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Abstract

Nasopharyngeal carcinoma (NPC) is a highly infiltrative and radiosensitive malignancy.
Radiotherapy is currently the mainstay therapeutic remedy. In radiotherapy of NPC
patients, the gadolinium-based contrast enhanced MRI (CE-MRI) plays a critical role
in NPC delineation. However, the gadolinium-based contrast agents (GBCAS)
associated safety issues have attracted serious attention of clinicians in recent years. To
reduce or eliminate the use of GBCASs, deep learning has been proposed to synthesize
the gadolinium-free contrast enhanced MRI (GFCE-MRI), aiming at providing an
alternative to gadolinium-based CE-MRI. Nevertheless, recent studies mostly focus on
novel deep learning algorithms development or feasibility investigations for disease
diagnosis in different anatomies, such as brain, liver, and breast. Currently, these is no
study has been reported for NPC radiotherapy. In this study, we for the first time
developed deep learning algorithm to synthesize GFCE-MRI from contrast-free T1-
weighted (T1w) and T2-weighted (T2w) MRI for radiotherapy of NPC patients.
Specifically, we achieved three research objectives in this study: (i) to develop a novel
multimodality-guided synergistic neural network (MMgSN-Net) that tailored for
GFCE-MRI synthesis of NPC patients; (ii) to investigate and improve the GFCE-MRI
model generalizability using multi-institutional MRI data; and (iii) to investigate the
clinical efficacy of GFCE-MRI in primary NPC tumor delineation. Our experiments
showed that the proposed MMgSN-Net is able to generate highly realistic GFCE-MRI
images and the quantitative results outperformed three comparing state-of-the-art

methods. We also found that the heterogeneity of multi-institutional MRI heavily



affects generalizability of the well-trained single-institutional model. After training the
model with multi-institutional data and shorting the multi-institutional data distribution
variations, the model generalizability has been significantly improved. The clinical
evaluation results also suggest that our synthetic GFCE-MRI is highly promising for
clinical use, with Dice Similarity Coefficient (DSC) of 0.762 and Hausdorff Distance
(HD) of 1.932mm, respectively. The dosimetric difference of planning target volumes
between real patients and synthetic patients was less than 1%, which is acceptable for

radiotherapy as reported by two board-certified oncologists.
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1. Introduction

1.1 Nasopharyngeal carcinoma

1.1.1 NPC basics

Nasopharyngeal carcinoma (NPC), located in an intricated nose-pharynx ministry, is a
highly infiltrative malignancy (Lin et al., 2015). Figure 1-1 (a) shows the anatomic
position of nasopharynx, where nasopharyngeal carcinoma usually occurred. NPC is a
soft-tissue mass, it presents a high tendency to invade nearby healthy soft tissues, neural
structures, and bony skull base (Li, Xiao, et al., 2021). A case of the infiltrative NPC is

shown in Figure 1-1 (b).
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Figure 1-1. lllustration of nasopharynx and NPC. (a): The anatomic position of nasopharynx,
where nasopharyngeal carcinoma usually occurred. (b) nasopharyngeal carcinoma in contrast-

enhanced MRI. Red arrows show the position of NPC. NPC: nasopharyngeal carcinoma.



As a head and neck cancer, NPC is distributed with distinct geographical
characteristics (Chen et al., 2019). In 2018, 129079 new cases and 72987 new deaths
were recorded globally, accounting for 0.7% and 0.8% of all cancer types, respectively
(Bray et al., 2018). More than 70% of newly diagnosed cases were found in East and
Southeast Asia (Chen et al., 2019). In China and Indonesia, 60558 and 17992 new cases
were reported in 2018, accounting for 47.7% and 14.2% of all new NPC cases (Chen et
al., 2019). Besides East and Southeast Asia, Micronesia, Polynesia, and parts of Africa

are also suffered from a high incidence and mortality rate.

In recent years, the incidence of NPC shows an increased tendency. It was
reported that the worldwide new cases of NPC were 86500 (Chua et al., 2016), 129079
(Bray et al., 2018), 133354 (Sung et al., 2021) in 2012, 2018 and 2020 respectively.
Compared to the reported deaths in 2018, 7021 additional deaths were reported globally
in the year of 2020. Male has a higher incidence and mortality rate than female, with a
number of 96371 cases of incidence and 58094 cases of mortality for male against
36983 of incidence and 21914 of mortality for female. The incidence and mortality
between male and female are 2.61/1 and 2.65/1 in 2020 (Sung et al., 2021). Figure 1-2
illustrated the worldwide age standardized incidence rates for both male and female in

2020 (Observatory, 2020).
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Figure 1-2. Worldwide age standardized incidence rates of male and female in 2020

(Observatory, 2020).

1.1.2 Risk factors of NPC

The occurrence of NPC was considered to be implicated in several etiologic factors.
Viral infection, salted fish consumption, alcohol drinking, cigarette smoking (Kamran
et al., 2015), and environmental factors were considered to be the most common NPC

risk factors. The incidence of NPC is tightly related to Epstein-Barr virus (EBV) (Chua



et al.,, 2016). In high NPC incidence areas, 90%-100% patients were found to be
infected with EBV (Ho et al., 2013; Kamran et al., 2015). Another possible viral risk is
human papillomavirus (HPV), but at present, no clear relationship has been established
(Chua et al., 2016). Besides EBV and HPV, salted fish was believed to be an important
carcinogen (Kamran et al., 2015). It was observed that the boat people in Southern
China has a high NPC incidence (Lee et al., 2012). After carefully identification, the
Cantonese salted fish has been listed as a group-one carcinogen by International
Agency for Research on Cancer (IARC) (Kamran et al., 2015). Excessive smoking and
alcohol assumption were also demonstrated to be risk factors for NPC. A study
conducted by Nam et al. demonstrated that the NPC incidence rate was found to be 3
times than the normal group in the group with excessive smoking consumption (Nam
etal., 1992). They also found the people who with heavy alcohol consumption will have
a risk 80% higher than people who without alcohol consumption. The occurrence of
NPC is also thought to be related to environmental factors. Buell et al. observed an

incidence decline among Southern Chinese after migration to California (Buell, 1974).

1.1.3 NPC stage

According to histological characteristics, the World Health Organization (WHO)
classified NPC into three subtypes: keratinizing squamous cell carcinoma (Subtype-1),
differentiated non-keratinizing carcinoma (Subtype-2), and undifferentiated non-
keratinizing (Subtype-3). It was found that 70%-80% Subtype-1 patients were related
to infection of EBV. For Subtype-2 and Subtype-3, however, almost all patients were

linked with infection of EBV (Adoga et al., 2018; Blanchard et al., 2018; Fu et al.,



2018). According to the diagnostic results such as physical examinations, biopsies, and
imaging, the NPC can be further divided into different stages. The NPC patients with
similar stages are tend to accept similar treatment in clinical. The most widely accepted
staging method is the TNM system that published by American Joint Committee on
Cancer (AJCC), the latest version was taking effect from 2018 (Lee et al., 2019). The
TNM system classify NPC patients by three key information: the main tumor extent (T-
Stage), the spread to nearby neck lymph nodes (N-Stage), the spread to distant parts
(metastasis) such as the bone, lung, and liver (M-Stage). Depending on the severity of
each stage, the TNM stages are split into several substages, including Tis, TO, T1, T2,
T3, T4, NO, N1, N2, N3, MO0, and M1. These substages can further be grouped to Stage-
0 (Tis, NO, MO0), Stage-I (T1, N0, M0), Stage-II ((T1/T0, N1, MO0), or (T2, NO/N1, M0)),
Stage-III ((T1/TO, N2, MO0), or (T2, N2, M0), or (T3, NO-N2, MQ)), Stage-IVA ((T4,
NO-N2, MO0), or (Tis-T4, N3, M0)), and Stage-IVB (Tis-T4, NO-N3, M1) according the

severity of the three stages (R. Guo et al., 2019).

1.1.4 Clinical treatment for NPC

NPC is naturally radiosensitive. Radiotherapy is currently the mainstay therapeutic
remedy. Besides radiotherapy, chemotherapy and surgery can be used as a combination
to improve the therapeutic outcome (Chen et al., 2019). Radiotherapy is a cancer
treatment that uses high dose of radiation to destroy cancer cells and shrink tumors.
There are different types of radiotherapy treatment for NPC patients, commonly used
radiotherapy types are external-beam radiotherapy (EBT), such as intensity-modulated

radiotherapy (IMRT), proton beam therapy (PBT) and stereotactic radiosurgery (SRS).



The EBT is the most commonly applied radiotherapy, which delivers the radiation from
a radiotherapy machine outside the body. The intensity-modulated radiotherapy (IMRT)
is one typical type of EBT, which allows delivering effective x-rays from different
angles by advanced computer programs to reduce side effects for NPC patients. IMRT
was recommend by American Society of Clinical Oncology (ASCO) for Stage-II to
Stage-IVA patients. Another EBT type is PBT. Instead of using high-energy x-rays,
PBT uses high energy protons to Kill cancer cells, which can be used for patients with
later-stage NPC. SRS delivers precisely-targeted radiation beams to treat the NPC
tumor, which helps preserve nearby healthy tissues. SRS can be used to treat tumor that
has grown to skull base or brain. Brachytherapy (ASCO, 2020) is a type of internal
radiotherapy that is delivered by radioactive implants, which is often used to treat
recurrent NPC. Besides radiotherapy, chemotherapy is usually applied before
(induction chemotherapy), after (adjuvant chemotherapy), or at the same time with
radiotherapy (chemoradiotherapy) to enhance the treatment outcome. Chemotherapy
uses drugs to kill cancer cells, always by stopping cancer cells from dividing. Stage-II
to Stage-IVA patients were usually recommended for chemotherapy. Occasionally,
surgery is conducted when the cancer has spread to lymph nodes, especially for some
undifferentiated nasopharynx tumor. However, surgery may cause some severe side
effects such as nerve damage, swelling, and facial disfigurement (Chen et al., 2019). In
this study, we mainly focus on radiotherapy for NPC treatment, especially the magnetic

resonance image-guided radiotherapy (MRIgRT).

1.2 MRIgRT and gadolinium-based contrast-enhanced MRI (CE-MRI)



MRIgQRT is an emerging technique that takes advantage of the excellent soft tissue
contrast of magnetic resonance imaging (MRI) images (Schmidt et al., 2015). In 2014,
the first clinical MRIgRT technique was implemented in Washington (Henke et al.,
2018). After that, the MRIgRT technique has been rapidly expanded to multiple
institutions and countries (Henke et al., 2018). Compared to traditional x-ray-based
image-guided radiotherapy (IGRT), MRI is featured with free of ionizing radiation,
superior soft-tissue contrast, any oblique angle imaging, and motion resolving
capabilities (Freedman et al., 2018). MRI is particular popular for pediatric populations
where ionizing radiation should be carefully managed, especially for those patients who
need repeated scan during radiotherapy treatment (Schmidt et al., 2015). In recent years,
MRI has been successfully applied to radiotherapy procedures such as tumor
delineation, treatment planning, dose calculation, treatment delivery, and outcome
assessment (Wen et al., 2020). At present, MRI has become a standard part in
radiotherapy planning workflow, which allows higher-quality delineation of tumor and
organs at risk (Bahig et al., 2019). The improved quality of delineation, combined with
functional imaging techniques, is promising for individualized radiotherapy (Bahig et

al., 2019). In this study, we focus on MRI guided tumor delineation for NPC patients.

In a successful radiotherapy, accurate tumor delineation is the foremost
prerequisite. However, tumor delineation for NPC patients is particularly challenging
in view of the deeply infiltrative nature of NPC, which presents a high tendency to
invade nearby normal soft tissues, bony skull base, as well as neural structures, thus
obfuscating oncologists for accurate assess and delineate the tumor from healthy tissues.
In general, the CE-MRI, which is generated by injection of gadolinium-based contrast
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agents (GBCAS), is utilized to enhance the visibility of tumor. The contrast agents that
used in MRI are generally paramagnetic, one typical agent is gadoterate (a kind of
macrocyclic extracellular fluid agent that approved by both European Medicines
Agency (EMA) and The United States Food and Drug Administration (FDA)). After
administrated orally or intravenously, the contrast agent flows through the blood. The
T1 relaxation time of nearby protons is shortened by interacting with the contrast agent.
Compared with healthy tissues, the tumor has a more rapid uptake and washout rate due
to the leaky immature vascular system (Schmidt et al., 2015). In T1-weighted (T1w)
MRI scanning, the shortened T1 relaxation time tissues appear bright in Tlw MRI
images compared to surrounding normal tissues that without contacting with the
contrast agent. The Tlw MRI images that enhanced by contrast agent are the CE-MRI.
For the tumor regions, the surrounding blood vessels are disrupted, leading to contrast
agent leak out from the blood vessels into the extracellular space, therefore enhancing
the signal of tumor regions. As a functional imaging technique, the spatial resolution of
CE-MRI allows quantitatively analysis the microenvironment changes and blood
perfusion status of tumor at millimeter level (Torheim et al., 2014; Zhao et al., 2019).
The most popular CE-MRI quantitative analysis method is the Tofts model (Chikui et
al., 2012; Tofts, 2010), which contains four parameters that related to pharmacokinetics
of gadolinium: K" (volume transfer constant), Ve (volume fraction of extravascular
extracellular space), Kep (rate constant), and Vp (volume fraction of plasma). K" is
the most commonly used CE-MRI parameter, representing the diffusion rate of
gadolinium from plasma to the extravascular-extracellular space (EES) in unit time.

According to the gadolinium influx rate from plasma to EES, the K" reflects the blood



flow status and capillary leakage of the tumor. Ve represents the ratio between the
volume of the gadolinium leaking into the EES from plasma and the whole EES volume.
It is a number between 0 and 1, reflecting the capacity of the gadolinium in EES. Kep
represents the diffusion rate of gadolinium from EES back to the plasma, which can be
calculated by K" / Ve. The increase of Kep may represents the increase of K" or
decrease of Ve, or both. The last parameter is Vp, representing the percentage of
gadolinium in plasma. The Vp is very small in many lesions and can be ignored. In
tumors with abundant blood supply, however, the contribution of intravascular signal
to the total signal may larger than 10%, which cannot be ignored. Based on the CE-
MRI, these four parameters can be calculated pixel by pixel and generate different
parameter maps (Schmidt et al., 2015). In addition, the relationship between these four
parameters, integrated with the time curve, can reflect the microenvironment and the

status of the tumor (Cheng et al., 2013; Tofts et al., 1999; Vajapeyam et al., 2017).

Besides the application of tumor delineation in radiotherapy, the CE-MRI also
shows the capability to predict the response of tumor and normal organs to radiotherapy
(Cao, 2011). By assessing the tumor response to radiotherapy at an early stage, the
clinical oncologists can adaptively optimize the treatment plan based on the functional
changes of tumor earlier than morphologic alterations, thus achieving a better treatment
outcome. In addition, the early assessment of the dose response in normal organs
provides the possibility to further reduce the radiation injury to normal organs (Granata

et al., 2021; Hylton, 2006; Zahra et al., 2007).

1.3 Safety issues of GBCAs



Despite the valuable applications of CE-MRI in radiotherapy, in recent years,
accumulated evidences have demonstrated the GBCAs-related safety issues. The safety
issues include adverse reactions, deposition, and toxicities. The adverse reactions can
be classified to two categories: physiologic and hypersensitivity-related (Fraum et al.,
2017). Physiologic reactions are dose related. According to the severity, the gadolinium
caused physiologic reactions are ranged from mild (such as vomiting) to severe (such
as refractory vasovagal reactions). The hypersensitivity-related reactions are also
termed allergic-like reactions, which are caused by the immune system, such as limited
urticaria (mild) and anaphylactic shock (severe) (Fraum et al., 2017). Raisch et al.
(Raisch et al., 2014) investigated 614 cases of severe gadolinium-based adverse
reactions, they found 53% of these cases were resulted in hospitalization; 31% of the
cases were justified lift-threatening; and 7% and 2% cases were caused death and
disability, respectively. In 2006, researchers first found the deposited gadolinium in
skin of renal failure patients (Grobner, 2006). After that, the presence of gadolinium
was also found in bone (Gibby et al., 2004), liver (Maximova et al., 2016), and brain
structures such as dentate nucleus and globus pallidus (Kanda et al., 2015b). The
gadolinium deposition cases were even found in pediatric patients with normal renal
function. A large amount of evidence has shown the potential toxicities in patients. In
a study published in 2016, Semelka et al. reported a series of gadolinium-related clinical
symptoms, including central and peripheral pain, headache and bone pain, as well as
skin thickening (Semelka et al., 2016). Importantly, the fatal nephrogenic systemic
fibrosis (NSF) was found to closely connected with administration of GBCAs in end-

stage renal failure patients (Mathur et al., 2020). The mechanism of gadolinium
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deposition and toxicities in patients is currently remains unknown. The deposition and
toxicities of gadolinium have triggered the abolishment of macrocyclic GBCAS in
European countries in 2017 (Kleesiek et al., 2019b). For safety consideration, the use
of GBCAs were recommended to be eliminated or reduced. To avoid the use of GBCAs,
various strategies were proposed, including using contrast-free MRI, CT, and
ultrasound to replace the use of gadolinium-based CE-MRI (Diop et al., 2013).
Gadolinium-free contrast agents were also been explored. At present, however, none
technique was found to have adequate clinical value to replace the use of GBCAS

(Kleesiek et al., 2019b).

