

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

DEFENDING AGAINST STEALTHY MOBILE

MALWARE

KAIFA ZHAO

PhD

The Hong Kong Polytechnic University

2025

The Hong Kong Polytechnic University

Department of Computing

Defending Against Stealthy Mobile Malware

Kaifa Zhao

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

April 2023

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Kaifa Zhao

Abstract

The widespread popularity of Android, as one of the most widely-used mobile op-

erating systems, is attributed to its ability to provide users with a wide range of

convenient and entertaining options through its functional apps. Nevertheless, mo-

bile users may face a risk to their privacy and property from potentially harmful apps

that can be installed on their devices.

This thesis focuses on combining Android static analysis, artificial intelligence tech-

niques, and natural language processing techniques to investigate app behavior, dis-

cover vulnerabilities in Android malware detection systems, and understand Android

apps’ privacy policies. To safeguard user privacy from potentially harmful apps, we

propose the following measurements: (1) Investigating the vulnerability of Android

malware detection systems under evolving structural attacks and proposing defense

solutions. (2) Analyzing whether Android app privacy policies meet regulatory re-

quirements. and (3) Empirically evaluating the capacity of pre-trained large language

models to identify regulation-required components in Android privacy policies.

For (1), to investigate the vulnerability of Android malware detection (AMD) sys-

tems under evolving attacks and design e!ective defense solutions, we propose a

Heuristic optimization model integrated with Reinforcement learning framework to

optimize our structural ATtack, namely HRAT, which is the first problem-pace struc-

tural attack designed to deceive Android malware detection systems. HRAT employs

four types of graph modification operations and corresponding bytecode manipula-

i

tion techniques to generate executable adversarial apps that can evade detection.

HRAT bridges the research gap between feature-space attacks, which generate only

adversarial features to deceive machine learning models, and problem-space attacks,

which generate complete adversarial objects, i.e., executable Android apps in our

scenario. Our extensive experiments demonstrate that HRAT demonstrates e!ective

attack performance and remains robust against obfuscation methods that do not af-

fect the app’s function call graph. In addition, we propose potential defense solutions

to improve the robustness of AMD against such advanced attack methods.

For (2), we construct a benchmark dataset for Android privacy policies, i.e., a novel

large-scale human-annotated Chinese Android application privacy policy dataset,

namely CA4P-483. Following a manual inspection of regulatory articles, we identify

seven types of labels that are relevant to the regulatory requirements for apps’ access

to user data. We design a two-step annotation process to ensure label agreement,

and our evaluation showed that our annotations achieved a Kappa value of 77.20%,

indicating substantial agreement for CA4P-483. In addition, we evaluate robust and

representative baseline models in our dataset and present our findings and potential

research directions based on our results. Finally, we conduct case studies to explore

the potential application of CA4P-483 in protecting user privacy.

For (3), we empirically evaluate three widely used pre-trained large language models

on the CA4P-483 dataset. This work aims to explore the capacity of LLMs in pro-

cessing Chinese privacy policies and to uncover their potential to address compliance

issues that are challenging for traditional NLP techniques. Building on our previous

work with CA4P-483, we leverage the semantic understanding capabilities of pre-

trained LLMs and apply carefully crafted prompts according to established prompt

engineering principles to maximize the models’ inference performance. Our evaluation

reveals that state-of-the-art pre-trained LLMs still fall short of achieving satisfactory

performance on the Chinese privacy policy dataset. The limitations may stem from

the complexity of the language environment, the intricate cross-relationships among

ii

elements within privacy policies, and the models’ current generalization capabilities.

Based on our evaluation results, we also propose potential future research directions

that include leveraging long-context LLMs to analyze privacy policies holistically and

achieve overall semantic consistency, as well as training a dedicated large-scale pri-

vacy policy analysis model that incorporates multilingual datasets to address privacy

policies across di!erent languages and platforms.

iii

Publications

1. Jianfeng Li, Kaifa Zhao, Yajuan Tang, Xiapu Luo, and Xiaobo Ma, “Inaccu-

rate Pre-diction Is Not Always Bad: Open-World Driver Recognition via Error

Analysis”, in 2021 IEEE 93rd Vehicular Technology Conference (VTC), 2021.

2. Kaifa Zhao, Hao Zhou, Yulin Zhu, Xian Zhan, Kai Zhou, Jianfeng Li, Le Yu,

Wei Yuan, and Xiapu Luo, “Structural Attack against Graph Based Android

Malware Detection”, in Proceedings of ACM Conference on Computer and Com-

munications Security (CCS), 2021.

3. Kaifa Zhao, Le Yu, Shiyao Zhou, Jing Li, Xiapu Luo, Yat Fei Aemon Chiu, and

Yutong Liu, “A Fine-grained Chinese Software Privacy Policy Dataset for Se-

quence Labeling and Regulation Compliant Identification”, in The 2022 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP), 2022.

4. Le Yu, Yangyang Liu, Pengfei Jing, Xiapu Luo, Lei Xue, Kaifa Zhao, Yajin

Zhou, Ting Wang, Guofei Gu, Sen Nie, and Shi Wu, “Towards Automatically

Reverse Engineering Vehicle Diagnostic Protocols”, in Proceedings of the 31st

USENIX Security Symposium (USENIX Security), 2022.

5. Lei Xue, Yangyang Liu, Tianqi Li, Kaifa Zhao, Jianfeng Li, Le Yu, Xiapu Luo,

Yajin Zhou, and Guofei Gu, “SAID: State-aware Defense Against Injection

Attacks on In-vehicle Network”, in Proceedings of the 31st USENIX Security

Symposium (USENIX Security), 2022.

iv

6. Yulin Zhu, Yuni Lai, Kaifa Zhao, Xiapu Luo, Mingquan Yuan, Jian Ren, and

Kai Zhou, “Binarizedattack: Structural poisoning attacks to Graph-based anomaly

detection”, in 38th International Conference on Data Engineering(ICDE), 2022.

7. Shuohan Wu, Jianfeng Li, Hao Zhou, Yongsheng Fang, Kaifa Zhao, Haoyu

Wang, Chenxiong Qian, Xiapu Luo, “CydiOS: A Model-Based Testing Frame-

work for iOS Apps”, in Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2023.

8. Yulin Zhu, Yuni Lai, Kaifa Zhao, Xiapu Luo, Mingquan Yuan, Jun Wu, Jian

Ren, Kai Zhou, “From Bi-Level to One-Level: A Framework for Structural At-

tacks to Graph Anomaly Detection”, in IEEE Transactions on Neural Networks

and Learning Systems, 2024.

v

Acknowledgments

In this thesis, I would like to take this opportunity to express my deepest appreciation

to my parents for their unwavering support and encouragement throughout my aca-

demic journey. Their love, guidance and sacrifices have been instrumental in helping

me overcome challenges and achieving my academic goals. I am forever grateful for

their unwavering belief in me, and I hope to continue making them proud in all my

future endeavors. I would like to express my heartfelt gratitude to myself for demon-

strating unwavering perseverance and determination in overcoming the unwanted and

unnecessary challenges I faced during my Ph.D. studies, especially those man-made

malicious events, I firmly believe that what I have experienced will make me who

I am. Completing this journey with a sound mind and body is a testament to my

strength and resilience, and I am proud to have achieved this milestone.

I would also thank my supervisor, professor Xiapu Luo. He has provided me with the

opportunity to pursue a doctoral degree and a platform to conduct research in security

and software engineering. He has dedicated a lot of time to guiding me on how to

identify meaningful research topics and how to ensure that my work contributes to

the field. I have learned a great deal from his research approach and am grateful for

his mentorship.

Additionally, I would like to thank Prof. Hao Zhou, Prof. Lei Xue, Prof. Jing Li,

Prof. Kai Zhou, Prof. Jianfeng Li, and Prof. Xiaoming Wu for their constructive

feedback and suggestions, which have helped me recognize limitations in my work. I

vi

am grateful to Yu Yang, Yangyang Liu, Shiyao Zhou, Shuohan Wu, Wenying Wei,

and Zhiyuan Wen for the interesting discussions and memorable moments during my

Ph.D. study.

vii

Table of Contents

Abstract i

Publications iv

Acknowledgments vi

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Android Malware Detection . 2

1.2 Adversarial Attack Against Android Malware Detection 3

1.3 Android Privacy Policy . 4

1.4 Android Apps Behavior Analysis . 5

1.5 Pre-trained Large Language Models for Privacy Policy Analysis . . . 6

1.6 Our Work . 6

1.6.1 Vulnerability Investigation of Android Malware Detection Sys-

tems . 7

viii

1.6.2 Curation of Chinese Privacy Policy Benchmark 9

1.6.3 Investigating Pre-trained Large Language Models for Privacy

Policy Analysis . 10

1.7 Thesis Outline . 12

2 Literature Review 14

2.1 Adversarial Attack against Android Malware Detection 14

2.2 Privacy Policy Dataset . 16

2.3 Android Privacy Policy Analysis . 16

2.4 Pre-trained Large Language Model for Privacy Policy Analysis. . . . 17

3 Structural Attack against Graph Based Android Malware Detection 20

3.1 Overview . 20

3.2 Preliminaries . 23

3.2.1 Feature Attacks and Structural Attacks 24

3.2.2 Target Android Malware Detection Systems 25

3.2.3 Reinforcement Learning . 26

3.3 Attack Model . 28

3.3.1 Threat Model . 28

3.3.2 Attack Formulation . 28

3.3.3 Heuristic Optimized Reinforcement Learning based Structural

Attack . 30

3.3.4 Structural Attack Analysis . 40

ix

3.4 Android Application Manipulation 42

3.4.1 Constraints Determination . 43

3.4.2 Adding Function Calls . 44

3.4.3 Rewiring Function Calls . 45

3.4.4 Inserting Methods . 47

3.4.5 Deleting Methods . 47

3.5 Evaluation . 49

3.5.1 RQ1: E!ectiveness Analysis 55

3.5.2 RQ2: Modification E”ciency Comparison 59

3.5.3 RQ3: E!ectiveness of IMA . 61

3.5.4 RQ4: Resilience to Obfuscation Techniques 66

3.5.5 RQ5: Functional Consistency Assessment 68

3.5.6 RQ6: Influence of Key Parameters 70

3.5.7 RQ7: Defense against HRAT 72

3.6 Discussion . 75

3.6.1 Applicability of HRAT . 75

3.6.2 Limitations . 76

4 A Fine-grained Chinese Software Privacy Policy Dataset for Se-

quence Labeling and Regulation Compliant Identification 77

4.1 Overview . 77

4.2 Preliminaries . 81

4.2.1 Android Privacy Policy . 81

x

4.2.2 Sequence Labeling . 81

4.3 Dataset Construction . 81

4.3.1 Dataset Collection . 81

4.3.2 Fine-grained Annotations . 82

4.3.3 Human Annotation Process 84

4.3.4 Dataset Statistics and Comparison 85

4.4 Task and Experiment Setup . 87

4.4.1 Task Description . 87

4.4.2 Model Summaries . 88

4.4.3 Setup and Implementation Details 90

4.5 Evaluation . 90

4.5.1 Main Results . 90

4.5.2 Case Study . 96

4.6 Discussion . 97

4.6.1 Dataset Di”culties . 98

4.6.2 Limitations . 99

4.6.3 Ethical Consideration . 99

5 Investigating Pre-trained Large Language Models for Chinese Pri-

vacy Policy Analysis 101

5.1 Overview . 101

5.2 Preliminaries . 103

5.2.1 Pre-trained Large Language Models 104

xi

5.2.2 Prompt Engineering . 104

5.3 Framework . 105

5.3.1 Task Description . 106

5.3.2 Privacy Policy Preprocessing 106

5.3.3 Prompt Design . 107

5.4 Experiments . 110

5.4.1 Model Summaries . 110

5.4.2 Experiment setup . 111

5.4.3 RQ1. E!ectiveness of LLMs in analyzing privacy policies. . . . 112

5.4.4 RQ2: Impact of Prompt Engineering Techniques on Model Per-

formance . 115

5.4.5 RQ3: Hallucinations Analysis in LLMPP 120

5.4.6 Case Study . 122

5.5 Discussion . 126

6 Conclusions and Suggestions for Future Research 128

6.1 Conclusions . 128

6.1.1 Investigating Vulnerability of Android Malware Detection . . . 129

6.1.2 Introducing a Comprehensive Android Application Privacy Pol-

icy Dataset . 130

6.1.3 Application of LLMs for Analyzing Privacy Policies 131

6.2 Future Work . 131

xii

References 133

xiii

List of Figures

3.1 Overview of HRAT . 22

3.2 Feature attacks vs. structural attacks 25

3.3 Android method signature in soot . 41

3.4 Work flow of APPMOD . 42

3.5 Pseudo code of adding function call. 44

3.6 Pseudo code of rewiring. 45

3.7 Pseudo code of inserting methods. 47

3.8 Pseudo code of deleting methods. 48

3.9 Work flow of HRAT . 49

3.10 CDF of the required number of modifications 61

3.11 The ratio of each attack action. 62

3.12 E!ectiveness of HRAT over malware that fails to escape detection un-

der individual attack action . 65

3.13 Parameter analysis . 71

3.14 Attack success rate against retraining. 72

xiv

4.1 Annotation demos from CA4P-483. We translate the statements into

English for illustration. 83

4.2 Overlapping between components. Di!erences between ground truth

and prediction. 92

4.3 Confusion matrix of BiLSTM-CRF results on CA4P-483. 94

4.4 The visualization of divergence between ground truth and prediction. 94

4.5 The visualization of divergence between ground truth and prediction

for missing Purpose. 95

4.6 Components distribution of CA4P-483. 97

5.1 Framework of LLMPP . 105

5.2 Prompt Design for Leveraging LLM for Analyzing Privacy Policies . . 108

5.3 Confusion metrics of ChatGPT 3.5. 114

5.4 Confusion metrics of LLaMA. 115

5.5 Confusion metrics of QWen. 116

5.6 Initial prompt for LLMPP . 123

5.7 Results of prompt case study. 124

5.8 Case study of inference results in LLMPP. 126

xv

List of Tables

3.1 ASRs of HRAT towards Malscan, Mamadroid, and APIGraph en-

hanced Malscan . 56

3.2 E!ectiveness comparison of di!erent attacks 60

3.3 Comparisons between individual attack strategies and HRAT 64

3.4 Evasion rate of AMD systems by adversarial apps whose original apps

belong to di!erent families and adopt three di!erent obfuscation tech-

niques. 67

3.5 Parameter settings of ensemble algorithms 74

3.6 Evaluation of ensemble learning based defense methods 75

4.1 The statistics of CA4P-483. Here, ”Avg” denotes average, ”ann” de-

notes annotation, ”len” denotes length, ”#” denotes the number of. . 86

4.2 A comparison between CA4P-483 and other popular sequence labeling

datasets. # denotes “number”. “doc” denotes “documents”. 87

4.3 Data access word list . 88

4.4 Overall performance of baseline methods on our dataset. 91

4.5 Evaluation performance of three types of methods on our dataset. “O”

denotes others. 93

xvi

5.1 Main Results . 112

5.2 Ablation study results of prompt engineering techniques in LLMPP . 117

5.3 Additional Analysis of Few-Shot Prompting Ablation Results 119

5.4 Hallucination analysis in LLPP . 121

xvii

Chapter 1

Introduction

The escalating prevalence and extensive utilization of smartphones have rendered

them a prime target for cybercriminals. Due to its extensive usage, Android, be-

ing the most widely used mobile operating system[131], is particularly vulnerable

to malicious software (malware) attacks. Malware on Android devices can cause a

range of problems [130], from stealing sensitive information to corrupting data and

disabling system functions. Concealing users’ data access behaviors in the privacy

policy will deprive users of the right to know about the processing of private data,

thereby leading to the potential leakage of users’ privacy. Comprehending the malev-

olent conduct of Android applications (apps) is critical to detecting Android malware

and safeguarding the privacy of users.

Recent studies demonstrate the importance of analyzing the behavior of potentially

harmful apps (PHA) for detecting Android malware [9, 79, 68, 152, 91, 25, 24, 18, 177,

163, 65, 5, 120, 61, 158, 42], investigating potential vulnerabilities of Android malware

detection (AMD) systems [15, 26, 56, 77, 107, 60], and identifying consistency between

Android apps’ behavior and privacy policy statements [6, 7, 165, 166, 97, 178, 146].

Android malware detection systems are designed to identify malicious apps before

malware is published in the market [49, 62] and to further prevent apps from harming

1

Chapter 1. Introduction

mobile device users. Unfortunately, previous research has revealed that AMD can be

circumvented with relative ease through adversarial attacks [15, 26, 56, 77, 107, 60]

that manipulate the features extracted from apps, thereby deceiving machine learn-

ing models utilized in detection systems. As a consequence, app markets [49, 62]

have imposed regulations [50, 63] to govern the conduct of apps published in their

markets. App markets, in particular, require developers to explicitly disclose their

app’s behavior, including the collection, usage, sharing, or storage of users’ infor-

mation, in a privacy policy document upon uploading the app. However, existing

research [6, 7, 165, 166, 97, 178, 146] has revealed that the behavior of apps is fre-

quently inconsistent with their privacy policy statements. Despite the numerous

studies proposed to analyze the behaviors of potentially harmful Android apps [15,

26, 56, 77, 107, 60, 9, 79, 68, 152, 91, 25, 24, 18, 177, 163, 65, 5, 120, 61, 158, 42] and

their privacy issues [6, 7, 165, 166, 97, 178, 146], the research community still lacks

comprehensive studies on investigating the vulnerability of Android malware detec-

tion systems under structural adversarial attacks; and creating a benchmark dataset

that meets the regulatory requirements for app privacy policy statements.

1.1 Android Malware Detection

Android malware detection systems are developed to recognize malevolent apps, and

current detection methodologies typically rely on classification techniques. Such

methods extract features from both benign and malicious apps and subsequently

employ them to train a machine-learning model with the capacity to di!erentiate be-

tween the two. Notably, many systems [9, 79, 68, 152, 91, 25, 24, 18, 167, 42] utilize

static analysis to extract features, including requested permissions [9, 79, 68] and

function call relations [91, 152]. Of these systems, function call graph (FCG)-based

approaches [152, 91, 25, 24, 18] have demonstrated promising performance as FCGs

contain abundant semantic information, such as calling relationships. In an FCG,

2

1.2. Adversarial Attack Against Android Malware Detection

each node represents a method, and each directed edge depicts a calling relationship

between two methods. State-of-the-art malware detection tools extract potential ma-

licious features, such as sensitive APIs, from FCGs to represent malware’s malevolent

behaviors. For instance, Malscan [152] extracts centralities of sensitive nodes in FCGs

to train classifiers. Mamadroid [91] abstracts the nodes of FCGs into di!erent states

and uses the transition probability between states as features. Cai et al. [18] use the

graph neural network to extract features from FCGs for malware detection.

1.2 Adversarial Attack Against Android Malware

Detection

The goal of adversarial attacks against Android malware detection systems [56, 15,

77, 26, 107] is to evade detection by generating adversarial samples that incorporate

perturbations into extracted feature vectors, in order to deceive the classifiers of tar-

get systems. For instance, Grosse et al. [56] apply the Jacobian matrix to modify

features in Drebin [9] to generate adversarial examples and achieve a 69% evasion

rate. AndroidHIV [26] streamlines the attack process by manipulating the features

in Mamadroid [91] and Drebin [9] using various algorithms, such as C&W based

methods [26]. Traditional adversarial attacks against AMD [56, 15, 77], however,

can solely create adversarial features to escape detection and are confined to produc-

ing executable adversarial applications. Hence, traditional adversarial attacks fail to

evaluate the susceptibility of actual Android malware detection systems since these

systems identify whether an app (usually in the form of an apk file) is malicious based

on its physical form rather than its feature representations, such as permissions uti-

lized in the apps. The growing emphasis on producing authentic evasion samples has

led to an increasing number of systems [26, 107] developing algorithms for generating

executable adversarial Android malicious apps, also known as problem-space attacks.

Existing problem-space attacks are limited to inserting non-functional methods or in-

3

Chapter 1. Introduction

vocations in order to evade detection while preserving the semantics of the generated

adversarial malware. Due to the inverse feature-mapping problems, the feature map-

ping transformations between problem space and feature space are neither injective

nor surjective [110], meaning that some information can be lost or misrepresented in

the mapping process [26, 107].

1.3 Android Privacy Policy

The proliferation of mobile devices has elevated the necessity for privacy and security

measures to safeguard personal information. The Android operating system, being

the dominant platform for mobile devices, holds a vast amount of sensitive information

about its users, such as personal and financial data, location, and online activity. As

a result, the need for privacy and security measures to safeguard this information has

become increasingly important. This vast amount of sensitive information available

on Android, the most widely used mobile operating system, makes it a valuable target

for cybercriminals. As a result, it is imperative to have e!ective privacy policies in

place to govern the behavior of Android apps and safeguard user data.

To normalize privacy-related behaviors and prevent privacy leakage, various privacy-

related regulations (e.g., California Consumer Privacy Act [144], California Privacy

Rights Act [101], General Data Protection Regulation [47], International Covenant on

Civil and Political Rights [52], Code of Federal Regulations [113]) have been promul-

gated to protect people’s personal information from being abused. A privacy policy

is a legal document [47, 108, 98] written in natural language that outlines the types

of information collected, how it is used, and who it is shared with. The Android

privacy policy undergoes constant evolution to keep up with the rapidly changing

technological landscape and to address emerging privacy concerns as they arise. Pri-

vacy policies play a crucial role in providing users with a clear understanding of how

their personal data will be used and enabling them to make informed decisions about

4

1.4. Android Apps Behavior Analysis

using a product. They serve as a tool for enhancing transparency and accountability

and help users assess the risks associated with sharing their personal information.

As such, privacy policies have emerged as a key aspect of data protection and pri-

vacy regulation in the mobile app ecosystem. However, privacy policies are tedious,

making it hard for users to read and understand them [128].

1.4 Android Apps Behavior Analysis

Android app analysis can be broadly classified into two categories, namely static

analysis [54, 190, 53, 64, 40] and dynamic analysis [39, 135, 179, 159, 112, 164, 138,

33, 66]. The static analysis evaluates apps’ code and resources without executing it.

Static analysis is a powerful tool for identifying potential security vulnerabilities and

privacy violations in an app, as it allows researchers to identify issues that may not be

evident during normal app execution. Static analysis can be performed quickly and

easily on large numbers of apps without executing apps. Moreover, static analysis

excels in code coverage, tamper resistance, cost-e!ectiveness, early detection, and

repeatability.

Dynamic analysis, on the other hand, involves executing an app on a device or em-

ulator and monitoring its behavior during runtime. This method provides a more

realistic view of an app’s behavior and allows researchers to identify issues that may

not be visible in the code, such as network communication and data usage. Dynamic

analysis is particularly useful for identifying malicious behavior, such as data theft

and unauthorized access to sensitive information. However, dynamic analysis requires

significant computational resources, including a high-performance device or emulator,

memory, and storage space. Besides, dynamic analysis is a time-consuming process,

especially for large or complex apps. This can make it di”cult to scale dynamic anal-

ysis for large numbers of apps. Dynamic analysis can only provide an approximation

of an app’s behavior, as it does not take into account all the possible ways an app

5

Chapter 1. Introduction

can behave in the real world. This can result in false negatives or a limited view of

app behavior. Dynamic analysis can interfere with the normal functioning of an app,

as the analysis process can modify system settings or disrupt normal app behavior.

This can result in inaccurate or misleading results.

1.5 Pre-trained Large Language Models for Pri-

vacy Policy Analysis

Large language models (LLMs) [2, 102, 8, 32] demonstrate exceptional ability in

understanding and processing natural language. Benefiting from LLMs’ advanced

natural language understanding abilities, researchers have begun to apply LLMs to

analyze privacy policies across various domains [23, 90, 116, 139], including the Inter-

net of Things (IoT), web applications, LLM plugins, and beyond. The application of

LLMs to downstream tasks primarily relies on prompt engineering, where researchers

craft detailed instructions that include task descriptions and data samples to be an-

alyzed. These instructions are used to query target LLMs, which then infer new

content based on the provided context to complete the tasks.

1.6 Our Work

To safeguard individuals’ privacy and property, our focus is on analyzing Android

apps that may potentially be harmful and preventing apps’ malicious activities. We

first investigate the vulnerability of Android malware detection systems, focusing

on the design of the first problem-space structural attack against Android malware

detection systems. Second, we construct the first Chinese Android privacy policy

dataset to identify the consistency between apps’ behavior and privacy policy state-

ments. Finally, we investigate the capabilities of pre-trained large language models

6

1.6. Our Work

for identifying regulation-required components in privacy policies.

1.6.1 Vulnerability Investigation of Android Malware Detec-

tion Systems

First, we propose HRAT, the first problem-space structural attack against Android

malware detection systems, to investigate the robustness of detection systems under

evolving threats. Android malware detection techniques achieve great success with

deeper insight into the semantics of malware. Among existing detection techniques,

function call graph (FCG) based methods achieve promising performance due to their

prominent representations of malware’s functionalities, i.e., the nodes in FCG denote

the methods in apps and the edges in FCG denote the invocation relations between

methods. Meanwhile, researchers propose adversarial attacks to investigate the vul-

nerability of detection systems and propose corresponding defense methods to make

the systems more robust in malware detection. However, existing adversarial attacks

against Android malware detection systems focus on perturbing the feature vectors,

that are extracted from the apps’ components or function call graphs, to escape detec-

tion, and ignore the new attack face exposed in function call graph-based detection

systems, such as the structure of function call graphs as is shown in Figure 3.2 in

Chapter 3 Section 3.2.1. Furthermore, su!ering from the attack interface, i.e., per-

turbing the feature vector, existing adversarial attacks can not guarantee the success

of generating runnable adversarial apps based on perturbations on feature vectors,

which is known as inverse transformation limitation [107].

In this thesis, we design a Heuristic optimization model integrated with Reinforcement

learning framework to optimize our structural ATtack, namely HRAT. Compared

with existing adversarial attacks against Android malware detection systems, HRAT

has three important capabilities, namely a) a novel attack channel, i.e., the structure

of Android apps’ function call graph, b) filling the research gap between problem-

7

Chapter 1. Introduction

space attack and feature-space attack, and c) a useful framework for Android app

manipulation while maintaining the functionalities.

Specifically, HRAT implements four types of graph modification methods to perturb

the structure of Android apps’ function call graph, namely adding edges, rewiring,

inserting nodes, and deleting nodes. We craft four types of graph modifications

while maintaining the connection relations of nodes which may be a!ected by the

structure modification. This design guarantees the invocation relations of methods in

apps will not be a!ected at a theoretical level and provide the basis for transforming

perturbations in feature space to problem space. To optimize the attack process,

we apply a reinforcement learning algorithm to learn the optimal graph modification

sequence based on the criteria of minimum perturbations. To make sure the function

call graph modification can be transformed into apps’ code manipulation and does

not a!ect the apps’ functionalities, we craft four types of Android app manipulation

methods accordingly, namely adding function calls, rewiring function calls, inserting

methods, and deleting methods. HRAT implements the Android app manipulation

tool based on static analysis and requires no access to apps’ source code.

We evaluate HRAT on over 30,000 Android apps including apps from di!erent time

period [13] and using di!erent obfuscation techniques [37]. HRAT demonstrates out-

standing attack performance on both feature space and problem space and illustrates

that combining multiple graph modifications strategically makes the attack more ef-

fective and e”cient. Besides, our experiments also demonstrate that HRAT is resilient

to obfuscations that do not a!ect or hide invocation relations in apps. After access-

ing the vulnerability of Android malware detection systems, we also propose defense

strategies to make the detection systems robust against evolving attacks.

8

1.6. Our Work

1.6.2 Curation of Chinese Privacy Policy Benchmark

The Android privacy policy is a legal document written in natural language that

discloses how and why a controller, who determines the purposes for which and the

means by which personal data is processed, collects, shares, uses, and stores user in-

formation [47, 108, 98]. Regulation department [47, 108, 98] and Android application

management [49, 62] ask developers to provide a privacy policy to clearly state how

they deal with user information to help users understand and be aware of whether

their privacy will be abused and decide whether to use the product. However, pri-

vacy policies are tedious, making it hard for users to read and understand them [128].

Fortunately, Natural language processing techniques achieve great success in under-

standing document semantics [161, 150, 36]. However, applying natural language

processing to understand privacy policies still requires a large amount of labeled data

to train the semantic understanding model.

In this thesis, we first construct a fine-grained Chinese software privacy policy dataset

to fill the research gap and prompt research on understanding the consistency be-

tween apps’ behavior and privacy policy statements. Although there exist English

versions of privacy policy datasets, such as Online Privacy Policies (OPP-115) [151]

and Android app privacy policies (APP-350) [193], the annotations in the dataset are

coarse-grained, i.e., being labeled in sentence level, and cannot satisfy regulation re-

quirements in China [98, 108, 100, 27]. Thus, we construct the first large-scale human-

annotated Chinese Android application privacy policy dataset, namely CA4P-483.

Specifically, we manually visit the software markets, such as Google Play [49] and

AppGallery [62], check the provided privacy policy website, and download the Chi-

nese version if available. We finally collect 483 documents. To determine the labels

in the privacy policy analysis scenario, we read through Chinese privacy-related reg-

ulations and summarize seven components (§4.3.2). We annotate all occurrences of

components in 11,565 sentences from 483 documents. Unlike paragraph-level anno-

tations in existing privacy policy datasets [151], CA4P-483 annotates character-level

9

Chapter 1. Introduction

corpus.

Second, based on CA4P-483, we summarize representative baseline algorithms for Chi-

nese sequence labeling, which aim to identify the labels of Chinese characters within a

given privacy policy sentence, based on predefined regulatory components. In detail,

we first evaluate the performance of several classic sequence labeling models on our

dataset, including Conditional Random Forest (CRF) [70], Hidden Markov Model

(HMM) [94], BiLSTM [55], BiLSTM-CRF [74], and BERT-BiLSTM-CRF [34]. Re-

cent work shows lattice knowledge improves the performance of Chinese sequence

labeling tasks. We also evaluate a lexicon-based model specifically designed for Chi-

nese NLP scenarios, such as Lattice-LSTM [180].

Third, we investigate potential applications of CA4P-483. Combining knowledge of

regulations, we first identify whether the privacy policy violates regulation require-

ments based on CA4P-483. We also identify whether the app behaves consistently

with privacy policy statements by combing software analysis [184, 189].

1.6.3 Investigating Pre-trained Large Language Models for

Privacy Policy Analysis

Pre-trained large language models (LLMs) exhibit remarkable capabilities in under-

standing the semantics of natural language. These models are trained on vast collec-

tions of diverse natural language resources, including Wikipedia, publicly available

news, books, and programming code, among others [185, 102]. Consequently, LLMs

are equipped with general natural language understanding abilities, such as document

summarization [175, 22], sentence completion [99], etc. In addition to general-purpose

capabilities, LLMs fine-tuned on specific datasets for particular tasks have shown ex-

ceptional performance. For example, LLMs trained on programming-related data

excel in tasks such as code completion[81, 95], code generation[104, 86], and code

summarization[1, 75]. However, achieving such performance often requires access

10

1.6. Our Work

to extensive domain-specific datasets for pre-training[140] or fine-tuning[84], which

can be resource intensive. Moreover, research highlights that LLMs perform sub-

optimally on specialized downstream tasks when they are not explicitly trained for

those purposes. Tasks such as summarizing legal documents or drafting scripts ex-

emplify these limitations. To address these challenges and enhance the utility of

LLMs for domain-specific tasks, researchers and industry professionals have increas-

ingly adopted prompting-based approaches [46, 82]. These approaches leverage the

inherent generative capabilities of LLMs to tackle a wide range of tasks without the

need for extensive retraining or fine-tuning.

In this work, we design an LLM-based system for Chinese privacy policy analysis,

termed LLMPP, to empirically evaluate the performance of two publicly available

LLMs [160, 141] and one widely used commercial LLM [102] on our curated Chinese

privacy policy dataset [183], i.e., CA4P-483. LLMPP takes as input the privacy-

related sentences, specifically, those containing terms related to data collection and

sharing [6, 183], in order to address the context length limitations of LLMs and prevent

them from losing focus when processing an entire lengthy and complex privacy policy

document. Besides, LLMPP employs carefully crafted prompts, leveraging prompt

engineering techniques [46, 115, 59], to enhance the performance of popular general-

purpose LLMs on downstream tasks—in our case, Chinese privacy policy analysis.

To gain deeper insights into the performance of LLMPP, we evaluate the performance

of LLMPP on CA4P-483 [183] and perform comprehensive ablation studies on vari-

ous prompt engineering techniques and assess the hallucination risks across multiple

LLMs. Our findings highlight persistent challenges in applying LLMs to downstream

tasks involving Chinese privacy policy analysis. Building on these experimental re-

sults, we propose potential research directions to advance user privacy protection in

this domain.

11

Chapter 1. Introduction

1.7 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 introduces the most related

work. Chapter 3 proposes the first structural attack to investigate the vulnerability

of Android malware detection systems. Chapter 4 crafts the first Chinese privacy

policy dataset with fine-grained annotations. Chapter 5 empirically evaluates the

performance of LLMs on analyzing privacy policy documents. Finally, Chapter 6

concludes the thesis and discusses future work.

The primary research outputs that emerged from the thesis are as follows:

• Kaifa Zhao, Le Yu, Shiyao Zhou, Jing Li, Xiapu Luo, Yat Fei Aemon Chiu,

and Yutong Liu, “A Fine-grained Chinese Software Privacy Policy Dataset for

Sequence Labeling and Regulation Compliant Identification”, in The 2022 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP), 2022.

• Kaifa Zhao, Hao Zhou, Yulin Zhu, Xian Zhan, Kai Zhou, Jianfeng Li, Le Yu,

Wei Yuan, and Xiapu Luo, “Structural Attack against Graph Based Android

Malware Detection”, in Proceedings of ACM Conference on Computer and Com-

munications Security (CCS), 2021.

