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Abstract

The widespread popularity of Android, as one of the most widely-used mobile op-
erating systems, is attributed to its ability to provide users with a wide range of
convenient and entertaining options through its functional apps. Nevertheless, mo-
bile users may face a risk to their privacy and property from potentially harmful apps

that can be installed on their devices.

This thesis focuses on combining Android static analysis, artificial intelligence tech-
niques, and natural language processing techniques to investigate app behavior, dis-
cover vulnerabilities in Android malware detection systems, and understand Android
apps’ privacy policies. To safeguard user privacy from potentially harmful apps, we
propose the following measurements: (1) Investigating the vulnerability of Android
malware detection systems under evolving structural attacks and proposing defense
solutions. (2) Analyzing whether Android app privacy policies meet regulatory re-
quirements. and (3) Empirically evaluating the capacity of pre-trained large language

models to identify regulation-required components in Android privacy policies.

For (1), to investigate the vulnerability of Android malware detection (AMD) sys-
tems under evolving attacks and design effective defense solutions, we propose a
Heuristic optimization model integrated with Reinforcement learning framework to
optimize our structural ATtack, namely HRAT, which is the first problem-pace struc-
tural attack designed to deceive Android malware detection systems. HRAT employs

four types of graph modification operations and corresponding bytecode manipula-



tion techniques to generate executable adversarial apps that can evade detection.
HRAT bridges the research gap between feature-space attacks, which generate only
adversarial features to deceive machine learning models, and problem-space attacks,
which generate complete adversarial objects, i.e., executable Android apps in our
scenario. Our extensive experiments demonstrate that HRAT demonstrates effective
attack performance and remains robust against obfuscation methods that do not af-
fect the app’s function call graph. In addition, we propose potential defense solutions

to improve the robustness of AMD against such advanced attack methods.

For (2), we construct a benchmark dataset for Android privacy policies, i.e., a novel
large-scale human-annotated Chinese Android application privacy policy dataset,
namely CA4P-483. Following a manual inspection of regulatory articles, we identify
seven types of labels that are relevant to the regulatory requirements for apps’ access
to user data. We design a two-step annotation process to ensure label agreement,
and our evaluation showed that our annotations achieved a Kappa value of 77.20%,
indicating substantial agreement for CA4P-483. In addition, we evaluate robust and
representative baseline models in our dataset and present our findings and potential
research directions based on our results. Finally, we conduct case studies to explore

the potential application of CA4P-483 in protecting user privacy.

For (3), we empirically evaluate three widely used pre-trained large language models
on the CA4P-483 dataset. This work aims to explore the capacity of LLMs in pro-
cessing Chinese privacy policies and to uncover their potential to address compliance
issues that are challenging for traditional NLP techniques. Building on our previous
work with CA4P-483, we leverage the semantic understanding capabilities of pre-
trained LLMs and apply carefully crafted prompts according to established prompt
engineering principles to maximize the models’ inference performance. Our evaluation
reveals that state-of-the-art pre-trained LLMs still fall short of achieving satisfactory
performance on the Chinese privacy policy dataset. The limitations may stem from

the complexity of the language environment, the intricate cross-relationships among

i



elements within privacy policies, and the models’ current generalization capabilities.
Based on our evaluation results, we also propose potential future research directions
that include leveraging long-context LLMs to analyze privacy policies holistically and
achieve overall semantic consistency, as well as training a dedicated large-scale pri-
vacy policy analysis model that incorporates multilingual datasets to address privacy

policies across different languages and platforms.
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Chapter 1

Introduction

The escalating prevalence and extensive utilization of smartphones have rendered
them a prime target for cybercriminals. Due to its extensive usage, Android, be-
ing the most widely used mobile operating system[l31], is particularly vulnerable
to malicious software (malware) attacks. Malware on Android devices can cause a
range of problems [130], from stealing sensitive information to corrupting data and
disabling system functions. Concealing users’ data access behaviors in the privacy
policy will deprive users of the right to know about the processing of private data,
thereby leading to the potential leakage of users’ privacy. Comprehending the malev-
olent conduct of Android applications (apps) is critical to detecting Android malware

and safeguarding the privacy of users.

Recent studies demonstrate the importance of analyzing the behavior of potentially
harmful apps (PHA) for detecting Android malware [0, 79, 68, 152, 91, 25, 24, 18 177,

, 69,5, , 61, , 12], investigating potential vulnerabilities of Android malware
detection (AMD) systems [15, 26, 56, 77, 107, 60], and identifying consistency between
Android apps’ behavior and privacy policy statements [6, 7, , , 97, , ].
Android malware detection systems are designed to identify malicious apps before

malware is published in the market [19, 62] and to further prevent apps from harming
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mobile device users. Unfortunately, previous research has revealed that AMD can be
circumvented with relative ease through adversarial attacks [15, 26, 56, 77, , 60]
that manipulate the features extracted from apps, thereby deceiving machine learn-
ing models utilized in detection systems. As a consequence, app markets [10, (2]
have imposed regulations [50, (3] to govern the conduct of apps published in their
markets. App markets, in particular, require developers to explicitly disclose their
app’s behavior, including the collection, usage, sharing, or storage of users’ infor-
mation, in a privacy policy document upon uploading the app. However, existing
research [0, 7, , , 97, , | has revealed that the behavior of apps is fre-
quently inconsistent with their privacy policy statements. Despite the numerous
studies proposed to analyze the behaviors of potentially harmful Android apps [15,

, 56, 77, 107, 60, 9, 79, 68, 152, 91, 25, 24, 18, 177, 163, 65, 5, 120, 61, 158, 42] and
their privacy issues [0, 7, , , 97, , ], the research community still lacks
comprehensive studies on investigating the vulnerability of Android malware detec-

tion systems under structural adversarial attacks; and creating a benchmark dataset

that meets the regulatory requirements for app privacy policy statements.

1.1 Android Malware Detection

Android malware detection systems are developed to recognize malevolent apps, and
current detection methodologies typically rely on classification techniques. Such
methods extract features from both benign and malicious apps and subsequently
employ them to train a machine-learning model with the capacity to differentiate be-
tween the two. Notably, many systems [9, 79, 68, , 91, 25, 24, 18, , 12] utilize
static analysis to extract features, including requested permissions [9, 79, (8] and
function call relations [91, 152]. Of these systems, function call graph (FCG)-based
approaches [152, 91, 25, 24, 18] have demonstrated promising performance as FCGs

contain abundant semantic information, such as calling relationships. In an FCG,
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each node represents a method, and each directed edge depicts a calling relationship
between two methods. State-of-the-art malware detection tools extract potential ma-

licious features, such as sensitive APIs, from FCGs to represent malware’s malevolent

behaviors. For instance, Malscan [152] extracts centralities of sensitive nodes in FCGs
to train classifiers. Mamadroid [91] abstracts the nodes of FCGs into different states
and uses the transition probability between states as features. Cai et al. [18] use the

graph neural network to extract features from FCGs for malware detection.

1.2 Adversarial Attack Against Android Malware

Detection

The goal of adversarial attacks against Android malware detection systems [50, 15,

, 26, ] is to evade detection by generating adversarial samples that incorporate
perturbations into extracted feature vectors, in order to deceive the classifiers of tar-
get systems. For instance, Grosse et al. [50] apply the Jacobian matrix to modify
features in Drebin [9] to generate adversarial examples and achieve a 69% evasion
rate. AndroidHIV [20] streamlines the attack process by manipulating the features
in Mamadroid [91] and Drebin [9] using various algorithms, such as C&W based
methods [26]. Traditional adversarial attacks against AMD [56, 15, 77], however,
can solely create adversarial features to escape detection and are confined to produc-
ing executable adversarial applications. Hence, traditional adversarial attacks fail to
evaluate the susceptibility of actual Android malware detection systems since these
systems identify whether an app (usually in the form of an apk file) is malicious based
on its physical form rather than its feature representations, such as permissions uti-
lized in the apps. The growing emphasis on producing authentic evasion samples has
led to an increasing number of systems [20, | developing algorithms for generating
executable adversarial Android malicious apps, also known as problem-space attacks.

Existing problem-space attacks are limited to inserting non-functional methods or in-
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vocations in order to evade detection while preserving the semantics of the generated
adversarial malware. Due to the inverse feature-mapping problems, the feature map-
ping transformations between problem space and feature space are neither injective
nor surjective [110], meaning that some information can be lost or misrepresented in

the mapping process [20, ].

1.3 Android Privacy Policy

The proliferation of mobile devices has elevated the necessity for privacy and security
measures to safeguard personal information. The Android operating system, being
the dominant platform for mobile devices, holds a vast amount of sensitive information
about its users, such as personal and financial data, location, and online activity. As
a result, the need for privacy and security measures to safeguard this information has
become increasingly important. This vast amount of sensitive information available
on Android, the most widely used mobile operating system, makes it a valuable target
for cybercriminals. As a result, it is imperative to have effective privacy policies in

place to govern the behavior of Android apps and safeguard user data.

To normalize privacy-related behaviors and prevent privacy leakage, various privacy-
related regulations (e.g., California Consumer Privacy Act [144], California Privacy
Rights Act [101], General Data Protection Regulation [17], International Covenant on
Civil and Political Rights [52], Code of Federal Regulations [113]) have been promul-
gated to protect people’s personal information from being abused. A privacy policy
is a legal document [17, , 98] written in natural language that outlines the types
of information collected, how it is used, and who it is shared with. The Android
privacy policy undergoes constant evolution to keep up with the rapidly changing
technological landscape and to address emerging privacy concerns as they arise. Pri-
vacy policies play a crucial role in providing users with a clear understanding of how

their personal data will be used and enabling them to make informed decisions about
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using a product. They serve as a tool for enhancing transparency and accountability
and help users assess the risks associated with sharing their personal information.
As such, privacy policies have emerged as a key aspect of data protection and pri-
vacy regulation in the mobile app ecosystem. However, privacy policies are tedious,

making it hard for users to read and understand them [125].

1.4 Android Apps Behavior Analysis

Android app analysis can be broadly classified into two categories, namely static
analysis [H4, , 53, 64, 40] and dynamic analysis [39, , , , , , ,

, 00]. The static analysis evaluates apps’ code and resources without executing it.
Static analysis is a powerful tool for identifying potential security vulnerabilities and
privacy violations in an app, as it allows researchers to identify issues that may not be
evident during normal app execution. Static analysis can be performed quickly and
easily on large numbers of apps without executing apps. Moreover, static analysis
excels in code coverage, tamper resistance, cost-effectiveness, early detection, and

repeatability.

Dynamic analysis, on the other hand, involves executing an app on a device or em-
ulator and monitoring its behavior during runtime. This method provides a more
realistic view of an app’s behavior and allows researchers to identify issues that may
not be visible in the code, such as network communication and data usage. Dynamic
analysis is particularly useful for identifying malicious behavior, such as data theft
and unauthorized access to sensitive information. However, dynamic analysis requires
significant computational resources, including a high-performance device or emulator,
memory, and storage space. Besides, dynamic analysis is a time-consuming process,
especially for large or complex apps. This can make it difficult to scale dynamic anal-
ysis for large numbers of apps. Dynamic analysis can only provide an approximation

of an app’s behavior, as it does not take into account all the possible ways an app
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can behave in the real world. This can result in false negatives or a limited view of
app behavior. Dynamic analysis can interfere with the normal functioning of an app,
as the analysis process can modify system settings or disrupt normal app behavior.

This can result in inaccurate or misleading results.

1.5 Pre-trained Large Language Models for Pri-
vacy Policy Analysis

Large language models (LLMs) [2, , 8, 32] demonstrate exceptional ability in
understanding and processing natural language. Benefiting from LLMs’ advanced
natural language understanding abilities, researchers have begun to apply LLMs to
analyze privacy policies across various domains [23, 90, , |, including the Inter-
net of Things (IoT), web applications, LLM plugins, and beyond. The application of
LLMs to downstream tasks primarily relies on prompt engineering, where researchers
craft detailed instructions that include task descriptions and data samples to be an-
alyzed. These instructions are used to query target LLMs, which then infer new

content based on the provided context to complete the tasks.

1.6 Our Work

To safeguard individuals’ privacy and property, our focus is on analyzing Android
apps that may potentially be harmful and preventing apps’ malicious activities. We
first investigate the vulnerability of Android malware detection systems, focusing
on the design of the first problem-space structural attack against Android malware
detection systems. Second, we construct the first Chinese Android privacy policy
dataset to identify the consistency between apps’ behavior and privacy policy state-

ments. Finally, we investigate the capabilities of pre-trained large language models



1.6. Our Work

for identifying regulation-required components in privacy policies.

1.6.1 Vulnerability Investigation of Android Malware Detec-

tion Systems

First, we propose HRAT, the first problem-space structural attack against Android
malware detection systems, to investigate the robustness of detection systems under
evolving threats. Android malware detection techniques achieve great success with
deeper insight into the semantics of malware. Among existing detection techniques,
function call graph (FCG) based methods achieve promising performance due to their
prominent representations of malware’s functionalities, i.e., the nodes in FCG denote
the methods in apps and the edges in FCG denote the invocation relations between
methods. Meanwhile, researchers propose adversarial attacks to investigate the vul-
nerability of detection systems and propose corresponding defense methods to make
the systems more robust in malware detection. However, existing adversarial attacks
against Android malware detection systems focus on perturbing the feature vectors,
that are extracted from the apps’ components or function call graphs, to escape detec-
tion, and ignore the new attack face exposed in function call graph-based detection
systems, such as the structure of function call graphs as is shown in Figure 3.2 in
Chapter 3 Section 3.2.1. Furthermore, suffering from the attack interface, i.e., per-
turbing the feature vector, existing adversarial attacks can not guarantee the success
of generating runnable adversarial apps based on perturbations on feature vectors,

which is known as inverse transformation limitation [107].

In this thesis, we design a Heuristic optimization model integrated with Reinforcement
learning framework to optimize our structural ATtack, namely HRAT. Compared
with existing adversarial attacks against Android malware detection systems, HRAT
has three important capabilities, namely a) a novel attack channel, i.e., the structure

of Android apps’ function call graph, b) filling the research gap between problem-
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space attack and feature-space attack, and c¢) a useful framework for Android app

manipulation while maintaining the functionalities.

Specifically, HRAT implements four types of graph modification methods to perturb
the structure of Android apps’ function call graph, namely adding edges, rewiring,
inserting nodes, and deleting nodes. We craft four types of graph modifications
while maintaining the connection relations of nodes which may be affected by the
structure modification. This design guarantees the invocation relations of methods in
apps will not be affected at a theoretical level and provide the basis for transforming
perturbations in feature space to problem space. To optimize the attack process,
we apply a reinforcement learning algorithm to learn the optimal graph modification
sequence based on the criteria of minimum perturbations. To make sure the function
call graph modification can be transformed into apps’ code manipulation and does
not affect the apps’ functionalities, we craft four types of Android app manipulation
methods accordingly, namely adding function calls, rewiring function calls, inserting
methods, and deleting methods. HRAT implements the Android app manipulation

tool based on static analysis and requires no access to apps’ source code.

We evaluate HRAT on over 30,000 Android apps including apps from different time
period [13] and using different obfuscation techniques [37]. HRAT demonstrates out-
standing attack performance on both feature space and problem space and illustrates
that combining multiple graph modifications strategically makes the attack more ef-
fective and efficient. Besides, our experiments also demonstrate that HRAT is resilient
to obfuscations that do not affect or hide invocation relations in apps. After access-
ing the vulnerability of Android malware detection systems, we also propose defense

strategies to make the detection systems robust against evolving attacks.
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1.6.2 Curation of Chinese Privacy Policy Benchmark

The Android privacy policy is a legal document written in natural language that
discloses how and why a controller, who determines the purposes for which and the
means by which personal data is processed, collects, shares, uses, and stores user in-
formation [17, 108, 98]. Regulation department [17, 108, 98] and Android application
management [19, (2] ask developers to provide a privacy policy to clearly state how
they deal with user information to help users understand and be aware of whether
their privacy will be abused and decide whether to use the product. However, pri-
vacy policies are tedious, making it hard for users to read and understand them [128].
Fortunately, Natural language processing techniques achieve great success in under-
standing document semantics [161, , 36]. However, applying natural language
processing to understand privacy policies still requires a large amount of labeled data

to train the semantic understanding model.

In this thesis, we first construct a fine-grained Chinese software privacy policy dataset
to fill the research gap and prompt research on understanding the consistency be-
tween apps’ behavior and privacy policy statements. Although there exist English
versions of privacy policy datasets, such as Online Privacy Policies (OPP-115) [151]
and Android app privacy policies (APP-350) [193], the annotations in the dataset are
coarse-grained, i.e., being labeled in sentence level, and cannot satisfy regulation re-
quirements in China [9%, , , 27]. Thus, we construct the first large-scale human-
annotated Chinese Android application privacy policy dataset, namely CA4P-483.
Specifically, we manually visit the software markets, such as Google Play [19] and
AppGallery [62], check the provided privacy policy website, and download the Chi-
nese version if available. We finally collect 483 documents. To determine the labels
in the privacy policy analysis scenario, we read through Chinese privacy-related reg-
ulations and summarize seven components (§4.3.2). We annotate all occurrences of
components in 11,565 sentences from 483 documents. Unlike paragraph-level anno-

tations in existing privacy policy datasets [151], CA4P-483 annotates character-level
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corpus.

Second, based on CA4P-483, we summarize representative baseline algorithms for Chi-
nese sequence labeling, which aim to identify the labels of Chinese characters within a
given privacy policy sentence, based on predefined regulatory components. In detail,
we first evaluate the performance of several classic sequence labeling models on our
dataset, including Conditional Random Forest (CRF) [70], Hidden Markov Model
(HMM) [94], BiLSTM [55], BiILSTM-CRF [71], and BERT-BiLSTM-CRF [31]. Re-
cent work shows lattice knowledge improves the performance of Chinese sequence
labeling tasks. We also evaluate a lexicon-based model specifically designed for Chi-

nese NLP scenarios, such as Lattice-LSTM [180].

Third, we investigate potential applications of CA4P-483. Combining knowledge of
regulations, we first identify whether the privacy policy violates regulation require-
ments based on CA4P-483. We also identify whether the app behaves consistently

with privacy policy statements by combing software analysis [181, ].

1.6.3 Investigating Pre-trained Large Language Models for
Privacy Policy Analysis

Pre-trained large language models (LLMs) exhibit remarkable capabilities in under-
standing the semantics of natural language. These models are trained on vast collec-
tions of diverse natural language resources, including Wikipedia, publicly available
news, books, and programming code, among others [185, |. Consequently, LLMs
are equipped with general natural language understanding abilities, such as document
summarization [175, 22], sentence completion [99], etc. In addition to general-purpose
capabilities, LLMs fine-tuned on specific datasets for particular tasks have shown ex-
ceptional performance. For example, LLMs trained on programming-related data
excel in tasks such as code completion[31, 95], code generation[l04, 6], and code

summarization[!, 75]. However, achieving such performance often requires access
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to extensive domain-specific datasets for pre-training[110] or fine-tuning[34], which
can be resource intensive. Moreover, research highlights that LLMs perform sub-
optimally on specialized downstream tasks when they are not explicitly trained for
those purposes. Tasks such as summarizing legal documents or drafting scripts ex-
emplify these limitations. To address these challenges and enhance the utility of
LLMs for domain-specific tasks, researchers and industry professionals have increas-
ingly adopted prompting-based approaches [10, 82]. These approaches leverage the
inherent generative capabilities of LLMs to tackle a wide range of tasks without the

need for extensive retraining or fine-tuning.

In this work, we design an LLM-based system for Chinese privacy policy analysis,
termed LLMPP, to empirically evaluate the performance of two publicly available
LLMs [160, 111] and one widely used commercial LLM [102] on our curated Chinese
privacy policy dataset [183], i.e., CA4P-483. LLMPP takes as input the privacy-
related sentences, specifically, those containing terms related to data collection and
sharing [0, 183], in order to address the context length limitations of LLMs and prevent
them from losing focus when processing an entire lengthy and complex privacy policy
document. Besides, LLMPP employs carefully crafted prompts, leveraging prompt
engineering techniques [10, , 59], to enhance the performance of popular general-
purpose LLMs on downstream tasks—in our case, Chinese privacy policy analysis.
To gain deeper insights into the performance of LLMPP, we evaluate the performance
of LLMPP on CA4P-483 [183] and perform comprehensive ablation studies on vari-
ous prompt engineering techniques and assess the hallucination risks across multiple
LLMs. Our findings highlight persistent challenges in applying LLMs to downstream
tasks involving Chinese privacy policy analysis. Building on these experimental re-
sults, we propose potential research directions to advance user privacy protection in

this domain.
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1.7 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 introduces the most related
work. Chapter 3 proposes the first structural attack to investigate the vulnerability
of Android malware detection systems. Chapter 4 crafts the first Chinese privacy
policy dataset with fine-grained annotations. Chapter 5 empirically evaluates the
performance of LLMs on analyzing privacy policy documents. Finally, Chapter 6

concludes the thesis and discusses future work.

The primary research outputs that emerged from the thesis are as follows:

e Kaifa Zhao, Le Yu, Shiyao Zhou, Jing Li, Xiapu Luo, Yat Fei Aemon Chiu,
and Yutong Liu, “A Fine-grained Chinese Software Privacy Policy Dataset for
Sequence Labeling and Regulation Compliant Identification”, in The 2022 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), 2022.

e Kaifa Zhao, Hao Zhou, Yulin Zhu, Xian Zhan, Kai Zhou, Jianfeng Li, Le Yu,
Wei Yuan, and Xiapu Luo, “Structural Attack against Graph Based Android
Malware Detection”, in Proceedings of ACM Conference on Computer and Com-

munications Security (CCS), 2021.

In summary, this thesis makes the following contributions:

e We propose the first structural attack against Android malware detection sys-
tems to investigate the vulnerability of detection systems. We also release
the code and data to other researchers by responsibly sharing a repository

(https://github.com/zacharykzhao/HRAT).

e We develop a new tool to transform perturbations on feature space to problem
space while maintaining the functionality of Android apps and publish the tool

to facilitate research in this community.
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1.7. Thesis Outline

e We create and publish the first fine-grained Chinese privacy policy dataset,
namely CA4P-483, with word-level annotation. Our dataset and code are pub-

licly available in https://github.com/zacharykzhao/CA4P-483

e We evaluate popular baseline algorithms on CA4P-483, summarize difficulties
in our dataset, provide findings and further research topics on our dataset, and
conduct a case study to demonstrate the potential application of our dataset in

identifying privacy compliance studies.

e We empirically evaluate the performance of pre-trained large language mod-
els for analyzing compliance in privacy policies. We meticulously designed
prompts to utilize pre-trained large language models to identify entities re-
lated to legal and regulatory requirements in Chinese privacy policies. We also
assessed the effectiveness of three publicly popular large language models on
this task. We also make all our data, scripts and results publicly available in

https://github.com/zacharykzhao/CA4P-483/tree/main/LLMPP

e We systematically analyze the evaluation performance of LLMs and identify key
challenges in applying them to the analysis of Chinese privacy policies. Based
on our findings, we propose future directions for applying LLMs to such down-
stream tasks. These include leveraging long-context models to address the task
in an end-to-end manner and pretraining a new LLM to explore relationships
between privacy policies, enabling the model to handle privacy policies written

in different languages and originating from various platforms.

13


https://github.com/zacharykzhao/CA4P-483
https://github.com/zacharykzhao/CA4P-483/tree/main/LLMPP

Chapter 2

Literature Review

We introduce related work that is most related to our studies, including adversarial
attacks against Android malware detection (in §2.1), privacy policy dataset (in §2.2),
and Android privacy policy analysis (in §2.3).

2.1 Adversarial Attack against Android Malware

Detection

Many attack methods [56, 20, , , 77, 15, | have been proposed to evade
Android malware detection systems. From the perspective of whether the adversary
generates real Android apps, adversarial attacks can be categorized into problem-space
attacks [20, , 77] and feature-space attacks [56, 20, , , 77, 15]. Feature-space
attacks only modify the features to deceive the classifiers used by detection systems.
Grossel et al.  [50] propose to replace the classifier in Drebin with a neural net-
work to improve detection performance. They also propose Jacobian matrix-based
(JM) methods to modify the features to escape detection. Similarly, Shahpasand et

al. [L19] use a generative adversarial neural network to generate adversarial features
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for evading Drebin. However, neither of them considers the modification of APK,
which means that the adversarial samples they generate can only evade the detection
of the classifier, and cannot generate new malware that has escaped system detec-
tion and flowed into the software market. Problem-space attacks to generate real
adversarial examples. AndroidHIV [26] builds the transformation relation between
feature modification and APK manipulation to transform features (i.e., invocation
probability) to the number of invocations. Then, AndroidHIV applies optimization
algorithms to guide perturbations on the feature vectors. Based on feature perturba-
tions, AndroidHIV inserts the corresponding number of call relations between target
methods to generate adversarial malware. Pierazzi et al. [107] extract benign compo-
nents from the training set and then insert those benign components into malicious
samples to generate adversarial malware to evade Drebin’s [9] detection. Although
these studies aim to generate real APK, they just insert no-op code. Li et al. [77]
attack Drebin by inserting and removing components, in which removal is achieved
by renaming components, in the feature vectors. However, their modification only

renames the corresponding string content to deceive the feature extraction methods.

