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Abstract 

Nasopharyngeal carcinoma (NPC) is a highly infiltrative and radiosensitive malignancy. 

Radiotherapy is currently the mainstay therapeutic remedy. In radiotherapy of NPC 

patients, the gadolinium-based contrast enhanced MRI (CE-MRI) plays a critical role 

in NPC delineation. However, the gadolinium-based contrast agents (GBCAs) 

associated safety issues have attracted serious attention of clinicians in recent years. To 

reduce or eliminate the use of GBCAs, deep learning has been proposed to synthesize 

the gadolinium-free contrast enhanced MRI (GFCE-MRI), aiming at providing an 

alternative to gadolinium-based CE-MRI. Nevertheless, recent studies mostly focus on 

novel deep learning algorithms development or feasibility investigations for disease 

diagnosis in different anatomies, such as brain, liver, and breast. Currently, these is no 

study has been reported for NPC radiotherapy. In this study, we for the first time 

developed deep learning algorithm to synthesize GFCE-MRI from contrast-free T1-

weighted (T1w) and T2-weighted (T2w) MRI for radiotherapy of NPC patients. 

Specifically, we achieved three research objectives in this study: (i) to develop a novel 

multimodality-guided synergistic neural network (MMgSN-Net) that tailored for 

GFCE-MRI synthesis of NPC patients; (ii) to investigate and improve the GFCE-MRI 

model generalizability using multi-institutional MRI data; and (iii) to investigate the 

clinical efficacy of GFCE-MRI in primary NPC tumor delineation. Our experiments 

showed that the proposed MMgSN-Net is able to generate highly realistic GFCE-MRI 

images and the quantitative results outperformed three comparing state-of-the-art 

methods. We also found that the heterogeneity of multi-institutional MRI heavily 
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affects generalizability of the well-trained single-institutional model. After training the 

model with multi-institutional data and shorting the multi-institutional data distribution 

variations, the model generalizability has been significantly improved. The clinical 

evaluation results also suggest that our synthetic GFCE-MRI is highly promising for 

clinical use, with Dice Similarity Coefficient (DSC) of 0.762 and Hausdorff Distance 

(HD) of 1.932mm, respectively. The dosimetric difference of planning target volumes 

between real patients and synthetic patients was less than 1%, which is acceptable for 

radiotherapy as reported by two board-certified oncologists.  
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1.1.1 NPC basics 

Nasopharyngeal carcinoma (NPC), located in an intricated nose-pharynx ministry, is a 

highly infiltrative malignancy (Lin et al., 2015). Figure 1-1 (a) shows the anatomic 

position of nasopharynx, where nasopharyngeal carcinoma usually occurred. NPC is a 

soft-tissue mass, it presents a high tendency to invade nearby healthy soft tissues, neural 

structures, and bony skull base (Li, Xiao, et al., 2021). A case of the infiltrative NPC is 

shown in Figure 1-1 (b).  

 

Figure 1-1. Illustration of nasopharynx and NPC. (a): The anatomic position of nasopharynx, 

where nasopharyngeal carcinoma usually occurred. (b) nasopharyngeal carcinoma in contrast-

enhanced MRI. Red arrows show the position of NPC. NPC: nasopharyngeal carcinoma. 

 

（a） （b）

1. Introduction 

1.1 Nasopharyngeal carcinoma 
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As a head and neck cancer, NPC is distributed with distinct geographical 

characteristics (Chen et al., 2019). In 2018, 129079 new cases and 72987 new deaths 

were recorded globally, accounting for 0.7% and 0.8% of all cancer types, respectively 

(Bray et al., 2018). More than 70% of newly diagnosed cases were found in East and 

Southeast Asia (Chen et al., 2019). In China and Indonesia, 60558 and 17992 new cases 

were reported in 2018, accounting for 47.7% and 14.2% of all new NPC cases (Chen et 

al., 2019). Besides East and Southeast Asia, Micronesia, Polynesia, and parts of Africa 

are also suffered from a high incidence and mortality rate.  

In recent years, the incidence of NPC shows an increased tendency. It was 

reported that the worldwide new cases of NPC were 86500 (Chua et al., 2016), 129079 

(Bray et al., 2018), 133354 (Sung et al., 2021) in 2012, 2018 and 2020 respectively. 

Compared to the reported deaths in 2018, 7021 additional deaths were reported globally 

in the year of 2020. Male has a higher incidence and mortality rate than female, with a 

number of 96371 cases of incidence and 58094 cases of mortality for male against 

36983 of incidence and 21914 of mortality for female. The incidence and mortality 

between male and female are 2.61/1 and 2.65/1 in 2020 (Sung et al., 2021). Figure 1-2 

illustrated the worldwide age standardized incidence rates for both male and female in 

2020 (Observatory, 2020). 
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Figure 1-2. Worldwide age standardized incidence rates of male and female in 2020 

(Observatory, 2020). 

1.1.2 Risk factors of NPC 

The occurrence of NPC was considered to be implicated in several etiologic factors. 

Viral infection, salted fish consumption, alcohol drinking, cigarette smoking (Kamran 

et al., 2015), and environmental factors were considered to be the most common NPC 

risk factors. The incidence of NPC is tightly related to Epstein-Barr virus (EBV) (Chua 
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et al., 2016). In high NPC incidence areas, 90%-100% patients were found to be 

infected with EBV (Ho et al., 2013; Kamran et al., 2015). Another possible viral risk is 

human papillomavirus (HPV), but at present, no clear relationship has been established  

(Chua et al., 2016). Besides EBV and HPV, salted fish was believed to be an important 

carcinogen (Kamran et al., 2015). It was observed that the boat people in Southern 

China has a high NPC incidence (Lee et al., 2012). After carefully identification, the 

Cantonese salted fish has been listed as a group-one carcinogen by International 

Agency for Research on Cancer (IARC) (Kamran et al., 2015). Excessive smoking and 

alcohol assumption were also demonstrated to be risk factors for NPC. A study 

conducted by Nam et al. demonstrated that the NPC incidence rate was found to be 3 

times than the normal group in the group with excessive smoking consumption (Nam 

et al., 1992). They also found the people who with heavy alcohol consumption will have 

a risk 80% higher than people who without alcohol consumption. The occurrence of 

NPC is also thought to be related to environmental factors. Buell et al. observed an 

incidence decline among Southern Chinese after migration to California (Buell, 1974). 

1.1.3 NPC stage 

According to histological characteristics, the World Health Organization (WHO) 

classified NPC into three subtypes: keratinizing squamous cell carcinoma (Subtype-1), 

differentiated non-keratinizing carcinoma (Subtype-2), and undifferentiated non-

keratinizing (Subtype-3). It was found that 70%-80% Subtype-1 patients were related 

to infection of EBV. For Subtype-2 and Subtype-3, however, almost all patients were 

linked with infection of EBV (Adoga et al., 2018; Blanchard et al., 2018; Fu et al., 
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2018). According to the diagnostic results such as physical examinations, biopsies, and 

imaging, the NPC can be further divided into different stages. The NPC patients with 

similar stages are tend to accept similar treatment in clinical. The most widely accepted 

staging method is the TNM system  that published by American Joint Committee on 

Cancer (AJCC), the latest version was taking effect from 2018 (Lee et al., 2019). The 

TNM system classify NPC patients by three key information: the main tumor extent (T-

Stage), the spread to nearby neck lymph nodes (N-Stage), the spread to distant parts 

(metastasis) such as the bone, lung, and liver (M-Stage). Depending on the severity of 

each stage, the TNM stages are split into several substages, including Tis, T0, T1, T2, 

T3, T4, N0, N1, N2, N3, M0, and M1. These substages can further be grouped to Stage-

0 (Tis, N0, M0), Stage-Ⅰ (T1, N0, M0), Stage-Ⅱ ((T1/T0, N1, M0), or (T2, N0/N1, M0)), 

Stage-Ⅲ ((T1/T0, N2, M0), or (T2, N2, M0), or (T3, N0-N2, M0)), Stage-ⅣA ((T4, 

N0-N2, M0), or (Tis-T4, N3, M0)), and Stage-ⅣB (Tis-T4, N0-N3, M1) according the 

severity of the three stages (R. Guo et al., 2019). 

1.1.4 Clinical treatment for NPC 

NPC is naturally radiosensitive. Radiotherapy is currently the mainstay therapeutic 

remedy. Besides radiotherapy, chemotherapy and surgery can be used as a combination 

to improve the therapeutic outcome (Chen et al., 2019). Radiotherapy is a cancer 

treatment that uses high dose of radiation to destroy cancer cells and shrink tumors. 

There are different types of radiotherapy treatment for NPC patients, commonly used 

radiotherapy types are external-beam radiotherapy (EBT), such as intensity-modulated 

radiotherapy (IMRT), proton beam therapy (PBT) and stereotactic radiosurgery (SRS). 
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The EBT is the most commonly applied radiotherapy, which delivers the radiation from 

a radiotherapy machine outside the body. The intensity-modulated radiotherapy (IMRT) 

is one typical type of EBT, which allows delivering effective x-rays from different 

angles by advanced computer programs to reduce side effects for NPC patients. IMRT 

was recommend by American Society of Clinical Oncology (ASCO) for Stage-Ⅱ to 

Stage-ⅣA patients. Another EBT type is PBT. Instead of using high-energy x-rays, 

PBT uses high energy protons to kill cancer cells, which can be used for patients with 

later-stage NPC. SRS delivers precisely-targeted radiation beams to treat the NPC 

tumor, which helps preserve nearby healthy tissues. SRS can be used to treat tumor that 

has grown to skull base or brain. Brachytherapy (ASCO, 2020) is a type of internal 

radiotherapy that is delivered by radioactive implants, which is often used to treat 

recurrent NPC. Besides radiotherapy, chemotherapy is usually applied before 

(induction chemotherapy), after (adjuvant chemotherapy), or at the same time with 

radiotherapy (chemoradiotherapy) to enhance the treatment outcome. Chemotherapy 

uses drugs to kill cancer cells, always by stopping cancer cells from dividing. Stage-Ⅱ 

to Stage-ⅣA patients were usually recommended for chemotherapy. Occasionally, 

surgery is conducted when the cancer has spread to lymph nodes, especially for some 

undifferentiated nasopharynx tumor. However, surgery may cause some severe side 

effects such as nerve damage, swelling, and facial disfigurement (Chen et al., 2019). In 

this study, we mainly focus on radiotherapy for NPC treatment, especially the magnetic 

resonance image-guided radiotherapy (MRIgRT). 

1.2 MRIgRT and gadolinium-based contrast-enhanced MRI (CE-MRI) 
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MRIgRT is an emerging technique that takes advantage of the excellent soft tissue 

contrast of magnetic resonance imaging (MRI) images (Schmidt et al., 2015). In 2014, 

the first clinical MRIgRT technique was implemented in Washington (Henke et al., 

2018). After that, the MRIgRT technique has been rapidly expanded to multiple 

institutions and countries (Henke et al., 2018). Compared to traditional x-ray-based 

image-guided radiotherapy (IGRT), MRI is featured with free of ionizing radiation, 

superior soft-tissue contrast, any oblique angle imaging, and motion resolving 

capabilities (Freedman et al., 2018). MRI is particular popular for pediatric populations 

where ionizing radiation should be carefully managed, especially for those patients who 

need repeated scan during radiotherapy treatment (Schmidt et al., 2015). In recent years, 

MRI has been successfully applied to radiotherapy procedures such as tumor 

delineation, treatment planning, dose calculation, treatment delivery, and outcome 

assessment (Wen et al., 2020). At present, MRI has become a standard part in 

radiotherapy planning workflow, which allows higher-quality delineation of tumor and 

organs at risk (Bahig et al., 2019). The improved quality of delineation, combined with 

functional imaging techniques, is promising for individualized radiotherapy (Bahig et 

al., 2019). In this study, we focus on MRI guided tumor delineation for NPC patients. 

In a successful radiotherapy, accurate tumor delineation is the foremost 

prerequisite. However, tumor delineation for NPC patients is particularly challenging 

in view of the deeply infiltrative nature of NPC, which presents a high tendency to 

invade nearby normal soft tissues, bony skull base, as well as neural structures, thus 

obfuscating oncologists for accurate assess and delineate the tumor from healthy tissues. 

In general, the CE-MRI, which is generated by injection of gadolinium-based contrast 
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agents (GBCAs), is utilized to enhance the visibility of tumor.  The contrast agents that 

used in MRI are generally paramagnetic, one typical agent is gadoterate (a kind of 

macrocyclic extracellular fluid agent that approved by both European Medicines 

Agency (EMA) and The United States Food and Drug Administration (FDA)). After 

administrated orally or intravenously, the contrast agent flows through the blood. The 

T1 relaxation time of nearby protons is shortened by interacting with the contrast agent. 

Compared with healthy tissues, the tumor has a more rapid uptake and washout rate due 

to the leaky immature vascular system (Schmidt et al., 2015). In T1-weighted (T1w) 

MRI scanning, the shortened T1 relaxation time tissues appear bright in T1w MRI 

images compared to surrounding normal tissues that without contacting with the 

contrast agent. The T1w MRI images that enhanced by contrast agent are the CE-MRI. 

For the tumor regions, the surrounding blood vessels are disrupted, leading to contrast 

agent leak out from the blood vessels into the extracellular space, therefore enhancing 

the signal of tumor regions. As a functional imaging technique, the spatial resolution of 

CE-MRI allows quantitatively analysis the microenvironment changes and blood 

perfusion status of tumor at millimeter level (Torheim et al., 2014; Zhao et al., 2019). 

The most popular CE-MRI quantitative analysis method is the Tofts model (Chikui et 

al., 2012; Tofts, 2010), which contains four parameters that related to pharmacokinetics 

of gadolinium: Ktrans (volume transfer constant), Ve (volume fraction of extravascular 

extracellular space), Kep (rate constant), and Vp (volume fraction of plasma). Ktrans is 

the most commonly used CE-MRI parameter, representing the diffusion rate of 

gadolinium from plasma to the extravascular-extracellular space (EES) in unit time. 

According to the gadolinium influx rate from plasma to EES, the Ktrans reflects the blood 
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flow status and capillary leakage of the tumor. Ve represents the ratio between the 

volume of the gadolinium leaking into the EES from plasma and the whole EES volume. 

It is a number between 0 and 1, reflecting the capacity of the gadolinium in EES. Kep 

represents the diffusion rate of gadolinium from EES back to the plasma, which can be 

calculated by Ktrans / Ve. The increase of Kep may represents the increase of Ktrans or 

decrease of Ve, or both. The last parameter is Vp, representing the percentage of 

gadolinium in plasma. The Vp is very small in many lesions and can be ignored. In 

tumors with abundant blood supply, however, the contribution of intravascular signal 

to the total signal may larger than 10%, which cannot be ignored. Based on the CE-

MRI, these four parameters can be calculated pixel by pixel and generate different 

parameter maps (Schmidt et al., 2015). In addition, the relationship between these four 

parameters, integrated with the time curve, can reflect the microenvironment and the 

status of the tumor (Cheng et al., 2013; Tofts et al., 1999; Vajapeyam et al., 2017). 

Besides the application of tumor delineation in radiotherapy, the CE-MRI also 

shows the capability to predict the response of tumor and normal organs to radiotherapy 

(Cao, 2011). By assessing the tumor response to radiotherapy at an early stage, the 

clinical oncologists can adaptively optimize the treatment plan based on the functional 

changes of tumor earlier than morphologic alterations, thus achieving a better treatment 

outcome. In addition, the early assessment of the dose response in normal organs 

provides the possibility to further reduce the radiation injury to normal organs (Granata 

et al., 2021; Hylton, 2006; Zahra et al., 2007).  

1.3 Safety issues of GBCAs 
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Despite the valuable applications of CE-MRI in radiotherapy, in recent years, 

accumulated evidences have demonstrated the GBCAs-related safety issues. The safety 

issues include adverse reactions, deposition, and toxicities. The adverse reactions can 

be classified to two categories: physiologic and hypersensitivity-related (Fraum et al., 

2017).  Physiologic reactions are dose related. According to the severity, the gadolinium 

caused physiologic reactions are ranged from mild (such as vomiting) to severe (such 

as refractory vasovagal reactions). The hypersensitivity-related reactions are also 

termed allergic-like reactions, which are caused by the immune system, such as limited 

urticaria (mild) and anaphylactic shock (severe) (Fraum et al., 2017). Raisch et al. 

(Raisch et al., 2014) investigated 614 cases of severe gadolinium-based adverse 

reactions, they found 53% of these cases were resulted in hospitalization; 31% of the 

cases were justified lift-threatening; and 7% and 2% cases were caused death and 

disability, respectively. In 2006, researchers first found the deposited gadolinium in 

skin of renal failure patients (Grobner, 2006). After that, the presence of gadolinium 

was also found in bone (Gibby et al., 2004), liver (Maximova et al., 2016), and brain 

structures such as dentate nucleus and globus pallidus (Kanda et al., 2015b). The 

gadolinium deposition cases were even found in pediatric patients with normal renal 

function. A large amount of evidence has shown the potential toxicities in patients. In 

a study published in 2016, Semelka et al. reported a series of gadolinium-related clinical 

symptoms, including central and peripheral pain, headache and bone pain, as well as 

skin thickening (Semelka et al., 2016). Importantly, the fatal nephrogenic systemic 

fibrosis (NSF) was found to closely connected with administration of GBCAs in end-

stage renal failure patients (Mathur et al., 2020). The mechanism of gadolinium 
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deposition and toxicities in patients is currently remains unknown. The deposition and 

toxicities of gadolinium have triggered the abolishment of macrocyclic GBCAs in 

European countries in 2017 (Kleesiek et al., 2019b). For safety consideration, the use 

of GBCAs were recommended to be eliminated or reduced. To avoid the use of GBCAs, 

various strategies were proposed, including using contrast-free MRI, CT, and 

ultrasound to replace the use of gadolinium-based CE-MRI (Diop et al., 2013). 

Gadolinium-free contrast agents were also been explored. At present, however, none 

technique was found to have adequate clinical value to replace the use of GBCAs 

(Kleesiek et al., 2019b).   

In recent years, deep-learning (DL) assisted image synthesis has been caught in the 

spotlight of attention in the medical domain (Liang et al., 2019; Ren et al., 2021). The 

capability of deep neural networks in unraveling complex tumor-related characteristics 

(Amin et al., 2018; Saba et al., 2020; Shkolyar et al., 2019) has motivated scientists to 

synthesize gadolinium-free contrast enhanced MRI (GFCE-MRI) images from low-

dose or contrast-free MRI images (Gong et al., 2018b; Kleesiek et al., 2019b). In 2018, 

the first DL assisted technique was developed to synthesize the GFCE-MRI from 

contrast-free T1w MRI and 10% low-dose MRI. This study demonstrated the 

possibility to reduce the gadolinium dose by 90% through DL (Gong et al., 2018b). 

