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Abstract 

Recently, along with the rapid development of multimedia techniques, many images have been 

generated daily over various network platforms and those images can be stored to cloud servers for 

convenience. However, the rich sensitive information embedded in those images often results in 

security and privacy issues when personal images are outsourced. So the need for secure storage and 

transmission of images has become increasingly important. However, image retrieval methods 

require the image information before it can be retrieved. Therefore, it would be necessary to search 

for effective image encryption and retrieval techniques to protect privacy and also maintain the 

availability of encrypted data. To handle the conflict, thesis presents our contributions in realizing 

the encrypted image retrieval system and three different encrypted image retrieval schemes are 

proposed. The proposed three models can broadly categorize into pixel based method, DCT 

coefficient based method and deep network based method.  

In the first encrypted image retrieval scheme, the encryption operations are adopted on image pixels. 

For a given image, we first divide it into 8×8 non-overlapped blocks due to the JPEG standard. And 

the 8-bit binary sequences of pixels in each block are confused by two-level permutation. Specifically, 

more significant 4-bit binary sequence of the pixel is confused by block permutation, while intra-

block permutation is conducted on the less significant 4-bit binary sequence. After encryption on 

binary sequence, the image confusion is used by block permutation to increase image security and 

the index is generated from a logistic map. The histogram features can be generated from the 

confused blocks directly for retrieval processing.  

In the second encrypted image retrieval scheme, we extract the features for retrieval from the 

frequency domain which would consume less computation and communication resources. DCT 

coefficients are utilized to obtain feature vectors. The encryption operations, including coefficient 

value substitution and intra-block coefficient shuffling, are performed on JPEG images. With the 

proposed encryption and compression scheme, the feature would be directly extracted from the 

frequency domain by using the learning network. And the Siamese architecture for metric learning 

is used for capturing the similarity well. Finally, the user can receive several encrypted images with 

similar content according to the query.  
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As for the third encrypted image retrieval scheme, a new image compression and encryption 

framework is proposed which integrates encryption algorithms with a learning-based compression 

network. Our model employs Auto-Encoder (AE) based compression network as the backbone and 

encryption layers are added. And for higher security, the parameters of the synthesis network are 

replaced by a new parameter matrix based on a logistic map controlled by a secret key. The 

encryption key of the system is derived from the image content, which will be embedded in the deep 

feature vectors. And to learn the entropy model from the scrambled feature maps, an attention scheme 

is exploited in estimating parameters to achieve more effective compression. In this scheme, the 

encrypted feature maps are the inputs of another deep network for retrieval. And the training loss 

function for this retrieval model consists of ranked list loss and cross-entropy loss. 
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Chapter 1 Introduction 

1.1 Background 

Recently, along with the rapid development of digital devices, large amounts of images have 

been generated in our daily life. As an essential carrier of human communication, images are 

delivered by users through personal laptops or computers, smart mobile phones and various 

network platforms. And thanks to the rapid growth of computing technology, many images can 

be storing to cloud servers such as Google Drive, One Drive and Dropbox by users for lower 

cost and more convenience. However, the rich personal information is contained in those 

images which often results in security and privacy issues when outsourcing images to third 

parties. So the in order to protect data privacy, images are usually encrypted by users before 

transmitting them to the server for outsourcing. After encryption, the image will be converted 

to an obviously different one, and nobody can get to know the original content of the image 

when the encryption key is unknown. And the content of images would be protected with 

varying methods of encryption.  Then the protected images may be outsourced to cloud servers. 

But this privacy operation may cause an impediment for servers to provide further processing 

services, like image retrieval, since many image retrieval techniques need to obtain image 

content and require the image to be decrypted before it can be retrieved. Thus the problem is 

whether to preserve the retrieval function or to sacrifice it to ensure privacy. Therefore, it would 

be desirable to develop effective retrieval techniques in encrypted domain under the premise 

of protecting privacy.  

To deal with the conflict between security and retrieval performance, many searchable image 

encryption methods have been proposed and other researchers tend to find a retrieval scheme 

which can search for specific images in a database of encrypted images without decrypting 

them.  For those searchable image encryption algorithms [1-4], the statistical information, such 

as histograms and local descriptors, is preserved which is contained in the original image, to 

ensure the retrieval processing. However, those methods ignore the compression performance 

when encrypting images and sacrifice security to a certain extent. As an essential carrier of 

human communication, the compression performance needs to be considered for better 

delivery. And most of the images we use are compressed except for some special and 

professional occasions. Considering the requirement of compression, some researchers propose 
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cascaded compression encryption methods [5-9], which can achieve high efficiency in 

compression. In [5, 6], encryption operations are adopted into the compressing stage, while [7-

9] encrypt the data with learning-based methods. But these methods only focus on the security 

and compression efficiency of image and ignore the data availability which is important for 

retrieval function. Besides, to decrease the computation cost of image retrieval, some 

researchers tend to transform images to the frequency domain first and then retrieval schemes 

are exploited on the frequency domain with compressed and encrypted representations [10-13]. 

In summary, image encryption techniques for privacy preserving image retrieval are required 

to achieve compression-friendliness, privacy security, and data availability. But the 

requirements are restricted to each other. For protect security, the content of image can be 

confused to forbid the attacker from reconstructing the image from the encrypted one. In this 

case, the relationship between images would be removed, which restricts the similarity 

measurement. And the confusion operations used for encryption may increase the entropy of 

the image and decrease the compression performance on encrypted images. To address this 

challenging issue, this thesis will deeply investigate three specific tasks, pixel based searchable 

encryption, DCT based image encryption and retrieval, and deep image encryption and retrieval.  

 

1.2 Research Motivations and Contributions 

For encrypted image retrieval, the image encryption module used needs to ensure the privacy 

and security of images by conducting the encryption operation, preventing the reconstruction 

of the plain image from the ciphertext. But in this case, cipher images may be unavailable for 

obtaining effective features from the content of images, which limits encrypted image retrieval. 

In summary, the encrypted image retrieval system needs to ensure the privacy and availability 

of image. And since images are almost compressed when transmitted, the image encryption 

and retrieval system may meet the requirements of privacy security, friendly compression and 

better retrieval accuracy. And different proposed schemes may focus on different points. 

In this thesis, three encrypted image retrieval schemes are proposed and the main contributions 

can be summarized as follows:  

• A new searchable encryption scheme is proposed to achieve privacy protection and it 

can support retrieval on encrypted domains by extracting features from the content of 

cipher images. The proposed encryption scheme is realized by using pixel-based 
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operations on images. First, the plain images are segmented into 8×8 non-overlapped 

blocks due to the JPEG standard. And the proposed pixel-based encryption method is 

realized by two-level permutation on binary sequences. Using block based permutation 

method on image confusion can ensure local feature extraction conducted on confused 

blocks, which can benefit privacy protection and retrieval processing. With the 

proposed encryption method, the feature for similarity measurement can be directly 

obtained from confused blocks. And the problem of image retrieval on cipher images 

can be defined based on the local histogram. With experiments, the security and 

retrieval performance of the proposed scheme are verified on the dataset.  

• A new encrypted JPEG image retrieval scheme is proposed based on DCT coefficients.  

In this work, the features for retrieval can be extracted from the frequency domain 

which would consume less computation and communication resources. Here, DCT 

coefficients are utilized for obtaining feature vectors and also for encryption. The 

encryption operations are exploited on JPEG images with coefficient value substitution 

and intra-block pixel permutation. In this case, encrypted images can maintain format 

compliance. We use the deep architecture in network to get more effective features for 

encrypted image retrieval from frequency domain. For a given encrypted query image, 

the server obtain the image descriptors for retrieval from DC and AC coefficients as the 

which are the inputs of the network. And without decrypting, similarity measurement 

is conducted between the encrypted query image and database image in the cloud sever. 

The channel attention module is integrated to select the effective frequency components 

and reduce the impact of encryption. And we adopt the Siamese architecture for metric 

learning since the learned image embedding can help the Euclidean distance captures 

the similarity well. Finally, several encrypted images containing similar content are sent 

to the user. Experiment results show the encryption and retrieval performance of our 

scheme. 

• A deep encryption and retrieval scheme is proposed. We develop a novel joint 

compression-encryption model which could be an early attempt to introduce end-to-

end learning to the security system. The shuffling operations are conducted on deep 

feature maps. And for a higher level of visual security, part parameters of the network 

are replaced by a new parameter matrix based on a logistic map controlled by a secret 

key. The encryption key of the system is derived from the image content, which will be 

embedded in the deep feature vectors with a fixed key to save the cost of sending the 
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key for different images. An attention scheme is exploited in estimating parameters to 

achieve more effective compression to learn the deep model from the scrambled feature 

maps. After encryption and compression, the confused deep representations are sent as 

inputs to another deep similarity network for retrieval. And the training loss function 

for this retrieval model consists of ranked list loss and cross-entropy loss. 

 

1.3 The Outline of Thesis 

The remaining chapters of this thesis are outlined as follows: 

Chapter 2 introduces some basic related work in the literature, which includes image 

compression techniques, image encryption techniques and encrypted image retrieval 

techniques. For image compression techniques, traditional schemes and deep models are all 

presented in this chapter. And three types of image encryption techniques are introduced. 

Chapter 3 presents a privacy-preserving content based image retrieval scheme, which is 

realized by using pixel-based encryption operations on images and extracts features use for 

retrieval from the content of encrypted images. 

Chapter 4 presents a encrypted JPEG image retrieval scheme based on DCT coefficients, which 

can encrypt image by coefficient value substitution and intra-block pixel permutation on 

coefficients. And the features for retrieval are learned from the frequency domain. 

Chapter 5 presents a deep encryption and retrieval scheme that introduces end-to-end learning 

to the security system. The encryption operations are conducted on deep feature maps. An 

attention scheme is exploited for compression. After encryption and compression, the confused 

deep representations are sent to a similarity network for retrieval.  

Chapter 6 summarizes the research work of this thesis and provides several potential directions 

for future research. 
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Chapter 2 Literature Review 

2.1 Image Compression 

2.1.1 Traditional Compression 

Image compression is one of the foundational research tasks in computer vision and many 

different approaches have been proposed in the previous decades, such as JPEG and JPEG2000. 

Most of them apply linear transformation to convert correlated pixels into non-correlated 

transform coefficients, quantize and then encode the resulting discrete representation by 

entropy coding. In general, the baseline compression procedure comprises three components – 

transform, quantizer, and entropy coder. Figure 2.1 shows the block diagram of JPEG 

compression standard as an example. And as one of the popular image compression standards, 

JPEG uses a discrete cosine transform on blocks of pixels in an image, while JPEG 2000 uses 

wavelet transform. But all those algorithms are based on handcrafted encoding/decoding 

diagrams and use a fixed operation.  

 

Figure 2.1: Block diagram of the JPEG standard. 

JPEG is one of the most common image compression standards and JPEG images are 

commonly used in many areas. JPEG standard is a kind of lossy compression method which 

will remove the high frequency information which is not visually obvious. According to JPEG 

standard [14], a color JPEG image has three components Y, U and V. For each component, it 

will be divided into 8×8 non-overlapped blocks and each of them is quantized after DCT. Here, 

the quantization step can discard the visually non-noticeable information by crudely quantizing 

higher frequencies. In each block, there are one DC coefficient and 63 AC coefficients. And 

the DC coefficients are converted into binary bits. For the AC coefficients, a set of pairs (𝑟, 𝑣) 

are generated with zigzag scanning. Here,  𝑟 represents the number of consecutive zero-valued 
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AC coefficients, and 𝑣  defines the nonzero AC coefficient. Then, these pairs are entropy 

encoded into binary bits. All binary bits from DC and AC coefficients are entropy encoded  into 

binary sequence by Huffman table. Finally, the JPEG file bit-stream is generated.  

8×8 non-overlapped block

Original image

DCT Quantizer
Entropy 

encoder

Compressed 

bit-stream

IDCT Dequantizer
Entropy 

decoder

Quantization

table

Decompressed 

image

Huffman

table

 

Figure 2.2: JPEG coding and decoding. 

2.1.2 Deep Compression 

The deep neural network has recently shown remarkable accuracy in multiple visual areas, 

which implies the potential of learning-based methods to improve the performance of lossy 

image compression. And several different neural networks have been introduced to image 

compression. According to the network architectures, those works can broadly categorize into 

auto-encoder (AE) based methods [15-18], recurrent neural network based methods [19,20] 

and generative adversarial network based methods [21,22]. AE based methods extract the 

compressed presentation of an image by replacing the fixed operation, like DCT, with some 

convolutional transforms. And because of this inherent property of autoencoder, AE based 

methods can be comparable with traditional transforms and outperform JPEG and JPEG2000. 

But this kind of method needs separate training for obtaining images at different resolutions. 

In RNN-based methods, the network weights are shared in various iterations to provide variable 

output rates without retraining the network. But the residual between the original and predicted 

images is taken as the input for the next iteration in the loop iteration process that will cause 

an impact on introducing the encryption operation. GAN-based methods perform well at a high 

compression ratio, but they are difficult to generate high-quality images.  

Excellent joint image compression and encryption scheme should achieve sufficiently high 

security with good performance of the underlying compression algorithm in terms of 

compression efficiency. The loop iteration process of RNN-based compression methods may 

impede the restoration when decryption. And GAN-based compression methods often generate 
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some extra details after decoding. Therefore, we choose the AE-based compression method as 

the backbone of our model to achieve a good balance between security and compression ability. 

The network architecture for AE-based image compression is shown in Figure 2.3. 

 

Figure 2.3: Block diagram for autoencoder-based image compression. 

In AE-based compression, auto-encoders are used to obtain a hopefully lower-dimensional 

representation 𝑦 of data 𝑥 via hidden layers. The network can be done by the operation 𝑥 →

𝑦 → 𝑥̂, where y =  𝑓(𝑥), 𝑥̂ = 𝑔(𝑓(𝑥)), from original data 𝑥 to a simpler representation and 

back. The reconstruction error between 𝑥 and 𝑔(𝑓(𝑥)) needs to be minimized. Convolutional 

auto-encoder (CAE) is a type of autoencoder replacing the fixed operation, like DCT, with 

some convolutional transforms. And the convolution and deconvolution filters are utilized for 

up-sampling or down-sampling. For autoencoder-based image compression, the goal is to find 

a better feature function 𝑓  and generative function 𝑔  that would give a short code (log-

likelihood) of the image data 𝑥 . In an autoencoder, given an encoder 𝑓 , a decoder 𝑔  and a 

probabilistic model 𝑝, the loss function is as 

                                     𝔼𝑥[−𝑙𝑜𝑔 𝑝(𝑓(𝑥))] + 𝛽 ∙ 𝔼𝑥 [‖𝑥 − 𝑔(𝑓(𝑥))‖
2

]                             (2.1) 

Here, the discrete probability distribution 𝑝  is used to assign bits to lower-dimensional 

representation for entropy coding. And the quantized output of the encoder is the compressed 

bitstream.  

Recently, various AE-based deep network methods have shown promising results in image 

compression. [23] aimed at directly optimizing the rate-distortion trade-off produced by an 

autoencoder, while [16] used different strategies to deal with the quantization and entropy rate 

estimation. To improve the performance, soft relaxation of quantization and entropy was 

proposed in [24]. And the authors introduced a hyperprior on scale parameters of the latent 

representation to get a more powerful entropy model in [15]. In [25], an enhanced entropy 

model is derived to learn the conditional probability model of latent representation. As an 
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improvement of [15], [17] generalized the hierarchical Gaussian scale mixture model in [15] 

to a Gaussian mixture model by adding an autoregressive component. Then, [18] proposed 

using discretized Gaussian mixture likelihoods and smaller residual blocks similar to [16]. Also, 

an attention module was introduced in [18].  

 

2.2 Image Encryption 

Joint image compression and encryption methods have attained much attention among different 

encryption schemes since compression is a must-do step for most images on the Internet. The 

framework for image compression and encryption system is to first encrypt and compress the 

original images by the content owner and then transmit the encrypted and compressed data to 

the cloud by the network provider. And the decryption and decompression operations are 

performed at the receiver for image recovery. Usually, encryption operations can be performed 

before compression, during compression or after compression to safeguard images. So, there 

are three types of schemes: encryption-then-compression, simultaneous compression 

encryption and compression-then-encryption. 

2.2.1 Encryption then Compression Scheme 

For the ETC system, the image data will be first encrypted and then compressed, while the 

decryption operation will occur after decompression. The feasibility of the ETC system has 

been demonstrated in [26]. However, applying encryption before compression affects the 

compression performance since the contents of encrypted images are masked by the secret key 

and the statistical correlations among neighbouring pixels are destroyed. Thus, many works on 

ETC system mainly focus on finding a suitable compression algorithm for the proposed 

encryption scheme. Different sampling and compression approaches are introduced in ETC 

systems, such as compressive sensing [27,28], uniform downsampling [29,30] and scalar 

quantizer [31,32]. In [27], a linear transformation of the pixels is used for encrypting data and 

lossy compression is achieved by CS. To avoid the negative effect of the linear operation on 

compression, two nonlinear operations are introduced in [28]. Also, gray mapping and 2D 

projected gradient are utilized for lower compressing complexity and better image recovery. 

