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ABSTRACT 

Fashion design typically involves composing elements and concepts, where designers 

select and harmonize colors, patterns, prints, and consider functional attributes like 

collar types, sleeve length, and overall fit. This process, reflecting the designer's 

creativity and market preferences, usually requires iterative modifications and can be 

time-consuming even for experts. Although recent advances in generative models offer 

efficient and effective way of processing of fashion images, applying these models in 

design remains challenging. The generative models primarily map random noise into 

an image, and the process is arbitrary and uncontrollable that requires multiple attempts 

to achieve a satisfactory image, meeting certain specific requirements. 

 

A primary solution in enhancing the experience of generating desired garment images 

could involve detailed supervisory information. For instance, by collecting a fashion 

garment dataset with detailed annotations of each design element, the generative 

models could learn a conditional mapping from specific elements to the desired garment 

image. However, an obvious drawback of such a solution is the requirement of tedious 

annotation, which could be time-consuming and expensive. Moreover, those labels 

usually consider a discrete attribute where each element will be assigned to a category. 

When using such a model to consider the design process, its flexibility is limited as 

there are multiple design elements that are hard to categorize, e.g., colors and/or 
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textures. 

 

To address the above-mentioned challenges in controllability and flexibility, this study 

develops generative models involving a decoupling method in the data collection and 

training. The overall motivation is to decouple a garment image into different 

modalities of data, each representing different design elements. For instance, the HED 

model is utilized to extract sketches that represent spatial level attributes like collars, 

lengths, and overall shapes. At the texture level, the cropped image patches are 

employed. These decoupled data, derived partially from the original garment images, 

are used to train generative models with the capable of reconstructing the original 

images. The trained model enables control over the synthesized garment image by 

selecting specific design elements during the inference stage.  

 

Building on this capability, this thesis introduces an image processing system that 

involves two models: a controllable generation model and a flexible editing model, each 

targeting different fashion image processing tasks. The first model, called SGDiffs, 

focuses on the control over texture, the generation model leverages randomly cropped 

texture patches and text prompts to reconstruct garments. Once trained, it uses texture 

patches as decoupled style condition to control the synthesized garment images. 

Subsequently, an editing model, called CoDE-GAN, is introduced to modify the shape 

of fashion images. It learns the editing function by reconstructing masked images using 
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sketch maps. The two models can work independently or integratively as one system, 

enabling effective and flexible control in the generation and editing of fashion images. 

Both models have been comprehensively evaluated to demonstrate their specific 

advantages in comparison of other state-of-the-art models. 

 

Keywords: Fashion image generation; image editing; generative adversarial network; 

diffusion model; decoupled conditions 
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Chapter 1. INTRODUCTION 

1.1 Research Background 

Artificial intelligence (AI) has become a competitive necessity after decades of 

scientific fantasy, according to a report by the Deloitte Institute for Artificial 

Intelligence (Davenport, 2018). This advancement has significantly enhanced various 

aspects of the fashion design process. Furthermore, AI’s role in simplifying and 

enhancing the design process is particularly evident in the domain of fashion. In this 

study, we refer to computer vision-based fashion technology as intelligent fashion. This 

is largely due to the visual nature of fashion, which has attracted many computer vision 

researchers to realize the immense potential of AI technology in this filed. The growing 

interest in intelligent fashion extends across the domain of computer vision and 

multimedia, as evidenced by the numerous applications of machine learning and neural 

networks with a fashion focus. 

 

The advancements in computer vision, especially in the areas such as deep learning, 

have led to significant breakthroughs (Cheng et al., 2021). Figure 1-1 shows a few 

research applications of intelligent fashion. For instance, fashion clothing classification 

(Zhang et al., 2020) recognizes product attributes from fashion images, which benefits 

the analyses of fashion trend. For another example, fashion landmark localization (Qian 

et al., 2021) detects the key points of clothing which contributes more accurate 
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extraction and recognition of fashion attributes. Moreover, fashion parsing 

  
(a) (b) 

  
(c) (d) 

Figure 1-1 Several Research Work of Intelligent Fashion: (a) Fashion Clothing 

Classification and Attribute Recognition (Zhang et al., 2020), (b) Fashion 

Landmark Localization (Qian et al., 2021), (c) Semantic Segmentation of 

Fashion Images (Gong et al., 2018), and (d) Image-based virtual try-on 

(Neuberger et al., 2020). 

(Gong et al., 2018) achieves a pixel-level classification of fashion item and body parts 
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on fashion images, assisting a higher level of image understanding. Taking advantage 

of these research work, virtual try-on (Neuberger et al., 2020) is a downstream task that 

allows people to virtually try-on new clothing from the internet that shows great 

potentials on commercial usage. In addition to virtual try-on, the research work of 

intelligent fashion can also provide auxiliary information, benefiting other downstream 

applications like fashion recommendation (Dubey, 2021; Hou et al., 2019; Yang et al., 

2021; Zhan et al., 2021) or fashion recognition (P. Li et al., 2019; Su et al., 2020; Zhang 

et al., 2019). 

 

Other than the above-mentioned applications, another key area where AI proves 

invaluable is in generating and editing design images. By automating repetitive tasks, 

AI not only reduces costs but also accelerates the creation of new designs, a process 

that traditionally takes designers extensive time and effort to accomplish. This rapid 

generation of diverse design drawings by AI, which would be impossible for human 

designers in comparable time, is particularly crucial in meeting the dynamic demands 

of the fashion industry. 

 

The diverse generative capability of AI effectively enhances the design process, 

especially in the creation and updating of prototype images. Traditionally, designing 

and creating these prototypes has been a complex, expensive, and labor-intensive task, 

primarily due to the time-consuming process of transforming initial drafts into detailed 
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design drawings. Fashion designers have historically relied heavily on the expertise to 

bring ideas to life, with close attention to materials, colors, silhouettes, patterns, and 

construction techniques. With the availability and accessibility of ample digital 

resources of fashion images online, e.g. via e-commerce platforms and trend research 

repository, the process of design has undergone a significant change. Designers 

nowadays can conduct extensive design research more efficiently through these online 

resources to come up with new design ideas.  

 

Given the challenges in efficiently creating design prototypes and the need for 

collecting extensive image data in intelligent fashion applications, there emerges a 

demand for an advanced system capable of generating and editing high-quality fashion 

images. Therefore, this study develops an intelligent fashion image processing system 

that could efficiently generate and edit fashion images, thereby addressing the needs of 

both the design and intelligent fashion domains.  

 

To develop such a system, visual generative models like generative adversarial 

networks (GANs) and diffusion models are adapted. GANs train a generator model to 

convert random noise into a real image, with a discriminator model learning a distance 

metric for distributions (Goodfellow et al., 2014).  Instead, diffusion models diffuse an 

image to Gaussian noise and then learn to reverse this process to generate an image (Ho 

et al., 2020). However, both GANs and diffusion models primarily map noise to images 



 

5 

unconditionally, limiting their controllability over the synthesized results. 

 

To tackle this challenge in controllability, several researchers proposed incorporating 

more informative conditions into the synthesis process. For instance, Chen et al. (2016) 

introduced Info-GAN, which uses category information to control the process. Isola et 

al. (2017) developed a method for image translation, treating the synthesis process as a 

translation from an existing image. Nichol et al. (2022) proposed GLIDE, a UNet-like 

structure for posterior probability estimation in the denoising process, to incorporate 

text conditions so as to control synthesis directions. Furthermore, Rombach et al. (2022) 

investigated LDM model synthesizing high-resolution images with reasonable 

semantics using a Variational Autoencoder (VAE) to compress images into latent space 

and applying diffusion models to learn denoising in the latent space. 

 

Nevertheless, the above-mentioned works rely on labeled datasets for controllable 

generation, collecting category information, semantic segmentation maps, and text-

image pairs, thus limiting their application to manually labeled datasets. Moreover, 

these methods typically use a single data modality, such as texts or images, to control 

the generation. Considering the variations in generating high-quality images that 

capture the essence of the desired design elements, their approaches are inflexible. 

 

Therefore, to overcome the above-discussed challenges of controllability and flexibility, 
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this study proposes a two-stage framework that utilizes decoupled conditions for 

generating or editing fashion images without intensive manual labeling. 

1.2 Statements of the Problem 

There are three main challenges in designing and developing an effective generation 

and editing system for fashion images:  

1. The existing state of the art generation method primarily achieve high-fidelity 

results through text input. However, in the fashion domain, many design elements 

cannot be adequately described by natural language. The challenge lies in enabling 

the existing methods to incorporate style conditions as input while maintaining 

their original generation capabilities. 

2. For flexibly image shape editing, this thesis plan to use sketch map as a 

modification reference. A key challenge in fashion editing is managing significant 

changes over a large area. As the editing area increases, how could the model 

synthesis an image that reflects the shape of the sketch map while generating a 

texture consistent with the original image. 

3. The training of current gradient-based model algorithms typically requires 

supervisory information. Collecting data labels, such as pairs of style conditions 

and corresponding images or the pairs of sketch maps, input images, and edited 

images, can be both time-consuming and expensive. Developing a training scheme 

that could effectively utilize the existing datasets presents a beneficial yet 
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challenging task. 

1.3 Research Aim and Objectives 

This study aims to develop a system that can controllably generate fashion images and 

flexibly edit their shapes. In the generation stage, the user could employ textual 

description to control the design elements such as the cloth category and detailed 

attribute, and utilize texture image as style conditions to simultaneously control the 

texture of the results. In the editing stage, users could modify either a previously 

generated image or a real image. By providing a rough mask map to determine the 

editing region and a sketch map as condition for the target clothing shape, the proposed 

system can effectively generate the edited results. The specific objectives of this study 

are as follows: 

I. To comprehensively review the techniques for generating and editing images 

using generative adversarial networks and denoising diffusion probabilistic 

models. 

II. To fine-tune the existing text-to-image diffusion model in a parameter-efficient 

manner, allowing it to accept style conditions for controlling the synthesized 

cloth textures.  

III. To design a sketch-guided large-region editing pipeline to improve the 

performance of editing fashion images.  

IV. To discuss a unified model that integrates the aforementioned design concepts 



 

8 

into a complete system to achieve robust performance across multiple datasets. 

1.4 Methodology Overview 

The key motivation behind this work is to view the generation and editing process as 

an image reconstruction process. To effectively utilize the existing datasets, this study 

has formulated a reconstruction strategy based on the decoupled conditions, which are 

obtained through several automatic processes, avoiding the need for manual labeling. 

A two-stage system is proposed in the current study, involving a generation model and 

an editing model.  

 

In the generation model, a foreground segmentation network (Qin et al., 2019) is used 

to determine the foreground region, from which it then randomly crop an image patch 

to obtain style conditions 𝑐𝑐style. The textual description 𝑐𝑐text, can be synthesized by BLIP 

model (Li et al., 2022), an image captioning tool. During the training phase, the 

generation model 𝔾𝔾𝜃𝜃 is designed to reconstruct the original image 𝐼𝐼𝑔𝑔 using conditions 

𝑐𝑐style  and 𝑐𝑐text  simultaneously. Through this reconstruction scheme, the 𝔾𝔾𝜃𝜃  learns a 

decoupled representation for 𝑐𝑐style and 𝑐𝑐text. This process is described as below: 

𝐼𝐼𝑔𝑔 = 𝔾𝔾𝜃𝜃(𝑐𝑐text, 𝑐𝑐style) . (1-1) 

Since the generation requires the generated samples to be diverse, this paper adopts a 

diffusion model-based structure to implement 𝔾𝔾𝜃𝜃. The diffusion models are superior in 

synthesizing data with high diversity that reflects the nature of a distribution. This 

character is illustrated in Section 2.3.3. 
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Figure 1-2 The Overview of the Proposed Fashion Image Processing System in 

Generation and Editing. 

In the editing model, denoted as 𝔼𝔼𝜃𝜃, a network is trained in a reconstruction manner as 

well. Given an image 𝐼𝐼𝑒𝑒, its sketch map 𝑐𝑐sketch can be obtained through edge detection 

(Xie & Tu, 2015). The image 𝐼𝐼𝑒𝑒 is randomly masked with a given 𝑐𝑐mask, and 𝔼𝔼𝜃𝜃 is used 

to reconstruct 𝐼𝐼𝑒𝑒from the valid parts, using 𝑐𝑐mask, and 𝑐𝑐sketch as conditions. This process 

is illustrated as:  

𝐼𝐼𝑒𝑒 = 𝔼𝔼𝜃𝜃(𝐼𝐼𝑒𝑒 , 𝑐𝑐sketch, 𝑐𝑐mask) . (1-2) 

When editing a fashion garment, it may involve iterative modification until the result 

satisfies the user. Therefore, this editing model 𝔼𝔼𝜃𝜃  is achieved by a generative 

adversarial network instead of a diffusion model. This is because the diffusion model 

generates an image through a progressive generation pipeline that reverses a random 

noise to real data. It takes a lot of time to synthesize an image, which is not suitable for 

this flexible editing task. 
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After completing the reconstruction training as described in Equation (1-1) and (1-2), 

the models 𝔾𝔾𝜃𝜃 and 𝔼𝔼𝜃𝜃 are capable of independently conducting generation and editing 

tasks, respectively. Figure 1-2 illustrates the overall pipeline of the proposed method in 

the inference stage. The overall system has learned decoupled representations for 𝑐𝑐text, 

𝑐𝑐style , 𝑐𝑐mask , and 𝑐𝑐sketch , allowing users to replace these conditions with their own to 

represent different design elements. As a result, the proposed system can flexibly 

generate or edit an image. The detailed model design and its effectiveness examination 

will be discussed in Chapter 3 and Chapter 4, respectively.  

1.5 Organization of the Thesis 

This thesis is organized as follows. Chapter 2 reviews the fundamental development of 

deep learning methods. Section 2.1 provides the essential background on neural 

networks and their key mechanisms. Section 2.2 provides a basic definition of 

reinforcement learning and explains its fundamental working prototype. Section 2.3 

illustrates the scenario of generative models. Section 2.3.2 covers the development of 

generative adversarial networks, focusing on the improvements in stabilizing its 

training process and image quality. Section 2.3.3 reviews the recent advances in 

diffusion models capable of synthesizing high-fidelity images from textual descriptions. 

 

Chapter 3 introduces the generation model, called SGDiffs, for generating cloth images 
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that reflect user-provided text and style conditions. Section 3.1 introduces the model 

overall, while Section 3.2 reviews related works that in simultaneously utilizing text 

and image as inputs. The proposed methods are presented in Section 3.3. Section 3.4 

details the experimental setup in the generation model and discusses both qualitative 

and quantitative results. 

 

Chapter 4 describes the editing model, CoDE-GAN. Section 4.1 proposes an overview 

of this framework. Section 4.2 reviews the related works in sketch-controlled editing 

methods. Section 4.3 explains the detailed architecture of the model. Section 4.4 

discusses the data collection and experimental results.  

 

Finally, Chapter 5 concludes the current research findings and suggests directions for 

future work.  
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Chapter 2. LITERATURE REVIEW 

This study considers the general image editing task as a data-driven image generative 

task.  The data-driven refers that the whole pipeline requires to learn from existing data. 

Since this research domain mainly adopts deep learning methods, section 2.1 illustrates 

how the deep learning methods acquire intelligence from the data. For the generative 

task, section 2.3 illustrates how to project a sample from source distribution to target 

distribution. Section 2.3.2 introduces the generative adversarial networks that utilize 

deep learning blocks to generate new data. Section 2.3.3 reviews the denoising diffusion 

probabilistic models and how it achieves controllable generation. 

2.1 Deep Learning Method  

2.1.1 An Overview Development of Deep Learning 

Deep learning methods originated in 1943 as the neural network model (Fitch, 1944), 

which was known as multi-perceptron at that time. However, in 1969, Minsky and 

Papert (2017) proved that neural networks could not handle XOR problems. While also 

limited by the computer processor’s performance at that time, the development of 

neural networks stagnated for a considerable period. It was not until Rumelhart et al. 

(1986) proposed backpropagation optimization algorithm, which allowed neural 

networks to solve the XOR problems by stacking fully connected layers and nonlinear 

activation functions. From then on, neural networks could be called deep learning as 

well. Deep learning methods really came into the limelight from the ImageNet 
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challenge, where Krizhevsky et al. (2012) improved the neural networks with 

convolutional layers. Their proposed AlexNet outperformed than any other machine 

learning algorithms on the image classification task. Thus, deep learning methods began 

to be widely used in various AI tasks. This led to extensive research on deep learning 

for various artificial intelligence tasks.  

 

Figure 2-1 A Multi-Layer Perceptron. 

2.1.2 Fully Connected Neural Networks 

A fully connected neural network can also be called a multilayer perceptron. Figure 2-1 

shows a multilayer perceptron structure with single input and output layers and three 

hidden layers. This thesis denotes input 𝑋𝑋 ∈ ℝ𝑛𝑛×1 which is a vector, output 𝑦𝑦� which is 

a scalar. 𝐿𝐿𝑖𝑖 ∈ ℝ𝑚𝑚×1 denote the 𝑖𝑖th layer with 𝑚𝑚 nodes. For any given two layers 𝐿𝐿𝑖𝑖−1 ∈

ℝ𝑚𝑚×1  and 𝐿𝐿𝑖𝑖 ∈ ℝ𝑛𝑛×1 , the nodes between the two layers are connected two by two. 

Therefore, there are 𝑚𝑚 × 𝑛𝑛  edges with weights to represent their connections. The 

process of connecting nodes between two layers through weighted edges can be seen 
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as a weighted summation.  

2.1.2.1 The Feedforward Process 

This fully-connection process is regarded as feedforward process. Denote 𝑤𝑤𝑖𝑖 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 

as the weight matrix of the edges between layer 𝐿𝐿𝑖𝑖−1 ∈ ℝ𝑚𝑚×1   and 𝐿𝐿𝑖𝑖 ∈ ℝ𝑛𝑛×1 , the 

feedforward process is represented as equations: 

𝐿𝐿𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑇𝑇𝐿𝐿𝑖𝑖−1. (2-1) 

Hornik (1991)’s work reveals a universal approximation theorem for neural networks 

that a neural network with more than one hidden layer, if coupled with a nonlinear 

activation function, can fit any function with arbitrary accuracy through a finite number 

of nodes. One of the most used non-linear activation functions is sigmoid which is 

defined as follows: 

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
. (2-2) 

The Sigmoid function maps the input 𝑥𝑥 to a number with a value range between [0, 1]. 

