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ABSTRACT 

3D human pose estimation, a foundational task in computer vision, has received 

significant attention in recent years due to its crucial applications in robotics, healthcare, 

and sports science. In particular, it is also a very important research topic in the fashion 

field due to its ability to yield plausible human body regions for cloth parsing. This 

study aims to address the issues inherent in exiting state-of-the-art (SOTA) methods of 

3D pose estimation by proposing three new and efficient models for 3D pose estimation 

from various inputs, including video sequence and single image inputs. It is also 

demonstrated in this study, as an application of these proposed methods, 3D poses 

predicted from video sequence inputs are being applied and retargeted to game and 

fashion avatars. 

Pose estimation covers both 2D and 3D pose estimation, and the latter are technically 

more challenging. For 3D pose estimation, most existing methods have converted this 

challenging task into a local pose estimation problem by partitioning the human body 

joints into different groups based on the relevant anatomical relationships. Subsequently, 

the body joint features from various groups are then fused to predict the overall pose of 

the whole body, which requires a joint feature fusion module. Nevertheless, the joint 

feature fusion schemes adopted in existing methods involve the learning of extensive 

parameters and hence are computationally very expensive. Thus, in this study, a novel 

grouped 3D pose estimation network is first proposed, which involves an optimized 

feature fusion (OFF) module that not only requires fewer parameters and calculations 

than existing methods but also is more accurate. Furthermore, this network introduces 
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a motion amplitude information (MAI) method and a camera intrinsic embedding (CIE) 

module which are designed to provide better global information and 2D-to-3D 

conversion knowledge thereby improving the overall robustness and accuracy of the 

method. In contrast to previous methods, the proposed new network can be trained end-

to-end in one single stage, and experiment results have demonstrated that this new 

method outperforms previous state-of-the-art methods on two benchmarks. 

The above first new method for 3D pose estimation is based on convolution neural 

network (CNN) for grouped feature fusion. In view of the rapid advancement and 

outstanding performance for transformer-based deep learning models, another novel 

method, called Kinematics and Trajectory Prior Knowledge-Enhanced Transformer 

(KTPFormer), is also proposed for 3D pose estimation with video inputs. This network 

contains two novel prior attention modules called Kinematic Prior Attention (KPA) and 

Trajectory Prior Attention (TPA). KPA models kinematic relationships in the human 

body by constructing a topology of kinematics. On the other hand, TPA builds a 

temporal topology to learn the priori knowledge of joint motion trajectory across frames. 

In this way, the two prior attention mechanisms can yield Q, K, V vectors with prior 

knowledge for the vanilla self-attention mechanisms, which helps them to model global 

dependencies and features more effectively. With a lightweight plug-and-play design, 

KPA and TPA can be easily integrated with various state-of-the-art models to further 

improve the performance in a significant margin with only a small increase in the 

computational overhead.  

For handling single image inputs, the third new network is designed in this study for 
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3D pose estimation, which effectively combines the graph and attention mechanism. 

This method can effectively model the topological information of the human body and 

learns global correlations among different body joints more efficiently. 

Being a demonstration for potential application for these proposed methods, motion 

retargeting technique is used to transfer the predicted 3D human poses from fashion 

images/videos to other people, so that different people can perform the same motion, 

e.g. catwalk, realizing multiplayer motion animation. 

 

Keywords: Deep Learning, 3D Human Pose Estimation, Motion Amplitude, Feature 

Fusion, Transformer, Self-Attention Mechanisms, Graph Convolutional Network. 

 

  



 

v 

PUBLICATIONS 

1. Peng, J., Zhou, Y., & Mok, P. Y. (2022, July). 3D POSE ESTIMATION BY 

GROUPED FEATURE FUSION AND MOTION AMPLITUDE ENCODING. 

In 16th International Conference on Computer Graphics, Visualization, 

Computer Vision and Image Processing, CGVCVIP 2022, 8th International 

Conference on Connected Smart Cities, CSC 2022, 7th International 

Conference on Big Data Analytics, Data Mining and Computational 

Intelligence, BigDaCI 2022, and 11th International Conference on Theory and 

Practice in Modern Computing, TPMC 2022-Held at the 16th Multi Conference 

on Computer Science and Information Systems, MCCSIS 2022 (pp. 27-34). 

2. Peng, J., Zhou, Y., & Mok, P. Y. (2022). Balanced Feature Fusion for Grouped 

3D Pose Estimation. International Conference on Computer Graphics, 

Visualization and Computer Vision 2022. 

3. Peng, J., Zhou, Y., & Mok, P. Y. (2024). KTPFormer: Kinematics and Trajectory 

Prior Knowledge-Enhanced Transformer for 3D Human Pose Estimation. In 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR) (pp. 1123-1132). 

4. Peng, J., Zhou, Y., & Mok, P. Y. A cross-feature interaction network for 3D 

human pose estimation. Pattern Recognition Letters (PRL). under review, 2024. 

5. Peng, J., Zhou, Y., & Mok, P. Y. EHFusion: An efficient heterogeneous fusion 

model for group-based 3D human pose estimation. The Visual Computer (TVC). 

under review, 2024. 



 

vi 

ACKNOWLEDGEMENTS 

First and foremost, I would like to express my sincerest gratitude to my supervisor, Dr 

Tracy Mok who offers me an invaluable opportunity to pursue my doctorate. I learned 

a lot from her during my PhD studies, which included critical thinking, research tastes, 

and academic writing skills. Also, I want to thank her for the careful revisions she made 

to each of my papers. Without her patient guidance and help, I would not have been 

able to complete my doctoral studies, nor would I have been able to publish the paper 

in a top-tier conference. I am deeply honored to be able to engage in academic 

discussions and collaborate with the members of Dr Tracy Mok’s research team. 

Then I want to thank my senior, Dr. Zhou Yanghong, who has provided me with great 

help, whether in research or in life. When I first started conducting research during my 

doctoral stage, she patiently guided me step-by-step on the research approach, and 

engaged in discussions with me. I was able to get off to a smooth start in my research, 

and even to this day, conduct research independently, all of which would not have been 

possible without her guidance. 

Next, I want to express my gratitude to my two best senior fellow students, Zhang Feng 

and Wang Chen. You have given me a lot of valuable research ideas for my experiments 

and provided valuable revisions for my papers. From both of you, I've learned many 

useful research techniques. 

I also would like to thank Dr. Hong Zicong, my best friend at PolyU. I really enjoyed 

the time we spent working out together. Thank you for your encouragement and support, 

which have enabled me to persevere on the research path. And my other two best friends, 



 

vii 

Cheng Yu and Tang Zhenhua. Thank you for taking the time to discuss ideas and paper 

writing with me. I've learned a lot of research techniques from both of you. 

During my long doctoral studies, some friends have made my life more enriching and 

interesting. I would like to thank Yang Fan, Rao Kaidi, Li Danning, Jiang Zijing, Teng 

Jingcheng, Liang Guoping and other friends in PolyU. I really enjoyed the times we 

spent playing basketball together. 

Finally, I would like to thank my family for their support and help in keeping me going 

through my PhD career. I would like to thank all the professors for their valuable 

revisions of my doctoral thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

TABLES OF CONTENTS 

CERTIFICATE OF ORIGINALITY .......................................................................... i 

ABSTRACT........................................................................................................... ii 

PUBLICATIONS .................................................................................................... v 

ACKNOWLEDGEMENTS ..................................................................................... vi 

TABLES OF CONTENTS .................................................................................... viii 

LIST OF FIGURES ............................................................................................... xi 

LIST OF TABLES ................................................................................................ xv 

CHAPTER 1. INTRODUCTION .............................................................. 1 

1.1 Research Backgrounds ................................................................................ 1 

1.2 Statements of the Problem ........................................................................... 6 

1.3 Research Aims and Objectives .................................................................... 7 

1.4 Methodology Overview ................................................................................ 8 

1.5 Organization of the Thesis ........................................................................ 11 

CHAPTER 2. LITERATURE REVIEW ................................................ 13 

2.1 Deep Learning ........................................................................................... 13 

2.1.1 Feedforward Neural Network ..................................................... 13 

2.1.2 Convolutional Neural Network .................................................. 17 

2.1.2.1 Development History .................................................................. 18 

2.1.2.2 Network Structure ....................................................................... 20 

2.1.3 Transformer ................................................................................ 27 

2.2 Human Pose Estimation ............................................................................ 30 

2.2.1 Traditional Methods.................................................................... 30 

2.2.1.1 Feature engineering .................................................................... 30 

2.2.1.2 Pictorial structure ....................................................................... 31 

2.2.1.3 Poselets ....................................................................................... 32 

2.2.1.4 Problems with traditional methods ............................................. 33 



 

ix 

2.2.2 CNN-based Methods .................................................................. 35 

2.2.2.1 Methods based on Single Frame ................................................. 39 

2.2.2.2 Methods based on Video Sequence ............................................. 42 

2.2.3 Transformer-based Methods ....................................................... 46 

CHAPTER 3. GROUP-BASED 3D POSE ESTIMATION WITH AN 

EFFICIENT HETEROGENEOUS FUSION .................................. 48 

3.1 Introduction ............................................................................................... 48 

3.2 Method ....................................................................................................... 51 

3.2.1 Problem Formulation .................................................................. 51 

3.2.2 Heterogeneous Feature Fusion (HFF) ........................................ 54 

3.2.3 Motion Amplitude Information (MAI) ....................................... 57 

3.2.4 Camera Intrinsic Embedding (CIE) ............................................ 57 

3.2.5 Model Optimization .................................................................... 59 

3.3 Experimental Results and Discussion ...................................................... 64 

3.3.1 Datasets and Evaluation Protocol ............................................... 64 

3.3.2 Ablation Studies ......................................................................... 65 

3.3.3 Comparison with State-of-the-art Methods ................................ 66 

3.3.4 Discussion ................................................................................... 78 

3.3.5 Qualitative Results ...................................................................... 82 

3.4 Chapter Summary ...................................................................................... 83 

CHAPTER 4. KINEMATICS AND TRAJECTORY PRIOR 

KNOWLEDGE-ENHANCED TRANSFORMER .......................... 85 

4.1 Introduction ............................................................................................... 85 

4.2 Method ....................................................................................................... 89 

4.2.1 Kinematics-Enhanced Transformer ............................................ 90 

4.2.2 Trajectory-Enhanced Transformer .............................................. 93 

4.2.3 Stacked Spatio-Temporal Encoders ............................................ 95 

4.2.4 Regression Head ......................................................................... 95 

4.3 Experiments ............................................................................................... 95 



 

x 

4.3.1 Datasets and Protocols ................................................................ 95 

4.3.2 Implementation Details............................................................... 96 

4.3.3 Comparison with State-of-the-art Methods ................................ 97 

4.3.4 Ablation Study .......................................................................... 102 

4.3.5 Qualitative Analysis .................................................................. 107 

4.3.6 Adaptable to Different 3D Pose Estimators ............................. 111 

4.4 Chapter Summary .................................................................................... 117 

CHAPTER 5. A CROSS-FEATURE INTERACTION NETWORK .118 

5.1 Introduction ............................................................................................. 118 

5.2 Method ..................................................................................................... 121 

5.2.1 Preliminary ............................................................................... 121 

5.2.2 Cross-Feature Interaction ......................................................... 122 

5.2.3 GraMLP .................................................................................... 124 

5.2.4 Regression Head ....................................................................... 124 

5.3 Experiments ............................................................................................. 124 

5.3.1 Datasets and Evaluation Metrics .............................................. 125 

5.3.2 Implementation Details............................................................. 125 

5.3.3 Comparison with State-of-the-Art Methods ............................. 125 

5.3.4 Ablation Study .......................................................................... 129 

5.3.5 Qualitative Results .................................................................... 130 

5.4 Chapter Summary .................................................................................... 131 

CHAPTER 6. FASHION APPLICATION ........................................... 133 

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK ............................................................................. 139 

7.1 Conclusions .............................................................................................. 139 

7.2 Recommendations for Future Work ....................................................... 141 

REFERENCES .............................................................................................. 143 

 



 

xi 

 

LIST OF FIGURES 

Figure 1-1 Research in the field of fashion. ............................................................... 2 

Figure 1-2 Illustration of the overall research framework. ........................................ 9 

Figure 2-1 A typical multilayer feedforward neural network. ................................. 15 

Figure 2-2 2D convolution operation. ...................................................................... 22 

Figure 2-3 Zero padding. ......................................................................................... 23 

Figure 2-4 Stride=2. ................................................................................................. 23 

Figure 2-5 Dilated convolution. ............................................................................... 25 

Figure 2-6 Transposed convolution. ........................................................................ 25 

Figure 2-7 Max pooling operation. .......................................................................... 26 

Figure 2-8 Fully connected layer. ............................................................................ 27 

Figure 2-9. The vanilla transformer architecture (Vaswani et al., 2017). ................. 29 

Figure 2-10 Integral human pose regression with 3D heatmaps (Sun et al., 2018). .. 38 

Figure 2-11 Semantic Graph Convolutions (Zhao et al., 2019b). .............................. 40 

Figure 2-12 Anatomy-aware network for predicting bone directions and bone 

lengths (Chen et al., 2021c). ................................................................... 45 

Figure 3-1 Architecture of the proposed EHFusion model. ..................................... 51 

Figure 3-2 Our multi-task end-to-end EHFusion network. ...................................... 54 

Figure 3-3 Illustrations of (a) motion amplitude θ and (b) the group 

configuration. ......................................................................................... 56 

Figure 3-4 Illustration of the proposed heterogeneous feature fusion (HFF) module. 

FCN –Fully Connected Layer; BN – 1D Batch Normalization; Conv 1D 

– 1D convolution.. .................................................................................. 62 

Figure 3-5 Three-stage training network. ................................................................ 64 

Figure 3-6 Comparison of MPJPE performance of our method and that of RIE 

(Shan et al., 2021a). ................................................................................ 76 

Figure 3-7 Comparison of different feature fusion modules. ................................... 81 



 

xii 

Figure 3-8 Qualitative results output by our method and those of RIE (Shan et al., 

2021a). .................................................................................................... 83 

Figure 4-1 Top: the spatial local topology (fixed) plus the simulated spatial global 

topology (learnable) to form the kinematics topology (learnable). 

Bottom: the temporal local topology (fixed plus the simulated temporal 

global topology (learnable) to form the joint motion trajectory topology 

(learnable). ............................................................................................. 87 

Figure 4-2 Overview of Kinematics and Trajectory Prior Knowledge-Enhanced 

Transformer (KTPFormer). The input 2D pose sequence 𝑃𝑇𝑁 ∈

ℝ𝑇 × 𝑁 × 2 with 𝑇 frames and 𝑁 joints is first fed into the Kinematics-

Enhanced Transformer. .......................................................................... 89 

Figure 4-3 Comparison of visualization results and attention maps between ours 

and MixSTE (Zhang et al., 2022b). The x-axis and y-axis correspond to 

the queries and the predicted outputs, respectively. ............................. 109 

Figure 4-4 Visualizations of attention maps from the spatial self-attention in 

KTPFormer. The x-axis and y-axis correspond to the joints queries and 

the predicted outputs, respectively. The attention weights are 

normalized from 0 to 1, and the lighter color indicates stronger attention.

 .............................................................................................................. 109 

Figure 4-5 Visualizations of attention maps from the temporal self-attention in 

KTPFormer. The x-axis and y-axis correspond to the frames queries and 

the predicted outputs, respectively. The attention weights are 

normalized from 0 to 1, and the lighter color indicates stronger attention.

 .............................................................................................................. 110 

Figure 4-6 Visual comparisons of 3D pose estimation between MixSTE (Zhang et 

al., 2022b) and our KTPFormer on Human3.6M dataset. The green 

circle highlights locations where our KTPFormer yields better 

results. .................................................................................................. 110 



 

xiii 

Figure 4-7 Some visualisation results of 3D pose estimation by our KTPFormer on 

in-the-wild videos. ................................................................................ 111 

Figure 4-8 Overview of different motion trajectory topology. (a) The temporal local 

topology (joint-to-joint) plus the simulated temporal global topology 

(joint-to-joint) to form the joint motion trajectory topology. (b) The 

temporal local topology (pose-to-pose) plus the simulated temporal 

global topology (pose-to-pose) to form the pose motion trajectory 

topology. ............................................................................................... 114 

Figure 4-9 The framework overview of our KPA and TPA applied to different 3D 

pose estimators. The stacked TPA indicates that two TPA blocks are 

stacked with a residual connection. In terms of PoseFormer (Zheng et 

al., 2021a) and MHFormer (Li et al., 2022c), we use the stacked TPA 

(pose) to model temporal correlations between poses across frames. In 

contrast, the stacked TPA (joint) is utilized to encode the temporal 

features between joints across frames for STCFormer (Tang et al., 

2023b) and D3DP (Shan et al., 2023). ................................................. 115 

Figure 4-10 Visualizations of enhanced spatial and temporal attention maps by our 

KPA and TPA. The x-axis and y-axis correspond to the queries and the 

predicted outputs, respectively. The attention weights are normalized 

from 0 to 1, and the lighter color indicates stronger attention. ............ 116 

Figure 5-1 Schematic architecture of the proposed method. ................................. 120 

Figure 5-2 An overview of Cross-Feature Interaction Network. ........................... 120 

Figure 5-3  Cross-feature interaction module (CFI). .............................................. 123 

Figure 5-4 Qualitative comparisons with the MGCN (Zou & Tang, 2021) on 

Human3.6M dataset. ............................................................................ 131 

Figure 6-1 The whole process from inputting a video to generating an avatar. ..... 135 

Figure 6-2 Examples of application on animating personalized avatars (a). ......... 135 

Figure 6-3 Examples of application on animating personalized avatars (b). ......... 136 



 

xiv 

Figure 6-4 Examples of application on animating personalized avatars (c). ......... 137 

Figure 6-5 Examples of application on animating personalized avatars (d). ......... 138 

 

  



 

xv 

LIST OF TABLES 

Table 3-1 Ablation study results based on human3.6m dataset. GT-ground-truth 

2D poses. ................................................................................................ 66 

Table 3-2. Comparison of computational complexity and MPJPE with 2D ground 

truth poses as inputs on Human3.6M. The lowest prediction error is in 

bold. † indicates the transformer-based methods. ∗ uses the refining 

module propose in (Cai et al., 2019b). ................................................... 69 

Table 3-3 Results of MPJPE (mm) on Human3.6m Dataset using Protocol#1 with 

2D poses detected by CPN (Chen et al., 2018) as inputs. The lowest 

prediction error is in bold. † indicates the transformer-based methods. ∗ 

uses the refining module propose in (Cai et al., 2019b). ........................ 71 

Table 3-4 Results of P-MPJPE (mm) on Human3.6m Dataset using Protocol#2 

with 2D poses detected by CPN (Chen et al., 2018) as inputs. The lowest 

prediction error is in bold. † indicates the transformer-based methods. ∗ 

uses the refining module propose in (Cai et al., 2019b). ........................ 71 

Table 3-5 Results on Human3.6M under Protocol#1 with MPJPE (mm). The 

ground truth of 2D poses is used as inputs. The lowest prediction error 

is in bold. † indicates the transformer-based methods. ∗ uses the refining 

module propose in (Cai et al., 2019b). ................................................... 72 

Table 3-6 Results based on HumanEva-I dataset using Protocol#1 of MPJPE (mm).

 ................................................................................................................ 74 

Table 3-7 Analysis of hyperparameters setting for the MAI module based on 

Human3.6M dataset using Protocol#1. .................................................. 78 

Table 3-8 Ablation study on whether to encode the MAI module separately on 

Human3.6M under Protocol#1. .............................................................. 78 

Table 3-9 Ablation study involving different settings of feature fusion module. .. 79 

Table 3-10 Ablation study on the hyperparameters of CIE module on Human3.6M 



 

xvi 

under Protocol#1. ................................................................................... 80 

Table 4-1 Quantitative comparison results with the state-of-the-art methods on 

Human3.6M. The 2D poses obtained by CPN (Chen et al., 2018) are 

used as inputs. Top table: evaluation results of MPJPE (mm); Bottom 

table: evaluation results of P-MPJPE (mm); T is the number of input 

frames. (†) denotes using temporal information, and (*) indicates the 

diffusion-based methods. Red: Best results. Blue: Runner-up results. .. 99 

Table 4-2 Quantitative comparison results of MPJPE (mm) with the state-of-the-

art methods on Human3.6M using ground-truth (GT) 2D poses as inputs. 

T is the number of input frames. (†) denotes using temporal information, 

and (*) indicates the diffusion-based methods. Red: Best results. Blue: 

Runner-up results. ................................................................................ 100 

Table 4-3 Performance comparisons on MPI-INF-3DHP with PCK, AUC and 

MPJPE. The ↑ denotes the higher, the better, the ↓ denotes the lower, the 

better. .................................................................................................... 101 

Table 4-4 The MPJPE evaluation results on HumanEva testset. ......................... 102 

Table 4-5 Results of ablation study of each module in our KPTFormer on 

Human3.6M dataset. ............................................................................ 103 

Table 4-6 Results of ablation study involving different combinations of KPA and 

TPA in the network. .............................................................................. 104 

Table 4-7 The MPJPE and P-MPJPE comparisons with different numbers of KPA 

and TPA blocks in the KTPFormer. The evaluation is performed on 

Human3.6M with 81 input frames. The best result in each column is 

marked in red. ....................................................................................... 105 

Table 4-8 The MPJPE and P-MPJPE comparisons with different combination 

ways of topologies in the KPA and TPA. The evaluation is performed 

on Human3.6M with 81 input frames. The best result in each column is 

marked in red. ....................................................................................... 106 



 

xvii 

Table 4-9 The MPJPE and P-MPJPE of KTPFormer with different number of 

spatio-temporal encoders L, feature size of transformer layers C, and the 

number of heads H in self-attention on Human3.6M dataset. Red: Best 

results. Blue: Runner-up results. .......................................................... 107 

Table 4-10 Comparative results obtained with different 3D pose estimators trained 

with and without KPA and TPA modules on Human3.6M dataset. ...... 112 

Table 5-1 Quantitative comparisons with SOTA methods based on Human3.6M 

under MPJPE (mm) and P-MPJPE (mm) with 2D poses detected by 

CPN (Chen et al., 2018) as inputs. ∗ denotes using the refinement 

module (Cai et al., 2019b). † indicates the transformer-based methods. 

Best results are shown in bold. ............................................................ 127 

Table 5-2 Quantitative comparisons on Human3.6M under MPJPE. The input is 

the ground-truth 2D pose. ∗ denotes using the refinement module (Cai 

et al., 2019b). † indicates the transformer-based methods. Best results 

are shown in bold. ................................................................................ 127 

Table 5-3 Quantitative comparisons with state-of-the-art methods on MPI-INF-

3DHP test set. ....................................................................................... 129 

Table 5-4 Results of ablation study of each module in our method on Human3.6M 

dataset. .................................................................................................. 130 

 

 



 

1 

CHAPTER 1. INTRODUCTION 

1.1 Research Backgrounds 

Fashion can reflect the lifestyle and cultural background of its period. It not only has 

innovative concepts and designs, but also requires certain control over quality. In 

contemporary society, fashion has a significant impact on all aspects of social life, 

including social economy, politics, and culture. Since fashion has a significant influence 

on society and economy, researchers in many disciplines have conducted research and 

analysis on fashion from different perspectives, making fashion a new type of 

multidisciplinary research. For example, fashion designers design products by studying 

fashion trends. Marketing experts use changing consumer habits to maximise profits. 

Psychologists and sociologists focus on individual and group clothing style. 

In recent years, many computing scholars have actively participated in fashion-related 

research studies because of the readily applicability of machine-learning and computer 

vision techniques based on the widely available digital resources of online fashion 

images and videos. Many promising work has been published in top conferences, 

focusing on semantic segmentation of fashion images (Dong et al., 2015; Liang et al., 

2015; Martinsson & Mogren, 2019), semantic recognition of fashion images (Bossard 

et al., 2012; Di et al., 2013; Verma et al., 2018), fashion analysis (Gu et al., 2020; He 

& McAuley, 2016; Vittayakorn et al., 2015) and fashion recommendation (Ding et al., 

2021; Hu et al., 2015; McAuley et al., 2015; Veit et al., 2015). As shown in Figure 1-1, 
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semantic segmentation divides fashion images into multiple regions with semantic 

labels. Semantic recognition of fashion images focuses on identifying the categories 

and attributes of clothing from images. The goal of semantic recognition of fashion 

images is to identify the categories and attributes of clothing from images. Both are 

very useful for many applications like fashion trend analysis. Fashion recommendation 

aims to recommend corresponding products according to personal fashion preferences 

of individual consumer. Fashion analysis studies some valuable fashion cases based on 

specific data sets and techniques such as clothing recognition. 

 

Figure 1-1 Research in the field of fashion. 

The fashion industry has an important role in the global economy, the industry is very 

interested in research applications that improve consumer experience, in particular 

online shopping experience. For example, some online shopping platforms allow users 

to take photos of favourite items, and they search for the item in the photo or similar 

products accordingly. Alibaba iDST video analysis team proposes an online clothing 
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retrieval system which adopts the most advanced clothing detection and tracking 

technology to help customers to look for similar style of celebrities or actors/actresses 

while watching movies and TV. Other examples include applying artificial intelligence 

to fashion design work, such as Google's Muze and Amazon's Runway projects.  

With e-commerce being a major way now people shopping clothing products online, 

new technology is always in demand to address the need of trying on clothing. Only 

viewing fashion images at online shopping platform may not satisfy consumers 

nowadays, and they want to wear their selected clothes virtually to visualise the wearing 

effects. Revealing how specific clothing will look on people can be achieved by 

combining clothes parsing technology and motion retargeting technique on 

personalised avatars, while human pose estimation is the foundation technology for 

both, which is the key focus of this study.  

Human pose estimation, a crucial task in computer vision, is primarily categorized into 

2D human pose estimation and 3D human pose estimation. The 2D human pose 

estimation predicts the pose of a human body, in terms of pixel locations, on input 

images, while the 3D task involves predicting human pose coordinates in 3D space 

based on inputs of either single human images or videos. Human pose estimation can 

be applied for behaviour analysis, human-computer interaction, auxiliary pedestrian 

detection and virtual reality. The main difficulties of human pose estimation are as 

follows: First of all, the intricate nature of human body images necessitates the model 

to acquire a deep understanding of highly nonlinear mapping relations, posing a 
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significant challenge for threefold reasons. Firstly, human body images were taken in 

different scenarios, with different shooting angles and lighting conditions; secondly, the 

interaction between people and objects, as well as the interaction between people will 

cause random occlusion; thirdly, different wearing and body shapes also increase the 

complexity of the mapping between joints (also called keypoints) with pixels. Although 

traditional methods based on handcrafted features can achieve accurate positioning of 

unobstructed joints under fixed scenes, viewing angles and stable lighting conditions, 

such ideal situation is very rare in real situation. In this regard, extracting robust features 

and learning complex mapping relationships is an important research direction in the 

human pose estimation. On the other hand, the highly non-linear mapping relationship 

needs to be learned with a higher complexity model which requires significant 

computational overhead. Hence, speeding up the convergence rate of the model while 

ensuring the accuracy of the model is a key issue for the practicality of the human pose 

estimation. 

