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Abstract

Recently, along with the rapid development of multimedia techniques, many images have been
generated daily over various network platforms and those images can be stored to cloud servers for
convenience. However, the rich sensitive information embedded in those images often results in
security and privacy issues when personal images are outsourced. So the need for secure storage and
transmission of images has become increasingly important. However, image retrieval methods
require the image information before it can be retrieved. Therefore, it would be necessary to search
for effective image encryption and retrieval techniques to protect privacy and also maintain the
availability of encrypted data. To handle the conflict, thesis presents our contributions in realizing
the encrypted image retrieval system and three different encrypted image retrieval schemes are
proposed. The proposed three models can broadly categorize into pixel based method, DCT

coefficient based method and deep network based method.

In the first encrypted image retrieval scheme, the encryption operations are adopted on image pixels.
For a given image, we first divide it into 88 non-overlapped blocks due to the JPEG standard. And
the 8-bit binary sequences of pixels in each block are confused by two-level permutation. Specifically,
more significant 4-bit binary sequence of the pixel is confused by block permutation, while intra-
block permutation is conducted on the less significant 4-bit binary sequence. After encryption on
binary sequence, the image confusion is used by block permutation to increase image security and
the index is generated from a logistic map. The histogram features can be generated from the

confused blocks directly for retrieval processing.

In the second encrypted image retrieval scheme, we extract the features for retrieval from the
frequency domain which would consume less computation and communication resources. DCT
coefficients are utilized to obtain feature vectors. The encryption operations, including coefficient
value substitution and intra-block coefficient shuftling, are performed on JPEG images. With the
proposed encryption and compression scheme, the feature would be directly extracted from the
frequency domain by using the learning network. And the Siamese architecture for metric learning
is used for capturing the similarity well. Finally, the user can receive several encrypted images with

similar content according to the query.



As for the third encrypted image retrieval scheme, a new image compression and encryption
framework is proposed which integrates encryption algorithms with a learning-based compression
network. Our model employs Auto-Encoder (AE) based compression network as the backbone and
encryption layers are added. And for higher security, the parameters of the synthesis network are
replaced by a new parameter matrix based on a logistic map controlled by a secret key. The
encryption key of the system is derived from the image content, which will be embedded in the deep
feature vectors. And to learn the entropy model from the scrambled feature maps, an attention scheme
is exploited in estimating parameters to achieve more effective compression. In this scheme, the
encrypted feature maps are the inputs of another deep network for retrieval. And the training loss

function for this retrieval model consists of ranked list loss and cross-entropy loss.
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Chapter 1 Introduction

1.1 Background

Recently, along with the rapid development of digital devices, large amounts of images have
been generated in our daily life. As an essential carrier of human communication, images are
delivered by users through personal laptops or computers, smart mobile phones and various
network platforms. And thanks to the rapid growth of computing technology, many images can
be storing to cloud servers such as Google Drive, One Drive and Dropbox by users for lower
cost and more convenience. However, the rich personal information is contained in those
images which often results in security and privacy issues when outsourcing images to third
parties. So the in order to protect data privacy, images are usually encrypted by users before
transmitting them to the server for outsourcing. After encryption, the image will be converted
to an obviously different one, and nobody can get to know the original content of the image
when the encryption key is unknown. And the content of images would be protected with
varying methods of encryption. Then the protected images may be outsourced to cloud servers.
But this privacy operation may cause an impediment for servers to provide further processing
services, like image retrieval, since many image retrieval techniques need to obtain image
content and require the image to be decrypted before it can be retrieved. Thus the problem is
whether to preserve the retrieval function or to sacrifice it to ensure privacy. Therefore, it would
be desirable to develop effective retrieval techniques in encrypted domain under the premise

of protecting privacy.

To deal with the conflict between security and retrieval performance, many searchable image
encryption methods have been proposed and other researchers tend to find a retrieval scheme
which can search for specific images in a database of encrypted images without decrypting
them. For those searchable image encryption algorithms [1-4], the statistical information, such
as histograms and local descriptors, is preserved which is contained in the original image, to
ensure the retrieval processing. However, those methods ignore the compression performance
when encrypting images and sacrifice security to a certain extent. As an essential carrier of
human communication, the compression performance needs to be considered for better
delivery. And most of the images we use are compressed except for some special and

professional occasions. Considering the requirement of compression, some researchers propose



cascaded compression encryption methods [5-9], which can achieve high efficiency in
compression. In [5, 6], encryption operations are adopted into the compressing stage, while [7-
9] encrypt the data with learning-based methods. But these methods only focus on the security
and compression efficiency of image and ignore the data availability which is important for
retrieval function. Besides, to decrease the computation cost of image retrieval, some
researchers tend to transform images to the frequency domain first and then retrieval schemes

are exploited on the frequency domain with compressed and encrypted representations [10-13].

In summary, image encryption techniques for privacy preserving image retrieval are required
to achieve compression-friendliness, privacy security, and data availability. But the
requirements are restricted to each other. For protect security, the content of image can be
confused to forbid the attacker from reconstructing the image from the encrypted one. In this
case, the relationship between images would be removed, which restricts the similarity
measurement. And the confusion operations used for encryption may increase the entropy of
the image and decrease the compression performance on encrypted images. To address this
challenging issue, this thesis will deeply investigate three specific tasks, pixel based searchable

encryption, DCT based image encryption and retrieval, and deep image encryption and retrieval.

1.2 Research Motivations and Contributions

For encrypted image retrieval, the image encryption module used needs to ensure the privacy
and security of images by conducting the encryption operation, preventing the reconstruction
of the plain image from the ciphertext. But in this case, cipher images may be unavailable for
obtaining effective features from the content of images, which limits encrypted image retrieval.
In summary, the encrypted image retrieval system needs to ensure the privacy and availability
of image. And since images are almost compressed when transmitted, the image encryption
and retrieval system may meet the requirements of privacy security, friendly compression and

better retrieval accuracy. And different proposed schemes may focus on different points.

In this thesis, three encrypted image retrieval schemes are proposed and the main contributions

can be summarized as follows:

e A new searchable encryption scheme is proposed to achieve privacy protection and it
can support retrieval on encrypted domains by extracting features from the content of

cipher images. The proposed encryption scheme is realized by using pixel-based



operations on images. First, the plain images are segmented into 8%8 non-overlapped
blocks due to the JPEG standard. And the proposed pixel-based encryption method is
realized by two-level permutation on binary sequences. Using block based permutation
method on image confusion can ensure local feature extraction conducted on confused
blocks, which can benefit privacy protection and retrieval processing. With the
proposed encryption method, the feature for similarity measurement can be directly
obtained from confused blocks. And the problem of image retrieval on cipher images
can be defined based on the local histogram. With experiments, the security and
retrieval performance of the proposed scheme are verified on the dataset.

A new encrypted JPEG image retrieval scheme is proposed based on DCT coefficients.
In this work, the features for retrieval can be extracted from the frequency domain
which would consume less computation and communication resources. Here, DCT
coefficients are utilized for obtaining feature vectors and also for encryption. The
encryption operations are exploited on JPEG images with coefficient value substitution
and intra-block pixel permutation. In this case, encrypted images can maintain format
compliance. We use the deep architecture in network to get more effective features for
encrypted image retrieval from frequency domain. For a given encrypted query image,
the server obtain the image descriptors for retrieval from DC and AC coefficients as the
which are the inputs of the network. And without decrypting, similarity measurement
is conducted between the encrypted query image and database image in the cloud sever.
The channel attention module is integrated to select the effective frequency components
and reduce the impact of encryption. And we adopt the Siamese architecture for metric
learning since the learned image embedding can help the Euclidean distance captures
the similarity well. Finally, several encrypted images containing similar content are sent
to the user. Experiment results show the encryption and retrieval performance of our
scheme.

A deep encryption and retrieval scheme is proposed. We develop a novel joint
compression-encryption model which could be an early attempt to introduce end-to-
end learning to the security system. The shuffling operations are conducted on deep
feature maps. And for a higher level of visual security, part parameters of the network
are replaced by a new parameter matrix based on a logistic map controlled by a secret
key. The encryption key of the system is derived from the image content, which will be

embedded in the deep feature vectors with a fixed key to save the cost of sending the



key for different images. An attention scheme is exploited in estimating parameters to
achieve more effective compression to learn the deep model from the scrambled feature
maps. After encryption and compression, the confused deep representations are sent as
inputs to another deep similarity network for retrieval. And the training loss function

for this retrieval model consists of ranked list loss and cross-entropy loss.

1.3 The Outline of Thesis

The remaining chapters of this thesis are outlined as follows:

Chapter 2 introduces some basic related work in the literature, which includes image
compression techniques, image encryption techniques and encrypted image retrieval
techniques. For image compression techniques, traditional schemes and deep models are all

presented in this chapter. And three types of image encryption techniques are introduced.

Chapter 3 presents a privacy-preserving content based image retrieval scheme, which is
realized by using pixel-based encryption operations on images and extracts features use for

retrieval from the content of encrypted images.

Chapter 4 presents a encrypted JPEG image retrieval scheme based on DCT coefficients, which
can encrypt image by coefficient value substitution and intra-block pixel permutation on

coefficients. And the features for retrieval are learned from the frequency domain.

Chapter 5 presents a deep encryption and retrieval scheme that introduces end-to-end learning
to the security system. The encryption operations are conducted on deep feature maps. An
attention scheme is exploited for compression. After encryption and compression, the confused

deep representations are sent to a similarity network for retrieval.

Chapter 6 summarizes the research work of this thesis and provides several potential directions

for future research.



Chapter 2 Literature Review

2.1 Image Compression

2.1.1 Traditional Compression

Image compression is one of the foundational research tasks in computer vision and many
different approaches have been proposed in the previous decades, such as JPEG and JPEG2000.
Most of them apply linear transformation to convert correlated pixels into non-correlated
transform coefficients, quantize and then encode the resulting discrete representation by
entropy coding. In general, the baseline compression procedure comprises three components —
transform, quantizer, and entropy coder. Figure 2.1 shows the block diagram of JPEG
compression standard as an example. And as one of the popular image compression standards,
JPEG uses a discrete cosine transform on blocks of pixels in an image, while JPEG 2000 uses
wavelet transform. But all those algorithms are based on handcrafted encoding/decoding

diagrams and use a fixed operation.

y
Tnp ut;mage — DCT Quantizer
Entropy Coder [
Reconstructed y A :
econs ru& e IDCT De-Quantizer C(.)mpressed
Image ¥ bit-stream

Figure 2.1: Block diagram of the JPEG standard.

JPEG is one of the most common image compression standards and JPEG images are
commonly used in many areas. JPEG standard is a kind of lossy compression method which
will remove the high frequency information which is not visually obvious. According to JPEG
standard [14], a color JPEG image has three components Y, U and V. For each component, it

will be divided into 8 x8 non-overlapped blocks and each of them is quantized after DCT. Here,

the quantization step can discard the visually non-noticeable information by crudely quantizing
higher frequencies. In each block, there are one DC coefficient and 63 AC coefficients. And
the DC coefficients are converted into binary bits. For the AC coefficients, a set of pairs (r, v)

are generated with zigzag scanning. Here, 7 represents the number of consecutive zero-valued



AC coefficients, and v defines the nonzero AC coefficient. Then, these pairs are entropy
encoded into binary bits. All binary bits from DC and AC coefficients are entropy encoded into
binary sequence by Huffman table. Finally, the JPEG file bit-stream is generated.

8>8 non-overlapped block
f

DCT Quantizer |—| ENtOPY Compressed
encoder bit-stream
: T
Original image : :
Quantization Huffman
table table
' '
i Entropy
IDCT Dequantizer «—
decoder
Decompressed
image

Figure 2.2: JPEG coding and decoding.

2.1.2 Deep Compression

The deep neural network has recently shown remarkable accuracy in multiple visual areas,
which implies the potential of learning-based methods to improve the performance of lossy
image compression. And several different neural networks have been introduced to image
compression. According to the network architectures, those works can broadly categorize into
auto-encoder (AE) based methods [15-18], recurrent neural network based methods [19,20]
and generative adversarial network based methods [21,22]. AE based methods extract the
compressed presentation of an image by replacing the fixed operation, like DCT, with some
convolutional transforms. And because of this inherent property of autoencoder, AE based
methods can be comparable with traditional transforms and outperform JPEG and JPEG2000.
But this kind of method needs separate training for obtaining images at different resolutions.
In RNN-based methods, the network weights are shared in various iterations to provide variable
output rates without retraining the network. But the residual between the original and predicted
images is taken as the input for the next iteration in the loop iteration process that will cause
an impact on introducing the encryption operation. GAN-based methods perform well at a high

compression ratio, but they are difficult to generate high-quality images.

Excellent joint image compression and encryption scheme should achieve sufficiently high
security with good performance of the underlying compression algorithm in terms of
compression efficiency. The loop iteration process of RNN-based compression methods may

impede the restoration when decryption. And GAN-based compression methods often generate



some extra details after decoding. Therefore, we choose the AE-based compression method as
the backbone of our model to achieve a good balance between security and compression ability.

The network architecture for AE-based image compression is shown in Figure 2.3.

Input Image . tiz d
p g Normalization —* AE encoder [—* Quan 1;:er z}n
x Arithmetic Coder

Compressed
bit-stream

Reconstructed
Image X

Denormalization =— AE decoder #— De-Quantizer [+

Figure 2.3: Block diagram for autoencoder-based image compression.

In AE-based compression, auto-encoders are used to obtain a hopefully lower-dimensional
representation y of data x via hidden layers. The network can be done by the operation x —
y = X, wherey = f(x), X = g(f(x)), from original data x to a simpler representation and
back. The reconstruction error between x and g(f (x)) needs to be minimized. Convolutional
auto-encoder (CAE) is a type of autoencoder replacing the fixed operation, like DCT, with
some convolutional transforms. And the convolution and deconvolution filters are utilized for
up-sampling or down-sampling. For autoencoder-based image compression, the goal is to find
a better feature function f and generative function g that would give a short code (log-
likelihood) of the image data x. In an autoencoder, given an encoder f, a decoder g and a

probabilistic model p, the loss function is as

Ex[~log p(f ()] + B - Ex [l — g (00| @21

Here, the discrete probability distribution p is used to assign bits to lower-dimensional
representation for entropy coding. And the quantized output of the encoder is the compressed

bitstream.

Recently, various AE-based deep network methods have shown promising results in image
compression. [23] aimed at directly optimizing the rate-distortion trade-off produced by an
autoencoder, while [16] used different strategies to deal with the quantization and entropy rate
estimation. To improve the performance, soft relaxation of quantization and entropy was
proposed in [24]. And the authors introduced a hyperprior on scale parameters of the latent
representation to get a more powerful entropy model in [15]. In [25], an enhanced entropy

model is derived to learn the conditional probability model of latent representation. As an



improvement of [15], [17] generalized the hierarchical Gaussian scale mixture model in [15]
to a Gaussian mixture model by adding an autoregressive component. Then, [18] proposed
using discretized Gaussian mixture likelihoods and smaller residual blocks similar to [16]. Also,

an attention module was introduced in [18].