This property allows the output of the network to be used as a probability. At the same 

time, Sigmoid possesses a good derivative property that facilitates the subsequent 

optimal solution of: 

𝜎𝜎(𝑥𝑥)′ = 𝜎𝜎(𝑥𝑥)�1 − 𝜎𝜎(𝑥𝑥)�. (2-3) 

Therefore, the Equation (2-1) could be re-formulated as: 

𝐿𝐿𝑖𝑖 = 𝜎𝜎(𝑤𝑤𝑖𝑖𝑇𝑇𝐿𝐿𝑖𝑖−1)
𝑦𝑦𝑖𝑖 = 𝜎𝜎(𝐿𝐿𝑖𝑖)

. (2-4) 

In Figure 2-1, there are three hidden layers 𝐿𝐿1 ∈ ℝ𝑗𝑗×1, 𝐿𝐿2 ∈ ℝ𝑘𝑘×1, and 𝐿𝐿3 ∈ ℝ𝑙𝑙×1, with 

corresponding weights matrix: 𝑤𝑤1 ∈ ℝ𝑛𝑛×𝑗𝑗 , 𝑤𝑤2 ∈ ℝ𝑗𝑗×𝑘𝑘 , and 𝑤𝑤3 ∈ ℝ𝑘𝑘×𝑙𝑙 . The feed-

forward process of this neural network can be defined as: 
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⎩
⎪⎪
⎨

⎪⎪
⎧𝐿𝐿1 = 𝑤𝑤1𝑇𝑇𝑋𝑋
𝑦𝑦1 = 𝜎𝜎(𝐿𝐿1)
𝐿𝐿2 = 𝑤𝑤2𝑇𝑇𝑦𝑦1
𝑦𝑦2 = 𝜎𝜎(𝐿𝐿2)
𝐿𝐿3 = 𝑤𝑤3𝑇𝑇𝑦𝑦2
𝑦𝑦� = 𝑦𝑦3 = 𝜎𝜎(𝐿𝐿3)

(2-5) 

2.1.2.2 Commonly Used Loss Functions 

After defining the model, certain criteria are needed to measure the goodness of the 

model in order to have an optimization direction. The criteria also called as loss function 

that usually is a distance measurement. It measures the difference between the model 

output and the true label. And according to the regression and classification problems, 

there are usually two types of loss functions as follows: 

1) 𝐿𝐿1 or  𝐿𝐿2 Distance: 

The definition of 𝐿𝐿1 or  𝐿𝐿2 distance comes from 𝐿𝐿𝑝𝑝 Norm. When the norm number 

𝑝𝑝 is taken as 1 or 2, the 𝐿𝐿1 or  𝐿𝐿2 is the 𝑝𝑝 norm of vector 𝑥𝑥. The vector 𝑥𝑥 is usually 

obtained by making a difference between the output 𝑦𝑦� predicted by the model and 

the true value 𝑦𝑦. For the 𝐿𝐿1 loss function, the extreme value of the optimization can 

be reached only when each component of 𝑥𝑥  is close to 0. Therefore, the 𝐿𝐿1  loss 

function is chosen as the optimization objective to obtain a sparser solution. And 𝐿𝐿2 

loss function, as the most used loss function, can measure the Euclidean distance 

between two vectors, because it does the square operation for each component of 𝑥𝑥, 

which is more sensitive to outliers. 

𝐿𝐿𝑝𝑝 = ||𝑥𝑥||𝑝𝑝 = �� 
𝑛𝑛

𝑖𝑖=1

|𝑥𝑥𝑖𝑖|𝑝𝑝 
𝑝𝑝

(2-6) 
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2) Cross Entropy: 

The definition of the cross-entropy loss function comes from the KL Divergence. 

In machine learning, practitioners often need to measure the difference between two 

distributions 𝑝𝑝(𝑥𝑥) and 𝑞𝑞(𝑥𝑥) for the same random variable. 𝑝𝑝(𝑥𝑥) represents the true 

distribution of the sample and 𝑞𝑞(𝑥𝑥)  represents the predicted distribution of the 

sample. This is when the KL divergence (also known as relative entropy) is 

measured, and the smaller the value of KL divergence, the closer the two 

distributions are: 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝 ∥ 𝑞𝑞) = � 
𝑛𝑛

𝑖𝑖=1

𝑝𝑝(𝑥𝑥𝑖𝑖)log �
𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑖𝑖)

�

= � 
𝑖𝑖

𝑝𝑝(𝑥𝑥𝑖𝑖)log �𝑝𝑝(𝑥𝑥𝑖𝑖)� −�  
𝑖𝑖

𝑝𝑝(𝑥𝑥𝑖𝑖)log �𝑞𝑞(𝑥𝑥𝑖𝑖)�
(2-7) 

The 𝑝𝑝(𝑥𝑥) involved in the first term, which is the true value, is used as a constant 

when the network is trained. While the second term contains the prediction of the 

network, which is the cross-entropy: 

CE = 𝑦𝑦 = −�  
𝑖𝑖

𝑝𝑝(𝑥𝑥𝑖𝑖) log�𝑞𝑞(𝑥𝑥𝑖𝑖)� (2-8) 

2.1.2.3 Error Backpropagation Algorithm 

From the feedforward process of Equation (2-5), the nature of the neural network is a 

composite function with parameters 𝑤𝑤1,  𝑤𝑤2,  𝑤𝑤3  to be optimized. This parameterized 

function can be optimized by the error backward propagation algorithm. For input 𝑋𝑋, 

the predicted output 𝑦𝑦� can be obtained by forward propagation of Equation (2-5). If the 

true output corresponding to input 𝑋𝑋 is defined as 𝑦𝑦, and there is a difference 𝐽𝐽 between 

𝑦𝑦�  and 𝑦𝑦 . The error back propagation is the process of propagating the output error 
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through the nodes of the network to the input nodes by layers. The errors will be 

distributed to different edges according to their gradients. By applying the error signals 

to correct the weights, the 𝑤𝑤 is iteratively updated in one round of learning species until 

the error is reduced to an acceptable level or the number of iterations reaches an upper 

limit. For simplicity, this paper illustrates the backpropagation process by taking 𝐿𝐿2 loss 

function as an example. There are:  

𝐽𝐽 =
1
2

||𝑦𝑦� − 𝑦𝑦||22 (2-9) 

The optimization objectives are reducing the difference between the predicted output 

of the neural network and the true output as small as possible. So, the process of 

optimizing the network parameters 𝑤𝑤1,  𝑤𝑤2,  𝑤𝑤3 is essentially solving an optimization 

problem: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑤𝑤
 𝐽𝐽 =

1
2

||𝑦𝑦� − 𝑦𝑦||22 (2-10) 

The essence of the error backpropagation algorithm is solving this optimization 

problem by gradient descent. Given a constant 𝜂𝜂 as the learning rate, there is an update 

formula for the neural network parameters as: 

Δ𝑤𝑤𝑖𝑖 = −𝜂𝜂
∂𝐽𝐽
∂𝑤𝑤𝑖𝑖

𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑖𝑖 + Δ𝑤𝑤𝑖𝑖
(2-11) 

In the other words, the parameters of the neural network can be updated iteratively by 

the chaining law to find the partial derivatives for each 𝑤𝑤𝑖𝑖  in 2-11. Here it firstly 

calculates the partial derivative for each layer of 𝐿𝐿𝑖𝑖: 

∂𝐽𝐽
∂𝐿𝐿3

=
∂𝐽𝐽
∂𝑦𝑦�

⋅
∂𝑦𝑦�
∂𝐿𝐿3

= (𝑦𝑦� − 𝑦𝑦) ⋅ 𝑦𝑦� ⋅ (1 − 𝑦𝑦�)
(2-12) 
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∂𝐽𝐽
∂𝐿𝐿2

=
∂𝐽𝐽
∂𝐿𝐿3

⋅
∂𝐿𝐿3
∂𝐿𝐿2

=
∂𝐽𝐽
∂𝐿𝐿3

⋅ 𝑤𝑤3 ⋅ 𝑦𝑦2 ⋅ (1 − 𝑦𝑦2)
(2-13) 

∂𝐽𝐽
∂𝐿𝐿1

=
∂𝐽𝐽
∂𝐿𝐿2

⋅
∂𝐿𝐿2
∂𝐿𝐿1

= 𝑤𝑤2
∂𝐽𝐽
∂𝐿𝐿2

⋅ 𝑦𝑦1 ⋅ (1 − 𝑦𝑦1)
(2-14) 

The corresponding partial derivatives of each 𝑤𝑤𝑖𝑖 is: 

∂𝐽𝐽
∂𝑤𝑤3

=
∂𝐽𝐽
∂𝐿𝐿3

⋅
∂𝐿𝐿3
∂𝑤𝑤3

= 𝑦𝑦2 ⋅
∂𝐽𝐽
∂𝐿𝐿3

(2-15) 

∂𝐽𝐽
∂𝑤𝑤2

=
∂𝐽𝐽
∂𝐿𝐿2

⋅
∂𝐿𝐿2
∂𝑤𝑤2

= 𝑦𝑦1
∂𝐿𝐿2
∂𝑤𝑤2

(2-16) 

∂𝐽𝐽
∂𝑤𝑤1

=
∂𝐽𝐽
∂𝐿𝐿1

⋅
∂𝐿𝐿1
∂𝑤𝑤1

= 𝑋𝑋
∂𝐿𝐿1
∂𝑤𝑤1

(2-17) 

2.1.2.4 Optimization Methods 

Section 2.1.2.3 discussed the basic optimization method, which is the error 

backpropagation, for solving the neural networks. This section will illustrate more 

detailed improvements on the optimization.  

 

1) Stochastic Gradient Descent (Bottou, 2012) 

The core idea of stochastic gradient descent (SGD) is that for each sample 𝑋𝑋, the 

feedforward process computes predicted output 𝑦𝑦� once. By applying the loss function 

for getting the error 𝐽𝐽, it is possible to calculate the partial derivatives ∂𝐽𝐽
∂𝑤𝑤𝑖𝑖

 for updating 

𝑤𝑤𝑖𝑖 . For each sample, the parameters will be updated once. Since the presenting of 
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samples is stochastic, the updating of gradients is stochastic as well. For a dataset 𝐷𝐷 

with 𝑀𝑀  samples, the one round completion of training is the traverses of the entire 

dataset. The parameters 𝑤𝑤𝑖𝑖 are updated a total of 𝑀𝑀 × 𝑁𝑁 times. The advantages of this 

method are that the samples randomly input into the network will carry some noise, 

which can avoid the overfitting phenomenon to some extent. The network can easily 

converge to the global optimal point with proper learning rate although the update of 

the network weights is not stable enough. 

 

2) Batch Gradient Descent (Bottou, 2012) 

Performing the SGD way of optimizing 𝑤𝑤𝑖𝑖  will update the parameters 𝑀𝑀 × 𝑁𝑁  

times. The batch gradient descent (BGD), however, goes to an extreme in the opposite 

direction of SGD that it updates the parameters only once for each epoch. The BGD 

will accumulate the gradients of all samples and calculate its mean value. For every 

epoch, the 𝑤𝑤𝑖𝑖 will be updated by the mean gradients once. When the network undergoes 

a complete BGD training with 𝑀𝑀 epochs, the parameters 𝑤𝑤𝑖𝑖 are updated a total of 𝑀𝑀 

times. The number of updates is independent of the size of the dataset and only related 

to the number of training epochs 𝑀𝑀. 

 

3) Mini-Batch Gradient Descent 

Mini-Batch is the current main method for training networks for deep learning, 

which combines SGD and BGD in a compromise. A Mini-Batch takes 𝐵𝐵  samples, 
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which is equivalent to dividing a sample set of number 𝑁𝑁 into 𝑁𝑁
𝐵𝐵

 . When the mini-batch 

optimization takes total sample amount 𝑀𝑀 of the dataset as batch size, it degrades to 

batch gradient descent. When the batch size takes 1, it becomes the stochastic gradient 

descent. 

4) Momentum Updating (Fan et al., 2016) 

As shown in Figure 2-2, stochastic gradient descent updating for optimizing the 

networks is not smooth enough. This is because the random input samples carry a 

certain amount of noise, which can be considered as causing some bias to the training 

of the network. However, it could be mitigated to some extent by adding a momentum 

term to the formula for the parameter update.  

 

Figure 2-2 Effectiveness of Applying the Momentum Term (Ruder, 2016). 

The process of updating parameters by SGD can be oscillating during optimization, 

which can slow down the learning process. Adding the momentum term effectively 

relief the oscillation that allows to a more stable descent toward the optimization goal. 

This is because the momentum method simulates the second-order gradient in an 

inexpensive way. When the optimization falls into a saddle point, it is still more likely 

to leave the flat because of momentum. The update equation with the momentum term 

is shown below: 
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𝑣𝑣𝑡𝑡 = 𝛾𝛾𝑣𝑣𝑡𝑡−1 + 𝜂𝜂
∂𝐽𝐽
∂𝑤𝑤

(2-18) 

𝑤𝑤 = 𝑤𝑤 − 𝑣𝑣𝑡𝑡 , (2-19) 

where 𝑣𝑣  represents the momentum term, the subscript 𝑡𝑡  indicates the number of 

training rounds, and 𝛾𝛾 is a constant that is the coefficient of the momentum term. The 

range of 𝛾𝛾 usually is taken as a number less than 1. Therefore, the weight of the previous 

momentum term can be decayed by iteration. When 𝑡𝑡 takes 0, 𝑣𝑣0 is initialized to 0. The 

momentum term approach allows the network to have some memory when the 

parameters are updated. So that the parameters are not updated in the current batch in a 

direction completely different from the previous updates. Thus, globally, the direction 

of the parameter updates can be more homogeneous, allowing the loss value to decrease 

faster towards the optimal point. 

 

2.1.3 Convolutional Based Neural Networks 

Convolutional based neural networks (also known as CNN) have become the main 

network architecture among the deep learning methods. Different from the fully 

connected networks, CNN adopts convolutional kernel to capture features from input 

data. This section will introduce the mechanism of convolution and the main 

convolutional based neural networks.  

2.1.3.1 Convolutional Kernel 

The fully connected neural network described in the previous section has a major 

drawback in that the dense connection between nodes requires a large number of 
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parameters. Although it has been shown to have the ability to fit arbitrary functions, 

this requires that the network be wide enough and deep enough. A wide and deep 

network can lead to a significant increase in the number of parameters, making the 

optimization of the network difficult. At the same time, due to the lack development of 

CPU’s computing power, it has led to the fact that neural networks have not been able 

to perform as well as they should.  

 

 

Figure 2-3 Schematic Diagram of a 2D Convolution of a Single Channel (Dumoulin 

& Visin, 2016). 

kernels. The light gray 4 × 4 region represents the size of the convolution kernel, which 

slides over the blue 6 × 6  region. The convolutional kernel multiplies and sums the 

elements at the corresponding positions with the grey region and obtains an element in 

the top green region. If the blue region is taken as the image of the input network, then 

the green region is the feature map obtained after the input image has been convolved 
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and computed. There is a dashed transparent box around the blue area, indicating 0 

padding, which can be used to obtain different sizes of output feature maps with 

different sizes of convolution kernels and different sizes of sliding window steps. 

 

Figure 2-4 Schematic for Multi-channel convolution (Dumoulin & Visin, 2016). 

As shown in Figure 2-4, when the input image is multi-channel, the convolution is 

slightly different from that of single channel. For a single-channel convolution kernel, 

its size can be 3 × 3 × 1 that each dimension indicates the length, width, and channel 

of this convolution kernel. For a three-channel input image (e.g., an image in RGB 

format), the size of the convolution kernel with the same length and width should be 

3 × 3 × 3, indicating that there are three channels. These three channels are first filtered 

by sliding windows on the channels on the corresponding input images separately, and 

finally superimposed together in the form of summation. No matter the input data is 

three-channel or single-channel, the output is one channel after the operation of one 

convolution kernel. 

 

Convolution is computed as a local fully connected neural network, where they share 
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weights over some regions. The convolution kernel performs a sliding window on the 

feature map, weighting the pixels in the corresponding region on the feature map with 

the convolution kernel to sum. The number of sliding windows determines the size of 

the output feature map. Defining 𝑝𝑝 as the number of turns of the input image for 0-

paddings, 𝑘𝑘 as the size of the convolution kernel of  𝑘𝑘 × 𝑘𝑘, 𝑠𝑠 as the step size of the 

convolution kernel when it performs a sliding window, and the size of the input image 

of 𝑤𝑤𝑖𝑖𝑖𝑖 × 𝑤𝑤𝑖𝑖𝑖𝑖, then there is the size of the output image 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜: 

𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 =
𝑤𝑤𝑖𝑖𝑖𝑖 − 𝑘𝑘 + 2 ∗ 𝑝𝑝

𝑠𝑠
+ 1. (2-20) 

When 2 ∗ 𝑝𝑝 + 𝑠𝑠 − 𝑘𝑘 = 0 is satisfied, there will be 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑠𝑠 ∗ 𝑤𝑤𝑖𝑖𝑖𝑖. So that the input and 

output dimensions are the same for network design, which usually makes 𝑠𝑠 = 1, when 

𝑘𝑘 = 3  and 𝑝𝑝 = 1.  The set of parameters is the structure of a common set of 

convolutional layers since it brings simplicity for organizing the size of feature maps. 

2.1.3.2 Classical Architectures for CNN 

Since the AlexNet model proved the superior performance of deep convolutional neural 

networks in dealing with pattern recognition problems, various improvements to 

AlexNet have emerged over time. In this section, this thesis gives a brief description of 

the improved methods of VggNet, GoogleNet, ResNet, and MobileNet in chronological 

order of development. 

1) VggNet 

The VggNet (Visual Geometry Group) was proposed by Simonyan and Zisserman 

(2014). Section 2.1.3.1 illustrates that the convolutional kernel could be considered as 
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a feature extractor. Following the process where data passes through the convolution 

layer, resulting in a feature map, it is observed that since convolution is locally 

connected, each pixel in the feature map contains local information of the image. To 

enhance this aspect, the field then introduces the concept of Receptive Field, aimed at 

increasing the amount of extracted local information from the feature map. Receptive 

field is shown as the grey region in the Figure 2-3. Receptive field refers to each pixel 

in the feature map that output by the network after mapping back to the original image. 

Since convolution is a locally connected operation, each pixel on the feature map 

corresponds to a part of the input image. The size of the region can bring a large impact 

on the network's ability to extract features. It is generally believed that when the 

perceptual field is large enough, the pixel points on the feature map possess relatively 

more local information. If the size of the receptive field is the same as the size of the 

input image, it can even be considered that the pixels at that point incorporate the global 

information of the input image. 

2.2 Reinforcement Learning 

2.2.1 Sequential Decision-Making Tasks 

Section 2.1 introduced the basics of neural networks that are mainly used to solve 

recognition problems. The recognition problem mainly classify or detection of certain 

information. This task only generates a signal for the input data and expects it to be 

consistent with the observable signal in the future without changing the future situation. 
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However, in the field of machine learning, there is an important type of task similar 

to the human decision-making process, that is, sequential decision-making tasks. 

Different from the recognition tasks, decision tasks usually bring consequences. 

Therefore, the decision-maker needs to be responsible for the future and make further 

decisions at future time (Sutton & Barto, 2018).  

To address this task, reinforcement learning is introduced as a computational 

method for a machine to achieve goals through interaction with the environment. One 

round of interaction between the machine and the environment includes: the machine 

makes an action decision in a state of the environment, applies this action to the 

environment, and the environment changes accordingly and feeds back the reward and 

the next state back to the machine. This process is iterative, and the goal of the machine 

is to maximize the expected cumulative reward during multiple rounds of interaction. 

The above-mentioned process is implemented by an agent (Mnih et al., 2015). The 

agent is quite different from the so-called model in supervised learning. The agent not 

only perceives environmental information but also directly changes the environment 

through decision-making, rather than just giving a prediction signal. 

2.2.2 Agents Formulation and Objectives 

The agent of reinforcement learning completes sequential decision-making through 

interaction with the dynamic environment. The dynamic means that the environment 

will continuously evolve as certain factors change, which is usually described by a 

stochastic process in mathematics and physics. If the agent's actions are added as an 
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external disturbance factor in this stochastic process, the probability distribution of the 

next state of the environment will be jointly determined by the current state and the 

agent's actions. This process is expressed as: 

𝑠𝑠𝑡𝑡+1 = 𝑓𝑓(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡), (2-21) 

where 𝑠𝑠𝑡𝑡 represents the current state, 𝑎𝑎𝑡𝑡 represents the action taken by the agent in the 

current state, and 𝑠𝑠𝑡𝑡+1  represents the next state, and 𝑓𝑓  represents the state transfer 

function (Kober et al., 2013). 