From the perspective of the attack surface for perturbing graph-based systems, ad-
versarial attacks can be categorized into feature attacks [50, 20, , , 77, 15]
and structural attacks [130, 30, 89, , |. Feature attacks [20, | perturb the
feature vectors extracted from the graph to deceive the target algorithm. Structural
attacks [136, 30, 89, , | modify the structure of graphs or the features of nodes
to evade detection. Except for simply inserting and deleting edges, ReWatt [39] pro-
poses rewiring edges to preserve the graph characteristics. ReWatt uses reinforcement
learning to select the most influential edges for modification. The middle nodes in
ReWatt’s rewiring are restricted to the second-order neighbors of nodes in the original
edge to make their modification ”unnoticeable” to GCN. Wang et al. [117] deceive the
graph convolutional neural network classifier by inserting nodes selected by the gen-

erative adversarial neural network. Note that existing studies usually ignore deleting
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nodes. Moreover, existing attacks against malware detection only insert dead code
because removing nodes will cause relevant edges to be deleted and may lead to side

effects [107].

2.2 Privacy Policy Dataset

Prior privacy policy datasets are all in English and omit other languages. OPP-
115 [151] collects 115 privacy policies in English websites and makes annotations
at the sentence level. OPP-115 designs labels based on previous works [92, 128] and
ignores the regulation requirements at the latest time. APP-350 [193] gathers Android
apps’ privacy policies written in English. APP-350 only conducts limited annotations,
including two types of data controllers, namely first party and third party, thirteen

types of specific data, and two types of modifiers, i.e., do and do not.

Existing Chinese sequence-labeling datasets are generally gathered from News [173,

, ] and social media [100, , ]. The datasets include abundant corpus,
but their annotations are limited to location, person name, and organization. Even
though CLUENER2020 [154] expands the labels, such as the game, government, and
the book, the datasets are still hard to be applied in specific downstream tasks. On the
other hand, CNERTA [131] includes another media data, i.e., voice data, to improve

the sequence labeling performance.

2.3 Android Privacy Policy Analysis

XFinder [116] identifies the cross-library data harvesting in Android apps with dy-
namic analysis. XFinder identifies third-party libraries’ usage by comparing the
caller’s and callee’s package names. XFinder also restores reflection invocations us-

ing two predefined patterns. For conflict identification, XFinder manually parses the
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terms-of-service of 40 TPLs and then uses NLP techniques to extract data-sharing
policies. Nguyen et al. [97] investigate whether apps achieve users’ consent before
sharing personal information. The authors use dynamic analysis to identify the net-
work traffic and data-sharing behaviors. They identify whether the shared data are
identifiable personal data by comparing the same traffic collected from different times
or the same traffic from different devices. The ablation experiments are designed to

determine whether the data-sharing action achieves users’ explicit consent.

PAMDroid [178] analyzes the impact of misconfigurations of analytical services in
Android. After analyzing 1000 popular apps, PAMDroid finds 52 of 120 apps mis-
configured the services and led to a violation of either the service providers’ terms-
of-service or the app’s privacy policy. PPChecker [165] also identifies the conflict
in apps’ privacy policies, but only identifies whether apps’ privacy policies provide
TPLs’ privacy policy links and interactions of five permission-related personal infor-
mation with 81 TPLs. POLICHECK [7] identifies the app’s data sharing with third
parties using dynamic analysis. POLICHECK finds that 49.5% of apps disclose their
third-party sharing practices using vague terms and 31.1% of data flows as omitted
disclosures. Existing works ignore analyzing whether TPLs satisfy the regulation of

requirements.

2.4 Pre-trained Large Language Model for Privacy
Policy Analysis.

CLEAR [23] is designed to enhance user awareness of privacy policies and potential
risks when interacting with pre-trained large language model applications. CLEAR
is capable of identifying sensitive information, summarizing relevant privacy policies,
and highlighting potential risks in a contextual and just-in-time manner. Through

co-design workshops and user studies, CLEAR demonstrates its effectiveness in im-
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proving users’ understanding of data practices and privacy risks and encouraging
more cautious data-sharing behaviors. However, CLEAR’s applicability is currently
limited to specific platforms, such as ChatGPT and the Google Gemini plugin, lack-
ing support for a broader range of applications and modalities. Additionally, CLEAR
relies on the Microsoft Presidio library for identifying personally identifiable informa-
tion (PII), which may not always accurately or promptly identify all types of personal

identification information, potentially leaving user privacy at risk.

Maliyetty et al. [90] evaluate the performance of quantized LLaMA models in ana-
lyzing Internet of Things (IoT) privacy policies. The authors design various prompts
to guide different pre-trained large language models in generating privacy policy
language and assess the output using semantic similarity metrics such as ROUGE-
Lsum [33] and BERT precision [174]. The authors’ experiments demonstrate that the
quantized models exhibit comparable performance to the base model. However, the
authors do not differentiate model performance across various types of privacy policy
statements, nor do they include fine-tuning for specific privacy policy texts. This
absence may limit the models’ ability to handle nuanced or domain-specific privacy

concerns effectively.

Rodriguez et al. [116] evaluate the performance of pre-trained large language models,
specifically ChatGPT and LLaMA 2, in analyzing privacy issues within the MAPP
dataset. The authors assess various prompts using these LLMs to analyze coarse-
grained privacy issues in privacy policies, such as whether the policy involves user-
specific types of information, including financial data, location data, etc. However,
the proposed methods overlook the input limitations of large language models. When
the length of the privacy policies exceeds the input limits of the target LLM, the
proposed methods may truncate the content of the privacy policy, which can further

affect the performance of these methods.

LLM-PBE [20] is designed for the systematic evaluation of data privacy risks in Large

Language Models (LLMs), addressing a critical gap in comprehensive privacy assess-
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ments for these models. LLM-PBE employs a diverse array of attack and defense
strategies, including data extraction, membership inference, and jailbreaking attacks,
to analyze privacy vulnerabilities across different LLMs, data types, and metrics.
LLM-PBE reveals that larger LLMs are susceptible to data extraction, underscoring
the need for further research into prompt protection and privacy-preserving mech-
anisms. However, LLM-PBE only focuses on existing attack and defense methods,
suggesting that future advancements may yield different findings. Moreover, the ex-
ploration of dynamic text data management strategies for evolving LLMs remains an

open challenge.

PolicyGPT [139] implements a framework that leverages pre-trained large language
models, such as ChatGPT and GPT-4, for the automated categorization of privacy
policies. PolicyGPT addresses the challenge of comprehending verbose and complex
legal documents. The framework employs a zero-shot learning approach to evaluate
performance on OPP-115 and PPGDPR datasets. However, PolicyGPT relies on
predefined categories and potential inefficiencies with few-shot prompts, as observed

during the A /B testing phase.
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Chapter 3

Structural Attack against Graph
Based Android Malware Detection

3.1 Overview

Malware detection techniques achieve great success with deeper insight into the se-
mantics of malware. Among existing detection techniques, function call graph (FCG)
-based methods achieve promising performance due to their prominent representations
of malware’s functionalities. Meanwhile, recent adversarial attacks not only perturb
feature vectors to deceive classifiers (i.e., feature-space attacks) but also investigate
how to generate real evasive malware (i.e., problem-space attacks). However, existing
problem-space attacks are limited due to their inconsistent transformations between

feature space and problem space.

Existing feature attacks [56, 15, 77, 206, | generated adversarial samples by adding
perturbations to extracted feature vectors to deceive classifiers in target systems. For
instance, Grosse et al. [56] apply the Jacobian matrix to modify features in Drebin [9]
to generate adversarial examples and achieve the 69% evasion rate. AndroidHIV [20]

aims to optimize their attack process, which perturbs the features in Mamadroid [91]
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and Drebin, through several algorithms (e.g., C&W based methods [20]).

Recent studies designed problem-space attacks to generate real adversarial malware |

|. Unfortunately, to preserve the semantics of generated adversarial malware, ex-
isting problem-space attacks are restricted to inserting non-functional methods or
calls [20, |. Due to the inverse feature-mapping problems, the feature-mapping
functions between problem space and feature space are neither injective nor surjec-
tive [110]. Thus, existing problem-space attacks have to take extra processes to deal

with side effects [26, 107].

We propose a novel and practical structural attack method against FCG-based AMD
systems, which tackles the limitations (L1-3) of existing attack methods.

L1-system-specific attack methods. Existing attack approaches [56, 15, 77, 206,

|, especially those problem-space ones [20, ], highly depend on the feature
extraction methods of target systems. For example, AndroidHIV[26] implements a
problem-space attack on Mamadroid by transforming the features (i.e., call probabil-
ity) to invocation numbers. Hence, if the features change, the transformation relation
must also be adjusted accordingly. By contrast, since our structural attack perturbs
the graph structures rather than feature vectors, feature extraction methods have no
impact on our attack flow. That is, our structural attack is general to all FCG-based

systems.

L2-limited software modification operations. To maintain functional consis-
tency, existing App modification methods are limited to inserting dead code, such as
no-op API calls [117, 26, ]. By contrast, we design four types of software manip-
ulation operations: inserting methods, removing methods, adding call relations, and

rewiring call relations (§3.4).

L3-inconsistent transformation relation. The adversarial App generation meth-
ods of existing approaches are guided by the transformation from feature perturba-

tions to App modifications [20, ]. Although they can randomly modify features as
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Figure 3.1: Overview of HRAT

needed when perturbing features, they can only insert no-op code to restricted meth-
ods [20, | when generating adversarial apps. To bridge this gap, we design each
structural attack action by considering the characteristics of apps (§3.3.2). As nodes
and edges in the CFGs correspond to methods and call relations in apps, respectively,
our attack method ensures that the modification of the graph is consistent with the

manipulations of apps.

Although our structural attack solves the aforementioned limitations in existing meth-
ods, there remain two challenges in our system design, i.e., how to determine a manip-
ulation operation type and how to select the most effective objects (nodes or edges)
to modify. To this end, we design a Heuristic optimization integrated Reinforcement
learning ATtack (HRAT) algorithm (§3.3.3) to solve them. HRAT consists of two phases:
a) determining an action type according to the current graph state and b) selecting
optimal edges or nodes to conduct the modifications on the graph. Leveraging re-
inforcement learning, HRAT learns how to select effective action types based on the
current graph state (§3.3.3) through interacting with the target environment [137].
Then, with the determined action type, HRAT uses the gradient search to select the
most influential edges or nodes for modification. In this way, HRAT learns the mod-
ification sequences on the target graph, which allows the modified App to bypass the
detection. Finally, HRAT automatically generates adversarial apps based on graph

modification sequences. Figure 3.1 gives the overview of HRAT.

Our major contributions are summarized as follows:
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(1) A Novel Structural Attack. To our best knowledge, we propose the first
structural attack on Android malware detection systems, namely HRAT. HRAT in-
cludes four types of graph modification operations and uses reinforcement learning to

optimize the attack process.

(2) Fill Research Gap. Our method fills the gap that adversarial features cannot
be effectively mapped to real apps. Besides, since our attack method works on graphs

directly, it could be extended to other graph-based detection systems.

(3) A Useful Tool. We develop an automated tool that can manipulate the structure
of Android apps without affecting the original functionality. HRAT can manipulate
apps according to graph modification sequences. We release the source code and
data set to other researchers by responsibly sharing a private repository. The project
website with instructions to request access is at: https://sites.google.com/view/

hrat.

(4) Valid Evasion Effects. We evaluate the effectiveness of our attack on the
two latest AMD systems and one enhancement system. The results of extensive
experiments show that our attack can achieve over 90% of the overall attack success

rate in feature space and up to 100% of the attack success rate in problem space.

3.2 Preliminaries

In this section, we present the necessary knowledge on the difference between feature
attacks and structural attacks, our target Android malware detection (AMD) systems
(i.e., Malscan [152] and Mamadroid [91]), and one AMD enhancement method (i.e.,
APIGraph [177]). Both two AMD tools use function call graphs (FCGs) to detect
Android malware. Besides, we present basic knowledge about reinforcement learning

to ease the explanation of our methods later.
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3.2.1 Feature Attacks and Structural Attacks

Android malware detection (AMD) [9, 79, 68, , 91, 25, 24, 18, , 61, | has
attracted much attention from both industry and academia. One popular technique
applied in AMD is signature-based methods [35] that are limited to a tedious extract-
ing process and easy evasion properties [7%]. Thus, machine learning (ML) -based

systems are widely used for malware detection. ML-based detection techniques first

extract features from benign and malicious Apps and then train the detection model.

In particular, many systems [9, 79, 68, , 91, 25, 24] use static analysis to extract
features, such as requested permissions [9, 79, 68] and function call relations [91].
Among these systems, FCG-based methods [152, 91, 25, 24, 18] achieve promising

performance as FCGs contain rich semantic information, e.g., calling relationships.
In a function call graph, each node represents a method, and each directed edge
represents a calling relationship between two methods. The state-of-the-art malware
detection tools extract potential malicious features (e.g., sensitive APIs) from FCGs
to represent malware’s malicious behaviors. For example, Malscan [152] extracts cen-
tralities of sensitive nodes in FCGs to train classifiers. Mamadroid [91] abstracts the
nodes of FCGs into different states and uses the transition probability between states
as features. Cai et al. [I8] use the graph neural network to extract features from

FCGs for malware detection.

Recent studies [152, 26] demonstrate the possibility of attacking FCG-based detection
methods[152, 91] through adversarial samples. Unfortunately, their methods are al-
most limited to perturbing extracted feature vectors from FCGs, i.e., feature attacks.
By contrast, in this paper, we investigate the vulnerability of FCG-based detection
methods from their attack surfaces relevant to edges and nodes [153, , 89, ,

, 30, ] and propose a new structural attack method.

Figure 3.2 shows the differences between feature attacks and structural attacks. The

former adds perturbations to extracted feature vectors, whereas the latter directly
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Figure 3.2: Feature attacks vs. structural attacks

modifies the nodes and edges in graphs. Graph-based detection methods extract
features from graphs and use these features to train classifiers for detection. By
contrast, structural attacks directly modify the graph features, and thus they are more
intrinsic and effective [145, |. Besides, as nodes in FCGs correspond to methods
in software and edges correspond to call relations, structural attacks could address
the inverse-transformation problems [107] between feature-space and problem-space

attacks.

3.2.2 Target Android Malware Detection Systems

Malscan. Malscan extracts FCGs (G) from Apps and uses centralities [13, (7] of
sensitive nodes in G as features. Those sensitive nodes correspond to Android’s
sensitive APIs, which reflect the malicious properties [12, | of apks. Let ¢(G)
denote the centralities of all nodes in the target function call graph G. The label of

the target GG in Malscan is formulated as:

y=f(Leen x c(G)), (3.1)

where I.., = [i1,...,in] € RV is the sensitive index of nodes in G, N is the number

of nodes, i, € {0,1} and ix = 1 means that node k is sensitive, G € RY*V is the
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adjacency matrix of FCG, f(-) is the pre-trained classifier (i.e., kNN in Malscan).

Mamadroid. Mamadroid [91] extracts function call relations from FCGs as features.
Based on the characteristic of Android method signature, it first abstracts methods
into different states according to the package name or family name. By doing so, it will
be resilient to API changes in the Android framework [91]. Next, Mamadroid extracts
call the probabilities between states, i.e., families or packages of target methods,
as features and trains classifiers like kNN to detect malware. The label of G is
represented as:

y=f(Tp(SxG)),S={si;} € R"*7, (3.2)

where N is the number of nodes in G and N, is the number of states in Mamadroid,
si;j € {0,1} and s;; = 1 denotes that node j belongs to state i, T.,(-) is the call

probabilities among states, and f () is pre-trained classifier.

APIgraph. APIgraph [177] is a framework to enhance AMD. It enhances the repre-
sentation ability of features and uses the characteristics of Android to aggregate APIs
with similar semantics. Specifically, APIgraph first collects API documents from the
Android official website and then builds the connections among APIs using a relation
graph. Based on the relation graph, a graph embedding algorithm is applied to get
each API’s embedding vector. APIgraph uses a clustering algorithm, like k-means, to
aggregate APIs with similar semantics into one cluster. To enhance the target AMD,
APIgraph uses a specific API to denote all APIs in one cluster during the feature

extraction process.

3.2.3 Reinforcement Learning

Reinforcement learning (RL) [137] learns what to do and how to take actions based
on current situations through interacting with the target environment and maximizes
the reward from the environment’s feedback. Different from supervised learning,

which learns from the training set, corresponding knowledge (labels of samples in

26



3.2. Preliminaries

the training set), and an external supervisor (objective function), RL learns without
prior knowledge. Unlike unsupervised learning, which targets leveraging a hidden
structure in the unlabeled data set, such as the distributions or representations, RL
targets maximizing a reward signal by interacting with the target environment. Al-
though evolutionary algorithms (EAs) could approach RL problems, EAs are more
suitable to solve problems whose policy space is small and can be structured or the
problems whose learning agent cannot accurately sense the environment. Moreover,
EAs neither learn from the environment nor formulate the relation between actions

and the environment’s states[137].

Reinforcement learning contains four elements: an action set, a state set, a reward

function and a policy model.

e The state set stores all the possible states of the target environment. For example,
in the maze problem, the state set saves all possible positions of the player in the

maze.

e Action set contains all the actions that the learner can take. For instance, the

maze problem includes the directions the player can move forward at each step.

e Reward function defines the environment feedback for the current state. For
example, in the maze problem, if the player walks out of the maze, the greatest
reward is given. In middle states, which refer to any positions between the entrance

and the exit, the closer the player is to the exit, the higher the reward will be given.
e Policy model defines how current action influences current state.

An essential property of reinforcement learning is that the problem to be solved should
conform to the Markov Decision Process (MDP) [76]. Only when this condition is
met, the action and reward in reinforcement learning can be formulated as a function

of the current state.
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3.3 Attack Model

This section presents our threat model (§3.3.1), attack formulation (§3.3.2), and opti-
mization process (§3.3.3). We also theoretically prove the effectiveness and advantages

of our structural attack (§3.3.4).

3.3.1 Threat Model

In our attack scenario, the adversary possesses white-box access to target systems.
That is, the adversary has access to the dataset, feature space, and model parameters
of target systems. This setting follows Kerckhoffs” principle [107] and ensures that
a defense does not rely on “security by obscurity” by unreasonably assuming some
properties of the defense that can be kept secret [19]. Our attack aims at modifying
the function call graph of a malicious app to evade the target system’s detection.
Two FCG-based AMDs, i.e., Malscan [152] and Mamadroid [91], and one AMD en-
hancement method, namely APIGraph [177], are used to evaluate the effectiveness
of our attack. We select Malscan and Mamadroid because they are state-of-the-art
FCG-based AMDs and are published in top conferences, i.e., ASE 2019 and NDSS
2017 respectively, with influential impact. They report outstanding malware detection

performance (98% detection accuracy for Malscan and 99% F1 score for Mamadroid).

3.3.2 Attack Formulation

Our structural attack IC takes in FCG (adjacency matrix) and modifies the nodes and

edges in the graph to deceive the detection systems. Our attack is defined as:

G=K(G) =G +3, (3.3)

where G is input graph, G is the adversarial graph, and § is the perturbations to the

adjacency matrix of graph. We use f(G,60) to denote a malware detection system,
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which takes in G and uses the pre-trained parameters 6 to determine the category to
which G belongs. Since our attack only modifies the structure of G without changing
parameters 6, the detection system can be simplified to f(G). The goal of our attack

is to modify G to make the system f(G) misclassify the malicious G as benign, i.e.,
F(G)# [(G) = F(R(G)).

To ensure that the modified app works normally and preserves the same functionality
as the original one, we design four types of modification actions - adding edges,
rewiring, inserting nodes, and deleting nodes, tailored to app characteristics. Next,

we first introduce constraint definitions, followed by action definitions and properties.

Definition 1. (Constraints) C = [cy, ..,cy] € RV* where N is the number of nodes
in graph G, ¢; € {0,1} denotes the modifiability of node i. ¢; = 1 in dicates that

the node @ is modifiable, otherwise c¢; = 0.

Definition 1 defines the edges and nodes that cannot be modified during our attack
process. They refer to the scenarios when some specific methods in apps (§3.4.1)
cannot be modified. For example, we cannot modify Android framework APIs used
in app [26]. For better formulation, we use ¢, ¢ C to denote ¢, = 1, i.e., the node n

is modifiable.

Definition 2. (Adding edge) An adding edge action A, involves two nodes A, =
{Vbegs Viar }, where  Vpey, Viar ¢ C are the caller and callee of the edge to be added
respectively. The adding edge operation builds an invocation relation (directed edge)

from vpey t0 Vigr.

Definition 3. (Rewiring) Rewiring removes an edge from the graph and finds another
intermediate node to maintain the connectivity of nodes in the deleted edge. A rewiring
action A, involves three nodes A, = {Upeg, Vend, Umid}, Where Upeg, Vena ¢ C are the
caller and callee in deleted edge respectively, and v,q ¢ C is the intermediate node.
The rewiring action deletes the edge from Upey t0 Vena, and creates a new edge from

Upeg 10 Vmid, and from Vg 10 Veng.
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Definition 3 aims to preserve the app’s functionality. That is, after deleting an edge
that denotes a call relationship (e.g., A = B), we must find an intermediate node
C' to maintain the connection between A and B (i.e., modify the call relationship to
A = C = B). Although it is possible to insert multiple nodes between A and B to
maintain their connectivity after removing the edge between A and B, HRAT inserts
one intermediate node in each rewiring action for the ease of implementation. Note

that inserting multiple nodes can be achieved by several rewiring operations.

Definition 4. (Inserting node) An inserting node action A; involves one node A; =
{Veatter }, where veaner ¢ C denotes the caller to inserted node. It creates a new node

Unew O the graph and then builds an invocation relation from veger & C t0 Upey -

Definition 5. (Deleting node) A deleting node action Ay involves three types of node
Ag = {Viar, Vcalier Vcattee }» Where vy, & C denotes a node to be removed, Uegper ¢ C is
the set of nodes that call Vig,, and Veqee s the set of nodes called by vy,,. The deleting
node action deletes nodes vy, in the graph and builds call relations from all nodes in

DVealler L0 €ach mode in Uqgliee.

According to Definition 5, when a node is deleted, the connectivity of the remaining

nodes in the graph keeps unchanged.

So far, we have defined all four operations of the attack. Then, our attack process is

formulated as:
K(G) < (a1, a2, ...,an) G,

(3.4)
where a; € {Aae, Arewi, Aiﬂ? Adn}

3.3.3 Heuristic Optimized Reinforcement Learning based Struc-

tural Attack

Our structural attack process consists of a sequence of attack actions on a target
graph. Specifically, the decision of each attack action involves two phases: deter-

mining an action type and selecting attack objects. The former resolves the attack
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action type (adding edge, rewiring, inserting node, or deleting node), while the latter
determines the specific edges or nodes to be modified according to the action type.
Our target is to find the modification sequence with minimum modifications on the
graph rather than the hidden structure, e.g., the distributions of the dataset, in the
target graph. Since supervised or unsupervised learning cannot be used to optimize
our attack process [137], we leverage reinforcement learning [39, 93, 137] — an iterative
learning algorithm that learns how to take actions based on the current environment.
Our structural attack aims at modifying malware to escape target detection systems’
detection with minimal modifications: modifying the fewest edges and nodes. Our
attack considers four types of attack actions, and the decision of each action consists
of determining an action type and selecting attack objects. For the greedy algorithm
that chooses locally optimal solutions and concretes them together to approximate the
optimal global solution, it will always select adding edge at each step because adding
edge modifies one edge each time, rewiring modifies two edges, inserting nodes mod-
ifies one edge and one node, and deleting nodes modifies at least one node and one
edge. In this way, adding edges alone cannot always achieve optimal perturbations.
For example, if decreasing the degree centrality of certain nodes is locally optimal for
the state, adding edges cannot achieve it because adding edges can only increase the
degree of centrality. Evolutionary algorithm (EA) effectively solves problems whose
policy spaces (i.e., attack action set) are small or can be structured [137]. In our sce-
nario, the policy space is enormous (number of nodes and edges in the target graph)
and cannot be structured because each attack action consists of a) selecting an action
type and b) determining attack objects. The determination of b) depends on a),
and a) is related to previous actions (§ 3.3.3). HRAT uses reinforcement learning,
specifically deep Q-learning, to determine the attack action on the target graph. Our
policy model involves two parts. The first part uses a neural network, specifically
a two-layer fully connected neural network, to learn the relation between state and
action type with the loss function based on reward. Then, with the determined action

type, HRAT uses the gradient search to determine attack objects. Besides, to evalu-
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ate the effectiveness of each attack action, our reward function, i.e., Equation 3.7, is
designed as the number of modified nodes and edges. This reward function evaluates
the impact of both action type and attack objects. For example, for adding one edge,
the reward value is -1 as only one edge is added, no matter which edge the gradient
search selects. For rewiring, the reward is -3 because one edge is removed and 2 edges
are added. For inserting nodes, the reward is -2 because one node and one edge are
inserted. For deleting nodes, the value of the reward depends on the node the gradi-
ent search selects. Since deleting nodes will remove one node from the target graph
and build the connections from each of the deleted node’s callers to all of its callees,

the reward value depends on the number of deleted nodes’ callers and callees.

For a target system f(G) that takes in graph G and outputs the decision of G, HRAT
aims to modify the structure of the graph, G = K(G) so that the output (f(G))
differs from the original one, i.e., f (@) # f(G). Following reinforcement learning,
our structural attack progress is described as a series of decision-making processes:
P={S, A, R, 7}, where § = {s,} is the state set that contains the intermediate and
final state of the target environment, A = {a;} is the set of actions that consists of
all possible actions in state s;, R is a reward function that evaluates the reward of
taking action a; on state s;, and 7 is the deterministic policy that describes how to

determine a; and how the action a, changes the state s; .