2.2 Image Encryption

Joint image compression and encryption methods have attained much attention among different
encryption schemes since compression is a must-do step for most images on the Internet. The
framework for image compression and encryption system is to first encrypt and compress the
original images by the content owner and then transmit the encrypted and compressed data to
the cloud by the network provider. And the decryption and decompression operations are
performed at the receiver for image recovery. Usually, encryption operations can be performed
before compression, during compression or after compression to safeguard images. So, there
are three types of schemes: encryption-then-compression, simultaneous compression

encryption and compression-then-encryption.

2.2.1 Encryption then Compression Scheme

For the ETC system, the image data will be first encrypted and then compressed, while the
decryption operation will occur after decompression. The feasibility of the ETC system has
been demonstrated in [26]. However, applying encryption before compression affects the
compression performance since the contents of encrypted images are masked by the secret key
and the statistical correlations among neighbouring pixels are destroyed. Thus, many works on
ETC system mainly focus on finding a suitable compression algorithm for the proposed
encryption scheme. Different sampling and compression approaches are introduced in ETC
systems, such as compressive sensing [27,28], uniform downsampling [29,30] and scalar
quantizer [31,32]. In [27], a linear transformation of the pixels is used for encrypting data and
lossy compression is achieved by CS. To avoid the negative effect of the linear operation on
compression, two nonlinear operations are introduced in [28]. Also, gray mapping and 2D
projected gradient are utilized for lower compressing complexity and better image recovery.
For the uniform downsampling-based scheme, encrypted images are uniformly down-sampled.
In [29], adaptive sampling is proposed for compressing the encrypted images and the

corresponding multiscale interpolation is conducted for image recovery. Here, bitwise XOR



operation is exploited for masking image content. And in [30], images are encrypted by
modulo-256 addition method while deep residual network and U-Net-based attention
mechanism are utilized for reconstructing images from encrypted and down-sampled data
sequences. In [31], modulo-256 addition method is used for image encryption. Cipher images
are decomposed and quantized, and then the quantized sub-images are utilized for generating
the bitstream. And in [32], non-overlapping blocks of images are masked by modulo-256
addition method and block permutation is conducted to improve security. Then all encrypted
sub-blocks are classified and encoded by difference quantization to achieve flexible

compression.

2.2.2 Compression then Encryption Scheme

In contrast to the ETC system, the image will be compressed before conducting the encryption
operation in CTE system. In CTE framework, original images are used to compresses for less
redundancy, and then encrypted to ensure the security of content information. Then the CTE
data are transmitted to the receiver side through public channel. After receiving the transmitted
CTE data, the decryption and decompression is performed to reconstruct the original images.
Hence, the CTE system is more compression-friendly and encryption operation will be sped up
due to the compressed data [33, 34]. In [35], a neural network with small number of hidden
layers is used for compression, then zigzag confusion and XOR operations between scrambled
data and chaotic sequence are conducted for encryption. In [36], a deep learning-based CS
strategy is introduced, and the encryption operations are conducted on multiple CS
measurements. However, the CTE-based approaches usually cannot meet format compliance
and may increase the data size since encryption will destroy the format and other image

information. And in this thesis, all works meet the requirement to maintain format compliance.

2.2.3 Simultaneous Compression Encryption Scheme

Different from the above two systems, the content is compressed and encrypted by
incorporating encryption operations into one or more stages of compression in the SCE system.
And SCE approaches aim to enhance compression and security efficiency and are usually used
to overcome the limitations of the above two strategies. However, achieving SCE system is a
complex task since both compression and encryption schemes are considered when evaluating
the performance. Many scholars have proposed a number of related works. And for CS-based
SCE methods, the measurement matrix generation can be controlled by random sequences for

compressing and encrypting the data simultaneously. In [37], a key-controlled measurement



matrix is used, and the obtained measurements are scrambled for encryption with a key
generated by a logistic map. To shorten the key, in [37], the plain image is divided into 4 blocks
before compressing and encrypting, and random pixel scrambling is introduced to CS-based
SCE method. Subsequently, a 2D CS-based encryption-compression approach is proposed for
better compression performance and cycle shift operation controlled by a hyper-chaotic system
is exploited for re-encryption in [38]. In [39], a double image encryption algorithm is proposed
and a co-sparse analysis model is used before compressing and encrypting by CS. Moreover,
in [40], integer wavelet transform is combined with CS and the image information is embedded
into IWT coefficients. The key is extracted from plain images by SHA-3 algorithm to achieve
high key sensitivity and the final results show the high security of the method. Besides, some
algorithms combining discrete wavelet transform and CS have been proposed [41,42] to ensure
a higher security level, where DWT first transforms the images to get sparse matrices. In [41],
the coefficients of the obtained sparse matrixes are confused by a zigzag path, then encrypted
into a compressed bit-stream using CS. The simulation results demonstrate that this method
has a high-security level, but the time complexity is high especially for large images. In [42],
the row and column permutations are conducted on the coefficient matrix after DWT and the
measurement matrix used for CS is generated by the 2D-SLIM map. The GF(257)
multiplication algorithm is used in diffusion to enhance security. In [43], the sparse
representations from the DWT operation are permuted by the Lorenz system and then
compressed by SVD. And through the chaotic scrambling and XOR operation, the final
compressed cipher image is obtained. The simulation results indicate that this approach is
highly secure and robust, but the computational complexity of reconstruction is high. Besides,
since JPEG is a commonly used compression method of digital images, simultaneous image
compression and encryption scheme for JPEG images is proposed in [44]. In their work, new
order-8 transforms are developed, and the new transforms are applied alternatively controlled
by a key sequence. Block permutation is then applied after the transformation process. As the
improvement of [44], AC- and DC-coefticient encryption algorithms are applied in [45]. The
key for block permutation and DC confusion is generated through the BLAKE?2 hash function
and embedded into AC coefficients. In [46], order-16 DCT transform is used for the new block-
based encryption and compression scheme instead of order-8 orthogonal transforms and the
corresponding algorithm for coefficients distribution is proposed. Block permutation and
shuffling RSV pairs of AC coefficients are then applied to achieve a higher security level. And
end-of-block identifiers are used to ensure format-compliant for JPEG decompression which

are embedded into AC coefficients after permuting RSV pairs. A good compromise between
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the security and compression efficiency is obtained. But the original correlation cannot be
completely removed for these block-based methods. In [47], the images are represented in a
2D discrete wavelet domain and measured by 2D CS in which the measurement matrices are
constructed with a chaotic system, and then the measurement data are re-encrypted by taking a
double random scrambling and a multiple random diffusion. However, its resistance to both
Gaussian noise attack and occlusion attack is not good enough. Moreover, singular value

decomposition can be used to replace CS.

2.3 Retrieval on Encrypted Image

Recently, the encrypted image retrieval system has attracted much research interest and many
works for performing encrypted image research have been proposed. The aim of the encrypted
image retrieval system is to achieve effective retrieval of encrypted images while ensuring the
privacy requirement. And to search images better, the works for retrieval on encrypted images
can be divided into several types. The first type is extracting features from plain images for
retrieval and then the images and features are both encrypted before being transmitted to the
server. And the retrieval is conducted by comparing the encrypted feature of the query image
and that of each image in the database to search which images are similar to the query. For the
methods in this category, images are encrypted by image encryption algorithms and the focus
is on the problem of image feature protection which enable the similarity measures among

encrypted features.

The first scheme for searching on encrypted images is proposed in [48], which introduces the
content-based image retrieval to the encrypted domain. The retrieval is achieved by using
secure search indexes to match visual strings. The search indexes are extracted from plain
images and encrypted by word IDs scrambling, order-preserving encryption, and min-Hash
algorithm with randomized hash functions. To remain approximate similarity between
protected features, three visual feature protection schemes are proposed in [49], including bit-
plane randomization, random projection, and randomized unary encoding. And these protection
methods can maintain the correlation among features after encryption, so the encrypted image
retrieval can be ensured. In [50], MPEG-7 visual descriptors can be represented as the feature
vectors which are extracted from plain images, and the secure k-nearest neighbour (kNN)
algorithm is employed to protect these feature vectors. And pre-filter tables constructed by local
sensitive hash (LSH) are performed for better retrieval results. Since homomorphic encryption

is one of the essential ways for secure computation, [51] focuses on comparing homomorphic
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encryption-based schemes and randomization-based schemes for privacy-preserving image
search. As an extension of [48,49], [51] comprehensively compares two randomization-based
encryption methods in [48,49] with homomorphic encryption. The homomorphic-based
schemes have proved to be more secure and perform better in large image databases but require
extensive computation which make them hard to use in practice, while randomization-based
schemes can offer efficient retrieval but reveal some information about randomized features.
In [52], the proposed content-based system supports local feature-based encrypted image
retrieval and evaluates the similarity by using Earth Mover's Distance (EMD) with improved
locality-sensitive hashing. The scheme in [52] focuses on performing efficient similarity
measurements to improve retrieval performance while the bag-of-words model and improved
EMD with a linear transformation are conducted. In [53], encrypted image retrieval is
developed by extracting visual descriptors from plain images and encrypting them by using a
secure kNN algorithm. The pre-filter tables are constructed by LSH to increase retrieval
efficiency. And to deter illegally copy and distribution to unauthorized users, a watermark-
based protocol is also used. The method in [54] utilizes compact binary sequences to replace
the high dimensional representations and adapts the asymmetric scalar-product-preserving
encryption for privacy protection. And the secure kNN scheme is combined with the binary-
based vector quantization and the similarity measure with asymmetric distance. In summary,
these systems can solve the privacy issue while performing efficient retrieval. But the
independent image feature extraction operation and feature encryption operation will incur

extra computation costs and inconvenience for users.

For the above works, too much computation and communication resources are consumed.
Therefore, to overcome the limitation, other retrieval schemes have been developed focusing
on feature extraction from the encrypted domain. In [55], images are encrypted by shuffling
DCT coefficients before transmitting to the server. For different blocks, the coefficients are
permuted pseudo-randomly which means that each coefficient is moved to another block and
the frequency position remains unchanged. After that, the retrieval is conducted based on the
histograms of these coefficients. This encryption method can maintain the format of JPEG file
but the information about the coefticient histogram can be leaked. In [56], the color and texture
information are encrypted by two different methods respectively. The pixel color values
encryption is employed for color information while pixel positions permutation can protect
texture information. Here, image compression is the optional step since the scheme in [56] is

pixel-based encryption method. And the image retrieval is performed on the global color
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features. Then, Chou [57] proposes the encryption scheme based on block transformation to
protect plaintext images and introduces the white noise images into block transformation for
better protection. The image retrieval can be performed by comparing the distance based on
the color histogram between the query and images from the cloud server. Besides, image
convolution on the encryption domain is also discussed in [57], and it proved that the effect of
encryption and decryption operations on image convolution can almost be neglected. In [58],
different encryption operations are conducted on AC and DC coefficients respectively.
Exclusive-or operation is conducted on DC Huffman codes, while AC coefficients are
encrypted by using the scrambling operation. Then the AC coefficients are used to extract
histograms as the features for retrieval. Compared with [55], the scheme in [58] can achieve
better security, but it may face the information leakage of AC coefficients. In another work by
Cheng [59], the encrypted image retrieval system is realized by encrypting the coded data using
the stream cipher and permutation operation. Huffman codes are modified by using exclusive-
or operation with a standard stream cipher, and permutation is conducted on encoded binary
sequences of DC coefficients. And for retrieval, the Markov features can be obtained from the
encrypted domain in this approach directly. Multi-class supporting vector machine is used for
obtaining low-dimensional feature vectors. Cheng et al. [60] developed the encrypted image
retrieval system by extracting intra-block-based features from DCT coefficients which is better
than the global features used in [58]. Inter-block permutation and exclusive-or operation are
performed on DC coefficients, while AC coefficients are encrypted by intra-block permutation.
However, this method is weak in terms of security against differential attacks. Xu et al. [61]
utilized orthogonal decomposition to divide the image into two parts: the encryption field and
the feature extraction field. The encryption operations are conducted on the encryption field.
Then the encryption field and the feature extraction field would merge by the inverse
orthogonal transform for the final encryption data. However, the feature extraction field is not
encrypted which may cause information leakage. In [62], stream cipher and permutation cipher
are used for encryption and then the Huffman-code histogram is changed after encryption with
JPEG format maintenance. Here, Huffman-code histograms are used for retrieval and QT
encryption method is exploited to improve accuracy when meeting different QFs. But

redundant space is created during encryption.

In addition to finding suitable encryption schemes for retrieval, some researchers are focusing
on improving retrieval results. In these schemes, the encryption operations are conducted on

original images or feature vectors from original images. Among them, the privacy is protected
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by these encryption techniques. In [50, 53], LSH is used for getting features from plain images
and the secure kNN algorithm is introduced for privacy security. In [63], HSV histograms and
DCT histograms are integrated to obtain features which would be protected by the secure inner.
And the copy of the database is merged into encrypted features to resist the statistical attack.
In [64], a secure multiparty computing technology is developed to achieve multiple-owner
communication and privacy. By using this scheme, the system can retrieve images gathered
from multiple sources, and personal information will not be leaked during multiple-owner
communication. In [65], the improved Harris algorithm is proposed to extract features and the
speeded up feature algorithm is adopted for generated feature vectors. The chaotic encryption
scheme is used for indexes security. In [66], the hyperchaotic system is used for image
encryption while an improved pairwise-supervised hashing scheme is adopted for encrypting
index. The scheme in [66] is focused on improving search efficiency and also considers the
security issue. In [67], an encrypted hierarchical index tree is employed to obtain the secure
index and speed up the retrieval processing. Similar to [50, 53], the secure kNN algorithm is
used to obtain the secure index, and then a secure hierarchical index graph is developed to
speed up retrieval processing. And with the development of the deep network, some deep
architectures are employed to obtain efficient retrieval. In [68], transformed convolutional
neural network is used to extract features and the encrypted hierarchical index tree can be
employed for efficient search process. In [69], the fine-tuned convolutional neural network is
performed to extract image features and the features are encrypted by the secure kNN algorithm.
In [70], end-to-end encrypted image retrieval is proposed. Vision transformer model with triplet

loss and cross-entropy loss is used as the backbone to extract features for search.

2.4 Summary

This chapter presents a brief introduction on traditional image compression and deep image
compression. And some existing works are introduced which include image compression
techniques, image encryption techniques and encrypted image retrieval techniques. For image
compression techniques, traditional schemes and deep models are briefly introduced in this
chapter. Various image compression and encryption schemes are introduced, and these
algorithms can be categorized into three classes: encryption-then-compression scheme,
simultaneous compression encryption scheme and compression-then-encryption scheme. The

advantages and limitations are also discussed.
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Chapter 3 Privacy-preserving Content based Image

Retrieval

Content-based Image Retrieval (CBIR) techniques are commonly used for similarity
measurement on large amounts of images and can return the images quickly and effectively.
But outsourcing CBIR service to cloud servers may cause privacy concerns. In this chapter, a
new searchable encryption method is proposed to achieve privacy protection and it can support
the similarity search scheme conducted on encrypted domains by extracting features from the
content of encrypted images. The work in this chapter is to handle the conflict between security
and retrieval performance and the proposed scheme tend to preserve the content of images for
better retrieval without sacrificing privacy security. Here, the proposed encryption scheme is
realized by using pixel-based operations on images. First, plain images are segmented to 8x8
non-overlapped blocks due to the JPEG standard. For each pixel in the block, it can be
represented with 8-bit binary sequence. Then, more significant 4-bit binary sequence of the
pixel is confused by block permutation, while intra-block permutation is conducted on the less
significant 4-bit binary sequence. After encryption on binary sequence, the image confusion is
used by block permutation to increase image security and the index is generated from a logistic
map. The histogram features for retrieval can be directly extracted from encrypted blocks. The

major contributions of our method are listed as follows:

1) The proposed pixel-based encryption method is realized by block permutation and intra-
block permutation on binary sequences. The value of the pixel can be replaced by the new one

to protect the content of images.