Followed by this study, in 2019, Kleesiek et al. used multiparametric MRI including 

T1w, T2-weighted (T2w), T2w fluid-attenuated inversion recovery (FLAIR), diffusion-

weighted imaging (DWI), and susceptibility-weighted imaging (SWI) images to train a 

1.4 Deep learning for GFCE-MRI synthesis 
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DL model to synthesize the GFCE-MRI, which validated the feasibility to generate the 

GFCE-MRI without any administration of GBCAs (Kleesiek et al., 2019b). Both of 

these two works were targeted on brain cancers. In 2020, Zhao et al. successfully used 

the T1w MRI to synthesize the GFCE-MRI for liver cancer detection (Zhao et al., 

2020b). Followed by these works, in 2021, many different DL assisted techniques were 

proposed to synthesize the GFCE-MRI images for different anatomies, such as brain 

(Bône et al., 2021; Calabrese et al., 2021; Chen et al., 2021; Kim et al., 2021; Luo et 

al., 2021b; Pasumarthi et al., 2021b), liver (Xu et al., 2021b), and breast (Kim et al., 

2021). 

Despite the great success that has been achieved by previous works, yet, the existing 

DL assisted methods still suffer from three major deficiencies/challenges: (i) the GFCE-

MRI synthesis for NPC patients remains unexplored; (ii) existing methods have low or 

unknown model generalizability; and (iii) inadequate clinical evaluations of the 

synthetic GFCE-MRI for radiotherapy applications. Following are detailed descriptions 

of these challenges. 

Challenges in synthesizing GFCE-MRI for NPC patients 

NPC is a highly infiltrative malignancy that originated in the intricated nose-pharynx 

ministry. Accurate NPC target delineation is a critical step to ensure a good tumor 

control. Compared with the previous investigated anatomies (brain, liver, and breast), 

NPC presents a high tendency to invade surrounding soft tissues, neural structures, and 

1.5 Challenges of current studies 
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bony skull base, obfuscating physicians for accurate assessment and delineation of 

tumor extent. In clinical, CE-MRI through injection of GBCAs renders superior 

discrimination between tumor and the invaded healthy soft-tissue, and hence has 

become an indispensable technique in NPC delineation for radiotherapy purpose. At 

present, however, no study has been proposed to eliminate the GBCAs for NPC patients. 

Challenges in model generalizability 

DL algorithms are data-driven. The performance of DL models largely relies on the 

homogeneity of training and testing data (Long et al., 2013). Recently, Roberts et al. 

(Roberts et al., 2021) analyzed 415 CT or X-Ray based studies on detection and 

prognostication of COVID-19. They found none of the models were of potential clinical 

use, and the underlying data bias is a key cause of failure. Compared to CT or X-Ray 

images, MRI images present apparent inter-center heterogeneity due to different 

scanners, imaging protocols, as well as potential population demographics (Liu et al., 

2020b). The inherent discrepancies in multi-center data challenge the wide application 

of GFCE-MRI models. 

Challenges in clinical evaluation of synthetic GFCE-MRI for radiotherapy 

applications 

Although several studies have been proposed to synthesize the GFCE-MRI for various 

applications (such as tumor detection, diagnosis, and treatment), most of these studies 

only developed technical methods to synthesize the GFCE-MRI and evaluated the 

synthetic GFCE-MRI using quantitative metrics such as mean absolute error (MAE), 



 

14 

 

peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). No study was 

focused on clinical evaluations of the synthetic GFCE-MRI, which is of vital 

importance for bench-to-bedside application of the GFCE-MRI in real world. 

To tackle the above-mentioned challenges, in this work, we aim to develop and evaluate 

a clinical applicable DL assisted GFCE-MRI synthesis technique for NPC radiotherapy 

applications. Specifically, we have three objectives: 

Objective 1:  to develop a multimodality-guided synergistic neural network (MMgSN-

Net) for GFCE-MRI synthesis in patients with NPC. 

Objective 2:  to assess and improve the MMgSN-Net model generalizability using 

multi-center data.  

Objective 3:  to comprehensively evaluate the potential clinical efficacy of the 

proposed GFCE-MRI technique in radiotherapy applications. 

This thesis first introduced the background of our research, including the basics of NPC, 

the safety issues of GBCAs, and previous DL assisted methods to synthesize the GFCE-

MRI for providing a CE-MRI alternative to eliminate the use of GBCAs. In section 1, 

three major challenges (section 1.5) and the objectives (section 1.6) to tackle these 

challenges were figured out. In second, third and fourth sections, detailed methods that 

applied to achieve the three objectives and corresponding results will be illustrated. 

1.6 Objectives of our study 

1.7 Thesis layout 
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Next, a discussion section (section 5) will be made to figure out the significance and 

limitations of our present work. Finally, section 6 is a conclusion to summarize our 

current research. 
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Purpose: To investigate a novel deep-learning network that synthesizes GFCE-MRI 

from multimodality contrast-free MRI for NPC patients. 

Methods and Materials: This experiment presents a retrospective analysis of multi-

parametric MRI, with and without contrast enhancement by GBCAs, obtained from 64 

biopsy-proven NPC patients treated at Queen Elizabeth Hospital. A MMgSN-Net was 

developed to leverage complementary information between contrast-free T1w and T2w 

MRI for GFCE-MRI synthesis. 35 patients were randomly selected for model training, 

whereas 29 patients were employed for model testing. The synthetic images generated 

from MMgSN-Net were quantitatively evaluated against real GBCA-enhanced T1w 

MR images using a series of statistical evaluating metrics, which include mean absolute 

error (MAE), mean squared error (MSE), structural similarity index (SSIM) and peak 

signal-to-noise ratio (PSNR). Qualitative visual assessment between the real and 

synthetic MRI was also performed. Effectiveness of our MMgSN-Net was compared 

with three state-of-the-art deep-learning networks, including U-Net, CycleGAN, and 

Hi-Net, both quantitatively and qualitatively. Further, a Turing test was carried out by 

seven board-certified radiation oncologists from four hospitals for assessing 

authenticity of the synthesized GFCE-MRI images against the real GBCA-enhanced 

T1w MRI. 

Results: Results from the quantitative evaluations demonstrated that our MMgSN-Net 

2. Development of a GFCE-MRI technique for NPC patients 

2.1 Abstract 
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outperformed U-Net, CycleGAN and Hi-Net, yielding the top-ranked scores in 

averaged MAE (44.50  13.01), MSE (9193.22  5405.00), SSIM (0.887  0.042), and 

PSNR (33.17  2.14). Further, the mean accuracy of the seven readers in the Turing 

tests was determined to be 49.43%, equivalent to random guessing (i.e., 50%) in 

distinguishing between real GBCA-enhanced T1-weighted and synthetic GFCE-MRI. 

Qualitative evaluation indicated that MMgSN-Net gave the best approximation to the 

ground-truth images, particularly in visualization of tumor-to-muscle interface and the 

intra-tumor texture information. 

Conclusions: Our MMgSN-Net was capable of synthesizing highly realistic GFCE-

MRI that outperformed the three comparing state-of-the-art networks. 

NPC is a highly infiltrative and radiosensitive malignancy that located in an intricated 

nose-pharynx ministry (Lin et al., 2015). Radiotherapy is currently the mainstay 

therapeutic remedy, enabling non-invasive cancer eradication while protecting 

surrounding healthy tissue. Accurate tumor delineation is the foremost prerequisite for 

successful radiotherapy treatment, which, however, is particularly challenging in NPC 

in view of its deeply infiltrative nature. As a soft-tissue mass, NPC presents a high 

tendency to invade nearby healthy soft tissues, neural structures and bony skull base, 

obfuscating physicians for accurate assessment and delineation of tumor extent.  

CE-MRI through injection of GBCAs renders superior discrimination between 

tumor and the invaded healthy soft-tissue, and hence has become an indispensable 

2.2 Introduction 
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technique in NPC delineation for radiotherapy purpose. Nevertheless, a number of 

safety concerns associated with bioaccumulation of GBCAs have recently been raised 

in the medical community (Broome et al., 2007; Grobner & Prischl, 2007; Kanda et al., 

2015b; Kanda et al., 2014; Kleesiek et al., 2019b; Marckmann et al., 2006; Nguyen et 

al., 2020b; Olchowy et al., 2017; Thomsen, 2006; Wong et al., 2020). 

Accumulated evidence in the body of literature since 2006 has indicated that 

gadolinium exposure has been strongly associated with an elevated risk of nephrogenic 

systemic fibrosis, which is a serious fibrotic disease of skin, joints, eyes and internal 

organ, in patients with renal deficiencies (Broome et al., 2007; Grobner & Prischl, 2007; 

Marckmann et al., 2006; Thomsen, 2006). More recent studies have highlighted 

bioaccumulation of previously administrated GBCAs in areas of dentate nucleus and 

globus pallidus within the brain on “contrast-free” T1w MRI images (Kanda et al., 2014; 

Nguyen et al., 2020b; Olchowy et al., 2017), regardless of patient’s kidney function 

(Kanda et al., 2015b). Of note, these findings triggered abolishment of linear GBCAs 

in European countries in 2017 (Kleesiek et al., 2019b). Although the use of macrocyclic 

GBCAs could mitigate the risk of undesirable gadolinium accumulation, the 

mechanism of gadolinium uptake and deposition in patients is yet to be thoroughly 

elucidated, and there is a worldwide interest to minimize the administration of GBCAs 

whenever appropriate (Wong et al., 2020). Further, a portion of cancer patients, 

particularly the elderly who are at greater risk of developing kidney malfunctions, may 

be considered ineligible for GBCA injection for safety concerns. Considering all these, 

it is imperative to provide contrast-agent-free alternatives to the community, in the hope 

of replacing the use of GBCA-enhanced MRI in the long run.  
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In recent years, DL assisted image synthesis has been caught in the spotlight of 

attention in the medical domain (Liang et al., 2019; Ren et al., 2021).  The capability 

of deep neural networks in unraveling complex tumor-related characteristics (Amin et 

al., 2018; Saba et al., 2020; Shkolyar et al., 2019) has motivated scientists to synthesize 

GFCE-MRI images from contrast-free MR images for brain cancer patients (Gong et 

al., 2018b; Kleesiek et al., 2019b). For instance, Gong et al. (Gong et al., 2018b) 

developed a U-shape DL neural network that concatenated GBCA-free (0% dose) T1w 

and GBCA-low (10% dose) CE-MRI brain images for synthesizing GFCE-MRI images 

as if it were generated from full dose of GBCA. Results from their study demonstrated 

feasibility of DL to capture contrast enhancement information from GBCA-full CE-

MRI images and synthesize GFCE-MRI images with adequate image quality. On this 

ground, Kleesiek et al. (Kleesiek et al., 2019b) subsequently devised a three-

dimensional Bayesian neural network that concatenated a total of 10 different MR 

modalities for generating GFCE-MRI images, confirming the role of DL network in 

utilizing diverse contrast-free imaging modalities for image synthesis. While these 

findings were promising, these existing DL networks have deficiencies in leveraging 

complementary information between input imaging modalities. Impact of this 

limitation on the network performance can be more prominent in the case of deeply 

infiltrative NPC due to the intricated relationship of pixel intensity between imaging 

modalities (C. Li et al., 2019).   

In this study, we, for the first time, developed a novel MMgSN-Net that is 

capable of optimizing complementary features between multiparametric MR modalities, 

including contrast-free T1w and T2w images, for GFCE-MRI synthesis. Effectiveness 
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of our MMgSN-Net was compared quantitatively against several state-of-the-art DL 

models via a series of evaluating metrics. The authenticity of our synthesized GFCE-

MRI was assessed by seven board-certified radiation oncologists from four hospitals 

via the Turing tests. To our best knowledge, we were the first to demonstrate the 

feasibility of GFCE-MRI synthesis in the context of NPC disease. The success of this 

study would provide the community with an effective contrast-agent-free alternative 

for NPC tumor delineation in future.  

2.3.1 Patient data 

Multi-parametric MR images, including T1w, T2w and CE-MRI, were retrospectively 

retrieved from 64 biopsy-proven (Stage I-IVb) NPC patients who received radiotherapy 

at Queen Elizabeth Hospital between 2012 and 2016.  Patient consent was waived due 

to the retrospective nature of this study.  All MR images were acquired under a 1.5 

Tesla MRI scanner (Avanto, Siemens, Germany). Acquisition parameters for the T1w 

and ceT CE-MRI images include: repetition time (TR): 562–739 ms; echo time (TE): 

13–17 ms; matrix: 256–320; slice thickness: 3.3–4.0 mm; voxel size 0.75–0.94 mm. In 

particular, the CE-MRI images were acquired less than 30 seconds post GBCA injection 

(Gd-DOTA, 0.2 ml/kg). The T2w MR images were acquired using the short tau 

inversion recovery (STIR) sequence with the following acquisition parameters: TR: 

7640 ms; TE: 97 ms; inversion time: 165 ms; matrix: 320; slice thickness: 4.0 mm; 

voxel size 0.75 mm.  

2.3.2 MMgSN-Net architecture 

2.3 Methods and materials 
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The proposed MMgSN-Net was configurated for GFCE-MRI synthesis. The MMgSN-

Net consists of five key modules: multimodality learning module, synergistic guidance 

system (SGS), self-attention module, multi-level module, and discriminator. Figure 2-

1 illuminates the overall architecture of the MMgSN-Net. Detailed descriptions of each 

module are presented as follows: 
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Figure 2-1. The framework of the proposed MMgSN-Net for GFCE-MRI synthesis. It consists 

of five key components: the multimodality learning module, synergistic guidance system, self-

attention module, multi-level module, and discriminator. SGS: synergistic guidance system. 

A. Multimodality Learning Module 

This module was devised to unravel tumor-related imaging features from each of the 

input MR modalities, overcoming the limitation of single modality-based GFCE-MRI 

synthesis. As indicated in Figure 2-1, it contains two channels for the two studied 

imaging modalities (T1w and T2w), each channel consists of three convolution blocks 

and two pooling layers. The convolution layers inside the convolution blocks are 
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followed by batch normalization to standardize the extracted features using the mean 

and standard deviation of the extracted features. After batch normalization, the 

activation function LeakyRelu (Xu et al., 2015) was utilized to introduce non-linearity 

into the extracted features. The learned features were downsampled using 2 × 2 max-

pooling layers. To fuse the extracted information from T1w and T2w modalities, we 

generated 64, 128, and 256 features from the first, second, and third convolution block, 

respectively. 

B. Synergistic Guidance System 

This system was specifically designed for leveraging complementary information 

between the two studied imaging modalities in a synergistic manner. 

To fuse the learned information from multimodality learning modules, a 

common strategy is to directly concatenate the information to different channels as 

input. Alternative combination methods include pixel-wise summation, pixel-wise 

product, and pixel-wise maximization. Inspired by Zhou et al. (Zhou et al., 2020), we 

first used pixel-wise summation, pixel-wise product, and pixel-wise maximization 

separately to generate different fused features. Subsequently, we concatenated them as 

different channels followed by a convolution layer to adaptively select useful 

complementary information for final GFCE-MRI synthesis. Except that, there are some 

differences from Zhou’s work. 

First, in Zhou’s work, separate information extractors learn the features from 

each input modality individually, and the extractors cannot communicate with each 
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other, which may limit complementary information learning. Inspired by the knowledge 

distillation concept (Hinton et al., 2015; C. Li et al., 2019), where a master network 

modulates the learning activity of an assistant network, we used the SGS as supervisor 

to fuse the learned information from each modality, after fuse operation, the output 

features from SGS contain the information of both T1w and T2w MR. Then we fed the 

fused information back to the next convolution block of the multimodality learning 

module to guide complementary information selection. In this way, the multimodality 

learning module can aware the information from the other modality, and the power of 

each individual multimodality learning module was further harnessed by 

communication and cooperation among the two modules in learning the complementary 

information for GFCE-MRI synthesis. The fused features were not only fed directly 

back to the second convolution block of each input channel in the multimodality 

learning model, but also sent to the third convolution block via the adoption of an 

additional pooling layer optimizing the size of output features from the first SGS. 

Second, our MMgSN-Net contains only two SGSs and two pooling layers that fuse and 

down-sample the extracted features, acting as the encoders of the synthesis network. 

The size of the SGS filters is 3 × 3, and the number of filters for the first and second 

SGS is 128 & 128, and 128 & 256, respectively. Third, the extracted features from the 

multimodality learning module was fed into the SGS without any pooling operation to 

avoid removal of critical information prior to feature fusion.  

C. Self-Attention Module 

In a convolutional neural network, the large tissue across intra-slice image regions are 
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captured by the convolution operator. As the field of the convolution operator is merely 

locally receptive, optimization algorithms may encounter difficulty in searching for the 

optimum parameter values when capturing the large size tissues (Zhang et al., 2019). 

Two possible solutions are either using multiple convolution layers or increasing the 

size of the convolution kernels. However, both solutions would degrade the 

computational efficiency. An optimal balance between the ability to capture the large 

size information and the computational efficiency can be achieved by the self-attention 

mechanism (Cheng et al., 2016; Parikh et al., 2016; Vaswani et al., 2017), which 

calculates the response at a position as a weighted sum of the features at all positions. 

For GFCE-MRI synthesis, the NPC tumors can be highly aggressive, which 

presents a high tendency to invade nearby healthy tissues like neural structures and 

bony skull base. The size of tumor sometimes can be large and exists across different 

image regions. With limited convolutional kernel size, the algorithms may encounter 

difficulty in capturing this large structural information, for example, the shape of 

infiltrative tumor. So, in MMgSN-Net, a self-attention module was introduced to 

capture the large size information across image regions, enabling MMgSN-Net to 

faithfully preserve the shape of large anatomic structures. The self-attention module 

was of the same type as that used in (Zhang et al., 2019), and was inserted between the 

second and third convolution block of the synthesis network decoder. 

D. Multi-Level Module 

Multi-level feature integration has been widely applied in areas of image segmentation 

and edge detection. Several studies (Long et al., 2015; Xie & Tu, 2015; Zhang et al., 
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2018) have shown that integrating features from multiple deep layers can improve the 

performance in image segmentation and, more remarkably, in edge detection. In GFCE-

MRI image synthesis, edge information is critical for discriminating the tumor from 

surrounding normal tissues. Thus, a multi-level module was utilized in this study to 

aggregate the multi-level features. In our MMgSN-Net, we performed upsampling for 

the output features on each side of the decoders to the size of the output image. 

