-order moment information from the Gaussian reconstruction. Then, an adaptive
kernel size method is developed to achieve the online optimal adjustment of the kernel
size while maintaining robustness against outliers. Simulation experiments validate the
proposed adaptive kernel size method and the robust MCC-based RFU filter. The experi-
mental results indicate that: a) Compared to existing methods, the proposed adaptive kernel
size method can effectively adjust the kernel size for different noise cases while avoiding
the over-convergence problem. Furthermore, the cumulative distribution probability of
smaller kernel sizes is consistent with the outlier occurrence probability settings. Within
the interval of kernel size upper bound [10, 60], the range of position ARMSE for MRCKF
is 0.129 m, maintaining relatively stable estimation accuracy. It exhibits good stability in
tuning parameter selection, validating the effectiveness of the proposed adaptive kernel
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size method; b) In the presence of outliers, the position ARMSE of proposed MRCKF is
reduced by 13.9%, 20.4%, and 11.3% compared to the existing robust RSTKF, HMKF and
MCKF, respectively. Additionally, the cumulative probability of position estimation error
within 2 m throughout the simulation is 90.15%, which is higher than RSTKF (74.8%),
HMKF (74.8%), and MCKF (82.1%), indicating better robust estimation performance. It
validates the effectiveness of the proposed robust MCC-based RFU framework.

(2) To suppress the interference of outliers on the MNCM estimation in urban ar-
eas, a robust noise adaptation algorithm based on a smoothing variational approximation
is proposed. The IW distribution is used as the conjugate prior model of the MNCM, and
a joint variational approximate analytical solution for the MNCM and smoothing state is
derived. Then, the inverse scale matrix of the IW distribution is reconstructed based on
the correntropy matrix to suppress the interference of measurement outliers on the MNCM
estimation. Simulation experiments validate the proposed method. The experimental re-
sults show that, compared to the SHA, VBA, and ORA methods, the proposed RSVBA has
higher estimation accuracy for MNCM in the presence of outliers, and the corresponding
position estimation ARMSE is reduced by 26.3%, 24.6%, and 10.2%, respectively, indi-
cating better robust estimation accuracy. This demonstrates that the proposed RSVBA can
effectively suppress the interference of measurement outliers on MNCM estimation and
verifies its effectiveness.

(3) To monitor the navigation integrity for INMS in urban areas, a sequential IM
method based on multiple fault bias missing detection assumption is proposed. The IM dy-
namic regression model is constructed by a consistent posterior estimate provided by the
proposed robust filter. A consistency factor in the state domain is calculated using the se-
quential probability ratio over sliding windows. Under the multiple fault-missing detection
assumption, the HPL is calculated based on the maximum eigenvalue combined with the
consistency factor to quantitatively evaluate the confidence of the position solution. Sim-
ulation experiments are conducted to verify the effectiveness of the proposed IM method.
The experimental results indicate that the k-Sigma, KSIM, and RSIM methods have the
highest HPL reliability of 79.74%, 90.77%, and 97.36%, and the highest probability of
HMI events of 0.24%, 0.22%, and 0.08% respectively, in various simulation cases, which
could not satisfy the integrity risk requirements. In comparison, the proposed MSIM has
an HPL reliability of over 99.62% in various simulation cases and does not generate any
HMI events. This effectively evaluates the reliability of the position estimation and realizes
the integrity monitoring, thus verifying the effectiveness of the proposed method.

(4) An in-vehicle experiment is conducted using MEMS-IMU, GNSS, OD, and POLA
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to validate the practical performance of the proposed robust estimation, noise adaptation,
and integrity monitoring algorithm: a) The proposed robust state estimation algorithm is
validated. The experimental results indicate that the MMSE-based CKF and RFCKF show
poor estimation results in dense urban areas subject to non-Gaussian heavy-tailed noise.
Compared to the existing robust filters RSTKF, HMKF, and MCKF adopting the kernel
size optimal method, the proposed MRCKF shows smaller RMSE for each navigation pa-
rameter, and the position RMSE is reduced by 20.4%, 14.1%, and 5.0%, respectively,
indicating better robust estimation effect. This validates the proposed MRCKF algorithm
in practical applications; b) The proposed robust noise adaptation algorithm is validated.
The experimental results show that compared to SHA, VBA, and ORA methods, the noise
MNCM estimation of the proposed RSVBA is smoother and matches the actual sensor
noise characteristics in adverse urban areas with the presence of outliers. Additionally,
the position RMSE of RSVBA is reduced by 13.6%, 13.9% , and 18.2% compared to
SHA, VBA, and ORA methods, respectively. This indicates that the proposed RSVBA can
effectively suppress the interference of measurement outliers on MNCM estimation and
achieve robust noise adaptation, thus validating the practical performance of the proposed
algorithm; c) The proposed autonomous integrity monitoring algorithm is validated. The
experimental results show that the HPL reliability of the k-Sigma, KSIM, and RSIM meth-
ods are 88.68%, 93.61%, and 86.23%, respectively, and even lower in adverse urban areas.
Also, the k-Sigma and KSIM suffer from the HMI events with a probability of 1.24%. In
contrast, the proposed MSIM has the highest HPL reliability (99.85%) throughout the ex-
periment and does not generate any HMI events, effectively evaluating the confidence of
the position solution and monitoring the integrity of the INMS. These results validate the
practical performance of the proposed algorithm.