In order to extract more robust features and learn complex mapping relationships, 

LeCun et al. (2015) introduced deep learning techniques. Deep learning denotes a set 

of machine learning techniques grounded in artificial neural networks, alternatively 

termed deep structured learning, or deep hierarchical learning. Early deep learning 

studies mainly focused on the research related to Restricted Boltzmann Machine (RBM) 

and Auto encoder (AE). In 2012, the outstanding performance of Convolutional Neural 

Network (CNN) in the ImageNet competition sparked an upsurge in CNN research. 
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Toshev and Szegedy (2014) introduced the CNN to the field of human pose estimation, 

sparking a surge in research dedicated to human pose estimation leveraging this neural 

network architecture. The human body pose estimation method based upon deep 

learning, primarily on CNN and later on Transformer-based, becomes the current 

mainstream method for the following reasons: (1) The manual features are designed by 

the researcher based on experience, and the extracted features are not optimal for the 

human pose estimation. CNN possess the capability to autonomously acquire image 

representations from data, thereby circumventing the limitations associated with 

manual feature engineering. (2) The method based on manual features cannot achieve 

the joint optimization of feature extraction and human body model, while the end-to-

end optimization of network unifies the representation learning and human body 

modelling. After the researchers have defined the problem, they only need to design a 

reasonable network architecture and loss function to achieve model learning.  

In 2017, Vaswani et al. (2017) proposed the transformer architecture for natural 

language processing tasks. It utilized self-attention mechanisms to capture relationships 

between different elements in a sequence. Subsequently, transformers have been 

extended to various domains. In human pose estimation, transformers have 

demonstrated enhanced modeling capabilities for human pose sequences, achieving the 

superior performance compared to CNNs. However, the increased consumption of 

computational resources poses a challenge for transformers in human pose estimation. 

Given that the human body can be represented as graph-structured data, Graph 
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Convolutional Networks (GCNs) have been extensively applied in human pose 

estimation, yielding promising results. Nevertheless, GCNs excel at capturing local 

information but demonstrate limited capability to model global correlations. This study 

proposes new CNN-based and Transformer-based networks, addressing the current 

issues in related work for more effective and efficient 3D pose estimation.  

1.2 Statements of the Problem 

Here outlines the unique characteristics and issues of existing methods for 3D pose 

estimation, which this study is endeavour to address.  

In the existing CNN-based methods for 3D human pose estimation, the SOTA approach 

mainly take advantage of grouping strategy, which partitions the human body joints into 

different parts (arms, legs, and torso). After the joints are divided into different groups, 

each group's joint features are independently encoded and then a joint feature fusion 

scheme is usually used to fuse these features from various groups together to predict 

the overall pose of the full body. Nevertheless, the joint feature fusion schemes adopted 

in existing methods involves the learning of extensive parameters and hence are 

computationally very expensive. Moreover, to prevent interference among features 

from different groups, the grouped method (Shan et al., 2021a) often employ a multi-

stage training strategy rather than an end-to-end approach, leading to an increase in 

training time. 

For existing transformer-based methods for 3D human pose estimation (Li et al., 2022b; 

Li et al., 2022c; Shan et al., 2022; Tang et al., 2023b; Zhang et al., 2022b; Zhao et al., 
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2023; Zheng et al., 2021a), the main focus was often on developing novel transformer 

encoders. They model either the spatial correlation between joints within each frame 

and the pose-to-pose or joint-to-joint temporal correlation across frames. Regardless of 

spatial or temporal multi-head self-attention (MHSA) calculation, the present 

transformer-based methods all use linear embedding where 2D pose sequence are 

tokenized into high dimensional features and treated uniformly to compute the spatial 

correlation between joints and the temporal correlation across frames in the spatial and 

temporal MHSA, respectively. This may lead to the problem of ‘attention collapse’, a 

phenomenon denoting a circumstance wherein the self-attention becomes too focused 

on a limited subset of input tokens while disregarding other segments of the sequence. 

There are some work (Zhao et al., 2022; Zhu et al., 2021) that combines GCN and 

transformer to learn both local and global dependencies for 3D pose estimation based 

upon single frame. Nevertheless, these studies merely employ the GCN and the self-

attention mechanism in a straightforward manner for feature extraction, without 

effectively integrating the extracted features. This leads to a situation where local 

features and global features interfere with each other, rather than being complementary, 

resulting in a decrease in the performance. 

1.3 Research Aims and Objectives 

This study aims to develop novel deep-learning based methods for effective and 

efficient 3D human pose estimation, addressing those issues of existing methods. A total 

of three new methods are developed in this study. Among the three, the first two 
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methods take 3D poses from input of video sequences, while the last one is based on 

single frames. 

The specific research objectives are listed as follows: 

i. To comprehensively review and understand deep learning techniques about 

human pose estimation. 

ii. To compare and analyse machine learning technologies about 3D human pose 

estimation. 

iii. To design and develop a new CNN-based method for 3D pose estimation with 

less computational overhead and improved performance, allowing end-to-end 

training. 

iv. To design and develop a novel transformer-based network for 3D pose 

estimation with video sequence inputs. 

v. To present an effective network design that skilfully combines the graph and 

attention mechanisms for 3D pose estimation from single frames. 

vi. To comprehensively evaluate the effectiveness of the proposed methods in 

comparison with relevant state-of-the-art methods.  

vii. To demonstrate the potential fashion application of the prssoposed 3D human 

pose methods. 

 

1.4 Methodology Overview 

As mentioned, this study investigates the cutting-edge deep learning-based methods for 
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3D human pose estimation and suggests relevant potential fashion applications. Figure 

1-2 shows the overall research framework of this study, which include the developments 

of three DL-based networks, including (1) CNN-based model for group-based 3D pose 

estimation with an efficient heterogeneous fusion, (2) Kinematics and Trajectory Prior 

Knowledge-Enhanced Transformer (KTPFormer), a transformed based method, and (3) 

a Cross-Feature Interaction Network, again a transformer-based method.  The predicted 

3D poses are demonstrated through a fashion application for motion retargeting to 

several avatars. 

 

Figure 1-2 Illustration of the overall research framework. 

The first model of CNN-based model for group-based 3D pose estimation with an 

efficient heterogeneous fusion improves the performance and requires fewer parameters 

and calculations than other existing state-of-the-art CNN-based methods. In this model, 

a heterogeneous feature fusion (HFF) module is developed to fuse different groups of 
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joint features more efficiently. Furthermore, this new model introduces a motion 

amplitude information (MAI) and a camera intrinsic embedding (CIE) sswhich are 

designed to provide better global information and 2D-to-3D conversion knowledge, 

thereby improving the overall robustness and accuracy. In contrast to previous SOTA 

models, the proposed new network can be trained end-to-end in one single stage. 

Experiments were conducted on two public datasets (Human3.6M (Ionescu et al., 2013) 

and HumanEva (Sigal et al., 2010)) to validate the effectiveness of this model. 

Next, a novel transformer-based model, called Kinematics and Trajectory Prior 

Knowledge-Enhanced Transformer (KTPFormer), is proposed as the second method 

for 3D pose estimation with video inputs. This network contains two novel prior 

attention modules − Kinematic Prior Attention (KPA) and Trajectory Prior Attention 

(TPA). KPA models kinematic relationships in the human body by constructing a 

topology of kinematics. On the other hand, TPA builds a temporal topology to learn the 

priori knowledge of joint motion trajectory across frames. In this way, the two prior 

attention mechanisms can yield Q, K, V vectors with prior knowledge for the vanilla 

self-attention mechanisms, which helps model global dependencies and features more 

effectively. With a lightweight plug-and-play design, KPA and TPA can be easily 

integrated with various state-of-the-art models to further improve the performance 

significantly with only a small increase in the computational overhead. Extensive 

experiments were conducted on three benchmarks, including Human3.6M (Ionescu et 

al., 2013), MPI-INF-3DHP (Mehta et al., 2017) and HumanEva (Sigal et al., 2010), to 
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evaluate this model in comparison with other state-of-the-art, transformer-based or non-

transformer-based methods. 

Both the first and second models are designed for 3D pose estimation based on video 

sequence inputs, while a Cross-Feature Interaction Network, is designed to leverage 

GCN and the multi-head self-attention (MHSA) to capture the local features and global 

features, respectively, retaining the initial 2D pose joint features in the third branch of 

the network. Moreover, we design a specific multi-head cross-attention (MHCA) to 

facilitate cross-feature communications among three different features (local features, 

global features and initial 2D pose features) and aggregate them to form the enhanced 

spatial representations of single pose. Besides, a parallel GCN and multi-layer 

perceptron (GraMLP) module is introduced to inject the skeletal knowledge of human 

body into the final 3D pose representation. Again, experiments were conducted on 

Human3.6M (Ionescu et al., 2013) and MPI-INF-3DHP (Mehta et al., 2017) datasets 

to validate the effectiveness of this third model. 

Being a demonstration for potential application for these proposed methods, motion 

retargeting technique is used to transfer the predicted 3D human poses from fashion 

images/videos to other people, so that different people can perform the same motion, 

e.g. catwalk, realizing multiplayer motion animation. 

1.5 Organization of the Thesis 

In 0, recent deep learning techniques and human pose estimation methods, including 

traditional methods, convolutional neural networks and transformers are reviewed.  
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In 0, the first model of CNN-based model for group-based 3D pose estimation with an 

efficient heterogeneous fusion is presented, giving detail designs of the heterogeneous 

feature fusion (HFF) module, motion amplitude information (MAI) and camera 

intrinsic embedding (CIE). Experimental results on public datasets (Human3.6M and 

HumanEva) and discussion are presented in the same chapter. 

In 0, the second method of this study, namely Kinematics and Trajectory Prior 

Knowledge-Enhanced Transformer (KTPFormer), is introduced and evaluated on 

public benchmarks (Human3.6M, MPI-INF-3DHP and HumanEva). This method is 

evaluated and compared with other state-of-the-art methods on these datasets. 

In 0, the third network, a Cross-Feature Interaction Network, is introduced for 3D pose 

estimation with single frame inputs. The model is again evaluated comprehensively by 

carefully planned experiment on two public datasets (Human3.6M and MPI-INF-

3DHP). 

0 applies the estimated 3D human pose from the proposed 3D pose estimation methods 

to various avatars for potential fashion and game applications. Qualitative analysis was 

conducted through visualising the motion retargeting results on various avatars. 

Lastly, the findings of this study are summarised in Chapter 7, with discussions on its 

limitations and possible future work. 
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CHAPTER 2. LITERATURE REVIEW 

This chapter reviews the related work and important techniques that serve the 

foundation of the current study on human pose estimation. Since this study is based 

mainly on deep learning techniques, its development history and major network 

structures of deep learning are first reviewed in Section 2.1. In Section 2.2, the 

traditional methods for human pose estimation are summarised, followed by the deep 

learning based methods of CNN and Transformer related work in recent years in 

Sections 2.2.2 and 2.2.3, respectively.  

2.1 Deep Learning 

The exploration of artificial neural networks give rise to the inception of deep learning. 

Mathematical models inspired by biology and neurology are what constitute artificial 

neural networks, which constructs neurons like the human brain and connects them 

according to a certain structure to simulate the biological nervous system. Neural 

network is a machine learning model that needs to connect individual neurons to 

achieve complex functions. When it consists of many layers of neurons, it is called the 

deep neural network. Deep learning was proposed by (LeCun et al., 2015), which 

employed deep neural networks. We will introduce several commonly used deep 

learning networks in the following sections. 

2.1.1 Feedforward Neural Network 

The feedforward neural network, widely utilized, stands out as one of the most 

fundamental structures in neural networks. Employing a unidirectional multilayer 
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structure, the feedforward neural network features numerous neurons in each layer. 

Within this neural network, every neuron can receive signals from the neurons in the 

preceding layer and produce outputs directed to the subsequent layer. The initial layer, 

which accepts signal inputs, is termed the input layer, while the concluding layer is 

known as the output layer. Intermediate layers between them are referred to hidden 

layers, which may consist of a single layer or multiple layers. In these hidden layers, 

each node connects to the nodes in the subsequent layer via a weight vector represented 

by W and a bias denoted by b. Operating without feedback, the network facilitates the 

unidirectional propagation of signals from the input layer to the output layer. Figure 2-1 

illustrates a typical multilayer feedforward neural network. Each small circle represents 

a perceptron model. Each neuron in the first layer of the network receives the input 

signal, and then outputs it to the next layer of neurons after weighted summation by its 

own neural body. The neurons of the second layer get their inputs from the outputs of 

the previous layer. Finally, after the computation of the intermediate neural network, 

the Zand this network structure is generally used for regression tasks. The neural 

network used for classification will output the number of results corresponding to the 

label at the end. 
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Figure 2-1 A typical multilayer feedforward neural network. 

In the feedforward neural network, there is a very important function called the 

activation function that is generally located in the hidden layer. The activation function 

operates on the neurons within an artificial neural network, mapping the input of each 

neuron to its respective output. In the above perceptron model, the neurons treat the 

input parameters in a weighted summation manner. Therefore, the output is the result 

of a linear superposition of the input parameters. However, the distribution of the data 

is mostly non-linear. To adapt to a nonlinear space, most networks introduce activation 

functions that reinforce the learning ability of the network. Different activation 

functions have different applications depending on their characteristics. To enrich the 

representation and learning capability of the network, the activation function generally 

needs to satisfy these requirements: 1) the activation function should be a continuously 

derivable nonlinear function; 2) the derivation process of the activation function should 

be as simple as possible in order to improve the efficiency of the network; 3) The 

derivative value should be in a certain interval. Too large value will affect the stability 

of network training, while too small value will affect the efficiency of network training. 
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In the following section we will introduce several common activation functions. 

Sigmoid is a commonly used nonlinear activation function, which has the following 

mathematical formula:  

 𝑓(𝑧) =
1

1+𝑒−𝑧
  ( 2-1 ) 

It can convert a continuous real value into an output ranging from 0 to 1. In particular, 

when confronted with a significantly large negative input, the output is driven to 0, 

while a correspondingly large positive input results in an output of 1. Sigmoid is a 

continuous derivative function and the derivative is simple. The output of Sigmoid 

function can be seen as a gating mechanism to control the amount of information in the 

output. However, since the value of the Sigmoid function is constantly greater than 0, 

this non-zero centrality causes bias shifts in the inputs between layers, making 

convergence slower. When the output value of the neuron is much larger than 0 or much 

smaller than 0, using the sigmoid function during the training of the neural network 

causes the gradient to disappear during training. Currently, the network is updated with 

a return gradient close to 0 and the network stops optimizing. 

Another common type of activation function is the Tanh function. Tanh is a hyperbolic 

tangent function that is like sigmoid. They both belong to the saturation activation 

function, and the difference is that the output ranges from (0, 1) to (-1, 1). The Tanh 

activation function is written as follows: 

 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥                             ( 2-2 ) 

Tanh is also a zero-centered symmetric function that does not cause bias shifts between 
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different layers. However, the gradient of the function is still close to 0 when the input 

value is much larger than 0 and much smaller than 0. The problem of gradient 

disappearance is still not solved. The most widely utilized activation function in neural 

networks is the modified activation function ReLU. The formula can be written as 

follows: 

 𝑅𝑒𝐿𝑈(𝑥) = {
𝑥,   𝑥 ≥ 0
0,   𝑥 < 0

  ( 2-3 ) 

The ReLU function is a linear function when x is greater than 0, and equal to 0 when x 

is less than 0. The ReLU function is computationally simple, and the derivative is easy 

to get, and the neurons using ReLU as the activation function are computationally 

efficient. The ReLU function has the property of one-sided inhibition and wide 

excitation band, so it is active when the input is greater than 0. Meanwhile, the ReLU 

function alleviates the gradient vanishing problem possessed by Sigmoid and Tanh. 

However, if all training data do not activate a ReLU neuron, then the gradient of the 

network gradient is always 0. The use of batching operation can solve this problem, so 

ReLU is widely used in current neural network architectures. 

In general, the feedforward neural network is the simplest network because it has no 

feedback, which is used for learning and correction of parameters. 

2.1.2 Convolutional Neural Network 

The Convolutional Neural Network (CNN) stands as a representative algorithm within 

the domain of deep learning. It embodies a feedforward neural network with a deep 

structure, incorporating convolutional computation. CNN can achieve translational 
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invariant classification of input data based on its hierarchical structure. It takes 

advantage of the local similarity of images, and the semantic information in the images 

is not affected when the images are scaled and panned.  

2.1.2.1 Development History 

The exploration of CNN commenced during the 1980s and 1990s. The Japanese scholar 

Fukushima and Miyake (1982) first proposed the neocognitron model  in 1982. He 

conceived the neural network called "neocognitron" with the goal of emulating the 

visual cortex of living beings. Neocognitron is characterized by its deep structure and 

stands as one of the earliest deep learning algorithms, featuring alternating S-layers 

(Simple-layer) and C-layers (Complex-layer) as implicit components. The integration 

of S and C layers in neocognitron facilitates feature extraction and filtering, partially 

fulfilling the roles of the convolution layer and the pooling layer in the CNNs. This 

groundbreaking research serves as a seminal inspiration for convolutional neural 

networks. 

The inaugural convolutional neural network, known as the Time Delay Neural Network 

(TDNN), was introduced by (Waibel et al., 1989). TDNN applied the CNN to address 

the speech recognition challenge, utilizing an FFT pre-processed speech signal as its 

input. The network featured an implicit layer incorporating two 1D convolutional 

kernels aimed at extracting translational invariant features in the frequency domain. 

Notably, TDNN benefited from the progress in Backpropagation (BP) algorithms 

within the field of artificial intelligence that preceded its emergence, allowing it to 
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leverage the BP framework for learning. 

In 1988, Zhang et al. (1996) introduced the initial 2D convolutional neural network, 

termed the translation-invariant artificial neural network (SIANN). They successfully 

applied SIANN to the detection of medical images. LeCun et al. (1989b) developed a 

convolutional neural network designed for computer vision challenges, and this marked 

the inception of the original version of LeNet. LeNet comprised two convolutional 

layers, two fully connected layers, and a total of 60,000 learning parameters. Notably, 

the network's architecture was substantially larger than those of TDNN and SIANN. 

Structurally, LeNet bore a close resemblance to contemporary convolutional neural 

networks. LeCun et al. (1989b) employed Stochastic Gradient Descent (SGD) for 

learning following the random initialization of weights. This approach was 

subsequently maintained in subsequent deep learning research. In 1998, LeCun et al. 

(1998b) developed a more complete neural network called LeNet-5, and succeeded in 

the problem of handwritten digit recognition. LeNet-5 adheres to the learning strategy 

of (LeCun et al., 1989b) and extends the original design by incorporating a pooling 

layer to filter input features. This addition of pooling layers is instrumental in shaping 

the basic structure of modern convolutional neural networks. LeNet-5 and its 

subsequent variations establish a foundational framework where alternating 

convolutional-pooling layers effectively extract translation-invariant features from 

input images. 

Although convolutional neural networks were already established in 1998, they did not 
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show significant advantages over the mainstream methods of combining support vector 

machines with manual features due to the limitations of computer performance and the 

lack of training datasets. Therefore, they did not receive much attention. Following the 

proposal of deep learning theory by (Hinton & Salakhutdinov, 2006), there was a 

notable surge in interest and development of the representational learning capability of 

convolutional neural networks. This progress was further facilitated by advancements 

in numerical computing devices. In 2008, NVIDIA introduced the concept of General-

purpose Graphics Processing Units (GPGPU) and created the Compute Unified Device 

Architecture (CUDA) computing library to enable acceleration of scientific computing. 

In 2008, NVIDIA introduced the concept of General-purpose Graphics Processing 

Units (GPUs) and created the Compute Unified Device Architecture (CUDA), which 

enables acceleration of scientific computing. In 2012, Krizhevsky et al. (2012a) 

introduced the AlexNet and achieved efficient training of the network based on CUDA, 

and won the ImageNet classification competition, which quickly attracted widespread 

attention to convolutional neural networks. Since then, research on convolutional neural 

networks has been flourishing. Researchers propose many improvements to the 

network architecture and apply convolutional neural networks to various application 

scenarios (e.g., target detection, face recognition, object classification, semantic 

segmentation, pedestrian re-identification, pose estimation). 

2.1.2.2 Network Structure 

Modern convolutional neural networks mainly consist of convolutional layer, pooling 
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layer, fully connected layer. Earlier classification tasks or regression tasks used a fully 

connected layer after the feature extractor, and the dimensionality of the features was 

reduced by the fully connected layer. However, too many parameters in the fully 

connected layer can increase the computational overhead of the network and cause 

overfitting. In order to reduce the number of parameters and computation of the network 

and avoid overfitting, some researchers have tried to use the global pooling layer 

instead of the fully connected layer and obtained the same results as the fully connected 

layer. In some dense prediction assignments like semantic segmentation and pose 

estimation, convolutional layers are typically positioned close to the output layer within 

the network. This placement is essential because these tasks necessitate the 

implementation of a fully convolutional network to retain spatial details, enabling the 

creation of accurate segmentation maps or heat maps. The subsequent section provides 

an elaborate breakdown of each component within the convolutional neural network. 

The convolutional layer is the core component of a convolutional neural network and 

consists of convolutional kernels, which aim to extract the local features. Convolution 

kernels share parameters when sliding over images or feature maps. This type of 

parameter sharing can significantly reduce the number of parameters. Figure 2-2 

illustrates the 2D convolution operation. While each convolutional kernel possesses a 

small receptive field, the cumulative effect of stacking multiple convolutional layers 

allows the entire network to encompass a large receptive field. When a convolutional 

neural network is forwarded, each convolutional kernel slides over the input image or 
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feature map and calculates the dot product with the current local receptive field, which 

is used as the activation value for a location in the feature map. When the sliding is over, 

the convolution layer outputs a new feature map. 

 

Figure 2-2 2D convolution operation. 

Besides, researchers also add a zero-padding operation and introduce different strides 

to increase the expressiveness of the convolution, making feature extraction more 

flexible. 

Figure 2-3 shows the zero padding in the convolution. Convoluting the input image 

with a convolution kernel can result in the loss of information at the image boundaries. 

This occurs because pixels at the edges of the image are never positioned at the centre 

of the convolution kernel, and the kernel cannot extend beyond the edge region. 

Introducing zero padding enables the convolution kernel to extend beyond the edges, 

incorporating pseudo-pixels when scanning the input data. This ensures that the output 

and input maintain the same size. 
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Figure 2-3 Zero padding. 

Figure 2-4 shows the case where the stride in the convolution is equal to 2. The 

convolution kernel starts with the top-left corner of the input and slides one column to 

the left or one row down to calculate the output one by one. The number of rows and 

columns in each slide is called Stride. The purpose of the Stride parameter is to 

exponentially decrease the size, with the specific reduction factor determined by its 

numerical value. For instance, if the stride is set to 2, the output size becomes half of 

the input; similarly, a stride of 3 results in an output size one-third of the input. 

 

Figure 2-4 Stride=2. 

Changing the strides of the convolution and zero-padding methods can improve the 

feature extraction ability of traditional convolution, but these methods still cannot solve 

the following drawbacks of traditional convolution: a) The local operation of the 
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convolution kernel prevents convolution from directly obtaining the global features of 

the image. The only way to get the global features is to stack the convolution layers. 

The constant stacking of convolutional layers will make the number of parameters 

larger and the computational overhead too high. b) Convolution does not enable 

recovery from smaller feature maps to larger ones. In order to solve these problems, 

some new convolutional structures have been proposed, such as dilated convolutions 

(Yu & Koltun, 2015), transposed convolution (Dumoulin & Visin, 2016). 

Dilated convolution is executed by introducing gaps or "holes" into the standard 

convolutional map, thereby expanding the receptive field of the network. The original 

convolution gets local information from adjacent positions, while the dilated 

convolution gets local information from partially adjacent positions. In addition to 

determining the length and width of the convolution kernel, the dilated convolution also 

requires determining the dilation rate that refers to the interval distance between each 

weight in the convolution kernel. The dilation rate of the original convolution is 1. 

Figure 2-5 shows the dilated convolution. The kernel size in the figure is 3×3. As the 

dilation rate increases, the receptive field of the convolution also increases. Dilated 

convolution does not need to increase the convolution kernel or stack convolution 

layers to increase the reception field, which saves computational resources and does not 

cause overfitting problems. In Figure 2-5, the dilated convolution with a dilation rate 

of 2 has a reception field of 5×5 with the same parameters. 
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Figure 2-5 Dilated convolution. 

As an input image undergoes feature extraction via a convolutional neural network, the 

output size often diminishes. Occasionally, it becomes necessary to restore the image 

to its original size for subsequent computations, such as semantic segmentation. This 

process, aimed at mapping the image from a smaller to a larger resolution, is referred 

to as upsampling. There are 3 common methods for upsampling: bilinear interpolation, 

transposed convolution, and nearest neighbour interpolation. Transposed convolution 

solves the upsampling problem of feature map. As shown in Figure 2-6, transposed 

convolution expands the original low-resolution feature map by the zero-padding 

operation, and then generate the feature map of the next layer, which is used to achieve 

upsampling. 

 

Figure 2-6 Transposed convolution. 

The pooling layer constitutes another crucial element of the convolutional neural 

network, serving as a form of nonlinear downsampling. The primary objective of 

incorporating pooling layers is to achieve translation invariance, enabling the model to 
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prioritize the presence or absence of a feature rather than its precise location. This layer 

effectively reduces the resolution of the feature map, mitigating computational 

overhead in the network while helping to prevent overfitting. Common types of pooling 

layers include the maximum pooling layer, average pooling layer, and global maximum 

pooling layer. Among these, the maximum pooling layer is the most commonly utilized, 

dividing the input into non-overlapping sub-regions and extracting the maximum value 

from each sub-region to represent its characteristics. As shown in Figure 2-7, the 

pooling process is similar to the convolution process. It uses a 2×2 filter with a stride 

2 to scan the values in the neighbourhood of a feature map and selects the maximum 

value to output to the next layer. The pooling operation does not affect the 

dimensionality of the output and the feature channels remain unchanged. 

 

Figure 2-7 Max pooling operation. 

The fully connected layer in a convolutional neural network corresponds to the hidden 

layer in a traditional feedforward neural network. Positioned at the end of the hidden 

layers in the convolutional neural network, the fully connected layer exclusively 

transmits signals to other fully connected layers. As shown in Figure 2-8, each neuron 

within the fully connected layer forms connections with neurons in the preceding layer. 

Serving as a "classifier" in the convolutional neural network, the fully connected layer 
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plays a pivotal role. The convolutional layer, pooling layer, and activation function 

collaboratively map the initial data into a hidden feature space, undertaking the 

processes of feature extraction and selection. Meanwhile, the fully connected layer 

further maps the learned feature representation to the labeled space of the samples. 