In summary, this thesis makes the following contributions:

• We propose the first structural attack against Android malware detection sys-

tems to investigate the vulnerability of detection systems. We also release

the code and data to other researchers by responsibly sharing a repository

(https://github.com/zacharykzhao/HRAT).

• We develop a new tool to transform perturbations on feature space to problem

space while maintaining the functionality of Android apps and publish the tool

to facilitate research in this community.

12

https://github.com/zacharykzhao/HRAT

1.7. Thesis Outline

• We create and publish the first fine-grained Chinese privacy policy dataset,

namely CA4P-483, with word-level annotation. Our dataset and code are pub-

licly available in https://github.com/zacharykzhao/CA4P-483

• We evaluate popular baseline algorithms on CA4P-483, summarize di”culties

in our dataset, provide findings and further research topics on our dataset, and

conduct a case study to demonstrate the potential application of our dataset in

identifying privacy compliance studies.

• We empirically evaluate the performance of pre-trained large language mod-

els for analyzing compliance in privacy policies. We meticulously designed

prompts to utilize pre-trained large language models to identify entities re-

lated to legal and regulatory requirements in Chinese privacy policies. We also

assessed the e!ectiveness of three publicly popular large language models on

this task. We also make all our data, scripts and results publicly available in

https://github.com/zacharykzhao/CA4P-483/tree/main/LLMPP

• We systematically analyze the evaluation performance of LLMs and identify key

challenges in applying them to the analysis of Chinese privacy policies. Based

on our findings, we propose future directions for applying LLMs to such down-

stream tasks. These include leveraging long-context models to address the task

in an end-to-end manner and pretraining a new LLM to explore relationships

between privacy policies, enabling the model to handle privacy policies written

in di!erent languages and originating from various platforms.

13

https://github.com/zacharykzhao/CA4P-483
https://github.com/zacharykzhao/CA4P-483/tree/main/LLMPP

Chapter 2

Literature Review

We introduce related work that is most related to our studies, including adversarial

attacks against Android malware detection (in §2.1), privacy policy dataset (in §2.2),

and Android privacy policy analysis (in §2.3).

2.1 Adversarial Attack against Android Malware

Detection

Many attack methods [56, 26, 119, 107, 77, 15, 171] have been proposed to evade

Android malware detection systems. From the perspective of whether the adversary

generates real Android apps, adversarial attacks can be categorized into problem-space

attacks [26, 107, 77] and feature-space attacks [56, 26, 119, 107, 77, 15]. Feature-space

attacks only modify the features to deceive the classifiers used by detection systems.

Grosse1 et al. [56] propose to replace the classifier in Drebin with a neural net-

work to improve detection performance. They also propose Jacobian matrix-based

(JM) methods to modify the features to escape detection. Similarly, Shahpasand et

al. [119] use a generative adversarial neural network to generate adversarial features

14

2.1. Adversarial Attack against Android Malware Detection

for evading Drebin. However, neither of them considers the modification of APK,

which means that the adversarial samples they generate can only evade the detection

of the classifier, and cannot generate new malware that has escaped system detec-

tion and flowed into the software market. Problem-space attacks to generate real

adversarial examples. AndroidHIV [26] builds the transformation relation between

feature modification and APK manipulation to transform features (i.e., invocation

probability) to the number of invocations. Then, AndroidHIV applies optimization

algorithms to guide perturbations on the feature vectors. Based on feature perturba-

tions, AndroidHIV inserts the corresponding number of call relations between target

methods to generate adversarial malware. Pierazzi et al. [107] extract benign compo-

nents from the training set and then insert those benign components into malicious

samples to generate adversarial malware to evade Drebin’s [9] detection. Although

these studies aim to generate real APK, they just insert no-op code. Li et al. [77]

attack Drebin by inserting and removing components, in which removal is achieved

by renaming components, in the feature vectors. However, their modification only

renames the corresponding string content to deceive the feature extraction methods.

From the perspective of the attack surface for perturbing graph-based systems, ad-

versarial attacks can be categorized into feature attacks [56, 26, 119, 107, 77, 15]

and structural attacks [136, 30, 89, 147, 191]. Feature attacks [26, 152] perturb the

feature vectors extracted from the graph to deceive the target algorithm. Structural

attacks [136, 30, 89, 147, 191] modify the structure of graphs or the features of nodes

to evade detection. Except for simply inserting and deleting edges, ReWatt [89] pro-

poses rewiring edges to preserve the graph characteristics. ReWatt uses reinforcement

learning to select the most influential edges for modification. The middle nodes in

ReWatt’s rewiring are restricted to the second-order neighbors of nodes in the original

edge to make their modification ”unnoticeable” to GCN. Wang et al. [147] deceive the

graph convolutional neural network classifier by inserting nodes selected by the gen-

erative adversarial neural network. Note that existing studies usually ignore deleting

15

Chapter 2. Literature Review

nodes. Moreover, existing attacks against malware detection only insert dead code

because removing nodes will cause relevant edges to be deleted and may lead to side

e!ects [107].

2.2 Privacy Policy Dataset

Prior privacy policy datasets are all in English and omit other languages. OPP-

115 [151] collects 115 privacy policies in English websites and makes annotations

at the sentence level. OPP-115 designs labels based on previous works [92, 128] and

ignores the regulation requirements at the latest time. APP-350 [193] gathers Android

apps’ privacy policies written in English. APP-350 only conducts limited annotations,

including two types of data controllers, namely first party and third party, thirteen

types of specific data, and two types of modifiers, i.e., do and do not.

Existing Chinese sequence-labeling datasets are generally gathered from News [173,

170, 134] and social media [106, 149, 180]. The datasets include abundant corpus,

but their annotations are limited to location, person name, and organization. Even

though CLUENER2020 [154] expands the labels, such as the game, government, and

the book, the datasets are still hard to be applied in specific downstream tasks. On the

other hand, CNERTA [134] includes another media data, i.e., voice data, to improve

the sequence labeling performance.

2.3 Android Privacy Policy Analysis

XFinder [146] identifies the cross-library data harvesting in Android apps with dy-

namic analysis. XFinder identifies third-party libraries’ usage by comparing the

caller’s and callee’s package names. XFinder also restores reflection invocations us-

ing two predefined patterns. For conflict identification, XFinder manually parses the

16

2.4. Pre-trained Large Language Model for Privacy Policy Analysis.

terms-of-service of 40 TPLs and then uses NLP techniques to extract data-sharing

policies. Nguyen et al. [97] investigate whether apps achieve users’ consent before

sharing personal information. The authors use dynamic analysis to identify the net-

work tra”c and data-sharing behaviors. They identify whether the shared data are

identifiable personal data by comparing the same tra”c collected from di!erent times

or the same tra”c from di!erent devices. The ablation experiments are designed to

determine whether the data-sharing action achieves users’ explicit consent.

PAMDroid [178] analyzes the impact of misconfigurations of analytical services in

Android. After analyzing 1000 popular apps, PAMDroid finds 52 of 120 apps mis-

configured the services and led to a violation of either the service providers’ terms-

of-service or the app’s privacy policy. PPChecker [165] also identifies the conflict

in apps’ privacy policies, but only identifies whether apps’ privacy policies provide

TPLs’ privacy policy links and interactions of five permission-related personal infor-

mation with 81 TPLs. POLICHECK [7] identifies the app’s data sharing with third

parties using dynamic analysis. POLICHECK finds that 49.5% of apps disclose their

third-party sharing practices using vague terms and 31.1% of data flows as omitted

disclosures. Existing works ignore analyzing whether TPLs satisfy the regulation of

requirements.

2.4 Pre-trained Large Language Model for Privacy

Policy Analysis.

CLEAR [23] is designed to enhance user awareness of privacy policies and potential

risks when interacting with pre-trained large language model applications. CLEAR

is capable of identifying sensitive information, summarizing relevant privacy policies,

and highlighting potential risks in a contextual and just-in-time manner. Through

co-design workshops and user studies, CLEAR demonstrates its e!ectiveness in im-

17

Chapter 2. Literature Review

proving users’ understanding of data practices and privacy risks and encouraging

more cautious data-sharing behaviors. However, CLEAR’s applicability is currently

limited to specific platforms, such as ChatGPT and the Google Gemini plugin, lack-

ing support for a broader range of applications and modalities. Additionally, CLEAR

relies on the Microsoft Presidio library for identifying personally identifiable informa-

tion (PII), which may not always accurately or promptly identify all types of personal

identification information, potentially leaving user privacy at risk.

Maliyetty et al. [90] evaluate the performance of quantized LLaMA models in ana-

lyzing Internet of Things (IoT) privacy policies. The authors design various prompts

to guide di!erent pre-trained large language models in generating privacy policy

language and assess the output using semantic similarity metrics such as ROUGE-

Lsum [83] and BERT precision [174]. The authors’ experiments demonstrate that the

quantized models exhibit comparable performance to the base model. However, the

authors do not di!erentiate model performance across various types of privacy policy

statements, nor do they include fine-tuning for specific privacy policy texts. This

absence may limit the models’ ability to handle nuanced or domain-specific privacy

concerns e!ectively.

Rodriguez et al. [116] evaluate the performance of pre-trained large language models,

specifically ChatGPT and LLaMA 2, in analyzing privacy issues within the MAPP

dataset. The authors assess various prompts using these LLMs to analyze coarse-

grained privacy issues in privacy policies, such as whether the policy involves user-

specific types of information, including financial data, location data, etc. However,

the proposed methods overlook the input limitations of large language models. When

the length of the privacy policies exceeds the input limits of the target LLM, the

proposed methods may truncate the content of the privacy policy, which can further

a!ect the performance of these methods.

LLM-PBE [80] is designed for the systematic evaluation of data privacy risks in Large

Language Models (LLMs), addressing a critical gap in comprehensive privacy assess-

18

2.4. Pre-trained Large Language Model for Privacy Policy Analysis.

ments for these models. LLM-PBE employs a diverse array of attack and defense

strategies, including data extraction, membership inference, and jailbreaking attacks,

to analyze privacy vulnerabilities across di!erent LLMs, data types, and metrics.

LLM-PBE reveals that larger LLMs are susceptible to data extraction, underscoring

the need for further research into prompt protection and privacy-preserving mech-

anisms. However, LLM-PBE only focuses on existing attack and defense methods,

suggesting that future advancements may yield di!erent findings. Moreover, the ex-

ploration of dynamic text data management strategies for evolving LLMs remains an

open challenge.

PolicyGPT [139] implements a framework that leverages pre-trained large language

models, such as ChatGPT and GPT-4, for the automated categorization of privacy

policies. PolicyGPT addresses the challenge of comprehending verbose and complex

legal documents. The framework employs a zero-shot learning approach to evaluate

performance on OPP-115 and PPGDPR datasets. However, PolicyGPT relies on

predefined categories and potential ine”ciencies with few-shot prompts, as observed

during the A/B testing phase.

19

Chapter 3

Structural Attack against Graph

Based Android Malware Detection

3.1 Overview

Malware detection techniques achieve great success with deeper insight into the se-

mantics of malware. Among existing detection techniques, function call graph (FCG)

-based methods achieve promising performance due to their prominent representations

of malware’s functionalities. Meanwhile, recent adversarial attacks not only perturb

feature vectors to deceive classifiers (i.e., feature-space attacks) but also investigate

how to generate real evasive malware (i.e., problem-space attacks). However, existing

problem-space attacks are limited due to their inconsistent transformations between

feature space and problem space.

Existing feature attacks [56, 15, 77, 26, 107] generated adversarial samples by adding

perturbations to extracted feature vectors to deceive classifiers in target systems. For

instance, Grosse et al. [56] apply the Jacobian matrix to modify features in Drebin [9]

to generate adversarial examples and achieve the 69% evasion rate. AndroidHIV [26]

aims to optimize their attack process, which perturbs the features in Mamadroid [91]

20

3.1. Overview

and Drebin, through several algorithms (e.g., C&W based methods [26]).

Recent studies designed problem-space attacks to generate real adversarial malware [26,

107]. Unfortunately, to preserve the semantics of generated adversarial malware, ex-

isting problem-space attacks are restricted to inserting non-functional methods or

calls [26, 107]. Due to the inverse feature-mapping problems, the feature-mapping

functions between problem space and feature space are neither injective nor surjec-

tive [110]. Thus, existing problem-space attacks have to take extra processes to deal

with side e!ects [26, 107].

We propose a novel and practical structural attack method against FCG-based AMD

systems, which tackles the limitations (L1-3) of existing attack methods.

L1-system-specific attack methods. Existing attack approaches [56, 15, 77, 26,

107], especially those problem-space ones [26, 107], highly depend on the feature

extraction methods of target systems. For example, AndroidHIV[26] implements a

problem-space attack on Mamadroid by transforming the features (i.e., call probabil-

ity) to invocation numbers. Hence, if the features change, the transformation relation

must also be adjusted accordingly. By contrast, since our structural attack perturbs

the graph structures rather than feature vectors, feature extraction methods have no

impact on our attack flow. That is, our structural attack is general to all FCG-based

systems.

L2-limited software modification operations. To maintain functional consis-

tency, existing App modification methods are limited to inserting dead code, such as

no-op API calls [117, 26, 107]. By contrast, we design four types of software manip-

ulation operations: inserting methods, removing methods, adding call relations, and

rewiring call relations (§3.4).

L3-inconsistent transformation relation. The adversarial App generation meth-

ods of existing approaches are guided by the transformation from feature perturba-

tions to App modifications [26, 107]. Although they can randomly modify features as

21

Chapter 3. Structural Attack against Graph Based Android Malware Detection

Evaluation
M

FCG

BRaw model Raw
Model

Preprocess White-box
attack

Adversarial
FCG

Success

Fail

Figure 3.1: Overview of HRAT

needed when perturbing features, they can only insert no-op code to restricted meth-

ods [26, 107] when generating adversarial apps. To bridge this gap, we design each

structural attack action by considering the characteristics of apps (§3.3.2). As nodes

and edges in the CFGs correspond to methods and call relations in apps, respectively,

our attack method ensures that the modification of the graph is consistent with the

manipulations of apps.

Although our structural attack solves the aforementioned limitations in existing meth-

ods, there remain two challenges in our system design, i.e., how to determine a manip-

ulation operation type and how to select the most e!ective objects (nodes or edges)

to modify. To this end, we design a Heuristic optimization integrated Reinforcement

learning ATtack (HRAT) algorithm (§3.3.3) to solve them. HRAT consists of two phases:

a) determining an action type according to the current graph state and b) selecting

optimal edges or nodes to conduct the modifications on the graph. Leveraging re-

inforcement learning, HRAT learns how to select e!ective action types based on the

current graph state (§3.3.3) through interacting with the target environment [137].

Then, with the determined action type, HRAT uses the gradient search to select the

most influential edges or nodes for modification. In this way, HRAT learns the mod-

ification sequences on the target graph, which allows the modified App to bypass the

detection. Finally, HRAT automatically generates adversarial apps based on graph

modification sequences. Figure 3.1 gives the overview of HRAT.

Our major contributions are summarized as follows:

22

3.2. Preliminaries

(1) A Novel Structural Attack. To our best knowledge, we propose the first

structural attack on Android malware detection systems, namely HRAT. HRAT in-

cludes four types of graph modification operations and uses reinforcement learning to

optimize the attack process.

(2) Fill Research Gap. Our method fills the gap that adversarial features cannot

be e!ectively mapped to real apps. Besides, since our attack method works on graphs

directly, it could be extended to other graph-based detection systems.

(3) A Useful Tool. We develop an automated tool that can manipulate the structure

of Android apps without a!ecting the original functionality. HRAT can manipulate

apps according to graph modification sequences. We release the source code and

data set to other researchers by responsibly sharing a private repository. The project

website with instructions to request access is at: https://sites.google.com/view/

hrat.

(4) Valid Evasion E!ects. We evaluate the e!ectiveness of our attack on the

two latest AMD systems and one enhancement system. The results of extensive

experiments show that our attack can achieve over 90% of the overall attack success

rate in feature space and up to 100% of the attack success rate in problem space.

3.2 Preliminaries

In this section, we present the necessary knowledge on the di!erence between feature

attacks and structural attacks, our target Android malware detection (AMD) systems

(i.e., Malscan [152] and Mamadroid [91]), and one AMD enhancement method (i.e.,

APIGraph [177]). Both two AMD tools use function call graphs (FCGs) to detect

Android malware. Besides, we present basic knowledge about reinforcement learning

to ease the explanation of our methods later.

23

https://sites.google.com/view/hrat
https://sites.google.com/view/hrat

Chapter 3. Structural Attack against Graph Based Android Malware Detection

3.2.1 Feature Attacks and Structural Attacks

Android malware detection (AMD) [9, 79, 68, 152, 91, 25, 24, 18, 177, 61, 158] has

attracted much attention from both industry and academia. One popular technique

applied in AMD is signature-based methods [38] that are limited to a tedious extract-

ing process and easy evasion properties [78]. Thus, machine learning (ML) -based

systems are widely used for malware detection. ML-based detection techniques first

extract features from benign and malicious Apps and then train the detection model.

In particular, many systems [9, 79, 68, 152, 91, 25, 24] use static analysis to extract

features, such as requested permissions [9, 79, 68] and function call relations [91].

Among these systems, FCG-based methods [152, 91, 25, 24, 18] achieve promising

performance as FCGs contain rich semantic information, e.g., calling relationships.

In a function call graph, each node represents a method, and each directed edge

represents a calling relationship between two methods. The state-of-the-art malware

detection tools extract potential malicious features (e.g., sensitive APIs) from FCGs

to represent malware’s malicious behaviors. For example, Malscan [152] extracts cen-

tralities of sensitive nodes in FCGs to train classifiers. Mamadroid [91] abstracts the

nodes of FCGs into di!erent states and uses the transition probability between states

as features. Cai et al. [18] use the graph neural network to extract features from

FCGs for malware detection.

Recent studies [152, 26] demonstrate the possibility of attacking FCG-based detection

methods[152, 91] through adversarial samples. Unfortunately, their methods are al-

most limited to perturbing extracted feature vectors from FCGs, i.e., feature attacks.

By contrast, in this paper, we investigate the vulnerability of FCG-based detection

methods from their attack surfaces relevant to edges and nodes [153, 182, 89, 147,

136, 30, 110] and propose a new structural attack method.

Figure 3.2 shows the di!erences between feature attacks and structural attacks. The

former adds perturbations to extracted feature vectors, whereas the latter directly

24

3.2. Preliminaries

Feature
ExtractionFCG

! =
0 1 ⋯ 0
⋮ ⋱ ⋮

1 0
0 1 ⋯ 1

0

Feature Vector

! = [$!, … , $"]

Classifier

!̃ = ! + *
		!) = ! + +	

=
0 1 ⋯ 0
⋮ ⋱ ⋮

1
0

1
1 ⋯ 1

0
1 0 ⋯ 0

! = +(-)

!̃ = +(-/)

0(+ -/) ≠ 0(+(-))
0(!̃) ≠ 0(!)

Structural attack

M

Feature
attack

Repackage Repackage

Figure 3.2: Feature attacks vs. structural attacks

modifies the nodes and edges in graphs. Graph-based detection methods extract

features from graphs and use these features to train classifiers for detection. By

contrast, structural attacks directly modify the graph features, and thus they are more

intrinsic and e!ective [145, 192]. Besides, as nodes in FCGs correspond to methods

in software and edges correspond to call relations, structural attacks could address

the inverse-transformation problems [107] between feature-space and problem-space

attacks.

3.2.2 Target Android Malware Detection Systems

Malscan. Malscan extracts FCGs (G) from Apps and uses centralities [43, 67] of

sensitive nodes in G as features. Those sensitive nodes correspond to Android’s

sensitive APIs, which reflect the malicious properties [12, 152] of apks. Let c(G)

denote the centralities of all nodes in the target function call graph G. The label of

the target G in Malscan is formulated as:

y = f (Icen → c (G)) , (3.1)

where Icen = [i1, ..., iN] ↑ R1→N is the sensitive index of nodes in G, N is the number

of nodes, ik ↑ {0, 1} and ik = 1 means that node k is sensitive, G ↑ RN→N is the

25

Chapter 3. Structural Attack against Graph Based Android Malware Detection

adjacency matrix of FCG, f(·) is the pre-trained classifier (i.e., kNN in Malscan).

Mamadroid. Mamadroid [91] extracts function call relations from FCGs as features.

Based on the characteristic of Android method signature, it first abstracts methods

into di!erent states according to the package name or family name. By doing so, it will

be resilient to API changes in the Android framework [91]. Next, Mamadroid extracts

call the probabilities between states, i.e., families or packages of target methods,

as features and trains classifiers like kNN to detect malware. The label of G is

represented as:

y = f (Tcp (S →G)) , S = {si,j} ↑ RNs→N , (3.2)

where N is the number of nodes in G and Ns is the number of states in Mamadroid,

si,j ↑ {0, 1} and si,j = 1 denotes that node j belongs to state i, Tcp(·) is the call

probabilities among states, and f (·) is pre-trained classifier.

APIgraph. APIgraph [177] is a framework to enhance AMD. It enhances the repre-

sentation ability of features and uses the characteristics of Android to aggregate APIs

with similar semantics. Specifically, APIgraph first collects API documents from the

Android o”cial website and then builds the connections among APIs using a relation

graph. Based on the relation graph, a graph embedding algorithm is applied to get

each API’s embedding vector. APIgraph uses a clustering algorithm, like k-means, to

aggregate APIs with similar semantics into one cluster. To enhance the target AMD,

APIgraph uses a specific API to denote all APIs in one cluster during the feature

extraction process.

3.2.3 Reinforcement Learning

Reinforcement learning (RL) [137] learns what to do and how to take actions based

on current situations through interacting with the target environment and maximizes

the reward from the environment’s feedback. Di!erent from supervised learning,

which learns from the training set, corresponding knowledge (labels of samples in

26

3.2. Preliminaries

the training set), and an external supervisor (objective function), RL learns without

prior knowledge. Unlike unsupervised learning, which targets leveraging a hidden

structure in the unlabeled data set, such as the distributions or representations, RL

targets maximizing a reward signal by interacting with the target environment. Al-

though evolutionary algorithms (EAs) could approach RL problems, EAs are more

suitable to solve problems whose policy space is small and can be structured or the

problems whose learning agent cannot accurately sense the environment. Moreover,

EAs neither learn from the environment nor formulate the relation between actions

and the environment’s states[137].

Reinforcement learning contains four elements: an action set, a state set, a reward

function and a policy model.

• The state set stores all the possible states of the target environment. For example,

in the maze problem, the state set saves all possible positions of the player in the

maze.

• Action set contains all the actions that the learner can take. For instance, the

maze problem includes the directions the player can move forward at each step.

• Reward function defines the environment feedback for the current state. For

example, in the maze problem, if the player walks out of the maze, the greatest

reward is given. In middle states, which refer to any positions between the entrance

and the exit, the closer the player is to the exit, the higher the reward will be given.

• Policy model defines how current action influences current state.

An essential property of reinforcement learning is that the problem to be solved should

conform to the Markov Decision Process (MDP) [76]. Only when this condition is

met, the action and reward in reinforcement learning can be formulated as a function

of the current state.

27

Chapter 3. Structural Attack against Graph Based Android Malware Detection

3.3 Attack Model

This section presents our threat model (§3.3.1), attack formulation (§3.3.2), and opti-

mization process (§3.3.3). We also theoretically prove the e!ectiveness and advantages

of our structural attack (§3.3.4).

3.3.1 Threat Model

In our attack scenario, the adversary possesses white-box access to target systems.

That is, the adversary has access to the dataset, feature space, and model parameters

of target systems. This setting follows Kerckho!s’ principle [107] and ensures that

a defense does not rely on “security by obscurity” by unreasonably assuming some

properties of the defense that can be kept secret [19]. Our attack aims at modifying

the function call graph of a malicious app to evade the target system’s detection.

Two FCG-based AMDs, i.e., Malscan [152] and Mamadroid [91], and one AMD en-

hancement method, namely APIGraph [177], are used to evaluate the e!ectiveness

of our attack. We select Malscan and Mamadroid because they are state-of-the-art

FCG-based AMDs and are published in top conferences, i.e., ASE 2019 and NDSS

2017 respectively, with influential impact. They report outstanding malware detection

performance (98% detection accuracy for Malscan and 99% F1 score for Mamadroid).

3.3.2 Attack Formulation

Our structural attack K takes in FCG (adjacency matrix) and modifies the nodes and

edges in the graph to deceive the detection systems. Our attack is defined as:

G̃ = K(G) = G+ ω, (3.3)

where G is input graph, G̃ is the adversarial graph, and ω is the perturbations to the

adjacency matrix of graph. We use f(G, ε) to denote a malware detection system,

28

3.3. Attack Model

which takes in G and uses the pre-trained parameters ε to determine the category to

which G belongs. Since our attack only modifies the structure of G without changing

parameters ε, the detection system can be simplified to f(G). The goal of our attack

is to modify G to make the system f(G) misclassify the malicious G as benign, i.e.,

f(G) ↓= f(G̃) = f(K(G)).

To ensure that the modified app works normally and preserves the same functionality

as the original one, we design four types of modification actions - adding edges,

rewiring, inserting nodes, and deleting nodes, tailored to app characteristics. Next,

we first introduce constraint definitions, followed by action definitions and properties.

Definition 1. (Constraints) C = [c1, .., cN] ↑ RN→1 where N is the number of nodes

in graph G, ci ↑ {0, 1} denotes the modifiability of node i. ci = 1 in dicates that

the node i is modifiable, otherwise ci = 0.

Definition 1 defines the edges and nodes that cannot be modified during our attack

process. They refer to the scenarios when some specific methods in apps (§3.4.1)

cannot be modified. For example, we cannot modify Android framework APIs used

in app [26]. For better formulation, we use cn /↑ C to denote cn = 1, i.e., the node n

is modifiable.

Definition 2. (Adding edge) An adding edge action Aa involves two nodes Aa =

{vbeg, vtar}, where vbeg, vtar /↑ C are the caller and callee of the edge to be added

respectively. The adding edge operation builds an invocation relation (directed edge)

from vbeg to vtar.

Definition 3. (Rewiring) Rewiring removes an edge from the graph and finds another

intermediate node to maintain the connectivity of nodes in the deleted edge. A rewiring

action Ar involves three nodes Ar = {vbeg, vend, vmid}, where vbeg, vend /↑ C are the

caller and callee in deleted edge respectively, and vmid /↑ C is the intermediate node.

The rewiring action deletes the edge from vbeg to vend, and creates a new edge from

vbeg to vmid, and from vmid to vend.

29

Chapter 3. Structural Attack against Graph Based Android Malware Detection

Definition 3 aims to preserve the app’s functionality. That is, after deleting an edge

that denotes a call relationship (e.g., A ↔ B), we must find an intermediate node

C to maintain the connection between A and B (i.e., modify the call relationship to

A ↔ C ↔ B). Although it is possible to insert multiple nodes between A and B to

maintain their connectivity after removing the edge between A and B, HRAT inserts

one intermediate node in each rewiring action for the ease of implementation. Note

that inserting multiple nodes can be achieved by several rewiring operations.

Definition 4. (Inserting node) An inserting node action Ai involves one node Ai =

{vcaller}, where vcaller /↑ C denotes the caller to inserted node. It creates a new node

vnew on the graph and then builds an invocation relation from vcaller /↑ C to vnew.

Definition 5. (Deleting node) A deleting node action Ad involves three types of node

Ad = {vtar, v̂caller, v̂callee}, where vtar /↑ C denotes a node to be removed, v̂caller /↑ C is

the set of nodes that call vtar, and v̂callee is the set of nodes called by vtar. The deleting

node action deletes nodes vtar in the graph and builds call relations from all nodes in

v̂caller to each node in v̂callee.

According to Definition 5, when a node is deleted, the connectivity of the remaining

nodes in the graph keeps unchanged.

So far, we have defined all four operations of the attack. Then, our attack process is

formulated as:

K(G) ↗ (a1, a2, ..., am)G,

where ai ↑ {Aae, Arewi, Ain, Adn}.
(3.4)

3.3.3 Heuristic Optimized Reinforcement Learning based Struc-

tural Attack

Our structural attack process consists of a sequence of attack actions on a target

graph. Specifically, the decision of each attack action involves two phases: deter-

mining an action type and selecting attack objects. The former resolves the attack

30

3.3. Attack Model

action type (adding edge, rewiring, inserting node, or deleting node), while the latter

determines the specific edges or nodes to be modified according to the action type.

Our target is to find the modification sequence with minimum modifications on the

graph rather than the hidden structure, e.g., the distributions of the dataset, in the

target graph. Since supervised or unsupervised learning cannot be used to optimize

our attack process [137], we leverage reinforcement learning [89, 93, 137] – an iterative

learning algorithm that learns how to take actions based on the current environment.

Our structural attack aims at modifying malware to escape target detection systems’

detection with minimal modifications: modifying the fewest edges and nodes. Our

attack considers four types of attack actions, and the decision of each action consists

of determining an action type and selecting attack objects. For the greedy algorithm

that chooses locally optimal solutions and concretes them together to approximate the

optimal global solution, it will always select adding edge at each step because adding

edge modifies one edge each time, rewiring modifies two edges, inserting nodes mod-

ifies one edge and one node, and deleting nodes modifies at least one node and one

edge. In this way, adding edges alone cannot always achieve optimal perturbations.

For example, if decreasing the degree centrality of certain nodes is locally optimal for

the state, adding edges cannot achieve it because adding edges can only increase the

degree of centrality. Evolutionary algorithm (EA) e!ectively solves problems whose

policy spaces (i.e., attack action set) are small or can be structured [137]. In our sce-

nario, the policy space is enormous (number of nodes and edges in the target graph)

and cannot be structured because each attack action consists of a) selecting an action

type and b) determining attack objects. The determination of b) depends on a),

and a) is related to previous actions (§ 3.3.3). HRAT uses reinforcement learning,

specifically deep Q-learning, to determine the attack action on the target graph. Our

policy model involves two parts. The first part uses a neural network, specifically

a two-layer fully connected neural network, to learn the relation between state and

action type with the loss function based on reward. Then, with the determined action

type, HRAT uses the gradient search to determine attack objects. Besides, to evalu-

31

Chapter 3. Structural Attack against Graph Based Android Malware Detection

ate the e!ectiveness of each attack action, our reward function, i.e., Equation 3.7, is

designed as the number of modified nodes and edges. This reward function evaluates

the impact of both action type and attack objects. For example, for adding one edge,

the reward value is -1 as only one edge is added, no matter which edge the gradient

search selects. For rewiring, the reward is -3 because one edge is removed and 2 edges

are added. For inserting nodes, the reward is -2 because one node and one edge are

inserted. For deleting nodes, the value of the reward depends on the node the gradi-

ent search selects. Since deleting nodes will remove one node from the target graph

and build the connections from each of the deleted node’s callers to all of its callees,

the reward value depends on the number of deleted nodes’ callers and callees.

For a target system f(G) that takes in graph G and outputs the decision of G, HRAT

aims to modify the structure of the graph, Ĝ = K(G) so that the output (f(Ĝ))

di!ers from the original one, i.e., f(Ĝ) ↓= f(G). Following reinforcement learning,

our structural attack progress is described as a series of decision-making processes:

P = {S,A,R, ϑ}, where S = {st} is the state set that contains the intermediate and

final state of the target environment, A = {at} is the set of actions that consists of

all possible actions in state st, R is a reward function that evaluates the reward of

taking action at on state st, and ϑ is the deterministic policy that describes how to

determine at and how the action at changes the state st .

HRAT adopts one attack action at each step to modify the target malicious graph until

target systems flip their decision on the graph to benign. The structure of the current

graph depends on the state of all previous graphs and the modification actions on the

graph, i.e., st ↘≃ ϑ(st↑1, at↑1, ..., s0, a0). According to HRAT’s termination condition

(i.e., the target system regards the FCG as benign), the intermediate states smid

are all predicted to the same label as the original FCG, i.e., malicious. Thus, every

step in our attack can be regarded as modifying a new graph. For example, when

crafting malware to deceive the target system, HRAT extracts FCG and modifies its

structure (methods and call relations). After one modification, HRAT can regard the

32

3.3. Attack Model

next modification as modifying a new version of the malware. In other words, the

current state only depends on the latest state and action, i.e., ϑ(st↑1, at↑1, ..., s0, a0) =

ϑ(st↑1, at↑1), which satisfies the Markov Decision Process (MDP) [137].

To choose the influential attack action in each step, we use reinforcement learning

to learn the attack process. Reinforcement learning optimizes the decision-making

process by continually interacting with the target environment and obtaining rewards.

We will introduce each element of reinforcement learning in HRAT.

State Space

During the attack process, the state space holds all intermediate states, and HRAT

selects feature vectors extracted from the corresponding intermediate graphs to store

as states. In the case of attacking Malscan, the state space would store all intermediate

centrality features of sensitive APIs. HRAT only stores the latest modified graph’s

adjacency matrix to facilitate subsequent modifications. This setting has the following

advantages:

• Easy handling: The feature vector is of fixed length and ideal for training the

policy network with states, actions, and rewards. As we do not cover the dynamic

handling of changes in the graph scale, we avoid using the adjacency matrix in this

thesis.

• Easy storing: It is easy to store the feature vector. Since the FCG of an app

can have hundreds of thousands and even millions of nodes and edges, a su”ciently

large amount of memory is required if the intermediate graphs are stored directly.

Fortunately, the features extracted from the function call graphs by these target

systems are usually a one-dimensional vector with tens of thousands of dimensions,

which greatly saves memory. Since the current state only depends on the previous

state and action (§3.3.3), storing the latest graph structure is su”cient for determining

the next action.