HRAT adopts one attack action at each step to modify the target malicious graph until
target systems flip their decision on the graph to benign. The structure of the current
graph depends on the state of all previous graphs and the modification actions on the
graph, i.e., s; — m(s4_1,a¢_1, ..., S0, ag). According to HRAT’s termination condition
(i.e., the target system regards the FCG as benign), the intermediate states spq
are all predicted to the same label as the original FCG, i.e., malicious. Thus, every
step in our attack can be regarded as modifying a new graph. For example, when
crafting malware to deceive the target system, HRAT extracts FCG and modifies its

structure (methods and call relations). After one modification, HRAT can regard the
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next modification as modifying a new version of the malware. In other words, the
current state only depends on the latest state and action, i.e., w(s;_1, a¢_1, ..., So, Gg) =

7(8¢_1,a4_1), which satisfies the Markov Decision Process (MDP) [137].

To choose the influential attack action in each step, we use reinforcement learning
to learn the attack process. Reinforcement learning optimizes the decision-making
process by continually interacting with the target environment and obtaining rewards.

We will introduce each element of reinforcement learning in HRAT.

State Space

During the attack process, the state space holds all intermediate states, and HRAT
selects feature vectors extracted from the corresponding intermediate graphs to store
as states. In the case of attacking Malscan, the state space would store all intermediate
centrality features of sensitive APIs. HRAT only stores the latest modified graph’s
adjacency matrix to facilitate subsequent modifications. This setting has the following

advantages:

e Easy handling: The feature vector is of fixed length and ideal for training the
policy network with states, actions, and rewards. As we do not cover the dynamic
handling of changes in the graph scale, we avoid using the adjacency matrix in this

thesis.

e Easy storing: It is easy to store the feature vector. Since the FCG of an app
can have hundreds of thousands and even millions of nodes and edges, a sufficiently
large amount of memory is required if the intermediate graphs are stored directly.
Fortunately, the features extracted from the function call graphs by these target
systems are usually a one-dimensional vector with tens of thousands of dimensions,
which greatly saves memory. Since the current state only depends on the previous
state and action (§3.3.3), storing the latest graph structure is sufficient for determining

the next action.
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Algorithm 1: Deep Q-learning for structural attack

Input: Target classifier f, training dataset {X;,Y;}, target FCG G, memory
capacity N, probability ¢, maximum modification times M,
feature-space transformation 7', node constraints C

Output: action sequence a4, adversarial graph G

Initialize replay memory D to capacity N

Initialize action-value network () with random weights 6

Objaia (€)= Yy w1 0 (s = T (G)]l,)

v =f(G),yp = f(G),Gi =G

while y, ==y, and i < M do

tmp = random_probability

if tmp < € then
L a; = argmazx,Q(G;, a;0)
else

L a; = random_action

Calculate gradient of each edge: dg = <V, Objaan(G:)
Execute action a; on G;: Giyq, 1 = ATT_OBJ(G}, 0g,, C)
D« (T(Gi), ai,7i, T(Git1))

rj, if @ terminates at j + 1
v r; + maxy Q (Gig1,d;0), otherwise
Perform gradient descent: /g (y; — Q(Gi, a;;0))

Store action in action sequence: ageq < @;

yp = f(Giy1), i++

if y, # y: then

return a,e,, G'
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Policy Model

The policy model determines the attack action that consists of determining an ac-
tion type and selecting attack objects. HRAT determines an attack action based on

reinforcement learning, specifically deep Q-learning [93].

Algorithm 1 sketches the flow of the deep Q-learning process for the structural at-
tack. We first initialize (Algorithm 1 lines 1-2) a memory list with capacity N to
store the experience (i.e., the action type, graph state, and rewards) for further learn-
ing with an action-value network @ (a two-layer fully connected neural network).
With probability € (0.95 as default [93]), HRAT determines the action type using Q;
otherwise, HRAT randomly selects one action type(Algorithm 1 lines 7-10). With a
determined action type, HRAT uses the gradient search to select the optimal attack
objects (i.e., nodes/edges). If the target system uses kNN, which is non-differentiable,

as its classifier, we first transform kNN into a differentiable version [125]:

Objua(G) = arg ming Zwi o ([|lzi = T (Q)|ly), (3.5)
i=1

where m is the number of instances in the training set. w; = 1 if the label of z;

1
l+e—7

equals Yuq0, otherwise w; = —1. o (x) = is a sigmoid function, and 7'(+) is the
transformation function that transforms FCGs to feature vectors in the target system.
Differentiating the objective function with respect to the edges in graph G;, we obtain
the gradient of each edge (Algorithm 1 line 11). With action type and the gradient
of each edge, HRAT conducts current action on G; and obtains the modified graph
Gi+1 and the corresponding reward § 6 (Algorithm 1 line 12). Next, HRAT stores the
experience (Algorithm 1 line 13) for further learning and optimizing ) (Algorithm 1
lines 13-15). Each step’s experience is potentially used in weight updates, which
allows for greater data efficiency [93] (Algorithm 1 lines 7-8). Besides, HRAT stores
features T'(G) and the latest N experience tuples in the replay memory. This setting

that stores feature vectors instead of graphs saves memory to a great extent and
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stores the interaction experience. Next, we will introduce how to utilize the gradient

search to guide the modification of the graph according to each action type.

Algorithm 2: Adding edge
Input: current graph GG, node constraints C

Output: action sequence ag.,, new graph G’
Aseq — [—1,—1,—1,—1];
Atype < mar(NN(sy));
calculate the gradient O of adding edge in G,
0 = argsort(0) ;
for each edge (Vpeg, Vend) tn O do
if (Vbey ¢ C and vepqg ¢ C then
connect Vpeg and ve,qinG; G' = G;
Useq = [0, Vbegs Venas —1];

break;

return ageq, G’ ;

e Adding edge. We first calculate the gradient of each edge in the adjacency matrix.
Then, we extract the gradients of all adding edge actions and select the edge, denoted
as a two-tuple of nodes {Upeg, Vend }, With maximum gradients to add. Notably, when
we select {Upeg, Vend}, if one node is in the constraints C, i.e., vpey € C 01 vy € C,
we select the edge with the second-largest gradient until both nodes are not in C
(line 5-9 of Algorithm 2). In this way, we can guarantee that the edges in the output

modification sequence, a,q,, can be modified in the app.

e Rewiring. After obtaining the gradient of each edge, we first select the edge,
{Vbegs Vena}, with the maximum gradient to remove (lines 4-6 of Algorithm 3). Similar
to adding edges, we need to make sure vy, ¢ C. It is worth noticing that we do not
modify the callee (venq) during manipulation. Thus, it does not matter whether ve,q

is in C or not. Then, to maintain the app’s functionality according to Definition 3,
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Algorithm 3: Rewiring
Input: current graph GG, node constraints C

Output: action sequence as.,, new graph G’
Vend ¢ —1, Vtar ¢ —1;
calculate the gradient 0 of deleting edge in G}
0 = argsort(0);
for each edge (Vpeg, Vend) tn O do
if (vpeg ¢ C then
L break;

find the intermediate node vy,;q linking vsey and vy, with the maximum gradient;
if 2,0 ¢ C then

disconnect vy, and venq in G;

connect v,,;q and veng in G;

connect vpey and vyiq in GG = G;

aseq = [17 Ubegu Vends Umid];

break;

return Ggeq, G’ ;

we select an intermediate node, vy,;q that has no connection to viey and ve,q and is
not in C, with the maximum gradient sum of {vpeg, Upmia} and {vimid, Vena} (lines 8-13

of Algorithm 3).

e Inserting node. We create a new method (v,e,) and calculate the gradient from
each manipulable node (vegnai & C) t0 Upeyw. Then, the edge {Veandi, Unew} With the
maximum gradient is built (line 2-4 of Algorithm 4). Building edge from an existing
node to the inserted node guarantees that the static analysis will not exclude the
inserted node (method) as the dead code. Finally, we update C by adding vy, with
a modifiable index (line 6 of Algorithm 4).
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Algorithm 4: Inserting node
Input: current graph GG, node constraints C

Output: action sequence as.,, new graph G’

insert a new node v, to G;

calculate the gradient 0 of all edges to vy;

find the edge (Upeg, v,) With the largest gradient and vy, ¢ C;
connect vy, and v, in G; G' = G;

Useq = [2, Upeg, Un, —1];

update C;

return age,, G' ;

Algorithm 5: Deleting node
Input: current graph G, node constraints C

Output: action sequence a,.,, new graph G’

calculate the gradient 0 of all nodes;

find the nodes vy, ¢ C with largest gradient;

remove v, in G; connect each caller of v, to all callee of vy, in G; G' = G,
Gseq = 3, Viar, — 1, —1];

update C;

return age,, G' ;

e Deleting node. When deleting a node (v, ), we need to maintain the connectivity
between the methods calling v;,, and the methods called by the v;,,.. According to
Definition 5, the gradient (g(-)) of node 4, is defined as:

(i) =Y i - g(vyg) + Z(Uji Y (=) - g(v)), (3.6)

J

where v;; = 1 denotes there are existing connections from node i to j, otherwise
v;; = 0. The first item computes the sum of gradients of all edges leading to node;.
The second item computes the sum of gradients of all edges originating from node;,

which invokes node;, to nodes, which are called by node;. For the node that has the
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maximum gradient and is not in the constraint set, we remove it from the adjacency
matrix and build the connections from each of its callers to all of its callees (line 3 of

Algorithm 5). Finally, we update C by removing vy,

Action Space

The action space stores the operations to modify the graph. Each action is represented
as a four-tuple that stores the action type (the first element) and action objects (the

remaining three elements).

Reward Function

The reward function evaluates the effect of the selected action on the current state, i.e.,
graph. Since the goal of our attack is to make the system’s decision on the modified
graph different from the decision on the original graph f(G) = f(K(G)) # f(G) by
modifying graphs as few as possible, our reward function is designed as follows:

1 if £(G G
Rs0.05) = f(G) # f( )7 (3.7)

_<ANnode + A]Veolge> if f(é) = f(G>
where AN, e and AN,qq4 denote the differences between the number of nodes and

the number of edges in the current graph and the original graph, respectively.

This reward function assesses the impacts of attack action types and attack objects.
The reward of adding edge is -1 because only one edge is modified, no matter which
edge the gradient search selects. The reward of rewiring and inserting nodes are -
3 and -2, respectively. For removing nodes, the reward depends on the node that
the gradient search selects. Removing nodes deletes one node vy, from G and builds
connections between each of vy,,’s callers to all of v,,.’s callee. The reward of removing

one node is obtained by:

R(Vpn = 1+ NViar . NVar (3.8)

caller callee
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Ut Ut .
where N'r and N are the number of callers and callees of wvy,,, respectively.

3.3.4 Structural Attack Analysis

We first analyze how graph-based algorithms learn and extract features from FCGs.
Malscan uses centralities of sensitive nodes (sensitive APIs [12]) in FCGs to repre-
sent graph semantics. Malscan shows that centrality can measure the significance of
sensitive nodes in graphs, which can help identify malicious behavior in apps. On
the other hand, Mamadroid utilizes function call probability in FCGs as features,
and to standardize the size of the resulting vector, the functions are abstracted into
various clusters based on families or packages. To unify the size of the extracted
vector, Mamadroid abstracts functions into different clusters based on the families or

packages.

According to the algorithms adopted by target systems, we analyze the influence of
each structural modification on them. For Malscan, we take degree centrality (deen)

as an example:
d.
dcen,i = —17
N, -1

where d; denotes the degree of node ¢ and N, denotes the number of nodes in a FCG.

(3.9)

When we add one edge (method invocation) between from ¢ to any of the other nodes,
the deg; increases, and then the degree centrality of node 7 increases; and vice versa
for deleting one edge; when we add one node to an FCG, N, increases, and then the

degree centrality of node i decreases and vice versa for deleting one node.

For Mamadroid, the function call probability (f.,) is calculated by:

fe(,0) = = (3.10)

BRI VD
where fy(i,7) denotes the number of callers from state ¢ to j, and N is the total
number of states (i.e., the number of method families). In this way, when we insert

one edge from state i to j, the numerator and denominator increase by 1 and the
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1. <packageName.className returnType
methodName (paraList)>

Figure 3.3: Android method signature in soot

fep(i,7) increases and vice versa for deleting one edge; when we delete one node k
from state i, all callers to k will lose. To preserve the functionality, those callers
integrate the code of k and invoke the callees of k. In this way, fn(i,j) decreases,

fo:l fn(i, k) increases and then the probability from state i to j decreases.

Structural attacks bridge the gap between feature-space attacks, which only perturb
feature vectors to deceive the classifier, and problem-space attacks, which generate
adversarial objects, i.e., real Android apps. It is also known as the inverse feature-
mapping problem [107]. Existing problem-space attacks [107, , 26] are limited by
inverse feature-mapping problems (i.e., the optimized feature-space attacks cannot be
perfectly mapped into problem-space attacks), which can also cause side effects and
decrease the attack success rate. Structural attacks modify the nodes and edges in
the FCG that contain the methods and call relations in an app. Hence, our four FCG
modification actions correspond to the manipulations on apps (§3.4). Meanwhile,
the extracted FCGs from the crafted software are consistent with the corresponding
modified FCGs. In other words, based on the modification sequence calculated by
our attack algorithm, we locate the methods or call relations in bytecodes and modify
them correspondingly. Compared with the existing methods, our structural attack
considers not only the operations of the inserting method and call relations, but also
the operations of deleting, which makes our attack more comprehensive and feasible

at the programming level.
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Figure 3.4: Work flow of APPMOD

3.4 Android Application Manipulation

Our Android app modifier (APPMOD) automatically manipulates an app according
to the graph modification sequence following two principles: a) Functional Con-
sistency: the app’s functionality before and after modifications should be consistent;
and b) Valid Modifications: the inserted code will not be identified and removed
by static analysis. Specifically, static analysis can detect dead code that will never
be executed [107] and remove it. In this case, the graph extracted from the manip-
ulated app will not include the corresponding nodes or edges, i.e., the modifications

are invalid.

The prototype of app modifier in HRAT (i.e., APPMOD) is built on soot [1412]. APP-
MOD modifies apps using soot, which translates Android bytecode to an intermediate
representation without the need for apps’ source code. According to method signa-
tures, as shown in Figure 3.3, APPMOD locates the methods in the app and conducts
the modification accordingly. Figure 3.4 sketches the workflow of APPMOD. Next, we
introduce how APPMOD implements the four manipulation operations: adding func-
tion call (adding edge), rewiring function calls (rewiring), inserting method (inserting
node), and deleting method (deleting node). We first introduce how to determine the

constraints, which define whether the methods are modifiable by soot.
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3.4.1 Constraints Determination

Constraints list the methods in apps and their modifiability. When HRAT modifies
nodes and edges in FCGs, the constraints guide HRAT to only modify modifiable
methods and call relations. We determine unmodifiable methods according to the

properties of Android, Flowdroid [10], and soot. The following methods are unmodi-

fiable:

e Framework APIs: Android framework APIs are pre-defined sets of classes, in-
terfaces, and protocols provided by the Android operating system to help developers
build mobile applications. These APIs allow developers to access system-level func-
tions and services, such as location services, telephony, camera, and storage. The
APIs are defined and implemented in the Android system rather than the app, so

they are unmodifiable by soot when analyzing apps.

e Lifecycle methods: Android lifecycle methods are a set of callback methods
provided by the Android framework to manage the lifecycle of an activity or fragment.
These methods allow developers to perform certain actions at different stages of an
activity’s or fragment’s lifecycle, such as when it is first created, started, resumed,
paused, stopped, or destroyed. By using these methods, developers can manage the
memory usage of their apps, save and restore the state of the user interface, and
handle different configuration changes, among other things. Lifecycle methods can
be invoked by the Android system. If we delete or add the connection to the lifecycle

method, such modifications may lead to the app crash.

e Flowdroid methods: Since FlowDroid introduces additional methods (e.g., fake
main method [11]) to facilitate the analysis, the FCGs will include these methods.
However, it is worth noting that the apps under investigation do not include such

auxiliary methods.
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1. packageNamel.classNamel returnTypel
caller (parameterListl){

2. callee(parameterList2, True);
3. ... raw caller method body ... }
(a) Modified target caller.

1. packageName2.className2 returnType?2
callee(parameterList2, FLAG){

2. if (FLAG == True){

3. return defaultValueofReturnType2;

4, telse{

5. . raw callee method body ... }}

(b) Modified callee.

1. returnTypei oriCaller(paraListi){

N

14

w

tmp = callee(paralist2, False);...}

(¢) Modified callers of original callee.

Figure 3.5: Pseudo code of adding function call.

3.4.2 Adding Function Calls

Adding function calls manipulates two methods (i.e., a caller and a callee) and all
statements that invoke callee. The pseudo-code for adding a function call is illustrated
in Figure 3.5, where the blue code indicates the inserted code, and the gray code
represents the removed code. To add a function call, we insert an extra parameter
FLAG in callee (line 1 of Figure 3.5(b)), and then insert a statement to invoke callee
in caller’s method body. To keep the functional consistency, APPMOD inserts a
conditional expression on FLAG in callee’s method body (line 2 of Figure 3.5(a)). If
FLAG equals True, it indicates the invocation is an inserted call, and callee directly
returns a default value that has the same type as that of callee’s return value (line 2-3
of Figure 3.5(b)). If FLAG equals False, it indicates the invocation is an original call,

and the callee runs as usual. Besides, to maintain functional consistency, APPMOD
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modifies all statements that initially invoke callee and sets Flag to False (e.g., line

2-3 in Figure 3.5(c)).

1. class newType{
2. returnTypel rtl; returnType2 rt2; }
(a) Insert new data type.
1. returafypetnewType imm(paral3,
paralL2, FLAG){
2. vNt = new newType; oo
3. if (FLAG == True){
4, vRt.rt2 = callee(paral2);
5. return vRT; }
6. else{ raw caller method body; } ...
7. return—vRt1; vNt.rtl = vRtl;
8. return vNT; }
(b) Modified intermediate method.
1. returnType2 caller(paralL){ ...
2. vi—=—callteetparat2);
3. vtmp = imm(paralL3, paral2, True);
4. vl = vtmp.rt2; . e }
(¢) Modified caller.
1. returnType2 oneImmCaller(paralLl){ ...
2. tmp—=—imm{Vark3 )
3. vNt = new newType;
4. vNt = imm(VarL3,defaultRt2,False);
5. tmp = vNt.rtl; cee }

(d) Modified original callers of intermediate method.

Figure 3.6: Pseudo code of rewiring.

3.4.3 Rewiring Function Calls

According to Definition 3, we implement rewiring by modifying three methods: a

caller, a callee, and an intermediate method (imm). This operation includes three
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steps: a) build call relations between imm and callee, b) replace call relations between

caller and callee, and c) update the original call statements.

e Step a). Figure 3.6(b) illustrates a modified intermediate method. APPMOD adds
an extra parameter FLAG to imm’s parameter list to determine whether the invo-
cation is an original one or an intermediate invocation (i.e., caller invokes imm). If it
is an original invocation, imm runs its original method body (line 6 of Figure 3.6(b));
otherwise, it invokes callee (line 3-5 of Figure 3.6(b)). Note that the imm’s return
type and callee’s return type may be inconsistent. To handle this issue, APPMOD
introduces a new data type (i.e., newType in Figure 3.6(a)) that includes both imm’s
and callee’s return types. When imm needs to return data, APPMOD assigns the
original data to the object of newType and then returns the object to the caller (line
8 in Figure 3.6(b)). To ensure that callee works as original, we extend the parame-
ter list of émm and pass the caller’s variables used for invoking callee to imm when

invoking imm (line 3 of Figure 3.6(c)).

e Step b). APPMOD modifies caller’s function body and replaces the statements
that originally invoke callee with new statements to invoke the intermediate method.
Then, APPMOD sets FLAG to True to indicate that the invocation is an original

one. Then, caller obtains the return value of callee (line 3 of Figure 3.6(c)).

e Step c). As the method signature (i.e., parameter list and return type) of imm
is changed, APPMOD finds all statements that invoke imm and updates them ac-
cordingly. Specifically, APPMOD first locates the invocation statements and adds
the parameters of callee with their default value, e.g., 0 for Integer (line 4 of Fig-
ure 3.6(c)), to the end of the imm’s parameter list. Then, APPMOD sets FLAG to
False, which indicates an original invocation (line 4 of Figure 3.6(d)). In this way,
when those methods invoke imm, imm runs as usual (line 6 of Figure 3.6(b)), and

the functional consistency of imm is preserved.
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1. packName.className int

newMethod i(int il,int i2){
2. int i3; i3 = i1 + i2;
3. return i3; }

(a) Create a new method.

returnType caller(paralList){
int i;
i = newMethod i(1l, 1);
i=1i+1;
. raw caller method body ... }

U s W -

(b) Modified caller to invoke new method.

Figure 3.7: Pseudo code of inserting methods.
3.4.4 Inserting Methods

This operation first creates a new method and then finds one existing method (i.e.,
caller) to invoke it. APPMOD creates a method that performs simple mathematical
calculations and returns the results (Figure 3.7(a)). Then, APPMOD inserts an
invocation statement in caller’s method body (line 3 in Figure 3.7(b)). The caller
gets the returned value of the inserted invocation, and uses the returned value to
perform mathematical calculations in caller’s method body (line 4 in Figure 3.7(b)),
so that the inserted method will neither be excluded as dead code nor affect the app’s

functionalities.

3.4.5 Deleting Methods

This operation removes the target method (tarMethod) and modifies all methods
that invoke it. Figure 3.8 shows the pseudo-code for deleting tarMethod. First,
APPMOD finds all methods that invoke tarMethod and locates the corresponding
invocation statements. Then, APPMOD replaces the invocation statements with

tarMethod’s method body. More specifically, APPMOD firstly creates local variables
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returnTypel tarMethod(paral, para2)/{
varl = paral; var2 = para?l;
{ method body of tarMethod }
return var3; }

= W N

(a) Target method to be deleted.

returnType2 oneOfCaller (paral){

14 14

varl = vl; var2 = v2;
{ method body of tarMethod }
v_rt = var3; N }

O s W

(b) One of modified methods that calls target method.

Figure 3.8: Pseudo code of deleting methods.

(lv_caller) in caller that include tarMethod’s parameter variables (pv_tar) and local
variables (lv_tar). Then, APPMOD assigns the variables used for invoking tarMethod
to puv_tar (lines 2-3 in Figure 3.8(b)). Since we recreate tarMethod’s variables in
caller, which are different from those originally used by tarMethod, APPMOD needs
to rewrite the tarMethod’s statements rather than directly copying the statements
from tarMethod to callers. For example, APPMOD uses soot’s APIs newAssign-
Stemt(), newlnvokeStmt() to rewrite the assign statements and invoke statements
with newVar, respectively. Moreover, if tarMethod has a return value, APPMOD
replaces the return statement with an assignment statement (line 4 of Figure 3.8(a)
to line 5 of Figure 3.8(b)). Since the return statements will end the invocation, if
the precondition of one return statement is met, the program will end the invoca-
tion directly. Besides, one method may contain multi-return statements. To avoid
affecting the invocation logic, when APPMOD replaces one return statement, APP-
MOD inserts a goto statement to let the program jump to the next statement of the

statements (i.e., line 5 in Figure 3.8(b)) that initially invoke tarMethod.
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Figure 3.9: Work flow of HRAT

3.5 Evaluation

Figure 3.9 sketches the attack flow of HRAT. Given an app, HRAT first extracts its
FCG @ and generates a graph modification sequence @, where each item indicates
a perturbation on the FCG’s nodes or edges. Then, we convert a graph modifica-
tion sequence to the manipulation sequence where each item denotes a manipulation
operation on app @. APPMOD is a process of modifying an existing mobile appli-
cation by using a sequence of manipulations @ to create a new, adversarial version
of the app ®. This process involves analyzing the original app for weaknesses and
vulnerabilities, and then using various techniques to modify its code. Once the app
has been modified, it is repackaged to create a new app package that includes the
modified code, as well as any additional components required for the app to func-
tion. The resulting adversarial app is then distributed to unsuspecting users, with
the aim of exploiting their devices and stealing their personal information. Finally,
we evaluate whether target systems (i.e., Malscan, Mamadroid, and APIGraph en-
hanced Malscan) can detect the adversarial malware ®. We evaluate the performance
of HRAT and investigate potential defense methods against HRAT by answering the

following seven research questions.

e RQ1: Effectiveness analysis. How effective is HRAT against the state-of-the-art
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AMD techniques?

e RQ2: Modification efficiency comparisons. Compared with other attack meth-

ods, how is the modification efficiency of HRAT?

e RQ3: Effectiveness of IMA. How effective is individual modification action
(IMA)?

e RQ4: Resilience to code obfuscation. How is the resilience of HRAT to mal-

ware with different obfuscation techniques?

e RQ5: Functional consistency assessment. Do the adversarial apps generated

by HRAT preserve the functionality as the original ones?

e RQ6: Influence of key parameters. Will the parameters influence HRAT’s

attack performance?
e RQ7: Defense against HRAT. How to defend against HRAT’s attack?