6.2 Recommendations

With the rapid development of the low-altitude economy and intelligent robotics, an
increasing number of autonomous devices—such as drones, robots, and unmanned vehi-
cles—are being deployed. However, the presence of severe non-Gaussian noise and highly
complex nonlinear system models in challenging environments limits the effectiveness of
current model-driven state estimation and integrity monitoring methods for navigation sys-
tems. Currently, data-driven intelligent methods such as reinforcement learning are ad-
vancing rapidly and have demonstrated complementary advantages over traditional model-
driven approaches. Based on this background, this section first outlines the future research
trends in state estimation and health monitoring methods. Then, the specific technical work
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in the future will be explored, which is also illustrated in Fig. 6.1 .

(1) Future Research Direction

• State estimation combining reinforcement learning and Kalman filtering. Tra-
ditional robustness enhancement and noise adaptation methods for Kalman filters
tend to increase the nonlinearity of the computational process, which can undermine
the reliability of state estimation. Reinforcement learning, by interacting with the
environment to learn optimal strategies, can dynamically adjust key Kalman filter
parameters online (such as MNCM), or directly compensate for model prediction
errors. This approach effectively mitigates the Kalman filter’s dependence on accu-
rate prior models and fixed noise statistics. Consequently, in the presence of sensor
anomalies, abrupt environmental changes, or system model errors, it enables more
accurate estimation of states such as position, velocity, and attitude, thereby signif-
icantly improving the reliability and accuracy of navigation systems in real-world
challenging scenarios. Integrating reinforcement learning with Kalman filtering is
therefore of great significance for further enhancing navigation and positioning ac-
curacy in challenging environments.

• Integrity monitoring based on data-driven by deep learning. The protection lev-
els are calculated using regression models based on measurement projection, rep-
resenting a model-driven approach to navigation integrity monitoring. However, in
practical dynamic scenarios, noise distributions are often unknown, unbounded, and
multimodal, and nonlinear models may fail to capture the mapping relationships ac-
curately. As a result, relying solely on fixed models for error distribution may not
provide sufficient reliability for safety-critical positioning applications. Deep learn-
ing and data-driven methods can leverage large volumes of historical and real-time
data to automatically learn error characteristics in complex environments, enabling
more accurate and dynamic protection level calculations as well as adaptive compu-
tation of integrity support information. Compared to traditional RAIM and solution
separation-based advanced RAIM methods, these approaches offer greater adapt-
ability, higher detection sensitivity, and lower false alarm rates. Therefore, integrity
monitoring based on data-driven deep learning is of great significance for further
improving the safety and reliability of navigation and positioning in challenging en-
vironments.

(2) Future Technical Work

• Integrity monitoring for vertical direction. The IM algorithm proposed in this
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Figure 6.1: Future technical work

thesis focuses on monitoring the integrity of the horizontal position solution for in-
vehicle applications. However, it may also be necessary to monitor the integrity of
other navigation states under various application scenarios and requirements. For
instance, in elevated bridges or mountainous areas, the integrity of vertical coordi-
nates is also crucial for navigation safety. It’s essential to investigate whether the
same integrity monitoring mechanism and protection level calculation method can
be applied to other states (e.g., vertical coordinates) in future work.

• Determination of PL in states-domain directly. In current integrity monitoring
methods, PL is calculated based on projecting the hypothesized fault biases in the
state domain from the measurement domain. This approach is more practical than
the solution separation approach because it avoids predetermining much of the in-
tegrity support message (e.g., sensor fault probability), for which there is no available
determination method for integrated navigation. Theoretically, however, the direct
determination of the PL of the a posteriori states is more reasonable than the indirect
mapping by measurement. The direct determination of PL should also differ from
the principle of solution separation, as it eliminates the need to compute PL through
multiple failure assumptions. Therefore, the direct determination of PL in the state
domain without any fault assumptions is one of the future research directions for
integrated navigation integrity.