1.4 Deep learning for GFCE-MRI synthesis

In recent years, deep-learning (DL) assisted image synthesis has been caught in the
spotlight of attention in the medical domain (Liang et al., 2019; Ren et al., 2021). The
capability of deep neural networks in unraveling complex tumor-related characteristics
(Amin et al., 2018; Saba et al., 2020; Shkolyar et al., 2019) has motivated scientists to
synthesize gadolinium-free contrast enhanced MRI (GFCE-MRI) images from low-
dose or contrast-free MRI images (Gong et al., 2018b; Kleesiek et al., 2019b). In 2018,
the first DL assisted technique was developed to synthesize the GFCE-MRI from
contrast-free Tlw MRI and 10% low-dose MRI. This study demonstrated the
possibility to reduce the gadolinium dose by 90% through DL (Gong et al., 2018b).
Followed by this study, in 2019, Kleesiek et al. used multiparametric MRI including
T1w, T2-weighted (T2w), T2w fluid-attenuated inversion recovery (FLAIR), diffusion-

weighted imaging (DWI), and susceptibility-weighted imaging (SWI) images to train a
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DL model to synthesize the GFCE-MRI, which validated the feasibility to generate the
GFCE-MRI without any administration of GBCAs (Kleesiek et al., 2019b). Both of
these two works were targeted on brain cancers. In 2020, Zhao et al. successfully used
the Tlw MRI to synthesize the GFCE-MRI for liver cancer detection (Zhao et al.,
2020b). Followed by these works, in 2021, many different DL assisted techniques were
proposed to synthesize the GFCE-MRI images for different anatomies, such as brain
(Béne et al., 2021; Calabrese et al., 2021; Chen et al., 2021; Kim et al., 2021; Luo et
al., 2021b; Pasumarthi et al., 2021b), liver (Xu et al., 2021b), and breast (Kim et al.,

2021).

1.5 Challenges of current studies

Despite the great success that has been achieved by previous works, yet, the existing
DL assisted methods still suffer from three major deficiencies/challenges: (i) the GFCE-
MRI synthesis for NPC patients remains unexplored; (ii) existing methods have low or
unknown model generalizability; and (iii) inadequate clinical evaluations of the
synthetic GFCE-MRI for radiotherapy applications. Following are detailed descriptions

of these challenges.

Challenges in synthesizing GFCE-MRI for NPC patients

NPC is a highly infiltrative malignancy that originated in the intricated nose-pharynx
ministry. Accurate NPC target delineation is a critical step to ensure a good tumor
control. Compared with the previous investigated anatomies (brain, liver, and breast),

NPC presents a high tendency to invade surrounding soft tissues, neural structures, and
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bony skull base, obfuscating physicians for accurate assessment and delineation of
tumor extent. In clinical, CE-MRI through injection of GBCASs renders superior
discrimination between tumor and the invaded healthy soft-tissue, and hence has
become an indispensable technique in NPC delineation for radiotherapy purpose. At

present, however, no study has been proposed to eliminate the GBCAs for NPC patients.

Challenges in model generalizability

DL algorithms are data-driven. The performance of DL models largely relies on the
homogeneity of training and testing data (Long et al., 2013). Recently, Roberts et al.
(Roberts et al., 2021) analyzed 415 CT or X-Ray based studies on detection and
prognostication of COVID-19. They found none of the models were of potential clinical
use, and the underlying data bias is a key cause of failure. Compared to CT or X-Ray
images, MRI images present apparent inter-center heterogeneity due to different
scanners, imaging protocols, as well as potential population demographics (Liu et al.,
2020b). The inherent discrepancies in multi-center data challenge the wide application

of GFCE-MRI models.

Challenges in clinical evaluation of synthetic GFCE-MRI for radiotherapy

applications

Although several studies have been proposed to synthesize the GFCE-MRI for various
applications (such as tumor detection, diagnosis, and treatment), most of these studies
only developed technical methods to synthesize the GFCE-MRI and evaluated the

synthetic GFCE-MRI using quantitative metrics such as mean absolute error (MAE),
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peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). No study was
focused on clinical evaluations of the synthetic GFCE-MRI, which is of vital

importance for bench-to-bedside application of the GFCE-MRI in real world.

1.6 Objectives of our study

To tackle the above-mentioned challenges, in this work, we aim to develop and evaluate
a clinical applicable DL assisted GFCE-MRI synthesis technique for NPC radiotherapy

applications. Specifically, we have three objectives:

Objective 1: to develop a multimodality-guided synergistic neural network (MMgSN-

Net) for GFCE-MRI synthesis in patients with NPC.

Objective 2: to assess and improve the MMgSN-Net model generalizability using

multi-center data.

Objective 3: to comprehensively evaluate the potential clinical efficacy of the

proposed GFCE-MRI technique in radiotherapy applications.

1.7 Thesis layout

This thesis first introduced the background of our research, including the basics of NPC,
the safety issues of GBCAS, and previous DL assisted methods to synthesize the GFCE-
MRI for providing a CE-MRI alternative to eliminate the use of GBCAs. In section 1,
three major challenges (section 1.5) and the objectives (section 1.6) to tackle these
challenges were figured out. In second, third and fourth sections, detailed methods that

applied to achieve the three objectives and corresponding results will be illustrated.
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Next, a discussion section (section 5) will be made to figure out the significance and
limitations of our present work. Finally, section 6 is a conclusion to summarize our

current research.
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2. Development of a GFCE-MRI technique for NPC patients

2.1 Abstract

Purpose: To investigate a novel deep-learning network that synthesizes GFCE-MRI

from multimodality contrast-free MRI for NPC patients.

Methods and Materials: This experiment presents a retrospective analysis of multi-
parametric MRI, with and without contrast enhancement by GBCAs, obtained from 64
biopsy-proven NPC patients treated at Queen Elizabeth Hospital. A MMgSN-Net was
developed to leverage complementary information between contrast-free T1w and T2w
MRI for GFCE-MRI synthesis. 35 patients were randomly selected for model training,
whereas 29 patients were employed for model testing. The synthetic images generated
from MMgSN-Net were quantitatively evaluated against real GBCA-enhanced T1w
MR images using a series of statistical evaluating metrics, which include mean absolute
error (MAE), mean squared error (MSE), structural similarity index (SSIM) and peak
signal-to-noise ratio (PSNR). Qualitative visual assessment between the real and
synthetic MRI was also performed. Effectiveness of our MMgSN-Net was compared
with three state-of-the-art deep-learning networks, including U-Net, CycleGAN, and
Hi-Net, both quantitatively and qualitatively. Further, a Turing test was carried out by
seven board-certified radiation oncologists from four hospitals for assessing
authenticity of the synthesized GFCE-MRI images against the real GBCA-enhanced

Tlw MRI.

Results: Results from the quantitative evaluations demonstrated that our MMgSN-Net
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outperformed U-Net, CycleGAN and Hi-Net, yielding the top-ranked scores in
averaged MAE (44.50 + 13.01), MSE (9193.22 + 5405.00), SSIM (0.887 + 0.042), and
PSNR (33.17 + 2.14). Further, the mean accuracy of the seven readers in the Turing
tests was determined to be 49.43%, equivalent to random guessing (i.e., 50%) in
distinguishing between real GBCA-enhanced T1-weighted and synthetic GFCE-MRI.
Qualitative evaluation indicated that MMgSN-Net gave the best approximation to the
ground-truth images, particularly in visualization of tumor-to-muscle interface and the

intra-tumor texture information.

Conclusions: Our MMgSN-Net was capable of synthesizing highly realistic GFCE-

MRI that outperformed the three comparing state-of-the-art networks.

2.2 Introduction

NPC is a highly infiltrative and radiosensitive malignancy that located in an intricated
nose-pharynx ministry (Lin et al., 2015). Radiotherapy is currently the mainstay
therapeutic remedy, enabling non-invasive cancer eradication while protecting
surrounding healthy tissue. Accurate tumor delineation is the foremost prerequisite for
successful radiotherapy treatment, which, however, is particularly challenging in NPC
in view of its deeply infiltrative nature. As a soft-tissue mass, NPC presents a high
tendency to invade nearby healthy soft tissues, neural structures and bony skull base,

obfuscating physicians for accurate assessment and delineation of tumor extent.

CE-MRI through injection of GBCAs renders superior discrimination between

tumor and the invaded healthy soft-tissue, and hence has become an indispensable
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technique in NPC delineation for radiotherapy purpose. Nevertheless, a number of
safety concerns associated with bioaccumulation of GBCAs have recently been raised
in the medical community (Broome et al., 2007; Grobner & Prischl, 2007; Kanda et al.,
2015b; Kanda et al., 2014; Kleesiek et al., 2019b; Marckmann et al., 2006; Nguyen et

al., 2020b; Olchowy et al., 2017; Thomsen, 2006; Wong et al., 2020).

Accumulated evidence in the body of literature since 2006 has indicated that
gadolinium exposure has been strongly associated with an elevated risk of nephrogenic
systemic fibrosis, which is a serious fibrotic disease of skin, joints, eyes and internal
organ, in patients with renal deficiencies (Broome et al., 2007; Grobner & Prischl, 2007;
Marckmann et al., 2006; Thomsen, 2006). More recent studies have highlighted
bioaccumulation of previously administrated GBCAs in areas of dentate nucleus and
globus pallidus within the brain on “contrast-free” T1w MRI images (Kanda et al., 2014;
Nguyen et al., 2020b; Olchowy et al., 2017), regardless of patient’s kidney function
(Kanda et al., 2015b). Of note, these findings triggered abolishment of linear GBCAs
in European countries in 2017 (Kleesiek et al., 2019b). Although the use of macrocyclic
GBCAs could mitigate the risk of undesirable gadolinium accumulation, the
mechanism of gadolinium uptake and deposition in patients is yet to be thoroughly
elucidated, and there is a worldwide interest to minimize the administration of GBCAs
whenever appropriate (Wong et al., 2020). Further, a portion of cancer patients,
particularly the elderly who are at greater risk of developing kidney malfunctions, may
be considered ineligible for GBCA injection for safety concerns. Considering all these,
it is imperative to provide contrast-agent-free alternatives to the community, in the hope
of replacing the use of GBCA-enhanced MRI in the long run.
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In recent years, DL assisted image synthesis has been caught in the spotlight of
attention in the medical domain (Liang et al., 2019; Ren et al., 2021). The capability
of deep neural networks in unraveling complex tumor-related characteristics (Amin et
al., 2018; Saba et al., 2020; Shkolyar et al., 2019) has motivated scientists to synthesize
GFCE-MRI images from contrast-free MR images for brain cancer patients (Gong et
al., 2018b; Kleesiek et al., 2019b). For instance, Gong et al. (Gong et al., 2018b)
developed a U-shape DL neural network that concatenated GBCA-free (0% dose) T1w
and GBCA-low (10% dose) CE-MRI brain images for synthesizing GFCE-MRI images
as if it were generated from full dose of GBCA. Results from their study demonstrated
feasibility of DL to capture contrast enhancement information from GBCA-full CE-
MRI images and synthesize GFCE-MRI images with adequate image quality. On this
ground, Kleesiek et al. (Kleesiek et al., 2019b) subsequently devised a three-
dimensional Bayesian neural network that concatenated a total of 10 different MR
modalities for generating GFCE-MRI images, confirming the role of DL network in
utilizing diverse contrast-free imaging modalities for image synthesis. While these
findings were promising, these existing DL networks have deficiencies in leveraging
complementary information between input imaging modalities. Impact of this
limitation on the network performance can be more prominent in the case of deeply
infiltrative NPC due to the intricated relationship of pixel intensity between imaging

modalities (C. Li et al., 2019).

In this study, we, for the first time, developed a novel MMgSN-Net that is
capable of optimizing complementary features between multiparametric MR modalities,
including contrast-free T1w and T2w images, for GFCE-MRI synthesis. Effectiveness
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of our MMgSN-Net was compared quantitatively against several state-of-the-art DL
models via a series of evaluating metrics. The authenticity of our synthesized GFCE-
MRI was assessed by seven board-certified radiation oncologists from four hospitals
via the Turing tests. To our best knowledge, we were the first to demonstrate the
feasibility of GFCE-MRI synthesis in the context of NPC disease. The success of this
study would provide the community with an effective contrast-agent-free alternative

for NPC tumor delineation in future.

2.3 Methods and materials

2.3.1 Patient data

Multi-parametric MR images, including T1w, T2w and CE-MRI, were retrospectively
retrieved from 64 biopsy-proven (Stage 1-1Vb) NPC patients who received radiotherapy
at Queen Elizabeth Hospital between 2012 and 2016. Patient consent was waived due
to the retrospective nature of this study. All MR images were acquired under a 1.5
Tesla MRI scanner (Avanto, Siemens, Germany). Acquisition parameters for the T1w
and ceT CE-MRI images include: repetition time (TR): 562-739 ms; echo time (TE):
13-17 ms; matrix: 256-320; slice thickness: 3.3—4.0 mm; voxel size 0.75-0.94 mm. In
particular, the CE-MRI images were acquired less than 30 seconds post GBCA injection
(Gd-DOTA, 0.2 ml/kg). The T2w MR images were acquired using the short tau
inversion recovery (STIR) sequence with the following acquisition parameters: TR:
7640 ms; TE: 97 ms; inversion time: 165 ms; matrix: 320; slice thickness: 4.0 mm;

voxel size 0.75 mm.

2.3.2 MMgSN-Net architecture
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The proposed MMgSN-Net was configurated for GFCE-MRI synthesis. The MMgSN-
Net consists of five key modules: multimodality learning module, synergistic guidance
system (SGS), self-attention module, multi-level module, and discriminator. Figure 2-
1 illuminates the overall architecture of the MMgSN-Net. Detailed descriptions of each

module are presented as follows:
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Figure 2-1. The framework of the proposed MMgSN-Net for GFCE-MRI synthesis. It consists
of five key components: the multimodality learning module, synergistic guidance system, self-

attention module, multi-level module, and discriminator. SGS: synergistic guidance system.

A. Multimodality Learning Module

This module was devised to unravel tumor-related imaging features from each of the
input MR modalities, overcoming the limitation of single modality-based GFCE-MRI
synthesis. As indicated in Figure 2-1, it contains two channels for the two studied
imaging modalities (T1w and T2w), each channel consists of three convolution blocks

and two pooling layers. The convolution layers inside the convolution blocks are
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followed by batch normalization to standardize the extracted features using the mean
and standard deviation of the extracted features. After batch normalization, the
activation function LeakyRelu (Xu et al., 2015) was utilized to introduce non-linearity
into the extracted features. The learned features were downsampled using 2 %<2 max-
pooling layers. To fuse the extracted information from T1w and T2w modalities, we
generated 64, 128, and 256 features from the first, second, and third convolution block,

respectively.

B. Synergistic Guidance System

This system was specifically designed for leveraging complementary information

between the two studied imaging modalities in a synergistic manner.

To fuse the learned information from multimodality learning modules, a
common strategy is to directly concatenate the information to different channels as
input. Alternative combination methods include pixel-wise summation, pixel-wise
product, and pixel-wise maximization. Inspired by Zhou et al. (Zhou et al., 2020), we
first used pixel-wise summation, pixel-wise product, and pixel-wise maximization
separately to generate different fused features. Subsequently, we concatenated them as
different channels followed by a convolution layer to adaptively select useful
complementary information for final GFCE-MRI synthesis. Except that, there are some

differences from Zhou’s work.

First, in Zhou’s work, separate information extractors learn the features from

each input modality individually, and the extractors cannot communicate with each
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other, which may limit complementary information learning. Inspired by the knowledge
distillation concept (Hinton et al., 2015; C. Li et al., 2019), where a master network
modulates the learning activity of an assistant network, we used the SGS as supervisor
to fuse the learned information from each modality, after fuse operation, the output
features from SGS contain the information of both T1w and T2w MR. Then we fed the
fused information back to the next convolution block of the multimodality learning
module to guide complementary information selection. In this way, the multimodality
learning module can aware the information from the other modality, and the power of
each individual multimodality learning module was further harnessed by
communication and cooperation among the two modules in learning the complementary
information for GFCE-MRI synthesis. The fused features were not only fed directly
back to the second convolution block of each input channel in the multimodality
learning model, but also sent to the third convolution block via the adoption of an
additional pooling layer optimizing the size of output features from the first SGS.
Second, our MMgSN-Net contains only two SGSs and two pooling layers that fuse and
down-sample the extracted features, acting as the encoders of the synthesis network.
The size of the SGS filters is 3 %3, and the number of filters for the first and second
SGS is 128 & 128, and 128 & 256, respectively. Third, the extracted features from the
multimodality learning module was fed into the SGS without any pooling operation to

avoid removal of critical information prior to feature fusion.

C. Self-Attention Module

In a convolutional neural network, the large tissue across intra-slice image regions are
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captured by the convolution operator. As the field of the convolution operator is merely
locally receptive, optimization algorithms may encounter difficulty in searching for the
optimum parameter values when capturing the large size tissues (Zhang et al., 2019).
Two possible solutions are either using multiple convolution layers or increasing the
size of the convolution kernels. However, both solutions would degrade the
computational efficiency. An optimal balance between the ability to capture the large
size information and the computational efficiency can be achieved by the self-attention
mechanism (Cheng et al., 2016; Parikh et al., 2016; Vaswani et al., 2017), which

calculates the response at a position as a weighted sum of the features at all positions.