For the uniform downsampling-based scheme, encrypted images are uniformly down-sampled. 

In [29], adaptive sampling is proposed for compressing the encrypted images and the 

corresponding multiscale interpolation is conducted for image recovery. Here, bitwise XOR 
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operation is exploited for masking image content. And in [30], images are encrypted by 

modulo-256 addition method while deep residual network and U-Net-based attention 

mechanism are utilized for reconstructing images from encrypted and down-sampled data 

sequences. In [31], modulo-256 addition method is used for image encryption. Cipher images 

are decomposed and quantized, and then the quantized sub-images are utilized for generating 

the bitstream. And in [32], non-overlapping blocks of images are masked by modulo-256 

addition method and block permutation is conducted to improve security. Then all encrypted 

sub-blocks are classified and encoded by difference quantization to achieve flexible 

compression. 

2.2.2 Compression then Encryption Scheme 

In contrast to the ETC system, the image will be compressed before conducting the encryption 

operation in CTE system. In CTE framework, original images are used to compresses for less 

redundancy, and then encrypted to ensure the security of content information. Then the CTE 

data are transmitted to the receiver side through public channel. After receiving the transmitted 

CTE data, the decryption and decompression is performed to reconstruct the original images. 

Hence, the CTE system is more compression-friendly and encryption operation will be sped up 

due to the compressed data [33, 34]. In [35], a neural network with small number of hidden 

layers is used for compression, then zigzag confusion and XOR operations between scrambled 

data and chaotic sequence are conducted for encryption. In [36], a deep learning-based CS 

strategy is introduced, and the encryption operations are conducted on multiple CS 

measurements. However, the CTE-based approaches usually cannot meet format compliance 

and may increase the data size since encryption will destroy the format and other image 

information. And in this thesis, all works meet the requirement to maintain format compliance. 

2.2.3 Simultaneous Compression Encryption Scheme 

Different from the above two systems, the content is compressed and encrypted by 

incorporating encryption operations into one or more stages of compression in the SCE system. 

And SCE approaches aim to enhance compression and security efficiency and are usually used 

to overcome the limitations of the above two strategies. However, achieving SCE system is a 

complex task since both compression and encryption schemes are considered when evaluating 

the performance. Many scholars have proposed a number of related works. And for CS-based 

SCE methods, the measurement matrix generation can be controlled by random sequences for 

compressing and encrypting the data simultaneously. In [37], a key-controlled measurement 
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matrix is used, and the obtained measurements are scrambled for encryption with a key 

generated by a logistic map. To shorten the key, in [37], the plain image is divided into 4 blocks 

before compressing and encrypting, and random pixel scrambling is introduced to CS-based 

SCE method. Subsequently, a 2D CS-based encryption-compression approach is proposed for 

better compression performance and cycle shift operation controlled by a hyper-chaotic system 

is exploited for re-encryption in [38]. In [39], a double image encryption algorithm is proposed 

and a co-sparse analysis model is used before compressing and encrypting by CS. Moreover, 

in [40], integer wavelet transform is combined with CS and the image information is embedded 

into IWT coefficients. The key is extracted from plain images by SHA-3 algorithm to achieve 

high key sensitivity and the final results show the high security of the method. Besides, some 

algorithms combining discrete wavelet transform and CS have been proposed [41,42] to ensure 

a higher security level, where DWT first transforms the images to get sparse matrices. In [41], 

the coefficients of the obtained sparse matrixes are confused by a zigzag path, then encrypted 

into a compressed bit-stream using CS. The simulation results demonstrate that this method 

has a high-security level, but the time complexity is high especially for large images. In [42], 

the row and column permutations are conducted on the coefficient matrix after DWT and the 

measurement matrix used for CS is generated by the 2D-SLIM map. The GF(257) 

multiplication algorithm is used in diffusion to enhance security. In [43], the sparse 

representations from the DWT operation are permuted by the Lorenz system and then 

compressed by SVD. And through the chaotic scrambling and XOR operation, the final 

compressed cipher image is obtained. The simulation results indicate that this approach is 

highly secure and robust, but the computational complexity of reconstruction is high. Besides, 

since JPEG is a commonly used compression method of digital images, simultaneous image 

compression and encryption scheme for JPEG images is proposed in [44]. In their work, new 

order-8 transforms are developed, and the new transforms are applied alternatively controlled 

by a key sequence. Block permutation is then applied after the transformation process. As the 

improvement of [44], AC- and DC-coefficient encryption algorithms are applied in [45]. The 

key for block permutation and DC confusion is generated through the BLAKE2 hash function 

and embedded into AC coefficients. In [46], order-16 DCT transform is used for the new block-

based encryption and compression scheme instead of order-8 orthogonal transforms and the 

corresponding algorithm for coefficients distribution is proposed. Block permutation and 

shuffling RSV pairs of AC coefficients are then applied to achieve a higher security level. And 

end-of-block identifiers are used to ensure format-compliant for JPEG decompression which 

are embedded into AC coefficients after permuting RSV pairs. A good compromise between 



 

 

11  

the security and compression efficiency is obtained. But the original correlation cannot be 

completely removed for these block-based methods. In [47], the images are represented in a 

2D discrete wavelet domain and measured by 2D CS in which the measurement matrices are 

constructed with a chaotic system, and then the measurement data are re-encrypted by taking a 

double random scrambling and a multiple random diffusion. However, its resistance to both 

Gaussian noise attack and occlusion attack is not good enough. Moreover, singular value 

decomposition can be used to replace CS. 

2.3 Retrieval on Encrypted Image 

Recently, the encrypted image retrieval system has attracted much research interest and many 

works for performing encrypted image research have been proposed. The aim of the encrypted 

image retrieval system is to achieve effective retrieval of encrypted images while ensuring the 

privacy requirement. And to search images better, the works for retrieval on encrypted images 

can be divided into several types. The first type is extracting features from plain images for 

retrieval and then the images and features are both encrypted before being transmitted to the 

server. And the retrieval is conducted by comparing the encrypted feature of the query image 

and that of each image in the database to search which images are similar to the query. For the 

methods in this category, images are encrypted by image encryption algorithms and the focus 

is on the problem of image feature protection which enable the similarity measures among 

encrypted features. 

The first scheme for searching on encrypted images is proposed in [48], which introduces the 

content-based image retrieval to the encrypted domain. The retrieval is achieved by using 

secure search indexes to match visual strings. The search indexes are extracted from plain 

images and encrypted by word IDs scrambling, order-preserving encryption, and min-Hash 

algorithm with randomized hash functions. To remain approximate similarity between 

protected features, three visual feature protection schemes are proposed in [49], including bit-

plane randomization, random projection, and randomized unary encoding. And these protection 

methods can maintain the correlation among features after encryption, so the encrypted image 

retrieval can be ensured. In [50], MPEG-7 visual descriptors can be represented as the feature 

vectors which are extracted from plain images, and the secure k-nearest neighbour (kNN) 

algorithm is employed to protect these feature vectors. And pre-filter tables constructed by local 

sensitive hash (LSH) are performed for better retrieval results. Since homomorphic encryption 

is one of the essential ways for secure computation, [51] focuses on comparing homomorphic 
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encryption-based schemes and randomization-based schemes for privacy-preserving image 

search. As an extension of [48,49], [51] comprehensively compares two randomization-based 

encryption methods in [48,49] with homomorphic encryption. The homomorphic-based 

schemes have proved to be more secure and perform better in large image databases but require 

extensive computation which make them hard to use in practice, while randomization-based 

schemes can offer efficient retrieval but reveal some information about randomized features. 

In [52], the proposed content-based system supports local feature-based encrypted image 

retrieval and evaluates the similarity by using Earth Mover's Distance (EMD) with improved 

locality-sensitive hashing. The scheme in [52] focuses on performing efficient similarity 

measurements to improve retrieval performance while the bag-of-words model and improved 

EMD with a linear transformation are conducted. In [53], encrypted image retrieval is 

developed by extracting visual descriptors from plain images and encrypting them by using a 

secure kNN algorithm. The pre-filter tables are constructed by LSH to increase retrieval 

efficiency. And to deter illegally copy and distribution to unauthorized users, a watermark-

based protocol is also used. The method in [54] utilizes compact binary sequences to replace 

the high dimensional representations and adapts the asymmetric scalar-product-preserving 

encryption for privacy protection. And the secure kNN scheme is combined with the binary-

based vector quantization and the similarity measure with asymmetric distance. In summary, 

these systems can solve the privacy issue while performing efficient retrieval. But the 

independent image feature extraction operation and feature encryption operation will incur 

extra computation costs and inconvenience for users. 

For the above works, too much computation and communication resources are consumed. 

Therefore, to overcome the limitation, other retrieval schemes have been developed focusing 

on feature extraction from the encrypted domain. In [55], images are encrypted by shuffling 

DCT coefficients before transmitting to the server. For different blocks, the coefficients are 

permuted pseudo-randomly which means that each coefficient is moved to another block and 

the frequency position remains unchanged. After that, the retrieval is conducted based on the 

histograms of these coefficients. This encryption method can maintain the format of JPEG file 

but the information about the coefficient histogram can be leaked. In [56], the color and texture 

information are encrypted by two different methods respectively. The pixel color values 

encryption is employed for color information while pixel positions permutation can protect 

texture information. Here, image compression is the optional step since the scheme in [56] is 

pixel-based encryption method. And the image retrieval is performed on the global color 

https://www.sciencedirect.com/topics/computer-science/locality-sensitive-hashing
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features. Then, Chou [57] proposes the encryption scheme based on block transformation to 

protect plaintext images and introduces the white noise images into block transformation for 

better protection. The image retrieval can be performed by comparing the distance based on 

the color histogram between the query and images from the cloud server. Besides, image 

convolution on the encryption domain is also discussed in [57], and it proved that the effect of 

encryption and decryption operations on image convolution can almost be neglected. In [58], 

different encryption operations are conducted on AC and DC coefficients respectively. 

Exclusive-or operation is conducted on DC Huffman codes, while AC coefficients are 

encrypted by using the scrambling operation. Then the AC coefficients are used to extract 

histograms as the features for retrieval. Compared with [55], the scheme in [58] can achieve 

better security, but it may face the information leakage of AC coefficients. In another work by 

Cheng [59], the encrypted image retrieval system is realized by encrypting the coded data using 

the stream cipher and permutation operation. Huffman codes are modified by using exclusive-

or operation with a standard stream cipher, and permutation is conducted on encoded binary 

sequences of DC coefficients. And for retrieval, the Markov features can be obtained from the 

encrypted domain in this approach directly. Multi-class supporting vector machine is used for 

obtaining low-dimensional feature vectors. Cheng et al. [60] developed the encrypted image 

retrieval system by extracting intra-block-based features from DCT coefficients which is better 

than the global features used in [58]. Inter-block permutation and exclusive-or operation are 

performed on DC coefficients, while AC coefficients are encrypted by intra-block permutation. 

However, this method is weak in terms of security against differential attacks. Xu et al. [61] 

utilized orthogonal decomposition to divide the image into two parts: the encryption field and 

the feature extraction field. The encryption operations are conducted on the encryption field. 

Then the encryption field and the feature extraction field would merge by the inverse 

orthogonal transform for the final encryption data. However, the feature extraction field is not 

encrypted which may cause information leakage. In [62], stream cipher and permutation cipher 

are used for encryption and then the Huffman-code histogram is changed after encryption with 

JPEG format maintenance. Here, Huffman-code histograms are used for retrieval and QT 

encryption method is exploited to improve accuracy when meeting different QFs. But 

redundant space is created during encryption.  

In addition to finding suitable encryption schemes for retrieval, some researchers are focusing 

on improving retrieval results. In these schemes, the encryption operations are conducted on 

original images or feature vectors from original images. Among them, the privacy is protected 
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by these encryption techniques. In [50, 53], LSH is used for getting features from plain images 

and the secure kNN algorithm is introduced for privacy security. In [63], HSV histograms and 

DCT histograms are integrated to obtain features which would be protected by the secure inner. 

And the copy of the database is merged into encrypted features to resist the statistical attack. 

In [64], a secure multiparty computing technology is developed to achieve multiple-owner 

communication and privacy. By using this scheme, the system can retrieve images gathered 

from multiple sources, and personal information will not be leaked during multiple-owner 

communication. In [65], the improved Harris algorithm is proposed to extract features and the 

speeded up feature algorithm is adopted for generated feature vectors. The chaotic encryption 

scheme is used for indexes security. In [66], the hyperchaotic system is used for image 

encryption while an improved pairwise-supervised hashing scheme is adopted for encrypting 

index. The scheme in [66] is focused on improving search efficiency and also considers the 

security issue. In [67], an encrypted hierarchical index tree is employed to obtain the secure 

index and speed up the retrieval processing. Similar to [50, 53], the secure kNN algorithm is 

used to obtain the secure index, and then a secure hierarchical index graph is developed to 

speed up retrieval processing. And with the development of the deep network, some deep 

architectures are employed to obtain efficient retrieval. In [68], transformed convolutional 

neural network is used to extract features and the encrypted hierarchical index tree can be 

employed for efficient search process. In [69], the fine-tuned convolutional neural network is 

performed to extract image features and the features are encrypted by the secure kNN algorithm. 

In [70], end-to-end encrypted image retrieval is proposed. Vision transformer model with triplet 

loss and cross-entropy loss is used as the backbone to extract features for search.  

2.4 Summary 

This chapter presents a brief introduction on traditional image compression and deep image 

compression. And some existing works are introduced which include image compression 

techniques, image encryption techniques and encrypted image retrieval techniques. For image 

compression techniques, traditional schemes and deep models are briefly introduced in this 

chapter. Various image compression and encryption schemes are introduced, and these 

algorithms can be categorized into three classes: encryption-then-compression scheme, 

simultaneous compression encryption scheme and compression-then-encryption scheme. The 

advantages and limitations are also discussed.  
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Chapter 3 Privacy-preserving Content based Image 

Retrieval  

Content-based Image Retrieval (CBIR) techniques are commonly used for similarity 

measurement on large amounts of images and can return the images quickly and effectively. 

But outsourcing CBIR service to cloud servers may cause privacy concerns. In this chapter, a 

new searchable encryption method is proposed to achieve privacy protection and it can support 

the similarity search scheme conducted on encrypted domains by extracting features from the 

content of encrypted images. The work in this chapter is to handle the conflict between security 

and retrieval performance and the proposed scheme tend to preserve the content of images for 

better retrieval without sacrificing privacy security. Here, the proposed encryption scheme is 

realized by using pixel-based operations on images. First, plain images are segmented to 8×8 

non-overlapped blocks due to the JPEG standard. For each pixel in the block, it can be 

represented with 8-bit binary sequence. Then, more significant 4-bit binary sequence of the 

pixel is confused by block permutation, while intra-block permutation is conducted on the less 

significant 4-bit binary sequence. After encryption on binary sequence, the image confusion is 

used by block permutation to increase image security and the index is generated from a logistic 

map. The histogram features for retrieval can be directly extracted from encrypted blocks. The 

major contributions of our method are listed as follows: 

1) The proposed pixel-based encryption method is realized by block permutation and intra-

block permutation on binary sequences. The value of the pixel can be replaced by the new one 

to protect the content of images. 

2)Block-based permutation method on image confusion is adopted, which can further improve 

security without restricting the local feature extraction. And a logistic map generated from 

image content provides a new index for image confusion. Different index is different images 

since the initial value of the map is calculated from the content of images. With the proposed 

encryption method, the feature can be obtained from confused blocks directly. 

3) The problem of similarity measurement on the encryption domain can be defined based on 

the local histogram. Experimental results show the security and retrieval performance of the 

proposed method and factors affecting the performance are discussed. 
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The rest of this chapter is organized as follows: Section 3.1 gives an overview of the proposed 

system module. Section 3.2 introduces pixel-based encryption and compression scheme. 

Section 3.3 explains the details of similarity measurement for retrieval. Performance 

evaluations on compression efficiency and security will be given in Section 3.4 and 3.5, 

respectively, with a comparison with other schemes. Section 3.6 provides a concluding remark. 

3.1 Overview of the Proposed Module 

The proposed scheme in this section includes two parts: the image encryption method and the 

image retrieval method. For a given image, the user needs to generate a set of secret keys for 

binary sequence permutation and obtain the initial value of the logistic map from image first. 