• Development of integrity monitoring equipment. With the rapid development of
autonomous vehicles and other unmanned devices, navigation safety is playing an
increasingly important role. Existing advanced integrity monitoring algorithms for
satellite navigation require external base stations to provide corresponding integrity



6.2. Recommendations 121

support messages, such as satellite failure rates and maximum nominal bias. How-
ever, for inertial integrated navigation systems, there are currently no mature algo-
rithms or prototype devices that provide external integrity support messages. There-
fore, it is necessary to develop integrity monitoring and corresponding matching
devices in the future.
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Appendix A

Gaussian Approximation Filter Based
on Bayes Rule

A discrete-time stochastic dynamic system is considered as{
xk = fk (xk−1)+wk−1

zk = hk (xk)+ vk
(A.1)

where xk ∈ Rn and zk ∈ Rm are the state vector and the measurement vector at discrete-
time step k, respectively; fk (·) : Rn ⇒ Rn and hk (·) : Rn ⇒ Rm are the state dynamic
function and measurement function, respectively; wk−1 ∼ N(0,Qk−1) and vk ∼ N(0,Rk)

are the uncorrelated process and measurement noise with known covariance matrix Qk−1

and Rk, respectively.

To calculate the posterior state PDF, i.e., p (xk | z̄k) with z̄k = {z j,1⩽ j ⩽ k}, the states
and measurement are assumed as Gaussian distributions for ensuring analytical solutions
in closed form, then the joint PDF of state and measurement vector is calculated as

p (xk,zk | z̄k−1) = N

([
xk

zk

]
;

[
x̂k|k−1

ẑk|k−1

]
,

[
Pk|k−1 Pxz

k|k−1

(Pxz
k|k−1)

T Pzz
k|k−1

])
(A.2)

where the prior state mean x̂k|k−1 and covariance matrix Pk|k−1 are the Gaussian (i.e.,
the first-two orders) moments of p (xk | z̄k−1); The predicted measurement ẑk|k−1 and co-
variance matrix Pzz

k|k−1 are the Gaussian moments of p (zk | z̄k−1); Pxz
k|k−1 is the cross-

covariance matrix of state and measurement. The above variables are calculated by Gaus-
sian weighted integration and are represented as follows:

x̂k|k−1 =
∫

Rn
fk (xk−1)N (xk−1 | x̂k−1,Pk−1)dxk−1 (A.3)

ẑk|k−1 =
∫

Rn
hk (xk)N

(
xk; x̂k|k−1,Pk|k−1

)
dxk (A.4)
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Pk|k−1 =
∫

Rn
fk (xk−1) fT

k (xk−1)N (xk−1; x̂k−1,Pk−1)dxk−1 − x̂k|k−1x̂T
k|k−1 +Qk−1

(A.5)
Pxz

k|k−1 =
∫

Rn
xkhT

k (xk)N
(
xk; x̂k|k−1,Pk|k−1

)
dxk − x̂k|k−1ẑT

k|k−1 (A.6)

Pzz
k|k−1 =

∫
Rn

hk (xk)hT
k (xk)N

(
xk; x̂k|k−1,Pk|k−1

)
dxk − ẑk|k−1ẑT

k|k−1 +Rk (A.7)

According to the Bayes rule, the posterior state PDF p (xk | z̄k) can be obtained from
p (xk,zk | z̄k−1) and denoted under the Gaussian assumption as

p (xk | z̄k) =
p (xk,zk | z̄k−1)

p (zk | z̄k−1)
=

p (zk | xk) p (xk | z̄k−1)

p (zk | z̄k−1)
≈ N (xk; x̂k,Pk) (A.8)

where the posterior state estimate mean x̂k and the covariance matrix Pk are calculated as

x̂k = x̂k|k−1 +Pxz
k|k−1(P

zz
k|k−1)

−1 (zk − ẑk|k−1
)

(A.9)

Pk = Pk|k−1 −Pxz
k|k−1(P

zz
k|k−1)

−1(Pxz
k|k−1)

T (A.10)
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Appendix B

Error-State Space Model for INMS

This section constructs the error-state state-space model of the INMS. The east-north-
up (ENU) geographic coordinate system is used as the navigation coordinate system (n-
frame), while the IMU coordinate system and the odometer coordinate system are repre-
sented as b-frame and o-frame, respectively. The moment subscript k is omitted from the
model for simplicity in presentation.

