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Abstract

Artificial Intelligence (Al) and Deep Learning (DL) have experienced rapid develop-
ment and widespread industry deployment in recent years. Among the various deep
learning models, Computer Vision (CV) stands out as one of the most advanced fields.
DL models have achieved performance comparable to human experts across a range
of 2D and 3D tasks. However, adversarial attacks pose a significant threat to the
further application of DL-based CV techniques. These attacks involve adding small
perturbations to input data, which do not affect human classification but lead to
high-confidence misclassification by the target deep learning network. This challenge
highlights the urgent need to evaluate and enhance the adversarial robustness of deep

learning models.

Diffusion models, a recently proposed generative model known for its outstanding
performance, have made a significant impact due to their impressive data genera-
tion capabilities and user-friendly interface. In addition to their excellent generative
performance, these models have demonstrated the ability to conduct high-quality ad-
versarial attacks by generating adversarial data, posing a new threat to the security
of deep learning models. Consequently, it is important to investigate the attack ca-
pabilities of diffusion models under various threat scenarios and to explore strategies

for enhancing adversarial robustness against attacks driven by these models.

Firstly, we observe that current adversarial attacks utilizing diffusion models typ-
ically employ PGD-like gradients to guide the creation of adversarial examples. How-
ever, the generation process of diffusion models should adhere strictly to the learned
diffusion process. As a result, these current attacks often produce low-quality ad-
versarial examples with limited effectiveness. To address these issues, we introduce
AdvDiff, a theoretically provable adversarial attack method that leverages diffusion
models. We have developed two novel adversarial guidance techniques to sample
adversarial examples by following the trained reverse generation process of diffusion
models. These guidance techniques are effective and stable, enabling the generation

of high-quality, realistic adversarial examples by integrating the gradients of the tar-



get classifier in an interpretable manner. Experimental results on the MNIST and
ImageNet datasets demonstrate that AdvDiff excels in generating unrestricted adver-
sarial examples, surpassing state-of-the-art unrestricted adversarial attack methods

in both attack performance and generation quality.

Secondly, we note that in no-box adversarial scenarios, where the attacker lacks
access to both the training dataset and the target model, the performance of existing
attack methods is significantly hindered by limited data access and poor inference
from the substitute model. To overcome these challenges, we propose a no-box ad-
versarial attack method that leverages the generative and adversarial capabilities of
diffusion models. Specifically, our approach involves generating a synthetic dataset
using diffusion models to train a substitute model. We then fine-tune this substitute
model using a classification diffusion model, taking into account model uncertainty
and incorporating noise augmentation. Finally, we generate adversarial examples from
the diffusion models by averaging approximations over the diffusion substitute model
with multiple inferences. Extensive experiments on the ImageNet dataset demon-
strate that our proposed attack method achieves state-of-the-art performance in both

no-box and black-box attack scenarios.

Thirdly, we find that existing adversarial research on 3D point cloud models pre-
dominantly focuses on white-box scenarios and struggles to achieve successful transfer
attacks on recently developed 3D deep-learning models. Moreover, the adversarial
perturbations in current 3D attacks often cause noticeable shifts in point coordi-
nates, resulting in unrealistic adversarial examples. To address these challenges, we
propose a high-quality adversarial point cloud shape completion method that lever-
ages the generative capabilities of 3D diffusion models. By using partial points as
prior knowledge, we generate realistic adversarial examples through shape comple-
tion with adversarial guidance. To enhance attack transferability, we explore the
characteristics of 3D point clouds and utilize model uncertainty for improved model
classification inference through random down-sampling of point clouds. We employ
ensemble adversarial guidance to improve transferability across different network ar-

chitectures. To maintain generation quality, we restrict our adversarial guidance to

i



the critical points of the point clouds by calculating saliency scores. Extensive experi-
ments demonstrate that our proposed attacks outperform state-of-the-art adversarial
attack methods against both black-box models and defenses. Our black-box attack
establishes a new baseline for evaluating the robustness of various 3D point cloud
classification models.

Fourthly, we notice that while current diffusion-based adversarial purification
methods offer effective and practical defense against adversarial attacks, they suffer
from low time efficiency and limited performance against recently developed unre-
stricted adversarial attacks. To address these issues, we propose an effective and effi-
cient diffusion-based adversarial purification method that counters both perturbation-
based and unrestricted adversarial attacks. Our defense is inspired by the observation
that adversarial attacks typically occur near the decision boundary and are sensitive to
pixel changes. To tackle this, we introduce adversarial anti-aliasing to mitigate adver-
sarial modifications. Additionally, we propose adversarial super-resolution, which uses
prior knowledge from clean datasets to benignly recover images. These approaches
do not require additional training and are computationally efficient, as they do not
involve gradient calculations. Extensive experiments against both perturbation-based
and unrestricted adversarial methods demonstrate that our defense method outper-

forms state-of-the-art adversarial purification techniques.
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Chapter 1

Introduction

AT and DL have achieved significant breakthroughs in both efficiency and accuracy
across numerous challenging tasks. These advanced technologies have been widely
adopted in industries such as medical care, security identification, autonomous driv-
ing, and smart cities. Their impressive performance in various fields has garnered
increasing attention in research. Major directions in DL research include computer
vision, natural language processing, and more. There are virtually no other algo-
rithms that can surpass deep learning models in the field of computer vision when it
comes to both usability and accuracy. The convolutional layer has significantly en-
hanced the performance of deep learning models across various challenging computer
vision tasks. Due to their reliable performance in tasks such as image classification
and object detection, an increasing number of real-world applications, such as face
recognition and smart driving, have been developed based on deep learning models.

While deep learning models have shown significant improvements in various com-
puter vision tasks, researchers have discovered that these models are highly vulnerable
to adversarial attacks. An adversarial attack involves adding small perturbations to
input data that are imperceptible to humans but can easily alter the classification
results of a deep learning classifier with high confidence. These modified inputs are
known as adversarial examples. To further deploy DL models in security-critical ap-
plications, there has been considerable interest among researchers in both adversarial

attacks and defenses. Based on the knowledge accessible to the adversary, adversarial



attacks are categorized into two types: white-box adversarial attacks and black-box
adversarial attacks. White-box attacks assume that the adversary has full knowledge
of the target model, allowing adversarial examples to be crafted directly using the
gradient of the target model’s loss function. On the other hand, black-box adversarial
attacks do not permit direct access to the parameters and architecture of the target
model. Instead, the adversary conducts attacks by querying the target model or

exploiting the transferability of adversarial examples for effective black-box attacks.