2)Block-based permutation method on image confusion is adopted, which can further improve
security without restricting the local feature extraction. And a logistic map generated from
image content provides a new index for image confusion. Different index is different images
since the initial value of the map is calculated from the content of images. With the proposed

encryption method, the feature can be obtained from confused blocks directly.

3) The problem of similarity measurement on the encryption domain can be defined based on
the local histogram. Experimental results show the security and retrieval performance of the

proposed method and factors affecting the performance are discussed.
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The rest of this chapter is organized as follows: Section 3.1 gives an overview of the proposed
system module. Section 3.2 introduces pixel-based encryption and compression scheme.
Section 3.3 explains the details of similarity measurement for retrieval. Performance
evaluations on compression efficiency and security will be given in Section 3.4 and 3.5,

respectively, with a comparison with other schemes. Section 3.6 provides a concluding remark.

3.1 Overview of the Proposed Module

The proposed scheme in this section includes two parts: the image encryption method and the
image retrieval method. For a given image, the user needs to generate a set of secret keys for
binary sequence permutation and obtain the initial value of the logistic map from image first.
After getting keys, the encryption operations are employed on the image including binary
sequence permutation on two different levels and image confusion before compression. After
that the encrypted image is uploaded to the cloud server to generate the image database. For
query, the user submits encrypted query data to the server to retrieve similar images. After
receiving the query request, the cloud server extracts all features from the encrypted database
through similarity measurement. Similar images are returned to the user as retrieval results,

and the user can decrypt the results using the secret key.

3.2 Pixel based Encryption and Compression Model

The framework of the proposed encryption and compression model is shown in Figure 3.1. The
proposed encryption scheme includes binary sequence permutation on two different levels and
image confusion by block permutation. First, the plain images are segmented into 8x8 non-
overlapped blocks due to the JPEG standard. For each pixel in the block, it can be represented
with 8-bit binary sequence. Then, more significant 4-bit binary sequence of the pixel is
confused by block permutation, while intra block permutation is conducted on the less
significant 4-bit binary sequence. These two-level permutation operations are controlled by
predefined secret Key 1. The new index is generated by using BLAKE256 hash function. After
encryption on binary sequence, the image confusion is used by block permutation to increase

image security. The new index is generated from a logistic map which is controlled by Key 2.
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Figure 3.1: Framework of the proposed image encryption algorithm.

3.1.1 Key Generation

In our encryption scheme, the BLAKE256 hashing algorithm is used to generate the encryption
keystream by taking the predefined key Key1 as input. Here, the predefined key Key1 is a
random sequence with fixed-length which is used for value substitution and generating KS1
and KS2. The predefined key Key1 is the initial seed to generate. For a given index array R
with r elements, Fisher-Yates Shuffle [71] do

forp «rto2do
q < random integer (1 < q <p)
exchange R[p] and R[q]

end for

Here, the random integer is obtained from the key stream KS1 and KS2.

For image confusion by intra-block permutation, a logistic map is used to generate a random
sequence. And this random sequence can be used to obtain the new index when scrambling the

pixel position within each block. The logistic map we used is defined as:
Uiy =0U (U + 1), U €(0,1) (3.1)

where U, is the value for ¢ iterations, and 6 is the system parameter. The system is chaotic
when 6 is in the range of [3.57, 4]. Here, the initial value U, is calculated with the average
pixel value of the encrypted image after two-level binary permutation. And the secure key
Key 2 consists of the initial value U, and parameter 6. Since the logistic map is sensitive to its
initial value, different logistic maps can be generated with different values of U, for different

images, which can improve security.
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3.1.2 Two-level Binary Permutation

For most pixel-based encryption methods, the encrypted image may preserve most of content
information of the original image and leak information easily when the attacker knows the

chipper image. This kind of encryption method usually cannot handle statistical attacks.

In order to ensure image security, we propose a two-level binary permutation scheme including
intra-block permutation and block permutation. For each pixel in the block, it can be
represented with 8-bit binary sequence. Then, more significant 4-bit binary sequence of the
pixel is confused by block permutation, while intra-block permutation is conducted on the less
significant 4-bit binary sequence. Block permutation is conducted on more significant 4-bit
binary sequence, including first four bytes. During permutation, we generate random
permutation index to shuffle the binary position of each pixel in image. The details are

described in Algorithm1.

Algorithm 1: BlockPermut

Input: 8>8 blocks, the random sequence KS1

Output: Encrypted blocks

1:  Denote g; as more significant 4-bit binary sequences of pixels in ith block

2. Denote gi as more significant 4-bit binary sequences of pixels in ith encrypted
block

3.  Perform Yates Shuffle algorithm where the random integer in each loop is from
KS1 to generate a new index H for permutation

4:  for each g; do

5  q; < q[H]

6: end for

Intra-block permutation is conducted on less significant 4-bit binary sequence, including last
four bytes. During block permutation, we generate random permutation index to shuffle the

binary position of each pixel in block. The details are described in Algorithm?2.

Algorithm 2: IntrablockPermut

Input: Pixels in 8>8 block, the random sequence KS2
Output: Encrypted block

1:  Denote g; as less significant 4-bit binary sequence of ith pixel in block
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Denote qi as less significant 4-bit binary sequence of ith pixel in encrypted
block
Perform Yates Shuffle algorithm where the random integer in each loop is from
KS1 to generate a new index G for permutation
for each g; do

q < qi[G]
end for

3.1.3 Image Confusion

After two-level binary permutation, image confusion is conducted by block permutation, which
can preserve the local information of chipper images. Here, the logistic map is used to generate
a random sequence. And this random sequence can be used to obtain the new index when

scrambling the pixel position in image. The details of the permutation stage are described in

Algorithm 3.

Algorithm 3: ImagePermut

Input: 8>8 blocks, the initial value U, and parameter 8 of logistic map from Key?2

Output: Encrypted block

1:
2:
3:

11:

Denote b;; as ith pixel in jth block B;
Denote bj; as ith pixel in jth encrypted block B;’
Iterate the logistic map with the initial value U, and parameter 8 and obtain
chaotic sequence X
Sort X in ascending order and use its index values as the new index F1 and F2
for permutation
for block B; do

for each b;; in block B; do

bi;j «— b;;[F1]

end for
end for
for each block B; do

B; < B,[F2]

end for
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3.3 Content-based Image Retrieval
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Figure 3.2: Framework of the content-based encrypted image retrieval.

The framework of the proposed image retrieval system is shown in Figure 3.2. The image
owner uploads encrypted images to the cloud server, and those images are stored in the
encrypted image database. When the authorized user sends the query image to the server, the
features of the query image and all images in the dataset are extracted. And after ranking and
evaluating, serval images that are similar to the query image are sent to the user as the search

results. Finally, the authorized user can use the corresponding key to decrypt the search results.

Local histogram is used for content based image retrieval since the global histogram cannot
capture the spatial information of the image. Some researchers use other classic local features,
such as SIFT which is robust to scaling, rotation, affine distortion, and illumination changes.
But these methods need additional communication between the server and users, which may
cause undesirable burdens. So we use local histogram to extract feature. First, the original
images are divided into non-overlapping 8x8 blocks before compression during the image
encryption process and then image encryption is conducted. Next, local histogram is calculated
from each block, and denote the local histogram of jth block in ith image as h;;. Here the local
histograms we obtained are the encrypted ones since all pixel values have been encrypted by

two-level binary permutation.

We introduce the similarity measurement to process image spatial information for retrieval. For

two images with ¢ channels, E1; and EI, respectively represent the encrypted image of them.
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EBj; and EBj, respectively represent jth block of two images. The similarity between block
can be calculated by:

. Y — V3 2554 _ lpfy ) -pf, )|
A(EB}L EB}Z) - Zc=1 Zv:O 1 1+picl (v)+picz (v)) (3-2)

Here, p{; (v) and p{, (v) respectively denote the frequency of pixel value v in the ¢ channel
of block EB;; and block EBj,. And the similarity between the image EI; and the image EI; is

as follows:

A(ElL, Ely) = Ypper A(EBj1, EB)2) (3.3)

3.4 Performance Evaluation

In this section, we evaluate the compression performance and the perceptual security of our
proposed scheme. We implement the proposed method with MATLAB 2019a on Win-10
operating system. The performance evaluation is conducted on the publicly available Kodak
dataset [72]. There are 24 high-quality images in this dataset, and some of them are shown in
Figure 3.3. In Figure 3.4, the encryption images of test set are shown. It is obvious that the
visual information of the plain images has been well masked with the proposed encryption

method.

Figure 3.3: Test images from Kodak dataset.
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Figure 3.4: Encryption images of test images.

In the perceptual security evaluation of encryption methods, the peak signal-to-noise ratio
(PSNR) is used for evaluating the compression performance. In Figure 3.5, when the
encryption key is provided for decryption, the PSNR values of our proposed model can
illustrate the compression efficiency of our model. The closer the curve is to JPEG, the higher
the compression efficiency. Similar to [81], pixel based encryption operations are used in our
scheme, which affects the compression performance. And in [62], a joint encryption and

compression scheme is employed for better encryption.
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Figure 3.5: Rate distortion performance for different methods.

3.5 Security Analysis

This section is going to discuss various cryptographic attacking methods, such as ciphertext-
only attack, differential attack, and statistical attack. And the robustness against those attacks

will be evaluated to analyze the security of our scheme.

22



3.5.1 Ciphertext-only Attack

The ciphertext-only attack is one of the most basic cryptanalysis techniques. And to handle it,
the key space of the cryptosystem need to be large. In our model, the 256-bit encryption key
Key1 is defined which controls two-level binary permutation in the proposed model. And for
logistic map, the initial value U, and parameter 8 from Key2 are both 10(*®) as mentioned in
[73]. Therefore, we obtain a 2(26) x 10(1®) keyspace which is lager than the theoretical
requirement with 2(1°®)_ Because of the large keyspace of our model, it is tough for the attacker

to break down and our encryption system can resist this attack easily.

3.5.2 Key sensitivity Analysis

In general, the security of an encryption system should only rely on the secrecy of keys but not
the underlying techniques. In this regard, a cryptosystem needs to be highly sensitive to the
encryption and decryption keys used. Here, we use the plain image ‘kodim03’as examples. The

high key sensitivity level can be demonstrated in two parts:

1) A completely different ciphertext image would be generated for the same plain image if the

encryption keys used change slightly.

2) The encrypted image should not be decrypted when a key having minor change to the

encryption key is used.

In the first case, we first make a minor change in encryption key Key1 to generate the new key
stream KS1. We then generate two encrypted images using the two different keys for the same
input image. And the encrypted images are shown in Figure 3.5(b) and 3.5(c). Then we make
a minor change on both encryption key Key1 and Key?2, and the encrypted images are shown

in Figure 3.5(d). It is clearly seen that the encrypted images obtained by two slightly different

keys are very different, and our proposed model can fulfil the first case of key sensitivity.

(a) (b) (©) (d)
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Figure 3.6: Comparison of encrypted images with different keys. (a) plain images, (b) cipher
image through the original key, (c) cipher image through the new Keyl, (d) cipher image
through the new Key1 and Key?2.

For the second case, the original key and the new key generated are utilized to decrypt the same
cipher-image encrypted with the original key. The and the decrypted images using the two
different keys are shown in Figure 3.6(c) and 3.6 (d). It is seen that only the original key can

recover the original image.

(a) (b) (©) (d)

Figure 3.7: Decryption with different keys. (a) original image, (b) decrypted image using the
original key Key1, (c) decrypted image using the new Key1, (d) decrypted image using the
new Keyland Key?2.

3.5.3 Statistical Attack

A good encryption scheme needs to reduce the statistical relationship between plain images
and encrypted images to defend against this attack. And the histogram and correlation chart are
two standard methods to illustrate the correlation. To evaluate the robustness against the
statistical attack, the histogram of image ‘kodim05’ and corresponding encrypted images are
given in Figure 3.7. It is seen that there are large differences between the histograms of images

before and after encryption, which means that the encryption operation can decrease the pixel’s
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(a) (b)

correlation.

Figure 3.8: Histogram charts of plain-image and cipher-image. (a) plain-image (b) cipher-

image.
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And Figure 3.8 shows the correlation charts of image ‘kodim05’ and ciphertext images under
our encryption model. From the result, the encrypted image still contains a lot of spatial

information.

(b)

Figure 3.9: Correlation charts of images before and after encryption. (a) original image (b)

encrypted image from the proposed model.

3.5.4 Differential Attack

In differential attacks, attackers try to obtain the encryption keys by studying the influence of
input differences on output changes. To resist differential attack, the encryption system needs
to be sensitive to changes in the image, and minor changes in plain images should cause large
changes in encryption images. The common criteria used in measuring the degree of image
change are net pixel change ratio (NPCR) and unified average change in intensity (UACI). The
value of NPCR measures the rate of change between pixels in images before and after
encryption. Generally, the higher value of NPCR, the better performance of encryption. The
value of UACI refers to the average intensity difference between two images. When UACI is
close to 33%, the encryption system has higher security. For an image, NPCR and UACI are
given as follows:

0' lf Iel(mJn) = IeZ(mﬂ Tl)

T(m,n) = {1) if I,y(m,n) # I,,(m,n)

(1<m<M1<n<N) (34)

NPCR = ZmnT(m0) o 1009 (3.5)
mXxn
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where M and N are the width and height of images. I, and I,, are the encrypted images from
two different original images. These two parameters can show slight changes in images.
Therefore, to evaluate the robustness against differential attack, we conduct a slight
modification on pixel values to generate the slightly changed image. In the experiment, only
about 1% of the pixels in the image would be changed by adding 1 to the value. Then both
images will be encrypted by the secure key. Table 3.1 gives the mean NPCR and UACI values
for our encryption system. The mean NPCR of our encryption system is higher than that of
[75], which is 57.35%. Besides, the average UACI mentioned in [75] is less than 10% which

is lower than our model. That main because the logistic map is sensitive to its initial value and

UACI =

Zm,n

255

[Ie1(mn)—Iegx(mn)|

MXN

different images are confused by different logistic maps.

X 100%

Table 3.1: Mean NPCR and UACI of cipher-images.

