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ABSTRACT

3D human pose estimation, a foundational task in computer vision, has received
significant attention in recent years due to its crucial applications in robotics, healthcare,
and sports science. In particular, it is also a very important research topic in the fashion
field due to its ability to yield plausible human body regions for cloth parsing. This
study aims to address the issues inherent in exiting state-of-the-art (SOTA) methods of
3D pose estimation by proposing three new and efficient models for 3D pose estimation
from various inputs, including video sequence and single image inputs. It is also
demonstrated in this study, as an application of these proposed methods, 3D poses
predicted from video sequence inputs are being applied and retargeted to game and
fashion avatars.

Pose estimation covers both 2D and 3D pose estimation, and the latter are technically
more challenging. For 3D pose estimation, most existing methods have converted this
challenging task into a local pose estimation problem by partitioning the human body
joints into different groups based on the relevant anatomical relationships. Subsequently,
the body joint features from various groups are then fused to predict the overall pose of
the whole body, which requires a joint feature fusion module. Nevertheless, the joint
feature fusion schemes adopted in existing methods involve the learning of extensive
parameters and hence are computationally very expensive. Thus, in this study, a novel
grouped 3D pose estimation network is first proposed, which involves an optimized
feature fusion (OFF) module that not only requires fewer parameters and calculations
than existing methods but also is more accurate. Furthermore, this network introduces
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a motion amplitude information (MAI) method and a camera intrinsic embedding (CIE)
module which are designed to provide better global information and 2D-to-3D
conversion knowledge thereby improving the overall robustness and accuracy of the
method. In contrast to previous methods, the proposed new network can be trained end-
to-end in one single stage, and experiment results have demonstrated that this new
method outperforms previous state-of-the-art methods on two benchmarks.

The above first new method for 3D pose estimation is based on convolution neural
network (CNN) for grouped feature fusion. In view of the rapid advancement and
outstanding performance for transformer-based deep learning models, another novel
method, called Kinematics and Trajectory Prior Knowledge-Enhanced Transformer
(KTPFormer), is also proposed for 3D pose estimation with video inputs. This network
contains two novel prior attention modules called Kinematic Prior Attention (KPA) and
Trajectory Prior Attention (TPA). KPA models kinematic relationships in the human
body by constructing a topology of kinematics. On the other hand, TPA builds a
temporal topology to learn the priori knowledge of joint motion trajectory across frames.
In this way, the two prior attention mechanisms can yield Q, K, V vectors with prior
knowledge for the vanilla self-attention mechanisms, which helps them to model global
dependencies and features more effectively. With a lightweight plug-and-play design,
KPA and TPA can be easily integrated with various state-of-the-art models to further
improve the performance in a significant margin with only a small increase in the
computational overhead.

For handling single image inputs, the third new network is designed in this study for
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3D pose estimation, which effectively combines the graph and attention mechanism.
This method can effectively model the topological information of the human body and
learns global correlations among different body joints more efficiently.

Being a demonstration for potential application for these proposed methods, motion
retargeting technique is used to transfer the predicted 3D human poses from fashion
images/videos to other people, so that different people can perform the same motion,

e.g. catwalk, realizing multiplayer motion animation.

Keywords: Deep Learning, 3D Human Pose Estimation, Motion Amplitude, Feature

Fusion, Transformer, Self-Attention Mechanisms, Graph Convolutional Network.
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CHAPTER 1. INTRODUCTION

1.1 Research Backgrounds

Fashion can reflect the lifestyle and cultural background of its period. It not only has
innovative concepts and designs, but also requires certain control over quality. In
contemporary society, fashion has a significant impact on all aspects of social life,
including social economy, politics, and culture. Since fashion has a significant influence
on society and economy, researchers in many disciplines have conducted research and
analysis on fashion from different perspectives, making fashion a new type of
multidisciplinary research. For example, fashion designers design products by studying
fashion trends. Marketing experts use changing consumer habits to maximise profits.
Psychologists and sociologists focus on individual and group clothing style.

In recent years, many computing scholars have actively participated in fashion-related
research studies because of the readily applicability of machine-learning and computer
vision techniques based on the widely available digital resources of online fashion
images and videos. Many promising work has been published in top conferences,
focusing on semantic segmentation of fashion images (Dong et al., 2015; Liang et al.,
2015; Martinsson & Mogren, 2019), semantic recognition of fashion images (Bossard
etal.,2012; Di et al., 2013; Verma et al., 2018), fashion analysis (Gu et al., 2020; He
& McAuley, 2016; Vittayakorn et al., 2015) and fashion recommendation (Ding et al.,

2021; Hu et al., 2015; McAuley et al., 2015; Veit et al., 2015). As shown in Figure 1-1,



semantic segmentation divides fashion images into multiple regions with semantic
labels. Semantic recognition of fashion images focuses on identifying the categories
and attributes of clothing from images. The goal of semantic recognition of fashion
images is to identify the categories and attributes of clothing from images. Both are
very useful for many applications like fashion trend analysis. Fashion recommendation
aims to recommend corresponding products according to personal fashion preferences
of individual consumer. Fashion analysis studies some valuable fashion cases based on

specific data sets and techniques such as clothing recognition.

Images retrieved by finding
similarity between features
computed over semantically similar
parts of image.

Images retrieved by
rity

tween features
computed over whole

== = : ~ e e = - - Relevant ltem Images

(a) Semantic Segmentation of Fashion Images (b) Semantic Recognition of Fashion Images
(Martinsson & Mogren, 2019) (Verma, Anand, Arora, & Rai, 2018)
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Figure I-1  Research in the field of fashion.

The fashion industry has an important role in the global economy, the industry is very
interested in research applications that improve consumer experience, in particular
online shopping experience. For example, some online shopping platforms allow users
to take photos of favourite items, and they search for the item in the photo or similar

products accordingly. Alibaba iDST video analysis team proposes an online clothing



retrieval system which adopts the most advanced clothing detection and tracking
technology to help customers to look for similar style of celebrities or actors/actresses
while watching movies and TV. Other examples include applying artificial intelligence
to fashion design work, such as Google's Muze and Amazon's Runway projects.

With e-commerce being a major way now people shopping clothing products online,
new technology is always in demand to address the need of trying on clothing. Only
viewing fashion images at online shopping platform may not satisfy consumers
nowadays, and they want to wear their selected clothes virtually to visualise the wearing
effects. Revealing how specific clothing will look on people can be achieved by
combining clothes parsing technology and motion retargeting technique on
personalised avatars, while human pose estimation is the foundation technology for
both, which is the key focus of this study.

Human pose estimation, a crucial task in computer vision, is primarily categorized into
2D human pose estimation and 3D human pose estimation. The 2D human pose
estimation predicts the pose of a human body, in terms of pixel locations, on input
images, while the 3D task involves predicting human pose coordinates in 3D space
based on inputs of either single human images or videos. Human pose estimation can
be applied for behaviour analysis, human-computer interaction, auxiliary pedestrian
detection and virtual reality. The main difficulties of human pose estimation are as
follows: First of all, the intricate nature of human body images necessitates the model

to acquire a deep understanding of highly nonlinear mapping relations, posing a



significant challenge for threefold reasons. Firstly, human body images were taken in
different scenarios, with different shooting angles and lighting conditions; secondly, the
interaction between people and objects, as well as the interaction between people will
cause random occlusion; thirdly, different wearing and body shapes also increase the
complexity of the mapping between joints (also called keypoints) with pixels. Although
traditional methods based on handcrafted features can achieve accurate positioning of
unobstructed joints under fixed scenes, viewing angles and stable lighting conditions,
such ideal situation is very rare in real situation. In this regard, extracting robust features
and learning complex mapping relationships is an important research direction in the
human pose estimation. On the other hand, the highly non-linear mapping relationship
needs to be learned with a higher complexity model which requires significant
computational overhead. Hence, speeding up the convergence rate of the model while
ensuring the accuracy of the model is a key issue for the practicality of the human pose
estimation.

In order to extract more robust features and learn complex mapping relationships,
LeCun et al. (2015) introduced deep learning techniques. Deep learning denotes a set
of machine learning techniques grounded in artificial neural networks, alternatively
termed deep structured learning, or deep hierarchical learning. Early deep learning
studies mainly focused on the research related to Restricted Boltzmann Machine (RBM)
and Auto encoder (AE). In 2012, the outstanding performance of Convolutional Neural

Network (CNN) in the ImageNet competition sparked an upsurge in CNN research.



Toshev and Szegedy (2014) introduced the CNN to the field of human pose estimation,
sparking a surge in research dedicated to human pose estimation leveraging this neural
network architecture. The human body pose estimation method based upon deep
learning, primarily on CNN and later on Transformer-based, becomes the current
mainstream method for the following reasons: (1) The manual features are designed by
the researcher based on experience, and the extracted features are not optimal for the
human pose estimation. CNN possess the capability to autonomously acquire image
representations from data, thereby circumventing the limitations associated with
manual feature engineering. (2) The method based on manual features cannot achieve
the joint optimization of feature extraction and human body model, while the end-to-
end optimization of network unifies the representation learning and human body
modelling. After the researchers have defined the problem, they only need to design a
reasonable network architecture and loss function to achieve model learning.

In 2017, Vaswani et al. (2017) proposed the transformer architecture for natural
language processing tasks. It utilized self-attention mechanisms to capture relationships
between different elements in a sequence. Subsequently, transformers have been
extended to various domains. In human pose estimation, transformers have
demonstrated enhanced modeling capabilities for human pose sequences, achieving the
superior performance compared to CNNs. However, the increased consumption of
computational resources poses a challenge for transformers in human pose estimation.

Given that the human body can be represented as graph-structured data, Graph



Convolutional Networks (GCNs) have been extensively applied in human pose
estimation, yielding promising results. Nevertheless, GCNs excel at capturing local
information but demonstrate limited capability to model global correlations. This study
proposes new CNN-based and Transformer-based networks, addressing the current

issues in related work for more effective and efficient 3D pose estimation.

1.2 Statements of the Problem

Here outlines the unique characteristics and issues of existing methods for 3D pose
estimation, which this study is endeavour to address.

In the existing CNN-based methods for 3D human pose estimation, the SOTA approach
mainly take advantage of grouping strategy, which partitions the human body joints into
different parts (arms, legs, and torso). After the joints are divided into different groups,
each group's joint features are independently encoded and then a joint feature fusion
scheme is usually used to fuse these features from various groups together to predict
the overall pose of the full body. Nevertheless, the joint feature fusion schemes adopted
in existing methods involves the learning of extensive parameters and hence are
computationally very expensive. Moreover, to prevent interference among features
from different groups, the grouped method (Shan et al., 2021a) often employ a multi-
stage training strategy rather than an end-to-end approach, leading to an increase in
training time.

For existing transformer-based methods for 3D human pose estimation (Li ez al., 2022b;

Li et al., 2022c; Shan et al., 2022; Tang et al., 2023b; Zhang et al., 2022b; Zhao et al.,



2023; Zheng et al., 2021a), the main focus was often on developing novel transformer
encoders. They model either the spatial correlation between joints within each frame
and the pose-to-pose or joint-to-joint temporal correlation across frames. Regardless of
spatial or temporal multi-head self-attention (MHSA) calculation, the present
transformer-based methods all use linear embedding where 2D pose sequence are
tokenized into high dimensional features and treated uniformly to compute the spatial
correlation between joints and the temporal correlation across frames in the spatial and
temporal MHSA, respectively. This may lead to the problem of ‘attention collapse’, a
phenomenon denoting a circumstance wherein the self-attention becomes too focused
on a limited subset of input tokens while disregarding other segments of the sequence.
There are some work (Zhao et al., 2022; Zhu et al., 2021) that combines GCN and
transformer to learn both local and global dependencies for 3D pose estimation based
upon single frame. Nevertheless, these studies merely employ the GCN and the self-
attention mechanism in a straightforward manner for feature extraction, without
effectively integrating the extracted features. This leads to a situation where local
features and global features interfere with each other, rather than being complementary,

resulting in a decrease in the performance.

1.3 Research Aims and Objectives
This study aims to develop novel deep-learning based methods for effective and
efficient 3D human pose estimation, addressing those issues of existing methods. A total

of three new methods are developed in this study. Among the three, the first two



methods take 3D poses from input of video sequences, while the last one is based on

single frames.

The specific research objectives are listed as follows:

Vi.

Vii.

To comprehensively review and understand deep learning techniques about
human pose estimation.

To compare and analyse machine learning technologies about 3D human pose
estimation.

To design and develop a new CNN-based method for 3D pose estimation with
less computational overhead and improved performance, allowing end-to-end
training.

To design and develop a novel transformer-based network for 3D pose
estimation with video sequence inputs.

To present an effective network design that skilfully combines the graph and
attention mechanisms for 3D pose estimation from single frames.

To comprehensively evaluate the effectiveness of the proposed methods in
comparison with relevant state-of-the-art methods.

To demonstrate the potential fashion application of the prssoposed 3D human

pose methods.

1.4 Methodology Overview

As mentioned, this study investigates the cutting-edge deep learning-based methods for



3D human pose estimation and suggests relevant potential fashion applications. Figure
1-2 shows the overall research framework of this study, which include the developments
of three DL-based networks, including (1) CNN-based model for group-based 3D pose
estimation with an efficient heterogeneous fusion, (2) Kinematics and Trajectory Prior
Knowledge-Enhanced Transformer (KTPFormer), a transformed based method, and (3)
a Cross-Feature Interaction Network, again a transformer-based method. The predicted
3D poses are demonstrated through a fashion application for motion retargeting to

several avatars.
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Figure 1-2  Illustration of the overall research framework.

The first model of CNN-based model for group-based 3D pose estimation with an
efficient heterogeneous fusion improves the performance and requires fewer parameters
and calculations than other existing state-of-the-art CNN-based methods. In this model,

a heterogeneous feature fusion (HFF) module is developed to fuse different groups of



joint features more efficiently. Furthermore, this new model introduces a motion
amplitude information (MAI) and a camera intrinsic embedding (CIE) sswhich are
designed to provide better global information and 2D-to-3D conversion knowledge,
thereby improving the overall robustness and accuracy. In contrast to previous SOTA
models, the proposed new network can be trained end-to-end in one single stage.
Experiments were conducted on two public datasets (Human3.6M (Ionescu et al., 2013)
and HumanEva (Sigal ef al., 2010)) to validate the effectiveness of this model.

Next, a novel transformer-based model, called Kinematics and Trajectory Prior
Knowledge-Enhanced Transformer (KTPFormer), is proposed as the second method
for 3D pose estimation with video inputs. This network contains two novel prior
attention modules — Kinematic Prior Attention (KPA) and Trajectory Prior Attention
(TPA). KPA models kinematic relationships in the human body by constructing a
topology of kinematics. On the other hand, TPA builds a temporal topology to learn the
priori knowledge of joint motion trajectory across frames. In this way, the two prior
attention mechanisms can yield Q, K, V vectors with prior knowledge for the vanilla
self-attention mechanisms, which helps model global dependencies and features more
effectively. With a lightweight plug-and-play design, KPA and TPA can be easily
integrated with various state-of-the-art models to further improve the performance
significantly with only a small increase in the computational overhead. Extensive
experiments were conducted on three benchmarks, including Human3.6M (Ionescu et

al.,2013), MPI-INF-3DHP (Mehta ef al., 2017) and HumanEva (Sigal et al., 2010), to
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evaluate this model in comparison with other state-of-the-art, transformer-based or non-
transformer-based methods.

Both the first and second models are designed for 3D pose estimation based on video
sequence inputs, while a Cross-Feature Interaction Network, is designed to leverage
GCN and the multi-head self-attention (MHSA) to capture the local features and global
features, respectively, retaining the initial 2D pose joint features in the third branch of
the network. Moreover, we design a specific multi-head cross-attention (MHCA) to
facilitate cross-feature communications among three different features (local features,
global features and initial 2D pose features) and aggregate them to form the enhanced
spatial representations of single pose. Besides, a parallel GCN and multi-layer
perceptron (GraMLP) module is introduced to inject the skeletal knowledge of human
body into the final 3D pose representation. Again, experiments were conducted on
Human3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017) datasets
to validate the effectiveness of this third model.

Being a demonstration for potential application for these proposed methods, motion
retargeting technique is used to transfer the predicted 3D human poses from fashion
images/videos to other people, so that different people can perform the same motion,

e.g. catwalk, realizing multiplayer motion animation.

1.5 Organization of the Thesis
In 0, recent deep learning techniques and human pose estimation methods, including

traditional methods, convolutional neural networks and transformers are reviewed.
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In 0, the first model of CNN-based model for group-based 3D pose estimation with an
efficient heterogeneous fusion is presented, giving detail designs of the heterogeneous
feature fusion (HFF) module, motion amplitude information (MAI) and camera
intrinsic embedding (CIE). Experimental results on public datasets (Human3.6M and
HumanEva) and discussion are presented in the same chapter.

In 0, the second method of this study, namely Kinematics and Trajectory Prior
Knowledge-Enhanced Transformer (KTPFormer), is introduced and evaluated on
public benchmarks (Human3.6M, MPI-INF-3DHP and HumanEva). This method is
evaluated and compared with other state-of-the-art methods on these datasets.

In 0, the third network, a Cross-Feature Interaction Network, is introduced for 3D pose
estimation with single frame inputs. The model is again evaluated comprehensively by
carefully planned experiment on two public datasets (Human3.6M and MPI-INF-
3DHP).

0 applies the estimated 3D human pose from the proposed 3D pose estimation methods
to various avatars for potential fashion and game applications. Qualitative analysis was
conducted through visualising the motion retargeting results on various avatars.
Lastly, the findings of this study are summarised in Chapter 7, with discussions on its

limitations and possible future work.
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CHAPTER 2. LITERATURE REVIEW

This chapter reviews the related work and important techniques that serve the
foundation of the current study on human pose estimation. Since this study is based
mainly on deep learning techniques, its development history and major network
structures of deep learning are first reviewed in Section 2.1. In Section 2.2, the
traditional methods for human pose estimation are summarised, followed by the deep
learning based methods of CNN and Transformer related work in recent years in

Sections 2.2.2 and 2.2.3, respectively.

2.1 Deep Learning

The exploration of artificial neural networks give rise to the inception of deep learning.
Mathematical models inspired by biology and neurology are what constitute artificial
neural networks, which constructs neurons like the human brain and connects them
according to a certain structure to simulate the biological nervous system. Neural
network is a machine learning model that needs to connect individual neurons to
achieve complex functions. When it consists of many layers of neurons, it is called the
deep neural network. Deep learning was proposed by (LeCun et al., 2015), which
employed deep neural networks. We will introduce several commonly used deep
learning networks in the following sections.

2.1.1 Feedforward Neural Network

The feedforward neural network, widely utilized, stands out as one of the most

fundamental structures in neural networks. Employing a unidirectional multilayer
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structure, the feedforward neural network features numerous neurons in each layer.
Within this neural network, every neuron can receive signals from the neurons in the
preceding layer and produce outputs directed to the subsequent layer. The initial layer,
which accepts signal inputs, is termed the input layer, while the concluding layer is
known as the output layer. Intermediate layers between them are referred to hidden
layers, which may consist of a single layer or multiple layers. In these hidden layers,
each node connects to the nodes in the subsequent layer via a weight vector represented
by W and a bias denoted by b. Operating without feedback, the network facilitates the
unidirectional propagation of signals from the input layer to the output layer. Figure 2-1
illustrates a typical multilayer feedforward neural network. Each small circle represents
a perceptron model. Each neuron in the first layer of the network receives the input
signal, and then outputs it to the next layer of neurons after weighted summation by its
own neural body. The neurons of the second layer get their inputs from the outputs of
the previous layer. Finally, after the computation of the intermediate neural network,
the Zand this network structure is generally used for regression tasks. The neural
network used for classification will output the number of results corresponding to the

label at the end.

14



\
NS
:‘%‘
o;o

2

_ tput layer

hidden layer 1 hidden layer 2

A\
N
};’4%‘
.;

input layer

Figure 2-1 A typical multilayer feedforward neural network.

In the feedforward neural network, there is a very important function called the
activation function that is generally located in the hidden layer. The activation function
operates on the neurons within an artificial neural network, mapping the input of each
neuron to its respective output. In the above perceptron model, the neurons treat the
input parameters in a weighted summation manner. Therefore, the output is the result
of a linear superposition of the input parameters. However, the distribution of the data
1s mostly non-linear. To adapt to a nonlinear space, most networks introduce activation
functions that reinforce the learning ability of the network. Different activation
functions have different applications depending on their characteristics. To enrich the
representation and learning capability of the network, the activation function generally
needs to satisfy these requirements: 1) the activation function should be a continuously
derivable nonlinear function; 2) the derivation process of the activation function should
be as simple as possible in order to improve the efficiency of the network; 3) The
derivative value should be in a certain interval. Too large value will affect the stability

of network training, while too small value will affect the efficiency of network training.
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In the following section we will introduce several common activation functions.
Sigmoid is a commonly used nonlinear activation function, which has the following

mathematical formula:

1
1+e~ %

f2) =

(2-1)
It can convert a continuous real value into an output ranging from 0 to 1. In particular,
when confronted with a significantly large negative input, the output is driven to 0,
while a correspondingly large positive input results in an output of 1. Sigmoid is a
continuous derivative function and the derivative is simple. The output of Sigmoid
function can be seen as a gating mechanism to control the amount of information in the
output. However, since the value of the Sigmoid function is constantly greater than 0,
this non-zero centrality causes bias shifts in the inputs between layers, making
convergence slower. When the output value of the neuron is much larger than 0 or much
smaller than 0, using the sigmoid function during the training of the neural network
causes the gradient to disappear during training. Currently, the network is updated with
a return gradient close to 0 and the network stops optimizing.