For GFCE-MRI synthesis, the NPC tumors can be highly aggressive, which
presents a high tendency to invade nearby healthy tissues like neural structures and
bony skull base. The size of tumor sometimes can be large and exists across different
image regions. With limited convolutional kernel size, the algorithms may encounter
difficulty in capturing this large structural information, for example, the shape of
infiltrative tumor. So, in MMgSN-Net, a self-attention module was introduced to
capture the large size information across image regions, enabling MMgSN-Net to
faithfully preserve the shape of large anatomic structures. The self-attention module
was of the same type as that used in (Zhang et al., 2019), and was inserted between the

second and third convolution block of the synthesis network decoder.

D. Multi-Level Module

Multi-level feature integration has been widely applied in areas of image segmentation

and edge detection. Several studies (Long et al., 2015; Xie & Tu, 2015; Zhang et al.,
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2018) have shown that integrating features from multiple deep layers can improve the
performance in image segmentation and, more remarkably, in edge detection. In GFCE-
MRI image synthesis, edge information is critical for discriminating the tumor from
surrounding normal tissues. Thus, a multi-level module was utilized in this study to
aggregate the multi-level features. In our MMgSN-Net, we performed upsampling for
the output features on each side of the decoders to the size of the output image.
Subsequently, we fused the up-sampled features through a concatenation operation and

applied a 1 <1 convolution layer for final output generation.

E. Discriminator

A discriminator was utilized to distinguish synthetic images from real CE-MRI images,
thus to improve the GFCE-MRI synthesis performance through adversarial learning.
An overall structure of the discriminator is illustrated in Figure 2-2. This is a
“PatchGAN”-based (Isola et al., 2017; Zhou et al., 2020; Zhu et al., 2017) discriminator
that classifies input images based on whether the image patches are real or fake (i.e.
synthetic). Different from regular GAN discriminator that maps an input image to single
“real” or “fake” output, the PatchGAN-based discriminator maps an input image P to a
M x N size output Q (in this study, M = 16, N = 14), all pixels in Q are labelled with
“real” (for real input P) or “fake” (for synthetic input P). For each pixel in Q, we can
trace back to its receptive field. Here, the receptive field means the “patch” that needs
to be classified (for example, the dotted patches in P). The final image authenticity will
be determined by averaging the M x N results in Q. One advantage of the PatchGAN-

based discriminator is that it has fewer parameters than a full image discriminator (Isola
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etal., 2017). We set the batch normalization momentum as 0.8 and the LeakyReLu slope
as 0.2. For the first four convolutional layers, we set the filter stride to 2 and padding

to 1.

128x112 64x56 32x28 16x14 16x14
256x224
16x14
32 — | & — | 128 — | 256 " 1|—
Average
Q
Real / Fake?
3x3Conv BN 33Conv BN 3x3Conv BN 3x3Conv BN 3.3 Conv
LeakyReLu LeakyReLu LeakyReLu LeakyReLu

Figure 2-2. Schematic illustration of the PatchGAN-based discriminator, which consists of
three iterative operations: 3 x 3 Conv, BN, and LeakyReLu. Numbers in blue box represent
output feature numbers, and numbers at the top of the input image P and output Q, and blue
box indicate the output feature size. The orange, yellow, and green points in output Q show the
output results generated by the orange, yellow, and green dotted patches in input P, respectively.

Conv: Convolutional layer; BN: Batch normalization.

2.3.3 Implementation details

All the Tlw, T2w and CE-MRI images for each NPC patient were acquired for
radiotherapy purpose and were well-aligned. Rigid registration was applied to fine-tune
the alignment, when necessary. Triangle thresholding (Zack et al., 1977) was performed
to eliminate background noise from all MR images, which may otherwise be mistakenly
learned by the deep learning network and lead to model performance degradation. A
total of 35 patients were used for model training, whereas 29 patients were employed
for model testing. Two-dimensional axial slices with a matrix size of 256 =224 were

adopted to acquire knowledge information from the T1w and T2w images for mapping
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the CE-MRI images. Prior to the model training, all images were linearly normalized
to a range of (-1,1). The T1w and T2w MR images were used as inputs to the network,

and the CE-MRI images were used as learning targets.

The L1 loss between the synthetic GFCE-MRI and the corresponding real
GBCA-enhanced T1w MR images was deployed as the loss function of our synthesis
network. MSE loss was used as the loss function of the PatchGAN-based discriminator
for distinguishing between real and fake patches. The Adam algorithm was utilized to
optimize the generated model. The network was trained under a fixed learning rate of
0.0002 with 200 epochs, with the batch size of 1. The code was implemented in the

PyTorch library using an NVIDIA RTX 3090 graphic card.

2.3.4 Model evaluation

The effectiveness of our MMgSN-Net was assessed quantitatively using a series of
evaluating and compared against three state-of-the-art image synthesis networks:
CycleGAN (Zhu et al., 2017), U-Net (Ronneberger et al., 2015), and Hi-Net (Zhou et
al., 2020). Besides, Turing tests were conducted by seven board-certified oncologists
for examining authenticity of the synthesized GFCE-MRI images against the real
GBCA-enhanced T1lw MR images. Furthermore, a qualitative evaluation was carried
out by visual inspection of the real and fake images. The three comparing networks are

described as follows.

1) CycleGAN (Zhu et al., 2017). This network allows for training without the
need of paired image data, which can alleviate data shortage problem during image

synthesis. However, Li et al. (Li, et al., 2020) reported that the use of a paired dataset,
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compared to unpaired dataset, in CycleGAN training led to an improved model
performance. In this study, therefore, we utilized a paired dataset for training. The
CycleGAN network, which only supports single input channel, was applied for model
training using T1lw and T2w images separately, referred to as CycleGAN_T1w,

CycleGAN_T2w, respectively.

2) U-Net (Ronneberger et al., 2015). This network uses a mirrored encoder—
decoder architecture to acquire knowledge information for input-to-output image
mapping. As a renowned DL neural network, U-Net was applied in the two previous
studies on GFCE-MRI synthesis (Gong et al., 2018b; Kleesiek et al., 2019b), which are
the only publications found in the literature. In this study, therefore, we compared our
MMgSN-Net against this U-Net for GFCE-MRI synthesis. To determine which input
imaging modality contributes to more information for GFCE-MRI prediction, we first
separately used the T1w and T2w images as input (U-Net_T1w, U-Net_T2w), and
combined both the Tiw and T2w images through different channels (U-

Net_T1w+T2w).

3) Hi-Net (Zhou et al., 2020). This network shares similar characteristics of our
MMgSN-Net in that it allows for multiple inputs of different modalities and deploys
two autoencoder-like structures to extract the modality-specific features. In this study,

both T1w and T2w images were used as input for Hi-Net training.

Quantitative evaluation: Four widely-adopted evaluating metrics in areas of medical

imaging synthesis (Frangi et al., 2018; Huynh et al., 2015; Nie et al., 2016; Nie et al.,

2017), including MAE, MSE, SSIM, and PSNR, were used in this study to
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quantitatively evaluate the model performance. These metrics are expressed below:

MAE =~ |y(x) — g(x)I, (2-1)

MSE = = (y(x) — g(x))?, (2-2)

(sz) 23

PSNR = 10l0g, ", (2-3)

SSIM = —BHrekge e (2oy@gete2) (2-4)

(Hy(0) 2 g2+ 1) (05 ) +05 () Hc2)
where N is the number of pixels in each image slice; y(x) and g(x) denote the ground
truth image and synthetic GFCE-MRI image, respectively. uy ), Hg) and oy,
04(x) are the means and variances of the ground truth image and the synthetic image,
while gy, 4(x) is the covariance of y(x) and g(x). ¢; = (k;L)* and ¢, = (k,L)* are
two variables used to stabilize the division by the weak denominator, and L is the

dynamic range of the pixel values. Here, L = 4095, k; = 0.01, and k, = 0.03 were

set by default.

Qualitative evaluation: To visually evaluate the image quality of the synthetic GFCE-

MRI images, qualitative evaluation was conducted by visually analyzing the synthetic
GFCE-MRI images against the input T1w, T2w and ground truth CE-MRI images.
Tumor regions were zoomed in for better comparison. In addition, difference map
between the ground truth CE-MRI and the synthesized GFCE-MRI by our MMgSN-

Net is illustrated for visualizing uncertainties in relation to GFCE-MRI synthesis.

Turing test — Clinical evaluation: The Turing test is a long-established test in areas of

artificial intelligence for determining the capability of a machine to exhibit intelligent
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human behavior (Kleesiek et al., 2019b; McDermott, 2007). In this study, we deployed
the Turing test to assess authenticity of the synthetic GFCE-MRI images generated by
our MMgSN-Net. Seven board-certified radiation oncologists from four hospitals
participated in discriminating the synthetic GFCE-MRI images from the real CE-MRI
images. In an attempt to balance the clinical workloads of the participating oncologists,
we randomly chose 5 patients from our test set for the Turing test. For each patient, we
randomly selected 10 tumor-bearing image slices (5 ground truth CE-MRI images plus
5 paired synthetic GFCE-MRI images) and presented them to the participating
oncologists in a random order. The oncologists were blinded with regard to the relative
proportions of ground truth and synthetic images. Additionally, they were asked to
provide justifications when determining a synthetic case, allowing us to realize

potential limitations of our MMgSN-Net.

2.3.5 Ablation study

To identify the importance of the key components in our MMgSN-Net, three ablation
studies were conducted. First, to evaluate the importance of the SGS, we replaced it
with the concatenation operation. The learned features from individual multimodality
learning modules were directly concatenated without performing feature selection.
Second, to validate the importance of the multi-level module, we compared the
synthesis performance of full MMgSN-Net with that in an absence of the multi-level
module. Third, to verify the importance of the self-attention module, we removed it and

compared the resulting version of MMgSN-Net with the full version.

2.4 Results
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2.4.1 Quantitative evaluation

Table 2-1 summarizes the results of quantitative comparisons between our MMgSN-
Net and the comparing state-of-the-art DL networks for both whole image and tumor
regions, in aspects of MAE, MSE, PSNR, and SSIM. For MMgSN-Net, the mean (+
standard deviation (SD)) of the MAE, MSE, PSNR, and SSIM for the synthesized
GFCE-MRI images relative to the ground truth CE-MRI images were calculated to be
44.50 + 13.01, 9193.22 + 5405.00, 0.887 + 0.042, and 33.17 + 2.14 for whole image
and 110.31 +20.69, 25924.77 £10385.70, 0.706 £0.073, 28.74 x 1.52 for tumor
regions, respectively. Of note, our MMgSN-Net significantly outperformed all the
comparing networks in all studied aspects (p < 0.05). Among the comparing state-of-
the-art networks, on the other hand, U-Net obtained the best performance in all four
evaluating aspects, while the CycleGAN models (both CycleGAN _Tlw and

CycleGAN_T2w) underperformed the others.

Overall, in comparison with the state-of-the-art networks, our MMgSN-Net
achieved outstandingly, with mean MAE improvements of 13.07% versus the Hi-Net,
3.47% versus the multi-channel U-Net, 31.32% versus the CycleGAN_T1w, and 30.40%

versus the CycleGAN_T2w.

Table 2-1. Quantitative error evaluation of different deep learning models for GFCE-MRI
synthesis. 1 indicates that a larger number represents better performance, | indicates that a
smaller number represents better performance. MAE, mean absolute error; MSE, mean squared

error; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index; SD, standard
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deviation.

MAE + SD (]) MSE + SD (]) SSIM+SD ()  PSNR=SD (1)
U-Net_T1w Whole image 50.39 +£13.70 11934.18 +£5878.76 0.864 0.042 31.91+1.91
Tumor regions ~ 127.20 £19.01  34168.37 +10137.90  0.637 +0.063 27.47 +1.23
U-Net_T2w Whole image 47.32 +13.55 10474.32 £5591.32 0.877 +0.041 32.59 +2.18
Tumor regions  117.47 £20.11 29532.56 +9824.42 0.679 +0.068 28.17 +1.47
U-Net_Tiw+T2w  Whole image 46.10 £13.15 9596.54 +5360.18 0.886 £0.042 32.95 +2.08
Tumor regions ~ 112.89 +18.87 27218.09 +9711.72 0.700 £0.068 28.46 +1.33
CycleGAN _Tiw  Whole image 64.79 +£15.78 18198.07 £7790.22 0.799 £0.049 30.03 +1.83
Tumor regions  164.18 +15.41 53467.99 +9147.11 0.495 0.042 25.45 +0.76
CycleGAN _T2w  Whole image 63.94 + 15.48 17445.77 £7467.58 0.802 £0.042 30.21 +1.83
Tumor regions  156.84 +14.80 48520.38 +8652.91 0.514 +0.038 25.78 +0.77
Hi-Net Whole image 51.19 +13.74 12088.02 +6098.83 0.862 £0.041 31.87 +1.94
Tumor regions  126.38 £19.36  34004.66 +10066.85  0.648 +0.061 27.42 +1.13
MMgSN-Net Whole image ~ 44.50 +13.01 9193.22 5405.00 0.887 £0.042 33.17 +2.14
Tumor regions ~ 110.31 +20.69  25924.77 +10385.70  0.706 +0.073 28.74 +1.52

2.4.2 Qualitative evaluation

Figure 2-3 illuminates visual comparisons between the ground truth CE-MRI images
and synthesized GFCE-MRI images obtained by using the studied DL networks. For
T1lw and T2w input images, the tumor structure and adjacent muscle texture are not
clearly discernible in the input Tlw MR image (Figure 2-3 (a)), while the tumor edge
is clearer in the input T2w MR image (Figure 2-3 (b)). For tumor delineation, the
ground truth CE-MRI image obtained following the injection of GBCAs (Figure 2-3
(c)) outperforms both the T1w and T2w images, clearly revealing the tumor structure

and adjacent muscle texture.

Regarding the synthetic images generated from the three U-Net models, they
are relatively blurry throughout the images (Figure 2-3 (F)-(H)). The tumor structure

predicted by U-Net_T2w is more discernable than that obtained from U-Net T1lw
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(Figure 2-3 (g) and (f), respectively). The joint T1w-T2w synthesized U-Net images
(Figure 2-3 (H)) achieves the best discriminability of tumor’s morphology against the

ground truth, compared to both U-Net_T1w and U-Net_T2w generated images.

With regard to the Hi-Net predicted GFCE-MRI images (Figure 2-3 (E)), the
overall image quality was visually comparable to the ground truth image (Figure 2-3
(C)). Nevertheless, the tumor-to-muscle interface was not in a good agreement
compared with the ground-truth images, while our MMgSN-Net (Figure 2-3 (d))

achieved a satisfying approximation to the ground-truth (Figure 2-3 (c)).

For the two CycleGAN models (Figure 2-3 (i) and (j)), the tissue structures,
such as the temporalis tendon and surrounding muscles, are the least discernable.
Notably, the synthetic images predicted by our MMgSN-Net (Figure 2-3 (D & d))
visually yields the best approximation to the ground-truth images, in particular to the
tumor-to-muscle interface and the texture information, outperforming all the comparing
networks. These qualitative findings are well in line with the results of quantitative

evaluation.

33



Input Tlw Input T2w Ground Truth MMgSN-Net Hi-Net

U-Net_Ti1w U-Net_T2w U-Net_Tiw+T2w CycleGAN_T1w CycleGAN_T2w

Figure 2-3. Visual evaluation of our MMgSN-Net and the comparing state-of-the-art networks
for virtual contrast-enhanced T1-weighted MR synthesis. (A) and (B) are the input Tlw MR
image and T2w MRI image, respectively; (C) is the ground truth gadolinium-based contrast-

enhanced T1-weighted MRI; other images are the synthetic results of different networks.

Figure 2-4 visualizes difference maps between the real CE-MRI images and
synthetic GFCE-MRI images from different patients for visualizing uncertainties in
relation to GFCE-MRI synthesis. A difference map window with a range of (0, 0.2)
was set to clearly visualize the differences. It can be observed that prediction
uncertainties most occurred at the edges between anatomic structures. Besides,
structures of evenly-changing pixel values (such as the maxillary sinus and cerebellum)

could be accurately predicted by our MMgSN-Net.
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Figure 2-4. Difference Maps (third column) between the real CE-MRI images (first column)
and the synthetic GFCE-MRI images predicted by our MMgSN-Net (second column). (A)-(C):

different axial slices.

2.4.3 Turing test results

Table 2-2 summarizes quantitative results of the Turing tests from the 7 participating
oncologists. In hospital 1, the two oncologists failed to differentiate between the real
CE-MRI and GFCE-MRI images in approximately half of the cases, with an accuracy
of 52% and 42% for oncologists 1 and 2, respectively. They reported that their decisions
were mostly based on the clarity of the alveoli and blood vessels, as well as the texture
of the muscles and cerebellum. In hospital 2, the two oncologists raised the difficulties
in discriminating the real and fake images based on the irregularly shaped tumor
structures. For this reason, they made their decisions according to the anatomical
structures and image signal intensities during the Turing test, resulting in an accuracy
of 58% and 52% for oncologists 3 and 4 from hospital 2, respectively. In hospital 3,
discussion sessions were held between the oncologist 5 and 6, in view of the heavy
clinical workload. An overall accuracy of 58% was reported based on their judgements.
They reported that their decisions were made based on the differences between the
parotid gland and non-vascular tissues. In hospital 4, the oncologist correctly identified
only 13, leading to an accuracy of 26%, and was unable to make decisions for another
13 images. Overall, the average accuracy of the 7 oncologists was 49.43%, which is in

close approximation to a random guess accuracy (i.e., 50%).