Essentially, it integrates these features and channels them towards the final classifier or 

regression. It's worth noting that the fully connected layer discards location information 

present in the feature map, thereby reducing the sensitivity of parameters during model 

learning. However, it is susceptible to parameter redundancy. The parameters associated 

with the fully connected layer can constitute a significant portion, around 80%, of the 

overall network parameters. This not only slows down the training speed but also 

increases the risk of overfitting. 

 

Figure 2-8 Fully connected layer. 

2.1.3 Transformer 

In 2017, Vaswani et al. (2017) proposed the transformer architecture and showed 

remarkable performance in natural language processing (NLP), as the self-attention can 

model long-range dependencies and also capture global features. Figure 2-9 shows the 
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vanilla transformer architecture. Within the self-attention layer, the input vector 

undergoes an initial transformation into three distinct vectors: the query vector 𝑄, the 

key vector 𝐾 , and the value vector 𝑉 . Then, the attention between different input 

vectors is calculated as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 ∙ 𝐾𝑇

√𝑑𝑘

) (2 − 4) 

To boost the performance of the vanilla self-attention mechanism, the multi-head 

attention mechanism is proposed. When considering a particular reference word within 

a sentence, some key words are often emphasized. The constraint imposed by a single-

head self-attention layer impedes the capacity to selectively concentrate on one or more 

specific positions without concurrently affecting attention toward other positions of 

equal significance. To address this limitation, divergence in representation subspace is 

introduced across attention heads. Specifically, distinct query, key, and value matrices 

are employed for different heads. In this way, these matrices can project input vectors 

into different feature subspaces. The equation of multi-head attention can be written as 

follows: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊 (2 − 5) 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) (2 − 6) 

Where ℎ is the number of heads, 𝑊 is the projection matrix. Following the multi-head 

attention layers in each encoder and decoder, a feed-forward network (FFN) is 

employed. This network comprises two linear transformation layers with a nonlinear 

activation function embedded between them. In addition, a residual connection is 
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introduced to every sub-layer within both the encoder and decoder, enhancing the 

information flow to achieve better performance. 

 

Figure 2-9. The vanilla transformer architecture (Vaswani et al., 2017). 

Benefiting from the powerful modeling capability of the multi-head attention 

mechanism, scholars have recently endeavoured to employ transformers in addressing 

the computer vision tasks. Chen et al. (2020) trained a sequence transformer with the 

objective of auto-regressively predicting pixels. Dosovitskiy et al. (2020) applied a 

vanilla transformer directly to sequences of image patches for the purpose of classifying 

the entire image, achieving state-of-the-art performance across various image 

recognition benchmarks. In addition to image classification, transformer has been 

employed to tackle other computer vision tasks. Carion et al. (2020) presented a 

transformer encoder-decoder architecture DETR for object detection, eliminating the 

necessity for numerous manually crafted components including a non-maximum 
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suppression procedure or anchor generation. Zhu et al. (2020) proposed Deformable 

DETR, exploiting the attention modules to selectively attend to a concise set of key 

sampling points surrounding a specified reference. Zheng et al. (2021b) adopted a pure 

transformer to encode an image as a sequence of patches, and the encoder can be 

seamlessly integrated with a transformer decoder. This was a semantic segmentation 

method entirely based on the transformer. Chen et al. (2021a) developed an image 

processing transformer (IPT) model which is optimized on ImageNet (Deng et al., 2009) 

benchmark with multi-heads and multi-tails. Zhou et al. (2018) introduced an end-to-

end transformer network for dense video captioning. In particular, they utilized a self-

attention mechanism to incorporate an efficient non-recurrent structure during the 

encoding process, thereby improving the performance. Due to the outstanding 

performance of transformers, an increasing number of researchers are proposing 

transformer-based models to improve a diverse array of visual tasks. 

2.2 Human Pose Estimation 

2.2.1 Traditional Methods 

Before the success of deep learning, there are some traditional human pose estimation 

methods in the early research. These methods can be divided into feature engineering, 

pictorial structure and poselets. 

2.2.1.1 Feature engineering 

Research on human pose estimation first appeared in 1980. Early methods used feature 
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engineering and assumptions for human pose estimation. Forsyth and Fleck (1997) 

proposed the Body Plan method which refers to a series of human features learned from 

image data under the constraints of colour, texture, and geometric attributes. It can be 

used to segment and recognize the human body in a complex environment. Mori and 

Malik (2002) obtained the pose of the human body by matching the shape. This method 

could not only obtain the position of the joints but also realize the tracking of the joints 

in motion. Ren et al. (2005) used the segmentation method to obtain the characteristics 

of each part of the human body, and then used the relative position between the joints 

and the consistency of the scale to constrain the model to predict the human pose. Hua 

et al. (2005) used Markov model to infer the human pose from the shape, edge, colour 

and other information in the image. 

2.2.1.2 Pictorial structure 

Compared with the earlier methods, the method of pictorial structure has the advantages 

of low computational complexity and fast prediction. This method is used in some fields 

such as human tracking, human pose estimation, and automatic discovery of object 

regions in videos. The research based on the pictorial structure method mainly focuses 

on three aspects: realizing the rapid calculation of the model, improving the modelling 

ability of the Appearance Model and the performance of the human pose estimation. 

Eichner and Ferrar (2009) proposed to use the relationship between the appearance of 

different parts of the body to improve the modelling performance of the appearance 

model. Johnson and Everingham (2009) proposed to use Histogram of Oriented 



 

32 

Gradients (HOG) to improve the performance of human component detectors. Sapp et 

al. (2011) proposed to model joints instead of human limbs and used several tree-like 

sub-models to track joints between video frames. Based on the pictorial structure 

framework, Felzenszwalb et al. (2008) and Felzenszwalb et al. (2010) proposed 

Deformable Part-based Models to improve the modelling capabilities of appearance 

models. Yang and Ramanan (2011) and Yang and Ramanan (2012) introduced hybrid 

deformable components into the tree structure model to improve the modelling 

capabilities of the appearance model. This method uses component-based models 

(Felzenszwalb et al., 2008) and structured Support Vector Machine (SVM) for learning. 

2.2.1.3 Poselets 

Poselets (Bourdev & Malik, 2009) is another mainstream method in traditional human 

pose estimation. This method first needs to construct a data set containing 3D human 

pose information, and then use a clustering method to divide samples with the same 

pose in the data set into the same sub-data set. The sub-data sets formed in this way 

have the same pose but different shapes. Bourdev and Malik (2009) used sub-data sets 

to train several linear SVM classifiers which are Poselets. Poselets could be used to 

scan the image at multiple scales after obtained. During the scanning process, the output 

of the Poselets was fused to determine whether the current image block contains joints 

and the types of joints. In order to estimate the pose of the upper body, Bourdev and 

Malik (2013) proposed the Armlet method based on the Poselets method, which divided 

the data set according to the pose of the arms, and then used the divided data set to train 
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Armlet. In order to add higher-order information between body parts to the graph 

structure model, Pishchulin et al. (2013) integrated Posetlets into the graph structure 

model, using the information extracted by the Poselets detector as the middle layer to 

directly predict the body joints in the image. In order to obtain a stronger local multi-

modal shape model, the author uses a rotation-independent part detector. By taking the 

local shape features obtained by the part detector and the mid-level features obtained 

by the Poselets detector as the input of the graph structure model, it improves the 

performance of graph structure model. Since the deformable part model cannot use the 

annotation information of the joints in the data set like Poselet, Gkioxari et al. (2014) 

proposed to use Poselet for the deformable part model to enhance its performance. 

2.2.1.4 Problems with traditional methods 

The manual features used in traditional human pose estimation methods include the 

directional gradient histogram using local gradient contours (Dalal & Triggs, 2005), the 

directional gradient histogram of gPb contours (Arbeláez et al., 2010), scale-invariant 

feature transform (Lowe, 2004), color characteristics (Wren et al., 1997) and contextual 

features (Gkioxari et al., 2013). Traditional methods usually use SVM classifier to 

classify (Finley & Joachims, 2008) or use deformable component model to model the 

human body structure (Felzenszwalb et al., 2008). Although traditional methods have 

achieved good results on simple data sets, they still have many intractable problems. 

These problems can be explained from the two aspects of feature extractor and human 

body model respectively. The problems faced by feature extractors: a) The hand-
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designed feature extractors can only extract low-level features and cannot capture high-

level semantic information; b) The hand-designed feature extractors do not work well 

with the human body model. The extractor cannot interact with the model during 

training; c) The hand-designed feature extractor is designed by the researcher based on 

experience. It is not the optimal feature extraction method and is not necessarily suitable 

for the task of human pose estimation. 

The problems faced by the human body model: a) The graph structure model is only 

suitable for data with a small number of joints and cannot be extended to the situation 

with more parameter parts; b) The graph structure model and the deformable 

component model need to be used manually for the designed features, while the model 

itself does not have the ability to extract features and cannot interact with feature 

extraction methods; c) Poselets are more computationally intensive and the training 

process is cumbersome and complex. When combined with other methods, the model 

increases the complexity. The above-mentioned problems have prompted researchers 

to turn their attention to find methods that can perform characterization learning without 

manual modelling. With the rise of deep learning, especially the continuous 

development of convolutional neural networks, LeCun et al. (1998c) have brought new 

dawn to solve these problems. This is mainly because the convolutional neural network 

has the following characteristics: Firstly, the convolutional neural network can directly 

use the data marked in the training set, and the convolutional neural network is a data-

driven method. The more high-quality annotated data, the better the effect of the model. 
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However, traditional methods cannot learn from a large number of Benefit from data; 

Secondly, the convolutional neural network can learn very complex nonlinear mapping 

relationships and deal with problems that plague traditional methods such as random 

occlusion, complex pose, and changeable appearance; Thirdly, the convolutional neural 

network can realize representation learning, avoiding the cumbersome manual design 

of features; Fourthly, the feature extraction inside the end-to-end trained convolutional 

neural network is integrated with the human body model. The convolutional neural 

network can automatically learn the feature representation and the human body model 

from the labelled data set according to the defined loss function. 

2.2.2 CNN-based Methods 

Convolutional neural networks (CNN) have experienced several years of development 

before they have matured. Fukushima and Miyake (1982) and Fukushima (1975) 

proposed the prototype of the early convolutional neural network based on the study of 

the visual system of cats by Hubel and Wiesel (Hubel & Wiesel, 1962; Hubel & Wiesel, 

1965; Hubel & Wiesel, 1977). Subsequently, LeCun (1989) and LeCun et al. (1989a) 

applied the Back Propagation algorithm (Rumelhart et al., 1986) to the convolutional 

neural network after studying the convolutional neural network to realize the effective 

training of the network. LeCun et al. (1998a) then improved the architecture of the 

network by proposing the multilayer cascaded convolutional neural network 

architecture LeNet-5. From an architectural perspective, the early LeNet-5 network 

lacks some of the key methods in the modern network architecture: rectified linear unit 
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(ReLU) (Glorot et al., 2011) is used instead of Sigmoid as the activation function to 

improve network training, and dropout (Srivastava et al., 2014) is used to deal with 

over-fitting problems. Due to the limitations of the machine performance at the time, 

the running speed of the convolutional neural network was very slow, which hindered 

its further development. When convolutional networks were created, the Internet had 

just emerged without much data accumulation, which was one of the reasons why 

convolutional neural networks were not popular at that time. It wasn't until 2012 that 

AlexNet proposed by (Krizhevsky et al., 2012b) won the championship of the 

ImageNet classification competition at the time that made the world realize the 

importance of convolutional neural networks. Later, researchers gradually applied 

convolutional neural networks to their respective research fields, such as 3D human 

pose estimation. Presently, convolutional neural network-based approaches for 3D 

human pose estimation can be broadly categorized into two groups: i) directly 

predicting the 3D coordinates of each joint from 2D images (one-step method); ii) 

initially predicting 2D joint positions in image space followed by a subsequent lifting 

to 3D (two-step method). 

The one-step method can be subdivided into two categories: regression-based methods 

and detection-based methods. Regression-based approaches are to directly predict each 

joint position relative to the root joint position. Li and Chan (2014) used a shallow 

network to predict 3D joint coordinates directly and realize the task of body part 

detection simultaneously. Park et al. (2016) employed an end-to-end network with 
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synchronous training of both 2D joint classification and 3D joint estimation. Li et al. 

(2015) applied an embedding sub-network to learn potential human posture structure 

information and realized the matching of 3D coordinates. The sub-network can use the 

maximum margin cost function to allocate matching scores to the input image-pose 

pairs. Tekin et al. (2016a) learned a high-dimensional potential pose representation for 

adding some constraints about the human body with an unsupervised auto-encoder and 

then introduced a shallow network to predict the 3D coordinates of poses. Sun et al. 

(2017) believed that regression-based approaches did not make good use of the 

structural information of the human body, so he designed a skeleton-based network by 

using human body structure information. Furthermore, he also proposed a 

compositional loss function to solve the problem of no association of bones in the L2 

loss. Zhou et al. (2016) proposed a deep kinematic neutral network to learn motion 

parameters and joint locations. Motion parameters include the fixed bones length and 

angles of bones rotation around combined joints. However, the fixed bones length does 

not improve the generalization ability of the model well. Nibali et al. (2018) believed 

that the method of predicting by heatmap is completely non-differentiable, while that 

of regressing the coordinates with the fully connected layer lacks spatial generalization. 

Therefore, he proposed a module named differentiable spatial to numerical transform 

(DSNT) to solve these two problems. Luvizon et al. (2019) proposed an end-to-end 

differentiable network, converting feature heatmaps to joint coordinates by a soft-

argmax function. Detection-based methods mainly converts the image containing 
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people into a heatmap for each joint first, and then takes the maximum value of the heat 

map as the joint coordinates. Pavlakos et al. (2017) created a convolutional neural 

network derived from the stacked hourglass architecture (Newell et al., 2016), 

predicting the possibility of each voxel of each joint through the fine discretization of 

3D space. Liu et al. (2019) designed a feature learning neural network to predict 3D 

hand pose and human pose from an image, which used a new long short-term 

dependence-aware network to generate 2D heatmaps of joints. Sun et al. (2018) 

connected and unified the heatmap representation and joint regression with an integral 

operation, thus correcting some non-differentiable error. Luvizon et al. (2018) designed 

a multitask network to enable estimation of 2D and 3D poses jointly and action 

recognition. It is worth noting that 2D and 3D pose are uniformly predicted by using 

volumetric heatmaps. 

 

Figure 2-10 Integral human pose regression with 3D heatmaps (Sun et al., 2018). 

Benefiting from the high accuracy and generalization capabilities of 2D human pose 

estimation, many researchers use off-the-shelf 2D human pose estimation networks as 

an intermediate supervision step, lifting 2D poses to 3D space. This two-step method is 

generally superior to the directly regressing method because of the excellent 
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performance of 2D pose detectors.  

2.2.2.1 Methods based on Single Frame 

Martinez et al. (2017b) introduced a classical method wherein 2D keypoint coordinates 

serve as input, and the model maps the 2D pose directly to 3D space using a fully 

connected layer with residual connections. Although the model was relatively simple, 

it achieved state-of-the-art results. The experiments conducted suggested that the errors 

in many contemporary 3D human pose estimation algorithms primarily stem from 

challenges in understanding 2D human pose estimation rather than issues with the 2D-

to-3D lifting process. Chen and Ramanan (2017) added a K-nearest neighbour search 

algorithms into the network to search similar 3d pose among 2d pose dataset and then 

output the correct 3D pose. However, the predictions of this method can be wrong when 

3D pose and 2D pose are not conditionally independent. Fang et al. (2018) used the 

grammar information to encode the anatomy relations and dependencies in the network 

because previous works rarely applied domain-specific knowledge and the 

generalization ability is poor when performing cross-view pose estimation. Zhou et al. 

(2017) jointly trained a network capable of estimating 3D human pose in the wild, using 

the heatmap and features of the predicted 2D joints as input for the regression depth. 

Brau and Jiang (2016) incorporated prior knowledge regarding bone length and 

projection consistency to perform regression of 3D joint coordinates. Tekin et al. (2017) 

introduced a two-branch network to estimate 2D heatmaps and extract features from 

images, which are then fused with the 2D heatmaps through a fusion layer. Jahangiri 
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and Yuille (2017), Sharma et al. (2019) and Li and Lee (2019) generated multiple 

feasible hypotheses of 3D poses from 2D poses and chose the best one with 2D 

reprojections. Moreno-Noguer (2017) trained a neural network to learn the mapping of 

the two matrices from encoded pairwise Euclidean distances of 2D and 3D body joints. 

Euclidean Distance Matrices (EDMs) are invariant to rotations and translations in the 

plane, as well as scaling invariance when applying normalization operations. Wang et 

al. (2018) introduced a Pairwise Ranking Convolutional Neural Network (PRCNN) to 

predict the depth information of human joints and ranked the information that is used 

as a cue to infer coordinates of 3D joints. Yang et al. (2018) introduced a multi-source 

architecture including image, geometric descriptor, joint location information, 

heatmaps and depth maps. 

 

Figure 2-11 Semantic Graph Convolutions (Zhao et al., 2019b). 

Graph Neural Network. Since a human pose can be represented as a graph where 

joints are the nodes and skeletons are the edges, many researchers have used Graph 

Convolution Networks (GCNs) to estimate 3D poses from 2D poses, achieving 

promising results. Zhao et al. (2019b) introduced Semantic Graph Convolutional 

Networks in Figure 2-11, a novel neural network architecture designed specifically for 

regression tasks involving graph-structured data. This network can learn semantic 

information, including local and global node relationships, that may not be explicitly 
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represented in the graph. Besides, it also addressed the limitation associated with the 

GCNs, which is confined to a small receptive field of the convolution filter and the 

shared transformation matrix for each node. Ci et al. (2019a) proposed a generic 

network called Locally Connected Network (LCN) that is composed of the GCN and 

the fully connected network to model the relationship of adjacent joints. It can mitigate 

the issues of GCNs that weight sharing strategy affects the representational power of 

the network. In addition, the LCN can greatly improve network characterization and 

generalization, and enable end-to-end deployment and application to different scenarios. 

Liu et al. (2020a) carried out a thorough and systematic investigation into the challenge 

of weight sharing in GCNs for the purpose of 3D human pose estimation. They 

concluded that the way of weight sharing in GCNs has a significant impact on the 

performance of 3D human pose estimation and more parameters do not necessarily lead 

to better performance. Decoupled self-connection is beneficial for reaching good 

performance and pre-aggregation is the best weight sharing method in terms of GCN. 

Zeng et al. (2021) aimed to improve the performance on challenging poses 

characterized by depth ambiguity, self-occlusion, and complexity or rarity. Therefore, 

they proposed a hop-aware hierarchical channel-squeezing fusion layer to suppresses 

the learning of noise by the adjacency matrix of graph neural networks (GNN). Also, 

they build temporal-aware dynamic skeletal graphs to dynamically change the weights 

of the adjacency matrix based on temporal action changes. However, the above GCNs-

based methods all represent the human skeleton as an undirected graph for processing, 
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ignoring the hierarchical orders among human joints and failing to reflect the articulated 

characteristic of human skeletons. Therefore, Hu et al. (2021) depicted the human 

skeleton as a directed graph, with joints as nodes and bones as edges directed from 

parent joints to child joints. Based on this representation, they introduced a U-shaped 

Conditional Directed Graph Convolutional Network to exploit different non-local 

dependencies for different poses.  

2.2.2.2 Methods based on Video Sequence 

Compared with estimating 3D human pose from monocular images, inferring 3D joints 

from video could exploit temporal information, achieving more stable and jitter-free 

prediction results. Tekin et al. (2016b) inferred 3D poses with the information of 

histograms of oriented gradients and demonstrated that motion information in the 

volumes can improve the accuracy of some challenging poses with mirroring and self-

occlusion. Hossain and Little (2018b) proposed a sequence-to-sequence architecture 

which used Long Short-Term Memory units (LSTM) to predict the 3D human pose 

from given 2D pose sequence. This network encoded a 2D pose sequence into a fixed 

feature vector. Then, it decoded the 2D pose sequence into a 3D pose sequence using 

residual connections. However, encoding the 2D pose sequences into a 1D vector 

ignored the expression of the spatial configuration of 2D poses and this model needed 

fixed length when inputting temporal data. To solve these problems, Pavllo et al. (2019a) 

proposed the temporal convolutional network (TCN) that leveraged dilated temporal 

convolutional to extract continuous frame information of human in the video. 
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Compared with RNN and LSTM, TCN can process multiple frames in parallel and 

flexibly capture varying sequences. The dilated convolutions were employed to capture 

long-term dependencies while requiring fewer training parameters and achieving 

superior computational speed compared to sequence-to-sequence models. Besides, 

Pavllo et al. (2019a) used back-projection to add non-labelled data for semi-supervised 

training. However, the vector encoding of joint sequences lacks the capacity to 

adequately express spatial relationships, which is essential for addressing challenges 

associated with depth ambiguities and self-occlusions. Dabral et al. (2018), Cai et al. 

(2019a) and Li et al. (2019) made additional use of spatial information on top of the 

temporal information and added some constraints to the loss function, such as fixed 

bone length and symmetrical relationship between the left and right of the human body. 

In addition, there are other works that deform the TCN (Pavllo et al., 2019a) to improve 

the prediction accuracy. Cheng et al. (2019) and Cheng et al. (2020) introduced 

occlusion labels to the temporal convolutional network (TCN) to improve estimation 

accuracy on some images with occluded human. Cheng et al. (2019) proposed an 

occlusion-aware network with a “cylinder man model” producing occlusion labels, 

which enabled the network to perform statistics on occlusion labels and thus design 

regularization penalties. The key stage in this method is that the occlusion model uses 

incomplete 2D keypoints with ignoring self-occluded points, allowing the network to 

be less affected by the error-prone estimations of occluded keypoints. However, when 

the bounding box of the detected human body deviates significantly from the ground 
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truth, the estimation becomes highly inaccurate. If two or more people are very close, 

this method may not be able to distinguish the keypoints of different people. The 

“cylinder man model” cannot produce occlusion from other objects. Cheng et al. (2020) 

developed an end-to-end trainable model that leveraged multi-scale features in space 

and time to process target human at different distances and different speeds. They used 

a multi-scale convolutional network (HRNet) proposed by (Sun et al., 2019) which 

fused these spatial features. Therefore, 3D joint coordinates are predicted with multi-

scale features embedding obtained from those heatmaps based on TCN (Pavllo et al., 

2019a). Besides, Cheng et al. (2020) designed a discriminant model based on spatio-

temporal kinematic chains enforcing limbs angular and length constraints for validation 

of pose sequences. Liu et al. (2020c) applied attention mechanism to TCN, which 

determined key frames and output tensor in every layer. Different from (Pavllo et al., 

2019a) who used a voting mechanism to select important frames, Liu et al. (2020c) 

systematically assigned a weight distribution to frames, all of which might contribute 

to the inference. At the same time, this attention mechanism also modelled long-range 

dependencies to increase temporal receptive fields. Wang et al. (2020c) proposed a loss 

function called motion loss that used the model to reconstruct the keypoints motion 

trajectories, considering the similarity of temporal structure between the estimated pose 

sequence and the ground truth. Meanwhile, they designed a U-shaped GCN based on 

(Cai et al., 2019a) to combine long-range information through temporal pooling 

operations. However, the local-to-global network architecture is constrained by its 
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ability to embed fixed-length spatial-temporal sequences. Chen et al. (2021b) 

decomposed the task of predicting the 3D human pose into two components: predicting 

bone direction and predicting bone length. By doing so, the 3D joint coordinates can be 

entirely derived since the bone lengths of a human skeleton remain constant over time. 

This approach involved predicting the bone directions for the target frame using 

consecutive local frames and determining bone lengths by considering randomly 

sampled frames from the entire video. Zeng et al. (2020) introduced the split-and-

recombine scheme to enhance the generalization of rare and unseen poses. This 

innovative approach involved segmenting human joints into distinct groups and 

applying temporal convolution within each group. Subsequently, the joints from 

different groups were recombined to reconstruct a comprehensive human pose. 

Similarly, Shan et al. (2021b) classified joints into five distinct groups: torso, left and 

right arms, and left and right legs. They devised a feature fusion module to merge five 

different features, performing the TCN (Pavllo et al., 2019b) within each group prior to 

fusion. 

 

Figure 2-12 Anatomy-aware network for predicting bone directions and bone 

lengths (Chen et al., 2021c). 
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2.2.3 Transformer-based Methods 

Transformer was first proposed by (Vaswani et al., 2017) and showed remarkable 

performance in natural language processing (NLP), as the self-attention can model 

long-range dependencies and also capture global features. Recently, several studies on 

transformer-based methods for 3D human pose estimation have been reported, with 

PoseFormer (Zheng et al., 2021a) being the first that predicts the 3D pose of the central 

frame by modeling spatial and temporal information. However, the computational 

burden is huge when the frame number increases. PoseformerV2 (Zhao et al., 2023) 

introduces a time-frequency feature to the transformer structure, efficiently extends the 

input sequence length, and achieves a good trade-off between speed and accuracy. 

MHFormer (Li et al., 2022c) a transformer-based network, generates multiple 

hypotheses at the pose level and calculates the target 3D pose by averaging. MixSTE 

(Zhang et al., 2022b) stacks spatial and temporal transformer blocks to capture spatial-

temporal features alternatively and models the trajectory of joints over frame sequence. 

STCFormer (Tang et al., 2023b) slices the input joint features into two partitions and 

uses MHSA to encapsulate the spatial and temporal context in parallel. D3DP (Shan et 

al., 2023),  a diffusion-based method, recovers the noisy 3D poses by assembling joint-

by-joint multiple hypotheses. By introducing new encoders for better modeling the 

spatial and temporal relations, these methods all have unavoidably changed the internal 

structure or altered the MHSA of the transformer, resulting in largely increased network 

complexity. 
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Recently, some studies combined graph and transformer, introducing graph-transformer 

methods (Gong et al., 2023; Li et al., 2023; Zhao et al., 2022; Zhu et al., 2021). 

PoseGTAC (Zhu et al., 2021) uses graph atrous convolution to learn the multi-scale 

information among 1-to-3 top neighbours and utilizes the graph transformer layer to 

capture long-range features. GraFormer (Zhao et al., 2022) replaces the MLP in the 

transformer with learnable GCN layers to form the GraAttention block, which also 

contains MHSA. Li et al. (2023) introduces a graph POT, where each element is the 

relative distance between a pair of joints, which are being encoded as the attention bias 

in the MHSA module. DiffPose (Gong et al., 2023) interlaces GCN layers  with self-

attention layers as a diffusion model, which can capture spatial features between joints 

based on the human skeleton. Nevertheless, these graph-transformer methods (Gong et 

al., 2023; Li et al., 2023; Zhao et al., 2022; Zhu et al., 2021) learn merely the spatial 

information of individual pose, without considering temporal correlation across frames. 

Moreover, they  (Gong et al., 2023; Li et al., 2023; Zhao et al., 2022; Zhu et al., 2021) 

modify the structure of the transformer by introducing the graph convolution, resulting 

in much larger and more complex networks. 
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CHAPTER 3. GROUP-BASED 3D POSE ESTIMATION 

WITH AN EFFICIENT HETEROGENEOUS FUSION 

3.1 Introduction 

With reference to the overall method as outlined in Figure 1-2 (page 9), a total of three 

novel network models are developed in this study for 3D pose estimation. Here we 

explain the first model, a CNN-based model with an efficient heterogeneous fusion. 