Another common type of activation function is the Tanh function. Tanh is a hyperbolic
tangent function that is like sigmoid. They both belong to the saturation activation
function, and the difference is that the output ranges from (0, 1) to (-1, 1). The Tanh

activation function is written as follows:

eX—e™*

eX+e™*

tanh(x) = (2-2)

Tanh is also a zero-centered symmetric function that does not cause bias shifts between
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different layers. However, the gradient of the function is still close to 0 when the input
value is much larger than 0 and much smaller than 0. The problem of gradient
disappearance is still not solved. The most widely utilized activation function in neural
networks is the modified activation function ReLU. The formula can be written as

follows:

x, x=0

0, x<0 (2-3)

ReLU(x) = {
The ReLU function is a linear function when x is greater than 0, and equal to 0 when x
is less than 0. The ReLU function is computationally simple, and the derivative is easy
to get, and the neurons using ReLU as the activation function are computationally
efficient. The ReLU function has the property of one-sided inhibition and wide
excitation band, so it is active when the input is greater than 0. Meanwhile, the ReLU
function alleviates the gradient vanishing problem possessed by Sigmoid and Tanh.
However, if all training data do not activate a ReLU neuron, then the gradient of the
network gradient is always 0. The use of batching operation can solve this problem, so
ReLU is widely used in current neural network architectures.
In general, the feedforward neural network is the simplest network because it has no
feedback, which is used for learning and correction of parameters.
2.1.2 Convolutional Neural Network
The Convolutional Neural Network (CNN) stands as a representative algorithm within

the domain of deep learning. It embodies a feedforward neural network with a deep

structure, incorporating convolutional computation. CNN can achieve translational
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invariant classification of input data based on its hierarchical structure. It takes
advantage of the local similarity of images, and the semantic information in the images

is not affected when the images are scaled and panned.

2.1.2.1 Development History

The exploration of CNN commenced during the 1980s and 1990s. The Japanese scholar
Fukushima and Miyake (1982) first proposed the neocognitron model in 1982. He
conceived the neural network called "neocognitron" with the goal of emulating the
visual cortex of living beings. Neocognitron is characterized by its deep structure and
stands as one of the earliest deep learning algorithms, featuring alternating S-layers
(Simple-layer) and C-layers (Complex-layer) as implicit components. The integration
of S and C layers in neocognitron facilitates feature extraction and filtering, partially
fulfilling the roles of the convolution layer and the pooling layer in the CNNs. This
groundbreaking research serves as a seminal inspiration for convolutional neural
networks.

The inaugural convolutional neural network, known as the Time Delay Neural Network
(TDNN), was introduced by (Waibel ef al., 1989). TDNN applied the CNN to address
the speech recognition challenge, utilizing an FFT pre-processed speech signal as its
input. The network featured an implicit layer incorporating two 1D convolutional
kernels aimed at extracting translational invariant features in the frequency domain.
Notably, TDNN benefited from the progress in Backpropagation (BP) algorithms
within the field of artificial intelligence that preceded its emergence, allowing it to
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leverage the BP framework for learning.

In 1988, Zhang et al. (1996) introduced the initial 2D convolutional neural network,
termed the translation-invariant artificial neural network (SIANN). They successfully
applied STANN to the detection of medical images. LeCun et al. (1989b) developed a
convolutional neural network designed for computer vision challenges, and this marked
the inception of the original version of LeNet. LeNet comprised two convolutional
layers, two fully connected layers, and a total of 60,000 learning parameters. Notably,
the network's architecture was substantially larger than those of TDNN and STANN.
Structurally, LeNet bore a close resemblance to contemporary convolutional neural
networks. LeCun et al. (1989b) employed Stochastic Gradient Descent (SGD) for
learning following the random initialization of weights. This approach was
subsequently maintained in subsequent deep learning research. In 1998, LeCun et al.
(1998b) developed a more complete neural network called LeNet-5, and succeeded in
the problem of handwritten digit recognition. LeNet-5 adheres to the learning strategy
of (LeCun et al., 1989b) and extends the original design by incorporating a pooling
layer to filter input features. This addition of pooling layers is instrumental in shaping
the basic structure of modern convolutional neural networks. LeNet-5 and its
subsequent variations establish a foundational framework where alternating
convolutional-pooling layers effectively extract translation-invariant features from
input images.

Although convolutional neural networks were already established in 1998, they did not
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show significant advantages over the mainstream methods of combining support vector
machines with manual features due to the limitations of computer performance and the
lack of training datasets. Therefore, they did not receive much attention. Following the
proposal of deep learning theory by (Hinton & Salakhutdinov, 2006), there was a
notable surge in interest and development of the representational learning capability of
convolutional neural networks. This progress was further facilitated by advancements
in numerical computing devices. In 2008, NVIDIA introduced the concept of General-
purpose Graphics Processing Units (GPGPU) and created the Compute Unified Device
Architecture (CUDA) computing library to enable acceleration of scientific computing.
In 2008, NVIDIA introduced the concept of General-purpose Graphics Processing
Units (GPUs) and created the Compute Unified Device Architecture (CUDA), which
enables acceleration of scientific computing. In 2012, Krizhevsky et al. (2012a)
introduced the AlexNet and achieved efficient training of the network based on CUDA,
and won the ImageNet classification competition, which quickly attracted widespread
attention to convolutional neural networks. Since then, research on convolutional neural
networks has been flourishing. Researchers propose many improvements to the
network architecture and apply convolutional neural networks to various application
scenarios (e.g., target detection, face recognition, object classification, semantic

segmentation, pedestrian re-identification, pose estimation).

2.1.2.2 Network Structure

Modern convolutional neural networks mainly consist of convolutional layer, pooling
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layer, fully connected layer. Earlier classification tasks or regression tasks used a fully
connected layer after the feature extractor, and the dimensionality of the features was
reduced by the fully connected layer. However, too many parameters in the fully
connected layer can increase the computational overhead of the network and cause
overfitting. In order to reduce the number of parameters and computation of the network
and avoid overfitting, some researchers have tried to use the global pooling layer
instead of the fully connected layer and obtained the same results as the fully connected
layer. In some dense prediction assignments like semantic segmentation and pose
estimation, convolutional layers are typically positioned close to the output layer within
the network. This placement is essential because these tasks necessitate the
implementation of a fully convolutional network to retain spatial details, enabling the
creation of accurate segmentation maps or heat maps. The subsequent section provides
an elaborate breakdown of each component within the convolutional neural network.

The convolutional layer is the core component of a convolutional neural network and
consists of convolutional kernels, which aim to extract the local features. Convolution
kernels share parameters when sliding over images or feature maps. This type of
parameter sharing can significantly reduce the number of parameters. Figure 2-2
illustrates the 2D convolution operation. While each convolutional kernel possesses a
small receptive field, the cumulative effect of stacking multiple convolutional layers
allows the entire network to encompass a large receptive field. When a convolutional

neural network is forwarded, each convolutional kernel slides over the input image or
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feature map and calculates the dot product with the current local receptive field, which
is used as the activation value for a location in the feature map. When the sliding is over,

the convolution layer outputs a new feature map.
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Figure 2-2 2D convolution operation.

Besides, researchers also add a zero-padding operation and introduce different strides
to increase the expressiveness of the convolution, making feature extraction more
flexible.

Figure 2-3 shows the zero padding in the convolution. Convoluting the input image
with a convolution kernel can result in the loss of information at the image boundaries.
This occurs because pixels at the edges of the image are never positioned at the centre
of the convolution kernel, and the kernel cannot extend beyond the edge region.
Introducing zero padding enables the convolution kernel to extend beyond the edges,
incorporating pseudo-pixels when scanning the input data. This ensures that the output

and input maintain the same size.
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Figure 2-4 shows the case where the stride in the convolution is equal to 2. The
convolution kernel starts with the top-left corner of the input and slides one column to
the left or one row down to calculate the output one by one. The number of rows and
columns in each slide is called Stride. The purpose of the Stride parameter is to
exponentially decrease the size, with the specific reduction factor determined by its
numerical value. For instance, if the stride is set to 2, the output size becomes half of

the input; similarly, a stride of 3 results in an output size one-third of the input.
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Changing the strides of the convolution and zero-padding methods can improve the
feature extraction ability of traditional convolution, but these methods still cannot solve

the following drawbacks of traditional convolution: a) The local operation of the
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convolution kernel prevents convolution from directly obtaining the global features of
the image. The only way to get the global features is to stack the convolution layers.
The constant stacking of convolutional layers will make the number of parameters
larger and the computational overhead too high. b) Convolution does not enable
recovery from smaller feature maps to larger ones. In order to solve these problems,
some new convolutional structures have been proposed, such as dilated convolutions
(Yu & Koltun, 2015), transposed convolution (Dumoulin & Visin, 2016).

Dilated convolution is executed by introducing gaps or "holes" into the standard
convolutional map, thereby expanding the receptive field of the network. The original
convolution gets local information from adjacent positions, while the dilated
convolution gets local information from partially adjacent positions. In addition to
determining the length and width of the convolution kernel, the dilated convolution also
requires determining the dilation rate that refers to the interval distance between each
weight in the convolution kernel. The dilation rate of the original convolution is 1.
Figure 2-5 shows the dilated convolution. The kernel size in the figure is 3X3. As the
dilation rate increases, the receptive field of the convolution also increases. Dilated
convolution does not need to increase the convolution kernel or stack convolution
layers to increase the reception field, which saves computational resources and does not
cause overfitting problems. In Figure 2-5, the dilated convolution with a dilation rate

of 2 has a reception field of 5X5 with the same parameters.
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Figure 2-5  Dilated convolution.

As an input image undergoes feature extraction via a convolutional neural network, the
output size often diminishes. Occasionally, it becomes necessary to restore the image
to its original size for subsequent computations, such as semantic segmentation. This
process, aimed at mapping the image from a smaller to a larger resolution, is referred
to as upsampling. There are 3 common methods for upsampling: bilinear interpolation,
transposed convolution, and nearest neighbour interpolation. Transposed convolution
solves the upsampling problem of feature map. As shown in Figure 2-6, transposed
convolution expands the original low-resolution feature map by the zero-padding

operation, and then generate the feature map of the next layer, which is used to achieve

upsampling.
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Figure 2-6  Transposed convolution.

The pooling layer constitutes another crucial element of the convolutional neural
network, serving as a form of nonlinear downsampling. The primary objective of

incorporating pooling layers is to achieve translation invariance, enabling the model to
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prioritize the presence or absence of a feature rather than its precise location. This layer
effectively reduces the resolution of the feature map, mitigating computational
overhead in the network while helping to prevent overfitting. Common types of pooling
layers include the maximum pooling layer, average pooling layer, and global maximum
pooling layer. Among these, the maximum pooling layer is the most commonly utilized,
dividing the input into non-overlapping sub-regions and extracting the maximum value
from each sub-region to represent its characteristics. As shown in Figure 2-7, the
pooling process is similar to the convolution process. It uses a 2x2 filter with a stride
2 to scan the values in the neighbourhood of a feature map and selects the maximum
value to output to the next layer. The pooling operation does not affect the

dimensionality of the output and the feature channels remain unchanged.
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Figure 2-7  Max pooling operation.

The fully connected layer in a convolutional neural network corresponds to the hidden
layer in a traditional feedforward neural network. Positioned at the end of the hidden
layers in the convolutional neural network, the fully connected layer exclusively
transmits signals to other fully connected layers. As shown in Figure 2-8, each neuron
within the fully connected layer forms connections with neurons in the preceding layer.

Serving as a "classifier" in the convolutional neural network, the fully connected layer
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plays a pivotal role. The convolutional layer, pooling layer, and activation function
collaboratively map the initial data into a hidden feature space, undertaking the
processes of feature extraction and selection. Meanwhile, the fully connected layer
further maps the learned feature representation to the labeled space of the samples.
Essentially, it integrates these features and channels them towards the final classifier or
regression. It's worth noting that the fully connected layer discards location information
present in the feature map, thereby reducing the sensitivity of parameters during model
learning. However, it is susceptible to parameter redundancy. The parameters associated
with the fully connected layer can constitute a significant portion, around 80%, of the
overall network parameters. This not only slows down the training speed but also

increases the risk of overfitting.
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2.1.3 Transformer
In 2017, Vaswani et al. (2017) proposed the transformer architecture and showed
remarkable performance in natural language processing (NLP), as the self-attention can

model long-range dependencies and also capture global features. Figure 2-9 shows the
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vanilla transformer architecture. Within the self-attention layer, the input vector
undergoes an initial transformation into three distinct vectors: the query vector Q, the
key vector K, and the value vector V. Then, the attention between different input

vectors is calculated as follows:

. (Q ‘K T)
Attention(Q,K,V) = Softmax (2—-4)

Jax

To boost the performance of the vanilla self-attention mechanism, the multi-head
attention mechanism is proposed. When considering a particular reference word within
a sentence, some key words are often emphasized. The constraint imposed by a single-
head self-attention layer impedes the capacity to selectively concentrate on one or more
specific positions without concurrently affecting attention toward other positions of
equal significance. To address this limitation, divergence in representation subspace is
introduced across attention heads. Specifically, distinct query, key, and value matrices
are employed for different heads. In this way, these matrices can project input vectors
into different feature subspaces. The equation of multi-head attention can be written as
follows:
MultiHead(Q,K,V) = Concat(head., ..., head,)W (2-5)
head; = Attention(Q,K,V) (2-6)
Where h is the number of heads, W is the projection matrix. Following the multi-head
attention layers in each encoder and decoder, a feed-forward network (FFN) is
employed. This network comprises two linear transformation layers with a nonlinear

activation function embedded between them. In addition, a residual connection is
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introduced to every sub-layer within both the encoder and decoder, enhancing the

information flow to achieve better performance.
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Figure 2-9.  The vanilla transformer architecture (Vaswani et al., 2017).

Benefiting from the powerful modeling capability of the multi-head attention
mechanism, scholars have recently endeavoured to employ transformers in addressing
the computer vision tasks. Chen et al. (2020) trained a sequence transformer with the
objective of auto-regressively predicting pixels. Dosovitskiy et al. (2020) applied a
vanilla transformer directly to sequences of image patches for the purpose of classifying
the entire image, achieving state-of-the-art performance across various image
recognition benchmarks. In addition to image classification, transformer has been
employed to tackle other computer vision tasks. Carion et al. (2020) presented a
transformer encoder-decoder architecture DETR for object detection, eliminating the

necessity for numerous manually crafted components including a non-maximum
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suppression procedure or anchor generation. Zhu et al. (2020) proposed Deformable
DETR, exploiting the attention modules to selectively attend to a concise set of key
sampling points surrounding a specified reference. Zheng et al. (2021b) adopted a pure
transformer to encode an image as a sequence of patches, and the encoder can be
seamlessly integrated with a transformer decoder. This was a semantic segmentation
method entirely based on the transformer. Chen et al. (2021a) developed an image
processing transformer (IPT) model which is optimized on ImageNet (Deng et al., 2009)
benchmark with multi-heads and multi-tails. Zhou et al. (2018) introduced an end-to-
end transformer network for dense video captioning. In particular, they utilized a self-
attention mechanism to incorporate an efficient non-recurrent structure during the
encoding process, thereby improving the performance. Due to the outstanding
performance of transformers, an increasing number of researchers are proposing

transformer-based models to improve a diverse array of visual tasks.

2.2 Human Pose Estimation

2.2.1 Traditional Methods

Before the success of deep learning, there are some traditional human pose estimation
methods in the early research. These methods can be divided into feature engineering,

pictorial structure and poselets.

2.2.1.1 Feature engineering

Research on human pose estimation first appeared in 1980. Early methods used feature
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engineering and assumptions for human pose estimation. Forsyth and Fleck (1997)
proposed the Body Plan method which refers to a series of human features learned from
image data under the constraints of colour, texture, and geometric attributes. It can be
used to segment and recognize the human body in a complex environment. Mori and
Malik (2002) obtained the pose of the human body by matching the shape. This method
could not only obtain the position of the joints but also realize the tracking of the joints
in motion. Ren ef al. (2005) used the segmentation method to obtain the characteristics
of each part of the human body, and then used the relative position between the joints
and the consistency of the scale to constrain the model to predict the human pose. Hua
et al. (2005) used Markov model to infer the human pose from the shape, edge, colour

and other information in the image.

2.2.1.2 Pictorial structure

Compared with the earlier methods, the method of pictorial structure has the advantages
of low computational complexity and fast prediction. This method is used in some fields
such as human tracking, human pose estimation, and automatic discovery of object
regions in videos. The research based on the pictorial structure method mainly focuses
on three aspects: realizing the rapid calculation of the model, improving the modelling
ability of the Appearance Model and the performance of the human pose estimation.
Eichner and Ferrar (2009) proposed to use the relationship between the appearance of
different parts of the body to improve the modelling performance of the appearance
model. Johnson and Everingham (2009) proposed to use Histogram of Oriented
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Gradients (HOG) to improve the performance of human component detectors. Sapp et
al. (2011) proposed to model joints instead of human limbs and used several tree-like
sub-models to track joints between video frames. Based on the pictorial structure
framework, Felzenszwalb et al. (2008) and Felzenszwalb et al. (2010) proposed
Deformable Part-based Models to improve the modelling capabilities of appearance
models. Yang and Ramanan (2011) and Yang and Ramanan (2012) introduced hybrid
deformable components into the tree structure model to improve the modelling
capabilities of the appearance model. This method uses component-based models

(Felzenszwalb et al., 2008) and structured Support Vector Machine (SVM) for learning.

2.2.1.3 Poselets

Poselets (Bourdev & Malik, 2009) is another mainstream method in traditional human
pose estimation. This method first needs to construct a data set containing 3D human
pose information, and then use a clustering method to divide samples with the same
pose in the data set into the same sub-data set. The sub-data sets formed in this way
have the same pose but different shapes. Bourdev and Malik (2009) used sub-data sets
to train several linear SVM classifiers which are Poselets. Poselets could be used to
scan the image at multiple scales after obtained. During the scanning process, the output
of the Poselets was fused to determine whether the current image block contains joints
and the types of joints. In order to estimate the pose of the upper body, Bourdev and
Malik (2013) proposed the Armlet method based on the Poselets method, which divided
the data set according to the pose of the arms, and then used the divided data set to train
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Armlet. In order to add higher-order information between body parts to the graph
structure model, Pishchulin er al. (2013) integrated Posetlets into the graph structure
model, using the information extracted by the Poselets detector as the middle layer to
directly predict the body joints in the image. In order to obtain a stronger local multi-
modal shape model, the author uses a rotation-independent part detector. By taking the
local shape features obtained by the part detector and the mid-level features obtained
by the Poselets detector as the input of the graph structure model, it improves the
performance of graph structure model. Since the deformable part model cannot use the
annotation information of the joints in the data set like Poselet, Gkioxari ef al. (2014)

proposed to use Poselet for the deformable part model to enhance its performance.

2.2.1.4 Problems with traditional methods

The manual features used in traditional human pose estimation methods include the
directional gradient histogram using local gradient contours (Dalal & Triggs, 2005), the
directional gradient histogram of gPb contours (Arbelaez et al., 2010), scale-invariant
feature transform (Lowe, 2004), color characteristics (Wren et al., 1997) and contextual
features (Gkioxari et al., 2013). Traditional methods usually use SVM classifier to
classify (Finley & Joachims, 2008) or use deformable component model to model the
human body structure (Felzenszwalb et al., 2008). Although traditional methods have
achieved good results on simple data sets, they still have many intractable problems.
These problems can be explained from the two aspects of feature extractor and human
body model respectively. The problems faced by feature extractors: a) The hand-
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designed feature extractors can only extract low-level features and cannot capture high-
level semantic information; b) The hand-designed feature extractors do not work well
with the human body model. The extractor cannot interact with the model during
training; ¢) The hand-designed feature extractor is designed by the researcher based on
experience. It is not the optimal feature extraction method and is not necessarily suitable
for the task of human pose estimation.

The problems faced by the human body model: a) The graph structure model is only
suitable for data with a small number of joints and cannot be extended to the situation
with more parameter parts; b) The graph structure model and the deformable
component model need to be used manually for the designed features, while the model
itself does not have the ability to extract features and cannot interact with feature
extraction methods; c) Poselets are more computationally intensive and the training
process is cumbersome and complex. When combined with other methods, the model
increases the complexity. The above-mentioned problems have prompted researchers
to turn their attention to find methods that can perform characterization learning without
manual modelling. With the rise of deep learning, especially the continuous
development of convolutional neural networks, LeCun ef al. (1998c) have brought new
dawn to solve these problems. This is mainly because the convolutional neural network
has the following characteristics: Firstly, the convolutional neural network can directly
use the data marked in the training set, and the convolutional neural network is a data-

driven method. The more high-quality annotated data, the better the effect of the model.
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However, traditional methods cannot learn from a large number of Benefit from data;
Secondly, the convolutional neural network can learn very complex nonlinear mapping
relationships and deal with problems that plague traditional methods such as random
occlusion, complex pose, and changeable appearance; Thirdly, the convolutional neural
network can realize representation learning, avoiding the cumbersome manual design
of features; Fourthly, the feature extraction inside the end-to-end trained convolutional
neural network is integrated with the human body model. The convolutional neural
network can automatically learn the feature representation and the human body model
from the labelled data set according to the defined loss function.

2.2.2 CNN-based Methods

Convolutional neural networks (CNN) have experienced several years of development
before they have matured. Fukushima and Miyake (1982) and Fukushima (1975)
proposed the prototype of the early convolutional neural network based on the study of
the visual system of cats by Hubel and Wiesel (Hubel & Wiesel, 1962; Hubel & Wiesel,
1965; Hubel & Wiesel, 1977). Subsequently, LeCun (1989) and LeCun ef al. (1989a)
applied the Back Propagation algorithm (Rumelhart et al., 1986) to the convolutional
neural network after studying the convolutional neural network to realize the effective
training of the network. LeCun et al. (1998a) then improved the architecture of the
network by proposing the multilayer cascaded convolutional neural network
architecture LeNet-5. From an architectural perspective, the early LeNet-5 network

lacks some of the key methods in the modern network architecture: rectified linear unit
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(ReLU) (Glorot et al., 2011) is used instead of Sigmoid as the activation function to
improve network training, and dropout (Srivastava et al., 2014) is used to deal with
over-fitting problems. Due to the limitations of the machine performance at the time,
the running speed of the convolutional neural network was very slow, which hindered
its further development. When convolutional networks were created, the Internet had
just emerged without much data accumulation, which was one of the reasons why
convolutional neural networks were not popular at that time. It wasn't until 2012 that
AlexNet proposed by (Krizhevsky et al., 2012b) won the championship of the
ImageNet classification competition at the time that made the world realize the
importance of convolutional neural networks. Later, researchers gradually applied
convolutional neural networks to their respective research fields, such as 3D human
pose estimation. Presently, convolutional neural network-based approaches for 3D
human pose estimation can be broadly categorized into two groups: i) directly
predicting the 3D coordinates of each joint from 2D images (one-step method); i1)
initially predicting 2D joint positions in image space followed by a subsequent lifting
to 3D (two-step method).