Dataset. We adopt the dataset that includes 11,613 benign Android apps and 11,583
malicious Android apps from 2011 to 2018 in Malscan [152] to evaluate HRAT (for
RQ1-3&RQ5). All apps are collected from AndroZoo [1], and each sample has been
detected by several antivirus systems in VirusTotal [113] to determine its label. For
RQ4&5, we use a dataset from previous work [37] to evaluate the effectiveness of
HRAT on malware using different obfuscation. This dataset includes apps from dif-
ferent malware families, and 6,586 malware are obfuscated by variable renaming [1 1],
1,090 malware are obfuscated with string encryption [11], and 1,172 malware include

reflection [37].

Metrics. To evaluate the effectiveness of the attacks on both feature space and
problem space, we use three types of attack success rates (ASRs), i.e., Initialization

ASR (Init_ASR), Relative ASR (Rela-ASR) and Absolute ASR (Abs_ASR), as our
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evaluation metrics, which are defined as follows:

N,
Init ASR = -2
nit_ASR N
N,
Rela_ASR = FZ, (3.11)
Abs_ASR = %
Ny

The detailed definitions are as follows:

e [nitialization ASR (Init_ASR) evaluates HRAT’s effectiveness on feature space.
The feature-space attack denotes only modifying the structure of FCGs to escape the
detection of classifiers in target detectors. Given N malware samples, HRAT perturbs
the FCGs of N, malware samples with at most 500 modifications and makes them
successfully escape detection. The threshold (i.e., 500 modifications) selection can re-
fer to RQ2. We found that nearly 100% malware samples can escape detection within
500 manipulations by HRAT. Note that not all modified FCGs can be repackaged

due to the anti-repackage protection [169].

e Relative ASR (Rela_ASR) reflects the rate of successful repackaged malware. That
is, among N, malware samples, N, samples can be successfully repackaged into app

files.

e Absolute ASR (Abs_ASR) evaluates HRAT’s effectiveness on problem space, i.e.,
whether the repackaged samples can evade the detection and keep the functionality.
Among N, repackaged malware samples, Ny samples run successfully and evade the

detector.

Baselines. In addition to HRAT, we also employ evolutionary algorithms to de-
sign structural attacks and implement the attack process. These methods serve as
baselines for comparison, allowing us to evaluate the effectiveness of different attack
strategies and identify areas for improvement. We also evaluate evolutionary algo-
rithms, specifically simulated annealing [72], hill-climbing [127] and evolutionary

programming[ (2], for comparisons. Evolutionary algorithms are suitable for scenar-
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ios whose policy space is small or can be structured [137]. However, in our attack
scenario, the policy space, i.e., the attack action set, is enormous and unable to be
structured. We adopt the idea of evolutionary algorithms and adapt them to our
scenarios. Combining gradient search, we design three evolutionary algorithms-based
structural attacks: 1) Simulated Annealing based structural attaCK(SACK) (Algo-
rithm 6), 2) Hill-climbing based structural AttaCK (HACK) (Algorithm 7) and 3)
Evolutionary Programming based structural AttaCK (EPACK) (Algorithm 8). Next,
we use HACK as an example to introduce how we use evolutionary algorithms to guide

a structural attack.

During the initialization phase, the system’s behavior is determined by several critical
parameters, including the initial temperature, target temperature, and temperature
drop ratio. These parameters must be carefully chosen to ensure that the system
functions effectively. To initialize the system’s state, we begin by randomly selecting
an action type from among four candidate types. We then use the gradient search
to modify the system’s graph based on the selected action type, ensuring that the
system is primed for optimal performance. Unlike the original simulated annealing
(SA) algorithm, where each step randomly selects a state from among its neighbors,
our approach involves a more targeted initialization process that leverages gradient
search and candidate action types to create a more effective system. To identify
the system’s neighbors, we follow a three-step process. First, we extract the corre-
sponding representation feature for the latest graph. Second, we conduct all possible
modifications to the graph, generating a set of candidate states. Third, we extract
features from all modified graphs, creating a candidate state set. The next step in
the process involves selecting the nearest neighbor from the candidate state set using
a predefined distance formula, such as Euclidean distance. However, this method is
not feasible in practice, as the number of all possible modifications is very large, even

when the number of nodes is not increased. Assuming that there are N nodes in the
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Algorithm 6: SACK: simulated annealing-based structural attack
Input: Target classifier f, training dataset {X;,Y;}, target FCG G,

feature-space transformation 7', maximum modification times M, node
constraints C, cooling ratio r
Output: action sequence a,.,, adversarial graph G
Initial and final temperature 7; and T
Initialize: i =0, T =1T;, G, =G, y: = f(G),y, = f(G),
cost; = min(dist(f(G), Xt))
while 7" > Ty and i < M and y, == t, do
a; = random_type
Calculate gradient of each edge: 0¢ = V¢, O0bjadn(G)
Execute action a; on G;: G4y = ATT_-OBJ(G;,0g,,C)
costiy1 = min(dist(f(Giy1), Xt))
prob = exp(—(cost;1 — cost;)/T)
if cost;11 < cost or rand_num < prob then
Store action in action sequence: ageq < a;

G; = Gi11, cost = cost;iq
T=Txr

f y, # y: then

return a.,, G’

o

target graph, the number of all possible modifications is:
Npmod = Chun X (Chn X C(IN—Q)X(N—Q)) x (Cy), (3.12)

where C7 is the combination. The first item calculates the number of possible situ-
ations of adding edges, the second item calculates the number of possible situations
of rewiring, and the third for deleting nodes. Considering the malware that has 1,000

nodes and 20% of nodes are modifiable, we have over 12 quadrillion possible mod-
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Algorithm 7: HACK: hill-climbing based structural attack
Input: Target classifier f, training dataset {X;,Y;}, target FCG G, maximum

modification times M, node constraints C

Output: action sequence a,.,, adversarial graph G’
Initialize: i =0, G; =G, y = f(G),y, = f(G), cost; = min(dist(f(G), X:))
while i < M and y, == t, do
a; = random_type
Calculate gradient of each edge: 0g = V¢, Objadn(G)
Execute action a; on G;: G4y = ATT_OBJ(G;,0g,,C)
costiyr = min(dist(f(Giy1), Xt))
if cost;11 < cost then

Store action in action sequence: aseq < @;

G; = Giy1, cost = cost;iq

f y, # vy, then

return as.,, G’

[

ifications. Besides, as we can insert arbitrary numbers of nodes, the scale of the
candidate solution set is infinite. Thus, we randomly select an action type and use
the gradient search to conduct the action on the graph, which also ensures the fair-
ness of comparison with HRAT. We define the cost as the nearest distance from the
modified graph to benign graphs in the training set (Algorithm 6 line 7). This setting
follows the intuition that our target is to deceive kNN classifiers. Then, if the latest
solution is better than the previous one, i.e., cost; 1 < cost;, SACK will adopt the
attack action. Otherwise, SACK will adopt the attack action with a probability less
than exp(—(cost;41 — cost;)/T). SACK continues to modify the graph based on the
previous state. Different from SACK, HACK adopts all actions that have positive

impacts on the state. In each epoch, EPACK randomly generates the mutation prob-
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Algorithm 8: EPACK: evolutionary programming based structural attack
Input: Target classifier f, training dataset {X;,Y;}, target FCG G, maximum

modification times M, node constraints C, number of action types n,

Output: action sequence a,.,, adversarial graph G’
Initialize: i =0, G; =G, y = f(G),y, = f(G), cost; = min(dist(f(G), X:))
while i < M and y, == t, do
Randomize mutation probability: p,, = p1, ..., Pn,
Giv1 = Gy, tmpger
for a;, =0 to a; < n, do
if p,, > 1/n then

Calculate gradient of each edge: ¢ = V¢, 0bjadn(Gis1)

Execute action a; on G;: Gy = ATT_OBJ(Gi41,0q,,,,C)

tmpact a4

costiy1 = min(dist(f(Giy1), Xt))
if cost; 1 < cost then
Store action in action sequence: seq <— tMPact

G; = G;11, cost = costiq

if vy, # vy, then

return a,.,, G’

=

ability of each attack action. Then, EPACK adopts all attack actions whose mutation

probability is larger than 1/n,. n, is the number of all action types.

3.5.1 RQ1: Effectiveness Analysis

Experimental Setup. We divide the dataset into training sets and testing sets. As

the goal of HRAT is to modify malware to evade the target detection system, the
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Table 3.1: ASRs of HRAT towards Malscan, Mamadroid, and APIGraph enhanced

Malscan

Algorithm Training Testing Init ASR Rela ASR Abs ASR

TEo 82.50% 91.31% 100%

TRo TE1 94.93% 96.71% 100%

Malscan TE2 97.83% 93.86% 100%

TR2 TE1 91.50% 97.81% 100%

APIGraph TEo 89.67% 97.50% 100%
T

+ Malscan Ro TE1 99.57% 98.93% 100%

TEo 71.42% 87.88% 100%

Mamadioid  TRo TE1 99.94% 94.95% 100%

TE2 100% 88.79% 100%

testing sets consist solely of malware samples. To ensure that our adversarial attack
method is effective, we exclude misclassified malware samples from our dataset by
using pre-trained classifiers, as modifying these samples would not be useful. We
design three dataset [152] settings for effectiveness analysis. In the first setting, the
training dataset (TRo) and the testing dataset (TEo) are collected during the same
period. In the second setting, the testing data (TE1 and TE2) was collected after
the training set. This setting emulates the situation that the malware detectors are
trained with known malware and use pre-trained classifiers to detect malware. In
this case, since there may be concept drift [13] in the malware samples, detectors are
suggested to retrain their classifiers to deal with new malware. The third setting uses
the latest malware to train the classifier (TR2) and uses older malware (TE1) for
testing. In this setting, we aim to evaluate whether our attack can renew outdated
malware. We use each training set to train target AMDs (i.e., Malscan, APIGraph

enhanced Malscan and Mamadroid). Given malware in testing sets, we use HRAT to
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modify it and then evaluate whether it can evade target AMDs and record each ASR.

We also compare the performance of HRAT and that of other approaches. One is
AndroidHIV [20], which is the state-of-the-art attack against Mamadroid and also con-
siders problem-space attacks. Since AndroidHIV has not been released to the public,
we implement AndroidHIV by strictly following the description and configurations
in the manuscript[26]. We also design attack strategies based on evolutionary algo-
rithms [72] (i.e., simulated annealing-based structural attack, SACK, hill-climbing-
based structural attack, HACK, and evolutionary programming-based structural at-

tack, EPACK, as baseline algorithms for comparisons with reinforcement learning

adopted by HRAT.

Results. Table 3.1 lists the results of the effectiveness comparison of different at-
tacks. Init ASR represents the ratio of malware that escapes detection after at most
500 modifications have been applied. According to our analysis in §3.3.4, the char-
acteristics of malicious apps will eventually be diluted so that they will be regarded
as benign ones as long as HRAT keeps adding useless vertices. But the unlimited
modifications will increase the attack’s computational complexity. We apply HRAT
to 50 randomly selected apps and find that after 500 modifications, these apps were
still unable to evade detection. We then continued to apply HRAT without any re-
strictions on the number of modifications until the apps were successfully able to
evade detection. The result shows that these apps can successfully evade detection

after more modifications (i.e., from 635 to 4,091).

Due to the limitations of soot and flowdroid [107], some apps cannot be successfully
repackaged. Thus, we utilize Rela_ASR to denote the ratio of apps that can evade the
detection at the algorithm level but cannot be repackaged successfully. It is worth
noting that the failure of app repackaging is typically due to the anti-repackaging
strategies implemented by the apps themselves, rather than any shortcomings in our

manipulation techniques.
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Comparing the Init ASR and Rela ASR of Malscan and APIGraph enhanced Malscan
in Table 3.1, we can see that HRAT is more effective on APIGraph enhanced detector
than the original detector. The reason for this is that APIs that were originally
unmodifiable may become modifiable through the use of APIGraph, which uses a
unique API to represent APIs with similar functionalities. Furthermore, we have
observed that it is easier to obscure the distinguishing features of malware and evade
detection when the number of features is smaller. For example, the feature number
of Mamadroid (121) is much smaller than that of Malscan (43,972), and the Init ASR
on Mamadroid in Table 3.1 is better than Malscan.

Table 3.2 illustrates the ASR of different algorithms using TRo for training and TE1
for testing. We can see that for feature-space attack (Init ASR), AndroidHIV can
achieve over 95% attack success rate. However, in the case of problem-space attacks,
the performance of AndroidHIV drops to 37%, as it can only modify a limited number
of methods in malware and cannot maintain consistency between perturbations on
features and modifications made to apps. Furthermore, the initial ASRs for SACK,
HACK, and EPACK are lower compared to reinforcement learning-based algorithms,
since evolutionary algorithms direct structural attacks to choose attack action types
randomly. Benefiting from structural attacks, EA-based methods achieve the same

absolute ASRs as reinforcement learning-guided attacks.

Next, we explore the impact of randomness on the experiments. HRAT uses a k-
nearest neighbor (kNN) algorithm with k=1 as the classifier for the target detection
system. The way the training data is split significantly influences the attack perfor-
mance. For instance, the label assigned to a test sample is determined by its nearest
neighbor in the training set, meaning any changes in the training data can alter
classification results. Consequently, variations in the testing data split also affect
the attack performance. HRAT’s action determination model is randomly initialized,
and actions are selected based on a predefined threshold, even if the model is well-

trained. This inherent randomness can lead to varied performance outcomes when
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HRAT is applied in real-world scenarios. For comparison, SACK employs a random
selection for the action space due to the vast initialization settings, as discussed in
Section3.5-Baselines. This randomness in action selection introduces variability in
performance during application. Similarly, EPACK uses a random mutation prob-
ability for determining attack actions, which also introduces randomness. Different
target detection systems exhibit varying sensitivities to randomness. In Malscan,
the features are sparse, so perturbations may differently affect the sparse features’
representation. Mamadroid relies on the dependency probability between different
method families” invocations. A single manipulation may impact these probabilities
by altering both the numerator and the denominator in Mamadroid’s feature calcula-
tion. For APIGraph-enhanced Malscan, feature clusters are used to reduce Malscan’s
feature vector. Random perturbations in nodes and edges can change the centrality
of multiple clusters, impacting the overall performance. The inherent randomness
in data splitting, action determination, and feature perturbations can significantly
influence the performance of HRAT’s attacks and the comparison algorithms, leading

to varied outcomes in different application scenarios.

Answer to RQ1: HRAT achieves up to 99.94% init ASR within 500 modifications.
Without restriction on the number of modifications, HRAT achieves a higher ASR

of problem-space attack. HRAT outperforms evolutionary algorithms that demon-

strate the effectiveness of optimization strategies in HRAT.

3.5.2 RQ2: Modification Efficiency Comparison

Experimental Setup. We measure the modification efficiency of an attack using
the number of modifications required to let a malicious app evade detection. We
compare the modification efficiency of HRAT and that of AndroidHIV and SACK on
the collected dataset by recording the escaping number of modifications for each app

toward the different attack approaches. Note that HRAT and the aforementioned
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Table 3.2: Effectiveness comparison of different attacks

Systems  Algorithms Init ASR Rela ASR Abs ASR

HRAT 94.23% 96.71% 100%

SACK 87.13% 62.56% 100%

Malscan HACK 75.80% 97.89% 100%
EPACK 76.63% 94.21% 100%

HRAT 99.94% 94.95% 100%

SACK 81.05% 84.30% 100%

Mamadroid ~ HACK 87.40% 81.01% 100%
EPACK 72.60% 99.17% 100%

Android HIV  96.02% 87.64%  37.67%

evolutionary attacks (i.e., SACK, HACK, and EPACK) work against both Malscan
and Mamadroid, whereas AndroidHIV only targets Mamadroid.

Results. Figure 3.10 shows the cumulative distribution (CDF) of the required num-
ber of modifications for evasion. We can see that even SACK achieves comparative
ASR with HRAT (§3.5.1), SACK requires more modifications to make target mal-
ware escape detection. Specifically, when attacking Malscan through SACK, more
than 10% of malware needs more than 50 modifications. By contrast, this ratio is
only about 5% under HRAT’s attack. When attacking Mamadroid through HRAT,
90% of the malware needs at most 50 modifications to evade detection. However,
SACK requires at least 150 modifications to achieve the same ratio. This difference
may be caused by the different learning strategies of those two algorithms. More
precisely, HRAT uses reinforcement learning to learn and decide the action type by
interacting with the target environment, whereas SACK randomly selects the action
type and decides whether to adopt the action by checking if the selected action has a

positive impact. For AndroidHIV, nearly 30% of adversarial malware escapes detec-
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Figure 3.10: CDF of the required number of modifications

tion within 80 modifications, and only 65% of malware deceives Mamadroid within

300 modifications.

Answer to RQ2: HRAT needs fewer number of modifications than other methods

to let malicious apps evade detection.

3.5.3 RQ3: Effectiveness of IMA

Ratio of individual actions

To evaluate the effectiveness of individual manipulation action (IMA), we compute
the ratio of each attack action to all modifications applied to all adversarial apps
that successfully evade the target systems (i.e., Mamadroid, Malscan and APIGraph
enhanced Malscan) under the aforementioned data sets and configurations. For ex-

ample, to obtain the ratio of insert node in Malscan_-TRo_TE1, we first count the
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Figure 3.11: The ratio of each attack action.

number of insert node (denoted as N,,) applied to those adversarial apps and the

total number of modifications (denoted as N,,) and the ratio will be computed using

Nan/Npn.

Results. Figure 3.11 illustrates the ratio of each attack action in adversarial samples.
The deeper the shade, the greater the ratio. We can see that for evading Malscan,
inserting nodes and deleting nodes actions account for a large proportion (over 26%)
because adding edges and deleting nodes can effectively decrease the degree centrality
of nodes (§ 3.3.4). It is consistent with the analysis of Malscan in [152] that suggests
the degree centralities of benign apps are smaller than that of malware. For API-
Graph enhanced Malscan, rewiring action accounts for a large ratio (over 27%). The
reason may be that as APIGraph clusters methods with similar semantics into one
class, rewiring action can effectively decrease the degree centrality of target clusters
by replacing the connections between different clusters with connections within one
cluster. As Mamadroid abstracts methods into different families and uses invocation

probabilities as features, inserting nodes to specific families could be more effective
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to perturb the features. Besides, as the action ratios of all actions exceed 20%, it
suggests that HRAT actively selects attack actions to achieve the trade-off between
ASR and modification efficiency.

ASR of individual actions

To evaluate whether malicious apps can escape detection with only one type of at-
tack action, we compare the ASR of HRAT and that of IMA attacks against the
aforementioned detectors. TRo and TE1 are adopted as training and testing sets,
respectively. More precisely, for each attack action, we just use it to perturb the
structure of target graphs and record its ASR. We also compute the average number
of modifications (Avg. Mod) required by each IMA by first counting the number of
modifications (N,,.q) applied to N,d adversarial samples that successfully evade the
detectors in both feature space and problem space and then calculating the ratio of

Nmod/Nad-

Results. Table 3.3 shows that using adding edges alone to attack Malscan can
achieve over 90% Init ASR but requires 11.03 average modifications that are nearly
double of the number of modifications required by HRAT (5.58). Regarding Ma-
madroid, both adding edges and inserting nodes can achieve over 90% Init ASR in
feature space, while rewiring and deleting nodes only achieve 83.95% and 78.49%
ASR, respectively. However, adding edges and inserting nodes require more average
modifications than rewiring and deleting nodes. Combing different attack actions to-
gether, HRAT achieves nearly 100% Init ASR against Mamadroid with much better
modification efficiency. As APIGraph clusters similar APIs into one class to enhance
target AMD, perturbations on fewer APIs can let malware escape the enhanced de-
tector. In other words, when APIGraph enhances target systems, it also introduces
new vulnerabilities. As all IMAs follow our graph structure modifications, the per-

formance of those attack methods of the problem-space attacks is the same as that
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Table 3.3: Comparisons between individual attack strategies and HRAT

Algorithm Init ASR Rela ASR Abs ASR Avg. Mod
HRAT 94.23% 96.71% 100% 5.58

Add edge 96.97% 82.31% 100% 11.03

Malscan  Rewiring 67.14% 79.58% 100% 7.54
Insert node 81.48% 98.65% 100% 14.68

Delete node 74.17% 93.76% 100% 8.06

HRAT 99.94% 94.95% 100% 34.55

Add edge 93.77% 94.90% 100% d7.75

Mamadroid Rewiring 83.95% 75.53% 100% 27.64
Insert node 96.76% 98.29% 100% 64.26

Delete node 78.49% 83.17% 100% 23.24

HRAT 99.57% 98.93% 100% 1.63

APIGraph Add edge 91.51% 98.00% 100% 3.39
© Malscan Rewiring 95.61% 85.46% 100% 2.57
Insert node 92.20% 95.80% 100% 2.81

Delete node 94.62% 96.07% 100% 4.29

of the feature-space attacks.

Effectiveness of HRAT on malware that fails to escape detection using

individual actions

To evaluate whether combining multiple attack actions is more effective than individ-
ual attack actions, we use HRAT to modify apps that fail to evade the target systems
(i.e.,Malscan, APIGraph enhanced Malscan, and Mamadroid) using individual attack

actions. If N, apps fail to deceive target systems using individual actions but N, out
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of N, apps successfully escape the detection under HRAT’s modifications, we define

the effective ratio as Nj /N to quantify HRAT’s effectiveness.
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Figure 3.12: Effectiveness of HRAT over malware that fails to escape detection under

individual attack action

Results. Figure 3.12 shows the effective ratio of HRAT over apps that fail to evade
detection systems using individual attack actions. For attacking Malscan, since adding
nodes action achieves comparative Init ASR with HRAT, the malware that fails to
deceive Malscan using adding nodes has overlapping with malware that fails to evade
the detection under HRAT’s modification, leading to a 37.5% effective ratio. For
Mamadroid and the enhanced detector, as HRAT achieves nearly 100% Init ASR
(Table 3.3), HRAT can also achieve nearly 100% and around 90% effective ratio,

respectively.

Next, we discuss the randomness in individual manipulation attacks. Individual ma-
nipulation attacks use a greedy strategy that always selects the edges or nodes with

the maximum gradient to modify. However, a locally optimal solution is not necessar-
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ily a globally optimal one. Since individual manipulation attacks also use the same
substitute model as the target detection systems, the randomness inherent in HRAT’s
data splitting and action determination affects these attacks as well. Therefore, any
variability introduced by the dataset can influence the performance of individual
manipulation attacks. Additionally, the impact of manipulations on Mamadroid,
Malscan, and APIGraph, as discussed in Section3.5.2, contributes to the variability
in the performance of individual manipulation attacks. The way these systems process

and respond to perturbations can significantly alter the outcomes of such attacks.

Answer to RQ3: Individual attack actions are not always effective in attacking
all AMDs. Combining multiple attack actions, HRAT is much more effective and

modification efficient.

3.5.4 RQ4: Resilience to Obfuscation Techniques

Experimental Setup. To evaluate the resilience of HRAT against malware adopt-
ing different obfuscation techniques, we use a dataset in [37], which includes malware
from different families obfuscated by three different obfuscation techniques (i.e., iden-
tifier renaming, string encryption, and reflection) We use TRo as the basic training
set. For each malware family, we randomly select 100 samples from the dataset and
add them to the training set to improve the classifier’s performance. To construct
the testing set, we randomly select 500 samples that are correctly identified as mal-
ware by target systems. We apply HRAT to above malware for evading target AMD
systems(i.e., Malscan and Mamadroid), and define evasion rate = N./N;, where N,
is the number of malware that escapes the detection and N, is the number of test
samples, to quantify the resiliency of HRAT against these commonly used obfuscation

techniques.

Results. As shown in Table 3.4, the evasion rate of Malscan and Mamadroid are

100%, meaning that our approach is resilient to identifier renaming. The reason is that
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Table 3.4: Evasion rate of AMD systems by adversarial apps whose original apps

belong to different families and adopt three different obfuscation techniques.

Without attack With attack
Malscan Mamadroid || Malscan Mamadroid
Renaming 0.00% 0.00% 100% 100%
Encryption 0.00% 0.00% 93.94% 87.11%
Reflection 0.00% 0.00% 92.08% 91.30%

the renaming obfuscation can only change the names of parameters or identifiers into
meaningless strings or hash values [1 1], which do not affect the structure of FCGs.
Thus, HRAT achieves desirable performance on malware using identifier renaming.
For string encryption, the evasion rates of Malscan and Mamadroid are 93.94% and
87.11%, respectively, meaning that this obfuscation technique can affect our approach.
Our manual analysis reveals that string encryption may affect the graph structure
because malware may use encrypted strings to replace original invocation statements
and restore them at run-time [37], and thus, some nodes and edges are missed during
the modification. For example, when deleting a node, if the callee’s name is encrypted
in one call relation, HRAT fails to replace the method invocation statement with the
deleted method body in the corresponding method. It may cause HRAT to break
the functionality of target malware and make the performance of the problem-space
attack(evasion rate) lower than 100%. If the reflection is used, the evasion rate of
Malscan and Mamadroid are 92.08% and 91.30%, respectively, meaning that reflection
may affect our approach. Reflection may make it difficult to conduct static analysis

on apps, and some invocation relations may be missed.

Next, we discuss how different obfuscation techniques introduce randomness that af-
fects HRAT’s performance. For Malscan, renaming methods have minimal impact
on the overall Function Call Graph (FCG) centrality evaluation, as it only changes

the names without affecting the structure. Similarly, encryption has a comparable
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effect to renaming, altering method names without significant structural changes.
However, reflection has a more substantial impact, as it can modify the raw FCG’s
invocation relationships, thereby influencing the centrality of key nodes in the graph.
For Mamadroid, which abstracts methods into different families and uses invocation
probabilities between families as features, renaming and encryption randomly affect
method names. This leads to variability in Mamadroid’s performance under attack
with these obfuscation methods. Since reflection can alter the raw FCG’s invocation
relationships, it also affects the invocation probabilities, introducing further random-

ness in the attack’s impact on Mamadroid.