As reviewed in Section 2.2.2 on page 35, of the various models following the two-step 

method, those involving temporal information and anatomical grouping strategies are 

the two which are the most frequently investigated. Some researchers (Cai et al., 2019b; 

Chen et al., 2021c; Liu et al., 2020d; Pavllo et al., 2019b) exploited temporal 

information of the input videos to achieve a more accurate and jitter-free result, in 

which the temporal information of a few adjacent frames is aggregated by means of the 

network. Other researchers (Park & Kwak, 2018; Shan et al., 2021a; Zeng et al., 2020), 

however, grouped the various human joints into parts, such as arms, legs and torso, 

based on human anatomy, so as to improve the prediction accuracy. By integrating 

features from different groups to enhance the interdependence among different body 

parts, these group-based methods achieve remarkable estimation performance. 

Nevertheless, they treat each group of features equally without considering the 

importance of the torso as the interconnected section of limb groups. Consequently, the 

torso joints were not given adequate attention, resulting in inaccurate predictions for 

the limb joints. In addition, these group-based methods impose a high computational 
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workload when integrating features and require a multi-stage training strategy to avoid 

interference between the feature fusion module and the encoding module (Shan et al., 

2021a). In other words, existing group-based methods cannot be trained end-to-end, 

and the training is both time consuming and computationally expensive.  

Therefore, we propose an efficient heterogeneous group-based method called 

‘EHFusion’ for 3D human pose estimation, as illustrated in Figure 3-1. Inspired by 

interesting feature fusion work in other domain (Jiang et al., 2022; Nazir et al., 2020; 

Xie et al., 2021), we design a heterogeneous feature fusion (HFF) module to integrate 

the relative information of different groups to effectively facilitate kinematic interaction 

among various body parts. Rather than utilizing identical modules to integrate features 

from different groups, the HFF module emphasizes the importance of the torso as the 

core component of the human body and leverages a heterogeneous network structure. 

By combining convolutional and fully connected operations, the HFF module can 

reduce model parameters and computational costs while simultaneously improving 

performance.  

Moreover, to further enhance the accuracy of 3D pose estimation, motion amplitude 

information (MAI) and a camera intrinsic embedding (CIE) module are introduced in 

EHFusion, as illustrated in Figure 3-1. MAI aims to incorporate a global body motion 

context without resorting to feature fusion, improving the estimation accuracy of 

actions with large motion amplitudes (e.g., sitting). CIE mitigates the gap in coordinate 

system transformation during the process of 2D-to-3D lifting. The main contributions 
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of this section are summarized as follows: 

• The development of a heterogeneous and efficient feature fusion module (HFF) 

lowers the computational burden for feature fusion while improving both the 

prediction accuracy and efficiency of the overall 3D pose estimation network. 

• MAI has been introduced to enable the network to learn the body motion amplitude 

information between the target pose and the others. Unlike the relative information 

in (Shan et al., 2021a), our MAI aims to incorporate a global body motion context 

without resorting to feature fusion. 

• A camera embedding, by means of a Multi-Layer Perceptron (MLP), has been 

developed to learn the transformation from the image coordinate system (ICS) to 

the camera coordinate system (CCS), thereby boosting the performance of 2D-to-

3D pose estimation. 

• A multi-tasking network has been designed enabling end-to-end training. The 

encoders of different body sections/parts and the fusion module grouping features 

of different body sections can be trained at the same time without interfering with 

each other, thus saving significant computational time and training resources. 

• Related analysis, involving extensive datasets, have demonstrated both the 

effectiveness and efficiency of the proposed network in comparison to various 

existing state-of-the-art methods (i.e., transformer-based). 
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Figure 3-1 Architecture of the proposed EHFusion model. 

3.2 Method 

3.2.1 Problem Formulation 

Let an input 2D pose sequence be denoted as 𝐾 = {𝑘𝑡
𝑗
}, 𝑘𝑡

𝑗
= (𝑥𝑡

𝑗
, 𝑦𝑡

𝑗
) ∈ ℝ2, where 

(𝑥𝑡
𝑗
, 𝑦𝑡

𝑗
) denotes a keypoint defined in image coordinate system; 𝑗 represents the joint 

index of a human pose and 𝑗 = 0, 1, 2, … , 𝐽; and 𝑗 = 0 is called the root joint. The total 

number of joints is set as 17 in current study, i.e., 𝐽 = 16; while 𝑡 is the frame index 

and 𝑡 = 1, 2, … , 𝑇, representing each input 2D pose sequence is compose of 𝑇 number 

of frames. In this study, the relative information from (Shan et al., 2021a) is used for 

3D pose estimation. 

Relative information. The relative information contains positional information and 

temporal information. First, the positional information refers to the relative joint 

coordinates, in which the joint coordinates in each pose are calculated as relative 
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coordinates to the root joint and can be expressed as follows: 

𝐾𝑃 = {𝑘𝑡
𝑗

− 𝑘𝑡
0}

𝑗=1

𝐽
 (3 − 1) 

For each joint 𝑗 > 0, the relative coordinates are defined as: 

𝑘𝑡
𝑗̅̅ ̅ = (𝑥𝑡

𝑗
− 𝑥𝑡

0, 𝑦𝑡
𝑗

− 𝑦𝑡
0) (3 − 2) 

The temporal information denotes the pose differences between frames, in which the 

coordinates of the target frame are subtracted from the pose coordinates of the other 

frames and can be expressed as: 

𝐾𝑇 = {𝑘𝑡 − 𝑘𝑇
2

}
𝑡=1

𝑇

= {(𝑥𝑡, 𝑦𝑡) − (𝑥𝑇
2

, 𝑦𝑇
2

)}
𝑡=1

𝑇

 (3 − 3) 

𝑗 is omitted for the sake of simplicity. 

Topology-based grouping aims to divide the human body into smaller anatomical parts 

or groups (e.g., limbs, torso) and estimate the pose of each group independently before 

integrating them to obtain the pose of the whole body. This method is robust in terms 

of occlusions since the human body is divided into smaller anatomical groups to learn 

the unique features (e.g., positional and temporal information) of each group. By 

focusing on smaller parts, it is less likely that the entire part will be occluded, allowing 

for more accurate pose estimation, even under highly challenging situations.  

For each 2D pose, all 17 body joints are divided into 5 nonoverlapping groups, 𝐾𝑖 =

{𝑘𝑡
𝑗
}

𝑗=1

𝐽𝑖
, where 𝐽𝑖 is the number of joints in group 𝑖 and 𝑖 = 1, … , 5, corresponding to 

torso, left arm, right arm, left leg, and right leg, as shown in Figure 3-3(b). The limbs 

are not inter-connected to each other but treated as four independent parts. Each joint 

group represents the local commonality of related joints and provides better local 
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features. With reference to equation (3-1) and (3-2), the positional and temporal 

information of the 𝑖𝑡ℎ joint group can be expressed as 𝐾𝑃
𝑖  and 𝐾𝑃

𝑖 , respectively. 

TCN encoding: For each joint group 𝑖 , by concatenating the input pose 𝐾𝑖 , the 

positional information 𝐾𝑃
𝑖   and the temporal information 𝐾𝑇

𝑖   together, an enhanced 

representation 𝐾𝐸
𝑖  can be obtained, which is further processed by TCN encoding: 

𝐹𝐸
𝑖 = 𝐸𝑇

𝑖 (𝐾𝐸
𝑖 ) (3 − 4) 

Where 𝐸𝑇
𝑖 (∙)  stands for the TCN encoder (Pavllo et al., 2019b). 𝐹𝐸

𝑖   indicates the 

encoded relative information. 

Target pose encoding. The target pose is defined as the centre frame of the 2D pose 

sequence, 𝐾𝐺 = {𝑘𝑇

2

𝑖 }
𝑗=1

𝐽

, which is encoded by an independent MLP network to give 

global feature: 

𝐹𝐺 = 𝐸𝑚(𝐾𝐺) (3 − 5) 

where 𝐸𝑚(∙)  stands for the MLP encoder. Instead, we incorporate the encoded 

information 𝐹𝐺  into the encoded relative information. 
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Figure 3-2 Our multi-task end-to-end EHFusion network. 

3.2.2 Heterogeneous Feature Fusion (HFF) 

By topology-based grouping, the spatial relationships of the connecting joints have 

been preserved within each joint group, representing strong local features, while the 

connection between groups is not included, making the joint positions of other groups 

unknown to the current group. In order to obtain a complete 3D pose prediction, it is 

important to fuse features of different joint groups together. Shan et al. (2021a) used a 

feature fusion module, based on fully connected layers (FCN), to fuse grouped features. 

Nevertheless, for the prediction of each group, all the grouped features are fused  with 

the uniform FCN feature fusion block, which ignores the different relationships 

between groups. Additionally, the use of FCNs also results in over 90% of the network 

parameters, generating a large volume of redundant information in the network design 

(Cheng et al., 2015). A new module called heterogeneous feature fusion (HFF) module 

is proposed here to address the above issues. 
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The proposed HFF module, as illustrated in Figure 3-4, combines one FCN feature 

fusion block with four conv feature fusion blocks, where the former block is employed 

for the prediction of torso joints while the latter block is employed for that of other 

groups. With this heterogeneous fusion module, the FCNs can capture comprehensive 

relationships and patterns within the limb group features to assist in the prediction of 

torso joints, while the convolutional layers utilize localized features for predicting joints 

within groups. This is not only beneficial to make the network focus more on the torso 

joint prediction which has close relationship with all other group joints and plays a more 

important role in the prediction stability of the model, but also helps to alleviate the 

over-fitting problem and reduce model parameters and computation costs.  

More specifically, for a specific group 𝑖, we concatenate grouped features of the other 

four groups together according to the channel dimension, [𝐹𝐸
𝑖+1, … , 𝐹𝐸

𝑖+4], as input to 

be further processed in the FCN or Conv feature fusion block. The FCN feature fusion 

block consists of the fully connected layer, 1D batch normalization (BN), rectified 

linear unit (ReLU) and dropout, raising the feature dimensions to obtain the fused 

features, see the top right corner of Figure 3-4. In the design of conv feature fusion 

block, we used the discriminative dimensional reduction method (Su et al., 2017) to 

find a lower-dimensional representation of the feature that maximizes the separability 

between different classes, namely the other four body parts. By so doing, we can 

preserve the essential features while improve computational efficiency and reduce the 

risk of over-fitting. Specifically, each grouped feature is processed by a 1D convolution 



 

56 

with 1 stride and 1 kernel size, followed by batch normalization (BN) and rectified 

linear unit (ReLU) for a discriminative feature: 

𝐹𝑖′
= 𝑅𝑒𝐿𝑈 (𝐵𝑁 (𝐶𝑜𝑛𝑣1𝐷(𝐹𝐸

𝑖 ))) (3 − 6) 

The final fused feature of conv block is obtained by concatenating the four resulting 

features [𝐹(𝑖+1)′
, 𝐹(𝑖+2)′

, 𝐹(𝑖+3)′
, 𝐹(𝑖+4)′

]. 

In the proposed HFF module, the FCN feature fusion block is used for the torso by 

fusing the other four grouped features of limbs (left/right arm and left/right leg). In 

contrast, for each of the four limbs, the conv feature fusion block is used to fuse the 

grouped features of torso and other limb parts. There is weight sharing in the 

convolution operation, and this enable learning the common features of the connected 

parts. Compared with the feature fusion module of (Shan et al., 2021a), the proposed 

HFF module not only avoids over-fitting and reduces the number of parameters, but 

also improves the performance (see experimental comparison). 

 

Figure 3-3 Illustrations of (a) motion amplitude θ and (b) the group configuration. 
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3.2.3 Motion Amplitude Information (MAI) 

In this study, motion amplitude information (MAI) is introduced to enhance the 

description of body motion, which can be viewed as another kind of global information. 

As shown in Figure 3-3(a), the orange dots connected with the black solid lines indicate 

the target pose, while the yellow dots and the dashed lines indicate another pose at time 

frame 𝑡. These two poses share the same root joint. The motion amplitude is defined as 

the angle 𝜃 between the green vector and the blue vector, and is derived as follows: 

𝜙(𝑘𝐺
𝑗

,̅̅ ̅̅ 𝑘𝑡
𝑗̅̅ ̅) = 𝑒𝑥𝑝[𝜃 − 𝜋] (3 − 7)  

Where 𝑘𝐺
𝑗̅̅ ̅ denotes the target pose and 𝑘𝑡

𝑗̅̅ ̅ denotes the other pose at frame 𝑡. The angle 

𝜃 is calculated as follows: 

𝜃 = 𝑐𝑜𝑠−1
(𝑘𝐺

𝑗̅̅ ̅ ∗ 𝑘𝑡
𝑗̅̅ ̅)

‖𝑘𝐺
𝑗̅̅ ̅‖‖𝑘𝑡

𝑗̅̅ ̅‖
 (3 − 8) 

This encoding method normalizes the joint motion amplitude 𝜃 between 0 to 1 to avoid 

the gradient explosion. Finally, the motion amplitude (MA) is calculated as: 

𝐾𝑀𝐴 = 𝜙(𝐾̅, 𝐾𝐺
̅̅̅̅ ) (3 − 9) 

Where 𝐾𝐺
̅̅̅̅  is the target pose sequence and 𝐾̅ is the other pose sequence. We divide the 

pose motion amplitude 𝐾𝑀𝐴 into the same five joint groups (torso, left arm, right arm, 

left leg, right leg) by anatomical grouping, and each grouped motion amplitude is 

denoted as 𝐾𝑀𝐴
𝑖  and processed by TCN encoding: 

𝐹𝑀𝐴
𝑖 = 𝐸𝑇

𝑖 (𝐾𝑀𝐴
𝑖 ) (3 − 10) 

where 𝐸𝑇
𝑖  stands for the TCN encoder (Pavllo et al., 2019b). 

3.2.4 Camera Intrinsic Embedding (CIE) 
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The process of lifting 2D pose to 3D pose implies the transformation of coordinate 

systems from the image coordinate system (ICS) to the camera coordinate system 

(CCS). Specifically, 𝑝𝑖 = [𝑢𝑖 , 𝑣𝑖] represents the 𝑖-th joint coordinates in the ICS of a 

2D pose. 𝑃𝑖 = [𝑋𝑖, 𝑌𝑖, 𝑍𝑖] stands for the corresponding joint coordinates in the CCS of 

the 3D pose. If the depth Z in the CCS is known, the 2D pose coordinates in 

the ICS can be converted to 3D pose in the CCS as follows: 

𝑋𝑖 = 𝑍𝑖

𝑢𝑖 − 𝑐𝑥

𝑓𝑥
 (3 − 11) 

𝑌𝑖 = 𝑍𝑖

𝑣𝑖 − 𝑐𝑦

𝑓𝑦
 (3 − 12) 

Where 𝑓𝑥 and 𝑓𝑦 denote the camera focal length; 𝑐𝑥 and 𝑐𝑦 represent the coordinates of 

the camera centre point. 

According to equation (3-11) and (3-12), the prediction of 3D pose involves the 

prediction of 𝑋  and 𝑌  coordinates and the depth 𝑍 , while the former can be derived 

from 𝑍 using camera intrinsic parameters (focal length and camera centre point). The 

focal length determines the scale factor between the 2D image plane and the 3D space, 

which help to estimate the relative depth. The camera center point is where the optical 

axis of the camera intersects with the image plane, providing an offset of the coordinate 

system origin that maps 2D image coordinates onto 3D coordinates. 

Thus, we propose a camera intrinsic embedding (CIE) network to exploit the focal 

length (𝑓𝑥 , 𝑓𝑦 ) and the camera centre point (𝑐𝑥, 𝑐𝑦 ) as a priori information for more 

accurate predictions of 3D pose in CCS. More specifically, the focal length (𝑓𝑥 , 𝑓𝑦) and 

the camera centre point ( 𝑐𝑥, 𝑐𝑦 ) are first concatenated together to form a tensor 
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(𝑓𝑥 , 𝑓𝑦, 𝑐𝑥, 𝑐𝑦 ), which is then fed into the CIE network to obtain a high-dimensional 

camera intrinsic information 𝐹𝐶: 

𝐹𝐶 = 𝐸𝑚(𝑓𝑥, 𝑓𝑦 , 𝑐𝑥, 𝑐𝑦) (3 − 13) 

where 𝐸𝑚(∙)  stands for the MLP encoder. The CIE network consists of two fully 

connected layers, 1D batch normalization, rectified linear unit and dropout. 

3.2.5 Model Optimization 

A multitasking end-to-end network has been developed to incorporate four kinds of 

information including positional, temporal, motion amplitude and camera intrinsic 

information for 3D pose estimation. The network framework has two branches and can 

be trained end-to-end in one single stage or by multiple stages. In contrast to the RIE 

network (Shan et al., 2021a), which can only be trained in multiple stages, our network 

executes rapidly with fewer parameters and lower computational cost. As illustrated in 

Figure 3-4, the input to the network is 2D pose sequences; either ground-truth sequence 

or poses predicted by 2D pose detectors can be used as inputs. To predict 3D poses, the 

input 2D poses are transformed into positional and temporal information, which are 

concatenated to theoriginal input 2D pose. The concatenated information is then 

divided into five groups (torso, left arm, right arm, left leg, right leg) and sent for TCN 

encoding. Furthermore, the motion amplitude is encoded independently by means of 

TCN encoder, while the target pose and the camera intrinsic parameters are encoded by 

two different MLP networks. All the encoded information is concatenated together and 

fed into the decoder of the first branch for decoding. The second branch includes an 
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additional HFF module for fused features before decoding, and the gradients are not 

back propagated during training in the HFF module. By doing so, the training of the 

fused information and the other encoded information do not interfere with each other, 

leading to the final fused 3D pose. 

Loss functions. Our multitasking network uses two loss functions to govern the 

learning of the two branches. The first branch, which the HFF module is not involved, 

only learns the parameters of the encoders and decoders, generating a non-fused 3D 

pose. Hence, the first loss function 𝐿1  only constrains the non-fused 3D pose and 

facilitates the parameter learning of the encoders and decoders. The second branch, with 

the HFF module incorporated, aims to yield a fused 3D pose which is optimized by the 

second loss function 𝐿2. Since the second branch network directly uses the encoders 

trained by the first branch network, the loss 𝐿2 drops along with the dropping of loss 

𝐿1 in the training. After training, the prediction of the second branch is chosen as the 

final result. 

In the first branch, we concatenate four pieces of features per group including enhanced 

representation 𝐹𝐸
𝑖  , global feature of target pose 𝐹𝐺  , motion amplitude 𝐹𝑀𝐴

𝑖  , and the 

camera intrinsic embedding 𝐹𝐶 and input them into the decoder as follows: 

𝐹𝐷
𝑖 = 𝐷(𝐶𝑜𝑛𝑐𝑎𝑡[𝐹𝐸

𝑖 , 𝐹𝑀𝐴
𝑖 , 𝐹𝑔, 𝐹𝐶]) (3 − 14) 

Next, the five groups of decoded features are concatenated together as a non-fused 3D 

pose 𝑃𝐸: 

𝑃𝐸 = 𝐶𝑜𝑛𝑐𝑎𝑡[𝐹𝐷
1, 𝐹𝐷

2, … , 𝐹𝐷
5] (3 − 15) 
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The non-fused pose 𝑃𝐸 and the ground-truth 3D pose 𝑃𝐺  are compared to calculate the 

loss function as follows: 

𝐿1 = ‖𝑃𝐸 − 𝑃𝐺‖2
2 (3 − 16) 

In the second branch, the fused features from the HFF module 𝐹𝑂𝐹𝐹
𝑖  is concatenated 

with the four other features 𝐹𝐸
𝑖 , 𝐹𝑀𝐴

𝑖 , 𝐹𝑔, 𝐹𝐶  and input to the decoder as follows: 

𝐹𝐷_𝑓𝑢𝑠𝑒
𝑖 = 𝐷([𝐹𝐸

𝑖 , 𝐹𝑀𝐴
𝑖 , 𝐹𝑔, 𝐹𝐶 , 𝐹𝑂𝐹𝐹

𝑖 ]) (3 − 17) 

Similarly, the decoded features 𝐹𝐷_𝑓𝑢𝑠𝑒

𝑖  are concatenated together to give a fused 3D 

pose: 

𝑃𝐹 = 𝐶𝑜𝑛𝑐𝑎𝑡 [𝐹𝐷_𝑓𝑢𝑠𝑒

1 , 𝐹𝐷_𝑓𝑢𝑠𝑒

2 , … , 𝐹𝐷_𝑓𝑢𝑠𝑒

5 ] (3 − 18) 

The loss function of the second branch is calculated as follows: 

𝐿2 = ‖𝑃𝐹 − 𝑃𝐺‖2
2 (3 − 19) 

Finally, the overall loss function of our network is obtained as follows: 

𝐿 = 𝐿1 + 𝐿2 (3 − 20) 

One-stage optimization: In our multitask network (Figure 3-2), the first branch learns 

the parameters for information encoding (relative, motion amplitude, and camera 

intrinsic embedding), while the second branch shares the encoded information with the 

first branch and additionally introduces the HFF module to fuse the encoded positional 

and temporal information. The HFF module in the second branch is designed without 

gradient back propagation, making it non-differentiable. By doing so, the encoded 

information (positional and temporal) can be trained independently without interfering 

with the feature fusion between the different groups. During training, the parameters of 
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the information encoding module are gradually optimized in the first branch. The 

encoded information (positional and temporal) is fed into the HFF module in the second 

branch for feature fusion. In this way, the information encoding and feature fusion in 

both branches are optimized simultaneously without interfering with each other. The 

accuracy of the predicted 3D pose in the second branch is higher than that of the first 

branch because of feature fusion. Hence, the 3D pose from the second branch is selected 

as the final result. 

 

Figure 3-4 Illustration of the proposed heterogeneous feature fusion (HFF) 

module. FCN –Fully Connected Layer; BN – 1D Batch Normalization; 

Conv 1D – 1D convolution.. 

Three-stage training: For comparative purpose, we also investigated the three-stage 

training strategy, as illustrated in Figure 3-5. In stage 1 of the three-stage training, the 

encoding modules for the four types of information, including enhanced representation 

𝐹𝐸
𝑖  , motion amplitude 𝐹𝑀𝐴

𝑖  , target pose 𝐹𝐺   and camera intrinsic embedding 𝐹𝐶  are 

trained. The enhanced representation 𝐹𝐸
𝑖  per group is first encoded by TCN, while the 
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motion amplitude 𝐹𝑀𝐴
𝑖  is independently encoded per group by another encoding module 

of TCN. The target pose 𝐹𝐺   and the camera intrinsic embedding 𝐹𝐶  are separately 

encoded with two MLP networks. After the training of stage 1 is finished, the 

parameters of the decoders are discarded and only the parameters for encoder are fixed 

in stage 2 training. In stage 2, the HFF module and decoders are trained. The parameters 

of the encoders and the encoded features of the positional and temporal information are 

first input into the HFF module for feature fusion. The fused features are then 

concatenated with the other encoded features, namely the motion amplitude, target pose 

and camera intrinsic embedding and sent to the decoders. In stage 3, the entire network 

including encoders, HFF module and decoders are fine-tuned simultaneously. The 

three-stage training strategy ensures that encoders and the HFF module are trained 

without interfering with each other, but this strategy requires plenty of training time and 

computational costs. 

Our multitask network can be trained end-to-end, saving considerable computational 

time and costs, while the RIE (Shan et al., 2021a) can only be trained in three stages. A 

comparative study will be given later. 



 

64 

 

Figure 3-5 Three-stage training network. 

3.3 Experimental Results and Discussion 

3.3.1 Datasets and Evaluation Protocol 

Datasets: We evaluated our model on two public datasets Human3.6M (Ionescu et al., 

2013) and HumanEva-I (Sigal et al., 2010). Human3.6M is an indoor scene dataset 

collected by motion capture systems with a total of 3.6 million video frames. It includes 

7 professional actors wearing markers which record the coordinates of each body joint. 

These actors perform 15 typical daily actions, such as walking dogs, taking photos, 

sitting, greeting, eating, and so forth, captured in 4 synchronized camera angles. In line 

with the previous research (Liu et al., 2020d; Shan et al., 2021a; Zeng et al., 2020), we 

used five actors (S1, S5, S6, S7, S8) for training and two (S9 and S11) for testing. 

HumanEva-I is a smaller dataset, covering only three subjects performing six actions, 

captured in a controlled indoor environment by three cameras. 

Protocols: Protocol#1 is denoted as Mean Per Joint Position Error (MPJPE), which is 
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the average Euclidean distance, in millimeters, between the predicted joint coordinates 

𝐽𝑖 and the ground-truth joint coordinates 𝐽𝑖
∗, and is expressed by: 

𝑀𝑃𝐽𝑃𝐸 =
1

𝑁
∑‖𝐽𝑖 − 𝐽𝑖

∗‖2

𝑁

𝑖=1

 (3 − 21) 

Protocol#2, denoted by P-MPJPE, refers to the error after the predicted pose being 

aligned with the ground truth via rigid transformation of translation, rotation and scale 

using Procrustes analysis. Compared to Protocol#1, Protocal#2 is more robust to 

individual joint prediction failure, thus is also referred as post-processing protocol and 

is expressed by: 

𝑃 − 𝑀𝑃𝐽𝑃𝐸 =
1

𝑁
∑‖𝐽𝑖

′ − 𝐽𝑖
∗‖2

𝑁

𝑖=1

 (3 − 22) 

Where 𝐽𝑖
′ represents the predicted joint coordinates after they are aligned to the ground 

truth joint coordinates 𝐽𝑖
∗ by means of Procrustes analysis. 

3.3.2 Ablation Studies 

To verify the effectiveness of our new model, ablation experiments were conducted by 

training the network model on the Human3.6M dataset based on ground-truth 2D poses 

as inputs. Table 3-1 gives the evaluation results by means of Protocol#1. Our baseline 

network, without MAI or HFF modules but with fully connect feature fusion module 

of (Shan et al., 2021a), trained in one stage with gradient back-propagation removed, 

has the prediction error of 32.3mm in MPJPE. After the introduction of the MAI module, 

the prediction error drops by 1.2mm without increasing the number of floating-point 

operations per second (FLOPs) and model parameters significantly. By only replacing 
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fusion module of the baseline with the new HFF module, MPJPE drops by 1.4mm while 

reducing substantially the number of FLOPs by 13.64M (49.20M→35.56M) and the 

model parameters by 13.40M (54.98M→41.58M). This demonstrates the effectiveness 

of our proposed HFF module for efficient feature fusion. With the simultaneous 

introduction of the MAI and HFF modules, the Protocol#1 (MPJPE) result is reduced 

by 2.3mm. The introduction of the CIE module, the performance is further reduced by 

0.4mm, reaching 29.6mm in MPJPE, while the number of FLOPs and model parameters 

are significantly lower than that of the baseline. It demonstrates that the combination of 

the MAI, HFF and CIE modules is very effective in reducing prediction errors and the 

number of FLOPs and parameters. 

