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ABSTRACT

Fashion design typically involves composing elements and concepts, where designers
select and harmonize colors, patterns, prints, and consider functional attributes like
collar types, sleeve length, and overall fit. This process, reflecting the designer's
creativity and market preferences, usually requires iterative modifications and can be
time-consuming even for experts. Although recent advances in generative models offer
efficient and effective way of processing of fashion images, applying these models in
design remains challenging. The generative models primarily map random noise into
an image, and the process is arbitrary and uncontrollable that requires multiple attempts

to achieve a satisfactory image, meeting certain specific requirements.

A primary solution in enhancing the experience of generating desired garment images
could involve detailed supervisory information. For instance, by collecting a fashion
garment dataset with detailed annotations of each design element, the generative
models could learn a conditional mapping from specific elements to the desired garment
image. However, an obvious drawback of such a solution is the requirement of tedious
annotation, which could be time-consuming and expensive. Moreover, those labels
usually consider a discrete attribute where each element will be assigned to a category.
When using such a model to consider the design process, its flexibility is limited as
there are multiple design elements that are hard to categorize, e.g., colors and/or

ii



textures.

To address the above-mentioned challenges in controllability and flexibility, this study
develops generative models involving a decoupling method in the data collection and
training. The overall motivation is to decouple a garment image into different
modalities of data, each representing different design elements. For instance, the HED
model is utilized to extract sketches that represent spatial level attributes like collars,
lengths, and overall shapes. At the texture level, the cropped image patches are
employed. These decoupled data, derived partially from the original garment images,
are used to train generative models with the capable of reconstructing the original
images. The trained model enables control over the synthesized garment image by

selecting specific design elements during the inference stage.

Building on this capability, this thesis introduces an image processing system that
involves two models: a controllable generation model and a flexible editing model, each
targeting different fashion image processing tasks. The first model, called SGDiffs,
focuses on the control over texture, the generation model leverages randomly cropped
texture patches and text prompts to reconstruct garments. Once trained, it uses texture
patches as decoupled style condition to control the synthesized garment images.
Subsequently, an editing model, called CoDE-GAN, is introduced to modify the shape

of fashion images. It learns the editing function by reconstructing masked images using

il



sketch maps. The two models can work independently or integratively as one system,
enabling effective and flexible control in the generation and editing of fashion images.
Both models have been comprehensively evaluated to demonstrate their specific

advantages in comparison of other state-of-the-art models.

Keywords: Fashion image generation; image editing; generative adversarial network;

diffusion model; decoupled conditions
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Chapter 1. INTRODUCTION

1.1 Research Background

Artificial intelligence (AI) has become a competitive necessity after decades of
scientific fantasy, according to a report by the Deloitte Institute for Artificial
Intelligence (Davenport, 2018). This advancement has significantly enhanced various
aspects of the fashion design process. Furthermore, Al’s role in simplifying and
enhancing the design process is particularly evident in the domain of fashion. In this
study, we refer to computer vision-based fashion technology as intelligent fashion. This
is largely due to the visual nature of fashion, which has attracted many computer vision
researchers to realize the immense potential of Al technology in this filed. The growing
interest in intelligent fashion extends across the domain of computer vision and
multimedia, as evidenced by the numerous applications of machine learning and neural

networks with a fashion focus.

The advancements in computer vision, especially in the areas such as deep learning,
have led to significant breakthroughs (Cheng et al., 2021). Figure 1-1 shows a few
research applications of intelligent fashion. For instance, fashion clothing classification
(Zhang et al., 2020) recognizes product attributes from fashion images, which benefits
the analyses of fashion trend. For another example, fashion landmark localization (Qian

et al., 2021) detects the key points of clothing which contributes more accurate



extraction and recognition of fashion attributes. Moreover, fashion parsing

shape-biased | texture-biased Itwo-stream |

category

dress | dress I dress |

attribute
print warp sheath
lace lace red
surplice surplice v-neck
bodycon bodycon bodycon
floral floral floral
shape-biased | texture-biased Itwo-stream |
category
tee | tee | tee |
attribute
sleeve big sleeve
cotton cotton basketball
shirt shirt print
print print shirt
graphic graphic graphic
(a) (b)

Query image Reference garments Result

Figure 1-1 Several Research Work of Intelligent Fashion: (a) Fashion Clothing
Classification and Attribute Recognition (Zhang et al., 2020), (b) Fashion
Landmark Localization (Qian et al., 2021), (c¢) Semantic Segmentation of
Fashion Images (Gong et al., 2018), and (d) Image-based virtual try-on

(Neuberger et al., 2020).

(Gong et al., 2018) achieves a pixel-level classification of fashion item and body parts



on fashion images, assisting a higher level of image understanding. Taking advantage
of these research work, virtual try-on (Neuberger et al., 2020) is a downstream task that
allows people to virtually try-on new clothing from the internet that shows great
potentials on commercial usage. In addition to virtual try-on, the research work of
intelligent fashion can also provide auxiliary information, benefiting other downstream
applications like fashion recommendation (Dubey, 2021; Hou et al., 2019; Yang et al.,
2021; Zhan et al., 2021) or fashion recognition (P. Li et al., 2019; Su et al., 2020; Zhang

etal., 2019).

Other than the above-mentioned applications, another key area where Al proves
invaluable is in generating and editing design images. By automating repetitive tasks,
Al not only reduces costs but also accelerates the creation of new designs, a process
that traditionally takes designers extensive time and effort to accomplish. This rapid
generation of diverse design drawings by Al, which would be impossible for human
designers in comparable time, is particularly crucial in meeting the dynamic demands

of the fashion industry.

The diverse generative capability of Al effectively enhances the design process,
especially in the creation and updating of prototype images. Traditionally, designing
and creating these prototypes has been a complex, expensive, and labor-intensive task,

primarily due to the time-consuming process of transforming initial drafts into detailed



design drawings. Fashion designers have historically relied heavily on the expertise to
bring ideas to life, with close attention to materials, colors, silhouettes, patterns, and
construction techniques. With the availability and accessibility of ample digital
resources of fashion images online, e.g. via e-commerce platforms and trend research
repository, the process of design has undergone a significant change. Designers
nowadays can conduct extensive design research more efficiently through these online

resources to come up with new design ideas.

Given the challenges in efficiently creating design prototypes and the need for
collecting extensive image data in intelligent fashion applications, there emerges a
demand for an advanced system capable of generating and editing high-quality fashion
images. Therefore, this study develops an intelligent fashion image processing system
that could efficiently generate and edit fashion images, thereby addressing the needs of

both the design and intelligent fashion domains.

To develop such a system, visual generative models like generative adversarial
networks (GANs) and diffusion models are adapted. GANs train a generator model to
convert random noise into a real image, with a discriminator model learning a distance
metric for distributions (Goodfellow et al., 2014). Instead, diffusion models diffuse an
image to Gaussian noise and then learn to reverse this process to generate an image (Ho

et al., 2020). However, both GANs and diffusion models primarily map noise to images



unconditionally, limiting their controllability over the synthesized results.

To tackle this challenge in controllability, several researchers proposed incorporating
more informative conditions into the synthesis process. For instance, Chen et al. (2016)
introduced Info-GAN, which uses category information to control the process. Isola et
al. (2017) developed a method for image translation, treating the synthesis process as a
translation from an existing image. Nichol et al. (2022) proposed GLIDE, a UNet-like
structure for posterior probability estimation in the denoising process, to incorporate
text conditions so as to control synthesis directions. Furthermore, Rombach et al. (2022)
investigated LDM model synthesizing high-resolution images with reasonable
semantics using a Variational Autoencoder (VAE) to compress images into latent space

and applying diffusion models to learn denoising in the latent space.

Nevertheless, the above-mentioned works rely on labeled datasets for controllable
generation, collecting category information, semantic segmentation maps, and text-
image pairs, thus limiting their application to manually labeled datasets. Moreover,
these methods typically use a single data modality, such as texts or images, to control
the generation. Considering the variations in generating high-quality images that

capture the essence of the desired design elements, their approaches are inflexible.

Therefore, to overcome the above-discussed challenges of controllability and flexibility,



this study proposes a two-stage framework that utilizes decoupled conditions for

generating or editing fashion images without intensive manual labeling.

1.2

Statements of the Problem

There are three main challenges in designing and developing an effective generation

and editing system for fashion images:

1.

The existing state of the art generation method primarily achieve high-fidelity
results through text input. However, in the fashion domain, many design elements
cannot be adequately described by natural language. The challenge lies in enabling
the existing methods to incorporate style conditions as input while maintaining
their original generation capabilities.

For flexibly image shape editing, this thesis plan to use sketch map as a
modification reference. A key challenge in fashion editing is managing significant
changes over a large area. As the editing area increases, how could the model
synthesis an image that reflects the shape of the sketch map while generating a
texture consistent with the original image.

The training of current gradient-based model algorithms typically requires
supervisory information. Collecting data labels, such as pairs of style conditions
and corresponding images or the pairs of sketch maps, input images, and edited
images, can be both time-consuming and expensive. Developing a training scheme

that could effectively utilize the existing datasets presents a beneficial yet



challenging task.

1.3  Research Aim and Objectives

This study aims to develop a system that can controllably generate fashion images and
flexibly edit their shapes. In the generation stage, the user could employ textual
description to control the design elements such as the cloth category and detailed
attribute, and utilize texture image as style conditions to simultaneously control the
texture of the results. In the editing stage, users could modify either a previously
generated image or a real image. By providing a rough mask map to determine the
editing region and a sketch map as condition for the target clothing shape, the proposed
system can effectively generate the edited results. The specific objectives of this study
are as follows:

I.  To comprehensively review the techniques for generating and editing images
using generative adversarial networks and denoising diffusion probabilistic
models.

II.  To fine-tune the existing text-to-image diffusion model in a parameter-efficient
manner, allowing it to accept style conditions for controlling the synthesized
cloth textures.

III. To design a sketch-guided large-region editing pipeline to improve the
performance of editing fashion images.

IV.  To discuss a unified model that integrates the aforementioned design concepts



into a complete system to achieve robust performance across multiple datasets.

1.4 Methodology Overview

The key motivation behind this work is to view the generation and editing process as
an image reconstruction process. To effectively utilize the existing datasets, this study
has formulated a reconstruction strategy based on the decoupled conditions, which are
obtained through several automatic processes, avoiding the need for manual labeling.
A two-stage system is proposed in the current study, involving a generation model and

an editing model.

In the generation model, a foreground segmentation network (Qin et al., 2019) is used
to determine the foreground region, from which it then randomly crop an image patch
to obtain style conditions cgy.. The textual description ¢y, can be synthesized by BLIP
model (Li et al., 2022), an image captioning tool. During the training phase, the
generation model Gy is designed to reconstruct the original image I, using conditions
Cstyle and Cieye simultaneously. Through this reconstruction scheme, the Gg learns a

decoupled representation for Cgyj and Cieyr. This process is described as below:
Ig = GG (Ctext' Cstyle) . (1'1)

Since the generation requires the generated samples to be diverse, this paper adopts a
diffusion model-based structure to implement Gg. The diffusion models are superior in
synthesizing data with high diversity that reflects the nature of a distribution. This

character is illustrated in Section 2.3.3.
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Figure 1-2 ~ The Overview of the Proposed Fashion Image Processing System in

Generation and Editing.

In the editing model, denoted as [Ey, a network is trained in a reconstruction manner as
well. Given an image I, its sketch map cy., can be obtained through edge detection
(Xie & Tu, 2015). The image I, is randomly masked with a given ¢, and Eg is used
to reconstruct [, from the valid parts, using C,ag, and Cyercn s conditions. This process

1s illustrated as:

ie = ]EH (Ie' Csketch Cmask) . (1'2)

When editing a fashion garment, it may involve iterative modification until the result
satisfies the user. Therefore, this editing model [Ey is achieved by a generative
adversarial network instead of a diffusion model. This is because the diffusion model
generates an image through a progressive generation pipeline that reverses a random
noise to real data. It takes a lot of time to synthesize an image, which is not suitable for

this flexible editing task.



After completing the reconstruction training as described in Equation (1-1) and (1-2),
the models Gy and E4 are capable of independently conducting generation and editing
tasks, respectively. Figure 1-2 illustrates the overall pipeline of the proposed method in
the inference stage. The overall system has learned decoupled representations for ey,
Cstyles Cmask> a0d Cgreren, allowing users to replace these conditions with their own to
represent different design elements. As a result, the proposed system can flexibly
generate or edit an image. The detailed model design and its effectiveness examination

will be discussed in Chapter 3 and Chapter 4, respectively.

1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 2 reviews the fundamental development of
deep learning methods. Section 2.1 provides the essential background on neural
networks and their key mechanisms. Section 2.2 provides a basic definition of
reinforcement learning and explains its fundamental working prototype. Section 2.3
illustrates the scenario of generative models. Section 2.3.2 covers the development of
generative adversarial networks, focusing on the improvements in stabilizing its
training process and image quality. Section 2.3.3 reviews the recent advances in

diffusion models capable of synthesizing high-fidelity images from textual descriptions.

Chapter 3 introduces the generation model, called SGDiffs, for generating cloth images
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that reflect user-provided text and style conditions. Section 3.1 introduces the model
overall, while Section 3.2 reviews related works that in simultaneously utilizing text
and image as inputs. The proposed methods are presented in Section 3.3. Section 3.4
details the experimental setup in the generation model and discusses both qualitative

and quantitative results.

Chapter 4 describes the editing model, CODE-GAN. Section 4.1 proposes an overview
of this framework. Section 4.2 reviews the related works in sketch-controlled editing
methods. Section 4.3 explains the detailed architecture of the model. Section 4.4

discusses the data collection and experimental results.

Finally, Chapter 5 concludes the current research findings and suggests directions for

future work.
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Chapter 2. LITERATURE REVIEW

This study considers the general image editing task as a data-driven image generative
task. The data-driven refers that the whole pipeline requires to learn from existing data.
Since this research domain mainly adopts deep learning methods, section 2.1 illustrates
how the deep learning methods acquire intelligence from the data. For the generative
task, section 2.3 illustrates how to project a sample from source distribution to target
distribution. Section 2.3.2 introduces the generative adversarial networks that utilize
deep learning blocks to generate new data. Section 2.3.3 reviews the denoising diffusion

probabilistic models and how it achieves controllable generation.