NPCR% UACI% NPCR% UACI%
Kodim01 99.13 15.35 Kodim13 99.44 22.29
Kodim02  98.02 11.03 Kodiml4  99.44 24.11
Kodim03 99.15 21.18 Kodim15 99.53 32.22
Kodim04  99.17 15.26  Kodim16  99.25 18.96
Kodim05 99.38 21.04 Kodim17 99.35 21.18
Kodim06 99.37 28.85 Kodim18 99.26 19..96
Kodim07 99.18 18.05 Kodim19 99.33 22.12
Kodim08  99.49 28.16 Kodim20  91.57 34.58
Kodim09 99.19 17.75 Kodim21 99.13 17.68
Kodim10 99.11 17.32 Kodim22 99.23 18.95
Kodim11 99.11 17.15 Kodim23 99.36 24.51
Kodim12 99.05 17.01 Kodim24 99.22 21.88

3.5.5 Time Efficiency Analysis

In this part, the encryption efficiency of our proposed scheme is analyzed. The tested 24 images
are from the publicly Kodak dataset. The size of images in this dataset is 512x768 or 768x512.

The mean encryption speed of different encryption schemes is shown in Table 3.2.

Table 3.2: Encryption efficiency with different schemes.
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Proposed Model
Speed(s) 14.78

3.6 Retrieval Accuracy on Encrypted Images

The retrieval performance evaluation is conducted on the image database Corel-1k [74] which

contain 1k color JPEG images in 10 categories, and some of them are shown in Figure 3.9.

Figure 3.10: Eight images from Corel dataset with different classes.

Here, we analyze the retrieval performance of proposed algorithm compared with other
schemes by using Top-k precision and precision—recall curve. The precision and recall rate are

defined as follows:

Num(relevant images in returned images )

precision = X 100% (3.7

Num(returned images)

Num(relevant images in returned images )

recall = x 100% (3.9)

Num(returned images in database)

Figure 3.10 shows the precision of retrieval accuracy of different encrypted image retrieval
schemes when implementing Top-k search (k=5, 10, 15, 20). Unencrypted images and
encrypted images using the same similarity measurement. Here all schemes are performed on
unencrypted Corel-1k image database. In [75], the images are encrypted by pixel value
confusion and pixel position shifting, while value replacement and position scrambling are
conducted on images in [76]. For the average performance, our proposed method is close to

the results with unencrypted images due to the spatial information in encrypted images.

27



1 H Unencrypted
] Encrypted

0.7
0.6
0.5
04
03
0.2
0.1

0

Top-5 Top-10 Top-15 Top-20

Precision

Figure 3.11: Top-k precision (k=5, 10, 15, 20).
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Figure 3.12: Precision-recall curve.

Figure 3.11 shows the precision—recall curve. And when recall = 0.1, the retrieval accuracy of
the proposed encryption and retrieval model is closest to the performance with unencrypted
images. When the recall rate is between 0.6 and 1, the retrieval accuracy of [75] is slightly
higher than the proposed scheme. But the retrieval accuracy of proposed scheme is always
better than that of [76]. Moreover, the area under curve (AUC) is calculated for futher
measuring the overall retrieval accuracy. The AUC of curve Unencrypted, Proposed, [75] and

[76] are 0.4813, 0.4257, 0.3845 and 0.2962 respectively.

3.7 Summary

In this chapter, a new searchable encryption method based on pixel is proposed to achieve

privacy protection and it can support similarity measurement on encrypted domains. The
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features are extracted from the content of images. And to protect the privacy security, two-level
sequence permutation is conducted on pixels in each 8x8 block. Using block based permutation
method on image confusion can guarantee local feature extraction, further improving the image
security and retrieval accuracy. With the proposed encryption method, the feature can be
directly extracted from encrypted blocks. The problem of similarity search on encrypted images
is defined based on the local histogram. And the retrieval accuracy and image security of
proposed method are tested. Moreover, we discuss the factors affecting the performance of
algorithm. From the security analysis, we can find that the security level is not so strong since
block based encryption operation cannot remove spatial relationships well. In the next chapter,
we will explore the possibility of using value substitution for further security and make full use

of DCT coefficient to obtain better encryption and retrieval perfromence.
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Chapter 4 Encrypted JPEG Image retrieval based on
DCT coefficients

In this chapter, we tend to extract the features for retrieval from the frequency domain which
would consume less computation and communication resources. And for the encrypted image
retrieval, the Discrete Cosine Transform (DCT) domain can be a potential domain in extracting
visual information directly from cipher-images. Here, DCT coefficients are utilized for
obtaining feature vectors. The encryption operation used is performed on JPEG images since
JPEG is one of the most popular image standards in daily life. The images are entirely
encrypted along with format compliance and file size preservation. And Due to the successful
application of deep learning in multiple visual areas, we use the deep architecture in network
to get more effective features for encrypted image retrieval. The novel scheme for encrypted
image retrieval is proposed based on learning network. For a given encrypted query image, the
server exploit the DC and AC coefficients as the inputs of the network to obtain the image
descriptors for retrieval to measure the similarity between the encrypted query image and
database image, without first decrypting images. And we adopt the Siamese architecture for
metric learning since the learned image embedding can help the Euclidean distance captures
the similarity well. Finally, the encrypted images with plaintext content similar to the query
image are returned to the user. The major contributions of our method are summarized as

follows:

1) We encrypt images by coefficient value substitution and intra-block pixel permutation,
which provide high security and compression efficiency. With the proposed encryption method,

the feature can be directly extracted from the frequency domain.

2) We proposed a method of learning in the frequency domain which would consume less
computation and communication resources. And we modify the existing ResNet model to

ensure DCT coefficients as input.

3) We use a Siamese network that combines three streams with a triplet loss to optimizes the
weights of our feature extraction model to produce representations well suited for a retrieval
task. During training, hard non-matching (negative) examples and hard matching (positive)

examples are learned to enhance the representation.
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The rest of this chapter is organized as follows: Section 4.1 gives an overview of the proposed
encryption and retrieval model. Section 4.2 explains the implementation details of DCT based
image encryption and compression model. Section 4.3 introduces the learned retrieval network,
including deep feature generation and similarity loss training. Performance evaluations on the
compression efficiency and security will be given in Section 4.4 and 4.5, respectively. Section
4.6 provides the discussion on retrieval performance. And Section 4.7 gives the summary of

this chapter.

4.1 Overall of the Proposed Scheme

The proposed scheme in this paper includes two parts: the image encryption method and the
image retrieval method. For a given image database, user needs to generate a set of secret keys
first. Then, images in the database are encrypted by coefficients substitution and intra-block
permutation during compression. After that the encrypted image database is uploaded to the
cloud server. To retrieve similar images, user submit an encrypted query image data to the cloud
server. Once receiving the query request, all features are extracted from the encrypted database
by cloud server through a learned network. Similar images are returned to the user as search

results, and the user can decrypt the results using the secret key.

4.2 DCT based Image Encryption and Compression Model

JPEG is one of the most common image compression standards. And it is a kind of lossy
compression method which will remove the high frequency information which is not visually
obvious. In this paper, our scheme is conduct on JPEG image. According to JPEG standard
[14], a color JPEG image will be divided into 8x8 non-overlapped blocks and 64 DCT
coefficients (one DC coefficient and 63 AC coefficients) are generated. When transmitting,
DCT coefticients are converted into binary bits. Here, we conduct encryption operations on
DCT coefficients to enhance security while maintaining JPEG format compatibility. Also, for
further image retrieval, a searchable encryption scheme is necessary. The proposed encryption

algorithm is shown below.

Algorithm 1: Encryption Algorithm

1:  Load original image I and the predefined key K

2:  KS1 « BLAKE256(K)

3:  Get YCbCr components from chroma sampling for each image
4.  for each 8>8 non-overlapped block of component do
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8>8 DCT transformation and get quantized DCT coefficient matrix

end for

5

6

7:  Value substitution on all DC coefficients

8: Intra-block permutation of DC and AC coefficients with KS1
9

Generate the encrypted bit-steam and transmit it to the cloud

4.2.1 Keystream Generation Process

In our encryption scheme, the BLAKE256 hashing algorithm is used to generate the encryption
keystream by taking the predefined key K as input. Here, the predefined key K is a random
sequence with fixed-length which is used for value substitution and generating KS1. The
predefined key K is the initial seed to generate. For shuffling all DC and AC coefficients, the
new index can be generated by the Fisher-Yates Shuffle algorithm using the random key stream

KS1.

4.2.2 Value Substitution

As presented above, there are two steps in the image encryption scheme including coefficients
value substitution and intra-block permutation. Here, we present a sub-algorithm to specify the
process of value substitution. After substituting values, the same value at different positions
can be substituted with the same value, which helps to improve retrieval performance. The new
value is sensitive to the change in the original pixel value, which can help resist differential

attacks.

Algorithm 2: ValueSubstitution

Input: DC coefficients

Output: Encrypted DC coefficients
Generate a random sequence S from rang [-1024,..,1024]
Denote p; as ith value in DC coefficient matrix
Denote pi as ith value in the encrypted DC coefficient matrix

1

2

3

4. for each pido
5 Pi < Sp,
6

end for
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4.2.3 Intra-block Permutation

For intra-block permutation, we generate a random permutation index to shuffle the intra-block

coefficient position to further improve security.

Algorithm 3: IntrablockPermut

Input: Encrypted DC coefficients and AC coefficients, the random sequence KS1
Output: Encrypted DC and AC coefficients

1:
2:
3:

Denote p; as ith value in coefficient matrix

Denote p; as ith value in encrypted coefficient matrix

Perform Yates Shuffle algorithm where the random integer in each loop is from

KS1 to generate a new index G for permutation

for each pi do

pi — pi[G]

end for

4.3 Image Retrieval Model

Original Images

|

Image
Encryption

Cloud Server

Deep Feature
Extraction

Feature Database

Deep Feature

Extraction

Ranking and
Evaluation

First-k Search
Results

Image
Decryption

Figure 4.1: Framework of the content-based encrypted image retrieval.

In our encrypted image retrieval model, users encrypt images before uploading them to the

cloud and generating an encrypted image database to preserve privacy. Besides the image

encryption, computation and storage costs are all outsourced to cloud servers. After storing the

images, users may want to obtain the images with similar content to a query image and then

send the encrypted query image to the cloud. The feature extraction and search operation are

finished by the cloud server. Here, the feature extraction operation is conducted on the

frequency domain and the deep features are generated from the DCT coefficients directly. After
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searching, several images are sent to the users, and users can use the corresponding key to

decrypt the search results.

4.3.1 Feature Extraction

In this chapter, we propose a feature extraction model that is learning in the frequency domain.
And to meet the size requirement of general network, a data pre-processing is introduced as the
input data size pruning scheme. Due to the successful application of deep learning in multiple
visual areas, we tend to realize more efficient retrieval with the help of deep architecture. For
using the learning method, original images are usually pre-processed on a CPU and then
transmitted to graphics processing units for further processing. In our system, the compressed
and encrypted bitstreams are transmitted from users to the cloud server. Thus, bandwidth
requirements for communication between the CPU and graphics processing units will be
addressed since high-resolution RGB images are compressed. Also, data security can be

protected well with the encryption scheme mentioned in Section 4.2.

In our method, images are pre-processed on a CPU for encryption. And after encryption
operation, the encrypted DCT coefficients are grouped into multiple frequency channels as the
inputs of the feature extraction model. Here, we demonstrate that minimal modification on
existing deep models developed in the spatial domain can suit the inputs from the frequency
domain. Specifically, we remove the original deep input layer and reserve the remaining deep
architecture. In our experiment, we chose ResNet as the backbone of the feature extraction
model. Since our encryption scheme is based JPEG images. The components with the same
frequency in all the 8 X8 blocks are grouped into one channel and then each color component
provides 64 channels, with a total of 192 channels in the frequency domain. For a given
HXWxC color image, the input frequency feature shape becomes H/8XW/8x192 after
converting to the frequency domain. Thus, we skip the normal input layer and max-pooling
operator, and set the first residual layer as the input layer. In Figure 4.2, we take 64 channel as
the example to show the modification. After that, the number of input channels in deep
architecture is modified to fit the dimensions of the DCT coefficient inputs. In this way, the
modified deep model is similar to the original deep network in terms of parameter count and

computational complexity.
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Figure 4.2: Feature extraction network.

4.3.2 Learning with Ranking Loss

Retrieval is a kind of metric learning problem and two-branch Siamese or triplet network is
one of the typical solutions. So for better decreasing the distance between similar image
samples, we employ the Siamese architecture with triplet loss to enhance the representation. In
Siamese architecture, each branch is a clone of the other and the parameters of each branch are
shared. And the matching and non-matching pairs (i, j) are employed for training. Thus, the

contrastive loss function can be given as follows:

_ E[IF @) — FOOIZ] ifFY@,)) =1
b= {E[max{o,r —If@) = FDIF] if Y@ ) =0 (4.1)

For image pair selection, positive images and negative images are selected for training loss.

Positive images: positive examples are selected from clusters where query image is also there.

The image that has the lowest descriptor distance to the query is chosen as positive.

Negative images: negative examples are selected from clusters different than the cluster of the
query image, as the clusters are non-overlapping. We choose hard negatives which is the non-

matching images with the most similar descriptor.

4.4 Performance Evaluation

In this section, experiments will be conducted to evaluate the compression performance and
the perceptual security of our proposed encryption and compression scheme. The performance
evaluation is conducted on the publicly available Kodak dataset [72] with 24 high-quality
images, and some of them are shown in Figure 4.3. In Figure 4.4, the encryption images of test

set are shown.
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Figure 4.4: Encryption images of test images.
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Figure 4.5: Rate distortion performance for different methods.

In the perceptual security evaluation of encryption methods, the peak signal-to-noise ratio
(PSNR) is used for evaluating the compression performance. In Figure 4.5, when the
encryption key is provided for decryption, the PSNR values of our proposed model can

illustrate the compression efficiency of our model. The closer the curve is to JPEG, the higher
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the compression efficiency. Similar to [55], coefficient permutation is used in our scheme,
which affects the compression performance. And in [62], more bits are needed since the DC

Huffman table is shuffled.

4.5 Security Analysis

This section is going to discuss various cryptographic attacking methods, such as ciphertext-
only attack, differential attack, and statistical attack. And the robustness against those attacks

will be evaluated to analyze the security of our scheme.

4.5.1 Ciphertext-only Attack

To defend against the ciphertext-only attack, the key space of the cryptosystem should be large.
In our model, the parameters of the learning network are given. The 256-bit encryption key K
is given and then we obtain a 2(2%) keyspace which is lager than the theoretical requirement
with 2(199) o it is tough for the attacker to break down and our encryption system can handle

this attack.

4.5.2 Key Sensitivity Analysis

Considering to privacy, a cryptosystem needs to be highly sensitive to the encryption and
decryption keys used. Here, we use the plain images ‘kodim03’as examples. The high key

sensitivity level can be demonstrated in two parts:

1) A completely different ciphertext image would be generated for the same plain image if the

encryption keys used change slightly.

2) The encrypted image should not be decrypted when a key having minor change to the

encryption key is used.