Table 3-1 Ablation study results based on human3.6m dataset. GT-ground-truth 

2D poses. 

Method (GT) MPJPE (mm) FLOPs (M) Parameters (M) 

Baseline 32.3 49.20 54.98 

+MAI 31.1 49.52 56.66 

+HFF 30.9 35.56 41.58 

+HFF+MAI 30.0 36.21 47.59 

+HFF+MAI+CIE 29.6 36.87 48.25 

3.3.3 Comparison with State-of-the-art Methods 

Results on Human3.6M dataset. We compared our results with recent state-of-the-art 

(SOTA) methods using the public dataset Human3.6M. First, we used 

2D poses detected by means of CPN (Chen et al., 2018) as inputs and 

trained under the receptive field of T =243 frames using one-stage 

training strategy. In addition to the one-stage training strategy, we also 

investigated a three-stage strategy to train the model. At stage 1, the 

encoders, MAI and CIE modules were trained without the HFF module. 
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At stage 2, the parameters of the MAI and CIE modules were loaded, 

and the HFF module was then trained independently. At stage 3, the 

whole network was fine-tuned, see Figure 3-5. As shown in Table 3-3, 

our method obtained 44.1mm and 43.8mm in MPJPE under one-stage 

and three-stage training strategies, respectively, surpassing the recent 

methods (Tang et al., 2023a; Yu et al., 2023). For a fair comparison, we 

also employed the refining module in (Cai et al., 2019b) to refine the 

initial estimated 3D poses, following (Li et al., 2022b; Shan et al., 2022). 

Our refined results (three-stage) slightly underperform than (Shan et al., 

2022) by 0.3mm, becoming the runner-up result in all methods. However, 

it is noteworthy that our approach demonstrates significantly lower 

FLOPs (as shown in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-2) in comparison to (Shan et al., 2022). This has demonstrated that our model 
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is efficient and can yield robust predictions of 3D poses. 

Table 3-5 compares the results obtained under Protocol#2 with those of existing SOTA 

methods. Our method obtained 35.2mm and 34.8mm in P-MPJPE with one-stage and 

three-stage training strategies, respectively, with the P-MPJPE of 34.8mm using three-

stage training strategy outperforming the refined results (Li et al., 2022b). After using 

the refining module in (Cai et al., 2019b), our P-MPJPE of 34.5mm under one-stage 

training strategy achieves the runner-up result of all the methods. 

Table 3-5 compares our results with those of SOTA models using ground-truth 2D poses 

as inputs on Human3.6M dataset. Our method obtained a superior or comparable result 

of 29.6mm in MPJPE when using the one-stage training strategy. We also trained our 

model using the three-stage training strategy (Shan et al., 2021a) as illustrated in Figure 

3-5, and also obtained 29.6mm under MPJPE. It is worth noting that our model achieves 

the same result (29.6mm) using both training strategies. This indicates that our one-

stage network succeeds in online end-to-end training without any loss in performance, 

while the RIE (Shan et al., 2021a) can only be trained offline stage-by-stage. After using 

the refining module in (Cai et al., 2019b), our results obtained from the one-stage and 

three-stage training strategies show improvements of 1.3mm and 2.0mm, respectively, 

compared to (Li et al., 2022b), which also utilizes the refining module (Cai et al., 

2019b). 
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Table 3-2. Comparison of computational complexity and MPJPE with 2D ground truth 

poses as inputs on Human3.6M. The lowest prediction error is in bold. 

† indicates the transformer-based methods. ∗ uses the refining module 

propose in (Cai et al., 2019b). 

Method (GT) Parameters↓ FLOPs↓ MPJPE (mm)↓ 

Shan et al. (2021a) (stage 1) 23.39M 17M 33.0 

Shan et al. (2021a) (stage 2) 41.78M 36M 30.9 

Shan et al. (2021a) (stage 3) 41.78M 36M 30.3 

Zheng et al. (2021a)† 9.60M 815M 31.3 

Li et al. (2022c)† 24.76M 4826M 30.9 

Shan et al. (2022)† 6.70M 1737M 29.3 

Li et al. (2022b)†∗ 4.34M 2193M 28.5 

Tang et al. (2023a) 4.49M 1037M 29.2 

Yu et al. (2023) 37.81M 43821M 28.5 

Ours (one-stage) 48.25M 36M 29.6 

Ours (one-stage)∗ 48.39M 152M 27.2 

Ours (three-stage) (stage 1) 29.40M 18M 31.4 
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Ours (three-stage) (stage 2) 34.39M 23M 29.7 

Ours (three-stage) (stage 3) 34.39M 23M 29.6 

Ours (three-stage) (stage 3)∗ 34.53M 138M 26.5 
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Table 3-3 Results of MPJPE (mm) on Human3.6m Dataset using Protocol#1 with 2D poses detected by CPN (Chen et al., 2018) as inputs. The 

lowest prediction error is in bold. † indicates the transformer-based methods. ∗ uses the refining module propose in (Cai et al., 2019b). 

MPJPE (CPN) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg 

Wang et al. (2020b) 40.2 42.5 42.6 41.1 46.7 56.7 41.4 42.3 56.2 60.4 46.3 42.2 46.2 31.7 31.0 44.5 

Liu et al. (2020d) 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1 

Zeng et al. (2020) 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8 

Shan et al. (2021a) 40.8 44.5 41.4 42.7 46.3 55.6 41.8 41.9 53.7 60.8 45.0 41.5 44.8 30.8 31.9 44.3 

Zheng et al. (2021a)† 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3 

Chen et al. (2021c) 41.4 43.5 40.1 42.9 46.6 51.9 41.7 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1 

Li et al. (2022b)†∗ 40.3 43.3 40.2 42.3 45.6 52.3 41.8 40.5 55.9 60.6 44.2 43.0 44.2 30.0 30.2 43.7 

Li et al. (2022c)† 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0 

Shan et al. (2022)†∗ 38.4 42.1 39.8 40.2 45.2 48.9 40.4 38.3 53.8 57.3 43.9 41.6 42.2 29.3 29.3 42.1 

Tang et al. (2023a) 41.3 44.7 42.2 42.9 47.9 55.2 43.3 40.9 58.0 66.4 46.2 44.2 45.2 30.7 31.5 45.4 

Yu et al. (2023) 41.3 44.3 40.8 41.8 45.9 54.1 42.1 41.5 57.8 62.9 45.0 42.8 45.9 29.4 29.9 44.4 

Ours (one-stage) 40.0 44.2 40.8 42.2 45.8 55.9 42.1 40.7 55.1 60.3 45.4 42.2 44.1 31.0 31.4 44.1 

Ours (three-stage) 39.9 44.0 40.9 41.8 46.0 55.4 41.4 40.8 53.8 60.6 44.8 41.3 44.7 30.1 30.8 43.8 

Ours (one-stage)∗ 38.6 43.5 39.7 40.7 44.3 53.6 41.1 39.7 52.5 57.6 43.9 41.2 42.3 29.8 30.1 42.6 

Ours (three-stage)∗ 37.7 42.6 39.0 40.0 44.6 53.1 41.1 39.0 53.4 59.6 43.8 40.7 42.0 29.3 29.8 42.4 

 

Table 3-4 Results of P-MPJPE (mm) on Human3.6m Dataset using Protocol#2 with 2D poses detected by CPN (Chen et al., 2018) as inputs. 

The lowest prediction error is in bold. † indicates the transformer-based methods. ∗ uses the refining module propose in (Cai et al., 

2019b). 

P-MPJPE (CPN) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg 

Liu et al. (2020d) 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6 

Wang et al. (2020b) 32.9 35.2 35.6 34.4 36.4 42.7 31.2 32.5 45.6 50.2 37.3 32.8 36.3 26.0 23.9 35.5 

Zheng et al. (2021a)† 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5 

Shan et al. (2021a) 32.5 36.2 33.2 35.3 35.6 42.1 32.6 31.9 42.6 47.9 36.6 32.1 34.8 24.2 25.8 35.0 

Chen et al. (2021c) 32.6 35.1 32.8 35.4 36.3 40.4 32.4 32.3 42.7 49.0 36.8 32.4 36.0 24.9 26.5 35.0 
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Li et al. (2022b)†∗ 32.7 35.5 32.5 35.4 35.9 41.6 33.0 31.9 45.1 50.1 36.3 33.5 35.1 23.9 25.0 35.2 

Li et al. (2022c)† 31.5 34.9 32.8 33.6 35.3 39.6 32.0 32.2 43.5 48.7 36.4 32.6 34.3 23.9 25.1 34.4 

Tang et al. (2023a) 31.6 35.5 34.4 34.9 36.6 42.5 33.1 30.9 46.5 52.2 37.0 33.4 35.3 24.4 24.9 35.6 

Yu et al. (2023) 32.4 35.3 32.6 34.2 35.0 42.1 32.1 31.9 45.5 49.5 36.1 32.4 35.6 23.5 24.7 34.8 

Ours (one-stage) 31.9 36.0 33.3 34.5 36.0 42.5 32.7 31.5 44.4 49.2 37.3 32.5 35.1 24.5 25.4 35.2 

Ours (three-stage) 31.9 35.7 32.9 34.9 35.6 42.3 32.6 31.5 42.9 48.3 36.6 32.1 35.0 23.9 25.4 34.8 

Ours (one-stage)∗ 32.0 35.5 32.3 33.9 35.1 41.8 32.6 31.0 42.7 48.0 36.7 32.0 34.3 24.2 25.3 34.5 

Ours (three-stage)∗ 32.1 35.2 32.6 34.0 35.1 41.5 32.6 31.2 42.9 48.9 36.6 32.0 34.0 24.1 25.3 34.6 

 

Table 3-5 Results on Human3.6M under Protocol#1 with MPJPE (mm). The ground truth of 2D poses is used as inputs. The lowest prediction 

error is in bold. † indicates the transformer-based methods. ∗ uses the refining module propose in (Cai et al., 2019b). 

MPJPE (GT) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg 

Liu et al. (2020d) 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7 

Zeng et al. (2020) 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0 

Zheng et al. (2021a)† 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3 

Shan et al. (2021a) 29.5 30.8 28.8 29.1 30.7 35.2 31.7 27.8 34.5 36.0 30.3 29.4 28.9 24.1 24.7 30.1 

Li et al. (2022c)† 27.7 32.1 29.1 28.9 30.0 33.9 33.0 31.2 37.0 39.3 30.0 31.0 29.4 22.2 23.0 30.5 

Shan et al. (2022)† 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3 

Li et al. (2022b)†∗ 27.1 29.4 26.5 27.1 28.6 33.0 30.7 26.8 38.2 34.7 29.1 29.8 26.8 19.1 19.8 28.5 

Tang et al. (2023a) 29.3 31.0 25.3 27.4 31.3 35.0 30.5 27.1 33.9 38.1 29.2 28.1 28.6 20.9 22.1 29.2 

Yu et al. (2023) 26.5 27.2 29.2 25.4 28.2 31.7 29.5 26.9 37.8 39.9 29.9 27.0 27.3 20.5 20.8 28.5 

Ours (one-stage) 27.7 29.4 27.6 27.4 30.9 37.2 31.1 27.7 36.8 36.3 30.6 29.0 28.0 20.9 22.0 29.6 

Ours (three-stage) 28.3 28.4 27.6 28.5 31.3 35.2 31.1 27.5 35.4 36.5 30.6 28.9 27.8 22.8 23.6 29.6 

Ours (one-stage)∗ 25.8 27.7 24.6 25.7 28.6 35.0 28.4 24.3 33.5 34.3 27.8 27.2 25.5 19.0 19.8 27.2 

Ours (three-stage)∗ 25.0 25.8 25.3 25.3 28.6 33.6 28.3 23.9 32.3 31.7 27.3 25.5 24.2 20.0 20.5 26.5 
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As shown in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-2, we compared the cost-effectiveness between our method and 

other methods. Our MPJPE result (both one-stage and three-stage) is 0.7mm lower 

than that of RIE (Shan et al., 2021a). Moreover, we only needed to train 80 epochs for 

one stage, while the RIE (Shan et al., 2021a) needed three stages of training with a total 

of 240 epochs. Our method saves a great deal of training time and enables end-to-end 

training. Furthermore, for comparison purpose, we also trained our network with three-

stage training strategy (Shan et al., 2021a). At the first stage, the MPJPE result of our 

method is 31.4mm, which is 1.6mm lower than that of RIE (Shan et al., 2021a), while 

the number of parameters and FLOPs in our model increases by 6.01M and 0.65M, 
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respectively, compared to those of RIE (Shan et al., 2021a) in stage 1. At the second 

stage, our model obtained 29.7mm in MPJPE, which is 1.2mm and 0.6mm lower than 

those of RIE (Shan et al., 2021a) in stages 2 and 3, respectively. At the same time, the 

number of parameters and FLOPs in our method in stage 2 is 7.39M and 12.98M, 

respectively, lower than the corresponding ones of RIE (Shan et al., 2021a). At stage 3, 

the MPJPE result in our model is 0.7mm lower than that of RIE (Shan et al., 2021a), 

and the number of parameters and FLOPs in our model are also much lower than those 

of RIE (Shan et al., 2021a). Furthermore, our method exhibits a significantly lower 

number of FLOPs (36M) in comparison to other SOTA methods (Li et al., 2022c; Shan 

et al., 2022; Tang et al., 2023a; Zheng et al., 2021a) (i.e., transformer-based), while 

simultaneously maintaining a competitive estimation accuracy (29.6mm). After using 

the refining module (Cai et al., 2019b), our method achieves the best results (27.2mm 

and 26.5mm) in both the one-stage and three-stage training settings, compared with 

other SOTA methods including the refined result of (Li et al., 2022b). More importantly, 

our method demonstrates substantially lower FLOPs compared to other methods, even 

only 0.03% of that of (Yu et al., 2023). These results demonstrates the superiority of 

our model in terms of computational complexity, as well as its lightweight design with 

promising estimation performance. 

Table 3-6 Results based on HumanEva-I dataset using Protocol#1 of MPJPE (mm). 
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In Figure 3-6, we compared the MPJPE performance of our method (one-stage) with 

that of RIE (Shan et al., 2021a) (stage 3) based on Human3.6m, using ground-truth 2D 

poses as inputs. Both methods used 80 epochs to train, but our method requires only 

one stage of training and achieved the best results (29.6mm) at the 37th epoch. In 

contrast to this, RIE (Shan et al., 2021a) required three stages of training with 80 epochs 

each, and the best results (30.3mm) were achieved at the 63rd epoch of stage 3. 

Compared to the RIE (Shan et al., 2021a), our method converged quicker, achieved the 

best result within one stage of training. In other words, our method required fewer than 

80 epochs to train because the two losses are optimized simultaneously. The second loss 

(fused 3D pose) does not need to wait for the convergence of the first one (non-fused 

3D pose). We used one stage and fewer epochs to train and end up with a better result 

than did the RIE (Shan et al., 2021a). 

Protocol #1 Walk Jog Avg 

 S1 S2 S3 S1 S2 S3  

Shan et al. (2021a) 17.9 11.9 38.0 27.6 18.1 19.2 22.1 

Zheng et al. (2021a) 16.3 11.0 47.1 25.0 15.2 15.1 21.6 

Zhang et al. (2022b) 20.3 22.4 34.8 27.3 32.1 34.3 28.5 

Ours (T=27) (one-stage) 19.0 13.1 38.4 28.7 18.2 20.4 22.9 

Ours (T=27) (three-stage) 17.2 11.9 36.8 26.8 17.0 18.5 21.3 
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Figure 3-6 Comparison of MPJPE performance of our method and that of RIE 

(Shan et al., 2021a). 

Results on HumanEva-I dataset. We evaluated our model in terms of Protocol#1 on 

the HumanEva-I dataset in   
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Table 3-7. For comparative purpose, the input 2D poses were detected using Mask R-

CNN (He et al., 2017), being in line with other SOTA results. In addition, we trained 

our model with a receptive field of T=27 frames. As shown, our method achieves 

21.3mm in MPJPE under three-stage training, which is the best result compared to other 

methods. These results highlight the superior performance of our method on small 

datasets in comparison to transformer-based models. 
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Table 3-7 Analysis of hyperparameters setting for the MAI module based on 

Human3.6M dataset using Protocol#1. 

Input Channel Output Channel with HFF? MPJPE (mm)↓ FLOPs↓ Parameters↓ 

128 32 No 31.1 49.52M 56.66M 

256 64 No 31.1 49.85M 61.00M 

128 32 Yes 30.3 35.88M 43.25M 

256 64 Yes 30.0 36.21M 47.59M 

 

3.3.4 Discussion 

We investigated in this section the different settings of the MAI, HFF and CIE modules, 

analyzing the impact of different hyperparameters and design options in each module. 

Different design options for the MAI. MAI has been introduced to encode joint 

motion amplitude information, in addition to positional and temporal information, to 

enable the network to better predict 3D poses. As a kind of global information, motion 

amplitude was encoded by TCN and introduced after the feature fusion, as illustrated 

in Figure 3-2. This section analyses the impacts of different input and output channel 

sizes for MAI and different ways of motion amplitude encoding. Table 3-8 compares 

the effects for different input and output channels, in which the results were obtained 

by one-stage training using ground-truth 2D poses as inputs. Table 3-8 shows that the 

performance of MPJPE cannot be improved when the input and output channels of MAI 

increase. When the HFF module is applied, however, MAI with larger input and output 

channels (256 and 64) would result in better MPJPE (30.0mm). 

 

Table 3-8 Ablation study on whether to encode the MAI module separately on 

Human3.6M under Protocol#1. 
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Method (GT) MPJPE (mm) FLOPs (M) Parameters (M) 

Baseline 32.3 49.20 54.98 

+MAI (together) 32.3 49.20 55.00 

+MAI (together)+HFF 30.5 35.56 41.59 

+MAI (separately) 31.1 49.85 61.00 

+MAI (separately)+HFF 30.0 36.21 47.59 

 

The motion amplitude information 𝐹𝑀𝐴
𝑖  in equation (3-7) is separately encoded, instead 

of like input pose, positional and temporal information being encoded together as 

enhanced representation 𝐹𝐸
𝑖   (with reference to equation (3-4)). It is interesting to 

investigate how motion amplitude information should be encoded, whether together 

with other types of information or separately. The results of experimental analysis is 

shown in Table 3-9. When the four types of information (including input pose, position, 

temporal and motion amplitude information) were encoded together, the performance 

(MPJPE) did not improve. When we encoded the motion amplitude information 

separately (256 for the input channel and 64 for the output channel) as shown in Figure 

3-5, the performance of MPJPE improved by 1.2mm over the baseline. By applying 

HFF module further, a MPJPE result of 30.0mm was obtained, representing an 

improvement of 0.5mm comparing to the method of encoding all three information 

together and applying the HFF module afterwards. There is, however, not much of an 

increase in FLOPs and number of parameters when encoding motion amplitude 

information separately compared to encoding them together. This has validated that the 

motion amplitude information should be encoded separately in general. 

 

Table 3-9 Ablation study involving different settings of feature fusion module. 
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Feature Fusion MPJPE (mm) FLOPs (M) Parameters (M) 

Module design 1 32.3 49.20 54.98 

Module design 2 31.1 32.15 39.21 

Module design 3 31.1 45.79 51.83 

Module design 4 30.9 35.56 41.58 

 

Table 3-10 Ablation study on the hyperparameters of CIE module on Human3.6M 

under Protocol#1. 

Embedding Channel MPJPE (mm) FLOPs (M) Parameters (M) 

32 29.8 36.54 47.92 

64 29.6 36.87 48.25 

128 29.7 37.53 48.91 

 

Different design options for the HFF module. We conducted ablation experiments 

involving the HFF module based on the Human3.6M dataset using Protocol#1. We 

compared four different design settings for feature fusion module, as illustrated in 

Figure 3-7. Design 1 used the FCN feature fusion block for all five body parts to form 

the feature fusion module, while module design 2 adopted the Conv feature fusion block 

for all five body parts. Module design 3 used the Conv feature fusion block for the torso 

and the FCN feature fusion block for the four limb parts, while module design 4 utilized 

the FCN feature fusion block for the torso and the Conv feature fusion block for the 

four limb parts. As shown in Table 3-10, module design 1 produced a MPJPE result of 

32.3mm. By replacing all the FCN feature fusion blocks with the Conv feature fusion 

blocks, the MPJPE result of module design 2 was improved by 1.2mm compared to 

module design 1, and the number of FLOPs and parameters were reduced substantially 

to 32.15M and 39.21M, respectively. This demonstrated the effectiveness of the Conv 

feature fusion block. In contrast to the design 2, module design 3 replaces the Conv 

feature fusion blocks with the FCN feature fusion modules for the limbs and achieved 
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the same MPJPE result of 31.1mm as the design 2. Nevertheless, the FLOPs and 

parameters of module design 3 were higher than those of module design 2. Module 

design 4 achieved a MPJPE of 30.9mm with the reduced number of FLOPs and 

parameters when comparing to design 3. This is because the torso has more joints and 

requires the FCN to learn with more parameters, while the limbs can be effectively 

learned by the Conv feature fusion block and prevent overfitting. Therefore, module 

design 4 is selected as our HFF module setting. 

 

Figure 3-7 Comparison of different feature fusion modules. 

Different design options for the CIE module. We analyzed the effect of embedding 

channel dimensions of the CIE module on the performance in terms of MPJPE (mm) in 

Error! Reference source not found.. Ablation experiments were again conducted for o

ne-stage network based on Human3.6M dataset using Protocol#1. It became apparent 

from Error! Reference source not found. that simply increasing the channel d
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imensions of the CIE module in an uninformed manner would not improve the 

performance. The CIE module, with 64 channels, gave the best MPJPE result (29.6 

mm), indicating that this setting performed slightly better in terms of accuracy 

compared to the other two settings. The number of FLOPs and parameters increased 

with the number of embedding channels. This is because larger models require more 

computational resources and have higher complexity. In conclusion, the CIE module, 

with 64 embedding channels, seemed to be the best trade-off in terms of accuracy and 

computational complexity. 

3.3.5 Qualitative Results 

Figure 3-8 compares the qualitative results of our method obtained by one-stage 

training with those of RIE (Shan et al., 2021a) obtained by three-stage training. 

Compared to RIE (Shan et al., 2021a), our method produced more accurate predictions 

in 3D poses when the range of motion of the limbs is large or in actions that are heavily 

occluded. 
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Figure 3-8 Qualitative results output by our method and those of RIE (Shan et al., 

2021a). 

3.4 Chapter Summary 

In this chapter, a new network with three new encoding modules, including MAI, HFF 

and CIE, has been developed for grouped 3D pose estimation. It can be concluded that 

the motion amplitude encoding (MAI) and camera intrinsic embedding (CIE) modules 
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could provide global information to the network and improve the accuracy of 3D pose 

estimation. Furthermore, the optimized feature fusion (HFF) module could significantly 

reduce model complexity while ensuring the accuracy of the model. Compared to a 

previous approach (Shan et al., 2021a), our method has used fewer parameters to fuse 

different groups of human pose features and also improved the performance. Moreover, 

a one-stage training scheme based on gradient detaching has been proposed to train, in 

an end-to-end manner, the new CNN-based network for 3D human pose estimation with 

grouped feature fusion, and this could greatly reduce the number of training epochs, 

saving training time with only a slight drop in accuracy in comparison to the multi-

stage offline training strategy. Recently, the transformer exhibited stronger modeling 

capabilities than CNN, but it requires more computational resources. Thus, this current 

approach is designed to accommodate situations with limited computational resources. 

In the next chapter, a transformer-based method will be introduced to yield more 

accurate 3D pose in situations where there are ample computational resources. 
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CHAPTER 4. KINEMATICS AND TRAJECTORY 

PRIOR KNOWLEDGE-ENHANCED TRANSFORMER 

4.1 Introduction 

With reference to the overall research framework of the current study defined in Chapter 

1, a total of three novel network models are developed. Chapter 3 explained the first 

model, a CNN-based network, while the rest two are transformer-based networks. This 

chapter explains the detail of the second model developed in this study, a transformer-

based network for 3D pose estimation with video sequence inputs. 

Transformer, a deep learning architecture, has revolutionized first in natural language 

processing (NLP) and later in other areas such as computer vision since its introduction 

in 2017 (Vaswani et al., 2017). The name ’transformer’ comes from the fact that these 

architectures use a self-attention mechanism to transform layers of inputs into layers of 

outputs in a way that allows the model to focus on (attend to) certain inputs. In terms 

of 3D pose estimation, the transformer first processes an input video into a sequence of 

tokens, the basic units of processing namely 2D poses, and then models the spatial-

temporal relationship between tokens using multi-head self-attention (MHSA) 

mechanism. 

The existing works of transformer-based methods for 3D human pose estimation (Li et 

al., 2022b; Li et al., 2022c; Shan et al., 2022; Tang et al., 2023b; Zhang et al., 2022b; 

Zhao et al., 2023; Zheng et al., 2021a) mainly focus on developing novel transformer 

encoders. They model either the spatial correlation between joints within each frame 
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and the pose-to-pose or joint-to-joint temporal correlation across frames. Regardless of 

spatial or temporal MHSA calculation, the present transformer-based methods all use 

linear embedding where 2D pose sequence are tokenized into high dimensional features 

and treated uniformly to compute the spatial correlation between joints and the temporal 

correlation across frames in the spatial and temporal MHSA, respectively. This may 

lead to the problem of ‘attention collapse’, a phenomenon denoting a circumstance 

wherein the self-attention becomes too focused on a limited subset of input tokens while 

disregarding other segments of the sequence. In contrast to previous works, with the 

known anatomical structure of the human body as well as joint motion trajectory across 

frames as a priori knowledge, we propose a graph-based method to formulate such prior 

knowledge-attention for better learning the spatial and temporal correlations. Our 

graph-based prior attention mechanism is different from other existing graph-

transformer methods (Gong et al., 2023; Li et al., 2023; Zhao et al., 2022; Zhu et al., 

2021); without modifying the transformer structure or introducing complex network, 

instead, we design plug-and-play modules to be placed in front of MHSA modules of a 

vanilla transformer. Our method is simple yet effective, highly flexible and adaptable, 

allowing it to be integrated into different transformer-based methods. 
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Figure 4-1 Top: the spatial local topology (fixed) plus the simulated spatial global 

topology (learnable) to form the kinematics topology (learnable). 

Bottom: the temporal local topology (fixed plus the simulated temporal 

global topology (learnable) to form the joint motion trajectory topology 

(learnable). 