Subsequently, we fused the up-sampled features through a concatenation operation and 

applied a 1 × 1 convolution layer for final output generation. 

E. Discriminator 

A discriminator was utilized to distinguish synthetic images from real CE-MRI images, 

thus to improve the GFCE-MRI synthesis performance through adversarial learning. 

An overall structure of the discriminator is illustrated in Figure 2-2. This is a 

“PatchGAN”-based (Isola et al., 2017; Zhou et al., 2020; Zhu et al., 2017) discriminator 

that classifies input images based on whether the image patches are real or fake (i.e. 

synthetic). Different from regular GAN discriminator that maps an input image to single 

“real” or “fake” output, the PatchGAN-based discriminator maps an input image P to a 

M  N size output Q (in this study, M = 16, N = 14), all pixels in Q are labelled with 

“real” (for real input P) or “fake” (for synthetic input P). For each pixel in Q, we can 

trace back to its receptive field. Here, the receptive field means the “patch” that needs 

to be classified (for example, the dotted patches in P). The final image authenticity will 

be determined by averaging the M  N results in Q. One advantage of the PatchGAN-

based discriminator is that it has fewer parameters than a full image discriminator (Isola 
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et al., 2017). We set the batch normalization momentum as 0.8 and the LeakyReLu slope 

as 0.2. For the first four convolutional layers, we set the filter stride to 2 and padding 

to 1.  

32 64 128 256 1

33 Conv BN 

LeakyReLu
33 Conv BN 

LeakyReLu
33 Conv BN 

LeakyReLu
33 Conv 33 Conv BN 

LeakyReLu

256224

128112 6456 3228 1614 1614

Real / Fake?

Average

1614

P

Q

 

Figure 2-2. Schematic illustration of the PatchGAN-based discriminator, which consists of 

three iterative operations: 3  3 Conv, BN, and LeakyReLu. Numbers in blue box represent 

output feature numbers, and numbers at the top of the input image P and output Q, and blue 

box indicate the output feature size. The orange, yellow, and green points in output Q show the 

output results generated by the orange, yellow, and green dotted patches in input P, respectively. 

Conv: Convolutional layer; BN: Batch normalization. 

2.3.3 Implementation details 

All the T1w, T2w and CE-MRI images for each NPC patient were acquired for 

radiotherapy purpose and were well-aligned. Rigid registration was applied to fine-tune 

the alignment, when necessary. Triangle thresholding (Zack et al., 1977) was performed 

to eliminate background noise from all MR images, which may otherwise be mistakenly 

learned by the deep learning network and lead to model performance degradation. A 

total of 35 patients were used for model training, whereas 29 patients were employed 

for model testing. Two-dimensional axial slices with a matrix size of 256 × 224 were 

adopted to acquire knowledge information from the T1w and T2w images for mapping 
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the CE-MRI images. Prior to the model training, all images were linearly normalized 

to a range of (-1,1). The T1w and T2w MR images were used as inputs to the network, 

and the CE-MRI images were used as learning targets. 

The L1 loss between the synthetic GFCE-MRI and the corresponding real 

GBCA-enhanced T1w MR images was deployed as the loss function of our synthesis 

network. MSE loss was used as the loss function of the PatchGAN-based discriminator 

for distinguishing between real and fake patches. The Adam algorithm was utilized to 

optimize the generated model. The network was trained under a fixed learning rate of 

0.0002 with 200 epochs, with the batch size of 1. The code was implemented in the 

PyTorch library using an NVIDIA RTX 3090 graphic card.  

2.3.4 Model evaluation 

The effectiveness of our MMgSN-Net was assessed quantitatively using a series of 

evaluating and compared against three state-of-the-art image synthesis networks: 

CycleGAN (Zhu et al., 2017), U-Net (Ronneberger et al., 2015), and Hi-Net (Zhou et 

al., 2020).  Besides, Turing tests were conducted by seven board-certified oncologists 

for examining authenticity of the synthesized GFCE-MRI images against the real 

GBCA-enhanced T1w MR images. Furthermore, a qualitative evaluation was carried 

out by visual inspection of the real and fake images. The three comparing networks are 

described as follows. 

1) CycleGAN (Zhu et al., 2017). This network allows for training without the 

need of paired image data, which can alleviate data shortage problem during image 

synthesis. However, Li et al. (Li, et al., 2020) reported that the use of a paired dataset, 
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compared to unpaired dataset, in CycleGAN training led to an improved model 

performance. In this study, therefore, we utilized a paired dataset for training. The 

CycleGAN network, which only supports single input channel, was applied for model 

training using T1w and T2w images separately, referred to as CycleGAN_T1w, 

CycleGAN_T2w, respectively.  

2) U-Net (Ronneberger et al., 2015). This network uses a mirrored encoder–

decoder architecture to acquire knowledge information for input-to-output image 

mapping. As a renowned DL neural network, U-Net was applied in the two previous 

studies on GFCE-MRI synthesis (Gong et al., 2018b; Kleesiek et al., 2019b), which are 

the only publications found in the literature. In this study, therefore, we compared our 

MMgSN-Net against this U-Net for GFCE-MRI synthesis. To determine which input 

imaging modality contributes to more information for GFCE-MRI prediction, we first 

separately used the T1w and T2w images as input (U-Net_T1w, U-Net_T2w), and 

combined both the T1w and T2w images through different channels (U-

Net_T1w+T2w).  

3) Hi-Net (Zhou et al., 2020). This network shares similar characteristics of our 

MMgSN-Net in that it allows for multiple inputs of different modalities and deploys 

two autoencoder-like structures to extract the modality-specific features. In this study, 

both T1w and T2w images were used as input for Hi-Net training. 

Quantitative evaluation: Four widely-adopted evaluating metrics in areas of medical 

imaging synthesis (Frangi et al., 2018; Huynh et al., 2015; Nie et al., 2016; Nie et al., 

2017), including MAE, MSE, SSIM, and PSNR, were used in this study to 
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quantitatively evaluate the model performance. These metrics are expressed below:  

 MAE = 
1

𝑁
|𝑦(𝑥) − 𝑔(𝑥)|, (2-1) 

 MSE = 
1

𝑁
(𝑦(𝑥) − 𝑔(𝑥))2, (2-2) 

 PSNR = 10𝑙𝑜𝑔10

(
𝐿2

𝑀𝑆𝐸
)
, 

(2-3) 

 SSIM = 
(2𝜇𝑦(𝑥)𝜇𝑔(𝑥)+𝑐1)(2𝜎𝑦(𝑥)𝑔(𝑥)+𝑐2)

(𝜇𝑦(𝑥)
2+𝜇𝑔(𝑥)

2+𝑐1)(𝜎𝑦(𝑥)
2 +𝜎𝑔(𝑥)

2 +𝑐2)
, (2-4) 

where 𝑁 is the number of pixels in each image slice; 𝑦(𝑥) and 𝑔(𝑥) denote the ground 

truth image and synthetic GFCE-MRI image, respectively. 𝜇𝑦(𝑥),  𝜇𝑔(𝑥)  and 𝜎𝑦(𝑥) , 

𝜎𝑔(𝑥) are the means and variances of the ground truth image and the synthetic image, 

while 𝜎𝑦(𝑥)𝑔(𝑥) is the covariance of 𝑦(𝑥) and 𝑔(𝑥). 𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2 are 

two variables used to stabilize the division by the weak denominator, and 𝐿 is the 

dynamic range of the pixel values. Here, 𝐿 = 4095, 𝑘1 = 0.01, and 𝑘2 = 0.03 were 

set by default.  

Qualitative evaluation: To visually evaluate the image quality of the synthetic GFCE-

MRI images, qualitative evaluation was conducted by visually analyzing the synthetic 

GFCE-MRI images against the input T1w, T2w and ground truth CE-MRI images. 

Tumor regions were zoomed in for better comparison. In addition, difference map 

between the ground truth CE-MRI and the synthesized GFCE-MRI by our MMgSN-

Net is illustrated for visualizing uncertainties in relation to GFCE-MRI synthesis. 

Turing test — Clinical evaluation: The Turing test is a long-established test in areas of 

artificial intelligence for determining the capability of a machine to exhibit intelligent 



 

30 

 

human behavior (Kleesiek et al., 2019b; McDermott, 2007). In this study, we deployed 

the Turing test to assess authenticity of the synthetic GFCE-MRI images generated by 

our MMgSN-Net. Seven board-certified radiation oncologists from four hospitals 

participated in discriminating the synthetic GFCE-MRI images from the real CE-MRI 

images. In an attempt to balance the clinical workloads of the participating oncologists, 

we randomly chose 5 patients from our test set for the Turing test. For each patient, we 

randomly selected 10 tumor-bearing image slices (5 ground truth CE-MRI images plus 

5 paired synthetic GFCE-MRI images) and presented them to the participating 

oncologists in a random order. The oncologists were blinded with regard to the relative 

proportions of ground truth and synthetic images. Additionally, they were asked to 

provide justifications when determining a synthetic case, allowing us to realize 

potential limitations of our MMgSN-Net. 

2.3.5 Ablation study 

To identify the importance of the key components in our MMgSN-Net, three ablation 

studies were conducted. First, to evaluate the importance of the SGS, we replaced it 

with the concatenation operation. The learned features from individual multimodality 

learning modules were directly concatenated without performing feature selection. 

Second, to validate the importance of the multi-level module, we compared the 

synthesis performance of full MMgSN-Net with that in an absence of the multi-level 

module. Third, to verify the importance of the self-attention module, we removed it and 

compared the resulting version of MMgSN-Net with the full version. 

2.4 Results 
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2.4.1 Quantitative evaluation 

Table 2-1 summarizes the results of quantitative comparisons between our MMgSN-

Net and the comparing state-of-the-art DL networks for both whole image and tumor 

regions, in aspects of MAE, MSE, PSNR, and SSIM. For MMgSN-Net, the mean ( 

standard deviation (SD)) of the MAE, MSE, PSNR, and SSIM for the synthesized 

GFCE-MRI images relative to the ground truth CE-MRI images were calculated to be 

44.50  13.01, 9193.22  5405.00, 0.887  0.042, and 33.17  2.14 for whole image 

and 110.31 ± 20.69, 25924.77 ± 10385.70, 0.706 ± 0.073, 28.74 ± 1.52 for tumor 

regions, respectively. Of note, our MMgSN-Net significantly outperformed all the 

comparing networks in all studied aspects (p < 0.05). Among the comparing state-of-

the-art networks, on the other hand, U-Net obtained the best performance in all four 

evaluating aspects, while the CycleGAN models (both CycleGAN_T1w and 

CycleGAN_T2w) underperformed the others.  

Overall, in comparison with the state-of-the-art networks, our MMgSN-Net 

achieved outstandingly, with mean MAE improvements of 13.07% versus the Hi-Net, 

3.47% versus the multi-channel U-Net, 31.32% versus the CycleGAN_T1w, and 30.40% 

versus the CycleGAN_T2w. 

 

Table 2-1. Quantitative error evaluation of different deep learning models for GFCE-MRI 

synthesis. ↑ indicates that a larger number represents better performance, ↓ indicates that a 

smaller number represents better performance. MAE, mean absolute error; MSE, mean squared 

error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; SD, standard 
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deviation. 

  MAE ± SD (↓) MSE ± SD (↓) SSIM ± SD (↑) PSNR ± SD (↑) 

U-Net_T1w Whole image 50.39 ± 13.70 11934.18 ± 5878.76 0.864 ± 0.042 31.91 ± 1.91 

 Tumor regions  127.20 ± 19.01 34168.37 ± 10137.90 0.637 ± 0.063 27.47 ± 1.23 

U-Net_T2w Whole image 47.32 ± 13.55 10474.32 ± 5591.32 0.877 ± 0.041 32.59 ± 2.18 

 Tumor regions  117.47 ± 20.11 29532.56 ± 9824.42 0.679 ± 0.068 28.17 ± 1.47 

U-Net_T1w+T2w Whole image 46.10 ± 13.15 9596.54 ± 5360.18 0.886 ± 0.042 32.95 ± 2.08 

 Tumor regions  112.89 ± 18.87 27218.09 ± 9711.72 0.700 ± 0.068 28.46 ± 1.33 

CycleGAN _T1w Whole image 64.79 ± 15.78 18198.07 ± 7790.22 0.799 ± 0.049 30.03 ± 1.83 

 Tumor regions  164.18 ± 15.41 53467.99 ± 9147.11 0.495 ± 0.042 25.45 ± 0.76 

CycleGAN _T2w Whole image 63.94  15.48 17445.77 ± 7467.58 0.802 ± 0.042 30.21 ± 1.83 

 Tumor regions  156.84 ± 14.80 48520.38 ± 8652.91 0.514 ± 0.038 25.78 ± 0.77 

Hi-Net Whole image 51.19 ± 13.74 12088.02 ± 6098.83 0.862 ± 0.041 31.87 ± 1.94 

 Tumor regions  126.38 ± 19.36 34004.66 ± 10066.85 0.648 ± 0.061 27.42 ± 1.13 

MMgSN-Net Whole image 44.50 ± 13.01 9193.22 ± 5405.00 0.887 ± 0.042 33.17 ± 2.14 

 Tumor regions  110.31 ± 20.69 25924.77 ± 10385.70 0.706 ± 0.073 28.74 ± 1.52 

 

2.4.2 Qualitative evaluation 

Figure 2-3 illuminates visual comparisons between the ground truth CE-MRI images 

and synthesized GFCE-MRI images obtained by using the studied DL networks. For 

T1w and T2w input images, the tumor structure and adjacent muscle texture are not 

clearly discernible in the input T1w MR image (Figure 2-3 (a)), while the tumor edge 

is clearer in the input T2w MR image (Figure 2-3 (b)). For tumor delineation, the 

ground truth CE-MRI image obtained following the injection of GBCAs (Figure 2-3 

(c)) outperforms both the T1w and T2w images, clearly revealing the tumor structure 

and adjacent muscle texture.  

Regarding the synthetic images generated from the three U-Net models, they 

are relatively blurry throughout the images (Figure 2-3 (F)-(H)). The tumor structure 

predicted by U-Net_T2w is more discernable than that obtained from U-Net_T1w 
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(Figure 2-3 (g) and (f), respectively). The joint T1w-T2w synthesized U-Net images 

(Figure 2-3 (H)) achieves the best discriminability of tumor’s morphology against the 

ground truth, compared to both U-Net_T1w and U-Net_T2w generated images.  

With regard to the Hi-Net predicted GFCE-MRI images (Figure 2-3 (E)), the 

overall image quality was visually comparable to the ground truth image (Figure 2-3 

(C)). Nevertheless, the tumor-to-muscle interface was not in a good agreement 

compared with the ground-truth images, while our MMgSN-Net (Figure 2-3 (d)) 

achieved a satisfying approximation to the ground-truth (Figure 2-3 (c)).  

For the two CycleGAN models (Figure 2-3 (i) and (j)), the tissue structures, 

such as the temporalis tendon and surrounding muscles, are the least discernable. 

Notably, the synthetic images predicted by our MMgSN-Net (Figure 2-3 (D & d)) 

visually yields the best approximation to the ground-truth images, in particular to the 

tumor-to-muscle interface and the texture information, outperforming all the comparing 

networks. These qualitative findings are well in line with the results of quantitative 

evaluation.  
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Figure 2-3. Visual evaluation of our MMgSN-Net and the comparing state-of-the-art networks 

for virtual contrast-enhanced T1-weighted MR synthesis. (A) and (B) are the input T1w MR 

image and T2w MRI image, respectively; (C) is the ground truth gadolinium-based contrast-

enhanced T1-weighted MRI; other images are the synthetic results of different networks. 

Figure 2-4 visualizes difference maps between the real CE-MRI images and 

synthetic GFCE-MRI images from different patients for visualizing uncertainties in 

relation to GFCE-MRI synthesis. A difference map window with a range of (0, 0.2) 

was set to clearly visualize the differences. It can be observed that prediction 

uncertainties most occurred at the edges between anatomic structures. Besides, 

structures of evenly-changing pixel values (such as the maxillary sinus and cerebellum) 

could be accurately predicted by our MMgSN-Net.  
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Figure 2-4. Difference Maps (third column) between the real CE-MRI images (first column) 

and the synthetic GFCE-MRI images predicted by our MMgSN-Net (second column). (A)-(C): 

different axial slices. 

2.4.3 Turing test results 

Table 2-2 summarizes quantitative results of the Turing tests from the 7 participating 

oncologists. In hospital 1, the two oncologists failed to differentiate between the real 

CE-MRI and GFCE-MRI images in approximately half of the cases, with an accuracy 

of 52% and 42% for oncologists 1 and 2, respectively. They reported that their decisions 

were mostly based on the clarity of the alveoli and blood vessels, as well as the texture 

of the muscles and cerebellum. In hospital 2, the two oncologists raised the difficulties 

in discriminating the real and fake images based on the irregularly shaped tumor 

structures. For this reason, they made their decisions according to the anatomical 

structures and image signal intensities during the Turing test, resulting in an accuracy 

of 58% and 52% for oncologists 3 and 4 from hospital 2, respectively. In hospital 3, 

discussion sessions were held between the oncologist 5 and 6, in view of the heavy 

clinical workload. An overall accuracy of 58% was reported based on their judgements. 

They reported that their decisions were made based on the differences between the 

parotid gland and non-vascular tissues. In hospital 4, the oncologist correctly identified 

only 13, leading to an accuracy of 26%, and was unable to make decisions for another 

13 images. Overall, the average accuracy of the 7 oncologists was 49.43%, which is in 

close approximation to a random guess accuracy (i.e., 50%). 

Table 2-2. Results of the Turing test conducted by the 7 clinical radiation oncologists from 4 
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hospitals. 