Table 2-2. Results of the Turing test conducted by the 7 clinical radiation oncologists from 4
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hospitals.

Hospital Radiation Oncologist Evaluation Results Percentage
Correct: 26 52%
Oncologist 1 Incorrect: 21 42%
. Give up: 3 6%
Hospital 1 Correct; 21 42%
Oncologist 2 Incorrect: 20 40%
Give up: 9 18%
Correct: 29 58%
Oncologist 3 Incorrect: 21 42%
. Give up: 0 0%
Hospital 2 Correct; 26 529%
Oncologist 4 Incorrect: 24 48%
Give up: 0 0%
Correct: 29 58%
Hospital 3 Oncologists 5 and 6 Incorrect: 21 42%
Give up: 0 0%
Correct: 13 26%
Hospital 4 Oncologist 7 Incorrect: 24 48%
Give up: 13 26%
Correct: 49.43%
Average: Incorrect: 43.43%
Give up: 7.14%

2.4.4 Ablation study

In the ablation studies, the MAE, MSE, SSIM, and PSNR values were found to be inter-
correlated. For simplicity, therefore, only results of MAE was described here. First,
after replacing the GSG with the concatenation operation, the MAE increased from
4450 + 13.01 to 45.43 + 12.97 (p < 0.05), implying that the SGS contributed to
accuracy improvement. Second, after excluding the multi-level module, the MAE
increased from 44.50 + 13.01 to 45.22 + 13.04 (p < 0.05), suggesting that this multi-
level module enhanced the synthesis performance of CE-Net. Third, after removing the
self-attention module, the MAE increased from 44.50 + 13.01 to 45.89 + 13.02 (p <

0.05), indicating that self-attention module is helpful in capturing long-term
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dependencies.

2.5 Discussion

In radiotherapy, GBCA-assisted CE-MRI has been considered essential for delineation
of deeply infiltrative NPC neoplasm. A recent growing body of evidence regarding
safety issues of GBCAs administration, however, has stimulated awareness of the
community to investigate contrast-agent-free alternatives, in the hope of replacing the
use of GBCA in the long run. A few DL models have been introduced up to the present,
in brain diseases (Gong et al., 2018b; Kleesiek et al., 2019b). While satisfying in brain
imaging, their models were deficient in leveraging complementary information
between input imaging modalities. Impact of this deficiency in their models could be
more detrimental in the case of deeply infiltrative NPC (Li et al., 2019). Herein, we, for
the first time, developed a novel MMgSN-Net to compensate for this deficiency and
investigated image synthesis in NPC. In this discussion, we attempted to highlight key
findings of our results, scrutinize possible underlying reasons, and provide research

community with potential directions in future.

Results from the quantitative evaluations demonstrated that our MMgSN-Net
outperformed all the comparing networks for both whole image and tumor regions
(Table 2-1), yielding the top-ranked scores in averaged MAE (44.50 + 13.01, 110.31 =
20.69), MSE (9193.22 + 5405.00, 25924.77 +£10385.70), SSIM (0.887 + 0.042, 0.706
+0.073), and PSNR (33.17 + 2.14, 28.74 £1.52) for whole image and local tumor
regions, respectively. This is in line with findings of our qualitative evaluation, where

the synthetic images predicted by our MMgSN-Net (Figure 2-3 (D & d)) visually
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yielded the best approximation to the ground-truth images, in particular to the tumor-
to-muscle interface and the intra-tumoral texture information, outperforming all the
comparing networks. Similar to our MMgSN-Net, both U-Net_T1w+T2w and Hi-Net
models deployed both T1w and T2w MR images as inputs for model training. A distinct
difference of our network from these two comparing networks lies to its capability to
leverage complementary information between each of the unique input imaging
modalities, rather than using a simple additive concatenation of different input
modalities. This may shed some light on the outstanding performance of our MMgSN-
Net, compared with these two networks (Table 2-1). Besides, the U-Net yielded the
second best-performing model among the studied networks, as indicated in Table 2-1.
We found that the synthetic images generated by U-Net were over-smoothed, leading
to loss of detailed information, for instance, regarding the cerebellum and muscle
texture, as illustrated in Figure 2-3. It could be partially attributed to the incapability
of the L1 loss function for capturing high-frequency signals in MR images of NPC
(Isola et al., 2017), where there are complex relationships among an ensemble of fine
anatomic tissues in the nose-pharynx ministry. On the contrary, the CycleGAN gave
rise to the worst model performance (Table 2-1). To a degree, this may be explained
by the limitation of the backward cycle adopted in the CycleGAN network. Although
the backward cycle has been used to maintain cycle consistency, it increases number of
training parameters, which may result in model underfitting given the small-sized

training samples.

Intriguingly, it was observed that inputting single T2w MR images yielded
better performance in both U-Net and CycleGAN networks than when using single T1w
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MR images (Table 2-1). A possible explanation would be related to the superiority of
T2w MR images in revealing hyperintensity or inhomogeneity information on various
pathologies (Cheng et al., 2016), such as in peripheral edema and tumor necrosis, which
makes T2w MR images contribute to more valuable information on pathology-related
contrast enhancement for GFCE-MRI synthesis, compared to contrast-free Tlw MR
images. This finding is also consistent with a brain tumor study conducted by Kleesiek
et al., who reported that T2w MR images provided more useful information for GFCE-
MRI synthesis (Kleesiek et al., 2019b). Another interesting observation was that the
presence of the self-attention module in our MMgSN-Net architecture enhanced tumor
edge detection in the synthetic images during our ablation study, implicating potential

of our model in NPC delineation.

Although there are no studies on image synthesis for NPC in the literatures,
comparisons between results of our study and previous works on brain diseases
highlight the superiority of our MMgSN-Net model. Gong et al. (Gong et al., 2018Db)
reported a mean SSIM value of 0.85 + 0.07 using a U-Net model that was trained on
10% GBCA-dose CE-MRI images and contrast-free TIlw MR images of 10 patients
with brain diseases. Kleesiek et al. (Kleesiek et al., 2019b) trained a 3D BayesUNet
using multi-parametric MR modalities of 47 contrast-enhanced samples and obtained a
mean SSIM of 0.862 + 0.029. In models of these two publications (Cheng et al., 2016;
Zhang et al., 2019), information in different input modalities was simply concatenated
into different channels without emphasis on potential interaction of features between
the modalities. In comparison, our MMgSN-Net achieved a higher mean SSIM of 0.887

+ 0.042 after training with 35 samples using both T1w and T2w MR images. To a large
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extent, we inferred that this improvement in SSIM was mainly attributable to the
capacity of our MMgSN-Net in unraveling complementary information from individual

unique imaging modalities for GFCE-MRI synthesis.

The degraded accuracy shown in Figure 2-4 may be, in part, explained by the
imperfect alignment among the T1w, T2w and CE-MRI images. While it should be
noted that existing image registration methods are still struggling to achieve one-to-one
pixel correspondence and was found to be influential in medical image synthesis tasks
(Han, 2017). The misalignment can lead to structural shift between input and target
pairs, thus leading to inaccuracy during model training, since the model will be trained
to make wrong prediction (Han, 2017). As a comparison, we directly used the data
acquired from hospital system as input without any registration fine-tuning, we
observed a performance decrease of 18.36%, 54.58%, 5.81% and 5.59% for MAE, MSE,
SSIM and PSNR, respectively. An example of the influence of image registration is

illustrated in Figure 2-5.
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Input T1w

Input T2w

Without fine-tuning Fine-tuned Difference Map

Without
Fine-tuning

Fine-tuned

Synthetic Ground Truth Difference Map

Figure 2-5. An example of the influence of image registration. (a): structural shift of input T1w

(first row) and T2w (second row) between two image registration methods: registered from
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hospital system without fine-tuning, and fine-tuned with rigid registration. (b): resultant
variations caused by image registration. The first row and the second row show the difference

between synthetic GFCE-MRI and ground truth CE-MRI of two registration methods.

Furthermore, results of the Turing test underscored the reliability of our
MMgSN-Net. In a study conducted by Kleesiek et al. (Kleesiek et al., 2019b), two
resident radiologists were invited to distinguish 10 synthetic MR images from another
10 real CE-MRI images, chosen in a random manner. The radiologists correctly
discriminated between the real and synthetic images in 80% and 90% of cases,
respectively. By contrast, in our work, seven experienced oncologists from multiple
hospitals were merely able to correctly classify 49.43% of the presented images,
suggesting high authenticity of our synthesized GFCE-MRI images. It is noteworthy
that the high authenticity of our model can be observed in both tumor-bearing and
tumor-free MR slices. In tumor-bearing slices, our MMgSN-Net model provided
comparable tumor visualization as compared with the ground-truth (Figure 2-3 (c) and
(d)). The degree of contrast enhancement is related to the density of capillary bed
around the neoplasm (Mann et al., 2019), which is thought to be absent in normal
tumor-free regions. In line with this line of thinking, our model also correctly predicts

the non-enhanced information in tumor-free MR slices, as illustrated in Figure 2-4 (C).

In spite of these exciting findings, our study has several limitations. Our
network was trained and validated using a small-sized NPC data from the same MRI
scanner at a single institution. Synthesis failure is likely to be observed with limited

training samples for specific patients. An example of unsatisfactory case is shown in
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Figure 2-6. In addition, intratumoral heterogeneity can be another impacting factor to
the synthesis results. The intratumoral heterogeneity exists at the cellular level, and is
highly influenced by its genetic background and surrounding micro-environment (Just,
2014). It causes heterogeneous tumor signal intensities of MR images (O'Connor et al.,
2015), as shown in Figure 2-6 where the arrows indicate the intratumoral heterogeneity
in T1w, T2w, and ground truth CE-MRI images. Furthermore, another factor that may
limit the performance of our synthesis network is that our network was trained with
Tlw and T2w MR images only. It is likely that TI1w and T2w MR images may not
provide complete information for synthesizing contrast enhancement for some
structures such as sinus sigmoideus, as shown in red arrows in Figure 2-6. This problem
can be potentially addressed by including more MRI modalities (such as diffusion-
weighted MRI) as input to our network. While we also believe a homogeneous dataset
is advantageous for model development, the generalizability of our results using a larger
dataset from different scanners and medical centers is warranted to minimize the so-
called “data bias” issue (Kazemifar, et al., 2021). This is currently being undertaken
and would be considered as an extension of this study. Apart from this, although we
invited a total of seven board-certified radiation oncologists for conducting the Turing
test to assess the authenticity of the synthetic images, they were not asked to perform
tumor delineation on the synthetic images, restricted by their existing heavy burdens in
clinic. Nevertheless, this should be considered in future in order to further contextualize
results of this study in aspects of NPC delineation. Since our network is a 2D network,
which is likely to limit the performance on coronal and sagittal views (Figure 2-7), to

extend the application scope of our network, in the long run, we would upgrade our
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MMgSN-Net to 3D architecture and incorporate additional MR modalities for GFCE-

MRI synthesis in future.

Input T1w Input T2w Synthetic Ground Truth

Figure 2-6. An example of a less satisfactory case. The images from left to right show input
T1w, input T2w, the synthetic GFCE-MRI and ground truth CE-MRI, respectively. Yellow

arrow shows the heterogeneous signal of tumor in different MR modalities.
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Input T1w

Input T2w

Synthetic

Ground Truth

Difference Map

Coronal view Sagittal view

Figure 2-7. lllustration of coronal view (the first column) and sagittal view (the second column)
of synthetic GFCE-MRI. from top to bottom: input Tlw MR, input T2w MR, synthetic GFCE-

MRI from the proposed method, ground truth CE-MRI and the difference map between GFCE
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MRI and CE-MRI. Yellow arrows show the position of tumor.

2.6 Conclusion

In this study, we developed and evaluated a novel MMgSN-Net for GFCE-MRI
synthesis for NPC patients. Our MMgSN-Net was capable of synthesizing highly
realistic GFCE-MRI images in both quantitative and qualitative aspects and
outperformed the three studied state-of-the-art networks. Moving forward, a larger
multi-center cohort study is warranted to ensure model generalizability. Future works
on tumor delineation on the synthetic images are recommended to further contextualize

results of this study.
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3. Evaluation and improvement of GFCE-MRI model

generalizability

3.1 Abstract

Recently, deep learning has been demonstrated to be feasible in eliminating the use of
GBCAs through synthesizing GFCE-MRI from contrast-free MRI sequences,
providing the community with an alternative to get rid of GBCAs-associated safety
issues in patients. Nevertheless, generalizability assessment of the GFCE-MRI model
has been largely challenged by the high inter-institutional heterogeneity of MRI data,
on top of the scarcity of multi-institutional data itself. Although various data
normalization methods have been adopted in previous studies to address the
heterogeneity issue, it has been limited to single-institutional investigation and there is
no standard normalization approach presently. In this study, we aimed at investigating
generalizability of GFCE-MRI model using data from seven institutions by
manipulating heterogeneity of training MRI data under two popular normalization
approaches. A MMgSN-Net was applied to map from T1w and T2w MRI to CE-MRI
for GFCE-MRI synthesis in patients with nasopharyngeal carcinoma. MRI data from
three institutions were used separately to generate three uni-institution models and
jointly for a tri-institution model. Patient-based Min-Max and Z-Score normalization
were applied for data normalization of each model. MRI data from the remaining four
institutions served as external cohorts for model generalizability assessment. Quality of

GFCE-MRI was quantitatively evaluated against ground-truth CE-MRI using MAE and

48



PSNR. Results showed that performance of all uni-institution models remarkably
dropped on the external cohorts. By contrast, model trained using multi-institutional

data with Z-Score normalization yielded improved model generalizability.

3.2 Introduction

NPC is a highly aggressive epithelial carcinoma originating in the mucosal lining of the
nasopharynx, has long been prevalent in the population of East and Southeast Asia
(Chang et al., 2021). Radiotherapy is currently the mainstay treatment modality for
NPC, which achieved 66%-83% 5-year survival rate for NPC patients with radiotherapy
alone (Xu et al., 2016). Precise tumor delineation is the most critical prerequisite for a
successful radiotherapy treatment. CE-MRI, using GBCAs, has become an
indispensable part in accurate NPC tumor delineation (Lee et al., 2018) in routine
radiotherapy treatment planning practice. Nevertheless, emerging evidence has shown
that NSF, a severe disease that can lead to joint contractures and immobility, has been
strongly linked with the administration of GBCAs in renal failure patients (Holowka et
al., 2019). Further evidence has shown that gadolinium accumulation in the dentate
nucleus and globus pallidus has been observed in paediatric patients (Roberts et al.,
2017). Apart from this, gadolinium deposition was also observed in patients with
normal renal function (Roberts et al., 2016). The mechanism of gadolinium deposition
in patients has not been fully elucidated, and the underlying long-term effects remain
unclear. Therefore, there is a global consensus to minimize or avoid GBCA exposure
to patients whenever possible (Holowka et al., 2019). Considering this, a GBCA-based

CE-MRI alternative is desperately demanded.
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Numerous efforts have been made to address the GBCA-associated safety issues.
Worldwide interests have sparked recently in synthesizing GFCE-MRI, which serves
similar purposes as the CEMRI, through deep learning approaches (B&ne et al., 2021,
Chen et al., 2022; Gong et al., 2018a; Kleesiek et al., 2019a; Xiao, et al., 2022; Luo et
al., 2021a; Pasumarthi et al., 2021a; Xu et al., 2021a; Zhao et al., 2020a). However,
current works have focused on model development or feasibility studies at different
tumor sites using in-house datasets. It has been reported that the models trained with
in-house dataset may perform poorly on datasets from external institutions (Jia et al.,
2020; Liu et al., 2020a; Xing et al., 2018), which largely limits the wide application of
proposed approaches. Therefore, a generalizable GFCE-MRI model is highly
demanded in clinical practice, which extends the GFCE-MRI technique to a

considerably wider range of hospitals for use.

Despite the urgent need for generalizable models, limited research has been
conducted to investigate the underlying mechanism of model generalizability and the
methods to improve the model generalizability, especially for the multi-parametric MRI
images, presumably due to two key challenges: 1) high inter-institutional heterogeneity
of MRI data; 2) scarcity of multi-institutional MRI data. The MRI images from different
institutions often suffer from large domain shifts due to the use of diverse scanning
parameters, scanners of different field strengths, as well as different patient
demographics, leading to large distribution divergences such as means, standard
deviations, and intensity ranges (Figure 3-1). These challenges have raised a growing
concern of model generalizability developed using deep learning algorithms, which
strongly rely on the assumption that the training data and testing data are independent
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and identically distributed (i.i.d.) (Wang & Deng, 2018). In reality, however, the
external MRI datasets are typically out-of-distribution (OOD) due to the
abovementioned domain shift, incurring tremendous performance degradation of the
trained models (Wang & Deng, 2018). To tackle this, a potential remedy to improve
model generalizability is to integrate multi-institutional MRI images during model
training to enlarge view of deep learning models (Dou et al., 2021; Lam, et al., 2022),
which has been rarely reported in the literature, probably due to the scarcity of multi-
institutional data for patient privacy protection. Another potential solution is to develop
a generalizable network architecture by mapping data distributions from source domain
to target domain (Wang & Deng, 2018; Wolleb et al., 2022), while these approaches
are limited to specific domain datasets. As such, data normalization techniques have
been widely used to improve the model performances in a range of application areas.
Nevertheless, related research in multi-institutional setting that contain various real-

world distributions of MRI data is severely scarce in the body of literature.
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Institution-2  Institution-3

Institution-5  Institution-6  Institution-7 Intensity Distributions

Figure 3-1. lllustration of heterogeneity of multi-institutional MRI data.