Deep learning models commonly process 2D data, such as images and videos.
However, in practice, people also encounter 3D data, like 3D point clouds or 3D grids.
Learning from 3D data is fundamentally different from 2D data, and 3D deep learning
require more computational resources. Since Qi et al. introduced PointNet, a deep
learning model that uses a specialized layer to extract global features from 3D point
clouds, there has been a surge in 3D deep learning research. PointNet++ and DGCNN
are two widely recognized models in this field. Additionally, 3D adversarial attacks
have been shown to be effective against 3D deep learning models. Recent works
in this area can be categorized into three types: 2D-attack-based methods, such as
IFGM and C&W attacks on 3D point clouds; point-modification-based methods, like
isometry transformation attacks and point occlusion attacks; and generative-based
methods, such as LG-GAN and AdvPC. These various attack algorithms employ
different strategies to target 3D deep learning models, and most achieve a high success

rate when attacking state-of-the-art 3D DL models.

However, the perturbations generated by most attack algorithms are easily de-
tectable by humans, as they often produce noisy patterns on images. Consequently,
these attacks can be countered by various defense methods and are challenging to
implement in the physical world. Therefore, it is valuable to develop a natural and
realistic adversarial example generation algorithm to enhance the effectiveness of ad-

versarial attacks.



1.1 Unrestricted Adversarial Attacks with Diffusion
Models

With the development of generative models, these models bring new threats to the
robustness of the deep learning models. The adversary adopts the generation ability
of the Generative Adversarial Networks (GAN) models to craft adversarial examples
by generating perturbations. However, these existing methods require re-training of
the GAN models and harm the original generation performance of the benign GAN
models. Therefore, their performances are limited by their perturbation-based attack
algorithms. Unrestricted adversarial attacks, on the other hand, craft adversarial
examples from scratch. These adversarial examples are visually indistinguishable from
the benign samples while deceiving the deep-learning models with high confidence.
Followed by Song et al. pioneering work, more and more GAN-based unrestricted
adversarial attacks are proposed.

Diffusion models have demonstrated superior performance in image generation
compared to their competitor GANs. With the development of diffusion models,
recent works demonstrated that diffusion models can be used to generate unrestricted
adversarial examples, although these studies have been limited to black-box scenarios
and have not thoroughly explored the capabilities of diffusion models as adversaries.

Therefore, our work will exploit the remarkable generation ability of diffusion mod-
els for discussing attack performance under no-box scenarios with a comprehensive
and end-to-end discussion from the generation of the training dataset and adversarial

examples.

1.2 Thesis Contribution

In our thesis, we conduct a comprehensive investigation into the adversarial robust-
ness of diffusion models across a wide range of topics, including 2D and 3D scenarios,
white-box and black-box settings, and both attack and defense strategies. The gen-

eral framework of our work is given in Figure. [.1} Leveraging the strong generative
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capabilities of diffusion models, we design effective adversarial guidance to direct
the diffusion model in generating high-quality, unrestricted adversarial examples by
adhering to the benign generation diffusion process. Our adversarial guidance does
not interfere with the trained sampling process of diffusion models, thereby producing
adversarial examples with superior generation quality and attack performance. More-
over, we explore the efficacy of diffusion models in more challenging attack scenarios,
namely black-box and no-box environments. We synthesize datasets using diffusion
models and enhance attack performance through a diffusion classification substitute
model. With advancements in diffusion models, they have demonstrated impressive
performance in 3D point cloud generation. To provide a comprehensive discussion on
the adversarial capabilities of diffusion models, we introduce a transferable adversar-
ial shape completion method utilizing diffusion models. We begin by evaluating the
robustness of recently proposed 3D point cloud classifiers, achieving state-of-the-art
performance in black-box attacks.

The denoising-like generation process of diffusion models facilitates diffusion-based
adversarial purification for defensive purposes. However, current diffusion-based de-
fenses often suffer from low time efficiency and limited effectiveness against unre-
stricted adversarial attacks. To address these issues, we propose a gradient-free ad-
versarial defense method based on diffusion models. Our approach offers a more

effective defense against unrestricted adversarial attacks.

1.2.1 Generating Unrestricted Adversarial Examples

Recent research has demonstrated that diffusion models are capable of executing
unrestricted adversarial attacks. However, existing attack methods frequently incor-
porate the gradient from traditional perturbation-based adversarial attacks into the
generation process of diffusion models. This practice can substantially diminish the
generation quality, rendering the attacks easily detectable by humans and current de-
fense mechanisms. Consequently, it is essential to develop an unrestricted adversarial
attack that aligns with the benign generation process of diffusion models.

We introduce AdvDiff, an interpretable method for executing unrestricted adver-
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sarial attacks using diffusion models. Our approach involves adding two effective ad-
versarial guidance techniques to the reverse generation process of the diffusion model.
Notably, our attack does not require retraining the diffusion model; instead, we utilize
a pre-trained conditional diffusion model. The two adversarial guidance techniques
we propose are: 1) Incrementally incorporating adversarial guidance throughout the
reverse generation process by increasing the likelihood of the target attack label,
and 2) Repeatedly executing the reverse generation process while infusing adversarial
prior knowledge into the initial noise through noise sampling guidance. We provide
a theoretical analysis of our attack method to demonstrate that the adversarial guid-
ance does not alter the original sampling patterns of benign diffusion models. To
further validate the effectiveness of AdvDiff, we conduct extensive experiments on
two datasets and evaluate using four metrics: attack success rate, generation quality,
transfer attack performance, and attack performance against defenses. The experi-
mental results show that our attack achieves state-of-the-art performance compared
to perturbation-based attacks and previous diffusion-based unrestricted adversarial

attacks.

1.2.2 Strong No-Box Unrestricted Adversarial Attack

In a black-box threat model, access to the model parameters is restricted, while in a
no-box threat model, access to the training data is not permitted. These two threat
models are more practical than white-box attacks and are better suited for evaluating
model robustness. However, current no-box adversarial attacks still require access to
a limited amount of data from the training set. Conducting a no-box attack without
any access to the target model’s data remains a significant challenge.

Leveraging the generative capabilities of diffusion models, we can construct a
training dataset exclusively using these models. Our approach offers a solution for
training a substitute model for no-box adversarial attacks using a synthetic dataset
generated by the diffusion model. To further enhance the transferability of our adver-
sarial examples, we employ a classification diffusion model as the substitute model.