To be specific, we introduce two novel prior attention modules, namely Kinematics 

Prior Attention (KPA) and Trajectory Prior Attention (TPA), and the key concepts are 

illustrated in Figure 4-1. KPA first constructs a spatial local topology based on the 

anatomy of the human body, as shown at the top of Figure 4-1. The way these joints are 

physically connected to each other is fixed and is represented by solid lines. To 

introduce the kinematic relations among non-connected joints, we use a fully connected 

spatial topology to calculate the joint-to-joint attention weights, called simulated spatial 

global topology. In this topology, the strength of the connectivity relationship between 

each joint (including itself) is learnable, and thus we denote it with a dotted line in 
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Figure 4-1. We combine the spatial local topology and the simulated spatial global 

topology to obtain a kinematics topology, where each joint has a learnable kinematic 

relationship with each other. This kinematic topological information aims to provide a 

priori knowledge to the spatial MHSA, enabling it to assign weights to joints based on 

the kinematic relationships in different actions. Similarly, as shown in the bottom of 

Figure 4-1, TPA connects the same joint across consecutive frames to build the temporal 

local topology. Next, we construct a temporal global topology by exploiting learnable 

vectors (dotted line) to connect the joints among all neighbouring and non-

neighbouring frames, which is equivalent to the computation of attention weights 

among all frames by self-attention, called simulated temporal global topology. Then, 

we combine the two topologies to obtain a new topology called joint motion trajectory 

topology, which allows the network to learn both the temporal sequentiality and 

periodicity (joints in non-neighbouring frames have similar motions to each other) for 

the joint motion. The temporal tokens embedded with the trajectory information will be 

more effectively activated in the temporal MHSA, which enhances the temporal 

modeling ability for MHSA. The KPA and TPA modules are combined with vanilla 

MHSA and MLP to form the Kinematics and Trajectory Prior Knowledge-Enhanced 

Transformer (KTPFormer) for 3D pose estimation, as shown in Figure 4-2. The main 

contributions of this section are summarized as follows: 

• We propose two novel prior attention modules, KPA and TPA, which can be 

combined with MHSA and MLP in a simple yet effective way, forming the 
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KTPFormer for 3D pose estimation. 

• Our KTPFormer outperforms the state-of-the-art methods on Human3.6M, MPI-

INF-3DHP and HumanEva benchmarks, respectively. 

• KPA and TPA are designed as lightweight plug-and-play modules, which can be 

integrated into various transformer-based methods (including diffusion-based) for 

3D pose estimation. Extensive experiments show that our method can significantly 

improve the performance without largely increasing computational resources. 

 

Figure 4-2 Overview of Kinematics and Trajectory Prior Knowledge-Enhanced 

Transformer (KTPFormer). The input 2D pose sequence 𝑃𝑇𝑁 ∈ ℝ𝑇×𝑁×2 

with 𝑇  frames and 𝑁  joints is first fed into the Kinematics-Enhanced 

Transformer. 

4.2 Method 

In this thesis, we propose a novel Kinematics and Trajectory Prior Knowledge-

Enhanced Transformer (KTPFormer), which combines kinematics and trajectory prior 

attentions and MHSA in a direct but effective way. Our KTPFormer can model both 
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spatial and temporal information simultaneously. Moreover, our method preserves the 

inherent structure of the transformer and is more flexible. 

Our KTPFormer utilizes the seq2seq pipeline for 3D human pose estimation, which can 

simultaneously predict 3D pose sequence corresponding to the input 2D keypoint 

sequence. As shown in Figure 4-2, an input 2D pose sequence 𝑃𝑇𝑁 ∈ ℝ𝑇×𝑁×2 is first 

fed into the Kinematics-Enhanced Transformer, with 𝑇 denotes the number of frames, 

𝑁 denotes the number of joints, and 2 is the channel size. KPA injects the kinematic 

topological information into the 2D pose 𝑃𝑁 ∈ ℝ𝑁×2 in each frame, aiming to obtain 

high-dimensional spatial tokens 𝐻𝑇𝑁 ∈ ℝ𝑇×𝑁×𝑑𝑚 . Next, the spatial MHSA transforms 

𝐻𝑇𝑁  into matrics 𝑄𝑆 , 𝐾𝑆 , 𝑉𝑆  for learning the global correlation between joints. The 

Trajectory-Enhanced Transformer takes a sequence of reshaped tokens 𝑃𝑁𝑇 ∈

ℝ𝑁×𝑇×𝑑𝑚  as inputs. We stack two TPA blocks with the residual connection to generate 

the temporal tokens 𝐻𝑁𝑇 ∈ ℝ𝑁×𝑇×𝑑𝑚   with incorporated prior information on joint 

motion trajectories. Next, the temporal MHSA transforms 𝐻𝑁𝑇  into 𝑄𝑇 , 𝐾𝑇 , 𝑉𝑇  for 

modeling global coherence among frames. The output features from Temporal MHSA 

are reshaped and fed into stacked spatio-temporal transformers for encoding. Finally, 

the regression head predicts the coordinates of the 3D pose sequence based on the 

learned features. 

 

4.2.1 Kinematics-Enhanced Transformer 

Kinematics-Enhanced Transformer receives the input 2D keypoint sequence and 
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transforms them into high-dimensional spatial tokens. The 2D keypoint sequence first 

goes through the KPA for embedding the prior knowledge of kinematics, which is then 

fed into the spatial MHSA for global correlation learning between joints. 

To be specific, given a 2D pose sequence as 𝑃𝑇𝑁 ∈ ℝ𝑇×𝑁×2, we regard each joint 𝑝𝑖 ∈

ℝ2  of a 2D pose 𝑃𝑁 ∈ ℝ𝑁×2  as a keypoint patch. Next, we define a learnable 

transformation matrix 𝑊 ∈ ℝ2×𝑑𝑚   to map all keypoint patches 𝑃𝑇𝑁  into high-

dimensional tokens 𝑃̅𝑇𝑁 ∈ ℝ𝑇×𝑁×𝑑𝑚  . In order to inject the prior information of 

kinematics into 𝑃̅𝑇𝑁 , KPA first constructs a symmetric affinity matrix 𝐴𝑁 ∈ ℝ𝑁×𝑁 

based on the skeletal structure of the human body, namely spatial local topology, as 

shown in Figure 4-1. If two joints are physically connected in the human body structure, 

the corresponding element in the affinity matrix 𝐴𝑁 ∈ ℝ𝑁×𝑁  is non-zero and 0 

otherwise. The affinity matrix 𝐴𝑁  can allow each 2D keypoint to learn anatomical 

structure information of the human body. Besides, KPA also considers the implicit 

kinematic relationships among adjacent and non-adjacent keypoints. Similar to the self-

attention in MHSA, we establish a fully connected spatial topology, called simulated 

spatial global topology, as shown in Figure 4-1. In this topology, all the joints are 

interconnected by dotted lines, indicating that the connectivity relationship between 

each joint is learnable. The simulated spatial global topology is denoted as an affinity 

matrix 𝐴̂𝑁 ∈ ℝ𝑁×𝑁, where each element is learnable. Lastly, we combine the spatial 

local topology 𝐴𝑁 with the simulated spatial global topology 𝐴̂𝑁 to derive a kinematics 

topology 𝐴𝐾, which is shown as: 
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𝐴𝐾 =
(𝐴𝑁+𝐴̂𝑁)+(𝐴𝑁+𝐴̂𝑁)′

2
 (4 − 1) 

where ′  denotes the matrix transpose, 𝐴𝐾 ∈ ℝ𝑁×𝑁  is a learnable affinity matrix. The 

reason why we construct the 𝐴𝐾 with the above formula is that the original spatial local 

topology matrix 𝐴𝑁 is also symmetric. In order to ensure that different keypoints can 

learn different kinematic knowledge, we introduce a learnable weight matrix 𝑀𝑁 ∈

ℝ𝑁×𝑑𝑚  and multiply it with tokens 𝑃̅𝑇𝑁 ∈ ℝ𝑇×𝑁×𝑑𝑚   by element-wise multiplication, 

which is an economic and effective way. Thus, we can obtain the tokens 𝐻𝑇𝑁 ∈

ℝ𝑇×𝑁×𝑑𝑚  including the prior knowledge of kinematics. The formula is represented as: 

𝐻𝑇𝑁 = (𝑀𝑁⨀𝑃̅𝑇𝑁)𝐴𝐾 (4 − 2) 

Where ⨀  represents element-wise multiplication. Moreover, we add the learnable 

spatial positional embedding to 𝐻𝑇𝑁. After that, 𝐻𝑇𝑁 ∈ ℝ𝑇×𝑁×𝑑𝑚  is transformed into 

queries 𝑄𝑆 ∈ ℝ𝑇×𝑁×𝑑𝑚  , keys 𝐾𝑆 ∈ ℝ𝑇×𝑁×𝑑𝑚   and values 𝑉𝑆 ∈ ℝ𝑇×𝑁×𝑑𝑚   by a linear 

transformation matrix. Then, we design a spatial MHSA (𝑀𝐻𝑆𝐴𝑆 ) to model global 

spatial correlation between keypoints within an identical frame. Each attention head 

(𝑖 = 1, … , ℎ) can be represented as: 

ℎ𝑒𝑎𝑑𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑆

𝑖 (𝐾𝑆
𝑖)

′

√𝑑
) 𝑉𝑆

𝑖  (4 − 3) 

where ′ denotes the matrix transpose. All the attention heads are concatenated together 

to form the 𝑀𝐻𝑆𝐴𝑆: 

𝑀𝐻𝑆𝐴𝑆(𝑄𝑆, 𝐾𝑆, 𝑉𝑆) = 𝒄𝒂𝒕(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑆 (4 − 4) 

Where 𝑊𝑆 ∈ ℝ𝑑𝑚×𝑑𝑚   is the linear transformation matrix. Concurrently, 𝐻𝑇𝑁  as a 
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residual adds the output of 𝑀𝐻𝑆𝐴𝑆 to form the new output 𝐻𝑆 ∈ ℝ𝑇×𝑁×𝑑𝑚, which is 

then fed into the layer normalization (LN) and MLP followed by a residual connection 

and LN. The formula can be represented as: 

𝐻𝑆 = 𝑀𝐻𝑆𝐴𝑆(𝑄𝑆, 𝐾𝑆, 𝑉𝑆) + 𝐻𝑇𝑁 (4 − 5) 

𝑃𝑁𝑇 = 𝑀𝐿𝑃(𝐿𝑁(𝐻𝑆)) + 𝐻𝑆 (4 − 6) 

Where 𝑃𝑁𝑇 ∈ ℝ𝑁×𝑇×𝑑𝑚 is the output of the Kinematics-Enhanced Transformer after 

being reshaped. 

 

4.2.2 Trajectory-Enhanced Transformer 

Trajectory-Enhanced Transformer aims to integrate the prior trajectory information of 

joint motion across frames into a sequence of tokens 𝑃𝑁𝑇 ∈ ℝ𝑁×𝑇×𝑑𝑚, in which each 

joint is regarded as an individual token in the time dimension. TPA first connects the 

identical keypoints (including itself) across neighboring frames to construct the 

temporal local topology, as shown in Figure 4-1, which is denoted as the symmetric 

affinity matrix 𝐴𝑇 ∈ ℝ𝑇×𝑇 . In order to enhance the global attention of temporal 

coherence in the MHSA, we simulate a temporal global topology that considers the 

implicit temporal correlation among neighboring and non-neighboring frames. These 

keypoints belonging to the identical trajectory among neighboring and non-neighboring 

frames are connected by the learnable vector (dotted line) to form the simulated 

temporal global topology, as shown in Figure 4-1. This topology can be expressed in 
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the form of a learnable matrix 𝐴̂𝑇 ∈ ℝ𝑇×𝑇. Thus, the equation of joint motion trajectory 

topology can be represented as: 

𝐴𝑅 =
(𝐴𝑇 + 𝐴̂𝑇) + (𝐴𝑇 + 𝐴̂𝑇)

′

2
 (4 − 7) 

where ′ denotes the matrix transpose, 𝐴𝑅 ∈ ℝ𝑇×𝑇 is a learnable affinity matrix. Then, 

we transform 𝑃𝑁𝑇 to embeddings 𝑃̅𝑁𝑇 ∈ ℝ𝑁×𝑇×𝑑𝑚  by the linear transformation. Also, 

we utilize a learnable weight matrix 𝑀𝑇 ∈ ℝ𝑇×𝑑𝑚  to allow different keypoints for 

different prior knowledge learning. The formula of one TPA is represented as: 

𝑇𝑃𝐴(𝑃𝑁𝑇) ≔ (𝑀𝑇 ⊙ 𝑃̅𝑁𝑇)𝐴𝑅 (4 − 8) 

We stack two TPA blocks with a residual connection to obtain the temporal tokens 

𝐻𝑁𝑇 ∈ ℝ𝑁×𝑇×𝑑𝑚  as follows: 

𝐻𝑁𝑇 = 𝑇𝑃𝐴(𝑇𝑃𝐴(𝑃𝑁𝑇)) + 𝑃𝑁𝑇 (4 − 9) 

The learnable temporal positional embedding is then added to 𝐻𝑁𝑇 . After that, the 

𝐻𝑁𝑇 ∈ ℝ𝑁×𝑇×𝑑𝑚   is converted into queries 𝑄𝑇 ∈ ℝ𝑁×𝑇×𝑑𝑚 , keys 𝐾𝑇 ∈ ℝ𝑁×𝑇×𝑑𝑚   and 

values 𝑉𝑇 ∈ ℝ𝑁×𝑇×𝑑𝑚 by the linear transformation. We use a temporal MHSA (𝑀𝐻𝑆𝐴𝑇) 

to model the global temporal correlation between joints across all frames as follows: 

ℎ𝑒𝑎𝑑𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑇

𝑖 (𝐾𝑇
𝑖 )

′

√𝑑
) 𝑉𝑇

𝑖  (4 − 10) 

𝑀𝐻𝑆𝐴𝑇(𝑄𝑇 , 𝐾𝑇 , 𝑉𝑇) = 𝒄𝒂𝒕(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑇 (4 − 11) 

where 𝑊𝑇 ∈ ℝ𝑑𝑚×𝑑𝑚 is the linear transformation matrix. Similar to 𝑀𝐻𝑆𝐴𝑆, we can 

obtain the final output 𝐻𝑆𝑇: 

𝐻𝑇 = 𝑀𝐻𝑆𝐴𝑇(𝑄𝑇 , 𝐾𝑇 , 𝑉𝑇) + 𝐻𝑁𝑇 (4 − 12) 

𝐻𝑆𝑇 = 𝑀𝐿𝑃(𝐿𝑁(𝐻𝑇)) + 𝐻𝑇 (4 − 13) 
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where 𝐻𝑆𝑇 ∈ ℝ𝑁×𝑇×𝑑𝑚  is the output of Trajectory-Enhanced Transformer. 

 

4.2.3 Stacked Spatio-Temporal Encoders 

After being reshaped, 𝐻𝑆𝑇  is fed into the stacked spatio-temporal encoders which 

consist of alternating spatial and temporal transformers. The number of stacks is 𝐿. The 

sequential features are reshaped according to the type of the MHSA before fed into the 

encoder (spatial or temporal). 

4.2.4 Regression Head 

We utilize the linear layer as a regression head to predict the 3D pose sequence 𝑃̂3𝐷 ∈

ℝ𝑇×𝑁×3. The overall loss function for our network is given as: 

ℒ = ℒ𝑊 + 𝜆𝑇ℒ𝑇 + 𝜆𝑀ℒ𝑀 (4 − 14) 

where ℒ𝑊 denotes the weighted mean per-joint position error (WMPJPE) loss (Zhang 

et al., 2022b), ℒ𝑇 is the temporal consistency loss (Hossain & Little, 2018a), and ℒ𝑀 

indicates the mean per joint velocity error (MPJVE) loss (Pavllo et al., 2019b). Here 

𝜆𝑇 and 𝜆𝑀 are hyper-parameters. 

 

4.3 Experiments 

4.3.1 Datasets and Protocols 

Datasets. We evaluated our model on three public datasets, namely Human3.6M 

(Ionescu et al., 2013), MPI-INF-3DHP (Mehta et al., 2017) and HumanEva (Sigal et 

al., 2010). Human3.6M is an indoor scenes dataset with 3.6 million video frames. It has 
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11 professional actors, performing 15 actions under 4 synchronized camera views. 

Following previous work (Tang et al., 2023b; Zhang et al., 2022b), we used subjects 1, 

5, 6, 7 and 8 for training, and subjects 9 and 11 for testing. MPI-INF-3DHP is also a 

public large-scale dataset. Following the setting of (Tang et al., 2023b; Zhang et al., 

2022b), we use the area under the curve (AUC), percentage of correct keypoints (PCK) 

and MPJPE as evaluation metrics. HumanEva is a smaller dataset in the indoor 

environment. To have a fair comparison with (Zhang et al., 2022b; Zheng et al., 2021a), 

we valuated our method for actions (Walk and Jog) of subjects S1, S2, S3. 

Protocol. Protocol#1 is denoted as the mean per-joint position error (MPJPE), which 

is the average Euclidean distance in millimetres (mm) between the predicted and the 

ground-truth 3D joint coordinates. Protocol#2 refers to the reconstruction error after 

the predicted 3D pose is aligned to the ground-truth 3D pose using procrustes analysis 

(Gower, 1975), denoted as P-MPJPE (mm). 

 

4.3.2 Implementation Details 

We implemented our method in the Pytorch framework on one GeForce RTX 3090 

GPU. The input 2D keypoints were detected by 2D pose detector (Chen et al., 2018) or 

2D ground truth. The 𝑊  in WMPJPE follows the setting (1.0, 1.5, 2.5, and 4.0) of 

MixSTE (Zhang et al., 2022b). We set the number of stacked spatio-temporal encoders 

𝐿  to 7. Thus, the encoders contain 14 spatial and temporal transformer layers with 

number of heads ℎ = 8 , feature size 𝐶 = 512. During the training stage, we use the 
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Adam (Kingma & Ba, 2014) optimizer to train our model. The batch size, dropout rate, 

and activation function are set to 7, 0.1, and GELU. The learning rate is initialized to 

0.00007 and decayed by 0.99 per epoch. Recently, diffusion models have been 

introduced in 3D pose estimation (Gong et al., 2023; Shan et al., 2023) and have 

achieved significant improvements in performance, as the diffusion process can be 

viewed as an augmentation method for pose data. To demonstrate the adaptability of 

our method, we introduced a diffusion process to our network, following the setting of 

D3DP (Shan et al., 2023), which also uses the transformer-based network as the 

backbone. We used our KTPFormer as the denoiser in the D3DP (Shan et al., 2023). 

For the design of the remaining diffusion process, our experimental parameters were 

set to be the same as D3DP (Shan et al., 2023). 

 

4.3.3 Comparison with State-of-the-art Methods 

Results based on Human3.6M. We compared our results with those of recent state-of-

the-art methods based on the dataset Human3.6M. As shown in Table 4-1, our method 

(diffusion-based) achieves the state-of-the-art (SOTA) result 33.0mm in MPJPE and 

26.2mm in P-MPJPE using the 2D poses detected by CPN (Chen et al., 2018) as inputs. 

Our method (diffusion-based) outperforms D3DP (Shan et al., 2023) by 2.4mm under 

MPJPE and 2.5mm under P-MPJPE with the same settings (the number of frames, 

hypotheses, and iterations) as D3DP (Shan et al., 2023). This demonstrates that our 

network can serve as an excellent backbone for diffusion-based methods, effectively 
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improving the performance for 3D pose estimation. Besides, we obtain the best results 

40.1mm under T =243 setting and 41.8mm under T =81 setting in MPJPE among all 

methods that are not diffusion-based. 
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Table 4-1 Quantitative comparison results with the state-of-the-art methods on Human3.6M. The 2D poses obtained by CPN (Chen et al., 

2018) are used as inputs. Top table: evaluation results of MPJPE (mm); Bottom table: evaluation results of P-MPJPE (mm); T is 

the number of input frames. (†) denotes using temporal information, and (*) indicates the diffusion-based methods. Red: Best results. 

Blue: Runner-up results. 

MPJPE (CPN) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg 

Wang et al. (2020b) (T=96)† 40.2 42.5 42.6 41.1 46.7 56.7 41.4 42.3 56.2 60.4 46.3 42.2 46.2 31.7 31.0 44.5 

Zheng et al. (2021a) (T=81)† 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3 

Li et al. (2022b) (T=351)† 40.3 43.3 40.2 42.3 45.6 52.3 41.8 40.5 55.9 60.6 44.2 43.0 44.2 30.0 30.2 43.7 

Zhao et al. (2022) 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8 

Li et al. (2022c) (T=351)† 39.2 43.1 40.1 40.9 44.9 51.2 40.6 41.3 53.5 60.3 43.7 41.1 43.8 29.8 30.6 43.0 

Shan et al. (2022) (T=243)† 38.9 42.7 40.4 41.1 45.6 49.7 40.9 39.9 55.5 59.4 44.9 42.2 42.7 29.4 29.4 42.8 

Zhang et al. (2022b) (T=81)† 39.8 43.0 38.6 40.1 43.4 50.6 40.6 41.4 52.2 56.7 43.8 40.8 43.9 29.4 30.3 42.4 

Zhang et al. (2022b) (T=243)† 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9 

Zhang et al. (2022a) (T=300)† 37.9 41.9 36.8 39.5 40.8 49.2 40.1 40.7 47.9 53.3 40.2 41.1 40.3 30.8 28.6 40.6 

Yu et al. (2023) (T=243)† 41.3 44.3 40.8 41.8 45.9 54.1 42.1 41.5 57.8 62.9 45.0 42.8 45.9 29.4 29.9 44.4 

Li et al. (2023) 47.9 50.0 47.1 51.3 51.2 59.5 48.7 46.9 56.0 61.9 51.1 48.9 54.3 40.0 42.9 50.5 

Tang et al. (2023b) (T=81)† 40.6 43.0 38.3 40.2 43.5 52.6 40.3 40.1 51.8 57.7 42.8 39.8 42.3 28.0 29.5 42.0 

Tang et al. (2023b) (T=243)† 38.4 41.2 36.8 38.0 42.7 50.5 38.7 38.2 52.5 56.8 41.8 38.4 40.2 26.2 27.7 40.5 

Gong et al. (2023) (T=243)†* 33.2 36.6 33.0 35.6 37.6 45.1 35.7 35.5 46.4 49.9 37.3 35.6 36.5 24.4 24.1 36.9 

Shan et al. (2023) (T=243)†* 33.0 34.8 31.7 33.1 37.5 43.7 34.8 33.6 45.7 47.8 37.0 35.0 35.0 24.3 24.1 35.4 

Ours (T=81)† 39.1 41.9 37.3 40.1 44.0 51.3 39.8 41.0 51.4 56.0 43.0 41.0 42.6 28.8 29.5 41.8 

Ours (T=243)† 37.3 39.2 35.9 37.6 42.5 48.2 38.6 39.0 51.4 55.9 41.6 39.0 40.0 27.0 27.4 40.1 

Ours (T=243)†* 30.1 32.1 29.1 30.6 35.4 39.3 32.8 30.9 43.1 45.5 34.7 33.2 32.7 22.1 23.0 33.0 

P-MPJPE (CPN) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg 

Wang et al. (2020b) (T=96)† 31.8 34.3 35.4 33.5 35.4 41.7 31.1 31.6 44.4 49.0 36.4 32.2 35.0 24.9 23.0 34.5 

Zheng et al. (2021a) (T=81)† 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5 

Li et al. (2022b) (T=351)† 32.7 35.5 32.5 35.4 35.9 41.6 33.0 31.9 45.1 50.1 36.3 33.5 35.1 23.9 25.0 35.2 

Shan et al. (2022) (T=243)† 31.3 35.2 32.9 33.9 35.4 39.3 32.5 31.5 44.6 48.2 36.3 32.9 34.4 23.8 23.9 34.4 

Zhang et al. (2022b) (T=81)† 32.0 34.2 31.7 33.7 34.4 39.2 32.0 31.8 42.9 46.9 35.5 32.0 34.4 23.6 25.2 33.9 

Zhang et al. (2022b) (T=243)† 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6 

Zhang et al. (2022a) (T=300)† 30.3 34.6 29.6 31.7 31.6 38.9 31.8 31.9 39.2 42.8 32.1 32.6 31.4 25.1 23.8 32.5 
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Yu et al. (2023) (T=243)† 32.4 35.3 32.6 34.2 35.0 42.1 32.1 31.9 45.5 49.5 36.1 32.4 35.6 23.5 24.7 34.8 

Tang et al. (2023b) (T=81)† 30.4 33.8 31.1 31.7 33.5 39.5 30.8 30.0 41.8 45.8 34.3 30.1 32.8 21.9 23.4 32.7 

Tang et al. (2023b) (T=243)† 29.3 33.0 30.7 30.6 32.7 38.2 29.7 28.8 42.2 45.0 33.3 29.4 31.5 20.9 22.3 31.8 

Shan et al. (2023) (T=243)†* 27.5 29.4 26.6 27.7 29.2 34.3 27.5 26.2 37.3 39.0 30.3 27.7 28.2 19.6 20.3 28.7 

Ours (T=81)† 30.6 33.4 30.1 31.9 33.7 38.2 30.6 30.7 40.9 44.8 34.4 30.5 32.7 22.3 24.0 32.6 

Ours (T=243)† 30.1 32.3 29.6 30.8 32.3 37.3 30.0 30.2 41.0 45.3 33.6 29.9 31.4 21.5 22.6 31.9 

Ours (T=243)†* 24.1 26.7 24.2 24.9 27.3 30.6 25.2 23.4 34.1 35.9 28.1 25.3 25.9 17.8 18.8 26.2 

Table 4-2 Quantitative comparison results of MPJPE (mm) with the state-of-the-art methods on Human3.6M using ground-truth (GT) 2D 

poses as inputs. T is the number of input frames. (†) denotes using temporal information, and (*) indicates the diffusion-based 

methods. Red: Best results. Blue: Runner-up results. 