The one-step method can be subdivided into two categories: regression-based methods
and detection-based methods. Regression-based approaches are to directly predict each
joint position relative to the root joint position. Li and Chan (2014) used a shallow
network to predict 3D joint coordinates directly and realize the task of body part

detection simultaneously. Park et al. (2016) employed an end-to-end network with
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synchronous training of both 2D joint classification and 3D joint estimation. Li ef al.
(2015) applied an embedding sub-network to learn potential human posture structure
information and realized the matching of 3D coordinates. The sub-network can use the
maximum margin cost function to allocate matching scores to the input image-pose
pairs. Tekin et al. (2016a) learned a high-dimensional potential pose representation for
adding some constraints about the human body with an unsupervised auto-encoder and
then introduced a shallow network to predict the 3D coordinates of poses. Sun et al.
(2017) believed that regression-based approaches did not make good use of the
structural information of the human body, so he designed a skeleton-based network by
using human body structure information. Furthermore, he also proposed a
compositional loss function to solve the problem of no association of bones in the L2
loss. Zhou et al. (2016) proposed a deep kinematic neutral network to learn motion
parameters and joint locations. Motion parameters include the fixed bones length and
angles of bones rotation around combined joints. However, the fixed bones length does
not improve the generalization ability of the model well. Nibali et al. (2018) believed
that the method of predicting by heatmap is completely non-differentiable, while that
of regressing the coordinates with the fully connected layer lacks spatial generalization.
Therefore, he proposed a module named differentiable spatial to numerical transform
(DSNT) to solve these two problems. Luvizon et al. (2019) proposed an end-to-end
differentiable network, converting feature heatmaps to joint coordinates by a soft-

argmax function. Detection-based methods mainly converts the image containing
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people into a heatmap for each joint first, and then takes the maximum value of the heat
map as the joint coordinates. Pavlakos et al. (2017) created a convolutional neural
network derived from the stacked hourglass architecture (Newell et al, 2016),
predicting the possibility of each voxel of each joint through the fine discretization of
3D space. Liu et al. (2019) designed a feature learning neural network to predict 3D
hand pose and human pose from an image, which used a new long short-term
dependence-aware network to generate 2D heatmaps of joints. Sun et al. (2018)
connected and unified the heatmap representation and joint regression with an integral
operation, thus correcting some non-differentiable error. Luvizon ef al. (2018) designed
a multitask network to enable estimation of 2D and 3D poses jointly and action
recognition. It is worth noting that 2D and 3D pose are uniformly predicted by using

volumetric heatmaps.
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Figure 2-10  Integral human pose regression with 3D heatmaps (Sun et al., 2018).

Benefiting from the high accuracy and generalization capabilities of 2D human pose
estimation, many researchers use off-the-shelf 2D human pose estimation networks as
an intermediate supervision step, lifting 2D poses to 3D space. This two-step method is

generally superior to the directly regressing method because of the excellent
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performance of 2D pose detectors.

2.2.2.1 Methods based on Single Frame

Martinez et al. (2017b) introduced a classical method wherein 2D keypoint coordinates
serve as input, and the model maps the 2D pose directly to 3D space using a fully
connected layer with residual connections. Although the model was relatively simple,
it achieved state-of-the-art results. The experiments conducted suggested that the errors
in many contemporary 3D human pose estimation algorithms primarily stem from
challenges in understanding 2D human pose estimation rather than issues with the 2D-
to-3D lifting process. Chen and Ramanan (2017) added a K-nearest neighbour search
algorithms into the network to search similar 3d pose among 2d pose dataset and then
output the correct 3D pose. However, the predictions of this method can be wrong when
3D pose and 2D pose are not conditionally independent. Fang et al. (2018) used the
grammar information to encode the anatomy relations and dependencies in the network
because previous works rarely applied domain-specific knowledge and the
generalization ability is poor when performing cross-view pose estimation. Zhou et al.
(2017) jointly trained a network capable of estimating 3D human pose in the wild, using
the heatmap and features of the predicted 2D joints as input for the regression depth.
Brau and Jiang (2016) incorporated prior knowledge regarding bone length and
projection consistency to perform regression of 3D joint coordinates. Tekin et al. (2017)
introduced a two-branch network to estimate 2D heatmaps and extract features from
images, which are then fused with the 2D heatmaps through a fusion layer. Jahangiri
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and Yuille (2017), Sharma ef al. (2019) and Li and Lee (2019) generated multiple
feasible hypotheses of 3D poses from 2D poses and chose the best one with 2D
reprojections. Moreno-Noguer (2017) trained a neural network to learn the mapping of
the two matrices from encoded pairwise Euclidean distances of 2D and 3D body joints.
Euclidean Distance Matrices (EDMs) are invariant to rotations and translations in the
plane, as well as scaling invariance when applying normalization operations. Wang et
al. (2018) introduced a Pairwise Ranking Convolutional Neural Network (PRCNN) to
predict the depth information of human joints and ranked the information that is used
as a cue to infer coordinates of 3D joints. Yang et al. (2018) introduced a multi-source
architecture including image, geometric descriptor, joint location information,

heatmaps and depth maps.
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Figure 2-11  Semantic Graph Convolutions (Zhao et al., 2019b).

Graph Neural Network. Since a human pose can be represented as a graph where
joints are the nodes and skeletons are the edges, many researchers have used Graph
Convolution Networks (GCNs) to estimate 3D poses from 2D poses, achieving
promising results. Zhao et al. (2019b) introduced Semantic Graph Convolutional
Networks in Figure 2-11, a novel neural network architecture designed specifically for
regression tasks involving graph-structured data. This network can learn semantic

information, including local and global node relationships, that may not be explicitly
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represented in the graph. Besides, it also addressed the limitation associated with the
GCNs, which is confined to a small receptive field of the convolution filter and the
shared transformation matrix for each node. Ci et al. (2019a) proposed a generic
network called Locally Connected Network (LCN) that is composed of the GCN and
the fully connected network to model the relationship of adjacent joints. It can mitigate
the issues of GCNs that weight sharing strategy affects the representational power of
the network. In addition, the LCN can greatly improve network characterization and
generalization, and enable end-to-end deployment and application to different scenarios.
Liu et al. (2020a) carried out a thorough and systematic investigation into the challenge
of weight sharing in GCNs for the purpose of 3D human pose estimation. They
concluded that the way of weight sharing in GCNs has a significant impact on the
performance of 3D human pose estimation and more parameters do not necessarily lead
to better performance. Decoupled self-connection is beneficial for reaching good
performance and pre-aggregation is the best weight sharing method in terms of GCN.
Zeng et al. (2021) aimed to improve the performance on challenging poses
characterized by depth ambiguity, self-occlusion, and complexity or rarity. Therefore,
they proposed a hop-aware hierarchical channel-squeezing fusion layer to suppresses
the learning of noise by the adjacency matrix of graph neural networks (GNN). Also,
they build temporal-aware dynamic skeletal graphs to dynamically change the weights
of the adjacency matrix based on temporal action changes. However, the above GCNs-

based methods all represent the human skeleton as an undirected graph for processing,
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ignoring the hierarchical orders among human joints and failing to reflect the articulated
characteristic of human skeletons. Therefore, Hu et al. (2021) depicted the human
skeleton as a directed graph, with joints as nodes and bones as edges directed from
parent joints to child joints. Based on this representation, they introduced a U-shaped
Conditional Directed Graph Convolutional Network to exploit different non-local

dependencies for different poses.

2.2.2.2 Methods based on Video Sequence

Compared with estimating 3D human pose from monocular images, inferring 3D joints
from video could exploit temporal information, achieving more stable and jitter-free
prediction results. Tekin et al. (2016b) inferred 3D poses with the information of
histograms of oriented gradients and demonstrated that motion information in the
volumes can improve the accuracy of some challenging poses with mirroring and self-
occlusion. Hossain and Little (2018b) proposed a sequence-to-sequence architecture
which used Long Short-Term Memory units (LSTM) to predict the 3D human pose
from given 2D pose sequence. This network encoded a 2D pose sequence into a fixed
feature vector. Then, it decoded the 2D pose sequence into a 3D pose sequence using
residual connections. However, encoding the 2D pose sequences into a 1D vector
ignored the expression of the spatial configuration of 2D poses and this model needed
fixed length when inputting temporal data. To solve these problems, Pavllo e al. (2019a)
proposed the temporal convolutional network (TCN) that leveraged dilated temporal
convolutional to extract continuous frame information of human in the video.
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Compared with RNN and LSTM, TCN can process multiple frames in parallel and
flexibly capture varying sequences. The dilated convolutions were employed to capture
long-term dependencies while requiring fewer training parameters and achieving
superior computational speed compared to sequence-to-sequence models. Besides,
Pavllo et al. (2019a) used back-projection to add non-labelled data for semi-supervised
training. However, the vector encoding of joint sequences lacks the capacity to
adequately express spatial relationships, which is essential for addressing challenges
associated with depth ambiguities and self-occlusions. Dabral et al. (2018), Cai et al.
(2019a) and Li et al. (2019) made additional use of spatial information on top of the
temporal information and added some constraints to the loss function, such as fixed
bone length and symmetrical relationship between the left and right of the human body.
In addition, there are other works that deform the TCN (Pavllo et al., 2019a) to improve
the prediction accuracy. Cheng ef al. (2019) and Cheng et al. (2020) introduced
occlusion labels to the temporal convolutional network (TCN) to improve estimation
accuracy on some images with occluded human. Cheng et al. (2019) proposed an
occlusion-aware network with a “cylinder man model” producing occlusion labels,
which enabled the network to perform statistics on occlusion labels and thus design
regularization penalties. The key stage in this method is that the occlusion model uses
incomplete 2D keypoints with ignoring self-occluded points, allowing the network to
be less affected by the error-prone estimations of occluded keypoints. However, when

the bounding box of the detected human body deviates significantly from the ground

43



truth, the estimation becomes highly inaccurate. If two or more people are very close,
this method may not be able to distinguish the keypoints of different people. The
“cylinder man model” cannot produce occlusion from other objects. Cheng et al. (2020)
developed an end-to-end trainable model that leveraged multi-scale features in space
and time to process target human at different distances and different speeds. They used
a multi-scale convolutional network (HRNet) proposed by (Sun et al., 2019) which
fused these spatial features. Therefore, 3D joint coordinates are predicted with multi-
scale features embedding obtained from those heatmaps based on TCN (Pavllo et al.,
2019a). Besides, Cheng et al. (2020) designed a discriminant model based on spatio-
temporal kinematic chains enforcing limbs angular and length constraints for validation
of pose sequences. Liu ef al. (2020c) applied attention mechanism to TCN, which
determined key frames and output tensor in every layer. Different from (Pavllo ef al.,
2019a) who used a voting mechanism to select important frames, Liu et al. (2020c)
systematically assigned a weight distribution to frames, all of which might contribute
to the inference. At the same time, this attention mechanism also modelled long-range
dependencies to increase temporal receptive fields. Wang et al. (2020c) proposed a loss
function called motion loss that used the model to reconstruct the keypoints motion
trajectories, considering the similarity of temporal structure between the estimated pose
sequence and the ground truth. Meanwhile, they designed a U-shaped GCN based on
(Cai et al., 2019a) to combine long-range information through temporal pooling

operations. However, the local-to-global network architecture is constrained by its
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ability to embed fixed-length spatial-temporal sequences. Chen et al. (2021b)
decomposed the task of predicting the 3D human pose into two components: predicting
bone direction and predicting bone length. By doing so, the 3D joint coordinates can be
entirely derived since the bone lengths of a human skeleton remain constant over time.
This approach involved predicting the bone directions for the target frame using
consecutive local frames and determining bone lengths by considering randomly
sampled frames from the entire video. Zeng et al. (2020) introduced the split-and-
recombine scheme to enhance the generalization of rare and unseen poses. This
innovative approach involved segmenting human joints into distinct groups and
applying temporal convolution within each group. Subsequently, the joints from
different groups were recombined to reconstruct a comprehensive human pose.
Similarly, Shan ef al. (2021b) classified joints into five distinct groups: torso, left and
right arms, and left and right legs. They devised a feature fusion module to merge five
different features, performing the TCN (Pavllo et al., 2019b) within each group prior to

fusion.
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2.2.3 Transformer-based Methods

Transformer was first proposed by (Vaswani et al., 2017) and showed remarkable
performance in natural language processing (NLP), as the self-attention can model
long-range dependencies and also capture global features. Recently, several studies on
transformer-based methods for 3D human pose estimation have been reported, with
PoseFormer (Zheng et al., 2021a) being the first that predicts the 3D pose of the central
frame by modeling spatial and temporal information. However, the computational
burden is huge when the frame number increases. PoseformerV2 (Zhao et al., 2023)
introduces a time-frequency feature to the transformer structure, efficiently extends the
input sequence length, and achieves a good trade-off between speed and accuracy.
MHFormer (Li et al., 2022c) a transformer-based network, generates multiple
hypotheses at the pose level and calculates the target 3D pose by averaging. MixSTE
(Zhang et al., 2022b) stacks spatial and temporal transformer blocks to capture spatial-
temporal features alternatively and models the trajectory of joints over frame sequence.
STCFormer (Tang et al., 2023b) slices the input joint features into two partitions and
uses MHSA to encapsulate the spatial and temporal context in parallel. D3DP (Shan et
al.,2023), a diffusion-based method, recovers the noisy 3D poses by assembling joint-
by-joint multiple hypotheses. By introducing new encoders for better modeling the
spatial and temporal relations, these methods all have unavoidably changed the internal
structure or altered the MHSA of the transformer, resulting in largely increased network

complexity.
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Recently, some studies combined graph and transformer, introducing graph-transformer
methods (Gong et al., 2023; Li et al., 2023; Zhao et al., 2022; Zhu et al., 2021).
PoseGTAC (Zhu et al., 2021) uses graph atrous convolution to learn the multi-scale
information among 1-to-3 top neighbours and utilizes the graph transformer layer to
capture long-range features. GraFormer (Zhao et al., 2022) replaces the MLP in the
transformer with learnable GCN layers to form the GraAttention block, which also
contains MHSA. Li et al. (2023) introduces a graph POT, where each element is the
relative distance between a pair of joints, which are being encoded as the attention bias
in the MHSA module. DiffPose (Gong ef al., 2023) interlaces GCN layers with self-
attention layers as a diffusion model, which can capture spatial features between joints
based on the human skeleton. Nevertheless, these graph-transformer methods (Gong et
al.,2023; Li et al., 2023; Zhao et al., 2022; Zhu et al., 2021) learn merely the spatial
information of individual pose, without considering temporal correlation across frames.
Moreover, they (Gong ef al., 2023; Li et al., 2023; Zhao et al., 2022; Zhu et al., 2021)
modify the structure of the transformer by introducing the graph convolution, resulting

in much larger and more complex networks.
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CHAPTER 3. GROUP-BASED 3D POSE ESTIMATION
WITH AN EFFICIENT HETEROGENEOUS FUSION

3.1 Introduction

With reference to the overall method as outlined in Figure 1-2 (page 9), a total of three
novel network models are developed in this study for 3D pose estimation. Here we
explain the first model, a CNN-based model with an efficient heterogeneous fusion.
As reviewed in Section 2.2.2 on page 35, of the various models following the two-step
method, those involving temporal information and anatomical grouping strategies are
the two which are the most frequently investigated. Some researchers (Cai et al., 2019b;
Chen et al., 2021c; Liu et al., 2020d; Pavllo et al., 2019b) exploited temporal
information of the input videos to achieve a more accurate and jitter-free result, in
which the temporal information of a few adjacent frames is aggregated by means of the
network. Other researchers (Park & Kwak, 2018; Shan et al., 2021a; Zeng et al., 2020),
however, grouped the various human joints into parts, such as arms, legs and torso,
based on human anatomy, so as to improve the prediction accuracy. By integrating
features from different groups to enhance the interdependence among different body
parts, these group-based methods achieve remarkable estimation performance.
Nevertheless, they treat each group of features equally without considering the
importance of the torso as the interconnected section of limb groups. Consequently, the
torso joints were not given adequate attention, resulting in inaccurate predictions for

the limb joints. In addition, these group-based methods impose a high computational
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workload when integrating features and require a multi-stage training strategy to avoid
interference between the feature fusion module and the encoding module (Shan et al.,
2021a). In other words, existing group-based methods cannot be trained end-to-end,
and the training is both time consuming and computationally expensive.

Therefore, we propose an efficient heterogeneous group-based method called
‘EHFusion’ for 3D human pose estimation, as illustrated in Figure 3-1. Inspired by
interesting feature fusion work in other domain (Jiang et al., 2022; Nazir et al., 2020;
Xie et al., 2021), we design a heterogeneous feature fusion (HFF) module to integrate
the relative information of different groups to effectively facilitate kinematic interaction
among various body parts. Rather than utilizing identical modules to integrate features
from different groups, the HFF module emphasizes the importance of the torso as the
core component of the human body and leverages a heterogeneous network structure.
By combining convolutional and fully connected operations, the HFF module can
reduce model parameters and computational costs while simultaneously improving
performance.

Moreover, to further enhance the accuracy of 3D pose estimation, motion amplitude
information (MAI) and a camera intrinsic embedding (CIE) module are introduced in
EHFusion, as illustrated in Figure 3-1. MAI aims to incorporate a global body motion
context without resorting to feature fusion, improving the estimation accuracy of
actions with large motion amplitudes (e.g., sitting). CIE mitigates the gap in coordinate

system transformation during the process of 2D-to-3D lifting. The main contributions
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of this section are summarized as follows:

e The development of a heterogeneous and efficient feature fusion module (HFF)
lowers the computational burden for feature fusion while improving both the
prediction accuracy and efficiency of the overall 3D pose estimation network.

e MAI has been introduced to enable the network to learn the body motion amplitude
information between the target pose and the others. Unlike the relative information
in (Shan et al., 2021a), our MAI aims to incorporate a global body motion context
without resorting to feature fusion.

e A camera embedding, by means of a Multi-Layer Perceptron (MLP), has been
developed to learn the transformation from the image coordinate system (ICS) to
the camera coordinate system (CCS), thereby boosting the performance of 2D-to-
3D pose estimation.

e A multi-tasking network has been designed enabling end-to-end training. The
encoders of different body sections/parts and the fusion module grouping features
of different body sections can be trained at the same time without interfering with
each other, thus saving significant computational time and training resources.

o Related analysis, involving extensive datasets, have demonstrated both the
effectiveness and efficiency of the proposed network in comparison to various

existing state-of-the-art methods (i.e., transformer-based).
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Let an input 2D pose sequence be denoted as K = {k{ 1, k{ = (xg ,ytj ) € R?, where

(xg , ytj ) denotes a keypoint defined in image coordinate system; j represents the joint

index of a human pose and j = 0,1, 2, ..., J; and j = 0 is called the root joint. The total

number of joints is set as 17 in current study, i.e., ] = 16; while t is the frame index

andt = 1,2, ..., T, representing each input 2D pose sequence is compose of T number

of frames. In this study, the relative information from (Shan ef al., 2021a) is used for

3D pose estimation.

Relative information. The relative information contains positional information and

temporal information. First, the positional information refers to the relative joint

coordinates, in which the joint coordinates in each pose are calculated as relative
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coordinates to the root joint and can be expressed as follows:
K, = {k/ — koY 3-1
p _{ t t}j=1 ( - )

For each joint j > 0, the relative coordinates are defined as:

] — (] j

kt_(xt_x?'yt_yg) (3-2)
The temporal information denotes the pose differences between frames, in which the
coordinates of the target frame are subtracted from the pose coordinates of the other

frames and can be expressed as:

Kr = {kt - kI}T = {(xt: Ve) — (xz, }’Z)}T (3-3)
27¢=1 2 2772

Jj is omitted for the sake of simplicity.

Topology-based grouping aims to divide the human body into smaller anatomical parts
or groups (e.g., limbs, torso) and estimate the pose of each group independently before
integrating them to obtain the pose of the whole body. This method is robust in terms
of occlusions since the human body is divided into smaller anatomical groups to learn
the unique features (e.g., positional and temporal information) of each group. By
focusing on smaller parts, it is less likely that the entire part will be occluded, allowing
for more accurate pose estimation, even under highly challenging situations.

For each 2D pose, all 17 body joints are divided into 5 nonoverlapping groups, K* =
{k{ }J],izl, where J; is the number of joints in group i and i = 1, ..., 5, corresponding to
torso, left arm, right arm, left leg, and right leg, as shown in Figure 3-3(b). The limbs

are not inter-connected to each other but treated as four independent parts. Each joint

group represents the local commonality of related joints and provides better local
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features. With reference to equation (3-1) and (3-2), the positional and temporal
information of the it" joint group can be expressed as K} and K}, respectively.
TCN encoding: For each joint group i, by concatenating the input pose K*, the
positional information K} and the temporal information K} together, an enhanced
representation K} can be obtained, which is further processed by TCN encoding:

Fi = B (KY) G-
Where EL(-) stands for the TCN encoder (Pavllo et al., 2019b). Ft indicates the
encoded relative information.

Target pose encoding. The target pose is defined as the centre frame of the 2D pose

Y}
sequence, K; = {ki} , which is encoded by an independent MLP network to give
27j=1

global feature:
Fg = Em(Kq) 3-5)
where E,, () stands for the MLP encoder. Instead, we incorporate the encoded

information F;; into the encoded relative information.
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Figure 3-2  Our multi-task end-to-end EHFusion network.

3.2.2 Heterogeneous Feature Fusion (HFF)

By topology-based grouping, the spatial relationships of the connecting joints have
been preserved within each joint group, representing strong local features, while the
connection between groups is not included, making the joint positions of other groups
unknown to the current group. In order to obtain a complete 3D pose prediction, it is
important to fuse features of different joint groups together. Shan ef al. (2021a) used a
feature fusion module, based on fully connected layers (FCN), to fuse grouped features.
Nevertheless, for the prediction of each group, all the grouped features are fused with
the uniform FCN feature fusion block, which ignores the different relationships
between groups. Additionally, the use of FCNs also results in over 90% of the network
parameters, generating a large volume of redundant information in the network design
(Cheng et al., 2015). A new module called heterogeneous feature fusion (HFF) module

is proposed here to address the above issues.
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The proposed HFF module, as illustrated in Figure 3-4, combines one FCN feature
fusion block with four conv feature fusion blocks, where the former block is employed
for the prediction of torso joints while the latter block is employed for that of other
groups. With this heterogeneous fusion module, the FCNs can capture comprehensive
relationships and patterns within the limb group features to assist in the prediction of
torso joints, while the convolutional layers utilize localized features for predicting joints
within groups. This is not only beneficial to make the network focus more on the torso
joint prediction which has close relationship with all other group joints and plays a more
important role in the prediction stability of the model, but also helps to alleviate the
over-fitting problem and reduce model parameters and computation costs.