Hospital Radiation Oncologist Evaluation Results Percentage 

Hospital 1 

Oncologist 1 

Correct: 26 52% 

Incorrect: 21 42% 

Give up: 3 6% 

Oncologist 2 

Correct: 21 42% 

Incorrect: 20 40% 

Give up: 9 18% 

Hospital 2 

Oncologist 3 

Correct: 29 58% 

Incorrect: 21 42% 

Give up: 0 0% 

Oncologist 4 

Correct: 26 52% 

Incorrect: 24 48% 

Give up: 0 0% 

Hospital 3 Oncologists 5 and 6 

Correct: 29 58% 

Incorrect: 21 42% 

Give up: 0 0% 

Hospital 4 Oncologist 7 

Correct: 13 26% 

Incorrect: 24 48% 

Give up: 13 26% 

  

Average: 

Correct: 

Incorrect: 

Give up: 

49.43% 

  43.43% 

  7.14% 

 

2.4.4 Ablation study 

In the ablation studies, the MAE, MSE, SSIM, and PSNR values were found to be inter-

correlated. For simplicity, therefore, only results of MAE was described here. First, 

after replacing the GSG with the concatenation operation, the MAE increased from 

44.50  13.01 to 45.43  12.97 (p < 0.05), implying that the SGS contributed to 

accuracy improvement. Second, after excluding the multi-level module, the MAE 

increased from 44.50  13.01 to 45.22  13.04 (p < 0.05), suggesting that this multi-

level module enhanced the synthesis performance of CE-Net. Third, after removing the 

self-attention module, the MAE increased from 44.50  13.01 to 45.89  13.02 (p < 

0.05), indicating that self-attention module is helpful in capturing long-term 
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dependencies.  

In radiotherapy, GBCA-assisted CE-MRI has been considered essential for delineation 

of deeply infiltrative NPC neoplasm. A recent growing body of evidence regarding 

safety issues of GBCAs administration, however, has stimulated awareness of the 

community to investigate contrast-agent-free alternatives, in the hope of replacing the 

use of GBCA in the long run. A few DL models have been introduced up to the present, 

in brain diseases (Gong et al., 2018b; Kleesiek et al., 2019b). While satisfying in brain 

imaging, their models were deficient in leveraging complementary information 

between input imaging modalities. Impact of this deficiency in their models could be 

more detrimental in the case of deeply infiltrative NPC (Li et al., 2019). Herein, we, for 

the first time, developed a novel MMgSN-Net to compensate for this deficiency and 

investigated image synthesis in NPC. In this discussion, we attempted to highlight key 

findings of our results, scrutinize possible underlying reasons, and provide research 

community with potential directions in future. 

Results from the quantitative evaluations demonstrated that our MMgSN-Net 

outperformed all the comparing networks for both whole image and tumor regions 

(Table 2-1), yielding the top-ranked scores in averaged MAE (44.50  13.01, 110.31 ± 

20.69), MSE (9193.22  5405.00, 25924.77 ± 10385.70), SSIM (0.887  0.042, 0.706 

± 0.073), and PSNR (33.17  2.14, 28.74 ± 1.52) for whole image and local tumor 

regions, respectively. This is in line with findings of our qualitative evaluation, where 

the synthetic images predicted by our MMgSN-Net (Figure 2-3 (D & d)) visually 

2.5 Discussion 
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yielded the best approximation to the ground-truth images, in particular to the tumor-

to-muscle interface and the intra-tumoral texture information, outperforming all the 

comparing networks. Similar to our MMgSN-Net, both U-Net_T1w+T2w and Hi-Net 

models deployed both T1w and T2w MR images as inputs for model training. A distinct 

difference of our network from these two comparing networks lies to its capability to 

leverage complementary information between each of the unique input imaging 

modalities, rather than using a simple additive concatenation of different input 

modalities. This may shed some light on the outstanding performance of our MMgSN-

Net, compared with these two networks (Table 2-1). Besides, the U-Net yielded the 

second best-performing model among the studied networks, as indicated in Table 2-1.  

We found that the synthetic images generated by U-Net were over-smoothed, leading 

to loss of detailed information, for instance, regarding the cerebellum and muscle 

texture, as illustrated in Figure 2-3. It could be partially attributed to the incapability 

of the  L1 loss function for capturing high-frequency signals in MR images of NPC 

(Isola et al., 2017), where there are complex relationships among an ensemble of fine 

anatomic tissues in the nose-pharynx ministry. On the contrary, the CycleGAN gave 

rise to the worst model performance (Table 2-1). To a degree, this may be explained 

by the limitation of the backward cycle adopted in the CycleGAN network. Although 

the backward cycle has been used to maintain cycle consistency, it increases number of 

training parameters, which may result in model underfitting given the small-sized 

training samples.  

Intriguingly, it was observed that inputting single T2w MR images yielded 

better performance in both U-Net and CycleGAN networks than when using single T1w 
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MR images (Table 2-1). A possible explanation would be related to the superiority of 

T2w MR images in revealing hyperintensity or inhomogeneity information on various 

pathologies (Cheng et al., 2016), such as in peripheral edema and tumor necrosis, which 

makes T2w MR images contribute to more valuable information on pathology-related 

contrast enhancement for GFCE-MRI synthesis, compared to contrast-free T1w MR 

images. This finding is also consistent with a brain tumor study conducted by Kleesiek 

et al., who reported that T2w MR images provided more useful information for GFCE-

MRI synthesis (Kleesiek et al., 2019b). Another interesting observation was that the 

presence of the self-attention module in our MMgSN-Net architecture enhanced tumor 

edge detection in the synthetic images during our ablation study, implicating potential 

of our model in NPC delineation. 

 Although there are no studies on image synthesis for NPC in the literatures, 

comparisons between results of our study and previous works on brain diseases 

highlight the superiority of our MMgSN-Net model. Gong et al. (Gong et al., 2018b) 

reported a mean SSIM value of 0.85  0.07 using a U-Net model that was trained on 

10% GBCA-dose CE-MRI images and contrast-free T1w MR images of 10 patients 

with brain diseases.  Kleesiek et al. (Kleesiek et al., 2019b) trained a 3D BayesUNet 

using multi-parametric MR modalities of 47 contrast-enhanced samples and obtained a 

mean SSIM of 0.862  0.029. In models of these two publications (Cheng et al., 2016; 

Zhang et al., 2019), information in different input modalities was simply concatenated 

into different channels without emphasis on potential interaction of features between 

the modalities. In comparison, our MMgSN-Net achieved a higher mean SSIM of 0.887 

 0.042 after training with 35 samples using both T1w and T2w MR images. To a large 
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extent, we inferred that this improvement in SSIM was mainly attributable to the 

capacity of our MMgSN-Net in unraveling complementary information from individual 

unique imaging modalities for GFCE-MRI synthesis.  

The degraded accuracy shown in Figure 2-4 may be, in part, explained by the 

imperfect alignment among the T1w, T2w and CE-MRI images. While it should be 

noted that existing image registration methods are still struggling to achieve one-to-one 

pixel correspondence and was found to be influential in medical image synthesis tasks 

(Han, 2017). The misalignment can lead to structural shift between input and target 

pairs, thus leading to inaccuracy during model training, since the model will be trained 

to make wrong prediction (Han, 2017). As a comparison, we directly used the data 

acquired from hospital system as input without any registration fine-tuning, we 

observed a performance decrease of 18.36%, 54.58%, 5.81% and 5.59% for MAE, MSE, 

SSIM and PSNR, respectively. An example of the influence of image registration is 

illustrated in Figure 2-5. 
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Input T1w
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Figure 2-5. An example of the influence of image registration. (a): structural shift of input T1w 

(first row) and T2w (second row) between two image registration methods: registered from 
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hospital system without fine-tuning, and fine-tuned with rigid registration. (b): resultant 

variations caused by image registration. The first row and the second row show the difference 

between synthetic GFCE-MRI and ground truth CE-MRI of two registration methods. 

Furthermore, results of the Turing test underscored the reliability of our 

MMgSN-Net. In a study conducted by Kleesiek et al. (Kleesiek et al., 2019b), two 

resident radiologists were invited to distinguish 10 synthetic MR images from another 

10 real CE-MRI images, chosen in a random manner. The radiologists correctly 

discriminated between the real and synthetic images in 80% and 90% of cases, 

respectively. By contrast, in our work, seven experienced oncologists from multiple 

hospitals were merely able to correctly classify 49.43% of the presented images, 

suggesting high authenticity of our synthesized GFCE-MRI images. It is noteworthy 

that the high authenticity of our model can be observed in both tumor-bearing and 

tumor-free MR slices. In tumor-bearing slices, our MMgSN-Net model provided 

comparable tumor visualization as compared with the ground-truth (Figure 2-3 (c) and 

(d)). The degree of contrast enhancement is related to the density of capillary bed 

around the neoplasm (Mann et al., 2019), which is thought to be absent in normal 

tumor-free regions. In line with this line of thinking, our model also correctly predicts 

the non-enhanced information in tumor-free MR slices, as illustrated in Figure 2-4 (C). 

In spite of these exciting findings, our study has several limitations. Our 

network was trained and validated using a small-sized NPC data from the same MRI 

scanner at a single institution. Synthesis failure is likely to be observed with limited 

training samples for specific patients. An example of unsatisfactory case is shown in 
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Figure 2-6. In addition, intratumoral heterogeneity can be another impacting factor to 

the synthesis results. The intratumoral heterogeneity exists at the cellular level, and is 

highly influenced by its genetic background and surrounding micro-environment (Just, 

2014). It causes heterogeneous tumor signal intensities of MR images (O'Connor et al., 

2015), as shown in Figure 2-6 where the arrows indicate the intratumoral heterogeneity 

in T1w, T2w, and ground truth CE-MRI images. Furthermore, another factor that may 

limit the performance of our synthesis network is that our network was trained with 

T1w and T2w MR images only. It is likely that T1w and T2w MR images may not 

provide complete information for synthesizing contrast enhancement for some 

structures such as sinus sigmoideus, as shown in red arrows in Figure 2-6. This problem 

can be potentially addressed by including more MRI modalities (such as diffusion-

weighted MRI) as input to our network. While we also believe a homogeneous dataset 

is advantageous for model development, the generalizability of our results using a larger 

dataset from different scanners and medical centers is warranted to minimize the so-

called “data bias” issue (Kazemifar, et al., 2021). This is currently being undertaken 

and would be considered as an extension of this study. Apart from this, although we 

invited a total of seven board-certified radiation oncologists for conducting the Turing 

test to assess the authenticity of the synthetic images, they were not asked to perform 

tumor delineation on the synthetic images, restricted by their existing heavy burdens in 

clinic. Nevertheless, this should be considered in future in order to further contextualize 

results of this study in aspects of NPC delineation. Since our network is a 2D network, 

which is likely to limit the performance on coronal and sagittal views (Figure 2-7), to 

extend the application scope of our network, in the long run, we would upgrade our 
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MMgSN-Net to 3D architecture and incorporate additional MR modalities for GFCE-

MRI synthesis in future. 

 

Figure 2-6. An example of a less satisfactory case. The images from left to right show input 

T1w, input T2w, the synthetic GFCE-MRI and ground truth CE-MRI, respectively. Yellow 

arrow shows the heterogeneous signal of tumor in different MR modalities. 

Input T1w Input T2w Synthetic Ground Truth
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Figure 2-7. Illustration of coronal view (the first column) and sagittal view (the second column) 

of synthetic GFCE-MRI. from top to bottom: input T1w MR, input T2w MR, synthetic GFCE-

MRI from the proposed method, ground truth CE-MRI and the difference map between GFCE 
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MRI and CE-MRI. Yellow arrows show the position of tumor. 

In this study, we developed and evaluated a novel MMgSN-Net for GFCE-MRI 

synthesis for NPC patients. Our MMgSN-Net was capable of synthesizing highly 

realistic GFCE-MRI images in both quantitative and qualitative aspects and 

outperformed the three studied state-of-the-art networks. Moving forward, a larger 

multi-center cohort study is warranted to ensure model generalizability. Future works 

on tumor delineation on the synthetic images are recommended to further contextualize 

results of this study. 

  

2.6 Conclusion 
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Recently, deep learning has been demonstrated to be feasible in eliminating the use of 

GBCAs through synthesizing GFCE-MRI from contrast-free MRI sequences, 

providing the community with an alternative to get rid of GBCAs-associated safety 

issues in patients. Nevertheless, generalizability assessment of the GFCE-MRI model 

has been largely challenged by the high inter-institutional heterogeneity of MRI data, 

on top of the scarcity of multi-institutional data itself. Although various data 

normalization methods have been adopted in previous studies to address the 

heterogeneity issue, it has been limited to single-institutional investigation and there is 

no standard normalization approach presently. In this study, we aimed at investigating 

generalizability of GFCE-MRI model using data from seven institutions by 

manipulating heterogeneity of training MRI data under two popular normalization 

approaches. A MMgSN-Net was applied to map from T1w and T2w MRI to CE-MRI 

for GFCE-MRI synthesis in patients with nasopharyngeal carcinoma. MRI data from 

three institutions were used separately to generate three uni-institution models and 

jointly for a tri-institution model. Patient-based Min-Max and Z-Score normalization 

were applied for data normalization of each model. MRI data from the remaining four 

institutions served as external cohorts for model generalizability assessment. Quality of 

GFCE-MRI was quantitatively evaluated against ground-truth CE-MRI using MAE and 

3. Evaluation and improvement of GFCE-MRI model 

generalizability  

3.1 Abstract 
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PSNR. Results showed that performance of all uni-institution models remarkably 

dropped on the external cohorts. By contrast, model trained using multi-institutional 

data with Z-Score normalization yielded improved model generalizability. 

NPC is a highly aggressive epithelial carcinoma originating in the mucosal lining of the 

nasopharynx, has long been prevalent in the population of East and Southeast Asia 

(Chang et al., 2021). Radiotherapy is currently the mainstay treatment modality for 

NPC, which achieved 66%-83% 5-year survival rate for NPC patients with radiotherapy 

alone (Xu et al., 2016). Precise tumor delineation is the most critical prerequisite for a 

successful radiotherapy treatment. CE-MRI, using GBCAs, has become an 

indispensable part in accurate NPC tumor delineation (Lee et al., 2018) in routine 

radiotherapy treatment planning practice. Nevertheless, emerging evidence has shown 

that NSF, a severe disease that can lead to joint contractures and immobility, has been 

strongly linked with the administration of GBCAs in renal failure patients (Holowka et 

al., 2019). Further evidence has shown that gadolinium accumulation in the dentate 

nucleus and globus pallidus has been observed in paediatric patients (Roberts et al., 

2017). Apart from this, gadolinium deposition was also observed in patients with 

normal renal function (Roberts et al., 2016). The mechanism of gadolinium deposition 

in patients has not been fully elucidated, and the underlying long-term effects remain 

unclear. Therefore, there is a global consensus to minimize or avoid GBCA exposure 

to patients whenever possible (Holowka et al., 2019). Considering this, a GBCA-based 

CE-MRI alternative is desperately demanded.  

3.2 Introduction 
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Numerous efforts have been made to address the GBCA-associated safety issues. 

Worldwide interests have sparked recently in synthesizing GFCE-MRI, which serves 

similar purposes as the CEMRI, through deep learning approaches (Bône et al., 2021; 

Chen et al., 2022; Gong et al., 2018a; Kleesiek et al., 2019a; Xiao, et al., 2022; Luo et 

al., 2021a; Pasumarthi et al., 2021a; Xu et al., 2021a; Zhao et al., 2020a). However, 

current works have focused on model development or feasibility studies at different 

tumor sites using in-house datasets. It has been reported that the models trained with 

in-house dataset may perform poorly on datasets from external institutions (Jia et al., 

2020; Liu et al., 2020a; Xing et al., 2018), which largely limits the wide application of 

proposed approaches. Therefore, a generalizable GFCE-MRI model is highly 

demanded in clinical practice, which extends the GFCE-MRI technique to a 

considerably wider range of hospitals for use. 

Despite the urgent need for generalizable models, limited research has been 

conducted to investigate the underlying mechanism of model generalizability and the 

methods to improve the model generalizability, especially for the multi-parametric MRI 

images, presumably due to two key challenges: 1) high inter-institutional heterogeneity 

of MRI data; 2) scarcity of multi-institutional MRI data. The MRI images from different 

institutions often suffer from large domain shifts due to the use of diverse scanning 

parameters, scanners of different field strengths, as well as different patient 

demographics, leading to large distribution divergences such as means, standard 

deviations, and intensity ranges (Figure 3-1). These challenges have raised a growing 

concern of model generalizability developed using deep learning algorithms, which 

strongly rely on the assumption that the training data and testing data are independent 
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and identically distributed (i.i.d.) (Wang & Deng, 2018). In reality, however, the 

external MRI datasets are typically out-of-distribution (OOD) due to the 

abovementioned domain shift, incurring tremendous performance degradation of the 

trained models (Wang & Deng, 2018). To tackle this, a potential remedy to improve 

model generalizability is to integrate multi-institutional MRI images during model 

training to enlarge view of deep learning models (Dou et al., 2021; Lam, et al., 2022), 

which has been rarely reported in the literature, probably due to the scarcity of multi-

institutional data for patient privacy protection. Another potential solution is to develop 

a generalizable network architecture by mapping data distributions from source domain 

to target domain (Wang & Deng, 2018; Wolleb et al., 2022), while these approaches 

are limited to specific domain datasets. As such, data normalization techniques have 

been widely used to improve the model performances in a range of application areas. 

Nevertheless, related research in multi-institutional setting that contain various real-

world distributions of MRI data is severely scarce in the body of literature. 
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Figure 3-1. Illustration of heterogeneity of multi-institutional MRI data. 

We consider minimize the distribution variations between training and external 

testing MRI data by using data normalization should be a practical approach to improve 

the model generalizability since it requires no model architecture improvement and 

retraining the model. In this study, we included MRI data from seven different 

institutions, aiming at investigating the GFCE-MRI model generalizability influenced 

by distribution difference between training and external testing data. Specially, we 

investigated: (i) how significant is the influence of different data normalization methods 

on the model generalizability; (ii) how significant is the degradation of external 

performance for models trained with single-institution MRI; and (iii) how significant is 

the improvement of external performance when using multi-institutional MRI for 

model development. 

Institution-1 Institution-2 Institution-3 Institution-4

Institution-5 Institution-6 Institution-7 Intensity Distributions
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Compared to other tumor types such as brain and liver tumors, NPC is highly 

infiltrative with ill-defined tumor-to-normal tissue interface, which presents challenges 

to oncologists in NPC contouring. Hence, the success of this study may not only provide 

the medical community with better insights into the issue of GFCE-MRI model 

generalizability of NPC patients, but also may potentially be translated to other cancer 

types as well. To the best of our knowledge, this is the first multi-institutional 

investigation for GFCE-MRI synthesis. As a result, this study may have a far-reaching 

impact on the medical community to better understand the issue of model 

generalizability, establish a standard multi-institutional data normalization method, and 

further facilitate the development of generalizable GFCE-MRI models in the future. 