2.1 Deep Learning Method

2.1.1 An Overview Development of Deep Learning

Deep learning methods originated in 1943 as the neural network model (Fitch, 1944),
which was known as multi-perceptron at that time. However, in 1969, Minsky and
Papert (2017) proved that neural networks could not handle XOR problems. While also
limited by the computer processor’s performance at that time, the development of
neural networks stagnated for a considerable period. It was not until Rumelhart et al.
(1986) proposed backpropagation optimization algorithm, which allowed neural
networks to solve the XOR problems by stacking fully connected layers and nonlinear
activation functions. From then on, neural networks could be called deep learning as

well. Deep learning methods really came into the limelight from the ImageNet
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challenge, where Krizhevsky et al. (2012) improved the neural networks with
convolutional layers. Their proposed AlexNet outperformed than any other machine
learning algorithms on the image classification task. Thus, deep learning methods began
to be widely used in various Al tasks. This led to extensive research on deep learning

for various artificial intelligence tasks.
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Figure 2-1 A Multi-Layer Perceptron.
2.1.2 Fully Connected Neural Networks

A fully connected neural network can also be called a multilayer perceptron. Figure 2-1
shows a multilayer perceptron structure with single input and output layers and three
hidden layers. This thesis denotes input X € R™*! which is a vector, output § which is
ascalar. L; € R™*1 denote the ith layer with m nodes. For any given two layers L;_; €
R™ 1 and L; € R™! | the nodes between the two layers are connected two by two.
Therefore, there are m X n edges with weights to represent their connections. The

process of connecting nodes between two layers through weighted edges can be seen
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as a weighted summation.

2.1.2.1 The Feedforward Process

This fully-connection process is regarded as feedforward process. Denote w; € R™*™"
as the weight matrix of the edges between layer L;_; € R™1 and L; € R™*!, the
feedforward process is represented as equations:

Li=wlLi_,. (2-1)
Hornik (1991)’s work reveals a universal approximation theorem for neural networks
that a neural network with more than one hidden layer, if coupled with a nonlinear
activation function, can fit any function with arbitrary accuracy through a finite number
of nodes. One of the most used non-linear activation functions is sigmoid which is

defined as follows:

1
1+e X’

o(x) = (2-2)
The Sigmoid function maps the input x to a number with a value range between [0, 1].
This property allows the output of the network to be used as a probability. At the same

time, Sigmoid possesses a good derivative property that facilitates the subsequent

optimal solution of:

o(x) =a(x)(1-a(x)). (2-3)
Therefore, the Equation (2-1) could be re-formulated as:
Li = O-(WLTLi—l). (2_4)
yi =0o(L;)

In Figure 2-1, there are three hidden layers L; € R/*1, L, € R¥*! and L; € RX?, with
corresponding weights matrix: w; € R™J, w, € R/*¥ and w; € R¥*!. The feed-

forward process of this neural network can be defined as:
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(Ll = WiTX

vy, =0(Ly)
L, = WzT}’1

4 2-5
y2 = 0(l) (2-5)
Ly = W;YZ

\y =y3 =0(L3)

2.1.2.2 Commonly Used Loss Functions

After defining the model, certain criteria are needed to measure the goodness of the

model in order to have an optimization direction. The criteria also called as loss function

that usually is a distance measurement. It measures the difference between the model

output and the true label. And according to the regression and classification problems,

there are usually two types of loss functions as follows:

1) L, or L, Distance:
The definition of L, or L, distance comes from L, Norm. When the norm number
p is taken as 1 or 2, the L; or L, is the p norm of vector x. The vector x is usually
obtained by making a difference between the output y predicted by the model and
the true value y. For the L; loss function, the extreme value of the optimization can
be reached only when each component of x is close to 0. Therefore, the L; loss
function is chosen as the optimization objective to obtain a sparser solution. And L,
loss function, as the most used loss function, can measure the Euclidean distance
between two vectors, because it does the square operation for each component of x,

which is more sensitive to outliers.

P
Lp = ”x”p =

Zn: | |P (2-6)
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2) Cross Entropy:
The definition of the cross-entropy loss function comes from the KL Divergence.
In machine learning, practitioners often need to measure the difference between two
distributions p(x) and q(x) for the same random variable. p(x) represents the true
distribution of the sample and q(x) represents the predicted distribution of the
sample. This is when the KL divergence (also known as relative entropy) is
measured, and the smaller the value of KL divergence, the closer the two

distributions are:

Di(p Il q) = z p(x;)log <pg l%)

@2-7)
_ Z pClog (p() = ) pGxlog (a(x)

The p(x) involved in the first term, which is the true value, is used as a constant
when the network is trained. While the second term contains the prediction of the
network, which is the cross-entropy:
- Z p(x;) log(q(x)) (2-8)
i

2.1.2.3 Error Backpropagation Algorithm

From the feedforward process of Equation (2-5), the nature of the neural network is a
composite function with parameters w;, w,, w3 to be optimized. This parameterized
function can be optimized by the error backward propagation algorithm. For input X,
the predicted output ¥ can be obtained by forward propagation of Equation (2-5). If the
true output corresponding to input X is defined as y, and there is a difference J between

¥y and y. The error back propagation is the process of propagating the output error

16



through the nodes of the network to the input nodes by layers. The errors will be
distributed to different edges according to their gradients. By applying the error signals
to correct the weights, the w is iteratively updated in one round of learning species until
the error is reduced to an acceptable level or the number of iterations reaches an upper
limit. For simplicity, this paper illustrates the backpropagation process by taking L, loss

function as an example. There are:

1
J =519 =l3 (2-9)

2

The optimization objectives are reducing the difference between the predicted output
of the neural network and the true output as small as possible. So, the process of
optimizing the network parameters wy, w,, ws is essentially solving an optimization
problem:

: LN 2

min] = |1y = yllz (2-10)

w 2

The essence of the error backpropagation algorithm is solving this optimization

problem by gradient descent. Given a constant 7 as the learning rate, there is an update

formula for the neural network parameters as:

Aw; = o
Y= Sw, (2-11)
w; = w; + AWi

In the other words, the parameters of the neural network can be updated iteratively by
the chaining law to find the partial derivatives for each w; in 2-11. Here it firstly

calculates the partial derivative for each layer of L;:

] 9] 0y
dL; 09y 0L, (2-12)
=@-»-y-0Q-9)
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The corresponding partial derivatives of each w; is:

9] 9] oL,
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2.1.2.4 Optimization Methods

(2-13)

(2-14)

(2-15)

(2-16)

(2-17)

Section 2.1.2.3 discussed the basic optimization method, which is the error

backpropagation, for solving the neural networks. This section will illustrate more

detailed improvements on the optimization.

1) Stochastic Gradient Descent (Bottou, 2012)

The core idea of stochastic gradient descent (SGD) is that for each sample X, the

feedforward process computes predicted output y once. By applying the loss function

: . : : o ] :
for getting the error J, it is possible to calculate the partial derivatives 6_\/1]1- for updating
L

w;. For each sample, the parameters will be updated once. Since the presenting of
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samples is stochastic, the updating of gradients is stochastic as well. For a dataset D
with M samples, the one round completion of training is the traverses of the entire
dataset. The parameters w; are updated a total of M X N times. The advantages of this
method are that the samples randomly input into the network will carry some noise,
which can avoid the overfitting phenomenon to some extent. The network can easily
converge to the global optimal point with proper learning rate although the update of

the network weights is not stable enough.

2) Batch Gradient Descent (Bottou, 2012)

Performing the SGD way of optimizing w; will update the parameters M X N
times. The batch gradient descent (BGD), however, goes to an extreme in the opposite
direction of SGD that it updates the parameters only once for each epoch. The BGD
will accumulate the gradients of all samples and calculate its mean value. For every
epoch, the w; will be updated by the mean gradients once. When the network undergoes
a complete BGD training with M epochs, the parameters w; are updated a total of M
times. The number of updates is independent of the size of the dataset and only related

to the number of training epochs M.

3) Mini-Batch Gradient Descent
Mini-Batch is the current main method for training networks for deep learning,

which combines SGD and BGD in a compromise. A Mini-Batch takes B samples,
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which is equivalent to dividing a sample set of number N into g . When the mini-batch
optimization takes total sample amount M of the dataset as batch size, it degrades to
batch gradient descent. When the batch size takes 1, it becomes the stochastic gradient
descent.

4) Momentum Updating (Fan et al., 2016)

As shown in Figure 2-2, stochastic gradient descent updating for optimizing the
networks is not smooth enough. This is because the random input samples carry a
certain amount of noise, which can be considered as causing some bias to the training
of the network. However, it could be mitigated to some extent by adding a momentum

term to the formula for the parameter update.

—)) (&=

Figure 2-2  Effectiveness of Applying the Momentum Term (Ruder, 2016).

The process of updating parameters by SGD can be oscillating during optimization,
which can slow down the learning process. Adding the momentum term effectively
relief the oscillation that allows to a more stable descent toward the optimization goal.
This is because the momentum method simulates the second-order gradient in an
inexpensive way. When the optimization falls into a saddle point, it is still more likely
to leave the flat because of momentum. The update equation with the momentum term

1s shown below:
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a]
Ve =YVpq t+ U% (2-18)

wW=Ww-—1;, (2-19)
where v represents the momentum term, the subscript t indicates the number of
training rounds, and y is a constant that is the coefficient of the momentum term. The
range of ¥ usually is taken as a number less than 1. Therefore, the weight of the previous
momentum term can be decayed by iteration. When ¢ takes 0, v, is initialized to 0. The
momentum term approach allows the network to have some memory when the
parameters are updated. So that the parameters are not updated in the current batch in a
direction completely different from the previous updates. Thus, globally, the direction
of the parameter updates can be more homogeneous, allowing the loss value to decrease

faster towards the optimal point.

2.1.3 Convolutional Based Neural Networks

Convolutional based neural networks (also known as CNN) have become the main
network architecture among the deep learning methods. Different from the fully
connected networks, CNN adopts convolutional kernel to capture features from input
data. This section will introduce the mechanism of convolution and the main

convolutional based neural networks.

2.1.3.1 Convolutional Kernel

The fully connected neural network described in the previous section has a major

drawback in that the dense connection between nodes requires a large number of

21



parameters. Although it has been shown to have the ability to fit arbitrary functions,
this requires that the network be wide enough and deep enough. A wide and deep
network can lead to a significant increase in the number of parameters, making the
optimization of the network difficult. At the same time, due to the lack development of
CPU’s computing power, it has led to the fact that neural networks have not been able

to perform as well as they should.

Figure 2-3  Schematic Diagram of a 2D Convolution of a Single Channel (Dumoulin
& Visin, 2016).

kernels. The light gray 4 X 4 region represents the size of the convolution kernel, which
slides over the blue 6 X 6 region. The convolutional kernel multiplies and sums the
elements at the corresponding positions with the grey region and obtains an element in
the top green region. If the blue region is taken as the image of the input network, then

the green region is the feature map obtained after the input image has been convolved
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and computed. There is a dashed transparent box around the blue area, indicating 0
padding, which can be used to obtain different sizes of output feature maps with

different sizes of convolution kernels and different sizes of sliding window steps.

H H H

H

Figure 2-4  Schematic for Multi-channel convolution (Dumoulin & Visin, 2016).

As shown in Figure 2-4, when the input image is multi-channel, the convolution is
slightly different from that of single channel. For a single-channel convolution kernel,
its size can be 3 X 3 X 1 that each dimension indicates the length, width, and channel
of this convolution kernel. For a three-channel input image (e.g., an image in RGB
format), the size of the convolution kernel with the same length and width should be
3 X 3 X 3, indicating that there are three channels. These three channels are first filtered
by sliding windows on the channels on the corresponding input images separately, and
finally superimposed together in the form of summation. No matter the input data is
three-channel or single-channel, the output is one channel after the operation of one

convolution kernel.

Convolution is computed as a local fully connected neural network, where they share
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weights over some regions. The convolution kernel performs a sliding window on the
feature map, weighting the pixels in the corresponding region on the feature map with
the convolution kernel to sum. The number of sliding windows determines the size of
the output feature map. Defining p as the number of turns of the input image for 0O-
paddings, k as the size of the convolution kernel of k X k, s as the step size of the
convolution kernel when it performs a sliding window, and the size of the input image

of w;,, X wy,, then there is the size of the output image W, X Wyyi:

win—k+2*p+

1. (2-20)

Wout = S
When 2 * p + s — k = 0 is satisfied, there will be w,,,; = s * w;;,. So that the input and
output dimensions are the same for network design, which usually makes s = 1, when

k=3 and p = 1. The set of parameters is the structure of a common set of

convolutional layers since it brings simplicity for organizing the size of feature maps.

2.1.3.2 Classical Architectures for CNN

Since the AlexNet model proved the superior performance of deep convolutional neural
networks in dealing with pattern recognition problems, various improvements to
AlexNet have emerged over time. In this section, this thesis gives a brief description of
the improved methods of VggNet, GoogleNet, ResNet, and MobileNet in chronological
order of development.

1) VggNet

The VggNet (Visual Geometry Group) was proposed by Simonyan and Zisserman

(2014). Section 2.1.3.1 illustrates that the convolutional kernel could be considered as
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a feature extractor. Following the process where data passes through the convolution
layer, resulting in a feature map, it is observed that since convolution is locally
connected, each pixel in the feature map contains local information of the image. To
enhance this aspect, the field then introduces the concept of Receptive Field, aimed at
increasing the amount of extracted local information from the feature map. Receptive
field is shown as the grey region in the Figure 2-3. Receptive field refers to each pixel
in the feature map that output by the network after mapping back to the original image.
Since convolution is a locally connected operation, each pixel on the feature map
corresponds to a part of the input image. The size of the region can bring a large impact
on the network's ability to extract features. It is generally believed that when the
perceptual field is large enough, the pixel points on the feature map possess relatively
more local information. If the size of the receptive field is the same as the size of the
input image, it can even be considered that the pixels at that point incorporate the global

information of the input image.

2.2  Reinforcement Learning

2.2.1 Sequential Decision-Making Tasks

Section 2.1 introduced the basics of neural networks that are mainly used to solve
recognition problems. The recognition problem mainly classify or detection of certain
information. This task only generates a signal for the input data and expects it to be

consistent with the observable signal in the future without changing the future situation.
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However, in the field of machine learning, there is an important type of task similar
to the human decision-making process, that is, sequential decision-making tasks.
Different from the recognition tasks, decision tasks usually bring consequences.
Therefore, the decision-maker needs to be responsible for the future and make further
decisions at future time (Sutton & Barto, 2018).

To address this task, reinforcement learning is introduced as a computational
method for a machine to achieve goals through interaction with the environment. One
round of interaction between the machine and the environment includes: the machine
makes an action decision in a state of the environment, applies this action to the
environment, and the environment changes accordingly and feeds back the reward and
the next state back to the machine. This process is iterative, and the goal of the machine
is to maximize the expected cumulative reward during multiple rounds of interaction.
The above-mentioned process is implemented by an agent (Mnih et al., 2015). The
agent is quite different from the so-called model in supervised learning. The agent not
only perceives environmental information but also directly changes the environment

through decision-making, rather than just giving a prediction signal.