More specifically, for a specific group i, we concatenate grouped features of the other
four groups together according to the channel dimension, [Fi*?, ..., F£**], as input to
be further processed in the FCN or Conv feature fusion block. The FCN feature fusion
block consists of the fully connected layer, 1D batch normalization (BN), rectified
linear unit (ReLU) and dropout, raising the feature dimensions to obtain the fused
features, see the top right corner of Figure 3-4. In the design of conv feature fusion
block, we used the discriminative dimensional reduction method (Su et al., 2017) to
find a lower-dimensional representation of the feature that maximizes the separability
between different classes, namely the other four body parts. By so doing, we can

preserve the essential features while improve computational efficiency and reduce the

risk of over-fitting. Specifically, each grouped feature is processed by a 1D convolution
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with 1 stride and 1 kernel size, followed by batch normalization (BN) and rectified
linear unit (ReLU) for a discriminative feature:

F' = ReLU (BN (COnvw(Fg))) (3-6)
The final fused feature of conv block is obtained by concatenating the four resulting
features [F(”l)’, F+2)' p(+3) F(i+4)’].
In the proposed HFF module, the FCN feature fusion block is used for the torso by
fusing the other four grouped features of limbs (left/right arm and left/right leg). In
contrast, for each of the four limbs, the conv feature fusion block is used to fuse the
grouped features of torso and other limb parts. There is weight sharing in the
convolution operation, and this enable learning the common features of the connected
parts. Compared with the feature fusion module of (Shan et al., 2021a), the proposed
HFF module not only avoids over-fitting and reduces the number of parameters, but

also improves the performance (see experimental comparison).

Figure 3-3  Illustrations of (a) motion amplitude 6 and (b) the group configuration.
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3.2.3 Motion Amplitude Information (MAI)
In this study, motion amplitude information (MAI) is introduced to enhance the
description of body motion, which can be viewed as another kind of global information.
As shown in Figure 3-3(a), the orange dots connected with the black solid lines indicate
the target pose, while the yellow dots and the dashed lines indicate another pose at time
frame t. These two poses share the same root joint. The motion amplitude is defined as
the angle 8 between the green vector and the blue vector, and is derived as follows:

¢ (kL k]) = explo — ] B-7)
Where E denotes the target pose and k_i denotes the other pose at frame t. The angle

0 is calculated as follows:
(k_J +k])
[zl

This encoding method normalizes the joint motion amplitude 8 between 0 to 1 to avoid

0 =cos™?! (3—-98)

the gradient explosion. Finally, the motion amplitude (MA) is calculated as:

Kya = ¢(R'K_G) 3-9)
Where Kj; is the target pose sequence and K is the other pose sequence. We divide the
pose motion amplitude K, into the same five joint groups (torso, left arm, right arm,
left leg, right leg) by anatomical grouping, and each grouped motion amplitude is
denoted as K}, , and processed by TCN encoding:

Fita = Et(Kia) (3-10)
where EL stands for the TCN encoder (Pavllo ez al., 2019b).

3.2.4 Camera Intrinsic Embedding (CIE)
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The process of lifting 2D pose to 3D pose implies the transformation of coordinate
systems from the image coordinate system (ICS) to the camera coordinate system
(CCS). Specifically, p; = [u;, v;] represents the i-th joint coordinates in the ICS of a
2D pose. P; = [X;,Y;, Z;] stands for the corresponding joint coordinates in the CCS of
the 3D pose. If the depth Z in the CCS is known, the 2D pose coordinates in

the ICS can be converted to 3D pose in the CCS as follows:

X, = 7, —— 3—-11
L l fx ( )

3 (3-12)
Where f, and f,, denote the camera focal length; ¢, and c,, represent the coordinates of
the camera centre point.

According to equation (3-11) and (3-12), the prediction of 3D pose involves the
prediction of X and Y coordinates and the depth Z, while the former can be derived
from Z using camera intrinsic parameters (focal length and camera centre point). The
focal length determines the scale factor between the 2D image plane and the 3D space,
which help to estimate the relative depth. The camera center point is where the optical
axis of the camera intersects with the image plane, providing an offset of the coordinate
system origin that maps 2D image coordinates onto 3D coordinates.

Thus, we propose a camera intrinsic embedding (CIE) network to exploit the focal
length (fy, f,) and the camera centre point (¢, cy) as a priori information for more

accurate predictions of 3D pose in CCS. More specifically, the focal length (fy, f,) and

the camera centre point (cy,c, ) are first concatenated together to form a tensor
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(far fy» €x> €y), Which is then fed into the CIE network to obtain a high-dimensional
camera intrinsic information F:

Fe = En(fu fyr cxrCy) (3-13)
where E,,,(-) stands for the MLP encoder. The CIE network consists of two fully
connected layers, 1D batch normalization, rectified linear unit and dropout.

3.2.5 Model Optimization

A multitasking end-to-end network has been developed to incorporate four kinds of
information including positional, temporal, motion amplitude and camera intrinsic
information for 3D pose estimation. The network framework has two branches and can
be trained end-to-end in one single stage or by multiple stages. In contrast to the RIE
network (Shan et al., 2021a), which can only be trained in multiple stages, our network
executes rapidly with fewer parameters and lower computational cost. As illustrated in
Figure 3-4, the input to the network is 2D pose sequences; either ground-truth sequence
or poses predicted by 2D pose detectors can be used as inputs. To predict 3D poses, the
input 2D poses are transformed into positional and temporal information, which are
concatenated to theoriginal input 2D pose. The concatenated information is then
divided into five groups (torso, left arm, right arm, left leg, right leg) and sent for TCN
encoding. Furthermore, the motion amplitude is encoded independently by means of
TCN encoder, while the target pose and the camera intrinsic parameters are encoded by
two different MLP networks. All the encoded information is concatenated together and

fed into the decoder of the first branch for decoding. The second branch includes an
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additional HFF module for fused features before decoding, and the gradients are not
back propagated during training in the HFF module. By doing so, the training of the
fused information and the other encoded information do not interfere with each other,
leading to the final fused 3D pose.
Loss functions. Our multitasking network uses two loss functions to govern the
learning of the two branches. The first branch, which the HFF module is not involved,
only learns the parameters of the encoders and decoders, generating a non-fused 3D
pose. Hence, the first loss function L; only constrains the non-fused 3D pose and
facilitates the parameter learning of the encoders and decoders. The second branch, with
the HFF module incorporated, aims to yield a fused 3D pose which is optimized by the
second loss function L,. Since the second branch network directly uses the encoders
trained by the first branch network, the loss L, drops along with the dropping of loss
L4 in the training. After training, the prediction of the second branch is chosen as the
final result.
In the first branch, we concatenate four pieces of features per group including enhanced
representation F:, global feature of target pose F;, motion amplitude F} 4, and the
camera intrinsic embedding F and input them into the decoder as follows:

F} = D(Concat[Ff, Fija, Fy, Fe) (3-14)
Next, the five groups of decoded features are concatenated together as a non-fused 3D
pose Pg:

Pz = Concat[F}, FZ, ..., F3] (3—-15)
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The non-fused pose Pz and the ground-truth 3D pose P; are compared to calculate the
loss function as follows:
L1:”PE_PG“% (3-16)
In the second branch, the fused features from the HFF module F}p is concatenated
with the four other features FL, FY, 4, F,, F¢ and input to the decoder as follows:
Fp_fuse = D([F&, Fira Fy e, Forr]) (3-17)
Similarly, the decoded features FDi_ fuse AT€ concatenated together to give a fused 3D
pose:
P = Concat |[F} . ,F3 . ... FS_. | 3 -18)
The loss function of the second branch is calculated as follows:
L2:”PF_PG“% 3-19)
Finally, the overall loss function of our network is obtained as follows:
L=L;+1L, (3—-20)
One-stage optimization: In our multitask network (Figure 3-2), the first branch learns
the parameters for information encoding (relative, motion amplitude, and camera
intrinsic embedding), while the second branch shares the encoded information with the
first branch and additionally introduces the HFF module to fuse the encoded positional
and temporal information. The HFF module in the second branch is designed without
gradient back propagation, making it non-differentiable. By doing so, the encoded
information (positional and temporal) can be trained independently without interfering

with the feature fusion between the different groups. During training, the parameters of
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the information encoding module are gradually optimized in the first branch. The
encoded information (positional and temporal) is fed into the HFF module in the second
branch for feature fusion. In this way, the information encoding and feature fusion in
both branches are optimized simultaneously without interfering with each other. The
accuracy of the predicted 3D pose in the second branch is higher than that of the first
branch because of feature fusion. Hence, the 3D pose from the second branch is selected

as the final result.
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Figure 3-4  Illustration of the proposed heterogeneous feature fusion (HFF)
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Three-stage training: For comparative purpose, we also investigated the three-stage
training strategy, as illustrated in Figure 3-5. In stage 1 of the three-stage training, the
encoding modules for the four types of information, including enhanced representation
FL, motion amplitude F},,, target pose F; and camera intrinsic embedding F, are

trained. The enhanced representation F}: per group is first encoded by TCN, while the
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motion amplitude FY,, is independently encoded per group by another encoding module
of TCN. The target pose F; and the camera intrinsic embedding F. are separately
encoded with two MLP networks. After the training of stage 1 is finished, the
parameters of the decoders are discarded and only the parameters for encoder are fixed
in stage 2 training. In stage 2, the HFF module and decoders are trained. The parameters
of the encoders and the encoded features of the positional and temporal information are
first input into the HFF module for feature fusion. The fused features are then
concatenated with the other encoded features, namely the motion amplitude, target pose
and camera intrinsic embedding and sent to the decoders. In stage 3, the entire network
including encoders, HFF module and decoders are fine-tuned simultaneously. The
three-stage training strategy ensures that encoders and the HFF module are trained
without interfering with each other, but this strategy requires plenty of training time and
computational costs.

Our multitask network can be trained end-to-end, saving considerable computational
time and costs, while the RIE (Shan et al., 2021a) can only be trained in three stages. A

comparative study will be given later.
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Figure 3-5  Three-stage training network.

3.3 Experimental Results and Discussion

3.3.1 Datasets and Evaluation Protocol

Datasets: We evaluated our model on two public datasets Human3.6M (Ionescu et al.,
2013) and HumanEva-I (Sigal ef al., 2010). Human3.6M is an indoor scene dataset
collected by motion capture systems with a total of 3.6 million video frames. It includes
7 professional actors wearing markers which record the coordinates of each body joint.
These actors perform 15 typical daily actions, such as walking dogs, taking photos,
sitting, greeting, eating, and so forth, captured in 4 synchronized camera angles. In line
with the previous research (Liu ef al., 2020d; Shan et al., 2021a; Zeng et al., 2020), we
used five actors (S1, S5, S6, S7, S8) for training and two (S9 and S11) for testing.
HumanEva-I is a smaller dataset, covering only three subjects performing six actions,
captured in a controlled indoor environment by three cameras.

Protocols: Protocol#1 is denoted as Mean Per Joint Position Error (MPJPE), which is
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the average Euclidean distance, in millimeters, between the predicted joint coordinates

Ji and the ground-truth joint coordinates J;', and is expressed by:

N
1
MPJPE = N;IIA ~Jill (3-21)

Protocol#2, denoted by P-MPJPE, refers to the error after the predicted pose being
aligned with the ground truth via rigid transformation of translation, rotation and scale
using Procrustes analysis. Compared to Protocol#1, Protocal#2 is more robust to
individual joint prediction failure, thus is also referred as post-processing protocol and

is expressed by:

N
1 ! *
P—MPJPE = > Il = J;l, (3-22)
i=1

Where J; represents the predicted joint coordinates after they are aligned to the ground
truth joint coordinates J;” by means of Procrustes analysis.

3.3.2 Ablation Studies

To verify the effectiveness of our new model, ablation experiments were conducted by
training the network model on the Human3.6M dataset based on ground-truth 2D poses
as inputs. Table 3-1 gives the evaluation results by means of Protocol#1. Our baseline
network, without MAI or HFF modules but with fully connect feature fusion module
of (Shan et al., 2021a), trained in one stage with gradient back-propagation removed,
has the prediction error of 32.3mm in MPJPE. After the introduction of the MAI module,
the prediction error drops by 1.2mm without increasing the number of floating-point

operations per second (FLOPs) and model parameters significantly. By only replacing
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fusion module of the baseline with the new HFF module, MPJPE drops by 1.4mm while
reducing substantially the number of FLOPs by 13.64M (49.20M—35.56M) and the
model parameters by 13.40M (54.98M—41.58M). This demonstrates the effectiveness
of our proposed HFF module for efficient feature fusion. With the simultaneous
introduction of the MAI and HFF modules, the Protocol#1 (MPJPE) result is reduced
by 2.3mm. The introduction of the CIE module, the performance is further reduced by
0.4mm, reaching 29.6mm in MPJPE, while the number of FLOPs and model parameters
are significantly lower than that of the baseline. It demonstrates that the combination of
the MAIL, HFF and CIE modules is very effective in reducing prediction errors and the

number of FLOPs and parameters.

Table 3-1 Ablation study results based on human3.6m dataset. GT-ground-truth

2D poses.
Method (GT) MPIJPE (mm) FLOPs (M) Parameters (M)
Baseline 323 49.20 54.98
+MAI 31.1 49.52 56.66
+HFF 30.9 35.56 41.58
+HFF+MALI 30.0 36.21 47.59
+HFF+MAI+CIE 29.6 36.87 48.25

3.3.3 Comparison with State-of-the-art Methods

Results on Human3.6M dataset. We compared our results with recent state-of-the-art
(SOTA) methods using the public dataset Human3.6M. First, we used
2D poses detected by means of CPN (Chen et al., 2018) as inputs and
trained under the receptive field of T =243 frames using one-stage
training strategy. In addition to the one-stage training strategy, we also
investigated a three-stage strategy to train the model. At stage 1, the

encoders, MAI and CIE modules were trained without the HFF module.
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At stage 2, the parameters of the MAI and CIE modules were loaded,
and the HFF module was then trained independently. At stage 3, the
whole network was fine-tuned, see Figure 3-5. As shown in Table 3-3,
our method obtained 44.1mm and 43.8mm in MPJPE under one-stage
and three-stage training strategies, respectively, surpassing the recent
methods (Tang et al., 2023a; Yu et al., 2023). For a fair comparison, we
also employed the refining module in (Cai et al., 2019b) to refine the
initial estimated 3D poses, following (Li et al., 2022b; Shan et al., 2022).
Our refined results (three-stage) slightly underperform than (Shan et al.,
2022) by 0.3mm, becoming the runner-up result in all methods. However,

it is noteworthy that our approach demonstrates significantly lower

FLOPs (as shown in

Table 3-2) in comparison to (Shan et al., 2022). This has demonstrated that our model
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is efficient and can yield robust predictions of 3D poses.

Table 3-5 compares the results obtained under Protocol#2 with those of existing SOTA
methods. Our method obtained 35.2mm and 34.8mm in P-MPJPE with one-stage and
three-stage training strategies, respectively, with the P-MPJPE of 34.8mm using three-
stage training strategy outperforming the refined results (Li ef al., 2022b). After using
the refining module in (Cai et al., 2019b), our P-MPJPE of 34.5mm under one-stage
training strategy achieves the runner-up result of all the methods.

Table 3-5 compares our results with those of SOTA models using ground-truth 2D poses
as inputs on Human3.6M dataset. Our method obtained a superior or comparable result
of 29.6mm in MPJPE when using the one-stage training strategy. We also trained our
model using the three-stage training strategy (Shan et al., 2021a) as illustrated in Figure
3-5, and also obtained 29.6mm under MPJPE. It is worth noting that our model achieves
the same result (29.6mm) using both training strategies. This indicates that our one-
stage network succeeds in online end-to-end training without any loss in performance,
while the RIE (Shan et al., 2021a) can only be trained offline stage-by-stage. After using
the refining module in (Cai ef al., 2019b), our results obtained from the one-stage and
three-stage training strategies show improvements of 1.3mm and 2.0mm, respectively,
compared to (Li et al., 2022b), which also utilizes the refining module (Cai et al.,

2019b).
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Table 3-2. Comparison of computational complexity and MPJPE with 2D ground truth
poses as inputs on Human3.6M. The lowest prediction error is in bold.
t indicates the transformer-based methods. * uses the refining module

propose in (Cai et al., 2019b).

Method (GT) Parameters | FLOPs | MPJPE (mm) |
Shan et al. (2021a) (stage 1) 23.39M 17M 33.0
Shan et al. (2021a) (stage 2) 41.78M 36M 30.9
Shan et al. (2021a) (stage 3) 41.78M 36M 30.3
Zheng et al. (2021a)f 9.60M 815M 31.3
Li et al. (2022¢)t 24.76M 4826M 30.9
Shan et al. (2022)t 6.70M 1737M 293
Li et al. (2022b)t* 4.34M 2193M 28.5
Tang et al. (2023a) 4.49M 1037M 29.2
Yu et al. (2023) 37.81M 43821M 28.5
Ours (one-stage) 48.25M 36M 29.6
Ours (one-stage)* 48.39M 152M 27.2
Ours (three-stage) (stage 1) 29.40M 18M 314
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Ours (three-stage) (stage 2) 34.39M 23M 29.7
Ours (three-stage) (stage 3) 34.39M 23M 29.6
Ours (three-stage) (stage 3)* 34.53M 138M 26.5
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Table 3-3  Results of MPJPE (mm) on Human3.6m Dataset using Protocol#1 with 2D poses detected by CPN (Chen et al., 2018) as inputs. The

lowest prediction error is in bold. t indicates the transformer-based methods. * uses the refining module propose in (Cai et al., 2019b).

MPJPE (CPN) Dir. Disc Eat Greet  Phone  Photo Pose Pur. Sit SitD.  Smoke  Wait WalkD.  Walk  WalkT. Avg
Wang et al. (2020b) 40.2 425 42.6 41.1 46.7 56.7 414 423 56.2 60.4 46.3 422 46.2 31.7 31.0 445
Liu et al. (2020d) 41.8 448 41.1 449 474 54.1 434 422 56.2 63.6 453 435 453 313 322 45.1
Zeng et al. (2020) 46.6 471 439 41.6 45.8 49.6 46.5 40.0 534 61.1 46.1 42.6 43.1 31.5 32.6 44.8
Shan et al. (2021a) 40.8 445 414 427 46.3 55.6 41.8 419 53.7 60.8 45.0 41.5 448 30.8 31.9 443
Zheng et al. (2021a)t 41.5 44.8 39.8 425 46.5 51.6 42.1 42.0 533 60.7 455 433 46.1 31.8 322 443
Chen et al. (2021c) 414 435 40.1 429 46.6 51.9 41.7 423 53.9 60.2 454 41.7 46.0 315 32.7 441
Li et al. (2022b)t* 40.3 433 40.2 423 45.6 52.3 41.8 40.5 55.9 60.6 442 43.0 442 30.0 30.2 43.7
Liet al (2022¢)t 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 535 60.3 43.7 41.1 438 29.8 30.6 43.0
Shan et al. (2022)t+ 384 42.1 39.8 40.2 452 48.9 40.4 38.3 53.8 57.3 439 41.6 422 29.3 29.3 42.1
Tang et al. (2023a) 413 447 422 429 479 552 433 40.9 58.0 66.4 46.2 442 452 30.7 315 454
Yu et al. (2023) 41.3 44.3 40.8 41.8 45.9 54.1 42.1 41.5 57.8 62.9 45.0 42.8 45.9 29.4 29.9 44.4
Ours (one-stage) 40.0 442 40.8 422 45.8 55.9 42.1 40.7 55.1 60.3 45.4 422 441 31.0 314 44.1
Ours (three-stage) 39.9 44.0 40.9 41.8 46.0 554 414 40.8 53.8 60.6 448 41.3 447 30.1 30.8 43.8
Ours (one-stage)* 38.6 435 39.7 40.7 44.3 53.6 41.1 39.7 525 57.6 439 41.2 423 29.8 30.1 42.6
Ours (three-stage)* 37.7 42.6 39.0 40.0 44.6 53.1 41.1 39.0 534 59.6 43.8 40.7 42.0 29.3 29.8 42.4

Table 3-4 Results of P-MPJPE (mm) on Human3.6m Dataset using Protocol#2 with 2D poses detected by CPN (Chen et al., 2018) as inputs.

The lowest prediction error is in bold. t indicates the transformer-based methods. * uses the refining module propose in (Cai et al.,

2019b).
P-MPJPE (CPN) Dir. Disc Eat Greet Phone  Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk  WalkT. Avg
Liu et al. (2020d) 323 352 333 358 359 41.5 33.2 32.7 44.6 50.9 37.0 324 37.0 252 27.2 35.6
Wang et al. (2020b) 329 352 35.6 344 36.4 42.7 31.2 325 45.6 50.2 373 32.8 36.3 26.0 23.9 355
Zheng et al. (2021a)t 34.1 36.1 344 37.2 36.4 422 344 33.6 45.0 52.5 374 33.8 37.8 25.6 273 36.5
Shan et al. (2021a) 32.5 36.2 332 353 35.6 42.1 32.6 31.9 42.6 47.9 36.6 32.1 348 24.2 25.8 35.0
Chen et al. (2021c¢) 32.6 35.1 32.8 354 36.3 40.4 324 32.3 427 49.0 36.8 324 36.0 24.9 26.5 35.0
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Li et al. (2022b)tx 327 355 325 354 359 416 330 319 451 501 363 335 35.1 239 250 | 352
Li et al. (2022¢)f 31,5 349 328 336 353 396 320 322 435 487 364 326 343 239 251 | 344
Tang et al. (2023a) 316 355 344 349 366 425 331 309 465 522 370 334 353 244 249 | 356
Yu et al. (2023) 324 353 326 342 350 421 321 319 455 495 361 324 356 235 247 | 348
Ours (one-stage) 319 360 333 345 360 425 327 315 444 492 373 325 35.1 245 254 | 352
Ours (three-stage) 319 357 329 349 356 423 326 315 429 483 366 321 350 239 254 | 348
Ours (one-stage) 320 355 323 339 351 418 326 310 427 480 367 320 343 242 253 | 345
Ours (three-stage)* 321 352 326 340 351 415 326 312 429 489 366 320 340 241 253 | 346

Table 3-5 Results on Human3.6M under Protocol#1 with MPJPE (mm). The ground truth of 2D poses is used as inputs. The lowest prediction

error is in bold. t indicates the transformer-based methods. * uses the refining module propose in (Cai et al., 2019b).