B.1 INMS Operating Principles

In INMS, the SINS is used as a host system to output navigation data at high fre-
quencies. Other sensors provide observations to correct the INS. Firstly, SINS updates the
attitude, velocity, and position information in INMS, which is formulated by Eq. (B.1).

Ċn
b = Cn

b[ω
b
nb×] = Cn

b[ω
b
ib×]− [ωn

in×]Cn
b; (B.1a)

v̇n = Cn
bfb

ib − (2ω
n
ie +ω

n
en)×vn + gn; (B.1b)

ṗ = v̇n; (B.1c)

where Cn
b is a direction cosine matrix of SINS corresponding to the attitude [θ γ ψ ]T;

v = [ve vn vu]
T are the east, north, and upward velocity error of SINS, respectively; p =

[L λ h]T are the latitude error, longitude error and altitude error, respectively. ωb
nb is the

angular velocity of the b-frame with respect to the n-frame;
[
ωb

nb×
]

is the skew-symmetric
matrix; ωb

ib is the three-axis angular velocity of IMU; fb
ib = [ fx fy fz]

T denotes the three-
axis specific force of IMU; ωn

in = ωn
ie + ωn

en, in which ωn
ie = [0 ωie cosL ωie sinL]T, ωn

en =[
− vn

RM+h
ve

RN+h
ve

RN+h tanL
]T

; ωie is the angular velocity of the earth’s rotation; re
eS = [RM RN]

T

is the local radius of the earth, RM and RN are the earth’s radius for the meridian circle and
the dodecaphragm circle, respectively.

However, due to the inherent drawback of error accumulation, it is necessary to use
measurement data from external sensors such as OD, GNSS, and optical sensors to correct
SINS errors in real-time. Specifically, to ensure the validity of the state minor assumption,
the errors in the SINS are used to construct the main state vectors, and the state kinetic
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model is developed based on the differential equations of the SINS error [74, 125]. Then,
the measurements are obtained by the deviations between SINS solution and position, ve-
locity, and heading observation data from the GNSS, odometer, and polarizer camera, and
the matching measurement model is constructed. Finally, the state is estimated by a filter
and is used to correct the SINS. The operating architecture is shown on Fig. B.1 .

Figure B.1: Operating framework for INMS

B.2 INMS Error-State Space Modeling

(1) State-dynamic model

The differential equation for the SINS platform misalignment angle φ̇ , velocity error
δ v̇, position error δ ṗ, and odometer mounting bias angle and scale factor error are first
given as follows.

φ̇ = −ω
e
ie ×φ +Cn

b ε; (B.2a)

δ v̇n = −
(

Ce
bfb

ib

)
×φ −2ω

e
ie ×δvn +

2g0

re
eS

p
|p|2

pT +Ce
b∇; (B.2b)

δ ṗ = δv; ε̇ = 0; ∇̇ = 0; (B.2c)

α̇x = 0; α̇z = 0; δ K̇od = 0 (B.2d)

where φ = [φe φn φu]
T denotes the platform misalignment angle of SINS, i.e., the offset

angle between the computed platform frame and the actual platform frame; ε = [εx εy εz]
T

denotes gyro constant bias in b-frame; ∇ = [∇x ∇y ∇z]
T denotes the accelerometer constant

bias in b-frame; xod = [αz δKod αx]
T are odometer-related error parameters, αx and αz
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are the installation deviation angle between the odometer frame and the IMU frame, δKod

is the odometer scale factor error. Construct the state vector x = [φ δv δp ε ∇ xod]
T, and

develope the following INMS state kinetic model based on the above differential equations:

ẋ = Fx+Gw (B.3)

where the state transfer matrix F and the noise driving matrix G are calculated as follows

F =

[
Favp Fimu Fod

09×9 09×6 09×3

]
; Favp =

Faa Fav Fap

Fva Fvv Fvp

03×3 Fpv Fpp

;

Fimu =

−Cn
b 03×3

03×3 Cn
b

03×3 03×3

; G =

−Cn
b 03×3

03×3 Cn
b

012×3 012×3

 ;

Faa =

 0 ωie sinL+ ve tanL
RN+h −ωie cosL− ve

RN+h

−ωie sinL− ve tanL
RN+h 0 − vn

RM+h

ωie cosL+ ve
RN+h

vn
RM+h 0

 ;

Fav =

 0 − 1
RM+h 0

1
RN+h 0 0
tanL

RN+h 0 0

; Fap =

 0 0 0
−ωie sinL 0 0

ωie cosL+ ve
RN+h sec2 L 0 0

; Fva =

 0 − fz fy

fz 0 − fx

− fy fx 0



Fvp =


2ωie cosLvn +

vevn sec2 L
RN+h + 2ωie sinLvu 0 0

−
(

2ωie cosL+ ve sec2 L
RN+h

)
ve 0 0

−2ωie sinLve 0 0

 ;