2.2.2 Agents Formulation and Objectives

The agent of reinforcement learning completes sequential decision-making through
interaction with the dynamic environment. The dynamic means that the environment
will continuously evolve as certain factors change, which is usually described by a

stochastic process in mathematics and physics. If the agent's actions are added as an
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external disturbance factor in this stochastic process, the probability distribution of the
next state of the environment will be jointly determined by the current state and the
agent's actions. This process is expressed as:

Se+1 = f (St ap), (2-21)
where s; represents the current state, a, represents the action taken by the agent in the
current state, and s;,; represents the next state, and f represents the state transfer
function (Kober et al., 2013).

From Equation 2-21, the actions of the agent act on the environment will cause the state
of the environment to change. And then the agent continues to make decisions in the
new state. In the above dynamic environment, every time the agent interacts with the
environment, the environment will generate a reward signal, which is usually
represented by a real scalar. This reward signal is similar to the score in a game,
indicating the goodness or badness of the current state or action. The reward signal of
each round of interaction is accumulated to form the overall return of the agent, which
is similar to the final score of a game. Due to the dynamics of the environment, even if
the initial state and strategy remain unchanged, the interaction result may be different,
and the return will also be different. Therefore, reinforcement learning focuses on the
expectation of return and defines it as value, which is the optimization goal of the
agent's learning process (Schulman et al., 2017).

This agent could be obtained in a supervised manner that the goal is to find an

optimal model to minimize a given loss function on the training data set. Under the
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independent and identically distributed assumption, this goal represents minimizing the
generalization error of the model over the entire data distribution. Briefly expressed by
the formula as:

0" = arg minEy).p [£(fo(x), ¥)], (2-22)
where 6 represents the model parameters, (x, y) represents the input and corresponding
label, D represents the data distribution, and € represents the loss function (Sutton &
Barto, 2018).

In contrast, the ultimate optimization goal of the reinforcement learning task is to
maximize the value of the agent's strategy during the interaction with the dynamic
environment. The value of the strategy can be equivalently transformed into the
expectation of the reward function on the measure of the strategy occupancy, that is:

m* = arg mgxIES,a%[R(s, a)l, (2-23)
where 7 represents the agent's strategy, s and a respectively represent the state and
action, and R represents the reward function (Mnih et al., 2015).

Therefore, compared with general supervised learning models, reinforcement
learning focuses on finding an agent strategy to generate the optimal data distribution
during the interaction with the dynamic environment, thereby maximizing the

expectation of the reward function.
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2.3  Generative Models

2.3.1 Generative Tasks

Most of the deep learning tasks could be demonstrated as the searching of a projection
that projects input probabilistic distribution to another on. Most of the deep learning
tasks could be demonstrated as the searching of a projection that projects input
probabilistic distribution to another distribution (Goodfellow et al., 2014). For
classification tasks, the model samples a picture or a length of text from real data
distribution and output with a probabilistic distribution of class. The probabilistic
distribution of class usually represented by a one-hot coded vector. In addition, tasks
like segmentation could be considered as a pixel-wise classification task. For regression

tasks, the model outputs a continuous distribution.

In the early stage, generative tasks take flatten noise vector as input which differs from
the above-mentioned types of input (Creswell et al., 2018). The noise vector is
commonly sampled from a simple distribution such as a normal distribution. And it will
output a distribution of images or other types of data. The model that projects the input

distribution to a complex distribution is called generator.

o O
© O Generator —>»
° (0]
Simple Distribution Complex Distribution
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Figure 2-5  Projection from Simple to Complex Distribution.

However, the noises as input are out of control which limits its potential availability. In
the later study, researchers suggested conditional generative tasks (Radford et al., 2015)
which have variable types of input. Moreover, some researchers modeled the
segmentation tasks as generative task. Since the segmentation results could be treated
as a special data distribution (Isola et al., 2017). One fact should be pointed is that
generative tasks mostly require semi- or unsupervised learning. Since it could be
expensive for reaching data pairs like style transferring, generative tasks generally lack
enough paired data for optimization. Therefore, a semi- or unsupervised learning

methods benefit the generative task well.

2.3.2 Generative Adversarial Networks

2.3.2.1 Overview of GAN

Generative Adversarial Networks (known as GAN) was firstly introduced by
Goodfellow et al. (2014). GAN was designed to perform generative tasks through a
deep learning-based method that optimizing through gradients descent. Unlike the
classic end-to-end deep learning networks, there are two networks. The Generator
network produces images and Discriminator determines whether the image comes from
the generator or real data distribution. Therefore, the training of this model is

adversarial. Shown as Figure 2-5, the primer GAN takes random noises as input.
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Considering G (-, 6, ) as generator and D (-, 84) as discriminator, 6, and 6 is their
parameters correspondingly. The optimization goal could be described as follows:
minmaxV (G, D) = Expy0[log(D ()] + Ezvp, ) [log (1 — D(G(z)))], (2-24)

where x sampled from the real images and z sampled from a random noise distribution.

The intuitive understanding of Equation (2-21) is that the discriminator should be
considered as a parameterized loss function for the generator. When the parameters of
discriminator are fixed, it is more like a binary classifier that classify whether the image
is real or fake. Therefore, the optimization goal of discriminator is to maximize the term
log(D(x)) and log(1 — D(G(z))) firstly. For the generator, it is expected that it can
produce images that are as realistic as possible to fool the discriminator. In Algorithm
1, the second term log(1 — D(G(z))) is thereafter optimized for the generator, as the

first term becomes a constant when the discriminator is fixed.
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2.3.2.2 Optimality of GAN

Goodfellow et al. (2014) proved the optimality of discriminator by expanding the

expectation form of Equation (2-21).

V(G,D) = f pa(0log (D(x))dx + j py(Dlog (1 — D(G(2)))dz
x z . (2-25)
~ [ PaGo)log (DG + pyGo)log (1 = DGYdx

5} . N .
Let a—g = 0, the optimal discriminator D is:

pa(x)

D) = D T p )

(2-26)

Replace discriminator term D in Equation (2-21) by Equation (2-23), the optimizing of

generator could be:

cG) = mng(G, D)

3 pa(x) Pa(x)
B Ilog Pa(0) + g (x)l * By [log (1 pa@ + g (x)>l- (2-27)

_ pa(x) pg(x) l
Frpa ll‘)g 220 + Py (x)l + Bxpy [l"g 220 + Pa O

Here introduces Kullback-Leibler Divergence (KLD) which is widely used in
optimizing classification tasks:
PllQ) = [ —( ) (2-28)
Dy (P||Q E,.p,lo . -
KL x~pxt0Y ) (x)

Therefore, replace the term in Equation (2-25) by KLD, the min-max game of equation

is actually the optimization of Jensen-Shannon Divergence (JSD):
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C(G) = D(pa Il Pa +pg) + Dr(pg Il P4 + )

PatDp Pa+Dp
:—10g(4)+DKL(pd I dz g)+DKL(pg I dz 9).

=—log(4)+2- D]s(Pd I pg)

(2-29)

The range of JSD is 0 to 1. When the two probability distributions are totally similar, it
reaches its minimum as 0. So, the minimal loss value for the generator is —log (4). If
the discriminator and generator achieved Nash Equilibrium, their loss value will

converge to oscillate around —log (4).

2.3.2.3 Improvement on Training Stability

The early exploration doubted the training stability of GAN since researchers found
that it unstable and hard to optimize GAN. One of the possible reasons is that GAN is
an unsupervised method. When there is a need to generate something, this indicates that
the output lacks sufficient and direct target samples for learning. Therefore, GAN
provides an adversarial way of trying to use less paired input-output data. From a
supervised point of view, discriminator is more like a loss function for generator to

learn.

The optimization of generator amounts to the optimization of the second term in
Equation (2-21). The most informative gradients come from the sample that confused
the discriminator. However, it required the discriminator to have the ability to classify
samples in a very strict extend. The discriminator can neither be too strong nor weak.

A powerful discriminator leads zero gradient to generator. A weak discriminator leads
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to feeble performance of the generator.

When the networks convergent, it reaches the Nash Equilibrium. But this did not
indicate that the GAN has enough ability to generate very realistic images. Since the
generator can easily find a short way to pass the discriminator. For instance, the
generator might just have memory of training data distribution. And there is no

guarantee for the discriminator to measure the diversity of the generator.

Table 2-1 Several Distance Metrics of Probability Distribution

Kullback- Py(x)
D (PallBy) = ) log 25 Pa(®) (2-30)
Py(x)
Leibler xX~X
Jensen- D;s(Pg, By) = Dy, (Pal|By) + Dky (Byl1Pg) (2-31)
Shannon
Wasserstein Dyw(Ps,B)) = inf Egyy~y|lx —yl| (2-32)
vE[l(Pa.Pg

Analyzing from the perspective of optimization, the loss function of Equation (2-21) is
actually to minimize the Jensen-Shannon Divergence (JSD). Table 2-1 shows some of
the distance metrics for measuring probability distribution. JSD is an improved form
for Kullback-Leibler Divergence (KLD) for considering the symmetric of distance.
However, when there is no overlap between two distributions, JSD saturates in its

maximum one. It lacks a soft way for un-overlap situations.
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2.3.2.4 Early-Stage Tricks on Stabilization

As aforementioned, it is hard to optimize GAN because of the intractable estimation
the distance between probability distributions. Along with this motivation, here are
some of the possible directions for improvements that trying to make the overlap of the
distribution.
1) Input Noise

During the early stage of training, the generator probably lacks the ability to output
a distribution which overlap with the real data. And JSD is not capable to measure the
exact distance when there is no overlap. One possible solution that led to overlap is that
if there are enough randomly samples be feed forwarded into the generator, there might
be overlap which enhances the training. This could be one explanation of why the
vanilla GAN takes noises as input.
2) Soft Output

Soft output aims at leaving more margin on the output of discriminator. The nature
of discriminator is a binary classifier. It outputs 1 or 0 for classifying whether the input
image is real of fake. But it is too confident that ignore the possible overlapped part of
distribution since the generator may have captured partial realistic regions of images.

a) Label Smoothing:

Label smoothing was proposed by Szegedy et al. (2016) in deep learning domain.
Instead of forcing the classifier to fit an absolute label of 1, it encourages the classifier

to have more margin about its confidence of the prediction. Moreover, this also
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indicates that the label for the input images might be unreliable or inaccurate. This
indication fits the GAN’s situation that an image be classified as fake by discriminator
might have partial realistic region. Warde-Farley and Goodfellow (2016) showed that
label smoothing may reduce the vulnerability of GAN. In the practices described by
Salimans et al. (2016), replacing the positive and negative samples with constants o and

B results in the optimal discriminator being as shown below:

aPy(x) + BF;(x)
Py(x) + Py (x)

Dg(x) = (2-33)
They found that if the Py (x) is close to zero and F,(x) is much greater, this may
lead to numerically unstable. So, it is more effective to set a soft o and keep the negative
samples zero.
b) Relativistic GAN:

Another proposal of soft output is to compare a pair of real and fake samples.
Considering the layers before the output sigmoid layer as C, the discriminator D(x) =
sigmoid(C(x). Jolicoeur-Martineau (2019) proposed a form of loss function:

Lp = =E(xyx,)~(Par,) [log (sigmoid (C(xd) - C(xg)))] (2-34)
Lo = =E(xyxg)~(Pary,) [log (sigmoid (C(xg) — C(xd)))] : (2-35)

The objective is similar to metric learning but at an image level. It forces the
discriminator to predict the extent that the real image is more realistic than the generated
image. Therefore, it has some capability to capture the distributions distance.

3) Training Strategies of Discriminator

The training of GAN requires the discriminator to convergent to a certain level that
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can classify part of the real or fake sample pairs. Only can the fake sample that fool the
convergent discriminator provides informative gradients for optimizing the generator.
Therefore, fine-tune the training of discriminator benefits the generator.

a) Historical Averaging:

From this motivation, Salimans et al. (2016) proposed an updating method that
takes parameters in time-series into consideration. Taking 6[i] is the parameters both
of generator and discriminator in i th time step, there will be a penalty term in the loss

function:

V(G,D) =V(G,D)+ 1| |0 — oi]

1
- 2. (2-36)

t
i=1

Historical averaging actually applied constraints on the space of parameters which
in somehow meets the Lipschitz Constraints. There will be more discussion about it in
Section 2.3.2.5. But historical averaging requires to keep t times parameters which
increases the consumption of GPU memory.

b) Two Timescale Update Rule:

Heusel et al. (2017) addressed two timescale methods for achieving Nash
Equilibrium in the min-max game. The discriminator uses a greater learning rate than
the generator. Heusul suggested that the learning rate of discriminator is four times
greater of generator. Therefore, the discriminator could convergent quicker than the
generator. Since the generator only can learn from the discriminator, it enables these
two networks to accelerate training process.

4) Feature Match
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Salimans et al. (2016) argued the reliability of discriminator. Instead of learning
from the discriminator, they expected the generator to learn statics features of real data.
Considering fi is the intermediate layer of a discriminator D. The objective of feature
match is:

L(G) = min||Eyp, f (x) = Exp, f(G())|I3 - (2-37)

The original type of feature match required the discriminator to be trained with its
original objective that classify real or fake images. The later studies on deep fakes
(Korshunova et al., 2017) replace the binary classifier discriminator with other network
pre-trained by related tasks, e.g.: face recognition. This development showed that if
there are enough pre-trained models which related to generated domain, feature match

benefits the generator the most.

2.3.2.5 Wasserstein GAN

Although there are numerous improvements on the training tricks, they failed to face
the fetal issue of GAN that its optimization goal of JSD lacks capability of measuring
two totally separate distributions. Arjovsky et al. (2017) introduced this disadvantage

and proposed a novel loss function Wasserstein Distance:

WPLR) = inf  Egeppllix=yil) (2-38)

vell Pg,Pg

[1(Pg, Py) is the set of all joint distributions y(x,y) whose marginals are
respectively Py and F; . However, it is intractable to calculate the infimum in Equation
(2-35). According to Kantorovich-Rubinstein duality, the Equation (2-35) could be

transferred as:
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W(Pa )= sup Exep,lf ()] = Exep, [f () (2-39)

This requires the function fto be 1-Lipschitz function. In the other words, it requires
the discriminator to be Lipschitz Continuous. Hence, the optimization goal for W-GAN
is:

minmaxV (G, D) = Ey.p,)D () = E,-p,D(G(2)). (2-40)

If the function f'is Lipschitz Continuous, there should be a constant L which meets:

[If ) = Il _

If ) = FWI| < L|lx —yl| = =] =< L. (2-41)

Intuitively, the Lipschitz Constant L constrains the slope of f. As the discriminator
is bounded, Equation (2-38) is optimizable. From this motivation, researchers applied
different measures for meeting the Lipschitz Continuous.

1) Weight Clipping

The first proposal in Arjovsky et al. (2017) is weight clipping. Their primary idea is if
the parameters of model is bounded, then the output is bounded. After the weight is
updated, this proposal clips the updated weight to [-0.01, 0.01]. However, they also
found that momentum-based optimizer like Adam failed. Because the clipping will
force the weights’ distribution concentrated on +£0.01. Even though weight clipping is

computational effective, it is unstable to train.
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Figure 2-7 Weights Distribution of Weight Clipping and Gradient Penalty
(Gulrajani et al., 2017).