33

Chapter 3. Structural Attack against Graph Based Android Malware Detection

Algorithm 1: Deep Q-learning for structural attack

Input: Target classifier f , training dataset {Xt, Yt}, target FCG G, memory

capacity N , probability ϖ, maximum modification times M ,

feature-space transformation T , node constraints C

Output: action sequence aseq, adversarial graph G↓

1 Initialize replay memory D to capacity N

2 Initialize action-value network Q with random weights ε

3 Objadv(G) =
∑m

i=1 ϱi · ς (⇐xi ⇒ T (G)⇐2)

4 yt = f(G), yp = f(G), Gi = G

5 while yp == yt and i < M do

6 tmp = random probability

7 if tmp < ϖ then

8 ai = argmaxaQ(Gi, a; ε)

9 else

10 ai = random action

11 Calculate gradient of each edge: φG = ⇑GiObjadv(Gi)

12 Execute action ai on Gi: Gi+1, ri = ATT OBJ(Gi, φGi ,C)

13 D ⇓ (T (Gi), ai, ri, T (Gi+1))

14 yj =






rj, if i terminates at j + 1

rj +maxa→ Q (Gi+1, a↓; ε) , otherwise

15 Perform gradient descent: ⇑ω (yj ⇒Q(Gi, ai; ε))

16 Store action in action sequence: aseq ⇓ ai

17 yp = f(Gi+1), i++

18 if yp ↓= yt then

19 return aseq, G↓

34

3.3. Attack Model

Policy Model

The policy model determines the attack action that consists of determining an ac-

tion type and selecting attack objects. HRAT determines an attack action based on

reinforcement learning, specifically deep Q-learning [93].

Algorithm 1 sketches the flow of the deep Q-learning process for the structural at-

tack. We first initialize (Algorithm 1 lines 1-2) a memory list with capacity N to

store the experience (i.e., the action type, graph state, and rewards) for further learn-

ing with an action-value network Q (a two-layer fully connected neural network).

With probability ϖ (0.95 as default [93]), HRAT determines the action type using Q;

otherwise, HRAT randomly selects one action type(Algorithm 1 lines 7-10). With a

determined action type, HRAT uses the gradient search to select the optimal attack

objects (i.e., nodes/edges). If the target system uses kNN, which is non-di!erentiable,

as its classifier, we first transform kNN into a di!erentiable version [125]:

Objadv(G) = argminε

m∑

i=1

ϱi · ς (⇐xi ⇒ T (G)⇐2) , (3.5)

where m is the number of instances in the training set. ϱi = 1 if the label of xi

equals yadv, otherwise ϱi = ⇒1. ς (x) = 1
1+e↑x is a sigmoid function, and T (·) is the

transformation function that transforms FCGs to feature vectors in the target system.

Di!erentiating the objective function with respect to the edges in graph Gi, we obtain

the gradient of each edge (Algorithm 1 line 11). With action type and the gradient

of each edge, HRAT conducts current action on Gi and obtains the modified graph

Gi+1 and the corresponding reward § 6 (Algorithm 1 line 12). Next, HRAT stores the

experience (Algorithm 1 line 13) for further learning and optimizing Q (Algorithm 1

lines 13-15). Each step’s experience is potentially used in weight updates, which

allows for greater data e”ciency [93] (Algorithm 1 lines 7-8). Besides, HRAT stores

features T (G) and the latest N experience tuples in the replay memory. This setting

that stores feature vectors instead of graphs saves memory to a great extent and

35

Chapter 3. Structural Attack against Graph Based Android Malware Detection

stores the interaction experience. Next, we will introduce how to utilize the gradient

search to guide the modification of the graph according to each action type.

Algorithm 2: Adding edge
Input: current graph G, node constraints C

Output: action sequence aseq, new graph G↓

1 aseq ⇓ [⇒1,⇒1,⇒1,⇒1];

2 atype ⇓ max(NN(st));

3 calculate the gradient φ of adding edge in G;

4 φ = argsort(φ) ;

5 for each edge (vbeg, vend) in φ do

6 if (vbeg /↑ C and vend /↑ C then

7 connect vbeg and vendinG;G↓ = G;

8 aseq = [0, vbeg, vend,⇒1];

9 break;

10 return aseq, G↓ ;

• Adding edge. We first calculate the gradient of each edge in the adjacency matrix.

Then, we extract the gradients of all adding edge actions and select the edge, denoted

as a two-tuple of nodes {vbeg, vend}, with maximum gradients to add. Notably, when

we select {vbeg, vend}, if one node is in the constraints C, i.e., vbeg ↑ C or vend ↑ C,

we select the edge with the second-largest gradient until both nodes are not in C

(line 5-9 of Algorithm 2). In this way, we can guarantee that the edges in the output

modification sequence, aseq, can be modified in the app.

• Rewiring. After obtaining the gradient of each edge, we first select the edge,

{vbeg, vend}, with the maximum gradient to remove (lines 4-6 of Algorithm 3). Similar

to adding edges, we need to make sure vbeg /↑ C. It is worth noticing that we do not

modify the callee (vend) during manipulation. Thus, it does not matter whether vend

is in C or not. Then, to maintain the app’s functionality according to Definition 3,

36

3.3. Attack Model

Algorithm 3: Rewiring
Input: current graph G, node constraints C

Output: action sequence aseq, new graph G↓

1 vend ⇓ ⇒1, vtar ⇓ ⇒1;

2 calculate the gradient φ of deleting edge in G;

3 φ = argsort(φ);

4 for each edge (vbeg, vend) in φ do

5 if (vbeg /↑ C then

6 break;

7 find the intermediate node vmid linking vbeg and vbeg with the maximum gradient;

8 if zmid /↑ C then

9 disconnect vbeg and vend in G;

10 connect vmid and vend in G;

11 connect vbeg and vmid in G;G↓ = G;

12 aseq = [1, vbeg, vend, vmid];

13 break;

14 return aseq, G↓ ;

we select an intermediate node, vmid that has no connection to vbeg and vend and is

not in C, with the maximum gradient sum of {vbeg, vmid} and {vmid, vend} (lines 8-13

of Algorithm 3).

• Inserting node. We create a new method (vnew) and calculate the gradient from

each manipulable node (vcandi /↑ C) to vnew. Then, the edge {vcandi, vnew} with the

maximum gradient is built (line 2-4 of Algorithm 4). Building edge from an existing

node to the inserted node guarantees that the static analysis will not exclude the

inserted node (method) as the dead code. Finally, we update C by adding vnew with

a modifiable index (line 6 of Algorithm 4).

37

Chapter 3. Structural Attack against Graph Based Android Malware Detection

Algorithm 4: Inserting node
Input: current graph G, node constraints C

Output: action sequence aseq, new graph G↓

1 insert a new node vn to G;

2 calculate the gradient φ of all edges to vn;

3 find the edge (vbeg, vn) with the largest gradient and vbeg /↑ C;

4 connect vbeg and vn in G; G↓ = G;

5 aseq = [2, vbeg, vn,⇒1];

6 update C;

7 return aseq, G↓ ;

Algorithm 5: Deleting node
Input: current graph G, node constraints C

Output: action sequence aseq, new graph G↓

1 calculate the gradient φ of all nodes;

2 find the nodes vtar /↑ C with largest gradient;

3 remove vtar in G; connect each caller of vtar to all callee of vtar in G; G↓ = G;

4 aseq = [3, vtar,⇒1,⇒1];

5 update C;

6 return aseq, G↓ ;

• Deleting node. When deleting a node (vtar), we need to maintain the connectivity

between the methods calling vtar and the methods called by the vtar. According to

Definition 5, the gradient (g(·)) of node i, is defined as:

g(i) =
∑

j

vij · g(vij) +
∑

j

(vji ·
∑

k

(1⇒ vjk) · g(vjk)), (3.6)

where vij = 1 denotes there are existing connections from node i to j, otherwise

vij = 0. The first item computes the sum of gradients of all edges leading to nodei.

The second item computes the sum of gradients of all edges originating from nodej,

which invokes nodei, to nodek, which are called by nodei. For the node that has the

38

3.3. Attack Model

maximum gradient and is not in the constraint set, we remove it from the adjacency

matrix and build the connections from each of its callers to all of its callees (line 3 of

Algorithm 5). Finally, we update C by removing vtar.

Action Space

The action space stores the operations to modify the graph. Each action is represented

as a four-tuple that stores the action type (the first element) and action objects (the

remaining three elements).

Reward Function

The reward function evaluates the e!ect of the selected action on the current state, i.e.,

graph. Since the goal of our attack is to make the system’s decision on the modified

graph di!erent from the decision on the original graph f(Ĝ) = f(K(G)) ↓= f(G) by

modifying graphs as few as possible, our reward function is designed as follows:

R(st, at) =






1 if f(Ĝ) ↓= f(G)

⇒(⇔Nnode +⇔Nedge) if f(Ĝ) = f(G)
, (3.7)

where ⇔Nnode and ⇔Nedge denote the di!erences between the number of nodes and

the number of edges in the current graph and the original graph, respectively.

This reward function assesses the impacts of attack action types and attack objects.

The reward of adding edge is -1 because only one edge is modified, no matter which

edge the gradient search selects. The reward of rewiring and inserting nodes are -

3 and -2, respectively. For removing nodes, the reward depends on the node that

the gradient search selects. Removing nodes deletes one node vtar from G and builds

connections between each of vtar’s callers to all of vtar’s callee. The reward of removing

one node is obtained by:

R(·)rn = 1 +N vtar
caller ·N

vtar
callee , (3.8)

39

Chapter 3. Structural Attack against Graph Based Android Malware Detection

where N vtar
caller and N vtar

callee are the number of callers and callees of vtar, respectively.

3.3.4 Structural Attack Analysis

We first analyze how graph-based algorithms learn and extract features from FCGs.

Malscan uses centralities of sensitive nodes (sensitive APIs [12]) in FCGs to repre-

sent graph semantics. Malscan shows that centrality can measure the significance of

sensitive nodes in graphs, which can help identify malicious behavior in apps. On

the other hand, Mamadroid utilizes function call probability in FCGs as features,

and to standardize the size of the resulting vector, the functions are abstracted into

various clusters based on families or packages. To unify the size of the extracted

vector, Mamadroid abstracts functions into di!erent clusters based on the families or

packages.

According to the algorithms adopted by target systems, we analyze the influence of

each structural modification on them. For Malscan, we take degree centrality (dcen)

as an example:

dcen i =
di

Nv ⇒ 1
, (3.9)

where di denotes the degree of node i and Nv denotes the number of nodes in a FCG.

When we add one edge (method invocation) between from i to any of the other nodes,

the degi increases, and then the degree centrality of node i increases; and vice versa

for deleting one edge; when we add one node to an FCG, Nv increases, and then the

degree centrality of node i decreases and vice versa for deleting one node.

For Mamadroid, the function call probability (fcp) is calculated by:

fcp(i, j) =
fN(i, j)∑N
k=1 fN(i, k)

, (3.10)

where fN(i, j) denotes the number of callers from state i to j, and N is the total

number of states (i.e., the number of method families). In this way, when we insert

one edge from state i to j, the numerator and denominator increase by 1 and the

40

3.4. Android Application Manipulation

1. <packageName.className returnType
methodName(paraList)>

Figure 3.3: Android method signature in soot

fcp(i, j) increases and vice versa for deleting one edge; when we delete one node k

from state i, all callers to k will lose. To preserve the functionality, those callers

integrate the code of k and invoke the callees of k. In this way, fN(i, j) decreases,
∑N

k=1 fN(i, k) increases and then the probability from state i to j decreases.

Structural attacks bridge the gap between feature-space attacks, which only perturb

feature vectors to deceive the classifier, and problem-space attacks, which generate

adversarial objects, i.e., real Android apps. It is also known as the inverse feature-

mapping problem [107]. Existing problem-space attacks [107, 110, 26] are limited by

inverse feature-mapping problems (i.e., the optimized feature-space attacks cannot be

perfectly mapped into problem-space attacks), which can also cause side e!ects and

decrease the attack success rate. Structural attacks modify the nodes and edges in

the FCG that contain the methods and call relations in an app. Hence, our four FCG

modification actions correspond to the manipulations on apps (§3.4). Meanwhile,

the extracted FCGs from the crafted software are consistent with the corresponding

modified FCGs. In other words, based on the modification sequence calculated by

our attack algorithm, we locate the methods or call relations in bytecodes and modify

them correspondingly. Compared with the existing methods, our structural attack

considers not only the operations of the inserting method and call relations, but also

the operations of deleting, which makes our attack more comprehensive and feasible

at the programming level.

41

Chapter 3. Structural Attack against Graph Based Android Malware Detection

Manipu
-lation

FCG

Constraints

APK	Manipulation	
Sequence

Adding	
Function	Call

Rewiring

Inserting	
Method

Deleting	
Method

Modify	Callee Build	Invocation Update	Original	
Statements

Update	
Mid-method

Delete	Original	
Invocation

Update	Original	
Statements

Create	Method Update	Caller

Update	Callers Delete	
Target	Method

Repackage
Done?Y

N

R

M

Figure 3.4: Work flow of APPMOD

3.4 Android Application Manipulation

Our Android app modifier (APPMOD) automatically manipulates an app according

to the graph modification sequence following two principles: a) Functional Con-

sistency : the app’s functionality before and after modifications should be consistent;

and b) Valid Modifications : the inserted code will not be identified and removed

by static analysis. Specifically, static analysis can detect dead code that will never

be executed [107] and remove it. In this case, the graph extracted from the manip-

ulated app will not include the corresponding nodes or edges, i.e., the modifications

are invalid.

The prototype of app modifier in HRAT (i.e., APPMOD) is built on soot [142]. APP-

MOD modifies apps using soot, which translates Android bytecode to an intermediate

representation without the need for apps’ source code. According to method signa-

tures, as shown in Figure 3.3, APPMOD locates the methods in the app and conducts

the modification accordingly. Figure 3.4 sketches the workflow of APPMOD. Next, we

introduce how APPMOD implements the four manipulation operations: adding func-

tion call (adding edge), rewiring function calls (rewiring), inserting method (inserting

node), and deleting method (deleting node). We first introduce how to determine the

constraints, which define whether the methods are modifiable by soot.

42

3.4. Android Application Manipulation

3.4.1 Constraints Determination

Constraints list the methods in apps and their modifiability. When HRAT modifies

nodes and edges in FCGs, the constraints guide HRAT to only modify modifiable

methods and call relations. We determine unmodifiable methods according to the

properties of Android, Flowdroid [10], and soot. The following methods are unmodi-

fiable:

• Framework APIs: Android framework APIs are pre-defined sets of classes, in-

terfaces, and protocols provided by the Android operating system to help developers

build mobile applications. These APIs allow developers to access system-level func-

tions and services, such as location services, telephony, camera, and storage. The

APIs are defined and implemented in the Android system rather than the app, so

they are unmodifiable by soot when analyzing apps.

• Lifecycle methods: Android lifecycle methods are a set of callback methods

provided by the Android framework to manage the lifecycle of an activity or fragment.

These methods allow developers to perform certain actions at di!erent stages of an

activity’s or fragment’s lifecycle, such as when it is first created, started, resumed,

paused, stopped, or destroyed. By using these methods, developers can manage the

memory usage of their apps, save and restore the state of the user interface, and

handle di!erent configuration changes, among other things. Lifecycle methods can

be invoked by the Android system. If we delete or add the connection to the lifecycle

method, such modifications may lead to the app crash.

• Flowdroid methods: Since FlowDroid introduces additional methods (e.g., fake

main method [11]) to facilitate the analysis, the FCGs will include these methods.

However, it is worth noting that the apps under investigation do not include such

auxiliary methods.

43

Chapter 3. Structural Attack against Graph Based Android Malware Detection

1. packageName1.className1 returnType1
caller(parameterList1){

2. callee(parameterList2, True);
3. ... raw caller method body ... }

(a) Modified target caller.

1. packageName2.className2 returnType2
callee(parameterList2, FLAG){

2. if (FLAG == True){
3. return defaultValueofReturnType2;
4. }else{
5. ... raw callee method body ... }}

(b) Modified callee.

1. returnTypei oriCaller(paraListi){ ...
2. tmp = callee(paraList2);
3. tmp = callee(paraList2, False);...}

(c) Modified callers of original callee.

Figure 3.5: Pseudo code of adding function call.

3.4.2 Adding Function Calls

Adding function calls manipulates two methods (i.e., a caller and a callee) and all

statements that invoke callee. The pseudo-code for adding a function call is illustrated

in Figure 3.5, where the blue code indicates the inserted code, and the gray code

represents the removed code. To add a function call, we insert an extra parameter

FLAG in callee (line 1 of Figure 3.5(b)), and then insert a statement to invoke callee

in caller ’s method body. To keep the functional consistency, APPMOD inserts a

conditional expression on FLAG in callee’s method body (line 2 of Figure 3.5(a)). If

FLAG equals True, it indicates the invocation is an inserted call, and callee directly

returns a default value that has the same type as that of callee’s return value (line 2-3

of Figure 3.5(b)). If FLAG equals False, it indicates the invocation is an original call,

and the callee runs as usual. Besides, to maintain functional consistency, APPMOD

44

3.4. Android Application Manipulation

modifies all statements that initially invoke callee and sets Flag to False (e.g., line

2-3 in Figure 3.5(c)).

1. class newType{
2. returnType1 rt1; returnType2 rt2; }

(a) Insert new data type.

1. returnType1newType imm(paraL3,
paraL2, FLAG){

2. vNt = new newType; ...
3. if (FLAG == True){
4. vRt.rt2 = callee(paraL2);
5. return vRT; }
6. else{ raw caller method body; } ...
7. return vRt1; vNt.rt1 = vRt1;
8. return vNT; }

(b) Modified intermediate method.

1. returnType2 caller(paraL){ ...
2. v1 = callee(paraL2);
3. vtmp = imm(paraL3, paraL2, True);
4. v1 = vtmp.rt2; ... }

(c) Modified caller.

1. returnType2 oneImmCaller(paraL1){ ...
2. tmp = imm(VarL3);
3. vNt = new newType;
4. vNt = imm(VarL3,defaultRt2,False);
5. tmp = vNt.rt1; ... }

(d) Modified original callers of intermediate method.

Figure 3.6: Pseudo code of rewiring.

3.4.3 Rewiring Function Calls

According to Definition 3, we implement rewiring by modifying three methods: a

caller, a callee, and an intermediate method (imm). This operation includes three

45

Chapter 3. Structural Attack against Graph Based Android Malware Detection

steps: a) build call relations between imm and callee, b) replace call relations between

caller and callee, and c) update the original call statements.

• Step a). Figure 3.6(b) illustrates a modified intermediate method. APPMOD adds

an extra parameter FLAG to imm’s parameter list to determine whether the invo-

cation is an original one or an intermediate invocation (i.e., caller invokes imm). If it

is an original invocation, imm runs its original method body (line 6 of Figure 3.6(b));

otherwise, it invokes callee (line 3-5 of Figure 3.6(b)). Note that the imm’s return

type and callee’s return type may be inconsistent. To handle this issue, APPMOD

introduces a new data type (i.e., newType in Figure 3.6(a)) that includes both imm’s

and callee’s return types. When imm needs to return data, APPMOD assigns the

original data to the object of newType and then returns the object to the caller (line

8 in Figure 3.6(b)). To ensure that callee works as original, we extend the parame-

ter list of imm and pass the caller ’s variables used for invoking callee to imm when

invoking imm (line 3 of Figure 3.6(c)).

• Step b). APPMOD modifies caller ’s function body and replaces the statements

that originally invoke callee with new statements to invoke the intermediate method.

Then, APPMOD sets FLAG to True to indicate that the invocation is an original

one. Then, caller obtains the return value of callee (line 3 of Figure 3.6(c)).

• Step c). As the method signature (i.e., parameter list and return type) of imm

is changed, APPMOD finds all statements that invoke imm and updates them ac-

cordingly. Specifically, APPMOD first locates the invocation statements and adds

the parameters of callee with their default value, e.g., 0 for Integer (line 4 of Fig-

ure 3.6(c)), to the end of the imm’s parameter list. Then, APPMOD sets FLAG to

False, which indicates an original invocation (line 4 of Figure 3.6(d)). In this way,

when those methods invoke imm, imm runs as usual (line 6 of Figure 3.6(b)), and

the functional consistency of imm is preserved.

46

3.4. Android Application Manipulation

1. packName.className int
newMethod_i(int i1,int i2){

2. int i3; i3 = i1 + i2;
3. return i3; }

(a) Create a new method.

1. returnType caller(paraList){
2. int i;
3. i = newMethod_i(1, 1);
4. i = i + 1;
5. ... raw caller method body ... }

(b) Modified caller to invoke new method.

Figure 3.7: Pseudo code of inserting methods.

3.4.4 Inserting Methods

This operation first creates a new method and then finds one existing method (i.e.,

caller) to invoke it. APPMOD creates a method that performs simple mathematical

calculations and returns the results (Figure 3.7(a)). Then, APPMOD inserts an

invocation statement in caller ’s method body (line 3 in Figure 3.7(b)). The caller

gets the returned value of the inserted invocation, and uses the returned value to

perform mathematical calculations in caller ’s method body (line 4 in Figure 3.7(b)),

so that the inserted method will neither be excluded as dead code nor a!ect the app’s

functionalities.

3.4.5 Deleting Methods

This operation removes the target method (tarMethod) and modifies all methods

that invoke it. Figure 3.8 shows the pseudo-code for deleting tarMethod. First,

APPMOD finds all methods that invoke tarMethod and locates the corresponding

invocation statements. Then, APPMOD replaces the invocation statements with

tarMethod ’s method body. More specifically, APPMOD firstly creates local variables

47

Chapter 3. Structural Attack against Graph Based Android Malware Detection

1. returnType1 tarMethod(para1, para2){
2. var1 = para1; var2 = para2; ...
3. { method body of tarMethod } ...
4. return var3; }

(a) Target method to be deleted.

1. returnType2 oneOfCaller(paraL){ ...
2. v_rt = tarMethod(v1, v2);
3. var1 = v1; var2 = v2;
4. { method body of tarMethod }
5. v_rt = var3; ... }

(b) One of modified methods that calls target method.

Figure 3.8: Pseudo code of deleting methods.

(lv caller) in caller that include tarMethod ’s parameter variables (pv tar) and local

variables (lv tar). Then, APPMOD assigns the variables used for invoking tarMethod

to pv tar (lines 2-3 in Figure 3.8(b)). Since we recreate tarMethod ’s variables in

caller, which are di!erent from those originally used by tarMethod, APPMOD needs

to rewrite the tarMethod ’s statements rather than directly copying the statements

from tarMethod to callers. For example, APPMOD uses soot’s APIs newAssign-

Stemt(), newInvokeStmt() to rewrite the assign statements and invoke statements

with newVar, respectively. Moreover, if tarMethod has a return value, APPMOD

replaces the return statement with an assignment statement (line 4 of Figure 3.8(a)

to line 5 of Figure 3.8(b)). Since the return statements will end the invocation, if

the precondition of one return statement is met, the program will end the invoca-

tion directly. Besides, one method may contain multi-return statements. To avoid

a!ecting the invocation logic, when APPMOD replaces one return statement, APP-

MOD inserts a goto statement to let the program jump to the next statement of the

statements (i.e., line 5 in Figure 3.8(b)) that initially invoke tarMethod.

48

3.5. Evaluation

add_edge:<net.youmi: java.lang.String a()>
==> <net.youmi.android.bn: int a(int)>;

delete_node:<net.youmi.android.az: boolean a()>
r:<net.youmi: void b()>

==> <net.youmi.Window: void setFlags(int)>
==> <net.youmi.bc: net.youmi.ed h()>;

add_node:<n.y.android.bc: n.y.android.ed f()>
==> <n.y int added_method(int)>

… …

① FCG
extraction

？

APPMOD

M

0 1 ⋯ 0
⋮ ⋱ ⋮

1 0
0 1 ⋯ 1

0

{0, 157, 151,-1};
{3, 751, -1, -1};
{1, 200,735,189};
{2, 21, 51, 84};
… …

R

FCG
APP Manipulation Sequence

⑤ Repackage

Graph Attack
Sequence

Classifier B

MFail

Success

③ Sequence
mapping

② HRAT’s
attack

④APP Manipulation

⑥ Evaluation

Figure 3.9: Work flow of HRAT

3.5 Evaluation

Figure 3.9 sketches the attack flow of HRAT. Given an app, HRAT first extracts its

FCG ✁ and generates a graph modification sequence ✂, where each item indicates

a perturbation on the FCG’s nodes or edges. Then, we convert a graph modifica-

tion sequence to the manipulation sequence where each item denotes a manipulation

operation on app ✃. APPMOD is a process of modifying an existing mobile appli-

cation by using a sequence of manipulations ✄ to create a new, adversarial version

of the app ☎. This process involves analyzing the original app for weaknesses and

vulnerabilities, and then using various techniques to modify its code. Once the app

has been modified, it is repackaged to create a new app package that includes the

modified code, as well as any additional components required for the app to func-

tion. The resulting adversarial app is then distributed to unsuspecting users, with

the aim of exploiting their devices and stealing their personal information. Finally,

we evaluate whether target systems (i.e., Malscan, Mamadroid, and APIGraph en-

hanced Malscan) can detect the adversarial malware ✆. We evaluate the performance

of HRAT and investigate potential defense methods against HRAT by answering the

following seven research questions.

• RQ1: E!ectiveness analysis. How e!ective is HRAT against the state-of-the-art

49

Chapter 3. Structural Attack against Graph Based Android Malware Detection

AMD techniques?

• RQ2: Modification e”ciency comparisons. Compared with other attack meth-

ods, how is the modification e”ciency of HRAT?

• RQ3: E!ectiveness of IMA. How e!ective is individual modification action

(IMA)?

• RQ4: Resilience to code obfuscation. How is the resilience of HRAT to mal-

ware with di!erent obfuscation techniques?

• RQ5: Functional consistency assessment. Do the adversarial apps generated

by HRAT preserve the functionality as the original ones?

• RQ6: Influence of key parameters. Will the parameters influence HRAT’s

attack performance?

• RQ7: Defense against HRAT. How to defend against HRAT’s attack?

Dataset. We adopt the dataset that includes 11,613 benign Android apps and 11,583

malicious Android apps from 2011 to 2018 in Malscan [152] to evaluate HRAT (for

RQ1-3&RQ5). All apps are collected from AndroZoo [4], and each sample has been

detected by several antivirus systems in VirusTotal [143] to determine its label. For

RQ4&5, we use a dataset from previous work [37] to evaluate the e!ectiveness of

HRAT on malware using di!erent obfuscation. This dataset includes apps from dif-

ferent malware families, and 6,586 malware are obfuscated by variable renaming [114],

1,090 malware are obfuscated with string encryption [41], and 1,172 malware include

reflection [37].

Metrics. To evaluate the e!ectiveness of the attacks on both feature space and

problem space, we use three types of attack success rates (ASRs), i.e., Initialization

ASR (Init ASR), Relative ASR (Rela ASR) and Absolute ASR (Abs ASR), as our

50

3.5. Evaluation

evaluation metrics, which are defined as follows:

Init ASR =
Ng

N
,

Rela ASR =
Np

Ng
,

Abs ASR =
Ns

Np
.

(3.11)

The detailed definitions are as follows:

• Initialization ASR (Init ASR) evaluates HRAT’s e!ectiveness on feature space.

The feature-space attack denotes only modifying the structure of FCGs to escape the

detection of classifiers in target detectors. Given N malware samples, HRAT perturbs

the FCGs of Ng malware samples with at most 500 modifications and makes them

successfully escape detection. The threshold (i.e., 500 modifications) selection can re-

fer to RQ2. We found that nearly 100% malware samples can escape detection within

500 manipulations by HRAT. Note that not all modified FCGs can be repackaged

due to the anti-repackage protection [169].

• Relative ASR (Rela ASR) reflects the rate of successful repackaged malware. That

is, among Ng malware samples, Np samples can be successfully repackaged into app

files.

• Absolute ASR (Abs ASR) evaluates HRAT’s e!ectiveness on problem space, i.e.,

whether the repackaged samples can evade the detection and keep the functionality.

Among Np repackaged malware samples, Ns samples run successfully and evade the

detector.

Baselines. In addition to HRAT, we also employ evolutionary algorithms to de-

sign structural attacks and implement the attack process. These methods serve as

baselines for comparison, allowing us to evaluate the e!ectiveness of di!erent attack

strategies and identify areas for improvement. We also evaluate evolutionary algo-

rithms, specifically simulated annealing [72], hill-climbing [127] and evolutionary

programming[162], for comparisons. Evolutionary algorithms are suitable for scenar-

51

Chapter 3. Structural Attack against Graph Based Android Malware Detection

ios whose policy space is small or can be structured [137]. However, in our attack

scenario, the policy space, i.e., the attack action set, is enormous and unable to be

structured. We adopt the idea of evolutionary algorithms and adapt them to our

scenarios. Combining gradient search, we design three evolutionary algorithms-based

structural attacks: 1) Simulated Annealing based structural attaCK(SACK) (Algo-

rithm 6), 2) Hill-climbing based structural AttaCK (HACK) (Algorithm 7) and 3)

Evolutionary Programming based structural AttaCK (EPACK) (Algorithm 8). Next,

we use HACK as an example to introduce how we use evolutionary algorithms to guide

a structural attack.

During the initialization phase, the system’s behavior is determined by several critical

parameters, including the initial temperature, target temperature, and temperature

drop ratio. These parameters must be carefully chosen to ensure that the system

functions e!ectively. To initialize the system’s state, we begin by randomly selecting

an action type from among four candidate types. We then use the gradient search

to modify the system’s graph based on the selected action type, ensuring that the

system is primed for optimal performance. Unlike the original simulated annealing

(SA) algorithm, where each step randomly selects a state from among its neighbors,

our approach involves a more targeted initialization process that leverages gradient

search and candidate action types to create a more e!ective system. To identify

the system’s neighbors, we follow a three-step process. First, we extract the corre-

sponding representation feature for the latest graph. Second, we conduct all possible

modifications to the graph, generating a set of candidate states. Third, we extract

features from all modified graphs, creating a candidate state set. The next step in

the process involves selecting the nearest neighbor from the candidate state set using

a predefined distance formula, such as Euclidean distance. However, this method is

not feasible in practice, as the number of all possible modifications is very large, even

when the number of nodes is not increased. Assuming that there are N nodes in the

52

3.5. Evaluation

Algorithm 6: SACK: simulated annealing-based structural attack

Input: Target classifier f , training dataset {Xt, Yt}, target FCG G,

feature-space transformation T , maximum modification times M , node

constraints C, cooling ratio r

Output: action sequence aseq, adversarial graph G↓

1 Initial and final temperature Ti and Tf

2 Initialize: i = 0, T = Ti, Gi = G, yt = f(G), yp = f(G),

costi = min(dist(f(G), Xt))

3 while T > Tf and i < M and yt == tp do

4 ai = random type

5 Calculate gradient of each edge: φG = ⇑GiObjadv(Gi)

6 Execute action ai on Gi: Gi+1 = ATT OBJ(Gi, φGi ,C)

7 costi+1 = min(dist(f(Gi+1), Xt))

8 prob = exp(⇒(costi+1 ⇒ costi)/T)

9 if costi+1 < cost or rand num < prob then

10 Store action in action sequence: aseq ⇓ ai

11 Gi = Gi+1, cost = costi+1

12 T = T ↖ r

13 yp = f(Gi), i++

14 if yp ↓= yt then

15 return aseq, G↓

target graph, the number of all possible modifications is:

Npmod = C1
N→N → (C1

N→N → C1
(N↑2)→(N↑2))→ (C1

N), (3.12)

where Cj
i is the combination. The first item calculates the number of possible situ-

ations of adding edges, the second item calculates the number of possible situations

of rewiring, and the third for deleting nodes. Considering the malware that has 1,000

nodes and 20% of nodes are modifiable, we have over 12 quadrillion possible mod-

53

Chapter 3. Structural Attack against Graph Based Android Malware Detection

Algorithm 7: HACK: hill-climbing based structural attack

Input: Target classifier f , training dataset {Xt, Yt}, target FCG G, maximum

modification times M , node constraints C

Output: action sequence aseq, adversarial graph G↓

1 Initialize: i = 0, Gi = G, yt = f(G), yp = f(G), costi = min(dist(f(G), Xt))

2 while i < M and yt == tp do

3 ai = random type

4 Calculate gradient of each edge: φG = ⇑GiObjadv(Gi)

5 Execute action ai on Gi: Gi+1 = ATT OBJ(Gi, φGi ,C)

6 costi+1 = min(dist(f(Gi+1), Xt))

7 if costi+1 < cost then

8 Store action in action sequence: aseq ⇓ ai

9 Gi = Gi+1, cost = costi+1

10 yp = f(Gi), i++

11 if yp ↓= yt then

12 return aseq, G↓

ifications. Besides, as we can insert arbitrary numbers of nodes, the scale of the

candidate solution set is infinite. Thus, we randomly select an action type and use

the gradient search to conduct the action on the graph, which also ensures the fair-

ness of comparison with HRAT. We define the cost as the nearest distance from the

modified graph to benign graphs in the training set (Algorithm 6 line 7). This setting

follows the intuition that our target is to deceive kNN classifiers. Then, if the latest

solution is better than the previous one, i.e., costi+1 < costi, SACK will adopt the

attack action. Otherwise, SACK will adopt the attack action with a probability less

than exp(⇒(costi+1 ⇒ costi)/T). SACK continues to modify the graph based on the

previous state. Di!erent from SACK, HACK adopts all actions that have positive

impacts on the state. In each epoch, EPACK randomly generates the mutation prob-

54

3.5. Evaluation

Algorithm 8: EPACK: evolutionary programming based structural attack

Input: Target classifier f , training dataset {Xt, Yt}, target FCG G, maximum

modification times M , node constraints C, number of action types na

Output: action sequence aseq, adversarial graph G↓

1 Initialize: i = 0, Gi = G, yt = f(G), yp = f(G), costi = min(dist(f(G), Xt))

2 while i < M and yt == tp do

3 Randomize mutation probability: pm = p1, ..., pna

4 Gi+1 = Gi, tmpact

5 for ai = 0 to ai < na do

6 if pai > 1/n then

7 Calculate gradient of each edge: φG = ⇑GiObjadv(Gi+1)

8 Execute action ai on Gi: Gi+1 = ATT OBJ(Gi+1, φGi+1 ,C)

9 tmpact ⇓ ai

10 costi+1 = min(dist(f(Gi+1), Xt))

11 if costi+1 < cost then

12 Store action in action sequence: aseq ⇓ tmpact

13 Gi = Gi+1, cost = costi+1

14 yp = f(Gi), i++

15 if yp ↓= yt then

16 return aseq, G↓

ability of each attack action. Then, EPACK adopts all attack actions whose mutation

probability is larger than 1/na. na is the number of all action types.