From Equation 2-21, the actions of the agent act on the environment will cause the state 

of the environment to change. And then the agent continues to make decisions in the 

new state. In the above dynamic environment, every time the agent interacts with the 

environment, the environment will generate a reward signal, which is usually 

represented by a real scalar. This reward signal is similar to the score in a game, 

indicating the goodness or badness of the current state or action. The reward signal of 

each round of interaction is accumulated to form the overall return of the agent, which 

is similar to the final score of a game. Due to the dynamics of the environment, even if 

the initial state and strategy remain unchanged, the interaction result may be different, 

and the return will also be different. Therefore, reinforcement learning focuses on the 

expectation of return and defines it as value, which is the optimization goal of the 

agent's learning process (Schulman et al., 2017).  

This agent could be obtained in a supervised manner that the goal is to find an 

optimal model to minimize a given loss function on the training data set. Under the 
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independent and identically distributed assumption, this goal represents minimizing the 

generalization error of the model over the entire data distribution. Briefly expressed by 

the formula as: 

𝜃𝜃∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃
 𝔼𝔼(𝑥𝑥,𝑦𝑦)∼𝒟𝒟[ℓ(𝑓𝑓𝜃𝜃(𝑥𝑥), 𝑦𝑦)], (2-22) 

where 𝜃𝜃 represents the model parameters, (𝑥𝑥,𝑦𝑦) represents the input and corresponding 

label, 𝒟𝒟 represents the data distribution, and ℓ represents the loss function (Sutton & 

Barto, 2018). 

In contrast, the ultimate optimization goal of the reinforcement learning task is to 

maximize the value of the agent's strategy during the interaction with the dynamic 

environment. The value of the strategy can be equivalently transformed into the 

expectation of the reward function on the measure of the strategy occupancy, that is: 

𝜋𝜋∗ = arg 𝑚𝑚𝑚𝑚𝑚𝑚
𝜋𝜋
 𝔼𝔼𝑠𝑠,𝑎𝑎∼𝜋𝜋[𝑅𝑅(𝑠𝑠, 𝑎𝑎)], (2-23) 

where 𝜋𝜋  represents the agent's strategy, 𝑠𝑠  and 𝑎𝑎  respectively represent the state and 

action, and 𝑅𝑅 represents the reward function (Mnih et al., 2015). 

Therefore, compared with general supervised learning models, reinforcement 

learning focuses on finding an agent strategy to generate the optimal data distribution 

during the interaction with the dynamic environment, thereby maximizing the 

expectation of the reward function. 
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2.3 Generative Models 

2.3.1 Generative Tasks  

Most of the deep learning tasks could be demonstrated as the searching of a projection 

that projects input probabilistic distribution to another on. Most of the deep learning 

tasks could be demonstrated as the searching of a projection that projects input 

probabilistic distribution to another distribution (Goodfellow et al., 2014). For 

classification tasks, the model samples a picture or a length of text from real data 

distribution and output with a probabilistic distribution of class. The probabilistic 

distribution of class usually represented by a one-hot coded vector. In addition, tasks 

like segmentation could be considered as a pixel-wise classification task. For regression 

tasks, the model outputs a continuous distribution. 

 

In the early stage, generative tasks take flatten noise vector as input which differs from 

the above-mentioned types of input (Creswell et al., 2018). The noise vector is 

commonly sampled from a simple distribution such as a normal distribution. And it will 

output a distribution of images or other types of data. The model that projects the input 

distribution to a complex distribution is called generator. 
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Figure 2-5 Projection from Simple to Complex Distribution. 

 

However, the noises as input are out of control which limits its potential availability. In 

the later study, researchers suggested conditional generative tasks (Radford et al., 2015) 

which have variable types of input. Moreover, some researchers modeled the 

segmentation tasks as generative task. Since the segmentation results could be treated 

as a special data distribution (Isola et al., 2017). One fact should be pointed is that 

generative tasks mostly require semi- or unsupervised learning. Since it could be 

expensive for reaching data pairs like style transferring, generative tasks generally lack 

enough paired data for optimization. Therefore, a semi- or unsupervised learning 

methods benefit the generative task well. 

2.3.2 Generative Adversarial Networks 

2.3.2.1 Overview of GAN 

Generative Adversarial Networks (known as GAN) was firstly introduced by 

Goodfellow et al. (2014). GAN was designed to perform generative tasks through a 

deep learning-based method that optimizing through gradients descent. Unlike the 

classic end-to-end deep learning networks, there are two networks. The Generator 

network produces images and Discriminator determines whether the image comes from 

the generator or real data distribution. Therefore, the training of this model is 

adversarial. Shown as Figure 2-5, the primer GAN takes random noises as input. 
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Figure 2-6 The Prototype of GAN. 

 

Considering 𝐺𝐺  (·, 𝜃𝜃𝑔𝑔  ) as generator and 𝐷𝐷  (·, 𝜃𝜃𝑑𝑑 ) as discriminator, 𝜃𝜃𝑔𝑔  and 𝜃𝜃𝑑𝑑  is their 

parameters correspondingly. The optimization goal could be described as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺
 𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷

 𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝔼𝔼𝑥𝑥∼ℙ𝑑𝑑(𝑥𝑥)�𝑙𝑙𝑙𝑙𝑙𝑙�𝐷𝐷(𝑥𝑥)�� + 𝔼𝔼𝑧𝑧∼ℙ𝑧𝑧(𝑧𝑧) �𝑙𝑙𝑙𝑙𝑙𝑙 �1 − 𝐷𝐷�𝐺𝐺(𝑧𝑧)��� , (2-24) 

where 𝑥𝑥 sampled from the real images and 𝑧𝑧 sampled from a random noise distribution. 

 

The intuitive understanding of Equation (2-21) is that the discriminator should be 

considered as a parameterized loss function for the generator. When the parameters of 

discriminator are fixed, it is more like a binary classifier that classify whether the image 

is real or fake. Therefore, the optimization goal of discriminator is to maximize the term 

𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷(𝑥𝑥)) and 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))) firstly. For the generator, it is expected that it can 

produce images that are as realistic as possible to fool the discriminator. In Algorithm 

1, the second term 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))) is thereafter optimized for the generator, as the 

first term becomes a constant when the discriminator is fixed. 
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2.3.2.2 Optimality of GAN 

Goodfellow et al. (2014) proved the optimality of discriminator by expanding the 

expectation form of Equation (2-21). 

𝑉𝑉(𝐺𝐺,𝐷𝐷) = � 
𝑥𝑥
𝑝𝑝𝑑𝑑(𝑥𝑥)log (𝐷𝐷(𝑥𝑥))𝑑𝑑𝑑𝑑 + � 

𝑧𝑧
𝑝𝑝𝑧𝑧(𝑧𝑧)log (1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧)))𝑑𝑑𝑑𝑑

= � 
𝑥𝑥
𝑝𝑝𝑑𝑑(𝑥𝑥)log (𝐷𝐷(𝑥𝑥)) + 𝑝𝑝𝑔𝑔(𝑥𝑥)log (1 − 𝐷𝐷(𝑥𝑥))𝑑𝑑𝑑𝑑

. (2-25) 

Let ∂𝑉𝑉
∂𝐷𝐷

= 0 , the optimal discriminator 𝐷𝐷 is: 

𝐷𝐷𝐺𝐺∗(𝑥𝑥) =
𝑝𝑝𝑑𝑑(𝑥𝑥)

𝑝𝑝𝑑𝑑(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥) . (2-26) 

 

Replace discriminator term 𝐷𝐷 in Equation (2-21) by Equation (2-23), the optimizing of 

generator could be: 

𝐶𝐶(𝐺𝐺) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷

 𝑉𝑉(𝐺𝐺,𝐷𝐷)

= 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑑𝑑 �log
𝑝𝑝𝑑𝑑(𝑥𝑥)

𝑝𝑝𝑑𝑑(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)�
+ 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑔𝑔 �log�1 −

𝑝𝑝𝑑𝑑(𝑥𝑥)
𝑝𝑝𝑑𝑑(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)

��

= 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑑𝑑 �log
𝑝𝑝𝑑𝑑(𝑥𝑥)

𝑝𝑝𝑑𝑑(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)�
+ 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑔𝑔 �log

𝑝𝑝𝑔𝑔(𝑥𝑥)
𝑝𝑝𝑑𝑑(𝑥𝑥) + 𝑝𝑝𝑔𝑔(𝑥𝑥)�

. (2-27) 

 

Here introduces Kullback-Leibler Divergence (KLD) which is widely used in 

optimizing classification tasks: 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) = 𝔼𝔼𝑥𝑥∼𝑝𝑝𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃(𝑥𝑥)
𝑄𝑄(𝑥𝑥) . (2-28) 

 

Therefore, replace the term in Equation (2-25) by KLD, the min-max game of equation 

is actually the optimization of Jensen-Shannon Divergence (JSD): 
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𝐶𝐶(𝐺𝐺) = 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝𝑑𝑑 ∥ 𝑝𝑝𝑑𝑑 + 𝑝𝑝𝑔𝑔� + 𝐷𝐷𝐾𝐾𝐾𝐾�𝑝𝑝𝑔𝑔 ∥ 𝑝𝑝𝑑𝑑 + 𝑝𝑝𝑔𝑔�

= −log (4) + 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝𝑑𝑑 ∥
𝑝𝑝𝑑𝑑 + 𝑝𝑝𝑔𝑔

2 � + 𝐷𝐷𝐾𝐾𝐾𝐾 �𝑝𝑝𝑔𝑔 ∥
𝑝𝑝𝑑𝑑 + 𝑝𝑝𝑔𝑔

2 �

= −log (4) + 2 ⋅ 𝐷𝐷𝐽𝐽𝐽𝐽�𝑝𝑝𝑑𝑑 ∥ 𝑝𝑝𝑔𝑔�

. (2-29) 

 

The range of JSD is 0 to 1. When the two probability distributions are totally similar, it 

reaches its minimum as 0. So, the minimal loss value for the generator is −log (4). If 

the discriminator and generator achieved Nash Equilibrium, their loss value will 

converge to oscillate around −log (4). 

2.3.2.3 Improvement on Training Stability 

The early exploration doubted the training stability of GAN since researchers found 

that it unstable and hard to optimize GAN. One of the possible reasons is that GAN is 

an unsupervised method. When there is a need to generate something, this indicates that 

the output lacks sufficient and direct target samples for learning. Therefore, GAN 

provides an adversarial way of trying to use less paired input-output data. From a 

supervised point of view, discriminator is more like a loss function for generator to 

learn. 

 

The optimization of generator amounts to the optimization of the second term in 

Equation (2-21). The most informative gradients come from the sample that confused 

the discriminator. However, it required the discriminator to have the ability to classify 

samples in a very strict extend. The discriminator can neither be too strong nor weak. 

A powerful discriminator leads zero gradient to generator. A weak discriminator leads 
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to feeble performance of the generator. 

 

When the networks convergent, it reaches the Nash Equilibrium. But this did not 

indicate that the GAN has enough ability to generate very realistic images. Since the 

generator can easily find a short way to pass the discriminator. For instance, the 

generator might just have memory of training data distribution. And there is no 

guarantee for the discriminator to measure the diversity of the generator. 

Table 2-1 Several Distance Metrics of Probability Distribution 
Kullback-

Leibler 
𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃𝑑𝑑||𝑃𝑃𝑔𝑔) = �  

𝑥𝑥∼𝜒𝜒

𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃𝑑𝑑(𝑥𝑥)
𝑃𝑃𝑔𝑔(𝑥𝑥) 𝑃𝑃𝑑𝑑

(𝑥𝑥) (2-30) 

Jensen-

Shannon 

𝐷𝐷𝐽𝐽𝐽𝐽(𝑃𝑃𝑑𝑑,𝑃𝑃𝑔𝑔) = 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃𝑑𝑑||𝑃𝑃𝑔𝑔) + 𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃𝑔𝑔||𝑃𝑃𝑑𝑑) (2-31) 

Wasserstein 𝐷𝐷𝑊𝑊�𝑃𝑃𝑑𝑑 ,𝑃𝑃𝑔𝑔� = 𝑖𝑖𝑖𝑖𝑖𝑖
𝛾𝛾∈∏�𝑃𝑃𝑑𝑑,𝑃𝑃𝑔𝑔�

 𝐸𝐸(𝑥𝑥,𝑦𝑦)∼𝛾𝛾�|𝑥𝑥 − 𝑦𝑦|� (2-32) 

 

Analyzing from the perspective of optimization, the loss function of Equation (2-21) is 

actually to minimize the Jensen-Shannon Divergence (JSD). Table 2-1 shows some of 

the distance metrics for measuring probability distribution. JSD is an improved form 

for Kullback-Leibler Divergence (KLD) for considering the symmetric of distance. 

However, when there is no overlap between two distributions, JSD saturates in its 

maximum one. It lacks a soft way for un-overlap situations. 
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2.3.2.4 Early-Stage Tricks on Stabilization 

As aforementioned, it is hard to optimize GAN because of the intractable estimation 

the distance between probability distributions. Along with this motivation, here are 

some of the possible directions for improvements that trying to make the overlap of the 

distribution. 

1) Input Noise 

During the early stage of training, the generator probably lacks the ability to output 

a distribution which overlap with the real data. And JSD is not capable to measure the 

exact distance when there is no overlap. One possible solution that led to overlap is that 

if there are enough randomly samples be feed forwarded into the generator, there might 

be overlap which enhances the training. This could be one explanation of why the 

vanilla GAN takes noises as input. 

2) Soft Output 

Soft output aims at leaving more margin on the output of discriminator. The nature 

of discriminator is a binary classifier. It outputs 1 or 0 for classifying whether the input 

image is real of fake. But it is too confident that ignore the possible overlapped part of 

distribution since the generator may have captured partial realistic regions of images. 

a) Label Smoothing: 

Label smoothing was proposed by Szegedy et al. (2016) in deep learning domain. 

Instead of forcing the classifier to fit an absolute label of 1, it encourages the classifier 

to have more margin about its confidence of the prediction. Moreover, this also 
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indicates that the label for the input images might be unreliable or inaccurate. This 

indication fits the GAN’s situation that an image be classified as fake by discriminator 

might have partial realistic region. Warde-Farley and Goodfellow (2016) showed that 

label smoothing may reduce the vulnerability of GAN. In the practices described by 

Salimans et al. (2016), replacing the positive and negative samples with constants α and 

β results in the optimal discriminator being as shown below: 

𝐷𝐷𝐺𝐺∗(𝑥𝑥) =
𝛼𝛼𝑃𝑃𝑑𝑑(𝑥𝑥) + 𝛽𝛽𝑃𝑃𝑔𝑔(𝑥𝑥)
𝑃𝑃𝑑𝑑(𝑥𝑥) + 𝑃𝑃𝑔𝑔(𝑥𝑥) . (2-33) 

They found that if the 𝑃𝑃𝑑𝑑(𝑥𝑥) is close to zero and 𝑃𝑃𝑔𝑔(𝑥𝑥) is much greater, this may 

lead to numerically unstable. So, it is more effective to set a soft α and keep the negative 

samples zero. 

b) Relativistic GAN: 

Another proposal of soft output is to compare a pair of real and fake samples. 

Considering the layers before the output sigmoid layer as 𝐶𝐶, the discriminator 𝐷𝐷(𝑥𝑥)  = 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐶𝐶(𝑥𝑥). Jolicoeur-Martineau (2019) proposed a form of loss function: 

𝐿𝐿𝐷𝐷 = −𝔼𝔼�𝑥𝑥𝑑𝑑,𝑥𝑥𝑔𝑔�∼�𝑃𝑃𝑑𝑑,𝑃𝑃𝑔𝑔� �𝑙𝑙𝑙𝑙𝑙𝑙 �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝐶𝐶(𝑥𝑥𝑑𝑑) − 𝐶𝐶�𝑥𝑥𝑔𝑔���� (2-34) 

𝐿𝐿𝐺𝐺 = −𝔼𝔼�𝑥𝑥𝑑𝑑,𝑥𝑥𝑔𝑔�∼�𝑃𝑃𝑑𝑑,𝑃𝑃𝑔𝑔� �𝑙𝑙𝑙𝑙𝑙𝑙 �𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝐶𝐶�𝑥𝑥𝑔𝑔� − 𝐶𝐶(𝑥𝑥𝑑𝑑)��� . (2-35) 

The objective is similar to metric learning but at an image level. It forces the 

discriminator to predict the extent that the real image is more realistic than the generated 

image. Therefore, it has some capability to capture the distributions distance. 

3) Training Strategies of Discriminator 

The training of GAN requires the discriminator to convergent to a certain level that 
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can classify part of the real or fake sample pairs. Only can the fake sample that fool the 

convergent discriminator provides informative gradients for optimizing the generator. 

Therefore, fine-tune the training of discriminator benefits the generator. 

a) Historical Averaging: 

From this motivation, Salimans et al. (2016)  proposed an updating method that 

takes parameters in time-series into consideration. Taking 𝜃𝜃[𝑖𝑖] is the parameters both 

of generator and discriminator in 𝑖𝑖 th time step, there will be a penalty term in the loss 

function: 

𝑉𝑉(𝐺𝐺,𝐷𝐷)∗ = 𝑉𝑉(𝐺𝐺,𝐷𝐷) + 𝜆𝜆| �𝜃𝜃 −
1
𝑡𝑡
�  
𝑡𝑡

𝑖𝑖=1

𝜃𝜃[𝑖𝑖]� |2. (2-36) 

Historical averaging actually applied constraints on the space of parameters which 

in somehow meets the Lipschitz Constraints. There will be more discussion about it in 

Section 2.3.2.5. But historical averaging requires to keep t times parameters which 

increases the consumption of GPU memory. 

b) Two Timescale Update Rule: 

 Heusel et al. (2017) addressed two timescale methods for achieving Nash 

Equilibrium in the min-max game. The discriminator uses a greater learning rate than 

the generator. Heusul suggested that the learning rate of discriminator is four times 

greater of generator. Therefore, the discriminator could convergent quicker than the 

generator. Since the generator only can learn from the discriminator, it enables these 

two networks to accelerate training process. 

4) Feature Match 
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Salimans et al. (2016) argued the reliability of discriminator. Instead of learning 

from the discriminator, they expected the generator to learn statics features of real data. 

Considering fi is the intermediate layer of a discriminator D. The objective of feature 

match is: 

𝐿𝐿(𝐺𝐺) = 𝑚𝑚𝑚𝑚𝑚𝑚|�𝔼𝔼𝑥𝑥∼𝑃𝑃𝑟𝑟𝑓𝑓(𝑥𝑥) − 𝔼𝔼𝑥𝑥∼𝑃𝑃𝑧𝑧𝑓𝑓�𝐺𝐺(𝑥𝑥)��|22 . (2-37) 

The original type of feature match required the discriminator to be trained with its 

original objective that classify real or fake images. The later studies on deep fakes 

(Korshunova et al., 2017) replace the binary classifier discriminator with other network 

pre-trained by related tasks, e.g.: face recognition. This development showed that if 

there are enough pre-trained models which related to generated domain, feature match 

benefits the generator the most. 