3.3.1 Patient data 

A total of 256 NPC patients from seven medical institutions were retrospectively 

collected in this study. For fair comparisons, same number of patients (71 patients) were 

retrieved from Institution-1, Institution-2, and Institution-3, respectively for uni-

institution and tri-institution model development, 18 patients, 9 patients, 9 patients, and 

7 patients were retrieved from Institution-4, . . . , Institution-7, respectively for external 

testing to evaluate the model generalizability. T1w MRI, T2w MRI, and CE-MRI were 

collected for each patient. This study was approved by the Institutional Review Board 

of the University of Hong Kong/Hospital Authority Hong Kong West Cluster 

(HKU/HAHKW IRB), reference number UW21-412 and the Research Ethics 

Committee (Kowloon Central/Kowloon East), reference number KC/KE-18-0085/ER-

3.3 Methods and materials 
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1. Due to the retrospective nature of this study, patient consent was waived. All images 

were acquired in the same position and automatically aligned. For model training, all 

images were resampled to the size of 256*224 using bilinear interpolation (Gribbon & 

Bailey, 2004). For Institution-1, Institution-2, and Institution-3, the 71 patients were 

randomly divided into 53 and 18 for model training and validation, respectively. 

3.3.2 Study design 

The overall idea of this study was first using the data collected from three different 

institutions (i.e., Institution-1, Institution-2, and Institution-3) to develop a series of 

separately and jointly trained models using different data normalization methods for 

investigating the GFCE-MRI model generalizability. The separately and jointly trained 

models were referred to as uni-institution models and tri-institution models, 

respectively. Table 3-1 illustrated the overall study design. 
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Table 3-1. The overall study design. Min-Max and Z-Score normalization were used to 

normalize the datasets, and the multi-institutional datasets were trained separately and jointly 

to compare the model generalizability on four external datasets. Ins: Institution. 

Normalization Model name 

Training Testing 

Ins-1 Ins-2 Ins-3 Ins-4 Ins-5 Ins-6 Ins-7 

Min-Max 

Uni-m1        

Uni-m2        

Uni-m3        

Tri-M              

Z-Score 

Uni-z1        

Uni-z2        

Uni-z3        

Tri-Z              

 

1) Neural Network: The MMgSN-Net was used as the base network in this study. The 

MMgSN-Net is a 2D deep learning algorithm (Xiao, et al., 2022), which consists of 

five key modules: multimodality learning module, synthesis network, self-attention 

module, multi-level module, and a discriminator. The structure of the MMgSN-Net is 

illustrated in Figure 2-1. The T1w and T2w MRI were put into the multimodality 

learning module separately. The multimodality learning module was used to extract the 

modality-specific features. The extracted modality-specific features were put into the 

SGS in synthesis network for complementary feature selection and fusion. In the 

decoder of synthesis network, the fused features and the learned features from 
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multimodality learning modules were concatenated to different channels. The self-

attention module and multi-level module were applied to capture the long-term 

dependencies and detect the edge information of the high-level features, respectively. 

A discriminator was utilized to distinguish the synthetic GFCE-MRI from ground-truth 

CEMRI, thus encouraging the synthesis network to generate more realistic GFCE-MRI. 

2) Data Normalization: Data normalization plays a pivotal role in model development 

(Hu et al., 2022). It minimizes feature bias by transforming the features into a common 

space so that larger numeric feature values cannot dominate smaller numeric feature 

values (García et al., 2015). Currently different data normalization methods are applied 

in medical image translation tasks. The most popular two normalization methods are 

Min-Max (also called scaling) (Gajera et al., 2016) and Z-Score (Fei et al., 2021). These 

two normalization methods are also applied to different objects prior to training, i.e., 

dataset-based, patient-based, and single-image based normalization. In natural image 

tasks, most studies are 2D-based networks, which always use the statistical values of 

each single image or the whole dataset for data normalization (Liu et al., 2020a). For 

medical images, however, image and dataset-based normalization may not appropriate 

for clinical applications, especially for 3D volumes since the image-based 

normalization ignores the inter-slice adjacent information within a volume, which leads 

to contrast bias of generated images between two nearby slices, while dataset-based 

normalization brings challenge during model inference for a new patient as only 

statistical values of this specific patient could be used for data normalization. Herein, 

we consider that patient-based normalization is proper in medical image studies, which 

is more applicable to clinical setting. In this study, the patient-based Min-Max 
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normalization and patient-based Z-Score normalization were applied to shorten the 

distribution variations among training datasets and external unseen datasets using the 

statistical values of each patient. Then we evaluated the model generalizability affected 

by these two data normalization methods. The two normalization methods could be 

mathematically described as 

 𝑥𝑚𝑖𝑛_𝑚𝑎𝑥 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (3-1) 

 𝑥𝑧_𝑠𝑐𝑜𝑟𝑒 =
𝑥 − 𝜇𝑥

𝜎𝑥
 (3-2) 

Where 𝑥 represents the intensities of each patient volume, while 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝜇𝑥, and 

𝜎𝑥  are minimum value, maximum value, mean value and standard deviation of the 

patient. 𝑥𝑚𝑖𝑛_𝑚𝑎𝑥  and 𝑥𝑧_𝑠𝑐𝑜𝑟𝑒  are the patient data after Min-Max and Z-Score 

normalization, respectively. The Min-Max normalization rescales the intensity range to 

[0, 1] and preserves the relationship among the original data values due to its linear 

transformation nature, while Z-Score normalize the mean value and standardization of 

the patient to 0 and 1 respectively, which enables the comparison of two datasets with 

different distributions. As shown in Figure 3-2, prior to data normalization, severe 

inter-institutional distribution discrepancy exists. The distribution discrepancy has been 

shortened after data normalization, especially after the Z-Score normalization. 
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Figure 3-2. Data distribution changes after patient-based Min-Max and Z-Score normalization. 

From left to right: the original data distribution without data normalization; the MRI 

distribution after Min-Max normalization and the MRI distribution after Z-Score normalization. 

3) Uni-institution Models: To investigate how significant is the external performance 

degradation for the GFCE-MRI models that trained with single-institution MRI, we 

first trained three uni-institution models using data from Institution-1, Institution-2, and 

Institution-3 for each normalization method separately. 53 patients were used for 

training of each uni-institution model. For each uni-institution model, 18 patients were 

used for validation to ensure the model performance. Min-Max normalization and Z-

Score normalization were applied prior to model training. The three uni-institution 

models were labeled as Uni-m1, Uni-m2, and Uni-m3 for Min-Max normalization and 

Uni-z1, Uni-z2, and Uni-z3 for Z-Score normalization, respectively. The 

generalizability of these models was evaluated using four external datasets (i.e., 

Institution-4 to Institution-7). 

4) Tri-institution Models: To investigate how significant is the external performance 

improvement for models that trained with diversified multi-institution MRI, we trained 

the GFCE-MRI model jointly with data from Institution-1 to Institution-3. Considering 

Original data distribution Min-Max normalization Z-Score normalization
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that the number of training samples may influence assessment of the tri-institution 

model since we cannot determine whether the model generalizability improvement is 

caused by a diverse dataset or an increasement of training samples. Therefore, we 

randomly selected 18 patients from each institution’s training dataset. Then randomly 

discarded one patient sample to ensure training samples were the same as the number 

for uni-institution models. The two normalization methods also applied to develop the 

tri-institution model prior to training. The two tri-institution models with different 

normalization methods were labeled as Tri-M (with Min-Max normalization) and Tri-

Z (with Z-Score normalization), respectively. The four datasets from Institution-4 to 

Institution-7 were used for external testing to evaluate the model generalizability. 

3.3.3 Evaluations 

1) Quantitative Evaluation: To quantitatively evaluate the performance of uni- and tri-

institution models, MAE and PSNR between the synthetic GFCE-MRI and ground-

truth CE-MRI were calculated. The MAE and PSNR have been widely employed for 

medical image analysis tasks. MAE measures pixel-wise differences while PSNR 

measures the ratio between the maximum power of a signal and the power of noise 

(Han, 2017; Li et al., 2020; Xiao, et al., 2022). Smaller MAE and larger PSNR values 

indicate better quantitative results. Prior to quantitative evaluation, we rescaled the CE-

MRI and predicted GFCE-MRI intensities to [0, 1] to compute the percentage 

differences between GFCE-MRI and CE-MRI. Paired two-tailed t-test (significance 

level, p=0.05) was performed to analysis if there is significant difference between 

results from different models. 



 

60 

 

 𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑓(𝑥𝑖)|𝑛

𝑖=1

𝑛
 (3-3) 

 𝑀𝑆𝐸 =  
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))2𝑛

𝑖=1

𝑛
 (3-4) 

 SSIM = 
(2𝜇𝑦𝑖

𝜇𝑓(𝑥𝑖)+𝑐1)(2𝜎𝑦𝑖𝑓(𝑥𝑖)+𝑐2)

(𝜇𝑦𝑖
2+𝜇𝑓(𝑥𝑖)

2+𝑐1)(𝜎𝑦𝑖
2 +𝜎

𝑓(𝑥𝑖)
2 +𝑐2)

 (3-5) 

 
𝑃𝑆𝑁𝑅 = 20 ∙ 𝑙𝑜𝑔10

𝑚𝑎𝑥 (𝑦𝑖)∙√𝑛
‖𝑦𝑖−𝑓(𝑥𝑖)‖2  

(3-6) 

Where 𝑦𝑖 and 𝑓(𝑥𝑖) are intensities of real CE-MRI and GFCE-MRI, 𝑛 is the number of 

intensities. Here 𝑚𝑎𝑥 (𝑦𝑖)  is 1 as we have rescaled the CE-MRI and GFCE-MRI 

intensities to [0, 1]. 𝜇𝑦𝑖
,  𝜇𝑓(𝑥𝑖) and 𝜎𝑦𝑖

, 𝜎𝑓(𝑥𝑖) are means and variances of the ground 

truth image and the synthetic image, while 𝜎𝑦𝑖𝑓(𝑥𝑖) is the covariance of 𝑦𝑖 and 𝑓(𝑥𝑖). 

𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2 are two variables used to stabilize the division by the 

weak denominator, and 𝐿 is the dynamic range of the pixel values. Here, 𝐿 = 4095, 

𝑘1 = 0.01, and 𝑘2 = 0.03 were set by default. 

2) Qualitative Evaluation: To visually assess the performance of the models on external 

datasets, we applied the trained uni- and tri-institution models to the external datasets 

without any model-based updating. Prior to results inference, patient-based Min-Max 

and patient-based Z-Score normalization were applied to uni-institution models and tri-

institution model for external results comparison. The input T1w, T2w MRI and 

ground-truth CE-MRI were shown alongside the GFCE-MRI generated from different 

models. 
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3.4.1 Quantitative results 

1) Generalizability of single-institution models: All uni-institution models suffered 

from severe performance drop on external MRI data for both Min-Max and Z-Score 

normalizations. Table 3-2 and Table 3-3 summarize the quantitative comparisons 

between the synthetic GFCE-MRI and ground-truth CE-MRI using Min-Max and Z-

Score, respectively. As MAE and PSNR have the similar tread, we use the MAE as an 

indicator to illustrate the results. The average MAE increased from 25.39 ± 3.59 to 

43.11 ± 11.74 for Uni-m1, 24.45 ± 3.67 to 51.54 ± 11.53 for Uni-m2, 29.56 ± 6.92 to 

41.02 ± 10.86 for Uni-m3, and from 23.03 ± 3.18 to 37.83 ± 8.05 for Uni-z1, 24.87 ± 

4.64 to 39.88 ± 10.51 for Uni-z2, 26.84 ± 6.17 to 34.62 ± 7.06 for Uni-z3, respectively. 

The percentage of uni-institution models’ external performance degradation were 

shown in Table 3-4. The average performance drop for MAE were 69.86% and 51.20% 

for Min-Max and Z-Score normalization respectively, indicting the model trained with 

single-institution MRI data failed to generalize to external MRI datasets. The largest 

performance degradation model was Uni-m2 (with 110.80% drop) for Min-Max 

normalization and Uni-z1 (with 60.35% drop) for Z-Score normalization respectively, 

indicating that different normalization methods do tremendously influence the uni-

institution model generalizability, even the models were trained with same source MRI. 

Table 3-2. Internal and external quantitative results using Min-Max normalization. 

Model Testing MAE ± SD (103) MSE ± SD (104) SSIM ± SD PSNR ± SD 

Uni-m1 
Institution-1 25.39 ± 3.59 19.76 ± 4.79 0.875 ± 0.019 33.45 ± 1.38  

Institution-4 52.12 ± 10.89 78.37 ± 26.53 0.737 ± 0.030 27.65 ± 1.72 

3.4 Results 
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Institution-5 35.03 ± 6.56 45.57 ± 16.74 0.800 ± 0.028 30.47 ± 1.24 

Institution-6 34.97 ± 4.02 28.84 ± 4.49 0.732 ± 0.059 31.65 ± 0.67 

Institution-7 40.80 ± 9.12  53.41 ± 21.25 0.788 ± 0.045 29.35 ± 1.51 

Overall 43.11 ± 11.74 57.07 ± 28.59 0.757 ± 0.049 29.35 ± 2.15 

Uni-m2 

Institution-2 24.45 ± 3.67 26.64 ± 4.95 0.864 ± 0.024 32.17 ± 0.89  

Institution-4 50.26 ± 7.11 75.10 ± 15.31 0.730 ± 0.027 27.50 ± 0.95 

Institution-5 51.76 ± 6.28 74.91 ± 16.36 0.747 ± 0.049 27.83 ± 1.02 

Institution-6 58.74 ± 19.93 92.45 ± 52.76 0.651 ± 0.055 27.05 ± 2.13 

Institution-7 45.27 ± 3.83 61.61 ± 10.13 0.761 ± 0.025 28.41 ± 0.73 

Overall 51.54 ± 11.53 76.50 ± 29.06 0.722 ± 0.055 27.62 ± 1.35 

Uni-m3 

Institution-3 29.56 ± 6.92 33.99 ± 13.69 0.847 ± 0.039 31.30 ± 1.72  

Institution-4 44.53 ± 7.63 61.83 ± 16.81 0.807 ± 0.035 28.51 ± 1.32 

Institution-5 35.67 ± 5.09 44.50 ± 10.26 0.812 ± 0.034 30.09 ± 0.78 

Institution-6 45.36 ± 15.96 54.92 ± 33.18 0.742 ± 0.053 29.41 ± 2.08 

Institution-7 33.30 ± 7.81 38.40 ± 14.44 0.839 ± 0.042 30.69 ± 1.48 

Overall 41.02 ± 10.86 52.94 ± 22.09 0.800 ± 0.051 29.39 ± 1.68 

Tri-M 

Institution-1 26.27 ± 4.01 21.74 ± 5.54 0.867 ± 0.021 33.06 ± 1.30  

Institution-2 26.27 ± 4.19 29.28 ± 5.24 0.855 ± 0.025 31.74 ± 0.86  

Institution-3 28.91 ± 6.38  32.73 ± 12.76 0.847 ± 0.045 31.45 ± 2.05  

Overall 27.15 ± 5.13 27.92 ± 9.73 0.856 ± 0.033 32.08 ± 1.65 

Institution-4 41.82 ± 7.82 55.28 ± 14.16 0.809 ± 0.029 28.97 ± 1.20 

Institution-5 41.55 ± 9.04 58.00 ± 21.22 0.807 ± 0.025 29.19 ± 1.51 

Institution-6 46.12 ± 13.55 54.13 ± 28.27 0.743 ± 0.048 29.29 ± 1.84 

Institution-7 33.53 ± 8.21 40.20 ± 16.46 0.821 ± 0.038 30.57 ± 1.56 

Overall 41.31 ± 10.34 53.15 ± 20.59 0.797 ± 0.044 29.34 ± 1.58 

 

Table 3-3. Internal and external quantitative results using Z-Score normalization. 

Model Testing MAE ± SD (103) MSE ± SD (104) SSIM ± SD PSNR ± SD 

Uni-z1 

Institution-1 23.03 ± 3.18 16.68 ± 4.27 0.879 ± 0.022 34.21 ± 1.58 

Institution-4 43.10 ± 5.91 55.87 ± 13.27 0.736 ± 0.026 28.96 ± 1.20 

Institution-5 32.74 ± 6.27 39.67 ± 14.34 0.788 ± 0.035 31.03 ± 1.16 

Institution-6 32.07 ± 5.05 24.85 ± 5.65 0.741 ± 0.062 32.36 ± 1.07 

Institution-7 38.22 ± 8.77 46.33 ± 16.59 0.769 ± 0.060 29.84 ± 1.42 

Overall 37.83 ± 8.05 44.43 ± 17.57 0.753 ± 0.049 30.25 ± 1.80 

Uni-z2 

Institution-2 24.87 ± 4.64 26.18 ± 6.21 0.854 ± 0.030 32.28 ± 1.10 

Institution-4 48.47 ± 7.30 74.49 ± 18.11 0.715 ± 0.033 27.62 ± 1.22 

Institution-5 31.35 ± 7.52 38.60 ± 15.35 0.795 ± 0.044 31.33 ± 1.51 

Institution-6 33.27 ± 5.23 29.02 ± 7.37 0.749 ± 0.059 31.68 ± 1.14 

Institution-7 37.27 ± 9.36 47.09 ± 17.84 0.771 ± 0.058 29.76 ± 1.57 

Overall 39.88 ± 10.51 53.00 ± 24.75 0.748 ± 0.056 29.59 ± 2.23 

Uni-z3 

Institution-3 26.84 ± 6.17 29.38 ± 12.34 0.847 ± 0.042 31.97 ± 2.09 

Institution-4 38.30 ± 5.53 50.53 ± 13.06 0.788 ± 0.039 29.50 ± 1.21 

Institution-5 31.92 ± 7.32 38.99 ± 14.62 0.803 ± 0.036 31.06 ± 1.42 

Institution-6 30.78 ± 4.70 24.32 ± 6.01 0.761 ± 0.066 32.52 ± 1.08 

Institution-7 33.51 ± 8.08 36.38 ± 15.13 0.803 ± 0.059 30.95 ± 1.50 

Overall 34.62 ± 7.06 40.33 ± 16.16 0.788 ± 0.051 31.01 ± 1.30 

Tri-Z 

Institution-1 23.71 ± 3.12 18.68 ± 4.71 0.875 ± 0.020 33.72 ± 1.43 

Institution-2 25.74 ± 4.80 27.90 ± 6.72 0.851 ± 0.027 32.01 ± 1.10 

Institution-3 27.36 ± 6.80 30.30 ± 13.59 0.842 ± 0.049 31.87 ± 2.23 

Overall 25.60 ± 5.34 25.63 ± 10.44 0.856 ± 0.037 30.69 ± 1.73 

Institution-4 37.20 ± 5.14 37.20 ± 5.14 0.796 ± 0.029 29.72 ± 1.21 
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Institution-5 29.94 ± 6.43 36.79 ± 14.46 0.811 ± 0.034 31.69 ± 1.25 

Institution-6 29.60 ± 4.94 22.94 ± 5.76 0.776 ± 0.062 32.78 ± 1.12 

Institution-7 33.04 ± 8.38 37.35 ± 13.97 0.811 ± 0.053 30.87 ± 1.57 

Overall 33.41 ± 6.92 38.41 ± 14.97 0.797 ± 0.045 30.96 ± 1.75 

 

2) Generalizability of tri-institution models: The model generalizability improved when 

training the model with more diverse MRI data for both Min-Max and Z-Score 

normalization methods. As shown in Table 3-5, the overall external performance 

obtained 8.65% improvement for Tri-M model and 10.77% improvement for Tri-Z 

model in MAE. 