2) Gradient Penalty
Gulrajani et al. (2017) thereafter applied constraints on the gradients to meet the
Lipschitz Continuity. By introducing gradient penalty term in Equation (2-39):
minmaxV (G, D) = E,[D(x)] — E,[D(G(2))] + AEg[ll VD () . (2-42)
However, it is difficult to calculate all samples from x. They simply introduced an
interpolation method for simulating sample X:
X =axqg+(1—a)x,. (2-43)
By randomly sample x4 from Py and x4 from F, , interpolate these two samples
by a ~ U (0, 1). And then constraints the gradients of discriminator by mean squared
error to one.
This method effectively improved the training stability of GAN. And it is possible
to optimize it with Adam. Figure 2-7 showed the distributions of the weight in different
penalty methods. Nevertheless, when the input is complex such as conditional GAN, it

is hard to interpolate samples from both Py and F,.
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3) Spectral Normalization
Faragallah et al. (2020) introduced spectral normalization for GAN. Along with the
core motivation of Wasserstein GAN, they applied Lipschitz Constraints with spectral
normalization which no requirements for the input interpolation. Considering function
fis anetwork which applies a linear transformation with weight W to input hidden layer
h. They pointed that the Lipschitz constant of function f equals to its spectral norm:
flleip = supa (Vi) = supa W) =aoW), (2-44)
For a given weight matrix W that transform h;;,, — h,ye, (W) is its spectral norm:

o(W) = max Whl; = max ||[Wh]]|,. (2-45)
r:h=0 ||h||, [|R]]z=1

This indicates that the spectral norm number of W equals to its largest singular
number. By applying spectral normalization to each layer in the discriminator:

Wen(W) = (2-46)

o(W)’
Therefore, the Lipschitz Constant will be constrained to one.

2.3.2.6 Improvement on Image Quality

Even though GAN has shown its great potential in generating images, it has been argued
about its generated artifact and blurry region. It is still easy for human to distinguish

whether the image is real or fake.

On the other hand, vanilla GAN only takes flatten random noise vector as input which

is nonsense to the target image domain. Some of the training failed to capture the target
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real image distribution but simply remember these training images. In such a way, the

generator can pass the discriminator but has no capability to generate various images.

2.3.2.7 High Resolution Image Generation

Research works before the year of 2017 found it is hard to optimize a generator of deep
layers. The Wasserstein GAN proposed in 2017 alleviated this issue. However, it is still
difficult to generate image from flatten noise vector. In 2018, Progressive GAN applied
a progressive method that cascaded generators and discriminators in different resolution
(Karras et al., 2018). The training algorithm will train GAN in lower resolution until its
convergent. And it will progressively combine higher resolution modules with the lower
modules. But this way of training will increase the training time since the generators

with lower resolution may be trained several times.

8 x 8Image
4 x 4 Image
Flatten Vector 2 x 2 Image
fd-|-P-1-1) -
Generator
22 Generator

4*4 Generator
88

]

Discriminator
272
Discriminator
474 Discriminator
88

Figure 2-8  Progressive GAN.

Followed with progressively growing, StyleGAN suggested a way of decoding the

input flatten noise vector into explainable style code that brings more details on
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generated human face (Karras et al., 2019). They applied cascaded fully connected layer
for decoding the noises into style code space w. They additionally introduced Noises B
in different scales which 7 brought stochastic changes in different aspects. Their work
showed huge potential of neural network that represents features in a high and abstract
dimension. More papers thereafter explored the GAN inversion for getting controllable
feature representations followed with StyleGAN. MSG-GAN is the state-of-the-art
GAN architecture for generating human faces with high resolution (Karnewar & Wang,
2020). It takes the advantages of ProGAN and StyleGAN by introducing discrimination

in different resolution.

In addition of the improvement of generator, the adjustment of discriminator benefits
the image quality as well. PatchGAN was proposed in image-to-image translation tasks
(Isola et al., 2017). The vanilla discriminator only predicts scalar number for
determining whether the image is real. By predicting the real-fake game in image
patches, the discriminator is able to focus more local information which enhances the
details. When patch size was set to be 1, it degraded to vanilla GAN. When patch size
equals to pixel’s number, it will lose some global information. In the work of Isola et

al. (2017), they set patch size to be 70 * 70.

2.3.2.8 Improve the Mode Diversity

The objective of vanilla GAN optimizes JSD which has no constraints on the diversity

of generated images. Since the generator learns from the discriminator, the way of
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sampling is one of the reasons that lead to mode collapse. There are researchers
explored different methods for having the discriminator to classify the diversity of

images.

1) Sampling on Discriminator:

Since the informative gradients information were provided by discriminator, it is
intuitively that allowing the discriminator to sample more images in advance. Salimans
et al. (2016) believe that a greater number of batch size benefits GAN’s diversity a lot.
In Metz et al. (2017)’s work, they mentioned that the update of generator should take

the after k times update of discriminator into consideration.

2) Classification Head for Discriminator:

Additional classification head in discriminator is another pipeline. This method
often applied when involved in conditional GAN. Around 2016, there are multiple of
methods have been proposed. Semi-Supervised GAN acclaimed that the utilizing of
class information is a kind of semi-supervise learning (Odena, 2016). The discriminator
would output not only the real or fake game, but also the class vector. The InfoGAN
(Chen et al., 2016) and Auxiliary Classifier GAN (Odena et al., 2017) is very similar to
Semi-Supervised GAN. The major difference is that these two GANs have the
additional class information as input in generator. For the discriminator, the only

difference is whether choose another branch to output the class vector. But these two
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branches would share same bottom weights on discriminator. Figure 2-9 showed the

general structure of classification head in discriminator.

]
1
1
-

e ———————
e ——————

(a) Single Branch (b) Double Branch o

Figure 2-9  Classification Heads in Discriminators.

2.3.3 Denoising Diffusion Probabilistic Models
2.3.3.1 Fundamentals of Diffusion Models

Divergent from the previously discussed GAN, the denoising diffusion probabilistic
model (DDPM) proposed by Ho et al. (2020) simulates a Markov chain. Although both
methods are trying to learn a distribution of target data, GAN achieves this by implicitly
learning a discriminator to measure the distribution distance while DDPM learns

denoising probability to map Gaussian distribution to target data distribution.

To achieve such a process, DDPM progressively adds small amount of Gaussian noise

€ to an image x, by t steps and then reverse this process by predicting the reversed

distribution:
T
q(X1.7 | Xg) = 1_[ q(Xe | X¢_q). (2-47)
t=1
q(X¢ | Xp—q) = N(Xti J1- .tht—l»ﬁtl): (2-48)

where V() denotes a Gaussian distribution, t denotes time step, 7° denotes total time
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step, and {B, € (0,1)}7_; denotes a series of scalars to weight the strength of Gaussian
noise €. By applying the above equations, x, can be progressively transformed into xr,
which is considered as a standard Gaussian noise. Later, the model is required to reverse

this diffusion process by estimating the probability:

T
poXor) = p(Xy) 1_[ Po(Xe—1 | X¢), (2-49)
t=1

where pg is the reverse posterior probability. Since the forward diffusion process
models each time step as a Gaussian, the pg(X;_; | X;) could be considered as a
Gaussian as well:

Po(Xe—1 | Xp) = N (Xe—1; o (X, ), Zg (X¢, 1)). (2-50)

By simplifying Z4 as constant ;, Ho et al. (2020) proposes that pg is tractable as:

1 1—o;
By (X, t) = \/?t (Xt - ﬁﬁ) : (2-51)

During the training process, X; is known and can be obtained by Equation (2-45).

Therefore, the posterior can be obtained by a simple loss function:

‘ 2
Lzlmple = Ee (1,7 %06 [llet —eo(Vaxo +1-ae, t)] ]’ (2-52)

where @, = 1 — B, and @, = [[¢_; a; for the simplicity.

2.3.3.2 Allowing Conditional Generation in Diffusion Models

Although several researchers have reported advancements achieved by diffusion
models (Ho et al., 2020; Nichol & Dhariwal, 2021; J. Song et al., 2021), allowing

control signals to guide synthesis direction remains a challenge. Unlike the previously
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discussed GANs that can model a conditional probability pg(y|c), diffusion models
synthesis an image from a latent variable z, which is dimensionally aligned with the
target image. Therefore, the diffusion models not ideally suited for explicitly

incorporating a condition to model €g.

To tackle the issue of controllability, Dhariwal and Nichol (2021) propose using
classifier guidance to introduce conditions in controlling the synthesis direction. Their
work is inspired by GANs, where the discriminator can receive one-hot conditions,
allowing the generator to synthesis an image reflecting the condition. During the
synthesis process in diffusion models, the gradients from an explicit classifier can
convey the conditional information to the estimated x;_;:

Xe1 = N (p + 52V, log pe (¥ | x,),2), (2-53)
where u and ¥ are mean and standard deviation estimated from the model €4, py is the
explicit classifier, y is the desired condition, V,, are the gradients from the cross-
entropy loss of y and x;, and s is a scalar controlling the strength of the conditional
gradients. By applying Equation (2-50), the final synthesized image X, can reflect the

condition y.

However, a significant drawback of the explicit classifier guidance strategy is that the
classifier can only take the intermediate noised image x; as input. Existing

classification models were trained on denoised images x,,. The distribution gap between
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Xo and x; hinders the classifier’s effectiveness. Additionally, this process is inefficient
as it requires gradients at each denoising step.
To overcome this drawback, Ho and Salimans (2021) proposed classifier-free guidance
(CFG). Their motivation involves transforming the explicit classifier into an implicit
one. Primarily, they input the condition ¢ into the model as €g(x;, t, ¢), embedding the
condition with the same dimension as t. Later, they consider the estimation of € as
scores (Y. Song et al., 2021). The conditional generation can then be presented as:

€ = (1 +w)ep(x,, ) — wep(xy, 9), (2-54)
where w is the CFG scalar controlling the importance of the given condition ¢, and @
denotes an empty condition, presented as a zero vector. By applying the classifier-free
guidance, the training process allows the model to accept condition ¢ with a dropout
probability (e.g., 0.2). During the inference stage, the model €4 will execute twice, once
with the condition and once without, treating the latter as empty. The CFG approach in
controlling the synthesis direction has become the most accepted method, as it does not

require training a noise-aware explicit classifier.

2.3.3.3 Towards Text-to-Image Synthesis

Diffusion models have recently emerged as a powerful branch of generative models,
demonstrating their superior capabilities of handling image, text, audio as well as other
modalities of data (Leng et al., 2022; Meng et al., 2022; Nichol et al., 2022; Rombach

et al., 2022; Su et al., 2023). These models aim to learn the data distribution by
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performing a Markov chain, simulating the data generation process in reverse
(Dhariwal & Nichol, 2021; Ho et al., 2020; Nichol & Dhariwal, 2021; J. Song et al.,

2021; Y. Song et al., 2021).

Despite the many research studies are focusing on synthesizing high-resolution images
using diffusion models, there is a growing body of research that is interested in more
controlled synthesis. Hertz et al. (2023) investigated a Prompt-to-Prompt mechanism
of text-to-image generation, where text features activate feature maps through cross-
modal attention. InstructPix2Pix (Brooks et al., 2023) combines the large pretrained
language model GPT3 (Brown et al., 2020) and the state-of-the-art text-to-image LDM
(Rombach et al., 2022) model to synthesize a dataset for text-driven image editing.
Although these methods can synthesize images with corresponding semantics, they are
trained on large open-domain datasets and have difficulty in capturing terms specific to
the fashion domain. Recently, Textual Inversion (Gal et al., 2023) and DreamBooth
(Ruiz et al., 2023) can adapt pre-trained diffusion models with new styles. Model

retraining is, however, needed for every new style.

2.4  Chapter Summary

This chapter first reviews the fundamental architectures and optimization algorithms of
deep learning technology in Section 2.1, highlighting that deep learning methods often

adopts a supervisory approach and requiring annotations to train a model.
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Subsequently, Section 2.2 illustrates the fundamentals of reinforcement learning and
explains its modeling on sequential decision-making. Although reinforcement learning
is powerful for enabling human-like intelligence, it focuses on making decision instead
of graphically synthesis or editing an image. This thesis only provides a basic

background of reinforcement learning.

Section 2.3 introduces the scenario of generative tasks that learn to map random noise
to an image. Unlike commonly deep learning methods that function as discriminative
models, the generative tasks require the model to learn a distribution. Later, Sections
2.3.2 and 2.3.3 describe more details of the GAN and diffusion models, respectively,
the two most common and powerful types of generative model. In summary, GANSs are
lightweight and quick models that can respond to user input immediately. In contrast,
diffusion models are powerful generative models that rely on an iterative generation
process and require significant computational resources. Therefore, this thesis proposes
using diffusion models to generate fashion images and employing GANs for image

editing.
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Chapter 3. CONTROLLABLE GENERATION
MODEL

3.1 Introduction

A Jumpsuit,
Floral , V-Neck
Long Sleeves
*

Attribute A Jumpsuit, A Tumpsuit, A Jumpsuit,

(a)  Description A Jumpsuit Floral V-Neck Long Sleeves

Synthesis with
Various Attributes

Synthesis with
(¢) Style Description
(Vincentvan Gogh'’s
Starry Night)

b)

Synthesis with
Style Gmdance

(@)

Figure 3-1 A Visualization Demonstrating the Capability of the Proposed Model to

Simultaneously Control Clothing Texture and Attributes.

The controllable generation model aims to achieve detailed control over synthesized
fashion images in terms of both correct garment attributes and garment textures (styles).
Figure 3-1 illustrates a scenario in which the style of Vincent van Gogh's 'Starry Night'

is transferred to garments with various attributes.

Controlling detailed garment textures using natural language is challenging, therefore,
the proposed model, named as SGDiff and illustrated in Figure 3-2, takes two inputs: a

text condition (cy) describing the garment attributes and a style condition (cg) guiding
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Figure 3-2  Overview of the Controllable Generation Model, namely Style-Guided
Diffusion Model (SGDiff).

the synthesized garment texture. The text encoder ESff of the diffusion model encodes
the semantic representation f, and the style encoder ESCHP of a pretrained CLIP model

encodes the style representation fs . The diffusion network €, estimates the noise &; as

follows:

A i li
é = eg (0 S (cr), B (cs)) (3-1)

To avoid labor-intensive data annotation, the conditioned image synthesis is formulated
as an image reconstruction task, as shown in Figure 3-2 (a), in which a randomly image
patch cropped from the garment image is taken as style condition cg , the model is then
trained to reconstruct garment according to the style guidance cg . To achieve efficient
training, SGDiff utilizes the pre-trained text-to-image diffusion model fine-tuned on a
domain-specific dataset using text as input condition, according to a classifier-free
guidance approach (Ho & Salimans, 2021). Next, by fixing the diffusion network

parameters, the specially designed SCA module is optimized, and fine-tune a pretrained
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image encoder E;lip with multiple conditions of text description and style guidance,

which will be discussed in detail in Section 3.5.