After getting keys, the encryption operations are employed on the image including binary 

sequence permutation on two different levels and image confusion before compression. After 

that the encrypted image is uploaded to the cloud server to generate the image database. For 

query,  the user submits encrypted query data to the server to retrieve similar images. After 

receiving the query request, the cloud server extracts all features from the encrypted database 

through similarity measurement. Similar images are returned to the user as retrieval results, 

and the user can decrypt the results using the secret key. 

3.2 Pixel based Encryption and Compression Model 

The framework of the proposed encryption and compression model is shown in Figure 3.1. The 

proposed encryption scheme includes binary sequence permutation on two different levels and 

image confusion by block permutation. First, the plain images are segmented into 8×8 non-

overlapped blocks due to the JPEG standard. For each pixel in the block, it can be represented 

with 8-bit binary sequence. Then, more significant 4-bit binary sequence of the pixel is 

confused by block permutation, while intra block permutation is conducted on the less 

significant 4-bit binary sequence. These two-level permutation operations are controlled by 

predefined secret 𝐾𝑒𝑦 1. The new index is generated by using BLAKE256 hash function. After 

encryption on binary sequence, the image confusion is used by block permutation to increase 

image security. The new index is generated from a logistic map which is controlled by 𝐾𝑒𝑦 2.  
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Figure 3.1: Framework of the proposed image encryption algorithm. 

3.1.1 Key Generation 

In our encryption scheme, the BLAKE256 hashing algorithm is used to generate the encryption 

keystream by taking the predefined key 𝐾𝑒𝑦1 as input. Here, the predefined key 𝐾𝑒𝑦1 is a 

random sequence with fixed-length which is used for value substitution and generating 𝐾𝑆1 

and 𝐾𝑆2. The predefined key 𝐾𝑒𝑦1 is the initial seed to generate. For a given index array 𝑅 

with 𝑟 elements, Fisher-Yates Shuffle [71] do 

for 𝑝 ← 𝑟 to 2 do 

      𝑞 ← random integer (1 ≤ 𝑞 ≤ 𝑝) 

      exchange 𝑅[𝑝] and 𝑅[𝑞] 

end for 

Here, the random integer is obtained from the key stream KS1 and 𝐾𝑆2.  

For image confusion by intra-block permutation, a logistic map is used to generate a random 

sequence. And this random sequence can be used to obtain the new index when scrambling the 

pixel position within each block. The logistic map we used is defined as: 

  𝑈𝑡+1 = 𝜃𝑈𝑡(𝑈𝑡 + 1), 𝑈𝑡 ∈ (0,1)    (3.1) 

where 𝑈𝑡  is the value for 𝑡  iterations, and 𝜃  is the system parameter. The system is chaotic 

when 𝜃 is in the range of [3.57, 4]. Here, the initial value 𝑈0 is calculated with the average 

pixel value of the encrypted image after two-level binary permutation. And the secure key 

𝐾𝑒𝑦 2 consists of the initial value 𝑈0 and parameter 𝜃. Since the logistic map is sensitive to its 

initial value, different logistic maps can be generated with different values of 𝑈0 for different 

images, which can improve security. 
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3.1.2 Two-level Binary Permutation 

For most pixel-based encryption methods, the encrypted image may preserve most of content 

information of the original image and leak information easily when the attacker knows the 

chipper image. This kind of encryption method usually cannot handle statistical attacks. 

In order to ensure image security, we propose a two-level binary permutation scheme including 

intra-block permutation and block permutation. For each pixel in the block, it can be 

represented with 8-bit binary sequence. Then, more significant 4-bit binary sequence of the 

pixel is confused by block permutation, while intra-block permutation is conducted on the less 

significant 4-bit binary sequence. Block permutation is conducted on more significant 4-bit 

binary sequence, including first four bytes. During permutation, we generate random 

permutation index to shuffle the binary position of each pixel in image. The details are 

described in Algorithm1. 

Algorithm 1: BlockPermut 

Input: 8×8 blocks, the random sequence 𝐾𝑆1 

Output: Encrypted blocks 

1: Denote 𝑞𝑖 as more significant 4-bit binary sequences of pixels in ith block 

2: Denote qi
’ as more significant 4-bit binary sequences of pixels in ith encrypted 

block 

3: Perform Yates Shuffle algorithm where the random integer in each loop is from 

𝐾𝑆1 to generate a new index H for permutation 

4: for each 𝑞𝑖 do 

5:    𝑞𝑖
’ ⟵ 𝑞𝑖[𝐻] 

6: end for  

 

Intra-block permutation is conducted on less significant 4-bit binary sequence, including last 

four bytes. During block permutation, we generate random permutation index to shuffle the 

binary position of each pixel in block. The details are described in Algorithm2. 

Algorithm 2: IntrablockPermut 

Input: Pixels in 8×8 block, the random sequence 𝐾𝑆2 

Output: Encrypted block 

1: Denote 𝑞𝑖 as less significant 4-bit binary sequence of ith pixel in block 
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2: Denote qi
’ as less significant 4-bit binary sequence of ith pixel in encrypted 

block 

3: Perform Yates Shuffle algorithm where the random integer in each loop is from 

𝐾𝑆1 to generate a new index G for permutation 

4: for each 𝑞𝑖 do 

5:    𝑞𝑖
’ ⟵ 𝑞𝑖[𝐺] 

6: end for  

 

3.1.3 Image Confusion 

After two-level binary permutation, image confusion is conducted by block permutation, which 

can preserve the local information of chipper images. Here, the logistic map is used to generate 

a random sequence. And this random sequence can be used to obtain the new index when 

scrambling the pixel position in image. The details of the permutation stage are described in 

Algorithm 3. 

Algorithm 3: ImagePermut 

Input: 8×8 blocks, the initial value 𝑈0 and parameter 𝜃 of logistic map from 𝐾𝑒𝑦2 

Output: Encrypted block 

1: Denote 𝑏𝑖𝑗 as ith pixel in jth block 𝐵𝑗 

2: Denote bij
’ as ith pixel in jth encrypted block 𝐵𝑗

’ 

3: Iterate the logistic map with the initial value 𝑈0 and parameter 𝜃 and obtain 

chaotic sequence X 

4: Sort X in ascending order and use its index values as the new index F1 and F2 

for permutation 

 for block 𝐵𝑗 do 

5:      for each 𝑏𝑖𝑗 in block 𝐵𝑗 do 

6:            𝑏𝑖𝑗
’ ⟵ 𝑏𝑖𝑗[𝐹1] 

7:      end for  

8: end for 

9: for each block 𝐵𝑗 do 

10:    𝐵𝑗
’ ⟵ 𝐵𝑗[𝐹2] 

11: end for  
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3.3 Content-based Image Retrieval 

 

Figure 3.2: Framework of the content-based encrypted image retrieval. 

The framework of the proposed image retrieval system is shown in Figure 3.2. The image 

owner uploads encrypted images to the cloud server, and those images are stored in the 

encrypted image database. When the authorized user sends the query image to the server, the 

features of the query image and all images in the dataset are extracted. And after ranking and 

evaluating, serval images that are similar to the query image are sent to the user as the search 

results. Finally, the authorized user can use the corresponding key to decrypt the search results. 

Local histogram is used for content based image retrieval since the global histogram cannot 

capture the spatial information of the image.  Some researchers use other classic local features, 

such as SIFT which is robust to scaling, rotation, affine distortion, and illumination changes. 

But these methods need additional communication between the server and users, which may 

cause undesirable burdens. So we use local histogram to extract feature. First, the original 

images are divided into non-overlapping 8×8 blocks before compression during the image 

encryption process and then image encryption is conducted. Next, local histogram is calculated 

from each block, and denote the local histogram of 𝑗th block in 𝑖th image as ℎ𝑖𝑗. Here the local 

histograms we obtained are the encrypted ones since all pixel values have been encrypted by 

two-level binary permutation.  

We introduce the similarity measurement to process image spatial information for retrieval. For 

two images with 𝑐 channels, 𝐸𝐼1 and 𝐸𝐼2 respectively represent the encrypted image of them. 
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𝐸𝐵𝑗1 and 𝐸𝐵𝑗2 respectively represent 𝑗th block of two images. The similarity between block 

can be calculated by: 

  Δ(𝐸𝐵𝑗1, 𝐸𝐵𝑗2) = ∑ ∑ (1 −
|𝑝𝑖1

𝑐  (𝑣)−𝑝𝑖2
𝑐  (𝑣)|

1+𝑝𝑖1
𝑐  (𝑣)+𝑝𝑖2

𝑐  (𝑣)
)255

𝑣=0
3
𝑐=1     (3.2) 

Here, 𝑝𝑖1
𝑐  (𝑣) and 𝑝𝑖2

𝑐  (𝑣) respectively denote the frequency of pixel value 𝑣 in the 𝑐 channel 

of block 𝐸𝐵𝑗1 and block 𝐸𝐵𝑗2. And the similarity between the image 𝐸𝐼1 and the image 𝐸𝐼2 is 

as follows: 

  Δ(𝐸𝐼1, 𝐸𝐼2) = ∑ Δ(𝐸𝐵𝑗1, 𝐸𝐵𝑗2)𝐸𝐵𝑗∈𝐸𝐼     (3.3) 

 

3.4 Performance Evaluation 

In this section, we evaluate the compression performance and the perceptual security of our 

proposed scheme. We implement the proposed method with MATLAB 2019a on Win-10 

operating system. The performance evaluation is conducted on the publicly available Kodak 

dataset [72]. There are 24 high-quality images in this dataset, and some of them are shown in 

Figure 3.3. In Figure 3.4, the encryption images of test set are shown. It is obvious that the 

visual information of the plain images has been well masked with the proposed encryption 

method. 

 

Figure 3.3: Test images from Kodak dataset. 
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Figure 3.4: Encryption images of test images. 

In the perceptual security evaluation of encryption methods, the peak signal-to-noise ratio 

(PSNR) is used for evaluating the compression performance. In Figure 3.5, when the 

encryption key is provided for decryption, the PSNR values of our proposed model can 

illustrate the compression efficiency of our model. The closer the curve is to JPEG, the higher 

the compression efficiency. Similar to [81], pixel based encryption operations are used in our 

scheme, which affects the compression performance. And in [62], a joint encryption and 

compression scheme is employed for better encryption. 

 

Figure 3.5: Rate distortion performance for different methods. 

 

3.5 Security Analysis  

This section is going to discuss various cryptographic attacking methods, such as ciphertext-

only attack, differential attack, and statistical attack. And the robustness against those attacks 

will be evaluated to analyze the security of our scheme. 
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3.5.1 Ciphertext-only Attack 

The ciphertext-only attack is one of the most basic cryptanalysis techniques. And to handle it, 

the key space of the cryptosystem need to be large. In our model, the 256-bit encryption key 

𝐾𝑒𝑦1 is defined which controls two-level binary permutation in the proposed model. And for 

logistic map, the initial value 𝑈0 and parameter 𝜃 from 𝐾𝑒𝑦2 are both 10(16) as mentioned in 

[73]. Therefore, we obtain a 2(256) × 10(16)  keyspace which is lager than the theoretical 

requirement with 2(100). Because of the large keyspace of our model, it is tough for the attacker 

to break down and our encryption system can resist this attack easily. 

3.5.2 Key sensitivity Analysis  

In general, the security of an encryption system should only rely on the secrecy of keys but not 

the underlying techniques.  In this regard, a cryptosystem needs to be highly sensitive to the 

encryption and decryption keys used. Here, we use the plain image ‘kodim03’as examples. The 

high key sensitivity level can be demonstrated in two parts: 

1) A completely different ciphertext image would be generated for the same plain image if the 

encryption keys used change slightly. 

2) The encrypted image should not be decrypted when a key having minor change to the 

encryption key is used. 

In the first case, we first make a minor change in encryption key 𝐾𝑒𝑦1 to generate the new key 

stream 𝐾𝑆1. We then generate two encrypted images using the two different keys for the same 

input image. And the encrypted images are shown in Figure 3.5(b) and 3.5(c). Then we make 

a minor change on both encryption key 𝐾𝑒𝑦1 and 𝐾𝑒𝑦2, and the encrypted images are shown 

in Figure 3.5(d). It is clearly seen that the encrypted images obtained by two slightly different 

keys are very different, and our proposed model can fulfil the first case of key sensitivity.  

     

(a)                                  (b)                               (c)                                (d) 
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Figure 3.6: Comparison of encrypted images with different keys. (a) plain images,  (b) cipher 

image through the original key, (c) cipher image through the new 𝐾𝑒𝑦1 , (d) cipher image 

through the new 𝐾𝑒𝑦1 and 𝐾𝑒𝑦2. 

For the second case, the original key and the new key generated are utilized to decrypt the same 

cipher-image encrypted with the original key. The and the decrypted images using the two 

different keys are shown in Figure 3.6(c) and 3.6 (d). It is seen that only the original key can 

recover the original image. 

     

(a)                                  (b)                               (c)                                (d) 

Figure 3.7: Decryption with different keys. (a) original image, (b) decrypted image using the 

original key 𝐾𝑒𝑦1, (c) decrypted image using the new 𝐾𝑒𝑦1, (d) decrypted image using the 

new 𝐾𝑒𝑦1and 𝐾𝑒𝑦2. 

3.5.3 Statistical Attack 

A good encryption scheme needs to reduce the statistical relationship between plain images 

and encrypted images to defend against this attack. And the histogram and correlation chart are 

two standard methods to illustrate the correlation. To evaluate the robustness against the 

statistical attack, the histogram of image ‘kodim05’ and corresponding encrypted images are 

given in Figure 3.7. It is seen that there are large differences between the histograms of images 

before and after encryption, which means that the encryption operation can decrease the pixel’s 

correlation.  

   

(a)                                                                     (b) 

Figure 3.8: Histogram charts of plain-image and cipher-image. (a) plain-image (b) cipher-

image. 
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And Figure 3.8 shows the correlation charts of image ‘kodim05’ and ciphertext images under 

our encryption model. From the result, the encrypted image still contains a lot of spatial 

information. 

 

(a) 

 

(b) 

Figure 3.9: Correlation charts of images before and after encryption. (a) original image (b) 

encrypted image from the proposed model.  

3.5.4 Differential Attack  

In differential attacks, attackers try to obtain the encryption keys by studying the influence of 

input differences on output changes. To resist differential attack, the encryption system needs 

to be sensitive to changes in the image, and minor changes in plain images should cause large 

changes in encryption images. The common criteria used in measuring the degree of image 

change are net pixel change ratio (NPCR) and unified average change in intensity (UACI). The 

value of NPCR measures the rate of change between pixels in images before and after 

encryption. Generally, the higher value of NPCR, the better performance of encryption. The 

value of UACI refers to the average intensity difference between two images. When UACI is 

close to 33%, the encryption system has higher security. For an image, NPCR and UACI are 

given as follows:  

                            𝑇(𝑚, 𝑛) = {
0, 𝑖𝑓 𝐼𝑒1(𝑚, 𝑛) = 𝐼𝑒2(𝑚, 𝑛)

1, 𝑖𝑓 𝐼𝑒1(𝑚, 𝑛) ≠ 𝐼𝑒2(𝑚, 𝑛)
  (1 ≤ 𝑚 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁)   (3.4)   

                                                      NPCR =
∑ 𝑇(𝑚,𝑛)𝑚,𝑛

𝑚×𝑛
 × 100%                                            (3.5) 
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                                                     UACI =
∑

|𝐼𝑒1(𝑚,𝑛)−𝐼𝑒2(𝑚,𝑛)|

255𝑚,𝑛

𝑀×𝑁
 × 100%                              (3.6) 

where 𝑀 and 𝑁  are the width and height of images. 𝐼𝑒1 and 𝐼𝑒2 are the encrypted images from 

two different original images. These two parameters can show slight changes in images. 

Therefore, to evaluate the robustness against differential attack, we conduct a slight 

modification on pixel values to generate the slightly changed image. In the experiment, only 

about 1% of the pixels in the image would be changed by adding 1 to the value. Then both 

images will be encrypted by the secure key. Table 3.1 gives the mean NPCR and UACI values 

for our encryption system. The mean NPCR of our encryption system is higher than that of 

[75], which is 57.35%. Besides, the average UACI mentioned in [75] is less than 10% which 

is lower than our model. That main because the logistic map is sensitive to its initial value and 

different images are confused by different logistic maps. 

Table 3.1: Mean NPCR and UACI of cipher-images. 

 NPCR% UACI%  NPCR% UACI% 

Kodim01 99.13 15.35 Kodim13 99.44 22.29 

Kodim02 98.02 11.03 Kodim14 99.44 24.11 

Kodim03 99.15 21.18 Kodim15 99.53 32.22 

Kodim04 99.17 15.26 Kodim16 99.25 18.96 

Kodim05 99.38 21.04 Kodim17 99.35 21.18 

Kodim06 99.37 28.85 Kodim18 99.26 19..96 

Kodim07 99.18 18.05 Kodim19 99.33 22.12 

Kodim08 99.49 28.16 Kodim20 91.57 34.58 

Kodim09 99.19 17.75 Kodim21 99.13 17.68 

Kodim10 99.11 17.32 Kodim22 99.23 18.95 

Kodim11 99.11 17.15 Kodim23 99.36 24.51 

Kodim12 99.05 17.01 Kodim24 99.22 21.88 

 

3.5.5 Time Efficiency Analysis 

In this part, the encryption efficiency of our proposed scheme is analyzed. The tested 24 images 

are from the publicly Kodak dataset. The size of images in this dataset is 512×768 or 768×512. 