3.5.1 RQ1: E!ectiveness Analysis

Experimental Setup. We divide the dataset into training sets and testing sets. As

the goal of HRAT is to modify malware to evade the target detection system, the

55

Chapter 3. Structural Attack against Graph Based Android Malware Detection

Table 3.1: ASRs of HRAT towards Malscan, Mamadroid, and APIGraph enhanced

Malscan

Algorithm Training Testing Init ASR Rela ASR Abs ASR

Malscan
TRo

TEo 82.50% 91.31% 100%

TE1 94.23% 96.71% 100%

TE2 97.83% 93.86% 100%

TR2 TE1 91.50% 97.81% 100%

APIGraph

+ Malscan
TRo

TEo 89.67% 97.50% 100%

TE1 99.57% 98.93% 100%

Mamadroid TRo

TEo 71.42% 87.88% 100%

TE1 99.94% 94.95% 100%

TE2 100% 88.79% 100%

testing sets consist solely of malware samples. To ensure that our adversarial attack

method is e!ective, we exclude misclassified malware samples from our dataset by

using pre-trained classifiers, as modifying these samples would not be useful. We

design three dataset [152] settings for e!ectiveness analysis. In the first setting, the

training dataset (TRo) and the testing dataset (TEo) are collected during the same

period. In the second setting, the testing data (TE1 and TE2) was collected after

the training set. This setting emulates the situation that the malware detectors are

trained with known malware and use pre-trained classifiers to detect malware. In

this case, since there may be concept drift [13] in the malware samples, detectors are

suggested to retrain their classifiers to deal with new malware. The third setting uses

the latest malware to train the classifier (TR2) and uses older malware (TE1) for

testing. In this setting, we aim to evaluate whether our attack can renew outdated

malware. We use each training set to train target AMDs (i.e., Malscan, APIGraph

enhanced Malscan and Mamadroid). Given malware in testing sets, we use HRAT to

56

3.5. Evaluation

modify it and then evaluate whether it can evade target AMDs and record each ASR.

We also compare the performance of HRAT and that of other approaches. One is

AndroidHIV [26], which is the state-of-the-art attack against Mamadroid and also con-

siders problem-space attacks. Since AndroidHIV has not been released to the public,

we implement AndroidHIV by strictly following the description and configurations

in the manuscript[26]. We also design attack strategies based on evolutionary algo-

rithms [72] (i.e., simulated annealing-based structural attack, SACK, hill-climbing-

based structural attack, HACK, and evolutionary programming-based structural at-

tack, EPACK, as baseline algorithms for comparisons with reinforcement learning

adopted by HRAT.

Results. Table 3.1 lists the results of the e!ectiveness comparison of di!erent at-

tacks. Init ASR represents the ratio of malware that escapes detection after at most

500 modifications have been applied. According to our analysis in §3.3.4, the char-

acteristics of malicious apps will eventually be diluted so that they will be regarded

as benign ones as long as HRAT keeps adding useless vertices. But the unlimited

modifications will increase the attack’s computational complexity. We apply HRAT

to 50 randomly selected apps and find that after 500 modifications, these apps were

still unable to evade detection. We then continued to apply HRAT without any re-

strictions on the number of modifications until the apps were successfully able to

evade detection. The result shows that these apps can successfully evade detection

after more modifications (i.e., from 635 to 4,091).

Due to the limitations of soot and flowdroid [107], some apps cannot be successfully

repackaged. Thus, we utilize Rela ASR to denote the ratio of apps that can evade the

detection at the algorithm level but cannot be repackaged successfully. It is worth

noting that the failure of app repackaging is typically due to the anti-repackaging

strategies implemented by the apps themselves, rather than any shortcomings in our

manipulation techniques.

57

Chapter 3. Structural Attack against Graph Based Android Malware Detection

Comparing the Init ASR and Rela ASR of Malscan and APIGraph enhanced Malscan

in Table 3.1, we can see that HRAT is more e!ective on APIGraph enhanced detector

than the original detector. The reason for this is that APIs that were originally

unmodifiable may become modifiable through the use of APIGraph, which uses a

unique API to represent APIs with similar functionalities. Furthermore, we have

observed that it is easier to obscure the distinguishing features of malware and evade

detection when the number of features is smaller. For example, the feature number

of Mamadroid (121) is much smaller than that of Malscan (43,972), and the Init ASR

on Mamadroid in Table 3.1 is better than Malscan.

Table 3.2 illustrates the ASR of di!erent algorithms using TRo for training and TE1

for testing. We can see that for feature-space attack (Init ASR), AndroidHIV can

achieve over 95% attack success rate. However, in the case of problem-space attacks,

the performance of AndroidHIV drops to 37%, as it can only modify a limited number

of methods in malware and cannot maintain consistency between perturbations on

features and modifications made to apps. Furthermore, the initial ASRs for SACK,

HACK, and EPACK are lower compared to reinforcement learning-based algorithms,

since evolutionary algorithms direct structural attacks to choose attack action types

randomly. Benefiting from structural attacks, EA-based methods achieve the same

absolute ASRs as reinforcement learning-guided attacks.

Next, we explore the impact of randomness on the experiments. HRAT uses a k-

nearest neighbor (kNN) algorithm with k=1 as the classifier for the target detection

system. The way the training data is split significantly influences the attack perfor-

mance. For instance, the label assigned to a test sample is determined by its nearest

neighbor in the training set, meaning any changes in the training data can alter

classification results. Consequently, variations in the testing data split also a!ect

the attack performance. HRAT’s action determination model is randomly initialized,

and actions are selected based on a predefined threshold, even if the model is well-

trained. This inherent randomness can lead to varied performance outcomes when

58

3.5. Evaluation

HRAT is applied in real-world scenarios. For comparison, SACK employs a random

selection for the action space due to the vast initialization settings, as discussed in

Section3.5-Baselines. This randomness in action selection introduces variability in

performance during application. Similarly, EPACK uses a random mutation prob-

ability for determining attack actions, which also introduces randomness. Di!erent

target detection systems exhibit varying sensitivities to randomness. In Malscan,

the features are sparse, so perturbations may di!erently a!ect the sparse features’

representation. Mamadroid relies on the dependency probability between di!erent

method families’ invocations. A single manipulation may impact these probabilities

by altering both the numerator and the denominator in Mamadroid’s feature calcula-

tion. For APIGraph-enhanced Malscan, feature clusters are used to reduce Malscan’s

feature vector. Random perturbations in nodes and edges can change the centrality

of multiple clusters, impacting the overall performance. The inherent randomness

in data splitting, action determination, and feature perturbations can significantly

influence the performance of HRAT’s attacks and the comparison algorithms, leading

to varied outcomes in di!erent application scenarios.

Answer to RQ1: HRAT achieves up to 99.94% init ASR within 500 modifications.

Without restriction on the number of modifications, HRAT achieves a higher ASR

of problem-space attack. HRAT outperforms evolutionary algorithms that demon-

strate the e!ectiveness of optimization strategies in HRAT.

3.5.2 RQ2: Modification E”ciency Comparison

Experimental Setup. We measure the modification e”ciency of an attack using

the number of modifications required to let a malicious app evade detection. We

compare the modification e”ciency of HRAT and that of AndroidHIV and SACK on

the collected dataset by recording the escaping number of modifications for each app

toward the di!erent attack approaches. Note that HRAT and the aforementioned

59

Chapter 3. Structural Attack against Graph Based Android Malware Detection

Table 3.2: E!ectiveness comparison of di!erent attacks

Systems Algorithms Init ASR Rela ASR Abs ASR

Malscan

HRAT 94.23% 96.71% 100%

SACK 87.13% 62.56% 100%

HACK 75.80% 97.89% 100%

EPACK 76.63% 94.21% 100%

Mamadroid

HRAT 99.94% 94.95% 100%

SACK 81.05% 84.30% 100%

HACK 87.40% 81.01% 100%

EPACK 72.60% 99.17% 100%

Android HIV 96.02% 87.64% 37.67%

evolutionary attacks (i.e., SACK, HACK, and EPACK) work against both Malscan

and Mamadroid, whereas AndroidHIV only targets Mamadroid.

Results. Figure 3.10 shows the cumulative distribution (CDF) of the required num-

ber of modifications for evasion. We can see that even SACK achieves comparative

ASR with HRAT (§3.5.1), SACK requires more modifications to make target mal-

ware escape detection. Specifically, when attacking Malscan through SACK, more

than 10% of malware needs more than 50 modifications. By contrast, this ratio is

only about 5% under HRAT’s attack. When attacking Mamadroid through HRAT,

90% of the malware needs at most 50 modifications to evade detection. However,

SACK requires at least 150 modifications to achieve the same ratio. This di!erence

may be caused by the di!erent learning strategies of those two algorithms. More

precisely, HRAT uses reinforcement learning to learn and decide the action type by

interacting with the target environment, whereas SACK randomly selects the action

type and decides whether to adopt the action by checking if the selected action has a

positive impact. For AndroidHIV, nearly 30% of adversarial malware escapes detec-

60

3.5. Evaluation

0 50 100 150 200 250 300
Number of modifications for evasion

0

20%

40%

60%

80%

100%

C
D

F

AndroidHIV
HRAT Malscan
HRAT Mamadroid
SACK Malscan
SACK Mamadroid

Figure 3.10: CDF of the required number of modifications

tion within 80 modifications, and only 65% of malware deceives Mamadroid within

300 modifications.

Answer to RQ2: HRAT needs fewer number of modifications than other methods

to let malicious apps evade detection.

3.5.3 RQ3: E!ectiveness of IMA

Ratio of individual actions

To evaluate the e!ectiveness of individual manipulation action (IMA), we compute

the ratio of each attack action to all modifications applied to all adversarial apps

that successfully evade the target systems (i.e., Mamadroid, Malscan and APIGraph

enhanced Malscan) under the aforementioned data sets and configurations. For ex-

ample, to obtain the ratio of insert node in Malscan TRo TE1, we first count the

61

Chapter 3. Structural Attack against Graph Based Android Malware Detection

APIGraph_TRo_TE1

APIGraph_TRo_TEo

Malscan_TRn_TE1

Malscan_TRo_TE1

Malscan_TRo_TEo

Mamadroid_TRo_TE1

Mamadroid_TRo_TE2

Mamadroid_TRo_TEo

Add edge

Rewiring

Insert node

Delete node

24.64%

27.86%

22.86%

24.64%

24.92%

26.93%

25.03%

23.12%

25.27%

22.03%

26.96%

25.73%

25.19%

21.87%

26.64%

26.3%

23.08%

24.18%

27.00%

25.75%

24.74%

23.24%

27.74%

24.28%

24.08%

22.83%

28.56%

24.53%

22.64%

24.13%

28.11%

25.12%

Figure 3.11: The ratio of each attack action.

number of insert node (denoted as Nan) applied to those adversarial apps and the

total number of modifications (denoted as Nm) and the ratio will be computed using

Nan/Nm.

Results. Figure 3.11 illustrates the ratio of each attack action in adversarial samples.

The deeper the shade, the greater the ratio. We can see that for evading Malscan,

inserting nodes and deleting nodes actions account for a large proportion (over 26%)

because adding edges and deleting nodes can e!ectively decrease the degree centrality

of nodes (§ 3.3.4). It is consistent with the analysis of Malscan in [152] that suggests

the degree centralities of benign apps are smaller than that of malware. For API-

Graph enhanced Malscan, rewiring action accounts for a large ratio (over 27%). The

reason may be that as APIGraph clusters methods with similar semantics into one

class, rewiring action can e!ectively decrease the degree centrality of target clusters

by replacing the connections between di!erent clusters with connections within one

cluster. As Mamadroid abstracts methods into di!erent families and uses invocation

probabilities as features, inserting nodes to specific families could be more e!ective

62

3.5. Evaluation

to perturb the features. Besides, as the action ratios of all actions exceed 20%, it

suggests that HRAT actively selects attack actions to achieve the trade-o! between

ASR and modification e”ciency.

ASR of individual actions

To evaluate whether malicious apps can escape detection with only one type of at-

tack action, we compare the ASR of HRAT and that of IMA attacks against the

aforementioned detectors. TRo and TE1 are adopted as training and testing sets,

respectively. More precisely, for each attack action, we just use it to perturb the

structure of target graphs and record its ASR. We also compute the average number

of modifications (Avg. Mod) required by each IMA by first counting the number of

modifications (Nmod) applied to Nad adversarial samples that successfully evade the

detectors in both feature space and problem space and then calculating the ratio of

Nmod/Nad.

Results. Table 3.3 shows that using adding edges alone to attack Malscan can

achieve over 90% Init ASR but requires 11.03 average modifications that are nearly

double of the number of modifications required by HRAT (5.58). Regarding Ma-

madroid, both adding edges and inserting nodes can achieve over 90% Init ASR in

feature space, while rewiring and deleting nodes only achieve 83.95% and 78.49%

ASR, respectively. However, adding edges and inserting nodes require more average

modifications than rewiring and deleting nodes. Combing di!erent attack actions to-

gether, HRAT achieves nearly 100% Init ASR against Mamadroid with much better

modification e”ciency. As APIGraph clusters similar APIs into one class to enhance

target AMD, perturbations on fewer APIs can let malware escape the enhanced de-

tector. In other words, when APIGraph enhances target systems, it also introduces

new vulnerabilities. As all IMAs follow our graph structure modifications, the per-

formance of those attack methods of the problem-space attacks is the same as that

63

Chapter 3. Structural Attack against Graph Based Android Malware Detection

Table 3.3: Comparisons between individual attack strategies and HRAT

Algorithm Init ASR Rela ASR Abs ASR Avg. Mod

Malscan

HRAT 94.23% 96.71% 100% 5.58

Add edge 96.97% 82.31% 100% 11.03

Rewiring 67.14% 79.58% 100% 7.54

Insert node 81.48% 98.65% 100% 14.68

Delete node 74.17% 93.76% 100% 8.06

Mamadroid

HRAT 99.94% 94.95% 100% 34.55

Add edge 93.77% 94.90% 100% 57.75

Rewiring 83.95% 75.53% 100% 27.64

Insert node 96.76% 98.29% 100% 64.26

Delete node 78.49% 83.17% 100% 23.24

APIGraph

+ Malscan

HRAT 99.57% 98.93% 100% 1.63

Add edge 91.51% 98.00% 100% 3.39

Rewiring 95.61% 85.46% 100% 2.57

Insert node 92.20% 95.80% 100% 2.81

Delete node 94.62% 96.07% 100% 4.29

of the feature-space attacks.

E!ectiveness of HRAT on malware that fails to escape detection using

individual actions

To evaluate whether combining multiple attack actions is more e!ective than individ-

ual attack actions, we use HRAT to modify apps that fail to evade the target systems

(i.e.,Malscan, APIGraph enhanced Malscan, and Mamadroid) using individual attack

actions. If Ns apps fail to deceive target systems using individual actions but Nh out

64

3.5. Evaluation

of Ns apps successfully escape the detection under HRAT’s modifications, we define

the e!ective ratio as Nh/Ns to quantify HRAT’s e!ectiveness.

87.5%
96.43%

89.19%
94.44%

100%
100%
99.93%
100%

37.5%
83.86%
86.84%
93.29%

0 20% 30% 60% 80% 100%
Effective ratio

APIGraph

Mamadroid

Malscan

Add edge
Rewiring
Insert node
Delete node

Figure 3.12: E!ectiveness of HRAT over malware that fails to escape detection under

individual attack action

Results. Figure 3.12 shows the e!ective ratio of HRAT over apps that fail to evade

detection systems using individual attack actions. For attacking Malscan, since adding

nodes action achieves comparative Init ASR with HRAT, the malware that fails to

deceive Malscan using adding nodes has overlapping with malware that fails to evade

the detection under HRAT’s modification, leading to a 37.5% e!ective ratio. For

Mamadroid and the enhanced detector, as HRAT achieves nearly 100% Init ASR

(Table 3.3), HRAT can also achieve nearly 100% and around 90% e!ective ratio,

respectively.

Next, we discuss the randomness in individual manipulation attacks. Individual ma-

nipulation attacks use a greedy strategy that always selects the edges or nodes with

the maximum gradient to modify. However, a locally optimal solution is not necessar-

65

Chapter 3. Structural Attack against Graph Based Android Malware Detection

ily a globally optimal one. Since individual manipulation attacks also use the same

substitute model as the target detection systems, the randomness inherent in HRAT’s

data splitting and action determination a!ects these attacks as well. Therefore, any

variability introduced by the dataset can influence the performance of individual

manipulation attacks. Additionally, the impact of manipulations on Mamadroid,

Malscan, and APIGraph, as discussed in Section3.5.2, contributes to the variability

in the performance of individual manipulation attacks. The way these systems process

and respond to perturbations can significantly alter the outcomes of such attacks.

Answer to RQ3: Individual attack actions are not always e!ective in attacking

all AMDs. Combining multiple attack actions, HRAT is much more e!ective and

modification e”cient.

3.5.4 RQ4: Resilience to Obfuscation Techniques

Experimental Setup. To evaluate the resilience of HRAT against malware adopt-

ing di!erent obfuscation techniques, we use a dataset in [37], which includes malware

from di!erent families obfuscated by three di!erent obfuscation techniques (i.e., iden-

tifier renaming, string encryption, and reflection) We use TRo as the basic training

set. For each malware family, we randomly select 100 samples from the dataset and

add them to the training set to improve the classifier’s performance. To construct

the testing set, we randomly select 500 samples that are correctly identified as mal-

ware by target systems. We apply HRAT to above malware for evading target AMD

systems(i.e., Malscan and Mamadroid), and define evasion rate = Ne/Nt, where Ne

is the number of malware that escapes the detection and Nt is the number of test

samples, to quantify the resiliency of HRAT against these commonly used obfuscation

techniques.

Results. As shown in Table 3.4, the evasion rate of Malscan and Mamadroid are

100%, meaning that our approach is resilient to identifier renaming. The reason is that

66

3.5. Evaluation

Table 3.4: Evasion rate of AMD systems by adversarial apps whose original apps

belong to di!erent families and adopt three di!erent obfuscation techniques.

Without attack With attack

Malscan Mamadroid Malscan Mamadroid

Renaming 0.00% 0.00% 100% 100%

Encryption 0.00% 0.00% 93.94% 87.11%

Reflection 0.00% 0.00% 92.08% 91.30%

the renaming obfuscation can only change the names of parameters or identifiers into

meaningless strings or hash values [114], which do not a!ect the structure of FCGs.

Thus, HRAT achieves desirable performance on malware using identifier renaming.

For string encryption, the evasion rates of Malscan and Mamadroid are 93.94% and

87.11%, respectively, meaning that this obfuscation technique can a!ect our approach.

Our manual analysis reveals that string encryption may a!ect the graph structure

because malware may use encrypted strings to replace original invocation statements

and restore them at run-time [37], and thus, some nodes and edges are missed during

the modification. For example, when deleting a node, if the callee’s name is encrypted

in one call relation, HRAT fails to replace the method invocation statement with the

deleted method body in the corresponding method. It may cause HRAT to break

the functionality of target malware and make the performance of the problem-space

attack(evasion rate) lower than 100%. If the reflection is used, the evasion rate of

Malscan and Mamadroid are 92.08% and 91.30%, respectively, meaning that reflection

may a!ect our approach. Reflection may make it di”cult to conduct static analysis

on apps, and some invocation relations may be missed.

Next, we discuss how di!erent obfuscation techniques introduce randomness that af-

fects HRAT’s performance. For Malscan, renaming methods have minimal impact

on the overall Function Call Graph (FCG) centrality evaluation, as it only changes

the names without a!ecting the structure. Similarly, encryption has a comparable

67

Chapter 3. Structural Attack against Graph Based Android Malware Detection

e!ect to renaming, altering method names without significant structural changes.

However, reflection has a more substantial impact, as it can modify the raw FCG’s

invocation relationships, thereby influencing the centrality of key nodes in the graph.

For Mamadroid, which abstracts methods into di!erent families and uses invocation

probabilities between families as features, renaming and encryption randomly a!ect

method names. This leads to variability in Mamadroid’s performance under attack

with these obfuscation methods. Since reflection can alter the raw FCG’s invocation

relationships, it also a!ects the invocation probabilities, introducing further random-

ness in the attack’s impact on Mamadroid.

Answer to RQ4: If an obfuscation technique neither a!ects the structure of FCGs

nor impedes the static analysis and manipulation on apps, it will not a!ect our

approach.

3.5.5 RQ5: Functional Consistency Assessment

We conduct static analysis and dynamic analysis to assess whether the adversarial

apps generated by HRAT preserves the functionality as the original ones. We ran-

domly select 40 malicious apps and apply HRAT to them. During this process, we

also insert log into the modified methods of original and modified apps to collect

information for assessment.

•Static analysis assessment. For these app pairs, we conduct static analysis on

them to ensure that the modifications have been correctly imposed. Specifically, we

check whether the added invocations and methods exist and whether the deleted

methods are correctly modified. Besides, we also compare the scale (number of nodes

and edges) of FCGs and extracted features of the modified app and those obtained

by HRAT.

Results. The results show that the FCGs extracted from modified apps are the same

as the FCGs computed by the algorithm. Besides, the number of nodes and edges

68

3.5. Evaluation

in the FCGs and extracted features from modified apps are also the same as those

calculated by HRAT.

• Dynamic analysis assessment. For the dynamic assessment, we install the apps

before and after modifications on two Android virtual machines (AVMs) with the

same configuration, respectively. For apps (35/40) that have been modified by less

than ten times, we manually analyze their FCGs to learn how to trigger the modified

methods. Then, we conduct the same operations to run an app pair on the two AVMs

and record the run-time UI. To check whether the modified methods are triggered,

we insert log functions to the modified methods to print the method’s all parameters

and the callers ’s signature. For example, when testing adding function call, we insert

the log to print the parameters of callee and its callers signature between lines 1 and

2 of Figure 3.5(b). To check whether the modified app works the same as the original

one, we insert log to print the parameters of methods to be modified in the original

app. In this way, besides manually checking whether the user interface gives the same

feedback (e.g., same activity transition, same pop-up window, same text rendered on

the window, etc.), we also compare the values of the methods’ parameters before

and after modification. For apps (5/40) that are hard to find the activation paths

because of heavy code obfuscation, we use a popular Android testing tool Monkey [51]

to conduct the dynamic exploration on them. We configure Monkey to let it ignore

crashes and timeouts and set the duration of each event to 300ms. The execution

time is set to 20 minutes. We collect the logs to identify the invoked methods and

check whether the apps before and after modification have the same functionality by

comparing the log information.

Result. For apps that have been examined by us manually, the coverage rate

(Ntriggered methods/Nmodified methods) of modified apps is 100%, because we have pre-

analyzed their FCGs, and 33/35 apps show the same user interface as original apps.

Specifically, when we conduct the same operations on the apps, both the modified

apps and original apps output the same UI feedback. Besides, the log messages show

69

Chapter 3. Structural Attack against Graph Based Android Malware Detection

the expected results. For example, for inserted nodes, the expected invocation se-

quence exists in the corresponding caller. However, two of thirty-five apps crashed

during the testing process, whereas their original apps run smoothly. By manually

inspecting these two apps, we find that when HRAT modifies the methods called by

reflection, it cannot make the corresponding modifications to the reflection invoca-

tion, thus leading to app crash. Thus, we cannot verify their functional consistency.

For other apps tested using Monkey, the coverage rate drops to 24.87% as Monkey

randomly interacts with the app to trigger methods. For these trigger paths, we find

that all modifications do not a!ect the functionality.

Answer to RQ5: HRAT keeps the functional consistency of the modified apps in

most cases. It may break the functionalities of apps using obfuscation techniques

that hinder static analysis.

3.5.6 RQ6: Influence of Key Parameters

Two key parameters will influence the e!ectiveness and e”ciency of HRAT: a) proba-

bility, which determines how likely HRAT is to adopt an action type learned by deep

Q-network or randomly select an action type; and b) memory capacity, which deter-

mines the frequency at which HRAT interacts with the environments. We evaluate

the parameter influence of HRAT on Mamadroid and Malscan with 500 randomly

selected malware. Figure 3.13 shows the influence of these two key parameters on

HRAT. We can see that our attack on Mamadroid is not sensitive to the parame-

ters. For Malscan, as storage capacity increases, ASR drops, because the increase

of storage capacity means that the frequency of interaction between HRAT and the

environment is reduced and thus the system cannot better determine its behavior

based on the environment. Similarly, this will also lead to more modifications with

the increase of memory capacity. Since HRAT takes a random attack action type

with 1 ⇒ Probability, when the Probability decreases, the probability of our system

70

3.5. Evaluation

1 5 10 30
Memory capacity

80%

90%

100%
A

SR

80% 85% 90% 95%
Probability

80%

90%

100%

A
SR

malscan
mamadroid

1 5 10 30
Memory capacity

10

20

30

40

A
vg

. M
od

80% 85% 90% 95%
Probability

10

15

20

25

30

A
vg

. M
od

Figure 3.13: Parameter analysis

taking random attack behavior will increase. This will result in a decrease in the ASR

of the system and an increase in the number of modifications taken.

For other parameters in our system, such as maximum modification times M, m in

Eq 3.5, we set M to 500 and m as 75, which follows the settings in [125]. We set

the value of M to 500, because as M increases, ASR will also be increased, but the

optimization time consumption will also increase. The results of our experiments in

§ 3.5.1 demonstrate that if the number ofM is not limited, the app can be successfully

attacked in the feature space. Similarly, the CDF of the number of app modifications

§ 3.5.2 also shows that most apps can be successfully modified at most 50 times. For

m, it is only used to solve the distance between the target graph and the m samples

in the training set during the optimization process. When evaluating whether the

algorithm was successfully attacked, we still used all the samples from the original

training set.

71

Chapter 3. Structural Attack against Graph Based Android Malware Detection

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
SR

Training ratio

Malscan	TEo Malscan	TE1 APIGraph	Malscan
Mamadroid	TEo Mamadroid	TE1 Mamadroid	TE2

Figure 3.14: Attack success rate against retraining.

Answer to RQ6: The parameter setting’s impact on HRAT varies for victim detec-

tion systems.

3.5.7 RQ7: Defense against HRAT

We evaluate two potential approaches for defending against HRAT, including adver-

sarial training and ensemble learning[133], which have been used to defend against

adversarial attacks in other domains (e.g., computer versions).

Adversarial retraining is regarded as one of the most e!ective defense methods against

adversarial attacks [48]. We randomly select 500 samples that evade the detection

in both feature and problem space and divide them into training and testing sets.

Figure 3.14 shows that with the increase of training ratio (i.e., the ratio of retraining

samples to all adversarial samples), ASR drops accordingly. However, Mamadroid

trained with the TRo dataset cannot achieve good defense performance even when

enough adversarial samples are available. It may be due to the limited ability of

Mamadroid to learn extracted features for malware detection. Similarly, when the

72

3.5. Evaluation

retraining ratio is less than 0.5, the attack success rate of Mamadroid TE1 and TE2

remains more than 40%. It is worth noting that Malscan enhanced by APIGraph

only needs a small number of retraining samples to successfully detect adversarial

apps. For attacking Malscan, when the training ratio is limited to 10% to 40%, the

ASR drops dramatically, while the training ratio grows to more than 50%, and the

defense e!ectiveness does not improve a lot. This could be caused by the limitation

of Malscan’s defense performance as the F1-score of raw Malscan’s detection per-

formance is limited to 98.8% [152]. In summary, retraining would be an e!ective

defense method against HRAT if there are enough adversarial samples for retraining.

However, it is worth noting that if many samples are used for retraining, the time

consumption and computational workload will also increase.

We also evaluate the e!ectiveness of ensemble learning. Ensemble learning has been

used to defend against adversarial attacks [133]. To evaluate the defense e!ective-

ness of ensemble learning algorithms, we adopt four ensemble learning algorithms:

Bagging, Adaboost, gradient boosting decision tree, and Voting. Bagging [69] forms a

class of algorithms that will be trained using a random subset of the original training

set and then aggregate their individual predictions to get a final prediction. Ad-

aboost [45] utilizes a sequence of weak learners on repeatedly modified versions to

improve the performance of weak classifiers. Gradient boosting decision tree [105]

(GBDT) integrates a set of regression trees and uses a generalization of boosting to

arbitrary di!erentiable loss functions. Voting strategy simply combines di!erent ma-

chine learning classifiers and uses votes to predict the class labels. We use sklearn [105]

to implement those embedding algorithms and the parameters of each algorithm are

set as default (see Table 3.5).

To conduct the experiments, we use ensemble learning algorithms to replace the kNN

classifier in original detection systems. Then, we use those pre-trained ensemble clas-

sifiers to identify the label of adversarial malware. Table 3.6 shows that ensemble

learning for APIGraph enhanced system cannot e!ectively defend HRAT’s attack.

73

Chapter 3. Structural Attack against Graph Based Android Malware Detection

Table 3.5: Parameter settings of ensemble algorithms

Algorithms Parameter settings

Bagging

base estimator: 1NN

max samples: 0.5

max features: 0.5

Adaboost
base estimator: 1NN

n estimators:100

GBDT

n estimators: 100

learning rate: 1.0

max depth: 1

random state: 0

Voting
base estimators: SVM, 1NN, DT

voting:majority voting

SVM: support vector machine; 1NN: 1st nearest neighbors; DT: decision tree

For Malscan, Adaboost and GBDT are promising defense strategies that could ben-

efit from their boosting strategies. Since Boosting strategy uses weighted methods

to combine weak classifiers, the ensemble classifier is supposed to integrate the ad-

vantages of weak classifiers, thus making the defense more e!ective. For Mamadroid,

ensemble learning could achieve at least 60% ASR decrease. As the feature number in

Mamadroid is small, the learning strategy of bagging (using the subset of the training

set) can e!ectively exclude outliers in the training set. The results show that it could

be a promising defense strategy for Mamadroid. However, it is not always e!ective

for Malscan. Therefore, di!erent defense strategies should be adopted for di!erent

detection systems to defend against HRAT.

Answer to RQ7: Di!erent defense strategies should be adopted for di!erent detec-

tion systems to defend against HRAT.

74

3.6. Discussion

Table 3.6: Evaluation of ensemble learning based defense methods

Bagging Adaboost GBDT Voting

Malscan TEo 91.50% 18.42% 15.79% 100%

Malscan TE1 92.31% 15.03% 13.99% 100%

APIGraph

+Malscan
100% 99.84% 97.28% 100%

Mamadroid TEo 14.86% 32.32% 33.19% 34.20%

Mamadroid TE1 30.91% 36.75% 35.14% 24.64%

Mamadroid TE2 14.00% 31.88% 32.64% 36.25%

3.6 Discussion

3.6.1 Applicability of HRAT

The algorithm design of HRAT, which includes constraints and four elaborate graph

modification actions, is versatile enough to be applied to attack function call graphs

in other software platforms, such as Windows or PDF. When modifying the FCG,

HRAT maintains method connectivity and call sequence, which is not limited to any

specific programming language. Furthermore, the constraints set by HRAT ensure

that in other software platforms, it will not modify the unmodifiable nodes or edges

(methods and call relations). In this way, HRAT maintains the functionalities of the

target software. When applying HRAT to other systems, the adversary only needs

to consider the limitations of modifiable functions in target scenarios and then add

them to the algorithm constraints.

75

Chapter 3. Structural Attack against Graph Based Android Malware Detection

3.6.2 Limitations

HRAT’s optimization progress leads to high computational consumption because,

given a new graph, HRAT needs to calculate the gradient of each edge to select

the influential nodes or edges. In future work, we will investigate the transferability

of HRAT. In other words, we will first use HRAT to attack one detection system

and generate adversarial malware and then check whether the generated malware can

escape another detection system. Besides, to address the limitation of gradient-related

methods, we will explore involving information entropy in modification selection.

Since HRAT relies on static analysis, its attack may break the app’s dynamic features,

such as reflection [37], dynamic class loading, etc. We can add related methods into

constraints and set them as unmodifiable to avoid modifying such dynamic features.

Moreover, HRAT could not handle heavily obfuscated malware [181, 157, 155, 156,

186], such as packaged apps, because static analysis may just access the Dex file of

the shell rather than the real functional Dex file.

76

Chapter 4

A Fine-grained Chinese Software

Privacy Policy Dataset for

Sequence Labeling and Regulation

Compliant Identification

4.1 Overview

The Android privacy policy is a legal document written in natural language that

discloses the purposes and mechanisms by which a controller —the entity determin-

ing the purposes and means of processing personal data—collects, shares, uses, and

stores user information [47, 108, 98]. Regulatory authorities [47, 108, 98] and Android

application platforms [49, 62] require developers to provide clear privacy policies to

inform users about how their personal data is handled. This enables users to under-

stand and assess whether their privacy may be at risk, thereby helping them make

informed decisions about using the application. However, privacy policies are often

lengthy and complex, making them di”cult for users to read and comprehend [128].