This model utilizes the probability distribution of labels to infer input data, which



can be combined with uncertainty estimation techniques to improve attack transfer-
ability. Additionally, we incorporate scheduled noise during the training phase of
the substitute model. Once the substitute model is trained, we use the same dif-
fusion model to generate the dataset for executing no-box unrestricted adversarial
attacks. We adopt an ensemble-like strategy by applying the Monte Carlo sampling
method across multiple conditional distribution predictions from the diffusion sub-
stitute model. We conduct experiments in both black-box and no-box scenarios to
demonstrate the effectiveness of our proposed attack. Compared to existing attack
methods, our no-box unrestricted adversarial attack achieves superior performance in

terms of attack success rate and generation quality.

1.2.3 Transferable Adversarial 3D Shape Completion

3D point cloud data store zyz coordinates, and perturbation-based adversarial at-
tacks can lead to the generation of outlier points by adding perturbations to this
data. Even more concerning, existing attacks struggle to overcome the defenses of
recently proposed 3D point cloud classifiers. Consequently, generating natural and
realistic adversarial point clouds against state-of-the-art target models has become
an important research topic.

Diffusion models have demonstrated strong generative capabilities for 3D point
clouds. However, their ability to generate 3D adversarial point clouds has not been
thoroughly explored. We propose a 3D point cloud adversarial attack method using
diffusion models, leveraging a shape completion task to enhance generation quality.
To conduct effective black-box adversarial attacks, we first use a Monte Carlo esti-
mate over the inference of multiple down-sampled point clouds to account for model
uncertainty, thereby improving attack transferability. Secondly, we employ ensemble
logits to incorporate adversarial guidance into the 3D diffusion model. To further
enhance generation quality, we restrict the application of adversarial guidance to
selected critical points identified by our proposed saliency scores. Experimental re-
sults demonstrate that the proposed transferable adversarial 3D shape completion

method achieves state-of-the-art black-box performance across a wide range of 3D



target models, including recently proposed 3D point cloud classifiers.

1.2.4 Gradient-Free Diffusion-Based Adversarial Purification

The diffusion model’s generation process gradually removes noise from the latent
space, making it suitable for eliminating adversarial perturbations from adversarial ex-
amples. However, the sampling speed of the diffusion generation process is slow. Ex-
isting diffusion-based adversarial purification methods are less time-efficient compared
to previous approaches. Additionally, their performance is limited when defending
against unrestricted adversarial examples. Developing a time-efficient diffusion-based
adversarial purification method that effectively counters both perturbation-based and
unrestricted adversarial attacks remains a significant challenge.

We identify common characteristics between perturbation-based and unrestricted
adversarial examples, noting that these examples are generated near the decision
boundary with minimal alterations, which makes them sensitive to pixel changes.
To address this, our defense first applies a preprocessing step of adversarial anti-
aliasing, which extracts the semantic shape from adversarial examples by blurring
the adversarial perturbations. Next, we employ diffusion models to achieve adver-
sarial super-resolution by upscaling the anti-aliased adversarial examples, utilizing
prior knowledge of clean data from pre-trained diffusion models. To demonstrate
the effectiveness of our proposed defense, we further evaluate its performance by us-
ing upscaled adversarial examples as input for adversarial purification. Experiments
conducted across various datasets show that our defense outperforms state-of-the-art

adversarial defenses in terms of adversarial purification.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chapter [2] introduces the back-
ground knowledge for this thesis. Chapter [3|showcases our work on AdvDiff. Chapter
presents the no-box adversarial attack method utilizing diffusion models. Chapter

proposes our work on transferable 3D adversarial shape completion. Chapter [6]
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presents a gradient-free adversarial purification approach using diffusion models. Fi-
nally, we provide the conclusion and outline directions for future work in Chapter
[7l

The primary research outputs are selected from the following references:

o AdvDiff: Generating Unrestricted Adversarial Examples using Diffusion Models,
Xuelong Dai, Kaisheng Liang, Bin Xiao. ECCV 2024.

e Diffusion Models as Strong Adversaries, Xuelong Dai, Yanjie Li, Mingxing

Duan, Bin Xiao. IEEE Transactions on Image Processing.

e Transferable 8D Adversarial Shape Completion using Diffusion Models, Xue-
long Dai, Bin Xiao. ECCV 2024.

o Gradient-Free Adversarial Purification with Diffusion Models, Xuelong Dali,
Dong Wang, Mingxing Duan, Bin Xiao. Under Review.
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Chapter 2

Preliminary

In this chapter, we provide the foundational knowledge necessary for the thesis. The
chapter is organized as follows: First, we introduce the background of 2D and 3D
deep learning. Then, we explore diffusion models in the context of image synectics
tasks. Next, we discuss related work on adversarial attacks, covering both 2D and
3D approaches, perturbation-based and unrestricted attacks, as well as white-box and

black-box threat models. Finally, we discuss various strategies for adversarial defense.

2.1 Deep Learning

Neural Network A neural network is a machine learning algorithm that consists of
multiple neurons connected to each other like the human brain neurons. Each neuron
in a neural network processes the input from the given data or a previously activated
neuron and produces its activation to the next node. An example of a neuron is given
in Figure A neuron node is made up of inputs, weights, activation function, and
the output.

In a standard neural network, there are multiple layers of connected neurons. The
layers are categorized into three types: the input layer, the hidden layer, and the
output layer. Figure shows the layers of a neural network. The three layers are
connected to each other by taking the input from the previous layer’s output. The

neurons in the same layer are not connected to each other. By training the neural
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Input of Activation
Neuron Function

Output

Figure 2.1: An example of a neuron

network with sufficient data, the neural networks have wide applications in many
industries: computer vision 29|, medical care |91|, and speech processing [36].

Input Hidden Output
Layer Layer Layer

Figure 2.2: Layers of a neural network

Deep Learning Deep learning has been extensively studied as it largely improved
the performance of neural networks in various tasks. The deep learning network’s
structure is similar to the standard neural network with multiple hidden layers. With
more hidden layers, the deep learning network has more capability to simulate more
complicated functions. The deep learning networks can be further classified according
to their basic neuron: Convolutional Neural Networks (CNNs), recurrent neural net-
works (RNNs), deep belief networks, and so on. The Convolutional Neural Networks
(CNNs) will be the focus of this paper because it has been proved that high effective

at computer vision tasks.
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Input Convolutional Pooling Fully-connected Output
Layer Layers Layer Layer Layer
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Figure 2.3: The CNN pipeline

Figure shows the pipeline of a convolutional neural network [59]. A CNN is
consists of the input layer, the output layer, the convolutional layers, the pooling
layers, and the fully connected layers. The convolutional layer adopts a convolutional
operation to process the input image or feature maps. The convolutional operations
share the same weight (convolutional kernel) to process the same feature map. The
convolutional kernel learns the local information from the data, and it is invariant to
the location. The pooling layer is adopted to reduce the dimension of the network
parameters and the feature maps. Finally, the fully-connected layer converts the 2D
feature map into a 1D vector, which outputs the final classification labels.