In the first case, we make a minor change in encryption key K to generate the new key stream
KS1. We then generate two encrypted images using the two different keys for the same input
image. And the encrypted images are shown in Figure 4.6(b) and 4.6(c). It is clearly seen, from
both the MSE figure and the difference image, that the encrypted images obtained by two
slightly different keys are very different, and our proposed model fulfils the first case of key

sensitivity.
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(a) (b) ©)
Figure 4.6: Comparison of encrypted images with different keys. (a) plain images, (b) cipher

image through the original key, (c) cipher image through the new K.

For the second case, the original key and the new key generated are utilized to decrypt the same
cipher-image encrypted with the original key. The decrypted images using the two different
keys are shown in Figure 4.7(b) and 4.7(c). It is seen that only the original key can recover the

original image.

(a) (b) (c)
Figure 4.7: Decryption with different keys. (a) original image, (b) decrypted image using the

original key K, (c) decrypted image using the new K.

4.5.3 Statistical Attack

In statistical attacks, attackers utilize the high correlation between pixels and obtain original
images through the predictable relationship between plain images and encrypted images. Here,
we use the histogram and correlation chart to illustrate the correlation. And the histogram of
image ‘kodim13’ and corresponding encrypted images are given in Figure 4.8. It is seen that

there are large differences between the histograms of images before and after encryption.

We can find that the shuffling operation can extremely decrease the pixel’s correlation. And the
substitution can further reduce the correlation. From Figure 4.8, our method and [45] does not
show a uniform distribution since there are still some correlations among pixels, while [30] can
achieve the uniform distributed histogram which reveals the excellent property to resist the

statistical attack.
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Figure 4.8: Histogram charts of plain-image and cipher-image. (a) plain-image (b) cipher-

image of the proposed method, (¢) Ref [30], (d) Ref [45].
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And Figure 4.9 shows the correlation charts of image ‘kodim13’ and ciphertext images under
our encryption model, [30] and [45]. A similar shuffling operation is also utilized in [45]. But
the results show that the shuffling operation in our model achieves better performance on

decreasing the pixel’s correlation compared with [45].

(d)

Figure 4.9: Correlation charts of images before and after encryption. (a) original image (b)

encrypted image from the proposed model, (¢) Ref [30], (d) Ref [45].
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4.5 .4 Differential Attack

For differential attack evaluation, the encryption system needs to be sensitive to changes in the
image, and changes in plain images should cause different encryption images. The common
criteria NPCR and UACI are used to measure the degree of image change. A robust encryption

system needs to get a high value of NPCR and the value of UACI needs to close to 33%.

To start the evaluation, we slightly modify some random pixel values to generate the slightly
changed image. In the experiment, only about 1% of the pixels in the image would be changed
by adding 1 to the value. Table 4.1 gives the mean NPCR and UACI values for our encryption
system. From the table, the proposed model has the defence capability against the differential
attack to a certain extent, while the NPCR and UACI values are all almost zero for the

encryption method in [30], indicating the low property.

Table 4.1: NPCR and UACI of cipher-images.

Proposed Model Ref [30] Ref [45]
NPCR% UACI% UACI% UACI% NPCR% UACI%
Kodim01 97.57 35.93 0.01 8.22e-05  96.62 39.32
Kodim02 98.22 38.31 0.01 8.98e-05  97.97 36.48
Kodim03 98.43 34.38 0.01 9.74e-04  98.91 28.36
Kodim04 96.68 32.35 0.01 7.12e-05  98.18 38.23
Kodim05 97.25 34.96 0.01 7.58e-05 97.42 36.31
Kodim06 94.87 36.78 0.01 6.45e-05  96.86 36.48
Kodim07 97.17 29.66 0.01 7.31e-04  97.91 29.37
Kodim08 98.48 36.78 0.01 9.74e-04  98.62 38.23
Kodim09 98.26 34.86 0.01 7.11e-05  98.02 37.82
Kodim10 98.45 34.92 0.01  7.58e-05 97.23 36.48
Kodim11 98.54 37.22 0.01 6.45e-04  97.93 29.46
Kodim12 98.43 37.05 0.01 5.91e-05 99.21 38.23
Kodim13 98.55 37.40 0.01  9.74e-04  98.02 36.62
Kodim14 98.82 37.62 0.01 4.12e-04 97.24 36.48
Kodim15 98.37 34.14 0.01 7.52e-05 97.67 29.33
Kodim16 97.25 29.43 0.01  5.45e-04 98.62 36.23
Kodim17 98.68 35.17 0.01  8.78e-05 98.02 35.31
Kodim18 98.73 37.57 0.01 9.74e-04  97.29 36.49
Kodim19 97.85 29.42 0.01 9.14e-04  97.95 28.34
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Kodim20 97.25 36.49 0.01 7.68e-05 97.62 28.23

Kodim21 98.83 35.65 0.01  7.45e-04 98.02 37.62
Kodim22 98.04 36.88 0.01 8.12e-04 97.25 36.58
Kodim23 97.21 29.32 0.01 7.88e-05 97.02 28.96
Kodim24 98.78 36.31 0.01 6.45e-04 99.25 38.23

4.5.5 Time Efficiency Analysis

In this part, the encryption efficiency of our proposed scheme is analyzed. The size of 24
images from the Kodak dataset is 512x768 or 768x512. The mean encryption speed of different
encryption schemes is shown in Table 4.2. Ref [30] needs the least computational time since
the modulo-256 encryption method is low complexity. And the time of proposed method is
mostly spent on permutation operations which is important for security, while Ref [45] has the

same problem.

Table 4.2: Encryption efficiency with different schemes.

Proposed Model Ref [30] Ref [45]
Speed(s) 4.78 0.29 4.33

4.6 Retrieval Accuracy on Encrypted Images

The proposed methods are trained on the Nvidia GTX 2080Ti. A sub-dataset from ImageNet
2012 Large-Scale Visual Recognition Challenge dataset [77] is used for training which contains
more than 80k images with 100 classes. We choose ResNet-34 [78] as the backbone since the
residue blocks and depthwise separable convolutions are widely used in deep models. The
stochastic gradient descent (SGD) optimizer is used with an initial learning rate of 0.1, a
momentum of 0.9, and a weight decay of 4e-5. And the learning rate decays by 0.1 every 50
epochs. The mean and variance of the DCT coeftficients for each of the 192 frequency channels

separately on all the training images are calculated for normalization.

In Table 4.3, we compare the proposed feature extraction model with the backbone. With the
comparison, the proposed frequency-domain learning can extract features from encrypted data

efficiently. The experiments in Table 4.3 is performed on a valid set of training dataset.

Table 4.3: Accuracy of feature extraction model with different inputs.
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Inputs Channels Size Per Channel Top-1 Top-5

RGB 3 224224 74.75 91.45
YCbCr 3 22424 74.34 91.18
DCT 192 56>66 74.19 91.02
Encrypted DCT 192 56>56 66.78 84.26

The retrieval performance evaluation is conducted on the image database Corel-1k [74] which
contains 1k color JPEG images in 10 categories. Here, we analyze the retrieval performance of
the proposed algorithm compared with other schemes by using Top-k precision and mean
average precision (mAP) [79]. Figure 4.10 shows the precision of retrieval accuracy of different
encrypted image retrieval schemes when implementing Top-k search (k=5, 10, 15, 20). The
result of unencrypted images with the proposed retrieval mode is also shown. From Figure 4.10,
it is obvious that ranking loss can improve retrieval performance. In [75], the images are
encrypted by pixel value confusion and pixel position shifting, while value replacement and
block permutation are conducted on images in [80]. For the average performance, our proposed
method is close to the results with unencrypted images, which makes it seem that the effective
feature is captured in the frequency domain. As for mAP, our scheme also has better accuracy

than other unsupervised schemes, including histrogm[56] and bag-of-words [81].
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Figure 4.10: Top-k precision (k=5, 10, 15, 20).

Table 4.4: Retrieval accuracy of different methods.

Model [56] [81]
mAP 54.41 46.37 49.09
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The quality of images is controlled by QF for JPEG images. So to test the influence of image
quality, we performed experiments on the Corell0k dataset with different compression rates.
As shown in Table 4.5, the retrieval model performs better with higher QF. And for experiments

in Table 4.4, QF is set to 90.

Table 4.5: Retrieval accuracy with different compression degrees of cipher images.

QF 20 50 70 90
mAP 35.71 46.39 50.87 54.41

4.7 Summary

In this chapter, a new encrypted image retrieval method based on deep learning is proposed.
The encryption operations are conducted on JPEG images during the JPEG compression
process by using coefficients substitution and intra-block permutation. And the encrypted
images are entirely encrypted along with format compliance. For the retrieval part, our
proposed learning approach utilizes ResNet-34 as the backbone to extract features while
accepting encrypted DCT coefficients as input. Extracting the features for retrieval from the
frequency domain would consume less computation and communication resources. And a
Siamese architecture with triplet loss is used to produce a global representation that is well-
suited to image retrieval. Finally, the encrypted images with plaintext content similar to the
query image are returned to the user. Experiment results show that our method can achieve

higher accuracy than other related schemes and meanwhile further improve security.
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Chapter 5 Deep Compression and Encryption for

Image Retrieval

Learning-based methods have obtained promising results in many areas and deep learning
models are expected to be the next-generation optimal image compression solutions. In this
chapter, a new image compression and encryption framework is proposed which integrates
encryption algorithms with a deep-learning compression network. This new model is
developed by applying a deep learning network which could be an early attempt to introduce
end-to-end learning to the SCE system. After encryption, the ciphertext would be sent to the

proposed similarity network.

We formulate the task of compression and encryption as the constrained optimization problem
which will minimize the expected length of the bitstream and maximize the visual quality of
reconstructed images. Here, we utilize the deep network to solve this optimization problem.
Differing from the CS-based compression method using single-layer transform, the deep model
gets the compressed representation from the layer-by-layer learning and can learn pixel
representation well through data-driven supervised learning, which can be a more general
compression scheme. We adopt deep AE as the learning network in our proposed joint image
compression and encryption framework. That is mainly because the AE-based network
achieves a good performance in areas of domain transformation and image reconstruction
through rate-distortion loss and flexible probability density estimation [15]. And the AE-based
network in our work can convert an image into a compact representation, and its process is
similar to traditional compression with linear transformation. Referring to the usual SCE
methods, the encryption operations are embedded into the compression process in our approach.
We offer to conduct the shuffling operation on deep feature maps generated by analysis
transform during encoding. The scrambled feature maps are obtained by scrambling the orders
of all three dimensions with the secure key. Then, the side representations are extracted from
scrambled feature maps through hyper-network which will be used to generate the learned
entropy model for compression. To achieve a higher level of visual security after decoding, the
parameters of synthesis transform are replaced by a new parameter matrix which is the result

of dividing the original parameter matrix with the logistic map. In our compression and

45



encryption model, the encryption key for shuftling operation and controlling the logistic map
is generated from plain images by BLAKE256 hash algorithm. Then the key is embedded in
the side representations during the quantization stage in the hyper-network controlled by

another secret key. And it will be extracted from the side representations only when decrypting.

In our learning model, when deep features are encrypted and decrypted, the plain image can
still be reconstructed through the decoding sub-network that meets the basic requirements of a
cryptographic system. And experiments in [82] have proved that a larger kernel size can be
conducive to coding efficiency. But a larger kernel size will cause a smaller size of the feature
map, and it can decrease the complexity of encryption algorithm since permutation operation
is conducted on feature maps. Thus, we chose the medium size kernel according to the
experimental results. And for the learned entropy model, the parameter estimation part is used
to extract more efficient parameters for recovering scrambled representations from the
bitstream. The attention scheme is introduced here to help learn entropy model since the
correlations among neighboring pixels can be hard to be exploited after permutation operation

on feature maps.

Unlike other deep encryption and compression methods using networks just for compressing
the encrypted image or the original one, the network in our work is used for compressing and
encrypting the data simultaneously, and an end-to-end compression and encryption framework
is established. And different from deep encryption works, like [83] using Cycle-GAN to
transfer the original image to the encrypted one, our method focuses on joint compression-
encryption methods working together with the image compression scheme. Meanwhile,
different from other SCE schemes, our encryption operations are conducted on the semantic
features learning from the network, and the encryption/decryption layer added will not impact
the network's training. Extensive experiments conducted on the Kodak dataset show that the
proposed encryption scheme can resist various attacks with high compression efficiency. And
the encrypted representation is sent to the proposed similarity network to improve retrieval

accuracy.
The major contribution of our work can be summarized as follows:

1) A novel joint compression-encryption model is developed by applying a deep learning
network which could be an early attempt to introduce end-to-end learning to the security system.

The shuftling operations are conducted on deep feature maps.
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2) For a higher level of visual security, part parameters of the network are replaced by a new

parameter matrix based on a logistic map controlled by a secret key.

3) The encryption key of the system is derived from the image content, which will be embedded
in the deep feature vectors with a fixed key to save the cost of sending the key for different

images.

4) An attention scheme is exploited in estimating parameters to achieve more effective

compression to learn the deep model from the scrambled feature maps.

The rest of this chapter is organized as follows: Section 5.1 gives an overview of the proposed
deep compression and encryption model. Section 5.2 explains the implementation details for
realizing compression and encryption jointly. Section 5.3 introduces the retrieval network.
Performance evaluations on the compression efficiency and security will be given in Section
5.4 and Section 5.5, respectively, with a comparison with other schemes. And the discussion

on retrieval performance is introduced in Section 5.6. Section 5.7 provides the summary.

5.1 Deep Network Model for Joint image Compression and Encryption

As shown in Figure 5.1, our joint model introduces encryption techniques into deep
compression, which contains two autoencoders. The core autoencoder consists of analysis
transform, quantizer, synthesis transform, arithmetic encoder and decoder. It is designed for
learning the quantized latent representation of images to produce a compact bitstream for
compression. The analysis transform here is composed of three parts: convolution, down-
sampling and generalized divisive normalization (GDN), while the synthesis transform consists
of convolution, up-sampling and inverse GDN [15]. After the analysis transform, permutation
operations are conducted on the deep feature maps for encryption and then the scrambled
feature maps will be input to the hyper-network H. And the network H is the sub-autoencoder
and can learn a probability model over latent representation. The parameter estimation module
is responsible for efficiently transforming the hyper-latent representations into the parameters
of the Gaussians which make sure the parameters from H can be appropriate for the core
autoencoder. To obtain the compressed and encrypted images, the deep representations are
processed by the synthesis transform while the parameters of synthesis transform have been
substituted. And in Figure 3, the solid and dashed lines denote the compression and encryption

process and the decryption and decompression process of our proposed model, respectively.
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In the encryption process, BLAKE256 hash function is utilized to generate the encryption key
Key1 based on the input image content, while the pseudo-random stream KS1 is derived from
Key1 using BLAKE256 hash function. Then the key stream KS1 is used to control all the
encryption/scrambling operations in the proposed system. To save the cost of transmitting,
Keyl will be embedded into deep feature maps by the embedding key Key2. Key?2 is
predefined and produces the pseudo-random stream KS2 for embedding through BLAKE256
hash function. And this embedding key will be shared for different plain images and transmitted
by the general key transmitting methods. The permutation layer for shuffling the orders of the
deep feature maps is added after the analysis transform layer, controlled by the content sensitive
encryption key Key1 for a different input image. We conduct permutation operations on the
third dimension k of feature maps y firstly, then on the first and second dimension i,j of y with
KS1, and finally, get the encrypted feature maps y,. After the quantization stage, the encrypted
deep representations are compressed into a bitstream using an arithmetic encoder. Meanwhile,
the side string could be extracted by hyper coding and quantization through hyper-network.
And the encryption key Key1 will be embedded into the side string by KS2 at the quantization
stage. When transmitting, the string from the encrypted representation y, would be combined
with the side string to produce the final compressed and encrypted bitstream. For higher visual
security, the parameter matrix of the synthesis transformation is replaced by a new parameter
matrix which is the result of dividing the original parameter matrix with the logistic map
controlled by the encryption key Keyl. Then through the synthesis transformation with
modified parameters, the plain image will finally be encrypted and compressed. If we add the
decryption operation, only the compressed image will be produced, regarded as the decrypted
image. And the key for decryption will be extracted from the side string controlled by KS2
only when decrypting. Also, the logistic map is generated by Keyl for recovery of the

parameters of synthesis transformation.