We consider minimize the distribution variations between training and external
testing MRI data by using data normalization should be a practical approach to improve
the model generalizability since it requires no model architecture improvement and
retraining the model. In this study, we included MRI data from seven different
institutions, aiming at investigating the GFCE-MRI model generalizability influenced
by distribution difference between training and external testing data. Specially, we
investigated: (i) how significant is the influence of different data normalization methods
on the model generalizability; (ii) how significant is the degradation of external
performance for models trained with single-institution MRI; and (iii) how significant is
the improvement of external performance when using multi-institutional MRI for

model development.
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Compared to other tumor types such as brain and liver tumors, NPC is highly
infiltrative with ill-defined tumor-to-normal tissue interface, which presents challenges
to oncologists in NPC contouring. Hence, the success of this study may not only provide
the medical community with better insights into the issue of GFCE-MRI model
generalizability of NPC patients, but also may potentially be translated to other cancer
types as well. To the best of our knowledge, this is the first multi-institutional
investigation for GFCE-MRI synthesis. As a result, this study may have a far-reaching
impact on the medical community to better understand the issue of model
generalizability, establish a standard multi-institutional data normalization method, and

further facilitate the development of generalizable GFCE-MRI models in the future.

3.3 Methods and materials

3.3.1 Patient data

A total of 256 NPC patients from seven medical institutions were retrospectively
collected in this study. For fair comparisons, same number of patients (71 patients) were
retrieved from Institution-1, Institution-2, and Institution-3, respectively for uni-
institution and tri-institution model development, 18 patients, 9 patients, 9 patients, and
7 patients were retrieved from Institution-4, . . ., Institution-7, respectively for external
testing to evaluate the model generalizability. Tlw MRI, T2w MRI, and CE-MRI were
collected for each patient. This study was approved by the Institutional Review Board
of the University of Hong Kong/Hospital Authority Hong Kong West Cluster
(HKU/HAHKW IRB), reference number UW21-412 and the Research Ethics

Committee (Kowloon Central/Kowloon East), reference number KC/KE-18-0085/ER-
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1. Due to the retrospective nature of this study, patient consent was waived. All images
were acquired in the same position and automatically aligned. For model training, all
images were resampled to the size of 256*224 using bilinear interpolation (Gribbon &
Bailey, 2004). For Institution-1, Institution-2, and Institution-3, the 71 patients were

randomly divided into 53 and 18 for model training and validation, respectively.

3.3.2 Study design

The overall idea of this study was first using the data collected from three different
institutions (i.e., Institution-1, Institution-2, and Institution-3) to develop a series of
separately and jointly trained models using different data normalization methods for
investigating the GFCE-MRI model generalizability. The separately and jointly trained
models were referred to as uni-institution models and tri-institution models,

respectively. Table 3-1 illustrated the overall study design.
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Table 3-1. The overall study design. Min-Max and Z-Score normalization were used to
normalize the datasets, and the multi-institutional datasets were trained separately and jointly

to compare the model generalizability on four external datasets. Ins: Institution.

Training Testing
Normalization Model name
Ins-1 Ins-2 Ins-3 Ins-4 Ins-5 Ins-6 Ins-7
Uni-m1 v v v v v
Uni-m2 v v v v v
Min-Max
Uni-m3 v v v v v
Tri-M v v v v v v v
Uni-z1 v v v v v
Uni-z2 v v v v v
Z-Score
Uni-z3 v v v v v
Tri-Z v v v v v v v

1) Neural Network: The MMgSN-Net was used as the base network in this study. The
MMgSN-Net is a 2D deep learning algorithm (Xiao, et al., 2022), which consists of
five key modules: multimodality learning module, synthesis network, self-attention
module, multi-level module, and a discriminator. The structure of the MMgSN-Net is
illustrated in Figure 2-1. The Tlw and T2w MRI were put into the multimodality
learning module separately. The multimodality learning module was used to extract the
modality-specific features. The extracted modality-specific features were put into the
SGS in synthesis network for complementary feature selection and fusion. In the

decoder of synthesis network, the fused features and the learned features from
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multimodality learning modules were concatenated to different channels. The self-
attention module and multi-level module were applied to capture the long-term
dependencies and detect the edge information of the high-level features, respectively.
A discriminator was utilized to distinguish the synthetic GFCE-MRI from ground-truth

CEMRI, thus encouraging the synthesis network to generate more realistic GFCE-MRI.

2) Data Normalization: Data normalization plays a pivotal role in model development
(Hu et al., 2022). It minimizes feature bias by transforming the features into a common
space so that larger numeric feature values cannot dominate smaller numeric feature
values (Garc R et al., 2015). Currently different data normalization methods are applied
in medical image translation tasks. The most popular two normalization methods are
Min-Max (also called scaling) (Gajeraet al., 2016) and Z-Score (Fei et al., 2021). These
two normalization methods are also applied to different objects prior to training, i.e.,
dataset-based, patient-based, and single-image based normalization. In natural image
tasks, most studies are 2D-based networks, which always use the statistical values of
each single image or the whole dataset for data normalization (Liu et al., 2020a). For
medical images, however, image and dataset-based normalization may not appropriate
for clinical applications, especially for 3D volumes since the image-based
normalization ignores the inter-slice adjacent information within a volume, which leads
to contrast bias of generated images between two nearby slices, while dataset-based
normalization brings challenge during model inference for a new patient as only
statistical values of this specific patient could be used for data normalization. Herein,
we consider that patient-based normalization is proper in medical image studies, which
is more applicable to clinical setting. In this study, the patient-based Min-Max
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normalization and patient-based Z-Score normalization were applied to shorten the
distribution variations among training datasets and external unseen datasets using the
statistical values of each patient. Then we evaluated the model generalizability affected
by these two data normalization methods. The two normalization methods could be

mathematically described as

X~ Xnmin
Xminomax = - (3'1)
Xmax — Xmin

X = Uy
Oy

Xz score =

(3-2)

Where x represents the intensities of each patient volume, while X0, Xmax, Uy, aNd
o, are minimum value, maximum value, mean value and standard deviation of the
patient. X;uin max anNd x, score are the patient data after Min-Max and Z-Score
normalization, respectively. The Min-Max normalization rescales the intensity range to
[0, 1] and preserves the relationship among the original data values due to its linear
transformation nature, while Z-Score normalize the mean value and standardization of
the patient to 0 and 1 respectively, which enables the comparison of two datasets with
different distributions. As shown in Figure 3-2, prior to data normalization, severe
inter-institutional distribution discrepancy exists. The distribution discrepancy has been

shortened after data normalization, especially after the Z-Score normalization.
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Figure 3-2. Data distribution changes after patient-based Min-Max and Z-Score normalization.
From left to right: the original data distribution without data normalization; the MRI

distribution after Min-Max normalization and the MRI distribution after Z-Score normalization.

3) Uni-institution Models: To investigate how significant is the external performance
degradation for the GFCE-MRI models that trained with single-institution MRI, we
first trained three uni-institution models using data from Institution-1, Institution-2, and
Institution-3 for each normalization method separately. 53 patients were used for
training of each uni-institution model. For each uni-institution model, 18 patients were
used for validation to ensure the model performance. Min-Max normalization and Z-
Score normalization were applied prior to model training. The three uni-institution
models were labeled as Uni-m1, Uni-m2, and Uni-m3 for Min-Max normalization and
Uni-z1, Uni-z2, and Uni-z3 for Z-Score normalization, respectively. The
generalizability of these models was evaluated using four external datasets (i.e.,

Institution-4 to Institution-7).

4) Tri-institution Models: To investigate how significant is the external performance
improvement for models that trained with diversified multi-institution MRI, we trained

the GFCE-MRI model jointly with data from Institution-1 to Institution-3. Considering
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that the number of training samples may influence assessment of the tri-institution
model since we cannot determine whether the model generalizability improvement is
caused by a diverse dataset or an increasement of training samples. Therefore, we
randomly selected 18 patients from each institution’s training dataset. Then randomly
discarded one patient sample to ensure training samples were the same as the number
for uni-institution models. The two normalization methods also applied to develop the
tri-institution model prior to training. The two tri-institution models with different
normalization methods were labeled as Tri-M (with Min-Max normalization) and Tri-
Z (with Z-Score normalization), respectively. The four datasets from Institution-4 to

Institution-7 were used for external testing to evaluate the model generalizability.

3.3.3 Evaluations

1) Quantitative Evaluation: To quantitatively evaluate the performance of uni- and tri-
institution models, MAE and PSNR between the synthetic GFCE-MRI and ground-
truth CE-MRI were calculated. The MAE and PSNR have been widely employed for
medical image analysis tasks. MAE measures pixel-wise differences while PSNR
measures the ratio between the maximum power of a signal and the power of noise
(Han, 2017; Li et al., 2020; Xiao, et al., 2022). Smaller MAE and larger PSNR values
indicate better quantitative results. Prior to quantitative evaluation, we rescaled the CE-
MRI and predicted GFCE-MRI intensities to [0, 1] to compute the percentage
differences between GFCE-MRI and CE-MRI. Paired two-tailed t-test (significance
level, p=0.05) was performed to analysis if there is significant difference between

results from different models.
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=y = F (x| (3-3)

MAE =
n
n R )2
MSE — l=1(yl f(xl)) (3_4)
n
_ (leyiﬂf(xi)+C1)(20'yif(xi)+02)
SSIM = (uyi2+uf(xi)2+c1)(a§i+aj%(xi)+c2) (3-5)
max (y;)n
(3-6)

PSNR = 20 - log )i~/ 0l

Where y; and f(x;) are intensities of real CE-MRI and GFCE-MRI, n is the number of
intensities. Here max (y;) is 1 as we have rescaled the CE-MRI and GFCE-MRI
intensities to [0, 1]. wy,., pf(x, and oy, o, are means and variances of the ground
truth image and the synthetic image, while o, ¢(,,) is the covariance of y; and f (x;).

c; = (kyL)? and ¢, = (k,L)? are two variables used to stabilize the division by the
weak denominator, and L is the dynamic range of the pixel values. Here, L = 4095,

k, = 0.01, and k, = 0.03 were set by default.

2) Qualitative Evaluation: To visually assess the performance of the models on external
datasets, we applied the trained uni- and tri-institution models to the external datasets
without any model-based updating. Prior to results inference, patient-based Min-Max
and patient-based Z-Score normalization were applied to uni-institution models and tri-
institution model for external results comparison. The input Tlw, T2w MRI and
ground-truth CE-MRI were shown alongside the GFCE-MRI generated from different

models.
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3.4 Results

3.4.1 Quantitative results

1) Generalizability of single-institution models: All uni-institution models suffered
from severe performance drop on external MRI data for both Min-Max and Z-Score
normalizations. Table 3-2 and Table 3-3 summarize the quantitative comparisons
between the synthetic GFCE-MRI and ground-truth CE-MRI using Min-Max and Z-
Score, respectively. As MAE and PSNR have the similar tread, we use the MAE as an
indicator to illustrate the results. The average MAE increased from 25.39 +3.59 to
43.11 £11.74 for Uni-m1, 24.45 £3.67 to 51.54 +11.53 for Uni-m2, 29.56 +6.92 to
41.02 £10.86 for Uni-m3, and from 23.03 £3.18 to 37.83 £8.05 for Uni-z1, 24.87 +
4.64 t0 39.88 £10.51 for Uni-z2, 26.84 +6.17 to 34.62 +£7.06 for Uni-z3, respectively.
The percentage of uni-institution models’ external performance degradation were
shown in Table 3-4. The average performance drop for MAE were 69.86% and 51.20%
for Min-Max and Z-Score normalization respectively, indicting the model trained with
single-institution MRI data failed to generalize to external MRI datasets. The largest
performance degradation model was Uni-m2 (with 110.80% drop) for Min-Max
normalization and Uni-z1 (with 60.35% drop) for Z-Score normalization respectively,
indicating that different normalization methods do tremendously influence the uni-

institution model generalizability, even the models were trained with same source MRI.

Table 3-2. Internal and external quantitative results using Min-Max normalization.

Model Testing MAE +SD (x10%) MSE +SD (x10%  SSIM £SD PSNR £SD
Uni-m1 Institution-1 25.39 +£3.59 19.76 +4.79 0.875+0.019  33.45+1.38
Institution-4 52.12 +£10.89 78.37 £26.53 0.737 £0.030  27.65*1.72
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Institution-5 35.03 +6.56 45.57 £16.74 0.800 +0.028  30.47 £1.24
Institution-6 34.97 £4.02 28.84 +4.49 0.732 +0.059  31.65 %=0.67
Institution-7 40.80 +9.12 53.41 £21.25 0.788 £0.045  29.35*1.51
Overall 4311 +11.74 57.07 £28.59 0.757 £0.049  29.35+2.15
Institution-2 24.45 £3.67 26.64 +4.95 0.864 +0.024  32.17 +0.89
Institution-4 50.26 £7.11 75.10 £15.31 0.730 £0.027  27.50 +0.95
Uni-m2 Inst?tut?on—S 51.76 £6.28 74.91 £16.36 0.747 £0.049  27.83 +1.02
Institution-6 58.74 +£19.93 92.45 +52.76 0.651 +0.055  27.05 +2.13
Institution-7 45.27 £3.83 61.61 +10.13 0.761 +0.025  28.41 +0.73
Overall 51.54 £11.53 76.50 +29.06 0.722 £0.055  27.62 +1.35
Institution-3 29.56 +£6.92 33.99 £13.69 0.847 £0.039  31.30 +1.72
Institution-4 4453 £7.63 61.83 +16.81 0.807 £0.035  28.51 +1.32
Uni-m3 Inst!tut?on-S 35.67 +5.09 4450 +10.26 0.812 +0.034  30.09 +0.78
Institution-6 45.36 +15.96 54.92 £33.18 0.742 £0.053  29.41 +2.08
Institution-7 33.30 £7.81 38.40 £14.44 0.839 £0.042  30.69 +1.48
Overall 41.02 +10.86 52.94 +22.09 0.800 +0.051  29.39 +1.68
Institution-1 26.27 £4.01 21.74 £554 0.867 £0.021  33.06 +1.30
Institution-2 26.27 £4.19 29.28 £5.24 0.855+0.025  31.74 +0.86
Institution-3 28.91 +£6.38 32.73 £12.76 0.847 £0.045  31.45+2.05
Overall 27.15+5.13 27.92 £9.73 0.856 +£0.033  32.08 +1.65
Tri-M Institution-4 41.82 +£7.82 55.28 £14.16 0.809 £0.029  28.97 +1.20
Institution-5 41,55 +9.04 58.00 £21.22 0.807 £0.025  29.19 +1.51
Institution-6 46.12 +13.55 54.13 £28.27 0.743 £0.048  29.29 +1.84
Institution-7 33.53+8.21 40.20 +16.46 0.821 +0.038  30.57 +1.56
Overall 41.31 +10.34 53.15 £20.59 0.797 £0.044  29.34 +1.58

Table 3-3. Internal and external quantitative results using Z-Score normalization.

Model  Testing MAE +SD (x105)  MSE +SD (x109)  SSIM *SD PSNR +SD
Institution-1 __ 23.03 +3.18 16.68 £4.27 0.879+0.022  34.21 +158
Institution-4 ~ 43.10 £5.91 55.87 +13.27 0736 £0.026  28.96 +1.20
Unigy | Institution5 3274 +6.27 39.67 +14.34 078840035  31.03 +1.16
Institution-6 3207 +5.05 24.85 +5.65 0.741+0.062  32.36 +1.07
Institution-7 3822 +8.77 46.33 +16.59 0.769 +£0.060  29.84 +1.42
Overall 37.83 £8.05 44.43 #1757 0.7534+0.049  30.25 +1.80
Institution-2  24.87 +4.64 26.18 +6.21 0.854 +£0.030  32.28 +1.10
Institution-4  48.47 +7.30 74.49 +18.11 071540033  27.62 +1.22
Unigp | Institution-5 3135 +7.52 38.60 +15.35 079540044 3133151
Institution-6  33.27 £5.23 29.02 £7.37 0749 #0059  31.68 +1.14
Institution-7 ~ 37.27 +9.36 47.09 +17.84 077140058  29.76 +157
Overall 39.88 +10.51 53.00 +24.75 0.748 +£0.056  29.59 +2.23
Institution-3  26.84 +6.17 29.38 +12.34 0.847 +£0.042  31.97 +2.09
Institution-4 3830 +5.53 50.53 +13.06 0.788 +£0.039  29.50 +1.21
Unigg | Institution5 3192732 38.99 +14.62 0.803 +£0.036  31.06 +1.42
Institution-6  30.78 +4.70 2432 +6.01 076140066 3252 +1.08
Institution-7 ~ 33.51 +8.08 36.38 +15.13 080340059  30.95 +1.50
Overall 34.62 +7.06 40.33 +16.16 0.788 +0.051  31.01 +1.30
Institution-1 ~ 23.71 +3.12 18.68 £4.71 087540020  33.72 +1.43
Institution-2 ~ 25.74 +4.80 27.90 £6.72 085140027  32.01+1.10
Tri-Z Institution-3 ~ 27.36 +6.80 30.30 +13.59 084240049  31.87 +2.23
Overall 25.60 +5.34 25.63 +10.44 0.856 +£0.037 _ 30.69 +1.73
Institution-4 3720 £5.14 37.20 +5.14 0796 +£0.029  29.72 +1.21
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Institution-5 29.94 +6.43 36.79 +14.46 0.811 +0.034 31.69 +1.25
Institution-6 29.60 +4.94 22.94 £5.76 0.776 +0.062 32,78 £1.12
Institution-7 33.04 +£8.38 37.35 £13.97 0.811 +0.053 30.87 £1.57
Overall 33.41 £6.92 38.41 £14.97 0.797 £0.045 30.96 £1.75

2) Generalizability of tri-institution models: The model generalizability improved when
training the model with more diverse MRI data for both Min-Max and Z-Score
normalization methods. As shown in Table 3-5, the overall external performance
obtained 8.65% improvement for Tri-M model and 10.77% improvement for Tri-Z

model in MAE.