77

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

Natural Language Processing (NLP) techniques have achieved significant success in

understanding document semantics [161, 150, 36]. Therefore, it is essential to ap-

ply NLP techniques to analyze privacy policies, identify compliance between privacy

policy statements and regulation requirements, and assist users in understanding the

privacy practices of mobile applications [166, 7, 168]. However, applying NLP meth-

ods to this domain requires a large amount of annotated corpus to train models that

can identify who is responsible for collecting or sharing user data, as well as with

which parties or organizations such data is shared. Currently, available datasets for

this task only include English-based privacy policy corpora [151, 193], while there

remains a lack of publicly available datasets specifically tailored for Chinese privacy

policies.

Chinese software privacy policy processing (CSP3) task is a sequence labeling prob-

lem that recognizes privacy-related components in the sentences. CSP3 has two main

unique features. First, privacy policies contain an amount of information inside [165],

such as how the app stores user data and how to contact the app developers. In

our dataset, we concentrate on data access-related sentences as the sentences are di-

rectly related to user privacy. Second, privacy policies are written in legally binding

professional language and contain software jargon. Thus, it requires a strong back-

ground [187, 188] to understand the statements inside. Both characteristics prevent

users from understanding privacy policies. A well-annotated dataset can facilitate

the building of automatic privacy policy analysis tools and further help users protect

their privacy.

Although privacy policy datasets have been proposed recently [151, 193], labels in

existing datasets are coarse-grained (i.e., sentence-level annotations [151]) and those

data set only involve few privacy practices [193]. Besides, existing datasets only

include English privacy policies, which limits the application of these datasets in

regions with other languages. We construct a fine-grained Chinese dataset for software

privacy policy analysis.

78

4.1. Overview

In this work, we focus on Android application privacy policies because Android

possesses the largest share of mobile operating systems [129], and a large num-

ber of Android privacy data leaks have been revealed [123, 126]. Unlike previous

work [151, 193], we deal with the problem using sequence labeling methods and pay

special attention to the Chinese privacy policies. The motivations come from the

following four aspects:

First, worldwide regulation departments enact laws [98, 108, 47, 144, 27] to regulate

the software’s behaviors and protect users’ privacy. The laws require the software to

clarify how and why they need to access user data. Analyzing privacy policies can

help users understand how app process their data and identify whether apps comply

with laws. However, privacy policies are written using professional legal and software

jargon that prevents users from reading and understanding them. Thus, it is neces-

sary to apply NLP techniques to analyze and help users understand privacy policies.

Second, for sequence labeling tasks, CSP3 aims to identify how and why the software

collects, shares, and manages users’ data according to regulations. CSP
3 can be ab-

stracted as identifying components in the privacy policy documents, such as data type

and the purpose of using user data. NLP techniques can help automatically analyze

privacy policies. Third, existing privacy policy analysis research is limited to English

and totally omits other languages. With over 98.38 billion app downloads [132] and

privacy-related regulations enacted in China, it is necessary and urgent to research

CSP
3. Last but not least, recent research in other communities, such as software en-

gineering [166, 96] and cybersecurity [7, 6], demonstrates requirements for analyzing

privacy policies to help the analyst identify whether the apps’ behavior is consistent

with privacy policies.

In this work, we make the following e!orts to advance CSP3 task:

First, we construct a novel large-scale human-annotatedChineseAndroid application

privacy policy dataset, namely CA4P-483. Specifically, we manually visit the software

markets, such as Google Play [49] and AppGallery [62], check the provided privacy

79

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

policy website, and download the Chinese version if available. We finally collect

483 documents. To determine the labels in the privacy policy analysis scenario, we

read through Chinese privacy-related regulations and summarize seven components

(§4.3.2). We annotate all occurrences of components in 11,565 sentences from 483 doc-

uments. Unlike paragraph-level annotations in existing privacy policy datasets [151],

CA4P-483 annotates character-level corpus.

Second, based on CA4P-483, we summarize families of representative baselines for

Chinese sequence labeling. In detail, we first evaluate the performance of several

classic sequence labeling models on our dataset, including Conditional Random Forest

(CRF) [70], Hidden Markov Model (HMM) [94], BiLSTM [55], BiLSTM-CRF [74],

and BERT-BiLSTM-CRF [34]. Recent work shows that lattice knowledge improves

the performance of Chinese sequence labeling tasks. We involve lexicon-based models,

such as Lattice-LSTM [180].

Third, we investigate potential applications of CA4P-483. Combining law knowledge,

we first identify whether the privacy policy violates regulation requirements based on

CA4P-483. We also identify whether the app behaves consistently with privacy policy

statements combining software analysis [184, 189].

The contributions of this work are three-fold:

• To the best of our knowledge, we construct the first Chinese privacy policy

dataset, namely CA4P-483, integrating abundant fine-grained annotations.

• We experimentally evaluate and analyze the results of di!erent families of se-

quence labeling baseline models on our dataset. We also summarize di”culties

in our dataset and provide findings and further research topics on our dataset.

• We investigate potential applications of CA4P-483 to regulate privacy policies

with law knowledge and program analysis technologies.

80

4.2. Preliminaries

4.2 Preliminaries

4.2.1 Android Privacy Policy

A privacy policy is a legal document written in natural language that discloses how

and why a controller collects, shares, uses, stores, and protects user data [47, 108, 98].

Privacy policies help users understand whether their privacy will be abused and decide

whether to use the product. Android application markets, such as Google Play [49]

and Huawei Gallery [62], require developers to upload the app’s privacy policy when

they submit their apps to markets.

4.2.2 Sequence Labeling

The sequence labeling task recognizes components of interest, which are predefined in

specific applications, in the sentence. One classic example of sequence labeling tasks

is part of speech tagging, which aims at assigning each word a part of speech in given

sentences or documents.

4.3 Dataset Construction

4.3.1 Dataset Collection

We manually collect the Chinese privacy policies from Android application markets.

According to application market requirements [63, 50], developers must provide pri-

vacy policies to claim their user data access behavior and to ensure apps will not

violate laws or regulations. Since privacy policies are publicly available for users to

understand the apps’ access to personal data, the three authors of this paper manu-

ally access the most popular apps in markets and visit their privacy policy websites

81

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

provided at the moment (January 2021). We use html2text [3] to extract context.

Finally, we use tagtog [20] for document annotation.

Next, we annotate CA4P-483 based on the law requirements. Specifically, we analyze

Chinese privacy-related laws and regulations [98, 108, 100, 29], and find requirements

for apps’ privacy process behavior. For example, GB/T41391-2022 Article 4.n) claims

that “developers should expressly state the purpose of applying or collecting informa-

tion to the subject of personal information.” Finally, we summarize seven types of

labels related to requirements for apps’ access to user data.

4.3.2 Fine-grained Annotations

For each privacy policy, we concentrate on the sentences that describe the data pro-

cess behavior. After locating the sentences, we annotate seven components, i.e., the

controller, data entity, collection, sharing, condition, purpose, and receiver.

Data controller. According to regulation requirements, the data controller is the

party that determines the purpose and means of personal data processing. A data

controller could be the app (first party) or the third party. As is shown in Figure 4.1,

data controllers are “third-party platforms” in Figure 4.1(a) while that is “we” in

Figure 4.1(b). Thus, we annotate data controllers according to sentence semantics,

i.e., who is responsible for processing the data.

Data entity. Data entities are any information that can identify or reflect the activ-

ities of a natural person [108]. Recent research [17, 122] demonstrates the probability

of combining various information to infer and even locate a specific person. Thus,

we annotate all data nouns or noun phrases that are requested in privacy policies,

including sensitive information, such as device id, and normal information, such as

device type.

82

4.3. Dataset Construction

!"#$%&'()*+,-./01234567+89:;<=>?@ABCD+EFG1)*HI
To guarantee you can use our products or services, achieve statistics and analysis of game data, and improve the security of your device account,

+JKLMNOPQR$ST+UVWXY$+ABIDZAB[\ZAB]^:_`Za8_`ZIPbcZ
the third-party platforms we cooperate with will collect (with your consent) your device ID, device name, device type and version, system version, IP address,

MACbcZd(IDZefghijZhkef+Ll:]^mnop
MAC address, application ID, network state, network connection methods and type, etc.

(a) Demo 1.

!"#$%&'()*+,-./01234562789SDK:;"'(<=>?@AB!CDECOPPOC
To adapt the push function to the terminal model you are using, we may share the following data with terminal manufacturers (Huawei, Xiaomi, OPPO,
VIVOFGHI)*JCKLMNO<=P.Q
VIVO): device type, device version and related device information.

(b) Demo 2.

Data controller Data entity Collecting action Sharing action Condition Purpose Data receiver

(c) Annotation legend.

Figure 4.1: Annotation demos from CA4P-483. We translate the statements into

English for illustration.

Collection. Collection actions are verbs that describe how controllers access data,

such as gather (攡阡) and obtain (茡匡).

Sharing. Sharing actions are verbs that indicate whether the data controller will

distribute data to others. Although both Sharing and Collection describe how the

party access user data, we di!erentiate them according to the requirements of laws

on the action, such as Article 5 and 9.2 in [108].

Condition. The condition describes the situation where the data controller will

access personal data. Laws require data controllers to inform users under what

conditions their data will be processed. For example, bank apps may require the

users’ identification information when activating the bank account. Figure 4.1(a)

also demonstrates that under the condition of the user’s consent, the third-party

platforms (TPP) access users’ data. Another semantics in Figure 4.1(a) also indi-

cates that the TPP cannot access those data without users’ consent, which can help

83

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

users and analysts understand whether the app violates laws.

Purpose. The purpose should claim why the data controller processes user data.

Laws enact specific requirements for user data access. For example, PISS Article

4.d) requires controllers to clearly state the purpose of processing data. Purpose can

also help the users understand why the app collects their data and further determine

whether to give consent as is shown in Figure 4.1(a).

Data receiver. The data receiver describes the parties that receive user data. Laws

not only ask apps to clarify who will get shared data [108] but also restrict the data

receivers’ behavior [98], such as why processing user data.

4.3.3 Human Annotation Process

Our privacy policy annotation consists of two phases: coarse-grained annotation and

fine-grained annotation. Coarse-grained annotation labels privacy policies at the

paragraph level following previous work [151]. Fine-grained annotation labels our

defined components at the word level based on coarse-grained annotation.

For the first phase, three authors of this paper, who have researched privacy policies

and software engineering for over eight and three years, label ten privacy policies for

reference and record a video instruction to guide annotators. Then, we hire thirty

undergraduates from our university to annotate the dataset. The three instructors

train each annotator for at least four hours to become familiar with the dataset and

requirements. Students are asked to annotate 1,000 Android apps’ privacy policies in

Chinese, and each privacy policy should be analyzed for at least 30 minutes to ensure

quality. Each privacy policy is allocated to at least four annotators. Finally, three

instructors inspect each annotation.

For the second phase, we select two undergraduates who coarse-grained annotate

84

4.3. Dataset Construction

the documents with high precision to conduct the fine-grained annotation. Specifi-

cally, we select 483 documents that are well coarse-grained annotated after inspection.

Instructors first annotate ten documents to lead undergraduates to annotate. The

annotators also keep discussing with instructors when the role of components in sen-

tences is unclear. Each annotator is required to label each privacy policy for at least

30 minutes to guarantee the dataset quality.

Finally, the instructors analyze the annotations and use Fleiss’ Kappa metrics [28, 151]

to evaluate the agreements. Table 4.1 shows that the average Kappa value (77.20%)

satisfies the substantial agreement, i.e., the Kaapa value lies in 0.61-0.80, and four

components achieve almost perfect agreement (0.81-1.00). The Condition, which only

gets a moderate agreement, is caused by the overlap between labels. For example, the

statements may claim that ”under the condition of accessing your contact, we will

send your location to emergency contact” one annotator only annotates the ”contact”

as data without annotating the whole clause.

4.3.4 Dataset Statistics and Comparison

We conduct statistical analysis and show the results in Table 4.1. CA4P-483 is split

into training, development, and test set. Table 4.1 also gives details of the number of

di!erent labels in each set. Table 4.1 shows that the average length of condition and

purpose is much longer than other corpora as the two types are generally in the form

of clauses.

We compare CA4P-483 with related datasets in Table 4.2. We first compare our cor-

pus with Chinese sequence labeling datasets, such as MSRA [173], OntoNotes [149],

Weibo [106], PeopleDiary [170], Resume [180], CLUENER2020 [154], and CNERTA [134].

We also involve widely used English sequence labeling datasets, namely Twitter-

2015 [172] and Twitter-2017 [88]. We also consider privacy policy datasets, namely

Online Privacy Policies (OPP-115) [151] and Android app privacy policies (APP-

85

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

Table 4.1: The statistics of CA4P-483. Here, ”Avg” denotes average, ”ann” denotes

annotation, ”len” denotes length, ”#” denotes the number of.

doc 483

sentences 11,565

sentences with ann 3,385

Avg sentences len 79.06

Type Num Train Dev Test Avg len Kappa

Data 21,241 18,925 2,521 2,331 4.68 85.39%

Collect 5,134 4,133 576 528 2.03 73.78%

Share 4,976 3,989 533 505 2.10 84.87%

Controller 8,424 6,085 815 782 2.49 82.22%

Condition 4,917 5,477 716 713 14.41 50.07%

Receiver 3,202 2,776 360 350 4.29 89.88%

Purpose 4,683 6,442 860 867 19.24 74.18%

Total 52,577 47,827 6,381 6,076

350) [193].

We first compare the size and classes in di!erent datasets. Table 4.2 shows that

CA4P-483 contains abundant semantics, i.e., CA4P-483 has seven annotation classes

that are larger than most other datasets (seven out of nine). Table 4.2 also compares

the CA4P-483 with other privacy policy datasets. For privacy policy-related datasets,

the comparison is conducted with the number of documents as one privacy policy

corresponds to one app. OPP-115 annotates at the sentence level, and APP-350

only annotates data controllers, data entities, and modifiers. Since APP-350 speci-

fies data entities into 16 categories, APP-350 exhibits more number of classes than

CA4P-483. To summarize, CA4P-483 is the first and largest Chinese Android privacy

86

4.4. Task and Experiment Setup

Table 4.2: A comparison between CA4P-483 and other popular sequence labeling

datasets. # denotes “number”. “doc” denotes “documents”.

Dataset # Train # Dev # Test Size Language # Class

MSRA 41,728 4,636 4,365 50K Chinese 3

PeopleDairy 20,864 2,318 4,636 23k Chinese 3

Weibo 1,350 270 270 2k Chinese 4

Resume 3,821 463 477 2k Chinese 8

CLUENER2020 10,748 1,343 1,345 13K Chinese 10

CNERTA 34,102 4,440 4,445 42,987 Chinese 3

Twitter-2015 6,176 1,546 5,078 12,784 English 4

Twitter-2017 4,290 1,432 1,459 7,181 English 4

CA4P-483 14,678 2,059 1,842 18,579 Chinese 7

Dataset # Train doc # Dev doc # Test doc Size Language # Class

OPP-115 75 doc / 40 doc 115 doc English 12

APP-350 188 doc 62 doc 100 doc 350 doc English 18

CA4P-483 386 doc 48 doc 49 doc 483 doc Chinese 7

policy dataset with abundant semantic labels.

4.4 Task and Experiment Setup

4.4.1 Task Description

CSP
3 figures out who collects or shares what kind of data to whom, under which

kind of condition, and for what. The underlined words correspond to each type of

annotation. As CSP
3 concentrates on data access-related sentences, we first locate

the sentences based on data collection and sharing words [7, 166]. We summarize

87

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

Table 4.3: Data access word list

Sharing 攡阡 (collect), 茡匡 (obtain), 挡匢 (get), 挡攡 (receive),

伡嬡 (save), 伢甡 (use), 鄡阡 (gather), 謡弡 (record), 嬡

倡 (store), 倡嬡 (store)

Collection 戡霡 (reveal), 刡両 (share), 儡両 (share), 丢挢 (ex-

change), 戢吡 (report), 儢帡 (public), 匣逡 (send), 丢挢

(exchange), 輡礡(transfer), 輢礡 (migrate), 輡謢 (make

over), 儢弢 (public), 逢霡 (disclose), 挣伣 (provide)

the word list based on laws, app market requirements, and previous works [166,

6, 7]. Table 4.3 gives data sharing and collection word list, that is summarized

from laws [98, 47, 108], app market requirements [50, 63], and previous works [166,

6, 7]. With those words, researchers can locate data access-related sentences and

conduct further analysis to get interested entities, such as data controller, data entity,

collection, sharing, condition, purpose, and the data receiver. Given the sentences

C = c1, c2, ..., cn and its labels L = l1, l2, ..., ln, where ci denotes the i -th Chinese

characters and li denotes the ci’s label, the task is to identify sequence labels.

4.4.2 Model Summaries

This section introduces baseline methods for sequence labeling tasks on CA4P-483.

Probabilistic models

Hidden Markov Model (HMM):HMM1 [44] is one of the most classic probabilistic

models and is applied as our baseline.

1https://github.com/luopeixiang/named_entity_recognition

88

https://github.com/luopeixiang/named_entity_recognition

4.4. Task and Experiment Setup

Condition Random Field (CRF): CRF2 [73] aggregates the advantages of HMM

and counters the label bias problems.

Neural network models

BiLSTM: BiLSTM1 [55] uses the neural network to learn a mapping relation from

sentences to labels through the nonlinear transformation in high-dimensional space.

BiLSTM-CRF: BiLSTM-CRF1 uses BiLSTM as an encoder to map the sentences

into a high dimension vector and uses CRF as a decoder.

BERT-BiLSTM-CRF: Since BiLSTM-CRF is still limited to the word vector rep-

resentation, BERT-BiLSTM-CRF3 [31] uses BERT as a feature extractor and takes

advantage of BiLSTM and CRF for sequence labeling.

Lattice enhanced models

As Chinese words are not naturally separated by space, character-based methods

omit the information hidden in word sequences. Thus, lattice-based methods that

integrate lattice information are proposed for Chinese sequence labeling and achieve

the promised performance.

LatticeLSTM: LatticeLSTM4 [180] takes inputs as the character sequence together

with all character subsequences that match the words in a predefined lexicon dictio-

nary.

2http://crfpp.sourceforge.net/
3https://github.com/macanv/BERT-BiLSTM-CRF-NER
4https://github.com/LeeSureman/Batch_Parallel_LatticeLSTM

89

http://crfpp.sourceforge.net/
https://github.com/macanv/BERT-BiLSTM-CRF-NER
https://github.com/LeeSureman/Batch_Parallel_LatticeLSTM

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

4.4.3 Setup and Implementation Details

We evaluate baselines on an Ubuntu 20.04 server with 5 NVIDIA GeForce 3090 (24

GB memory for each), 512 GB memory, and an Intel Xeon 6226R CPU. Next, we

present our implementation details. For HMM, the number of states, i.e., class number

in our dataset with the BIO tag, is set as 22, and the number of observations, i.e.,

the number of di!erent characters, is set as 1756, which is the default value1. For

CRF, we use the default settings in CRF++2. For BiLSTM and BiLSTM-CRF, the

embedding size is 128, the learning rate is 0.001, and we train models using 30 epochs

with a batch size of 64. For BERT-BiLSTM-CRF3, we use the Chinese bert-base5

pre-trained model and fine-tune it on our training data. The BiLSTM is set with

128 hidden layers and a learning rate of 1e↑5. BERT-BiLSTM-CRF model is trained

on our dataset with default settings3 where the batch size is 64, the learning rate is

1e↑5, the dropout rate is 0.5, gradient clip is 0.5, and early stop strategy is “stop if

no decrease”. For Lattice-LSTM, we use the same lattice provided in [180].

4.5 Evaluation

4.5.1 Main Results

In this section, we evaluate baseline methods on all 18,579 sentences that are divided

into training, development, and testing sets as detailed in Table 4.2. Following previ-

ous research [151, 134], we apply the following metrics to evaluate baseline methods

in CA4P-483: precision (P), recall (R), and F1-score (F1).

Table 4.4 presents the performance of di!erent baseline models on CA4P-483, with

each cell displaying the mean and variance of results obtained from five runs. Ta-

ble 4.4 shows that BiLSTM-CRF achieves the most promising performance, which

5https://github.com/google-research/bert

90

https://github.com/google-research/bert

4.5. Evaluation

Table 4.4: Overall performance of baseline methods on our dataset.

Precision Recall F1

HMM 77.47%(±0.00%) 66.11%(±0.00%) 69.63%(±0.00%)

CRF 85.52%(±0.00%) 86.28%(±0.00%) 85.63%(±0.00%)

BiLSTM 85.61%(±0.45%) 86.26%(±0.37%) 85.57%(±0.57%)

BiLSTM-CRF 86.26%(±0.32%) 86.46%(±0.41%) 86.25%(±0.38%)

BERT-BiLSTM-CRF 49.05%(±5.82%) 41.22%(±1.97%) 44.07%(±2.12%)

Lattice-LSTM 67.93%(±0.44%) 68.16%(±0.50%) 68.04%(±0.03%)

may benefit from the enhanced presentation ability of bidirectional LSTM and CRF

for capturing the context information. The zero variance of the results for HMM and

CRF over five runs may denote that the two algorithms with few parameters overfit

our dataset. The BERT-BiLSTM-CRF performed poorly on the dataset, with the

lowest mean and highest variance over five runs. This could be caused by the fact

that the model is designed with a large number of parameters, and our dataset size

is insu”cient to train the model e!ectively. Future work may focus on incrementing

the dataset size to improve the performance of BERT-based models in this context.

Lattice-LSTM performs a strong representation of capturing lattice information, while

some clauses in our labels may mislead the model in learning the patterns.

We analyze the identification performance of each component to investigate the chal-

lenges and limitations of CA4P-483. Table 4.5 demonstrates the detailed performance

of baselines, i.e., HMM, CRF-based models, BERT-based models, and Lattice-based

models, and gives the mean and variance of results obtained from five runs. Besides,

we also compare the performance with manual agreements to demonstrate task di”-

culties. Table 4.5 demonstrates that BiLSTM-CRF and Lattice-LSTM achieve over

70% performance on data with relatively low variance (i.e., lower than 3%) because

the data possesses few overlaps with other labels and is in the format of words. Col-

lect and share only achieve around 60% F1-score because the two types of entities

91

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

!"#$%!&'()*+&,-'(./012
To help us provide you with services, you need to provide basic
3456+789:;<+=>?&@A;BCD
registration or login information, including mobile phone
EF
number, and create your account and user name.

Figure 4.2: Overlapping between components. Di!erences between ground truth and

prediction.

perform some overlapping, as is shown in Figure 4.1 and Figure 4.2. Table 4.5 shows

that BiLSTM-CRF achieves better precision on Condition than Lattice-LSTM, which

may be caused by the fact that Condition and Purpose are mainly in the format of

attributive clauses rather than words.

Next, we analyze the confusion matrix of BiLSTM-CRF results that performs the

best on CA4P-483. In Figure 4.3, the depth of the background color denotes the

proportion of classification; the darker the color, the higher the proportion, and the

digit denotes the number of classification results. Figure 4.3 indicates that most of

the misclassified samples are related to Condition.

To have a deep understanding of divergences between ground truth and predictions,

we inspect the misclassifications. We find that the algorithm may fail to identify

Conditions, which are in the adverbial clause as shown in Figure 4.4(a) where the

highlighting for Chinese is ground truth and highlighting for English is prediction re-

sults. Besides, when the data controller is the user, as is shown in Figure 4.4(b), the

algorithms fail to distinguish Purpose and Condition. Our experiments also reveal

that models need to be well designed to learn deep semantic information, such as dis-

tinguishing overlapping among components and distinguishing Purpose in modifiers.

Next, we show the prediction results of the algorithm and some common problems.

These problems could be the limitations of existing models and also be challenges for

designing algorithms for our data scenario.

92

4.5. Evaluation

Table 4.5: Evaluation performance of three types of methods on our dataset. “O”

denotes others.

Precision Recall F1 Precision Recall F1 Precision Recall F1

HMM BiLSTM BiLSTM-CRF

Collect
26.03%

(±0.00%)

61.98%

(±0.00%)

36.30%

(±0.00%)

77.14%

(±0.81%)

51.54%

(±5.13%)

59.75%

(±3.79%)

73.90%

(±1.42%)

58.81%

(±2.67%)

64.87%

(±1.73%)

Condition
24.90%

(±0.00%)

44.39%

(±0.00%)

31.90%

(±0.00%)

55.86%

(±2.85%)

45.64%

(±4.57%)

49.86%

(±1.74%)

53.23%

(±2.32%)

54.24%

(±2.74%)

53.63%

(±1.20%)

Data
40.32%

(±0.00%)

69.73%

(±0.00%)

51.09%

(±0.00%)

82.94%

(±1.31%)

65.97%

(±2.49%)

73.41%

(±1.13%)

81.34%

(±1.00%)

69.19%

(±1.74%)

74.75%

(±0.72%)

Handler
21.09%

(±0.00%)

51.84%

(±0.00%)

29.47%

(±0.00%)

78.11%

(±1.79%)

49.28%

(±7.90%)

59.37%

(±5.54%)

76.19%

(±1.44%)

58.72%

(±1.82%)

66.10%

(±0.99%)

Purpose
32.66%

(±0.00%)

45.41%

(±0.00%)

37.97%

(±0.00%)

65.66%

(±1.91%)

52.08%

(±5.21%)

57.66%

(±3.26%)

62.01%

(±1.35%)

59.74%

(±2.48%)

60.77%

(±1.39%)

Share
20.50%

(±0.00%)

79.98%

(±0.00%)

32.56%

(±0.00%)

72.25%

(±2.31%)

50.50%

(±5.02%)

58.34%

(±3.05%)

71.13%

(±2.69%)

58.00%

(±1.89%)

63.34%

(±1.60%)

Receiver
17.56%

(±0.00%)

56.40%

(±0.00%)

26.76%

(±0.00%)

73.86%

(±1.16%)

43.67%

(±6.09%)

54.40%

(±4.64%)

66.69%

(±0.32%)

49.63%

(±4.04%)

56.72%

(±2.83%)

O
90.00%

(±0.00%)

67.75%

(±0.00%)

77.31%

(±0.00%)

89.41%

(±0.94%)

94.51%

(±0.97%)

91.88%

(±0.19%)

90.92%

(±0.25%)

92.94%

(±0.27%)

91.92%

(±0.26%)

Average
77.47%

(±0.00%)

66.11%

(±0.00%)

69.63%

(±0.00%)

85.61%

(±0.45%)

86.26%

(±0.37%)

85.57%

(±0.57%)

86.26%

(±0.32%)

86.46%

(±0.41%)

86.25%

(±0.38%)

BERT-BiLSTM-CRF Lattice-LSTM Manual Agreements

Collect
61.65%

(±14.80%)

52.57%

(±8.52%)

55.25%

(±6.70%)

79.28%

(±0.59%)

81.10%

(±1.39%)

80.17%

(±0.38%)
96.30% 92.07% 94.14%

Condition
28.23%

(±6.08%)

29.91%

(±7.46%)

28.85%

(±6.26%)

42.57%

(±0.61%)

46.97%

(±0.21%)

44.66%

(±0.24%)
93.53% 84.50% 88.79%

Data
60.54%

(±3.90%)

56.97%

(±4.82%)

58.40%

(±1.39%)

75.47%

(±0.45%)

75.54%

(±0.97%)

75.50%

(±0.26%)
96.20% 91.79% 93.94%

Handler
68.61%

(±2.95%)

48.79%

(±1.80%)

56.99%

(±1.78%)

77.27%

(±0.02%)

74.65%

(±0.29%)

75.94%

(±0.14%)
96.96% 90.18% 93.45%

Purpose
31.43%

(±11.66%)

26.35%

(±1.44%)

27.22%

(±7.44%)

55.18%

(±0.57%)

48.09%

(±0.62%)

51.39%

(±0.10%)
95.64% 92.61% 94.10%

Share
54.32%

(±9.75%)

37.70%

(±6.03%)

44.37%

(±7.14%)

73.78%

(±0.16%)

83.01%

(±0.68%)

78.12%

(±0.21%)
96.10% 94.71% 95.40%

Receiver
38.25%

(±6.38%)

32.93%

(±1.99%)

35.14%

(±3.10%)

54.24%

(±3.58%)

55.62%

(±0.28%)

54.87%

(±1.95%)
97.33% 85.00% 90.75%

O
49.37%

(±7.67%)

44.54%

(±2.22%)

46.32%

(±2.86%)

85.64%

(±1.37%)

80.34%

(±1.38%)

83.71%

(±1.57%)
/ / /

Average
49.05%

(±5.82%)

41.22%

(±1.97%)

44.07%

(±2.12%)

67.93%

(±0.44%)

68.16%

(±0.50%)

68.04%

(±0.03%)
96.01% 90.12% 92.94%

93

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

750

0

4

2

2

0

0

6

4836

25

65

176

14

14

0

0

1375

0

0

15

0

0

9

0

8209

32

0

0

0

132

3

49

6205

7

6

0

0

0

5

0

843

0

0

0

0

0

0

0

724

Col
lec

t

Con
dit

ion

Con
tro

lle
r

Dat
a

Pur
pos

e

Rec
eiv

er
Sha

re

Col
lec

t

Con
dit

ion

Con
tro

lle
r

Dat
a

Pur
pos

e

Rec
eiv

er

Sha
re

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 4.3: Confusion matrix of BiLSTM-CRF results on CA4P-483.

!"#$%&'()*+,,-./012345
The company may use the user's personal privacy information in
the following matters.

(a) Missing condition.

!"#$%&!'()*+,-./0123'(
The user must provide the developer with accurate personal data
)*456789):;<
when applying to use the developer‘s network services.

(b) Error prediction when controller is user.

Figure 4.4: The visualization of divergence between ground truth and prediction.

94

4.5. Evaluation

!"#$%&'()*)+,-./012345
When you register or log in to "Sina News" software
6789":;<%=>?@%ABCD%%%
and services, you need to fill in or provide your name,
address, contact information…

Figure 4.5: The visualization of divergence between ground truth and prediction for

missing Purpose.

Figure 4.2 illustrates the scenario where there exists overlapping between compo-

nents, i.e., the “basic registration or login information (圡朡氡儣戣瘡弡伤怡)”.

Exactly, “basic registration or login information” should be one data as is highlighted

in the Chinese version, i.e., the ground truth. However, the algorithm will predict

“basic registration or login (圡朡氡儣戣瘡弡)” as Purpose and “information(伤怡)”

as Data, as is highlighted in the English version. The meaning of color for di!erent

categories can be referred to Figure 4.1. Figure 4.5 shows that the pre-trained al-

gorithm may misclassify Purpose as Condition when we show the prediction results

of the algorithm and some common problems. These problems could be the limita-

tions of existing models and also be challenges for designing algorithms for our data

scenario.

Figure 4.2 illustrates the scenario where there exists overlapping between compo-

nents, i.e., the “basic registration or login information (圡朡氡儣戣瘡弡伤怡)”.

Exactly, “basic registration or login information” should be one data as is highlighted

in the Chinese version, i.e., the ground truth. However, the algorithm will predict

“basic registration or login (圡朡氡儣戣瘡弡)” as Purpose and “information(伤怡)”

as Data as is highlighted in the English version. The meaning of color for dif-

ferent categories can be referred to Figure 4.1. Figure 4.5 shows the pre-trained

algorithm may misclassify Purpose as Condition when the data controller is the user

data controller is the user.

95

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

4.5.2 Case Study

In this section, we will present cases of potential applications of CA4P-483, such as

whether privacy policies comply with regulatory requirements and whether privacy

policies are consistent with the apps’ functionalities.

Regulation compliance identification. Chinese privacy-related laws [108, 98, 27]

ask developers to clearly claim purpose conditions for processing user privacy data.

We first investigate the distribution of annotations in CA4P-483. Fig.4.6 sketches the

box plot of the frequency of components in each privacy policy. Fig.4.6 indicates

that some privacy policies claim data processing without clarifying the purpose and

condition, i.e., the minimum frequency of Data is positive while that of Purpose is

zero. We manually inspect privacy policies. We find that the privacy policies, whose

package name is com.yitong.weather, claim the app collects users’ data while omitting

to give the purposes or conditions of data access, which violates regulation require-

ments. Thus, CA4P-483 can facilitate the research in the area of privacy compliance

identification [6, 14].

App behavior consistency identification. To improve the security of the Android

community, researchers design systems [7, 165] to identify the consistency between

privacy policies and app behaviors to prevent apps from abusing user data or conduct-

ing malicious behavior. One popular method to check the app’s behavior is dynamic

analysis [159], i.e., running the app on the device and checking the log information.

To investigate the application of CA4P-483 in the security community, we first identify

the privacy policies without purpose or condition components. Then, we install the

app on one smartphone, manually interact with the app, and try our best to trigger

all possible functions in the app by clicking every visible button. We use logcat to cap-

ture the app’s running information. We find that the app (id: com.chengmi.signin)

requests device storage to use the app’s functionalities, while no condition-related

statements are claimed in its privacy policy. With more intelligent automatic soft-

96

4.6. Discussion

Da
ta

Co
ll
ec
t

Sh
ar
e

Co
nt
ro
ll
er

Co
nd
it
io
n

Re
ce
iv
er

Pu
rp
os
e

0

20

40

60

80

100

#
c
o
m
p
o
n
e
n
t
s

p
e
r

p
r
i
v
a
c
y

p
o
l
i
c
y

Figure 4.6: Components distribution of CA4P-483.

ware engineering techniques, CA4P-483 can facilitate research in this area, and more

vulnerabilities in the consistency between app behavior and privacy policy could be

investigated.

4.6 Discussion

In this section, we first discuss di”culties in CA4P-483. Then, we propose potential

research topics on CA4P-483. Finally, we discuss the limitations of CA4P-483. Besides,

we also discuss ethical concerns.

97

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

4.6.1 Dataset Di”culties

Based on evaluation results in §4.5 and related work, we raise the following di”culties:

1) How do we distinguish overlaps between components? 2) How to e!ectively deal

with the length variation of components? 3) Di”culties in semantic analysis.