MPJPE (GT) Dir. Disc Eat Greet Phone  Photo Pose Pur. Sit SitD.  Smoke Wait WalkD. Walk  WalkT. Avg
Liu et al. (2020d) 345 37.1 33.6 342 329 37.1 39.6 35.8 40.7 414 33.0 33.8 33.0 26.6 26.9 347
Zeng et al. (2020) 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 325 31.0 29.9 22.5 24.5 32.0

Zheng et al. (2021a)t 30.0 33.6 29.9 31.0 30.2 333 34.8 314 37.8 38.6 31.7 31.5 29.0 233 23.1 31.3
Shan et al. (2021a) 29.5 30.8 28.8 29.1 30.7 352 31.7 27.8 345 36.0 30.3 29.4 28.9 24.1 24.7 30.1
Li et al. (2022¢)t 27.7 32.1 29.1 28.9 30.0 33.9 33.0 31.2 37.0 393 30.0 31.0 294 222 23.0 30.5
Shan et al. (2022)t 28.5 30.1 28.6 27.9 29.8 33.2 313 27.8 36.0 374 29.7 29.5 28.1 21.0 21.0 29.3
Li et al. (2022b)t* 27.1 29.4 26.5 27.1 28.6 33.0 30.7 26.8 38.2 347 29.1 29.8 26.8 19.1 19.8 28.5
Tang et al. (2023a) 29.3 31.0 253 27.4 313 35.0 30.5 271 339 38.1 29.2 28.1 28.6 20.9 22.1 29.2
Yu et al. (2023) 26.5 27.2 29.2 25.4 28.2 31.7 29.5 26.9 37.8 39.9 29.9 27.0 27.3 20.5 20.8 28.5
Ours (one-stage) 27.7 29.4 27.6 27.4 30.9 37.2 31.1 27.7 36.8 36.3 30.6 29.0 28.0 20.9 22.0 29.6
Ours (three-stage) 28.3 28.4 27.6 28.5 313 352 31.1 27.5 354 36.5 30.6 28.9 27.8 22.8 23.6 29.6
Ours (one-stage) 25.8 27.7 24.6 25.7 28.6 35.0 28.4 24.3 335 343 27.8 27.2 25.5 19.0 19.8 27.2
Ours (three-stage)* 25.0 25.8 25.3 25.3 28.6 33.6 28.3 23.9 32.3 31.7 27.3 25.5 24.2 20.0 20.5 26.5
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As shown in

Table 3-2, we compared the cost-effectiveness between our method and

other methods. Our MPJPE result (both one-stage and three-stage) is 0.7mm lower
than that of RIE (Shan et al., 2021a). Moreover, we only needed to train 80 epochs for
one stage, while the RIE (Shan et al., 2021a) needed three stages of training with a total
of 240 epochs. Our method saves a great deal of training time and enables end-to-end
training. Furthermore, for comparison purpose, we also trained our network with three-
stage training strategy (Shan et al., 2021a). At the first stage, the MPJPE result of our
method is 31.4mm, which is 1.6mm lower than that of RIE (Shan et a/., 2021a), while

the number of parameters and FLOPs in our model increases by 6.01M and 0.65M,
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respectively, compared to those of RIE (Shan et al., 2021a) in stage 1. At the second
stage, our model obtained 29.7mm in MPJPE, which is 1.2mm and 0.6mm lower than
those of RIE (Shan et al., 2021a) in stages 2 and 3, respectively. At the same time, the
number of parameters and FLOPs in our method in stage 2 is 7.39M and 12.98M,
respectively, lower than the corresponding ones of RIE (Shan ez al., 2021a). At stage 3,
the MPJPE result in our model is 0.7mm lower than that of RIE (Shan et al., 2021a),
and the number of parameters and FLOPs in our model are also much lower than those
of RIE (Shan et al., 2021a). Furthermore, our method exhibits a significantly lower
number of FLOPs (36M) in comparison to other SOTA methods (Li et al., 2022¢; Shan
et al., 2022; Tang et al., 2023a; Zheng et al., 2021a) (i.e., transformer-based), while
simultaneously maintaining a competitive estimation accuracy (29.6mm). After using
the refining module (Cai et al., 2019b), our method achieves the best results (27.2mm
and 26.5mm) in both the one-stage and three-stage training settings, compared with
other SOTA methods including the refined result of (Li et al., 2022b). More importantly,
our method demonstrates substantially lower FLOPs compared to other methods, even
only 0.03% of that of (Yu et al., 2023). These results demonstrates the superiority of
our model in terms of computational complexity, as well as its lightweight design with

promising estimation performance.

Table 3-6 Results based on HumanEva-I dataset using Protocol#l of MPJPE (mm).
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Protocol #1 Walk Jog Avg
S1 S2 S3 S1 S2 S3

Shan et al. (2021a) 179 119 380276 181 192 | 22.1
Zheng et al. (2021a) 16.3 11.0 47.1 [ 25.0 152 151 | 21.6
Zhang et al. (2022b) 203 224 348|273 32.1 343 [ 285

Ours (T=27) (one-stage) 190 13.1 384 | 28.7 182 204 | 229
Ours (T=27) (three-stage) 172 119 368 [ 268 17.0 18.5 | 21.3

In Figure 3-6, we compared the MPJPE performance of our method (one-stage) with
that of RIE (Shan et al., 2021a) (stage 3) based on Human3.6m, using ground-truth 2D
poses as inputs. Both methods used 80 epochs to train, but our method requires only
one stage of training and achieved the best results (29.6mm) at the 37th epoch. In
contrast to this, RIE (Shan et al., 2021a) required three stages of training with 80 epochs
each, and the best results (30.3mm) were achieved at the 63rd epoch of stage 3.
Compared to the RIE (Shan ef al., 2021a), our method converged quicker, achieved the
best result within one stage of training. In other words, our method required fewer than
80 epochs to train because the two losses are optimized simultaneously. The second loss
(fused 3D pose) does not need to wait for the convergence of the first one (non-fused
3D pose). We used one stage and fewer epochs to train and end up with a better result

than did the RIE (Shan et al., 2021a).
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Figure 3-6 ~ Comparison of MPJPE performance of our method and that of RIE

(Shan et al., 2021a).

Results on HumanEva-I dataset. We evaluated our model in terms of Protocol#1 on

the HumanEva-I dataset in
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Table 3-7. For comparative purpose, the input 2D poses were detected using Mask R-
CNN (He et al., 2017), being in line with other SOTA results. In addition, we trained
our model with a receptive field of T=27 frames. As shown, our method achieves
21.3mm in MPJPE under three-stage training, which is the best result compared to other
methods. These results highlight the superior performance of our method on small

datasets in comparison to transformer-based models.
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Table 3-7 Analysis of hyperparameters setting for the MAI module based on

Human3.6M dataset using Protocol#1.

Input Channel Output Channel ~ with HFF? ~ MPJPE (mm) ! FLOPs | Parameters |

128 32 No 31.1 49.52M 56.66M
256 64 No 31.1 49.85M 61.00M
128 32 Yes 30.3 35.88M 43.25M
256 64 Yes 30.0 36.21M 47.59M

3.3.4 Discussion

We investigated in this section the different settings of the MAI, HFF and CIE modules,
analyzing the impact of different hyperparameters and design options in each module.
Different design options for the MAIL MAI has been introduced to encode joint
motion amplitude information, in addition to positional and temporal information, to
enable the network to better predict 3D poses. As a kind of global information, motion
amplitude was encoded by TCN and introduced after the feature fusion, as illustrated
in Figure 3-2. This section analyses the impacts of different input and output channel
sizes for MAI and different ways of motion amplitude encoding. Table 3-8 compares
the effects for different input and output channels, in which the results were obtained
by one-stage training using ground-truth 2D poses as inputs. Table 3-8 shows that the
performance of MPJPE cannot be improved when the input and output channels of MAI
increase. When the HFF module is applied, however, MAI with larger input and output

channels (256 and 64) would result in better MPJPE (30.0mm).

Table 3-8 Ablation study on whether to encode the MAI module separately on

Human3.6M under Protocol#l.
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Method (GT) MPJPE (mm) FLOPs (M) Parameters (M)

Baseline 323 49.20 54.98
+MAI (together) 323 49.20 55.00
+MAI (together)+HFF 30.5 35.56 41.59
+MAL (separately) 31.1 49.85 61.00
+MALI (separately)+HFF 30.0 36.21 47.59

The motion amplitude information F};, in equation (3-7) is separately encoded, instead
of like input pose, positional and temporal information being encoded together as
enhanced representation Fi (with reference to equation (3-4)). It is interesting to
investigate how motion amplitude information should be encoded, whether together
with other types of information or separately. The results of experimental analysis is
shown in Table 3-9. When the four types of information (including input pose, position,
temporal and motion amplitude information) were encoded together, the performance
(MPJPE) did not improve. When we encoded the motion amplitude information
separately (256 for the input channel and 64 for the output channel) as shown in Figure
3-5, the performance of MPJPE improved by 1.2mm over the baseline. By applying
HFF module further, a MPJPE result of 30.0mm was obtained, representing an
improvement of 0.5mm comparing to the method of encoding all three information
together and applying the HFF module afterwards. There is, however, not much of an
increase in FLOPs and number of parameters when encoding motion amplitude
information separately compared to encoding them together. This has validated that the

motion amplitude information should be encoded separately in general.

Table 3-9 Ablation study involving different settings of feature fusion module.
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Feature Fusion MPJPE (mm) FLOPs (M) Parameters (M)

Module design 1 323 49.20 54.98
Module design 2 31.1 32.15 39.21
Module design 3 31.1 45.79 51.83
Module design 4 30.9 35.56 41.58

Table 3-10  Ablation study on the hyperparameters of CIE module on Human3.6M

under Protocol#l.
Embedding Channel MPJPE (mm) FLOPs (M) Parameters (M)
32 29.8 36.54 47.92
64 29.6 36.87 48.25
128 29.7 37.53 48.91

Different design options for the HFF module. We conducted ablation experiments
involving the HFF module based on the Human3.6M dataset using Protocol#1. We
compared four different design settings for feature fusion module, as illustrated in
Figure 3-7. Design 1 used the FCN feature fusion block for all five body parts to form
the feature fusion module, while module design 2 adopted the Conv feature fusion block
for all five body parts. Module design 3 used the Conv feature fusion block for the torso
and the FCN feature fusion block for the four limb parts, while module design 4 utilized
the FCN feature fusion block for the torso and the Conv feature fusion block for the
four limb parts. As shown in Table 3-10, module design 1 produced a MPJPE result of
32.3mm. By replacing all the FCN feature fusion blocks with the Conv feature fusion
blocks, the MPJPE result of module design 2 was improved by 1.2mm compared to
module design 1, and the number of FLOPs and parameters were reduced substantially
to 32.15M and 39.21M, respectively. This demonstrated the effectiveness of the Conv
feature fusion block. In contrast to the design 2, module design 3 replaces the Conv

feature fusion blocks with the FCN feature fusion modules for the limbs and achieved
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the same MPJPE result of 31.1mm as the design 2. Nevertheless, the FLOPs and
parameters of module design 3 were higher than those of module design 2. Module
design 4 achieved a MPJPE of 30.9mm with the reduced number of FLOPs and
parameters when comparing to design 3. This is because the torso has more joints and
requires the FCN to learn with more parameters, while the limbs can be effectively
learned by the Conv feature fusion block and prevent overfitting. Therefore, module

design 4 is selected as our HFF module setting.
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Figure 3-7  Comparison of different feature fusion modules.

Different design options for the CIE module. We analyzed the effect of embedding
channel dimensions of the CIE module on the performance in terms of MPJPE (mm) in
Error! Reference source not found.. Ablation experiments were again conducted for o
ne-stage network based on Human3.6M dataset using Protocol#1. It became apparent

from Error! Reference source not found. that simply increasing the channel d
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imensions of the CIE module in an uninformed manner would not improve the
performance. The CIE module, with 64 channels, gave the best MPJPE result (29.6
mm), indicating that this setting performed slightly better in terms of accuracy
compared to the other two settings. The number of FLOPs and parameters increased
with the number of embedding channels. This is because larger models require more
computational resources and have higher complexity. In conclusion, the CIE module,
with 64 embedding channels, seemed to be the best trade-off in terms of accuracy and
computational complexity.

3.3.5 Qualitative Results

Figure 3-8 compares the qualitative results of our method obtained by one-stage
training with those of RIE (Shan et al., 2021a) obtained by three-stage training.
Compared to RIE (Shan et al., 2021a), our method produced more accurate predictions
in 3D poses when the range of motion of the limbs is large or in actions that are heavily

occluded.
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Figure 3-8 Qualitative results output by our method and those of RIE (Shan et al.,
2021a).

3.4 Chapter Summary
In this chapter, a new network with three new encoding modules, including MAI, HFF
and CIE, has been developed for grouped 3D pose estimation. It can be concluded that

the motion amplitude encoding (MAI) and camera intrinsic embedding (CIE) modules
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could provide global information to the network and improve the accuracy of 3D pose
estimation. Furthermore, the optimized feature fusion (HFF) module could significantly
reduce model complexity while ensuring the accuracy of the model. Compared to a
previous approach (Shan et al., 2021a), our method has used fewer parameters to fuse
different groups of human pose features and also improved the performance. Moreover,
a one-stage training scheme based on gradient detaching has been proposed to train, in
an end-to-end manner, the new CNN-based network for 3D human pose estimation with
grouped feature fusion, and this could greatly reduce the number of training epochs,
saving training time with only a slight drop in accuracy in comparison to the multi-
stage offline training strategy. Recently, the transformer exhibited stronger modeling
capabilities than CNN, but it requires more computational resources. Thus, this current
approach is designed to accommodate situations with limited computational resources.
In the next chapter, a transformer-based method will be introduced to yield more

accurate 3D pose in situations where there are ample computational resources.
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CHAPTER 4. KINEMATICS AND TRAJECTORY
PRIOR KNOWLEDGE-ENHANCED TRANSFORMER

4.1 Introduction

With reference to the overall research framework of the current study defined in Chapter
1, a total of three novel network models are developed. Chapter 3 explained the first
model, a CNN-based network, while the rest two are transformer-based networks. This
chapter explains the detail of the second model developed in this study, a transformer-
based network for 3D pose estimation with video sequence inputs.

Transformer, a deep learning architecture, has revolutionized first in natural language
processing (NLP) and later in other areas such as computer vision since its introduction
in 2017 (Vaswani et al., 2017). The name ’transformer’ comes from the fact that these
architectures use a self-attention mechanism to transform layers of inputs into layers of
outputs in a way that allows the model to focus on (attend to) certain inputs. In terms
of 3D pose estimation, the transformer first processes an input video into a sequence of
tokens, the basic units of processing namely 2D poses, and then models the spatial-
temporal relationship between tokens using multi-head self-attention (MHSA)
mechanism.

The existing works of transformer-based methods for 3D human pose estimation (Li et
al.,2022b; Li et al., 2022c; Shan et al., 2022; Tang et al., 2023b; Zhang et al., 2022b;
Zhao et al., 2023; Zheng et al., 2021a) mainly focus on developing novel transformer

encoders. They model either the spatial correlation between joints within each frame

85



and the pose-to-pose or joint-to-joint temporal correlation across frames. Regardless of
spatial or temporal MHSA calculation, the present transformer-based methods all use
linear embedding where 2D pose sequence are tokenized into high dimensional features
and treated uniformly to compute the spatial correlation between joints and the temporal
correlation across frames in the spatial and temporal MHSA, respectively. This may
lead to the problem of ‘attention collapse’, a phenomenon denoting a circumstance
wherein the self-attention becomes too focused on a limited subset of input tokens while
disregarding other segments of the sequence. In contrast to previous works, with the
known anatomical structure of the human body as well as joint motion trajectory across
frames as a priori knowledge, we propose a graph-based method to formulate such prior
knowledge-attention for better learning the spatial and temporal correlations. Our
graph-based prior attention mechanism is different from other existing graph-
transformer methods (Gong et al., 2023; Li et al., 2023; Zhao et al., 2022; Zhu et al.,
2021); without modifying the transformer structure or introducing complex network,
instead, we design plug-and-play modules to be placed in front of MHSA modules of a
vanilla transformer. Our method is simple yet effective, highly flexible and adaptable,

allowing it to be integrated into different transformer-based methods.
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(learnable).

To be specific, we introduce two novel prior attention modules, namely Kinematics
Prior Attention (KPA) and Trajectory Prior Attention (TPA), and the key concepts are
illustrated in Figure 4-1. KPA first constructs a spatial local topology based on the
anatomy of the human body, as shown at the top of Figure 4-1. The way these joints are
physically connected to each other is fixed and is represented by solid lines. To
introduce the kinematic relations among non-connected joints, we use a fully connected
spatial topology to calculate the joint-to-joint attention weights, called simulated spatial
global topology. In this topology, the strength of the connectivity relationship between

each joint (including itself) is learnable, and thus we denote it with a dotted line in

87



Figure 4-1. We combine the spatial local topology and the simulated spatial global
topology to obtain a kinematics topology, where each joint has a learnable kinematic
relationship with each other. This kinematic topological information aims to provide a
priori knowledge to the spatial MHSA, enabling it to assign weights to joints based on
the kinematic relationships in different actions. Similarly, as shown in the bottom of
Figure 4-1, TPA connects the same joint across consecutive frames to build the temporal
local topology. Next, we construct a temporal global topology by exploiting learnable
vectors (dotted line) to connect the joints among all neighbouring and non-
neighbouring frames, which is equivalent to the computation of attention weights
among all frames by self-attention, called simulated temporal global topology. Then,
we combine the two topologies to obtain a new topology called joint motion trajectory
topology, which allows the network to learn both the temporal sequentiality and
periodicity (joints in non-neighbouring frames have similar motions to each other) for
the joint motion. The temporal tokens embedded with the trajectory information will be
more effectively activated in the temporal MHSA, which enhances the temporal
modeling ability for MHSA. The KPA and TPA modules are combined with vanilla
MHSA and MLP to form the Kinematics and Trajectory Prior Knowledge-Enhanced
Transformer (KTPFormer) for 3D pose estimation, as shown in Figure 4-2. The main
contributions of this section are summarized as follows:

e  We propose two novel prior attention modules, KPA and TPA, which can be

combined with MHSA and MLP in a simple yet effective way, forming the
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KTPFormer for 3D pose estimation.

e Our KTPFormer outperforms the state-of-the-art methods on Human3.6M, MPI-
INF-3DHP and HumanEva benchmarks, respectively.

o KPA and TPA are designed as lightweight plug-and-play modules, which can be
integrated into various transformer-based methods (including diffusion-based) for
3D pose estimation. Extensive experiments show that our method can significantly

improve the performance without largely increasing computational resources.
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Figure 4-2  Overview of Kinematics and Trajectory Prior Knowledge-Enhanced
Transformer (KTPFormer). The input 2D pose sequence Pry € RT*N*2
with T frames and N joints is first fed into the Kinematics-Enhanced

Transformer.

4.2 Method
In this thesis, we propose a novel Kinematics and Trajectory Prior Knowledge-
Enhanced Transformer (KTPFormer), which combines kinematics and trajectory prior

attentions and MHSA in a direct but effective way. Our KTPFormer can model both
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spatial and temporal information simultaneously. Moreover, our method preserves the
inherent structure of the transformer and is more flexible.

Our KTPFormer utilizes the seq2seq pipeline for 3D human pose estimation, which can
simultaneously predict 3D pose sequence corresponding to the input 2D keypoint

RTXN%2 s first

sequence. As shown in Figure 4-2, an input 2D pose sequence Pry €
fed into the Kinematics-Enhanced Transformer, with T denotes the number of frames,
N denotes the number of joints, and 2 is the channel size. KPA injects the kinematic
topological information into the 2D pose Py € RV*? in each frame, aiming to obtain
high-dimensional spatial tokens Hyy € RT*N*dm_ Next, the spatial MHSA transforms
Hry into matrics Qg, K, Vs for learning the global correlation between joints. The
Trajectory-Enhanced Transformer takes a sequence of reshaped tokens Py €
RN*T*dm a5 inputs. We stack two TPA blocks with the residual connection to generate
the temporal tokens Hyy € RVNXT*dm with incorporated prior information on joint
motion trajectories. Next, the temporal MHSA transforms Hyr into Qr, Ky, Vi for
modeling global coherence among frames. The output features from Temporal MHSA
are reshaped and fed into stacked spatio-temporal transformers for encoding. Finally,

the regression head predicts the coordinates of the 3D pose sequence based on the

learned features.

4.2.1 Kinematics-Enhanced Transformer

Kinematics-Enhanced Transformer receives the input 2D keypoint sequence and
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transforms them into high-dimensional spatial tokens. The 2D keypoint sequence first
goes through the KPA for embedding the prior knowledge of kinematics, which is then
fed into the spatial MHSA for global correlation learning between joints.

To be specific, given a 2D pose sequence as Pry € RT*N*2 we regard each joint p; €
R? of a 2D pose Py € RN*2 as a keypoint patch. Next, we define a learnable
transformation matrix W € R?*%m to map all keypoint patches Pry into high-
dimensional tokens Pry € RT*N*4m In order to inject the prior information of
kinematics into Pry, KPA first constructs a symmetric affinity matrix Ay € RV*N
based on the skeletal structure of the human body, namely spatial local topology, as
shown in Figure 4-1. If two joints are physically connected in the human body structure,

RNXN is non-zero and 0

the corresponding element in the affinity matrix Ay €
otherwise. The affinity matrix Ay can allow each 2D keypoint to learn anatomical
structure information of the human body. Besides, KPA also considers the implicit
kinematic relationships among adjacent and non-adjacent keypoints. Similar to the self-
attention in MHSA, we establish a fully connected spatial topology, called simulated
spatial global topology, as shown in Figure 4-1. In this topology, all the joints are
interconnected by dotted lines, indicating that the connectivity relationship between
each joint is learnable. The simulated spatial global topology is denoted as an affinity
matrix Ay € R¥*N, where each element is learnable. Lastly, we combine the spatial

local topology Ay with the simulated spatial global topology Ay to derive a kinematics

topology Ay, which is shown as:
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_ (AN+AN)+(AN+AN)'

Ay >

(4-1
where ' denotes the matrix transpose, Ay € R¥*VN is a learnable affinity matrix. The
reason why we construct the Ax with the above formula is that the original spatial local
topology matrix Ay is also symmetric. In order to ensure that different keypoints can
learn different kinematic knowledge, we introduce a learnable weight matrix My €
RN*dm and multiply it with tokens Pry € RT*N*dm by element-wise multiplication,
which is an economic and effective way. Thus, we can obtain the tokens Hry €
RT*N*dm including the prior knowledge of kinematics. The formula is represented as:

Hry = (MyOPry)Ag (4-2)
Where © represents element-wise multiplication. Moreover, we add the learnable
spatial positional embedding to Hyy. After that, Hyy € RT*NV*4m is transformed into
queries Qg € RT*N*dm  keys Kg € RT*N*m and values Vg € RT*NXdm by a linear
transformation matrix. Then, we design a spatial MHSA (MHSAg) to model global
spatial correlation between keypoints within an identical frame. Each attention head

(i =1, ..., h) can be represented as:

head; = Softmax (%) 14 (4-13)

where ' denotes the matrix transpose. All the attention heads are concatenated together
to form the MHSAg:
MHSAs(Qs, Ks, Vs) == Cat(headl, ey headh)WS (4 - 4’)

Where Wy € R4m*dm is the linear transformation matrix. Concurrently, Hyy as a
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residual adds the output of MHSA to form the new output Hg € RT*¥NXdm_ which is
then fed into the layer normalization (LN) and MLP followed by a residual connection
and LN. The formula can be represented as:
Hg = MHSA5(Qs, K5, Vs) + Hry (4-5)
Pyr = MLP(LN(Hs)) + Hs (4-6)
Where Pyr € RV*T>dm is the output of the Kinematics-Enhanced Transformer after

being reshaped.