Answer to RQ4: If an obfuscation technique neither affects the structure of FCGs
nor impedes the static analysis and manipulation on apps, it will not affect our

approach.

3.5.5 RQ5: Functional Consistency Assessment

We conduct static analysis and dynamic analysis to assess whether the adversarial
apps generated by HRAT preserves the functionality as the original ones. We ran-
domly select 40 malicious apps and apply HRAT to them. During this process, we
also insert log into the modified methods of original and modified apps to collect

information for assessment.

eStatic analysis assessment. For these app pairs, we conduct static analysis on
them to ensure that the modifications have been correctly imposed. Specifically, we
check whether the added invocations and methods exist and whether the deleted
methods are correctly modified. Besides, we also compare the scale (number of nodes
and edges) of FCGs and extracted features of the modified app and those obtained
by HRAT.

Results. The results show that the FCGs extracted from modified apps are the same
as the FCGs computed by the algorithm. Besides, the number of nodes and edges
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in the FCGs and extracted features from modified apps are also the same as those

calculated by HRAT.

e Dynamic analysis assessment. For the dynamic assessment, we install the apps
before and after modifications on two Android virtual machines (AVMs) with the
same configuration, respectively. For apps (35/40) that have been modified by less
than ten times, we manually analyze their FCGs to learn how to trigger the modified
methods. Then, we conduct the same operations to run an app pair on the two AVMs
and record the run-time UIl. To check whether the modified methods are triggered,
we insert log functions to the modified methods to print the method’s all parameters
and the callers’s signature. For example, when testing adding function call, we insert
the log to print the parameters of callee and its callers signature between lines 1 and
2 of Figure 3.5(b). To check whether the modified app works the same as the original
one, we insert log to print the parameters of methods to be modified in the original
app. In this way, besides manually checking whether the user interface gives the same
feedback (e.g., same activity transition, same pop-up window, same text rendered on
the window, etc.), we also compare the values of the methods’ parameters before
and after modification. For apps (5/40) that are hard to find the activation paths
because of heavy code obfuscation, we use a popular Android testing tool Monkey [51]
to conduct the dynamic exploration on them. We configure Monkey to let it ignore
crashes and timeouts and set the duration of each event to 300ms. The execution
time is set to 20 minutes. We collect the logs to identify the invoked methods and
check whether the apps before and after modification have the same functionality by

comparing the log information.

Result. For apps that have been examined by us manually, the coverage rate
(Niriggered.methods/ Nmodi fiedmethods) of modified apps is 100%, because we have pre-
analyzed their FCGs, and 33/35 apps show the same user interface as original apps.
Specifically, when we conduct the same operations on the apps, both the modified

apps and original apps output the same UI feedback. Besides, the log messages show
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the expected results. For example, for inserted nodes, the expected invocation se-
quence exists in the corresponding caller. However, two of thirty-five apps crashed
during the testing process, whereas their original apps run smoothly. By manually
inspecting these two apps, we find that when HRAT modifies the methods called by
reflection, it cannot make the corresponding modifications to the reflection invoca-
tion, thus leading to app crash. Thus, we cannot verify their functional consistency.
For other apps tested using Monkey, the coverage rate drops to 24.87% as Monkey
randomly interacts with the app to trigger methods. For these trigger paths, we find

that all modifications do not affect the functionality.

Answer to RQ5: HRAT keeps the functional consistency of the modified apps in
most cases. It may break the functionalities of apps using obfuscation techniques

that hinder static analysis.

3.5.6 RQG6: Influence of Key Parameters

Two key parameters will influence the effectiveness and efficiency of HRAT: a) proba-
bility, which determines how likely HRAT is to adopt an action type learned by deep
Q-network or randomly select an action type; and b) memory capacity, which deter-
mines the frequency at which HRAT interacts with the environments. We evaluate
the parameter influence of HRAT on Mamadroid and Malscan with 500 randomly
selected malware. Figure 3.13 shows the influence of these two key parameters on
HRAT. We can see that our attack on Mamadroid is not sensitive to the parame-
ters. For Malscan, as storage capacity increases, ASR drops, because the increase
of storage capacity means that the frequency of interaction between HRAT and the
environment is reduced and thus the system cannot better determine its behavior
based on the environment. Similarly, this will also lead to more modifications with
the increase of memory capacity. Since HRAT takes a random attack action type

with 1 — Probability, when the Probability decreases, the probability of our system
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Figure 3.13: Parameter analysis

taking random attack behavior will increase. This will result in a decrease in the ASR

of the system and an increase in the number of modifications taken.

For other parameters in our system, such as mazimum modification times M, m in
Eq 3.5, we set M to 500 and m as 75, which follows the settings in [125]. We set
the value of M to 500, because as M increases, ASR will also be increased, but the
optimization time consumption will also increase. The results of our experiments in
§ 3.5.1 demonstrate that if the number of M is not limited, the app can be successfully
attacked in the feature space. Similarly, the CDF of the number of app modifications
§ 3.5.2 also shows that most apps can be successfully modified at most 50 times. For
m, it is only used to solve the distance between the target graph and the m samples
in the training set during the optimization process. When evaluating whether the
algorithm was successfully attacked, we still used all the samples from the original

training set.
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Figure 3.14: Attack success rate against retraining.

Answer to RQ6: The parameter setting’s impact on HRAT varies for victim detec-

tion systems.

3.5.7 RQ7: Defense against HRAT

We evaluate two potential approaches for defending against HRAT, including adver-
sarial training and ensemble learning[133], which have been used to defend against

adversarial attacks in other domains (e.g., computer versions).

Adversarial retraining is regarded as one of the most effective defense methods against
adversarial attacks [18]. We randomly select 500 samples that evade the detection
in both feature and problem space and divide them into training and testing sets.
Figure 3.14 shows that with the increase of training ratio (i.e., the ratio of retraining
samples to all adversarial samples), ASR drops accordingly. However, Mamadroid
trained with the TRo dataset cannot achieve good defense performance even when
enough adversarial samples are available. It may be due to the limited ability of

Mamadroid to learn extracted features for malware detection. Similarly, when the
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retraining ratio is less than 0.5, the attack success rate of Mamadroid TE1 and TE2
remains more than 40%. It is worth noting that Malscan enhanced by APIGraph
only needs a small number of retraining samples to successfully detect adversarial
apps. For attacking Malscan, when the training ratio is limited to 10% to 40%, the
ASR drops dramatically, while the training ratio grows to more than 50%, and the
defense effectiveness does not improve a lot. This could be caused by the limitation
of Malscan’s defense performance as the Fl-score of raw Malscan’s detection per-
formance is limited to 98.8% [152]. In summary, retraining would be an effective
defense method against HRAT if there are enough adversarial samples for retraining.
However, it is worth noting that if many samples are used for retraining, the time

consumption and computational workload will also increase.

We also evaluate the effectiveness of ensemble learning. Ensemble learning has been
used to defend against adversarial attacks [133]. To evaluate the defense effective-
ness of ensemble learning algorithms, we adopt four ensemble learning algorithms:
Bagging, Adaboost, gradient boosting decision tree, and Voting. Bagging [69] forms a
class of algorithms that will be trained using a random subset of the original training
set and then aggregate their individual predictions to get a final prediction. Ad-
aboost [15] utilizes a sequence of weak learners on repeatedly modified versions to
improve the performance of weak classifiers. Gradient boosting decision tree [105]
(GBDT) integrates a set of regression trees and uses a generalization of boosting to
arbitrary differentiable loss functions. Voting strategy simply combines different ma-
chine learning classifiers and uses votes to predict the class labels. We use sklearn [105]
to implement those embedding algorithms and the parameters of each algorithm are

set as default (see Table 3.5).

To conduct the experiments, we use ensemble learning algorithms to replace the kNN
classifier in original detection systems. Then, we use those pre-trained ensemble clas-
sifiers to identify the label of adversarial malware. Table 3.6 shows that ensemble

learning for APIGraph enhanced system cannot effectively defend HRAT’s attack.
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Table 3.5: Parameter settings of ensemble algorithms

Algorithms Parameter settings

base_estimator: 1NN
Bagging max_samples: 0.5
max _features: 0.5

base_estimator: 1NN

Adaboost

n_estimators:100

n_estimators: 100

learning rate: 1.0
GBDT

max_depth: 1
random_state: 0
) base_estimators: SVM, INN, DT

Voting

voting:majority voting

SVM: support vector machine; 1INN: 1st nearest neighbors; D'T: decision tree

For Malscan, Adaboost and GBDT are promising defense strategies that could ben-
efit from their boosting strategies. Since Boosting strategy uses weighted methods
to combine weak classifiers, the ensemble classifier is supposed to integrate the ad-
vantages of weak classifiers, thus making the defense more effective. For Mamadroid,
ensemble learning could achieve at least 60% ASR decrease. As the feature number in
Mamadroid is small, the learning strategy of bagging (using the subset of the training
set) can effectively exclude outliers in the training set. The results show that it could
be a promising defense strategy for Mamadroid. However, it is not always effective
for Malscan. Therefore, different defense strategies should be adopted for different

detection systems to defend against HRAT.

Answer to RQT7: Different defense strategies should be adopted for different detec-

tion systems to defend against HRAT.
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Table 3.6: Evaluation of ensemble learning based defense methods

Bagging Adaboost GBDT Voting

Malscan TEo 91.50% 18.42% 15.79% 100%
Malscan TE1 92.31% 15.03% 13.99% 100%
APIGraph
100% 99.84% 97.28% 100%
+Malscan
Mamadroid TEo  14.86% 32.32% 33.19%  34.20%
Mamadroid TE1  30.91% 36.75% 35.14% 24.64%

Mamadroid TE2 ~ 14.00% 31.88% 32.64%  36.25%

3.6 Discussion

3.6.1 Applicability of HRAT

The algorithm design of HRAT, which includes constraints and four elaborate graph
modification actions, is versatile enough to be applied to attack function call graphs
in other software platforms, such as Windows or PDF. When modifying the FCG,
HRAT maintains method connectivity and call sequence, which is not limited to any
specific programming language. Furthermore, the constraints set by HRAT ensure
that in other software platforms, it will not modify the unmodifiable nodes or edges
(methods and call relations). In this way, HRAT maintains the functionalities of the
target software. When applying HRAT to other systems, the adversary only needs
to consider the limitations of modifiable functions in target scenarios and then add

them to the algorithm constraints.
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3.6.2 Limitations

HRAT’s optimization progress leads to high computational consumption because,
given a new graph, HRAT needs to calculate the gradient of each edge to select
the influential nodes or edges. In future work, we will investigate the transferability
of HRAT. In other words, we will first use HRAT to attack one detection system
and generate adversarial malware and then check whether the generated malware can
escape another detection system. Besides, to address the limitation of gradient-related

methods, we will explore involving information entropy in modification selection.

Since HRAT relies on static analysis, its attack may break the app’s dynamic features,
such as reflection [37], dynamic class loading, etc. We can add related methods into
constraints and set them as unmodifiable to avoid modifying such dynamic features.
Moreover, HRAT could not handle heavily obfuscated malware [181, , , ,

|, such as packaged apps, because static analysis may just access the Dex file of

the shell rather than the real functional Dex file.
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Chapter 4

A Fine-grained Chinese Software
Privacy Policy Dataset for
Sequence Labeling and Regulation

Compliant Identification

4.1 Overview

The Android privacy policy is a legal document written in natural language that
discloses the purposes and mechanisms by which a controller —the entity determin-
ing the purposes and means of processing personal data—collects, shares, uses, and
stores user information [17, 108, 98]. Regulatory authorities [17, 108, 98] and Android
application platforms [19, 62] require developers to provide clear privacy policies to
inform users about how their personal data is handled. This enables users to under-
stand and assess whether their privacy may be at risk, thereby helping them make
informed decisions about using the application. However, privacy policies are often

lengthy and complex, making them difficult for users to read and comprehend [125].
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Natural Language Processing (NLP) techniques have achieved significant success in
understanding document semantics [161, , 30]. Therefore, it is essential to ap-
ply NLP techniques to analyze privacy policies, identify compliance between privacy
policy statements and regulation requirements, and assist users in understanding the
privacy practices of mobile applications [166, 7, |. However, applying NLP meth-
ods to this domain requires a large amount of annotated corpus to train models that
can identify who is responsible for collecting or sharing user data, as well as with
which parties or organizations such data is shared. Currently, available datasets for
this task only include English-based privacy policy corpora [151, |, while there
remains a lack of publicly available datasets specifically tailored for Chinese privacy

policies.

Chinese software privacy policy processing (CSP?) task is a sequence labeling prob-
lem that recognizes privacy-related components in the sentences. CSP? has two main
unique features. First, privacy policies contain an amount of information inside [165],
such as how the app stores user data and how to contact the app developers. In
our dataset, we concentrate on data access-related sentences as the sentences are di-
rectly related to user privacy. Second, privacy policies are written in legally binding
professional language and contain software jargon. Thus, it requires a strong back-
ground [187, 188] to understand the statements inside. Both characteristics prevent
users from understanding privacy policies. A well-annotated dataset can facilitate
the building of automatic privacy policy analysis tools and further help users protect

their privacy.

Although privacy policy datasets have been proposed recently [151, |, labels in
existing datasets are coarse-grained (i.e., sentence-level annotations [151]) and those
data set only involve few privacy practices [193]. Besides, existing datasets only

include English privacy policies, which limits the application of these datasets in
regions with other languages. We construct a fine-grained Chinese dataset for software

privacy policy analysis.
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In this work, we focus on Android application privacy policies because Android

possesses the largest share of mobile operating systems [129], and a large num-
ber of Android privacy data leaks have been revealed [123, ]. Unlike previous
work [151, |, we deal with the problem using sequence labeling methods and pay

special attention to the Chinese privacy policies. The motivations come from the

following four aspects:

First, worldwide regulation departments enact laws [93, , 47, , 27] to regulate
the software’s behaviors and protect users’ privacy. The laws require the software to
clarify how and why they need to access user data. Analyzing privacy policies can
help users understand how app process their data and identify whether apps comply
with laws. However, privacy policies are written using professional legal and software
jargon that prevents users from reading and understanding them. Thus, it is neces-
sary to apply NLP techniques to analyze and help users understand privacy policies.
Second, for sequence labeling tasks, CSP? aims to identify how and why the software
collects, shares, and manages users’ data according to regulations. CSP? can be ab-
stracted as identifying components in the privacy policy documents, such as data type
and the purpose of using user data. NLP techniques can help automatically analyze
privacy policies. Third, existing privacy policy analysis research is limited to English
and totally omits other languages. With over 98.38 billion app downloads [132] and
privacy-related regulations enacted in China, it is necessary and urgent to research
CSP3. Last but not least, recent research in other communities, such as software en-
gineering [166, 96] and cybersecurity [7, (], demonstrates requirements for analyzing
privacy policies to help the analyst identify whether the apps’ behavior is consistent

with privacy policies.
In this work, we make the following efforts to advance CSP? task:

First, we construct a novel large-scale human-annotated Chinese Android application
privacy policy dataset, namely CA4P-483. Specifically, we manually visit the software
markets, such as Google Play [19] and AppGallery [62], check the provided privacy
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policy website, and download the Chinese version if available. We finally collect
483 documents. To determine the labels in the privacy policy analysis scenario, we
read through Chinese privacy-related regulations and summarize seven components
(§4.3.2). We annotate all occurrences of components in 11,565 sentences from 483 doc-
uments. Unlike paragraph-level annotations in existing privacy policy datasets [151],

CA4P-483 annotates character-level corpus.

Second, based on CA4P-483, we summarize families of representative baselines for
Chinese sequence labeling. In detail, we first evaluate the performance of several
classic sequence labeling models on our dataset, including Conditional Random Forest
(CRF) [70], Hidden Markov Model (HMM) [94], BiLSTM [55], BiLSTM-CRF [71],
and BERT-BILSTM-CRF [31]. Recent work shows that lattice knowledge improves
the performance of Chinese sequence labeling tasks. We involve lexicon-based models,

such as Lattice-LSTM [180)].

Third, we investigate potential applications of CA4P-483. Combining law knowledge,
we first identify whether the privacy policy violates regulation requirements based on
CA4P-483. We also identify whether the app behaves consistently with privacy policy

statements combining software analysis [184, 189].

The contributions of this work are three-fold:

e To the best of our knowledge, we construct the first Chinese privacy policy

dataset, namely CA4P-483, integrating abundant fine-grained annotations.

e We experimentally evaluate and analyze the results of different families of se-
quence labeling baseline models on our dataset. We also summarize difficulties

in our dataset and provide findings and further research topics on our dataset.

e We investigate potential applications of CA4P-483 to regulate privacy policies

with law knowledge and program analysis technologies.
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4.2 Preliminaries

4.2.1 Android Privacy Policy

A privacy policy is a legal document written in natural language that discloses how
and why a controller collects, shares, uses, stores, and protects user data [17, , 98].
Privacy policies help users understand whether their privacy will be abused and decide
whether to use the product. Android application markets, such as Google Play [19]
and Huawei Gallery [62], require developers to upload the app’s privacy policy when

they submit their apps to markets.

4.2.2 Sequence Labeling

The sequence labeling task recognizes components of interest, which are predefined in
specific applications, in the sentence. One classic example of sequence labeling tasks
is part of speech tagging, which aims at assigning each word a part of speech in given

sentences or documents.

4.3 Dataset Construction

4.3.1 Dataset Collection

We manually collect the Chinese privacy policies from Android application markets.
According to application market requirements [03, 50], developers must provide pri-
vacy policies to claim their user data access behavior and to ensure apps will not
violate laws or regulations. Since privacy policies are publicly available for users to
understand the apps’ access to personal data, the three authors of this paper manu-

ally access the most popular apps in markets and visit their privacy policy websites
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provided at the moment (January 2021). We use html2test [3] to extract context.

Finally, we use tagtog [20] for document annotation.

Next, we annotate CA4P-483 based on the law requirements. Specifically, we analyze
Chinese privacy-related laws and regulations [9%, , , 29], and find requirements
for apps’ privacy process behavior. For example, GB/T41391-2022 Article 4.n) claims
that “developers should expressly state the purpose of applying or collecting informa-

tion to the subject of personal information.” Finally, we summarize seven types of

labels related to requirements for apps’ access to user data.

4.3.2 Fine-grained Annotations

For each privacy policy, we concentrate on the sentences that describe the data pro-
cess behavior. After locating the sentences, we annotate seven components, i.e., the

controller, data entity, collection, sharing, condition, purpose, and receiver.

Data controller. According to regulation requirements, the data controller is the
party that determines the purpose and means of personal data processing. A data
controller could be the app (first party) or the third party. As is shown in Figure 4.1,
data controllers are “third-party platforms” in Figure 4.1(a) while that is “we” in
Figure 4.1(b). Thus, we annotate data controllers according to sentence semantics,

i.e., who is responsible for processing the data.

Data entity. Data entities are any information that can identify or reflect the activ-
ities of a natural person [108]. Recent research [17, 122] demonstrates the probability
of combining various information to infer and even locate a specific person. Thus,
we annotate all data nouns or noun phrases that are requested in privacy policies,
including sensitive information, such as device id, and normal information, such as

device type.
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To guarantee you can use our products or services, achieve statistics and analysis of game data, and improve the security of your device account,

WE=ZFFE L EFIFER EMHELTIREEGZREID. RE LM, X&ERfMRA. RAMA, [P,

the third-party platforms we cooperate with will collect (with your consent) your device ID, device name, device type and version, system version, IP address,

MAChk, B AID. M4 EERE, BARGSY T X LR EE 4,

MAC address, application ID, network state, network connection methods and type, etc.

(a) Demo 1.

B A B B B K &R 2 A, B T A 28 A SDKH K Ia_ (% . 1 A. OPPO.

To adapt the push function to the terminal model you are usmg, we may share the following data with -, -, -,

VNG) EEFmA 5. MARMEIEERE L.

VIVO): device type, device version and related device information.

(b) Demo 2.

Data controller Data entity Collecting action Sharing action Condition Purpose Data receiver |

(¢) Annotation legend.

Figure 4.1: Annotation demos from CA4P-483. We translate the statements into

English for illustration.

Collection. Collection actions are verbs that describe how controllers access data,

such as gather (%) and obtain (FXH).

Sharing. Sharing actions are verbs that indicate whether the data controller will
distribute data to others. Although both Sharing and Collection describe how the
party access user data, we differentiate them according to the requirements of laws

on the action, such as Article 5 and 9.2 in [108].

Condition. The condition describes the situation where the data controller will
access personal data. Laws require data controllers to inform users under what
conditions their data will be processed. For example, bank apps may require the
users’ identification information when activating the bank account. Figure 4.1(a)
also demonstrates that under the condition of the user’s consent, the third-party
platforms (TPP) access users’ data. Another semantics in Figure 4.1(a) also indi-

cates that the TPP cannot access those data without users’ consent, which can help
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users and analysts understand whether the app violates laws.

Purpose. The purpose should claim why the data controller processes user data.
Laws enact specific requirements for user data access. For example, PISS Article
4.d) requires controllers to clearly state the purpose of processing data. Purpose can
also help the users understand why the app collects their data and further determine

whether to give consent as is shown in Figure 4.1(a).

Data receiver. The data receiver describes the parties that receive user data. Laws
not only ask apps to clarify who will get shared data [10%] but also restrict the data

receivers’ behavior [98], such as why processing user data.

4.3.3 Human Annotation Process

Our privacy policy annotation consists of two phases: coarse-grained annotation and
fine-grained annotation. Coarse-grained annotation labels privacy policies at the
paragraph level following previous work [I51]. Fine-grained annotation labels our

defined components at the word level based on coarse-grained annotation.

For the first phase, three authors of this paper, who have researched privacy policies
and software engineering for over eight and three years, label ten privacy policies for
reference and record a video instruction to guide annotators. Then, we hire thirty
undergraduates from our university to annotate the dataset. The three instructors
train each annotator for at least four hours to become familiar with the dataset and
requirements. Students are asked to annotate 1,000 Android apps’ privacy policies in
Chinese, and each privacy policy should be analyzed for at least 30 minutes to ensure
quality. Each privacy policy is allocated to at least four annotators. Finally, three

instructors inspect each annotation.

For the second phase, we select two undergraduates who coarse-grained annotate
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the documents with high precision to conduct the fine-grained annotation. Specifi-
cally, we select 483 documents that are well coarse-grained annotated after inspection.
Instructors first annotate ten documents to lead undergraduates to annotate. The
annotators also keep discussing with instructors when the role of components in sen-
tences is unclear. Each annotator is required to label each privacy policy for at least

30 minutes to guarantee the dataset quality.

Finally, the instructors analyze the annotations and use Fleiss’ Kappa metrics [28, 151]
to evaluate the agreements. Table 4.1 shows that the average Kappa value (77.20%)
satisfies the substantial agreement, i.e., the Kaapa value lies in 0.61-0.80, and four
components achieve almost perfect agreement (0.81-1.00). The Condition, which only
gets a moderate agreement, is caused by the overlap between labels. For example, the
statements may claim that "under the condition of accessing your contact, we will
send your location to emergency contact” one annotator only annotates the ” contact”

as data without annotating the whole clause.

4.3.4 Dataset Statistics and Comparison

We conduct statistical analysis and show the results in Table 4.1. CA4P-483 is split
into training, development, and test set. Table 4.1 also gives details of the number of
different labels in each set. Table 4.1 shows that the average length of condition and
purpose is much longer than other corpora as the two types are generally in the form

of clauses.

We compare CA4P-483 with related datasets in Table 4.2. We first compare our cor-
pus with Chinese sequence labeling datasets, such as MSRA [173], OntoNotes [119],
Weibo [106], PeopleDiary [170], Resume [180], CLUENER2020 [151], and CNERTA |

We also involve widely used English sequence labeling datasets, namely Twitter-
2015 [172] and Twitter-2017 [38]. We also consider privacy policy datasets, namely
Online Privacy Policies (OPP-115) [151] and Android app privacy policies (APP-
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Table 4.1: The statistics of CA4P-483. Here, " Avg” denotes average, "ann” denotes

annotation, "len” denotes length, ”#” denotes the number of.

# doc 483
# sentences 11,565

# sentences with ann 3,385
Avg sentences len 79.06

Type Num Train Dev  Test Avglen Kappa

Data 21,241 18,925 2,521 2,331 4.68  85.39%
Collect 5,134 4,133 576 528 2.03 73.78%
Share 4,976 3,989 233 205 2.10  84.87%
Controller 8,424 6,085 815 782 2.49  82.22%
Condition 4,917 5477 716 713 14.41  50.07%
Receiver 3,202 2,776 360 350 4.29  89.88%
Purpose 4,683 6,442 860 867 19.24  74.18%

Total 52,577 47,827 6,381 6,076

350) [193].