3) Influence of normalization methods to model generalizability: The quantitative 

results from Table 3-4 and Table 3-5 indicate that Z-Score normalization outperformed 

the Min-Max normalization on external datasets, with less average performance drop 

for uni-institution models (51.20% v.s. 69.86% for MAE, 102.03% v.s. 143.91% for 

MSE, 11.24% v.s. 11.83% for SSIM, and 7.64% v.s. 10.83% for PSNR, respectively) 

and more average improvement for tri-institution models (10.77% v.s. 8.65% for MAE, 

16.35% v.s. 14.51% for MSE, and 2.23% v.s. 1.92% for PSNR). Moreover, as shown 

in Table 3-2 and Table 3-3, though the overall external performance of Tri-M 

outperformed Uni-m2 but with comparable external performance with Uni-m1 and 

slightly worse than Uni-m3, while the Tri-Z model that normalized with Z-Score 

method outperformed all uni-institution models, suggesting that Z-Score normalization 

outperforms Min-Max normalization in model generalizability improvement. 

Table 3-4. External performance drop of uni-institution models. 

  Min-Max   Z-Score 
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Model MAE MSE SSIM PSNR Model MAE MSE SSIM PSNR 

Uni-m1 69.79% 188.82% 13.49% 12.26% Uni-z1 64.26% 166.37% 14.33% 11.58% 

Uni-m2 110.80% 187.16% 16.44% 14.14% Uni-z2 60.35% 102.44% 12.41% 8.33% 

Uni-m3 28.99% 55.75% 5.55% 6.10% Uni-z3 28.99% 37.27% 6.97% 3.00% 

Overall 69.86% 143.91% 11.83% 10.83% Overall 51.20% 102.03% 11.24% 7.64% 

 

Table 3-5. External performance improvement of tri-institution models. 

Model MAE MSE SSIM PSNR 

Tri-M 8.65% 14.51% 4.91% 1.92% 

Tri-Z 10.77% 16.35% 4.46% 2.23% 

 

3.4.2 Qualitative results 

To visually evaluate the external generalization performance of uni-institution and tri-

institution models with different normalization methods, we illustrated the external 

results of different models in Figure 3-3. The generalizability of uni-institution models 

varies greatly regardless which normalization method was used. All uni-institution 

models showed worse generalizability to external MRI data with varied contrast 

enhancement failure in tumor and tumor-to-normal tissue contrast (indicated with red 

arrows), especially the model trained with Institution-2 data (i.e., Uni-m2 and Uni-z2, 

with overall image contrast difference and blurring anatomic structure, respectively). 

The model trained with Institution-1 data (i.e., Uni-m1 and Uniz1) also showed overall 

image contrast difference compared with ground truth CE-MRI while the models 

trained with Institution-3 data showed tumor (Uni-m3) and normal vessel (Uni-z3) 

contrast enhancement failure. 
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Figure 3-3. Illustration of GFCE-MRI generated from uni-institution and tri-institution models 

using Min-Max normalization and Z-Score normalization. 

Both the two tri-institution models achieved promising generalizability to 

external data. The generated GFCE-MRI from both Tri-M and Tri-Z models achieved 

a better visual approximation of tumor contrast enhancement compared to uni-

institution models. Compared with the Tri-M model, the Tri-Z model with Z-Score 

normalization obtained a better approximation of tumor surrounding structures (as 

indicated with yellow arrows). 

In radiotherapy, CE-MRI is commonly used for accurate tumor delineation, especially 

for the highly infiltrative NPC (Xiao, et al., 2022). However, GBCAs-associated safety 

issues have stimulated the medical community to eliminate the use of GBCAs. Recently, 

a worldwide interest has been promoted to synthesize the GFCE-MRI for providing a 

gadolinium-free alternative for precision tumor delineation (Bône et al., 2021; Chen et 

al., 2022; Gong et al., 2018a; Kleesiek et al., 2019a; Xiao, et al., 2022; Luo et al., 2021a; 

Input T1w MRI

Input T2w MRI

Real CE-MRI

Tri-M

Tri-Z

Uni-m1 Uni-m2 Uni-m3

Uni-z1 Uni-z2 Uni-z3

3.5 Discussion 
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Pasumarthi et al., 2021a; Xu et al., 2021a; Zhao et al., 2020a). Nevertheless, the model 

generalizability on external institution data remains unexplored and there is no standard 

multi-institutional MRI normalization method has been established. Herein, for the first 

time, we retrieved MRI data from seven institutions and investigated the model 

generalizability using different data normalizations for GFCE-MRI synthesis in NPC 

patients. In this discussion, we attempted to summarize our key findings, discuss the 

potential underlying mechanisms, and provide the research community with our 

perspectives in future directions. 

The models trained with single-institution MRI data suffered from various 

degrees of performance drop on external MRI datasets. As shown in Table 3-2 and 

Table 3-3, the quantitative results show that the uni-institution models performed well 

on internal testing datasets with lower MAE and higher PSNR but failed to generalize 

to external unseen data (i.e., with greater MAE and lower PSNR on external datasets). 

The visual comparisons (Figure 3-3) of synthetic GFCE-MRI among different models 

also showed that uni-institution models failed to predict the correct contrast 

enhancement, both in tumor and surrounding vessels. These results suggest that there 

exist significant MRI data bias across institutions, resulting in a phenomenon that 

performance of well-trained in-house models cannot generalize to external MRI 

datasets. The uni-instiution models obtained varied quantitative results on each 

individual external dataset (for example, the MAE ranges from 34.97 to 52.12 for Uni-

m1), this may also be caused by the MRI data bias among external MRI datasets. These 

data bias may resulted from different MRI characteristics such as image contrast, 

resolution, texture, artifacts, etc. (as shown in Figure 3-1). In addition, the Uni-m2 
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model that normalized with Min-Max normalization obtained the best external results 

on Institution-7 dataset and worst results on Institution-6 dataset, while the Uni-z2 

model (trained with the same source MRI) that normalized with Z-Score normalization 

obtained the best external results on Institution-5 and worst results on Institution-4, 

indicating that different normalization methods do influence the model generalizability. 

The possible reason might be that different normalization methods shorten the gap 

between the training dataset and the external dataset to different extent. 

By involving diverse MRI data from multiple institutions, the overall external 

performance of Tri-M and Tri-Z model have been improved compared to uni-institution 

models, even with the same number of training samples (as shown in Table 3-5). This 

result indicates that involving diverse MRI data from multiple institutions is more 

capable of achieving a better external performance, possibly due to the view of the 

model has been enlarged. By training the model with diverse MRI data, the external 

testing data may have a higher chance to match the training data distribution, thus 

improving the external performance. However, the external performance improvement 

also vary depending on the specific normalization method used. As shown in Table 3-

2 and Table 3-3, though the external performance of Tri-M model obtained 8.65%, 

14.51%, 4.91%， and 1.92%  overall improvement in MAE, MSE, SSIM, and PSNR 

on the four external datasets, respectively, for each individual uni-institution model, the 

Tri-M model (normalized with Min-Max normalization) obtained comparable results 

to Uni-m1 and slightly worse results than Uni-m3, while the Tri-Z model (normalized 

with Z-Score normalization) achieved improved results compared to all uni-institution 

models, indicating that Z-Score normalization is capable of further improving the 
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GFCE-MRI model generalizability when training the model with multi-institutional 

MRI data. On the other hand, both Tri-M and Tri-Z did not obtain obvious performance 

degradation on the three intra-institution datasets, indicating that involving diverse MRI 

data from multiple institutions for model development is capable of maintain the intra-

institution accuracy no matter what normalization method was used, though the two tri-

institution models were trained with 1/3 number of samples from each individual 

institution. 

Z-Score normalization outperformed Min-Max normalization in improving the 

model generalizability, for both uni-institution models and the tri-institution model. As 

shown in Table 3-4 and Table 3-5, Z-Score normalization achieved 18.66%, 41.88%, 

0.59% and 3.19% less external performance drop of MAE, MSE, SSIM and PSNR 

respectively than Min-Max normalization for uni-institution models. With Z-Score 

normalization, the tri-institution model Tri-Z also obtained additional 2.12%, 1.84% 

and 0.31% performance gain in MAE, MSE and PSNR than Tri-M. This is possibly due 

to Z-Score normalizes all the patients’ mean and standard deviation to the same value 

(0 and 1, respectively), which minimized the distribution variations among all training 

patients and external testing patients (as shown in Figure 3-2), while Mix-Max 

normalization preserves the relationship (i.e., the intra-patient intensity ratio) among 

the original data intensities, which limited its contribution to narrowing the distribution 

gap across institutions. 

In this study, we used percentage values instead of actual values to interpret the 

results obtained from different normalization methods. This is because the MRI 
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distributions across institutions are unidentical with different mean value and standard 

deviation, making the results incomparable. As demonstrated in (Lam, et al., 2022), the 

model trained with smaller mean intensity data obtained significantly better intra-

institution quantitative results, even with the same number of training samples. 

Different normalization methods will further normalize the multi-institutional data to 

different distributions, making different normalization results uninterpretable. For 

example, the Uni-m2 model obtained better internal performance compared with Uni-

z2 in MAE (24.45 v.s. 24.87), but the Uni-m3 model may not necessarily performed 

better than Uni-z3 since the distribution of the testing datasets are different after the 

two normalization methods. To quantitatively evaluate the results generated from two 

different normalization methods, we used percentage results (as shown in Table 3-4 

and Table 3-5) instead of the actual values to compare these two normalization results. 

For the multi-institutional setting, the Z-Score normalization may be a promising 

method for results interpretation compared to Min-Max normalization as the Min-Max 

normalization preserves the original data distribution across institutions, while the Z-

Score normalization normalize the mean intensities and standard deviations of multi-

institutional datasets to the same value and minimized the multi-institutional 

distribution diversity, making the normalized multi-institutional results comparable. 

Our study has several limitations. Firstly, since our findings are based on 

MMgSN-Net (Xiao, et al., 2022), applicability of our results using other deep-learning 

models deserves future investigation. Secondly, this work takes into account the 

diversity of MRI images and signal intensities of MRI among institutions, as shown in 

Figure 3-2, after data normalization, small distribution variations also exist among 
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different institutional MRI, these variations may be caused by the image-based factors 

such as image texture, artifacts, and tumor size etc. As demonstrated in (Arega et al., 

2021), MRI-specific data augmentation provides a potential solution to improve the 

model generalizability in aspect of training image, which will be considered in our 

future work to further improve the model generalizability. 

In this study, we investigated the model generalizability for GFCE-MRI synthesis in 

NPC patients using data from seven institutions and explored potential model 

generalizability influence factors of diversity of training data and application of 

different normalization methods. Results of the present work showed that the tri-

instituion models developed from multi-institutional MRI generally resulted in higher 

generalizability than the uni-institution models developed from single-institution 

datasets. Application of the Z-Score normalization was capable of improving the model 

generalizability and results interpretability in multi-institutional MRI setting, which 

outperformed Min-Max normalization. 

 

 

 

 

 

3.6 Conclusion 
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Purpose: To investigate clinical efficacy of GFCE-MRI for gross-tumor-volume 

(GTV) delineation of NPC via a multi-institutional setting. 

Methods and Materials: This study retrospectively retrieved T1w, T2w MRI, 

gadolinium-based CE-MRI and planning CT of 378 biopsy-proven NPC patients from 

three oncology centers. A MMgSN-Net was trained in 288 patients to leverage 

complementary features in T1w and T2w MRI for CE-MRI synthesis, which was 

validated independently in 90 patients. Two board-certified oncologists and one 

medical physicist participated in clinical evaluations in three aspects: image quality of 

GFCE-MRI, target volume delineation and treatment planning. Image quality of GFCE-

MRI evaluation includes distinguishability between CE-MRI and GFCE-MRI, clarity 

of tumor-to-normal tissue interface, veracity of contrast enhancement in tumor invasion 

risk areas, and efficacy in primary tumor staging. Target volume delineation and 

treatment planning were manually performed by oncologists and the medical physicist, 

respectively. Paired two-tailed t-test with a significant level of 0.05 was performed to 

assess statistical difference of the results. 

Results: The mean accuracy to distinguish GFCE-MRI from CE-MRI was 53.33%; no 

significant difference was observed in the clarity of tumor-to-normal tissue interface 

between GFCE-MRI and CE-MRI; for the veracity of contrast enhancement in tumor 

invasion risk areas and efficacy in primary tumor staging, a Jaccard Index (JI) of 

4. Clinical evaluation of the GFCE-MRI in NPC radiotherapy 

4.1 Abstract 
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76.04% and accuracy of 86.67% were obtained, respectively. The image quality 

evaluation suggests that the quality of GFCE-MRI is approximated to CE-MRI. The 

Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) of the GTVs that 

delineated from GFCE-MRI and CE-MRI were 0.762 (0.673-0.859) and 1.932mm 

(0.763mm-2.974mm) respectively, and the mean dosimetric difference of planning 

target volume (PTV) was less than 1%, which were clinically acceptable. 

Conclusions: The GFCE-MRI is highly promising to replace the use of CE-MRI in 

tumor delineation of NPC patients. 

NPC is a highly infiltrative malignancy and is characterized by a distinct geographical 

distribution in East and Southeast Asia (Song et al., 2022). In 2020, 133,354 new cases 

and 80,008 deaths of NPC were recorded globally (World Cancer Research Fund 

International, 2020). At present, radiotherapy is the primary treatment modality for 

NPC due to its high radiosensitivity. As reported by Xu et al. (Xu et al., 2016), the 5-

year survival rate for NPC patients achieved 66%-83% with radiotherapy alone. For 

early-stage NPC, the overall survival rate is greater than 90% (Xu et al., 2016). In 

radiotherapy treatment planning, accurate tumor delineation is the foremost prerequisite 

to achieve optimal tumor control and improve patient survival (Li et al., 2019). 

However, as a soft-tissue mass, NPC shows a high propensity to invade surrounding 

critical structures, such as neural systems and bony skull base, posing significant 

challenges for clinical oncologists to delineate the tumor volume accurately. To 

enhance tumor visibility for more precise tumor delineation, CE-MRI using GBCA is 

4.2 Introduction 
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widely used in clinical practice. It has been reported that approximately 45% of MRI 

scans performed in the United States involves the use of GBCA on a routine basis 

(Enterline, Jan 2021). 

However, GBCA-based CE-MRI imaging is costly, time-consuming, resource-

demanding, and can potentially increase the risk of toxicity for patients with impaired 

renal function (Lang et al., 2019; Rogosnitzky & Branch, 2016). Firstly, GBCA is 

desperately needed in medical practice. More than 450 million doses have been 

administrated since its introduction to the market, and more than 30 million doses of 

GBCA are consumed annually worldwide (Guo et al., 2018; Jakobsen et al., 2021). The 

cost for each CE-MRI scan ranges from HKD 9,200 to 19,980 in Hong Kong (Adventist 

Hospital, 2022; Gleneagles Hospital, 2022; Hong Kong Baptist Hospital, 2021; Union 

Hospital, 2021). For cancer patients receiving adaptive radiotherapy, repeated GBCA-

based CE-MRI scans significantly increase patients’ costs by a factor of 3 to 5. Then, 

due to the high number of patients requiring CE-MRI scans, the waiting time for cancer 

patients to receive radiotherapy treatment increases. As reported by Wildeman et al. 

(Wildeman et al., 2013), the average CE-MRI scan time for the head and neck region 

lasts 30 to 90 minutes for each patient, and the median waiting time between diagnosis 

and first radiotherapy treatment is 120 days (range 13-500 days) for NPC patients. Long 

waiting time may lead to significantly worse treatment outcomes as a result of the 

progression of cancer during the waiting (Wildeman et al., 2013). More importantly, 

GBCA-associated patient safety issues, such as acute adverse reactions, NSF and 

gadolinium deposition, have raised serious concerns in medical community (Nguyen et 

al., 2020a). All things considered, there is a pressing demand for developing an 
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alternative method to GBCA for cost-effective, time-efficient, and safe radiotherapy. 

To address this issue, worldwide interests have been raised in applying deep 

learning to synthesize GFCE-MRI without using GBCA (Gong et al., 2018a; Kleesiek 

et al., 2019a) and great successes have been achieved. Preetha et al. (Preetha et al., 

2021) proposed a deep convolutional neural network to synthesize GFCE-MRI for 

brain tumor response assessment from contrast-free T1w, T2w, and fluid-attenuated 

inversion recovery sequences; they found that synthetizing GFCE-MRI from contrast-

free MRI is feasible, and there was no significant difference in treatment response 

compared to GBCA-based CE-MRI. Zhang et al. (Zhang et al., 2021) utilized GBCA-

free T1 maps and cine imaging to synthesize cardiovascular GFCE-MRI through a 

modified conditional generative adversarial network; they demonstrated that the 

synthetic GFCE-MRI could achieve high agreement with GBCA-based CE-MRI in 

lesion distribution and quantification, while the GFCE-MRI achieved significantly 

better image quality than CE-MRI. Following these works, Li et al. (Li, et al., 2022) 

first applied the GFCE-MRI technique into the field of radiotherapy. They synthesized 

the GFCE-MRI for NPC tumor delineation from contrast-free T1w and T2w MRI and 

demonstrated that the synthetic GFCE-MRI has a high approximation to GBCA-based 

CE-MRI, especially for the visualization of tumor-to-muscle interface and intratumor 

texture, which is highly promising for tumor delineation. However, this work mostly 

focused on technical development of the synthetic network, more clinical evidence to 

demonstrate its clinical efficacy on tumor delineation is warranted. Clinical evaluation 

plays a pivotal role in demonstrating the performance of the new technology in real-

world setting, which is essential prior to bench-to-bedside translation of the novel 
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GFCE-MRI technique.  