The mean encryption speed of different encryption schemes is shown in Table 3.2.  

Table 3.2: Encryption efficiency with different schemes. 
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 Proposed Model 

Speed(s) 14.78 

 

3.6 Retrieval Accuracy on Encrypted Images 

The retrieval performance evaluation is conducted on the image database Corel-1k [74] which 

contain 1k color JPEG images in 10 categories, and some of them are shown in Figure 3.9.  

     

    

Figure 3.10: Eight images from Corel dataset with different classes. 

Here, we analyze the retrieval performance of proposed algorithm compared with other 

schemes by using Top-k precision and precision–recall curve. The precision and recall rate are 

defined as follows: 

                         precision =
Num(relevant images in returned images  )

Num(returned images)
 × 100% (3.7) 

                            recall =
Num(relevant images in returned images  )

Num(returned images in database)
 × 100% (3.8) 

Figure 3.10 shows the precision of retrieval accuracy of different encrypted image retrieval 

schemes when implementing Top-k search (k=5, 10, 15, 20). Unencrypted images and 

encrypted images using the same similarity measurement. Here all schemes are performed on 

unencrypted Corel-1k image database. In [75], the images are encrypted by pixel value 

confusion and pixel position shifting, while value replacement and position scrambling are 

conducted on images in [76]. For the average performance, our proposed method is close to 

the results with unencrypted images due to the spatial information in encrypted images. 
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Figure 3.11: Top-k precision (k=5, 10, 15, 20). 

 

Figure 3.12: Precision-recall curve. 

Figure 3.11 shows the precision–recall curve. And when recall = 0.1, the retrieval accuracy of 

the proposed encryption and retrieval model is closest to the performance with unencrypted 

images. When the recall rate is between 0.6 and 1, the retrieval accuracy of [75] is slightly 

higher than the proposed scheme.  But the retrieval accuracy of proposed scheme is always 

better than that of [76]. Moreover, the area under curve (AUC) is calculated for futher 

measuring the overall retrieval accuracy. The AUC of curve Unencrypted, Proposed, [75] and 

[76] are 0.4813, 0.4257, 0.3845 and 0.2962 respectively. 

 

3.7 Summary 

In this chapter, a new searchable encryption method based on pixel is proposed to achieve 

privacy protection and it can support similarity measurement on encrypted domains. The 
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features are extracted from the content of images. And to protect the privacy security, two-level 

sequence permutation is conducted on pixels in each 8×8 block. Using block based permutation 

method on image confusion can guarantee local feature extraction, further improving the image 

security and retrieval accuracy. With the proposed encryption method, the feature can be 

directly extracted from encrypted blocks. The problem of similarity search on encrypted images 

is defined based on the local histogram. And the retrieval accuracy and image security of 

proposed method are tested. Moreover, we discuss the factors affecting the performance of 

algorithm. From the security analysis, we can find that the security level is not so strong since 

block based encryption operation cannot remove spatial relationships well. In the next chapter, 

we will explore the possibility of using value substitution for further security and make full use 

of DCT coefficient to obtain better encryption and retrieval perfromence. 
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Chapter 4 Encrypted JPEG Image retrieval based on 

DCT coefficients 

In this chapter, we tend to extract the features for retrieval from the frequency domain which 

would consume less computation and communication resources. And for the encrypted image 

retrieval, the Discrete Cosine Transform (DCT) domain can be a potential domain in extracting 

visual information directly from cipher-images. Here, DCT coefficients are utilized for 

obtaining feature vectors. The encryption operation used is performed on JPEG images since 

JPEG is one of the most popular image standards in daily life. The images are entirely 

encrypted along with format compliance and file size preservation. And Due to the successful 

application of deep learning in multiple visual areas, we use the deep architecture in network 

to get more effective features for encrypted image retrieval. The novel scheme for encrypted 

image retrieval is proposed based on learning network. For a given encrypted query image, the 

server exploit the DC and AC coefficients as the inputs of the network to obtain the image 

descriptors for retrieval to measure the similarity between the encrypted query image and 

database image, without first decrypting images. And we adopt the Siamese architecture for 

metric learning since the learned image embedding can help the Euclidean distance captures 

the similarity well. Finally, the encrypted images with plaintext content similar to the query 

image are returned to the user. The major contributions of our method are summarized as 

follows: 

1) We encrypt images by coefficient value substitution and intra-block pixel permutation, 

which provide high security and compression efficiency. With the proposed encryption method, 

the feature can be directly extracted from the frequency domain. 

2) We proposed a method of learning in the frequency domain which would consume less 

computation and communication resources. And we modify the existing ResNet model to 

ensure DCT coefficients as input.  

3) We use a Siamese network that combines three streams with a triplet loss to optimizes the 

weights of our feature extraction model to produce representations well suited for a retrieval 

task. During training, hard non-matching (negative) examples and hard matching (positive) 

examples are learned to enhance the representation. 
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The rest of this chapter is organized as follows: Section 4.1 gives an overview of the proposed 

encryption and retrieval model. Section 4.2 explains the implementation details of DCT based 

image encryption and compression model. Section 4.3 introduces the learned retrieval network, 

including deep feature generation and similarity loss training. Performance evaluations on the 

compression efficiency and security will be given in Section 4.4 and 4.5, respectively. Section 

4.6 provides the discussion on retrieval performance. And Section 4.7 gives the summary of 

this chapter. 

4.1 Overall of the Proposed Scheme 

The proposed scheme in this paper includes two parts: the image encryption method and the 

image retrieval method. For a given image database, user needs to generate a set of secret keys 

first. Then, images in the database are encrypted by coefficients substitution and intra-block 

permutation during compression. After that the encrypted image database is uploaded to the 

cloud server. To retrieve similar images, user submit an encrypted query image data to the cloud 

server. Once receiving the query request, all features are extracted from the encrypted database 

by cloud server through a learned network. Similar images are returned to the user as search 

results, and the user can decrypt the results using the secret key. 

4.2 DCT based Image Encryption and Compression Model 

JPEG is one of the most common image compression standards. And it is a kind of lossy 

compression method which will remove the high frequency information which is not visually 

obvious. In this paper, our scheme is conduct on JPEG image. According to JPEG standard 

[14], a color JPEG image will be divided into 8×8 non-overlapped blocks and 64 DCT 

coefficients (one DC coefficient and 63 AC coefficients) are generated. When transmitting, 

DCT coefficients are converted into binary bits. Here, we conduct encryption operations on 

DCT coefficients to enhance security while maintaining JPEG format compatibility. Also, for 

further image retrieval, a searchable encryption scheme is necessary. The proposed encryption 

algorithm is shown below. 

Algorithm 1: Encryption Algorithm  

1: Load original image 𝐼 and the predefined key 𝐾 

2: 𝐾𝑆1 ⟵ BLAKE256(𝐾)   

3: Get YCbCr components from chroma sampling for each image 

4: for each 8×8 non-overlapped block of component do 
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5:     8×8 DCT transformation and get quantized DCT coefficient matrix 

6: end for 

7: Value substitution on all DC coefficients 

8: Intra-block permutation of DC and AC coefficients with 𝐾𝑆1 

9: Generate the encrypted bit-steam and transmit it to the cloud 

 

4.2.1 Keystream Generation Process 

In our encryption scheme, the BLAKE256 hashing algorithm is used to generate the encryption 

keystream by taking the predefined key 𝐾 as input. Here, the predefined key 𝐾 is a random 

sequence with fixed-length which is used for value substitution and generating 𝐾𝑆1 . The 

predefined key 𝐾 is the initial seed to generate. For shuffling all DC and AC coefficients, the 

new index can be generated by the Fisher-Yates Shuffle algorithm using the random key stream 

𝐾𝑆1.  

4.2.2 Value Substitution 

As presented above, there are two steps in the image encryption scheme including coefficients 

value substitution and intra-block permutation. Here, we present a sub-algorithm to specify the 

process of value substitution. After substituting values, the same value at different positions 

can be substituted with the same value, which helps to improve retrieval performance. The new 

value is sensitive to the change in the original pixel value, which can help resist differential 

attacks. 

Algorithm 2: ValueSubstitution  

Input: DC coefficients 

Output: Encrypted DC coefficients 

1: Generate a random sequence 𝑆 from rang [-1024,..,1024] 

2: Denote 𝑝𝑖 as ith value in DC coefficient matrix 

3: Denote pi
’ as ith value in the encrypted DC coefficient matrix 

4: for each pi do 

5:    𝑝𝑖
’ ⟵ 𝑆𝑝𝑖

 

6: end for  
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4.2.3 Intra-block Permutation 

For intra-block permutation, we generate a random permutation index to shuffle the intra-block 

coefficient position to further improve security. 

Algorithm 3: IntrablockPermut 

Input: Encrypted DC coefficients and AC coefficients, the random sequence 𝐾𝑆1 

Output: Encrypted DC and AC coefficients 

1: Denote 𝑝𝑖 as ith value in coefficient matrix 

2: Denote pi
’ as ith value in encrypted coefficient matrix 

3: Perform Yates Shuffle algorithm where the random integer in each loop is from 

𝐾𝑆1 to generate a new index G for permutation 

4: for each pi do 

5:    𝑝𝑖
’ ⟵ 𝑝𝑖[𝐺] 

6: end for  

 

4.3 Image Retrieval Model 

 

Figure 4.1: Framework of the content-based encrypted image retrieval. 

In our encrypted image retrieval model, users encrypt images before uploading them to the 

cloud and generating an encrypted image database to preserve privacy. Besides the image 

encryption, computation and storage costs are all outsourced to cloud servers. After storing the 

images, users may want to obtain the images with similar content to a query image and then 

send the encrypted query image to the cloud. The feature extraction and search operation are 

finished by the cloud server. Here, the feature extraction operation is conducted on the 

frequency domain and the deep features are generated from the DCT coefficients directly. After 
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searching, several images are sent to the users, and users can use the corresponding key to 

decrypt the search results. 

4.3.1 Feature Extraction  

In this chapter, we propose a feature extraction model that is learning in the frequency domain. 

And to meet the size requirement of general network, a data pre-processing is introduced as the 

input data size pruning scheme. Due to the successful application of deep learning in multiple 

visual areas, we tend to realize more efficient retrieval with the help of deep architecture. For 

using the learning method, original images are usually pre-processed on a CPU and then 

transmitted to graphics processing units for further processing. In our system, the compressed 

and encrypted bitstreams are transmitted from users to the cloud server. Thus, bandwidth 

requirements for communication between the CPU and graphics processing units will be 

addressed since high-resolution RGB images are compressed. Also, data security can be 

protected well with the encryption scheme mentioned in Section 4.2.  

In our method, images are pre-processed on a CPU for encryption. And after encryption 

operation, the encrypted DCT coefficients are grouped into multiple frequency channels as the 

inputs of the feature extraction model. Here, we demonstrate that minimal modification on 

existing deep models developed in the spatial domain can suit the inputs from the frequency 

domain. Specifically, we remove the original deep input layer and reserve the remaining deep 

architecture. In our experiment, we chose ResNet as the backbone of the feature extraction 

model. Since our encryption scheme is based JPEG images. The components with the same 

frequency in all the 8×8 blocks are grouped into one channel and then each color component 

provides 64 channels, with a total of 192 channels in the frequency domain. For a given 

H×W×C color image, the input frequency feature shape becomes H/8×W/8×192 after 

converting to the frequency domain. Thus, we skip the normal input layer and max-pooling 

operator, and set the first residual layer as the input layer. In Figure 4.2, we take 64 channel as 

the example to show the modification. After that, the number of input channels in deep 

architecture is modified to fit the dimensions of the DCT coefficient inputs. In this way, the 

modified deep model is similar to the original deep network in terms of parameter count and 

computational complexity. 
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Figure 4.2: Feature extraction network. 

4.3.2 Learning with Ranking Loss 

Retrieval is a kind of metric learning problem and two-branch Siamese or triplet network is 

one of the typical solutions. So for better decreasing the distance between similar image 

samples, we employ the Siamese architecture with triplet loss to enhance the representation. In 

Siamese architecture, each branch is a clone of the other and the parameters of each branch are 

shared. And the matching and non-matching pairs (𝑖, 𝑗) are employed for training. Thus, the 

contrastive loss function can be given as follows: 

                              𝐿 = {
𝔼[‖𝑓(𝑖) − 𝑓(𝑗)‖2] 𝑖𝑓 𝑌(𝑖, 𝑗) = 1

𝔼[𝑚𝑎𝑥{0, 𝜏 − ‖𝑓(𝑖) − 𝑓(𝑗)‖}2] 𝑖𝑓 𝑌(𝑖, 𝑗) = 0
                           (4.1)                                           

For image pair selection, positive images and negative images are selected for training loss. 

Positive images: positive examples are selected from clusters where query image is also there. 

The image that has the lowest descriptor distance to the query is chosen as positive.  

Negative images: negative examples are selected from clusters different than the cluster of the 

query image, as the clusters are non-overlapping. We choose hard negatives which is the non-

matching images with the most similar descriptor. 

 

4.4 Performance Evaluation 

In this section, experiments will be conducted to evaluate the compression performance and 

the perceptual security of our proposed encryption and compression scheme. The performance 

evaluation is conducted on the publicly available Kodak dataset [72] with 24 high-quality 

images, and some of them are shown in Figure 4.3. In Figure 4.4, the encryption images of test 

set are shown. 
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Figure 4.3: Test images from Kodak dataset. 

     

    

Figure 4.4: Encryption images of test images. 

 

Figure 4.5: Rate distortion performance for different methods. 

In the perceptual security evaluation of encryption methods, the peak signal-to-noise ratio 

(PSNR) is used for evaluating the compression performance. In Figure 4.5, when the 

encryption key is provided for decryption, the PSNR values of our proposed model can 

illustrate the compression efficiency of our model. The closer the curve is to JPEG, the higher 
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the compression efficiency. Similar to [55], coefficient permutation is used in our scheme, 

which affects the compression performance. And in [62], more bits are needed since the DC 

Huffman table is shuffled. 

 

4.5 Security Analysis  

This section is going to discuss various cryptographic attacking methods, such as ciphertext-

only attack, differential attack, and statistical attack. And the robustness against those attacks 

will be evaluated to analyze the security of our scheme. 

4.5.1 Ciphertext-only Attack 

To defend against the ciphertext-only attack, the key space of the cryptosystem should be large. 

In our model, the parameters of the learning network are given. The 256-bit encryption key 𝐾 

is given and then we obtain a 2(256) keyspace which is lager than the theoretical requirement 

with 2(100). So it is tough for the attacker to break down and our encryption system can handle 

this attack. 

4.5.2 Key Sensitivity Analysis  

Considering to privacy, a cryptosystem needs to be highly sensitive to the encryption and 

decryption keys used. Here, we use the plain images ‘kodim03’as examples. The high key 

sensitivity level can be demonstrated in two parts: 

1) A completely different ciphertext image would be generated for the same plain image if the 

encryption keys used change slightly. 

2) The encrypted image should not be decrypted when a key having minor change to the 

encryption key is used. 

In the first case, we make a minor change in encryption key 𝐾 to generate the new key stream 

𝐾𝑆1. We then generate two encrypted images using the two different keys for the same input 

image. And the encrypted images are shown in Figure 4.6(b) and 4.6(c). It is clearly seen, from 

both the MSE figure and the difference image, that the encrypted images obtained by two 

slightly different keys are very different, and our proposed model fulfils the first case of key 

sensitivity.  
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(a)                                 (b)                                 (c) 

Figure 4.6: Comparison of encrypted images with different keys. (a) plain images,  (b) cipher 

image through the original key, (c) cipher image through the new 𝐾. 

For the second case, the original key and the new key generated are utilized to decrypt the same 

cipher-image encrypted with the original key. The decrypted images using the two different 

keys are shown in Figure 4.7(b) and 4.7(c). It is seen that only the original key can recover the 

original image. 

   

(a)                                 (b)                                 (c) 

Figure 4.7: Decryption with different keys. (a) original image, (b) decrypted image using the 

original key 𝐾, (c) decrypted image using the new 𝐾. 

 

4.5.3 Statistical Attack 

In statistical attacks, attackers utilize the high correlation between pixels and obtain original 

images through the predictable relationship between plain images and encrypted images. Here, 

we use the histogram and correlation chart to illustrate the correlation. And the histogram of 

image ‘kodim13’ and corresponding encrypted images are given in Figure 4.8. It is seen that 

there are large differences between the histograms of images before and after encryption.  