We first compare the size and classes in different datasets. Table 4.2 shows that
CA4P-483 contains abundant semantics, i.e., CA4P-483 has seven annotation classes
that are larger than most other datasets (seven out of nine). Table 4.2 also compares
the CA4P-483 with other privacy policy datasets. For privacy policy-related datasets,
the comparison is conducted with the number of documents as one privacy policy
corresponds to one app. OPP-115 annotates at the sentence level, and APP-350
only annotates data controllers, data entities, and modifiers. Since APP-350 speci-
fies data entities into 16 categories, APP-350 exhibits more number of classes than

CA4P-483. To summarize, CA4P-483 is the first and largest Chinese Android privacy

86



4.4. Task and Experiment Setup

Table 4.2: A comparison between CA4P-483 and other popular sequence labeling

datasets. # denotes “number”. “doc” denotes “documents”.

Dataset # Train # Dev # Test Size Language # Class
MSRA 41,728 4,636 4,365 50K  Chinese 3
PeopleDairy 20,864 2,318 4,636 23k Chinese 3
Weibo 1,350 270 270 2k Chinese 4
Resume 3,821 463 477 2k  Chinese 8
CLUENER2020 10,748 1,343 1,345 13K Chinese 10
CNERTA 34,102 4,440 4,445 42987  Chinese 3
Twitter-2015 6,176 1,546 5,078 12,784  English 4
Twitter-2017 4,290 1,432 1,459 7,181  English 4
CA4P-483 14,678 2,059 1,842 18,579  Chinese 7

Dataset # Train doc  # Dev doc # Test doc Size Language # Class
OPP-115 75 doc / 40 doc 115 doc  English 12
APP-350 188 doc 62 doc 100 doc 350 doc  English 18
CA4P-483 386 doc 48 doc 49 doc 483 doc  Chinese 7

policy dataset with abundant semantic labels.

4.4 Task and Experiment Setup

4.4.1 Task Description

CSP? figures out who collects or shares what kind of data to whom, under which

kind of condition, and for what. The underlined words correspond to each type of
annotation. As CSP? concentrates on data access-related sentences, we first locate

the sentences based on data collection and sharing words [7, ]. We summarize
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Table 4.3: Data access word list

Sharing WCEE (collect), REX (obtain), 57 (get), UL (receive),
TRIF (save), fEH (use), K% (gather), 1L (record), 7
fi# (store), fEFF (store)

Collection P & (reveal), 7+ = (share), = (share), T H#t (ex-
change), &% (report), A1 (public), A% (send), 2C#t
(exchange), ¥ % (transfer), iT#% (migrate), ik (make
over), AFF (public), % #& (disclose), H&ftt (provide)

the word list based on laws, app market requirements, and previous works [160,

, 7]. Table 4.3 gives data sharing and collection word list, that is summarized
from laws [98, 17, ], app market requirements [50, (3], and previous works [160,

, 7]. With those words, researchers can locate data access-related sentences and
conduct further analysis to get interested entities, such as data controller, data entity,
collection, sharing, condition, purpose, and the data receiver. Given the sentences
C = ¢,co,...,c, and its labels L = [y,1s,...,1,, where ¢; denotes the i-th Chinese

characters and [; denotes the ¢;’s label, the task is to identify sequence labels.

4.4.2 Model Summaries

This section introduces baseline methods for sequence labeling tasks on CA4P-483.

Probabilistic models

Hidden Markov Model (HMM): HMM! [14] is one of the most classic probabilistic

models and is applied as our baseline.

https://github.com/luopeixiang/named_entity_recognition

88


https://github.com/luopeixiang/named_entity_recognition

4.4. Task and Experiment Setup

Condition Random Field (CRF): CRF? 73] aggregates the advantages of HMM

and counters the label bias problems.

Neural network models

BiLSTM: BiLSTM! [55] uses the neural network to learn a mapping relation from

sentences to labels through the nonlinear transformation in high-dimensional space.

BiLSTM-CRF: BiLSTM-CRF! uses BiLSTM as an encoder to map the sentences

into a high dimension vector and uses CRF as a decoder.

BERT-BiLSTM-CRF: Since BiLSTM-CRF is still limited to the word vector rep-
resentation, BERT-BILSTM-CRF? [31] uses BERT as a feature extractor and takes
advantage of BiLSTM and CRF for sequence labeling.

Lattice enhanced models

As Chinese words are not naturally separated by space, character-based methods
omit the information hidden in word sequences. Thus, lattice-based methods that
integrate lattice information are proposed for Chinese sequence labeling and achieve

the promised performance.

LatticeLSTM: LatticeLSTM* [130] takes inputs as the character sequence together
with all character subsequences that match the words in a predefined lexicon dictio-

nary.

Zhttp://crfpp.sourceforge.net/
3https://github.com/macanv/BERT-BiLSTM-CRF-NER
‘https://github.com/LeeSureman/Batch_Parallel_LatticeLSTM
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4.4.3 Setup and Implementation Detalils

We evaluate baselines on an Ubuntu 20.04 server with 5 NVIDIA GeForce 3090 (24
GB memory for each), 512 GB memory, and an Intel Xeon 6226R CPU. Next, we
present our implementation details. For HMM, the number of states, i.e., class number
in our dataset with the BIO tag, is set as 22, and the number of observations, i.e.,
the number of different characters, is set as 1756, which is the default value'. For
CRF, we use the default settings in CRF++2. For BiLSTM and BiLSTM-CRF, the
embedding size is 128, the learning rate is 0.001, and we train models using 30 epochs
with a batch size of 64. For BERT-BiLSTM-CRF?, we use the Chinese bert-base®
pre-trained model and fine-tune it on our training data. The BiLSTM is set with
128 hidden layers and a learning rate of 1e7®. BERT-BiLSTM-CRF model is trained
on our dataset with default settings® where the batch size is 64, the learning rate is
le~?, the dropout rate is 0.5, gradient clip is 0.5, and early stop strategy is “stop if

no decrease”. For Lattice-LSTM, we use the same lattice provided in [180].

4.5 Evaluation

4.5.1 Main Results

In this section, we evaluate baseline methods on all 18,579 sentences that are divided
into training, development, and testing sets as detailed in Table 4.2. Following previ-
ous research [151, |, we apply the following metrics to evaluate baseline methods

in CA4P-483: precision (P), recall (R), and Fl-score (F1).

Table 4.4 presents the performance of different baseline models on CA4P-483, with
each cell displaying the mean and variance of results obtained from five runs. Ta-

ble 4.4 shows that BiLSTM-CRF achieves the most promising performance, which

Shttps://github.com/google-research/bert
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Table 4.4: Overall performance of baseline methods on our dataset.

Precision Recall F1
HMM 77.47%(£0.00%) 66.11%(4+0.00%) 69.63%(£0.00%
CRF 85.52%(40.00%) 86.28%(40.00%) 85.63%(40.00%
BiLSTM 85.61%(£0.45%) 86.26%(£0.37%) 85.57%(£0.57%

BiLSTM-CRF 86.26%(£0.32%
BERT-BIiLSTM-CRF  49.05%(£5.82%
Lattice-LSTM 67.93%(£0.44%

86.46%
41.22%
68.16%

+1.97%) 44.07%(£2.12%

(
(
(
(
(
( +£0.50%)  68.04%(=£0.03%

)
)
)
)
)
)

~—~~ N

) ( )
) ( )
) ( )
+0.41%)  86.25%(=£0.38%)
) ( )
) ( )

may benefit from the enhanced presentation ability of bidirectional LSTM and CRF
for capturing the context information. The zero variance of the results for HMM and
CRF over five runs may denote that the two algorithms with few parameters overfit
our dataset. The BERT-BILSTM-CRF performed poorly on the dataset, with the
lowest mean and highest variance over five runs. This could be caused by the fact
that the model is designed with a large number of parameters, and our dataset size
is insufficient to train the model effectively. Future work may focus on incrementing
the dataset size to improve the performance of BERT-based models in this context.
Lattice-LSTM performs a strong representation of capturing lattice information, while

some clauses in our labels may mislead the model in learning the patterns.

We analyze the identification performance of each component to investigate the chal-
lenges and limitations of CA4P-483. Table 4.5 demonstrates the detailed performance
of baselines, i.e., HMM, CRF-based models, BERT-based models, and Lattice-based
models, and gives the mean and variance of results obtained from five runs. Besides,
we also compare the performance with manual agreements to demonstrate task diffi-
culties. Table 4.5 demonstrates that BILSTM-CRF and Lattice-LSTM achieve over
70% performance on data with relatively low variance (i.e., lower than 3%) because
the data possesses few overlaps with other labels and is in the format of words. Col-

lect and share only achieve around 60% F1l-score because the two types of entities

91



Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification
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To help us provide you with services, you need to provide basic

BEREEL, QFEFTH, FaENKST. AF

registration or login information, including mobile phone

%o

number, and create your account and user name.

Figure 4.2: Overlapping between components. Differences between ground truth and

prediction.

perform some overlapping, as is shown in Figure 4.1 and Figure 4.2. Table 4.5 shows
that BiILSTM-CRF achieves better precision on Condition than Lattice-LSTM, which
may be caused by the fact that Condition and Purpose are mainly in the format of

attributive clauses rather than words.

Next, we analyze the confusion matrix of BILSTM-CRF results that performs the
best on CA4P-483. In Figure 4.3, the depth of the background color denotes the
proportion of classification; the darker the color, the higher the proportion, and the
digit denotes the number of classification results. Figure 4.3 indicates that most of

the misclassified samples are related to Condition.

To have a deep understanding of divergences between ground truth and predictions,
we inspect the misclassifications. We find that the algorithm may fail to identify
Conditions, which are in the adverbial clause as shown in Figure 4.4(a) where the
highlighting for Chinese is ground truth and highlighting for English is prediction re-
sults. Besides, when the data controller is the user, as is shown in Figure 4.4(b), the
algorithms fail to distinguish Purpose and Condition. Our experiments also reveal
that models need to be well designed to learn deep semantic information, such as dis-

tinguishing overlapping among components and distinguishing Purpose in modifiers.

Next, we show the prediction results of the algorithm and some common problems.
These problems could be the limitations of existing models and also be challenges for

designing algorithms for our data scenario.
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Table 4.5: Evaluation performance of three types of methods on our dataset. “O”

denotes others.

‘ Precision Recall F1 ‘ Precision Recall F1 ‘ Precision Recall F1
‘ HMM ‘ BiLSTM ‘ BiLSTM-CRF

Collect 26.03% 61.98% 36.30% 77.14% 51.54% 59.75% 73.90% 58.81% 64.87%
(£0.00%) (£0.00%) (£0.00%) | (£0.81%) (£5.13%) (£3.79%) | (£1.42%) (£2.67%) (£1.73%)
Condition 24.90% 44.39% 31.90% 55.86% 45.64% 49.86% 53.23% 54.24% 53.63%
(£0.00%) (£0.00%) (£0.00%) | (£2.85%) (£4.57%) (£1.74%) | (£2.32%) (£2.74%) (£1.20%)
Data 40.32% 69.73% 51.09% 82.94% 65.97% 73.41% 81.34% 69.19% 74.75%
(£0.00%) (£0.00%) (£0.00%) | (£1.31%) (£2.49%) (£1.13%) | (£1.00%) (£1.74%) (£0.72%)
Handler 21.09% 51.84% 29.47% 78.11% 49.28% 59.37% 76.19% 58.72% 66.10%
(£0.00%) (£0.00%) (£0.00%) | (£1.79%) (£7.90%) (£5.54%) | (£1.44%) (£1.82%) (£0.99%)
Purpose 32.66% 45.41% 37.97% 65.66% 52.08% 57.66% 62.01% 59.74% 60.77%
(£0.00%) (£0.00%) (£0.00%) | (£1.91%) (£5.21%) (£3.26%) | (£1.35%) (£2.48%) (£1.39%)
Share 20.50% 79.98% 32.56% 72.25% 50.50% 58.34% 71.13% 58.00% 63.34%
(£0.00%) (£0.00%) (£0.00%) | (£2.31%) (£5.02%) (£3.05%) | (£2.69%) (+£1.89%) (£1.60%)
Receiver 17.56% 56.40% 26.76% 73.86% 43.67% 54.40% 66.69% 49.63% 56.72%
(£0.00%) (£0.00%) (£0.00%) | (£1.16%) (£6.09%) (£4.64%) | (£0.32%) (£4.04%) (+2.83%)
o 90.00% 67.75% 77.31% 89.41% 94.51% 91.88% 90.92% 92.94% 91.92%
(£0.00%) (£0.00%) (£0.00%) | (£0.94%) (£0.97%) (£0.19%) | (£0.25%) (£0.27%) (+0.26%)
Average T7.47% 66.11% 69.63% 85.61% 86.26% 85.57% 86.26% 86.46% 86.25%
(£0.00%) (£0.00%) (£0.00%) | (£0.45%) (£0.37%) (£0.57%) | (£0.32%) (£0.41%) (+0.38%)

BERT-BiLSTM-CRF Lattice-LSTM Manual Agreements

61.65% 52.57% 55.25% 79.28% 81.10% 80.17%
Collect 96.30% 92.07% 94.14%

(£14.80%) (£8.52%) (£6.70%) | (£0.59%) (£1.39%) (+0.38%)

. 28.23% 29.91% 28.85% 42.57% 46.97% 44.66% N
Condition 93.53% 84.50% 88.79%

(£6.08%) (£7.46%) (£6.26%) | (£0.61%) (+£0.21%) (+0.24%)

60.54% 56.97% 58.40% 75.47% 75.54% 75.50%
Data 96.20% 91.79% 93.94%

(£3.90%) (+4.82%) (£1.39%) | (£0.45%) (£0.97%) (+0.26%)

68.61% 48.79% 56.99% T7.27% 74.65% 75.94% ; :
Handler 96.96% 90.18% 93.45%

(£2.95%) (£1.80%) (£1.78%) | (£0.02%) (£0.20%) (£0.14%)

31.43% 26.35% 27.22% 55.18% 48.09% 51.39%
Purpose 95.64% 92.61% 94.10%

(£11.66%) (+1.44%) (£7.44%) | (£0.57%) (£0.62%) (+0.10%)

54.32% 37.70% 44.37% 73.78% 83.01% 78.12%
Share 96.10% 94.71% 95.40%

(£0.75%) (£6.03%) (£7.14%) | (£0.16%) (+0.68%) (+£0.21%)
38.25% 32.93% 35.14% 54.24% 55.62% 54.87%
Receiver 97.33% 85.00% 90.75%
(£6.38%) (£1.99%) (£3.10%) | (£3.58%) (£0.28%) (£1.95%)
49.37% 44.54% 46.32% 85.64% 80.34% 83.71%
(£7.67%) (£2.22%) (£2.86%) | (£1.37%) (£1.38%) (£1.57%)
49.05% 41.22% 44.07% 67.93% 68.16% 68.04%

Average 96.01% 90.12% 92.94%
(£5.82%) (£1.97%) (£2.12%) | (20.44%) (£0.50%) (£0.03%)
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Figure 4.3: Confusion matrix of BILSTM-CRF results on CA4P-483.
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when applying to use the developer*s network services.

(b) Error prediction when controller is user.

Figure 4.4: The visualization of divergence between ground truth and prediction.
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address, contact information...

Figure 4.5: The visualization of divergence between ground truth and prediction for

missing Purpose.

Figure 4.2 illustrates the scenario where there exists overlapping between compo-
nents, i.e., the “basic registration or login information (3EZ{FME 5 FKE L) .
Exactly, “basic registration or login information” should be one data as is highlighted
in the Chinese version, i.e., the ground truth. However, the algorithm will predict
“basic registration or login (EZAN{EMELEK)” as Purpose and “information ({5 8.)”
as Data, as is highlighted in the English version. The meaning of color for different
categories can be referred to Figure 4.1. Figure 4.5 shows that the pre-trained al-
gorithm may misclassify Purpose as Condition when we show the prediction results
of the algorithm and some common problems. These problems could be the limita-
tions of existing models and also be challenges for designing algorithms for our data

scenario.

Figure 4.2 illustrates the scenario where there exists overlapping between compo-
nents, i.e., the “basic registration or login information (Z£Z{FMEEKE L) .
Exactly, “basic registration or login information” should be one data as is highlighted
in the Chinese version, i.e., the ground truth. However, the algorithm will predict
“basic registration or login (BANVEMELEK)” as Purpose and “information({5/5.)”
as Data as is highlighted in the English version. = The meaning of color for dif-
ferent categories can be referred to Figure 4.1. Figure 4.5 shows the pre-trained
algorithm may misclassify Purpose as Condition when the data controller is the user

data controller is the user.
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4.5.2 Case Study

In this section, we will present cases of potential applications of CA4P-483, such as
whether privacy policies comply with regulatory requirements and whether privacy

policies are consistent with the apps’ functionalities.

Regulation compliance identification. Chinese privacy-related laws [108, 98, 27]
ask developers to clearly claim purpose conditions for processing user privacy data.
We first investigate the distribution of annotations in CA4P-483. Fig.4.6 sketches the
box plot of the frequency of components in each privacy policy. Fig.4.6 indicates
that some privacy policies claim data processing without clarifying the purpose and
condition, i.e., the minimum frequency of Data is positive while that of Purpose is
zero. We manually inspect privacy policies. We find that the privacy policies, whose
package name is com.yitong.weather, claim the app collects users’ data while omitting
to give the purposes or conditions of data access, which violates regulation require-
ments. Thus, CAAP-483 can facilitate the research in the area of privacy compliance

identification [0, 14].

App behavior consistency identification. To improve the security of the Android
community, researchers design systems [7, | to identify the consistency between
privacy policies and app behaviors to prevent apps from abusing user data or conduct-
ing malicious behavior. One popular method to check the app’s behavior is dynamic
analysis [109], i.e., running the app on the device and checking the log information.
To investigate the application of CA4P-483 in the security community, we first identify
the privacy policies without purpose or condition components. Then, we install the
app on one smartphone, manually interact with the app, and try our best to trigger
all possible functions in the app by clicking every visible button. We use logcat to cap-
ture the app’s running information. We find that the app (id: com.chengmi.signin)
requests device storage to use the app’s functionalities, while no condition-related

statements are claimed in its privacy policy. With more intelligent automatic soft-
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Figure 4.6: Components distribution of CA4P-483.
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ware engineering techniques, CA4P-483 can facilitate research in this area, and more

vulnerabilities in the consistency between app behavior and privacy policy could be

investigated.

4.6 Discussion

In this section, we first discuss difficulties in CA4P-483. Then, we propose potential

research topics on CA4P-483. Finally, we discuss the limitations of CA4P-483. Besides,

we also discuss ethical concerns.
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4.6.1 Dataset Difficulties

Based on evaluation results in §4.5 and related work, we raise the following difficulties:
1) How do we distinguish overlaps between components? 2) How to effectively deal

with the length variation of components? 3) Difficulties in semantic analysis.

Different from traditional sequence labeling tasks, components in our data set may
contain other components. One scenario is that the Purpose or Conditions may be
used to decorate the data, for example, “We will collect your login information (3
T W EEFIE KIE E)” where the login may be understood as the purpose of
information. Since traditional sequence labeling methods predict one character with
one label, it is hard to distinguish component overlaps. One possible solution is
using multi-model algorithms [134] that demonstrate effectiveness for distinguishing
boundaries between entities. Similar to traditional news or social media datasets that
use voice or images as additional information, integrating apps’ analysis results helps

distinguish different components.

Second, existing sequence labeling tasks mainly concentrate on entity recognition,
while practical applications may require labeling clauses for further analysis. Table 4.1
shows that the average length of components in CA4P-483 varies from 2.03 to 19.24.
CSP? not only requires identifying words but also asks the models to identify the role

of clauses.

The semantic analysis of privacy policies is still difficult. Laws require apps to clearly
clarify how apps collect and share user data. Privacy policies can claim that apps
will share data with third parties or that third parties will collect user data. In this
way, it becomes essential to understand the context to distinguish the controller and
action type. It could be a solution to use multi-model algorithms integrating program
analysis to improve the performance; however, identifying the third party and the app

itself remains a challenge in program analysis.
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4.6.2 Limitations

CA4P-483 provides detailed annotations for data access statements in privacy policies.
However, analyzing privacy policies using CA4P-483 depends on the performance of
locating data access-related sentences. We use data collection and sharing words to
locate the sentences. However, some Purpose and Condition claims may be given as an
enumeration format, such as “we will not share your personal data under the following
conditions”. CA4P-483 is limited when capturing information in the enumeration

format.

Privacy policies possess timeliness. App developers should provide privacy policies
when publishing the apps. When the apps’ functionality updates, the privacy poli-
cies ought to be updated accordingly. The data set is limited to the timestamp we
collected. When combining our dataset with program analysis, this factor should be

considered.

The varying regulatory requirements for privacy policies across regions pose signifi-
cant challenges. The label design in CA4P-483 is based on Chinese regulatory frame-
works [27, , 98]. However, regulatory authorities impose stringent and distinct
requirements for app user data access in different regions, exemplified by the General
Data Protection Regulation (GDPR) in Europe [17]. This necessitates the develop-
ment of adaptable privacy policy analysis systems that can account for region-specific

regulatory nuances.

4.6.3 Ethical Consideration

CA4P-483 is a dataset constructed by gathering publicly available privacy policy web-
sites without posing any ethical problems. First, privacy policies are publicly accessi-
ble in multiple ways. According to the application market’s requirements, developers

or companies are asked to provide those privacy policy websites once they publish

99



Chapter 4. A Fine-grained Chinese Software Privacy Policy Dataset for Sequence
Labeling and Regulation Compliant Identification

their apps. Privacy policies also ought to be given when the users use apps for
the first time according to law requirements [108]. Second, we do not collect any
privacy-related information. Besides, the CA4P-483 is proposed to prompt research

for protecting user privacy.

For the annotations, we hired part-time research assistants from our university to
label the dataset. They are compensated with 9 USD /hour and at most 17.5 hours

per week.
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Chapter 5

Investigating Pre-trained Large
Language Models for Chinese
Privacy Policy Analysis

5.1 Overview

Pretrained large language models (LLMs) achieve great success in understanding the
semantics of natural language. Pre-trained LLMs are trained on vast collections of di-
verse natural language resources, including Wikipedia, publicly available news, books,
and programming code, among others [185, ]. Consequently, LLMs are equipped
with general natural language understanding abilities, such as document summariza-
tion [175, 22], sentence completion [99], etc. In addition to general-purpose capabili-
ties, LLMs fine-tuned on specific datasets for particular tasks have shown exceptional
performance. For example, LLMs trained on programming-related data excel in tasks
such as code completion[31, 95], code generation[104, 80], code summarization[l, 75],
etc. However, achieving such performance often requires access to extensive domain-

specific datasets for training[110] or fine-tuning[31], which can be resource intensive.
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In addition, recent research highlights that LLMs perform suboptimally on special-
ized downstream tasks when they are not explicitly trained for those purposes. Tasks
like summarizing legal documents or drafting scripts exemplify these limitations. To
address these challenges and improve the capabilities of LLMs for domain-specific
tasks, researchers and industry professionals have increasingly adopted prompting-
based approaches [16, 82]. These methods leverage the inherent generative capabili-
ties of LLMs to tackle a wide range of tasks without the need for extensive retraining

or fine-tuning.

Existing applications of Large Language Models (LLMs) for privacy policy analysis

primarily focus on summarizing privacy policies [139, 80], identifying privacy issues
within LLM applications [23], and analyzing privacy policies in specific domains with
a coarse-grained approach [90, ]. Although these studies provide valuable infor-

mation, the studies often limit their scope to specific domains, thus restricting their
applicability to various real-world scenarios. Besides, existing work of accessing ca-
pabilities of LLM for privacy policies analysis focuses on English privacy policies.
Furthermore, while LLMs offer powerful capabilities for natural language processing,
the application of LLMs is still constrained by practical limitations, such as input

length restrictions.

In this work, we aim to investigate the potential of applying pre-trained large lan-
guage models (LLMs), which have demonstrated powerful natural language semantic
understanding capabilities, to the task of analyzing Chinese privacy policies. This
task presents two primary challenges: (1) Pretrained LLMs are predominantly trained
on English corpora, which may limit their performance in Chinese-language environ-
ments, and (2) Privacy policies are often lengthy, with the same phrases and nouns po-
tentially serving different roles across different sentences. To address these challenges,
we adopt the following strategies: (1) Decomposing the end-to-end task, which refers
to analyzing the entire privacy policy and generating a final analysis report, into mul-

tiple sentence-level analysis tasks, and (2) Applying prompt engineering techniques,
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such as few-shot learning, to enhance the performance of LLMs on analyzing Chinese
privacy policies. We empirically evaluate the capabilities of Large Language Models
(LLMs) for analyzing regulation-required items in privacy policies. Specifically, we
carefully craft prompts with advanced prompt engineering techniques to query var-
ious popular pre-trained LLMs, aiming to identify regulation-required items within
sentences of privacy policies. Our experiments on both publicly available LLMs; i.e.,
LLaMA and Qwen, and the popular commercial LLM, i.e., ChatGPT, demonstrate
the models’ effectiveness in analyzing privacy policy tasks. We also systematically
analyze the results and provide further directions for leveraging the capabilities of

LLMs to protect user privacy.
The main contributions of this work are summarized as follows:

(1) We empirically evaluate the performance of both popular publicly available LLMs
and commercial LLMs in identifying regulation-required items in privacy policies.
Our evaluations employ advanced prompt engineering techniques to instruct LLMs

in handling downstream tasks effectively.

(2) We systematically analyze the evaluation results and provide further directions
for leveraging the capabilities of LLMs to protect user privacy. Our analysis high-
lights key insights into the strengths and limitations of LLMs in this context, offering
recommendations for future research and practical applications aimed at enhancing

privacy protection.