Deep learning networks are achieving leading performance in various major direc-
tions of machine learning tasks like computer vision [59], natural language process-
ing [119], etc. Also, deep learning has been widely applied in many scenarios like

healthcare [30], automotive [55,82|, smart city [14.,/57], and so on.

2.1.1 3D deep learning

Since the development of LiDAR (light detection and ranging) and 3D scanner, 3D
data has become easier to access by the consumer. A variety of large 3D datasets have
emerged. However, feature learning in the 3D dataset was a difficult task as it contains
richer information than 2D data. Also, 3D data have different types, like point cloud,
mesh, voxel, etc. Deploying 3D data in the real-life scenario can achieve more accuracy
and robustness than only using 2D data. Since the emergence of the deep learning

technique, 3D feature learning has been received rapid development. PointNet [95]
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was the first approach to solve the 3D feature learning problem, and remarkably
improved the performance of the 3D classification task. It learns 3D features by
adopting a symmetric function to extract features with the disorder input. Since
the success of PointNet, 3D deep learning has received a surge of related research.
To further improve the performance of 3D feature learning, the researchers adopt
graph convolutional operations to learn features from both local neighbors and global
shapes. PointNet++ [96] and DGCNN [122] are two state-of-art 3D deep learning
networks that adopted graph convolutional layers. Therefore, We select PointNet,
PointNet++, and DGCNN as the targeted network in the adversarial settings for

their state-of-art performance on the current 3D dataset.

2.2 Diffusion Models

Diffusion models have shown great generation quality and diversity in the image syn-
thesis task since Ho et al. |[46] proposed a probabilistic diffusion model for image gen-
eration that greatly improved the performance of diffusion models. Diffusion models
for conditional image generation are extensively developed for more usable and flex-
ible image synthesis. Dhariwal & Nichol [25] proposed a conditional diffusion model
that adopted classifier-guidance for incorporating label information into the diffusion
model. They trained the classifier separately and used its gradient for conditional
image generation. Jonathan Ho & Tim Salimans [48|, on the other hand, performed
conditional guidance without an extra classifier. They trained a conditional diffusion
model alongside a standard diffusion model and used a combination of the two mod-
els during sampling. Their idea is motivated by an implicit classifier with the Bayes
rule. Followed by [25],48]’s works, many research [31],81,|100] have been proposed to
achieve state-of-the-art performance on image generation, image inpainting, and text-
to-image generation tasks. Latent Diffusion Model (LDM) [100] and its text-to-image
variant, Stable Diffusion, are capable of generating photo-realistic images. They are
able to generate data that is highly related to the dataset of the target model with

certain prompts or conditional labels, especially on open-source high-quality datasets
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like ImageNet . In this paper, we adopt the Denoising Diffusion Implicit Mod-
els (DDIM) for image generation. The DDIM consists of two main processes: the
forward diffusion process and the reverse generation process, as shwon in Figure [2.4]
The forward diffusion process gradually adds Gaussian noise to the sampled data x,

with the predefined scheduling parameter o and pre-defined T' time steps:

Qo (Tio1|Te, 70) = N(\/at—lxo—f-

Tt — A/ OGT
\/]_—Oét_l —O't2' t?otéo,gf:n
- G

(2.1)

where q,(xr|ro) = N(y/arxg, (1 — ar)l) and o is the magnitude of the Gaussian

noise.

T Tt

——>» Reverse Generation Process

<€—  Forward Diffusion Process

Figure 2.4: The diffusion pipeline

The reverse generation process aims to recover the data zy by a denoising-like
process starting with a random noise. With 7' time steps, we generate a sample z;_;

from a sample x;:

o Ty — \/1 — Oétﬁét) (It)
Tio1 = /41 = +
Vv Yt

V1—a—o0?- e((,t) (x4) + 0v€y

(2.2)

where €, ~ N(0,1) is an independent Gaussian noise, and €y is the trainable model

to predict the added Gaussian noise in the forward diffusion process. After training
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the €y, we will be able to sample high-quality data with a random initial noise.
Besides the data synthesis task, diffusion models achieve satisfying performance on

various tasks like classification [41], segmentation [6], and representation learning [94].

2.3 Adversarial Attacks

White-box attacks. Szegedy et al. [114] demonstrated that these models can be vul-
nerable to imperceptible perturbations, denoted as x,qv = x + 0, which maximize the
network’s prediction error. The objective of the white-box attack is to find the pertur-
bation that satisfies the constraint ||0||, < dist, where § represents the perturbation
bounded by the [/, norm. In this scenario, the attacker has full knowledge of the tar-
get model, including its parameters and network architecture. The perturbations are
typically guided by the gradient of the target model’s loss function. Adversarial meth-
ods such as FGSM [34], I.FGSM [60|, and PGD [84] are commonly used to perform
white-box attacks. Simultaneously, effective defense methods [67,76,80,[84,87,89,/143]
are proposed to defend against the adversary.

Black-box attacks. In a black-box attack scenario, the attacker does not have
access to the parameters of the target model and can only make limited queries to the
model. Existing black-box attack methods achieve adversarial attacks by leveraging
the transferability of a substitute model or estimating the gradient of the target
model through multiple queries. However, query-based attacks |7,/12] typically require
a large number of queries to successfully execute a single attack, which may not
be feasible in many cases. Recent research efforts have focused on enhancing the
adversarial transferability by modifying the backpropagation computation, as seen
in approaches like LinBP [38], ILA++ [39], TAIG [52|, and LGV [36]. Another
direction is to increase the input diversity to improve the success rate of black-box
attacks. Techniques such as TIM [27]|, SIM [75], Admix [121]|, and MBA [66] have
been proposed to achieve this goal. These methods aim to find adversarial examples
by exploring different input variations and perturbations. With the capability of

generative models, researchers find new effective attacks [105,(144] against the data-
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free black-box threat model, where the adversary uses the synthetic data by generative
models to perform the black-box attack by querying the target models. Nonetheless,
despite the data-free threat model being more practical than the traditional black-
box threat model, it still requires querying the target model multiple times and can
be inapplicable to security-concerned applications that are able to detect aggressive

queries.