We can find that the shuffling operation can extremely decrease the pixel’s correlation. And the 

substitution can further reduce the correlation. From Figure 4.8, our method and [45] does not 

show a uniform distribution since there are still some correlations among pixels, while [30] can 

achieve the uniform distributed histogram which reveals the excellent property to resist the 

statistical attack. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.8: Histogram charts of plain-image and cipher-image. (a) plain-image (b) cipher-

image of the proposed method, (c) Ref [30], (d) Ref [45].             
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And Figure 4.9 shows the correlation charts of image ‘kodim13’ and ciphertext images under 

our encryption model, [30] and [45]. A similar shuffling operation is also utilized in [45]. But 

the results show that the shuffling operation in our model achieves better performance on 

decreasing the pixel’s correlation compared with [45].  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.9: Correlation charts of images before and after encryption. (a) original image (b) 

encrypted image from the proposed model, (c) Ref [30], (d) Ref [45].  
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4.5.4 Differential Attack  

For differential attack evaluation, the encryption system needs to be sensitive to changes in the 

image, and changes in plain images should cause different encryption images. The common 

criteria NPCR and UACI are used to measure the degree of image change. A robust encryption 

system needs to get a high value of NPCR and the value of UACI needs to close to 33%. 

To start the evaluation, we slightly modify some random pixel values to generate the slightly 

changed image. In the experiment, only about 1% of the pixels in the image would be changed 

by adding 1 to the value. Table 4.1 gives the mean NPCR and UACI values for our encryption 

system. From the table, the proposed model has the defence capability against the differential 

attack to a certain extent, while the NPCR and UACI values are all almost zero for the 

encryption method in [30], indicating the low property.  

Table 4.1: NPCR and UACI of cipher-images. 

 Proposed Model Ref [30] Ref [45] 

 NPCR% UACI% UACI% UACI% NPCR% UACI% 

Kodim01 97.57 35.93 0.01 8.22e-05 96.62 39.32 

Kodim02 98.22 38.31 0.01 8.98e-05 97.97 36.48 

Kodim03 98.43 34.38 0.01 9.74e-04 98.91 28.36 

Kodim04 96.68 32.35 0.01 7.12e-05 98.18 38.23 

Kodim05 97.25 34.96 0.01 7.58e-05 97.42 36.31 

Kodim06 94.87 36.78 0.01 6.45e-05 96.86 36.48 

Kodim07 97.17 29.66 0.01 7.31e-04 97.91 29.37 

Kodim08 98.48 36.78 0.01 9.74e-04 98.62 38.23 

Kodim09 98.26 34.86 0.01 7.11e-05 98.02 37.82 

Kodim10 98.45 34.92 0.01 7.58e-05 97.23 36.48 

Kodim11 98.54 37.22 0.01 6.45e-04 97.93 29.46 

Kodim12 98.43 37.05 0.01 5.91e-05 99.21 38.23 

Kodim13 98.55 37.40 0.01 9.74e-04 98.02 36.62 

Kodim14 98.82 37.62 0.01 4.12e-04 97.24 36.48 

Kodim15 98.37 34.14 0.01 7.52e-05 97.67 29.33 

Kodim16 97.25 29.43 0.01 5.45e-04 98.62 36.23 

Kodim17 98.68 35.17 0.01 8.78e-05 98.02 35.31 

Kodim18 98.73 37.57 0.01 9.74e-04 97.29 36.49 

Kodim19 97.85 29.42 0.01 9.14e-04 97.95 28.34 
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Kodim20 97.25 36.49 0.01 7.68e-05 97.62 28.23 

Kodim21 98.83 35.65 0.01 7.45e-04 98.02 37.62 

Kodim22 98.04 36.88 0.01 8.12e-04 97.25 36.58 

Kodim23 97.21 29.32 0.01 7.88e-05 97.02 28.96 

Kodim24 98.78 36.31 0.01 6.45e-04 99.25 38.23 

       

 

4.5.5 Time Efficiency Analysis 

In this part, the encryption efficiency of our proposed scheme is analyzed. The size of 24 

images from the Kodak dataset is 512×768 or 768×512. The mean encryption speed of different 

encryption schemes is shown in Table 4.2. Ref [30] needs the least computational time since 

the modulo-256 encryption method is low complexity. And the time of proposed method is 

mostly spent on permutation operations which is important for security, while Ref [45] has the 

same problem.  

Table 4.2: Encryption efficiency with different schemes. 

 Proposed Model Ref [30] Ref [45] 

Speed(s) 4.78 0.29 4.33 

 

4.6 Retrieval Accuracy on Encrypted Images 

The proposed methods are trained on the Nvidia GTX 2080Ti. A sub-dataset from ImageNet 

2012 Large-Scale Visual Recognition Challenge dataset [77] is used for training which contains 

more than 80k images with 100 classes. We choose ResNet-34 [78] as the backbone since the 

residue blocks and depthwise separable convolutions are widely used in deep models. The 

stochastic gradient descent (SGD) optimizer is used with an initial learning rate of 0.1, a 

momentum of 0.9, and a weight decay of 4e-5. And the learning rate decays by 0.1 every 50 

epochs. The mean and variance of the DCT coefficients for each of the 192 frequency channels 

separately on all the training images are calculated for normalization.  

In Table 4.3, we compare the proposed feature extraction model with the backbone. With the 

comparison, the proposed frequency-domain learning can extract features from encrypted data 

efficiently. The experiments in Table 4.3 is performed on a valid set of training dataset. 

Table 4.3: Accuracy of feature extraction model with different inputs. 
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Inputs Channels Size Per Channel Top-1 Top-5 

RGB 3 224×224 74.75 91.45 

YCbCr 3 224×224 74.34 91.18 

DCT 192 56×56 74.19 91.02 

Encrypted DCT 192 56×56 66.78 84.26 

 

The retrieval performance evaluation is conducted on the image database Corel-1k [74] which 

contains 1k color JPEG images in 10 categories. Here, we analyze the retrieval performance of 

the proposed algorithm compared with other schemes by using Top-k precision and mean 

average precision (mAP) [79]. Figure 4.10 shows the precision of retrieval accuracy of different 

encrypted image retrieval schemes when implementing Top-k search (k=5, 10, 15, 20). The 

result of unencrypted images with the proposed retrieval mode is also shown. From Figure 4.10, 

it is obvious that ranking loss can improve retrieval performance. In [75], the images are 

encrypted by pixel value confusion and pixel position shifting, while value replacement and 

block permutation are conducted on images in [80]. For the average performance, our proposed 

method is close to the results with unencrypted images, which makes it seem that the effective 

feature is captured in the frequency domain. As for mAP, our scheme also has better accuracy 

than other unsupervised schemes, including histrogm[56] and bag-of-words [81].  

 

Figure 4.10: Top-k precision (k=5, 10, 15, 20). 

Table 4.4: Retrieval accuracy of different methods. 

 Model [56] [81]  

mAP 54.41 46.37 49.09 
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The quality of images is controlled by QF for JPEG images. So to test the influence of image 

quality, we performed experiments on the Corel10k dataset with different compression rates. 

As shown in Table 4.5, the retrieval model performs better with higher QF. And for experiments 

in Table 4.4, QF is set to 90. 

Table 4.5: Retrieval accuracy with different compression degrees of cipher images. 

QF 20 50 70  90 

mAP 35.71 46.39 50.87 54.41 

 

4.7 Summary 

In this chapter, a new encrypted image retrieval method based on deep learning is proposed. 

The encryption operations are conducted on JPEG images during the JPEG compression 

process by using coefficients substitution and intra-block permutation. And the encrypted 

images are entirely encrypted along with format compliance. For the retrieval part, our 

proposed learning approach utilizes ResNet-34 as the backbone to extract features while 

accepting encrypted DCT coefficients as input. Extracting the features for retrieval from the 

frequency domain would consume less computation and communication resources. And a 

Siamese architecture with triplet loss is used to produce a global representation that is well-

suited to image retrieval. Finally, the encrypted images with plaintext content similar to the 

query image are returned to the user. Experiment results show that our method can achieve 

higher accuracy than other related schemes and meanwhile further improve security.  
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Chapter 5 Deep Compression and Encryption for 

Image Retrieval 

Learning-based methods have obtained promising results in many areas and deep learning 

models are expected to be the next-generation optimal image compression solutions. In this 

chapter, a new image compression and encryption framework is proposed which integrates 

encryption algorithms with a deep-learning compression network. This new model is 

developed by applying a deep learning network which could be an early attempt to introduce 

end-to-end learning to the SCE system. After encryption, the ciphertext would be sent to the 

proposed similarity network. 

We formulate the task of compression and encryption as the constrained optimization problem 

which will minimize the expected length of the bitstream and maximize the visual quality of 

reconstructed images. Here, we utilize the deep network to solve this optimization problem. 

Differing from the CS-based compression method using single-layer transform, the deep model 

gets the compressed representation from the layer-by-layer learning and can learn pixel 

representation well through data-driven supervised learning, which can be a more general 

compression scheme. We adopt deep AE as the learning network in our proposed joint image 

compression and encryption framework. That is mainly because the AE-based network 

achieves a good performance in areas of domain transformation and image reconstruction 

through rate-distortion loss and flexible probability density estimation [15]. And the AE-based 

network in our work can convert an image into a compact representation, and its process is 

similar to traditional compression with linear transformation. Referring to the usual SCE 

methods, the encryption operations are embedded into the compression process in our approach. 

We offer to conduct the shuffling operation on deep feature maps generated by analysis 

transform during encoding. The scrambled feature maps are obtained by scrambling the orders 

of all three dimensions with the secure key. Then, the side representations are extracted from 

scrambled feature maps through hyper-network which will be used to generate the learned 

entropy model for compression. To achieve a higher level of visual security after decoding, the 

parameters of synthesis transform are replaced by a new parameter matrix which is the result 

of dividing the original parameter matrix with the logistic map. In our compression and 
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encryption model, the encryption key for shuffling operation and controlling the logistic map 

is generated from plain images by BLAKE256 hash algorithm. Then the key is embedded in 

the side representations during the quantization stage in the hyper-network controlled by 

another secret key. And it will be extracted from the side representations only when decrypting.  

In our learning model, when deep features are encrypted and decrypted, the plain image can 

still be reconstructed through the decoding sub-network that meets the basic requirements of a 

cryptographic system. And experiments in [82] have proved that a larger kernel size can be 

conducive to coding efficiency. But a larger kernel size will cause a smaller size of the feature 

map, and it can decrease the complexity of encryption algorithm since permutation operation 

is conducted on feature maps. Thus, we chose the medium size kernel according to the 

experimental results. And for the learned entropy model, the parameter estimation part is used 

to extract more efficient parameters for recovering scrambled representations from the 

bitstream. The attention scheme is introduced here to help learn entropy model since the 

correlations among neighboring pixels can be hard to be exploited after permutation operation 

on feature maps.  

Unlike other deep encryption and compression methods using networks just for compressing 

the encrypted image or the original one, the network in our work is used for compressing and 

encrypting the data simultaneously, and an end-to-end compression and encryption framework 

is established. And different from deep encryption works, like [83] using Cycle-GAN to 

transfer the original image to the encrypted one, our method focuses on joint compression-

encryption methods working together with the image compression scheme. Meanwhile, 

different from other SCE schemes, our encryption operations are conducted on the semantic 

features learning from the network, and the encryption/decryption layer added will not impact 

the network's training. Extensive experiments conducted on the Kodak dataset show that the 

proposed encryption scheme can resist various attacks with high compression efficiency. And 

the encrypted representation is sent to the proposed similarity network to improve retrieval 

accuracy.  

The major contribution of our work can be summarized as follows: 

1) A novel joint compression-encryption model is developed by applying a deep learning 

network which could be an early attempt to introduce end-to-end learning to the security system. 

The shuffling operations are conducted on deep feature maps. 
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2) For a higher level of visual security, part parameters of the network are replaced by a new 

parameter matrix based on a logistic map controlled by a secret key. 

3) The encryption key of the system is derived from the image content, which will be embedded 

in the deep feature vectors with a fixed key to save the cost of sending the key for different 

images. 

4) An attention scheme is exploited in estimating parameters to achieve more effective 

compression to learn the deep model from the scrambled feature maps.  

The rest of this chapter is organized as follows: Section 5.1 gives an overview of the proposed 

deep compression and encryption model. Section 5.2 explains the implementation details for 

realizing compression and encryption jointly. Section 5.3 introduces the retrieval network. 

Performance evaluations on the compression efficiency and security will be given in Section 

5.4 and Section 5.5, respectively, with a comparison with other schemes. And the discussion 

on retrieval performance is introduced in Section 5.6. Section 5.7 provides the summary. 

 

5.1 Deep Network Model for Joint image Compression and Encryption 

As shown in Figure 5.1, our joint model introduces encryption techniques into deep 

compression, which contains two autoencoders. The core autoencoder consists of analysis 

transform, quantizer, synthesis transform, arithmetic encoder and decoder. It is designed for 

learning the quantized latent representation of images to produce a compact bitstream for 

compression. The analysis transform here is composed of three parts: convolution, down-

sampling and generalized divisive normalization (GDN), while the synthesis transform consists 

of convolution, up-sampling and inverse GDN [15]. After the analysis transform, permutation 

operations are conducted on the deep feature maps for encryption and then the scrambled 

feature maps will be input to the hyper-network H. And the network H is the sub-autoencoder 

and can learn a probability model over latent representation. The parameter estimation module 

is responsible for efficiently transforming the hyper-latent representations into the parameters 

of the Gaussians which make sure the parameters from H can be appropriate for the core 

autoencoder. To obtain the compressed and encrypted images, the deep representations are 

processed by the synthesis transform while the parameters of synthesis transform have been 

substituted. And in Figure 3, the solid and dashed lines denote the compression and encryption 

process and the decryption and decompression process of our proposed model, respectively. 
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In the encryption process, BLAKE256 hash function is utilized to generate the encryption key 

𝐾𝑒𝑦1 based on the input image content, while the pseudo-random stream 𝐾𝑆1 is derived from 

𝐾𝑒𝑦1 using BLAKE256 hash function. Then the key stream KS1 is used to control all the 

encryption/scrambling operations in the proposed system. To save the cost of transmitting, 

𝐾𝑒𝑦1  will be embedded into deep feature maps by the embedding key 𝐾𝑒𝑦2 . 𝐾𝑒𝑦2  is 

predefined and produces the pseudo-random stream 𝐾𝑆2 for embedding through BLAKE256 

hash function. And this embedding key will be shared for different plain images and transmitted 

by the general key transmitting methods. The permutation layer for shuffling the orders of the 

deep feature maps is added after the analysis transform layer, controlled by the content sensitive 

encryption key 𝐾𝑒𝑦1 for a different input image. We conduct permutation operations on the 

third dimension 𝑘 of feature maps 𝑦 firstly, then on the first and second dimension 𝑖,𝑗 of 𝑦 with 

𝐾𝑆1, and finally, get the encrypted feature maps 𝑦𝑒. After the quantization stage, the encrypted 

deep representations are compressed into a bitstream using an arithmetic encoder. Meanwhile, 

the side string could be extracted by hyper coding and quantization through hyper-network. 

And the encryption key 𝐾𝑒𝑦1 will be embedded into the side string by 𝐾𝑆2 at the quantization 

stage. When transmitting, the string from the encrypted representation 𝑦𝑒 would be combined 

with the side string to produce the final compressed and encrypted bitstream. For higher visual 

security, the parameter matrix of the synthesis transformation is replaced by a new parameter 

matrix which is the result of dividing the original parameter matrix with the logistic map 

controlled by the encryption key 𝐾𝑒𝑦1 . Then through the synthesis transformation with 

modified parameters, the plain image will finally be encrypted and compressed. If we add the 

decryption operation, only the compressed image will be produced, regarded as the decrypted 

image. And the key for decryption will be extracted from the side string controlled by 𝐾𝑆2 

only when decrypting. Also, the logistic map is generated by 𝐾𝑒𝑦1  for recovery of the 

parameters of synthesis transformation. 

In this learning-based method, quantization is approximated by a uniform noise to generate 𝑦̂𝑒. 

The Gaussian mixture model is used for entropy coding. After parameter estimation, the mean 

and scale parameters 𝜇̂, 𝜎̂  of the Gaussian Likelihoods can be generated. The quantized 

representation will be compressed by the lossless arithmetic coder with the probability model 

𝑝𝑦̂(𝑦̂).   
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Figure 5.1: The architecture of the proposed joint model. 

To illustrate how the permutation operations work here, we visualize the compression and 

encryption model in Figure 5.2. The odd rows show the images at different stages of the original 

compression model, while the even rows visualize the changes after the permutation operation. 