5.2 Preliminaries

In this section, we present the necessary knowledge on applying pre-trained large
language models for downstream tasks, including a basic introduction to pre-trained

large language models and prompt engineering.
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5.2.1 Pre-trained Large Language Models

Pre-trained large language models (LLMs) revolutionize the field of natural language
processing (NLP) by enabling significant advancements across a wide range of down-
stream tasks. LLMs are trained on massive corpora using self-supervised learning,
allowing the models to capture rich contextual representations of language. Notable
LLMs include BERT [35], which introduced bidirectional pretraining for language
understanding, and the GPT series [10], which demonstrated remarkable generative
capabilities using autoregressive modeling. Additionally, more recent models, such
as T5 [111], have emphasized the versatility of sequence-to-sequence architectures for
both understanding and generation tasks. LLMs are adapted to specific domains,
including legal [21] and biomedical [57] text, illustrating their potential for domain-
specific applications. However, challenges remain in applying these models to tasks
requiring deep contextual understanding or domain adaptation, such as analyzing

privacy policies.

5.2.2 Prompt Engineering

Prompt engineering emerges as a critical technique for optimizing the performance of
pre-trained large language models (LLMs) across various natural language process-
ing (NLP) tasks. By designing effective prompts, researchers aim to guide LLMs to
generate more accurate and contextually appropriate outputs, even without extensive
fine-tuning. Early work on prompt engineering, such as PET [118], demonstrates how
template-based prompting could be used to adapt LLMs for few-shot learning scenar-
ios. The introduction of zero-shot and few-shot prompting paradigms in GPT-3 [16]
further highlights the importance of carefully crafting prompts to elicit desired behav-
ior. AutoPrompt [121] explores automated approaches to generate optimal prompts.
Additionally, chain-of-thought prompting [I148] shows that structuring prompts to

encourage step-by-step reasoning can significantly improve performance on complex
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Figure 5.1: Framework of LLMPP

tasks. Existing work underscores the significance of prompt engineering as a flexi-
ble and effective method for leveraging the capabilities of LLMs in both general and

domain-specific contexts.

5.3 Framework

In this section, we introduce the framework for our LLM-based Privacy Policy analysis
(LLMPP). Figure 5.1 illustrates the framework of LLMPP. Given a Chinese privacy
policy document, LLMPP first segments the document into sentences containing spe-
cific keywords of interest (§5.3.2). Next, each sentence is embedded into a carefully
crafted prompt (§5.3.3). Then, the prompts will be used to query different pre-trained
LLMs. Each sentence is used to query each LLM individually every time. Finally,
LLMPP retrieves the generated content from the LLMs, parses the output, and eval-
uates the performance of the LLMs in identifying key entities and entity types within

the sentences.

In the following of this section, we first define the tasks that LLMPP is designed to
address. Next, we explain the process of analyzing privacy policies and how they are
prepared for querying LLMs to infer the desired outputs. Finally, we introduce the

prompt design, which incorporates prompt engineering techniques.
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5.3.1 Task Description

LLMPP is designed to identify regulation-required elements within privacy policies.
Specifically, LLMPP is required to determine who is responsible for data-related ac-
tions, such as collection or sharing, under what conditions, and for what purposes.
Additionally, LLMPP identifies the parties that will receive the shared data if ap-
plicable. Given the token limitations of large language models (LLMs), such as 4K
tokens for ChatGPT-3.5 [102] and 128K tokens for QWen [160], LLMPP processes
privacy policies on the sentence level. Moreover, as LLMs have demonstrated unreli-
able performance in numeric counts [124, |, LLMPP is designed to directly output
the identified entities and entity types in the provided sentences, rather than label-
ing individual characters within the sentences which is a kind of numeric counting
task.  For example, the sentence “FXA1& U R AIHEEAEHIIE” will be labeled as
“B-Controller, E-Controller, O, B-Collect, E-Collect, O, O, B-Data, [-Data, I-Data,
E-Data” in traditional named entity tasks such as experiments in CA4P-483. When an
LLM is tasked with producing the same number of labels as the number of characters
in a sentence, the output becomes highly unreliable and difficult to control [124, ].
We also conducted a case study (§5.4.6) to evaluate the performance of LLMs when
the task is defined as labeling each character in sentences. The results demonstrate

poor performance. Thus, LLMPP is designed to output a more structured result:

“ [#fil|Controller] , [t |Collect) , [HPFEHBIE|Data] .

5.3.2 Privacy Policy Preprocessing

To enable LLMPP to accurately identify regulation-required items in privacy policies,
we first extract sentences of interest using the same methodology as CA4P-483. Fol-
lowing previous research [0, , O8], we iterate through each sentence in the privacy
policy and determine whether it contains keywords related to sharing or collection,

based on a predefined word list as is given in Table 4.3 [183]. Sentences contain-
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ing predefined keywords will be embedded in prompts to query LLMs for identifying

regulation-required entities and corresponding entity types.

5.3.3 Prompt Design

Existing work demonstrates that a well-designed prompt is highly effective in lever-
aging the capabilities of Large Language Models (LLMs) for resolving downstream
domain-specific tasks. Drawing on advanced prompt engineering techniques, we care-
fully craft our prompt to harness the full potential of LLMs in identifying privacy
components within sentences of Chinese privacy policies. Our prompt design is de-
tailed in Figure 5.2. Our approach to prompt design focuses not on discovering the
optimal prompts to achieve the highest performance metrics for pre-trained large lan-
guage models, but rather on applying advanced prompt engineering techniques to
create effective prompts tailored for handling privacy policies. We recommend that
users adapt our prompt by substituting specific definitions to better fit their partic-
ular use cases and scenarios. Next, we provide a detailed introduction to our prompt

and explain the rationale behind its design.

Our prompt begins by assigning a role to the LLM: “You are an expert in...” that
aims to make the LLM analyze privacy policies in a more professional manner. As-
signing a role[115] to the LLM has been shown to establish a behavioral framework
for the model, influencing its tone, style, and level of domain-specific expertise. Ad-
ditionally, this approach can increase domain relevance and ensure that the output

reflects professional-level analysis.

Following by, we explicitly describe the definition of the task according to [185],
ensuring that LLMs understand the purpose of the task. Specifically, we first describe
the type of data that will be input for analysis that corresponds to “You will be
provided with a sentence from a Chinese privacy policy” in our prompt. The task

then requires the LLM to perform a named entity recognition (NER) task, i.e., “Your
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LLM_PP_Prompt = """You are an expert in analyzing privacy policies
for mobile applications, with over ten years of experience in
assessing compliance.

You will be provided with a sentence from a Chinese privacy policy.
Your task is to perform named entity recognition (NER) to identify
key entities related to privacy practices. Specifically, you need to
extract the following components: Data Controller, Data Entities,
Data Behavior (Collection or Sharing), Condition, Purpose, and Data
Receiver. There may be zero, one, or multiple entities in the
sentence, and your godl is to identify all of them accurately using
the given output format.

**Definitions of Components**:

1. **Controller**: The entity responsible for determining the
purposes and means of processing personal data.

2. **Dagta**: Information that identifies or reflects the activities
of an individual.

3. **Collection**: Actions taken by the controller to obtain or
access data.

4. **Sharing**: Actions taken by the controller to distribute data
to others.

5. **Condition**: The circumstances under which personal data is
accessed or processed.

6. **Purpose**: The reason or objective for processing user data.
7. **Receiver**: Parties that receive user data.

**Qutput Format**:

- Use the format: [entity_1lltype_1] , [entity_2ltype_2] ,

- If there are no entities in the sentence, output: **</|/>%¥,

- ALL entities must be extracted exactly as they appear in the input
sentence, maintaining the original nouns or verbs.

**Examples**:

1. **Input**:

UM BGEER, BINSKE. FH. REFE. AEENHEXIMAGR. T
**Qutput**:

EmE{E=r lcondition] , [#Hfillcontroller] , [W&lcollection] , [{F
flcollection] , [{#7glcollection] , [3=Z=Isharing] , [4Af5&ldata]l

2. **Input**:
S REERUH#SATREEAENTREHEFAZENNEEFER. T
**Qutput**:
[Bfs=|controller] , [#EEAEMN=&|purpose] , [#Flreceiver] ,
[¢#Ei7{5 £ |data]

Now it’s your turn!
**Tnput**:

~ > {pp_sentence}
**Qutput**: """

Figure 5.2: Prompt Design for Leveraging LLM for Analyzing Privacy Policies
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task is to perform named entity recognition (NER) to identify key entities related to
privacy practices” in our prompt. The LLM is tasked with identifying seven types
of components within the provided privacy policy sentences. A clear task description
provides the model with a precise and unambiguous understanding of the downstream
tasks, minimizing confusion and hallucinations, and ensuring the model focuses on the
specified tasks. This approach enhances the accuracy and reliability of the LLM’s

output by guiding it to concentrate on relevant information.

After describing the tasks, we apply context-aware prompting [10] to clearly high-
light the definition of each component to be analyzed. For instance, “Controller” is
described in terms specific to data governance. By providing such definitions, we aim
to ensure that the LLMs clearly understand the scope of each component, referencing
LLM’s general knowledge from training data. Context-aware prompting [185, 10] has
been shown to enhance the accuracy of outputs. Moreover, context-aware prompt-
ing enables the model to better generalize when dealing with nuanced or ambiguous
terms prevalent in specialized fields. By enhancing the model’s understanding of
domain-specific terminology, context-aware prompting improves the reliability and

applicability of the LLM’s output in complex scenarios.

Following the clear task description and component definitions, we further leverage
Instruction-Tuned Prompting [103, 87] that states the expected output structure
in our prompt. Specifically, we ask LLM to use [entity_1|type_1] for entity anno-
tations or % < /|/ > #* when no entities are found to facilitate further parsing of the
results of generated content by LLMs. We specify the output format for the LLMs.
Clear descriptions of the output format aim to unify the generated content from the
LLMs, facilitating further analysis of LLMs’ performance and simplifying the result

parsing process.

Next, we apply few-shot learning techniques [16] to provide the LLM with a few
examples to better understand the task definitions and the required output format.

Few-shot learning has been demonstrated to effectively enhance task comprehension,
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particularly in specialized domains, by providing the model with concrete examples

of context, patterns, and output structure.

When using the prompt to query LLMs for analyzing privacy policies, the placeholder

{pp-sentence} will be replaced by the specific sentence to be analyzed.

5.4 Experiments

5.4.1 Model Summaries

In this study, we empirically evaluate the three most popular large language models.
The first two models are publicly accessible pre-trained models, i.e., Qwen [160] and
LLaMA [1411], while the third is the commercially dominant generative Al product,
i.e., ChatGPT [102, T1]. Specifically, we evaluate Qwen 2.0 7B, LLaMA 3.1 8B, and
ChatGPT 3.5 Turbo-0613.

LLaMA 3.1 8B [l11], released in April 2024, features 8 billion parameters and was
trained on an extensive dataset of over 15 trillion tokens, enabling it to handle contexts
of up to 8,000 tokens. Qwen 2.5 7B [160], launched on 19 September 2024, has
7 billion parameters and is fine-tuned for instruction-following tasks, although the
precise size of its training dataset is not disclosed. ChatGPT 3.5 [102], which does
not officially disclose its parameter count, is estimated to have approximately 175
billion parameters and was trained on a dataset containing 300 billion tokens, with

updates made until April 2023.

Each of these models represents a notable advancement in large language model tech-
nology, with LLaMA 3.1 8B and Qwen 2.5 7B being more recent releases, and Chat-

GPT 3.5 is widely recognized for its extensive training and broad capabilities.
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5.4.2 Experiment setup

To assess the effectiveness of large language models (LLMs) in processing Chinese
privacy policies, we conduct a series of experiments to evaluate the performance of
three widely adopted models on the CA4P-483 dataset [1 53], which contains a com-
prehensive collection of Chinese privacy policy documents accompanied by detailed
annotations. CA4P-483 provides Chinese privacy policy texts and annotates sentences
related to data collection and sharing. Each annotation specifies who is responsible
for collecting or sharing what type of personal data, with whom, and under which

conditions or for what purposes.

For the LLMSs, the configuration details of each model are as follows: For ChatGPT
3.5, we utilize the Python requests library to interact with the GPT-3.5 API, spec-
ifying only the user role and populating the predefined prompt in the content field.
For Qwen 2.5 and LLaMA 3.1, we evaluate the performance of these LLMs on an
Ubuntu 20.04 server equipped with four NVIDIA A100 GPUs (each with 80 GB of
memory), 1 TB of RAM, and an Intel(R) Xeon(R) Platinum 8358 CPU running at
2.60 GHz.

Our experiments are finally designed to answer the following three research questions:

e RQ1: Main results. What is the effectiveness of models in identifying privacy

components in privacy policies?

e RQ2: Ablation study. What is the impact of different prompt engineering

techniques on model performance?

e RQ3: Hallucination analysis. What are hallucinations in LLMPP, and how

does prompt engineering mitigate hallucinations in LLMPP?
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Table 5.1: Main Results

GPT ‘ Llama ‘ Qwen
Entity Type
Precision Recall F1 ‘ Precision Recall F1 ‘ Precision Recall F1
(0] 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00%

Data 87.02%  74.10% 80.04% | 83.79%  58.69% 69.03% | 77.99% 17.24% 28.24%
Controller | 71.34%  48.08% 57.44% | 75.61% 54.72% 63.49% | 52.45% 23.19% 32.16%
Collection | 69.69%  28.94% 40.89% | 74.26%  42.79% 54.30% | 31.35%  9.05% 14.05%

Sharing 89.16%  32.65% 47.80% | 90.24%  23.66% 37.50% | 60.78%  5.08%  9.37%
Condition | 45.84% 30.01% 36.27% | 36.15% 29.87% 32.71% | 4.20% 7.01%  5.26%
Purpose 45.52%  33.27% 38.44% | 61.00% 21.28% 31.55% | 46.29%  5.68% 10.12%
Receiver 63.50% 58.94% 61.13% | 71.25%  47.59% 57.07% | 75.11%  10.93% 19.08%

Overall 49.02%  49.02% 49.02% | 44.24%  44.24% 44.24% | 13.26%  13.26% 13.26%

5.4.3 RQ1. Effectiveness of LLMs in analyzing privacy poli-

cies.

Table 5.1 presents the main results of three LLMs on all 18,579 sentences from the
CA4P-483 dataset. In line with previous research [183], we evaluate the results using
the Precision, Recall, and F1 score. Since LLMs may not always adhere to the
instructions to produce outputs in the predefined format, we exclude results that do
not align with the required output format. Specifically, ChatGPT-3.5 strictly follows
the predefined output format, while LLaMA generates 238 instances, and QWen 2.5
produces 365 instances that deviate from the expected format. Additionally, the
entity type O in Table 5.1 denotes entities that are not specified in the ground truth
but are identified by the LLM as belonging to one of the predefined entity types. To
parse the results generated by the LLM, we only consider outputs that strictly adhere
to the required format. Specifically, entities and their corresponding types must follow
the format “ [entity | entity_type] 7, where each item represents a single entity, and

multiple entities are separated by commas. For example, acceptable outputs include
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“[PAER

Data)] , [3:% | Sharing) 7.

Table 5.1 presents the main results and reveals that all large language models (LLMs)
achieve higher precision than recall across all entity types. This suggests that while
LLMs are effective in correctly identifying entities as belonging to their defined types,
LLMs often misclassify entities of other types as belonging to these categories. Among
the entity types, all LLMs demonstrate strong performance in identifying data enti-
ties. However, the performance of LLMs drops significantly for condition and purpose
entities, with Qwen achieving an Fl-score as low as 5.26% for condition entities. The
results align with the analysis presented in Table 4.5, as conditions and purposes
are inherently challenging to distinguish, even for human analysts, without sufficient
context. In addition, overall metrics are notably lower than average metrics for indi-
vidual entity types. This discrepancy indicates that a substantial number of entities
are incorrectly classified as O (i.e., non-entities). To gain deeper insights into these

misclassifications, we conduct a detailed analysis of the confusion matrices for each

LLM.

Figures 5.3, 5.4, and 5.5 present the confusion matrices for ChatGPT-3.5, LLaMA,
and Qwen, respectively. Since the LLMPP task definition does not include O as a
valid entity type in the ground truth, the first rows of all confusion matrices are
entirely zeros. Another phenomenon observable from the confusion matrices is that
the LLMs pretend to misclassify entities of known types as non-predefined entity types
rather than identify the entities as known types. This suggests that LLMs may not
have fully learned the definitions of all entity types but could correctly distinguish the
difference between different entity types from the definition. Additionally, a plausible
explanation for this phenomenon could be that LLMs are primarily pre-trained on
English corpora and thus struggle to generalize effectively to Chinese sentences. Since
the CA4P-483 dataset was released in July 2022, it is worth noting that even though
evaluated models were released after the dataset became available, LLMs still perform

poorly on these tasks. This underscores the challenges inherent in privacy policy
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Figure 5.3: Confusion metrics of ChatGPT 3.5.

analysis tasks.

Answer to RQ1: Identifying privacy components remains a challenging task for
general pre-trained language models. While LLMs demonstrate the capability to
correctly identify privacy-related components in privacy policies, they also exhibit

a tendency to misclassify non-privacy-related components as privacy-related ones.

114




5.4. Experiments

True Label

Data

Controller

Collection

Sharing

Condition

Purpose

Receiver

0 0 0 0 0
249 22 433 57 58
33 9 785 247 256
2220 231 76 2193 15 322 51 17
2487 226 85 193 1156 482 178 78
2488 302 382 106 36 1491 80 107
2293 258 489 168 5 424 1004 78
971 125 259 11 38 188 29 1472
o) o 2 < 0\\@& é\o«\ R 5\““‘0{\ &Qoee é}\\Qj\
oo(\ 0\\6 2 (,{\ > Qg’c

Predicted Label

Figure 5.4: Confusion metrics of LLaMA.
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5.4.4 RQ2: Impact of Prompt Engineering Techniques on

Model Performance

This research question conducts an ablation analysis to evaluate the impact of vari-

ous prompt engineering techniques applied in our prompt design on the performance

of LLMPP. While the primary goal of this work is not to identify optimal prompts

for maximizing LLM performance, the techniques incorporated into our prompt de-

sign are derived from existing reports, research, and documented methods that have

demonstrated effectiveness in general scenarios. The ablation study aims to evaluate

whether prompt engineering techniques enhance performance in the specific context of

privacy policy analysis. Additionally, the ablation study seeks to provide researchers
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Figure 5.5: Confusion metrics of QWen.

with practical insights and references for designing prompts tailored to their applica-

tion scenarios.

To address this research question, we conduct an ablation study by isolating and evalu-
ating each prompt engineering technique individually. The prompt techniques include
assigning a role prompting (ARP), task description (TDP), context-aware prompting
(CAP), instruction-tuned prompting (ITP), and few-shot prompting (FSP). To eval-
uate each technique, we use all other techniques collectively to query the target Large
Language Model (LLM) and analyze its performance on privacy policy sentences. To
ensure fairness and consistency, we apply a standardized results parser format across

all outputs generated by the LLMs. Specifically, the results are parsed using the
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Table 5.2: Ablation study results of prompt engineering techniques in LLMPP

‘ ARP ‘ TDP ‘ CAP ‘ ITP ‘ FSp

Class ‘Procision Recall F1 ‘Prccision Recall F1 ‘Prc(:ision Recall F1 ‘Prccision Recall F1 ‘Prccision Recall  F1

0o 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00%  0.00% 0.00%

Data 85.04%  74.65% T9.51% | 87.08%  72.49% 79.12% | 85.47%  7T4.81% T79.79% | 87.49%  68.89% 77.08% | 0.00%  0.00% 0.00%
Controller | 71.85%  48.14% 57.65% | 74.04%  55.73% 63.60% | 69.66%  48.12% 56.92% | 72.41%  49.57% 58.85% | 0.00%  0.00% 0.00%

gpr  Collection 68.41%  27.84% 39.58% | 63.70%  33.21% 43.66% | 67.97% 22.07% 33.32% | 73.78%  28.60% 41.23% | 0.00%  0.00% 0.00%
Sharing 88.39%  30.40% 45.24% | 87.18%  34.25% 49.18% | 90.96%  20.39% 33.31% | 89.44%  28.43% 43.15% | 0.00%  0.00% 0.00%
Condition | 47.52%  29.17% 36.15% | 42.54%  35.94% 38.96% | 46.02% 29.31% 35.81% | 44.78%  24.50% 31.67% | 0.00%  0.00% 0.00%
Purpose 47.91%  32.87% 38.99% | 41.97%  36.47% 39.02% | 52.74%  33.46% 40.94% | 38.50%  29.29% 33.27% | 0.00%  0.00% 0.00%
Receiver 66.08%  60.52% 63.18% | 69.10%  59.88% 64.16% | 63.99% 57.23% 60.42% | 69.30%  52.12% 59.49% | 0.00%  0.00% 0.00%

Overall 48.79%  48.719% 48.79% | 51.74%  51.74% 51.74% | 0.469173 46.92% 46.92% | 45.74%  45.74% 45.74% 0.00% 0 0
Class Precision  Recall F1 Precision  Recall F1 Precision  Recall F1 Precision  Recall F1 Precision Recall — F1
O 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 0.00%

Data 84.23%  52.40% 64.60% | 82.69%  59.91% 69.48% | 78.74%  59.81% 67.98% | 85.91%  52.97% 65.53% | 0.00%  0.00% 0.00%

Controller | 75.40%  52.58% 61.96% | 70.71%  58.34% 63.93% | 71.84%  49.82% 58.84% | 78.66%  48.62% 60.09% | 0.00%  0.00% 0.00%
Collection | 73.83%  37.78% 49.98% | 61.26% 51.76% 56.11% | 74.37%  32.30% 45.04% | 74.27% 46.54% 57.23% | 0.00%  0.00% 0.00%

Llama  Sharing 89.36%  19.18% 31.58% | 79.44%  33.48% 47.11% | 93.22%  18.15% 30.38% | 79.92%  24.59% 37.60% | 0.00%  0.00% 0.00%
Condition | 34.91%  30.83% 32.74% | 32.27%  36.98% 34.46% | 35.86%  24.37% 29.02% | 23.19%  36.81% 28.45% | 0.00%  0.00% 0.00%

Purpose 61.87%  20.29% 30.56% | 54.71%  25.10% 34.41% | 63.89% 18.18% 28.31% | 60.79%  25.32% 35.75% | 0.00%  0.00% 0.00%

Receiver | 71.72%  42.97% 53.74% | 66.68% 49.11% 56.56% | 71.31%  49.70% 58.57% | 71.44%  41.00% 52.10% | 0.00%  0.00% 0.00%

Overall 40.58%  40.58% 40.58% | 48.72%  48.72% 48.72% | 0.410468 41.05% 41.05% | 42.67% 42.67% 42.67% 0.00% 0 0
Class Precision  Recall F1 Precision  Recall F1 Precision  Recall F1 Precision  Recall F1 Precision Recall ~ F1
(¢) 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00%  0.00% 0.00%

Data 80.01%  11.03% 19.39% | 81.68%  11.49% 20.14% | 83.21% 11.81% 20.68% | 77.66%  7.69% 13.99% | 0.00%  0.00% 0.00%
Controller | 60.73%  20.08% 30.19% | 52.86% 19.28% 28.26% | 44.97% 16.55% 24.19% | 45.01% 10.71% 17.31% | 0.00%  0.00% 0.00%
Collection | 42.53%  6.20% 10.82% | 44.28%  827% 13.94% | 34.13%  7.17% 11.85% | 22.10%  4.88%  7.99% 0.00%  0.00% 0.00%

Qwen  Sharing 73.82%  3.47%  6.62% | 76.87%  6.18% 11.44% | 71.68%  4.30% 8.12% | 55.88%  2.69%  5.13% 0.00%  0.00% 0.00%
Condition | 8.64% 5.15%  6.45% | 10.63% 10.17% 10.40% | 5.14% 8.08%  6.28% 4.80% 7.73%  5.92% 0.00%  0.00% 0.00%
Purpose 47.12%  357%  6.63% | 42.82%  4.59%  829% | 46.37%  4.06% 747% | 35.62%  3.37%  6.15% 0.00%  0.00% 0.00%
Receiver 72.26%  7.63% 13.81% | 70.37%  9.74% 17.10% | 74.29%  10.94% 19.08% | 66.24%  6.92% 12.52% | 0.00%  0.00% 0.00%

Overall 9.65% 9.65%  9.65% | 11.01% 11.01% 11.01% | 0.100427 10.04% 10.04% | 6.88% 6.88%  6.88% 0.00% 0 0

format [entity_1|type_1] . This uniform approach is essential because the results
parser is an integral part of our prompt design. It facilitates efficient and accurate
parsing of the model outputs, ensuring that the results can be reliably interpreted

and compared across different scenarios.

Table 5.2 presents the results of the ablation study on prompt engineering techniques
in LLMPP. Assigning a Role Prompting (ARP) slightly improves the performance
of all three models. Without ARP, the Fl-score for GPT drops from 49.02% to
48.79%, and for Llama, the Fl-score decreases from 44.24% to 40.58%. The F1-
score of Qwen also decreases from 13.26% to 9.65%. Task Description Prompting

(TDP) enhances the performance of Qwen, increasing its Fl-score from 11.67% to
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19.45%. However, TDP demonstrates side effects on the performance of GPT and
Llama. Without TDP, the Fl-score of GPT increases from 49.02% to 51.74%, and the
F1-score of Llama increases from 44.24% to 48.72%. Both Context-Aware Prompting
(CAP) and Instruction-Tuning Prompting (ITP) demonstrate consistent and effective
improvements across all three models too. The performance of CAP and I'TP suggests
that providing clear definitions of each privacy component and the expected output
format help the models better understand the task, leading to improved performance.
This highlights the importance of precise and context-aware prompt design in guiding

LLMs for specific tasks.