2.3.2.5 Wasserstein GAN 

Although there are numerous improvements on the training tricks, they failed to face 

the fetal issue of GAN that its optimization goal of JSD lacks capability of measuring 

two totally separate distributions. Arjovsky et al. (2017) introduced this disadvantage 

and proposed a novel loss function Wasserstein Distance: 

𝑊𝑊�𝑃𝑃𝑑𝑑 ,𝑃𝑃𝑔𝑔� = 𝑖𝑖𝑖𝑖𝑖𝑖
𝛾𝛾∈∏�𝑃𝑃𝑑𝑑,𝑃𝑃𝑔𝑔�

 𝔼𝔼(𝑥𝑥,𝑦𝑦)∼𝛾𝛾��|𝑥𝑥 − 𝑦𝑦|��. (2-38) 

∏(𝑃𝑃𝑑𝑑 ,𝑃𝑃𝑔𝑔)  is the set of all joint distributions 𝛾𝛾(𝑥𝑥,𝑦𝑦)  whose marginals are 

respectively 𝑃𝑃𝑑𝑑 and 𝑃𝑃𝑔𝑔 . However, it is intractable to calculate the infimum in Equation 

(2-35). According to Kantorovich-Rubinstein duality, the Equation (2-35) could be 

transferred as: 
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𝑊𝑊�𝑃𝑃𝑑𝑑 ,𝑃𝑃𝑔𝑔� = 𝑠𝑠𝑠𝑠𝑠𝑠
||𝑓𝑓||𝐿𝐿≤1

 𝔼𝔼𝑥𝑥∼𝑃𝑃𝑑𝑑[𝑓𝑓(𝑥𝑥)] − 𝔼𝔼𝑥𝑥∼𝑃𝑃𝑔𝑔[𝑓𝑓(𝑥𝑥)]. (2-39) 

This requires the function f to be 1-Lipschitz function. In the other words, it requires 

the discriminator to be Lipschitz Continuous. Hence, the optimization goal for W-GAN 

is: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺
 𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷

 𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝔼𝔼𝑥𝑥∼𝑃𝑃𝑑𝑑(𝑥𝑥)𝐷𝐷(𝑥𝑥) − 𝔼𝔼𝑧𝑧∼𝑃𝑃𝑧𝑧(𝑧𝑧)𝐷𝐷�𝐺𝐺(𝑧𝑧)�. (2-40) 

If the function f is Lipschitz Continuous, there should be a constant L which meets: 

�|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)|� ≤ 𝐿𝐿�|𝑥𝑥 − 𝑦𝑦|� ⇒
�|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)|�

�|𝑥𝑥 − 𝑦𝑦|�
≤ 𝐿𝐿. (2-41) 

Intuitively, the Lipschitz Constant 𝐿𝐿 constrains the slope of f. As the discriminator 

is bounded, Equation (2-38) is optimizable. From this motivation, researchers applied 

different measures for meeting the Lipschitz Continuous. 

1) Weight Clipping 

The first proposal in Arjovsky et al. (2017) is weight clipping. Their primary idea is if 

the parameters of model is bounded, then the output is bounded. After the weight is 

updated, this proposal clips the updated weight to [−0.01, 0.01]. However, they also 

found that momentum-based optimizer like Adam failed. Because the clipping will 

force the weights’ distribution concentrated on ±0.01. Even though weight clipping is 

computational effective, it is unstable to train. 
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Figure 2-7 Weights Distribution of Weight Clipping and Gradient Penalty 

(Gulrajani et al., 2017). 

 

2) Gradient Penalty 

     Gulrajani et al. (2017) thereafter applied constraints on the gradients to meet the 

Lipschitz Continuity. By introducing gradient penalty term in Equation (2-39): 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐺𝐺
 𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷

 𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝔼𝔼𝑥𝑥[𝐷𝐷(𝑥𝑥)] − 𝔼𝔼𝑧𝑧[𝐷𝐷(𝐺𝐺(𝑧𝑧))] + 𝜆𝜆𝔼𝔼𝑥𝑥�[∥ ∇𝐷𝐷(𝑥𝑥�) ∥. (2-42) 

However, it is difficult to calculate all samples from 𝑥𝑥 . They simply introduced an 

interpolation method for simulating sample 𝑥𝑥�: 

𝑥𝑥� = 𝛼𝛼𝑥𝑥𝑑𝑑 + (1 − 𝛼𝛼)𝑥𝑥𝑔𝑔. (2-43) 

By randomly sample 𝑥𝑥𝑑𝑑 from 𝑃𝑃𝑑𝑑  and 𝑥𝑥𝑔𝑔 from 𝑃𝑃𝑔𝑔 , interpolate these two samples 

by 𝛼𝛼 ∼ U (0, 1). And then constraints the gradients of discriminator by mean squared 

error to one.  

This method effectively improved the training stability of GAN. And it is possible 

to optimize it with Adam. Figure 2-7 showed the distributions of the weight in different 

penalty methods. Nevertheless, when the input is complex such as conditional GAN, it 

is hard to interpolate samples from both 𝑃𝑃𝑑𝑑 and 𝑃𝑃𝑔𝑔. 
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3) Spectral Normalization 

Faragallah et al. (2020) introduced spectral normalization for GAN. Along with the 

core motivation of Wasserstein GAN, they applied Lipschitz Constraints with spectral 

normalization which no requirements for the input interpolation. Considering function 

f is a network which applies a linear transformation with weight W to input hidden layer 

h. They pointed that the Lipschitz constant of function f equals to its spectral norm: 

||𝑓𝑓||𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑠𝑠𝑠𝑠𝑠𝑠
ℎ
 𝜎𝜎(∇𝑓𝑓(ℎ)) = 𝑠𝑠𝑠𝑠𝑠𝑠

ℎ
 𝜎𝜎(𝑊𝑊) = 𝜎𝜎(𝑊𝑊). (2-44) 

For a given weight matrix W that transform ℎ𝑖𝑖𝑖𝑖 → ℎ𝑜𝑜𝑜𝑜𝑜𝑜, 𝜎𝜎(𝑊𝑊) is its spectral norm: 

𝜎𝜎(𝑊𝑊) ≔ 𝑚𝑚𝑚𝑚𝑚𝑚
ℎ:ℎ≠0

 
||𝑊𝑊ℎ||2

||ℎ||2
= 𝑚𝑚𝑚𝑚𝑚𝑚

||ℎ||2≤1
 ||𝑊𝑊ℎ||2. (2-45) 

This indicates that the spectral norm number of 𝑊𝑊 equals to its largest singular 

number. By applying spectral normalization to each layer in the discriminator: 

𝑊𝑊𝑆𝑆𝑆𝑆(𝑊𝑊) =
𝑊𝑊

𝜎𝜎(𝑊𝑊)
. (2-46) 

Therefore, the Lipschitz Constant will be constrained to one. 

2.3.2.6 Improvement on Image Quality 

Even though GAN has shown its great potential in generating images, it has been argued 

about its generated artifact and blurry region. It is still easy for human to distinguish 

whether the image is real or fake. 

 

On the other hand, vanilla GAN only takes flatten random noise vector as input which 

is nonsense to the target image domain. Some of the training failed to capture the target 



 

42 

real image distribution but simply remember these training images. In such a way, the 

generator can pass the discriminator but has no capability to generate various images. 

2.3.2.7 High Resolution Image Generation 

Research works before the year of 2017 found it is hard to optimize a generator of deep 

layers. The Wasserstein GAN proposed in 2017 alleviated this issue. However, it is still 

difficult to generate image from flatten noise vector. In 2018, Progressive GAN applied 

a progressive method that cascaded generators and discriminators in different resolution 

(Karras et al., 2018). The training algorithm will train GAN in lower resolution until its 

convergent. And it will progressively combine higher resolution modules with the lower 

modules. But this way of training will increase the training time since the generators 

with lower resolution may be trained several times. 

 

Figure 2-8 Progressive GAN. 

Followed with progressively growing, StyleGAN suggested a way of decoding the 

input flatten noise vector into explainable style code that brings more details on 
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generated human face (Karras et al., 2019). They applied cascaded fully connected layer 

for decoding the noises into style code space w. They additionally introduced Noises B 

in different scales which 7 brought stochastic changes in different aspects. Their work 

showed huge potential of neural network that represents features in a high and abstract 

dimension. More papers thereafter explored the GAN inversion for getting controllable 

feature representations followed with StyleGAN. MSG-GAN is the state-of-the-art 

GAN architecture for generating human faces with high resolution (Karnewar & Wang, 

2020). It takes the advantages of ProGAN and StyleGAN by introducing discrimination 

in different resolution. 

 

In addition of the improvement of generator, the adjustment of discriminator benefits 

the image quality as well. PatchGAN was proposed in image-to-image translation tasks 

(Isola et al., 2017). The vanilla discriminator only predicts scalar number for 

determining whether the image is real. By predicting the real-fake game in image 

patches, the discriminator is able to focus more local information which enhances the 

details. When patch size was set to be 1, it degraded to vanilla GAN. When patch size 

equals to pixel’s number, it will lose some global information. In the work of Isola et 

al. (2017), they set patch size to be 70 ∗ 70. 

2.3.2.8 Improve the Mode Diversity 

The objective of vanilla GAN optimizes JSD which has no constraints on the diversity 

of generated images. Since the generator learns from the discriminator, the way of 
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sampling is one of the reasons that lead to mode collapse. There are researchers 

explored different methods for having the discriminator to classify the diversity of 

images. 

 

1) Sampling on Discriminator: 

Since the informative gradients information were provided by discriminator, it is 

intuitively that allowing the discriminator to sample more images in advance. Salimans 

et al. (2016) believe that a greater number of batch size benefits GAN’s diversity a lot. 

In Metz et al. (2017)’s work, they mentioned that the update of generator should take 

the after k times update of discriminator into consideration. 

 

2) Classification Head for Discriminator: 

Additional classification head in discriminator is another pipeline. This method 

often applied when involved in conditional GAN. Around 2016, there are multiple of 

methods have been proposed. Semi-Supervised GAN acclaimed that the utilizing of 

class information is a kind of semi-supervise learning (Odena, 2016). The discriminator 

would output not only the real or fake game, but also the class vector. The InfoGAN 

(Chen et al., 2016) and Auxiliary Classifier GAN (Odena et al., 2017) is very similar to 

Semi-Supervised GAN. The major difference is that these two GANs have the 

additional class information as input in generator. For the discriminator, the only 

difference is whether choose another branch to output the class vector. But these two 
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branches would share same bottom weights on discriminator. Figure 2-9 showed the 

general structure of classification head in discriminator. 

 
Figure 2-9 Classification Heads in Discriminators. 

2.3.3 Denoising Diffusion Probabilistic Models 

2.3.3.1 Fundamentals of Diffusion Models 

Divergent from the previously discussed GAN, the denoising diffusion probabilistic 

model (DDPM) proposed by Ho et al. (2020) simulates a Markov chain. Although both 

methods are trying to learn a distribution of target data, GAN achieves this by implicitly 

learning a discriminator to measure the distribution distance while DDPM learns 

denoising probability to map Gaussian distribution to target data distribution. 

 

To achieve such a process, DDPM progressively adds small amount of Gaussian noise 

𝜖𝜖  to an image 𝑥𝑥0  by 𝑡𝑡  steps and then reverse this process by predicting the reversed 

distribution: 

𝑞𝑞(𝐱𝐱1:𝒯𝒯 ∣ 𝐱𝐱0) = � 
𝒯𝒯

𝑡𝑡=1

𝑞𝑞(𝐱𝐱𝑡𝑡 ∣ 𝐱𝐱𝑡𝑡−1). (2-47) 

𝑞𝑞(𝐱𝐱𝑡𝑡 ∣ 𝐱𝐱𝑡𝑡−1) = 𝒩𝒩�𝐱𝐱𝑡𝑡;�1 − 𝛽𝛽𝑡𝑡𝐱𝐱𝑡𝑡−1,𝛽𝛽𝑡𝑡𝐈𝐈�, (2-48) 

where 𝒩𝒩(∙) denotes a Gaussian distribution, 𝑡𝑡 denotes time step, 𝒯𝒯 denotes total time 
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step, and {𝛽𝛽𝑡𝑡 ∈ (0,1)}𝑡𝑡=1𝒯𝒯  denotes a series of scalars to weight the strength of Gaussian 

noise 𝜖𝜖. By applying the above equations, 𝑥𝑥0 can be progressively transformed into 𝑥𝑥𝒯𝒯, 

which is considered as a standard Gaussian noise. Later, the model is required to reverse 

this diffusion process by estimating the probability:  

𝑝𝑝𝜃𝜃(𝐱𝐱0:𝒯𝒯) = 𝑝𝑝(𝐱𝐱𝒯𝒯)� 
𝒯𝒯

𝑡𝑡=1

𝑝𝑝𝜃𝜃(𝐱𝐱𝑡𝑡−1 ∣ 𝐱𝐱𝑡𝑡), (2-49) 

where 𝑝𝑝𝜃𝜃  is the reverse posterior probability. Since the forward diffusion process 

models each time step as a Gaussian, the 𝑝𝑝𝜃𝜃(𝐱𝐱𝑡𝑡−1 ∣ 𝐱𝐱𝑡𝑡)  could be considered as a 

Gaussian as well: 

𝑝𝑝𝜃𝜃(𝐱𝐱𝑡𝑡−1 ∣ 𝐱𝐱𝑡𝑡) = 𝒩𝒩(𝐱𝐱𝑡𝑡−1;𝝁𝝁𝜃𝜃(𝐱𝐱𝑡𝑡 , 𝑡𝑡), Σ𝜃𝜃(𝐱𝐱𝑡𝑡 , 𝑡𝑡)). (2-50) 

By simplifying Σ𝜃𝜃 as constant 𝛽𝛽𝑡𝑡, Ho et al. (2020) proposes that 𝝁𝝁𝜃𝜃 is tractable as: 

𝝁𝝁𝜃𝜃(𝐱𝐱𝑡𝑡 , 𝑡𝑡) =
1
�𝛼𝛼𝑡𝑡

�𝐱𝐱𝑡𝑡 −
1 − 𝛼𝛼𝑡𝑡
�1 − 𝛼𝛼�𝑡𝑡

𝝐𝝐𝑡𝑡� . (2-51) 

During the training process, 𝐱𝐱𝑡𝑡  is known and can be obtained by Equation (2-45). 

Therefore, the posterior can be obtained by a simple loss function: 

ℒ𝑡𝑡
simple = 𝔼𝔼𝑡𝑡∼[1,𝒯𝒯],𝐱𝐱0,𝜖𝜖𝑡𝑡 �∥∥𝜖𝜖𝑡𝑡 − 𝜖𝜖𝜃𝜃��𝛼𝛼�𝑡𝑡𝐱𝐱0 + �1 − 𝛼𝛼�𝑡𝑡𝜖𝜖𝑡𝑡, 𝑡𝑡�∥∥

2
� , (2-52) 

where 𝛼𝛼𝑡𝑡 = 1 − 𝛽𝛽𝑡𝑡 and 𝛼𝛼�𝑡𝑡 = ∏  𝑡𝑡
𝑖𝑖=1 𝛼𝛼𝑖𝑖 for the simplicity. 

 

2.3.3.2 Allowing Conditional Generation in Diffusion Models 

Although several researchers have reported advancements achieved by diffusion 

models (Ho et al., 2020; Nichol & Dhariwal, 2021; J. Song et al., 2021), allowing 

control signals to guide synthesis direction remains a challenge. Unlike the previously 
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discussed GANs that can model a conditional probability 𝑝𝑝𝜃𝜃(𝑦𝑦|𝑐𝑐), diffusion models 

synthesis an image from a latent variable 𝑧𝑧, which is dimensionally aligned with the 

target image. Therefore, the diffusion models not ideally suited for explicitly 

incorporating a condition to model 𝜖𝜖𝜃𝜃.  

 

To tackle the issue of controllability, Dhariwal and Nichol (2021) propose using 

classifier guidance to introduce conditions in controlling the synthesis direction. Their 

work is inspired by GANs, where the discriminator can receive one-hot conditions, 

allowing the generator to synthesis an image reflecting the condition. During the 

synthesis process in diffusion models, the gradients from an explicit classifier can 

convey the conditional information to the estimated 𝑥𝑥𝑡𝑡−1: 

𝑥𝑥𝑡𝑡−1 = 𝒩𝒩�𝜇𝜇 + 𝑠𝑠Σ∇𝑥𝑥𝑡𝑡log 𝑝𝑝𝜙𝜙(𝑦𝑦 ∣ 𝑥𝑥𝑡𝑡), Σ�, (2-53) 

where 𝜇𝜇 and Σ are mean and standard deviation estimated from the model 𝜖𝜖𝜃𝜃, 𝑝𝑝𝜙𝜙 is the 

explicit classifier, 𝑦𝑦  is the desired condition, ∇𝑥𝑥𝑡𝑡  are the gradients from the cross-

entropy loss of 𝑦𝑦 and 𝑥𝑥𝑡𝑡, and 𝑠𝑠 is a scalar controlling the strength of the conditional 

gradients. By applying Equation (2-50), the final synthesized image 𝑥𝑥0 can reflect the 

condition 𝑦𝑦.  

 

However, a significant drawback of the explicit classifier guidance strategy is that the 

classifier can only take the intermediate noised image 𝑥𝑥𝑡𝑡  as input. Existing 

classification models were trained on denoised images 𝑥𝑥0. The distribution gap between 
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𝑥𝑥0 and 𝑥𝑥𝑡𝑡 hinders the classifier’s effectiveness. Additionally, this process is inefficient 

as it requires gradients at each denoising step. 

To overcome this drawback, Ho and Salimans (2021) proposed classifier-free guidance 

(CFG). Their motivation involves transforming the explicit classifier into an implicit 

one. Primarily, they input the condition 𝑐𝑐 into the model as 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑡𝑡, 𝑐𝑐), embedding the 

condition with the same dimension as 𝑡𝑡 . Later, they consider the estimation of 𝜖𝜖̂  as 

scores (Y. Song et al., 2021). The conditional generation can then be presented as: 

𝝐𝝐�𝑡𝑡 = (1 + 𝑤𝑤)𝝐𝝐𝜃𝜃(𝐱𝐱𝑡𝑡 , 𝐜𝐜) − 𝑤𝑤𝝐𝝐𝜃𝜃(𝐱𝐱𝑡𝑡 ,∅), (2-54) 

where 𝑤𝑤 is the CFG scalar controlling the importance of the given condition 𝑐𝑐, and ∅ 

denotes an empty condition, presented as a zero vector. By applying the classifier-free 

guidance, the training process allows the model to accept condition 𝑐𝑐 with a dropout 

probability (e.g., 0.2). During the inference stage, the model 𝝐𝝐𝜃𝜃 will execute twice, once 

with the condition and once without, treating the latter as empty. The CFG approach in 

controlling the synthesis direction has become the most accepted method, as it does not 

require training a noise-aware explicit classifier.  

 

2.3.3.3 Towards Text-to-Image Synthesis 

Diffusion models have recently emerged as a powerful branch of generative models, 

demonstrating their superior capabilities of handling image, text, audio as well as other 

modalities of data (Leng et al., 2022; Meng et al., 2022; Nichol et al., 2022; Rombach 

et al., 2022; Su et al., 2023). These models aim to learn the data distribution by 
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performing a Markov chain, simulating the data generation process in reverse 

(Dhariwal & Nichol, 2021; Ho et al., 2020; Nichol & Dhariwal, 2021; J. Song et al., 

2021; Y. Song et al., 2021).  

 

Despite the many research studies are focusing on synthesizing high-resolution images 

using diffusion models, there is a growing body of research that is interested in more 

controlled synthesis. Hertz et al. (2023) investigated a Prompt-to-Prompt mechanism 

of text-to-image generation, where text features activate feature maps through cross-

modal attention. InstructPix2Pix (Brooks et al., 2023) combines the large pretrained 

language model GPT3 (Brown et al., 2020) and the state-of-the-art text-to-image LDM 

(Rombach et al., 2022) model to synthesize a dataset for text-driven image editing. 