The plain images used here for illustration are all from the Kodak dataset. From the figure, we 

can see the clearly visible structure around edges and textures of latent representation 𝑦, which 

contains much information of the original images. And for the powerful compression model, 

the predicted mean 𝜇̂ need to be close to 𝑦̂ and predicted scales 𝜎̂ will be large in the complex 

regions while being small in the smooth areas. So, the parameters 𝜇̂, 𝜎̂ also contain the visible 

information of images. Meanwhile, it is evident that the side information 𝑧̂ does not contain 

any content of original images visually since it is generated from the encrypted feature maps 

𝑦𝑒. And when we conduct permutation operation on 𝑧, the side information cannot be wholly 

recovered after decryption in the experiments. Therefore, we propose not to perform 

scrambling operation but to embed the encryption key 𝐾𝑒𝑦1 into 𝑧̂, such that it will not affect 

too much the visual quality of the decrypted image. To protect image data from eavesdropping 

when transmitting, we add the permutation layer and encrypt the latent representation 𝑦. The 

experiment results can prove that encryption on the latent representation 𝑦 alone can affect the 

security of parameters 𝜇̂, 𝜎̂. So we produce the permutation operation on latent representation 

𝑦 and have no permutation process on side information 𝑧̂. 
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(a)                           (b)                         (c)                        (d)                          (e) 

Figure 5.2: Visualization of the proposed model only with permutation operation. (a) input 

image, (b) latent representation 𝑦, (c) side information 𝑧̂, (d) mean 𝜇̂, (e) scale 𝜎̂ . 
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5.2 Compression and Encryption Network 

5.2.1 Learning Network Model and Layer Details 

As shown in Figure 5.1, the deep compression and encryption model can mainly be composed 

of three units: encryption unit, hyper-network H and decryption unit. The encryption unit is 

designed for obtaining compressed representation and encrypting the plain image, which 

contains analysis transform, permutation, quantizer, arithmetic encoder and decoder, and the 

synthesis transform with known parameters from a logistic map. For the decryption unit,  the 

plain image is recovered from the encrypted string through key extracting, arithmetic decoder, 

inverse permutation and synthesis transform with the right parameters. The hyperprior network 

H is responsible for summarizing the hyper-latent representation 𝑧̂ to learn the entropy model, 

containing hyper encoder and decoder, arithmetic encoder and decoder, quantizer and key 

embedding. And 𝑧̂  will be used to provide the appropriate probability estimates fitting the 

marginal distribution of 𝑦̂. Here we use the Gaussian mixture likelihoods which have been 

proven to have a better rate-distortion performance and recover images efficiently in [15]. In 

learning methods, networks will be trained based on loss function to find the optimal solution. 

And for our learning model, the loss function is given as follows: 

                              𝐿 = 𝛽 ∙ 𝔼𝑥[‖𝑥 − 𝑥̂‖2] + 𝔼𝑥[−𝑙𝑜𝑔 𝑝𝑦̂(𝑦̂)] + 𝔼𝑥[−𝑙𝑜𝑔 𝑝𝑧̂(𝑧̂)] (5.1) 

The first term is the squared error between the input plain image 𝑥 and the decrypted one 𝑥̂, 

the output of the synthesis transform, weighted by 𝛽. The second and third terms represent the 

entropies of coefficient distribution for coding 𝑦̂ and 𝑧̂. 

When the learning network model is training, images will be loaded into the encryption unit 

and get encrypted feature maps 𝑦𝑒 which will be input into H to generate 𝑧̂. Then the scrambled 

representation 𝑦̂𝑒 will be processed through the decryption unit with all keys known and obtain 

𝑦̂ and 𝑥̂. The whole network will be trained based on the loss function in Equation (5.1). And 

the value of β in Equation (5.1) is changed in every time of training to control the compression 

rate of the proposed model, since the AE-based method needs separate training for obtaining 

images at different resolutions. 

The traditional compression process, like orthogonal linear transforms, chosen to reduce data 

correlations, usually has higher-order dependencies. In our end-to-end encryption and 

decryption model, we utilize a generalized divisive normalization (GDN) transform with 

optimized parameters, which have been shown to be highly efficient in the Gaussification of 
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local statistics in images previously. It is unlike most of the training stages for deep 

convolutional networks using the operation called batch normalization [84]. As evident in [15], 

there are still significant spatial dependencies in feature representation 𝑦,  and we can use 

network H to capture this spatial structure for estimating the distribution of 𝑦 . But for the 

encrypted latent representation 𝑦𝑒, the spatial structure has been scrambled and will be hard to 

learn. Thus we introduce the attention scheme into parameter estimating since many advanced 

works use attention schemes in the image processing field [30, 85, 86]. After the hyper-

decoding, the mean and scale parameters for the Gaussian mixture model are predicted from 

the restored hyper-latent representations through the parameter estimation module. Table 5.1 

details the network structures of our proposed framework and illustrates the parameters of 

corresponding components. And each row corresponds to a layer, while Conv denotes a 

convolution layer with the kernel size and number of output channels shown in Table 5.1. S is 

the downsampling/upsampling stride and IGDN is the approximate inverse operation of GDN. 

AM represents the attention module we used which is shown in Figure 5.3. 

Table 5.1: The details of the layers in our proposed model. 

Analysis 

Transform 

Synthesis 

Transform 
Hyper Encoder Hyper Decoder 

Parameter 

Estimation 

Conv: 5×5×192 

s2 

Deconv: 5×5×192 

s2 

Conv: 3×3×192 

s1 
AM AM 

GDN IGDN Leaky ReLU 
Deconv: 5×5×320 

s2 
Conv: 1×1×640 s1 

Conv: 5×5×192 

s2 

Deconv: 5×5×192 

s2 

Conv: 5×5×192 

s2 
Leaky ReLU Leaky ReLU 

GDN IGDN Leaky ReLU 
Deconv: 5×5×480 

s2 
Conv: 1×1×640 s1 

Conv: 5×5×192 

s2 

Deconv: 5×5×192 

s2 

Conv: 5×5×192 

s2 
Leaky ReLU  

GDN IGDN  
Deconv: 5×5×640 

s2 
 

Conv: 5×5×320 

s2 
Deconv: 5×5×3 s2    
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Figure 5.3: The architecture of the attention module. 

5.2.2 Keystream Generation Process 

In our encryption scheme, the BLAKE256 hashing algorithm is used to generate the encryption 

key, by taking the plain image as input, such that the encryption key is sensitive to the plain 

image. Here, different input plain images lead to different fixed-length random hash values. 

And the following encryption operations are controlled by these values. The outputs will also 

be available in the decoding stage for restoring images. 

We take the plain image as the input of BLAKE256 hash algorithm and obtain a 256-bit random 

key 𝐾𝑒𝑦1 which is the initial seed to generate a random key stream 𝐾𝑆1. 𝐾𝑆1 is then used for 

controlling the encryption/decryption operations in the proposed system. The formula for 

generating the sequence is given as follows 

 𝐾𝑆1𝑛+1 = BLAKE256(𝐾𝑆1𝑛)(𝑛 = 0,1,2, … ) (5.2) 

The key stream 𝐾𝑆1 is composed of 𝐾𝑆1𝑛, and 𝐾𝑒𝑦1 is the initial seed 𝐾𝑆10. And the random 

key stream 𝐾𝑆2 is also generated through Equation (5.2) when the predefined embedding key 

𝐾𝑒𝑦2 is the initial value. 𝐾𝑆2 is then used for controlling the data embedding process for 𝐾𝑒𝑦1. 

For shuffling all elements in the feature map 𝑦 , the new index of the feature map can be 

generated by the Fisher-Yates Shuffle algorithm using the random key stream 𝐾𝑆1. For a given 

index array 𝑅 with 𝑟 elements, Fisher-Yates Shuffle [71] do 

for 𝑝 ← 𝑟 to 2 do 

      𝑞 ← random integer (1 ≤ 𝑞 ≤ 𝑝) 

      exchange 𝑅[𝑝] and 𝑅[𝑞] 

end for 
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The random integer is obtained from the key stream KS1. Similarly, the index of embedding 

positions is controlled by the key stream 𝐾𝑆2 using the Fisher-Yates Shuffle algorithm at the 

key embedding stage. 

5.2.3 Key Embedding 

To against various cryptanalysis techniques, we use different encryption keys for the different 

input images, which increases the cost of transmission. So, we propose to embed the encryption 

key 𝐾𝑒𝑦1 into side information 𝑧̂ and then compress them by the arithmetic coder to save the 

cost. The embedding process will only be conducted on the non-zero values in the side 

information to ensure the compression efficiency of learning-based compression will not be 

affected too much. Here, the values in 𝑧̂ are all integers. And when generating an encrypted 

image, the key embedding into 𝑧̂ will not be extracted. 

The encryption key 𝐾𝑒𝑦1 is 256-bit in length. But the number of non-zero values in the side 

information is less than 256 at a low bit rate from the experiment results. So, to reduce the 

impact of the value changes in 𝑧̂, we only embed 1-bit data at each position of 𝑧̂ when there are 

more than 255 non-zero values in 𝑧̂. For example, a value in 𝑧̂ is 4 and it can be converted to 

‘00000100’ while the 1-bit data for embedding is ‘1’. The bitstream can be ‘00001001’ after 

embedding data at the end, and it will be converted to the number 9 which is the new value. 

When the number of non-zero values is less than 255 and more than 127, we embed 2-bit data 

at each position. And when the number is less than 127, we embed 4-bit data at each position. 

The selection of positions for data embedding is controlled by 𝐾𝑆2 from embedding key 𝐾𝑒𝑦2, 

which will be shared for different plain images. The detailed key embedding algorithm is 

shown below. 

Key Embedding 

1: for each plain image do: 

2:     Get 𝐿 positions of non-zero values in the side information 𝑧̂ 

3:     Generate the random index of positions for embedding bitstream by the Fisher-Yates 

Shuffle algorithm with 𝐾𝑆2 

4:     if  𝐿 < 128 

5:         Select the first 64 positions from the index for data embedding 

6:         Change the values of all selected positions with the appended 4-bit data from the 

encryption key 𝐾𝑒𝑦1 
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7:     else if 127 < 𝐿 < 256 

8:         Select the first 128 positions from the index for data embedding  

9:         Change the values of all selected positions with the appended 2-bit data from the 

encryption key 𝐾𝑒𝑦1 

10:     else 

11:         Select the first 256 positions from the index for data embedding 

12:         Change the values of all selected positions with the appended 1-bit data from the 

encryption key 𝐾𝑒𝑦1 

13:     end if 

14: end for 

 

5.2.4 Parameter Substitution 

To obtain a higher level of visual security, we conduct the parameter substitution on then 

synthesis transform when decoding the images. The parameter matrix of the last convolution 

layer in synthesis transform will be replaced by a new matrix, which is generated after the 

division operation between the original parameter matrix and the logistic map. And the new 

matrix can be converted to the original one by multiplying the logistic map only during the 

decryption process. The logistic map we used is defined as: 

  𝑈𝑡+1 = 𝜃𝑈𝑡(𝑈𝑡 + 1), 𝑈𝑡 ∈ (0,1)    (5.3) 

where 𝑈𝑡  is the value for 𝑡  iterations, and 𝜃  is the system parameter. The system is chaotic 

when 𝜃 is in the range of [3.57, 4]. Here, the first two decimal values of encryption key 𝐾𝑒𝑦1 

are normalized and then generate the initial value 𝑈0 and parameter 𝜃. So different logistic 

maps will be generated with different values of 𝑈0 and 𝜃 for different images. 

5.2.5 Encryption and Decryption Algorithm 

After obtaining the encryption keys, the input images are encrypted through proposed 

encryption operations and obtain the compressed and encrypted images, then restored from the 

encrypted bit-string to compressed images by the decryption process with keys. And hyper-

network H is utilized to obtain side information 𝑧̂  and estimate the parameters of the 

probabilistic model which is used for compression. The permutation operations are conducted 

on all three dimensions of deep features 𝑦 and the new index arrays are generated by the Yates 
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Shuffle algorithm mentioned in Section 5.2.2. The details of the encryption and decryption 

algorithms are shown below. 

Algorithm 1: Encryption Algorithm  

1: Load original image 𝐼 and the embedding key 𝐾𝑒𝑦2 

2: 𝐾𝑒𝑦1 ⟵ BLAKE256(𝐼)   

3: 𝐾𝑆1 ⟵ BLAKE256(𝐾𝑒𝑦1)   

4: 𝐾𝑆2 ⟵ BLAKE256(𝐾𝑒𝑦2)   

5: Enter image into analysis transform part and get feature matrix 𝑦 with three dimensions 

6: for all elements in each dimension of 𝑦 do  

7:       Perform Yates Shuffle algorithm where the random integer in each loop is from 

𝐾𝑆1 to generate a new index G for permutation 

8:       Change the order of elements in this dimension according to the new index G 

9: end for 

10: Collect all permutated elements and combine them into a new feature matrix 𝑦e 

11: Get side information 𝑧̂ and embed 𝐾𝑒𝑦1 into 𝑧̂ controlled by 𝐾𝑆2, then get the side 

string 

12: Decompress the side string and use parameter estimation to predict the parameters 𝜎̂ 

and 𝜇̂ of entropy model through H 

12: Use parameters 𝜎̂ and 𝜇̂ to compress the quantized representation 𝑦̂e and produce an 

encrypted bitstream (combining the side string) 

13: Conduct the parameter substitution on the synthesis transform and the parameter matrix 

is replaced by the new one 

14: The final encrypted image can be obtained through the decoder and the synthesis 

transform with wrong parameters 

 

Algorithm 2: Decryption Algorithm  

1: 𝐾𝑆2 ⟵ BLAKE256(𝐾𝑒𝑦2)   

2: Extract 𝐾𝑒𝑦1 using 𝐾𝑆2 from the side string and recover 𝑧̂  

3: 𝐾𝑆1 ⟵ BLAKE256(𝐾𝑒𝑦1)   

4: Estimate parameters 𝜎̂ and 𝜇̂ from hyper-decoder and parameter estimation through H 

for recovering 𝑦e from the encrypted bitstream by decoder 

5: for all elements in each dimension of 𝑦e do      
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6:       Perform Yates Shuffle algorithm controlled by 𝐾𝑆1 to get the index G  

7:       Restore the permuted elements to their original positions according to the index G 

8: end for 

9: Conduct the parameter substitution on the synthesis transform and recover the original 

parameter matrix 

10: The decrypted image can be obtained from reconstructed 𝑦 through synthesis transform 

with the right parameters 

 

5.3 Deep image Retrie 

 

Figure 5.4: The structure details of the deep model. 

In the proposed image encryption and retrieval system, encrypted data is uploaded to the cloud 

to outsource data. When an encrypted query image is submitted, the features of this query data 

and all other data in the database of the cloud are extracted, and the compressed and encrypted 

representations are used as the inputs of the deep retrieval network. Then, other cipher images 

with similar content of the query image are returned to the user. Finally, the authorized user 

can decrypt the images with the corresponding key. Here the compressed and encrypted 

representation 𝑦̂𝑒 is used as the input of the proposed image retrieval model, which can avoid 

the cost caused by decompression and ensure privacy and availability requirements. And the 

structure details of the deep model are shown in Figure 5.4. To achieve better retrieval 

performance, ranked list loss (RLL) [87] and cross-entropy loss are introduced for training the 

deep architecture to get results. For sample 𝑠𝑖 and corresponding label 𝑙𝑠𝑖 in a batch set, 𝑓 is 

the corresponding deep feature and the RLL can be given as follows: 

                                    𝐿𝑅𝐿𝐿 = ∑((1 − 𝜆)𝐿𝑃(𝑠𝑖
𝑐; 𝑓) + 𝜆𝐿𝑁(𝑠𝑖

𝑐; 𝑓))  (5.4) 
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                               𝐿𝑃(𝑠𝑖
𝑐; 𝑓) =

1

|𝑃𝑐,𝑖
∗ |

∑ 𝐿𝑚(𝑠𝑖
𝑐, 𝑠𝑗

𝑐; 𝑓)𝑠𝑗
𝑐∈𝑃𝑐,𝑖

∗   (5.5) 

 𝐿𝑁(𝑠𝑖
𝑐; 𝑓) = ∑

𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑠𝑗
𝑘∈𝑁𝑐,𝑖

∗
𝐿𝑚(𝑠𝑖

𝑘, 𝑠𝑗
𝑐; 𝑓)𝑠𝑗

𝑘∈𝑁𝑐,𝑖
∗   (5.6) 

 𝐿𝑚(𝑠𝑖, 𝑠𝑗; 𝑓) = (1 − 𝑙𝑠𝑖𝑗)[𝛼 − 𝑑𝑖𝑗]
+

+ 𝑙𝑠𝑖𝑗[𝑑𝑖𝑗 − (𝛼 − 𝑚)]
+

  (5.7) 

Here 𝐿𝑃  is the loss function used on positive samples and 𝐿𝑁  is for the negative sample in 

Equation (5.4). Non-trivial positive set is represented as 𝑃𝑐,𝑖
∗ = {𝑠𝑗

𝑐|𝑗 ≠ 𝑖, 𝑑𝑖𝑗 > (𝛼 − 𝑚)} 

while the negative set is denote as 𝑁𝑐,𝑖
∗ = {𝑠𝑗

𝑘|𝑘 ≠ 𝑐, 𝑑𝑖𝑗 < 𝛼)} , where 𝑐 represents the class. 