3) Influence of normalization methods to model generalizability: The quantitative
results from Table 3-4 and Table 3-5 indicate that Z-Score normalization outperformed
the Min-Max normalization on external datasets, with less average performance drop
for uni-institution models (51.20% v.s. 69.86% for MAE, 102.03% v.s. 143.91% for
MSE, 11.24% v.s. 11.83% for SSIM, and 7.64% v.s. 10.83% for PSNR, respectively)
and more average improvement for tri-institution models (10.77% v.s. 8.65% for MAE,
16.35% v.s. 14.51% for MSE, and 2.23% v.s. 1.92% for PSNR). Moreover, as shown
in Table 3-2 and Table 3-3, though the overall external performance of Tri-M
outperformed Uni-m2 but with comparable external performance with Uni-m1 and
slightly worse than Uni-m3, while the Tri-Z model that normalized with Z-Score
method outperformed all uni-institution models, suggesting that Z-Score normalization

outperforms Min-Max normalization in model generalizability improvement.

Table 3-4. External performance drop of uni-institution models.

Min-Max Z-Score
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Model MAE MSE SSIM PSNR | Model MAE MSE SSIM PSNR
Uni-ml  69.79% 188.82% 13.49% 12.26% | Uni-z1 64.26% 166.37% 14.33% 11.58%
Uni-m2 110.80% 187.16% 16.44% 14.14% | Uni-z2 60.35% 102.44% 12.41% 8.33%
Uni-m3  28.99% 55.75% 5.55% 6.10% | Uni-z3 28.99% 37.27% 6.97% 3.00%
Overall 69.86% 143.91% 11.83% 10.83% |Overall 51.20% 102.03% 11.24% 7.64%

Table 3-5. External performance improvement of tri-institution models.

Model MAE MSE SSIM PSNR
Tri-M 8.65% 14.51% 4.91% 1.92%
Tri-Z 10.77% 16.35% 4.46% 2.23%

3.4.2 Qualitative results

To visually evaluate the external generalization performance of uni-institution and tri-
institution models with different normalization methods, we illustrated the external
results of different models in Figure 3-3. The generalizability of uni-institution models
varies greatly regardless which normalization method was used. All uni-institution
models showed worse generalizability to external MRI data with varied contrast
enhancement failure in tumor and tumor-to-normal tissue contrast (indicated with red
arrows), especially the model trained with Institution-2 data (i.e., Uni-m2 and Uni-z2,
with overall image contrast difference and blurring anatomic structure, respectively).
The model trained with Institution-1 data (i.e., Uni-m1 and Uniz1) also showed overall
image contrast difference compared with ground truth CE-MRI while the models
trained with Institution-3 data showed tumor (Uni-m3) and normal vessel (Uni-z3)

contrast enhancement failure.
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Figure 3-3. lllustration of GFCE-MRI generated from uni-institution and tri-institution models

using Min-Max normalization and Z-Score normalization.

Both the two tri-institution models achieved promising generalizability to
external data. The generated GFCE-MRI from both Tri-M and Tri-Z models achieved
a better visual approximation of tumor contrast enhancement compared to uni-
institution models. Compared with the Tri-M model, the Tri-Z model with Z-Score
normalization obtained a better approximation of tumor surrounding structures (as

indicated with yellow arrows).

3.5 Discussion

In radiotherapy, CE-MRI is commonly used for accurate tumor delineation, especially
for the highly infiltrative NPC (Xiao, et al., 2022). However, GBCAs-associated safety
issues have stimulated the medical community to eliminate the use of GBCAs. Recently,
a worldwide interest has been promoted to synthesize the GFCE-MRI for providing a
gadolinium-free alternative for precision tumor delineation (B&e et al., 2021; Chen et

al., 2022; Gong et al., 2018a; Kleesiek et al., 2019a; Xiao, et al., 2022; Luo et al., 2021a;
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Pasumarthi et al., 2021a; Xu et al., 2021a; Zhao et al., 2020a). Nevertheless, the model
generalizability on external institution data remains unexplored and there is no standard
multi-institutional MRI normalization method has been established. Herein, for the first
time, we retrieved MRI data from seven institutions and investigated the model
generalizability using different data normalizations for GFCE-MRI synthesis in NPC
patients. In this discussion, we attempted to summarize our key findings, discuss the
potential underlying mechanisms, and provide the research community with our

perspectives in future directions.

The models trained with single-institution MRI data suffered from various
degrees of performance drop on external MRI datasets. As shown in Table 3-2 and
Table 3-3, the quantitative results show that the uni-institution models performed well
on internal testing datasets with lower MAE and higher PSNR but failed to generalize
to external unseen data (i.e., with greater MAE and lower PSNR on external datasets).
The visual comparisons (Figure 3-3) of synthetic GFCE-MRI among different models
also showed that uni-institution models failed to predict the correct contrast
enhancement, both in tumor and surrounding vessels. These results suggest that there
exist significant MRI data bias across institutions, resulting in a phenomenon that
performance of well-trained in-house models cannot generalize to external MRI
datasets. The uni-instiution models obtained varied quantitative results on each
individual external dataset (for example, the MAE ranges from 34.97 to 52.12 for Uni-
m1), this may also be caused by the MRI data bias among external MRI datasets. These
data bias may resulted from different MRI characteristics such as image contrast,
resolution, texture, artifacts, etc. (as shown in Figure 3-1). In addition, the Uni-m2
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model that normalized with Min-Max normalization obtained the best external results
on Institution-7 dataset and worst results on Institution-6 dataset, while the Uni-z2
model (trained with the same source MRI) that normalized with Z-Score normalization
obtained the best external results on Institution-5 and worst results on Institution-4,
indicating that different normalization methods do influence the model generalizability.
The possible reason might be that different normalization methods shorten the gap

between the training dataset and the external dataset to different extent.

By involving diverse MRI data from multiple institutions, the overall external
performance of Tri-M and Tri-Z model have been improved compared to uni-institution
models, even with the same number of training samples (as shown in Table 3-5). This
result indicates that involving diverse MRI data from multiple institutions is more
capable of achieving a better external performance, possibly due to the view of the
model has been enlarged. By training the model with diverse MRI data, the external
testing data may have a higher chance to match the training data distribution, thus
improving the external performance. However, the external performance improvement
also vary depending on the specific normalization method used. As shown in Table 3-
2 and Table 3-3, though the external performance of Tri-M model obtained 8.65%,

14.51%, 4.91%, and 1.92% overall improvement in MAE, MSE, SSIM, and PSNR

on the four external datasets, respectively, for each individual uni-institution model, the
Tri-M model (normalized with Min-Max normalization) obtained comparable results
to Uni-m1 and slightly worse results than Uni-m3, while the Tri-Z model (normalized
with Z-Score normalization) achieved improved results compared to all uni-institution

models, indicating that Z-Score normalization is capable of further improving the

67



GFCE-MRI model generalizability when training the model with multi-institutional
MRI data. On the other hand, both Tri-M and Tri-Z did not obtain obvious performance
degradation on the three intra-institution datasets, indicating that involving diverse MRI
data from multiple institutions for model development is capable of maintain the intra-
institution accuracy no matter what normalization method was used, though the two tri-
institution models were trained with 1/3 number of samples from each individual

institution.

Z-Score normalization outperformed Min-Max normalization in improving the
model generalizability, for both uni-institution models and the tri-institution model. As
shown in Table 3-4 and Table 3-5, Z-Score normalization achieved 18.66%, 41.88%,
0.59% and 3.19% less external performance drop of MAE, MSE, SSIM and PSNR
respectively than Min-Max normalization for uni-institution models. With Z-Score
normalization, the tri-institution model Tri-Z also obtained additional 2.12%, 1.84%
and 0.31% performance gain in MAE, MSE and PSNR than Tri-M. This is possibly due
to Z-Score normalizes all the patients’ mean and standard deviation to the same value
(0 and 1, respectively), which minimized the distribution variations among all training
patients and external testing patients (as shown in Figure 3-2), while Mix-Max
normalization preserves the relationship (i.e., the intra-patient intensity ratio) among
the original data intensities, which limited its contribution to narrowing the distribution

gap across institutions.

In this study, we used percentage values instead of actual values to interpret the

results obtained from different normalization methods. This is because the MRI
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distributions across institutions are unidentical with different mean value and standard
deviation, making the results incomparable. As demonstrated in (Lam, et al., 2022), the
model trained with smaller mean intensity data obtained significantly better intra-
institution quantitative results, even with the same number of training samples.
Different normalization methods will further normalize the multi-institutional data to
different distributions, making different normalization results uninterpretable. For
example, the Uni-m2 model obtained better internal performance compared with Uni-
z2 in MAE (24.45 v.s. 24.87), but the Uni-m3 model may not necessarily performed
better than Uni-z3 since the distribution of the testing datasets are different after the
two normalization methods. To quantitatively evaluate the results generated from two
different normalization methods, we used percentage results (as shown in Table 3-4
and Table 3-5) instead of the actual values to compare these two normalization results.
For the multi-institutional setting, the Z-Score normalization may be a promising
method for results interpretation compared to Min-Max normalization as the Min-Max
normalization preserves the original data distribution across institutions, while the Z-
Score normalization normalize the mean intensities and standard deviations of multi-
institutional datasets to the same value and minimized the multi-institutional

distribution diversity, making the normalized multi-institutional results comparable.

Our study has several limitations. Firstly, since our findings are based on
MMgSN-Net (Xiao, et al., 2022), applicability of our results using other deep-learning
models deserves future investigation. Secondly, this work takes into account the
diversity of MRI images and signal intensities of MRI among institutions, as shown in
Figure 3-2, after data normalization, small distribution variations also exist among

69



different institutional MRI, these variations may be caused by the image-based factors
such as image texture, artifacts, and tumor size etc. As demonstrated in (Arega et al.,
2021), MRI-specific data augmentation provides a potential solution to improve the
model generalizability in aspect of training image, which will be considered in our

future work to further improve the model generalizability.

3.6 Conclusion

In this study, we investigated the model generalizability for GFCE-MRI synthesis in
NPC patients using data from seven institutions and explored potential model
generalizability influence factors of diversity of training data and application of
different normalization methods. Results of the present work showed that the tri-
instituion models developed from multi-institutional MR1 generally resulted in higher
generalizability than the uni-institution models developed from single-institution
datasets. Application of the Z-Score normalization was capable of improving the model
generalizability and results interpretability in multi-institutional MRI setting, which

outperformed Min-Max normalization.
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4. Clinical evaluation of the GFCE-MRI in NPC radiotherapy

4.1 Abstract

Purpose: To investigate clinical efficacy of GFCE-MRI for gross-tumor-volume

(GTV) delineation of NPC via a multi-institutional setting.

Methods and Materials: This study retrospectively retrieved Tlw, T2w MRI,
gadolinium-based CE-MRI and planning CT of 378 biopsy-proven NPC patients from
three oncology centers. A MMgSN-Net was trained in 288 patients to leverage
complementary features in Tlw and T2w MRI for CE-MRI synthesis, which was
validated independently in 90 patients. Two board-certified oncologists and one
medical physicist participated in clinical evaluations in three aspects: image quality of
GFCE-MRI, target volume delineation and treatment planning. Image quality of GFCE-
MRI evaluation includes distinguishability between CE-MRI and GFCE-MRI, clarity
of tumor-to-normal tissue interface, veracity of contrast enhancement in tumor invasion
risk areas, and efficacy in primary tumor staging. Target volume delineation and
treatment planning were manually performed by oncologists and the medical physicist,
respectively. Paired two-tailed t-test with a significant level of 0.05 was performed to

assess statistical difference of the results.

Results: The mean accuracy to distinguish GFCE-MRI from CE-MRI was 53.33%; no
significant difference was observed in the clarity of tumor-to-normal tissue interface
between GFCE-MRI and CE-MRI; for the veracity of contrast enhancement in tumor

invasion risk areas and efficacy in primary tumor staging, a Jaccard Index (JI) of
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76.04% and accuracy of 86.67% were obtained, respectively. The image quality
evaluation suggests that the quality of GFCE-MRI is approximated to CE-MRI. The
Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD) of the GTVs that
delineated from GFCE-MRI and CE-MRI were 0.762 (0.673-0.859) and 1.932mm
(0.763mm-2.974mm) respectively, and the mean dosimetric difference of planning

target volume (PTV) was less than 1%, which were clinically acceptable.

Conclusions: The GFCE-MRI is highly promising to replace the use of CE-MRI in

tumor delineation of NPC patients.

4.2 Introduction

NPC is a highly infiltrative malignancy and is characterized by a distinct geographical
distribution in East and Southeast Asia (Song et al., 2022). In 2020, 133,354 new cases
and 80,008 deaths of NPC were recorded globally (World Cancer Research Fund
International, 2020). At present, radiotherapy is the primary treatment modality for
NPC due to its high radiosensitivity. As reported by Xu et al. (Xu et al., 2016), the 5-
year survival rate for NPC patients achieved 66%-83% with radiotherapy alone. For
early-stage NPC, the overall survival rate is greater than 90% (Xu et al., 2016). In
radiotherapy treatment planning, accurate tumor delineation is the foremost prerequisite
to achieve optimal tumor control and improve patient survival (Li et al., 2019).
However, as a soft-tissue mass, NPC shows a high propensity to invade surrounding
critical structures, such as neural systems and bony skull base, posing significant
challenges for clinical oncologists to delineate the tumor volume accurately. To

enhance tumor visibility for more precise tumor delineation, CE-MRI using GBCA is
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widely used in clinical practice. It has been reported that approximately 45% of MRI
scans performed in the United States involves the use of GBCA on a routine basis

(Enterline, Jan 2021).

However, GBCA-based CE-MRI imaging is costly, time-consuming, resource-
demanding, and can potentially increase the risk of toxicity for patients with impaired
renal function (Lang et al., 2019; Rogosnitzky & Branch, 2016). Firstly, GBCA is
desperately needed in medical practice. More than 450 million doses have been
administrated since its introduction to the market, and more than 30 million doses of
GBCA are consumed annually worldwide (Guo et al., 2018; Jakobsen et al., 2021). The
cost for each CE-MRI scan ranges from HKD 9,200 to 19,980 in Hong Kong (Adventist
Hospital, 2022; Gleneagles Hospital, 2022; Hong Kong Baptist Hospital, 2021; Union
Hospital, 2021). For cancer patients receiving adaptive radiotherapy, repeated GBCA-
based CE-MRI scans significantly increase patients’ costs by a factor of 3 to 5. Then,
due to the high number of patients requiring CE-MRI scans, the waiting time for cancer
patients to receive radiotherapy treatment increases. As reported by Wildeman et al.
(Wildeman et al., 2013), the average CE-MRI scan time for the head and neck region
lasts 30 to 90 minutes for each patient, and the median waiting time between diagnosis
and first radiotherapy treatment is 120 days (range 13-500 days) for NPC patients. Long
waiting time may lead to significantly worse treatment outcomes as a result of the
progression of cancer during the waiting (Wildeman et al., 2013). More importantly,
GBCA-associated patient safety issues, such as acute adverse reactions, NSF and
gadolinium deposition, have raised serious concerns in medical community (Nguyen et
al., 2020a). All things considered, there is a pressing demand for developing an
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alternative method to GBCA for cost-effective, time-efficient, and safe radiotherapy.