3.2 Related Works

3.2.1 Fashion Synthesis

Fashion synthesis, an emerging research area within the broader field of computer
vision and generative models, concentrates on generating and manipulating fashion-
related images, such as clothing and accessories as well as fashion models. Virtual try-
on (VTON) has generated considerable attention in some recent studies (Cui et al., 2021;
Ge et al., 2021; Hu et al., 2022; Kim et al., 2020; Lewis et al., 2021; Xu et al., 2021),
which typically employ human parsing maps and pose estimation techniques to transfer
textures from a desired garment onto a target person. Although these VTON approaches
successfully synthesize consistent clothing attributes, they primarily focus on human-

centric scenarios.

Several recent studies have investigated garment-centric fashion synthesis, with the aim
to generate novel and diverse clothing items. For example, Jiang et al. (2022) developed
FashionG to transfer styles onto a garment without changing its original image content.
Other researchers (Ding et al., 2023; C. Yu et al., 2019; D. Zhou et al., 2022) explored
the synthesis of compatible fashion based on a given garment image as a query. These

aforementioned studies are all using visual modality input as control for image
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synthesis, their ability to control the detail attributes of the generated fashion is rather

limited.

Text-to-image fashion synthesis remains relatively unexplored compared to other
fashion synthesis approaches. Zhu et al. (2017) proposed a method that uses textual
descriptions to edit images of garments worn by humans. X. Zhang et al. (2022)
developed an ARMANI model for fashion synthesis based on multi-modal inputs
including text descriptions and edge or regional detail in image modality. Although the
above approaches successfully enable control over the synthesized garments, they

generally fail to achieve detailed control of the synthesized textures or styles.

3.2.2 CLIP Model Guided Modality Fusion

The CLIP model, introduced by OpenAl (Radford et al., 2021), has revolutionized the
field of computer vision by leveraging the power of large-scale transformers trained on
both images and text. One of the main strengths of the CLIP model is its zero-shot
learning capability, namely no learning is needed, which allows it to handle new tasks
without requiring any task-specific fine-tuning. Its zero-shot capability has been
exploited in various applications, such as image classification (Esmaeilpour et al., 2022;
R. Zhang et al., 2022), object detection (Shi et al., 2022; Teng et al., 2021), and semantic

segmentation (Liang et al., 2022; C. Zhou et al., 2022; Z. Zhou et al., 2022).
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CLIP models have been integrated with generative models like GANs (X. Liu et al.,
2021; Patashnik et al., 2021) and VQ-VAEs (Crowson et al., 2022) to produce
impressive results in various tasks, from text-to-image synthesis to image editing. For
example, StyleCLIP (Patashnik et al., 2021) utilizes a pretrained StyleGAN (Karras et
al., 2020) and the CLIP model to align image and text features within the style space.
VQGAN-CLIP (Crowson et al., 2022) uses CLIP as additional guidance to control the
generation direction in pretrained generative model. FuseDream (X. Liu et al., 2021) is
a training-free method integrating the latent generation space with CLIP embeddings.
DALL-E (Ramesh et al., 2021) combines the CLIP model with a discrete VAE to
generate high-quality images from textual descriptions. All these models adopt a
training-free pipeline and treat the CLIP model as a gradient guidance to interpret the
generation of latent space. Although these methods could integrate pretrained
generation models with CLIP for text-to-image synthesis, they synthesize every image
as a separate optimization process, which are computationally costly, and they fail to

capture domain-specific text descriptions.

3.3 Method

3.3.1 Skip Cross-Attention Module

Figure 3-2 (b) illustrates the process of integrating two different modalities, namely text
description of garment attributes ¢ and image of style guidance cg, in the proposed

SGDiff model. The integration of the two input modalities is achieved through the
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specially designed Skip Cross-Attention (SCA) module. Both encoders, ESf and E ; lip,
employ transformer-based structures and the output features f; € R128%512 and f; €
R50%512 represent two modalities of input. Such aligned features of f7 and f enable
easy integration of the two representations by attention mechanism (Vaswani et al.,
2017). To do so, the semantic representation fr is linearly projected into query and key-
value pairs:

Q, Kr,Vr = Lr(f7), (3-2)
where L represents linear projection, and query Q and key-value pairs K, V- all have
size R128%512 The style representation fs is projected into key-value pairs only:

Ks, Vs = Ls(fs). (3-3)
The style key-value pairs are concatenated with text key-value pairs:
K = Ks(+)Kyp and V = Vg(+)Vr, (3-4)

where (+) denotes length-wise concatenation.

Specifically, the semantic representation fr is chosen as query Q because it provides
key attribute information for garment synthesis. With f; as query, style representation
fs is aligned with the garment attributes in order to improve the quality of the
synthesized images. The cross-attention is implemented by integrating the key-value

pairs from both modalities as follows:

S KT\ .
fm = Attention (Q, K, V) = softmax (Q >V. (3-5)

[
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Finally, the skip connection is applied, as shown in Figure 3-2:

A

fm = fom + fr- (3-6)
The SCA module enables effective integration of text and image modalities, allowing
the SGDiff model to control the synthesized texture without any reduction in semantic

control.

3.3.2 Training Objectives

As discussed in Section 2.3.3.1, diffusion models implicitly learn to reconstruct an
image from Gaussian noise. The network €4 estimates the noise in the current input
noisy image X,. The training objective of DDPM (Equation (2-49)), however, does not
address condition constraints explicitly. Therefore, SGDiff employs perceptual loss, in
addition to Equation (2-49), to govern image synthesis. To this end, the reconstructed
image X, is obtained at every time step t, according to the estimated noise €; by
Equation (3-1):

¢ =~ ATme i
xo—ﬁ(xt 1 atet). (3-7)

The Perceptual Loss (Johnson et al., 2016) is then calculated by:
L[gerc = ]Emlltpm(ﬁo) - II)m(Xo)HZ, (3-8)
where 1,,, denotes the m-th layer of VGG. Following Johnson et al. (2016), the layers

of relul 2, relu2 2, relu3 2, relu4 2, and relu5 2 are used in Equation (3-8). The
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overall training objective with Perceptual Loss, adapted from (Nichol & Dhariwal,
2021), is as follows:
L= AL 4 Ly 4 2 L0, (3-9)

where Ag and 4, are balancing weights for the corresponding losses.

3.3.3 Multi-Modal Conditions

Classifier-free guidance (Ho & Salimans, 2021) has obvious advantages over classifier
guidance (Dhariwal & Nichol, 2021) for conditioned generation with DDPMs. For
more flexible control, the proposed SGDiff also adopts classifier-free guidance
approach (Ho & Salimans, 2021), in which the model €4 is trained with conditional
state ¢ and unconditional state @ according to a certain probability ¢ ~ Dgond:

é@ (xt' C) = €g (xtl (D) + S[EO (xtﬂ C) — €y (xtﬂ (D)]! (3'10)

Nevertheless, the above approach Equation (3-10) does not address more complex
situation where conditions are multiple, happen in different combinations at varied
probabilities. Until recently, InstrucPix2Pix (Brooks et al., 2023) suggested different

weights for two conditions:

Eg(xt' €1, CZ) = €y (xt' Q)' Q)
+Sl [69 (xt' €1, Q) — €g (xt' @, Q))] ’ (3_11)
+52 [69 (Xt, €1, CZ) — €p (xt' €1, Q))]

where s; and s, indicate the weight scale of condition ¢; ~ pl 4 and c; ~ p2 .4,

respectively. In Brooks et al. (2023)’s work, however, it was not discussed either the
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order of ¢; and c, or the weight scales s; and s,.

In the current task, Equation (3-11) is applied by setting the two conditions as ¢y and
cs. The SGDiff is subjected to two conditions with independent conditional probability
Pond = 0.8 and pT 4, = 0.8, which follows a typical classifier-free guidance training
scheme (Ho & Salimans, 2021). In model training, like all text-to-image diffusion
models, the unconditional state @ of textual condition cy is set to padding token. The
unconditional state @ of style guidance cg is done by inputting a blank (background
only) patch image.

Background masking: Apart from inputting a blank image patch as unconditional
state, the background color in RGB space may also appear in the foreground. To avoid
confusion, the background pixel values are masked to -255 to distinguish them from
the normal RGB values. Such masking technique allows the model to focus more on
the foreground texture. The effectiveness of such background masking setting will be
evaluated in Section 3.4.

Condition order and weight scales: In order to explore the effect of the condition
order, by setting ¢; = ¢5 and ¢, = ¢, alternatively ¢; = ¢y and ¢, = ¢, in Equation
(3-11), and sy = 1, this will result in:

€g(x¢, Cs,cr) = (S5 — Dleg(xe, c5, 0) — €9 (xr, B, B)] + €0 (X, Cs, 7). (3-12)

€g(x¢, cr, ¢5) = (ss — Dleg(xy, c1, ¢5) — €9 (xp, C7, B)] + €9 (Xp, €1, C5). (3-13)

In the implementation, the model €4 takes cs and ¢ simultaneously, the two terms
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€g(x¢, s, cr) and €4 (x¢, €T, C5) are therefore equivalent. Comparing Equation (3-12)
wtih (3-13), thus [€4(x;, 5, @) — €9(x(, B, D)] = [€g (X, C1, C5) — €9 (¢, 1, D)] . It
implies that if the style condition and text condition are independent, the condition order
will not have a significant impact on the image generation. Moreover, the weight scale
serves to adjust the influence of style guidance. When s¢ > s (i.e. s¢ > 1 when s =
1), it introduces a positive conditioned direction to the denoising processing,
emphasizing the influence of condition is guiding the synthesis. The multi-condition

synthesis will be further evaluated in Section 4.4

3.4 Experiments

3.4.1 Datasets and Implementation Details

Figure 3-3 Overview of the Collected SG-Fashion Dataset.

In this study, a SG-Fashion dataset with 17,000 fashion product images was prepared,
downloaded from e-commerce websites including ASOS, Uniqlo and H&M. A subset

of 1,700 images was set aside as the test set. The dataset covers 72 product categories,
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encompassing most types of garment items. Since SGDiff does not rely on textural
descriptions, the original product titles were used as text descriptions. Apart from the
SG-Fashion dataset, experiments were also conducted on the publicly available dataset

of Polyvore (Han et al., 2017) using the same settings.

GLIDE (Nichol et al., 2022) was adopted as the backbone text-to-image diffusion
model, which uses a low-resolution generation model for size 64 X 64 and a super-
resolution model to upsample the generated low-resolution image to the size of
256 x 256. The generation model was fine-tuned and the super-resolution model was
directly employed as the pretrained text-to-image model. For the pretrained CLIP image
encoder, the vision transformer of ViT/32 was chosen. To speed up the synthesis process,
DDIM (J. Song et al., 2021) scheduler with 100 sampling steps was adopted for all

diffusion-based models.

The backbone model (GLIDE) was fine-tuned on the domain-specific dataset that the

AdamW optimizer was used with a learning rate of 1e™*

, and the model was optimized
for 235,000 iterations. Due to GPU limitations, the batch size was set to 8, and the
GLIDE was trained on a single RTX 3090 GPU. AdamW was also used, but with a
learning rate of 1e~> for training the SGDiff with 50,000 iterations for all experiments

on a single RTX 3090 GPU. In terms of the SCA module, multi-head attention with 4

heads was adopted. In all experiments, A; = 1 and A, = 0.001 were set in Equation (3-
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9). Since the training of SGDiff fixes the parameters of the pretrained backbone, a larger
batch size of 16 could be used. For SGDiff training, a single texture patch was cropped
from the foreground. To ensure this cropped patch provides sufficient style information,
BASNet (Qin et al., 2019), a boundary-aware salient object segmentation method, was

applied to obtain the foreground segmentation map.

3.4.2 Qualitative Evaluation

The qualitative evaluation compares the SGDiff results with several SOTA text-to-
image generation methods, including LDM (Rombach et al., 2022) and GLIDE (Nichol
et al., 2022) for diffusion-based methods, and FuseDream (X. Liu et al., 2021) and
VQGAN-CLIP (Crowson et al., 2022) for CLIP-guided GAN-based methods. All
selected SOTA methods have zero-shot capability. Figure 3-4 presents a comprehensive
qualitative comparison of these methods. The 2nd and 3rd rows illustrate the results of
CLIP-based methods of VQGAN-CLIP (Crowson et al., 2022) and FuseDream (X. Liu
etal., 2021), while the 4th and 5th rows illustrate the results of diffusion-based methods
of LDM (Rombach et al., 2022) and GLIDE (Nichol et al., 2022). The 6th row illustrates
SGDiff’s ability to incorporate style images (the 7th row) into text conditions (the 1st
row), successfully synthesizing garments with the desired textures. Generally speaking,
FuseDream and LDM could synthesize garments in most cases, while VQGAN-CLIP
and GLIDE could only synthesize fabrics. The proposed SGDiff could successfully

implement the fashion synthesis with desired clothing category and style. Specifically,
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Figure 3-4  Qualitative comparison of SGDiff with state-of-the-art (SOTA)

approaches.

when synthesizing a garment with complex text descriptions (see examples in columns
(a), (b), and (c)), the other methods tend to ignore the key message but capture part of
the semantics like Batman logo, pink doggy, or silk, while SGDiff tends to synthesize
clothing and consider the style guidance to control the synthesized textures. Moreover,
semantic confusion is one of main challenges in text-to-image synthesis. For instance,
“Tank' refers to a specific type of upper clothing in the fashion domain. Column (d) of
Figure 3-4 shows that both the diffusion-based and CLIP-based approaches have
difficulty in capturing domain-specific semantics. Since their generation objective
focuses on optimizing the CLIP-Score, the synthesis results may not always guarantee

that the output is a piece of clothing. The other columns present cases when offering

63



Tops Bottoms Overall
—— —— —_——
T-Shirt Cropped Top Jeans Shorts Pleated Skirts Jumpsuit Dress Categories

©

Styles
Figure 3-5  Illustration of SGDiff's capability to synthesize garments across various

categories and styles, using style guidance of different colors.

textual descriptions like amber, light and pink, although the other SOTA methods could
synthesize clothing with textures that are similar to the descriptions, they show greater
differences to the ground truth images comparing to SGDiff. In conclusion, SGDfiff is
suitable for fashion synthesis since it could capture the garment category and desired
styles. Moreover, it performs consistently well across various clothing categories. In
addition to the comparative analysis, Figure 3-5 illustrates the innovative capability of
SGDiff in synthesizing garments across various categories and styles. With style
guidance images under different color schemes, SGDiff effectively transfers styles from
the guidance images to the synthesized garments, meeting the condition of garment
attributes. Figure 3-5 shows a range of synthesized fashion under specific color scheme
in each column, offering valuable inspiration for innovative fashion design. When

conditioned generation are out of the training set, SGDiff can still exhibit a remarkable
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generative capability by successfully blending different condition combinations, e.g.,
the jeans shorts with red check and green patterns showed in columns (b) and (c) are
not existed in the training data. Moreover, the style guidance appears in interesting
variations in the generated fashion. These results highlight the versatility and robustness
of the SGDiff model in the realm of fashion design. Appendix A presents additional
qualitative results of garments synthesized using SGDiff, as illustrated in Figure A-1

and Figure A-2.