Although these methods can synthesize images with corresponding semantics, they are 

trained on large open-domain datasets and have difficulty in capturing terms specific to 

the fashion domain. Recently, Textual Inversion (Gal et al., 2023) and DreamBooth 

(Ruiz et al., 2023) can adapt pre-trained diffusion models with new styles. Model 

retraining is, however, needed for every new style. 

2.4 Chapter Summary 

This chapter first reviews the fundamental architectures and optimization algorithms of 

deep learning technology in Section 2.1, highlighting that deep learning methods often 

adopts a supervisory approach and requiring annotations to train a model.  
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Subsequently, Section 2.2 illustrates the fundamentals of reinforcement learning and 

explains its modeling on sequential decision-making. Although reinforcement learning 

is powerful for enabling human-like intelligence, it focuses on making decision instead 

of graphically synthesis or editing an image. This thesis only provides a basic 

background of reinforcement learning.  

 

Section 2.3 introduces the scenario of generative tasks that learn to map random noise 

to an image. Unlike commonly deep learning methods that function as discriminative 

models, the generative tasks require the model to learn a distribution. Later, Sections 

2.3.2 and 2.3.3 describe more details of the GAN and diffusion models, respectively, 

the two most common and powerful types of generative model. In summary, GANs are 

lightweight and quick models that can respond to user input immediately. In contrast, 

diffusion models are powerful generative models that rely on an iterative generation 

process and require significant computational resources. Therefore, this thesis proposes 

using diffusion models to generate fashion images and employing GANs for image 

editing.  
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Chapter 3. CONTROLLABLE GENERATION 

MODEL 

3.1 Introduction 

 
Figure 3-1 A Visualization Demonstrating the Capability of the Proposed Model to 

Simultaneously Control Clothing Texture and Attributes. 

The controllable generation model aims to achieve detailed control over synthesized 

fashion images in terms of both correct garment attributes and garment textures (styles). 

Figure 3-1 illustrates a scenario in which the style of Vincent van Gogh's 'Starry Night' 

is transferred to garments with various attributes. 

 

Controlling detailed garment textures using natural language is challenging, therefore, 

the proposed model, named as SGDiff and illustrated in Figure 3-2, takes two inputs: a 

text condition (𝑐𝑐𝑇𝑇) describing the garment attributes and a style condition (𝑐𝑐𝑆𝑆) guiding  
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Figure 3-2 Overview of the Controllable Generation Model, namely Style-Guided 

Diffusion Model (SGDiff). 

the synthesized garment texture. The text encoder 𝐸𝐸𝑇𝑇diff of the diffusion model encodes 

the semantic representation 𝑓𝑓𝑇𝑇, and the style encoder 𝐸𝐸𝑆𝑆
clip of a pretrained CLIP model 

encodes the style representation 𝑓𝑓𝑆𝑆 . The diffusion network 𝜖𝜖𝜃𝜃 estimates the noise 𝜖𝜖𝑡̂𝑡 as 

follows: 

𝜖𝜖𝑡̂𝑡 = 𝜖𝜖𝜃𝜃 �𝑥𝑥𝑡𝑡 ,𝐸𝐸𝑇𝑇diff(𝑐𝑐𝑇𝑇),𝐸𝐸𝑆𝑆
clip(𝑐𝑐𝑆𝑆)� . (3-1) 

 

To avoid labor-intensive data annotation, the conditioned image synthesis is formulated 

as an image reconstruction task, as shown in Figure 3-2 (a), in which a randomly image 

patch cropped from the garment image is taken as style condition 𝑐𝑐𝑆𝑆 , the model is then 

trained to reconstruct garment according to the style guidance 𝑐𝑐𝑆𝑆 . To achieve efficient 

training, SGDiff utilizes the pre-trained text-to-image diffusion model fine-tuned on a 

domain-specific dataset using text as input condition, according to a classifier-free 

guidance approach (Ho & Salimans, 2021). Next, by fixing the diffusion network 

parameters, the specially designed SCA module is optimized, and fine-tune a pretrained 
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image encoder 𝐸𝐸𝑆𝑆
clip with multiple conditions of text description and style guidance, 

which will be discussed in detail in Section 3.5. 

3.2 Related Works 

3.2.1 Fashion Synthesis 

Fashion synthesis, an emerging research area within the broader field of computer 

vision and generative models, concentrates on generating and manipulating fashion-

related images, such as clothing and accessories as well as fashion models. Virtual try-

on (VTON) has generated considerable attention in some recent studies (Cui et al., 2021; 

Ge et al., 2021; Hu et al., 2022; Kim et al., 2020; Lewis et al., 2021; Xu et al., 2021), 

which typically employ human parsing maps and pose estimation techniques to transfer 

textures from a desired garment onto a target person. Although these VTON approaches 

successfully synthesize consistent clothing attributes, they primarily focus on human-

centric scenarios.  

 

Several recent studies have investigated garment-centric fashion synthesis, with the aim 

to generate novel and diverse clothing items. For example, Jiang et al. (2022) developed 

FashionG to transfer styles onto a garment without changing its original image content. 

Other researchers (Ding et al., 2023; C. Yu et al., 2019; D. Zhou et al., 2022) explored 

the synthesis of compatible fashion based on a given garment image as a query. These 

aforementioned studies are all using visual modality input as control for image 
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synthesis, their ability to control the detail attributes of the generated fashion is rather 

limited.  

 

Text-to-image fashion synthesis remains relatively unexplored compared to other 

fashion synthesis approaches. Zhu et al. (2017) proposed a method that uses textual 

descriptions to edit images of garments worn by humans. X. Zhang et al. (2022) 

developed an ARMANI model for fashion synthesis based on multi-modal inputs 

including text descriptions and edge or regional detail in image modality. Although the 

above approaches successfully enable control over the synthesized garments, they 

generally fail to achieve detailed control of the synthesized textures or styles.  

 

3.2.2 CLIP Model Guided Modality Fusion 

The CLIP model, introduced by OpenAI (Radford et al., 2021), has revolutionized the 

field of computer vision by leveraging the power of large-scale transformers trained on 

both images and text. One of the main strengths of the CLIP model is its zero-shot 

learning capability, namely no learning is needed, which allows it to handle new tasks 

without requiring any task-specific fine-tuning. Its zero-shot capability has been 

exploited in various applications, such as image classification (Esmaeilpour et al., 2022; 

R. Zhang et al., 2022), object detection (Shi et al., 2022; Teng et al., 2021), and semantic 

segmentation (Liang et al., 2022; C. Zhou et al., 2022; Z. Zhou et al., 2022). 
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CLIP models have been integrated with generative models like GANs (X. Liu et al., 

2021; Patashnik et al., 2021) and VQ-VAEs (Crowson et al., 2022) to produce 

impressive results in various tasks, from text-to-image synthesis to image editing. For 

example, StyleCLIP (Patashnik et al., 2021) utilizes a pretrained StyleGAN (Karras et 

al., 2020) and the CLIP model to align image and text features within the style space. 

VQGAN-CLIP (Crowson et al., 2022) uses CLIP as additional guidance to control the 

generation direction in pretrained generative model. FuseDream (X. Liu et al., 2021) is 

a training-free method integrating the latent generation space with CLIP embeddings. 

DALL·E (Ramesh et al., 2021) combines the CLIP model with a discrete VAE to 

generate high-quality images from textual descriptions. All these models adopt a 

training-free pipeline and treat the CLIP model as a gradient guidance to interpret the 

generation of latent space. Although these methods could integrate pretrained 

generation models with CLIP for text-to-image synthesis, they synthesize every image 

as a separate optimization process, which are computationally costly, and they fail to 

capture domain-specific text descriptions. 

3.3 Method 

3.3.1 Skip Cross-Attention Module 

Figure 3-2 (b) illustrates the process of integrating two different modalities, namely text 

description of garment attributes 𝑐𝑐𝑇𝑇 and image of style guidance 𝑐𝑐𝑆𝑆, in the proposed 

SGDiff model. The integration of the two input modalities is achieved through the 
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specially designed Skip Cross-Attention (SCA) module. Both encoders, 𝐸𝐸𝑇𝑇diff and 𝐸𝐸𝑆𝑆
clip, 

employ transformer-based structures and the output features 𝑓𝑓𝑇𝑇 ∈ ℝ128×512  and 𝑓𝑓𝑆𝑆 ∈

ℝ50×512 represent two modalities of input. Such aligned features of 𝑓𝑓𝑇𝑇 and 𝑓𝑓𝑆𝑆 enable 

easy integration of the two representations by attention mechanism (Vaswani et al., 

2017). To do so, the semantic representation 𝑓𝑓𝑇𝑇 is linearly projected into query and key-

value pairs: 

𝑄𝑄,𝐾𝐾𝑇𝑇,𝑉𝑉𝑇𝑇 = 𝐿𝐿𝑇𝑇(𝑓𝑓𝑇𝑇), (3-2) 

where 𝐿𝐿𝑇𝑇 represents linear projection, and query 𝑄𝑄 and key-value pairs 𝐾𝐾𝑇𝑇, 𝑉𝑉𝑇𝑇 all have 

size ℝ128×512. The style representation 𝑓𝑓𝑆𝑆 is projected into key-value pairs only: 

𝐾𝐾𝑆𝑆,𝑉𝑉𝑆𝑆 = 𝐿𝐿𝑆𝑆(𝑓𝑓𝑆𝑆). (3-3) 

The style key-value pairs are concatenated with text key-value pairs: 

𝐾𝐾� = 𝐾𝐾𝑆𝑆(+)𝐾𝐾𝑇𝑇 and 𝑉𝑉� = 𝑉𝑉𝑆𝑆(+)𝑉𝑉𝑇𝑇 , (3-4) 

where (+) denotes length-wise concatenation.  

 

Specifically, the semantic representation 𝑓𝑓𝑇𝑇 is chosen as query 𝑄𝑄 because it provides 

key attribute information for garment synthesis. With 𝑓𝑓𝑇𝑇 as query, style representation 

𝑓𝑓𝑆𝑆  is aligned with the garment attributes in order to improve the quality of the 

synthesized images. The cross-attention is implemented by integrating the key-value 

pairs from both modalities as follows: 

𝑓𝑓𝑚𝑚 = Attention (𝑄𝑄,𝐾𝐾�,𝑉𝑉�) = softmax �
𝑄𝑄𝐾𝐾�𝑇𝑇

�𝑑𝑑𝑘𝑘
�𝑉𝑉� . (3-5) 
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Finally, the skip connection is applied, as shown in Figure 3-2: 

𝑓𝑓𝑚𝑚 = 𝑓𝑓𝑚𝑚 + 𝑓𝑓𝑇𝑇. (3-6) 

The SCA module enables effective integration of text and image modalities, allowing 

the SGDiff model to control the synthesized texture without any reduction in semantic 

control. 

 

3.3.2 Training Objectives 

As discussed in Section 2.3.3.1, diffusion models implicitly learn to reconstruct an 

image from Gaussian noise. The network 𝜖𝜖𝜃𝜃 estimates the noise in the current input 

noisy image 𝐱𝐱𝑡𝑡. The training objective of DDPM (Equation (2-49)), however, does not 

address condition constraints explicitly. Therefore, SGDiff employs perceptual loss, in 

addition to Equation (2-49), to govern image synthesis. To this end, the reconstructed 

image x�0  is obtained at every time step 𝑡𝑡 , according to the estimated noise 𝜖𝜖𝑡̂𝑡  by 

Equation (3-1): 

x�0 =
1
�𝛼𝛼�𝑡𝑡

�𝑥𝑥𝑡𝑡 − �1 − 𝛼𝛼�𝑡𝑡𝜖𝜖𝑡̂𝑡�. (3-7) 

 

The Perceptual Loss (Johnson et al., 2016) is then calculated by:  

ℒ𝑡𝑡
perc = 𝔼𝔼𝑚𝑚∥∥𝝍𝝍𝑚𝑚(𝐱𝐱�0) −𝝍𝝍𝑚𝑚(𝐱𝐱0)∥∥2, (3-8) 

where 𝝍𝝍𝑚𝑚 denotes the 𝑚𝑚-th layer of VGG. Following Johnson et al. (2016), the layers 

of relu1_2, relu2_2, relu3_2, relu4_2, and relu5_2 are used in Equation (3-8). The 
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overall training objective with Perceptual Loss, adapted from (Nichol & Dhariwal, 

2021), is as follows: 

ℒ = 𝜆𝜆𝑠𝑠ℒ𝑡𝑡
simple + ℒ𝑡𝑡vlb + 𝜆𝜆𝑝𝑝ℒ𝑡𝑡

perc, (3-9) 

where 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑝𝑝 are balancing weights for the corresponding losses. 

 

3.3.3 Multi-Modal Conditions 

Classifier-free guidance (Ho & Salimans, 2021) has obvious advantages over classifier 

guidance (Dhariwal & Nichol, 2021) for conditioned generation with DDPMs. For 

more flexible control, the proposed SGDiff also adopts classifier-free guidance 

approach (Ho & Salimans, 2021), in which the model 𝜖𝜖𝜃𝜃 is trained with conditional 

state 𝑐𝑐 and unconditional state ∅ according to a certain probability 𝑐𝑐 ∼ 𝑝𝑝cond: 

𝜖𝜖𝜃̂𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐) = 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 ,∅) + 𝑠𝑠[𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐) − 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 ,∅)], (3-10) 

 

Nevertheless, the above approach Equation (3-10) does not address more complex 

situation where conditions are multiple, happen in different combinations at varied 

probabilities. Until recently, InstrucPix2Pix (Brooks et al., 2023) suggested different 

weights for two conditions: 

𝜖𝜖𝜃𝜃�(𝑥𝑥𝑡𝑡 , 𝑐𝑐1, 𝑐𝑐2) = 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 ,∅,∅)
+𝑠𝑠1[𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐1,∅) − 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 ,∅,∅)]
+𝑠𝑠2[𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐1, 𝑐𝑐2) − 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐1,∅)]

, (3-11) 

where 𝑠𝑠1  and 𝑠𝑠2  indicate the weight scale of condition 𝑐𝑐1 ∼ 𝑝𝑝cond
1   and 𝑐𝑐2 ∼ 𝑝𝑝cond

2  , 

respectively. In Brooks et al. (2023)’s work, however, it was not discussed either the 
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order of 𝑐𝑐1 and 𝑐𝑐2 or the weight scales 𝑠𝑠1 and 𝑠𝑠2.  

 

In the current task, Equation (3-11) is applied by setting the two conditions as 𝑐𝑐𝑇𝑇 and 

𝑐𝑐𝑆𝑆. The SGDiff is subjected to two conditions with independent conditional probability 

𝑝𝑝cond
𝑆𝑆 = 0.8 and 𝑝𝑝cond

𝑇𝑇 = 0.8, which follows a typical classifier-free guidance training 

scheme (Ho & Salimans, 2021). In model training, like all text-to-image diffusion 

models, the unconditional state ∅ of textual condition 𝑐𝑐𝑇𝑇 is set to padding token. The 

unconditional state ∅  of style guidance 𝑐𝑐𝑆𝑆  is done by inputting a blank (background 

only) patch image.  

Background masking: Apart from inputting a blank image patch as unconditional 

state, the background color in RGB space may also appear in the foreground. To avoid 

confusion, the background pixel values are masked to -255 to distinguish them from 

the normal RGB values. Such masking technique allows the model to focus more on 

the foreground texture. The effectiveness of such background masking setting will be 

evaluated in Section 3.4. 

Condition order and weight scales: In order to explore the effect of the condition 

order, by setting 𝑐𝑐1 = 𝑐𝑐𝑆𝑆  and 𝑐𝑐2 = 𝑐𝑐𝑇𝑇 , alternatively 𝑐𝑐1 = 𝑐𝑐𝑇𝑇  and 𝑐𝑐2 = 𝑐𝑐𝑆𝑆 , in Equation 

(3-11), and 𝑠𝑠𝑇𝑇 = 1, this will result in: 

𝜖𝜖𝜃̂𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑆𝑆, 𝑐𝑐𝑇𝑇) = (𝑠𝑠𝑆𝑆 − 1)[𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑆𝑆,∅) − 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 ,∅,∅)] + 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑆𝑆, 𝑐𝑐𝑇𝑇). (3-12) 

𝜖𝜖𝜃̂𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑇𝑇, 𝑐𝑐𝑆𝑆) = (𝑠𝑠𝑆𝑆 − 1)[𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑇𝑇 , 𝑐𝑐𝑆𝑆) − 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑇𝑇 ,∅)] + 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑇𝑇, 𝑐𝑐𝑆𝑆). (3-13) 

In the implementation, the model 𝜖𝜖𝜃𝜃  takes 𝑐𝑐𝑆𝑆  and 𝑐𝑐𝑇𝑇  simultaneously, the two terms 
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𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑆𝑆, 𝑐𝑐𝑇𝑇)  and 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑇𝑇 , 𝑐𝑐𝑆𝑆)  are therefore equivalent. Comparing Equation (3-12) 

wtih (3-13), thus [𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑆𝑆,∅) − 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 ,∅,∅)] = [𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑇𝑇, 𝑐𝑐𝑆𝑆) − 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑐𝑐𝑇𝑇,∅)] . It 

implies that if the style condition and text condition are independent, the condition order 

will not have a significant impact on the image generation. Moreover, the weight scale 

serves to adjust the influence of style guidance. When 𝑠𝑠𝑆𝑆 > 𝑠𝑠𝑇𝑇 (i.e. 𝑠𝑠𝑆𝑆 > 1 when 𝑠𝑠𝑇𝑇 =

1 ), it introduces a positive conditioned direction to the denoising processing, 

emphasizing the influence of condition is guiding the synthesis. The multi-condition 

synthesis will be further evaluated in Section 4.4 

3.4 Experiments 

3.4.1 Datasets and Implementation Details 

 

Figure 3-3 Overview of the Collected SG-Fashion Dataset. 

In this study, a SG-Fashion dataset with 17,000 fashion product images was prepared, 

downloaded from e-commerce websites including ASOS, Uniqlo and H&M. A subset 

of 1,700 images was set aside as the test set. The dataset covers 72 product categories, 
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encompassing most types of garment items. Since SGDiff does not rely on textural 

descriptions, the original product titles were used as text descriptions. Apart from the 

SG-Fashion dataset, experiments were also conducted on the publicly available dataset 

of Polyvore (Han et al., 2017) using the same settings. 

 

GLIDE (Nichol et al., 2022) was adopted as the backbone text-to-image diffusion 

model, which uses a low-resolution generation model for size 64 × 64 and a super-

resolution model to upsample the generated low-resolution image to the size of 

256 × 256. The generation model was fine-tuned and the super-resolution model was 

directly employed as the pretrained text-to-image model. For the pretrained CLIP image 

encoder, the vision transformer of ViT/32 was chosen. To speed up the synthesis process, 

DDIM (J. Song et al., 2021) scheduler with 100 sampling steps was adopted for all 

diffusion-based models. 