Considering a large number of negative samples, negative samples are weighted in 𝐿𝑃  in 

Equation (5.6). In Equation(5.7), 𝑙𝑠𝑖𝑗 = 1  if 𝑙𝑠𝑖 = 𝑙𝑠𝑗 , and 𝑙𝑠𝑖𝑗 = 0  otherwise. 𝑑𝑖𝑗  is the 

Euclidean distance and [. ]+ is the hinge function. In the experiment, we set parameters as those 

in [87]. 

Cross-entropy loss is commonly used in the classification area. And the final loss function can 

be defined as follows: 

 𝐿𝑅𝐸 = 𝐿𝑅𝐿𝐿 + 𝐿𝐶𝐸    (5.8) 

 

5.4 Performance Evaluation 

In this section, various experiments will be conducted to evaluate the compression performance 

and the perceptual security of the proposed compression and encryption model. The 

performance evaluation is conducted on Kodak dataset [72]. There are 24 high-quality images 

in this dataset, and some of them are shown in Figure 5.5. The proposed methods are trained 

on the Nvidia GTX 2080Ti and the training dataset contains more than 13k images extracted 

from the Vimeo-90k dataset [88]. When training, the embedding key 𝐾𝑒𝑦2 will be known and 

the encryption key 𝐾𝑒𝑦1  will be generated from input images. All training images will be 

loaded and processed through the encryption algorithm to get the string, and then the decryption 

images will be recovered from the string through the decryption algorithm. Our learning model 

is optimized by mean square error (MSE) between the input image and the decryption one. The 

learning rate is initially set to 1 × 10−4 and decreases during the training. The parameter 𝛽 of 

the loss function is within the set {0.0018, 0.0035, 0.007, 0.015, 0.03, 0.045, 0.09, 0.18}. And 

Adam optimizer is used with a batch size of 32.  
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Figure 5.5: Test images from Kodak dataset. 

In the proposed model, we first permute the elements of feature matrix 𝑦 in the third dimension 

for encryption, and the performance of this encryption step can be shown in Figure 5.6(b). We 

can find that the encrypted image only under this permutation still reveals some edge 

information contained in the original image. So, to obtain more chaotic cipher-images, the 

Fisher-Yates Shuffle operation on the first and second dimensions of 𝑦 would be conducted 

after the permutation procedure on the third dimension. And the performance of the 

permutation operation is shown in Figure 5.6(c). And for higher visual security, the parameter 

substitution is conducted when generating the final encrypted images and some encrypted 

images are shown in Figure 5.6(d), while the corresponding decrypted images are illustrated in 

Figure 5.6(e). And no content information about original images can be seen in those encrypted 

images which illustrates the visual security of our encryption scheme. 
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(a)                       (b)                          (c)                         (d)                           (e) 

Figure 5.6: Encryption and decryption results. (a) original image, (b) encrypting image only on 

third dimension of 𝑦, (c) encrypting image on all dimensions of 𝑦, (d) final cipher image, (e) 

decrypted image.              

In the perceptual security evaluation of encryption methods, the PSNR and multiscale structural 

similarity (MS-SSIM) are the typical metrics for measuring the perceptual performance of 

images after encryption. And to illustrate the difference clearly in Figure 5.7, we use the value 

of −10 log10(1 − MS-SSIM)  to replace MS-SSIM. The pictures in the Kodak dataset are 

encrypted and compressed using our proposed model. The average PSNR values and MS-SSIM 

values of these ciphertext images under our encryption and compression model are shown in 

Figure 5.7, compared with the values when encryption keys are known. From Figure 5.7, we 

can observe significant drops in PSNR and MS-SSIM without the decryption process for the 

proposed model, which means our encryption scheme has good content protection. For 

example, at a bit rate of 0.54 bits/pixel, the PSNR value of our compression and encryption 

model is 8.56dB while the value of the model with key is 33.15dB. It is obvious that shuffling 

all three dimensions of the feature map 𝑦  can get better security performance than only 

conducting permutation operation on the 3rd dimension. And when only conducting the 

permutation operation on 𝑦, the values of PSNR and MS-SSIM are larger than the values of 

our proposed encryption model. Here lower PSNR and MS-SSIM values prove that the security 

of the encryption model has been improved after parameter substitution.  

When the encryption key is provided for decryption, the PSNR and MS-SSIM values of our 

proposed model can illustrate the compression efficiency of our model. In general, our model 

performs better than the model without AM. The difference is more obvious at low bit rates, 

which benefit from the attention-based parameter estimation. The average PSNR values of our 

model are 0.4-0.5 dB higher than the model without AM under the same BPP value. Table 5.2 

and Table 5.3 present the comparison of PSNR and MS-SSIM values with different bit rates 
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between our model and the model without AM. In Figure 8, for comparison purpose, we also 

show the performance of JPEG, the original AE-based compression model, and the joint 

compression and encryption schemes in [30] and [45]. A learning network and an attention 

mechanism are also exploited in [30]. And [45] is the SCE-based method which also uses 

Fisher-Yates Shuffle to generate a new index for permutation operation. Here we used the JPEG 

model with the default configuration (4:2:0). It is observed from Figure 5.7 that our proposed 

model achieves significantly better performance in terms of PSNR and MS-SSIM than other 

methods. Moreover, our proposed encryption and compression model is very close to the 

original compression model which removes all encryption operations. The experiment results 

demonstrate that our encryption and compression model can obtain a high protection ability 

with a slight sacrifice on compression efficiency. 

   

Figure 5.7: Rate distortion performance for different methods. 

Table 5.2: Comparison of compression and encryption performance at low bit rate (low value 

of 𝛽). 

 Model-key 
Model-key without 

AM 
Model  

 BPP PSNR  
MS-

SSIM 
BPP PSNR  

MS-

SSIM 
BPP PSNR  

MS-

SSIM 

Kodim01 0.561 29.07 0.9694 0.533 28.52 0.9652 0.561 9.26 0.0802 

Kodim02 0.237 32.04 0.9384 0.231 31.43 0.9289 0.237 7.77 0.1126 

Kodim03 0.212 33.82 0.9696 0.207 33.26 0.9667 0.212 8.81 0.0958 

Kodim04 0.252 32.23 0.9543 0.246 31.74 0.9477 0.252 8.78 0.0949 
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Kodim05 0.597 29.27 0.9744 0.585 28.80 0.9712 0.597 8.06 0.0536 

Kodim06 0.417 30.25 0.9595 0.403 29.66 0.9537 0.417 8.56 0.1011 

Kodim07 0.282 33.28 0.9807 0.272 32.73 0.9796 0.282 9.25 0.0781 

Kodim08 0.642 28.55 0.9759 0.627 28.08 0.9730 0.642 8.41 0.0507 

Kodim09 0.236 33.66 0.9762 0.230 33.16 0.9745 0.236 9.72 0.0987 

Kodim10 0.246 33.34 0.9698 0.243 32.86 0.9668 0.246 9.66 0.0988 

Kodim11 0.345 30.81 0.9565 0.334 30.25 0.9489 0.345 8.73 0.0849 

Kodim12 0.214 33.36 0.9551 0.207 32.64 0.9492 0.214 8.84 0.1124 

Kodim13 0.706 26.78 0.9609 0.688 26.38 0.9553 0.706 8.50 0.0740 

Kodim14 0.431 29.78 0.9607 0.421 29.23 0.9548 0.431 8.33 0.0748 

Kodim15 0.247 32.33 0.9635 0.245 31.82 0.9595 0.247 7.08 0.0884 

Kodim16 0.251 32.00 0.9579 0.248 31.29 0.9512 0.251 9.11 0.1083 

Kodim17 0.246 32.59 0.9699 0.241 32.14 0.9664 0.246 7.93 0.0822 

Kodim18 0.444 29.33 0.96 0.435 28.91 0.9555 0.444 7.8 0.09 

Kodim19 0.314 31.23 0.9596 0.307 30.74 0.9531 0.314 9.05 0.0908 

Kodim20 0.227 33.00 0.9743 0.222 32.47 0.9716 0.227 6.30 0.0993 

Kodim21 0.374 30.84 0.9709 0.359 30.33 0.9689 0.374 9.30 0.0925 

Kodim22 0.319 30.73 0.9490 0.312 30.21 0.9413 0.319 9.11 0.0891 

Kodim23 0.189 34.52 0.9718 0.185 34.05 0.9690 0.189 8.4 0.0832 

Kodim24 0.454 29.16 0.9678 0.444 28.69 0.9633 0.454 8.65 0.0788 

 

Table 5.3: Comparison of compression and encryption performance at high bit rate (high value 

of 𝛽). 

 Model-key 
Model-key without 

AM 
Model 

 BPP PSNR 
MS-

SSIM 
BPP PSNR 

MS-

SSIM 
BPP PSNR 

MS-

SSIM 

Kodim01 2.675 40.27 0.9976 2.568 39.98 0.9975 2.675 9.26 0.0759 

Kodim02 1.642 40.77 0.9929 1.582 40.30 0.9925 1.642 7.76 0.1121 

Kodim03 1.096 42.52 0.9953 1.020 42.36 0.9952 1.096 8.81 0.0967 

Kodim04 1.574 41.08 0.9947 1.484 40.80 0.9944 1.574 8.78 0.0938 

Kodim05 2.519 39.67 0.9980 2.432 39.41 0.9979 2.519 8.06 0.0522 
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Kodim06 2.065 40.74 0.9961 1.960 40.47 0.9959 2.065 8.56 0.1028 

Kodim07 1.227 42.33 0.9969 1.153 42.10 0.9968 1.227 9.25 0.0779 

Kodim08 2.823 39.06 0.9978 2.731 38.79 0.9977 2.823 8.40 0.0475 

Kodim09 1.148 41.37 0.9938 1.083 41.01 0.9933 1.148 9.73 0.0954 

Kodim10 1.253 41.34 0.9946 1.194 40.96 0.9943 1.253 9.67 0.0989 

Kodim11 1.944 40.93 0.9961 1.835 40.63 0.9959 1.944 8.73 0.0841 

Kodim12 1.277 41.88 0.9942 1.207 41.55 0.9939 1.277 8.84 0.1131 

Kodim13 3.227 38.26 0.9975 3.141 38.02 0.9974 3.227 8.51 0.0745 

Kodim14 2.327 39.73 0.9968 2.219 39.47 0.9967 2.327 8.33 0.0741 

Kodim15 1.478 41.07 0.9946 1.390 40.77 0.9943 1.478 7.08 0.0919 

Kodim16 1.524 41.98 0.9956 1.418 41.60 0.9954 1.524 9.12 0.1047 

Kodim17 1.367 41.25 0.9958 1.284 40.90 0.9955 1.367 7.94 0.0823 

Kodim18 2.339 38.76 1.00 2.243 38.45 1.00 2.339 7.79 0.87 

Kodim19 1.783 40.75 0.9949 1.684 40.41 0.9945 1.783 9.06 0.0949 

Kodim20 1.305 41.55 0.9944 1.191 41.23 0.9940 1.305 6.28 0.0999 

Kodim21 1.816 40.42 0.9944 1.699 40.09 0.9940 1.816 9.29 0.0913 

Kodim22 1.986 39.99 0.9944 1.884 39.66 0.9940 1.986 9.11 0.0946 

Kodim23 0.911 41.85 0.9948 0.866 41.60 0.9946 0.911 8.41 0.0868 

Kodim24 2.240 38.43 0.9969 2.122 38.22 0.9968 2.240 8.64 0.0761 

 

5.5 Security Analysis  

This section is going to discuss various cryptographic attacking methods, such as ciphertext-

only attack, differential attack, and statistical attack. And the robustness against those attacks 

will be evaluated to analyze the security of our scheme. 

5.5.1 Ciphertext-only Attack 

The ciphertext-only attack is one of the most basic and realistic methods for various 

cryptanalysis techniques. To defend against this kind of brute-force attack, the key space of the 

cryptosystem should be large. In our model, the parameters of the learning network are given. 

The 256-bit encryption key 𝐾𝑒𝑦1 is produced by the BLAKE256 hashing from images and 

controls all encryption operations in the proposed model. Therefore, we obtain a 2(256) 

keyspace which is lager than the theoretical requirement with 2(100) . Because of the large 
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keyspace of our model, it is tough for the attacker to break down even though the attacker 

knows the learning network and our encryption system can handle this attack easily. 

5.5.2 Key sensitivity Analysis  

In general, the security of an encryption system should only rely on the secrecy of keys but not 

the underlying techniques.  In this regard, a cryptosystem needs to be highly sensitive to the 

encryption and decryption keys used. Here, we use the plain images ‘kodim03’as examples. 

The high key sensitivity level can be demonstrated in two parts: 

1) A completely different ciphertext image would be generated for the same plain image if the 

encryption keys used change slightly. 

2) The encrypted image should not be decrypted when a key having minor change to the 

encryption key is used. 

In the first case, we make a minor change in encryption key 𝐾𝑒𝑦1 to generate the new key 

stream 𝐾𝑆1. We then generate two encrypted images using the two different keys for the same 

input image. And the encrypted images are shown in Figure 5.8(b) and 5.8(c), while their 

difference is shown in Figure 5.8(d). The mean square error (MSE) between these two cipher 

images is measured as 3.65 × 103, which is very large. It is clearly seen, from both the MSE 

figure and the difference image, that the encrypted images obtained by two slightly different 

keys are very different, and our proposed model fulfils the first case of key sensitivity.  

    

(a)                                (b)                            (c)                                 (d) 

Figure 5.8: Comparison of encrypted images with different keys. (a) plain images,  (b) cipher 

image through the original key, (c) cipher image through the new 𝐾𝑒𝑦1, (d) difference image 

between cipher images. 

For the second case, the original key and the new key generated are utilized to decrypt the same 

cipher-image encrypted with the original key. The cipher image is shown in Figure 5.9(b), and 

the decrypted images using the two different keys are shown in Figure 5.9(c) and 5.9(d). It is 

seen that only the original key can recover the original image. 
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(a)                                (b)                            (c)                                 (d) 

Figure 5.9: Decryption with different keys. (a) original image, (b) cipher image, (c) decrypted 

image using the original key 𝐾𝑒𝑦1, (d) decrypted image using the new 𝐾𝑒𝑦1. 

5.5.3 Statistical Attack 

In statistical attacks, attackers utilize the high correlation between pixels and obtain original 

images through the predictable relationship between plain images and encrypted images. So, a 

good encryption scheme needs to reduce the statistical relationship between plain images and 

encrypted images to defend against this attack. And the histogram and correlation chart are two 

standard methods to illustrate the correlation. To evaluate the robustness against the statistical 

attack, the histogram of image ‘kodim04’ and corresponding encrypted images are given in 

Figure 5.10. It is seen that there are large differences between the histograms of images before 

and after encryption. We can find that the shuffling operation on feature maps can extremely 

decrease the pixel’s correlation. And the parameter substitution can further reduce the 

correlation. According to the results, our model and [45] can achieve the uniform distributed 

histogram, revealing the excellent property to resist the statistical attack. In comparison, the 

cipher image from [30] does not show a uniform distribution since there are still some 

correlations among pixels.  

 

(a)                                                                         (b) 



 

 

66  

 

(c)                                                                           (d) 

 

 

(e)                                                                                  (f) 

Figure 5.10: Histogram charts of plain-image and cipher-image. (a) plain-image (b) cipher-

image only with permutation on the third dimension of y, (c) cipher-image with permutation 

on all dimensions of 𝑦, (d) final cipher-image, (e) Ref [30], (f) Ref [45].             

For the correlation chart, the correlation of adjacent pixels in images will be measured in the 

horizontal direction (Hor), the vertical direction (Ver), and the diagonal direction (Dia). Table 

5.4 shows the correlation coefficients for the original images and encrypted images. It is shown 

that the encrypted image has less correlation of pixels compared to the original image, 

illustrating the good decorrelation performance of our encryption model.  

Table 5.4: Correlation coefficients of adjacent pixels. 