3.4.3 Metrics and Quantitative Evaluation

Table 3-1 Quantitative evaluation and comparison of various SOTA methods.

Datasets SG-Fashion Polyvore

Metrics LPIPS | FID | CS?T LPIPS | FID | CS7T
VQGAN-CLIP 0.7364 95.84 22.20 0.7122 68.01 39.65
FuseDream 0.7067 60.44 38.03 0.7032 41.94 38.53
LDM 0.7158 85.73 31.66 0.7214 59.79 31.89
GLIDE 0.6921 78.70 23.72 0.7164 63.85 23.28
Ground Truth - - 29.13 - - 29.88
Baseline 0.5772 36.13 27.31 0.6637 43.50 26.24
SGDiff (Ours) 0.4474 32.06 27.53 0.6369 41.98 27.33

Table 3-1 shows the quantitative evaluation, in which three metrics, including FID
(Heusel et al., 2017), LPIPS (Zhang et al., 2018) and CLIP-Score (CS) (Radford et al.,
2021), are used to assess and compare the performance of SGDiff with other SOTA
methods. FID and LPIPS measure the distance in feature space, with FID focusing on
the overall distribution statistics of the generated/synthesized images and the ground
truths, while LPIPS computes the distance between each pair of synthesized image and

the corresponding ground truth, lower the FID and LPIPS values higher the image
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quality. In contrast, the CLIP-score measures the semantic correspondence, namely the
cosine similarity between synthesized images and their corresponding text descriptions,

with higher scores indicating better alignment.

As shown in Table 3-1, SGDiff model performs the best in terms of LPIPS, comparing
to other SOTA methods on both SG-Fashion and Polyvore datasets. SGDiff's FID value
is also the lowest for SG-Fashion dataset and only slightly lower than FuseDream for
Polyvore dataset by 0.04%. This demonstrates that the SGDiff model can generate
better images fulfilling the conditions without sacrificing the image quality. The CS of
the SGDiff is higher than GLIDE and the baseline (i.e. GLIDE being fine-tuned on the
datasets), but lower than FuseDream and LDM, because FuseDream optimizes the
BigGAN-256 (Brock et al., 2019) latent space using CLIP guidance and LDM leverages
a vast text-to-image dataset consisting of billions of examples. Nevertheless, these
methods did not consider the integration of the text feature and image feature for image

generation, they indeed did not perform well in LPIPS and FID.

Table 3-2 Consumption of synthesizing an image with resolution of 256 x 256 on

a RTX 3090 GPU.

VQGAN-CLIP  FuseDream LDM GLIDE Ours

Time 62s 171s 59s 9s 9.8s

Memory 5686M 9296M 6570M  5550M  5986M

Table 3-2 compares the model memory and average time cost for synthesizing an image

of size 256 X 256 on a RTX 3090 GPU. As shown, the running time of the SGDiff
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model is much shorter than that of VQGAN-CLIP and FuseDream. Although the
running time of the SGDiff model is slightly longer than LDM, the memory
consumption is lower. Compared to the baseline, the increases in time and memory are
relatively insignificant because only the image encoder and modality fusion module are
fine-tuned. In summary, the SGDiff can be trained without much memory and can

generate an image with good quality based on text and style conditions within 10

seconds on RTX 3090.

3.4.4 Ablation Study

Table 3-3 Ablation experiments on modality fusion methods and classifier-free
approaches.

Classifier-free Mask Modality fusion LPIPS | FID | csT
Equation (3-10) D! 0.6833  42.63  25.63
Equation (3-10) CA? 0.5650 38.88 25.39
Equation (3-10) SCA 0.5607 39.21 25.98
Equation (3-10) v SCA 0.5695 37.22 26.06
Equation (3-11) v SCA 0.4474  32.06 27.53

'@ refers to an element-wise addition operation, where the features fr and fs are projected onto
the same dimension before operation;

2 CA indicates SCA module without skip connection, w.r.t. Equation (3-5) without Equation (3-
6).

Ablation study was conducted to evaluate the effect of each component of the proposed

SGDiff on SG-Fashion dataset.
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3.4.4.1 Effectiveness of the SCA:

As demonstrated in Table 3-3, the comparison between the element-wise addition of
features and the cross-attention (CA) method shows that CA is significantly more
effective in improving LPIPS and FID scores. However, it has the downside of causing
a decline in semantic information, as CS decreases. To address this issue, the SCA
module with skip connections was use. As shown in the third row of the table, SCA
leads to improvements in both LPIPS and CS scores, demonstrating its ability to

improve the similarity between synthesized images and ground truth images.

3.4.4.2 The effect of background masking:

As shown in Table 3-3, after applying background masking, the FID value decreases by
1.99 and the CS remains almost the same. This demonstrates that background masking
is beneficial to improve image quality. The reason for slightly increased LPIPS is that
LPIPS is sensitive to perceptual information, the lack of background may degrade
LPIPS metric. However, the fashion synthesis task only focuses on the synthesized
foreground, and the background could be easily removed by salient object segmentation

model like BASNet (Qin et al., 2019).
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Figure 3-6  Ablation study on the impact of style and text guidance on the
performance of SGDiff in terms of (a) and (b) for FID, (c) and (d) for

LPIPS and (e) and (f) for CLIP-score.

3.4.4.3 The orders and weights for different conditions:

Figure 3-6 displays the relationship between FID, LPIPS and CS with different
conditional weights and order settings. One conditional weight was set to vary in the
range of [0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0], while the other
conditional weight is fixed at 1.0. The trend of setting text prior to style is similar to
setting style prior to text, indicating little impact on results with fixed s = 1 and
varying sy. In addition, it can be seen from Figure 3-6 that the optimal values (see the
circled dots of Figure 3-6) of sg¢ and s are almost in the range of 1.0 to 1.6. More
specifically, the setting of s¢ = 1.2, sy = 1.0, with style prior to text, was chosen as
optimal. This setting achieves the best LPIPS which is important in controlling
synthesized styles. The numerical results are shown in the last row of Table 3-3.

Although the CLIP-Score is lower compared to other methods, the qualitative results
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indicate that a higher LPIPS suggests better visual performance in this controllable
generation task. Additionally, users can achieve a better CLIP-Score by increasing the

text weight sr.

3.5 Chapter Summary

This chapter reports on the implementation of the controllable generation model,
referred to as the Style Guided Diffusion model (SGDiff), which forms a core
component of the overall system. SGDiff represents a significant stride in the realm of
image synthesis, specifically designed to address and overcome the limitations inherent

in traditional diffusion models.

Central to SGDiff's innovation is the introduction of a style condition, which essentially
acts as a decoupled condition within the model. This decoupling allows for a more
controlled integration of style elements into the pretrained text-to-image diffusion
frameworks. The effectiveness of SGDiff is highlighted by its ability to operate with a
high degree of precision in texture synthesis, all while circumventing the need for

extensive labelled datasets or computational resources.

Looking forward, SGDiff will be enhanced by refining the control over various texture
attributes, including colour themes, patterns, and material qualities. This enhancement

is anticipated to not only extend SGDiff's technical contributions but also to broaden its
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applicability across diverse applications and fields of the controllable generation of

synthesized images.
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Chapter 4. FLEXIBLE EDITING MODEL

4.1 Introduction

% e ,,,,%,,

(a) Edit to a Circular Skirt (b) Edit to a Tiered Skirt

Figure 4-1 ~ Demonstration of Flexible Clothing Shape Editing in Application Usage.

This editing model is designed to flexibly modify arbitrary regions according to user-
specified sketches. In the context of fashion editing, it enables the alteration of large,
interesting areas of various shapes. For instance, as demonstrated in Figure 4-1, a
designer might frequently modify their drafts, such as transforming a dress into
different styles of skirts. Given the frequent need for modifications in drafts, this model
employs a GAN-based architecture. It also marks a transition from a diffusion model
to a GAN model. While diffusion models require several inference steps and can take
up to 10 seconds to generate an image on a single RTX 3090 GPU, GANs can produce

an image in approximately one second.

To implement this model, the general requirement for the input is an existing image I,
a binary mask image M that denotes the editing area, and a user-provided sketch map

S. Figure 4-2 illustrates this pipeline, referred to as CoDE-GAN.
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Figure 4-2  The Proposed CoDE-GAN Utilizing a Mask-Reconstruction Pipeline.

The proposed pipeline picks up the DeepFill V2 (J. Yu et al., 2019) as backbone. This
backbone relies on the mask-reconstruction proxy task to relief the lack of paired data
between the source image and the edited target image. The mask reconstruction could
be considered as image inpainting but with the guidance of sketches. The DeepFill V2

is a benchmark algorithm in image inpainting task.

However, there is a gap between the image inpainting works and the proposed editing
task. The inpainting approaches can only synthesis a region with no consideration on
the user-provided conditions. To bridge this gap, this study elaborately designed the
Content Decoupled and Enhanced GAN (CoDE-GAN) using Content Decoupling

Module and Content Enhancement Module to fit in the fashion editing task.
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4.2 Related Works

4.2.1 Fashion Editing Tasks

In fashion editing tasks, researchers pay much attention to editing some attributes of a
fashion image. In response to various kinds of input, the existing methods are capable

to control the final editing results from different levels.

Motivated by the achievements of semantic synthesis (Park et al., 2019; Schnfeld et al.,
2021) and human parsing (Ruan et al., 2019), it is possible to edit a fashion image by
improving the shape of its parsing map. This editing could be considered as human
synthesis as well. Friihstiick et al. (2022) conditioned synthesis on a human parsing
map. Dong et al. (2020) propose a two-stage fashion editing pipeline that generates an
edited human parsing map firstly and synthesizes based on the parsing map. Their
edited human image can respond to the conditioned sketch and color. In virtual try-on
works (Cui et al., 2021; Neuberger et al., 2020; Wang et al., 2018; Yang et al., 2020),
they are capable of editing the whole human image by offering human poses and

specified fashion garments.

In addition to editing whole fashion human images, Dai et al. (2021) argue that it is
important to edit design drafts. Their fashion editing workflow formulates the fashion
editing task as a bidirectional image translation task. By translating an in-shop fashion

garment to design drafts, it benefits the designer in making modifications. And then,
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their pipeline is able to translate the edited drafts back into in-shop garments.
TailorGAN (Chen et al., 2020) achieves fashion attribute editing by specifying a
reference image. For addressing the lack of paired data between input garments and
edited images, TailorGAN proposes a self-supervision training pipeline. By
reconstructing a masked attribute region with the guidance of a reference image,
TailorGAN has the ability to apply fashion editing tasks. Nevertheless, this method can
only address collar and sleeves editing which leads to poor generalization to other
attributes. Even though the existing works are capable of editing fashion garments to
some extent. It is demanding to provide a user-friendly interaction in editing in-shop

clothing.

4.2.2 Sketch-Guided Editing Tasks

Editing tasks in fashion require location guidance. There are clear regions that user
would like to edit. Hence, the wanted-editing region will be offered as input. By offering
a mask map as wanted-editing region, editing tasks could be considered as image
inpainting task. DeepFill V2 (J. Yu et al., 2019) offered a user-guided way of editing
image. Besides the damaged image and reference target mask map, their network
architecture takes user sketch as an additional input channel. Nazeri et al. (2019)
proposed an edge connect way for reconstructing the sketch map in damaged region
firstly. As prior information, the recovered edge map contributed to the completion task.

Their edge connect pipeline enables user-guided editing as well. Jo and Park (2019)
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introduced SC-FEGAN for addressing face editing tasks. By inputting additional user-
guided color channel, SC-FEGAN is capable of editing face images with specific shape

and color.

4.2.3 Image Translation

Recently, benefits from the succeeding of generative adversarial networks (GAN)), it is
possible to generate and edit the fashion image easier and faster. For instance, by
reshaping the conditioned input parsing map, it is able to edit a whole human fashion
image (Friihstiick et al., 2022; Li et al., 2021). Cui et al. (2021) and Han et al. (2019)
provide pose estimation to transfer different poses to a specified source human image.
Chen et al. (2018), Y. Li et al. (2019), and Li et al. (2020) utilize text information to
instruct attributes editing. Their works effectively consider the complex input condition
to constrain the generation and achieve astonishing results. However, their input
conditions are in-flexible to make modifications to the clothing. The parsing map could
condition the shape of a fashion garment but failed to condition inner details. Pose
estimation provides spatial prior information. It is effective in conditioning the
viewpoint of an image but lacks the ability to edit the shape of a fashion garment. The
text instructions semantically conditioned the editing but are hard to accurately control
the length of sleeves or pants. For flexibly editing the image like a fashion designer, it

is straightforward to provide in-complete sketches to edit a specific area.
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Figure 4-3  Multiple Fashion Image Generation and Editing Tasks.

Although the existing image synthesis works (Dai et al., 2021) have achieved
astonishing results, they mostly discuss unconditional generation that there are no
constraints on the generation process. What’s more, fashion domain often requires
generating fashion images with specified types e.g., clothing texture, collar types, dress
styles, etc. Achieving controllable fashion image generation is challenging. This
controlled generation requires the model to synthesize images that accurately represent

the desired design elements, such as color, pattern, and shape. These elements can be
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specified in any manner, regardless of the number and types of elements involved.
generation refers to generate images in respect to input conditions. The input conditions
could be one-hot codes for denoting fashion attributes like colors or clothing types. As
well, the conditions could be much more complex and abstract like pose estimation,
texts, and so on. In general, the controlled generation translates the source image to the
target image by applying the above-mentioned conditions to the source image. This
process is regarded as image translation (Isola et al., 2017) or image editing (H. Liu et

al., 2021).

Generally, the regular image editing works focus much on human face editing (Jo &
Park, 2019; Korshunova et al., 2017; Portenier et al., 2018). Human face is the type of
data that have been well-explored. On the one hand, face images could be easily
collected from the Internet. On the other hand, there are plenty of research works about
face detection (Yang et al., 2016), face recognition (Meng et al., 2021), and face
deepfakes (Peng et al., 2021). Therefore, it’s low-cost to collect aligned and cropped
human face dataset for analyzing. In contrast to human face editing, there are fewer
fashion image editing research works that modify and regenerate an actual fashion
garment image with a high level of realism. Compared to face images, fashion image
editing is more difficult due to the complexity of apparel attribute definition, which
includes global attributes such as garment style, fabric color and texture. For apparel

products, the design process is complex and expensive and labor-intensive, and the
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most time-consuming part of the process is completing the design drawings, which are
the transformation from a draft to a real image of the apparel. This is because the
designer needs to imagine what colors and fabric materials will work with the design

to show the style more perfectly.