 

The backbone model (GLIDE) was fine-tuned on the domain-specific dataset that the 

AdamW optimizer was used with a learning rate of 1𝑒𝑒−4, and the model was optimized 

for 235,000 iterations. Due to GPU limitations, the batch size was set to 8, and the 

GLIDE was trained on a single RTX 3090 GPU. AdamW was also used, but with a 

learning rate of 1𝑒𝑒−5 for training the SGDiff with 50,000 iterations for all experiments 

on a single RTX 3090 GPU. In terms of the SCA module, multi-head attention with 4 

heads was adopted. In all experiments, 𝜆𝜆𝑠𝑠 = 1 and 𝜆𝜆𝑝𝑝 = 0.001 were set in Equation (3-
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9). Since the training of SGDiff fixes the parameters of the pretrained backbone, a larger 

batch size of 16 could be used. For SGDiff training, a single texture patch was cropped 

from the foreground. To ensure this cropped patch provides sufficient style information, 

BASNet (Qin et al., 2019), a boundary-aware salient object segmentation method, was 

applied to obtain the foreground segmentation map. 

 

3.4.2 Qualitative Evaluation 

The qualitative evaluation compares the SGDiff results with several SOTA text-to-

image generation methods, including LDM (Rombach et al., 2022) and GLIDE (Nichol 

et al., 2022) for diffusion-based methods, and FuseDream (X. Liu et al., 2021) and 

VQGAN-CLIP (Crowson et al., 2022) for CLIP-guided GAN-based methods. All 

selected SOTA methods have zero-shot capability. Figure 3-4 presents a comprehensive 

qualitative comparison of these methods. The 2nd and 3rd rows illustrate the results of 

CLIP-based methods of VQGAN-CLIP (Crowson et al., 2022) and FuseDream (X. Liu 

et al., 2021), while the 4th and 5th rows illustrate the results of diffusion-based methods 

of LDM (Rombach et al., 2022) and GLIDE (Nichol et al., 2022). The 6th row illustrates 

SGDiff’s ability to incorporate style images (the 7th row) into text conditions (the 1st 

row), successfully synthesizing garments with the desired textures. Generally speaking, 

FuseDream and LDM could synthesize garments in most cases, while VQGAN-CLIP 

and GLIDE could only synthesize fabrics. The proposed SGDiff could successfully 

implement the fashion synthesis with desired clothing category and style. Specifically,  
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Figure 3-4 Qualitative comparison of SGDiff with state-of-the-art (SOTA) 

approaches.  

when synthesizing a garment with complex text descriptions (see examples in columns  

(a), (b), and (c)), the other methods tend to ignore the key message but capture part of 

the semantics like Batman logo, pink doggy, or silk, while SGDiff tends to synthesize 

clothing and consider the style guidance to control the synthesized textures. Moreover, 

semantic confusion is one of main challenges in text-to-image synthesis. For instance, 

`Tank' refers to a specific type of upper clothing in the fashion domain. Column (d) of 

Figure 3-4 shows that both the diffusion-based and CLIP-based approaches have 

difficulty in capturing domain-specific semantics. Since their generation objective 

focuses on optimizing the CLIP-Score, the synthesis results may not always guarantee 

that the output is a piece of clothing. The other columns present cases when offering  
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Figure 3-5 Illustration of SGDiff’s capability to synthesize garments across various 

categories and styles, using style guidance of different colors.  

textual descriptions like amber, light and pink, although the other SOTA methods could 

synthesize clothing with textures that are similar to the descriptions, they show greater 

differences to the ground truth images comparing to SGDiff. In conclusion, SGDfiff is 

suitable for fashion synthesis since it could capture the garment category and desired 

styles. Moreover, it performs consistently well across various clothing categories. In 

addition to the comparative analysis, Figure 3-5 illustrates the innovative capability of 

SGDiff in synthesizing garments across various categories and styles. With style 

guidance images under different color schemes, SGDiff effectively transfers styles from 

the guidance images to the synthesized garments, meeting the condition of garment 

attributes. Figure 3-5 shows a range of synthesized fashion under specific color scheme 

in each column, offering valuable inspiration for innovative fashion design. When 

conditioned generation are out of the training set, SGDiff can still exhibit a remarkable 
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generative capability by successfully blending different condition combinations, e.g., 

the jeans shorts with red check and green patterns showed in columns (b) and (c) are 

not existed in the training data. Moreover, the style guidance appears in interesting 

variations in the generated fashion. These results highlight the versatility and robustness 

of the SGDiff model in the realm of fashion design. Appendix A presents additional 

qualitative results of garments synthesized using SGDiff, as illustrated in Figure A-1 

and Figure A-2.  

3.4.3 Metrics and Quantitative Evaluation 

Table 3-1 Quantitative evaluation and comparison of various SOTA methods. 
Datasets SG-Fashion Polyvore 

Metrics LPIPS ↓ FID ↓ CS ↑ LPIPS ↓ FID ↓ CS ↑ 

VQGAN-CLIP 0.7364 95.84 22.20 0.7122 68.01 39.65 

FuseDream 0.7067 60.44 38.03 0.7032 41.94 38.53 

LDM 0.7158 85.73 31.66 0.7214 59.79 31.89 

GLIDE 0.6921 78.70 23.72 0.7164 63.85 23.28 

Ground Truth - - 29.13 - - 29.88 

Baseline 0.5772 36.13 27.31 0.6637 43.50 26.24 

SGDiff (Ours) 0.4474 32.06 27.53 0.6369 41.98 27.33 

Table 3-1 shows the quantitative evaluation, in which three metrics, including FID 

(Heusel et al., 2017), LPIPS (Zhang et al., 2018) and CLIP-Score (CS) (Radford et al., 

2021), are used to assess and compare the performance of SGDiff with other SOTA 

methods. FID and LPIPS measure the distance in feature space, with FID focusing on 

the overall distribution statistics of the generated/synthesized images and the ground 

truths, while LPIPS computes the distance between each pair of synthesized image and 

the corresponding ground truth, lower the FID and LPIPS values higher the image 
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quality. In contrast, the CLIP-score measures the semantic correspondence, namely the 

cosine similarity between synthesized images and their corresponding text descriptions, 

with higher scores indicating better alignment. 

 

As shown in Table 3-1, SGDiff model performs the best in terms of LPIPS, comparing 

to other SOTA methods on both SG-Fashion and Polyvore datasets. SGDiff's FID value 

is also the lowest for SG-Fashion dataset and only slightly lower than FuseDream for 

Polyvore dataset by 0.04%. This demonstrates that the SGDiff model can generate 

better images fulfilling the conditions without sacrificing the image quality. The CS of 

the SGDiff is higher than GLIDE and the baseline (i.e. GLIDE being fine-tuned on the 

datasets), but lower than FuseDream and LDM, because FuseDream optimizes the 

BigGAN-256 (Brock et al., 2019) latent space using CLIP guidance and LDM leverages 

a vast text-to-image dataset consisting of billions of examples. Nevertheless, these 

methods did not consider the integration of the text feature and image feature for image 

generation, they indeed did not perform well in LPIPS and FID. 

Table 3-2 Consumption of synthesizing an image with resolution of 256 × 256 on 

a RTX 3090 GPU. 

 VQGAN-CLIP FuseDream LDM GLIDE Ours 

Time 62 s 171 s 5.9 s 9 s 9.8 s 

Memory 5686M 9296M 6570M 5550M 5986M 

Table 3-2 compares the model memory and average time cost for synthesizing an image 

of size 256 × 256 on a RTX 3090 GPU. As shown, the running time of the SGDiff 
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model is much shorter than that of VQGAN-CLIP and FuseDream. Although the 

running time of the SGDiff model is slightly longer than LDM, the memory 

consumption is lower. Compared to the baseline, the increases in time and memory are 

relatively insignificant because only the image encoder and modality fusion module are 

fine-tuned. In summary, the SGDiff can be trained without much memory and can 

generate an image with good quality based on text and style conditions within 10 

seconds on RTX 3090. 

 

3.4.4 Ablation Study 

Table 3-3 Ablation experiments on modality fusion methods and classifier-free 

approaches. 
Classifier-free Mask Modality fusion  LPIPS ↓ FID ↓ CS ↑ 

Equation (3-10)  ⊕1  0.6833 42.63 25.63 

Equation (3-10)  CA2  0.5650 38.88 25.39 

Equation (3-10)  SCA  0.5607 39.21 25.98 

Equation (3-10) ✓ SCA  0.5695 37.22 26.06 

Equation (3-11) ✓ SCA  0.4474 32.06 27.53 

1 ⊕ refers to an element-wise addition operation, where the features 𝑓𝑓𝑇𝑇 and 𝑓𝑓𝑆𝑆 are projected onto 
the same dimension before operation; 

2 CA indicates SCA module without skip connection, w.r.t. Equation (3-5) without Equation (3-
6). 

Ablation study was conducted to evaluate the effect of each component of the proposed 

SGDiff on SG-Fashion dataset. 

 



 

68 

3.4.4.1 Effectiveness of the SCA: 

As demonstrated in Table 3-3, the comparison between the element-wise addition of 

features and the cross-attention (CA) method shows that CA is significantly more 

effective in improving LPIPS and FID scores. However, it has the downside of causing 

a decline in semantic information, as CS decreases. To address this issue, the SCA 

module with skip connections was use. As shown in the third row of the table, SCA 

leads to improvements in both LPIPS and CS scores, demonstrating its ability to 

improve the similarity between synthesized images and ground truth images. 

3.4.4.2 The effect of background masking: 

As shown in Table 3-3, after applying background masking, the FID value decreases by 

1.99 and the CS remains almost the same. This demonstrates that background masking 

is beneficial to improve image quality. The reason for slightly increased LPIPS is that 

LPIPS is sensitive to perceptual information, the lack of background may degrade 

LPIPS metric. However, the fashion synthesis task only focuses on the synthesized 

foreground, and the background could be easily removed by salient object segmentation 

model like BASNet (Qin et al., 2019). 
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Figure 3-6 Ablation study on the impact of style and text guidance on the 

performance of SGDiff in terms of (a) and (b) for FID, (c) and (d) for 

LPIPS and (e) and (f) for CLIP-score. 

3.4.4.3 The orders and weights for different conditions: 

Figure 3-6 displays the relationship between FID, LPIPS and CS with different 

conditional weights and order settings. One conditional weight was set to vary in the 

range of [0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0], while the other 

conditional weight is fixed at 1.0. The trend of setting text prior to style is similar to 

setting style prior to text, indicating little impact on results with fixed 𝑠𝑠𝑆𝑆 = 1  and 

varying 𝑠𝑠𝑇𝑇. In addition, it can be seen from Figure 3-6 that the optimal values (see the 

circled dots of Figure 3-6) of 𝑠𝑠𝑆𝑆  and 𝑠𝑠𝑇𝑇  are almost in the range of 1.0 to 1.6. More 

specifically, the setting of 𝑠𝑠𝑆𝑆 = 1.2, 𝑠𝑠𝑇𝑇 = 1.0, with style prior to text, was chosen as 

optimal. This setting achieves the best LPIPS which is important in controlling 

synthesized styles. The numerical results are shown in the last row of Table 3-3. 

Although the CLIP-Score is lower compared to other methods, the qualitative results 
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indicate that a higher LPIPS suggests better visual performance in this controllable 

generation task. Additionally, users can achieve a better CLIP-Score by increasing the 

text weight 𝑠𝑠𝑇𝑇. 

3.5 Chapter Summary 

This chapter reports on the implementation of the controllable generation model, 

referred to as the Style Guided Diffusion model (SGDiff), which forms a core 

component of the overall system. SGDiff represents a significant stride in the realm of 

image synthesis, specifically designed to address and overcome the limitations inherent 

in traditional diffusion models. 

 

Central to SGDiff's innovation is the introduction of a style condition, which essentially 

acts as a decoupled condition within the model. This decoupling allows for a more 

controlled integration of style elements into the pretrained text-to-image diffusion 

frameworks. The effectiveness of SGDiff is highlighted by its ability to operate with a 

high degree of precision in texture synthesis, all while circumventing the need for 

extensive labelled datasets or computational resources. 

 

Looking forward, SGDiff will be enhanced by refining the control over various texture 

attributes, including colour themes, patterns, and material qualities. This enhancement 

is anticipated to not only extend SGDiff's technical contributions but also to broaden its 
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applicability across diverse applications and fields of the controllable generation of 

synthesized images. 
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Chapter 4. FLEXIBLE EDITING MODEL 

4.1 Introduction 

 
Figure 4-1 Demonstration of Flexible Clothing Shape Editing in Application Usage. 

This editing model is designed to flexibly modify arbitrary regions according to user-

specified sketches. In the context of fashion editing, it enables the alteration of large, 

interesting areas of various shapes. For instance, as demonstrated in Figure 4-1, a 

designer might frequently modify their drafts, such as transforming a dress into 

different styles of skirts. Given the frequent need for modifications in drafts, this model 

employs a GAN-based architecture. It also marks a transition from a diffusion model 

to a GAN model. While diffusion models require several inference steps and can take 

up to 10 seconds to generate an image on a single RTX 3090 GPU, GANs can produce 

an image in approximately one second. 

 

To implement this model, the general requirement for the input is an existing image 𝐼𝐼, 

a binary mask image 𝑀𝑀 that denotes the editing area, and a user-provided sketch map 

𝑆𝑆. Figure 4-2 illustrates this pipeline, referred to as CoDE-GAN. 
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Figure 4-2 The Proposed CoDE-GAN Utilizing a Mask-Reconstruction Pipeline. 

 

The proposed pipeline picks up the DeepFill V2 (J. Yu et al., 2019) as backbone. This 

backbone relies on the mask-reconstruction proxy task to relief the lack of paired data 

between the source image and the edited target image. The mask reconstruction could 

be considered as image inpainting but with the guidance of sketches. The DeepFill V2 

is a benchmark algorithm in image inpainting task.  

 

However, there is a gap between the image inpainting works and the proposed editing 

task. The inpainting approaches can only synthesis a region with no consideration on 

the user-provided conditions. To bridge this gap, this study elaborately designed the 

Content Decoupled and Enhanced GAN (CoDE-GAN) using Content Decoupling 

Module and Content Enhancement Module to fit in the fashion editing task. 
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4.2 Related Works 

4.2.1 Fashion Editing Tasks 

In fashion editing tasks, researchers pay much attention to editing some attributes of a 

fashion image. In response to various kinds of input, the existing methods are capable 

to control the final editing results from different levels. 

 

Motivated by the achievements of semantic synthesis (Park et al., 2019; Schnfeld et al., 

2021) and human parsing (Ruan et al., 2019), it is possible to edit a fashion image by 

improving the shape of its parsing map. This editing could be considered as human 

synthesis as well. Frühstück et al. (2022) conditioned synthesis on a human parsing 

map. Dong et al. (2020) propose a two-stage fashion editing pipeline that generates an 

edited human parsing map firstly and synthesizes based on the parsing map. Their 

edited human image can respond to the conditioned sketch and color. In virtual try-on 

works (Cui et al., 2021; Neuberger et al., 2020; Wang et al., 2018; Yang et al., 2020), 

they are capable of editing the whole human image by offering human poses and 

specified fashion garments. 

 

In addition to editing whole fashion human images, Dai et al. (2021) argue that it is 

important to edit design drafts. Their fashion editing workflow formulates the fashion 

editing task as a bidirectional image translation task. By translating an in-shop fashion 

garment to design drafts, it benefits the designer in making modifications. And then, 
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their pipeline is able to translate the edited drafts back into in-shop garments. 

TailorGAN (Chen et al., 2020) achieves fashion attribute editing by specifying a 

reference image. For addressing the lack of paired data between input garments and 

edited images, TailorGAN proposes a self-supervision training pipeline. By 

reconstructing a masked attribute region with the guidance of a reference image, 

TailorGAN has the ability to apply fashion editing tasks. Nevertheless, this method can 

only address collar and sleeves editing which leads to poor generalization to other 

attributes. Even though the existing works are capable of editing fashion garments to 

some extent. It is demanding to provide a user-friendly interaction in editing in-shop 

clothing. 

 

4.2.2 Sketch-Guided Editing Tasks 

Editing tasks in fashion require location guidance. There are clear regions that user 

would like to edit. Hence, the wanted-editing region will be offered as input. By offering 

a mask map as wanted-editing region, editing tasks could be considered as image 

inpainting task. DeepFill V2 (J. Yu et al., 2019) offered a user-guided way of editing 

image. Besides the damaged image and reference target mask map, their network 

architecture takes user sketch as an additional input channel. Nazeri et al. (2019) 

proposed an edge connect way for reconstructing the sketch map in damaged region 

firstly. As prior information, the recovered edge map contributed to the completion task. 

Their edge connect pipeline enables user-guided editing as well. Jo and Park (2019) 
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introduced SC-FEGAN for addressing face editing tasks. By inputting additional user-

guided color channel, SC-FEGAN is capable of editing face images with specific shape 

and color. 

 

4.2.3 Image Translation 

Recently, benefits from the succeeding of generative adversarial networks (GAN), it is 

possible to generate and edit the fashion image easier and faster. For instance, by 

reshaping the conditioned input parsing map, it is able to edit a whole human fashion 

image (Frühstück et al., 2022; Li et al., 2021). Cui et al. (2021) and Han et al. (2019) 

provide pose estimation to transfer different poses to a specified source human image. 

Chen et al. (2018), Y. Li et al. (2019), and Li et al. (2020) utilize text information to 

instruct attributes editing. Their works effectively consider the complex input condition 

to constrain the generation and achieve astonishing results. However, their input 

conditions are in-flexible to make modifications to the clothing. The parsing map could 

condition the shape of a fashion garment but failed to condition inner details. Pose 

estimation provides spatial prior information. It is effective in conditioning the 

viewpoint of an image but lacks the ability to edit the shape of a fashion garment. The 

text instructions semantically conditioned the editing but are hard to accurately control 

the length of sleeves or pants. For flexibly editing the image like a fashion designer, it 

is straightforward to provide in-complete sketches to edit a specific area. 
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(a) Fashion Editing with Adversarial 

Parsing Learning (Dong et al., 2020) 

(b) Fashion Draft Editing and Translation 

(Dai et al., 2021) 

 
 

(c) Fashion Attribute Swapping (Chen et 

al., 2020) 

(d) Fashion Attribute Shape Manipulation 

(Kwon et al., 2022) 

Figure 4-3 Multiple Fashion Image Generation and Editing Tasks. 

Although the existing image synthesis works (Dai et al., 2021) have achieved 

astonishing results, they mostly discuss unconditional generation that there are no 

constraints on the generation process. What’s more, fashion domain often requires 

generating fashion images with specified types e.g., clothing texture, collar types, dress 

styles, etc. Achieving controllable fashion image generation is challenging. This 

controlled generation requires the model to synthesize images that accurately represent 

the desired design elements, such as color, pattern, and shape. These elements can be 
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specified in any manner, regardless of the number and types of elements involved. 

generation refers to generate images in respect to input conditions. The input conditions 

could be one-hot codes for denoting fashion attributes like colors or clothing types. As 

well, the conditions could be much more complex and abstract like pose estimation, 

texts, and so on. In general, the controlled generation translates the source image to the 

target image by applying the above-mentioned conditions to the source image. This 

process is regarded as image translation (Isola et al., 2017) or image editing (H. Liu et 

al., 2021). 

 

Generally, the regular image editing works focus much on human face editing (Jo & 

Park, 2019; Korshunova et al., 2017; Portenier et al., 2018). Human face is the type of 

data that have been well-explored. On the one hand, face images could be easily 

collected from the Internet. On the other hand, there are plenty of research works about 

face detection (Yang et al., 2016), face recognition (Meng et al., 2021), and face 

deepfakes (Peng et al., 2021). Therefore, it’s low-cost to collect aligned and cropped 

human face dataset for analyzing. In contrast to human face editing, there are fewer 

fashion image editing research works that modify and regenerate an actual fashion 

garment image with a high level of realism. Compared to face images, fashion image 

editing is more difficult due to the complexity of apparel attribute definition, which 

includes global attributes such as garment style, fabric color and texture. For apparel 

products, the design process is complex and expensive and labor-intensive, and the 
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most time-consuming part of the process is completing the design drawings, which are 

the transformation from a draft to a real image of the apparel. This is because the 

designer needs to imagine what colors and fabric materials will work with the design 

to show the style more perfectly.  