 Original Image Encrypted Image 

 Hor Ver Dia Hor Ver Dia 

Kodim01 0.9050 0.8315 0.7536 0.0392 -0.0026 0.0002 

Kodim02 0.8823 0.8499 0.8126 -0.0086 0.0151 -0.0666 

Kodim03 0.9801 0.9731 0.9459 -0.0157 -0.0211 -0.0175 

Kodim04 0.9632 0.9713 0.9498 0.0220 0.0161 0.0204 
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Kodim05 0.8990 0.8840 0.8156 0.0130 -0.0186 0.0457 

Kodim06 0.9726 0.9321 0.9303 -0.0433 0.0070 0.0429 

Kodim07 0.9720 0.9328 0.9207 0.0300 0.0165 -0.0011 

Kodim08 0.8962 0.9207 0.8272 -0.0052 0.0288 0.0391 

Kodim09 0.9445 0.9584 0.9322 0.0271 0.0122 0.0027 

Kodim10 0.9617 0.9646 0.9035 -0.0668 -0.0247 -0.0434 

Kodim11 0.9387 0.9269 0.8945 0.0849 -0.0134 0.0654 

Kodim12 0.9732 0.9577 0.9513 -0.0344 -0.0303 -0.0464 

Kodim13 0.8865 0.8509 0.7978 0.0414 -0.0312 -0.0161 

Kodim14 0.9569 0.9153 0.9007 -0.0288 -0.0054 0.0402 

Kodim15 0.9889 0.9893 0.9788 -0.0254 0.0251 -0.0476 

Kodim16 0.9790 0.9359 0.9387 -0.0071 -0.0129 0.0219 

Kodim17 0.9682 0.9715 0.9622 -0.0117 -0.0205 -0.0299 

Kodim18 0.9031 0.8919 0.8534 0.0207 -0.0418 0.0187 

Kodim19 0.9275 0.9505 0.8853 -0.0171 -0.0158 -0.0133 

Kodim20 0.9906 0.9856 0.9768 0.0213 0.0383 0.0185 

Kodim21 0.9384 0.8905 0.8558 0.0515 -0.0309 0.0115 

Kodim22 0.9506 0.9631 0.9258 0.0207 -0.0373 0.0168 

Kodim23 0.9833 0.9763 0.9565 0.0068 -0.0577 -0.0490 

Kodim24 0.9363 0.9420 0.9110 -0.0108 -0.0199 0.0046 

 

And for example, Figure 5.11 shows the correlation charts of image ‘kodim23’ and ciphertext 

images under our encryption model, [30] and [45]. A similar shuffling operation is also utilized 

in [45]. But the results show that the shuffling operation in our model achieves better 

performance on decreasing the pixel’s correlation compared with [45]. Then the parameter 

substitution can further reduce the correlation. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5.11: Correlation charts of images before and after encryption. (a) original image (b) 

encrypted image only with permutation on the third dimension of y, (c) encrypted image from 

the proposed model, (e) Ref [30], (f) Ref [45].  
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5.5.4 Differential Attack  

In differential attacks, attackers try to obtain the encryption keys by studying the influence of 

input differences on output changes. To resist differential attack, the encryption system needs 

to be sensitive to changes in the image, and minor changes in plain images should cause large 

changes in encryption images. The common criteria used in measuring the degree of image 

change are net pixel change ratio (NPCR) and unified average change in intensity (UACI). 

Generally, the higher value of NPCR, the better performance of the encryption system. When 

UACI is close to 33%, the encryption system has higher security.  

Therefore, to evaluate the robustness against differential attack, we conduct a slight 

modification on some random pixel values to generate the slightly changed image. In the 

experiment, only about 1% of the pixels in the image would be changed by adding 1 to the 

value. Then both images will be encrypted by the same key. Table 5.5 gives the mean NPCR 

and UACI values for our encryption system. From the table, the proposed model has the 

defense capability against the differential attack and the encryption operation on dimensions 

𝑖,𝑗 of 𝑦 can enhance the robustness, while the NPCR and UACI values are all almost zero for 

the encryption method in [30], indicating the low diffusion property. Also, the mean NPCR of 

our encryption system is higher than that of [45], which is less than 98%. Besides, [83] uses 

the deep network to transfer images to another domain for encryption, but the average NPCR 

mentioned in the paper is less than 95% which is lower than our model. 

Table 5.5: Mean NPCR and UACI of cipher-images. 

 Proposed Model Ref [30] Ref [45] 

 NPCR% UACI% UACI% UACI% NPCR% UACI% 

Kodim01 99.61 33.47 0.01 8.22e-05 96.62 39.32 

Kodim02 99.62 33.47 0.01 8.98e-05 97.97 36.48 

Kodim03 99.59 33.44 0.01 9.74e-04 98.91 28.36 

Kodim04 99.63 33.44 0.01 7.12e-05 98.18 38.23 

Kodim05 99.59 33.54 0.01 7.58e-05 97.42 36.31 

Kodim06 99.60 33.50 0.01 6.45e-05 96.86 36.48 

Kodim07 99.59 33.40 0.01 7.31e-04 97.91 29.37 

Kodim08 99.62 33.49 0.01 9.74e-04 98.62 38.23 

Kodim09 99.61 33.42 0.01 7.11e-05 98.02 37.82 

Kodim10 99.61 33.50 0.01 7.58e-05 97.23 36.48 
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Kodim11 99.62 33.48 0.01 6.45e-04 97.93 29.46 

Kodim12 99.61 33.50 0.01 5.91e-05 99.21 38.23 

Kodim13 99.60 33.52 0.01 9.74e-04 98.02 36.62 

Kodim14 99.60 33.46 0.01 4.12e-04 97.24 36.48 

Kodim15 99.60 33.43 0.01 7.52e-05 97.67 29.33 

Kodim16 99.63 33.43 0.01 5.45e-04 98.62 36.23 

Kodim17 99.62 33.46 0.01 8.78e-05 98.02 35.31 

Kodim18 99.61 33.38 0.01 9.74e-04 97.29 36.49 

Kodim19 99.60 33.53 0.01 9.14e-04 97.95 28.34 

Kodim20 99.61 33.46 0.01 7.68e-05 97.62 28.23 

Kodim21 99.60 33.50 0.01 7.45e-04 98.02 37.62 

Kodim22 99.62 33.49 0.01 8.12e-04 97.25 36.58 

Kodim23 99.61 33.51 0.01 7.88e-05 97.02 28.96 

Kodim24 99.61 33.52 0.01 6.45e-04 99.25 38.23 

 

5.5.5 Robustness Analysis 

When images are transmitted over the Internet, information blocking and loss can sometimes 

occur which may affect the recovery. So the encryption system needs to effectively resist 

clipping and noise attacks to show good robustness. 

(1) Clipping attacks: When attacking by pixel clipping, the quality of the decrypted image will 

decrease significantly. Here, we set 1/64, 1/16 and 1/4 area pixels of the ciphertext image of 

“Kodim13” to 0 and then decrypted it with the correct key, and the results are shown in Figure 

5.12. As the image size of “Kodim13” is 512×768, the sizes of the blocking area are 64×96, 

128×192 and 256×384 respectively. As can be seen, we can observe that more and more 

information is lost when the blocking area increases. That is mainly because the backbone we 

used is the AE-based model and it is sensitive to the changes in input. This can be perfected in 

later work by using the deep architecture GAN. 

 

(a)                                 (b)                                  (c)                                  (d) 

https://www.sciencedirect.com/science/article/pii/S2214212622001569#fig21
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Figure 5.12: Clipping attack result. (a) Original image and the decryption images when meeting 

(b) 1/64, (c)1/16, (d) 1/4 blocking. 

(2) Noise attack: To test the performance when meeting the noise attack, we add different levels 

of salt and pepper noise for experimentation. Figure 5.13 shows decryption images after adding 

salt and pepper noise with intensities 0, 0.01, 0.05 and 0.1. Compared with the plaintext image, 

the decrypted image can only display some color and edge information about the image. Since 

the encryption key is embedded in the encrypted image, changes in the encryption image may 

impede image recovery. Also, the deep architecture is sensitive to the changes in the image.  

 

(a)                                 (b)                                  (c)                                  (d) 

Figure 5.13: Noise attack result. (a) Original image, and the salt and pepper noise decryption 

results with the intensity of (b) 0.01, (c) 0.05, (d) 0.1. 

5.5.6 Time Efficiency Analysis 

In this part, the encryption efficiency of our proposed scheme is analyzed. The tested 24 images 

are from the publicly Kodak dataset. The size of images in this dataset is 512×768 or 768×512. 

The mean encryption speed of different encryption schemes is shown in Table 5.6. Ref[30] 

needs the least computational time since [30] proposed an encryption-then-lossy-compression 

scheme. In [30], images are encrypted by the modulo-256 addition method which is low 

complexity. Since deep architecture only spends a lot of time on training, the running speed of 

our proposed method is not very slow. And the time is mostly spent on permutation operations 

which is important for security, while Ref [45] has the same problem.  

Table 5.6: Encryption efficiency with different schemes. 

 Proposed Model Ref [30] Ref [45] 

Speed(s) 2.78 0.29 4.33 

 

https://www.sciencedirect.com/science/article/pii/S2214212622001569#fig21
https://www.sciencedirect.com/science/article/pii/S2214212622001569#fig21
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5.6 Retrieval Accuracy on Encrypted Images 

The retrieval performance evaluation is conducted on the image database Corel-10k [72] which 

contain 1k/10k color JPEG images in 10/100 categories. And a sub-dataset from ImageNet 

2012 Large-Scale Visual Recognition Challenge dataset [77] is used for training retrieval model 

which contains more than 80k images with 100 classes. We choose ResNet-34 [78] as the 

backbone. The stochastic gradient descent (SGD) optimizer is set with an initial learning rate 

of 0.1, a momentum of 0.9, and a weight decay of 4e-5. And the learning rate decays by 0.1 

every 50 epochs.  

To compare the proposed retrieval model with other methods, we adopt the Top-k precision for 

evaluation with k=5, 10, 15, 20. The retrieval performance evaluation is conducted on the 

image database Corel-10k. Since the compression degree can affect the retrieval accuracy 

which is mentioned in Section 4.6, We change the value of β to get different compression ratios 

and the performance with different compression degrees is shown in Figure 5.14. The 

parameter 𝛽 of the model is within the set {0.0018, 0.0035, 0.007, 0.015, 0.03, 0.045, 0.09, 

0.18}. The value of β is higher, the image quality is better and thus the retrieval accuracy is 

better. 

 

Figure 5.14: Top-k precision (k=5, 10, 15, 20) with different compression degrees. 

Figure 5.15 shows the precision of retrieval accuracy of different encrypted image retrieval 

schemes. The result of the unencrypted compressed representation with the proposed retrieval 

mode is also shown. From Figure 5.15, it is obvious that the proposed deep retrieval obtains 

the best performance in the case of encrypted inputs. And our proposed method is very close 
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to the results with unencrypted images, which makes it seem that the compressed and encrypted 

representations meet the requirement of availability. 

 

Figure 5.15: Top-k precision (k=5, 10, 15, 20) of different encryption and retrieval schemes. 

 

5.7 Summary 

This chapter proposes a novel deep joint compression-encryption model to achieve a good 

balance between encryption performance and compression efficiency. And with the encrypted 

and compressed representation, an exellent retrieval result is obtained. Here, the AE-based 

compression network as the base network architecture in our compression and encrytion model. 

When deep features are encrypted and decrypted, the plain image can still be reconstructed 

through a decoder that meets a cryptographic system's basic requirements. So, we encrypt 

images during compressing when using deep architecture. The encryption keys are from the 

plain images, and the encryption operations are performed on latent representations during 

compression, which can protect images with a high-security level. And part parameters of the 

deep model are replaced for higher visual security. The embedding key controls the key 

embedding process to save the transmitting cost when the plain images change. Moreover, 

attention scheme is introduced to estimate the parameters of the learned entropy model to 

achieve more effective compression. The proposed encryption scheme obtains a high protection 

ability from the experiment results with high compression efficiency. And from the evaluation 

of retrieval accuracy, our model can enable encrypted image retrieval well. The compressed 

and encrypted representation from the proposed model can ensure compression-friendliness, 

privacy security and availability for retrieval. 
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Chapter 6 Conclusion and Future Work 

6.1 Conclusion 

In this thesis, we first introduce the background of image compression, image encryption and 

encrypted image retrieval. And the necessity and challenge of encrypted image retrieval have 

been discussed. Then our contributions in realizing encrypted image retrieval are introduced to 

handle the conflict between encryption and retrieval. Three different encrypted image retrieval 

schemes are proposed which can broadly categorize into pixel based method, DCT based 

method and learning based method. For those three methods, learning based method performs 

the best both on security and compression, but it has some implementation issues like we need 

to train the network for different compression ratio. The DCT based method performs next to 

the learning based method but it is compression friendly that can be implemented in the existing 

systems without much extra work, since we introduce encryption operations into the 

compression stage. And for the pixel based method, we can find that the security level is not 

so strong due to the block-based encryption operations but it is also compression-friendly. 

In Chapter 2, some basic relate methods are presented which include image compression 

techniques, image encryption techniques and encrypted image retrieval techniques. For image 

compression techniques, traditional schemes and deep models are briefly introduced in this 

chapter. Various image compression and encryption schemes are introduced, and these 

algorithms can be categorized into three classes: encryption-then-compression scheme, 

simultaneous compression encryption scheme and compression-then-encryption scheme. The 

advantages and limitations are also discussed.  

Chapter 3 presents a privacy-preserving content-based image retrieval scheme, which extracts 

features from the content of encrypted images. To achieve privacy protection, two-level 

sequence permutation is conducted on pixels in each 8×8 block. Pixels in the block are 

represented with 8-bit binary sequence first. Then, more significant 4-bit binary sequence of 

the pixel is confused by block permutation, while intra-block permutation is conducted on the 

less significant 4-bit binary sequence. After encryption on binary sequence, the image 

confusion is used by permutation to increase image security and the index is generated from 

logistic map. This block based permutation operation can guarantee local feature extraction, 
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further improving the image security and retrieval accuracy. The histogram features for 

retrieval can be directly extracted from encrypted blocks. And the retrieval accuracy and image 

security of the proposed method are discussed. The factors affecting the performance of the 

algorithm are mentioned. The security is limited by the block permutation operation since it 

cannot remove spatial relationships well. And adding the value substitution operation may 

improve the security performance of the method.   

Chapter 4 presents a encrypted JPEG image retrieval scheme based on DCT coefficients, which 

encrypts images during the JPEG compression process by coefficient value substitution and 

intra-block pixel permutation on coefficients. DC coefficients are all substituted by new values 

and the replacement is determined by the original coefficient values. Intra-block pixel 

permutation on coefficients is conducted for further security. After encryption, our proposed 

learning approach utilizes ResNet-34 as the backbone to extract features while accepting 

encrypted DCT coefficients as input to consume less computation and communication 

resources. And a Siamese architecture with triplet loss is used to produce a global 

representation that is well-suited to image retrieval. Experiment results show that our method 

can achieve higher accuracy than other related schemes and security requirements. 

Chapter 5 presents a deep encryption and retrieval scheme that introduces end-to-end learning 

to the security system, which can achieve a good balance between encryption performance and 

compression efficiency. And with the encrypted and compressed representation obtained from 

proposed model, an excellent retrieval result is obtained. Here, the AE-based compression 

network is the backbone of the our compression and encryption model. When deep features are 

encrypted, the plain image can still be reconstructed through a decoder that meets a 

cryptographic system's basic requirements. So, the encryption operations are conducted on 

latent representations during deep compression processing. The encryption keys are from the 

plain images, which can protect images with a high-security level. And part parameters of the 

deep model are replaced for higher visual security. The embedding key controls the key 

embedding process to save the transmitting cost when the plain images change. Moreover, an 

attention scheme is introduced to improve compression performance. The proposed encryption 

scheme obtains a high protection ability from the experiment results with high compression 

efficiency. After generating the encrypted and compressed representation, a deep retrieval 

model is introduced which is training with ranked list loss and cross-entropy loss. And from 

the evaluation of retrieval accuracy, the model can enable encrypted image retrieval well. The 
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compressed and encrypted representation from the proposed model meets the requirements in 

compression-friendliness, privacy security and availability. 

 

6.2 Future Work 

Encrypted image retrieval is a complex research topic since privacy security, compression 

efficiency and retrieval performance are all needed to be considered. Based on the methods 

proposed in this thesis, there are still several parts can be further studied. First, various block 

sizes can be considered since 8×8 block is commonly used in JPEG based compression. And 

improve the capability of block operation to against attacks can also be considered. Second, 

more effective features can be captured from DCT coefficients with different encryption 

operations and the new model can be regarded as a retrieval-oriented encryption scheme. Third, 

different deep architecture can be considered for compression and encryption since the 

proposed model needs to be retrained to get the results from different compression rates. Forth, 

some special image categories can be considered, such as very low-resolution images. Finally, 

other deep architecture can be considered since the backbone we used in this thesis are all based 

on the spatial domain.   
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