2.3.1 3D Point Cloud Adversarial Attacks

3D deep-learning models exhibit vulnerability to adversarial attacks, even when using
2D adversarial approaches. However, the perturbations applied to 3D point cloud data
are more perceptible to humans due to the specific data structure of point clouds.
Adversarial perturbations that shift coordinates lead to noticeable changes in the
original shape of 3D objects, presenting a challenge in devising stronger and more
realistic adversarial attack methods. Early adversarial attack methods, such as those
proposed by Liu et al. [78] and Xiang et al. [129], involve adding points generated
from 2D FGSM, PGD, and C&W attack methods. Zheng et al. [146] demonstrated
high attack performance on the PointNet network by dropping points with the lowest
salience scores based on the saliency map. However, these attacks are easily detectable

as they alter the number of points in the clean point cloud.

Subsequent works aim to create imperceptible perturbations by shifting point co-
ordinates within the clean point clouds. Approaches like ISO [145], GeoA3 [123], SI-
Adv [51], and PF-Attack [42] achieved imperceptible shifting by leveraging geometric
and shape information from clean point clouds. LG-GAN [147] and AdvPC [40] uti-
lized generative models to generate camouflaged perturbations effectively. However,
only AdvPC and PF-Attack achieved effective black-box attacks against 3D point
cloud classifiers. Nonetheless, these methods face challenges in being effective against
recently proposed state-of-the-art 3D deep-learning models, resulting in a huge gap

in the development between adversarial attacks and benign models.
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2.4 Unrestricted Adversarial Attacks

With the development of generative models, these models bring new threats to the
robustness of the deep learning models. The adversary adopts the generation ability
of the GAN models to craft adversarial examples by generating perturbations [4,93|.
However, these existing methods require re-training of the GAN models and harm
the original generation performance of the benign GAN models. Therefore, their
performances are limited by their perturbation-based attack algorithms.

Unrestricted adversarial attacks, on the other hand, craft adversarial examples
from scratch. These adversarial examples are visually indistinguishable from the
benign samples while deceiving the deep-learning models with high confidence. Fol-
lowed by Song et al. [110]| pioneering work, more and more GAN-based unrestricted
adversarial attacks [64,92] are proposed. With the development of diffusion mod-
els, recent works [13]/16,/20,121] demonstrated that diffusion models can be used to
generate unrestricted adversarial examples, although these studies have been limited
to black-box scenarios and have not thoroughly explored the capabilities of diffusion
models as adversaries. Therefore, our work will exploit the remarkable generation
ability of diffusion models for discussing attack performance under no-box scenarios
with a comprehensive and end-to-end discussion from the generation of the training
dataset and adversarial examples.

Particularly, our unrestricted adversarial examples are defined as:

TUAE = G(Zaav, ¥), 5.t Y # f(TuaE) (2.3)

where z,4, and y are the input adversarial latent of the generate model and class
label, respectively, G is the generator, and f(-) is the target classifier. The 2,4, is
commonly sampled from random Gaussian noise.

The unrestricted adversarial examples (UAE) are generated by generative models
from scratch. Because these examples are not crafted by adding gradient perturbation
to clean images, UAEs are hard to detect and defend by current perturbation-based

adversarial defense methods.
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2.5 Adversarial Defenses

Adversarial Training Adversarial training (AT) is one of the most practical meth-
ods for enhancing a model’s robustness against adversarial attacks. It involves train-
ing the model with both benign and adversarial data simultaneously during the train-
ing phase. However, robustness against unseen attacks remains a significant challenge
that affects the defense performance of traditional adversarial training [84]. To ad-
dress this, Gowal et al. [35] and Rebuffi et al. [98] have incorporated generated and
augmented data to improve generalization by increasing data diversity. In addition
to leveraging diverse data, refining the objective formulation of AT has also proven
effective. By considering model weights, a wide range of adversarial training meth-
ods [54,|126] have been proposed.

Adversarial Purification Adversarial purification aims to eliminate adversarial
perturbations in adversarial examples without requiring the re-training of deep learn-
ing models. These methods leverage the generative capabilities of generative models.
Previous works utilizing GANs [103]| and score-based matching models |111]136] have
demonstrated state-of-the-art performance compared to adversarial training. With
the advent of diffusion models, Nie et al. [89] discovered that diffusion-based adversar-
ial purification methods outperform previous approaches in recovering clean images.
However, finding the optimal generation steps for diffusion-based adversarial purifi-
cation remains challenging. Additionally, adversarial images can negatively impact
the reverse generation process of diffusion models. To address these issues, several
works [63}/109,/120] have proposed various solutions to enhance the performance of
adversarial purification. Increasing the number of purification steps improves defense
performance [89,120]. However, they cannot utilize the full diffusion process for pu-
rification because they need to preserve image consistency and the clean data prior.
Recent works ( [63,109]) show that gradient-based guidance is an effective method to
advance adversarial purification, although it is not time-efficient. Moreover, Lin et
al. [74] present an alternative involving supervised additional training on the diffusion

model, which tends to suffer in terms of usability and transferability.

18



Chapter 3

AdvDiff: Generating Unrestricted
Adversarial Examples using Diffusion

Models

3.1 Introduction

While the DL community continues to explore the wide range of applications of DL
models, researchers [114] have demonstrated that these models are highly susceptible
to deception by adversarial examples. Adversarial examples are generated by adding
perturbations to clean data. The perturbed examples can deceive DL classifiers with
high confidence while remaining imperceptible to humans. Many strong attack meth-
ods [104/19,26,68,/71,84] are proposed and investigated to improve the robustness of
DL models.

In contrast to existing perturbation-based adversarial attacks, Song et al. [110]
found that using a well-trained generative adversarial network with an auxiliary
classifier (AC-GAN) [90] can directly generate new adversarial examples without
perturbing the clean data. These newly generated examples are considered unre-
stricted as they are obtained by optimizing input noise vectors without any norm

restrictions. Compared to traditional adversarial examples, unrestricted adversarial
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examples [22,/97] are more aggressive against current adversarial defenses. A mali-
cious adversary can also generate an unlimited number of unrestricted adversarial

examples using a trained GAN.

Diffusion models [46] are likelihood-based generative models proposed recently,
which emerged as a strong competitor to GANs. Diffusion models have outperformed
GANSs for image synthesis tasks [25,56,[100]. Compared with GAN models, diffusion
models are more stable during training and provide better distribution coverage.
Diffusion models contain two processes: a forward diffusion process and a reverse
generation process. The forward diffusion process gradually adds Gaussian noise to
the data and eventually transforms it into noise. The reverse generation process
aims to recover the data from the noise by a denoising-like technique. A well-trained
diffusion model is capable of generating images with random noise input. Similar
to GAN models, diffusion models can achieve adversarial attacks by incorporating

adversarial objectives |13}/15}/16].