MPJPE (GT) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg 

Wang et al. (2020b) (T=96)† 23.0 25.7 22.8 22.6 24.1 30.6 24.9 24.5 31.1 35.0 25.6 24.3 25.1 19.8 18.4 25.6 

Zhu et al. (2021) 37.2 42.2 32.6 38.6 38.0 44.0 40.7 35.2 41.0 45.5 38.2 39.5 38.2 29.8 33.0 38.2 

Zheng et al. (2021a) (T=81)† 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3 

Li et al. (2022b) (T=351)† 27.1 29.4 26.5 27.1 28.6 33.0 30.7 26.8 38.2 34.7 29.1 29.8 26.8 19.1 19.8 28.5 

Zhao et al. (2022) 32.0 38.0 30.4 34.4 34.7   43.3 35.2 31.4 38.0 46.2 34.2 35.7 36.1 27.4 30.6 35.2 

Li et al. (2022c) (T=351)† 27.7 32.1 29.1 28.9 30.0   33.9 33.0 31.2 37.0 39.3 30.0 31.0 29.4 22.2 23.0 30.5 

Shan et al. (2022) (T=243)† 28.5 30.1 28.6 27.9 29.8   33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3 

Zhang et al. (2022a) (T=300)† 22.1 23.1 20.1 22.7 21.3   24.1 23.6 21.6 26.3 24.8 21.7 21.4 21.8 16.7 18.7 22.0 

Zhang et al. (2022b) (T=81)† 25.6 27.8 24.5 25.7 24.9   29.9 28.6 27.4 29.9 29.0 26.1 25.0 25.2 18.7 19.9 25.9 

Zhang et al. (2022b) (T=243)† 21.6 22.0  20.4 21.0 20.8   24.3 24.7 21.9 26.9 24.9 21.2 21.5 20.8 14.7 15.7 21.6 

Li et al. (2023) 32.9 38.3  28.3 33.8 34.9   38.7 37.2 30.7 34.5 39.7 33.9 34.7 34.3 26.1 28.9 33.8 

Tang et al. (2023b) (T=81)† 26.2 26.5 23.4 24.6 25.0   28.6 28.3 24.6 30.9 33.7 25.7 25.3 24.6 18.6 19.7 25.7 

Tang et al. (2023b) (T=243)† 21.4 22.6 21.0 21.3 23.8   26.0 24.2 20.0 28.9 28.0 22.3 21.4 20.1 14.2 15.0 22.0 

Yu et al. (2023) (T=243)† 20.1 21.2 20.0 19.6 21.5   26.7 23.3 19.8 27.0 29.4 20.8 20.1 19.2 12.8 13.8 21.0 

Gong et al. (2023) (T=243)†* 18.6 19.3 18.0 18.4 18.3   21.5 21.5 19.1 23.6 22.3 18.6 18.8 18.3 12.8 13.9 18.9 

Shan et al. (2023) (T=243)†* 18.7 18.2 18.4 17.8 18.6   20.9 20.2 17.7 23.8 21.8 18.5 17.4 17.4 13.1 13.6 18.4 

Ours (T=81)† 22.5 22.4 21.3 21.4 21.2   25.5 24.2 22.4 24.4 27.5 22.7 21.4    21.7 16.3 17.3 22.2 

Ours (T=243)† 19.6 18.6 18.5  18.1 18.7  22.1 20.8 18.3  22.8 22.4 18.8 18.1 18.4 13.9 15.2 19.0 

Ours (T=243)†* 18.8 17.4 18.1 17.7 18.3 20.6 19.6 17.7 23.3 22.0 18.7 17.0 16.8 12.4 13.5 18.1 
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As shown in the results of Table 4-2, ground-truth 2D poses were used as input for 

experiments. Among all the methods, our method (diffusion-based) achieves the SOTA 

result 18.1mm, with the same settings (the number of frames, hypotheses, and iterations) 

as D3DP (Shan et al., 2023). On the other hand, we also obtain the best result 19.0mm 

under T=243 setting and 22.2mm under T=81 setting in MPJPE without diffusion 

process. Compared to GLA-GCN (Yu et al., 2023), there is a noticeable improvement 

(21.0→19.0mm) with T=243. Under T=81 setting, our method significantly 

outperforms the second-best result by 3.5mm (25.7→22.2mm). 

Results based on MPI-INF-3DHP. We evaluate the performance on MPI-INF-3DHP 

dataset to verify the generalization capability of our method. Following previous work 

(Tang et al., 2023b; Zhao et al., 2023), we input the ground-truth 2D poses to train our 

model. Table 4-3 reports the comparison results on the MPI-INF-3DHP test set. Our 

method with T=81 achieves the SOTA result with PCK of 98.9%, AUC of 85.9% and 

MPJPE of 16.7mm, outperforming the existing SOTA models by 0.2% in PCK, 2.0% 

in AUC and 6.4mm in MPJPE. Moreover, our method with T=27 also surpasses all 

other methods in terms of three metrics. These results demonstrate the strong 

generalization capability of our method on complicated datasets. 

Table 4-3 Performance comparisons on MPI-INF-3DHP with PCK, AUC and 

MPJPE. The ↑ denotes the higher, the better, the ↓ denotes the lower, the 

better. 

Method PCK↑ AUC↑ MPJPE↓ 

Wang et al. (2020b) (T=96) 86.9 62.1 68.1 

Zheng et al. (2021a) (T=9) 88.6 56.4 77.1 

Li et al. (2022c) (T=9) 93.8 63.3 58.0 
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Zhang et al. (2022b) 

(T=27) 

94.4 66.5 54.9 

Shan et al. (2022) (T=81) 97.9 75.8 32.2 

Gong et al. (2023) (T=81) 98.0 75.9 29.1 

Shan et al. (2023) (T=243) 98.0 79.1 28.1 

Zhao et al. (2023) (T=81) 97.9 78.8 27.8 

Yu et al. (2023) (T=81) 98.5 79.1 27.7 

Tang et al. (2023b) (T=27) 98.4 83.4 24.2 

Tang et al. (2023b) (T=81) 98.7 83.9 23.1 

Ours (T=27) 98.9 84.4 19.2 

Ours (T=81) 98.9 85.9 16.7 

Results based on HumanEva. Table 4-4 shows the performance in comparison to other 

methods on HumanEva dataset. Our method yields the best MPJPE result of 15.3mm 

under T=27. Also, our method is superior to other algorithms under T=81. Compared 

with MixSTE (Zhang et al., 2022b), we achieve 36.8% improvement (28.5→18.0mm) 

under T=81. Due to the short video length in HumanEva, our method gives better results 

under T=27 than T=81. These results highlight the effectiveness of our method on small 

datasets. 

Table 4-4 The MPJPE evaluation results on HumanEva testset. 

Method Walk Jog Avg 

 S1 S2 S3 S1 S2 S3  

Pavllo et al. (2019b) 

(T=81) 

13.1 10.1 39.8 20.7 13.9 15.6 18.9 

Zheng et al. (2021a) 

(T=43) 

16.3 11.0 47.1 25.0 15.2 15.1 21.6 

Zhang et al. (2022b) 

(T=43) 

20.3 22.4 34.8 27.3 32.1 34.3 28.5 

Ours (T=43) 16.5 13.9 19.9 25.3 15.9 16.5 18.0 

Ours (T=27) 12.3 11.5 19.5 20.9 13.1 14.5 15.3 

 

4.3.4 Ablation Study 

Effect of each module. To verify the effectiveness of the proposed modules, we 

conducted ablation experiments under T=243 on Human3.6M using ground-truth 2D 

poses as inputs. Table 4-5 presents the results of ablation study of each module. Our 
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baseline network first utilizes a linear layer to lift the 2D pose sequence to the high-

dimensional space and then exploits the stacked spatio-temporal encoders (L=8) to 

predict the 3D pose sequence, reaching 22.1mm of MPJPE. The introduction KPA and 

TPA brings 2.1mm and 2.4mm of MPJPE drops, respectively. With both KPA and TPA 

modules, the performance has improved 3.1mm. More remarkably, the number of 

parameters and FLOPs merely increase by 0.0016M and 21M, respectively, showing 

that our method is both effective and efficient. 

Table 4-5 Results of ablation study of each module in our KPTFormer on 

Human3.6M dataset. 

Method MPJPE (mm) Parameters (M) FLOPs (M) 

Baseline 22.1 33.6506 139038 

+KPA 20.0  33.6501 139042 

+TPA 19.7 33.6527 139055 

+KPA+TPA 19.0 33.6522 139059 

Effect on different combinations of KPA and TPA. We analyzed the impacts to 

performance for four different combinations of KPA and TPA, including the United 

Mode (UMD), the Separate Mode (SMD), the Separate Mode-S and the Parallel Mode 

(PMD). UMD indicates that the output of the KPA is fed into the two TPA blocks with 

a residual connection, followed by stacked spatio-temporal encoders. SMD represents 

that KPA is followed by spatial MHSA and two TPA blocks with a residual connection 

are followed by temporal MHSA. The SMD-S differs from the SMD in that only one 

TPA block is followed by temporal MHSA. For PMD, the input is fed into TPA and 

Kinematics-Enhanced Transformer simultaneously, and the outputs of them are then 

added together and fed into temporal MHSA. We evaluated the four modes on 
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Human3.6M with input T=243 frames. Table 4-6 shows the comparison results between 

the four modes. The MPJPE results of UMD are worse than those of SMD because 

these features from KPA are fed directly into TPA, which leads to the confusion of 

spatial and temporal information. The comparisons between the PMD and SMD 

illustrate that TPA is more suitable to inject the trajectory information into high-

dimensional tokens, rather than the initial 2D pose sequence. Besides, KPA and TPA 

should be independently followed by spatial MHSA and temporal MSHA, without 

introducing other information to cause disruption. The comparison between the SMD-

S and SMD indicates that the stacked TPA blocks can inject the prior information into 

high-dimensional tokens more effectively. 

Table 4-6 Results of ablation study involving different combinations of KPA and 

TPA in the network. 

Method MPJPE (mm) Parameters (M) FLOPs (M) 

Baseline 22.1 33.6506 139038 

United Mode (UMD) 20.0 33.6522 139059 

Parallel Mode (PMD) 19.8 33.6512 139051 

Separate Mode-S (SMD-S) 20.4 33.6512 139051 

Separate Mode (SMD) 19.0 33.6522 139059 

Different Numbers of Modules. We validate the impact of different numbers of KPA 

and TPA blocks in the KTPFormer. Table 4-7 reports the MPJPE and P-MPJPE 

comparisons on Human3.6M dataset. We take the estimated 2D poses by CPN as input 

and train these models under 81 frames. The baseline network utilizes the stacked 

spatio-temporal encoders (L=8) with number of heads H=8 and feature size C=512 to 

predict the 3D pose sequence. In our KTPFormer (first block), we combine KPA and 

TPA respectively with vanilla spatial transformer and temporal transformer, forming 
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Kinematics-Enhanced Transformer and Trajectory-Enhanced Transformer, which are 

placed at the beginning of the network. Subsequently, we employ the stacked spatio-

temporal encoders (L=7) to encode features. In the KTPFormer (all blocks), we stack 

the Kinematics-Enhanced Transformer and Trajectory-Enhanced Transformer for L=8 

loops. As indicated by the results, our KTPFormer (first block) obtains the lowest errors 

of MPJPE and P-MPJPE, indicating that KPA and TPA are better suited for processing 

the initial 2D pose sequence. Also, the KTPFormer (first block) can improve the 

performance more efficiently and has only a smaller increase in the computational 

overhead compared to the KTPFormer (all blocks). The design of KTPFormer (first 

block) is more effectively applicable to different 3D pose estimators. 

Table 4-7 The MPJPE and P-MPJPE comparisons with different numbers of KPA 

and TPA blocks in the KTPFormer. The evaluation is performed on 

Human3.6M with 81 input frames. The best result in each column is 

marked in red. 

Method Parameters (M) FLOPs (M) MPJPE (mm) P-MPJPE (mm) 

Baseline 33.650 46346 43.1 34.1 

KTPFormer (all 

blocks) 

33.673 46412 42.3 33.4 

KTPFormer (first 

block) 

33.652 46353 41.8 32.6 

 

Different Combination Ways of Topologies. We compare two different ways of 

combining the local topology and the simulated global topology. The first combination 

has been illustrated in the main text. We apply the first combination way to our 

KTPFormer, namely KTPFormer (average). The second combination is to directly add 

the local topology and the simulated global topology to obtain the kinematics topology 
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or the joint motion trajectory topology. The second combination way is also applied to 

the KTPFormer, called KTPFormer (add). We train the two networks using the 

estimated 2D poses by CPN with 81 frames as input. As shown in Table 4-8, the 

KTPFormer (average) achieves the best results of MPJPE and P-MPJPE. It suggests 

that the KTPFormer (average) which ensures the symmetry of the final topology allows 

the nodes to learn the spatial or temporal prior knowledge between them without being 

influenced by the direction of node connections. 

 

Table 4-8 The MPJPE and P-MPJPE comparisons with different combination 

ways of topologies in the KPA and TPA. The evaluation is performed on 

Human3.6M with 81 input frames. The best result in each column is 

marked in red. 

Method Parameters (M) FLOPs (M) MPJPE (mm) P-MPJPE (mm) 

KTPFormer (add) 33.652 46353 42.1 33.3 

KTPFormer (average) 33.652 46353 41.8 32.6 

 

Free Parameters. We conduct experiments on the KTPFormer under three free 

parameters, including the number of spatio-temporal encoders L, the feature size of 

transformer layers C and the number of heads H, to examine different architectures of 

KTPFormer. During the experiment, we alter each free parameter while maintaining a 

constant value for the remaining two parameters. Table 4-9 reports the comparisons on 

Human3.6M using the CPN's 2D pose detection with 81 frames as input. The 

KTPFormer with L=7, C=512 and H=8 achieves the runner-up result of MPJPE and the 

best result of P-MPJPE, and strikes a balance between regression capacity and 
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computational cost. Thus, we choose this configuration as the standard version of 

KTPFormer. 

Table 4-9 The MPJPE and P-MPJPE of KTPFormer with different number of 

spatio-temporal encoders L, feature size of transformer layers C, and 

the number of heads H in self-attention on Human3.6M dataset. Red: 

Best results. Blue: Runner-up results. 

L C H Parameters (M) FLOPs (M) MPJPE (mm) P-MPJPE (mm) 

6 512 4 29.446 40560 42.2 33.4 

7 512 4 33.652 46353 41.7 33.1 

8 512 4 37.857 52145 43.0 33.6 

7 256 4 8.437 11625 43.0 33.7 

7 512 4 33.652 46353 41.7 33.1 

7 1024 4 134.413 185115 42.5 33.7 

7 512 1 33.652 46353 43.0 34.2 

7 512 2 33.652 46353 42.8 33.8 

7 512 4 33.652 46353 41.7 33.1 

7 512 8 33.652 46353 41.8 32.6 

7 512 16 33.652 46353 42.5 33.4 

 

 

4.3.5 Qualitative Analysis 

We visualize the 3D pose estimation results and attention maps to validate the efficacy 

of our method in comparison to MixSTE (Zhang et al., 2022b). As shown in Figure 4-3, 

the spatial and temporal attention outputs from different heads are both averaged to 

show the distribution of attention weights of joints and frames. Figure 4-3(a) illustrates 

the phenomenon of unreasonable attention weight allocation to the right arm, right leg 

and torso in the spatial attention map of MixSTE (Zhang et al., 2022b), leading to poor 

predictions of the 3D pose (top of Figure 4-3). In contrast, the spatial attention weights 

(Figure 4-3(b)) are activated by KPA in regions of right arm, right leg and torso. In 
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particular, the three joints of the right arm exhibit stronger attention weights in the 

thorax column, owing to the anatomical connection between the right hand and the torso. 

The attention allocation is more reasonable (Figure 4-3(b)), contributing to an enhanced 

performance of 3D pose predicted by our method. Moreover, Figure 4-3(c) depicts the 

averaged temporal attention outputs of the three joints of right arm. In contrast, TPA 

(Figure 4-3(d)) yields stronger correlations across adjacent frames due to the continuity 

of human movements. The enhanced temporal attention also contributes to the 

performance improvement of the right arm. Also, we present more qualitative results of 

KTPFormer. Figure 4-4 and Figure 4-5 show some visualized examples of spatial 

attention maps and temporal attention maps for all layers in KTPFormer. The attention 

weights of different heads are averaged to observe the overall correlations of joints and 

frames, and the attention weights are normalized from 0 to 1. Additionally, Figure 4-6 

presents visual comparisons of 3D pose estimation results between our KTPFormer and 

MixSTE (Zhang et al., 2022b). The green circle highlights locations where we can 

achieve more accurate 3D pose estimations compared to MixSTE (Zhang et al., 2022b). 

Furthermore, we collect several in-the-wild videos as an additional real-world test to 

validate the generalization ability of our method. As shown in Figure 4-7, our method 

demonstrates remarkable robustness and accuracy across the majority of frames in the 

wild videos, especially in challenging scenarios with severe occlusion and extremely 

fast movements. 
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Figure 4-3 Comparison of visualization results and attention maps between ours 

and MixSTE (Zhang et al., 2022b). The x-axis and y-axis correspond to 

the queries and the predicted outputs, respectively. 

 

 

Figure 4-4 Visualizations of attention maps from the spatial self-attention in 

KTPFormer. The x-axis and y-axis correspond to the joints queries and 
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the predicted outputs, respectively. The attention weights are normalized 

from 0 to 1, and the lighter color indicates stronger attention. 

 

Figure 4-5 Visualizations of attention maps from the temporal self-attention in 

KTPFormer. The x-axis and y-axis correspond to the frames queries and 

the predicted outputs, respectively. The attention weights are normalized 

from 0 to 1, and the lighter color indicates stronger attention. 

 

 

Figure 4-6 Visual comparisons of 3D pose estimation between MixSTE (Zhang et 

al., 2022b) and our KTPFormer on Human3.6M dataset. The green 

circle highlights locations where our KTPFormer yields better results. 
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Figure 4-7 Some visualisation results of 3D pose estimation by our KTPFormer on 

in-the-wild videos. 

 

4.3.6 Adaptable to Different 3D Pose Estimators 

Ablation Study. Our KPA and TPA are generic and can be applied in various 

transformer-based 3D pose estimators. To verify the adaptability, we selected five 

transformer-based 3D pose estimators as backbones. We removed the linear embedding 

before the first spatial encoder and put the KPA in front of the first MHSA in these 
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models. We used the TPA to encode the features of different poses across frames on (Li 

et al., 2022b; Li et al., 2022c; Zheng et al., 2021a) and different joints across frames on 

(Tang et al., 2023b; Zhang et al., 2022b). We trained these models on the Human3.6M 

dataset using 2D ground-truth poses as inputs. As shown in Table 4-10, our method 

brings about noticeable improvements in all the models in terms of MPJPE (mm), with 

very slight increases in the number of parameters and FLOPs, indicating that our KPA 

and TPA modules are lightweight and plug-and-play to different models for 3D pose 

estimation. 

Table 4-10 Comparative results obtained with different 3D pose estimators trained 

with and without KPA and TPA modules on Human3.6M dataset. 

Method MPJPE (mm) Parameters (M) FLOPs (M) 

Zheng et al. (2021a) 

(T=81) 

31.3 9.558 815.522 

+KPA+TPA 28.8(-2.5) 9.560(+0.02) 815.885(+0.363) 

Li et al. (2022b) (T=351) 28.5 3.979 801.093 

+KPA+TPA 27.4(-1.1) 3.980(+0.01) 801.859(+0.766) 

Li et al. (2022c) (T=243) 30.9 24.767 4826.854 

+KPA+TPA 28.8(-2.1) 24.773(+0.06) 4829.873(+3.019) 

Zhang et al. (2022b) 

(T=243) 

21.6 33.650 139038.488 

+KPA+TPA 19.0(-2.6) 33.652(+0.02) 139059.638(+21.15) 

Tang et al. (2023b) 

(T=81) 

25.7 4.747 6535.219 

+KPA+TPA 25.1(-0.6) 4.748(+0.01) 6541.565(+6.346) 

 

Implementation Details. We illustrate in detail on how our Kinematics Prior Attention 

(KPA) and Trajectory Prior Attention (TPA) are applied to different 3D pose estimators. 

Our TPA possesses the capability to not only model joint-to-joint motion trajectory 

across frames but also to model pose-to-pose motion trajectory across frames. Figure 

4-8 shows the joint-to-joint and pose-to-pose motion trajectory topology. In Figure 
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4-8(b), TPA connects the different poses across consecutive adjacent frames to build 

the temporal local topology (pose-to-pose), including self-connection. Next, we exploit 

learnable vectors (dotted line) to connect the poses among all neighbouring and non-

neighbouring frames to construct the simulated temporal global topology (pose-to-

pose), which is equivalent to the computation of attention weights among all frames by 

the self-attention. Then, the two topologies are integrated together through the 

combination method identical to joint motion trajectory topology (Figure 4-8(a)), 

resulting in the pose motion trajectory topology. The pose motion trajectory topology 

(Figure 4-8(b)) is incorporated into the stacked TPA (pose) to encode the pose-to-pose 

features across frames for these works (Li et al., 2022b; Li et al., 2022c; Zheng et al., 

2021a). On the other hand, we introduce joint motion trajectory topology (Figure 4-8(a)) 

into the stacked TPA (joint) to learn joint-to-joint temporal information for other works 

(Tang et al., 2023b; Zhang et al., 2022b). Figure 4-9 depicts the framework overview 

of our KPA and TPA applied to different 3D pose estimators. For PoseFormer (Zheng 

et al., 2021a), the KPA and the stacked TPA (pose) are placed ahead of the stacked 

spatial transformers and stacked temporal transformers, respectively. The model 

architecture of StridedTransformer (Li et al., 2022b) with our method is similar to 

PoseFormer (Zheng et al., 2021a). Hence, we have not depicted it. For MHFormer (Li 

et al., 2022c), we employ the KPA to process the initial 2D pose sequence, generating 

Q, K and V vectors for the first spatial transformer. Then, we utilize three parallel 

stacked TPA (pose) blocks to encode the pose-to-pose temporal features for multiple 
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hypotheses, respectively. The three outputs from three stacked TPA (pose) blocks are 

fed into the next layer. In terms of STCFormer (Tang et al., 2023b), the KPA and the 

stacked TPA (joint) blocks are positioned ahead of the spatial attention and temporal 

attention in parallel. They yield spatial and temporal Q, K and V vectors with priori 

knowledge for the spatial attention and temporal attention, respectively. For D3DP 

(Shan et al., 2023), we employ two KPA blocks to concurrently process the 2D pose 

sequence and noisy 3D pose sequence, subsequently concatenating the output fea tures 

and feeding them into the spatial transformer. Then, the stacked TPA (joint) blocks are 

placed between the spatial transformer and temporal transformer. D3DP (Shan et al., 

2023) adopts the MixSTE (Zhang et al., 2022b) as the denoiser, so the model 

architecture of MixSTE (Zhang et al., 2022b) with our method is similar to D3DP (Shan 

et al., 2023). 

 

Figure 4-8 Overview of different motion trajectory topology. (a) The temporal local 

topology (joint-to-joint) plus the simulated temporal global topology 
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(joint-to-joint) to form the joint motion trajectory topology. (b) The 

temporal local topology (pose-to-pose) plus the simulated temporal 

global topology (pose-to-pose) to form the pose motion trajectory 

topology. 

 

Figure 4-9 The framework overview of our KPA and TPA applied to different 3D 

pose estimators. The stacked TPA indicates that two TPA blocks are 

stacked with a residual connection. In terms of PoseFormer (Zheng et 

al., 2021a) and MHFormer (Li et al., 2022c), we use the stacked TPA 

(pose) to model temporal correlations between poses across frames. In 

contrast, the stacked TPA (joint) is utilized to encode the temporal 

features between joints across frames for STCFormer (Tang et al., 2023b) 

and D3DP (Shan et al., 2023). 

Enhanced Attention Maps. We visualize the enhanced attention maps of (Li et al., 

2022c; Tang et al., 2023b; Zheng et al., 2021a) after applying our KPA and TPA on 

Human3.6M, to validate the effectiveness of our method. Figure 4-10 illustrates 

enhanced spatial and temporal attention maps from PoseFormer (Zheng et al., 2021a), 

MHFormer (Li et al., 2022c) and STCFormer (Tang et al., 2023b), by integrating our 
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KPA and TPA into their networks. In terms of spatial attention maps, our KPA enhances 

attention weights between certain joints based on human anatomical structures and 

kinematic relationships, facilitating the explicit representation of human body 

topological relationships in the attention maps. On the other hand, our TPA enhances 

the temporal correlations between adjacent frames based on the motion trajectories of 

poses or joints in MHFormer (Li et al., 2022c) and STCFormer (Tang et al., 2023b). In 

particular, our TPA enhances attention weights between the frames of central region and 

other frames in PoseFormer (Zheng et al., 2021a), recognizing the periodic nature of 

human motion in videos. 

 

 

Figure 4-10 Visualizations of enhanced spatial and temporal attention maps by our 

KPA and TPA. The x-axis and y-axis correspond to the queries and the 

predicted outputs, respectively. The attention weights are normalized 

from 0 to 1, and the lighter color indicates stronger attention. 
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4.4 Chapter Summary 

In this chapter, a Kinematics and Trajectory Prior Knowledge-Enhanced Transformer 

(KTPFormer) has been proposed and developed, which introduces two novel prior 

attention mechanisms, KPA and TPA, for 3D pose estimation. Specifically, KPA 

constructs a kinematics topology to inject the kinematics prior knowledge into spatial 

tokens. TPA incorporate the prior information of joint motion trajectory into temporal 

tokens. The two prior attention mechanisms can enhance the capabilities of modeling 

global correlations in the self-attention mechanisms effectively. Experimental results 

on three benchmarks demonstrate that our method is effective in improving the 

performance with only a very small increase in the number of parameters and 

computation. Furthermore, the KPA and TPA can be integrated with various 

transformer-based 3D human pose estimators as lightweight plug-and-play modules. 

While the preceding two methods taking videos as input can achieve excellent results, 

there are occasions when only data of single images are available. To broaden the scope 

of application, another novel network that takes single images as input to predict 3D 

poses will be presented in next Chapter. 
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CHAPTER 5. A CROSS-FEATURE INTERACTION 

NETWORK 

5.1 Introduction 

Recently, the graph convolutional networks (GCNs) have been widely used for single-

frame based 3D human pose estimation with the outstanding performance. These GCN-

based methods (Liu et al., 2020b; Zhao et al., 2019a; Zou & Tang, 2021) utilize the 

topological information of the human skeleton by aggregating feature representations 

of the neighbouring body joints. However, these methods (Liu et al., 2020b; Zhao et al., 

2019a; Zou & Tang, 2021) focus only on modeling the motion characteristics of 

adjacent or connecting joints, namely the local information. There are additional 

implicit kinematic information between joints that are not physically connected. For 

example, in the action of ‘walking a dog’, the joints of two hands and two feet move in 

the same direction along the dog’s motion. In order to better capture the global 

information of human skeleton representations, some transformer-based methods (Li et 

al., 2023; Li et al., 2022c; Zhang et al., 2022b; Zheng et al., 2021a) are proposed. By 

exploiting the self-attention mechanism, these methods model the spatial dependencies 

among all body joints. In addition, some studies (Peng et al., 2024; Zhao et al., 2022; 

Zhu et al., 2021) combine GCNs and transformer architectures to facilitate the learning 

of spatial correlations in human skeleton. However, all of them utilize GCNs and 

transformer blocks in a sequential manner, either by using the output of GCNs as the 

input for a transformer block, or vice versa. The resulting features from GCNs and 
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transformers lack direct interaction, which may limit the model’s capability and 

performance, preventing it from fully leveraging the strengths of both components. 

In order to address the aforementioned issue, we propose a novel Cross-Feature 

Interaction (CFI) Network to effectively enhance the learning of spatial representations 

of human skeleton. Figure 5-1 shows the schematic architecture of our method. As 

shown, we capture the local and global features by GCNs and self-attention 

mechanisms, respectively. We also obtain the initial 2D pose features by patch 

embedding (linear layer). The initial features, often neglected by other methods, can 

serve as an residual connection, to effectively compensate for the information loss that 

occurs during the layer-to-layer propagation of the other two types of features. Then, 

we design a specific multi-head cross-attention (MHCA) to facilitate cross-feature 

interaction among three different features, namely the local features, global features, 

and the initial 2D pose features. This specially designed MHCA, named as cross-feature 

interaction (CFI) module, can effectively model dependencies between multiple 

features and enable the other two features to complement the features of the current 

branch. Next, these three types of features derived from individual CFI modules are 

aggregated to form the enhanced spatial features. Finally, we develop a graph-enhanced 

module (GraMLP) with parallel structure of GCN and multi-layer perceptron (MLP) to 

incorporate the human skeletal knowledge as an inductive bias into the final 

representation of 3D pose. The key contributions of this paper are summarized as 

follows: 
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• We develop a novel Cross-Feature Interaction Network to effectively enhance the 

learning of spatial representations for 3D poses. 