In this learning-based method, quantization is approximated by a uniform noise to generate y,.
The Gaussian mixture model is used for entropy coding. After parameter estimation, the mean
and scale parameters (1,6 of the Gaussian Likelihoods can be generated. The quantized

representation will be compressed by the lossless arithmetic coder with the probability model

Py (D).
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Figure 5.1: The architecture of the proposed joint model.

To illustrate how the permutation operations work here, we visualize the compression and
encryption model in Figure 5.2. The odd rows show the images at different stages of the original
compression model, while the even rows visualize the changes after the permutation operation.
The plain images used here for illustration are all from the Kodak dataset. From the figure, we
can see the clearly visible structure around edges and textures of latent representation y, which
contains much information of the original images. And for the powerful compression model,
the predicted mean fi need to be close to § and predicted scales & will be large in the complex
regions while being small in the smooth areas. So, the parameters /i, & also contain the visible
information of images. Meanwhile, it is evident that the side information Z does not contain
any content of original images visually since it is generated from the encrypted feature maps
V.. And when we conduct permutation operation on z, the side information cannot be wholly
recovered after decryption in the experiments. Therefore, we propose not to perform
scrambling operation but to embed the encryption key Key1 into Z, such that it will not affect
too much the visual quality of the decrypted image. To protect image data from eavesdropping
when transmitting, we add the permutation layer and encrypt the latent representation y. The
experiment results can prove that encryption on the latent representation y alone can affect the
security of parameters [, 6. So we produce the permutation operation on latent representation

y and have no permutation process on side information Z.
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Figure 5.2: Visualization of the proposed model only with permutation operation. (a) input

image, (b) latent representation y, (¢) side information Z, (d) mean f, (e) scale 4 .
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5.2 Compression and Encryption Network

5.2.1 Learning Network Model and Layer Details

As shown in Figure 5.1, the deep compression and encryption model can mainly be composed
of three units: encryption unit, hyper-network H and decryption unit. The encryption unit is
designed for obtaining compressed representation and encrypting the plain image, which
contains analysis transform, permutation, quantizer, arithmetic encoder and decoder, and the
synthesis transform with known parameters from a logistic map. For the decryption unit, the
plain image is recovered from the encrypted string through key extracting, arithmetic decoder,
inverse permutation and synthesis transform with the right parameters. The hyperprior network
H is responsible for summarizing the hyper-latent representation Z to learn the entropy model,
containing hyper encoder and decoder, arithmetic encoder and decoder, quantizer and key
embedding. And Z will be used to provide the appropriate probability estimates fitting the
marginal distribution of j. Here we use the Gaussian mixture likelihoods which have been
proven to have a better rate-distortion performance and recover images efficiently in [15]. In
learning methods, networks will be trained based on loss function to find the optimal solution.

And for our learning model, the loss function is given as follows:

L = B Exlllx — 2I1*] + Ex[~log py ()] + Ex[~log p(2)] .1

The first term is the squared error between the input plain image x and the decrypted one X,
the output of the synthesis transform, weighted by . The second and third terms represent the

entropies of coefficient distribution for coding ¥y and Z.

When the learning network model is training, images will be loaded into the encryption unit
and get encrypted feature maps y, which will be input into H to generate Z. Then the scrambled
representation y, will be processed through the decryption unit with all keys known and obtain
¥ and X. The whole network will be trained based on the loss function in Equation (5.1). And
the value of § in Equation (5.1) is changed in every time of training to control the compression
rate of the proposed model, since the AE-based method needs separate training for obtaining

images at different resolutions.

The traditional compression process, like orthogonal linear transforms, chosen to reduce data
correlations, usually has higher-order dependencies. In our end-to-end encryption and
decryption model, we utilize a generalized divisive normalization (GDN) transform with

optimized parameters, which have been shown to be highly efficient in the Gaussification of
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local statistics in images previously. It is unlike most of the training stages for deep
convolutional networks using the operation called batch normalization [84]. As evident in [15],
there are still significant spatial dependencies in feature representation y, and we can use
network H to capture this spatial structure for estimating the distribution of y. But for the
encrypted latent representation y,, the spatial structure has been scrambled and will be hard to
learn. Thus we introduce the attention scheme into parameter estimating since many advanced
works use attention schemes in the image processing field [30, 85, 86]. After the hyper-
decoding, the mean and scale parameters for the Gaussian mixture model are predicted from
the restored hyper-latent representations through the parameter estimation module. Table 5.1
details the network structures of our proposed framework and illustrates the parameters of
corresponding components. And each row corresponds to a layer, while Conv denotes a
convolution layer with the kernel size and number of output channels shown in Table 5.1. S is
the downsampling/upsampling stride and IGDN is the approximate inverse operation of GDN.

AM represents the attention module we used which is shown in Figure 5.3.

Table 5.1: The details of the layers in our proposed model.

Analysis Synthesis Parameter
Hyper Encoder Hyper Decoder o
Transform Transform Estimation
Conv: 5>6x192 | Deconv: 5>56x192 | Conv: 3>x3x%192
AM AM
S2 s2 sl
Deconv: 5>6>320
GDN IGDN Leaky ReLU ) Conv: 1x1>640 s1
S
Conv: 5>6x192 | Deconv: 556x192 | Conv: 5>6x192
Leaky ReLU Leaky ReLU
S2 s2 s2
Deconv: 5>65>480
GDN IGDN Leaky ReLU ) Conv: 1x1>640 s1
S
Conv: 5>6x192 | Deconv: 556x192 | Conv: 5>6x192
Leaky ReLU
S2 s2 s2
Deconv: 5>6>640
GDN IGDN
s2
Conv: 5>6>320

Deconv: 5>6>3 s2
s2
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Figure 5.3: The architecture of the attention module.

5.2.2 Keystream Generation Process

In our encryption scheme, the BLAKE256 hashing algorithm is used to generate the encryption
key, by taking the plain image as input, such that the encryption key is sensitive to the plain
image. Here, different input plain images lead to different fixed-length random hash values.

And the following encryption operations are controlled by these values. The outputs will also

be available in the decoding stage for restoring images.

We take the plain image as the input of BLAKE256 hash algorithm and obtain a 256-bit random
key Key1 which is the initial seed to generate a random key stream KS1. KS1 is then used for

controlling the encryption/decryption operations in the proposed system. The formula for

generating the sequence is given as follows
KS1,,,; = BLAKE256(KS1,)(n =0,1,2,...) (5.2)

The key stream KS1 is composed of KS1,,, and Key1 is the initial seed KS1,. And the random
key stream KS?2 is also generated through Equation (5.2) when the predefined embedding key
Key? is the initial value. KS?2 is then used for controlling the data embedding process for Key1.

For shuffling all elements in the feature map y, the new index of the feature map can be
generated by the Fisher-Yates Shuffle algorithm using the random key stream KS1. For a given
index array R with r elements, Fisher-Yates Shuffle [71] do

forp «rto2do
q < random integer (1 < g <p)
exchange R[p] and R[q]

end for
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The random integer is obtained from the key stream KS1. Similarly, the index of embedding
positions is controlled by the key stream KS2 using the Fisher-Yates Shuffle algorithm at the
key embedding stage.

5.2.3 Key Embedding

To against various cryptanalysis techniques, we use different encryption keys for the different
input images, which increases the cost of transmission. So, we propose to embed the encryption
key Key1 into side information Z and then compress them by the arithmetic coder to save the
cost. The embedding process will only be conducted on the non-zero values in the side
information to ensure the compression efficiency of learning-based compression will not be
affected too much. Here, the values in Z are all integers. And when generating an encrypted

image, the key embedding into Z will not be extracted.

The encryption key Key1 is 256-bit in length. But the number of non-zero values in the side
information is less than 256 at a low bit rate from the experiment results. So, to reduce the
impact of the value changes in Z, we only embed 1-bit data at each position of Z when there are
more than 255 non-zero values in Z. For example, a value in Z is 4 and it can be converted to
‘00000100’ while the 1-bit data for embedding is ‘1°. The bitstream can be ‘00001001” after
embedding data at the end, and it will be converted to the number 9 which is the new value.
When the number of non-zero values is less than 255 and more than 127, we embed 2-bit data
at each position. And when the number is less than 127, we embed 4-bit data at each position.
The selection of positions for data embedding is controlled by KS2 from embedding key Key?2,
which will be shared for different plain images. The detailed key embedding algorithm is

shown below.

Key Embedding

1:  for each plain image do:

2. Get L positions of non-zero values in the side information 2

3 Generate the random index of positions for embedding bitstream by the Fisher-Yates
Shuffle algorithm with KS2

4: if L <128

5: Select the first 64 positions from the index for data embedding

6: Change the values of all selected positions with the appended 4-bit data from the

encryption key Key1
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7 elseif 127 < L < 256
8: Select the first 128 positions from the index for data embedding
9: Change the values of all selected positions with the appended 2-bit data from the

encryption key Key1

10: else
11: Select the first 256 positions from the index for data embedding
12: Change the values of all selected positions with the appended 1-bit data from the

encryption key Key1
13: end if
14: end for

5.2.4 Parameter Substitution

To obtain a higher level of visual security, we conduct the parameter substitution on then
synthesis transform when decoding the images. The parameter matrix of the last convolution
layer in synthesis transform will be replaced by a new matrix, which is generated after the
division operation between the original parameter matrix and the logistic map. And the new
matrix can be converted to the original one by multiplying the logistic map only during the

decryption process. The logistic map we used is defined as:
Ut+1 = HUt(Ut + 1), Ut € (0,1) (5.3)

where U, is the value for t iterations, and 6 is the system parameter. The system is chaotic
when 6 is in the range of [3.57, 4]. Here, the first two decimal values of encryption key Key1
are normalized and then generate the initial value U, and parameter 8. So different logistic

maps will be generated with different values of U, and 6 for different images.

5.2.5 Encryption and Decryption Algorithm

After obtaining the encryption keys, the input images are encrypted through proposed
encryption operations and obtain the compressed and encrypted images, then restored from the
encrypted bit-string to compressed images by the decryption process with keys. And hyper-
network H is utilized to obtain side information Z and estimate the parameters of the
probabilistic model which is used for compression. The permutation operations are conducted

on all three dimensions of deep features y and the new index arrays are generated by the Yates
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Shuffle algorithm mentioned in Section 5.2.2. The details of the encryption and decryption

algorithms are shown below.

Algorithm 1: Encryption Algorithm

Load original image I and the embedding key Key?2

Keyl < BLAKE256(I)

KS1 < BLAKE256(Key1)

KS2 < BLAKE256(Key2)

Enter image into analysis transform part and get feature matrix y with three dimensions

for all elements in each dimension of y do

Perform Yates Shuffle algorithm where the random integer in each loop is from

KS1 to generate a new index G for permutation

8: Change the order of elements in this dimension according to the new index G

9: end for

10: Collect all permutated elements and combine them into a new feature matrix y,

11: Get side information Z and embed Key1 into Z controlled by KS2, then get the side
string

12: Decompress the side string and use parameter estimation to predict the parameters &
and /1 of entropy model through H

12: Use parameters  and i to compress the quantized representation y, and produce an
encrypted bitstream (combining the side string)

13: Conduct the parameter substitution on the synthesis transform and the parameter matrix
is replaced by the new one

14: The final encrypted image can be obtained through the decoder and the synthesis

transform with wrong parameters

Algorithm 2: Decryption Algorithm
1: KS2 <« BLAKE256(Key2)

2:  Extract Key1 using KS2 from the side string and recover 2

3:  KS1 < BLAKE256(Key1)

4:  Estimate parameters 6 and fi from hyper-decoder and parameter estimation through H
for recovering y, from the encrypted bitstream by decoder

5:  for all elements in each dimension of y, do
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Perform Yates Shuffle algorithm controlled by KS1 to get the index G

Restore the permuted elements to their original positions according to the index G

end for

Conduct the parameter substitution on the synthesis transform and recover the original
parameter matrix
10: The decrypted image can be obtained from reconstructed y through synthesis transform

with the right parameters

5.3 Deep image Retrie
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Figure 5.4: The structure details of the deep model.

In the proposed image encryption and retrieval system, encrypted data is uploaded to the cloud
to outsource data. When an encrypted query image is submitted, the features of this query data
and all other data in the database of the cloud are extracted, and the compressed and encrypted
representations are used as the inputs of the deep retrieval network. Then, other cipher images
with similar content of the query image are returned to the user. Finally, the authorized user
can decrypt the images with the corresponding key. Here the compressed and encrypted
representation j, is used as the input of the proposed image retrieval model, which can avoid
the cost caused by decompression and ensure privacy and availability requirements. And the
structure details of the deep model are shown in Figure 5.4. To achieve better retrieval
performance, ranked list loss (RLL) [87] and cross-entropy loss are introduced for training the
deep architecture to get results. For sample s; and corresponding label ls; in a batch set, f is

the corresponding deep feature and the RLL can be given as follows:

Lry = X((A = DLp(si5 ) + ALy (S5 1)) (5:4)
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Ln(sis ) = Egren;, P Lin (st sf5 f) (5.6)
Lm(Si,Sj;f) = (1 - lsij)[a - dij]+ + lSl][dl] - (Of - m)]+ (57)

Here Lp is the loss function used on positive samples and Ly is for the negative sample in
Equation (5.4). Non-trivial positive set is represented as P;; = {sf lj#i,dij > (a— m)}
while the negative set is denote as N, ; = {s}‘|k #c,d;j < a)} , where ¢ represents the class.
Considering a large number of negative samples, negative samples are weighted in Lp in
Equation (5.6). In Equation(5.7), ls;; = 1 if Is; = Is;, and ls;; = 0 otherwise. d;; is the
Euclidean distance and [. ], is the hinge function. In the experiment, we set parameters as those

in [87].