GAN-based unrestricted adversarial attacks often exhibit poor performance on
high-quality datasets, particularly in terms of visual quality, because they directly
add the PGD perturbations to the GAN latents without theoretic supports. These
attacks tend to generate low-quality adversarial examples compared to benign GAN
examples [110]. Therefore, these attacks are not imperceptible among GAN synthetic
data. Diffusion models, however, offer state-of-the-art generation performance [25]
on challenging datasets like LSUN [137] and ImageNet [23]. The conditional diffusion
models can generate images based on specific conditions by sampling from a per-
turbed conditional Gaussian noise, which can be carefully modified with adversarial
objectives. These properties make diffusion models more suitable for conducting un-
restricted adversarial attacks. Nevertheless, existing adversarial attack methods using
diffusion models [13}/15,/16] adopt similar PGD perturbations to the sample in each
reverse generation process, making them generate relatively low-quality adversarial

examples.

In this chapter, we propose a novel and interpretable unrestricted adversarial

attack method called AdvDiff that utilizes diffusion models for adversarial examples
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Figure 3.1: The two new guidance techniques in our AdvDiff to generate
unrestricted adversarial examples. During the reverse generation process, the
adversarial guidance is added at timestep x;, which injects the adversarial objective
1Y, into the diffusion process. The noise sampling guidance modifies the original noise
by increasing the conditional likelihood of y,.

generation, as shown in Figure [3.I} Specifically, AdvDiff uses a trained conditional
diffusion model to conduct adversarial attacks with two new adversarial guidance
techniques. 1) During the reverse generation process, we gradually add adversarial
guidance by increasing the likelihood of the target attack label. 2) We perform the
reverse generation process multiple times, adding adversarial prior knowledge to the

initial noise with the noise sampling guidance.

Our theoretical analysis indicates that these adversarial guidance techniques can
effectively craft adversarial examples by the reverse generation process with adversar-
ial conditional sampling. Furthermore, the sampling of AdvDiff benefits from stable
and high sample quality of the diffusion models sampling, which leads to the gener-
ation of realistic unrestricted adversarial examples. Through extensive experiments
conducted on two datasets, i.e., the high-quality dataset ImageNet, and the small,
robust dataset MNIST, we have observed a significant improvement in the attack per-
formance using AdvDiff with diffusion models. These results prove that our proposed
AdvDiff is more effective than previous unrestricted adversarial attack methods in
conducting unrestricted adversarial attacks to generate high-fidelity and diverse ex-

amples without decreasing the generation quality.

Our contributions can be summarized as follows:
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e We propose AdvDiff, the new form unrestricted adversarial attack method that
utilizes the reverse generation process of diffusion models to generate realistic
adversarial examples.

e We design two new effective adversarial guidance techniques to the sampling
process that incorporate adversarial objectives to the diffusion model without
re-training the model. Theoretical analysis reveals that AdvDiff can generate
unrestricted adversarial examples while preserving the high-quality and stable
sampling of the conditional diffusion models.

e We perform extensive experiments to demonstrate that AdvDiff achieves an
overwhelmingly better performance than GAN models on unrestricted adver-

sarial example generation.

3.2 Preliminaries

In this section, we introduce the diffusion model and the classifier guidance for con-

structing our adversarial diffusion model.

3.2.1 Classifier-Guided Guidance

Dhariwal et al. [25] achieved conditional diffusion sampling by adopting a trained clas-
sifier. The conditional information is injected into the diffusion model by modifying
the mean value py(x,t) of the samples according to the gradient of the prediction of
the target class y by the trained classifier. They adopted log probability to calculate

the gradient, and the mean value is given by:

ﬁ’@(xt) t) = /i@(ajta t) _l_ S th 10gp¢(y|$t) (3]‘)

where s is the guidance scale.
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3.2.2 Classifier-Free Guidance

Ho et al. [47] recently proposed a new conditional diffusion model using classifier-free
guidance that injects class information without adopting an additional classifier. The
classifier-free guidance utilizes a conditional diffusion model py(z|y) for image syn-
thesis with given labels. For effective training, they jointly train the unconditional
diffusion model py(x|@) and the conditional diffusion model py(z|y), where the uncon-
ditional diffusion model is simply replacing the label information with (). Sampling is
performed by pushing the model towards the latent space of py(x|y) and away from
po(z|0):

co(ely) = €o(w|0) +w - (eo(wely) — eo(:|0)) (3.2)

where w is the weight parameter for class guidance and () is the empty set.
The idea of classifier-free guidance is inspired by the gradient of an implicit clas-

sifier p'(y|z) o< p(z|y)/p(x), the gradient of the classifier would be:

V.logp' (y|z) o< Vilogp(zly) — Vilogp(z)
o eg(xe|y) — €g(x4|0) (3.3)

The classifier-free guidance has a good capability of generating high-quality con-
ditional images, which is critical for performing adversarial attacks. The generation
of these images does not rely on a classification model and thus can better fit the

conditional distribution of the data.

3.3 Adversarial Diffusion Sampling

3.3.1 Rethinking Unrestricted Adversarial Examples

Song et al. |[110] presented a new form of adversarial examples called UAEs. These
adversarial examples are not generated by adding perturbations over the clean data
but are directly generated by any generative model. UAEs can be viewed as false

negative errors in the classification tasks, and they can also bring severe security
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problems to deep learning models. These generative-based UAEs can be formulated

as:

Auar = {z € G(zaav, ¥)|y # f(2)} (3.4)

where f(-) is the target model for unrestricted adversarial attacks. The unrestricted
adversarial attacks aim to generate UAEs that fool the target model while still can

be visually perceived as the image from ground truth label y.

Previous UAE works adopt GAN models for the generation of UAEs, and these
works perturb the GAN latents by maximizing the cross-entropy loss of the target
model, i.e., max, , L(f(G(zaav,V)),y). Ideally, the generated UAEs should guarantee
similar generation quality to the samples crafted by standard z because successful
adversarial examples should be imperceptible to humans. In other words, UAEs
should not be identified among the samples with adversarial latents and standard

latents.