 In this study, we invited two board-certified clinical oncologists and one 

experienced medical physicist to conduct a series of clinical evaluations to investigate 

the clinical efficacy of GFCE-MRI in radiotherapy of multi-institutional NPC patients. 

Specially, the evaluations including image quality of GFCE-MRI (distinguishability 

between CE-MRI and GFCE-MRI, clarity of tumor-to-normal tissue interface, veracity 

of contrast enhancement in tumor invasion risk areas, and efficacy in primary tumor 

staging), target volume delineation and treatment planning. To the best of our 

knowledge, this is the first clinical evaluation study of GFCE-MRI in NPC radiotherapy 

using multi-institutional MRI data. This study would fill the current knowledge gap and 

provide the community with a clinical reference prior to clinical application of the novel 

GFCE-MRI technique in NPC radiotherapy. 

4.3.1 Patient data 

Patient data was retrospectively collected from three oncology centers in Hong Kong. 

This dataset includes 378 biopsy-proven (stage I-IVb) NPC patients who received 

radiation treatment during 2012-2016. The three hospitals were labelled as Institution-

1 (134 patients), Institution-2 (71 patients), and Institution-3 (173 patients), 

respectively. For each patient, T1w MRI, T2w MRI, gadolinium-based CE-MRI, and 

planning CT (with original organs at risk contours) were retrieved. MRI images were 

automatically registered since MRI images for each patient were scanned in the same 

position. The use of this dataset was approved by the Institutional Review Board of the 

4.3 Methods and materials  
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University of Hong Kong/Hospital Authority Hong Kong West Cluster (HKU/HA 

HKW IRB) with reference number UW21-412, and the Research Ethics Committee 

(Kowloon Central/Kowloon East) with reference number KC/KE-18-0085/ER-1. Due 

to the retrospective nature of this study, patient consent was waived. In our dataset, the 

primary tumor stage (T-stage) for majority patients were stage-III, accounting for 

56.06% of the whole dataset, while patients with other stages were 15.40%, 10.76%, 

and 17.78% for stage-I, stage-II, and stage-IV, respectively. In this multi-institution 

study, we only focused on the head and neck region where the primary tumor was 

located due to the limited anatomical region for training with deep learning techniques. 

For model development, 288 patients were used for model training and 90 patients were 

used for model testing. The details of patient characteristics and the number split for 

training and testing of each dataset were illustrated in Table 4-1. Prior to model 

training, MRI images were resampled to 256*224 by bilinear interpolation (Gribbon & 

Bailey, 2004) due to the inconsistent matrix sizes of the three datasets.  

Table 4-1. Details of the multi-institutional patient characteristics. FS: field strength; TR: 

repetition time; TE: echo time; No.: Number; Avg: average. 

Institution 

(vendor-FS) 

Patient No. 

(train/test) 
Avg. age Sex Modality TR (ms) TE (ms) 

Contrast 

Density 

Institution-1 

(Siemens-1.5T) 

134 
(105/29) 

56  11 Male: 98 
Female: 36 

T1w 562 - 739 13 - 17 / 

T2w 7640 97 / 

CE-MRI 562 - 739 13 - 17 0.1mmol/kg 

Institution-2 

(Philips-3T) 

71 

(53/18) 
49  15 Male: 55 

Female: 16 

T1w 4.8 - 9.4 2.4 - 8.0 / 

T2w 3500 - 4900 50 - 80 / 
 CE-MRI 4.8 - 9.4 2.4 - 8.0 0.1mmol/kg 

Institution-3 

(Siemens-3T) 

173 

(130/43) 
57  12 Male: 136 

Female: 37 

T1w 620 9.8 / 

T2w 2500 74 / 
 CE-MRI 3.42 1.11 0.1mmol/kg 

 

4.3.2 GFCE-MRI synthesis network 
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The MMgSN-Net was applied to learn the mapping from T1w MRI and T2w MRI to 

CE-MRI. The MMgSN-Net was a 2D network. The effectiveness of this network in 

GFCE-MRI synthesis for NPC patients has been demonstrated by a previous study (Li, 

Xiao, et al., 2022). T1w MRI and T2w MRI were used as input and corresponding CE-

MRI was used as learning target. In this work, we obtained 12806 image pairs for model 

training and 3589 image pairs for testing. Different from the original study, which used 

single institutional data for model development and utilized min-max value of the 

whole dataset for data normalization, in this work, we used mean and standard deviation 

of each individual patient to normalize MRI intensities due to the heterogeneity of the 

MRI intensities across institutions. 

4.3.3 Clinical evaluations 

In this study, we attempted to conduct a series of clinical evaluations to investigate the 

efficacy of GFCE-MRI in assisting primary GTV delineation for NPC patients. The 

evaluation methods used in this study included image quality assessment of GFCE-

MRI, target volume delineation, and treatment planning. Two board-certified clinical 

oncologists (D.Z. and Z.H. with 8 years’ and 6 years’ clinical experience, respectively) 

were invited to perform the GFCE-MRI quality assessment and target volume 

delineation, and one clinical physicist (Z.C. with 7 years’ treatment planning 

experience) was invited to generate treatment plans using the GFCE-MRI based 

contours that were delineated by the participating oncologists. Considering the clinical 

burden of oncologists and the physicist, 30 patients (10 patients from each center) were 

randomly selected for clinical evaluations, including 15 real patients (5 patients each 
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center) and 15 corresponding synthetic patients (5 patients each center). All clinical 

evaluations were performed on an Eclipse workstation (V5.0.10411.00, Varian Medical 

Systems, USA) by the oncologists and physicist. The results were obtained under the 

consensus of the two oncologists.  

4.3.4 Image quality of GFCE-MRI 

To evaluate the general quality of synthetic GFCE-MRI against the real CE-MRI, we 

conducted four radiotherapy-related evaluations: distinguishability between CE-MRI 

and GFCE-MRI, clarity of tumor-to-normal tissue interface, veracity of contrast 

enhancement in tumor invasion risk areas, and efficacy in primary tumor staging. The 

GFCE-MRI and CE-MRI volumes were imported as individual patients to Eclipse 

system and randomly and blindly shown to oncologists for evaluation. The MRI 

volumes were shown in axial view, sagittal view and coronal view, and the oncologists 

can scroll through the slices to view adjacent images.  

Distinguishability between CE-MRI and GFCE-MRI:  

To evaluate the reality of GFCE-MRI, oncologists were invited to differentiate the 

synthetic patients from real patients. Different from the previous studies that utilized 

limited number (20-50 slices, axial view) of 2D image slices for reality evaluation 

(Kleesiek et al., 2019a; Li, Xiao, et al., 2022), we used 3D volumes in this study to help 

oncologists visualize the inter-slice adjacent information. The judgement results were 

recorded and the accuracy for each institution and the overall accuracy were calculated. 

Clarity of tumor-to-normal tissue interface:  
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The clarity of tumor-normal tissue interface is critical for tumor delineation, which 

directly affects the final delineation outcomes. Oncologists were asked to use a 5-point 

Likert scale ranging from 1 (poor) to 5 (excellent) to evaluate the clarity of tumor-to-

normal tissue interface. Paired two-tailed t-test (with a significance level of p = 0.05) 

was applied to analyse if the scores obtained from real patients and synthetic patients 

are significantly different. 

Veracity of contrast enhancement in tumor invasion risk areas: 

In addition to the critical tumor-normal tissue interface, the areas arounding the NPC 

tumor will also be considered during delineation. To better evaluate the veracity of 

contrast enhancement in GFCE-MRI, we selected 25 tumor invasion risk areas 

according to (Liang et al., 2009), including 13 high-risk areas and 12 medium-risk 

areas, and asked oncologists to determine whether these areas were at risk of being 

invaded according to the contrast-enhanced tumor regions. The 13 high-risk areas 

include: retropharyngeal space, parapharyngeal space, levator veli palatine muscle, 

prestyloid compartment, Tensor veli palatine muscle, poststyloid compartment, nasal 

cavity, pterygoid process, basis of sphenoid bone, petrous apex, prevertebral muscle, 

clivus, and foramen lacerum. The 12 medium-risk areas include foramen ovale, great 

wing of sphenoid bone, medial pterygoid muscle, oropharynx, cavernous sinus, 

sphenoidal sinus, pterygopalatine fossa, lateral pterygoid muscle, hypoglossal canal, 

foramen rotundum, ethmoid sinus, and jugular foramen. The areas considered at risk of 

invasion were recorded. 

 The JI (Fletcher & Islam, 2018) was utilized to quantitatively evaluate the 
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results of recorded risk areas from CE-MRI and GFCE-MRI. The JI could be calculated 

by: 

 𝐽𝐼 = |𝑅𝐶𝐸 ∩ 𝑅𝑉𝐶𝐸|/|𝑅𝐶𝐸 ∪ 𝑅𝑉𝐶𝐸| (4-1) 

where 𝑅𝐶𝐸 and 𝑅𝑉𝐶𝐸 represents the set of risk areas that recorded from CE-MRI and 

corresponding GFCE-MRI, respectively. JI measures similarity of two datasets, which 

ranges from 0% to 100%. Higher JI percentage indicates more similar of two risk areas. 

Efficacy in primary tumor staging: 

A critical radiotherapy-related application of CE-MRI is tumor staging, which plays a 

critical role in treatment planning and prognosis prediction (Lee et al., 2018). To assess 

the efficacy of GFCE-MRI in NPC tumor staging, oncologists were asked to determine 

the stage of the primary tumor shown in CE-MRI and GFCE-MRI. The staging results 

from CE-MRI were taken as the ground truth and the staging accuracy of GFCE-MRI 

was calculated. 

4.3.5 Target volume delineation 

GTV delineation is the foremost prerequisite for a successful radiotherapy treatment of 

NPC tumor, which demands excellent precision (Jager et al., 2015). An accurate tumor 

delineation improves local control and reduce toxicity to surrounding normal tissues, 

thus potentially improving patient survival (Jameson et al., 2014). To evaluate the 

feasibility of eliminating the use of GBCA by replacing CE-MRI with GFCE-MRI in 

tumor delineation, oncologists were asked to contour the primary GTV under the 

assistance of GFCE-MRI. For comparison, CE-MRI was also imported to Eclipse for 
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tumor delineation but assigned as a different patient, which were shown to oncologists 

in a random and blind manner. To mimic the real clinical setting, contrast-free T1w, 

T2w MRI and corresponding CT of each patient were imported into the Eclipse system 

since sometimes T1w and T2w MRI will also be referenced during tumor delineation, 

the delineated contours were mapped to corresponding CT for treatment planning. Due 

to both real patients and synthetic patients were involved in delineation, to erase the 

delineation memory of the same patient, we separated the patients to two datasets, each 

with the same number of patients, both two datasets with mixed real patients and 

synthetic patients without overlaps (i.e., the CE-MRI and GFCE-MRI from the same 

patient are not in the same dataset).When finished the first dataset delineation, there 

was a one-month interval before the delineation of the second dataset. After the 

delineation of all patients, the DSC (Balagopal et al., 2021) and HD (Yang et al., 2015) 

of the GTVs delineated from real patients and corresponding synthetic patients were 

calculated to evaluate the accuracy of delineated contours. 

Dice similarity coefficient (DSC): DSC is a broadly used metric to compare the 

agreement between two segmentations (Chang et al., 2009). It measures the spatial 

overlap between two segmentations, which ranges from 0 (no spatial overlap) to 1 

(complete overlap). The DSC can be expressed as: 

 𝐷𝑆𝐶 = 2 ∗ |𝐶𝐶𝐸 ∩ 𝐶𝐺𝐹𝐶𝐸|/(|𝐶𝐶𝐸| + |𝐶𝐺𝐹𝐶𝐸|) (4-2) 

where 𝐶𝐶𝐸 and 𝐶𝐺𝐹𝐶𝐸  represent the contours delineated from real patients and synthetic 

patients, respectively. 
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Hausdorff distance (HD): Even though DSC is a well-accepted segmentation 

comparison metric, it is easily influenced by the size of contours. Small contours 

typically receive lower DSC than larger contours (Schreier et al., 2020). Therefore, HD 

was applied as a supplementary to make a more thorough comparison. HD is a metric 

to measure the maximum distance between two contours. Given two contours 𝐶𝐶𝐸 and 

𝐶𝐺𝐹𝐶𝐸 , the HD could be calculated as: 

 𝐻𝐷 =  𝑚𝑎𝑥(𝑚𝑎𝑥𝑥∈𝐶𝐶𝐸
d(𝑥, 𝐶𝐺𝐹𝐶𝐸), 𝑚𝑎𝑥𝑦∈𝐶𝐺𝐹𝐶𝐸

d(𝑦, 𝐶𝐶𝐸)) (4-3) 

where d(𝑥, 𝐶𝐺𝐹𝐶𝐸  ) and d(𝑦, 𝐶𝐶𝐸 ) represent the distance from point 𝑥 in contour 𝐶𝐶𝐸 to 

contour 𝐶𝐺𝐹𝐶𝐸  and the distance from point y in contour 𝐶𝐺𝐹𝐶𝐸  to contour 𝐶𝐶𝐸. 

4.3.6 Treatment planning 

Measures such as DSC and HD sometimes do not reflect the clinical impact in actual 

radiotherapy treatment (Schreier et al., 2020). To measure the real clinical dose 

disagreement between contours delineated from CE-MRI and GFCE-MRI, the 

dosimetric differences between PTVs of real patients and synthetic patients were 

compared. The PTVs were delineated for each patient based on 𝐶𝐶𝐸  and 𝐶𝐺𝐹𝐶𝐸  by 

oncologists according to clinical guidance and their clinical experience. The delineated 

PTVs were labelled as 𝑃𝐶𝐸  for real patients and 𝑃𝐺𝐹𝐶𝐸  for synthetic patients, 

respectively. The PTV receiving 70Gy (PTV70), 66Gy (PTV66), and 60Gy (PTV60) 

were delineated by oncologists for each patient. A VMAT plan was generated by the 

physicist based on 𝑃𝐺𝐹𝐶𝐸  with prescription dose of 70Gy. Original organs at risk 

contours were transferred into the planning CT for dose limitation of normal organs. 
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The 𝑃𝐶𝐸 of each patient was also transferred to corresponding synthetic patient for dose 

distribution comparison. After treatment planning, the dose-volume histogram (DVH) 

was compared. Similar to (Kazemifar et al., 2019), the minimum dose delivered to 5% 

volume (D5%), minimum dose delivered to 95% volume (D95%), maximum dose (Dmax) 

and the mean dose (Dmean) of 𝑃𝐶𝐸 and 𝑃𝐺𝐹𝐶𝐸  were calculated and compared for each 

patient. Paired two-tailed t-test was performed (with a significance level of p = 0.05) to 

analyze if there are significance difference in these metrics between 𝑃𝐶𝐸 and 𝑃𝐺𝐹𝐶𝐸 . 

4.4.1 Image quality of GFCE-MRI 

Table 4-2 summarizes the results of the four GFCE-MRI quality evaluation metrics, 

including: (A) distinguishability between CE-MRI and GFCE-MRI; (B) clarity of 

tumor-to-normal tissue interface; (C) veracity of contrast enhancement in tumor 

invasion risk areas; and (D) efficacy in primary tumor staging.  

(A) Distinguishability between CE-MRI and GFCE-MRI: The overall judgement 

accuracy for the MRI volumes was 53.33%, which is close to a random guess accuracy 

(i.e., 50%). For Institution-1, 2 (/5) real patients were judged as synthetic and 1(/5) 

synthetic patient was considered as real. For Institution-2, 2(/5) real patients were 

determined as synthetic and 4(/5) synthetic patients were determined as real. For 

Institution-3, 2(/5) real patients were judged as synthetic and 3(/5) synthetic patients 

were considered to be real. In total, 6(/15) real patients were judged as synthetic and 

8(/15) synthetic patients were judged as real. 

4.4 Results 
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(B) Clarity of tumor-to-normal tissue interface: The overall clarity scores of tumor-to-

normal tissue interface for real and synthetic patients were 3.67 with a median of 4 and 

3.47 with a median of 4, respectively. No significant difference was observed between 

these two scores (p = 0.38). The average scores for real and synthetic patients were 3.6 

and 3, 3.6 and 3.8, 3.8 and 3.6 for Institution-1, Institution-2, and Institution-3, 

respectively. 5(/15) real patients got a higher score than synthetic patients and 3(/15) 

synthetic patients obtained a higher score than real patients. The scores of the other 7 

patient pairs were the same. 

(C) Veracity of contrast enhancement in tumor invasion risk areas: The overall JI score 

between the recorded tumor invasion risk areas from CE-MRI and GFCE-MRI was 

74.06%. The average JI obtained from Institution-1, Institution-2, and Institution-3 

dataset were similar with a result of 71.54%, 74.78% and 75.85%, respectively. In total, 

126 risk areas were recorded from the CE-MRI for all of the evaluation patients, while 

10 (7.94%) false positive high risk invasion areas and 9 (7.14%) false negative high 

risk invasion areas were recorded from GFCE-MRI. 

(D) Efficacy in primary tumor staging:  A T-staging accuracy of 86.67% was obtained 

using GFCE-MRI. 13(/15) patient pairs obtained the same staging results. For the 

Institution-2 data, all synthetic patients observed the same stages as real patients. For 

the two T-stage disagreement patients, one synthetic patient was staged as phase IV 

while the corresponding real patient was staged as phase III, the other synthetic patient 

was staged as I while corresponding real patient was staged as phase III. 

Table 4-2. GFCE-MRI image quality evaluation results in: (A) Distinguishability between CE-
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MRI and GFCE-MRI; (B) Clarity of tumor-to-normal tissue interface; (C) Veracity of contrast 

enhancement in risk areas; and (D) T-staging. 