4.3 Method

4.3.1 Problem Formulation

Let I € R3"*" be the ground truth RGB image where w is the image width and h is
the image height, M € RY*W*" be the binary mask where 1 indicates editing or masked
area and 0 indicates the unmasked region, and S be the input sketch, the sketch-guided
image editing model will generate a new image which is filled in the consistent texture
in the masked region M and has the consistent sketch with S. During the training stage,
sketch S is extracted by edge detection network HED (Xie & Tu, 2015) H(:) and
multiplied with the mask M, which can be defined as:

Xy =1y M, (4-1)
where © is the element-wise multiplication. Since HED can only output a greyscale
sketch map, S is binarized by setting the threshold to 0.6 to simulate users’ drawn
sketches. During the inference stage, S is drawn by the users in the editing area. In
general, the inputs of the sketch-guided image synthesis are the set x = [I;;, M, S],
where I, is the masked RGB image obtained by:

Iy =10 (1—M). (4-2)
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To make the model learn specific texture and structure representation for better image
synthesis, the CDM is designed to learn the decoupled texture representation and
structure representation and fuse them to obtain better latent representation for image
generation. Let the latent representation be f;, it can be represented by:
Iy=1000-M). (4-3)
The latent representation is then fed into a generator G to generate a synthesized image,
which is defined by:
I'=6(f. (4-4)
Lastly, four loss functions are used to train the network to make the synthesized image
I similar to the original image I as much as possible. The detail of the loss functions is

illustrated in Section 4.3.5.

4.3.2 Content Decoupling Module

The content decoupling module consists of a Condition Decoupling Block (CDB), a
structure encoder, a texture encoder, and a bottleneck.
a) Condition Decoupling Block:
This block decouples the input x into two types of conditions: the texture
condition x; and the structure condition x. Given the image I, the mask M and
the sketch S, the x; and x4 can be computed by:
xe =1y ®M (4-5)

x5 = Igw ® M (4-6)
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b)

where @ is channel-wise concatenation, and Iy € R*Wh is the grey image
of I;. It can be seen from the formula that the input x, € R**W*" aligns the

€ R2XWXh g conditioned to the

setting of image inpainting and the input x;
sketch. Here, x incorporates sketch with the grey image instead of RGB image,
because grey image is more effective to represent structural information than
RGB image and reduces the representation space from R* to R'. Moreover,
traditional image processing algorithms, such as Canny edge detection,
typically work with grey images to obtain edge details.
Texture Encoder:
The texture encoder €; feeds in the condition x; and learn the texture
representation by:

fr = €c(xe), (4-7)
where €; is the texture encoder. As the texture encoder mainly aims to
reconstruct the texture of the masked region, which is the same as the image
inpainting task, this model adopts the encoder structure of DeepFill V2 (J. Yu et
al., 2019). DeepFill V2 designs a gated convolution that adapts a dynamic
feature selection mechanism to make the convolution dependent on the soft
mask that is automatically learned from data and improves the texture
consistency and inpainting quality of the masked region. Specifically, for the

input feature f;;, a gated convolution Conv, applies an additional convolution

to obtain a soft weight map and then multiples it with a learned feature of f;,,. It
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d)

is formulated as:

Convy (fin) = Conv (fi,) © a(Convgy(fiy ), (4-8)
where Conv is the conventional convolution, Conv, is the convolution that
outputs single-channel feature map, and o is the sigmoid function that scales
learned gating to range (0, 1).

Structure Encoder:
The structure encoder € takes the input xg and learns the structure
representation f; by:

fs = € (x5). (4-9)
The structure of €; is same with €, but the gated convolution is replaced with
conventional convolution. There are two reasons for using conventional
convolution here: 1) the intension is for the encoder to primarily focus on
capturing the basic structure of the whole image, and thus the texture
information learning is not that important and will be achieved by the texture
encoder. 2) Gated convolution adapts an extra convolution to learn the soft
weighting map, leading to an increase in computation cost.
Bottleneck:
Lastly, the texture representation and structure representation are fused by a
bottleneck structure to reduce the representation space. The bottleneck structure
consists of four dilated gated convolution blocks. First, f; and f; are

concatenated, and then fed into a bottleneck €, to obtain the fused latent

82



representation f;. It is formulated as:

fi = e (fe @ fo) (4-10)

4.3.3 Adversarial Generation

To allow the synthesized results more realistic and reasonable, the adversarial

generation process is incorporated.

a)

b)

Generator:
Given the fused latent representation f;, the generator G could synthesizes a
fake image [

I'=G6(f0 OM+1y. (4-11)
The G consists of five gated convolution blocks with twice upsampling which
is symmetric to the structure of encoder ¢;.
Discriminator:
Following with Pix2Pix (Isola et al., 2017), a patch discriminator D was
implemented, which output real/fake discrimination on image patches instead
of the whole image. Its discrimination could focus on local details and enhance
the fidelity of the generated image. The structure of D is like an encoder that
only consists of six convolution blocks. Besides, to stabilize the adversarial
training process, spectral normalization was adopted on the discriminator as

well (Miyato et al., 2018).
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4.3.4 Content Enhancement Module
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Figure 4-4  Content response map generator (CRG) transforms features into content

response map. The response map is masked and fused with a grey image.

To further improve the consistency of synthesized content, a Content Enhancement
Module (CEM) is applied to the generator G. As shown in Figure 4-2, CEM extracts the
features from the second and fourth blocks. The features have different resolutions and
are denoted as f;, and f;,5 of which the subscript indicates the resolution of the feature
map. Then, the two features are respectively fed into a Content Response Map
Generator (CRG) to generate the content response maps CRg, and CR;,g. As Figure

4-4 illustrates, the content response map CR; could be obtained by:

CR; = CEM(f)

= tanh[IN(Conv4(f))]| O M + 1, © (1 = M), (4-12)

where i = 64 or i = 128, Convy reduces the feature dimensionality of f; to single, IN
denotes an instance normalization layer, and tanh is a Tanh activation function. Then,
the cosine similarity between CR; and the grey image I, is calculated and regarded as

an objective function, which is computed by:
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CR64_ o Ig ) ( CR128 M Ig )
Lo=(1-—9 |+ (1-—2 9|, 4-13
¢ ( ICRe4 Il ICRy 8[|, (4-13)

The goal is to optimize the features of the generator through gradient backpropagation

by minimizing the similarity distance between the CR; and the grey image I;.

Sketch-Guidance w/o CEM

Figure 4-5 Visualization of the synthesized content response map CR at resolution

of 64 X 64 and 128 x 128.

The content response maps at resolutions 64 X 64(CRg,) and 128 X 128(CR;,3)
were visualized in Figure 4-5. It could be observed that the CEM could learn the
structure and texture of the image and the content response map with a higher resolution
clearly exhibits more uniform content and sharper boundaries. Since the input sketch is
sparse and gradually diminishes in the CNN feature space, it is important to inject the
sparse sketch information in the CNN space, especially in the generator. In DeFlocNet
(H. Liu et al., 2021), the control inputs are injected in all blocks of encoders and
generators to preserve the guidance information. However, this method will add

additional computation costs and cannot provide other content information except the

85



input controls, like the structure and texture information around the sketch. In this case,

the features of the generator are optimized to resemble the original grey image, which

contains rich structure and texture information. By doing so, the generator learns to

recover the structure and texture of the masked region as shown Figure 4-5.

Consequently, the proposed CEM is able to enhance and refine the content information,

leading to more detailed and high-quality generation results.

4.3.5 Optimization Objectives

For training the CoDE-GAN, except for the above-mentioned content-aware loss,

reconstruction loss, perceptual loss, and generative adversarial loss are used. In the

following, these loss functions are introduced in the following:

a)

b)

Reconstruction Loss:
To ensure the generated image [ is close to the RGB image I within the
unmasked region, L1 loss is used between them on the unmasked region. It is
defined by:
Ly =|1-1,0OM. (4-14)

Perceptual Loss:
Following style transfer, perceptual loss (Johnson et al., 2016) was introduced
to keep the perceptual information as well. It is obtained by:

Loer = ) wi- LI(F(D) = D), (4-15)

i

where F; stands for ith activation layer of VGG-19 network, and w; is the

corresponding weight. Specifically, the selected layers are relul 1, relu? 1,
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relu3 1, relu4 I and relu5 1. In the experiments, all the corresponding weight
w; are set to 1.0.
c) Generative Adversarial Loss:
The synthesis process is conditioned to inputs x = {I,;, M,S}. To allow the
discriminator D to consider the conditions, despite the real/fake image I and I,
D will take x as well. The hinge loss for optimizing spectral normalized
discriminator D is adopted as:
L2y, = E;x[min (0,—1 4 D(,x))] + E;_,[min (0,-1 — D(I,x))], (4-16)
And the adversarial loss for the total network CoDE-GAN:
Lé4, = —E;[D(I,x)]. (4-17)
The overall objectives are:
L= Aper Lper + Ap1Los + AL + LS4, (4-18)
where Aper, Ap1, Ac, Aqan denotes the coefficients for perceptual loss, reconstruction,

content-aware loss and adversarial loss respectively.

4.4 Experiment Verification and Results Discussions

4.4.1 Data Preparation

This section introduces the datasets collection for evaluating the proposed methods and

the collection methods for the required pre-processed data.

4.4.1.1 Dataset Collection

Two fashion garment datasets for simulating a real fashion editing scenario were
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selected: one fashion human dataset for testing the methods’ robustness in a more

complex situation, and one outdoor church dataset for determining its generalizability.

There are 9,636 upper garments in the Garment Dataset collected by Chen et al. (2020).
The Garment Dataset mainly collected garments with different collar and sleeve types.
The another dataset is Cafi-Garment Dataset collected by Zhou et al. (2019). There are

17,075 garments with 77 categories that include dresses, jeans, and T-shirts, etc.

For the fashion human dataset, the ATR dataset (Liang et al., 2015) was selected,
comprising 7, 700 human images with different poses in the wild. The outdoor church
dataset is a subset from LSUN dataset (Yu et al., 2015) that there are 126,227 images.

These aforementioned datasets were split into train set and valid set with an 8: 2 ratio.

4.4.1.2 Sketch Generation

The sketch is the vital information that guide the model to synthesis user-controlled
garments. Generally, the sketch should be drawn manually to reflect the users’ intuitions.
However, collecting sketch maps may be time-consuming and costly, which goes
against the intended motivation. For reducing human workload and achieve a robust
response to the sketch maps, the results of edge detection are used for simulating the
manually drawn sketches. Figure 4-6 shows several level outputs of the detected edges

by HED (Xie & Tu, 2015). HED is a benchmark work for edge detection and is capable

88



(d) HED 5|de output 2 _ (e) HED: side output 3 (f) HED: side output 4
Figure 4-6  Edges Detected by HED (Xie & Tu, 2015).

of achieving promising edge maps. To ensure that the extracted edges faithfully
simulate user hand-drawn sketches, these edges are binarized using a threshold of 127,
which is the middle value of RGB pixels. Since the HED model mainly responds to the
outline of an object, the editing model trained on HED primarily edits the shape of the
cloth. The proposed model could be extended to edit other minor attributes like
accessories (e.g., pockets, buttons) if the edge map is replaced by another edge

extraction method such as Canny (Bao et al., 2005).

4.4.1.3 Mask Generation

Fashion editing often requires the transformation of a large continuous region. For
simulating this characteristic, box or rectangular mask strategy are adopted. The mask

ratio is set to 30%, 50%, and 70% with respect to the whole image area.
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Figure 4-7  Free-Form and Box Masks with Different Ratios.

However, most of the sketch-guided image editing work mainly discuss the free-form
mask which is randomly generated strokes. For a fair and more general comparison, the
experiments also trained the model with free-form masks followed with SC-FEGAN

(Jo & Park, 2019).

4.4.2 Evaluation metrics

The general requirements of the generated images are realistic and various. However,
the measurement of the generated images could be subjective in most cases. For
instance, it’s hard to quantify realistic. Therefore, researchers apply more implicit way

to acquire metric scores.

4.4.2.1 Fréchet Inception Distance

Inception scores utilize InceptionNet V3 which pre-trained on ImageNet dataset
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(Salimans et al., 2016). By classifying the generated images, the InceptionNet will
output a classification probability distribution. If the image is fidelity enough, there will
be a higher score on a certain class. If the images are various, there will be lower
information entropy.

IS(G) = exp(Ex~p, D (p(y|)Ip())) (4-1)
However, if the ImageNet dataset did not include the class of generated images, it
apparently lacks the ability of classifying. What’s more, outputting a classification
prediction with high confidence did not require the image realistic as human artifacts.

These two-character harms the validness of inception score.

Fréchet inception distance (FID) proposed by Heusel et al. (2017) utilized the
InceptionNet V3 as well. Unlike the inception scores, it only considered the features.
Let m be mean, ¢ be covariant, and tr be trace of matrix, subscript g and d denote
feature comes from generator or real data respectively:

FID = |lmy — my|| + tr(cy + cq — 2(c c0)*'?) (4-2)
Since FID only calculate the statistic value of feature, it is more plausible on measuring
GAN’s capability. Heusel et al. (2017) also pointed that there is a much stronger

relationship between FID and image quality.

4.4.2.2 Structural Similarity

Structural Similarity (SSIM) (Wang et al., 2004) considers three aspects of image:
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luminance, contrast, and structure. The subscript follows the definition of FID. And p
denotes mean value. ¢ denotes variance. ¢, ¢, c3 are three different constant values.

* Luminance:

2papg + ¢4
lx,,xq) =——=— 4-3
(g xa) = (4-3)
* Contrast:
2040 + ¢,
, = —_—— 4-4
(g, %) ct+o02+c, (4-4)
* Structure:
2049 +C3
, = — 4-5
s(xg xd) 5202 + 03 (4-5)
And the total SSIM is:
SSIM (x4, xq) = L(xg, xq)Cc(xg, Xq)S(Xg, Xq) (4-6)

SSIM is score which compare two images. It usually is applied in image completion

tasks.

4.4.2.3 Peak Signal-to-Noise Ratio

Similar to SSIM, Peak Signal-to-Noise Ratio (PSNR) (Faragallah et al., 2020) is the
metric for measuring two images. Firstly, it calculates the mean square error of

generated image and real image.

1 m-1 n—-1
MSEGgxa) = — > 3 [y ) = xa@DP  (47)
i=0 j=0
The PSNR as follows:
PSNR 101 MAX; (4-8)
(xg: xd) - 0910 MSE(XQ, xd) -
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4.4.3 Results Discussions

The experiments were conducted on the data prepared in Section 4.4.1 with metrics
mentioned in Section 4.4.2. It is cost to collect real edited data for evaluating the
methods. Therefore, the mask-reconstruction proxy task was chosen to evaluate the

quantitative metrics.