4.3 Method 

4.3.1 Problem Formulation 

Let 𝐼𝐼 ∈ ℝ3×𝑤𝑤×ℎ be the ground truth RGB image where 𝑤𝑤 is the image width and ℎ is 

the image height, 𝑀𝑀 ∈ ℝ1×𝑤𝑤×ℎ be the binary mask where 1 indicates editing or masked 

area and 0 indicates the unmasked region, and 𝑆𝑆 be the input sketch, the sketch-guided 

image editing model will generate a new image which is filled in the consistent texture 

in the masked region 𝑀𝑀 and has the consistent sketch with 𝑆𝑆. During the training stage, 

sketch 𝑆𝑆  is extracted by edge detection network HED (Xie & Tu, 2015) 𝐻𝐻(⋅)  and 

multiplied with the mask 𝑀𝑀, which can be defined as: 

𝑥𝑥𝑡𝑡 = 𝐼𝐼𝑀𝑀 ⊕𝑀𝑀, (4-1) 

where ⊙ is the element-wise multiplication. Since HED can only output a greyscale 

sketch map, 𝑆𝑆  is binarized by setting the threshold to 0.6 to simulate users’ drawn 

sketches. During the inference stage, 𝑆𝑆 is drawn by the users in the editing area. In 

general, the inputs of the sketch-guided image synthesis are the set 𝑥𝑥 = [𝐼𝐼𝑀𝑀,𝑀𝑀, 𝑆𝑆] , 

where 𝐼𝐼𝑀𝑀 is the masked RGB image obtained by: 

𝐼𝐼𝑀𝑀 = 𝐼𝐼 ⊙ (1 −𝑀𝑀). (4-2) 
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To make the model learn specific texture and structure representation for better image 

synthesis, the CDM is designed to learn the decoupled texture representation and 

structure representation and fuse them to obtain better latent representation for image 

generation. Let the latent representation be 𝑓𝑓𝑙𝑙, it can be represented by: 

𝐼𝐼𝑀𝑀 = 𝐼𝐼 ⊙ (1 −𝑀𝑀). (4-3) 

The latent representation is then fed into a generator 𝒢𝒢 to generate a synthesized image, 

which is defined by: 

𝐼𝐼 = 𝒢𝒢(𝑓𝑓𝑙𝑙). (4-4) 

Lastly, four loss functions are used to train the network to make the synthesized image 

𝐼𝐼 similar to the original image 𝐼𝐼 as much as possible. The detail of the loss functions is 

illustrated in Section 4.3.5. 

4.3.2 Content Decoupling Module 

The content decoupling module consists of a Condition Decoupling Block (CDB), a 

structure encoder, a texture encoder, and a bottleneck. 

a) Condition Decoupling Block: 

This block decouples the input 𝑥𝑥  into two types of conditions: the texture 

condition 𝑥𝑥𝑡𝑡 and the structure condition 𝑥𝑥𝑠𝑠. Given the image 𝐼𝐼, the mask 𝑀𝑀 and 

the sketch 𝑆𝑆, the 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑠𝑠 can be computed by: 

𝑥𝑥𝑡𝑡 = 𝐼𝐼𝑀𝑀 ⊕𝑀𝑀 (4-5) 

𝑥𝑥𝑠𝑠 = 𝐼𝐼𝑔𝑔𝑔𝑔 ⊕𝑀𝑀 (4-6) 
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where ⊕ is channel-wise concatenation, and 𝐼𝐼𝑔𝑔𝑔𝑔 ∈ ℝ1×𝑤𝑤×ℎ is the grey image 

of 𝐼𝐼𝑀𝑀. It can be seen from the formula that the input 𝑥𝑥𝑡𝑡 ∈ ℝ4×𝑤𝑤×ℎ aligns the 

setting of image inpainting and the input 𝑥𝑥𝑠𝑠 ∈ ℝ2×𝑤𝑤×ℎ  is conditioned to the 

sketch. Here, 𝑥𝑥𝑠𝑠 incorporates sketch with the grey image instead of RGB image, 

because grey image is more effective to represent structural information than 

RGB image and reduces the representation space from ℝ3  to ℝ1 . Moreover, 

traditional image processing algorithms, such as Canny edge detection, 

typically work with grey images to obtain edge details. 

b) Texture Encoder: 

The texture encoder 𝜖𝜖𝑡𝑡  feeds in the condition 𝑥𝑥𝑡𝑡  and learn the texture 

representation by: 

𝑓𝑓𝑡𝑡 = 𝜖𝜖𝑡𝑡(𝑥𝑥𝑡𝑡), (4-7) 

where 𝜖𝜖𝑡𝑡  is the texture encoder. As the texture encoder mainly aims to 

reconstruct the texture of the masked region, which is the same as the image 

inpainting task, this model adopts the encoder structure of DeepFill V2 (J. Yu et 

al., 2019). DeepFill V2 designs a gated convolution that adapts a dynamic 

feature selection mechanism to make the convolution dependent on the soft 

mask that is automatically learned from data and improves the texture 

consistency and inpainting quality of the masked region. Specifically, for the 

input feature 𝑓𝑓𝑖𝑖𝑖𝑖, a gated convolution 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑔𝑔 applies an additional convolution 

to obtain a soft weight map and then multiples it with a learned feature of 𝑓𝑓𝑖𝑖𝑖𝑖. It 
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is formulated as: 

Conv𝑔𝑔 (𝑓𝑓in ) = Conv (𝑓𝑓in ) ⊙𝜎𝜎(Conv𝑑𝑑(𝑓𝑓in )), (4-8) 

where Conv  is the conventional convolution, Conv𝑑𝑑  is the convolution that 

outputs single-channel feature map, and 𝜎𝜎 is the sigmoid function that scales 

learned gating to range (0, 1). 

c) Structure Encoder: 

The structure encoder 𝜖𝜖𝑠𝑠  takes the input 𝑥𝑥𝑠𝑠  and learns the structure 

representation 𝑓𝑓𝑠𝑠 by: 

𝑓𝑓𝑠𝑠 = 𝜖𝜖𝑠𝑠 (𝑥𝑥𝑠𝑠). (4-9) 

The structure of 𝜖𝜖𝑠𝑠  is same with 𝜖𝜖𝑡𝑡, but the gated convolution is replaced with 

conventional convolution. There are two reasons for using conventional 

convolution here: 1) the intension is for the encoder to primarily focus on 

capturing the basic structure of the whole image, and thus the texture 

information learning is not that important and will be achieved by the texture 

encoder. 2) Gated convolution adapts an extra convolution to learn the soft 

weighting map, leading to an increase in computation cost. 

d) Bottleneck: 

Lastly, the texture representation and structure representation are fused by a 

bottleneck structure to reduce the representation space. The bottleneck structure 

consists of four dilated gated convolution blocks. First, 𝑓𝑓𝑡𝑡  and 𝑓𝑓𝑠𝑠  are 

concatenated, and then fed into a bottleneck 𝜖𝜖𝑏𝑏  to obtain the fused latent 
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representation 𝑓𝑓𝑙𝑙. It is formulated as: 

𝑓𝑓𝑙𝑙 = 𝜖𝜖𝑏𝑏(𝑓𝑓𝑡𝑡 ⊕ 𝑓𝑓𝑠𝑠). (4-10) 

4.3.3 Adversarial Generation 

To allow the synthesized results more realistic and reasonable, the adversarial 

generation process is incorporated. 

a) Generator: 

Given the fused latent representation 𝑓𝑓𝑙𝑙 , the generator 𝒢𝒢  could synthesizes a 

fake image 𝐼𝐼: 

𝐼𝐼 = 𝒢𝒢(𝑓𝑓𝑙𝑙) ⊙𝑀𝑀 + 𝐼𝐼𝑀𝑀. (4-11) 

The 𝒢𝒢 consists of five gated convolution blocks with twice upsampling which 

is symmetric to the structure of encoder 𝜖𝜖𝑡𝑡. 

b) Discriminator: 

Following with Pix2Pix (Isola et al., 2017), a patch discriminator 𝒟𝒟  was 

implemented, which output real/fake discrimination on image patches instead 

of the whole image. Its discrimination could focus on local details and enhance 

the fidelity of the generated image. The structure of 𝒟𝒟 is like an encoder that 

only consists of six convolution blocks. Besides, to stabilize the adversarial 

training process, spectral normalization was adopted on the discriminator as 

well (Miyato et al., 2018). 
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4.3.4 Content Enhancement Module 

 

Figure 4-4 Content response map generator (CRG) transforms features into content 

response map. The response map is masked and fused with a grey image. 

To further improve the consistency of synthesized content, a Content Enhancement 

Module (CEM) is applied to the generator 𝒢𝒢. As shown in Figure 4-2, CEM extracts the 

features from the second and fourth blocks. The features have different resolutions and 

are denoted as 𝑓𝑓64 and 𝑓𝑓128 of which the subscript indicates the resolution of the feature 

map. Then, the two features are respectively fed into a Content Response Map 

Generator (CRG) to generate the content response maps 𝐶𝐶𝑅𝑅64 and 𝐶𝐶𝑅𝑅128. As Figure 

4-4 illustrates, the content response map 𝐶𝐶𝑅𝑅𝑖𝑖 could be obtained by: 

𝐶𝐶𝑅𝑅𝑖𝑖 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑓𝑓𝑖𝑖)
= tanh[IN(Convd(𝑓𝑓𝑖𝑖))] ⊙𝑀𝑀 + 𝐼𝐼𝑔𝑔 ⊙ (1 −𝑀𝑀), (4-12) 

where 𝑖𝑖 = 64 or 𝑖𝑖 = 128, Convd reduces the feature dimensionality of 𝑓𝑓𝑖𝑖 to single, IN 

denotes an instance normalization layer, and tanh is a Tanh activation function. Then, 

the cosine similarity between 𝐶𝐶𝑅𝑅𝑖𝑖 and the grey image 𝐼𝐼𝑔𝑔 is calculated and regarded as 

an objective function, which is computed by: 
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ℒ𝑐𝑐 = �1 −
𝐶𝐶𝑅𝑅64 ⋅ 𝐼𝐼𝑔𝑔
∥∥𝐶𝐶𝑅𝑅64∥∥∥∥𝐼𝐼𝑔𝑔∥∥

� + �1 −
𝐶𝐶𝑅𝑅128 ⋅ 𝐼𝐼𝑔𝑔
∥∥𝐶𝐶𝑅𝑅128∥∥∥∥𝐼𝐼𝑔𝑔∥∥

� . (4-13) 

The goal is to optimize the features of the generator through gradient backpropagation 

by minimizing the similarity distance between the 𝐶𝐶𝑅𝑅𝑖𝑖 and the grey image 𝐼𝐼𝑔𝑔. 

 

 

Figure 4-5 Visualization of the synthesized content response map 𝐶𝐶𝐶𝐶 at resolution 

of 64 × 64 and 128 × 128. 

The content response maps at resolutions 64 × 64(𝐶𝐶𝑅𝑅64)  and 128 × 128(𝐶𝐶𝑅𝑅128) 

were visualized in Figure 4-5. It could be observed that the CEM could learn the 

structure and texture of the image and the content response map with a higher resolution 

clearly exhibits more uniform content and sharper boundaries. Since the input sketch is 

sparse and gradually diminishes in the CNN feature space, it is important to inject the 

sparse sketch information in the CNN space, especially in the generator. In DeFlocNet 

(H. Liu et al., 2021), the control inputs are injected in all blocks of encoders and 

generators to preserve the guidance information. However, this method will add 

additional computation costs and cannot provide other content information except the 
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input controls, like the structure and texture information around the sketch. In this case, 

the features of the generator are optimized to resemble the original grey image, which 

contains rich structure and texture information. By doing so, the generator learns to 

recover the structure and texture of the masked region as shown Figure 4-5. 

Consequently, the proposed CEM is able to enhance and refine the content information, 

leading to more detailed and high-quality generation results. 

4.3.5 Optimization Objectives 

For training the CoDE-GAN, except for the above-mentioned content-aware loss, 

reconstruction loss, perceptual loss, and generative adversarial loss are used. In the 

following, these loss functions are introduced in the following: 

a) Reconstruction Loss: 

To ensure the generated image 𝐼𝐼  is close to the RGB image 𝐼𝐼  within the 

unmasked region, L1 loss is used between them on the unmasked region. It is 

defined by: 

𝐿𝐿ℓ1 = |𝐼𝐼 − 𝐼𝐼|1 ⊙𝑀𝑀. (4-14) 

b) Perceptual Loss: 

Following style transfer, perceptual loss (Johnson et al., 2016) was introduced 

to keep the perceptual information as well. It is obtained by: 

ℒ𝑝𝑝𝑝𝑝𝑝𝑝 = � 
𝑖𝑖

𝑤𝑤𝑖𝑖 ⋅ 𝐿𝐿1�𝐹𝐹𝑖𝑖(𝐼𝐼) − 𝐹𝐹𝑖𝑖(𝐼𝐼)�, (4-15) 

where 𝐹𝐹𝑖𝑖  stands for 𝑖𝑖 th activation layer of VGG-19 network, and 𝑤𝑤𝑖𝑖  is the 

corresponding weight. Specifically, the selected layers are relu1_1, relu2_1, 
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relu3_1, relu4_1 and relu5_1. In the experiments, all the corresponding weight 

𝑤𝑤𝑖𝑖 are set to 1.0. 

c) Generative Adversarial Loss: 

The synthesis process is conditioned to inputs 𝑥𝑥 = {𝐼𝐼𝑀𝑀,𝑀𝑀, 𝑆𝑆} . To allow the 

discriminator 𝒟𝒟 to consider the conditions, despite the real/fake image 𝐼𝐼 and 𝐼𝐼, 

𝒟𝒟  will take 𝑥𝑥  as well. The hinge loss for optimizing spectral normalized 

discriminator 𝒟𝒟 is adopted as: 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝐷𝐷 = 𝔼𝔼𝐼𝐼,𝑥𝑥[min (0,−1 + 𝒟𝒟(𝐼𝐼, 𝑥𝑥))] + 𝔼𝔼𝐼𝐼𝑥𝑥,𝑥𝑥[min (0,−1 − 𝒟𝒟(𝐼𝐼, 𝑥𝑥))], (4-16) 

And the adversarial loss for the total network CoDE-GAN: 

ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺 = −𝔼𝔼𝐼𝐼,𝑥𝑥�𝒟𝒟�𝐼𝐼, 𝑥𝑥��. (4-17) 

The overall objectives are: 

ℒ = 𝜆𝜆per ℒper + 𝜆𝜆ℓ1𝐿𝐿ℓ1 + 𝜆𝜆𝑐𝑐ℒ𝑐𝑐 + ℒ𝑎𝑎𝑎𝑎𝑎𝑎𝐺𝐺 , (4-18) 

where 𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝, 𝜆𝜆ℓ1, 𝜆𝜆𝑐𝑐, 𝜆𝜆𝑎𝑎𝑎𝑎𝑎𝑎 denotes the coefficients for perceptual loss, reconstruction, 

content-aware loss and adversarial loss respectively. 

4.4 Experiment Verification and Results Discussions 

4.4.1 Data Preparation 

This section introduces the datasets collection for evaluating the proposed methods and 

the collection methods for the required pre-processed data. 

4.4.1.1 Dataset Collection 

Two fashion garment datasets for simulating a real fashion editing scenario were 
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selected: one fashion human dataset for testing the methods’ robustness in a more 

complex situation, and one outdoor church dataset for determining its generalizability.  

 

There are 9,636 upper garments in the Garment Dataset collected by Chen et al. (2020). 

The Garment Dataset mainly collected garments with different collar and sleeve types. 

The another dataset is Cafi-Garment Dataset collected by Zhou et al. (2019). There are 

17,075 garments with 77 categories that include dresses, jeans, and T-shirts, etc. 

 

For the fashion human dataset, the ATR dataset (Liang et al., 2015) was selected, 

comprising 7, 700 human images with different poses in the wild. The outdoor church 

dataset is a subset from LSUN dataset (Yu et al., 2015) that there are 126,227 images. 

These aforementioned datasets were split into train set and valid set with an 8: 2 ratio. 

 

4.4.1.2 Sketch Generation 

The sketch is the vital information that guide the model to synthesis user-controlled 

garments. Generally, the sketch should be drawn manually to reflect the users’ intuitions. 

However, collecting sketch maps may be time-consuming and costly, which goes 

against the intended motivation. For reducing human workload and achieve a robust 

response to the sketch maps, the results of edge detection are used for simulating the 

manually drawn sketches. Figure 4-6 shows several level outputs of the detected edges 

by HED (Xie & Tu, 2015). HED is a benchmark work for edge detection and is capable  
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Figure 4-6 Edges Detected by HED (Xie & Tu, 2015). 

of achieving promising edge maps. To ensure that the extracted edges faithfully 

simulate user hand-drawn sketches, these edges are binarized using a threshold of 127, 

which is the middle value of RGB pixels. Since the HED model mainly responds to the 

outline of an object, the editing model trained on HED primarily edits the shape of the 

cloth. The proposed model could be extended to edit other minor attributes like 

accessories (e.g., pockets, buttons) if the edge map is replaced by another edge 

extraction method such as Canny (Bao et al., 2005). 

4.4.1.3 Mask Generation 

Fashion editing often requires the transformation of a large continuous region. For 

simulating this characteristic, box or rectangular mask strategy are adopted. The mask 

ratio is set to 30%, 50%, and 70% with respect to the whole image area. 
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(a) 30% Free-Form Mask (b) 50% Free-Form Mask (c) 70% Free-Form Mask 

   

(d) 30% Box Mask (e) 50% Box Mask (f) 70% Box Mask 

Figure 4-7 Free-Form and Box Masks with Different Ratios. 

 

However, most of the sketch-guided image editing work mainly discuss the free-form 

mask which is randomly generated strokes. For a fair and more general comparison, the 

experiments also trained the model with free-form masks followed with SC-FEGAN  

(Jo & Park, 2019). 

4.4.2 Evaluation metrics 

The general requirements of the generated images are realistic and various. However, 

the measurement of the generated images could be subjective in most cases. For 

instance, it’s hard to quantify realistic. Therefore, researchers apply more implicit way 

to acquire metric scores. 

 

4.4.2.1 Fréchet Inception Distance 

Inception scores utilize InceptionNet V3 which pre-trained on ImageNet dataset 
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(Salimans et al., 2016). By classifying the generated images, the InceptionNet will 

output a classification probability distribution. If the image is fidelity enough, there will 

be a higher score on a certain class. If the images are various, there will be lower 

information entropy. 

𝐼𝐼𝐼𝐼(𝐺𝐺) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝔼𝔼𝑥𝑥∼𝑝𝑝𝑔𝑔𝐷𝐷𝐾𝐾𝐾𝐾(𝑝𝑝(𝑦𝑦|𝑥𝑥)||𝑝𝑝(𝑦𝑦)))                        (4-1) 

However, if the ImageNet dataset did not include the class of generated images, it 

apparently lacks the ability of classifying. What’s more, outputting a classification 

prediction with high confidence did not require the image realistic as human artifacts. 

These two-character harms the validness of inception score. 

 

Fréchet inception distance (FID) proposed by Heusel et al. (2017) utilized the 

InceptionNet V3 as well. Unlike the inception scores, it only considered the features. 