4.2.2 Trajectory-Enhanced Transformer

Trajectory-Enhanced Transformer aims to integrate the prior trajectory information of
joint motion across frames into a sequence of tokens Py; € RV*T>%m in which each
joint is regarded as an individual token in the time dimension. TPA first connects the
identical keypoints (including itself) across neighboring frames to construct the
temporal local topology, as shown in Figure 4-1, which is denoted as the symmetric
affinity matrix A € RT*T . In order to enhance the global attention of temporal
coherence in the MHSA, we simulate a temporal global topology that considers the
implicit temporal correlation among neighboring and non-neighboring frames. These
keypoints belonging to the identical trajectory among neighboring and non-neighboring
frames are connected by the learnable vector (dotted line) to form the simulated

temporal global topology, as shown in Figure 4-1. This topology can be expressed in
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the form of a learnable matrix A; € RTXT. Thus, the equation of joint motion trajectory

topology can be represented as:

(Ar+Ar)+ (4r + Ar)
o=
2

(4-7)
where " denotes the matrix transpose, Az € RT*T is a learnable affinity matrix. Then,
we transform Pyr to embeddings Pyr € RVXT*dm by the linear transformation. Also,
we utilize a learnable weight matrix M; € RT*%m to allow different keypoints for
different prior knowledge learning. The formula of one TPA is represented as:

TPA(Pyr) = (My © Pyr)Ag (4-8)
We stack two TPA blocks with a residual connection to obtain the temporal tokens
Hyr € RVNXTXdm a5 follows:

Hyr = TPA(TPA(Pyr)) + Pyr (4-9)
The learnable temporal positional embedding is then added to Hyr. After that, the
Hyr € RNXT*dm js converted into queries Qr € RVNXT*4m  keys K, € RVXT*dm and
values V; € RVNXT*4m by the linear transformation. We use a temporal MHSA (MHSA7)

to model the global temporal correlation between joints across all frames as follows:

Qi(kL)'\
head; = Softmax | ———=— |V} 4—-10
i f ( i T ( )
MHSA+(Qr, K7, Vr) = cat(head,, ..., head, )Wy (4—11)

where Wy € R%m*@m s the linear transformation matrix. Similar to MHSAg, we can
obtain the final output Hgr:

Hr = MHSA+(Qr, Ky, V) + Hyr (4—-12)

Hgr = MLP(LN(Hr)) + Hy (4-13)
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where Hgr € RNXT*dm js the output of Trajectory-Enhanced Transformer.

4.2.3 Stacked Spatio-Temporal Encoders

After being reshaped, Hgr is fed into the stacked spatio-temporal encoders which
consist of alternating spatial and temporal transformers. The number of stacks is L. The
sequential features are reshaped according to the type of the MHSA before fed into the
encoder (spatial or temporal).

4.2.4 Regression Head

We utilize the linear layer as a regression head to predict the 3D pose sequence P;j, €
RT*N*3 The overall loss function for our network is given as:

L=Ly+ArLr + Ay Ly (4—-14)
where Ly, denotes the weighted mean per-joint position error (WMPJPE) loss (Zhang
et al., 2022b), Ly is the temporal consistency loss (Hossain & Little, 2018a), and Ly,
indicates the mean per joint velocity error (MPJVE) loss (Pavllo et al., 2019b). Here

Ar and A, are hyper-parameters.

4.3 Experiments

4.3.1 Datasets and Protocols

Datasets. We evaluated our model on three public datasets, namely Human3.6M
(Ionescu et al., 2013), MPI-INF-3DHP (Mehta ef al., 2017) and HumanEva (Sigal et

al.,2010). Human3.6M is an indoor scenes dataset with 3.6 million video frames. It has
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11 professional actors, performing 15 actions under 4 synchronized camera views.
Following previous work (Tang et al., 2023b; Zhang et al., 2022b), we used subjects 1,
5, 6, 7 and 8 for training, and subjects 9 and 11 for testing. MPI-INF-3DHP is also a
public large-scale dataset. Following the setting of (Tang ef al., 2023b; Zhang et al.,
2022b), we use the area under the curve (AUC), percentage of correct keypoints (PCK)
and MPJPE as evaluation metrics. HumanEva is a smaller dataset in the indoor
environment. To have a fair comparison with (Zhang et al., 2022b; Zheng et al., 2021a),
we valuated our method for actions (Walk and Jog) of subjects S1, S2, S3.

Protocol. Protocol#1 is denoted as the mean per-joint position error (MPJPE), which
is the average Euclidean distance in millimetres (mm) between the predicted and the
ground-truth 3D joint coordinates. Protocol#2 refers to the reconstruction error after
the predicted 3D pose is aligned to the ground-truth 3D pose using procrustes analysis

(Gower, 1975), denoted as P-MPJPE (mm).

4.3.2 Implementation Details

We implemented our method in the Pytorch framework on one GeForce RTX 3090
GPU. The input 2D keypoints were detected by 2D pose detector (Chen et al., 2018) or
2D ground truth. The W in WMPJPE follows the setting (1.0, 1.5, 2.5, and 4.0) of
MixSTE (Zhang et al., 2022b). We set the number of stacked spatio-temporal encoders
L to 7. Thus, the encoders contain 14 spatial and temporal transformer layers with

number of heads h = 8, feature size C = 512. During the training stage, we use the
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Adam (Kingma & Ba, 2014) optimizer to train our model. The batch size, dropout rate,
and activation function are set to 7, 0.1, and GELU. The learning rate is initialized to
0.00007 and decayed by 0.99 per epoch. Recently, diffusion models have been
introduced in 3D pose estimation (Gong et al., 2023; Shan et al., 2023) and have
achieved significant improvements in performance, as the diffusion process can be
viewed as an augmentation method for pose data. To demonstrate the adaptability of
our method, we introduced a diffusion process to our network, following the setting of
D3DP (Shan et al., 2023), which also uses the transformer-based network as the
backbone. We used our KTPFormer as the denoiser in the D3DP (Shan ef al., 2023).
For the design of the remaining diffusion process, our experimental parameters were

set to be the same as D3DP (Shan et al., 2023).

4.3.3 Comparison with State-of-the-art Methods

Results based on Human3.6M. We compared our results with those of recent state-of-
the-art methods based on the dataset Human3.6M. As shown in Table 4-1, our method
(diffusion-based) achieves the state-of-the-art (SOTA) result 33.0mm in MPJPE and
26.2mm in P-MPJPE using the 2D poses detected by CPN (Chen et al., 2018) as inputs.
Our method (diffusion-based) outperforms D3DP (Shan ef al., 2023) by 2.4mm under
MPJPE and 2.5mm under P-MPJPE with the same settings (the number of frames,
hypotheses, and iterations) as D3DP (Shan ef al., 2023). This demonstrates that our

network can serve as an excellent backbone for diffusion-based methods, effectively
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improving the performance for 3D pose estimation. Besides, we obtain the best results
40.1mm under T =243 setting and 41.8mm under T =81 setting in MPJPE among all

methods that are not diffusion-based.
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Table 4-1 Quantitative comparison results with the state-of-the-art methods on Human3.6M. The 2D poses obtained by CPN (Chen et al.,
2018) are used as inputs. Top table: evaluation results of MPJPE (mm), Bottom table: evaluation results of P-MPJPE (mm),; T is
the number of input frames. (1) denotes using temporal information, and (*) indicates the diffusion-based methods. Red: Best results.

Blue: Runner-up results.

MPJPE (CPN) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD.  Smoke  Wait  WalkD.  Walk  WalkT. Avg

Wang et al. (2020b) (T=96)t 40.2 425 42.6 41.1 46.7 56.7 41.4 423 56.2 60.4 46.3 422 46.2 31.7 31.0 445
Zheng et al. (2021a) (T=81)t 41.5 448 39.8 425 46.5 51.6 421 42.0 533 60.7 45.5 433 46.1 31.8 322 443

Li et al. (2022b) (T=351)t 403 433 40.2 423 45.6 523 41.8 40.5 55.9 60.6 442 43.0 442 30.0 30.2 43.7
Zhao et al. (2022) 452 50.8 48.0 50.0 54.9 65.0 48.2 471 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8
Li et al. (2022¢) (T=351)t 39.2 43.1 40.1 40.9 44.9 51.2 40.6 413 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0
Shan et al. (2022) (T=243)t 389 42.7 40.4 41.1 45.6 49.7 40.9 39.9 55.5 594 449 422 42.7 294 294 42.8

Zhang et al. (2022b) (T=81)t 39.8 43.0 38.6 40.1 434 50.6 40.6 414 522 56.7 43.8 40.8 439 294 30.3 42.4
Zhang et al. (2022b) (T=243)t | 37.6 40.9 373 39.7 423 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9
Zhang et al. (2022a) (T=300)t 379 419 36.8 395 40.8 49.2 40.1 40.7 479 533 40.2 41.1 40.3 30.8 28.6 40.6

Yu et al. (2023) (T=243)t 413 443 40.8 41.8 45.9 54.1 42.1 415 57.8 62.9 45.0 42.8 459 294 29.9 44.4
Li et al. (2023) 479 50.0 471 51.3 51.2 59.5 48.7 46.9 56.0 61.9 51.1 48.9 543 40.0 429 50.5
Tang et al. (2023b) (T=81)t 40.6 43.0 38.3 40.2 435 52.6 40.3 40.1 51.8 57.7 42.8 39.8 423 28.0 29.5 42.0

Tang et al. (2023b) (T=243)* 38.4 41.2 36.8 38.0 42.7 50.5 38.7 38.2 52.5 56.8 41.8 384 40.2 26.2 27.7 40.5
Gong et al. (2023) (T=243)1* 332 36.6 33.0 35.6 37.6 45.1 35.7 355 46.4 49.9 373 35.6 36.5 244 24.1 36.9
Shan et al. (2023) (T=243)t* 33.0 34.8 31.7 33.1 37.5 43.7 34.8 33.6 45.7 47.8 37.0 35.0 35.0 24.3 24.1 354

Ours (T=81)t 39.1 41.9 373 40.1 44.0 51.3 39.8 41.0 51.4 56.0 43.0 41.0 42.6 28.8 29.5 41.8
Ours (T=243)t 373 392 359 37.6 42.5 48.2 38.6 39.0 51.4 55.9 41.6 39.0 40.0 27.0 274 40.1
Ours (T=243)t* 30.1 32.1 29.1 30.6 35.4 39.3 32.8 30.9 43.1 45.5 34.7 33.2 32.7 22.1 23.0 33.0

P-MPJPE (CPN) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD.  Smoke  Wait  WalkD.  Walk  WalkT. Avg

Wang et al. (2020b) (T=96)t 31.8 343 354 335 354 41.7 31.1 31.6 444 49.0 36.4 322 35.0 24.9 23.0 345
Zheng et al. (2021a) (T=81)t 34.1 36.1 344 372 36.4 422 344 33.6 45.0 52.5 374 33.8 37.8 25.6 273 36.5

Li et al. (2022b) (T=351)t 32.7 355 325 354 35.9 41.6 33.0 31.9 45.1 50.1 36.3 335 35.1 23.9 25.0 352
Shan et al. (2022) (T=243)t 313 35.2 329 33.9 354 393 325 31.5 44.6 48.2 36.3 329 344 23.8 23.9 344
Zhang et al. (2022b) (T=81)t 32.0 342 31.7 33.7 344 39.2 32.0 31.8 429 46.9 355 32.0 344 23.6 252 339
Zhang et al. (2022b) (T=243)t 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 425 44.5 34.0 30.8 32.7 22.1 22.9 32.6

Zhang et al. (2022a) (T=300)t 30.3 34.6 29.6 31.7 31.6 38.9 31.8 319 39.2 42.8 32.1 32.6 31.4 25.1 23.8 325
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Yu et al. (2023) (T=243)t 324 353 32.6 342 35.0 42.1 32.1 31.9 455 49.5 36.1 324 35.6 235 24.7 34.8
Tang et al. (2023b) (T=81)t 304 33.8 31.1 31.7 335 39.5 30.8 30.0 41.8 45.8 343 30.1 32.8 21.9 234 32.7
Tang et al. (2023b) (T=243)* 29.3 33.0 30.7 30.6 32.7 38.2 29.7 28.8 422 45.0 333 294 31.5 20.9 223 31.8
Shan et al. (2023) (T=243)t* 27.5 29.4 26.6 27.7 29.2 343 27.5 26.2 37.3 39.0 30.3 27.7 28.2 19.6 20.3 28.7
Ours (T=81)t 30.6 334 30.1 31.9 33.7 38.2 30.6 30.7 40.9 448 344 30.5 32.7 223 24.0 32.6
Ours (T=243)t 30.1 323 29.6 30.8 323 373 30.0 30.2 41.0 453 33.6 29.9 314 21.5 22.6 31.9
Ours (T=243)t* 24.1 26.7 24.2 24.9 273 30.6 25.2 23.4 34.1 35.9 28.1 25.3 25.9 17.8 18.8 26.2

Table 4-2 Quantitative comparison results of MPJPE (mm) with the state-of-the-art methods on Human3.6M using ground-truth (GT) 2D
poses as inputs. T is the number of input frames. () denotes using temporal information, and (*) indicates the diffusion-based

methods. Red: Best results. Blue: Runner-up results.

MPJPE (GT) Dir. Disc Eat Greet  Phone  Photo Pose Pur. Sit SitD.  Smoke  Wait WalkD.  Walk  WalkT. Avg
Wang et al. (2020b) (T=96)t 23.0 25.7 22.8 22.6 24.1 30.6 24.9 24.5 31.1 35.0 25.6 243 25.1 19.8 18.4 25.6
Zhu et al. (2021) 37.2 422 32.6 38.6 38.0 44.0 40.7 352 41.0 455 38.2 395 38.2 29.8 33.0 38.2
Zheng et al. (2021a) (T=81)t 30.0 33.6 29.9 31.0 30.2 333 34.8 314 37.8 38.6 31.7 31.5 29.0 233 23.1 313
Li et al. (2022b) (T=351)t 27.1 294 26.5 271 28.6 33.0 30.7 26.8 38.2 347 29.1 29.8 26.8 19.1 19.8 28.5
Zhao et al. (2022) 32.0 38.0 304 344 34.7 433 352 314 38.0 46.2 342 35.7 36.1 27.4 30.6 352
Li et al. (2022¢) (T=351)t 27.7 32.1 29.1 28.9 30.0 33.9 33.0 31.2 37.0 393 30.0 31.0 29.4 222 23.0 30.5
Shan et al. (2022) (T=243)t 28.5 30.1 28.6 27.9 29.8 332 313 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 293

Zhang et al. (2022a) (T=300)t 22.1 23.1 20.1 22.7 213 24.1 23.6 21.6 26.3 24.8 21.7 214 21.8 16.7 18.7 22.0
Zhang et al. (2022b) (T=81)t 25.6 27.8 24.5 25.7 249 29.9 28.6 274 29.9 29.0 26.1 25.0 25.2 18.7 19.9 25.9
Zhang et al. (2022b) (T=243)t | 21.6 22.0 204 21.0 20.8 243 24.7 21.9 26.9 249 21.2 21.5 20.8 14.7 15.7 21.6

Liet al. (2023) 329 383 28.3 33.8 34.9 38.7 372 30.7 345 39.7 33.9 34.7 343 26.1 28.9 33.8
Tang et al. (2023b) (T=81)t 26.2 26.5 234 24.6 25.0 28.6 28.3 24.6 30.9 33.7 25.7 253 24.6 18.6 19.7 25.7
Tang et al. (2023b) (T=243)* 214 22.6 21.0 213 23.8 26.0 242 20.0 28.9 28.0 223 214 20.1 14.2 15.0 22.0
Yu et al. (2023) (T=243)t 20.1 21.2 20.0 19.6 21.5 26.7 233 19.8 27.0 294 20.8 20.1 19.2 12.8 13.8 21.0

Gong et al. (2023) (T=243)t* 18.6 19.3 18.0 18.4 18.3 21.5 21.5 19.1 23.6 223 18.6 18.8 18.3 12.8 13.9 18.9
Shan et al. (2023) (T=243)t* 18.7 18.2 18.4 17.8 18.6 20.9 20.2 17.7 23.8 21.8 18.5 17.4 17.4 13.1 13.6 18.4

Ours (T=81)t 225 22.4 213 214 212 25.5 242 224 24.4 27.5 22.7 214 21.7 16.3 173 222
Ours (T=243)t 19.6 18.6 18.5 18.1 18.7 22.1 20.8 18.3 22.8 224 18.8 18.1 18.4 13.9 15.2 19.0
Ours (T=243)1* 18.8 17.4 18.1 17.7 18.3 20.6 19.6 17.7 23.3 22.0 18.7 17.0 16.8 12.4 13.5 18.1
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As shown in the results of Table 4-2, ground-truth 2D poses were used as input for
experiments. Among all the methods, our method (diffusion-based) achieves the SOTA
result 18.1mm, with the same settings (the number of frames, hypotheses, and iterations)
as D3DP (Shan et al., 2023). On the other hand, we also obtain the best result 19.0mm
under T=243 setting and 22.2mm under T=81 setting in MPJPE without diffusion
process. Compared to GLA-GCN (Yu ef al., 2023), there is a noticeable improvement
(21.0—19.0mm) with T=243. Under T=81 setting, our method significantly
outperforms the second-best result by 3.5mm (25.7—22.2mm).

Results based on MPI-INF-3DHP. We evaluate the performance on MPI-INF-3DHP
dataset to verify the generalization capability of our method. Following previous work
(Tang et al., 2023b; Zhao et al., 2023), we input the ground-truth 2D poses to train our
model. Table 4-3 reports the comparison results on the MPI-INF-3DHP test set. Our
method with T=81 achieves the SOTA result with PCK of 98.9%, AUC of 85.9% and
MPJPE of 16.7mm, outperforming the existing SOTA models by 0.2% in PCK, 2.0%
in AUC and 6.4mm in MPJPE. Moreover, our method with T=27 also surpasses all
other methods in terms of three metrics. These results demonstrate the strong

generalization capability of our method on complicated datasets.

Table 4-3 Performance comparisons on MPI-INF-3DHP with PCK, AUC and
MPJPE. The T denotes the higher, the better, the | denotes the lower, the

better.

Method PCKT AUCT MPJPE!
Wang ef al. (2020b) (T=96) | 86.9  62.1  68.1
Zheng et al. (2021a) (T=9) | 88.6 564  77.1
Li et al. (2022¢) (T=9) 93.8 633 580
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Zhang et al. (2022b) 944 665 549
(T=27)
Shan et al. (2022) (T=81) | 97.9 758 322
Gong et al. (2023) (T=81) | 98.0 759  29.1
Shan et al. (2023) (T=243) | 98.0  79.1  28.1
Zhao et al. (2023) (T=81) | 97.9 788 278
Yu et al. (2023) (T=81) 985  79.1 277
Tang et al. (2023b) (T=27) | 98.4 834 242
Tang et al. (2023b) (T=81) | 98.7 839  23.1
Ours (T=27) 98.9 844 192
Ours (T=81) 98.9 859 167

Results based on HumanEva. Table 4-4 shows the performance in comparison to other
methods on HumanEva dataset. Our method yields the best MPJPE result of 15.3mm
under T=27. Also, our method is superior to other algorithms under T=81. Compared
with MixSTE (Zhang et al., 2022b), we achieve 36.8% improvement (28.5—18.0mm)
under T=81. Due to the short video length in HumanEva, our method gives better results
under T=27 than T=81. These results highlight the effectiveness of our method on small

datasets.

Table 4-4 The MPJPE evaluation results on HumanEva testset.

Method Walk Jog Avg
S1 S2 S3 S1 S2 S3

Pavllo et al. (2019b) 13.1 101 39.8 | 20.7 139 156 | 189
(T=81)
Zheng et al. (2021a) 163 11.0 47.1 [ 25.0 152 151 | 21.6
(T=43)
Zhang et al. (2022b) 203 224 348 | 27.3 321 343 | 285
(T=43)
Ours (T=43) 16.5 139 199 [ 253 159 165 | 18.0
Ours (T=27) 123 11,5 195 ] 209 13.1 145 | 153

4.3.4 Ablation Study
Effect of each module. To verify the effectiveness of the proposed modules, we
conducted ablation experiments under T=243 on Human3.6M using ground-truth 2D

poses as inputs. Table 4-5 presents the results of ablation study of each module. Our
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baseline network first utilizes a linear layer to lift the 2D pose sequence to the high-
dimensional space and then exploits the stacked spatio-temporal encoders (L=8) to
predict the 3D pose sequence, reaching 22.1mm of MPJPE. The introduction KPA and
TPA brings 2.1mm and 2.4mm of MPJPE drops, respectively. With both KPA and TPA
modules, the performance has improved 3.1mm. More remarkably, the number of
parameters and FLOPs merely increase by 0.0016M and 21M, respectively, showing

that our method is both effective and efficient.

Table 4-5 Results of ablation study of each module in our KPTFormer on

Human3.6M dataset.