Di!erent from traditional sequence labeling tasks, components in our data set may

contain other components. One scenario is that the Purpose or Conditions may be

used to decorate the data, for example, “We will collect your login information (戤

丣伥攡阡怢瘢瘡弡伤怡)” where the login may be understood as the purpose of

information. Since traditional sequence labeling methods predict one character with

one label, it is hard to distinguish component overlaps. One possible solution is

using multi-model algorithms [134] that demonstrate e!ectiveness for distinguishing

boundaries between entities. Similar to traditional news or social media datasets that

use voice or images as additional information, integrating apps’ analysis results helps

distinguish di!erent components.

Second, existing sequence labeling tasks mainly concentrate on entity recognition,

while practical applications may require labeling clauses for further analysis. Table 4.1

shows that the average length of components in CA4P-483 varies from 2.03 to 19.24.

CSP
3 not only requires identifying words but also asks the models to identify the role

of clauses.

The semantic analysis of privacy policies is still di”cult. Laws require apps to clearly

clarify how apps collect and share user data. Privacy policies can claim that apps

will share data with third parties or that third parties will collect user data. In this

way, it becomes essential to understand the context to distinguish the controller and

action type. It could be a solution to use multi-model algorithms integrating program

analysis to improve the performance; however, identifying the third party and the app

itself remains a challenge in program analysis.

98

4.6. Discussion

4.6.2 Limitations

CA4P-483 provides detailed annotations for data access statements in privacy policies.

However, analyzing privacy policies using CA4P-483 depends on the performance of

locating data access-related sentences. We use data collection and sharing words to

locate the sentences. However, some Purpose and Condition claims may be given as an

enumeration format, such as “we will not share your personal data under the following

conditions”. CA4P-483 is limited when capturing information in the enumeration

format.

Privacy policies possess timeliness. App developers should provide privacy policies

when publishing the apps. When the apps’ functionality updates, the privacy poli-

cies ought to be updated accordingly. The data set is limited to the timestamp we

collected. When combining our dataset with program analysis, this factor should be

considered.

The varying regulatory requirements for privacy policies across regions pose signifi-

cant challenges. The label design in CA4P-483 is based on Chinese regulatory frame-

works [27, 100, 98]. However, regulatory authorities impose stringent and distinct

requirements for app user data access in di!erent regions, exemplified by the General

Data Protection Regulation (GDPR) in Europe [47]. This necessitates the develop-

ment of adaptable privacy policy analysis systems that can account for region-specific

regulatory nuances.

4.6.3 Ethical Consideration

CA4P-483 is a dataset constructed by gathering publicly available privacy policy web-

sites without posing any ethical problems. First, privacy policies are publicly accessi-

ble in multiple ways. According to the application market’s requirements, developers

or companies are asked to provide those privacy policy websites once they publish

99

Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

their apps. Privacy policies also ought to be given when the users use apps for

the first time according to law requirements [108]. Second, we do not collect any

privacy-related information. Besides, the CA4P-483 is proposed to prompt research

for protecting user privacy.

For the annotations, we hired part-time research assistants from our university to

label the dataset. They are compensated with 9 USD/hour and at most 17.5 hours

per week.

100

Chapter 5

Investigating Pre-trained Large

Language Models for Chinese

Privacy Policy Analysis

5.1 Overview

Pretrained large language models (LLMs) achieve great success in understanding the

semantics of natural language. Pre-trained LLMs are trained on vast collections of di-

verse natural language resources, including Wikipedia, publicly available news, books,

and programming code, among others [185, 102]. Consequently, LLMs are equipped

with general natural language understanding abilities, such as document summariza-

tion [175, 22], sentence completion [99], etc. In addition to general-purpose capabili-

ties, LLMs fine-tuned on specific datasets for particular tasks have shown exceptional

performance. For example, LLMs trained on programming-related data excel in tasks

such as code completion[81, 95], code generation[104, 86], code summarization[1, 75],

etc. However, achieving such performance often requires access to extensive domain-

specific datasets for training[140] or fine-tuning[84], which can be resource intensive.

101

Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

In addition, recent research highlights that LLMs perform suboptimally on special-

ized downstream tasks when they are not explicitly trained for those purposes. Tasks

like summarizing legal documents or drafting scripts exemplify these limitations. To

address these challenges and improve the capabilities of LLMs for domain-specific

tasks, researchers and industry professionals have increasingly adopted prompting-

based approaches [46, 82]. These methods leverage the inherent generative capabili-

ties of LLMs to tackle a wide range of tasks without the need for extensive retraining

or fine-tuning.

Existing applications of Large Language Models (LLMs) for privacy policy analysis

primarily focus on summarizing privacy policies [139, 80], identifying privacy issues

within LLM applications [23], and analyzing privacy policies in specific domains with

a coarse-grained approach [90, 116]. Although these studies provide valuable infor-

mation, the studies often limit their scope to specific domains, thus restricting their

applicability to various real-world scenarios. Besides, existing work of accessing ca-

pabilities of LLM for privacy policies analysis focuses on English privacy policies.

Furthermore, while LLMs o!er powerful capabilities for natural language processing,

the application of LLMs is still constrained by practical limitations, such as input

length restrictions.

In this work, we aim to investigate the potential of applying pre-trained large lan-

guage models (LLMs), which have demonstrated powerful natural language semantic

understanding capabilities, to the task of analyzing Chinese privacy policies. This

task presents two primary challenges: (1) Pretrained LLMs are predominantly trained

on English corpora, which may limit their performance in Chinese-language environ-

ments, and (2) Privacy policies are often lengthy, with the same phrases and nouns po-

tentially serving di!erent roles across di!erent sentences. To address these challenges,

we adopt the following strategies: (1) Decomposing the end-to-end task, which refers

to analyzing the entire privacy policy and generating a final analysis report, into mul-

tiple sentence-level analysis tasks, and (2) Applying prompt engineering techniques,

102

5.2. Preliminaries

such as few-shot learning, to enhance the performance of LLMs on analyzing Chinese

privacy policies. We empirically evaluate the capabilities of Large Language Models

(LLMs) for analyzing regulation-required items in privacy policies. Specifically, we

carefully craft prompts with advanced prompt engineering techniques to query var-

ious popular pre-trained LLMs, aiming to identify regulation-required items within

sentences of privacy policies. Our experiments on both publicly available LLMs, i.e.,

LLaMA and Qwen, and the popular commercial LLM, i.e., ChatGPT, demonstrate

the models’ e!ectiveness in analyzing privacy policy tasks. We also systematically

analyze the results and provide further directions for leveraging the capabilities of

LLMs to protect user privacy.

The main contributions of this work are summarized as follows:

(1) We empirically evaluate the performance of both popular publicly available LLMs

and commercial LLMs in identifying regulation-required items in privacy policies.

Our evaluations employ advanced prompt engineering techniques to instruct LLMs

in handling downstream tasks e!ectively.

(2) We systematically analyze the evaluation results and provide further directions

for leveraging the capabilities of LLMs to protect user privacy. Our analysis high-

lights key insights into the strengths and limitations of LLMs in this context, o!ering

recommendations for future research and practical applications aimed at enhancing

privacy protection.

5.2 Preliminaries

In this section, we present the necessary knowledge on applying pre-trained large

language models for downstream tasks, including a basic introduction to pre-trained

large language models and prompt engineering.

103

Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

5.2.1 Pre-trained Large Language Models

Pre-trained large language models (LLMs) revolutionize the field of natural language

processing (NLP) by enabling significant advancements across a wide range of down-

stream tasks. LLMs are trained on massive corpora using self-supervised learning,

allowing the models to capture rich contextual representations of language. Notable

LLMs include BERT [35], which introduced bidirectional pretraining for language

understanding, and the GPT series [16], which demonstrated remarkable generative

capabilities using autoregressive modeling. Additionally, more recent models, such

as T5 [111], have emphasized the versatility of sequence-to-sequence architectures for

both understanding and generation tasks. LLMs are adapted to specific domains,

including legal [21] and biomedical [57] text, illustrating their potential for domain-

specific applications. However, challenges remain in applying these models to tasks

requiring deep contextual understanding or domain adaptation, such as analyzing

privacy policies.

5.2.2 Prompt Engineering

Prompt engineering emerges as a critical technique for optimizing the performance of

pre-trained large language models (LLMs) across various natural language process-

ing (NLP) tasks. By designing e!ective prompts, researchers aim to guide LLMs to

generate more accurate and contextually appropriate outputs, even without extensive

fine-tuning. Early work on prompt engineering, such as PET [118], demonstrates how

template-based prompting could be used to adapt LLMs for few-shot learning scenar-

ios. The introduction of zero-shot and few-shot prompting paradigms in GPT-3 [16]

further highlights the importance of carefully crafting prompts to elicit desired behav-

ior. AutoPrompt [121] explores automated approaches to generate optimal prompts.

Additionally, chain-of-thought prompting [148] shows that structuring prompts to

encourage step-by-step reasoning can significantly improve performance on complex

104

5.3. Framework

当⽤户使⽤咪咕公司提供的产品或服务时，⽤户
同意咪咕公司按照在咪咕产品上公布的隐私权政
策收集、存储、使⽤、披露和保护⽤户个⼈信息。

本协议终⽌后，除法律有明确规定外，咪咕公司
⽆义务向⽤户或⽤户指定的第三⽅披露⽤户帐号
中的任何信息。

Privacy
Policy Sentences

… …

prompte_template_1 = """You are an expert in analyzing privacy
policies for mobile applications, with over ten years of experience in
assessing compliance.

You will be provided with a sentence from a Chinese privacy policy.
Your task is to perform named entity recognition (NER) to identify key
entities related to privacy practices. Specifically, you need to
extract the following components: Data Controller, Data Entities, Data
Behavior (Collection or Sharing), Condition, Purpose, and Data
Receiver. There may be zero, one, or multiple entities in the sentence,
and your goal is to identify all of them accurately using the given
output format.

Definitions of Components:
1. **Controller**: The entity responsible for determining the purposes
and means of processing personal data.
2. **Data**: Information that identifies or reflects the activities of
an individual.
3. **Collection**: Actions taken by the controller to obtain or access
data.
4. **Sharing**: Actions taken by the controller to distribute data to
others.
5. **Condition**: The circumstances under which personal data is
accessed or processed.
6. **Purpose**: The reason or objective for processing user data.
7. **Receiver**: Parties that receive user data.

Output Format:
- Use the format: 【entity_1|type_1】, 【entity_2|type_2】, ...
- If there are no entities in the sentence, output: **</|/>**.
- ALL entities must be extracted exactly as they appear in the input
sentence, maintaining the original nouns or verbs.

Examples:
1. **Input**:
```您在注册启信宝时，我们会收集、使⽤、保存、共享您的相关个⼈信息。```
**Output**:  
【注册启信宝时|condition】, 【我们|controller】, 【收集|collection】, 【使⽤
|collection】, 【保存|collection】, 【共享|sharing】, 【个⼈信息|data】

2. **Input**:  
```启信宝可能会为了推荐适合您的产品与供应商共享您的兴趣爱好信息。```  
Output:
【启信宝|controller】, 【推荐适合您的产品|purpose】, 【供应商|receiver】, 【兴趣
爱好信息|data】

Now it’s your turn!
Input:
```{pp_sentence}```
**Output**:"""

Prompt LLMs

【咪咕公司｜Controller】，【收集｜Collect】，
【存储｜Collect】，【使⽤｜Collect】，【披
露｜Share】，【⽤户个⼈信息｜Data】，【⽤
户使⽤咪咕公司提供的产品或服务时｜Condition】

【咪咕公司｜Controller】，【披露｜Share】，
【⽤户帐号｜Data】，【法律有明确规定｜
Condition】

… …

Inference 
Output

…

Figure 5.1: Framework of LLMPP

tasks. Existing work underscores the significance of prompt engineering as a flexi-

ble and e!ective method for leveraging the capabilities of LLMs in both general and

domain-specific contexts.

5.3 Framework

In this section, we introduce the framework for our LLM-based Privacy Policy analysis

(LLMPP). Figure 5.1 illustrates the framework of LLMPP. Given a Chinese privacy

policy document, LLMPP first segments the document into sentences containing spe-

cific keywords of interest (§5.3.2). Next, each sentence is embedded into a carefully

crafted prompt (§5.3.3). Then, the prompts will be used to query di!erent pre-trained

LLMs. Each sentence is used to query each LLM individually every time. Finally,

LLMPP retrieves the generated content from the LLMs, parses the output, and eval-

uates the performance of the LLMs in identifying key entities and entity types within

the sentences.

In the following of this section, we first define the tasks that LLMPP is designed to

address. Next, we explain the process of analyzing privacy policies and how they are

prepared for querying LLMs to infer the desired outputs. Finally, we introduce the

prompt design, which incorporates prompt engineering techniques.

105



Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

5.3.1 Task Description

LLMPP is designed to identify regulation-required elements within privacy policies.

Specifically, LLMPP is required to determine who is responsible for data-related ac-

tions, such as collection or sharing, under what conditions, and for what purposes.

Additionally, LLMPP identifies the parties that will receive the shared data if ap-

plicable. Given the token limitations of large language models (LLMs), such as 4K

tokens for ChatGPT-3.5 [102] and 128K tokens for QWen [160], LLMPP processes

privacy policies on the sentence level. Moreover, as LLMs have demonstrated unreli-

able performance in numeric counts [124, 176], LLMPP is designed to directly output

the identified entities and entity types in the provided sentences, rather than label-

ing individual characters within the sentences which is a kind of numeric counting

task. For example, the sentence “戤丣伥攡阡伦瘢連笡圢圣” will be labeled as

“B-Controller, E-Controller, O, B-Collect, E-Collect, O, O, B-Data, I-Data, I-Data,

E-Data” in traditional named entity tasks such as experiments in CA4P-483. When an

LLM is tasked with producing the same number of labels as the number of characters

in a sentence, the output becomes highly unreliable and di”cult to control [124, 176].

We also conducted a case study (§5.4.6) to evaluate the performance of LLMs when

the task is defined as labeling each character in sentences. The results demonstrate

poor performance. Thus, LLMPP is designed to output a more structured result:

“〡戤丣|Controller〢Ａ〡攡阡|Collect〢Ａ〡連笡圢圣|Data〢.”

5.3.2 Privacy Policy Preprocessing

To enable LLMPP to accurately identify regulation-required items in privacy policies,

we first extract sentences of interest using the same methodology as CA4P-483. Fol-

lowing previous research [6, 183, 58], we iterate through each sentence in the privacy

policy and determine whether it contains keywords related to sharing or collection,

based on a predefined word list as is given in Table 4.3 [183]. Sentences contain-

106



5.3. Framework

ing predefined keywords will be embedded in prompts to query LLMs for identifying

regulation-required entities and corresponding entity types.

5.3.3 Prompt Design

Existing work demonstrates that a well-designed prompt is highly e!ective in lever-

aging the capabilities of Large Language Models (LLMs) for resolving downstream

domain-specific tasks. Drawing on advanced prompt engineering techniques, we care-

fully craft our prompt to harness the full potential of LLMs in identifying privacy

components within sentences of Chinese privacy policies. Our prompt design is de-

tailed in Figure 5.2. Our approach to prompt design focuses not on discovering the

optimal prompts to achieve the highest performance metrics for pre-trained large lan-

guage models, but rather on applying advanced prompt engineering techniques to

create e!ective prompts tailored for handling privacy policies. We recommend that

users adapt our prompt by substituting specific definitions to better fit their partic-

ular use cases and scenarios. Next, we provide a detailed introduction to our prompt

and explain the rationale behind its design.

Our prompt begins by assigning a role to the LLM: “You are an expert in...” that

aims to make the LLM analyze privacy policies in a more professional manner. As-

signing a role[115] to the LLM has been shown to establish a behavioral framework

for the model, influencing its tone, style, and level of domain-specific expertise. Ad-

ditionally, this approach can increase domain relevance and ensure that the output

reflects professional-level analysis.

Following by, we explicitly describe the definition of the task according to [185],

ensuring that LLMs understand the purpose of the task. Specifically, we first describe

the type of data that will be input for analysis that corresponds to “You will be

provided with a sentence from a Chinese privacy policy” in our prompt. The task

then requires the LLM to perform a named entity recognition (NER) task, i.e., “Your

107



Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

LLM_PP_Prompt = """You are an expert in analyzing privacy policies 
for mobile applications, with over ten years of experience in 
assessing compliance.

You will be provided with a sentence from a Chinese privacy policy. 
Your task is to perform named entity recognition (NER) to identify 
key entities related to privacy practices. Specifically, you need to 
extract the following components: Data Controller, Data Entities, 
Data Behavior (Collection or Sharing), Condition, Purpose, and Data 
Receiver. There may be zero, one, or multiple entities in the 
sentence, and your goal is to identify all of them accurately using 
the given output format.

**Definitions of Components**:
1. **Controller**: The entity responsible for determining the 
purposes and means of processing personal data.
2. **Data**: Information that identifies or reflects the activities 
of an individual.
3. **Collection**: Actions taken by the controller to obtain or 
access data.
4. **Sharing**: Actions taken by the controller to distribute data 
to others.
5. **Condition**: The circumstances under which personal data is 
accessed or processed.
6. **Purpose**: The reason or objective for processing user data.
7. **Receiver**: Parties that receive user data.

**Output Format**:
- Use the format: 【entity_1|type_1】, 【entity_2|type_2】, ...
- If there are no entities in the sentence, output: **</|/>**.
- ALL entities must be extracted exactly as they appear in the input 
sentence, maintaining the original nouns or verbs.

**Examples**:
1. **Input**:  
```您在注册启信宝时，我们会收集、使⽤、保存、共享您的相关个⼈信息。```
Output:
【注册启信宝时|condition】, 【我们|controller】, 【收集|collection】, 【使
⽤|collection】, 【保存|collection】, 【共享|sharing】, 【个⼈信息|data】

2. **Input**:
```启信宝可能会为了推荐适合您的产品与供应商共享您的兴趣爱好信息。```  
**Output**:  
【启信宝|controller】, 【推荐适合您的产品|purpose】, 【供应商|receiver】, 
【兴趣爱好信息|data】

Now it’s your turn!
**Input**:  
```{pp_sentence}```
Output:"""

Figure 5.2: Prompt Design for Leveraging LLM for Analyzing Privacy Policies

108

5.3. Framework

task is to perform named entity recognition (NER) to identify key entities related to

privacy practices” in our prompt. The LLM is tasked with identifying seven types

of components within the provided privacy policy sentences. A clear task description

provides the model with a precise and unambiguous understanding of the downstream

tasks, minimizing confusion and hallucinations, and ensuring the model focuses on the

specified tasks. This approach enhances the accuracy and reliability of the LLM’s

output by guiding it to concentrate on relevant information.

After describing the tasks, we apply context-aware prompting [16] to clearly high-

light the definition of each component to be analyzed. For instance, “Controller” is

described in terms specific to data governance. By providing such definitions, we aim

to ensure that the LLMs clearly understand the scope of each component, referencing

LLM’s general knowledge from training data. Context-aware prompting [185, 16] has

been shown to enhance the accuracy of outputs. Moreover, context-aware prompt-

ing enables the model to better generalize when dealing with nuanced or ambiguous

terms prevalent in specialized fields. By enhancing the model’s understanding of

domain-specific terminology, context-aware prompting improves the reliability and

applicability of the LLM’s output in complex scenarios.

Following the clear task description and component definitions, we further leverage

Instruction-Tuned Prompting [103, 87] that states the expected output structure

in our prompt. Specifically, we ask LLM to use 〡entity 1|type 1〢 for entity anno-

tations or ↖↖ < /|/ > ↖↖ when no entities are found to facilitate further parsing of the

results of generated content by LLMs. We specify the output format for the LLMs.

Clear descriptions of the output format aim to unify the generated content from the

LLMs, facilitating further analysis of LLMs’ performance and simplifying the result

parsing process.

Next, we apply few-shot learning techniques [16] to provide the LLM with a few

examples to better understand the task definitions and the required output format.

Few-shot learning has been demonstrated to e!ectively enhance task comprehension,

109

Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

particularly in specialized domains, by providing the model with concrete examples

of context, patterns, and output structure.

When using the prompt to query LLMs for analyzing privacy policies, the placeholder

{pp sentence} will be replaced by the specific sentence to be analyzed.

5.4 Experiments

5.4.1 Model Summaries

In this study, we empirically evaluate the three most popular large language models.

The first two models are publicly accessible pre-trained models, i.e., Qwen [160] and

LLaMA [141], while the third is the commercially dominant generative AI product,

i.e., ChatGPT [102, 71]. Specifically, we evaluate Qwen 2.0 7B, LLaMA 3.1 8B, and

ChatGPT 3.5 Turbo-0613.

LLaMA 3.1 8B [141], released in April 2024, features 8 billion parameters and was

trained on an extensive dataset of over 15 trillion tokens, enabling it to handle contexts

of up to 8,000 tokens. Qwen 2.5 7B [160], launched on 19 September 2024, has

7 billion parameters and is fine-tuned for instruction-following tasks, although the

precise size of its training dataset is not disclosed. ChatGPT 3.5 [102], which does

not o”cially disclose its parameter count, is estimated to have approximately 175

billion parameters and was trained on a dataset containing 300 billion tokens, with

updates made until April 2023.

Each of these models represents a notable advancement in large language model tech-

nology, with LLaMA 3.1 8B and Qwen 2.5 7B being more recent releases, and Chat-

GPT 3.5 is widely recognized for its extensive training and broad capabilities.

110

5.4. Experiments

5.4.2 Experiment setup

To assess the e!ectiveness of large language models (LLMs) in processing Chinese

privacy policies, we conduct a series of experiments to evaluate the performance of

three widely adopted models on the CA4P-483 dataset [183], which contains a com-

prehensive collection of Chinese privacy policy documents accompanied by detailed

annotations. CA4P-483 provides Chinese privacy policy texts and annotates sentences

related to data collection and sharing. Each annotation specifies who is responsible

for collecting or sharing what type of personal data, with whom, and under which

conditions or for what purposes.

For the LLMs, the configuration details of each model are as follows: For ChatGPT

3.5, we utilize the Python requests library to interact with the GPT-3.5 API, spec-

ifying only the user role and populating the predefined prompt in the content field.

For Qwen 2.5 and LLaMA 3.1, we evaluate the performance of these LLMs on an

Ubuntu 20.04 server equipped with four NVIDIA A100 GPUs (each with 80 GB of

memory), 1 TB of RAM, and an Intel(R) Xeon(R) Platinum 8358 CPU running at

2.60 GHz.

Our experiments are finally designed to answer the following three research questions:

• RQ1: Main results. What is the e!ectiveness of models in identifying privacy

components in privacy policies?

• RQ2: Ablation study. What is the impact of di!erent prompt engineering

techniques on model performance?

• RQ3: Hallucination analysis. What are hallucinations in LLMPP, and how

does prompt engineering mitigate hallucinations in LLMPP?

111

Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

Table 5.1: Main Results

Entity Type
GPT Llama Qwen

Precision Recall F1 Precision Recall F1 Precision Recall F1

O 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Data 87.02% 74.10% 80.04% 83.79% 58.69% 69.03% 77.99% 17.24% 28.24%

Controller 71.34% 48.08% 57.44% 75.61% 54.72% 63.49% 52.45% 23.19% 32.16%

Collection 69.69% 28.94% 40.89% 74.26% 42.79% 54.30% 31.35% 9.05% 14.05%

Sharing 89.16% 32.65% 47.80% 90.24% 23.66% 37.50% 60.78% 5.08% 9.37%

Condition 45.84% 30.01% 36.27% 36.15% 29.87% 32.71% 4.20% 7.01% 5.26%

Purpose 45.52% 33.27% 38.44% 61.00% 21.28% 31.55% 46.29% 5.68% 10.12%

Receiver 63.50% 58.94% 61.13% 71.25% 47.59% 57.07% 75.11% 10.93% 19.08%

Overall 49.02% 49.02% 49.02% 44.24% 44.24% 44.24% 13.26% 13.26% 13.26%

5.4.3 RQ1. E!ectiveness of LLMs in analyzing privacy poli-

cies.

Table 5.1 presents the main results of three LLMs on all 18,579 sentences from the

CA4P-483 dataset. In line with previous research [183], we evaluate the results using

the Precision, Recall, and F1 score. Since LLMs may not always adhere to the

instructions to produce outputs in the predefined format, we exclude results that do

not align with the required output format. Specifically, ChatGPT-3.5 strictly follows

the predefined output format, while LLaMA generates 238 instances, and QWen 2.5

produces 365 instances that deviate from the expected format. Additionally, the

entity type O in Table 5.1 denotes entities that are not specified in the ground truth

but are identified by the LLM as belonging to one of the predefined entity types. To

parse the results generated by the LLM, we only consider outputs that strictly adhere

to the required format. Specifically, entities and their corresponding types must follow

the format “〡entityＢentity type〢”, where each item represents a single entity, and

multiple entities are separated by commas. For example, acceptable outputs include

112

5.4. Experiments

“〡两严伤怡ＢData〢Ａ〡儡両ＢSharing〢”.

Table 5.1 presents the main results and reveals that all large language models (LLMs)

achieve higher precision than recall across all entity types. This suggests that while

LLMs are e!ective in correctly identifying entities as belonging to their defined types,

LLMs often misclassify entities of other types as belonging to these categories. Among

the entity types, all LLMs demonstrate strong performance in identifying data enti-

ties. However, the performance of LLMs drops significantly for condition and purpose

entities, with Qwen achieving an F1-score as low as 5.26% for condition entities. The

results align with the analysis presented in Table 4.5, as conditions and purposes

are inherently challenging to distinguish, even for human analysts, without su”cient

context. In addition, overall metrics are notably lower than average metrics for indi-

vidual entity types. This discrepancy indicates that a substantial number of entities

are incorrectly classified as O (i.e., non-entities). To gain deeper insights into these

misclassifications, we conduct a detailed analysis of the confusion matrices for each

LLM.

Figures 5.3, 5.4, and 5.5 present the confusion matrices for ChatGPT-3.5, LLaMA,

and Qwen, respectively. Since the LLMPP task definition does not include O as a

valid entity type in the ground truth, the first rows of all confusion matrices are

entirely zeros. Another phenomenon observable from the confusion matrices is that

the LLMs pretend to misclassify entities of known types as non-predefined entity types

rather than identify the entities as known types. This suggests that LLMs may not

have fully learned the definitions of all entity types but could correctly distinguish the

di!erence between di!erent entity types from the definition. Additionally, a plausible

explanation for this phenomenon could be that LLMs are primarily pre-trained on

English corpora and thus struggle to generalize e!ectively to Chinese sentences. Since

the CA4P-483 dataset was released in July 2022, it is worth noting that even though

evaluated models were released after the dataset became available, LLMs still perform

poorly on these tasks. This underscores the challenges inherent in privacy policy

113

Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

Figure 5.3: Confusion metrics of ChatGPT 3.5.

analysis tasks.

Answer to RQ1: Identifying privacy components remains a challenging task for

general pre-trained language models. While LLMs demonstrate the capability to

correctly identify privacy-related components in privacy policies, they also exhibit

a tendency to misclassify non-privacy-related components as privacy-related ones.

114

5.4. Experiments

Figure 5.4: Confusion metrics of LLaMA.

5.4.4 RQ2: Impact of Prompt Engineering Techniques on

Model Performance

This research question conducts an ablation analysis to evaluate the impact of vari-

ous prompt engineering techniques applied in our prompt design on the performance

of LLMPP. While the primary goal of this work is not to identify optimal prompts

for maximizing LLM performance, the techniques incorporated into our prompt de-

sign are derived from existing reports, research, and documented methods that have

demonstrated e!ectiveness in general scenarios. The ablation study aims to evaluate

whether prompt engineering techniques enhance performance in the specific context of

privacy policy analysis. Additionally, the ablation study seeks to provide researchers

115

Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

Figure 5.5: Confusion metrics of QWen.

with practical insights and references for designing prompts tailored to their applica-

tion scenarios.

To address this research question, we conduct an ablation study by isolating and evalu-

ating each prompt engineering technique individually. The prompt techniques include

assigning a role prompting (ARP), task description (TDP), context-aware prompting

(CAP), instruction-tuned prompting (ITP), and few-shot prompting (FSP). To eval-

uate each technique, we use all other techniques collectively to query the target Large

Language Model (LLM) and analyze its performance on privacy policy sentences. To

ensure fairness and consistency, we apply a standardized results parser format across

all outputs generated by the LLMs. Specifically, the results are parsed using the

116

5.4. Experiments

Table 5.2: Ablation study results of prompt engineering techniques in LLMPP
ARP TDP CAP ITP FSP

GPT

Class Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

O 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Data 85.04% 74.65% 79.51% 87.08% 72.49% 79.12% 85.47% 74.81% 79.79% 87.49% 68.89% 77.08% 0.00% 0.00% 0.00%

Controller 71.85% 48.14% 57.65% 74.04% 55.73% 63.60% 69.66% 48.12% 56.92% 72.41% 49.57% 58.85% 0.00% 0.00% 0.00%

Collection 68.41% 27.84% 39.58% 63.70% 33.21% 43.66% 67.97% 22.07% 33.32% 73.78% 28.60% 41.23% 0.00% 0.00% 0.00%

Sharing 88.39% 30.40% 45.24% 87.18% 34.25% 49.18% 90.96% 20.39% 33.31% 89.44% 28.43% 43.15% 0.00% 0.00% 0.00%

Condition 47.52% 29.17% 36.15% 42.54% 35.94% 38.96% 46.02% 29.31% 35.81% 44.78% 24.50% 31.67% 0.00% 0.00% 0.00%

Purpose 47.91% 32.87% 38.99% 41.97% 36.47% 39.02% 52.74% 33.46% 40.94% 38.50% 29.29% 33.27% 0.00% 0.00% 0.00%

Receiver 66.08% 60.52% 63.18% 69.10% 59.88% 64.16% 63.99% 57.23% 60.42% 69.30% 52.12% 59.49% 0.00% 0.00% 0.00%

Overall 48.79% 48.79% 48.79% 51.74% 51.74% 51.74% 0.469173 46.92% 46.92% 45.74% 45.74% 45.74% 0.00% 0 0

Class Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Llama

O 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Data 84.23% 52.40% 64.60% 82.69% 59.91% 69.48% 78.74% 59.81% 67.98% 85.91% 52.97% 65.53% 0.00% 0.00% 0.00%

Controller 75.40% 52.58% 61.96% 70.71% 58.34% 63.93% 71.84% 49.82% 58.84% 78.66% 48.62% 60.09% 0.00% 0.00% 0.00%

Collection 73.83% 37.78% 49.98% 61.26% 51.76% 56.11% 74.37% 32.30% 45.04% 74.27% 46.54% 57.23% 0.00% 0.00% 0.00%

Sharing 89.36% 19.18% 31.58% 79.44% 33.48% 47.11% 93.22% 18.15% 30.38% 79.92% 24.59% 37.60% 0.00% 0.00% 0.00%

Condition 34.91% 30.83% 32.74% 32.27% 36.98% 34.46% 35.86% 24.37% 29.02% 23.19% 36.81% 28.45% 0.00% 0.00% 0.00%

Purpose 61.87% 20.29% 30.56% 54.71% 25.10% 34.41% 63.89% 18.18% 28.31% 60.79% 25.32% 35.75% 0.00% 0.00% 0.00%

Receiver 71.72% 42.97% 53.74% 66.68% 49.11% 56.56% 71.31% 49.70% 58.57% 71.44% 41.00% 52.10% 0.00% 0.00% 0.00%

Overall 40.58% 40.58% 40.58% 48.72% 48.72% 48.72% 0.410468 41.05% 41.05% 42.67% 42.67% 42.67% 0.00% 0 0

Class Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Qwen

O 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Data 80.01% 11.03% 19.39% 81.68% 11.49% 20.14% 83.21% 11.81% 20.68% 77.66% 7.69% 13.99% 0.00% 0.00% 0.00%

Controller 60.73% 20.08% 30.19% 52.86% 19.28% 28.26% 44.97% 16.55% 24.19% 45.01% 10.71% 17.31% 0.00% 0.00% 0.00%

Collection 42.53% 6.20% 10.82% 44.28% 8.27% 13.94% 34.13% 7.17% 11.85% 22.10% 4.88% 7.99% 0.00% 0.00% 0.00%

Sharing 73.82% 3.47% 6.62% 76.87% 6.18% 11.44% 71.68% 4.30% 8.12% 55.88% 2.69% 5.13% 0.00% 0.00% 0.00%

Condition 8.64% 5.15% 6.45% 10.63% 10.17% 10.40% 5.14% 8.08% 6.28% 4.80% 7.73% 5.92% 0.00% 0.00% 0.00%

Purpose 47.12% 3.57% 6.63% 42.82% 4.59% 8.29% 46.37% 4.06% 7.47% 35.62% 3.37% 6.15% 0.00% 0.00% 0.00%

Receiver 72.26% 7.63% 13.81% 70.37% 9.74% 17.10% 74.29% 10.94% 19.08% 66.24% 6.92% 12.52% 0.00% 0.00% 0.00%

Overall 9.65% 9.65% 9.65% 11.01% 11.01% 11.01% 0.100427 10.04% 10.04% 6.88% 6.88% 6.88% 0.00% 0 0

format 〡entity 1|type 1〢. This uniform approach is essential because the results

parser is an integral part of our prompt design. It facilitates e”cient and accurate

parsing of the model outputs, ensuring that the results can be reliably interpreted

and compared across di!erent scenarios.

Table 5.2 presents the results of the ablation study on prompt engineering techniques

in LLMPP. Assigning a Role Prompting (ARP) slightly improves the performance

of all three models. Without ARP, the F1-score for GPT drops from 49.02% to

48.79%, and for Llama, the F1-score decreases from 44.24% to 40.58%. The F1-

score of Qwen also decreases from 13.26% to 9.65%. Task Description Prompting

(TDP) enhances the performance of Qwen, increasing its F1-score from 11.67% to

117

Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

19.45%. However, TDP demonstrates side e!ects on the performance of GPT and

Llama. Without TDP, the F1-score of GPT increases from 49.02% to 51.74%, and the

F1-score of Llama increases from 44.24% to 48.72%. Both Context-Aware Prompting

(CAP) and Instruction-Tuning Prompting (ITP) demonstrate consistent and e!ective

improvements across all three models too. The performance of CAP and ITP suggests

that providing clear definitions of each privacy component and the expected output

format help the models better understand the task, leading to improved performance.