 
(A) Distinguishability between CE-MRI 

and GFCE-MRI 
(B) Clarity of tumor-to-normal tissue interface 

 Institution-1 Institution-2 Institution-3 Institution-1 Institution-2 Institution-3 

 / / / Real Syn Real Syn Real Syn 

Center 

average 
70% 40% 50% 3.6 3 3.6 3.8 3.8 3.6 

Overall 

average 
53.33% Real: 3.67 Syn: 3.47 

 
(C) Veracity of contrast enhancement in 

risk areas 
(D) Efficacy in primary tumor staging 

 Institution-1 Institution-2 Institution-3 Institution-1 Institution-2 Institution-3 

Center 

average 
71.54% 74.78% 75.85% 80% 100% 80% 

Overall 

average 
74.06% 86.67% 

 

4.4.2 Target volume delineation 

The average DSC and HD between the 𝐶𝐶𝐸 and 𝐶𝐺𝐹𝐶𝐸  was 0.762 (0.673-0.859) with a 

median of 0.774 and 1.932mm (0.763mm-2.974mm) with a median of 1.913mm, 

respectively. For Institution-1, Institution-2, and Institution-3, the average DSC were 

0.741, 0.794 and 0.751 respectively, while the average HD were 2.303mm, 1.456mm, 

and 2.037mm respectively. Figure 4-1 illustrated the delineated primary GTV contours 

from an average patient with the DSC of 0.765 and HD of 1.938mm. The green contour 

shows the primary GTV that delineated form the synthetic patient, while the red contour 

was delineated from corresponding real GBCA-based patient.  
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Figure 4-1. Illustration of the primary GTVs from a typical patient with an average DSC and 

HD. The green volume was delineated from the synthetic patient, while the red volume was 

delineated from the real GBCA-based patient. 

4.4.3 Treatment planning 

Table 4-3 illustrates the dosimetric differences between the 𝑃𝐶𝐸 and 𝑃𝐺𝐹𝐶𝐸 . The overall 

dose difference between 𝑃𝐺𝐹𝐶𝐸  and 𝑃𝐶𝐸 was less than 1% for all of the D5%, D95%, Dmax, 

and Dmean. No significant difference was observed between 𝑃𝐺𝐹𝐶𝐸  and 𝑃𝐶𝐸  for these 

dose metrics (p > 0.05). Less than 0.5Gy dose difference were obtained for D5% 

(0.046Gy), Dmax (0.055Gy), and Dmean (0.398Gy). Figure 4-2 shows the isodose lines 

(Figure 4-2(A)) and DVH (Figure 4-2(B)) of a typical patient. Red line and green line 

represent 𝑃𝐺𝐹𝐶𝐸  and 𝑃𝐶𝐸  respectively in both sub-figures. From Figure 4-2(A), we 

observed that the 𝑃𝐺𝐹𝐶𝐸  and 𝑃𝐶𝐸 contours overlapped well, and the prescription 70Gy 

region (translucent red) covers well with both 𝑃𝐺𝐹𝐶𝐸  and 𝑃𝐶𝐸. From Figure 4-2(B), we 

see that the DVH of 𝑃𝐺𝐹𝐶𝐸  matches well with DVH of 𝑃𝐶𝐸.  

Table 4-3. The dose distribution differences between 𝑷𝑪𝑬 and 𝑷𝑮𝑭𝑪𝑬 with respect to D5%, D95%, 

Dmax, and Dmean. NS: not significant. 𝑷𝑪𝑬 : planning target volume from CE-MRI, 𝑷𝑮𝑭𝑪𝑬 : 

(a) Axial view (b) Coronal view (c) Sagittal view (d) 3D volume



 

87 

 

planning target volume from GFCE-MRI. 

Metric Mean dose differences (range) p-value 

D5% 0.043Gy (-0.287Gy ~0.230Gy) NS (p=0.12) 

D95% 0.960Gy (-0.115Gy ~2.581Gy) NS (p=0.20) 

Dmax -0.074Gy (-1.103Gy ~0.138Gy) NS (p=0.48) 

Dmean 0.271Gy (-0.184Gy ~0.879Gy) NS (p=0.17) 

 

 

Figure 4-2. (A) Dose distribution comparison of 𝑃𝐺𝐹𝐶𝐸 and 𝑃𝐶𝐸 from a single VMAT plan with 

prescription dose of 70Gy. The most inner red line and green line are 𝑃𝐺𝐹𝐶𝐸  and 𝑃𝐶𝐸 , 

respectively. (B) DVH plot with 𝑃𝐺𝐹𝐶𝐸 and 𝑃𝐶𝐸, squares and triangles are based on 𝑃𝐺𝐹𝐶𝐸 and 

𝑃𝐶𝐸, respectively. 
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4.5 Discussion 
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The GBCA has been used for decades to improve the visibility of tumors and has been 

considered essential in GTV delineation, especially for the highly infiltrative NPC 

tumors. Since 2006, several GBCA-related safety issues have been reported (Flood et 

al., 2017; Kanda et al., 2015a; H. S. Thomsen, 2006). To provide a safe and high-quality 

clinical care, deep learning-based GFCE-MRI technics have been proposed in recent 

years, aiming at replacing the use of GBCA-based CE-MRI via utilizing the 

multiparametric information from contrast-free MRI sequences. However, most of 

these studies are technical contributions or feasibility studies in different anatomy 

structures using single institutional data. In this study, we conducted a series of GFCE-

MRI-based clinical evaluations using multi-institutional MRI data to explore the 

clinical efficacy of using the GFCE-MRI for GTV delineation in NPC patients. The 

evaluations included overall image quality of synthetic GFCE-MRI, the performance 

of GFCE-MRI in target volume delineation, and dosimetric discrepancy between the 

dose generated from GFCE-MRI-based plans and real CE-MRI-based plans. To the best 

of our knowledge, this is the first clinical-oriented study of GFCE-MRI in radiotherapy. 

In this discussion, we sought to highlight our main findings, discuss the possible 

reasons, and provide potential future directions for the research community. 

 The evaluations for image quality of GFCE-MRI showed that the quality of 

synthetic GFCE-MRI is highly similar to the gadolinium-based CE-MRI, as shown in 

Table 4-2.  Firstly, it is challenging for oncologists to distinguish the real CE-MRI from 

synthetic GFCE-MRI, which obtained a judgement accuracy of 53.33%. This result is 

slightly better than random guessing (i.e., with an accuracy of 50%), indicating that the 

generated GFCE-MRI has similar image quality compared to real CE-MRI. The 
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judgement accuracy in this study is similar to the reported results from the previous 

study (Li et al., 2022). However, the previous work used limited 2D images (50 single 

images, axial view) for evaluation, the inter-slice adjacent information was not 

considered, while we used the 3D volume in this study, meaning that the axial view, 

coronal view and sagittal view were also shown to the oncologists for evaluation. 

Secondly, for the critical delineation-related tumor-to-normal tissue interface, we 

observed no significant difference between the CE-MRI and GFCE-MRI, suggesting 

that the synthetic GFCE-MRI preserves the similar tumor-to-normal tissue interface 

clarity compared to CE-MRI. Thirdly, for the veracity evaluation of tumor invasion risk 

areas, the JI of risk areas obtained 74.06% between the CE-MRI and GFCE-MRI. In 

total, 126 risk areas were recorded from the CE-MRI for all of the evaluation patients, 

while we recorded 10 (7.94%) false positive high risk invasion areas and 9 (7.14%) 

false negative high risk invasion areas from GFCE-MRI, indicating there are still some 

mis-enhancement in tumor-surrounding risk areas. Lastly, we obtained a T-staging 

accuracy of 86.67% using GFCE-MRI. In our experiments, only two synthetic patients 

were mis-staged, indicating that most synthetic cases were with the similar quality in 

the aspect of tumor staging, while still having few cases with unsatisfied staging 

performance, which is potentially be improved by designing the deep learning model 

focus on tumor and surrounding regions learning. As reported by oncologists, the 

overall image quality of GFCE-MRI in NPC delineation is acceptable.  

 We obtained an average DSC of 0.762 and an average HD of 1.932mm between 

the GTV contours generated from real patients and synthetic patients, and we consider 

this GFCE-MRI-based results are acceptable. As this is the first study to investigate 
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clinical efficiency of GFCE-MRI in NPC delineation, these is no reference for 

comparison. However, there are some automatically NPC delineation studies. Tsuji et 

al. (Tsuji et al., 2010) applied a registration-based approach for adaptive GTV 

delineation and obtained a DSC of 0.69 between the contours generated from their 

approach and manually delineated contours, Yang et al. (Yang et al., 2015) proposed a 

multichannel auto-segmentation method to automatically segment the GTV of head and 

neck cancer, and they obtained a DSC of 0.75. Similarly, Guo et al. (Guo et al., 2019) 

developed a Dense-Net to automatically segment the GTV from head and neck cancer 

patients, they obtained a DSC of 0.73. Moreover, due to the complexity of nasopharynx 

involves multiple critical structures such as parotid glands and neural systems, which 

always challenges oncologists to consistently delineate the same target volume. As 

reported by Lu et al. (Lu et al., 2006), the DSC of interobserver variations in GTV 

delineation of head and neck patients is 0.75 for the same patient, which is similar to 

our GFCE-MRI-based results (0.762). We consider that directly comparing the DSC 

from different works is unsuitable since diverse datasets were used in different studies. 

However, it is reasonable to conclude that the GFCE-MRI resulted in a good agreement 

with ground truth GTV using these works as references.  

 Importantly, treatment planning is an essential evaluation for NPC radiotherapy, 

which directly demonstrates the dosimetric performance of GFCE-MRI-based 

contours. The dose distribution differences between 𝑃𝐶𝐸  and 𝑃𝐺𝐹𝐶𝐸  shows that the dose 

difference between these two PTVs was less than 1%, and we did not observe 

significant dose difference between these two target volumes, suggesting that the GTV 

contours delineated under assistant of GFCE-MRI is sufficient to generate clinically 
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equivalent treatment plans. In a study performed by Kazemifar et al. (Kazemifar et al., 

2019), they generated synthetic CT from CE-MRI for treatment planning and clinically 

evaluated the synthetic CT on 14 patients. They found the dose error was also within 

1% and demonstrated the effectiveness of their work. 

 There are several limitations of the current deep learning-based GFCE-MRI 

technique. Firstly, the GFCE-MRI generated from different institutions obtained 

variated clinical results, as shown in Table 4-2(A), suggesting there exists large multi-

institutional MRI heterogeneous, which could potentially influence wide applications 

of the GFCE-MRI technique. As such, methodologies to solve the multi-institutional 

data heterogeneous problem for GFCE-MRI synthesis will be an interesting area to be 

explored in the future. Secondly, as shown in the results of clarity of tumor-to-normal 

tissue interface and T-staging, there were still slight disagreements between the GFCE-

MRI and real CE-MRI for the tumor and surrounding invasion risk areas, suggesting a 

potential to further improve the model performance, especially in regions of tumor and 

surrounding risk areas. We believe that this issue could be alleviated by including more 

MRI data and advanced deep learning architecture for model development. Then, a 

limitation of this study is that we did not conduct the clinical evaluations of metastasises 

such as neck lymph nodes and other metastatic anatomies due to the restriction of the 

diseased areas for model training. This could be a future study for using contrast-free 

MRI images of metastasises to synthesize the GFCE-MRI and evaluate its clinical 

efficacy.  

4.6 Conclusion 
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In this study, we conducted a series of clinical evaluations to evaluation the potential 

clinical efficacy of GFCE-MRI in radiotherapy of NPC patients. Results showed that 

the GFCE-MRI has great potential to provide an alternative to GBCA-based CE-MRI 

for NPC delineation. The improvement of model generalization ability to multi-

institutional MRI data and the model performance on tumor and surrounding risk areas 

are warranted in future study to generate more accurate multi-institutional GFCE-MRI. 

 

Gadolinium associated safety issues have raised worldwide concerns in recent years. 

To find an alternative to GBCA-based CE-MRI, in this study, we applied DL-assisted 

GFCE-MRI technique to the field of radiotherapy and successfully developed a 

MMgSN-Net to synthesize GFCE-MRI that tailored for NPC patients. Then, we 

investigated and improved the MMgSN-Net model generalizability using multi-

institutional MRI data and patient-based data normalization, respectively. With the 

assistance of two radiation oncologists and a clinical physicist, we conducted a series 

of clinical evaluations to explore the clinical efficacy of the synthetic GFCE-MRI using 

multi-institutional MRI data.  In this discussion, we attempt to highlight our key 

findings and limitations of the current research and provide our considerations for 

future research.  

In this study, we for the first time developed a MMgSN-Net to synthesize the GFCE-

5. Discussion  

5.1 Current key findings and limitations 



 

93 

 

MRI that tailored for NPC patients. The major novelties of the MMgSN-Net are: (i) this 

is the first model to synthesize the GFCE-MRI for application of radiotherapy and the 

first study for NPC patients; (ii) the MMgSN-Net has the ability to extract the 

complementary information from input T1w and T2w MRI for GFCE-MRI synthesis; 

(iii) the quantitative results indicate the MMgSN-Net outperforms state-of-the-art U-

Net, CycleGAN, and Hi-Net, and the Turing test results show the clinical oncologists 

were difficult to differentiate the GFCE-MRI from the real CE-MRI. Nevertheless, 

there are some limitations about the current work: (i) during the model development, 

MMgSN-Net was trained with small-sized NPC data from single institution. Synthesis 

failure may be observed for specific patients with unseen pattern; (ii) the MMgSN-Net 

is a supervised model. The performance of MMgSN-Net highly relies on the input-

target alignment performance. 

A generalizable GFCE-MRI model is highly needed for clinical practice, which 

enables the trained model could be directly used in external data. Training a 

generalizable GFCE-MRI model is challenging due to the highly heterogenous external 

MRI data. To investigate the MMgSN-Net model generalizability and explore potential 

solutions to improve the model generalizability, we utilized MRI from seven 

institutions to train and test different models with different normalization methods. 

According to our results, we found that using multi-institutional MRI for model training 

was helpful for improving the model generalizability. We also observed that Z-Score 

normalization makes multi-institutional results comparable and helps model 

generalizability improvement compared to the wildly used Min-Max normalization. 

The main limitations of this study are: (i) the patient samples of external testing datasets 
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were limited; and (ii) our findings were obtained from the proposed MMgSN-Net. More 

models could be involved to further validate our current observations. 

Clinical evaluation of the GFCE-MRI is essential for bench-to-bedside 

translation of this technique. To assess the clinical efficacy of the synthetic GFCE-MRI, 

we conducted a series of clinical evaluations. Our results indicate that the GFCE-MRI 

is highly promising for NPC delineation. The dosimetric differences between synthetic 

patients and real patients were less than 1%. However, the main limitations of this study 

are: (i) the results were obtained from two oncologists from the same cancer center. 

Considering the large NPC delineation variations across oncologists, more oncologists 

from different cancer centers are warranted to obtain a more robust conclusion; (ii) the 

contrast enhancement accuracy of tumor surrounding risk regions still needs to be 

improved, this could be alleviated by improving the model performance by including 

more patient samples for model training or making the model focus on tumor and 

surrounding risk regions during training. 

There are still several aspects need to be explored in future research for more 

comprehensive analysis. 

Firstly, though we have utilized multi-institutional data for model 

generalizability analysis, these institutions are all located in Hong Kong, and the 

number of patients were limited. The patients from different countries or regions may 

have bias in MRI characteristics. In addition, due to the limited number of patient 

5.2 Future directions 



 

95 

 

samples, we did not focus on specific patient group such as children and old populations. 

MRI characteristics such as image shape and tumor size may vary among sub-age 

groups. Herein, in terms of patient characteristics, a larger number of MRI data from 

different geographic patients and sub-age groups are warranted for more robust analysis. 

Then, MRI data from more institutions should be involved to develop a 

generalization GFCE-MRI model in future study. Though the data of our work is 

retrieved from multiple institutions, which were generated from different patients and 

scanned with varies image protocols using different image machines, we did not focus 

on investigate the influence of scanning machine or imaging protocols to model 

generalizability due to the number of patients from each scanning machine and imaging 

protocol is limited. Currently we know that multi-institutional data is critical to validate 

or improve the model generalizability. Nevertheless, the heterogeneity of MRI, such as 

different MRI contrasts, resolutions, noises, or artifacts etc., are mostly caused by 

different imaging parameters and conditions of scanning machines in specific 

institutions, which makes a well-trained model cannot generalize to external MRI. So, 

the problem of multi-institutional data is a matter of the imaging parameters and 

scanning machine conditions for MRI data. Combining with the results we have 

observed in our current work, we consider that besides the patient characteristics, a key 

factor to improve the GFCE-MRI model generalizability is to involve the MRI data 

from various MRI scanners (E.g., the MRI machines from different manufactures with 

different field strength and model, etc.) with multiple scanning parameters (e.g., TE, 

TR, number of excitation (Nex), etc.) for model development. Additionally, there are 

two factors that may affect the model generalizability: the type of GBCA used during 
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CE-MRI imaging and the scanning start time and duration, which may affect the tumor 

contrast in generated CE-MRI. Due to the CE-MRI imaging is a dynamic process, the 

degree of contrast enhancement in CE-MRI for specific patients depends on the 

harmonization between scanning start time and patient metabolism velocity. The 

difference of contrast enhancement in CE-MRI may increase the MRI heterogeneity of 

CE-MRI, even with the same scanning conditions. Considering the patient privacy, 

collecting MRI data from multiple institutions, and combining them to develop a 

generalizable GFCE-MRI model is challenging. In recent years, federated learning has 

been proposed to protect patient privacy. Federated learning (Li et al., 2020) is a 

machine learning technique that enables integrating multi-institutional data for model 

training while without data sharing, which is potential for developing a GFCE-MRI 

model with higher accuracy and improved generalizability. Herein, we believe the 

application of federated learning in GFCE-MRI synthesis should be another interesting 

future direction to improve the GFCE-MRI model generalizability. 

Finally, investigation of GFCE-MRI technique in radiotherapy of other cancer 

types than NPC could be another future research direction. Though GFCE-MRI 

technique in other cancer types such as brain cancer, liver cancer and breast cancer has 

been investigated, these studies were focus on non-radiotherapy applications such as 

disease diagnosis. In radiotherapy, the CE-MRI is used for different applications, such 

as target delineation and tumor staging, so the application of GFCE-MRI technique in 

radiotherapy has its own specialty and will face different challenges (E.g., radiotherapy 

pays more attention on the size of tumor and its boundary). Moreover, radiotherapy in 

different cancer types will face anatomy-specific challenges, such as the respiratory 
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motion of the liver in liver cancer radiotherapy. Feasibility studies of GFCE-MRI in 

different cancer types will be another interesting area to be explored in the future. 

 

In this study, we for the first time developed a MMgSN-Net for synthesizing GFCE-

MRI for radiotherapy of NPC patients. To apply the MMgSN-Net from bench to 

bedside, we further investigated and improved the generalizability of MMgSN-Net, and 

clinically evaluated the efficacy of the synthetic GFCE-MRI using multi-institutional 

data. To the best of our knowledge, this is the first work to apply DL to synthesize the 

GFCE-MRI for radiotherapy of NPC patients. The application GFCE-MRI technique 

to radiotherapy of other cancer types is warranted for future investigations. 

 

  

6. Conclusion 
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