Method MPJPE (mm) Parameters (M) FLOPs (M)
Baseline 22.1 33.6506 139038
+KPA 20.0 33.6501 139042
+TPA 19.7 33.6527 139055
+KPA+TPA 19.0 33.6522 139059

Effect on different combinations of KPA and TPA. We analyzed the impacts to
performance for four different combinations of KPA and TPA, including the United
Mode (UMD), the Separate Mode (SMD), the Separate Mode-S and the Parallel Mode
(PMD). UMD indicates that the output of the KPA is fed into the two TPA blocks with
a residual connection, followed by stacked spatio-temporal encoders. SMD represents
that KPA is followed by spatial MHSA and two TPA blocks with a residual connection
are followed by temporal MHSA. The SMD-S differs from the SMD in that only one
TPA block is followed by temporal MHSA. For PMD, the input is fed into TPA and
Kinematics-Enhanced Transformer simultaneously, and the outputs of them are then

added together and fed into temporal MHSA. We evaluated the four modes on
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Human3.6M with input T=243 frames. Table 4-6 shows the comparison results between
the four modes. The MPJPE results of UMD are worse than those of SMD because
these features from KPA are fed directly into TPA, which leads to the confusion of
spatial and temporal information. The comparisons between the PMD and SMD
illustrate that TPA is more suitable to inject the trajectory information into high-
dimensional tokens, rather than the initial 2D pose sequence. Besides, KPA and TPA
should be independently followed by spatial MHSA and temporal MSHA, without
introducing other information to cause disruption. The comparison between the SMD-
S and SMD indicates that the stacked TPA blocks can inject the prior information into

high-dimensional tokens more effectively.

Table 4-6 Results of ablation study involving different combinations of KPA and

TPA in the network.

Method MPJPE (mm) Parameters (M) FLOPs (M)
Baseline 22.1 33.6506 139038
United Mode (UMD) 20.0 33.6522 139059
Parallel Mode (PMD) 19.8 33.6512 139051
Separate Mode-S (SMD-S) 20.4 33.6512 139051
Separate Mode (SMD) 19.0 33.6522 139059

Different Numbers of Modules. We validate the impact of different numbers of KPA
and TPA blocks in the KTPFormer. Table 4-7 reports the MPJPE and P-MPJPE
comparisons on Human3.6M dataset. We take the estimated 2D poses by CPN as input
and train these models under 81 frames. The baseline network utilizes the stacked
spatio-temporal encoders (L=8) with number of heads H=8 and feature size C=512 to
predict the 3D pose sequence. In our KTPFormer (first block), we combine KPA and

TPA respectively with vanilla spatial transformer and temporal transformer, forming
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Kinematics-Enhanced Transformer and Trajectory-Enhanced Transformer, which are
placed at the beginning of the network. Subsequently, we employ the stacked spatio-
temporal encoders (L=7) to encode features. In the KTPFormer (all blocks), we stack
the Kinematics-Enhanced Transformer and Trajectory-Enhanced Transformer for L=8
loops. As indicated by the results, our KTPFormer (first block) obtains the lowest errors
of MPJPE and P-MPJPE, indicating that KPA and TPA are better suited for processing
the initial 2D pose sequence. Also, the KTPFormer (first block) can improve the
performance more efficiently and has only a smaller increase in the computational
overhead compared to the KTPFormer (all blocks). The design of KTPFormer (first

block) is more effectively applicable to different 3D pose estimators.

Table 4-7 The MPJPE and P-MPJPE comparisons with different numbers of KPA
and TPA blocks in the KTPFormer. The evaluation is performed on
Human3.6M with 81 input frames. The best result in each column is

marked in red.

Method Parameters (M) FLOPs (M) | MPJPE (mm) P-MPJPE (mm)
Baseline 33.650 46346 43.1 34.1
KTPFormer (all 33.673 46412 42.3 334
blocks)

KTPFormer (first 33.652 46353 41.8 32.6
block)

Different Combination Ways of Topologies. We compare two different ways of
combining the local topology and the simulated global topology. The first combination
has been illustrated in the main text. We apply the first combination way to our
KTPFormer, namely KTPFormer (average). The second combination is to directly add

the local topology and the simulated global topology to obtain the kinematics topology
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or the joint motion trajectory topology. The second combination way is also applied to
the KTPFormer, called KTPFormer (add). We train the two networks using the
estimated 2D poses by CPN with 81 frames as input. As shown in Table 4-8, the
KTPFormer (average) achieves the best results of MPJPE and P-MPJPE. It suggests
that the KTPFormer (average) which ensures the symmetry of the final topology allows
the nodes to learn the spatial or temporal prior knowledge between them without being

influenced by the direction of node connections.

Table 4-8 The MPJPE and P-MPJPE comparisons with different combination
ways of topologies in the KPA and TPA. The evaluation is performed on
Human3.6M with 81 input frames. The best result in each column is

marked in red.

Method Parameters (M) FLOPs (M) | MPJPE (mm) P-MPJPE (mm)
KTPFormer (add) 33.652 46353 42.1 333
KTPFormer (average) 33.652 46353 41.8 32.6

Free Parameters. We conduct experiments on the KTPFormer under three free
parameters, including the number of spatio-temporal encoders L, the feature size of
transformer layers C and the number of heads H, to examine different architectures of
KTPFormer. During the experiment, we alter each free parameter while maintaining a
constant value for the remaining two parameters. Table 4-9 reports the comparisons on
Human3.6M using the CPN's 2D pose detection with 81 frames as input. The
KTPFormer with L=7, C=512 and H=8 achieves the runner-up result of MPJPE and the

best result of P-MPJPE, and strikes a balance between regression capacity and
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computational cost. Thus, we choose this configuration as the standard version of

KTPFormer.

Table 4-9 The MPJPE and P-MPJPE of KTPFormer with different number of
spatio-temporal encoders L, feature size of transformer layers C, and
the number of heads H in self-attention on Human3.6M dataset. Red.:

Best results. Blue: Runner-up results.

L C H [Parameters (M) FLOPs (M) [ MPJPE (mm) P-MPJPE (mm)
6 512 4 29.446 40560 42.2 334
7 512 4 33.652 46353 41.7 33.1
8 512 4 37.857 52145 43.0 33.6
7 256 4 8.437 11625 43.0 33.7
7 512 4 33.652 46353 41.7 33.1
7 1024 4 134.413 185115 42.5 33.7
7 512 1 33.652 46353 43.0 34.2
7 512 2 33.652 46353 42.8 33.8
7 512 4 33.652 46353 41.7 33.1
7 512 8 33.652 46353 41.8 32.6
7 512 16 33.652 46353 42.5 33.4

4.3.5 Qualitative Analysis

We visualize the 3D pose estimation results and attention maps to validate the efficacy
of our method in comparison to MixSTE (Zhang et al., 2022b). As shown in Figure 4-3,
the spatial and temporal attention outputs from different heads are both averaged to
show the distribution of attention weights of joints and frames. Figure 4-3(a) illustrates
the phenomenon of unreasonable attention weight allocation to the right arm, right leg
and torso in the spatial attention map of MixSTE (Zhang et al., 2022b), leading to poor
predictions of the 3D pose (top of Figure 4-3). In contrast, the spatial attention weights

(Figure 4-3(b)) are activated by KPA in regions of right arm, right leg and torso. In
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particular, the three joints of the right arm exhibit stronger attention weights in the
thorax column, owing to the anatomical connection between the right hand and the torso.
The attention allocation is more reasonable (Figure 4-3(b)), contributing to an enhanced
performance of 3D pose predicted by our method. Moreover, Figure 4-3(c) depicts the
averaged temporal attention outputs of the three joints of right arm. In contrast, TPA
(Figure 4-3(d)) yields stronger correlations across adjacent frames due to the continuity
of human movements. The enhanced temporal attention also contributes to the
performance improvement of the right arm. Also, we present more qualitative results of
KTPFormer. Figure 4-4 and Figure 4-5 show some visualized examples of spatial
attention maps and temporal attention maps for all layers in KTPFormer. The attention
weights of different heads are averaged to observe the overall correlations of joints and
frames, and the attention weights are normalized from 0 to 1. Additionally, Figure 4-6
presents visual comparisons of 3D pose estimation results between our KTPFormer and
MixSTE (Zhang et al., 2022b). The green circle highlights locations where we can
achieve more accurate 3D pose estimations compared to MixSTE (Zhang et al., 2022b).
Furthermore, we collect several in-the-wild videos as an additional real-world test to
validate the generalization ability of our method. As shown in Figure 4-7, our method
demonstrates remarkable robustness and accuracy across the majority of frames in the
wild videos, especially in challenging scenarios with severe occlusion and extremely

fast movements.
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Figure 4-3 Comparison of visualization results and attention maps between ours
and MixSTE (Zhang et al., 2022b). The x-axis and y-axis correspond to

the queries and the predicted outputs, respectively.

[0] Hip »
[1] RHip *
[2] RKnee B
[3] R Foot
[4] L Hip 0
[5] LKnee 2
[6] LFoot H
[7] spine

[8] Thorax

[9] Neck

[10] Head

[11] L Shoulder

[12] L Elbow
[13] L Wrist
E‘;{ 5 :::;“Jf" Layer 1 Layer 2 Layer 3 Layer 4
[16) R Wrist

012345678910111213141516 ©1234567891011213141516 5678910111213141516 ©12345678910111213141516
Joints Joints. Joints joints.

Joints
jonts

012345678910111213141516 012345678910111213141516 012345678910111213141516 012345678910111213141516
Jounts Joints Joints Jounts.

Layer 5 Layer 6 Layer 7 Layer 8

Figure 4-4 Visualizations of attention maps from the spatial self-attention in

KTPFormer. The x-axis and y-axis correspond to the joints queries and

109



the predicted outputs, respectively. The attention weights are normalized

from 0 to 1, and the lighter color indicates stronger attention.
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Figure 4-5 Visualizations of attention maps from the temporal self-attention in

KTPFormer. The x-axis and y-axis correspond to the frames queries and
the predicted outputs, respectively. The attention weights are normalized

from 0 to 1, and the lighter color indicates stronger attention.
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Figure 4-6 Visual comparisons of 3D pose estimation between MixSTE (Zhang et
al., 2022b) and our KTPFormer on Human3.6M dataset. The green
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Figure 4-7  Some visualisation results of 3D pose estimation by our KTPFormer on

in-the-wild videos.

4.3.6 Adaptable to Different 3D Pose Estimators

Ablation Study. Our KPA and TPA are generic and can be applied in various
transformer-based 3D pose estimators. To verify the adaptability, we selected five
transformer-based 3D pose estimators as backbones. We removed the linear embedding

before the first spatial encoder and put the KPA in front of the first MHSA in these
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models. We used the TPA to encode the features of different poses across frames on (Li
etal.,2022b; Liet al.,2022c; Zheng et al., 2021a) and different joints across frames on
(Tang et al., 2023b; Zhang et al., 2022b). We trained these models on the Human3.6M
dataset using 2D ground-truth poses as inputs. As shown in Table 4-10, our method
brings about noticeable improvements in all the models in terms of MPJPE (mm), with
very slight increases in the number of parameters and FLOPs, indicating that our KPA
and TPA modules are lightweight and plug-and-play to different models for 3D pose

estimation.

Table 4-10  Comparative results obtained with different 3D pose estimators trained

with and without KPA and TPA modules on Human3.6M dataset.

Method MPJPE (mm) Parameters (M) FLOPs (M)
Zheng et al. (2021a) 31.3 9.558 815.522
(T=81)

+KPA+TPA 28.825) 9.56000-02 815.885(10:36)
Li et al. (2022b) (T=351) 28.5 3.979 801.093
+KPA+TPA 27.4¢LD 3.9800°0-0D 801.859110-76%)
Li et al. (2022c) (T=243) 30.9 24.767 4826.854
+KPA+TPA 28.8¢21 247730006 4829.873(3019)
Zhang et al. (2022b) 21.6 33.650 139038.488
(T=243)

+KPA+TPA 19.0¢29 33.652010:02) 139059.638(2!"19
Tang et al. (2023b) 25.7 4.747 6535.219
(T=81)

+KPA+TPA 25.1009 4.74800D 6541.565-340)

Implementation Details. We illustrate in detail on how our Kinematics Prior Attention
(KPA) and Trajectory Prior Attention (TPA) are applied to different 3D pose estimators.
Our TPA possesses the capability to not only model joint-to-joint motion trajectory
across frames but also to model pose-to-pose motion trajectory across frames. Figure

4-8 shows the joint-to-joint and pose-to-pose motion trajectory topology. In Figure
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4-8(b), TPA connects the different poses across consecutive adjacent frames to build
the temporal local topology (pose-to-pose), including self-connection. Next, we exploit
learnable vectors (dotted line) to connect the poses among all neighbouring and non-
neighbouring frames to construct the simulated temporal global topology (pose-to-
pose), which is equivalent to the computation of attention weights among all frames by
the self-attention. Then, the two topologies are integrated together through the
combination method identical to joint motion trajectory topology (Figure 4-8(a)),
resulting in the pose motion trajectory topology. The pose motion trajectory topology
(Figure 4-8(b)) is incorporated into the stacked TPA (pose) to encode the pose-to-pose
features across frames for these works (Li ef al., 2022b; Li et al., 2022c; Zheng et al.,
2021a). On the other hand, we introduce joint motion trajectory topology (Figure 4-8(a))
into the stacked TPA (joint) to learn joint-to-joint temporal information for other works
(Tang et al., 2023b; Zhang et al., 2022b). Figure 4-9 depicts the framework overview
of our KPA and TPA applied to different 3D pose estimators. For PoseFormer (Zheng
et al., 2021a), the KPA and the stacked TPA (pose) are placed ahead of the stacked
spatial transformers and stacked temporal transformers, respectively. The model
architecture of StridedTransformer (Li et al., 2022b) with our method is similar to
PoseFormer (Zheng et al., 2021a). Hence, we have not depicted it. For MHFormer (Li
et al., 2022c), we employ the KPA to process the initial 2D pose sequence, generating
Q, K and V vectors for the first spatial transformer. Then, we utilize three parallel

stacked TPA (pose) blocks to encode the pose-to-pose temporal features for multiple
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hypotheses, respectively. The three outputs from three stacked TPA (pose) blocks are
fed into the next layer. In terms of STCFormer (Tang et al., 2023b), the KPA and the
stacked TPA (joint) blocks are positioned ahead of the spatial attention and temporal
attention in parallel. They yield spatial and temporal Q, K and V vectors with priori
knowledge for the spatial attention and temporal attention, respectively. For D3DP
(Shan et al., 2023), we employ two KPA blocks to concurrently process the 2D pose
sequence and noisy 3D pose sequence, subsequently concatenating the output fea tures
and feeding them into the spatial transformer. Then, the stacked TPA (joint) blocks are
placed between the spatial transformer and temporal transformer. D3DP (Shan ef al.,
2023) adopts the MixSTE (Zhang et al, 2022b) as the denoiser, so the model
architecture of MixSTE (Zhang et al., 2022b) with our method is similar to D3DP (Shan

et al., 2023).
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Figure 4-8  Overview of different motion trajectory topology. (a) The temporal local

topology (joint-to-joint) plus the simulated temporal global topology
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(joint-to-joint) to form the joint motion trajectory topology. (b) The
temporal local topology (pose-to-pose) plus the simulated temporal

global topology (pose-to-pose) to form the pose motion trajectory

topology.
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Figure 4-9  The framework overview of our KPA and TPA applied to different 3D
pose estimators. The stacked TPA indicates that two TPA blocks are
stacked with a residual connection. In terms of PoseFormer (Zheng et
al., 2021a) and MHFormer (Li et al., 2022c), we use the stacked TPA
(pose) to model temporal correlations between poses across frames. In
contrast, the stacked TPA (joint) is utilized to encode the temporal
features between joints across frames for STCFormer (Tang et al., 2023b)

and D3DP (Shan et al., 2023).

Enhanced Attention Maps. We visualize the enhanced attention maps of (Li et al.,
2022c; Tang et al., 2023b; Zheng et al., 2021a) after applying our KPA and TPA on
Human3.6M, to validate the effectiveness of our method. Figure 4-10 illustrates
enhanced spatial and temporal attention maps from PoseFormer (Zheng ef al., 2021a),

MHFormer (Li et al., 2022c) and STCFormer (Tang et al., 2023b), by integrating our

115



KPA and TPA into their networks. In terms of spatial attention maps, our KPA enhances
attention weights between certain joints based on human anatomical structures and
kinematic relationships, facilitating the explicit representation of human body
topological relationships in the attention maps. On the other hand, our TPA enhances
the temporal correlations between adjacent frames based on the motion trajectories of
poses or joints in MHFormer (Li et al., 2022¢) and STCFormer (Tang et al., 2023b). In
particular, our TPA enhances attention weights between the frames of central region and

other frames in PoseFormer (Zheng et al., 2021a), recognizing the periodic nature of
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Figure 4-10  Visualizations of enhanced spatial and temporal attention maps by our
KPA and TPA. The x-axis and y-axis correspond to the queries and the
predicted outputs, respectively. The attention weights are normalized

from 0 to 1, and the lighter color indicates stronger attention.
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4.4 Chapter Summary

In this chapter, a Kinematics and Trajectory Prior Knowledge-Enhanced Transformer
(KTPFormer) has been proposed and developed, which introduces two novel prior
attention mechanisms, KPA and TPA, for 3D pose estimation. Specifically, KPA
constructs a kinematics topology to inject the kinematics prior knowledge into spatial
tokens. TPA incorporate the prior information of joint motion trajectory into temporal
tokens. The two prior attention mechanisms can enhance the capabilities of modeling
global correlations in the self-attention mechanisms effectively. Experimental results
on three benchmarks demonstrate that our method is effective in improving the
performance with only a very small increase in the number of parameters and
computation. Furthermore, the KPA and TPA can be integrated with various
transformer-based 3D human pose estimators as lightweight plug-and-play modules.
While the preceding two methods taking videos as input can achieve excellent results,
there are occasions when only data of single images are available. To broaden the scope
of application, another novel network that takes single images as input to predict 3D

poses will be presented in next Chapter.
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CHAPTER 5. A CROSS-FEATURE INTERACTION
NETWORK

5.1 Introduction

Recently, the graph convolutional networks (GCNs) have been widely used for single-
frame based 3D human pose estimation with the outstanding performance. These GCN-
based methods (Liu et al., 2020b; Zhao et al., 2019a; Zou & Tang, 2021) utilize the
topological information of the human skeleton by aggregating feature representations
of the neighbouring body joints. However, these methods (Liu ef al., 2020b; Zhao et al.,
2019a; Zou & Tang, 2021) focus only on modeling the motion characteristics of
adjacent or connecting joints, namely the local information. There are additional
implicit kinematic information between joints that are not physically connected. For
example, in the action of ‘walking a dog’, the joints of two hands and two feet move in
the same direction along the dog’s motion. In order to better capture the global
information of human skeleton representations, some transformer-based methods (Li et
al.,2023; Li et al., 2022¢; Zhang et al., 2022b; Zheng et al., 2021a) are proposed. By
exploiting the self-attention mechanism, these methods model the spatial dependencies
among all body joints. In addition, some studies (Peng et al., 2024; Zhao et al., 2022;
Zhu et al.,2021) combine GCNs and transformer architectures to facilitate the learning
of spatial correlations in human skeleton. However, all of them utilize GCNs and
transformer blocks in a sequential manner, either by using the output of GCNs as the

input for a transformer block, or vice versa. The resulting features from GCNs and
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transformers lack direct interaction, which may limit the model’s capability and
performance, preventing it from fully leveraging the strengths of both components.

In order to address the aforementioned issue, we propose a novel Cross-Feature
Interaction (CFI) Network to effectively enhance the learning of spatial representations
of human skeleton. Figure 5-1 shows the schematic architecture of our method. As
shown, we capture the local and global features by GCNs and self-attention
mechanisms, respectively. We also obtain the initial 2D pose features by patch
embedding (linear layer). The initial features, often neglected by other methods, can
serve as an residual connection, to effectively compensate for the information loss that
occurs during the layer-to-layer propagation of the other two types of features. Then,
we design a specific multi-head cross-attention (MHCA) to facilitate cross-feature
interaction among three different features, namely the local features, global features,
and the initial 2D pose features. This specially designed MHCA, named as cross-feature
interaction (CFI) module, can effectively model dependencies between multiple
features and enable the other two features to complement the features of the current
branch. Next, these three types of features derived from individual CFI modules are
aggregated to form the enhanced spatial features. Finally, we develop a graph-enhanced
module (GraMLP) with parallel structure of GCN and multi-layer perceptron (MLP) to
incorporate the human skeletal knowledge as an inductive bias into the final
representation of 3D pose. The key contributions of this paper are summarized as

follows:
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» We develop a novel Cross-Feature Interaction Network to effectively enhance the
learning of spatial representations for 3D poses.

e A cross-feature interaction (CFI) module is designed to effectively model
dependencies among local features, global features, and the initial features, which
are further aggregated as enhanced spatial features.

» A graph-enhanced module ‘GraMLP’ is introduced to integrate vanilla MLP with
graph convolutional network (GCN), improving the accuracy of 3D pose estimation.

» Extensive experiments on two benchmarks (Human3.6M and MPI-INF-3DHP)

show that our method outperforms other SOTA models.
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Figure 5-1  Schematic architecture of the proposed method.
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5.2 Method

5.2.1 Preliminary

We first provide a brief overview of Graph Convolutional Networks (GCN) and multi-
head self-attention (MHSA).