Fvv =


vn tanL
RN+h − vu

RN+h 2ωie sinL+ ve tanL
RN+h 2ωie cosL+ ve

RN+h

−2ωie sinL− 2ve tanL
RN+h − vu

RM+h − vn
RM+h

2ωie cosL+ 2ve
RN+h

2vn
RM+h 0

 ;

Fpv =

 0 1
RM+h 0

secL
RN+h 0 0

0 0 1

; Fpp =

 0 0 0
ve secL tanL

RN+h 0 0

0 0 0

; Fod = 09×3

(2) Measurement model

(a) GNSS position-based measurement equation: GNSS provides position pgnss =

[Lgnss λgnss hgnss]
T in geographic coordinate system. In INMS, the difference between the

SINS and GNSS positions is used as the measurement. Thus, the measurement equation is
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constructed associated with the position error as

zgnss = p−pgnss = δp (B.4)

(b) OD velocity-based measurement equation: Odometer provides the forward ve-
locity of the carrier. With the odometer scale factor error δKod and measurement noise nod,
the odometer output ṽo

od is expressed as

ṽo
od = (1+ δKod)vo

od + nod (B.5)

The installation error between the odometer and the IMU coordinate system is sup-
posed as a smaller angle and expressed as α = [αx αy αz]

T, thus the direction cosine matrix
Cb

o is formulated as

Cb
o = I− (α×) =

 1 αz −αy

−αz 1 αx

αy −αx 1

 (B.6)

where α× denotes the skew-symmetric matrix of α . Furthermore, the projection of odome-
ter velocity vector ṽo

od = [0 ṽo
od 0]T in the body coordinate system is expressed as

ṽb
od = Cb

oṽo
od = (I− (α×)) ṽo

od = vb
od +

 αzvo
od

δKodvo
od

−αxvo
od

 (B.7)

Let xod = [αz δKod αx]
T, Mod = diag ([vo

od;vo
od;−vo

od]), then the right-hand error term in
Eq. (B.7) can be represented as δvb

od = Modxod. Subsequently, the odometer velocity ṽb
od is

projected into navagition coordinate frame by Ĉn
b to construct the measurement equation

as
ṽn

od = Ĉn
bṽb

od = (I− (φ×))Cn
b

(
vb

od + δvb
od

)
= vn

od − (φ×)vn
od +Cn

bδvb
od − (φ×)Cn

bδvb
od

(B.8)

After compensating for the velocity error δvL = Cn
b

(
ωb

nb×
)

L caused by the fixed level-
arm, the difference between the SINS velocity v̂n and OD velocity ṽn

od is used as the mea-
surement. Thus, the measurement equation is constructed as

zod = v̂n − ṽn
od = δvn − (vn

od×)φ −Cn
bModxod +(φ×)Cn

bModxod (B.9)
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(c) POLA heading-based measurement equation: Polarizer navigation system pro-
vides carrier heading information. The difference between the SINS heading ψ and POLA
heading ψpola is used as measurement and constructing the corresponding measurement
equation associated with INS platform misalignment angle φ = [φe φn φu]. First, the atti-
tude is definited as δA = [δθ δγ δψ ]T. According to the projection relationship of n-frame
and b-frame, there is

Cn
′

n Cn
b = Cn

bCb
b′

(B.10)

where n
′

and b
′

are the computed coordinate system. Cn
′

n and Cb
b′

contains the skew-
symmetric matrix of φ and µ , respectively. Thus, there is

[I−φ×]Cn
b = Cn

b [I+ µ×] (B.11a)

φ = −Cn
bµ (B.11b)

According to the definition of the installation error angle µ̇ = ωb
nb and the Eulerian

angular differential equation ωb
nb = Cω

A · Ȧ, there is φ =−Cn
bCω

A ·δA through the integration
approximation. Thus, the relationship between the attitude error angle and the platform
misalignment angle can be obtained as [126]

δA =

 −cosψ −sinψ 0
sinψ/cosθ −cosψ/cosθ 0
− tanθ sinψ tanθ cosψ −1

 ·φ (B.12)

where θ and ψ are the carrier pitch and heading angles, respectively. Since POLA only
outputs the heading information, the measurement equation is given as

zpola = ψ −ψpola = − tanθ sinψφe + tanθ cosψφn −φu (B.13)
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