However, due to GAN’s poor interpretability, there’s no theoretical support on
Zadv that can craft UAEs with normally trained GANs. The generator of GAN is not
trained with z,4, = 2z + VL but only z ~ AN(0,I). Therefore, GAN-based UAEs en-
counter a significant decrease in generation quality because samples with z,4, are not
well-trained compared with samples with z ~ A(0,I). Moreover, the GAN latents are
sampled from low dimensional latent spaces. Therefore, GANs are extremely sensitive
to the latent z |72,/106]. If we inject gradients of the classification results into GAN
latents, GAN-based methods are more likely to generate flipped-label UAEs (images
corresponding to the targeted attack label y, instead of the conditional generation
label y) and distorted UAEs. However, these generation issues are hard to address
only by attack success rate (ASR). In other words, even with a high ASR, some of
the successful UAEs with GAN-based methods should be identified as failure cases
for poor visual quality. However, such cases can not be reflected by ASR but can be
evaluated by generation quality. All these problems may indicate that GAN models

are not suitable for generative-based adversarial attacks.
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decision boundary of f(z) =y

p(zly, f(z) #y)

p(zly)

Figure 3.2: Unrestricted adversarial examples generated by the diffusion
model. The generated adversarial examples should be visually indistinguishable
from clean data with label y but wrongly classified by the target classifier f.

Diffusion models have shown better performance on image generation than GAN
models [25]. They are log-likelihood models with interpretable generation processes.
In this chapter, we aim to generate UAEs by injecting the adversarial loss with theo-
retical proof and without sabotaging the benign generation process, where we increase
the conditional likelihood on the target attack label by following the diffusion process.
The perturbations are gradually injected with the backward generation process of the
diffusion model by the same sample procedure. As shown in Figure [3.2] the diffusion
model can sample images from the conditional distribution p(x|y). The samples from
p(zly, f(z) # y) are the adversarial examples that are misclassified by f(-). These
examples also follow the data distribution p(z|y) but on the other side of the label
y ’s decision boundary of f(-). Moreover, the diffusion model’s generation process
takes multiple sampling steps. Thus, we don’t need one strong perturbation to the
latent like GAN-based methods. The AdvDiff perturbations at each step are unno-
ticeable, and perturbations are added to the high dimensional sampled data rather
than low dimensional latents. Therefore, AdvDiff with diffusion models can preserve

the generation quality and barely generates flipped-label or distorted UAEs.
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3.3.2 Adversarial Diffusion Sampling with Theoretical Sup-

port

There are several existing adversarial attack methods [13}/15]/16] that adopt diffusion
models to generate adversarial examples. However, these methods still adopt PGD
or [-.FGSM gradients to perturb the diffusion process for constructing adversarial
examples. As discussed earlier, the generation process of diffusion models is a specially
designed sampling process from given distributions. Such adversarial gradients change
the original generation process and can harm the generation quality of the diffusion
model. Additionally, these methods fail to give a comprehensive discussion of the
adversarial guidance with theoretical analysis. Therefore, we aim to design a general
and interpretable method to generate adversarial examples using diffusion models

without affecting the benign diffusion process.

3.3.3 Adversarial Guidance

Inspired by Dhariwal’s work |25] that achieves the conditional image generation by
classifier gradient guidance V,, logps(y|z:), we generate our UAEs with adversarial
gradient guidance over the reverse generation process. Our attack aims at utilizing
a conditional diffusion model €y(x,y) to generate zg that fits the ground truth label
y while deceiving the target classifier with ps(zo) # y. These generated samples are
the false negative results in p;’s classification results.

Normally, we will obtain the images with label y by following the standard reverse

generation process with classifier-free guidance:

Ty = pu(xy, y) + o (3.5)

where u(zy,y) is the conditional mean value and ¢ is sampled from e ~ AN(0,I).
Sampling by Equation [3.5] we obtain the samples with the generation process
p(zi—1|ze,y). Following the above-mentioned definition of UAEs, we can get our

adversarial examples by adding adversarial guidance to the standard reverse pro-
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cess, which is performing another sampling with the adversarial generation process
p(x;_q|ze—1, f(x) # y). We find that specifying a target label for the adversarial
generation process is more effective during experiments. Suggest the target label y,
is the target for the adversarial attacks, the adversarial example is sampled by the
following steps:

Ty =Tp-1+ afsvxt_l log p(Yalri-—1) (3.6)

where s is the adversarial guidance scale. The derivation of Equation [3.6 is given
in the Appendix. Intuitively, the adversarial guidance encourages the generation of
samples with a higher likelihood of the target label.

In practice, we utilize the classifier-free guidance to train a conditional diffusion

model €(-) as our basic generation model.

3.3.4 Noise Sampling Guidance

We can improve the reverse process by adding an adversarial label prior to the noise
data z7. The UAEs are a subset of the dataset labeled with y. They can be viewed as
the conditional probability distribution with p(x|y, f(z) = y,) during sampling, and
Yq is the target label for the adversarial attack. Therefore, we can add the adversarial

label prior to xp with Bayes’ theorem:

PWalzr)p(er) _ p(Yalzr, 2o)p(er|zo)
P(Ya) P(Yalwo)

:p(xTyxo)elogp(yaIxT)—logp(yalxo) (3.7)

p(xT|ya> =

We can infer the x with the adversarial prior by Equation [3.16) i.e.,

T = (N(xm y) + O-tg) + 5%avxo logpf(ya|x0) (38)

where a is the noise sampling guidance scale. See the Appendix for detailed proof.

Equation [3.§] is similar to Equation [3.0] as they both add adversarial guidance to

the reverse generation process. However, the noise sampling guidance is added to xr
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Algorithm 1 DDPM Adversarial Diffusion Sampling

Require: y,: target label for adversarial attack, y: ground truth class label, s,a:
adversarial guidance scale, w: classification guidance scale, N: noise sampling
guidance steps, T: reverse generation process timestep
T ~ N(O, I)
Tady = 9
fori=1...N do
fort=1T,...,1do
& = (L+w)ep(ze, y) — wep(zy)
Classifier-free sampling x;_; with €.
Input z;_; to target model and get the gradient log ps(ya|zi—1))
Ty = Tyo1 + 075V, 10g py(yal 1)
end for
Obtain classification result from f(zy)
Compute the gradient with log ps(ya|zo)
Update x7 by xr = z1 4+ 670V, 10g pr(ya|z0)
13: Tadw < To if f(x0) = ya
14: end for
15: return z.q4,

— = =
T

according to the final classification gradient V,, log p¢(ya|®o), which provides a strong
adversarial guidance signal directly to the initial input of the generative model. The
gradient of Equation is effective as it reflects the eventual classification result of

the target classifier.

3.3.5 Training-Free Adversarial Attack

The proposed adversarial attack does not require additional modification on the train-
ing of the diffusion model. The adversarial examples are sampled by using Algorithm

over the trained classifier-free diffusion model €gy(+).