Another phenomenon is that without few-shot prompting (FSP), all three models
achieve the worst performance. This indicates that providing examples to LLMs can
effectively help LLMs understand the requirements of the task, the definition of each
privacy component, and the output format requirements. We manually analyze the
results of few-shot prompting. We observe that without FSP, the output of LLMs
cannot follow the requirements of the output format. Some outputs do not strictly
adhere to the required format, such as failing to enclose content within brackets []

or omitting the use of vertical bars — for separation. For example, outputs like “/

INERE)
format. Additionally, some outputs begin with the entity type followed by a colon

data” or “ [HIEST, data) ” do not fully comply with the specified

and the corresponding entities under that type, such as "data: ™ AfGE., HIESHE".
The first format may arise from the LLM interpreting the brackets “ [] 7 as merely a
presentational element rather than a strict formatting requirement. Another format
may stem from the type definition structure used in Task Description Prompting
(TDP). To further analyze the performance of LLMs without FSP, we incorporate
parsing mechanisms with both of the aforementioned two formats and reanalyze the

results accordingly.

Table 5.3 presents the results of the ablation analysis for few-shot prompting, in-

corporating two additional text parsing formats. Compared to Table 5.2, the ex-
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Table 5.3: Additional Analysis of Few-Shot Prompting Ablation Results

GPT Llama Qwen
Entity Type
Precision Recall F1 Precision Recall F1 Precision Recall F1
O 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 0.00%
Data 45.81%  17.78% 25.62% | 41.00%  20.60% 27.42% | 44.39%  7.40% 12.68%

Controller 74.78%  2.01% 3.92% | 75.60% 4.35% 8.23% | 47.95% 3.00% 5.65%
Collection 54.90%  2.19% 4.20% | 28.12%  0.56% 1.10% | 15.12% 0.32% 0.63%
Sharing 4221%  1.72%  3.30% | 53.66%  0.48%  0.95% | 25.00% 0.08% 0.15%
Condition 24.98%  7.13% 11.10% | 33.49%  4.48%  7.90% | 39.76% 1.67% 3.21%
Purpose 28.98%  9.56% 14.37% | 34.91%  4.65% 8.21% | 14.53% 0.67% 1.28%
Receiver 55.73%  3.46%  6.51% | 100.00% 0.10%  0.20% | 77.27%  0.69% 1.36%
Overall 8.15% 8.15%  8.15% 8.04% 8.04%  8.04% 3.12%  3.12%  3.12%

tra two parsing formats enable the identification of partial results generated by the
LLMs. Additionally, the precision scores for all three models are significantly higher
than their recall scores. This indicates that the entities identified by the LLMs and
correctly parsed are more likely to align with the pre-defined types. However, the
low recall scores suggest that the LLMs frequently misclassify non-relevant compo-
nents as belonging to the target types. This observation aligns with the conclusions
drawn from the main results. To further investigate, we manually examined a sub-
set of the LLM outputs. Without few-shot prompting, we observed instances where
the LLMs either repeated the entire instruction or generated outputs in the format
of “entity_type—entity_type”. Additionally, despite incorporating and summarizing
two additional parsing formats, the performance of few-shot prompting remains sub-
optimal. Moreover, integrating extra parsing formats introduces additional manual
analysis efforts. The consistency and ease of parsing output formats are critical when

leveraging LLMs for downstream tasks.
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Answer to RQ2: Ablation analysis demonstrates that prompt engineering techniques
used in our prompts improve LLM performance to different extents. Notably, few-
shot prompting proved to be the most effective in helping LLMs understand task

requirements and output formats.

5.4.5 RQ3: Hallucinations Analysis in LLMPP

This research question investigates the phenomenon of hallucinations in LLMPP.
Hallucinations are primarily discussed in the context of chatbot applications, where
they refer to instances where LLMs generate content that appears plausible but is
factually incorrect or unfounded. In LLMPP, we define and identify hallucinations
from two perspectives: entity hallucination (H,) and entity type hallucination (H,).
Under the condition that the LLM generates results strictly adhering to the required
format and the results are correctly parsed into entities and entity types, H, measures
the extent to which the entities are not derived from the given privacy policy sentences

but are instead randomly inferred by the LLM. H. is formulated as:
H,=—, (5.1)

where I, represents the number of entities generated by the LLM that do not appear in
the given privacy policy sentences, and G, represents the number of entities correctly
parsed from the LLM’s outputs. Similarly, entity-type hallucination (H;) measures
the proportion of entity types generated by the LLM that do not belong to the
predefined set of entity types. H; is calculated using the following formula:

Iy

H = —
t Gt’

(5.2)

where [; represents the number of entity types generated by the LLM that are not
within the given set of predefined entity types, and G; represents the total number of
entity types correctly parsed from the LLM’s outputs.
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Table 5.4: Hallucination analysis in LLPP
Main Prompt ARP TDP

He H-t He H-t He H-t

GPT | 356% 0.86% | 3.24% 1.55% | 4.12%  0.33%
Llama | 5.96% 17.65% | 6.09% 20.03% | 5.68%  5.37%
Qwen | 30.75% 21.79% | 18.41% 33.69% | 40.61% 48.86%

CAP ITP FSP

He Ht He H-t He H-t

GPT | 351% 3.74% | 7.13% 1.81% | 65.00% 60.97%
Llama | 10.73% 15.90% | 7.96% 16.96% | 25.37% 81.27%
Qwen | 42.97% 39.03% | 40.20% 23.72% | 16.15% 54.23%

Table 5.4 presents the analysis of hallucination in LLMPP, where the "main prompt”
refers to the use of the full prompt, and other categories represent ablation settings
that exclude specific prompting techniques. GPT introduces the least hallucination in
both entities and entity types compared to the other two models, while Qwen exhibits
the highest level of hallucination in its generated content. Notably, GPT demonstrates
strong task understanding capabilities, as evidenced by its entity type hallucination
rate of only 0.86% under the main prompt setting. Table 7?7 demonstrates that As-
signing a Role Prompting (ARP) and Few-Shot Prompting (FSP) significantly reduce
hallucination in both entities and entity types across all three models. Specifically,
without ARP and FSP, the H, and H; metrics increase for all models. This im-
provement can likely be attributed to two factors: ARP guides the LLMs to focus on
relevant knowledge within their training corpora, and FSP provides correct examples
that help the models learn and generalize more effectively. Task Description Prompt-
ing (TDP) only slightly reduces entity hallucination for GPT and Qwen but increases
entity type hallucination. This may occur because the LLMs can still learn the task
effectively through Context-Aware Prompting (CAP) and Few-Shot Learning (FSL),

making additional descriptions redundant. Furthermore, excessively long prompts re-
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sulting from detailed descriptions may confuse the LLMs, potentially degrading their
performance. Context-Aware Prompting (CAP) effectively reduces hallucination in
both entity and entity type recognition for GPT and Qwen, while also alleviating en-
tity hallucination for Llama. This demonstrates that providing clear descriptions of
each component helps LLMs better understand the scope and boundaries of the enti-
ties, leading to improved accuracy and reduced errors. Instruction-Tuned Prompting
(ITP) is primarily designed to restrict the output format of LLMs, making it easier
for users to parse the results. As a result, ITP demonstrates only a limited ability to

alleviate hallucination across all three models.

Answer to RQ3: Experimental results indicate that models with stronger founda-
tional capabilities exhibit fewer hallucinations in the LLMPP scenario. Among the
techniques evaluated, Few-Shot Learning (FSL) proves to be the most effective in
mitigating hallucinations. Additionally, prompt engineering strategies such as clear

task descriptions and well-defined instructions also contribute to reducing halluci-

nations, albeit to a lesser extent.

5.4.6 Case Study

This section presents a case study on our prompt design and false recognition in
the main results. Specifically, for the prompt design case study, we begin with an
initial prompt that mimics traditional Named Entity Recognition (NER) tasks to
label each character in given sentences. This allows us to evaluate the effectiveness
of our approach in the early stages. For the false case analysis, we conduct a case
study to investigate the reasons behind incorrect component identification, providing

insights into potential improvements.

Prompt design. When designing the LLMPP, the intuitive approach is to mimic
traditional Named Entity Recognition (NER) tasks and ask LLMs to identify the label

of each character in privacy policy sentences, as introduced in §5.3.1. To achieve this,
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we evaluate the prompt as is given in Figure 5.6. We use the prompt to query LLMs,
asking LLMs to label each character in the provided sentence in order to identify

privacy components within those sentences.

You are an expert in mobile app privacy policy analyzer and have over ten years experience in
analyzing the compliance in privacy policies.

You will be given one sentence from a Chinese privacy policy (PP). You should analyze the sentence
to identify the key components in the privacy policy. Specifically, you need to identify the data
controller, data entities, data behavior (collect or share), condition, purpose and data receiver. The
definition of the seven components are

as follows:

1. Data controller: (noun) the party that determines the purpose and means of personal data
processing.

2. Data entities: (nouns) any information that can identify or reflect the activities of a natural person.
. Collection: verbs that describe how controllers access data.

. Sharing: verbs that describe whether how the controller distribute the entities to others.

. Condition: the situation where the data controller will access personal data.

. Purpose: why the data controller processes user data.

. Data receiver: the parties that receive user data.

. Others: that are not related to aforementioned components.

O ~NO U~ Ww

Your need to output the label of each character in the provided sentence. The length of output label
must be strictly the same with the character length of provide sentence. For example:

Example 1:

"sentence”: "BIIMBEEN, BMNSBE. FHA. ®RF. ZZEMEXIPAER"
"label™"05555550011033033033044000022220"

Example 1:

"sentence” "R RSN T HEESEN” R S5HEFEZENEBSI.
"label™"110066666666660777550022220™

Now, it is your turn:
"sentence"; "{ 1
"label": "

Figure 5.6: Initial prompt for LLMPP

Figure 5.7(a) and 5.7(b) give two examples of using the prompt in Figure 5.6 to
query LLMs for analyzing privacy components in privacy policy sentences. The index
shows the position of each character in the sentence. ”GroundTruth” is the label for
each character. A ”/” means the LLM did not generate the required output. ”+num”
indicates extra characters generated by the LLM but not shown in the figure. The
figures clearly show that all three models almost entirely generate incorrect labels
for each character, often producing more labels than the number of characters in the

sentence. Additionally, we provide more cases in our GitHub repository to support
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Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Setence % & W WM MR B B HF F Kk #& F & i £ 8 .
GroundTruth 2 0 0 0 O O O O O O O O 4 4 2 2 0 2 2 O
GfT O 0 0 0 0 0 5 5 5 0 0 0 0O 0O 0O 0O 6 6 6 6
Llama /
Qwen of 5 5 5 5 5 5§ a 5 5 5 5 5 5 5 5 5 5 5
Index 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Setence i X B A~ A N+ A %k = B £ MB £ B .
GroundTruth 22 0 2 2 2 2 0 6 6 6 6 6 6 0
GPT 6 6 7 7 7 7 7 3 3 3 3 0 6 +5
Llama /
Qwen 5 5 5 5 5 5 5 5 5 5 5 5 5 477
(a) Example 1.
Index 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Setence kK & & ¥ W, ¥ M KX & @ ¥ = F A F . E B B
GroundTruth 0 5 5 5 5 0o 1 1 0 0 O 7 7 7 4 4 0 4 4 O
GPT O 0 O O O O 0o o0 1 1 11 1 2 2 2 2 2 2 2
llema 0 0 5 0 5 5 0 5 5 5 5 5 0 5 5 5 0 0 0 1
Qwen /
Index 21 22 23 24 25 26 O
Setence 9 N AN & B .
GroundTruth 0 2 2 2 2 O
GPT 2 3 3 3 3 3 +38
Llama 1 0 0 3 3 0 +52
Qwen /

(b) Example 2.

Figure 5.7: Results of prompt case study.

the case study of the prompt design. Our analysis reveals that nearly all cases exhibit
this same problematic behavior. This phenomenon is consistent with existing research
showing LLMs’ poor performance in number-counting tasks, as discussed in §5.3.1.
This issue may stem from the tokenization methodologies [109] employed by LLMs.
The embedding methodologies often group multiple characters into a single token,
which can interfere with the model’s ability to accurately count individual characters
within a sentence. This grouping can lead to inaccuracies in tasks that require precise

character-level processing.

False recognition analysis. Figure 5.8 provides an illustrative example of the in-
ference results generated by LLMs for a privacy policy sentence, and additional cases
are available in our GitHub repository. In the ground truth, we observe one condition
component that specifies the situation in which the owner of the privacy policy will

conduct data access and one purpose statement that explains why the data access will
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be performed. GPT partially correctly identifies the condition in the sentence but
incorrectly labels an unrelated phrase as a condition. Additionally, GPT fails to iden-
tify the purpose component in the sentence. Llama correctly identifies two subsets of
the condition components but incorrectly labels four unrelated phrases as conditions.
Additionally, Llama fails to identify the purpose component in the sentence. Qwen
correctly identifies the purpose in the sentence and a subset of the condition compo-
nents. For the data controller, GPT correctly identifies the data controller, while the
other two LLMs (Llama and Qwen) fail to do so. Qwen even incorrectly identifies
the data controller as a data entity. For data entities, both GPT and Llama correctly
identify all data entities, although GPT mistakenly labels an additional definition
of data as a data entity. Qwen only correctly identifies one data entity but misses
all other data entities. In the context of data operation behavior, since the subject
performing the action is the user ("f#&”), the verb describing this action should be
labeled as a sharing behavior. This distinction is crucial for accurately categorizing
and understanding the nature of data operations within privacy policies. GPT fails
to identify the behavior component. Llama incorrectly labels the action phrase as a
condition, and Qwen wrongly identifies the action behavior as a collection. Addition-
ally, the results reveal that LLMs tend to incorrectly classify unrelated phrases into
given categories, leading to low recall metrics in the main results (Table 5.1). These
unrelated phrases are statistically labeled as 7O” during the metrics computation

process.

Based on our case study of LLMs’ inference results, we observe that several types
of errors can be attributed to the LLMs’ inability to correctly parse the sentence
structure. For instance, LLMs often misidentify data action verbs. Additionally,
some errors stem from the LLMs’ incomplete understanding of the provided context,
which adversely impacts their ability to accurately identify key phrases, such as the

purpose and conditions within the sentence.
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EEEASMMENIEIEXRS RN, RIEAXEEIN, CUEREREENAXSNES
Sentence (EL#®E. SIS, BIESH) MUEHEREIE. ZFEERTIARREE, BIRUELR
#, MREEREEETRTERSHERRS, EAFMEMINESRSHNIES A

(R SHAEM I EE S X RGBT, RI\AASEEEEM condition] |,
Ground Truth  [#&|controller] , [R4f|sharing] , [ELHHMER (ELHE. SIS, BIESH) |data] ,
[IX5E AL Z KA |purpose]

[ BHHAERIDIRE SR X AR S Er & Y [condition] , [#&|controller] , [#&ff|collection] | [EXHHME
HB|data] , [EX#E|data) , [BEMESH|data] , [BIESH|data] , [PABURISE|data] , [IE
#3R{it|condition] , [#EXBRS|purpose] , [F&FKSHHAARS|condition] , [HfbINRESEREHIIE
# {# F|purpose]

[#8|data_entities] , [E L5455 |data_entities] , [ESL#4%&|data_entities] , [SHHESH
|data_entities] , [EB1ES|data_entities] , [S#MIAIERITIAE condition] , [#3£fk%|condition] |

Llama  [#83&E# %M |condition] , [FAil|controller] , [#&|data_entities] , [fE4EiE{|condition] , [4B
% AR%|condition] , [HfhIhEE5HRS|condition] , [Fk{(l|controller] , [TJ&E|condition] , [F%
#£#8|condition] , [AfE=|controller]

Qwen [EfE=|controller] |, [EX&#MER|data] , [Rft|collection] , [RIBEIEEEEF condition] |
W [SE S Z % iE|purpose] , [T A3REHERER S |receiver

GPT

Figure 5.8: Case study of inference results in LLMPP.

5.5 Discussion

In this section, we discuss the limitations of this work and propose directions for

future research on applying LLMs to privacy policy analysis.

In this work, we empirically evaluate the performance of popular pre-trained LLMs
in identifying regulation-mandated entities within Chinese privacy policies. By refer-
encing existing work [139, ] and employing established prompt engineering tech-
niques [10, ], this work focuses on evaluating effective prompts tailored for han-
dling privacy policies in general scenarios, rather than seeking to identify the optimal

prompts for all LLMs.

We evaluate two publicly available LLMs and one widely used commercial LLM. In
future work, we will evaluate a wider range of LLMs, particularly those specifically
trained to process Chinese content, to provide deeper insights into the performance of
LLMs in this challenging task. Additionally, to ensure fairness, we evaluate all LLMs
using a unique and consistent prompt format. Existing research has shown that dif-
ferent prompt templates [59], such as XML format, Markdown format, or plain text,

may influence the performance of LLMs. Future work will explore methods to quan-
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tify the impact of prompt formats and expand the evaluation to include more LLMs.
Additionally, our ablation study and analysis of hallucination in LLMs have demon-
strated that different prompt engineering techniques can improve the performance
of LLMs and reduce hallucinations in LLMPP. One promising direction to enhance
the performance of LLMs and mitigate hallucinations remains improving their fun-
damental capabilities.  Given the inherent randomness in the inference process of
LLMs, which may impact the reproducibility of this work, we provide all prompts and
results generated by the LLMs to facilitate a deeper understanding of our findings

and ensure that other researchers can reproduce and build upon our results.

In future work, one potential direction could involve exploring the application of long-
context models to implement end-to-end privacy policy analysis tasks. Since privacy
policies are typically composed of lengthy, detailed descriptions, long-context models
may be better suited for processing such content. Long-context models may be ca-
pable of effectively summarizing key points and extracting downstream requirements
from the context. While labeling privacy policies across different languages and re-
gions is labor-intensive, it is feasible to pre-train a large language model specifically
designed to analyze privacy policies from diverse platforms. Such a model can help
safeguard user privacy by accurately identifying key components like data-handling
practices and consent requirements. It can also mitigate the risk of policy abuse by
providing clearer insights into how entities draft and enforce these policies. This ap-
proach not only enhances privacy protection but also promotes greater accountability

and transparency in privacy policy management.
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Chapter 6

Conclusions and Suggestions for

Future Research

6.1 Conclusions

The main objective of this thesis is to address the risks posed by potentially harmful
Android apps that could compromise user privacy once published in app markets. In
this thesis, we tackle several technical challenges by developing innovative approaches
and constructing a benchmark dataset to serve three main objectives. As an initial
step, this thesis investigates the vulnerability of Android malware detection systems
by proposing a novel problem-space structural attack against existing malware de-
tection systems. Furthermore, the first work explores potential defense strategies to
address this issue. Secondly, we provide an Android app privacy policy dataset to
promote research in the field of Android app privacy policies. In addition, we eval-
uate the performance of LLMs for analyzing Chinese privacy policies. The target
of our work is to enhance the security and privacy of Android app users by offering
useful insights and resources for developing more effective detection, prevention, and

mitigation strategies.
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6.1.1 Investigating Vulnerability of Android Malware Detec-

tion

To investigate the vulnerability of Android malware detection systems and develop
effective defense methodologies, we propose HRAT, a novel structural attack against
function call graph-based Android malware detection systems. By conducting this
attack, we aim to uncover weaknesses in the systems and explore potential counter-
measures to mitigate the risks associated with Android malware. HRAT is unique in
that it leverages the correlation between function call graphs and software to bridge
the gap between feature-space attacks and problem-space attacks. By leveraging the
capabilities of HRAT, we are able to effectively exploit vulnerabilities in Android
malware detection systems that would not be accessible through traditional feature-
based attacks. This enables us to identify new avenues for improving the security of
these systems, ultimately enhancing their ability to detect and prevent potentially
harmful apps from compromising user privacy and security. Compared to heuristic
methods, our attack proves to be more effective and efficient in terms of modifying
and interacting with target systems. By using our proposed structural attack, we
are able to generate subtle but significant modifications to Android malware samples
that evade detection by state-of-the-art detection systems. Our attack highlights the
value of HRAT in testing the robustness of Android malware detection systems and
identifying areas for improvement. Our experiments show that combining multiple
attack actions is significantly more effective than using a single action alone. By
integrating several attack techniques, we are able to achieve higher success rates in
evading detection by Android malware detection systems. This highlights the impor-
tance of using a multi-pronged approach to testing the security of these systems and
developing more robust defenses against Android malware. Notably, our methodol-
ogy is not limited to the Android platform and can be adapted to other systems as
well. Our approach, which leverages the structural properties of software and iden-

tifies vulnerabilities in malware detection systems, has the potential to improve the
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security of a wide range of software systems, demonstrating the broad applicability

and versatility of our proposed methodology.

6.1.2 Introducing a Comprehensive Android Application Pri-
vacy Policy Dataset

In order to facilitate research into analyzing Android app privacy policy issues, we
present the CA4P-483 dataset, the first comprehensive dataset of Chinese Android
application privacy policies. Our dataset was constructed using a rigorous data col-
lection and corpus annotation process, ensuring that it is of high quality and can be
used as a reliable benchmark for research purposes. The CA4P-483 dataset includes
fine-grained annotations that align with the requirements of privacy-related laws and
regulations, ensuring that it provides a comprehensive and accurate representation
of the privacy policies of Chinese Android applications. These annotations enable
researchers to easily identify and analyze the specific privacy practices of individ-
ual applications, facilitating a deeper understanding of the privacy landscape of the
Android app ecosystem. By providing a large-scale dataset of Chinese Android appli-
cation privacy policies with fine-grained annotations, the CA4P-483 dataset has the
potential to advance natural language processing research on practical downstream
tasks. Our dataset can be used to develop and evaluate machine learning models
for a range of tasks, such as automatic policy analysis and summarization, as well
as to explore the relationship between privacy policy content and actual data collec-
tion practices. This makes the dataset a valuable resource for researchers working on
improving the privacy and security of mobile applications. In addition, we perform
experimental evaluations of several popular baselines on the CA4P-483 dataset and
present the results of our analysis. Our evaluation provides a benchmark for future
research on privacy policy analysis and highlights the strengths and weaknesses of cur-

rent state-of-the-art approaches. Based on our findings, we propose potential research
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directions for improving the accuracy and effectiveness of privacy policy analysis, with
the goal of enhancing user privacy and security in the Android app ecosystem. In
addition to our experimental evaluations, we perform several case studies to explore
the potential applications of our dataset in software engineering and cybersecurity.
Our analysis demonstrates the utility of the CA4P-483 dataset for a range of down-
stream tasks, including developing tools for automated privacy policy analysis and
generating user-friendly summaries of privacy practices. These applications have the
potential to enhance the privacy and security of mobile applications, improving the

user experience and fostering greater trust in the app ecosystem.

6.1.3 Application of LLMs for Analyzing Privacy Policies

With the growing popularity of LLMs, many downstream tasks, particularly those
related to natural language processing, have achieved significant success with the
assistance of LLMs. We empirically evaluate the performance of popular LLMs in
identifying regulation-required entities and their types in Chinese privacy policies.
Our ablation study of prompt engineering techniques and analysis of hallucinations
in LLMPP both demonstrate that these techniques can improve the performance of
LLMs and alleviate hallucinations in LLMPP. Our evaluation highlights the challenges
of applying LLMs to Chinese privacy policies. Specifically, pre-trained LLMs often
fail to recognize defined entity types within given sentences, even when advanced

prompt engineering techniques and well-crafted prompts are employed.

6.2 Future Work

Having completed three major works related to the analysis of potentially harmful
Android apps and the protection of user privacy, there are several promising directions

for our future research.
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First, we can develop more effective and efficient attack strategies against Android
malware detection systems. Currently, HRAT is only applicable under white-box
settings, meaning that it requires access to the machine learning models used in target
detection systems. In recent years, machine learning researchers have demonstrated
the feasibility of training a student model to mimic a target model using only the
target model’s output, without access to the model itself. Thus, in cases where it is
not possible to access the machine learning models, we can train a student model to
mimic the target model and use HRAT to deceive the student model into achieving

the same level of detection evasion as the target model.

Secondly, as CA4P-483 opens up avenues for research in natural language processing,
privacy protection, and cybersecurity, we plan to explore more potential application
scenarios based on our dataset. For example, we can conduct an emotional analysis
of privacy policies based on CA4P-483. Previous studies [0] have found that privacy
policies can present conflicts when used in different contexts. Several existing meth-
ods [6, 7, | use negative language to detect potential conflicts in privacy policies
but do not account for complications such as double negatives. In the Chinese privacy
policy, negative representations are more complicated [$5]. Thus, emotional analysis

can help analysts better understand the semantics of privacy policies.

Finally, a promising direction for future research is the development of a privacy
policy-specific large language model capable of processing privacy policies written in
various languages and sourced from diverse platforms, including mobile apps, web
applications, and Internet of Things (IoT) devices. This endeavor would begin with
the construction of a high-quality dataset tailored to the complexities of privacy
policies. Additionally, given that existing research highlights the significant impact
of tokenization methods on LLM performance, designing an effective tokenization
strategy would be a critical step. Such an approach could enhance the model’s ability
to handle the diverse linguistic and contextual nuances of privacy policies, thereby

advancing the field of privacy policy analysis.
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