Graph Convolutional Network (GCN). A graph can be defined as G = {V, £}, where
V is a collection of nodes and € is a set of edges. The representation of edges can be

VXN while the set of features of all nodes

realized through an affinity matrix A € {0,1
in the [-th layer can be expressed as a matrix H; € RP*N_ N is the number of nodes,
and D represents the dimensionality of the features. The graph convolution operation
aggregates features from neighboring nodes in the [-th layer following the equation
below:

H, = o(W,H,_,A) (5-1)
Where W; € RP*P is the learnable weight matrix, A = A + I refers to the adjacency
matrix of the graph with the inclusion of self-connections, and Iy is the identity matrix.
Multi-head Self-attention (MHSA). The MHSA computes multiple attention heads

via self-attention in parallel. Each attention head (i = 1,..., h) is computed as:

(2w Wy

N

where Z € RV*P is the input token, W, WX and W) € RP*P are learnable

head; = Softmax< ) zw?) (5-2)

parameters. All h attention heads are then concatenated together, followed by a linear

transformation, to form the output as follows:
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Zyusa = Concat(head,, ..., head,;, ..., head},) (5-3)
5.2.2 Cross-Feature Interaction
Figure 5-2 illustrates the proposed Cross-Feature Interaction Network, which consists
of two main components of Cross-Feature Interaction module (CFI) and graph-
enhanced module (GraMLP). The input 2D pose joints are initially embedded into high-
dimensional tokens, denoted as the initial features X; € RV*P_ N is the number of joints,
and D is the dimensionality of the features. The initial features X; is then fed into the
GCN, yielding the local features X, € RV*P:

X, = o(WX,A) (5—4)
where A denotes the adjacency matrix of anatomical relationships in the human body.
We obtain the global features X; € RV*P by eq. (5-3) and each head resulted from
feeding initial features X; to the MHSA:

(X, W)X, Wi)T

Jan

To facilitate communication and achieve mutual complementarity among the three

head{ = Softmax < > X, w7 (5-5)

types of features, we introduce a cross-feature interaction module, a specific multi-
head cross attention (see Figure 5-3). The initial features X;, local features X; and
global features X are regarded as queries, keys, and values, respectively, and fed into
the CFI unit as follows:

(X, W)X, Wi)T

N

The enhanced global features X € RV*? can be obtained by:

head; = Softmax< ) XWY) (5—-6)
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X; = Concat(head,, ..., head,;, ..., heady,) + X (5-=-7)

X/ X\ /X,
+ )

Projection
Matmul
A 3
SoftMax
l Scale I
|
Matmul
[ )
LinearjMapping Linearﬂ'VIapping LinearfMapping
X./xl/x6| xL/xG/x,l Xe ! X,/ %,

Figure 5-3 Cross-feature interaction module (CFI).

By eq. (5-6), the three types of features engage in interactions and exchange information
with each other. The global features can compensate for the limited receptive field of
GCN, providing additional implicit kinematic knowledge to the local features. Also, the
initial features can offer valuable information that may be lost during the process of
feature aggregation by GCN from neighbouring joints. Moreover, the residual term in
eq. (5-7) ensures that primary focus of the current branch, namely, the global features.
Similarly, we employ the CFI module to obtain the enhanced local features X; € RV*P
and initial features X; € RV*P,

Next, the enhanced features X, X; and X; are sum up to form as the output sequence
from CFI module, also the input for the GraMLP module:
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5.2.3 GraMLP

The MLP structure in a vanilla transformer is densely connected, which has limited
ability to model topological structure information of human skeleton. To inject the
human skeleton information into the final 3D pose, we introduce a parallel design of
MLP and GCN, namely GraMLP. Considering that the MLP can introduce non-
linearities to the input features, by adding GCN in parallel can retain anatomical
knowledge of the human body, serving as an inductive bias to enhance the
representation of 3D pose. In general, the GraMLP processes the features from the CFI
module as follows:

Xout = Xcrr + MLP(X¢pp) + GCN (Xcpp) 5-9)
where MLP(+) is composed of the linear layer and the GELU activation function.
GCN (*) refers to the equation (5-4).

5.2.4 Regression Head
The linear layer is used as a regression head to predict the 3D joint coordinates of the

single pose. The loss function for our network is given as:

(7= 7l) (5 — 10)

NgE

£_1
N

=1

where J; € R¥*3 and J; € RV*3 denotes the predicted and ground truth 3D joint

coordinates, respectively.

5.3 Experiments
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5.3.1 Datasets and Evaluation Metrics

Human3.6M. Human3.6M (Ionescu et al., 2013) is an indoor scenes dataset with 3.6
million video frames. It has 11 professional actors, performing 15 actions under 4
synchronized camera views. Following previous work (Tang et al., 2023b; Zhang et al.,
2022b), we used subjects 1, 5, 6, 7 and 8 for training, and subjects 9 and 11 for testing.
We use the mean per-joint position error (MPJPE) as the evaluation metric, which is
the average Euclidean distance in millimetres (mm) between the predicted and the
ground-truth 3D joint coordinates.

MPI-INF-3DHP. MPI-INF-3DHP (Mehta et al., 2017) is also a public large-scale
dataset. Following the setting of (Tang et al., 2023b; Zhang et al., 2022b), we use the
area under the curve (AUC), percentage of correct keypoints (PCK) as evaluation
metrics.

5.3.2 Implementation Details

We implemented our method in the Pytorch framework on one GeForce RTX 3090
GPU. The Graph-Attention Cross-Feature Interaction Network loops N = 3 times.
Following (Zhao et al., 2019a; Zou & Tang, 2021), the input 2D keypoints are detected
by 2D pose detector (Chen ef al., 2018) or 2D ground truth. During the training stage,
we use the Adam (Kingma & Ba, 2014) optimizer to train our model for 20 epoch. The
learning rate is initialized to 0.001 and decayed by 0.95 per epoch. The channel size is
set to 512 and the number of heads is set to 8 in the network.

5.3.3 Comparison with State-of-the-Art Methods
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Human3.6M. Table 5-1 compares the single-image estimation accuracy of our method
with existing SOTA methods using 2D poses detected by CPN (Chen ef al., 2018) as
inputs. As shown, our method outperforms other SOTA models and achieve the same
performance of 49.4mm of MPJPE as MGCN (Zou & Tang, 2021) which adopts the
refinement module (Cai et al., 2019b). After applying the refinement module (Cai et al.,
2019b) to our model, the performance is improved from 49.4mm to 48.6mm, surpassing
MGCN (Zou & Tang, 2021) by 0.8mm error reduction. Moreover, our method obtains
the best results of 38.8mm and 38.7mm in terms of P-MPJPE. As shown in Table 5-2,
we compare our results with those SOTA methods using 2D ground-truth poses as
inputs. Our method attains SOTA performance, validating the effectiveness of our

method for different types of input.
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Table 5-1 Quantitative comparisons with SOTA methods based on Human3.6M under MPJPE (mm) and P-MPJPE (mm) with 2D poses
detected by CPN (Chen et al., 2018) as inputs. * denotes using the refinement module (Cai et al., 2019b). + indicates the

transformer-based methods. Best results are shown in bold.

MPJPE (CPN) Dir. Disc Eat Greet Phone Photo  Pose Pur. Sit SitD.  Smoke Wait WalkD. Walk WalkT.| Avg
Martinez et al. (2017a) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Zhao et al. (2019a) 473 60.7 514 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 453 57.6
Cietal (2019b) 46.8 523 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 433 52.7
Xu and Takano (2021) 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 514 48.6 53.9 39.9 441 51.9
Zhao et al. (2022) 1 45.2 50.8 48.0 50.0 54.9 65.0 48.2 471 60.2 70.0 51.6 48.7 541 39.7 43.1 51.8
Cai et al. (2019b) * 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6
Lietal (2023) 1 47.9 50.0 47.1 51.3 51.2 59.5 48.7 46.9 56.0 61.9 51.1 48.9 543 40.0 429 50.5
Zeng et al. (2020) 44.5 48.2 47.1 47.8 51.2 56.8 50.1 45.6 59.9 66.4 52.1 45.3 54.2 39.1 40.3 49.9
Zou and Tang (2021) * 45.4 49.2 45.7 49 .4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4
Ourst 45.4 49.5 46.1 493 51.7 56.7 47.3 44.6 58.6 63.0 50.4 47.2 51.8 38.2 413 49.4
Ourst* 45.0 50.3 45.8 48.4 49.7 55.8 47.3 45.4 56.4 59.4 49.9 46.5 50.9 38.0 39.6 48.6
P-MPJPE (CPN) Dir. Disc Eat Greet Phone Photo  Pose Pur. Sit SitD.  Smoke Wait WalkD. Walk WalkT.| Avg
Martinez et al. (2017a) 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Cietal (2019b) 36.9 41.6 38.0 41.0 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37.0 422
Liu et al. (2020b) 359 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2
Cai et al. (2019b) * 36.8 38.7 38.2 41.7 40.7 46.8 37.9 35.6 47.6 51.7 413 36.8 42.7 31.0 34.7 40.2
Zeng et al. (2020) 35.8 39.2 36.6 36.9 39.8 45.1 38.4 36.9 47.7 54.4 38.6 36.3 39.4 30.3 354 39.4
Zou and Tang (2021) * 35.7 38.6 36.3 40.5 39.2 44.5 37.0 35.4 46.4 51.2 40.5 35.6 41.7 30.7 33.9 39.1
Ourst 35.3 37.8 36.8 40.1 40.1 43.6 36.2 34.3 46.4 50.2 40.8 35.6 41.1 30.0 34.0 38.8
Ourst* 35.5 38.1 35.9 40.4 39.9 43.7 36.0 34.7 46.1 48.4 40.5 35.7 41.3 30.2 33.7 38.7

Table 5-2 Quantitative comparisons on Human3.6M under MPJPE. The input is the ground-truth 2D pose. * denotes using the refinement
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module (Cai et al., 2019b). + indicates the transformer-based methods. Best results are shown in bold.

Method (GT) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT.| Avg
Martinez et al. (2017a) 37.7 44 4 40.3 42.1 48.2 54.9 44 .4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5
Zhao et al. (2019a) 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 422 53.5 443 40.5 473 39.0 43.8
Cai et al. (2019b) * 334 39.0 33.8 37.0 38.1 47.3 39.5 37.3 43.2 46.2 37.7 38.0 38.6 30.4 32.1 38.1
Zhu et al. (2021) 37.2 42.2 32.6 38.6 38.0 44.0 40.7 35.2 41.0 45.5 38.2 39.5 38.2 29.8 33.0 38.2
Liu et al. (2020b) 36.8 40.3 33.0 36.3 37.5 45.0 39.7 349 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8
Zou and Tang (2021) * - - - - - - - - - - - - - - - 37.4
Zeng et al. (2020) 35.9 36.7 29.3 345 36.0 42.8 37.7 31.7 40.1 443 35.8 37.2 36.2 33.7 34.0 36.4
Xu and Takano (2021) 35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 354 36.7 36.8 27.9 30.7 35.8
Zhao et al. (2022) 32.0 38.0 304 344 34.7 43.3 35.2 314 38.0 46.2 342 35.7 36.1 274 30.6 35.2
Liet al (2023) 32.9 38.3 28.3 33.8 34.9 38.7 37.2 30.7 34.5 39.7 33.9 34.7 34.3 26.1 28.9 33.8
Ourst 354 38.7 29.8 34.8 33.6 36.8 39.8 30.9 36.6 36.3 34.9 37.6 344 28.3 30.4 34.6
Ourst* 29.1 37.1 29.5 31.8 33.2 41.1 36.0 29.8 38.2 39.3 33.3 36.2 35.8 27.3 28.6 33.7
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MPI-INF-3DHP. Table 5-3 reports the quantitative comparisons with state-of-the-art
methods on cross-dataset scenarios. Our model was trained on the Human3.6M dataset
and subsequently evaluated on the test set of the MPI-INF-3DHP dataset. The results
show that our method achieves the best performance in all metrics, demonstrating the

robustness of our method being applied to previously unseen scenarios.

Table 5-3 Quantitative comparisons with state-of-the-art methods on MPI-INF-

3DHP test set.

Methods PCKT AUCT
GS noGS Outdoor All
Martinez et al. (2017a) 498 425 31.2 42.5 17.0

Ci et al. (2019b) 748 708  77.3 74.0 36.7
Zeng et al. (2020) - - 80.3 77.6 43.8
Zhao et al. (2022) 80.1 779  74.1 79.0 43.8
Liu et al. (2020b) 77.6 805  80.1 79.3 47.6
Xu and Takano (2021) | 81.5 817 752 80.1 45.8
Li et al. (2023) 86.2 84.7 819 84.1 53.7
Ours 850 86.1  85.7 85.6 54.0

5.3.4 Ablation Study

To verify the effectiveness of the proposed modules, we conducted ablation
experiments on Human3.6M using 2D poses detected by CPN (Chen et al., 2018) as
inputs. Table 5-4 shows the results of the ablation study of each module in our method.
The vanilla transformer network, composed of the MHSA and MLP, is utilized as our
baseline. For consistency, the transformer network is stacked for 3 loops, resulting in
an overall accuracy of 51.9mm MPJPE. The notation CFI(-) indicates the application
of CFI module to feature representations of the said branch. For example, CFI(local)

denotes the application of CFI module to the local features, i.e. eq. (5-8) only has one
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component of X;. The results show that the application of three CFI modules, i.e.,
CFI(global), CFI(local) and CFI(initial), contribute 0.5mm, 0.7mm and 1.3mm,
respectively, of error reduction. The incorporation of three CFI modules can result in
4.0% improvement of accuracy, decreasing the MPJPE from 51.9mm to 49.8mm. Table
5-4 also shows that the initial features play a crucial role in the interaction of local and
global features, which brings the largest contribution of accuracy improvement. This is
because the initial features processed by our CFI module can serve as an residual
connection to effectively compensate for the information loss that occurs during the
layer-to-layer propagation of the other two types of features. Lastly, by the introduction
of the GraMLP module on top of three CFI modules, the estimation errors further drop
0.4mm, achieving 49.4mm of MPJPE. The ablation experiments demonstrate the

effectiveness of each proposed module in our method.

Table 5-4 Results of ablation study of each module in our method on Human3.6M

dataset.

CFlI(initial) X; | CFI(local) X; | CFI(global) X; | GraMLP [MPJPE (mm)

51.9

v 50.6

v 51.2

v 51.4

4 v 50.2

v v 50.5

v v 50.6

v v v 49.8

v v v v 49.4

5.3.5 Qualitative Results
We visualize the 3D pose estimation results to validate the efficacy of our method in

comparison to MGCN (Zou & Tang, 2021). As shown in Figure 5-4, the green circle
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highlights locations where we can achieve more accurate 3D pose estimations
compared to MGCN (Zou & Tang, 2021). The predicted 3D pose of our method are

closer to the ground truth 3D pose under different actions.

Input MGCN Ours Ground Truth

=il
daaE
S R
= S A

Figure 5-4  Qualitative comparisons with the MGCN (Zou & Tang, 2021) on

Human3.6M dataset.

5.4 Chapter Summary
In this chapter, a Cross-Feature Interaction Network has been proposed and developed,
which contains two core modules, the Cross-Feature Interaction (CFI) module and the

parallel GCN and MLP (GraMLP) module. First of all, local features and global
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features are extracted using GCN and MHSA, respectively. Then, the CFI module can
facilitate communication and mutual complementation among three types of features
(initial, local and global features). The GraMLP aggregates the preceding local features,
global features, and initial features in a single layer, generating the final 3D pose.
Experimental results on two benchmarks have demonstrated the effectiveness of this

transformer-based method for 3D pose estimation based on single frames.
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CHAPTER 6. FASHION APPLICATION

In this chapter, the 3D pose estimation method proposed in Chapter 4 is used to predict
the 3D poses from video inputs, and the predicted 3 poses are then transferred to a target
avatars with motion retargeting technique, animating personalized avatars for potential
fashion application.

Motion retargeting involves the transfer of motion or movement from one source to
another, commonly between characters or objects in computer graphics, animation, or
virtual environments. It aims to implement motion data obtained from a source onto a
distinct target, ensuring the preservation of a natural and physically plausible
appearance in the results. Motion retargeting finds widespread application in diverse
fields such as computer graphics, animation, video games, and virtual reality. It serves
to efficiently repurpose existing motion data, enabling the creation of realistic
animations for distinct characters or objects. This not only conserves time and resources
but also elevates the overall quality of animations. Early optimization-based motion
retargeting methods applied various additional constraints to ensure that the retargeted
motion did not cause unnatural deformations or collisions with the environment, such
as trajectory constraints (Feng et al., 2012), kinematics constraints (Lee & Shin, 1999),
dynamics constraints (Tak & Ko, 2005), joint angle constraints (Choi & Ko, 2000) and
Euclidean distance (Bernardin et al., 2017). Recently, some deep-learning-based
motion retargeting methods have been proposed. Jang et al. (2018) proposed a motion

retargeting system that integrated the Deep Convolution Inverse Graphics Network
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(Kulkarni et al., 2015) and U-Net (Ronneberger ef al., 2015) architectures to generate
human motions. Villegas et al. (2018) designed a Recurrent Kinematics Network for
motion retargeting in an unsupervised manner. Lim et al (2019) introduced an
unsupervised motion retargeting network to retarget the frame-by-frame pose and learn
the movements of a character. Aberman et al. (2020) proposed a skeleton-aware motion
retargeting framework to learn the skeleton’s hierarchical structure and joint adjacency.
Li et al. (2022a) utilized an iterative motion autoencoder to yield retargeted motions by
an unsupervised method. Villegas et al. (2021) identified self-contacts and ground
contacts from the skinned motion of the source character and preserved these contacts
to the target motion by a latent-space optimization method. Zhang et al. (2023)
presented a Residual RETargeting network with a skeleton-aware module and a shape-
aware module to preserve inherent semantics of the source motion and comprehend the
geometries of target characters.

Figure 6-1 illustrates the whole process from inputting a video to generating an
animated avatar. Specifically, the YOLOv3 (Redmon & Farhadi, 2018) was first
adopted to detect a single person in the video. Then, HRNet (Wang et al., 2020a) was
exploited to estimate the 2D pose from the detected person. Next, by applying any of
the two methods described in Chapters 3 and 4, the 2D pose sequence inputs are lifted
to the 3D pose. After obtaining the 3D coordinates of each joint for the 3D pose, these
3D coordinates are transformed into joint angles and the motion data are converted into

bvh files. Finally, a motion retargeting method is then applied to bind the skeleton of
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the bvh file to the avatar's skeleton, allowing the avatar to perform a series of motions
that we predict from the video. Figure 6-2, Figure 6-3, Figure 6-4 and Figure 6-5
showcase some examples of application on animating personalized avatars. The
accurate 3D poses predicted by the KTPFormer ensure that these avatars can perform

the same coherent motions in situations of heavy occlusion and high-speed movement.

Avata
Estlmatad 2D pose Estimated 3D pose vatar

Convert 3D Motion =
2D pnsr Our 3D pose pose to bvh retargetmg
' estimator esllmalm

Figure 6-1 The whole process from inputting a video to generating an avatar.

Input video

Input 2D pose Estimated 3D pose Bvh Avatar

&

&

Figure 6-2  Examples of application on animating personalized avatars (a).
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Input 2D pose Estimated 3D pose Bvh Avatar

——

Figure 6-3  Examples of application on animating personalized avatars (b).
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Input 2D pose Estimated 3D pose Bvh Avatar

Figure 6-4  Examples of application on animating personalized avatars (c).
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Input 2D pose Estimated 3D pose Bvh Avatar

Figure 6-5  Examples of application on animating personalized avatars (d).

As a demonstration of potential fashion applications, a few motion videos and the
results of predicted 3D poses and the retargeted avatars are shown at this link

https://www.cafilab.com/?page 1d=8147 (or QR code below).
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CHAPTER 7. CONCLUSIONS AND
RECOMMENDATIONS
FOR FUTURE WORK

7.1 Conclusions

This thesis presents three novel 3D pose estimation methods and a potential fashion
application of 3D pose estimation for virtual try-on catwalk animation. Among the three
network developments, the first one was a CNN-based network with three encoding
modules, including MAI, HFF and CIE, for grouped 3D pose estimation. It can be
concluded that the motion amplitude information (MAI) and camera intrinsic
embedding (CIE) modules can provide global information to the network and improve
the accuracy of 3D pose estimation. Furthermore, the optimized feature fusion (HFF)
module can significantly reduce model complexity while ensuring the accuracy of the
model. Compared to a previous method (Shan et al., 2021a), our method has used fewer
parameters to fuse different groups of human pose features and also improves the
performance. Moreover, a one-stage training scheme based on gradient detaching has
been developed to train the grouped 3D human pose estimation network in an end-to-
end manner, which can greatly reduce the number of training epochs and save training
time with only a slight drop in accuracy in comparison to the multi-stage offline training
strategy.

The second network is a transformer-based method, in which a Kinematics and
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Trajectory Prior Knowledge-Enhanced Transformer (KTPFormer) is proposed for 3D
pose estimation, which is integrated with two novel prior attention mechanisms.
Specifically, KPA constructs a kinematics topology to inject the kinematics prior
knowledge into spatial tokens. TPA incorporate the prior information of joint motion
trajectory into temporal tokens. The two prior attention mechanisms can enhance the
capabilities of modeling global correlations in the self-attention mechanisms effectively.
Experimental results on three benchmarks demonstrate that our method is effective in
improving the performance with only a very small increase in the number of parameters
and computation. Furthermore, the KPA and TPA can be integrated with various
transformer-based 3D human pose estimators as lightweight plug-and-play modules.

Lastly, a Graph-Attention Cross-Feature Interaction Network has been developed for
3D human pose estimation based on single frames. This method utilizes the Cross-
Feature Interaction (CFI) module to facilitate the exchange of information among three
distinct features (initial, local and global features), thereby mutually enhancing each
individual feature. Then, the parallel design of GCN and MLP (GraMLP) is proposed
to fuse these three features more effectively. The additionally introduced GCN retains
anatomical knowledge of the human body, serving as an inductive bias to enhance the
learning of local features. Experimental results on two public datasets have
demonstrated that the proposed method significantly outperforms other 3D pose

estimation methods based upon single frames.
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7.2 Recommendations for Future Work

Although the proposed three methods demonstrate high accuracy on different datasets
of 3D human pose estimation, further research is suggested to explore advanced 3D
human pose estimation methods.

The grouped 3D pose estimation algorithm primarily employs 1D convolutional
operations. Recently, many research works has demonstrated that transformers, in terms
of performance improvement, surpass traditional convolutional operations. Thus, we
will investigate the encoding of joints within distinct body groups using a self-attention
mechanism. Furthermore, encoding camera intrinsics into the network can enhance
performance in the camera coordinate system, in practical applications, the
representation of 3D poses is commonly presented in the world coordinate system. In
the future, we will explore effective utilization of camera extrinsics to enhance the
accuracy of 3D human pose estimation within the world coordinate system.

Recently, multimodal approaches have been extensively researched in the field of
computer vision. We will endeavour to encode the names of actions as textual
information into the network to effectively boost the performance of 3D human pose
estimation. Our future research will focus on leveraging the attention mechanism in
transformers to encode textual information related to actions, exploring how

transformed attention can effectively capture and incorporate action-specific details.
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We will concurrently apply this multimodal information encoding approach to both
video-based and single-frame 3D human pose estimation.

In terms of motion retargeting, we will explore novel methods to achieve effective
motion retargeting with limited training data, such as through transfer learning, meta-
learning, or other techniques that make the retargeting models more robust and
generalizable. Also, we will design a network to jointly train 3D human pose estimation
and motion retargeting, enabling the mutual enhancement of performance between the
two tasks. In this way, our avatar will be capable of performing more lifelike

movements in the field of fashion.
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