Cross-entropy loss is commonly used in the classification area. And the final loss function can

be defined as follows:

Lrg = Lpp, + L¢g (5.8

5.4 Performance Evaluation

In this section, various experiments will be conducted to evaluate the compression performance
and the perceptual security of the proposed compression and encryption model. The
performance evaluation is conducted on Kodak dataset [72]. There are 24 high-quality images
in this dataset, and some of them are shown in Figure 5.5. The proposed methods are trained
on the Nvidia GTX 2080Ti and the training dataset contains more than 13k images extracted
from the Vimeo-90k dataset [88]. When training, the embedding key Key2 will be known and
the encryption key Keyl will be generated from input images. All training images will be
loaded and processed through the encryption algorithm to get the string, and then the decryption
images will be recovered from the string through the decryption algorithm. Our learning model
is optimized by mean square error (MSE) between the input image and the decryption one. The
learning rate is initially set to 1 X 10™* and decreases during the training. The parameter 8 of
the loss function is within the set {0.0018, 0.0035, 0.007, 0.015, 0.03, 0.045, 0.09, 0.18}. And

Adam optimizer is used with a batch size of 32.
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Figure 5.5: Test images from Kodak dataset.

In the proposed model, we first permute the elements of feature matrix y in the third dimension
for encryption, and the performance of this encryption step can be shown in Figure 5.6(b). We
can find that the encrypted image only under this permutation still reveals some edge
information contained in the original image. So, to obtain more chaotic cipher-images, the
Fisher-Yates Shuffle operation on the first and second dimensions of y would be conducted
after the permutation procedure on the third dimension. And the performance of the
permutation operation is shown in Figure 5.6(c). And for higher visual security, the parameter
substitution is conducted when generating the final encrypted images and some encrypted
images are shown in Figure 5.6(d), while the corresponding decrypted images are illustrated in
Figure 5.6(e). And no content information about original images can be seen in those encrypted

images which illustrates the visual security of our encryption scheme.
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(a) (b) (c) (d) (e
Figure 5.6: Encryption and decryption results. (a) original image, (b) encrypting image only on

third dimension of y, (c) encrypting image on all dimensions of y, (d) final cipher image, (e)

decrypted image.

In the perceptual security evaluation of encryption methods, the PSNR and multiscale structural
similarity (MS-SSIM) are the typical metrics for measuring the perceptual performance of
images after encryption. And to illustrate the difference clearly in Figure 5.7, we use the value
of —10log1o(1 —MS-SSIM) to replace MS-SSIM. The pictures in the Kodak dataset are
encrypted and compressed using our proposed model. The average PSNR values and MS-SSIM
values of these ciphertext images under our encryption and compression model are shown in
Figure 5.7, compared with the values when encryption keys are known. From Figure 5.7, we
can observe significant drops in PSNR and MS-SSIM without the decryption process for the
proposed model, which means our encryption scheme has good content protection. For
example, at a bit rate of 0.54 bits/pixel, the PSNR value of our compression and encryption
model is 8.56dB while the value of the model with key is 33.15dB. It is obvious that shuffling
all three dimensions of the feature map y can get better security performance than only
conducting permutation operation on the 3rd dimension. And when only conducting the
permutation operation on y, the values of PSNR and MS-SSIM are larger than the values of
our proposed encryption model. Here lower PSNR and MS-SSIM values prove that the security

of the encryption model has been improved after parameter substitution.

When the encryption key is provided for decryption, the PSNR and MS-SSIM values of our
proposed model can illustrate the compression efficiency of our model. In general, our model
performs better than the model without AM. The difference is more obvious at low bit rates,
which benefit from the attention-based parameter estimation. The average PSNR values of our
model are 0.4-0.5 dB higher than the model without AM under the same BPP value. Table 5.2
and Table 5.3 present the comparison of PSNR and MS-SSIM values with different bit rates
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between our model and the model without AM. In Figure 8, for comparison purpose, we also
show the performance of JPEG, the original AE-based compression model, and the joint
compression and encryption schemes in [30] and [45]. A learning network and an attention
mechanism are also exploited in [30]. And [45] is the SCE-based method which also uses
Fisher-Yates Shuffle to generate a new index for permutation operation. Here we used the JPEG
model with the default configuration (4:2:0). It is observed from Figure 5.7 that our proposed
model achieves significantly better performance in terms of PSNR and MS-SSIM than other
methods. Moreover, our proposed encryption and compression model is very close to the
original compression model which removes all encryption operations. The experiment results
demonstrate that our encryption and compression model can obtain a high protection ability

with a slight sacrifice on compression efficiency.

SSIM (dB)

PSNR (dB)

BPP BPP

Figure 5.7: Rate distortion performance for different methods.

Table 5.2: Comparison of compression and encryption performance at low bit rate (low value

of B).

Model-key  without
Model-key Model
AM
MS- MS- MS-
BPP  PSNR BPP  PSNR BPP PSNR
SSIM SSIM SSIM
Kodim01 0.561 29.07 0.9694 0.533 28.52 0.9652 0.561 9.26  0.0802
Kodim02 0.237 32.04 0.9384 0.231 3143 0.9289 0.237 7.77 0.1126
Kodim03 0.212 33.82 0.9696 0.207 33.26 0.9667 0.212 8.81  0.0958

Kodim04 0.252 32.23 0.9543 0.246 31.74 0.9477 0.252 8.78  0.0949
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Kodim05 0.597 29.27 0.9744 0.585 28.80 0.9712 0.597 8.06 0.0536
Kodim06 0.417 30.25 0.9595 0.403 29.66 0.9537 0.417 856 0.1011
Kodim07 0.282 33.28 0.9807 0.272 32.73 0.9796 0.282 9.25 0.0781
Kodim08 0.642 28.55 0.9759 0.627 28.08 0.9730 0.642 8.41  0.0507
Kodim09 0.236 33.66 0.9762 0.230 33.16 0.9745 0.236 9.72  0.0987
Kodim10 0.246 33.34 0.9698 0.243 32.86 0.9668 0.246 9.66  0.0988
Kodim1l 0.345 30.81 0.9565 0.334 30.25 0.9489 0.345 8.73  0.0849
Kodim12 0.214 33.36 0.9551 0.207 32.64 0.9492 0.214 8.84 0.1124
Kodim13 0.706 26.78 0.9609 0.688 26.38 0.9553 0.706 850 0.0740
Kodim14 0.431 29.78 0.9607 0.421 29.23 0.9548 0.431 8.33 0.0748
Kodim15 0.247 32.33 0.9635 0.245 31.82 0.9595 0.247 7.08 0.0884
Kodim16 0.251 32.00 0.9579 0.248 31.29 0.9512 0.251 9.11  0.1083
Kodiml17 0.246 3259 0.9699 0.241 32.14 0.9664 0.246 7.93  0.0822
Kodim18 0.444 29.33 0.96 0435 2891 0.9555 0.444 7.8 0.09

Kodim19 0.314 31.23 0.9596 0.307 30.74 0.9531 0.314 9.05 0.0908
Kodim20 0.227 33.00 0.9743 0.222 3247 09716 0.227 6.30 0.0993
Kodim21 0.374 30.84 0.9709 0.359 30.33 0.9689 0.374 9.30 0.0925
Kodim22 0.319 30.73 0.9490 0.312 30.21 0.9413 0.319 9.11  0.0891
Kodim23 0.189 34.52 0.9718 0.185 34.05 0.9690 0.189 8.4 0.0832
Kodim24 0.454 29.16 0.9678 0.444 28.69 0.9633 0.454 8.65 0.0788

Table 5.3: Comparison of compression and encryption performance at high bit rate (high value

of B).

Model-key without
Model-key Model
AM

MS- MS- MS-

BPP PSNR BPP PSNR BPP PSNR
SSIM SSIM SSIM
Kodim01 2.675 40.27 0.9976 2568 39.98 0.9975 2.675 9.26 0.0759
Kodim02 1.642 40.77 0.9929 1582 40.30 0.9925 1.642 7.76 0.1121
Kodim03 1.096 4252 0.9953 1.020 42.36 0.9952 1.096 8.81 0.0967
Kodim04 1574 41.08 0.9947 1.484 40.80 0.9944 1574 8.78 0.0938

Kodim05 2.519 39.67 0.9980 2.432 3941 0.9979 2519 8.06 0.0522
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Kodim06 2.065 40.74 0.9961 1960 40.47 0.9959 2.065 8.56 0.1028
Kodim07 1.227 4233 0.9969 1.153 4210 0.9968 1.227 9.25 0.0779
Kodim08 2.823 39.06 0.9978 2.731 38.79 0.9977 2.823 8.40 0.0475
Kodim09 1.148 41.37 0.9938 1.083 41.01 0.9933 1.148 9.73 0.0954
Kodim10 1.253 41.34 0.9946 1.194 40.96 0.9943 1.253 9.67 0.0989
Kodiml1l 1.944 40.93 0.9961 1.835 40.63 0.9959 1.944 8.73 0.0841
Kodim12 1.277 41.88 0.9942 1207 4155 0.9939 1.277 8.84 0.1131
Kodim13 3.227 38.26 0.9975 3.141 38.02 0.9974 3.227 851 0.0745
Kodim14 2.327 39.73 0.9968 2.219 39.47 0.9967 2.327 8.33 0.0741
Kodim15 1.478 41.07 0.9946 1.390 40.77 0.9943 1.478 7.08 0.0919
Kodim16 1.524 41.98 0.9956 1418 41.60 0.9954 1.524 9.12 0.1047
Kodim17 1.367 41.25 0.9958 1.284 40.90 0.9955 1.367 7.94 0.0823
Kodim18 2.339 38.76 1.00 2243 3845 100 2339 7.79 0.87

Kodim19 1.783 40.75 0.9949 1.684 40.41 0.9945 1.783 9.06 0.0949
Kodim20 1.305 41.55 0.9944 1191 4123 0.9940 1.305 6.28 0.0999
Kodim21 1.816 40.42 0.9944 1699 40.09 0.9940 1.816 9.29 0.0913
Kodim22 1.986 39.99 0.9944 1884 39.66 0.9940 1.986 9.11 0.0946
Kodim23 0.911 41.85 0.9948 0.866 41.60 0.9946 0.911 8.41 0.0868
Kodim24 2.240 38.43 0.9969 2.122 38.22 0.9968 2.240 8.64 0.0761

5.5 Security Analysis

This section is going to discuss various cryptographic attacking methods, such as ciphertext-
only attack, differential attack, and statistical attack. And the robustness against those attacks

will be evaluated to analyze the security of our scheme.

5.5.1 Ciphertext-only Attack

The ciphertext-only attack is one of the most basic and realistic methods for various
cryptanalysis techniques. To defend against this kind of brute-force attack, the key space of the
cryptosystem should be large. In our model, the parameters of the learning network are given.
The 256-bit encryption key Key1 is produced by the BLAKE256 hashing from images and
controls all encryption operations in the proposed model. Therefore, we obtain a 2(256)

keyspace which is lager than the theoretical requirement with 2(1°®). Because of the large
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keyspace of our model, it is tough for the attacker to break down even though the attacker

knows the learning network and our encryption system can handle this attack easily.

5.5.2 Key sensitivity Analysis

In general, the security of an encryption system should only rely on the secrecy of keys but not
the underlying techniques. In this regard, a cryptosystem needs to be highly sensitive to the
encryption and decryption keys used. Here, we use the plain images ‘kodim03’as examples.

The high key sensitivity level can be demonstrated in two parts:

1) A completely different ciphertext image would be generated for the same plain image if the

encryption keys used change slightly.

2) The encrypted image should not be decrypted when a key having minor change to the

encryption key is used.

In the first case, we make a minor change in encryption key Key1 to generate the new key
stream KS1. We then generate two encrypted images using the two different keys for the same
input image. And the encrypted images are shown in Figure 5.8(b) and 5.8(c), while their
difference is shown in Figure 5.8(d). The mean square error (MSE) between these two cipher
images is measured as 3.65 X 103, which is very large. It is clearly seen, from both the MSE
figure and the difference image, that the encrypted images obtained by two slightly different

keys are very different, and our proposed model fulfils the first case of key sensitivity.

(a) (b) (c) (d)

Figure 5.8: Comparison of encrypted images with different keys. (a) plain images, (b) cipher
image through the original key, (c) cipher image through the new Key1, (d) difference image

between cipher images.

For the second case, the original key and the new key generated are utilized to decrypt the same
cipher-image encrypted with the original key. The cipher image is shown in Figure 5.9(b), and
the decrypted images using the two different keys are shown in Figure 5.9(c) and 5.9(d). It is

seen that only the original key can recover the original image.
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(2) (b) (© (d)

Figure 5.9: Decryption with different keys. (a) original image, (b) cipher image, (c) decrypted
image using the original key Key1, (d) decrypted image using the new Key1.

5.5.3 Statistical Attack

In statistical attacks, attackers utilize the high correlation between pixels and obtain original
images through the predictable relationship between plain images and encrypted images. So, a
good encryption scheme needs to reduce the statistical relationship between plain images and
encrypted images to defend against this attack. And the histogram and correlation chart are two
standard methods to illustrate the correlation. To evaluate the robustness against the statistical
attack, the histogram of image ‘kodim04’ and corresponding encrypted images are given in
Figure 5.10. It is seen that there are large differences between the histograms of images before
and after encryption. We can find that the shuffling operation on feature maps can extremely
decrease the pixel’s correlation. And the parameter substitution can further reduce the
correlation. According to the results, our model and [45] can achieve the uniform distributed
histogram, revealing the excellent property to resist the statistical attack. In comparison, the
cipher image from [30] does not show a uniform distribution since there are still some

correlations among pixels.
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Figure 5.10: Histogram charts of plain-image and cipher-image. (a) plain-image (b) cipher-
image only with permutation on the third dimension of y, (c) cipher-image with permutation

on all dimensions of y, (d) final cipher-image, () Ref [30], (f) Ref [45].

For the correlation chart, the correlation of adjacent pixels in images will be measured in the
horizontal direction (Hor), the vertical direction (Ver), and the diagonal direction (Dia). Table
5.4 shows the correlation coefficients for the original images and encrypted images. It is shown
that the encrypted image has less correlation of pixels compared to the original image,

illustrating the good decorrelation performance of our encryption model.

Table 5.4: Correlation coefficients of adjacent pixels.