This highlights the importance of precise and context-aware prompt design in guiding

LLMs for specific tasks.

Another phenomenon is that without few-shot prompting (FSP), all three models

achieve the worst performance. This indicates that providing examples to LLMs can

e!ectively help LLMs understand the requirements of the task, the definition of each

privacy component, and the output format requirements. We manually analyze the

results of few-shot prompting. We observe that without FSP, the output of LLMs

cannot follow the requirements of the output format. Some outputs do not strictly

adhere to the required format, such as failing to enclose content within brackets〡〢

or omitting the use of vertical bars — for separation. For example, outputs like “两

严伤怡Ｂdata” or “〡產謣匤砡Ａ data〢” do not fully comply with the specified

format. Additionally, some outputs begin with the entity type followed by a colon

and the corresponding entities under that type, such as ”data: 两严伤怡Ａ產謣匤砡”.

The first format may arise from the LLM interpreting the brackets “〡〢” as merely a

presentational element rather than a strict formatting requirement. Another format

may stem from the type definition structure used in Task Description Prompting

(TDP). To further analyze the performance of LLMs without FSP, we incorporate

parsing mechanisms with both of the aforementioned two formats and reanalyze the

results accordingly.

Table 5.3 presents the results of the ablation analysis for few-shot prompting, in-

corporating two additional text parsing formats. Compared to Table 5.2, the ex-

118

5.4. Experiments

Table 5.3: Additional Analysis of Few-Shot Prompting Ablation Results

Entity Type
GPT Llama Qwen

Precision Recall F1 Precision Recall F1 Precision Recall F1

O 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Data 45.81% 17.78% 25.62% 41.00% 20.60% 27.42% 44.39% 7.40% 12.68%

Controller 74.78% 2.01% 3.92% 75.60% 4.35% 8.23% 47.95% 3.00% 5.65%

Collection 54.90% 2.19% 4.20% 28.12% 0.56% 1.10% 15.12% 0.32% 0.63%

Sharing 42.21% 1.72% 3.30% 53.66% 0.48% 0.95% 25.00% 0.08% 0.15%

Condition 24.98% 7.13% 11.10% 33.49% 4.48% 7.90% 39.76% 1.67% 3.21%

Purpose 28.98% 9.56% 14.37% 34.91% 4.65% 8.21% 14.53% 0.67% 1.28%

Receiver 55.73% 3.46% 6.51% 100.00% 0.10% 0.20% 77.27% 0.69% 1.36%

Overall 8.15% 8.15% 8.15% 8.04% 8.04% 8.04% 3.12% 3.12% 3.12%

tra two parsing formats enable the identification of partial results generated by the

LLMs. Additionally, the precision scores for all three models are significantly higher

than their recall scores. This indicates that the entities identified by the LLMs and

correctly parsed are more likely to align with the pre-defined types. However, the

low recall scores suggest that the LLMs frequently misclassify non-relevant compo-

nents as belonging to the target types. This observation aligns with the conclusions

drawn from the main results. To further investigate, we manually examined a sub-

set of the LLM outputs. Without few-shot prompting, we observed instances where

the LLMs either repeated the entire instruction or generated outputs in the format

of “entity type—entity type”. Additionally, despite incorporating and summarizing

two additional parsing formats, the performance of few-shot prompting remains sub-

optimal. Moreover, integrating extra parsing formats introduces additional manual

analysis e!orts. The consistency and ease of parsing output formats are critical when

leveraging LLMs for downstream tasks.

119

Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

Answer to RQ2: Ablation analysis demonstrates that prompt engineering techniques

used in our prompts improve LLM performance to di!erent extents. Notably, few-

shot prompting proved to be the most e!ective in helping LLMs understand task

requirements and output formats.

5.4.5 RQ3: Hallucinations Analysis in LLMPP

This research question investigates the phenomenon of hallucinations in LLMPP.

Hallucinations are primarily discussed in the context of chatbot applications, where

they refer to instances where LLMs generate content that appears plausible but is

factually incorrect or unfounded. In LLMPP, we define and identify hallucinations

from two perspectives: entity hallucination (He) and entity type hallucination (Ht).

Under the condition that the LLM generates results strictly adhering to the required

format and the results are correctly parsed into entities and entity types, He measures

the extent to which the entities are not derived from the given privacy policy sentences

but are instead randomly inferred by the LLM. He is formulated as:

He =
Ie
Ge

, (5.1)

where Ie represents the number of entities generated by the LLM that do not appear in

the given privacy policy sentences, and Ge represents the number of entities correctly

parsed from the LLM’s outputs. Similarly, entity-type hallucination (Ht) measures

the proportion of entity types generated by the LLM that do not belong to the

predefined set of entity types. Ht is calculated using the following formula:

Ht =
It
Gt

, (5.2)

where It represents the number of entity types generated by the LLM that are not

within the given set of predefined entity types, and Gt represents the total number of

entity types correctly parsed from the LLM’s outputs.

120

5.4. Experiments

Table 5.4: Hallucination analysis in LLPP

Main Prompt ARP TDP

H e H t H e H t H e H t

GPT 3.56% 0.86% 3.24% 1.55% 4.12% 0.33%

Llama 5.96% 17.65% 6.09% 20.03% 5.68% 5.37%

Qwen 30.75% 21.79% 18.41% 33.69% 40.61% 48.86%

CAP ITP FSP

H e H t H e H t H e H t

GPT 3.51% 3.74% 7.13% 1.81% 65.00% 60.97%

Llama 10.73% 15.90% 7.96% 16.96% 25.37% 81.27%

Qwen 42.97% 39.03% 40.20% 23.72% 16.15% 54.23%

Table 5.4 presents the analysis of hallucination in LLMPP, where the ”main prompt”

refers to the use of the full prompt, and other categories represent ablation settings

that exclude specific prompting techniques. GPT introduces the least hallucination in

both entities and entity types compared to the other two models, while Qwen exhibits

the highest level of hallucination in its generated content. Notably, GPT demonstrates

strong task understanding capabilities, as evidenced by its entity type hallucination

rate of only 0.86% under the main prompt setting. Table ?? demonstrates that As-

signing a Role Prompting (ARP) and Few-Shot Prompting (FSP) significantly reduce

hallucination in both entities and entity types across all three models. Specifically,

without ARP and FSP, the He and Ht metrics increase for all models. This im-

provement can likely be attributed to two factors: ARP guides the LLMs to focus on

relevant knowledge within their training corpora, and FSP provides correct examples

that help the models learn and generalize more e!ectively. Task Description Prompt-

ing (TDP) only slightly reduces entity hallucination for GPT and Qwen but increases

entity type hallucination. This may occur because the LLMs can still learn the task

e!ectively through Context-Aware Prompting (CAP) and Few-Shot Learning (FSL),

making additional descriptions redundant. Furthermore, excessively long prompts re-

121

Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

sulting from detailed descriptions may confuse the LLMs, potentially degrading their

performance. Context-Aware Prompting (CAP) e!ectively reduces hallucination in

both entity and entity type recognition for GPT and Qwen, while also alleviating en-

tity hallucination for Llama. This demonstrates that providing clear descriptions of

each component helps LLMs better understand the scope and boundaries of the enti-

ties, leading to improved accuracy and reduced errors. Instruction-Tuned Prompting

(ITP) is primarily designed to restrict the output format of LLMs, making it easier

for users to parse the results. As a result, ITP demonstrates only a limited ability to

alleviate hallucination across all three models.

Answer to RQ3: Experimental results indicate that models with stronger founda-

tional capabilities exhibit fewer hallucinations in the LLMPP scenario. Among the

techniques evaluated, Few-Shot Learning (FSL) proves to be the most e!ective in

mitigating hallucinations. Additionally, prompt engineering strategies such as clear

task descriptions and well-defined instructions also contribute to reducing halluci-

nations, albeit to a lesser extent.

5.4.6 Case Study

This section presents a case study on our prompt design and false recognition in

the main results. Specifically, for the prompt design case study, we begin with an

initial prompt that mimics traditional Named Entity Recognition (NER) tasks to

label each character in given sentences. This allows us to evaluate the e!ectiveness

of our approach in the early stages. For the false case analysis, we conduct a case

study to investigate the reasons behind incorrect component identification, providing

insights into potential improvements.

Prompt design. When designing the LLMPP, the intuitive approach is to mimic

traditional Named Entity Recognition (NER) tasks and ask LLMs to identify the label

of each character in privacy policy sentences, as introduced in §5.3.1. To achieve this,

122

5.4. Experiments

we evaluate the prompt as is given in Figure 5.6. We use the prompt to query LLMs,

asking LLMs to label each character in the provided sentence in order to identify

privacy components within those sentences.

You are an expert in mobile app privacy policy analyzer and have over ten years experience in
analyzing the compliance in privacy policies.

You will be given one sentence from a Chinese privacy policy (PP). You should analyze the sentence
to identify the key components in the privacy policy. Specifically, you need to identify the data
controller, data entities, data behavior (collect or share), condition, purpose and data receiver. The
definition of the seven components are
as follows:

1. Data controller: (noun) the party that determines the purpose and means of personal data
processing.
2. Data entities: (nouns) any information that can identify or reflect the activities of a natural person.
3. Collection: verbs that describe how controllers access data.
4. Sharing: verbs that describe whether how the controller distribute the entities to others.
5. Condition: the situation where the data controller will access personal data.
6. Purpose: why the data controller processes user data.
7. Data receiver: the parties that receive user data.
0. Others: that are not related to aforementioned components.

Your need to output the label of each character in the provided sentence. The length of output label
must be strictly the same with the character length of provide sentence. For example:
Example 1:
"sentence": "您在注册启信宝时，我们会收集、使⽤、保存、共享您的相关个⼈信息.".
"label": "0 5 5 5 5 5 5 0 0 1 1 0 3 3 0 3 3 0 3 3 0 4 4 0 0 0 0 2 2 2 2 0"
Example 1:
"sentence": "我们可能会为了推荐适合您的产品与供应商共享您的兴趣爱好。"
"label": "1 1 0 0 6 6 6 6 6 6 6 6 6 6 0 7 7 7 5 5 0 0 2 2 2 2 0""

Now, it is your turn:
"sentence": "{sentence}"
"label": "

Figure 5.6: Initial prompt for LLMPP

Figure 5.7(a) and 5.7(b) give two examples of using the prompt in Figure 5.6 to

query LLMs for analyzing privacy components in privacy policy sentences. The index

shows the position of each character in the sentence. ”GroundTruth” is the label for

each character. A ”/” means the LLM did not generate the required output. ”+num”

indicates extra characters generated by the LLM but not shown in the figure. The

figures clearly show that all three models almost entirely generate incorrect labels

for each character, often producing more labels than the number of characters in the

sentence. Additionally, we provide more cases in our GitHub repository to support

123

Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

2019181716151413121110987654321Index
、⽇⽣、别性填择选求需⾝⾃据根以可还您Setence
02202244000000000001GroundTruth
66660000000555000000GPT

/Llama
55555555555a555555ofQwen
…39383736353433323130292827262524232221Index

。息信的您善完来绍介⼈个及区地Setence
066666602222022GroundTruth
+560333377777766GPT

/Llama
+775555555555555Qwen

(a) Example 1.

2019181716151413121110987654321Index
您露透、开公⽅三第向会不映梦，可许您经未Setence
04404477700011055550GroundTruth
22222221111100000000GPT
10005550555550550500Llama

/Qwen
0262524232221Index

。息信⼈个的Setence
022220GroundTruth
+38333332GPT
+52033001Llama

/Qwen

(b) Example 2.

Figure 5.7: Results of prompt case study.

the case study of the prompt design. Our analysis reveals that nearly all cases exhibit

this same problematic behavior. This phenomenon is consistent with existing research

showing LLMs’ poor performance in number-counting tasks, as discussed in §5.3.1.

This issue may stem from the tokenization methodologies [109] employed by LLMs.

The embedding methodologies often group multiple characters into a single token,

which can interfere with the model’s ability to accurately count individual characters

within a sentence. This grouping can lead to inaccuracies in tasks that require precise

character-level processing.

False recognition analysis. Figure 5.8 provides an illustrative example of the in-

ference results generated by LLMs for a privacy policy sentence, and additional cases

are available in our GitHub repository. In the ground truth, we observe one condition

component that specifies the situation in which the owner of the privacy policy will

conduct data access and one purpose statement that explains why the data access will

124

5.4. Experiments

be performed. GPT partially correctly identifies the condition in the sentence but

incorrectly labels an unrelated phrase as a condition. Additionally, GPT fails to iden-

tify the purpose component in the sentence. Llama correctly identifies two subsets of

the condition components but incorrectly labels four unrelated phrases as conditions.

Additionally, Llama fails to identify the purpose component in the sentence. Qwen

correctly identifies the purpose in the sentence and a subset of the condition compo-

nents. For the data controller, GPT correctly identifies the data controller, while the

other two LLMs (Llama and Qwen) fail to do so. Qwen even incorrectly identifies

the data controller as a data entity. For data entities, both GPT and Llama correctly

identify all data entities, although GPT mistakenly labels an additional definition

of data as a data entity. Qwen only correctly identifies one data entity but misses

all other data entities. In the context of data operation behavior, since the subject

performing the action is the user (”怢”), the verb describing this action should be

labeled as a sharing behavior. This distinction is crucial for accurately categorizing

and understanding the nature of data operations within privacy policies. GPT fails

to identify the behavior component. Llama incorrectly labels the action phrase as a

condition, and Qwen wrongly identifies the action behavior as a collection. Addition-

ally, the results reveal that LLMs tend to incorrectly classify unrelated phrases into

given categories, leading to low recall metrics in the main results (Table 5.1). These

unrelated phrases are statistically labeled as ”O” during the metrics computation

process.

Based on our case study of LLMs’ inference results, we observe that several types

of errors can be attributed to the LLMs’ inability to correctly parse the sentence

structure. For instance, LLMs often misidentify data action verbs. Additionally,

some errors stem from the LLMs’ incomplete understanding of the provided context,

which adversely impacts their ability to accurately identify key phrases, such as the

purpose and conditions within the sentence.

125

Chapter 5. Investigating Pre-trained Large Language Models for Chinese Privacy
Policy Analysis

Figure 5.8: Case study of inference results in LLMPP.

5.5 Discussion

In this section, we discuss the limitations of this work and propose directions for

future research on applying LLMs to privacy policy analysis.

In this work, we empirically evaluate the performance of popular pre-trained LLMs

in identifying regulation-mandated entities within Chinese privacy policies. By refer-

encing existing work [139, 185] and employing established prompt engineering tech-

niques [46, 102], this work focuses on evaluating e!ective prompts tailored for han-

dling privacy policies in general scenarios, rather than seeking to identify the optimal

prompts for all LLMs.

We evaluate two publicly available LLMs and one widely used commercial LLM. In

future work, we will evaluate a wider range of LLMs, particularly those specifically

trained to process Chinese content, to provide deeper insights into the performance of

LLMs in this challenging task. Additionally, to ensure fairness, we evaluate all LLMs

using a unique and consistent prompt format. Existing research has shown that dif-

ferent prompt templates [59], such as XML format, Markdown format, or plain text,

may influence the performance of LLMs. Future work will explore methods to quan-

126

5.5. Discussion

tify the impact of prompt formats and expand the evaluation to include more LLMs.

Additionally, our ablation study and analysis of hallucination in LLMs have demon-

strated that di!erent prompt engineering techniques can improve the performance

of LLMs and reduce hallucinations in LLMPP. One promising direction to enhance

the performance of LLMs and mitigate hallucinations remains improving their fun-

damental capabilities. Given the inherent randomness in the inference process of

LLMs, which may impact the reproducibility of this work, we provide all prompts and

results generated by the LLMs to facilitate a deeper understanding of our findings

and ensure that other researchers can reproduce and build upon our results.

In future work, one potential direction could involve exploring the application of long-

context models to implement end-to-end privacy policy analysis tasks. Since privacy

policies are typically composed of lengthy, detailed descriptions, long-context models

may be better suited for processing such content. Long-context models may be ca-

pable of e!ectively summarizing key points and extracting downstream requirements

from the context. While labeling privacy policies across di!erent languages and re-

gions is labor-intensive, it is feasible to pre-train a large language model specifically

designed to analyze privacy policies from diverse platforms. Such a model can help

safeguard user privacy by accurately identifying key components like data-handling

practices and consent requirements. It can also mitigate the risk of policy abuse by

providing clearer insights into how entities draft and enforce these policies. This ap-

proach not only enhances privacy protection but also promotes greater accountability

and transparency in privacy policy management.

127

Chapter 6

Conclusions and Suggestions for

Future Research

6.1 Conclusions

The main objective of this thesis is to address the risks posed by potentially harmful

Android apps that could compromise user privacy once published in app markets. In

this thesis, we tackle several technical challenges by developing innovative approaches

and constructing a benchmark dataset to serve three main objectives. As an initial

step, this thesis investigates the vulnerability of Android malware detection systems

by proposing a novel problem-space structural attack against existing malware de-

tection systems. Furthermore, the first work explores potential defense strategies to

address this issue. Secondly, we provide an Android app privacy policy dataset to

promote research in the field of Android app privacy policies. In addition, we eval-

uate the performance of LLMs for analyzing Chinese privacy policies. The target

of our work is to enhance the security and privacy of Android app users by o!ering

useful insights and resources for developing more e!ective detection, prevention, and

mitigation strategies.

128

6.1. Conclusions

6.1.1 Investigating Vulnerability of Android Malware Detec-

tion

To investigate the vulnerability of Android malware detection systems and develop

e!ective defense methodologies, we propose HRAT, a novel structural attack against

function call graph-based Android malware detection systems. By conducting this

attack, we aim to uncover weaknesses in the systems and explore potential counter-

measures to mitigate the risks associated with Android malware. HRAT is unique in

that it leverages the correlation between function call graphs and software to bridge

the gap between feature-space attacks and problem-space attacks. By leveraging the

capabilities of HRAT, we are able to e!ectively exploit vulnerabilities in Android

malware detection systems that would not be accessible through traditional feature-

based attacks. This enables us to identify new avenues for improving the security of

these systems, ultimately enhancing their ability to detect and prevent potentially

harmful apps from compromising user privacy and security. Compared to heuristic

methods, our attack proves to be more e!ective and e”cient in terms of modifying

and interacting with target systems. By using our proposed structural attack, we

are able to generate subtle but significant modifications to Android malware samples

that evade detection by state-of-the-art detection systems. Our attack highlights the

value of HRAT in testing the robustness of Android malware detection systems and

identifying areas for improvement. Our experiments show that combining multiple

attack actions is significantly more e!ective than using a single action alone. By

integrating several attack techniques, we are able to achieve higher success rates in

evading detection by Android malware detection systems. This highlights the impor-

tance of using a multi-pronged approach to testing the security of these systems and

developing more robust defenses against Android malware. Notably, our methodol-

ogy is not limited to the Android platform and can be adapted to other systems as

well. Our approach, which leverages the structural properties of software and iden-

tifies vulnerabilities in malware detection systems, has the potential to improve the

129

Chapter 6. Conclusions and Suggestions for Future Research

security of a wide range of software systems, demonstrating the broad applicability

and versatility of our proposed methodology.

6.1.2 Introducing a Comprehensive Android Application Pri-

vacy Policy Dataset

In order to facilitate research into analyzing Android app privacy policy issues, we

present the CA4P-483 dataset, the first comprehensive dataset of Chinese Android

application privacy policies. Our dataset was constructed using a rigorous data col-

lection and corpus annotation process, ensuring that it is of high quality and can be

used as a reliable benchmark for research purposes. The CA4P-483 dataset includes

fine-grained annotations that align with the requirements of privacy-related laws and

regulations, ensuring that it provides a comprehensive and accurate representation

of the privacy policies of Chinese Android applications. These annotations enable

researchers to easily identify and analyze the specific privacy practices of individ-

ual applications, facilitating a deeper understanding of the privacy landscape of the

Android app ecosystem. By providing a large-scale dataset of Chinese Android appli-

cation privacy policies with fine-grained annotations, the CA4P-483 dataset has the

potential to advance natural language processing research on practical downstream

tasks. Our dataset can be used to develop and evaluate machine learning models

for a range of tasks, such as automatic policy analysis and summarization, as well

as to explore the relationship between privacy policy content and actual data collec-

tion practices. This makes the dataset a valuable resource for researchers working on

improving the privacy and security of mobile applications. In addition, we perform

experimental evaluations of several popular baselines on the CA4P-483 dataset and

present the results of our analysis. Our evaluation provides a benchmark for future

research on privacy policy analysis and highlights the strengths and weaknesses of cur-

rent state-of-the-art approaches. Based on our findings, we propose potential research

130

6.2. Future Work

directions for improving the accuracy and e!ectiveness of privacy policy analysis, with

the goal of enhancing user privacy and security in the Android app ecosystem. In

addition to our experimental evaluations, we perform several case studies to explore

the potential applications of our dataset in software engineering and cybersecurity.

Our analysis demonstrates the utility of the CA4P-483 dataset for a range of down-

stream tasks, including developing tools for automated privacy policy analysis and

generating user-friendly summaries of privacy practices. These applications have the

potential to enhance the privacy and security of mobile applications, improving the

user experience and fostering greater trust in the app ecosystem.

6.1.3 Application of LLMs for Analyzing Privacy Policies

With the growing popularity of LLMs, many downstream tasks, particularly those

related to natural language processing, have achieved significant success with the

assistance of LLMs. We empirically evaluate the performance of popular LLMs in

identifying regulation-required entities and their types in Chinese privacy policies.

Our ablation study of prompt engineering techniques and analysis of hallucinations

in LLMPP both demonstrate that these techniques can improve the performance of

LLMs and alleviate hallucinations in LLMPP. Our evaluation highlights the challenges

of applying LLMs to Chinese privacy policies. Specifically, pre-trained LLMs often

fail to recognize defined entity types within given sentences, even when advanced

prompt engineering techniques and well-crafted prompts are employed.

6.2 Future Work

Having completed three major works related to the analysis of potentially harmful

Android apps and the protection of user privacy, there are several promising directions

for our future research.

131

Chapter 6. Conclusions and Suggestions for Future Research

First, we can develop more e!ective and e”cient attack strategies against Android

malware detection systems. Currently, HRAT is only applicable under white-box

settings, meaning that it requires access to the machine learning models used in target

detection systems. In recent years, machine learning researchers have demonstrated

the feasibility of training a student model to mimic a target model using only the

target model’s output, without access to the model itself. Thus, in cases where it is

not possible to access the machine learning models, we can train a student model to

mimic the target model and use HRAT to deceive the student model into achieving

the same level of detection evasion as the target model.

Secondly, as CA4P-483 opens up avenues for research in natural language processing,

privacy protection, and cybersecurity, we plan to explore more potential application

scenarios based on our dataset. For example, we can conduct an emotional analysis

of privacy policies based on CA4P-483. Previous studies [6] have found that privacy

policies can present conflicts when used in di!erent contexts. Several existing meth-

ods [6, 7, 165] use negative language to detect potential conflicts in privacy policies

but do not account for complications such as double negatives. In the Chinese privacy

policy, negative representations are more complicated [85]. Thus, emotional analysis

can help analysts better understand the semantics of privacy policies.

Finally, a promising direction for future research is the development of a privacy

policy-specific large language model capable of processing privacy policies written in

various languages and sourced from diverse platforms, including mobile apps, web

applications, and Internet of Things (IoT) devices. This endeavor would begin with

the construction of a high-quality dataset tailored to the complexities of privacy

policies. Additionally, given that existing research highlights the significant impact

of tokenization methods on LLM performance, designing an e!ective tokenization

strategy would be a critical step. Such an approach could enhance the model’s ability

to handle the diverse linguistic and contextual nuances of privacy policies, thereby

advancing the field of privacy policy analysis.

132

References

[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.

A transformer-based approach for source code summarization. arXiv preprint

arXiv:2005.00653, 2020.

[2] DeepSeek AI. Deepseek: Advanced ai capabilities. https://www.deepseek.

com/en, 2024. Accessed: 2024-06-18.

[3] Alir3z4. html2text. https://github.com/Alir3z4/html2text, 2011.

[4] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An-

drozoo: Collecting millions of android apps for the research community. In

Proceedings of the 13th international conference on mining software reposito-

ries, pages 468–471, 2016.

[5] Mohammed K Alzaylaee, Suleiman Y Yerima, and Sakir Sezer. Dl-droid: Deep

learning based android malware detection using real devices. Computers &

Security, 89:101663, 2020.

[6] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin Whitaker,

William Enck, Bradley Reaves, Kapil Singh, and Tao Xie. Policylint: investi-

gating internal privacy policy contradictions on google play. In 28th {USENIX}

Security Symposium ({USENIX} Security 19), pages 585–602, 2019.

133

https://www.deepseek.com/en
https://www.deepseek.com/en
https://github.com/Alir3z4/html2text

References

[7] Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William Enck,

Bradley Reaves, Kapil Singh, and Serge Egelman. Actions speak louder than

words: Entity-Sensitive privacy policy and data flow analysis with PoliCheck.

In 29th USENIX Security Symposium (USENIX Security 20), pages 985–1002.

USENIX Association, August 2020.

[8] Anthropic. Claude: An ai assistant. https://claude.ai/, 2024. Accessed:

2024-06-18.

[9] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad

Rieck, and CERT Siemens. Drebin: E!ective and explainable detection of

android malware in your pocket. In Proceedings of the Annual Symposium

on Network and Distributed System Security (NDSS), volume 14, pages 23–26,

2014.

[10] Steven Arzt. Static data flow analysis for android applications. 2017.

[11] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.

Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[12] KWY. Au, YF. Zhou, Z. Huang, and D. Lie. Pscout: analyzing the android per-

mission specification. In Proceedings of the 2012 ACM conference on Computer

and communications security, pages 217–228, 2012.

[13] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Cavallaro.

Transcending transcend: Revisiting malware classification in the presence of

concept drift. In 2022 IEEE Symposium on Security and Privacy (SP), pages

805–823. IEEE, 2022.

134

https://claude.ai/

References

[14] Susanne Barth, Dan Ionita, and Pieter Hartel. Understanding online privacy—a

systematic review of privacy visualizations and privacy by design guidelines.

ACM Computing Surveys (CSUR), 55(3):1–37, 2022.

[15] Harel Berger, Chen Hajaj, and Amit Dvir. When the guard failed the droid: A

case study of android malware. arXiv preprint arXiv:2003.14123, 2020.

[16] Tom Brown, Benjamin Mann, Nick Ryder, et al. Language models are few-shot

learners. Advances in Neural Information Processing Systems, 2020.

[17] Liang Cai and Hao Chen. On the practicality of motion based keystroke infer-

ence attack. In International Conference on Trust and Trustworthy Computing,

pages 273–290. Springer, 2012.

[18] Minghui Cai, Yuan Jiang, Cuiying Gao, Heng Li, and Wei Yuan. Learning

features from enhanced function call graphs for android malware detection.

Neurocomputing, 423:301–307, 2021.

[19] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas

Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Ku-

rakin. On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705,

2019.

[20] Juan Miguel Cejuela, Peter McQuilton, Laura Ponting, Steven J Marygold,

Raymund Stefancsik, Gillian H Millburn, Burkhard Rost, FlyBase Consortium,

et al. tagtog: interactive and text-mining-assisted annotation of gene mentions

in plos full-text articles. Database, 2014, 2014.

[21] Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, et al. Legal-bert:

The muppets straight out of law school. In Findings of the Association for

Computational Linguistics, 2020.

135

References

[22] Yapei Chang, Kyle Lo, Tanya Goyal, and Mohit Iyyer. Booookscore: A sys-

tematic exploration of book-length summarization in the era of llms. In The

Twelfth International Conference on Learning Representations, 2023.

[23] Chaoran Chen, Daodao Zhou, Yanfang Ye, Toby Jia-jun Li, and Yaxing Yao.

Clear: Towards contextual llm-empowered privacy policy analysis and risk gen-

eration for large language model applications. arXiv preprint arXiv:2410.13387,

2024.

[24] Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy and scalability si-

multaneously in detecting application clones on android markets. In Proceedings

of the 36th International Conference on Software Engineering, pages 175–186,

2014.

[25] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing

Huang, Wei Zou, and Peng Liu. Finding unknown malice in 10 seconds: Mass

vetting for new threats at the google-play scale. In 24th {USENIX} Security

Symposium ({USENIX} Security 15), pages 659–674, 2015.

[26] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal,

Yang Xiang, and Kui Ren. Android hiv: A study of repackaging malware

for evading machine-learning detection. IEEE Transactions on Information

Forensics and Security, 15:987–1001, 2019.

[27] CLPRC. Cybersecurity law of the people’s republic of china. http://www.gov.

cn/xinwen/2016-11/07/content_5129723.htm, 2016.

[28] Jacob Cohen. A coe”cient of agreement for nominal scales. Educational and

psychological measurement, 20(1):37–46, 1960.

[29] National Information Security Standardization Technical Committee. Informa-

tion security technology — basic specification for collecting personal informa-

136

http://www.gov.cn/xinwen/2016-11/07/content_5129723.htm
http://www.gov.cn/xinwen/2016-11/07/content_5129723.htm

References

tion in mobile internet applications. http://www.cac.gov.cn/1124853418_

15652571749671n.pdf, 2022.

[30] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.

Adversarial attack on graph structured data. In International conference on

machine learning, pages 1115–1124. PMLR, 2018.

[31] Zhenjin Dai, Xutao Wang, Pin Ni, Yuming Li, Gangmin Li, and Xuming Bai.

Named entity recognition using bert bilstm crf for chinese electronic health

records. In 2019 12th international congress on image and signal processing,

biomedical engineering and informatics (cisp-bmei), pages 1–5. IEEE, 2019.

[32] Google DeepMind. Gemini: A multimodal ai. https://gemini.google.com/,

2024. Accessed: 2024-06-18.

[33] Anthony Desnos and Patrik Lantz. Droidbox: An android application sandbox

for dynamic analysis. https://code.google.com/archive/p/droidbox.

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805, 2018.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805, 2019.

[36] Keyang Ding, Jing Li, and Yuji Zhang. Hashtags, emotions, and comments:

a large-scale dataset to understand fine-grained social emotions to online top-

ics. In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1376–1382, 2020.

[37] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li,

Fenghao Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang. Understanding

137

http://www.cac.gov.cn/1124853418_15652571749671n.pdf
http://www.cac.gov.cn/1124853418_15652571749671n.pdf
https://gemini.google.com/
https://code.google.com/archive/p/droidbox

References

android obfuscation techniques: A large-scale investigation in the wild. In Secu-

rity and Privacy in Communication Networks: 14th International Conference,

SecureComm 2018, Singapore, Singapore, August 8-10, 2018, Proceedings, Part

I, pages 172–192. Springer, 2018.

[38] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A

survey on automated dynamic malware-analysis techniques and tools. ACM

computing surveys (CSUR), 44(2):1–42, 2008.

[39] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon

Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.

Taintdroid: an information-flow tracking system for realtime privacy monitoring

on smartphones. ACM Transactions on Computer Systems (TOCS), 32(2):1–29,

2014.

[40] William Enck, Damien Octeau, Patrick D McDaniel, and Swarat Chaudhuri.

A study of android application security. In USENIX security symposium, vol-

ume 2, 2011.

[41] String Encryption. Dexguard. https://www.guardsquare.com, 2017.

[42] Ming Fan, Xiapu Luo, Jun Liu, Meng Wang, Chunyin Nong, Qinghua Zheng,

and Ting Liu. Graph embedding based familial analysis of android malware

using unsupervised learning. In 2019 IEEE/ACM 41st International Conference

on Software Engineering (ICSE), pages 771–782. IEEE, 2019.

[43] LC. Freeman. Centrality in social networks conceptual clarification. Social

networks, 1(3):215–239, 1978.

[44] Dayne Freitag and Andrew McCallum. Information extraction with hmm struc-

tures learned by stochastic optimization. AAAI/IAAI, 2000:584–589, 2000.

138

https://www.guardsquare.com

References

[45] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting. Journal of computer and system

sciences, 55(1):119–139, 1997.

[46] Andrew Gao. Prompt engineering for large language models. Available at SSRN

4504303, 2023.

[47] GDPR. General data protection regulation. https://gdpr-info.eu, 2016.

[48] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[49] Google. Google play. https://play.google.com, 2022.

[50] Google. Google play policies. https://developer.android.com/distribute/

play-policies, 2022.

[51] Google-Monkey. Google Monkey. https://developer.android.com/studio/

test/monkey, 2021.

[52] New Zealand Government. International covenant on civil and political

rights, 2020. https://www.justice.govt.nz/justice-sector-policy/

constitutional-issues-and-human-rights/human-rights/

international-human-rights/international-covenant-on-civil-and-political-rights/.

[53] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. Unsafe

exposure analysis of mobile in-app advertisements. In Proceedings of the fifth

ACM conference on Security and Privacy in Wireless and Mobile Networks,

pages 101–112, 2012.

[54] Michael C Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic de-

tection of capability leaks in stock android smartphones. In NDSS, volume 14,

page 19, 2012.

139

https://gdpr-info.eu
https://play.google.com
https://developer.android.com/distribute/play-policies
https://developer.android.com/distribute/play-policies
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://www.justice.govt.nz/justice-sector-policy/constitutional-issues-and-human-rights/human-rights/international-human-rights/international-covenant-on-civil-and-political-rights/
https://www.justice.govt.nz/justice-sector-policy/constitutional-issues-and-human-rights/human-rights/international-human-rights/international-covenant-on-civil-and-political-rights/
https://www.justice.govt.nz/justice-sector-policy/constitutional-issues-and-human-rights/human-rights/international-human-rights/international-covenant-on-civil-and-political-rights/

References

[55] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with

bidirectional lstm and other neural network architectures. Neural networks,

18(5-6):602–610, 2005.