• A cross-feature interaction (CFI) module is designed to effectively model 

dependencies among local features, global features, and the initial features, which 

are further aggregated as enhanced spatial features. 

• A graph-enhanced module ‘GraMLP’ is introduced to integrate vanilla MLP with 

graph convolutional network (GCN), improving the accuracy of 3D pose estimation. 

• Extensive experiments on two benchmarks (Human3.6M and MPI-INF-3DHP) 

show that our method outperforms other SOTA models.  

 

Figure 5-1 Schematic architecture of the proposed method.  

 

Figure 5-2 An overview of Cross-Feature Interaction Network. 
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5.2 Method 

5.2.1 Preliminary 

We first provide a brief overview of Graph Convolutional Networks (GCN) and multi-

head self-attention (MHSA). 

Graph Convolutional Network (GCN). A graph can be defined as 𝒢 = {𝒱, ℰ}, where 

𝒱 is a collection of nodes and ℰ is a set of edges. The representation of edges can be 

realized through an affinity matrix 𝐴 ∈ {0,1}𝑁×𝑁, while the set of features of all nodes 

in the 𝑙-th layer can be expressed as a matrix 𝐻𝑙 ∈ ℝ𝐷×𝑁. 𝑁 is the number of nodes, 

and 𝐷 represents the dimensionality of the features. The graph convolution operation 

aggregates features from neighboring nodes in the 𝑙 -th layer following the equation 

below: 

𝐻𝑙 = 𝜎(𝑊𝑙𝐻𝑙−1𝐴̃) (5 − 1) 

Where 𝑊𝑙 ∈ ℝ𝐷×𝐷 is the learnable weight matrix, 𝐴̃ = 𝐴 + 𝐼𝑁 refers to the adjacency 

matrix of the graph with the inclusion of self-connections, and 𝐼𝑁 is the identity matrix.  

Multi-head Self-attention (MHSA). The MHSA computes multiple attention heads 

via self-attention in parallel. Each attention head (𝑖 = 1, . . . , ℎ) is computed as: 

ℎ𝑒𝑎𝑑𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑍𝑊𝑖

𝑄)(𝑍𝑊𝑖
𝐾)𝑇

√𝑑𝑚

) (𝑍𝑊𝑖
𝑉) (5 − 2) 

where 𝑍 ∈ ℝ𝑁×𝐷  is the input token, 𝑊𝑖
𝑄

 , 𝑊𝑖
𝐾  and 𝑊𝑖

𝑉 ∈  ℝ𝐷×𝐷  are learnable 

parameters. All ℎ attention heads are then concatenated together, followed by a linear 

transformation, to form the output as follows: 
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𝑍𝑀𝐻𝑆𝐴 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝑖, … , ℎ𝑒𝑎𝑑ℎ) (5 − 3) 

5.2.2 Cross-Feature Interaction 

Figure 5-2 illustrates the proposed Cross-Feature Interaction Network, which consists 

of two main components of Cross-Feature Interaction module (CFI) and graph-

enhanced module (GraMLP). The input 2D pose joints are initially embedded into high-

dimensional tokens, denoted as the initial features 𝑋𝐼 ∈ ℝ𝑁×𝐷. 𝑁 is the number of joints, 

and 𝐷 is the dimensionality of the features. The initial features 𝑋𝐼 is then fed into the 

GCN, yielding the local features 𝑋𝐿 ∈ ℝ𝑁×𝐷: 

𝑋𝐿 = 𝜎(𝑊𝑋𝐼𝐴̃) (5 − 4) 

where 𝐴̃ denotes the adjacency matrix of anatomical relationships in the human body. 

We obtain the global features 𝑋𝐺 ∈ ℝ𝑁×𝐷  by eq. (5-3) and each head resulted from 

feeding initial features 𝑋𝐼 to the MHSA: 

ℎ𝑒𝑎𝑑𝑖
𝐺 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (

(𝑋𝐼𝑊𝑖
𝑄)(𝑋𝐼𝑊𝑖

𝐾)𝑇

√𝑑𝑚

) (𝑋𝐼𝑊𝑖
𝑉) (5 − 5) 

To facilitate communication and achieve mutual complementarity among the three 

types of features, we introduce a cross-feature interaction module, a specific multi-

head cross attention (see Figure 5-3). The initial features 𝑋𝐼 , local features 𝑋𝐿  and 

global features 𝑋𝐺 are regarded as queries, keys, and values, respectively, and fed into 

the CFI unit as follows: 

ℎ𝑒𝑎𝑑𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑋𝐼𝑊𝑖

𝑄)(𝑋𝐿𝑊𝑖
𝐾)𝑇

√𝑑𝑚

) (𝑋𝐺𝑊𝑖
𝑉) (5 − 6) 

The enhanced global features 𝑋𝐺
′ ∈ ℝ𝑁×𝐷 can be obtained by: 
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𝑋𝐺
′ = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝑖, … , ℎ𝑒𝑎𝑑ℎ) + 𝑋𝐺 (5 − 7) 

 

Figure 5-3  Cross-feature interaction module (CFI). 

By eq. (5-6), the three types of features engage in interactions and exchange information 

with each other. The global features can compensate for the limited receptive field of 

GCN, providing additional implicit kinematic knowledge to the local features. Also, the 

initial features can offer valuable information that may be lost during the process of 

feature aggregation by GCN from neighbouring joints. Moreover, the residual term in 

eq. (5-7) ensures that primary focus of the current branch, namely, the global features. 

Similarly, we employ the CFI module to obtain the enhanced local features 𝑋𝐿
′ ∈ ℝ𝑁×𝐷 

and initial features 𝑋𝐼
′ ∈ ℝ𝑁×𝐷. 

Next, the enhanced features 𝑋𝐺
′ , 𝑋𝐿

′  and 𝑋𝐼
′ are sum up to form as the output sequence 

from CFI module, also the input for the GraMLP module: 

𝑋𝐶𝐹𝐼 = 𝑋𝐺
′ + 𝑋𝐿

′ + 𝑋𝐼
′ (5 − 8) 
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5.2.3 GraMLP 

The MLP structure in a vanilla transformer is densely connected, which has limited 

ability to model topological structure information of human skeleton. To inject the 

human skeleton information into the final 3D pose, we introduce a parallel design of 

MLP and GCN, namely GraMLP. Considering that the MLP can introduce non-

linearities to the input features, by adding GCN in parallel can retain anatomical 

knowledge of the human body, serving as an inductive bias to enhance the 

representation of 3D pose.  In general, the GraMLP processes the features from the CFI 

module as follows: 

𝑋𝑜𝑢𝑡 = 𝑋𝐶𝐹𝐼 + 𝑀𝐿𝑃(𝑋𝐶𝐹𝐼) + 𝐺𝐶𝑁(𝑋𝐶𝐹𝐼) (5 − 9) 

where 𝑀𝐿𝑃(∙)  is composed of the linear layer and the GELU activation function. 

𝐺𝐶𝑁(∙) refers to the equation (5-4). 

5.2.4 Regression Head 

The linear layer is used as a regression head to predict the 3D joint coordinates of the 

single pose. The loss function for our network is given as: 

ℒ =
1

𝑁
∑ (‖𝐽𝑖 − 𝐽𝑖‖

2

2
)

𝑁

𝑖=1

 (5 − 10) 

where 𝐽𝑖 ∈ ℝ𝑁×3  and 𝐽𝑖 ∈ ℝ𝑁×3  denotes the predicted and ground truth 3D joint 

coordinates, respectively. 

5.3 Experiments 
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5.3.1 Datasets and Evaluation Metrics 

Human3.6M. Human3.6M (Ionescu et al., 2013) is an indoor scenes dataset with 3.6 

million video frames. It has 11 professional actors, performing 15 actions under 4 

synchronized camera views. Following previous work (Tang et al., 2023b; Zhang et al., 

2022b), we used subjects 1, 5, 6, 7 and 8 for training, and subjects 9 and 11 for testing. 

We use the mean per-joint position error (MPJPE) as the evaluation metric, which is 

the average Euclidean distance in millimetres (mm) between the predicted and the 

ground-truth 3D joint coordinates. 

MPI-INF-3DHP. MPI-INF-3DHP (Mehta et al., 2017) is also a public large-scale 

dataset. Following the setting of (Tang et al., 2023b; Zhang et al., 2022b), we use the 

area under the curve (AUC), percentage of correct keypoints (PCK) as evaluation 

metrics. 

5.3.2 Implementation Details 

We implemented our method in the Pytorch framework on one GeForce RTX 3090 

GPU. The Graph-Attention Cross-Feature Interaction Network loops 𝑁 = 3  times. 

Following (Zhao et al., 2019a; Zou & Tang, 2021), the input 2D keypoints are detected 

by 2D pose detector (Chen et al., 2018) or 2D ground truth. During the training stage, 

we use the Adam (Kingma & Ba, 2014) optimizer to train our model for 20 epoch. The 

learning rate is initialized to 0.001 and decayed by 0.95 per epoch. The channel size is 

set to 512 and the number of heads is set to 8 in the network. 

5.3.3 Comparison with State-of-the-Art Methods 
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Human3.6M. Table 5-1 compares the single-image estimation accuracy of our method 

with existing SOTA methods using 2D poses detected by CPN (Chen et al., 2018) as 

inputs. As shown, our method outperforms other SOTA models and achieve the same 

performance of 49.4mm of MPJPE as MGCN (Zou & Tang, 2021) which adopts the 

refinement module (Cai et al., 2019b). After applying the refinement module (Cai et al., 

2019b) to our model, the performance is improved from 49.4mm to 48.6mm, surpassing 

MGCN (Zou & Tang, 2021) by 0.8mm error reduction. Moreover, our method obtains 

the best results of 38.8mm and 38.7mm in terms of P-MPJPE. As shown in Table 5-2, 

we compare our results with those SOTA methods using 2D ground-truth poses as 

inputs. Our method attains SOTA performance, validating the effectiveness of our 

method for different types of input. 
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Table 5-1 Quantitative comparisons with SOTA methods based on Human3.6M under MPJPE (mm) and P-MPJPE (mm) with 2D poses 

detected by CPN (Chen et al., 2018) as inputs. ∗ denotes using the refinement module (Cai et al., 2019b). † indicates the 

transformer-based methods. Best results are shown in bold. 

MPJPE (CPN) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg 

Martinez et al. (2017a) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9 

Zhao et al. (2019a) 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6 

Ci et al. (2019b) 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7 

Xu and Takano (2021) 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9 

Zhao et al. (2022) † 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8 

Cai et al. (2019b) ∗ 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6 

Li et al. (2023) † 47.9 50.0 47.1 51.3 51.2 59.5 48.7 46.9 56.0 61.9 51.1 48.9 54.3 40.0 42.9 50.5 

Zeng et al. (2020) 44.5 48.2 47.1 47.8 51.2 56.8 50.1 45.6 59.9 66.4 52.1 45.3 54.2 39.1 40.3 49.9 

Zou and Tang (2021) ∗ 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4 

Ours† 45.4 49.5 46.1 49.3 51.7 56.7 47.3 44.6 58.6 63.0 50.4 47.2    51.8 38.2 41.3 49.4 

Ours†∗ 45.0 50.3 45.8 48.4 49.7 55.8 47.3 45.4 56.4 59.4 49.9 46.5 50.9 38.0 39.6 48.6 

P-MPJPE (CPN) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg 

Martinez et al. (2017a) 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7 

Ci et al. (2019b) 36.9  41.6  38.0  41.0  41.9  51.1  38.2  37.6  49.1  62.1  43.1  39.9  43.5  32.2  37.0  42.2 

Liu et al. (2020b) 35.9  40.0  38.0  41.5  42.5  51.4  37.8  36.0  48.6  56.6  41.8  38.3  42.7  31.7  36.2  41.2 

Cai et al. (2019b) ∗ 36.8  38.7  38.2  41.7  40.7  46.8  37.9  35.6  47.6  51.7  41.3  36.8  42.7  31.0  34.7  40.2 

Zeng et al. (2020) 35.8 39.2 36.6 36.9 39.8 45.1 38.4 36.9 47.7 54.4 38.6 36.3 39.4 30.3 35.4 39.4 

Zou and Tang (2021) ∗ 35.7  38.6  36.3  40.5  39.2  44.5  37.0  35.4  46.4  51.2  40.5  35.6  41.7  30.7  33.9  39.1 

Ours† 35.3  37.8  36.8  40.1  40.1  43.6  36.2  34.3  46.4  50.2  40.8  35.6  41.1 30.0  34.0  38.8 

Ours†∗ 35.5  38.1  35.9  40.4  39.9  43.7  36.0  34.7  46.1  48.4  40.5  35.7  41.3  30.2  33.7  38.7 

 

Table 5-2 Quantitative comparisons on Human3.6M under MPJPE. The input is the ground-truth 2D pose. ∗ denotes using the refinement 
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module (Cai et al., 2019b). † indicates the transformer-based methods. Best results are shown in bold. 

Method (GT) Dir. Disc Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg 

Martinez et al. (2017a) 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5 

Zhao et al. (2019a) 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8 

Cai et al. (2019b) ∗ 33.4 39.0 33.8 37.0 38.1 47.3 39.5 37.3 43.2 46.2 37.7 38.0 38.6 30.4 32.1 38.1 

Zhu et al. (2021) † 37.2 42.2 32.6 38.6 38.0 44.0 40.7 35.2 41.0 45.5 38.2 39.5 38.2 29.8 33.0 38.2 

Liu et al. (2020b) 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8 

Zou and Tang (2021) ∗ - - - - - - - - - - - - - - - 37.4 

Zeng et al. (2020) 35.9 36.7 29.3 34.5 36.0 42.8 37.7 31.7 40.1 44.3 35.8 37.2 36.2 33.7 34.0 36.4 

Xu and Takano (2021) 35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8 

Zhao et al. (2022) † 32.0 38.0 30.4 34.4 34.7 43.3 35.2 31.4 38.0 46.2 34.2 35.7 36.1 27.4 30.6 35.2 

Li et al. (2023) † 32.9 38.3 28.3 33.8 34.9 38.7 37.2 30.7 34.5 39.7 33.9 34.7 34.3 26.1 28.9 33.8 

Ours† 35.4 38.7 29.8 34.8 33.6 36.8 39.8 30.9 36.6 36.3 34.9 37.6 34.4 28.3 30.4 34.6 

Ours†∗ 29.1 37.1 29.5 31.8  33.2  41.1  36.0  29.8  38.2  39.3  33.3  36.2  35.8  27.3  28.6  33.7 
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MPI-INF-3DHP. Table 5-3 reports the quantitative comparisons with state-of-the-art 

methods on cross-dataset scenarios. Our model was trained on the Human3.6M dataset 

and subsequently evaluated on the test set of the MPI-INF-3DHP dataset. The results 

show that our method achieves the best performance in all metrics, demonstrating the 

robustness of our method being applied to previously unseen scenarios. 

Table 5-3 Quantitative comparisons with state-of-the-art methods on MPI-INF-

3DHP test set. 

Methods PCK↑ AUC↑ 

 GS noGS Outdoor All 

Martinez et al. (2017a) 49.8 42.5 31.2 42.5 17.0 

Ci et al. (2019b) 74.8 70.8 77.3 74.0 36.7 

Zeng et al. (2020) - - 80.3 77.6 43.8 

Zhao et al. (2022) 80.1 77.9 74.1 79.0 43.8 

Liu et al. (2020b) 77.6 80.5 80.1 79.3 47.6 

Xu and Takano (2021) 81.5 81.7 75.2 80.1 45.8 

Li et al. (2023) 86.2 84.7 81.9 84.1 53.7 

Ours 85.0 86.1 85.7 85.6 54.0 

 

5.3.4 Ablation Study 

To verify the effectiveness of the proposed modules, we conducted ablation 

experiments on Human3.6M using 2D poses detected by CPN (Chen et al., 2018) as 

inputs. Table 5-4 shows the results of the ablation study of each module in our method. 

The vanilla transformer network, composed of the MHSA and MLP, is utilized as our 

baseline. For consistency, the transformer network is stacked for 3 loops, resulting in 

an overall accuracy of 51.9mm MPJPE. The notation CFI(·) indicates the application 

of CFI module to feature representations of the said branch. For example, CFI(local) 

denotes the application of CFI module to the local features, i.e. eq. (5-8) only has one 



 

130 

component of 𝑋𝐿
′  . The results show that the application of three CFI modules, i.e., 

CFI(global), CFI(local) and CFI(initial), contribute 0.5mm, 0.7mm and 1.3mm, 

respectively, of error reduction. The incorporation of three CFI modules can result in 

4.0% improvement of accuracy, decreasing the MPJPE from 51.9mm to 49.8mm. Table 

5-4 also shows that the initial features play a crucial role in the interaction of local and 

global features, which brings the largest contribution of accuracy improvement. This is 

because the initial features processed by our CFI module can serve as an residual 

connection to effectively compensate for the information loss that occurs during the 

layer-to-layer propagation of the other two types of features. Lastly, by the introduction 

of the GraMLP module on top of three CFI modules, the estimation errors further drop 

0.4mm, achieving 49.4mm of MPJPE. The ablation experiments demonstrate the 

effectiveness of each proposed module in our method. 

Table 5-4 Results of ablation study of each module in our method on Human3.6M 

dataset. 

CFI(initial) 𝑿𝑰
′  CFI(local) 𝑿𝑳

′  CFI(global) 𝑿𝑮
′  GraMLP MPJPE (mm) 

    51.9 

    50.6 

    51.2 

    51.4 

    50.2 

    50.5 

    50.6 

    49.8 

    49.4 

 

5.3.5 Qualitative Results 

We visualize the 3D pose estimation results to validate the efficacy of our method in 

comparison to MGCN (Zou & Tang, 2021). As shown in Figure 5-4, the green circle 
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highlights locations where we can achieve more accurate 3D pose estimations 

compared to MGCN (Zou & Tang, 2021). The predicted 3D pose of our method are 

closer to the ground truth 3D pose under different actions. 

 

Figure 5-4 Qualitative comparisons with the MGCN (Zou & Tang, 2021) on 

Human3.6M dataset. 

 

5.4 Chapter Summary 

In this chapter, a Cross-Feature Interaction Network has been proposed and developed, 

which contains two core modules, the Cross-Feature Interaction (CFI) module and the 

parallel GCN and MLP (GraMLP) module. First of all, local features and global 
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features are extracted using GCN and MHSA, respectively. Then, the CFI module can 

facilitate communication and mutual complementation among three types of features 

(initial, local and global features). The GraMLP aggregates the preceding local features, 

global features, and initial features in a single layer, generating the final 3D pose. 

Experimental results on two benchmarks have demonstrated the effectiveness of this 

transformer-based method for 3D pose estimation based on single frames. 
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CHAPTER 6. FASHION APPLICATION 

In this chapter, the 3D pose estimation method proposed in Chapter 4 is used to predict 

the 3D poses from video inputs, and the predicted 3 poses are then transferred to a target 

avatars with motion retargeting technique, animating personalized avatars for potential 

fashion application.  

Motion retargeting involves the transfer of motion or movement from one source to 

another, commonly between characters or objects in computer graphics, animation, or 

virtual environments. It aims to implement motion data obtained from a source onto a 

distinct target, ensuring the preservation of a natural and physically plausible 

appearance in the results. Motion retargeting finds widespread application in diverse 

fields such as computer graphics, animation, video games, and virtual reality. It serves 

to efficiently repurpose existing motion data, enabling the creation of realistic 

animations for distinct characters or objects. This not only conserves time and resources 

but also elevates the overall quality of animations. Early optimization-based motion 

retargeting methods applied various additional constraints to ensure that the retargeted 

motion did not cause unnatural deformations or collisions with the environment, such 

as trajectory constraints (Feng et al., 2012), kinematics constraints (Lee & Shin, 1999), 

dynamics constraints (Tak & Ko, 2005), joint angle constraints (Choi & Ko, 2000) and 

Euclidean distance (Bernardin et al., 2017). Recently, some deep-learning-based 

motion retargeting methods have been proposed. Jang et al. (2018) proposed a motion 

retargeting system that integrated the Deep Convolution Inverse Graphics Network 
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(Kulkarni et al., 2015) and U-Net (Ronneberger et al., 2015) architectures to generate 

human motions. Villegas et al. (2018) designed a Recurrent Kinematics Network for 

motion retargeting in an unsupervised manner. Lim et al. (2019) introduced an 

unsupervised motion retargeting network to retarget the frame-by-frame pose and learn 

the movements of a character. Aberman et al. (2020) proposed a skeleton-aware motion 

retargeting framework to learn the skeleton’s hierarchical structure and joint adjacency. 

Li et al. (2022a) utilized an iterative motion autoencoder to yield retargeted motions by 

an unsupervised method. Villegas et al. (2021) identified self-contacts and ground 

contacts from the skinned motion of the source character and preserved these contacts 

to the target motion by a latent-space optimization method. Zhang et al. (2023) 

presented a Residual RETargeting network with a skeleton-aware module and a shape-

aware module to preserve inherent semantics of the source motion and comprehend the 

geometries of target characters. 

Figure 6-1 illustrates the whole process from inputting a video to generating an 

animated avatar. Specifically, the YOLOv3 (Redmon & Farhadi, 2018) was first 

adopted to detect a single person in the video. Then, HRNet (Wang et al., 2020a) was 

exploited to estimate the 2D pose from the detected person. Next, by applying any of 

the two methods described in Chapters 3 and 4, the 2D pose sequence inputs are lifted 

to the 3D pose. After obtaining the 3D coordinates of each joint for the 3D pose, these 

3D coordinates are transformed into joint angles and the motion data are converted into 

bvh files. Finally, a motion retargeting method is then applied to bind the skeleton of 
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the bvh file to the avatar's skeleton, allowing the avatar to perform a series of motions 

that we predict from the video. Figure 6-2, Figure 6-3, Figure 6-4 and Figure 6-5 

showcase some examples of application on animating personalized avatars. The 

accurate 3D poses predicted by the KTPFormer ensure that these avatars can perform 

the same coherent motions in situations of heavy occlusion and high-speed movement. 

 

Figure 6-1 The whole process from inputting a video to generating an avatar. 

 

Figure 6-2 Examples of application on animating personalized avatars (a). 
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Figure 6-3 Examples of application on animating personalized avatars (b). 
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Figure 6-4 Examples of application on animating personalized avatars (c). 
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Figure 6-5 Examples of application on animating personalized avatars (d). 

 

As a demonstration of potential fashion applications, a few motion videos and the 

results of predicted 3D poses and the retargeted avatars are shown at this link 

https://www.cafilab.com/?page_id=8147 (or QR code below). 

 

https://www.cafilab.com/?page_id=8147
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CHAPTER 7. CONCLUSIONS AND 

RECOMMENDATIONS 

FOR FUTURE WORK 

 

7.1 Conclusions 

This thesis presents three novel 3D pose estimation methods and a potential fashion 

application of 3D pose estimation for virtual try-on catwalk animation. Among the three 

network developments, the first one was a CNN-based network with three encoding 

modules, including MAI, HFF and CIE, for grouped 3D pose estimation. It can be 

concluded that the motion amplitude information (MAI) and camera intrinsic 

embedding (CIE) modules can provide global information to the network and improve 

the accuracy of 3D pose estimation. Furthermore, the optimized feature fusion (HFF) 

module can significantly reduce model complexity while ensuring the accuracy of the 

model. Compared to a previous method (Shan et al., 2021a), our method has used fewer 

parameters to fuse different groups of human pose features and also improves the 

performance. Moreover, a one-stage training scheme based on gradient detaching has 

been developed to train the grouped 3D human pose estimation network in an end-to-

end manner, which can greatly reduce the number of training epochs and save training 

time with only a slight drop in accuracy in comparison to the multi-stage offline training 

strategy.  

The second network is a transformer-based method, in which a Kinematics and 
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Trajectory Prior Knowledge-Enhanced Transformer (KTPFormer) is proposed for 3D 

pose estimation, which is integrated with two novel prior attention mechanisms. 

Specifically, KPA constructs a kinematics topology to inject the kinematics prior 

knowledge into spatial tokens. TPA incorporate the prior information of joint motion 

trajectory into temporal tokens. The two prior attention mechanisms can enhance the 

capabilities of modeling global correlations in the self-attention mechanisms effectively. 

Experimental results on three benchmarks demonstrate that our method is effective in 

improving the performance with only a very small increase in the number of parameters 

and computation. Furthermore, the KPA and TPA can be integrated with various 

transformer-based 3D human pose estimators as lightweight plug-and-play modules.  

Lastly, a Graph-Attention Cross-Feature Interaction Network has been developed for 

3D human pose estimation based on single frames. This method utilizes the Cross-

Feature Interaction (CFI) module to facilitate the exchange of information among three 

distinct features (initial, local and global features), thereby mutually enhancing each 

individual feature. Then, the parallel design of GCN and MLP (GraMLP) is proposed 

to fuse these three features more effectively. The additionally introduced GCN retains 

anatomical knowledge of the human body, serving as an inductive bias to enhance the 

learning of local features. Experimental results on two public datasets have 

demonstrated that the proposed method significantly outperforms other 3D pose 

estimation methods based upon single frames. 
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7.2 Recommendations for Future Work 

Although the proposed three methods demonstrate high accuracy on different datasets 

of 3D human pose estimation, further research is suggested to explore advanced 3D 

human pose estimation methods.  

The grouped 3D pose estimation algorithm primarily employs 1D convolutional 

operations. Recently, many research works has demonstrated that transformers, in terms 

of performance improvement, surpass traditional convolutional operations. Thus, we 

will investigate the encoding of joints within distinct body groups using a self-attention 

mechanism. Furthermore, encoding camera intrinsics into the network can enhance 

performance in the camera coordinate system, in practical applications, the 

representation of 3D poses is commonly presented in the world coordinate system. In 

the future, we will explore effective utilization of camera extrinsics to enhance the 

accuracy of 3D human pose estimation within the world coordinate system. 

Recently, multimodal approaches have been extensively researched in the field of 

computer vision. We will endeavour to encode the names of actions as textual 

information into the network to effectively boost the performance of 3D human pose 

estimation. Our future research will focus on leveraging the attention mechanism in 

transformers to encode textual information related to actions, exploring how 

transformed attention can effectively capture and incorporate action-specific details. 
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We will concurrently apply this multimodal information encoding approach to both 

video-based and single-frame 3D human pose estimation. 

In terms of motion retargeting, we will explore novel methods to achieve effective 

motion retargeting with limited training data, such as through transfer learning, meta-

learning, or other techniques that make the retargeting models more robust and 

generalizable. Also, we will design a network to jointly train 3D human pose estimation 

and motion retargeting, enabling the mutual enhancement of performance between the 

two tasks. In this way, our avatar will be capable of performing more lifelike 

movements in the field of fashion. 
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