Original Image Encrypted Image

Hor Ver Dia Hor Ver Dia
Kodim01 0.9050 0.8315 0.7536 0.0392 -0.0026 0.0002
Kodim02 0.8823 0.8499 0.8126 -0.0086 0.0151 -0.0666
Kodim03 0.9801 0.9731 0.9459 -0.0157 -0.0211 -0.0175
Kodim04 0.9632 0.9713 0.9498 0.0220 0.0161 0.0204
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Kodim05
Kodim06
KodimQ7
Kodim08
Kodim09
Kodim10
Kodim11
Kodim12
Kodim13
Kodim14
Kodim15
Kodim16
Kodim17
Kodim18
Kodim19
Kodim20
Kodim21
Kodim22
Kodim23
Kodim24

0.8990
0.9726
0.9720
0.8962
0.9445
0.9617
0.9387
0.9732
0.8865
0.9569
0.9889
0.9790
0.9682
0.9031
0.9275
0.9906
0.9384
0.9506
0.9833
0.9363

0.8840
0.9321
0.9328
0.9207
0.9584
0.9646
0.9269
0.9577
0.8509
0.9153
0.9893
0.9359
0.9715
0.8919
0.9505
0.9856
0.8905
0.9631
0.9763
0.9420

0.8156
0.9303
0.9207
0.8272
0.9322
0.9035
0.8945
0.9513
0.7978
0.9007
0.9788
0.9387
0.9622
0.8534
0.8853
0.9768
0.8558
0.9258
0.9565
0.9110

0.0130
-0.0433
0.0300
-0.0052
0.0271
-0.0668
0.0849
-0.0344
0.0414
-0.0288
-0.0254
-0.0071
-0.0117
0.0207
-0.0171
0.0213
0.0515
0.0207
0.0068
-0.0108

-0.0186
0.0070

0.0165

0.0288

0.0122

-0.0247
-0.0134
-0.0303
-0.0312
-0.0054
0.0251

-0.0129
-0.0205
-0.0418
-0.0158
0.0383

-0.0309
-0.0373
-0.0577
-0.0199

0.0457
0.0429
-0.0011
0.0391
0.0027
-0.0434
0.0654
-0.0464
-0.0161
0.0402
-0.0476
0.0219
-0.0299
0.0187
-0.0133
0.0185
0.0115
0.0168
-0.0490
0.0046

And for example, Figure 5.11 shows the correlation charts of image ‘kodim23’ and ciphertext
images under our encryption model, [30] and [45]. A similar shuffling operation is also utilized
in [45]. But the results show that the shuffling operation in our model achieves better

performance on decreasing the pixel’s correlation compared with [45]. Then the parameter

substitution can further reduce the correlation.

(a)
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®

Figure 5.11: Correlation charts of images before and after encryption. (a) original image (b)
encrypted image only with permutation on the third dimension of'y, (c¢) encrypted image from

the proposed model, (¢) Ref [30], (f) Ref [45].
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5.5.4 Differential Attack

In differential attacks, attackers try to obtain the encryption keys by studying the influence of
input differences on output changes. To resist differential attack, the encryption system needs
to be sensitive to changes in the image, and minor changes in plain images should cause large
changes in encryption images. The common criteria used in measuring the degree of image
change are net pixel change ratio (NPCR) and unified average change in intensity (UACI).
Generally, the higher value of NPCR, the better performance of the encryption system. When
UACT is close to 33%, the encryption system has higher security.

Therefore, to evaluate the robustness against differential attack, we conduct a slight
modification on some random pixel values to generate the slightly changed image. In the
experiment, only about 1% of the pixels in the image would be changed by adding 1 to the
value. Then both images will be encrypted by the same key. Table 5.5 gives the mean NPCR
and UACI values for our encryption system. From the table, the proposed model has the
defense capability against the differential attack and the encryption operation on dimensions
i,j of y can enhance the robustness, while the NPCR and UACI values are all almost zero for
the encryption method in [30], indicating the low diffusion property. Also, the mean NPCR of
our encryption system is higher than that of [45], which is less than 98%. Besides, [83] uses
the deep network to transfer images to another domain for encryption, but the average NPCR

mentioned in the paper is less than 95% which is lower than our model.

Table 5.5: Mean NPCR and UACI of cipher-images.

Proposed Model Ref [30] Ref [45]
NPCR% UACI% UACI% UACI% NPCR% UACI%
Kodim01 99.61 33.47 0.01 8.22e-05 96.62 39.32
Kodim02  99.62 33.47 0.01 8.98e-05 97.97 36.48
Kodim03  99.59 33.44 0.01 9.74e-04 98.91 28.36
Kodim04  99.63 33.44 0.01 7.12e-05 98.18 38.23
Kodim05  99.59 33.54 0.01 7.58e-05 97.42 36.31
Kodim06  99.60 33.50 0.01 6.45e-05 96.86 36.48
Kodim07  99.59 33.40 0.01 7.31e-04 97.91 29.37
Kodim08  99.62 33.49 0.01 9.74e-04  98.62 38.23
Kodim09  99.61 33.42 0.01 7.11e-05 98.02 37.82
Kodim10 99.61 33.50 0.01 7.58e-05 97.23 36.48
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Kodimll 99.62 33.48 0.01 6.45e-04 97.93 29.46
Kodim12  99.61 33.50 0.01 59le-05 99.21 38.23
Kodim13  99.60 33.52 0.01 9.74e-04 98.02 36.62
Kodim14  99.60 33.46 0.01 4.12e-04 97.24 36.48
Kodim15  99.60 33.43 0.01 7.52e-05 97.67 29.33
Kodim16  99.63 33.43 0.01 5.45e-04 98.62 36.23
Kodim17  99.62 33.46 0.01 8.78e-05 98.02 3531
Kodim18  99.61 33.38 0.01 9.74e-04 97.29 36.49
Kodim19  99.60 33.53 0.01 9.14e-04 97.95 28.34
Kodim20  99.61 33.46 0.01 7.68e-05 97.62 28.23
Kodim21  99.60 33.50 0.01  7.45e-04 98.02 37.62
Kodim22  99.62 33.49 0.01 8.12e-04 97.25 36.58
Kodim23  99.61 33.51 0.01 7.88e-05 97.02 28.96
Kodim24  99.61 33.52 0.01 6.45e-04 99.25 38.23

5.5.5 Robustness Analysis

When images are transmitted over the Internet, information blocking and loss can sometimes
occur which may affect the recovery. So the encryption system needs to effectively resist

clipping and noise attacks to show good robustness.

(1) Clipping attacks: When attacking by pixel clipping, the quality of the decrypted image will
decrease significantly. Here, we set 1/64, 1/16 and 1/4 area pixels of the ciphertext image of
“Kodim13” to 0 and then decrypted it with the correct key, and the results are shown in Figure
5.12. As the image size of “Kodim13” is 512x768, the sizes of the blocking area are 64x96,
128x192 and 256%384 respectively. As can be seen, we can observe that more and more
information is lost when the blocking area increases. That is mainly because the backbone we
used is the AE-based model and it is sensitive to the changes in input. This can be perfected in

later work by using the deep architecture GAN.

(a) (b) (c) (d)
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Figure 5.12: Clipping attack result. (a) Original image and the decryption images when meeting
(b) 1/64, (c)1/16, (d) 1/4 blocking.

(2) Noise attack: To test the performance when meeting the noise attack, we add different levels
of salt and pepper noise for experimentation. Figure 5.13 shows decryption images after adding
salt and pepper noise with intensities 0, 0.01, 0.05 and 0.1. Compared with the plaintext image,
the decrypted image can only display some color and edge information about the image. Since
the encryption key is embedded in the encrypted image, changes in the encryption image may

impede image recovery. Also, the deep architecture is sensitive to the changes in the image.

(a) (b) (c) (d)

Figure 5.13: Noise attack result. (a) Original image, and the salt and pepper noise decryption
results with the intensity of (b) 0.01, (¢) 0.05, (d) 0.1.

5.5.6 Time Efficiency Analysis

In this part, the encryption efficiency of our proposed scheme is analyzed. The tested 24 images
are from the publicly Kodak dataset. The size of images in this dataset is 512x768 or 768x512.
The mean encryption speed of different encryption schemes is shown in Table 5.6. Ref[30]
needs the least computational time since [30] proposed an encryption-then-lossy-compression
scheme. In [30], images are encrypted by the modulo-256 addition method which is low
complexity. Since deep architecture only spends a lot of time on training, the running speed of
our proposed method is not very slow. And the time is mostly spent on permutation operations

which is important for security, while Ref [45] has the same problem.

Table 5.6: Encryption efficiency with different schemes.

Proposed Model Ref [30] Ref [45]
Speed(s) 2.78 0.29 4.33
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5.6 Retrieval Accuracy on Encrypted Images

The retrieval performance evaluation is conducted on the image database Corel-10k [72] which
contain 1k/10k color JPEG images in 10/100 categories. And a sub-dataset from ImageNet
2012 Large-Scale Visual Recognition Challenge dataset [77] is used for training retrieval model
which contains more than 80k images with 100 classes. We choose ResNet-34 [78] as the
backbone. The stochastic gradient descent (SGD) optimizer is set with an initial learning rate
of 0.1, a momentum of 0.9, and a weight decay of 4e-5. And the learning rate decays by 0.1
every 50 epochs.

To compare the proposed retrieval model with other methods, we adopt the Top-k precision for
evaluation with k=5, 10, 15, 20. The retrieval performance evaluation is conducted on the
image database Corel-10k. Since the compression degree can affect the retrieval accuracy
which is mentioned in Section 4.6, We change the value of f to get different compression ratios
and the performance with different compression degrees is shown in Figure 5.14. The
parameter [ of the model is within the set {0.0018, 0.0035, 0.007, 0.015, 0.03, 0.045, 0.09,
0.18}. The value of f is higher, the image quality is better and thus the retrieval accuracy is

better.
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Figure 5.14: Top-k precision (k=5, 10, 15, 20) with different compression degrees.

Figure 5.15 shows the precision of retrieval accuracy of different encrypted image retrieval
schemes. The result of the unencrypted compressed representation with the proposed retrieval
mode is also shown. From Figure 5.15, it is obvious that the proposed deep retrieval obtains

the best performance in the case of encrypted inputs. And our proposed method is very close
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to the results with unencrypted images, which makes it seem that the compressed and encrypted

representations meet the requirement of availability.
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Figure 5.15: Top-k precision (k=5, 10, 15, 20) of different encryption and retrieval schemes.

5.7 Summary

This chapter proposes a novel deep joint compression-encryption model to achieve a good
balance between encryption performance and compression efficiency. And with the encrypted
and compressed representation, an exellent retrieval result is obtained. Here, the AE-based
compression network as the base network architecture in our compression and encrytion model.
When deep features are encrypted and decrypted, the plain image can still be reconstructed
through a decoder that meets a cryptographic system's basic requirements. So, we encrypt
images during compressing when using deep architecture. The encryption keys are from the
plain images, and the encryption operations are performed on latent representations during
compression, which can protect images with a high-security level. And part parameters of the
deep model are replaced for higher visual security. The embedding key controls the key
embedding process to save the transmitting cost when the plain images change. Moreover,
attention scheme is introduced to estimate the parameters of the learned entropy model to
achieve more effective compression. The proposed encryption scheme obtains a high protection
ability from the experiment results with high compression efficiency. And from the evaluation
of retrieval accuracy, our model can enable encrypted image retrieval well. The compressed
and encrypted representation from the proposed model can ensure compression-friendliness,

privacy security and availability for retrieval.
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Chapter 6 Conclusion and Future Work

6.1 Conclusion

In this thesis, we first introduce the background of image compression, image encryption and
encrypted image retrieval. And the necessity and challenge of encrypted image retrieval have
been discussed. Then our contributions in realizing encrypted image retrieval are introduced to
handle the conflict between encryption and retrieval. Three different encrypted image retrieval
schemes are proposed which can broadly categorize into pixel based method, DCT based
method and learning based method. For those three methods, learning based method performs
the best both on security and compression, but it has some implementation issues like we need
to train the network for different compression ratio. The DCT based method performs next to
the learning based method but it is compression friendly that can be implemented in the existing
systems without much extra work, since we introduce encryption operations into the
compression stage. And for the pixel based method, we can find that the security level is not

so strong due to the block-based encryption operations but it is also compression-friendly.

In Chapter 2, some basic relate methods are presented which include image compression
techniques, image encryption techniques and encrypted image retrieval techniques. For image
compression techniques, traditional schemes and deep models are briefly introduced in this
chapter. Various image compression and encryption schemes are introduced, and these
algorithms can be categorized into three classes: encryption-then-compression scheme,
simultaneous compression encryption scheme and compression-then-encryption scheme. The

advantages and limitations are also discussed.

Chapter 3 presents a privacy-preserving content-based image retrieval scheme, which extracts
features from the content of encrypted images. To achieve privacy protection, two-level
sequence permutation is conducted on pixels in each 8x8 block. Pixels in the block are
represented with 8-bit binary sequence first. Then, more significant 4-bit binary sequence of
the pixel is confused by block permutation, while intra-block permutation is conducted on the
less significant 4-bit binary sequence. After encryption on binary sequence, the image
confusion is used by permutation to increase image security and the index is generated from

logistic map. This block based permutation operation can guarantee local feature extraction,
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further improving the image security and retrieval accuracy. The histogram features for
retrieval can be directly extracted from encrypted blocks. And the retrieval accuracy and image
security of the proposed method are discussed. The factors affecting the performance of the
algorithm are mentioned. The security is limited by the block permutation operation since it
cannot remove spatial relationships well. And adding the value substitution operation may

improve the security performance of the method.

Chapter 4 presents a encrypted JPEG image retrieval scheme based on DCT coefficients, which
encrypts images during the JPEG compression process by coefficient value substitution and
intra-block pixel permutation on coefficients. DC coefficients are all substituted by new values
and the replacement is determined by the original coefficient values. Intra-block pixel
permutation on coefficients is conducted for further security. After encryption, our proposed
learning approach utilizes ResNet-34 as the backbone to extract features while accepting
encrypted DCT coefficients as input to consume less computation and communication
resources. And a Siamese architecture with triplet loss is used to produce a global
representation that is well-suited to image retrieval. Experiment results show that our method

can achieve higher accuracy than other related schemes and security requirements.

Chapter 5 presents a deep encryption and retrieval scheme that introduces end-to-end learning
to the security system, which can achieve a good balance between encryption performance and
compression efficiency. And with the encrypted and compressed representation obtained from
proposed model, an excellent retrieval result is obtained. Here, the AE-based compression
network is the backbone of the our compression and encryption model. When deep features are
encrypted, the plain image can still be reconstructed through a decoder that meets a
cryptographic system's basic requirements. So, the encryption operations are conducted on
latent representations during deep compression processing. The encryption keys are from the
plain images, which can protect images with a high-security level. And part parameters of the
deep model are replaced for higher visual security. The embedding key controls the key
embedding process to save the transmitting cost when the plain images change. Moreover, an
attention scheme is introduced to improve compression performance. The proposed encryption
scheme obtains a high protection ability from the experiment results with high compression
efficiency. After generating the encrypted and compressed representation, a deep retrieval
model is introduced which is training with ranked list loss and cross-entropy loss. And from

the evaluation of retrieval accuracy, the model can enable encrypted image retrieval well. The
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compressed and encrypted representation from the proposed model meets the requirements in

compression-friendliness, privacy security and availability.

6.2 Future Work

Encrypted image retrieval is a complex research topic since privacy security, compression
efficiency and retrieval performance are all needed to be considered. Based on the methods
proposed in this thesis, there are still several parts can be further studied. First, various block
sizes can be considered since 8x8 block is commonly used in JPEG based compression. And
improve the capability of block operation to against attacks can also be considered. Second,
more effective features can be captured from DCT coefficients with different encryption
operations and the new model can be regarded as a retrieval-oriented encryption scheme. Third,
different deep architecture can be considered for compression and encryption since the
proposed model needs to be retrained to get the results from different compression rates. Forth,
some special image categories can be considered, such as very low-resolution images. Finally,
other deep architecture can be considered since the backbone we used in this thesis are all based

on the spatial domain.
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