[56] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and

Patrick McDaniel. Adversarial examples for malware detection. In Computer

Security–ESORICS 2017: 22nd European Symposium on Research in Computer

Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II 22, pages

62–79. Springer, 2017.

[57] Yu Gu, Robert Tinn, Hao Cheng, et al. Domain-specific language model pre-

training for biomedical natural language processing. ACM Transactions on

Computing for Healthcare, 2021.

[58] Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub, Kang G Shin,

and Karl Aberer. Polisis: Automated analysis and presentation of privacy

policies using deep learning. In 27th USENIX Security Symposium, 2018.

[59] Jia He, Mukund Rungta, David Koleczek, Arshdeep Sekhon, Franklin X Wang,

and Sadid Hasan. Does prompt formatting have any impact on llm perfor-

mance?, 2024.

[60] Shifu Hou, Yujie Fan, Yiming Zhang, Yanfang Ye, Jingwei Lei, Wenqiang Wan,

Jiabin Wang, Qi Xiong, and Fudong Shao. ↼cyber: Enhancing robustness of

android malware detection system against adversarial attacks on heterogeneous

graph based model. In Proceedings of the 28th ACM international conference

on information and knowledge management, pages 609–618, 2019.

[61] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. Hindroid: An

intelligent android malware detection system based on structured heterogeneous

information network. In Proceedings of the 23rd ACM SIGKDD international

conference on knowledge discovery and data mining, pages 1507–1515, 2017.

140

References

[62] Huawei. App gallery. https://appgallery.huawei.com/Featured, 2022.

[63] Huawei. Appgallery review guidelines. https://developer.huawei.com/

consumer/en/doc/30202, 2022.

[64] Jesusfreke. smali. https://code.google.com/p/smali/.

[65] Teenu S John, Tony Thomas, and Sabu Emmanuel. Graph convolutional net-

works for android malware detection with system call graphs. In 2020 Third

ISEA Conference on Security and Privacy (ISEA-ISAP), pages 162–170. IEEE,

2020.

[66] Mohammad Karami, Mohamed Elsabagh, Parnian Najafiborazjani, and An-

gelos Stavrou. Behavioral analysis of android applications using automated

instrumentation. In 2013 IEEE Seventh International Conference on Software

Security and Reliability Companion, pages 182–187. IEEE, 2013.

[67] L. Katz. A new status index derived from sociometric analysis. Psychometrika,

18(1):39–43, 1953.

[68] TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer, and Eul Gyu Im. A

multimodal deep learning method for android malware detection using various

features. IEEE Trans. Inf. Forensics Secur., 14(3):773–788, 2018.

[69] Ron Kohavi and George H John. Wrappers for feature subset selection. Artificial

intelligence, 97(1-2):273–324, 1997.

[70] Taku Kudo. Crf++: Yet another crf toolkit. http://crfpp. sourceforge. net/,

2005.

[71] S Kulkarni. 11. future of technology chatgpt: Optimizing language models for

dialogue.”. ICP Monogram on Digital Technology in Clinical Medicine, page 62,

2023.

141

https://appgallery.huawei.com/Featured
https://developer.huawei.com/consumer/en/doc/30202
https://developer.huawei.com/consumer/en/doc/30202
https://code.google.com/p/smali/

References

[72] PJM. Van Laarhoven and EHL. Aarts. Simulated annealing. In Simulated

annealing: Theory and applications, pages 7–15. Springer, 1987.

[73] John La!erty, Andrew McCallum, and Fernando CN Pereira. Conditional ran-

dom fields: Probabilistic models for segmenting and labeling sequence data.

2001.

[74] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya

Kawakami, and Chris Dyer. Neural architectures for named entity recognition.

In Proceedings of NAACL-HLT, pages 260–270, 2016.

[75] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. Improved

code summarization via a graph neural network. In Proceedings of the 28th

international conference on program comprehension, pages 184–195, 2020.

[76] E. Levin, R. Pieraccini, and W. Eckert. Using markov decision process for

learning dialogue strategies. In Proceedings of the 1998 IEEE International

Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No.

98CH36181), volume 1, pages 201–204. IEEE, 1998.

[77] Deqiang Li and Qianmu Li. Adversarial deep ensemble: Evasion attacks and

defenses for malware detection. IEEE Transactions on Information Forensics

and Security, 15:3886–3900, 2020.

[78] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. Arms race in adversarial

malware detection: A survey. ACM Computing Surveys (CSUR), 55(1):1–35,

2021.

[79] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and Heng Ye.

Significant permission identification for machine-learning-based android mal-

ware detection. IEEE Trans Industr Inform, 14(7):3216–3225, 2018.

[80] Qinbin Li, Junyuan Hong, Chulin Xie, Je!rey Tan, Rachel Xin, Junyi Hou,

Xavier Yin, Zhun Wang, Dan Hendrycks, Zhangyang Wang, Bo Li, Bingsheng

142

References

He, and Dawn Song. Llm-pbe: Assessing data privacy in large language models.

Proceedings of the VLDB Endowment, 17(11):3201–3214, 2024.

[81] Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan Wang, Dong Chen, Shuai

Wang, and Cuiyun Gao. Cctest: Testing and repairing code completion systems.

In 2023 IEEE/ACM 45th International Conference on Software Engineering

(ICSE), pages 1238–1250. IEEE, 2023.

[82] Sue Lim and Ralf Schmälzle. Artificial intelligence for health message gen-

eration: an empirical study using a large language model (llm) and prompt

engineering. Frontiers in Communication, 8:1129082, 2023.

[83] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In

Text summarization branches out, pages 74–81, 2004.

[84] Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and

Tat-Seng Chua. Data-e”cient fine-tuning for llm-based recommendation. In

Proceedings of the 47th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 365–374, 2024.

[85] Bing Liu. Sentiment analysis and opinion mining. Synthesis lectures on human

language technologies, 5(1):1–167, 2012.

[86] Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng Wang, Zhen Yang,

Li Zhang, Zhongqi Li, and Yuchi Ma. Exploring and evaluating hallucinations

in llm-powered code generation. arXiv preprint arXiv:2404.00971, 2024.

[87] Michael Xieyang Liu, Frederick Liu, Alexander J Fiannaca, Terry Koo, Lucas

Dixon, Michael Terry, and Carrie J Cai. ” we need structured output”: Towards

user-centered constraints on large language model output. In Extended Abstracts

of the CHI Conference on Human Factors in Computing Systems, pages 1–9,

2024.

143

References

[88] Di Lu, Leonardo Neves, Vitor Carvalho, Ning Zhang, and Heng Ji. Visual

attention model for name tagging in multimodal social media. In Proceedings

of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1990–1999, 2018.

[89] Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. Graph adver-

sarial attack via rewiring. In Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery & Data Mining, pages 1161–1169, 2021.

[90] Bhavani Malisetty and Alfredo J Perez. Evaluating quantized llama 2 models

for iot privacy policy language generation. Future Internet, 16(7):224, 2024.

[91] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-

faro, Gordon Ross, and Gianluca Stringhini. MAMADROID: Detecting Android

Malware by Building Markov Chains of Behavioral Models. In Proceedings of

the Annual Symposium on Network and Distributed System Security (NDSS),

2017.

[92] Aleecia M McDonald and Lorrie Faith Cranor. The cost of reading privacy

policies. Isjlp, 4:543, 2008.

[93] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[94] Sudha Morwal, Nusrat Jahan, and Deepti Chopra. Named entity recognition

using hidden markov model (hmm). International Journal on Natural Language

Computing (IJNLC) Vol, 1, 2012.

[95] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and

Brad Myers. Using an llm to help with code understanding. In Proceedings of

the IEEE/ACM 46th International Conference on Software Engineering, pages

1–13, 2024.

144

References

[96] Preksha Nema, Pauline Anthonysamy, Nina Taft, and Sai Teja Peddinti. Ana-

lyzing user perspectives on mobile app privacy at scale. In International Con-

ference on Software Engineering (ICSE), 2022.

[97] Trung Tin Nguyen, Michael Backes, Ninja Marnau, and Ben Stock. Share first,

ask later (or never?) studying violations of gdpr’s explicit consent in android

apps. In 30th USENIX Security Symposium, 2021.

[98] NISSTC. Cybersecurity practices guidelines – security guidelines for us-

ing software development kit (sdk) for mobile internet applications (app)

(tc260-pg-20205a). https://www.tc260.org.cn/front/postDetail.html?

id=20201126161240, 2020.

[99] Debora Nozza, Federico Bianchi, Anne Lauscher, Dirk Hovy, et al. Measur-

ing harmful sentence completion in language models for lgbtqia+ individuals.

In Proceedings of the Second Workshop on Language Technology for Equality,

Diversity and Inclusion. Association for Computational Linguistics, 2022.

[100] Cyberspace Administration of China, Ministry of Industry, Information Tech-

nology, Ministry of Public Security, and State Administration for Market. Mea-

sures for determining the illegal collection and use of personal information

by apps. http://m.legaldaily.com.cn/zt/content/2021-11/16/content_

8628724.htm, 2019.

[101] California Attorney General o”ce. California pri-

vacy rights act. https://www.weil.com/-/media/

the-california-privacy-rights-act-of-2020-may-2021.pdf, 2020.

[102] OpenAI. Chatgpt: A large language model. https://www.openai.com/

chatgpt, 2024. Accessed: 2024-06-18.

[103] Long Ouyang, Je!rey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,

145

https://www.tc260.org.cn/front/postDetail.html?id=20201126161240
https://www.tc260.org.cn/front/postDetail.html?id=20201126161240
http://m.legaldaily.com.cn/zt/content/2021-11/16/content_8628724.htm
http://m.legaldaily.com.cn/zt/content/2021-11/16/content_8628724.htm
https://www.weil.com/-/media/the-california-privacy-rights-act-of-2020-may-2021.pdf
https://www.weil.com/-/media/the-california-privacy-rights-act-of-2020-may-2021.pdf
https://www.openai.com/chatgpt
https://www.openai.com/chatgpt

References

et al. Training language models to follow instructions with human feedback.

Advances in neural information processing systems, 35:27730–27744, 2022.

[104] Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. Llm is like a

box of chocolates: the non-determinism of chatgpt in code generation. arXiv

preprint arXiv:2308.02828, 2023.

[105] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the

Journal of machine Learning research, 12:2825–2830, 2011.

[106] Nanyun Peng and Mark Dredze. Improving named entity recognition for chinese

social media with word segmentation representation learning. In Proceedings

of the 54th Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), pages 149–155, 2016.

[107] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.

Intriguing properties of adversarial ml attacks in the problem space. In 2020

IEEE Symposium on Security and Privacy (SP), pages 1332–1349. IEEE, 2020.

[108] PISS. Information security technology – personal information secu-

rity specification. https://www.tc260.org.cn/front/postDetail.html?id=

20200918200432, 2020.

[109] Haohao Qu, Wenqi Fan, Zihuai Zhao, and Qing Li. Tokenrec: Learning to

tokenize id for llm-based generative recommendation, 2024.

[110] Erwin Quiring, Alwin Maier, Konrad Rieck, et al. Misleading authorship attri-

bution of source code using adversarial learning. In USENIX Security Sympo-

sium, pages 479–496, 2019.

[111] Colin Ra!el, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of

146

https://www.tc260.org.cn/front/postDetail.html?id=20200918200432
https://www.tc260.org.cn/front/postDetail.html?id=20200918200432

References

transfer learning with a unified text-to-text transformer. Journal of machine

learning research, 21(140):1–67, 2020.

[112] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan, Ian

Obermiller, and Shahin Shayandeh. Appinsight: Mobile app performance mon-

itoring in the wild. In Presented as part of the 10th {USENIX} symposium

on operating systems design and implementation ({OSDI} 12), pages 107–120,

2012.

[113] Federal Register. Code of federal regulations. https://www.ecfr.gov/

reader-aids/using-ecfr/getting-started, 2017.

[114] Renaming. Proguard. https://www.preemptive.com/dotfuscator/pro/

userguide/en/protection_obfuscation_renaming.html, 2017.

[115] Laria Reynolds and Kyle McDonell. Prompt programming for large language

models: Beyond the few-shot paradigm. In Extended abstracts of the 2021 CHI

conference on human factors in computing systems, pages 1–7, 2021.

[116] David Rodriguez, Ian Yang, Jose M Del Alamo, and Norman Sadeh. Large lan-

guage models: a new approach for privacy policy analysis at scale. Computing,

106(12):3879–3903, 2024.

[117] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Generic black-

box end-to-end attack against state of the art api call based malware classifiers.

In Research in Attacks, Intrusions, and Defenses: 21st International Sympo-

sium, RAID 2018, Heraklion, Crete, Greece, September 10-12, 2018, Proceed-

ings 21, pages 490–510. Springer, 2018.

[118] Timo Schick and Hinrich Schütze. Exploiting cloze questions for few-shot text

classification and natural language inference. arXiv preprint arXiv:2001.07676,

2021.

147

https://www.ecfr.gov/reader-aids/using-ecfr/getting-started
https://www.ecfr.gov/reader-aids/using-ecfr/getting-started
https://www.preemptive.com/dotfuscator/pro/userguide/en/protection_obfuscation_renaming.html
https://www.preemptive.com/dotfuscator/pro/userguide/en/protection_obfuscation_renaming.html

References

[119] M. Shahpasand, L. Hamey, D. Vatsalan, and M Xue. Adversarial attacks on mo-

bile malware detection. In 2019 IEEE 1st International Workshop on Artificial

Intelligence for Mobile (AI4Mobile), pages 17–20. IEEE, 2019.

[120] Luman Shi, Jiang Ming, Jianming Fu, Guojun Peng, Dongpeng Xu, Kun Gao,

and Xuanchen Pan. Vahunt: Warding o! new repackaged android malware in

app-virtualization’s clothing. In Proceedings of the 2020 ACM SIGSAC Con-

ference on Computer and Communications Security, pages 535–549, 2020.

[121] Taylor Shin, Yasaman Razeghi, Robert Logan IV, et al. Autoprompt: Elic-

iting knowledge from language models with automatically generated prompts.

Advances in Neural Information Processing Systems, 2020.

[122] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Mem-

bership inference attacks against machine learning models. In 2017 IEEE sym-

posium on security and privacy (SP), pages 3–18. IEEE, 2017.

[123] Gulshan Shrivastava and Prabhat Kumar. Android application behavioural

analysis for data leakage. Expert Systems, 38(1):e12468, 2021.

[124] Aaditya K Singh and DJ Strouse. Tokenization counts: the impact of tokeniza-

tion on arithmetic in frontier llms. arXiv preprint arXiv:2402.14903, 2024.

[125] Chawin Sitawarin and David Wagner. On the robustness of deep k-nearest

neighbors. In 2019 IEEE Security and Privacy Workshops (SPW), pages 1–7.

IEEE, 2019.

[126] Nir Sivan, Ron Bitton, and Asaf Shabtai. Analysis of location data leakage

in the internet tra”c of android-based mobile devices. In 22nd International

Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019),

pages 243–260, 2019.

148

References

[127] David B Skalak. Prototype and feature selection by sampling and random

mutation hill climbing algorithms. InMachine Learning Proceedings 1994, pages

293–301. Elsevier, 1994.

[128] FTC Sta!. Protecting consumer privacy in an era of rapid change–a proposed

framework for businesses and policymakers. Journal of Privacy and Confiden-

tiality, 3(1), 2011.

[129] statcounter. Mobile operating system market share worldwide. https://gs.

statcounter.com/os-market-share/mobile/worldwide, 2022.

[130] statista. Development of new android malware worldwide from june

2016 to march 2020. https://www.statista.com/statistics/680705/

global-android-malware-volume/, 2021.

[131] statista. Mobile operating systems’ market share worldwide from 1st quarter

2009 to 4th quarter 2022. https://www.statista.com/statistics/272698/

global-market-share-held-by-mobile-operating-systems-since-2009/,

2022.

[132] Statista. Number of mobile app downloads worldwide from 2019

to 2021, by country. https://www.statista.com/statistics/1287159/

app-downloads-by-country/, 2022.

[133] Thilo Strauss, Markus Hanselmann, Andrej Junginger, and Holger Ulmer. En-

semble methods as a defense to adversarial perturbations against deep neural

networks. arXiv preprint arXiv:1709.03423, 2017.

[134] Dianbo Sui, Zhengkun Tian, Yubo Chen, Kang Liu, and Jun Zhao. A large-

scale chinese multimodal ner dataset with speech clues. In Proceedings of the

59th Annual Meeting of the Association for Computational Linguistics and the

11th International Joint Conference on Natural Language Processing (Volume

1: Long Papers), pages 2807–2818, 2021.

149

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://www.statista.com/statistics/680705/global-android-malware-volume/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/1287159/app-downloads-by-country/
https://www.statista.com/statistics/1287159/app-downloads-by-country/

References

[135] Mingshen Sun, Tao Wei, and John CS Lui. Taintart: A practical multi-level

information-flow tracking system for android runtime. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security,

pages 331–342, 2016.

[136] Yi Sun, Abel Valente, Sijia Liu, and Dakuo Wang. Preserve, promote, or attack?

gnn explanation via topology perturbation. arXiv preprint arXiv:2103.13944,

2021.

[137] RS. Sutton and AG. Barto. Reinforcement learning: An introduction. MIT

press, 2018.

[138] Kimberly Tam, Aristide Fattori, Salahuddin Khan, and Lorenzo Cavallaro. Cop-

perdroid: Automatic reconstruction of android malware behaviors. In NDSS

Symposium 2015, pages 1–15, 2015.

[139] Chenhao Tang, Zhengliang Liu, Chong Ma, Zihao Wu, Yiwei Li, Wei Liu, Da-

jiang Zhu, Quanzheng Li, Xiang Li, Tianming Liu, and Lei Fan. Policygpt:

Automated analysis of privacy policies with large language models. arXiv e-

prints, Sep 2023.

[140] Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4:

Improving llm pretraining via document de-duplication and diversification. Ad-

vances in Neural Information Processing Systems, 36:53983–53995, 2023.

[141] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,

Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guil-

laume Lample. Llama: Open and e”cient foundation language models, 2023.

[142] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pom-

inville, and Vijay Sundaresan. Optimizing java bytecode using the soot frame-

work: Is it feasible? In Compiler Construction: 9th International Confer-

150

References

ence, CC 2000 Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS 2000 Berlin, Germany, March 25–April 2, 2000

Proceedings 9, pages 18–34. Springer, 2000.

[143] VirusTotal. Virustotal - free online virus, malware and url scanner, 2021.

[144] California voters. California consumer privacy act regulations. https://govt.

westlaw.com/calregs, 2016.

[145] Binghui Wang and Neil Zhenqiang Gong. Attacking graph-based classification

via manipulating the graph structure. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, pages 2023–2040, 2019.

[146] Jice Wang, Yue Xiao, Xueqiang Wang, Yuhong Nan, Luyi Xing, Xiaojing Liao,

JinWei Dong, Nicolas Serrano, Haoran Lu, XiaoFeng Wang, and Yuqing Zhang.

Understanding malicious cross-library data harvesting on android. In 30th

USENIX Security Symposium, 2021.

[147] Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and Felix Wu.

Attack graph convolutional networks by adding fake nodes. arXiv preprint

arXiv:1810.10751, 2018.

[148] Jason Wei, Xuezhi Wang, Dale Schuurmans, et al. Chain of thought prompting

elicits reasoning in large language models. arXiv preprint arXiv:2201.11903,

2022.

[149] Ralph Weischedel, Sameer Pradhan, Lance Ramshaw, Martha Palmer, Nian-

wen Xue, Mitchell Marcus, Ann Taylor, Craig Greenberg, Eduard Hovy, Robert

Belvin, et al. Ontonotes release 4.0. LDC2011T03, Philadelphia, Penn.: Lin-

guistic Data Consortium, 2011.

[150] Zhiyuan Wen, Jiannong Cao, Ruosong Yang, Shuaiqi Liu, and Jiaxing Shen.

Automatically select emotion for response via personality-a!ected emotion tran-

151

https://govt.westlaw.com/calregs
https://govt.westlaw.com/calregs

References

sition. In Findings of the Association for Computational Linguistics: ACL-

IJCNLP 2021, pages 5010–5020, 2021.

[151] Shomir Wilson, Florian Schaub, Aswarth Abhilash Dara, Frederick Liu, Sushain

Cherivirala, Pedro Giovanni Leon, Mads Schaarup Andersen, Sebastian Zim-

meck, Kanthashree Mysore Sathyendra, N Cameron Russell, et al. The creation

and analysis of a website privacy policy corpus. In Proceedings of the 54th An-

nual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 1330–1340, 2016.

[152] Yueming Wu, XiaoDi Li, Deqing Zou, Wei Yang, Xin Zhang, and Hai Jin.

Malscan: Fast market-wide mobile malware scanning by social-network central-

ity analysis. In 2019 34th IEEE/ACM International Conference on Automated

Software Engineering (ASE), pages 139–150. IEEE, 2019.

[153] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph backdoor. In

USENIX Security Symposium, pages 1523–1540, 2021.

[154] Liang Xu, Qianqian Dong, Cong Yu, Yin Tian, Weitang Liu, Lu Li, and Xu-

anwei Zhang. Cluener2020: Fine-grained name entity recognition for chinese.

arXiv preprint arXiv:2001.04351, 2020.

[155] Lei Xue, Yuxiao Yan, Luyi Yan, Muhui Jiang, Xiapu Luo, Dinghao Wu, and Ya-

jin Zhou. Parema: an unpacking framework for demystifying vm-based android

packers. In Proceedings of the 30th ACM SIGSOFT International Symposium

on Software Testing and Analysis, pages 152–164, 2021.

[156] Lei Xue, Hao Zhou, Xiapu Luo, Le Yu, Dinghao Wu, Yajin Zhou, and Xiaobo

Ma. Packergrind: An adaptive unpacking system for android apps. IEEE

Transactions on Software Engineering, 48(2):551–570, 2020.

[157] Lei Xue, Hao Zhou, Xiapu Luo, Yajin Zhou, Yang Shi, Guofei Gu, Fengwei

Zhang, and Man Ho Au. Happer: Unpacking android apps via a hardware-

152

References

assisted approach. In 2021 IEEE Symposium on Security and Privacy (SP),

pages 1641–1658. IEEE, 2021.

[158] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. Malton: Towards

on-device non-invasive mobile malware analysis for art. In USENIX Security

Symposium, pages 289–306, 2017.

[159] Lok Kwong Yan and Heng Yin. {DroidScope}: Seamlessly reconstructing the

{OS} and dalvik semantic views for dynamic android malware analysis. In 21st

USENIX security symposium (USENIX security 12), pages 569–584, 2012.

[160] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou,

Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-

ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jian-

wei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang

Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue,

Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,

Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu,

Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang,

Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,

Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2

technical report. arXiv preprint arXiv:2407.10671, 2024.

[161] Yu Yang, Jiannong Cao, Milos Stojmenovic, Senzhang Wang, Yiran Cheng,

Chun Lum, and Zhetao Li. Time-capturing dynamic graph embedding for tem-

poral linkage evolution. IEEE Transactions on Knowledge and Data Engineer-

ing, 2021.

[162] Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming made

faster. IEEE Transactions on Evolutionary computation, 3(2):82–102, 1999.

153

References

[163] Yanfang Ye, Shifu Hou, Lingwei Chen, Jingwei Lei, Wenqiang Wan, Jiabin

Wang, Qi Xiong, and Fudong Shao. Out-of-sample node representation learn-

ing for heterogeneous graph in real-time android malware detection. In 28th

International Joint Conference on Artificial Intelligence (IJCAI), 2019.

[164] Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung

Cha. Appscope: Application energy metering framework for android smart-

phone using kernel activity monitoring. In USENIX Annual Technical Confer-

ence, volume 12, pages 1–14, 2012.

[165] Le Yu, Xiapu Luo, Jiachi Chen, Hao Zhou, Tao Zhang, Henry Chang, and

Hareton K. N. Leung. Ppchecker: Towards accessing the trustworthiness of

android apps’ privacy policies. IEEE Transactions on Software Engineering,

2018.

[166] Le Yu, Xiapu Luo, Xule Liu, and Tao Zhang. Can we trust the privacy policies

of android apps? In 2016 46th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN), pages 538–549. IEEE, 2016.

[167] Le Yu, Xiapu Luo, Chenxiong Qian, Shuai Wang, and Hareton KN Leung.

Enhancing the description-to-behavior fidelity in android apps with privacy

policy. IEEE Transactions on Software Engineering, 44(9):834–854, 2017.

[168] Le Yu, Tao Zhang, Xiapu Luo, and Lei Xue. Autoppg: Towards automatic

generation of privacy policy for android applications. In Proceedings of the

5th Annual ACM CCS Workshop on Security and Privacy in Smartphones and

Mobile Devices, 2015.

[169] Xian Zhan, Lingling Fan, Sen Chen, Feng We, Tianming Liu, Xiapu Luo, and

Yang Liu. Atvhunter: Reliable version detection of third-party libraries for

vulnerability identification in android applications. In 2021 IEEE/ACM 43rd

154

References

International Conference on Software Engineering (ICSE), pages 1695–1707.

IEEE, 2021.

[170] Jingyuan Zhang and Mingjie Chen. People dairy. https://github.com/

zjy-ucas/ChineseNER/, 2017.

[171] L. Zhang, P. Liu, and YH. Choi. Semantic-preserving reinforcement learning

attack against graph neural networks for malware detection. arXiv preprint

arXiv:2009.05602, 2020.

[172] Qi Zhang, Jinlan Fu, Xiaoyu Liu, and Xuanjing Huang. Adaptive co-attention

network for named entity recognition in tweets. In Thirty-Second AAAI Con-

ference on Artificial Intelligence, 2018.

[173] Suxiang Zhang, Ying Qin, Wen-Juan Hou, and Xiaojie Wang. Word segmen-

tation and named entity recognition for sighan bakeo!3. In Proceedings of

the Fifth SIGHAN Workshop on Chinese Language Processing, pages 158–161,

2006.

[174] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav

Artzi. Bertscore: Evaluating text generation with bert. arXiv preprint

arXiv:1904.09675, 2019.

[175] Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown,

and Tatsunori B Hashimoto. Benchmarking large language models for news

summarization. Transactions of the Association for Computational Linguistics,

12:39–57, 2024.

[176] Xiang Zhang, Juntai Cao, and Chenyu You. Counting ability of large language

models and impact of tokenization. arXiv preprint arXiv:2410.19730, 2024.

[177] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun

Zhang, Mi Zhang, and Min Yang. Enhancing state-of-the-art classifiers with api

155

https://github.com/zjy-ucas/ChineseNER/
https://github.com/zjy-ucas/ChineseNER/

References

semantics to detect evolved android malware. In Proceedings of the 2020 ACM

SIGSAC conference on computer and communications security, pages 757–770,

2020.

[178] Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Travis Breaux, and Jianwei Niu.

How does misconfiguration of analytic services compromise mobile privacy?

In 2020 IEEE/ACM 42nd International Conference on Software Engineering

(ICSE), pages 1572–1583. IEEE, 2020.

[179] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning,

X Sean Wang, and Binyu Zang. Vetting undesirable behaviors in android apps

with permission use analysis. In Proceedings of the 2013 ACM SIGSAC confer-

ence on Computer & communications security, pages 611–622, 2013.

[180] Yue Zhang and Jie Yang. Chinese ner using lattice lstm. In Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 1554–1564, 2018.

[181] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. Dexhunter: toward extract-

ing hidden code from packed android applications. In Computer Security–

ESORICS 2015: 20th European Symposium on Research in Computer Secu-

rity, Vienna, Austria, September 21-25, 2015, Proceedings, Part II 20, pages

293–311. Springer, 2015.

[182] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. Backdoor

attacks to graph neural networks. In Proceedings of the 26th ACM Symposium

on Access Control Models and Technologies, pages 15–26, 2021.

[183] Kaifa Zhao, Le Yu, Shiyao Zhou, Jing Li, Xiapu Luo, Yat Fei Aemon Chiu, and

Yutong Liu. A fine-grained chinese software privacy policy dataset for sequence

labeling and regulation compliant identification. In Proceedings of the 2021

156

References

Conference on Empirical Methods in Natural Language Processing, EMNLP.

Association for Computational Linguistics, December 2022.

[184] Kaifa Zhao, Hao Zhou, Yulin Zhu, Xian Zhan, Kai Zhou, Jianfeng Li, Le Yu,

Wei Yuan, and Xiapu Luo. Structural attack against graph based android

malware detection. In Proceedings of the 2021 ACM SIGSAC Conference on

Computer and Communications Security (CCS), 2021.

[185] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng

Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen

Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu

Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A survey of large

language models. arXiv preprint arXiv:2303.18223, 2023.

[186] Hao Zhou, Ting Chen, Haoyu Wang, Le Yu, Xiapu Luo, Ting Wang, and Wei

Zhang. Ui obfuscation and its e!ects on automated ui analysis for android apps.

In Proceedings of the 35th IEEE/ACM International Conference on Automated

Software Engineering, pages 199–210, 2020.

[187] Hao Zhou, Xiapu Luo, Haoyu Wang, and Haipeng Cai. Uncovering intent based

leak of sensitive data in Android framework. In ACM Conference on Computer

and Communications Security (CCS), 2022.

[188] Hao Zhou, Haoyu Wang, Xiapu Luo, Ting Chen, Yajin Zhou, and Ting Wang.

Uncovering cross-context inconsistent access control enforcement in android.

In The 2022 Network and Distributed System Security Symposium (NDSS’22),

2022.

[189] Hao Zhou, Haoyu Wang, Yajin Zhou, Xiapu Luo, Yutian Tang, Lei Xue, and

Ting Wang. Demystifying diehard android apps. In 2020 35th IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE), pages 187–

198. IEEE, 2020.

157

References

[190] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting repackaged

smartphone applications in third-party android marketplaces. In Proceedings

of the second ACM conference on Data and Application Security and Privacy,

pages 317–326, 2012.

[191] Y. Zhu, Y. Lai, K. Zhao, X. Luo, M. Yuan, J. Ren, and K. Zhou. Binarize-

dattack: Structural poisoning attacks to graph-based anomaly detection. arXiv

preprint arXiv:2106.09989, 2021.

[192] Yulin Zhu, Yuni Lai, Kaifa Zhao, Xiapu Luo, Mingquan Yuan, Jian Ren,

and Kai Zhou. Binarizedattack: Structural poisoning attacks to graph-based

anomaly detection. In 2022 IEEE 38th International Conference on Data En-

gineering (ICDE), pages 14–26. IEEE, 2022.

[193] Sebastian Zimmeck, Peter Story, Daniel Smullen, Abhilasha Ravichander, Ziqi

Wang, Joel R Reidenberg, N Cameron Russell, and Norman Sadeh. Maps:

Scaling privacy compliance analysis to a million apps. Proc. Priv. Enhancing

Tech., 2019:66, 2019.

158

	Abstract
	Publications
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Android Malware Detection
	Adversarial Attack Against Android Malware Detection
	Android Privacy Policy
	Android Apps Behavior Analysis
	Pre-trained Large Language Models for Privacy Policy Analysis
	Our Work
	Vulnerability Investigation of Android Malware Detection Systems
	Curation of Chinese Privacy Policy Benchmark
	Investigating Pre-trained Large Language Models for Privacy Policy Analysis

	Thesis Outline

	Literature Review
	Adversarial Attack against Android Malware Detection
	Privacy Policy Dataset
	Android Privacy Policy Analysis
	Pre-trained Large Language Model for Privacy Policy Analysis.

	Structural Attack against Graph Based Android Malware Detection
	Overview
	Preliminaries
	Feature Attacks and Structural Attacks
	Target Android Malware Detection Systems
	Reinforcement Learning

	Attack Model
	Threat Model
	Attack Formulation
	Heuristic Optimized Reinforcement Learning based Structural Attack
	Structural Attack Analysis

	Android Application Manipulation
	Constraints Determination
	Adding Function Calls
	Rewiring Function Calls
	Inserting Methods
	Deleting Methods

	Evaluation
	RQ1: Effectiveness Analysis
	RQ2: Modification Efficiency Comparison
	RQ3: Effectiveness of IMA
	RQ4: Resilience to Obfuscation Techniques
	RQ5: Functional Consistency Assessment
	RQ6: Influence of Key Parameters
	RQ7: Defense against HRAT

	Discussion
	Applicability of HRAT
	Limitations

	A Fine-grained Chinese Software Privacy Policy Dataset for Sequence Labeling and Regulation Compliant Identification
	Overview
	Preliminaries
	Android Privacy Policy
	Sequence Labeling

	Dataset Construction
	Dataset Collection
	Fine-grained Annotations
	Human Annotation Process
	Dataset Statistics and Comparison

	Task and Experiment Setup
	Task Description
	Model Summaries
	Setup and Implementation Details

	Evaluation
	Main Results
	Case Study

	Discussion
	Dataset Difficulties
	Limitations
	Ethical Consideration

	Investigating Pre-trained Large Language Models for Chinese Privacy Policy Analysis
	Overview
	Preliminaries
	Pre-trained Large Language Models
	Prompt Engineering

	Framework
	Task Description
	Privacy Policy Preprocessing
	Prompt Design

	Experiments
	Model Summaries
	Experiment setup
	RQ1. Effectiveness of LLMs in analyzing privacy policies.
	RQ2: Impact of Prompt Engineering Techniques on Model Performance
	RQ3: Hallucinations Analysis in LLMPP
	Case Study

	Discussion

	Conclusions and Suggestions for Future Research
	Conclusions
	Investigating Vulnerability of Android Malware Detection
	Introducing a Comprehensive Android Application Privacy Policy Dataset
	Application of LLMs for Analyzing Privacy Policies

	Future Work

	References