To address this issue, worldwide interests have been raised in applying deep
learning to synthesize GFCE-MRI without using GBCA (Gong et al., 2018a; Kleesiek
et al., 2019a) and great successes have been achieved. Preetha et al. (Preetha et al.,
2021) proposed a deep convolutional neural network to synthesize GFCE-MRI for
brain tumor response assessment from contrast-free T1w, T2w, and fluid-attenuated
inversion recovery sequences; they found that synthetizing GFCE-MRI from contrast-
free MRI is feasible, and there was no significant difference in treatment response
compared to GBCA-based CE-MRI. Zhang et al. (Zhang et al., 2021) utilized GBCA-
free T1 maps and cine imaging to synthesize cardiovascular GFCE-MRI through a
modified conditional generative adversarial network; they demonstrated that the
synthetic GFCE-MRI could achieve high agreement with GBCA-based CE-MRI in
lesion distribution and quantification, while the GFCE-MRI achieved significantly
better image quality than CE-MRI. Following these works, Li et al. (Li, et al., 2022)
first applied the GFCE-MRI technique into the field of radiotherapy. They synthesized
the GFCE-MRI for NPC tumor delineation from contrast-free Tlw and T2w MRI and
demonstrated that the synthetic GFCE-MRI has a high approximation to GBCA-based
CE-MRI, especially for the visualization of tumor-to-muscle interface and intratumor
texture, which is highly promising for tumor delineation. However, this work mostly
focused on technical development of the synthetic network, more clinical evidence to
demonstrate its clinical efficacy on tumor delineation is warranted. Clinical evaluation
plays a pivotal role in demonstrating the performance of the new technology in real-
world setting, which is essential prior to bench-to-bedside translation of the novel
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GFCE-MRI technique.

In this study, we invited two board-certified clinical oncologists and one
experienced medical physicist to conduct a series of clinical evaluations to investigate
the clinical efficacy of GFCE-MRI in radiotherapy of multi-institutional NPC patients.
Specially, the evaluations including image quality of GFCE-MRI (distinguishability
between CE-MRI and GFCE-MRI, clarity of tumor-to-normal tissue interface, veracity
of contrast enhancement in tumor invasion risk areas, and efficacy in primary tumor
staging), target volume delineation and treatment planning. To the best of our
knowledge, this is the first clinical evaluation study of GFCE-MRI in NPC radiotherapy
using multi-institutional MRI data. This study would fill the current knowledge gap and
provide the community with a clinical reference prior to clinical application of the novel

GFCE-MRI technique in NPC radiotherapy.

4.3 Methods and materials

4.3.1 Patient data

Patient data was retrospectively collected from three oncology centers in Hong Kong.
This dataset includes 378 biopsy-proven (stage I-1Vb) NPC patients who received
radiation treatment during 2012-2016. The three hospitals were labelled as Institution-
1 (134 patients), Institution-2 (71 patients), and Institution-3 (173 patients),
respectively. For each patient, Tlw MRI, T2w MRI, gadolinium-based CE-MRI, and
planning CT (with original organs at risk contours) were retrieved. MRI images were
automatically registered since MRI images for each patient were scanned in the same

position. The use of this dataset was approved by the Institutional Review Board of the
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University of Hong Kong/Hospital Authority Hong Kong West Cluster (HKU/HA
HKW IRB) with reference number UW21-412, and the Research Ethics Committee
(Kowloon Central/Kowloon East) with reference number KC/KE-18-0085/ER-1. Due
to the retrospective nature of this study, patient consent was waived. In our dataset, the
primary tumor stage (T-stage) for majority patients were stage-lll, accounting for
56.06% of the whole dataset, while patients with other stages were 15.40%, 10.76%,
and 17.78% for stage-I, stage-ll, and stage-1V, respectively. In this multi-institution
study, we only focused on the head and neck region where the primary tumor was
located due to the limited anatomical region for training with deep learning techniques.
For model development, 288 patients were used for model training and 90 patients were
used for model testing. The details of patient characteristics and the number split for
training and testing of each dataset were illustrated in Table 4-1. Prior to model
training, MRI images were resampled to 256*224 by bilinear interpolation (Gribbon &

Bailey, 2004) due to the inconsistent matrix sizes of the three datasets.

Table 4-1. Details of the multi-institutional patient characteristics. FS: field strength; TR:

repetition time; TE: echo time; No.: Number; Avg: average.

Institution Patient No. . Contrast
(vendor-FS) (train/test) Avg. age Sex Modality TR (ms) TE (ms) Density
Institution-1 134 56+11 Male: 98 Tlw 562 -739 13-17 /

(Siemens-1.5T) (105/29) Female: 36 Tow 7640 97 /
CE-MRI 562 - 739 13-17 0.1lmmol/kg

Institution-2 71 49+ 15 Male: 55 Tlw 48-94 24-8.0 /

(Philips-3T) (53/18) Female: 16 T2w 3500 - 4900 50 - 80 /
CE-MRI 48-94 24-8.0 0.1lmmol/kg

Institution-3 173 57+12 Male: 136 Tlw 620 9.8 /

(Siemens-3T) (130/43) Female: 37 T2w 2500 74 /
CE-MRI 342 1.11 0.1lmmol/kg

4.3.2 GFCE-MRI synthesis network
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The MMgSN-Net was applied to learn the mapping from T1lw MRI and T2w MRI to
CE-MRI. The MMgSN-Net was a 2D network. The effectiveness of this network in
GFCE-MRI synthesis for NPC patients has been demonstrated by a previous study (Li,
Xiao, et al., 2022). Tlw MRI and T2w MRI were used as input and corresponding CE-
MRI was used as learning target. In this work, we obtained 12806 image pairs for model
training and 3589 image pairs for testing. Different from the original study, which used
single institutional data for model development and utilized min-max value of the
whole dataset for data normalization, in this work, we used mean and standard deviation
of each individual patient to normalize MRI intensities due to the heterogeneity of the

MRI intensities across institutions.

4.3.3 Clinical evaluations

In this study, we attempted to conduct a series of clinical evaluations to investigate the
efficacy of GFCE-MRI in assisting primary GTV delineation for NPC patients. The
evaluation methods used in this study included image quality assessment of GFCE-
MRI, target volume delineation, and treatment planning. Two board-certified clinical
oncologists (D.Z. and Z.H. with 8 years’ and 6 years’ clinical experience, respectively)
were invited to perform the GFCE-MRI quality assessment and target volume
delineation, and one clinical physicist (Z.C. with 7 years’ treatment planning
experience) was invited to generate treatment plans using the GFCE-MRI based
contours that were delineated by the participating oncologists. Considering the clinical
burden of oncologists and the physicist, 30 patients (10 patients from each center) were

randomly selected for clinical evaluations, including 15 real patients (5 patients each
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center) and 15 corresponding synthetic patients (5 patients each center). All clinical
evaluations were performed on an Eclipse workstation (V5.0.10411.00, Varian Medical
Systems, USA) by the oncologists and physicist. The results were obtained under the

consensus of the two oncologists.

4.3.4 Image quality of GFCE-MRI

To evaluate the general quality of synthetic GFCE-MRI against the real CE-MRI, we
conducted four radiotherapy-related evaluations: distinguishability between CE-MRI
and GFCE-MRI, clarity of tumor-to-normal tissue interface, veracity of contrast
enhancement in tumor invasion risk areas, and efficacy in primary tumor staging. The
GFCE-MRI and CE-MRI volumes were imported as individual patients to Eclipse
system and randomly and blindly shown to oncologists for evaluation. The MRI
volumes were shown in axial view, sagittal view and coronal view, and the oncologists

can scroll through the slices to view adjacent images.

Distinguishability between CE-MRI and GFCE-MRI:

To evaluate the reality of GFCE-MRI, oncologists were invited to differentiate the
synthetic patients from real patients. Different from the previous studies that utilized
limited number (20-50 slices, axial view) of 2D image slices for reality evaluation
(Kleesiek et al., 2019a; Li, Xiao, et al., 2022), we used 3D volumes in this study to help
oncologists visualize the inter-slice adjacent information. The judgement results were

recorded and the accuracy for each institution and the overall accuracy were calculated.

Clarity of tumor-to-normal tissue interface:
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The clarity of tumor-normal tissue interface is critical for tumor delineation, which
directly affects the final delineation outcomes. Oncologists were asked to use a 5-point
Likert scale ranging from 1 (poor) to 5 (excellent) to evaluate the clarity of tumor-to-
normal tissue interface. Paired two-tailed t-test (with a significance level of p = 0.05)
was applied to analyse if the scores obtained from real patients and synthetic patients

are significantly different.

Veracity of contrast enhancement in tumor invasion risk areas:

In addition to the critical tumor-normal tissue interface, the areas arounding the NPC
tumor will also be considered during delineation. To better evaluate the veracity of
contrast enhancement in GFCE-MRI, we selected 25 tumor invasion risk areas
according to (Liang et al., 2009), including 13 high-risk areas and 12 medium-risk
areas, and asked oncologists to determine whether these areas were at risk of being
invaded according to the contrast-enhanced tumor regions. The 13 high-risk areas
include: retropharyngeal space, parapharyngeal space, levator veli palatine muscle,
prestyloid compartment, Tensor veli palatine muscle, poststyloid compartment, nasal
cavity, pterygoid process, basis of sphenoid bone, petrous apex, prevertebral muscle,
clivus, and foramen lacerum. The 12 medium-risk areas include foramen ovale, great
wing of sphenoid bone, medial pterygoid muscle, oropharynx, cavernous sinus,
sphenoidal sinus, pterygopalatine fossa, lateral pterygoid muscle, hypoglossal canal,
foramen rotundum, ethmoid sinus, and jugular foramen. The areas considered at risk of

invasion were recorded.

The JI (Fletcher & Islam, 2018) was utilized to quantitatively evaluate the
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results of recorded risk areas from CE-MRI and GFCE-MRI. The JI could be calculated

by:

JI = |Rcg N Rycgl/IRce U Rycel (4-1)

where Rz and Ry g represents the set of risk areas that recorded from CE-MRI and
corresponding GFCE-MRI, respectively. JI measures similarity of two datasets, which

ranges from 0% to 100%. Higher JI percentage indicates more similar of two risk areas.

Efficacy in primary tumor staging:

A critical radiotherapy-related application of CE-MRI is tumor staging, which plays a
critical role in treatment planning and prognosis prediction (Lee et al., 2018). To assess
the efficacy of GFCE-MRI in NPC tumor staging, oncologists were asked to determine
the stage of the primary tumor shown in CE-MRI and GFCE-MRI. The staging results
from CE-MRI were taken as the ground truth and the staging accuracy of GFCE-MRI

was calculated.

4.3.5 Target volume delineation

GTV delineation is the foremost prerequisite for a successful radiotherapy treatment of
NPC tumor, which demands excellent precision (Jager et al., 2015). An accurate tumor
delineation improves local control and reduce toxicity to surrounding normal tissues,
thus potentially improving patient survival (Jameson et al., 2014). To evaluate the
feasibility of eliminating the use of GBCA by replacing CE-MRI with GFCE-MRI in
tumor delineation, oncologists were asked to contour the primary GTV under the
assistance of GFCE-MRI. For comparison, CE-MRI was also imported to Eclipse for
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tumor delineation but assigned as a different patient, which were shown to oncologists
in a random and blind manner. To mimic the real clinical setting, contrast-free T1w,
T2w MRI and corresponding CT of each patient were imported into the Eclipse system
since sometimes T1w and T2w MRI will also be referenced during tumor delineation,
the delineated contours were mapped to corresponding CT for treatment planning. Due
to both real patients and synthetic patients were involved in delineation, to erase the
delineation memory of the same patient, we separated the patients to two datasets, each
with the same number of patients, both two datasets with mixed real patients and
synthetic patients without overlaps (i.e., the CE-MRI and GFCE-MRI from the same
patient are not in the same dataset).When finished the first dataset delineation, there
was a one-month interval before the delineation of the second dataset. After the
delineation of all patients, the DSC (Balagopal et al., 2021) and HD (Yang et al., 2015)
of the GTVs delineated from real patients and corresponding synthetic patients were

calculated to evaluate the accuracy of delineated contours.

Dice similarity coefficient (DSC): DSC is a broadly used metric to compare the
agreement between two segmentations (Chang et al., 2009). It measures the spatial
overlap between two segmentations, which ranges from 0 (no spatial overlap) to 1

(complete overlap). The DSC can be expressed as:

DSC =2 * |Ccg N Coreel/(ICce| + 1CorcEl) (4-2)

where C.r and C;rcp represent the contours delineated from real patients and synthetic

patients, respectively.
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Hausdorff distance (HD): Even though DSC is a well-accepted segmentation

comparison metric, it is easily influenced by the size of contours. Small contours
typically receive lower DSC than larger contours (Schreier et al., 2020). Therefore, HD
was applied as a supplementary to make a more thorough comparison. HD is a metric
to measure the maximum distance between two contours. Given two contours Cy and

Cerce, the HD could be calculated as:

HD = max(max.X'ECCEd(xi CGFCE)I maxyECGFCEd(y’ CCE)) (4-3)

where d(x, Csrcr ) and d(y, Ccg ) represent the distance from point x in contour C. to

contour Cercr and the distance from point y in contour Cspcg to contour Ceg.

4.3.6 Treatment planning

Measures such as DSC and HD sometimes do not reflect the clinical impact in actual
radiotherapy treatment (Schreier et al., 2020). To measure the real clinical dose
disagreement between contours delineated from CE-MRI and GFCE-MRI, the
dosimetric differences between PTVs of real patients and synthetic patients were
compared. The PTVs were delineated for each patient based on C.r and Cgrcp by
oncologists according to clinical guidance and their clinical experience. The delineated
PTVs were labelled as P for real patients and P;p-r for synthetic patients,
respectively. The PTV receiving 70Gy (PTV70), 66Gy (PTV66), and 60Gy (PTV60)
were delineated by oncologists for each patient. A VMAT plan was generated by the
physicist based on Pgrcr With prescription dose of 70Gy. Original organs at risk

contours were transferred into the planning CT for dose limitation of normal organs.
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The Py of each patient was also transferred to corresponding synthetic patient for dose
distribution comparison. After treatment planning, the dose-volume histogram (DVH)
was compared. Similar to (Kazemifar et al., 2019), the minimum dose delivered to 5%
volume (Ds%), minimum dose delivered to 95% volume (Dgse), maximum dose (Dmax)
and the mean dose (Dmean) Of Pcg and P;pcr Were calculated and compared for each
patient. Paired two-tailed t-test was performed (with a significance level of p = 0.05) to

analyze if there are significance difference in these metrics between P.y and Pgpcg.

4.4 Results

4.4.1 Image quality of GFCE-MRI

Table 4-2 summarizes the results of the four GFCE-MRI quality evaluation metrics,
including: (A) distinguishability between CE-MRI and GFCE-MRI; (B) clarity of

tumor-to-normal tissue interface; (C) veracity of contrast enhancement in tumor

invasion risk areas; and (D) efficacy in primary tumor staging.

(A) Distinguishability between CE-MRI and GFCE-MRI: The overall judgement

accuracy for the MRI volumes was 53.33%, which is close to a random guess accuracy
(i.e., 50%). For Institution-1, 2 (/5) real patients were judged as synthetic and 1(/5)
synthetic patient was considered as real. For Institution-2, 2(/5) real patients were
determined as synthetic and 4(/5) synthetic patients were determined as real. For
Institution-3, 2(/5) real patients were judged as synthetic and 3(/5) synthetic patients
were considered to be real. In total, 6(/15) real patients were judged as synthetic and

8(/15) synthetic patients were judged as real.
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(B) Clarity of tumor-to-normal tissue interface: The overall clarity scores of tumor-to-

normal tissue interface for real and synthetic patients were 3.67 with a median of 4 and
3.47 with a median of 4, respectively. No significant difference was observed between
these two scores (p = 0.38). The average scores for real and synthetic patients were 3.6
and 3, 3.6 and 3.8, 3.8 and 3.6 for Institution-1, Institution-2, and Institution-3,
respectively. 5(/15) real patients got a higher score than synthetic patients and 3(/15)
synthetic patients obtained a higher score than real patients. The scores of the other 7

patient pairs were the same.

(C) Veracity of contrast enhancement in tumor invasion risk areas: The overall JI score

between the recorded tumor invasion risk areas from CE-MRI and GFCE-MRI was
74.06%. The average JI obtained from Institution-1, Institution-2, and Institution-3
dataset were similar with a result of 71.54%, 74.78% and 75.85%, respectively. In total,
126 risk areas were recorded from the CE-MRI for all of the evaluation patients, while
10 (7.94%) false positive high risk invasion areas and 9 (7.14%) false negative high

risk invasion areas were recorded from GFCE-MRI.

(D) Efficacy in primary tumor staging: A T-staging accuracy of 86.67% was obtained

using GFCE-MRI. 13(/15) patient pairs obtained the same staging results. For the
Institution-2 data, all synthetic patients observed the same stages as real patients. For
the two T-stage disagreement patients, one synthetic patient was staged as phase IV
while the corresponding real patient was staged as phase 111, the other synthetic patient

was staged as | while corresponding real patient was staged as phase Il1.

Table 4-2. GFCE-MRI image quality evaluation results in: (A) Distinguishability between CE-
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MRI and GFCE-MRI; (B) Clarity of tumor-to-normal tissue interface; (C) Veracity of contrast

enhancement in risk areas; and (D) T-staging.