4.4.3.1 Quantitative Evaluation

A comparison was initially made between the proposed methods and Pix2Pix (Isola et
al., 2017), and SC-FEGAN (Jo & Park, 2019). Table 4-1 and

Table 4-2 shows the overall comparisons under the training of box mask with 30% ratio.

Table 4-1 Comparisons in Garment-Based Dataset

Garment Dataset Cafi-Garment Dataset
Metrics

Pix2Pix SC-FEGAN Ours Pix2Pix SC-FEGAN Ours

FID | 9.0279 7.7746 5.0172 21.2413 22.0515 13.6705
SSIM T 0.8569 0.8618 0.8882 0.8968 0.906 0.9162

PSNR T | 24.3152 24.1064 26.1712 28.4381 28.6801 30.5279

Table 4-2 Comparisons in Fashion Human and Outdoor Buildings Dataset
ATR Dataset LSUN Outdoor Church Dataset

Metrics

Pix2Pix  SC-FEGAN Ours Pix2Pix SC-FEGAN Ours

FID | 73.0056 69.7000 43.8257 40.2195 39.3383 30.6956
SSIM T 0.7260 0.8200 0.8596 0.7025 0.7864 0.8089

PSNR T | 20.2658 20.5500 24.7131 20.0976 18.9277 19.9848

The results show that the proposed methods outperformed not only in garment-based
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dataset but also have the ability to generalize in more complex dataset. The methods
employed achieved the best performance in FID and SSIM Metrics. There is only a
slightly slack in PSNR when compared with Pix2Pix in LSUN Outdoor Church Dataset.
PSNR evaluates peak signal noise rate with L, distance. Even though Pix2Pix is better
in PSNR, it failed a lot in FID metrics which have a stronger relation with visual

perceptual quality.

Additionally, significant results were achieved not only with the box mask but also with
free-form mask with respect to larger mask ratio. This character was evaluated in
Garment Dataset with two additional image inpainting methods Partial Convolution
(Liu et al., 2018) and DeepFill V2 (J. Yu et al., 2019), which is designed to recover
irregular free-form masked region. Table 4-5 present the overall comparisons on
Garment Dataset with different training mask types and ratios. The proposed method is
robustness in handling various masks. Especially, when the mask ratio increases to 70%,
the model performs much better than the other network for implementing the

reconstruction task.

Table 4-3 Evaluation on Garment Dataset with 30% Masked Region

Free-Form Mask Box Mask
Metrics R . . SC- . ADe . . SC-
Pix2Pi Partial DeepFill FEGA Ours Pix2Pi Partial DeepFill FEGA Ours
X Conv V2 X Conv V2
N N

FID! 9.028 35.596 6.891 7.775 5.017 5.841 19.546 3.762 5.509 2.789
SSIMT 0.857 0.750 0.873 0.862 0.888 0.901 0.854 0.931 0.918 0.939
PSNRT | 24.315 16.052 24.689 24.106 26.171 27.269 23.640 29.277 28.236 30.617
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Table 4-4

Evaluation on Garment Dataset with 50% Masked Region

Free-Form Mask Box Mask
Metrics R . . SC- R . . SC-
Pix2Pi Partial DeepFill FEGA Ours Pix2Pi Partial DeepFill FEGA Ours
X Conv V2 X Conv V2
N N
FID{ 7.581 62.314 14.339 9.484 4.764 18.451 139.845 12.092 14.138 8.359
ssiMT 0.853 0.758 0.882 0.856 0.894 0.770 0.574 0.786 0.767 0.816
PSNRT | 25.561 20.661 26.693 25391  27.990 | 21.320 13.032 21.666 21.126  23.631
Table 4-5 Evaluation on Garment Dataset with 70% Masked Region
Free-Form Mask Box Mask
Metrics . . . . SC- . . . . SC-
Pix2Pi Partial DeepFil FEGA Ours Pix2Pi Partial DeepFil FEGA Ours
X Conv 1v2 X Conv 1v2
N N
FID! 11.467 160.080 20.808 13.826 7.102 27479 258358 15.903 21.114  11.547
ssimT 0.796 0.597 0.824 0.787 0.839 0.708 0.417 0.718 0.686 0.752
PSNRT 23.601 17.406 24.592 23.143  25.727 | 19.508 10.476 20.114 18.946  21.906
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Ours SE-FEGAN Pix2Pix

Figure 4-9  Qualitative Results on Sleeves & Collars Editing.

4.4.3.2 Qualitative Evaluation

Figure 4-8 shows the qualitative results while the model is training in recovering the
masked region with the guidance of sketches. CR; and CR, are the content response

map proposed in Section 4.3.4.

Figure 4-9 shows the qualitative results while editing a short sleeve to long sleeve. Even
though the other method could synthesize the increased sleeves region and has clear
boundary in respect to the sketch. They failed in filling texture in the content region.
Appendix B exhibits more challenging edited results showcased in Figure B-1.
Additionally, this study includes an interactive Ul for editing fashion images. A video

demonstration is accessible through the QR code provided in Figure B-2.
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In conclusion, the proposed flexible editing model performs well in editing tops and
bottoms, as these categories present relatively simple textures. However, when editing
whole-body dresses with complex patterns, the model is less effective in reconstructing

the texture.

4.4.3.3 Ablation Study

To demonstrate the effectiveness of the designed modules, an ablation study was
conducted while training with free-form masks with 70% ratios. Table 4-6 and

Table 4-7 showed the evaluation results in various mask types. The wo grey refers to
remove the grey image in sketch encoding branch. The single branch refers to keep one
gated convolution-based encoding branch for coding the sketch and source image. The
wo enhancement refers to the removal of the specially designed content enhancement
block. Each of these designed modules brings significant improvement on the

qualitative metrics.

Table 4-6 Ablation Study on Free-Form Mask

30% 50% 70%
Ablation

FID! ssiMT PSNRT | FID! sSSIMT PSNRT | FID! SSIMT PSNRT
wo Grey 9.869 0904  26.655 | 9.892  0.858 25303 | 11.169  0.804  23.903

wo Segmentation | 37.597 0.824 19.936 | 54.641  0.732 18.349 | 72.130  0.632 16.762
Single Branch 15.269 0.890 24341 | 21.350  0.830 22304 | 30.599  0.757 20.420
Whole Model 6.269 0.921 28.189 | 6.148 0.885 27.136 | 7.102 0.839 25.727

Table 4-7 Ablation Study on Box Mask

30% 50% 70%

Ablation
FID! sSIMT PSNRT | FIDd sSiMT PSNRT | FID!  SSIMT PSNRT

wo Grey 19.799  0.835 20.127 | 26.958  0.731 18.072 | 29.716  0.642 16.524
wo Segmentation | 32.603  0.777 15.548 | 57.907  0.632 13.528 | 92.449  0.488 12.225
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Single Branch 21.627  0.817 19.260 | 41.615  0.695 16.696 | 79.753  0.580 14.174
Whole Model 12.224  0.856 21.790 | 17.009  0.777 19.386 | 25.946  0.678 15.629

The most notorious improvement is brought by the content enhancement block. It is the

significant factor to improve the generalizability in various mask types.

4.5 Chapter Summary

This chapter introduces CoDE-GAN, a flexible editing model for fashion image content.
By elaborately designing a reconstruction proxy task, CoDE-GAN first decouple the
content of an image into structure and texture representations. Particularly, the structure
representation, obtained through edge detection, enables an automatic pipeline for
implementing this approach. By training to reconstruct an image through these
decoupled conditions, sketch condition and texture condition, the model can effectively

edit an image’s content, even with out of distribution samples.

Furthermore, extensive experiments were conducted to validate the performance. The
model was examined using the human ATR dataset and the garment-centric Garment
and CafiGarment datasets, revealing that CoODE-GAN delivers superior performance in
perceptual quality and editing flexibility when compared to existing state-of-the-art
methods. This highlights its potential to significantly streamline image editing
processes in the fashion industry. Beyond achieving the perceptual quality, CODE-GAN
also shows significant potential for adaptation in other applications, such as image

inpainting or guided image reconstruction.
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Nevertheless, there are limitations to further improving the proposed CoDE-GAN. This
method mostly edits the shape of image content. Incorporating CoDE-GAN with style
conditions presents a challenging aspect. Moreover, this system combines two distinct
modules. It would be worthwhile to integrate CoDE-GAN into the previously discussed

SGDiff to achieve both generation and editing in one unified model.
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Chapter 5. CONCLUSIONS AND
RECOMMENDATIONS FOR FUTURE WORK

5.1 Conclusions

This thesis presents a comprehensive exploration of fashion image generation and
editing, introducing two distinct models: SGDiff and CoDE-GAN for controllable
generation and flexible editing, respectively. SGDiff serves as a controllable generation
model, enabling the creation of fashion images with a particular focus on texture control.
CoDE-GAN, on the other hand, acts as a flexible editing model, efficiently modify cloth
content in existing images. The two models are designed to work either independently

or integratively as one single system.

A key innovation of this thesis is the use of decoupled conditions in both modules,
significantly reducing the reliance on labeled training data for controllable image
generation and editing. The significance of decoupled conditions extends to the broader
field of image generative models. Utilizing a self-supervised reconstruction pipeline,
the system effectively leverages various decoupled conditions, including sketches, text,
and textures. This enables the system to mimic real user inputs and achieve high-fidelity

image reconstructions.

SGDiff, as introduced in Chapter 3, presents advanced style transfer in the image
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generation process. It introduces a novel approach by incorporating an image-based
condition as style reference, leading to enhanced control over the synthesized textures.
This model effectively utilizes the concept of decoupled conditions to reconstruct from
randomly masked image patches, fine-tuning the pre-trained text-to-image diffusion
model. The efficacy of SGDiff is underscored by its superior performance in LPIPS and
FID scores, demonstrating its capability in synthesizing fashion images that closely
reflect the given style reference. By extending the text-to-image diffusion model to
include additional image-based inputs, SGDiff represents a significant step forward in

image generation technology.

Chapter 4 introduces CoDE-GAN, the flexible editing model, which stands as an
effective tool in fashion image editing. This model circumvents timing issues
commonly associated with diffusion models by decoupling image content from texture
and spatial representations through the decoupled sketch condition. This innovative
approach effectively addresses challenges in content area construction, demonstrating
superior performance in terms of perceptual quality and editing flexibility. The
extensive experiments show its superior performance with other state-of-the-art method,
showcasing its potential applications not only in the fashion industry but also in broader

domain such as guided image reconstruction.

In summary, this thesis has not only contributed novel methodologies and tools in the
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realm of digital fashion image generation and editing but also set a foundation for future
research in this rapidly evolving field. The potential applications of SGDiff and CoDE-
GAN extend far beyond their current scope, promising to revolutionize the way fashion

imagery is approached and interacted in the digital age.

5.2 Recommendations for Future Work

Image Text Condition frext

Captioning Polka Dot Ctext Text
A-Line Dress Embedding
Style Condition
Random f style
Cropping Cstyle Style Synthesized
Embeddi
Target Image I, fioedaing Image I,
Sketch Condition i
Edge [ sketch

Decouplin Detecti C
\ pling etection sketch Sketch
Embedding

Semantic Condition

Region of
Intersts fsemantic
Masking Csemantic | Semantic
Embedding
—

Decoupled Random
Conditions Noise /

Figure 5-1 Overview of the Unified Generation and Editing System Using

Decoupled Conditions.

Although Chapter 3 and Chapter 4 implemented two independent models for
conducting fashion image generation and editing tasks respectively, merging these two
distinct models into a unified one is both possible and beneficial. Figure 5-1
demonstrates this unified model. By utilizing decoupled conditions, the model can swap
the original black polka dot with red ones, resulting in the generation of a red polka dot

dress. This allows for editing the original image by trying on this newly generated red
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dress.

To develop this unified system, it important to decouple multiple conditions effectively
and simultaneously. These conditions represent partial information extracted from the
target image with automatic preprocesses. For instance, a masked image could serve as
semantic condition, as the model is required to edit the masked region to align
semantically with the rest of image. In this method, partial information is carefully
selected to mimic real user inputs. This approach enables the model to generate or edit
images that accurately reflect these inputs, treating this information as decoupled

conditions.

A key aspect of successfully decoupling an image into various conditions involves
designing an appropriate reconstruction pipeline. This task, conducted in a self-
supervised learning framework, hinges on the nature of the decoupled conditions.
Several principles guide the selection of automatic preprocessing methods. Firstly, the
preprocess must be fully automated, requiring no human intervention to avoid the need
for labor-intensive and costly manual labeling. The information derived should
encompass only a random selection of the target image’s details. By reconstructing from
this randomly selected information, the model can better adapt to actual usage scenarios
and prevent overfitting. Additionally, that information should be compatible with real

user inputs, such as sketch maps, text descriptions, texture maps, etc.
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In detail, the conditions represented in Figure 5-1 can be achieved as follows. Given a
target image, I, the decoupled conditions are achieved through various automatic
methods. The sketch condition, Cgietcn, 1 derived using an edge detection method (Xie
& Tu, 2015), while the text condition, Ciext, comes from image captioning work (Li et
al., 2022) or is automatically sourced from the Internet. Style condition cgyie 18
generated by randomly cropping a patch from the foreground image, obtainable through
salient object segmentation work (Qin et al., 2019). The semantic condition, Cgemantics
provides the image’s content, sourced through random masking or human parsing
techniques (Gong et al., 2018; Liang et al., 2015; Ruan et al., 2019), to identify areas
of interest like clothing. As illustrated above, these decoupled conditions can be
efficiently achieved using existing tools or algorithms, eliminating the need for

extensive labeling.

Here are two major challenges for this unified model, which are further detailed in sub-

Sections 5.2.1 and 5.2.2.

5.2.1 Multi-Modal Inputs and Representations

A unified generation and editing model may involve multi-modality inputs, as depicted
in Figure 5-1. Designing or utilizing the pre-trained modality-specific encoder presents

a challenge. This is because data from different modalities may contribute differently
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to the overall generation or editing process. Aligning these distinct feature

representations into a unified space is another challenge.

5.2.2 Visual Characteristics Preserve

Currently, the existing diffusion models utilize a noise estimation loss function for
denoising images. This loss function supervises the overall image reconstruction. It
lacks effective supervision on specific visual characteristics. Traditionally, GANs
achieve this by explicitly applying a perceptual loss to attain better visual consistency.
This approach is less effective in diffusion models, as it requires an extra step to convert

a predicted latent code into a real image. This could cost much time and memory.
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Appendix A. MORE QUALITATIVE RESULTS
OF SGDIFF GENERATED GARMENTS
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Appendix B. MORE QUALITATIVE RESULTS
OF CODE-GAN EDITED SAMPLES

(a) Input

(b) Sketch-Guidance

(c) Ours

Figure B-1  More Flexible Edited Results of CoODE-GAN.

Figure B-2  Interactive Ul of CoDE-GAN.
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