Let 𝑚𝑚  be mean, 𝑐𝑐  be covariant, and 𝑡𝑡𝑡𝑡  be trace of matrix, subscript 𝑔𝑔  and 𝑑𝑑  denote 

feature comes from generator or real data respectively: 

𝐹𝐹𝐹𝐹𝐹𝐹 = ||𝑚𝑚𝑔𝑔 −𝑚𝑚𝑑𝑑|| + 𝑡𝑡𝑡𝑡(𝑐𝑐𝑔𝑔 + 𝑐𝑐𝑑𝑑 − 2(𝑐𝑐𝑔𝑔𝑐𝑐𝑑𝑑)1/2)           (4-2) 

Since FID only calculate the statistic value of feature, it is more plausible on measuring 

GAN’s capability. Heusel et al. (2017) also pointed that there is a much stronger 

relationship between FID and image quality. 

 

4.4.2.2 Structural Similarity 

Structural Similarity (SSIM) (Wang et al., 2004) considers three aspects of image: 
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luminance, contrast, and structure. The subscript follows the definition of FID. And μ 

denotes mean value. σ denotes variance. 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3 are three different constant values. 

• Luminance: 

𝑙𝑙�𝑥𝑥𝑔𝑔, 𝑥𝑥𝑑𝑑� =
2𝜇𝜇𝑑𝑑𝜇𝜇𝑔𝑔 + 𝑐𝑐1
𝜇𝜇𝑑𝑑2 + 𝜇𝜇𝑔𝑔2 + 𝑐𝑐1

                                            (4-3) 

• Contrast: 

𝑐𝑐�𝑥𝑥𝑔𝑔, 𝑥𝑥𝑑𝑑� =
2𝜎𝜎𝑑𝑑𝜎𝜎 + 𝑐𝑐2
𝜎𝜎2 + 𝜎𝜎2 + 𝑐𝑐2

                                           (4-4) 

• Structure: 

𝑠𝑠�𝑥𝑥𝑔𝑔, 𝑥𝑥𝑑𝑑� =
2𝜎𝜎𝑑𝑑𝑑𝑑 + 𝑐𝑐3
𝜎𝜎𝑑𝑑𝜎𝜎𝑔𝑔2 + 𝑐𝑐3

                                                 (4-5) 

And the total SSIM is: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥𝑔𝑔, 𝑥𝑥𝑑𝑑) = 𝑙𝑙(𝑥𝑥𝑔𝑔, 𝑥𝑥𝑑𝑑)𝑐𝑐(𝑥𝑥𝑔𝑔, 𝑥𝑥𝑑𝑑)𝑠𝑠(𝑥𝑥𝑔𝑔, 𝑥𝑥𝑑𝑑)                         (4-6) 

SSIM is score which compare two images. It usually is applied in image completion 

tasks. 

 

4.4.2.3 Peak Signal-to-Noise Ratio 

Similar to SSIM, Peak Signal-to-Noise Ratio (PSNR) (Faragallah et al., 2020) is the 

metric for measuring two images. Firstly, it calculates the mean square error of 

generated image and real image. 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥𝑔𝑔, 𝑥𝑥𝑑𝑑) =
1
𝑚𝑚𝑚𝑚

�  
𝑚𝑚−1

𝑖𝑖=0

�  
𝑛𝑛−1

𝑗𝑗=0

[𝑥𝑥𝑔𝑔(𝑖𝑖, 𝑗𝑗) − 𝑥𝑥𝑑𝑑(𝑖𝑖, 𝑗𝑗)]2               (4-7) 

The PSNR as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥𝑔𝑔, 𝑥𝑥𝑑𝑑) = 10𝑙𝑙𝑙𝑙𝑔𝑔10
𝑀𝑀𝑀𝑀𝑋𝑋𝑔𝑔2

𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥𝑔𝑔, 𝑥𝑥𝑑𝑑)
                                   (4-8) 
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4.4.3 Results Discussions  

The experiments were conducted on the data prepared in Section 4.4.1 with metrics 

mentioned in Section 4.4.2. It is cost to collect real edited data for evaluating the 

methods. Therefore, the mask-reconstruction proxy task was chosen to evaluate the 

quantitative metrics. 

4.4.3.1 Quantitative Evaluation 

A comparison was initially made between the proposed methods and Pix2Pix (Isola et 

al., 2017), and SC-FEGAN (Jo & Park, 2019). Table 4-1 and  

Table 4-2 shows the overall comparisons under the training of box mask with 30% ratio. 

Table 4-1 Comparisons in Garment-Based Dataset 

Metrics 
Garment Dataset Cafi-Garment Dataset 

Pix2Pix SC-FEGAN Ours Pix2Pix SC-FEGAN Ours 

FID ↓ 9.0279 7.7746 5.0172 21.2413 22.0515 13.6705 

SSIM ↑ 0.8569 0.8618 0.8882 0.8968 0.906 0.9162 

PSNR ↑ 24.3152 24.1064 26.1712 28.4381 28.6801 30.5279 

 

Table 4-2 Comparisons in Fashion Human and Outdoor Buildings Dataset 

Metrics 
ATR Dataset LSUN Outdoor Church Dataset 

Pix2Pix SC-FEGAN Ours Pix2Pix SC-FEGAN Ours 

FID ↓ 73.0056 69.7000 43.8257 40.2195 39.3383 30.6956 

SSIM ↑ 0.7260 0.8200 0.8596 0.7025 0.7864 0.8089 

PSNR ↑ 20.2658 20.5500 24.7131 20.0976 18.9277 19.9848 

The results show that the proposed methods outperformed not only in garment-based 
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dataset but also have the ability to generalize in more complex dataset. The methods 

employed achieved the best performance in FID and SSIM Metrics. There is only a 

slightly slack in PSNR when compared with Pix2Pix in LSUN Outdoor Church Dataset. 

PSNR evaluates peak signal noise rate with 𝐿𝐿2 distance. Even though Pix2Pix is better 

in PSNR, it failed a lot in FID metrics which have a stronger relation with visual 

perceptual quality. 

 

Additionally, significant results were achieved not only with the box mask but also with 

free-form mask with respect to larger mask ratio. This character was evaluated in 

Garment Dataset with two additional image inpainting methods Partial Convolution 

(Liu et al., 2018) and DeepFill V2 (J. Yu et al., 2019), which is designed to recover 

irregular free-form masked region. Table 4-5 present the overall comparisons on 

Garment Dataset with different training mask types and ratios. The proposed method is 

robustness in handling various masks. Especially, when the mask ratio increases to 70%, 

the model performs much better than the other network for implementing the 

reconstruction task. 

 

Table 4-3 Evaluation on Garment Dataset with 30% Masked Region 

Metrics 

Free-Form Mask Box Mask 

Pix2Pi
x 

Partial 
Conv 

DeepFill 
V2 

SC-
FEGA

N 
Ours Pix2Pi

x 
Partial 
Conv 

DeepFill 
V2 

SC-
FEGA

N 
Ours 

FID↓ 9.028 35.596 6.891 7.775 5.017 5.841 19.546 3.762 5.509 2.789 

SSIM↑ 0.857 0.750 0.873 0.862 0.888 0.901 0.854 0.931 0.918 0.939 

PSNR↑ 24.315 16.052 24.689 24.106 26.171 27.269 23.640 29.277 28.236 30.617 
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Table 4-4 Evaluation on Garment Dataset with 50% Masked Region 

Metrics 

Free-Form Mask Box Mask 

Pix2Pi
x 

Partial 
Conv 

DeepFill 
 V2 

SC-
FEGA

N 
Ours Pix2Pi

x 
Partial 
Conv 

DeepFill 
V2 

SC-
FEGA

N 
Ours 

FID↓ 7.581 62.314 14.339 9.484 4.764 18.451 139.845 12.092 14.138 8.359 

SSIM↑ 0.853 0.758 0.882 0.856 0.894 0.770 0.574 0.786 0.767 0.816 

PSNR↑ 25.561 20.661 26.693 25.391 27.990 21.320 13.032 21.666 21.126 23.631 

 

Table 4-5 Evaluation on Garment Dataset with 70% Masked Region 

Metrics 

Free-Form Mask Box Mask 

Pix2Pi
x 

Partial 
Conv 

DeepFil
l V2 

SC-
FEGA

N 
Ours Pix2Pi

x 
Partial 
Conv 

DeepFil
l V2 

SC-
FEGA

N 
Ours 

FID↓ 11.467 160.080 20.808 13.826 7.102 27.479 258.358 15.903 21.114 11.547 

SSIM↑ 0.796 0.597 0.824 0.787 0.839 0.708 0.417 0.718 0.686 0.752 

PSNR↑ 23.601 17.406 24.592 23.143 25.727 19.508 10.476 20.114 18.946 21.906 

 

 

Figure 4-8 Qualitative Results on Reconstruction Task. 
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Figure 4-9 Qualitative Results on Sleeves & Collars Editing. 

4.4.3.2 Qualitative Evaluation 

Figure 4-8 shows the qualitative results while the model is training in recovering the 

masked region with the guidance of sketches. 𝐶𝐶𝐶𝐶1 and 𝐶𝐶𝐶𝐶2 are the content response 

map proposed in Section 4.3.4. 

 

Figure 4-9 shows the qualitative results while editing a short sleeve to long sleeve. Even 

though the other method could synthesize the increased sleeves region and has clear 

boundary in respect to the sketch. They failed in filling texture in the content region. 

Appendix B exhibits more challenging edited results showcased in Figure B-1. 

Additionally, this study includes an interactive UI for editing fashion images. A video 

demonstration is accessible through the QR code provided in Figure B-2. 

 



 

97 

In conclusion, the proposed flexible editing model performs well in editing tops and 

bottoms, as these categories present relatively simple textures. However, when editing 

whole-body dresses with complex patterns, the model is less effective in reconstructing 

the texture. 

 

4.4.3.3 Ablation Study 

To demonstrate the effectiveness of the designed modules, an ablation study was 

conducted while training with free-form masks with 70% ratios. Table 4-6 and  

Table 4-7 showed the evaluation results in various mask types. The wo grey refers to 

remove the grey image in sketch encoding branch. The single branch refers to keep one 

gated convolution-based encoding branch for coding the sketch and source image. The 

wo enhancement refers to the removal of the specially designed content enhancement 

block. Each of these designed modules brings significant improvement on the 

qualitative metrics.  

Table 4-6 Ablation Study on Free-Form Mask 

Ablation 
30% 50% 70% 

FID↓ SSIM↑ PSNR↑ FID↓ SSIM↑ PSNR↑ FID↓ SSIM↑ PSNR↑ 

wo Grey 9.869 0.904 26.655 9.892 0.858 25.303 11.169 0.804 23.903 

wo Segmentation 37.597 0.824 19.936 54.641 0.732 18.349 72.130 0.632 16.762 

Single Branch 15.269 0.890 24.341 21.350 0.830 22.304 30.599 0.757 20.420 

Whole Model 6.269 0.921 28.189 6.148 0.885 27.136 7.102 0.839 25.727 

 

Table 4-7 Ablation Study on Box Mask 

Ablation 
30% 50% 70% 

FID↓ SSIM↑ PSNR↑ FID↓ SSIM↑ PSNR↑ FID↓ SSIM↑ PSNR↑ 

wo Grey 19.799 0.835 20.127 26.958 0.731 18.072 29.716 0.642 16.524 

wo Segmentation 32.603 0.777 15.548 57.907 0.632 13.528 92.449 0.488 12.225 
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Single Branch 21.627 0.817 19.260 41.615 0.695 16.696 79.753 0.580 14.174 

Whole Model 12.224 0.856 21.790 17.009 0.777 19.386 25.946 0.678 15.629 

The most notorious improvement is brought by the content enhancement block. It is the 

significant factor to improve the generalizability in various mask types.  

4.5 Chapter Summary 

This chapter introduces CoDE-GAN, a flexible editing model for fashion image content. 

By elaborately designing a reconstruction proxy task, CoDE-GAN first decouple the 

content of an image into structure and texture representations. Particularly, the structure 

representation, obtained through edge detection, enables an automatic pipeline for 

implementing this approach. By training to reconstruct an image through these 

decoupled conditions, sketch condition and texture condition, the model can effectively 

edit an image’s content, even with out of distribution samples. 

 

Furthermore, extensive experiments were conducted to validate the performance. The 

model was examined using the human ATR dataset and the garment-centric Garment 

and CafiGarment datasets, revealing that CoDE-GAN delivers superior performance in 

perceptual quality and editing flexibility when compared to existing state-of-the-art 

methods. This highlights its potential to significantly streamline image editing 

processes in the fashion industry. Beyond achieving the perceptual quality, CoDE-GAN 

also shows significant potential for adaptation in other applications, such as image 

inpainting or guided image reconstruction.  
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Nevertheless, there are limitations to further improving the proposed CoDE-GAN. This 

method mostly edits the shape of image content. Incorporating CoDE-GAN with style 

conditions presents a challenging aspect. Moreover, this system combines two distinct 

modules. It would be worthwhile to integrate CoDE-GAN into the previously discussed 

SGDiff to achieve both generation and editing in one unified model. 
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Chapter 5. CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 

5.1 Conclusions 

This thesis presents a comprehensive exploration of fashion image generation and 

editing, introducing two distinct models: SGDiff and CoDE-GAN for controllable 

generation and flexible editing, respectively. SGDiff serves as a controllable generation 

model, enabling the creation of fashion images with a particular focus on texture control. 

CoDE-GAN, on the other hand, acts as a flexible editing model, efficiently modify cloth 

content in existing images. The two models are designed to work either independently 

or integratively as one single system. 

 

A key innovation of this thesis is the use of decoupled conditions in both modules, 

significantly reducing the reliance on labeled training data for controllable image 

generation and editing. The significance of decoupled conditions extends to the broader 

field of image generative models. Utilizing a self-supervised reconstruction pipeline, 

the system effectively leverages various decoupled conditions, including sketches, text, 

and textures. This enables the system to mimic real user inputs and achieve high-fidelity 

image reconstructions.  

 

SGDiff, as introduced in Chapter 3, presents advanced style transfer in the image 
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generation process. It introduces a novel approach by incorporating an image-based 

condition as style reference, leading to enhanced control over the synthesized textures. 

This model effectively utilizes the concept of decoupled conditions to reconstruct from 

randomly masked image patches, fine-tuning the pre-trained text-to-image diffusion 

model. The efficacy of SGDiff is underscored by its superior performance in LPIPS and 

FID scores, demonstrating its capability in synthesizing fashion images that closely 

reflect the given style reference. By extending the text-to-image diffusion model to 

include additional image-based inputs, SGDiff represents a significant step forward in 

image generation technology. 

 

Chapter 4 introduces CoDE-GAN, the flexible editing model, which stands as an 

effective tool in fashion image editing. This model circumvents timing issues 

commonly associated with diffusion models by decoupling image content from texture 

and spatial representations through the decoupled sketch condition. This innovative 

approach effectively addresses challenges in content area construction, demonstrating 

superior performance in terms of perceptual quality and editing flexibility. The 

extensive experiments show its superior performance with other state-of-the-art method, 

showcasing its potential applications not only in the fashion industry but also in broader 

domain such as guided image reconstruction. 

 

In summary, this thesis has not only contributed novel methodologies and tools in the 
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realm of digital fashion image generation and editing but also set a foundation for future 

research in this rapidly evolving field. The potential applications of SGDiff and CoDE-

GAN extend far beyond their current scope, promising to revolutionize the way fashion 

imagery is approached and interacted in the digital age. 

5.2 Recommendations for Future Work 

 

Figure 5-1 Overview of the Unified Generation and Editing System Using 

Decoupled Conditions. 

Although Chapter 3 and Chapter 4 implemented two independent models for 

conducting fashion image generation and editing tasks respectively, merging these two 

distinct models into a unified one is both possible and beneficial. Figure 5-1 

demonstrates this unified model. By utilizing decoupled conditions, the model can swap 

the original black polka dot with red ones, resulting in the generation of a red polka dot 

dress. This allows for editing the original image by trying on this newly generated red 
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dress. 

 

To develop this unified system, it important to decouple multiple conditions effectively 

and simultaneously. These conditions represent partial information extracted from the 

target image with automatic preprocesses. For instance, a masked image could serve as 

semantic condition, as the model is required to edit the masked region to align 

semantically with the rest of image. In this method, partial information is carefully 

selected to mimic real user inputs. This approach enables the model to generate or edit 

images that accurately reflect these inputs, treating this information as decoupled 

conditions. 

 

A key aspect of successfully decoupling an image into various conditions involves 

designing an appropriate reconstruction pipeline. This task, conducted in a self-

supervised learning framework, hinges on the nature of the decoupled conditions. 

Several principles guide the selection of automatic preprocessing methods. Firstly, the 

preprocess must be fully automated, requiring no human intervention to avoid the need 

for labor-intensive and costly manual labeling. The information derived should 

encompass only a random selection of the target image’s details. By reconstructing from 

this randomly selected information, the model can better adapt to actual usage scenarios 

and prevent overfitting. Additionally, that information should be compatible with real 

user inputs, such as sketch maps, text descriptions, texture maps, etc.  
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In detail, the conditions represented in Figure 5-1 can be achieved as follows. Given a 

target image, 𝐼𝐼𝑡𝑡 , the decoupled conditions are achieved through various automatic 

methods. The sketch condition, 𝑐𝑐sketch, is derived using an edge detection method (Xie 

& Tu, 2015), while the text condition, 𝑐𝑐text, comes from image captioning work (Li et 

al., 2022) or is automatically sourced from the Internet. Style condition 𝑐𝑐style  is 

generated by randomly cropping a patch from the foreground image, obtainable through 

salient object segmentation work (Qin et al., 2019). The semantic condition, 𝑐𝑐semantic, 

provides the image’s content, sourced through random masking or human parsing 

techniques (Gong et al., 2018; Liang et al., 2015; Ruan et al., 2019), to identify areas 

of interest like clothing. As illustrated above, these decoupled conditions can be 

efficiently achieved using existing tools or algorithms, eliminating the need for 

extensive labeling.  

 

Here are two major challenges for this unified model, which are further detailed in sub-

Sections 5.2.1 and 5.2.2. 

 

5.2.1 Multi-Modal Inputs and Representations 

A unified generation and editing model may involve multi-modality inputs, as depicted 

in Figure 5-1. Designing or utilizing the pre-trained modality-specific encoder presents 

a challenge. This is because data from different modalities may contribute differently 



 

105 

to the overall generation or editing process. Aligning these distinct feature 

representations into a unified space is another challenge. 

 

5.2.2 Visual Characteristics Preserve 

Currently, the existing diffusion models utilize a noise estimation loss function for 

denoising images. This loss function supervises the overall image reconstruction. It 

lacks effective supervision on specific visual characteristics. Traditionally, GANs 

achieve this by explicitly applying a perceptual loss to attain better visual consistency. 

This approach is less effective in diffusion models, as it requires an extra step to convert 

a predicted latent code into a real image. This could cost much time and memory. 
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Appendix A. MORE QUALITATIVE RESULTS 

OF SGDIFF GENERATED GARMENTS 

 
Figure A-1 More Qualitative Results of SGDiff Generated Garments (1). 
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Figure A-2 More Qualitative Results of SGDiff Generated Garments (2). 
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Appendix B. MORE QUALITATIVE RESULTS 

OF CODE-GAN EDITED SAMPLES 

 

Figure B-1 More Flexible Edited Results of CoDE-GAN. 

 

Figure B-2 Interactive UI of CoDE-GAN. 
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