(A) Distinguishability between CE-MRI . . )
(B) Clarity of tumor-to-normal tissue interface

and GFCE-MRI
Institution-1  Institution-2  Institution-3 Institution-1 Institution-2 Institution-3
/ / / Real Syn Real Syn Real Syn
Center
70% 40% 50% 3.6 3 3.6 3.8 3.8 3.6
average
Overall
53.33% Real: 3.67 Syn: 3.47
average
(C) Veracity of contrast enhancement in . . . .
. (D) Efficacy in primary tumor staging
risk areas
Institution-1  Institution-2  Institution-3 Institution-1 Institution-2 Institution-3
Center
71.54% 74.78% 75.85% 80% 100% 80%
average
Overall
74.06% 86.67%
average

4.4.2 Target volume delineation

The average DSC and HD between the C-g and C;pcp Was 0.762 (0.673-0.859) with a
median of 0.774 and 1.932mm (0.763mm-2.974mm) with a median of 1.913mm,
respectively. For Institution-1, Institution-2, and Institution-3, the average DSC were
0.741, 0.794 and 0.751 respectively, while the average HD were 2.303mm, 1.456mm,
and 2.037mm respectively. Figure 4-1 illustrated the delineated primary GTV contours
from an average patient with the DSC of 0.765 and HD of 1.938mm. The green contour
shows the primary GTV that delineated form the synthetic patient, while the red contour

was delineated from corresponding real GBCA-based patient.
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(a) Axial view (b) Coronal view (c) Sagittal view (d) 3D volume

Figure 4-1. lllustration of the primary GTVs from a typical patient with an average DSC and
HD. The green volume was delineated from the synthetic patient, while the red volume was

delineated from the real GBCA-based patient.

4.4.3 Treatment planning

Table 4-3 illustrates the dosimetric differences between the P.z and Pgg-g. The overall
dose difference between P;rcr and P was less than 1% for all of the Dso, D50, Dmax,
and Dmean. NO significant difference was observed between Pg;r-r and Pz for these
dose metrics (p > 0.05). Less than 0.5Gy dose difference were obtained for Ds
(0.046Gy), Dmax (0.055Gy), and Dmean (0.398Gy). Figure 4-2 shows the isodose lines
(Figure 4-2(A)) and DVH (Figure 4-2(B)) of a typical patient. Red line and green line
represent P;rcr and Pp respectively in both sub-figures. From Figure 4-2(A), we
observed that the P;rcr and Pqg contours overlapped well, and the prescription 70Gy
region (translucent red) covers well with both P;pcr and Pqg. From Figure 4-2(B), we

see that the DVH of P;r-z matches well with DVH of Pj.

Table 4-3. The dose distribution differences between P¢g and Pggcg With respect to Dso, Dosos,

Dmax, and Dmean. NS: not significant. Pcg: planning target volume from CE-MRI, PgpcE:
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planning target volume from GFCE-MRI.

Metric Mean dose differences (range) p-value
Ds, 0.043Gy (-0.287Gy ~0.230Gy) NS (p=0.12)
Doso 0.960Gy (-0.115Gy ~2.581Gy) NS (p=0.20)
Drmax -0.074Gy (-1.103Gy ~0.138Gy) NS (p=0.48)
Diean 0.271Gy (-0.184Gy ~0.879Gy) NS (p=0.17)

Dose [Gy]
39.6

[
5
8
H
3
E
5
e
o
L
8
&

50 60
Relative dose [%]

Figure 4-2. (A) Dose distribution comparison of P;pcr and P from a single VMAT plan with
prescription dose of 70Gy. The most inner red line and green line are Pgpcp and Pgg,
respectively. (B) DVH plot with P;r-z and P, squares and triangles are based on P;pqr and

P, respectively.

4.5 Discussion
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The GBCA has been used for decades to improve the visibility of tumors and has been
considered essential in GTV delineation, especially for the highly infiltrative NPC
tumors. Since 2006, several GBCA-related safety issues have been reported (Flood et
al., 2017; Kanda et al., 2015a; H. S. Thomsen, 2006). To provide a safe and high-quality
clinical care, deep learning-based GFCE-MRI technics have been proposed in recent
years, aiming at replacing the use of GBCA-based CE-MRI via utilizing the
multiparametric information from contrast-free MRI sequences. However, most of
these studies are technical contributions or feasibility studies in different anatomy
structures using single institutional data. In this study, we conducted a series of GFCE-
MRI-based clinical evaluations using multi-institutional MRI data to explore the
clinical efficacy of using the GFCE-MRI for GTV delineation in NPC patients. The
evaluations included overall image quality of synthetic GFCE-MRI, the performance
of GFCE-MRI in target volume delineation, and dosimetric discrepancy between the
dose generated from GFCE-MRI-based plans and real CE-MRI-based plans. To the best
of our knowledge, this is the first clinical-oriented study of GFCE-MRI in radiotherapy.
In this discussion, we sought to highlight our main findings, discuss the possible

reasons, and provide potential future directions for the research community.

The evaluations for image quality of GFCE-MRI showed that the quality of
synthetic GFCE-MRI is highly similar to the gadolinium-based CE-MRI, as shown in
Table 4-2. Firstly, itis challenging for oncologists to distinguish the real CE-MRI from
synthetic GFCE-MRI, which obtained a judgement accuracy of 53.33%. This result is
slightly better than random guessing (i.e., with an accuracy of 50%), indicating that the
generated GFCE-MRI has similar image quality compared to real CE-MRI. The
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judgement accuracy in this study is similar to the reported results from the previous
study (Li et al., 2022). However, the previous work used limited 2D images (50 single
images, axial view) for evaluation, the inter-slice adjacent information was not
considered, while we used the 3D volume in this study, meaning that the axial view,
coronal view and sagittal view were also shown to the oncologists for evaluation.
Secondly, for the critical delineation-related tumor-to-normal tissue interface, we
observed no significant difference between the CE-MRI and GFCE-MRI, suggesting
that the synthetic GFCE-MRI preserves the similar tumor-to-normal tissue interface
clarity compared to CE-MRI. Thirdly, for the veracity evaluation of tumor invasion risk
areas, the JI of risk areas obtained 74.06% between the CE-MRI and GFCE-MRI. In
total, 126 risk areas were recorded from the CE-MRI for all of the evaluation patients,
while we recorded 10 (7.94%) false positive high risk invasion areas and 9 (7.14%)
false negative high risk invasion areas from GFCE-MRI, indicating there are still some
mis-enhancement in tumor-surrounding risk areas. Lastly, we obtained a T-staging
accuracy of 86.67% using GFCE-MRI. In our experiments, only two synthetic patients
were mis-staged, indicating that most synthetic cases were with the similar quality in
the aspect of tumor staging, while still having few cases with unsatisfied staging
performance, which is potentially be improved by designing the deep learning model
focus on tumor and surrounding regions learning. As reported by oncologists, the

overall image quality of GFCE-MRI in NPC delineation is acceptable.

We obtained an average DSC of 0.762 and an average HD of 1.932mm between
the GTV contours generated from real patients and synthetic patients, and we consider
this GFCE-MRI-based results are acceptable. As this is the first study to investigate
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clinical efficiency of GFCE-MRI in NPC delineation, these is no reference for
comparison. However, there are some automatically NPC delineation studies. Tsuji et
al. (Tsuji et al., 2010) applied a registration-based approach for adaptive GTV
delineation and obtained a DSC of 0.69 between the contours generated from their
approach and manually delineated contours, Yang et al. (Yang et al., 2015) proposed a
multichannel auto-segmentation method to automatically segment the GTV of head and
neck cancer, and they obtained a DSC of 0.75. Similarly, Guo et al. (Guo et al., 2019)
developed a Dense-Net to automatically segment the GTV from head and neck cancer
patients, they obtained a DSC of 0.73. Moreover, due to the complexity of nasopharynx
involves multiple critical structures such as parotid glands and neural systems, which
always challenges oncologists to consistently delineate the same target volume. As
reported by Lu et al. (Lu et al., 2006), the DSC of interobserver variations in GTV
delineation of head and neck patients is 0.75 for the same patient, which is similar to
our GFCE-MRI-based results (0.762). We consider that directly comparing the DSC
from different works is unsuitable since diverse datasets were used in different studies.
However, it is reasonable to conclude that the GFCE-MRI resulted in a good agreement

with ground truth GTV using these works as references.

Importantly, treatment planning is an essential evaluation for NPC radiotherapy,
which directly demonstrates the dosimetric performance of GFCE-MRI-based
contours. The dose distribution differences between P.r and P;rcr Shows that the dose
difference between these two PTVs was less than 1%, and we did not observe
significant dose difference between these two target volumes, suggesting that the GTV
contours delineated under assistant of GFCE-MRI is sufficient to generate clinically
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equivalent treatment plans. In a study performed by Kazemifar et al. (Kazemifar et al.,
2019), they generated synthetic CT from CE-MRI for treatment planning and clinically
evaluated the synthetic CT on 14 patients. They found the dose error was also within

1% and demonstrated the effectiveness of their work.

There are several limitations of the current deep learning-based GFCE-MRI
technique. Firstly, the GFCE-MRI generated from different institutions obtained
variated clinical results, as shown in Table 4-2(A), suggesting there exists large multi-
institutional MRI heterogeneous, which could potentially influence wide applications
of the GFCE-MRI technique. As such, methodologies to solve the multi-institutional
data heterogeneous problem for GFCE-MRI synthesis will be an interesting area to be
explored in the future. Secondly, as shown in the results of clarity of tumor-to-normal
tissue interface and T-staging, there were still slight disagreements between the GFCE-
MRI and real CE-MRI for the tumor and surrounding invasion risk areas, suggesting a
potential to further improve the model performance, especially in regions of tumor and
surrounding risk areas. We believe that this issue could be alleviated by including more
MRI data and advanced deep learning architecture for model development. Then, a
limitation of this study is that we did not conduct the clinical evaluations of metastasises
such as neck lymph nodes and other metastatic anatomies due to the restriction of the
diseased areas for model training. This could be a future study for using contrast-free
MRI images of metastasises to synthesize the GFCE-MRI and evaluate its clinical

efficacy.

4.6 Conclusion
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In this study, we conducted a series of clinical evaluations to evaluation the potential
clinical efficacy of GFCE-MRI in radiotherapy of NPC patients. Results showed that
the GFCE-MRI has great potential to provide an alternative to GBCA-based CE-MRI
for NPC delineation. The improvement of model generalization ability to multi-
institutional MRI data and the model performance on tumor and surrounding risk areas

are warranted in future study to generate more accurate multi-institutional GFCE-MRI.

5. Discussion

Gadolinium associated safety issues have raised worldwide concerns in recent years.
To find an alternative to GBCA-based CE-MRI, in this study, we applied DL-assisted
GFCE-MRI technique to the field of radiotherapy and successfully developed a
MMgSN-Net to synthesize GFCE-MRI that tailored for NPC patients. Then, we
investigated and improved the MMgSN-Net model generalizability using multi-
institutional MRI data and patient-based data normalization, respectively. With the
assistance of two radiation oncologists and a clinical physicist, we conducted a series
of clinical evaluations to explore the clinical efficacy of the synthetic GFCE-MRI using
multi-institutional MRI data. In this discussion, we attempt to highlight our key
findings and limitations of the current research and provide our considerations for

future research.

5.1 Current key findings and limitations

In this study, we for the first time developed a MMgSN-Net to synthesize the GFCE-
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MRI that tailored for NPC patients. The major novelties of the MMgSN-Net are: (i) this
is the first model to synthesize the GFCE-MRI for application of radiotherapy and the
first study for NPC patients; (ii) the MMgSN-Net has the ability to extract the
complementary information from input T1w and T2w MRI for GFCE-MRI synthesis;
(iii) the quantitative results indicate the MMgSN-Net outperforms state-of-the-art U-
Net, CycleGAN, and Hi-Net, and the Turing test results show the clinical oncologists
were difficult to differentiate the GFCE-MRI from the real CE-MRI. Nevertheless,
there are some limitations about the current work: (i) during the model development,
MMgSN-Net was trained with small-sized NPC data from single institution. Synthesis
failure may be observed for specific patients with unseen pattern; (ii) the MMgSN-Net
is a supervised model. The performance of MMgSN-Net highly relies on the input-

target alignment performance.

A generalizable GFCE-MRI model is highly needed for clinical practice, which
enables the trained model could be directly used in external data. Training a
generalizable GFCE-MRI model is challenging due to the highly heterogenous external
MRI data. To investigate the MMgSN-Net model generalizability and explore potential
solutions to improve the model generalizability, we utilized MRI from seven
institutions to train and test different models with different normalization methods.
According to our results, we found that using multi-institutional MRI for model training
was helpful for improving the model generalizability. We also observed that Z-Score
normalization makes multi-institutional results comparable and helps model
generalizability improvement compared to the wildly used Min-Max normalization.
The main limitations of this study are: (i) the patient samples of external testing datasets
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were limited; and (ii) our findings were obtained from the proposed MMgSN-Net. More

models could be involved to further validate our current observations.

Clinical evaluation of the GFCE-MRI is essential for bench-to-bedside
translation of this technique. To assess the clinical efficacy of the synthetic GFCE-MRI,
we conducted a series of clinical evaluations. Our results indicate that the GFCE-MRI
is highly promising for NPC delineation. The dosimetric differences between synthetic
patients and real patients were less than 1%. However, the main limitations of this study
are: (i) the results were obtained from two oncologists from the same cancer center.
Considering the large NPC delineation variations across oncologists, more oncologists
from different cancer centers are warranted to obtain a more robust conclusion; (ii) the
contrast enhancement accuracy of tumor surrounding risk regions still needs to be
improved, this could be alleviated by improving the model performance by including
more patient samples for model training or making the model focus on tumor and

surrounding risk regions during training.

5.2 Future directions

There are still several aspects need to be explored in future research for more

comprehensive analysis.

Firstly, though we have utilized multi-institutional data for model
generalizability analysis, these institutions are all located in Hong Kong, and the
number of patients were limited. The patients from different countries or regions may

have bias in MRI characteristics. In addition, due to the limited number of patient
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samples, we did not focus on specific patient group such as children and old populations.
MRI characteristics such as image shape and tumor size may vary among sub-age
groups. Herein, in terms of patient characteristics, a larger number of MRI data from

different geographic patients and sub-age groups are warranted for more robust analysis.

Then, MRI data from more institutions should be involved to develop a
generalization GFCE-MRI model in future study. Though the data of our work is
retrieved from multiple institutions, which were generated from different patients and
scanned with varies image protocols using different image machines, we did not focus
on investigate the influence of scanning machine or imaging protocols to model
generalizability due to the number of patients from each scanning machine and imaging
protocol is limited. Currently we know that multi-institutional data is critical to validate
or improve the model generalizability. Nevertheless, the heterogeneity of MRI, such as
different MRI contrasts, resolutions, noises, or artifacts etc., are mostly caused by
different imaging parameters and conditions of scanning machines in specific
institutions, which makes a well-trained model cannot generalize to external MRI. So,
the problem of multi-institutional data is a matter of the imaging parameters and
scanning machine conditions for MRI data. Combining with the results we have
observed in our current work, we consider that besides the patient characteristics, a key
factor to improve the GFCE-MRI model generalizability is to involve the MRI data
from various MRI scanners (E.g., the MRI machines from different manufactures with
different field strength and model, etc.) with multiple scanning parameters (e.g., TE,
TR, number of excitation (Nex), etc.) for model development. Additionally, there are
two factors that may affect the model generalizability: the type of GBCA used during
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CE-MRI imaging and the scanning start time and duration, which may affect the tumor
contrast in generated CE-MRI. Due to the CE-MRI imaging is a dynamic process, the
degree of contrast enhancement in CE-MRI for specific patients depends on the
harmonization between scanning start time and patient metabolism velocity. The
difference of contrast enhancement in CE-MRI may increase the MRI heterogeneity of
CE-MRI, even with the same scanning conditions. Considering the patient privacy,
collecting MRI data from multiple institutions, and combining them to develop a
generalizable GFCE-MRI model is challenging. In recent years, federated learning has
been proposed to protect patient privacy. Federated learning (Li et al., 2020) is a
machine learning technique that enables integrating multi-institutional data for model
training while without data sharing, which is potential for developing a GFCE-MRI
model with higher accuracy and improved generalizability. Herein, we believe the
application of federated learning in GFCE-MRI synthesis should be another interesting

future direction to improve the GFCE-MRI model generalizability.

Finally, investigation of GFCE-MRI technique in radiotherapy of other cancer
types than NPC could be another future research direction. Though GFCE-MRI
technique in other cancer types such as brain cancer, liver cancer and breast cancer has
been investigated, these studies were focus on non-radiotherapy applications such as
disease diagnosis. In radiotherapy, the CE-MRI is used for different applications, such
as target delineation and tumor staging, so the application of GFCE-MRI technique in
radiotherapy has its own specialty and will face different challenges (E.qg., radiotherapy
pays more attention on the size of tumor and its boundary). Moreover, radiotherapy in
different cancer types will face anatomy-specific challenges, such as the respiratory

96



motion of the liver in liver cancer radiotherapy. Feasibility studies of GFCE-MRI in

different cancer types will be another interesting area to be explored in the future.

6. Conclusion

In this study, we for the first time developed a MMgSN-Net for synthesizing GFCE-
MRI for radiotherapy of NPC patients. To apply the MMgSN-Net from bench to
bedside, we further investigated and improved the generalizability of MMgSN-Net, and
clinically evaluated the efficacy of the synthetic GFCE-MRI using multi-institutional
data. To the best of our knowledge, this is the first work to apply DL to synthesize the
GFCE-MRI for radiotherapy of NPC patients. The application GFCE-MRI technique

to radiotherapy of other cancer types is warranted for future investigations.
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