3.4 Experiments

Datasets and Target Models. We use two datasets for major evaluation: MNIST
[24] and ImageNet [23]. MNIST is a 10-classes dataset consisting of handwritten
numbers from 0 to 9. We adopt the MNIST dataset to evaluate our method for

low-quality robust image generation. ImageNet is a large visual database with 1000
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Figure 3.3: Adversarial examples on the MNIST dataset. Perturbation-based
attack methods generate noise patterns to conduct attacks, while unrestricted adver-
sarial attacks (U-GAN and AdvDiff) are imperceptible to the clean data.

object classes and is used for the high-quality generation task. For target classifiers,
we adopt simple LeNet5 [61], and ResNet18 [43] for the MNIST dataset, and the
widely-used ResNet50 [43] and WideResNet50-2 [140] for the ImageNet dataset.

Comparisons. It is not applicable to give a clear comparison between pertur-
bation attacks and unrestricted attacks because perturbation attacks have the cor-
responding ground truth while unrestricted attacks do not. We mainly compare our
method with the unrestricted adversarial attack U-GAN [110] and give the discussion
with the AutoAttack [19], PGD [84], BIM [26], and C&W [10] perturbation-based at-
tacks under norm /¢, = 8/255. For U-GAN, We adopt AC-GAN [90] for the MNIST
dataset, and SAGAN [142]| and BigGAN [§] for the ImageNet dataset, as AC-GAN has
shown poor performance on ImageNet. We use the official code from DiffAttack [13]
and implement AdvDiffuser by ourselves [15] for comparisons. We do not compare
with Chen et al. [16], because they use a similar method as DiffAttack and without
official code. Because existing diffusion model attacks are all untargeted attacks, we

include the untargeted version of AdvDiff for a clear comparison, which is represented

by “AdvDiff-Untargeted”.

Implementation Details. Because our adversarial diffusion sampling does not
require additional training to the original diffusion model, we use the pre-trained

diffusion model in our experiment. We adopt DDPM [46] with classifier-free guidance
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Figure 3.4: Comparisons of unrestricted adversarial attacks between GANs
and diffusion models on two datasets.. Left: generated samples from U-GAN
(BigGAN for ImageNet dataset). Right: generated samples from AdvDiff. We gener-
ate unrestricted adversarial examples on the MNIST “0" label and ImageNet “mush-
room" label. U-GAN is more likely to generate adversarial examples with the target
label, i.e., examples with red font. However, AdvDiff tends to generate the “false
negative" samples by the target classifier by combing features from the target label.

for the MNIST dataset and LDM [100] with DDIM sampler for the ImageNet dataset.
For MNIST dataset, we use N =10, s = 0.5, and a = 1.0, And N =5, s = 0.7, and
a = 0.5 for ImageNet dataset.

Evaluation Metrics. We utilize the top-1 classification result to evaluate the
ASR on different attack methods under untargeted attack settings. As discussed
earlier, GAN-based UAEs often encounter severe generation quality drops compared
to benign GAN samples. Therefore, we give comparisons of generation performance
on ImageNet to evaluate the attack performance of different UAEs in imperceptibly.
The results are averaged with five runs. We use ResNeth0 as the target model for

default settings.

3.4.1 Attack Performance

MNIST We show the attack success rate against the normally trained model and
adversarially trained model [84] in the MNIST dataset. All the selected adversarial
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Table 3.1: The attack success rate on MNIST dataset.

ASR(%)

Method LeNetb ResNet18
Clean PGD-AT | Clean PGD-AT
PGD 99.8 25.6 99.3 20.8
BIM 99.6 34.6 100 31.5
C&W 100 68.6 100 64.5
U-GAN | 88.5 79.4 85.6 75.1
AdvDiff | 94.2 88.6 92.1 86.5

Table 3.2: The attack success rate on ImageNet dataset. U-SAGAN and
U-BigGAN represent the base GAN models for U-GAN are SAGAN and BigGAN,

respectively.

ASR(%)
Method ResNet50 WideResNet50-2 Time (s)
Clean DiffPure PGD-AT | Clean DiffPure PGD-AT
AutoAttack 95.1 22.2 56.2 94.9 20.6 55.4 0.5
U-SAGAN 99.3 30.5 80.6 98.9 28.6 70.1 10.4
U-BigGAN 96.8 40.1 81.5 96.5 35.5 78.4 11.2
AdvDiffuser 95.4 28.9 90.6 94.6 26.5 88.9 38.6
DiffAttack 92.8 30.6 88.4 90.6 27.6 85.3 28.2
AdvDiff 99.8 41.6 92.4 99.9 38.5 90.6 9.2
AdvDiff-Untargeted | 99.5 75.2 94.5 99.4 70.5 92.6 9.6

attacks achieve over 90% attack success rate against the normally trained model.
The adversarially trained model can effectively defend against perturbation-based
adversarial attacks for their noise-like perturbation generation patterns, as reported
in Table [3.1 However, the UAEs obviously perform better with their non-perturbed
image generation. Despite the fact that the unrestricted attack can break through
the adversarial defenses, the crafted adversarial examples should also be imperceptible
to humans for a reasonably successful attack. The visualized adversarial examples
in Figure [3.3 show that the perturbation-based adversarial attacks tend to blur the
original images while U-GAN can generate mislabeled adversarial examples.

ImageNet It is reported that deep learning models on ImageNet are extremely vul-
nerable to adversarial attacks. However, the state-of-the-art adversarial defense Diff-

Pure [89] and adversarial training [84] can still defend against the perturbation-based

attacks, as reported in Table [3.2] More UAEs evade the current defenses, but the
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generation quality of U-GAN is relatively poor compared to our adversarial examples.
This phenomenon also shows that the performance of UAEs is heavily affected by the
generation quality of the generation model. The adversarial examples generated by
AdvDiff are more aggressive and stealthy than U-GAN’s. Meanwhile, the generation
speed of AdvDiff is the best among all the unrestricted adversarial attack methods.
Note that we adopt the clean images generated by LDM to achieve DiffAttack and

AutoAttack for a fair comparison.

3.4.2 Generation Quality: True ASR for UAEs

We witness similar ASR with U-GAN and AdvDiff. However, imperceptibility is also
critical for a successful unrestricted adversarial attack, so we adopt the evaluation
metrics in [25] to compare the generation quality with and without performing unre-
stricted attacks. Table shows that the AdvDiff achieves an overwhelming better
IS score and similar FID score on the large-scale ImageNet dataset, where FID [44]
and IS [101] scores are commonly adopted for evaluating the quality of a generative
model. Because the generation of UAEs does not modify the data distribution of the
generated images, the Precision score can be inferred as generation quality, while the
Recall score indicates the flipped-label problems. We witness the frequent generation
of flipped-label UAEs and low-quality UAEs from GAN-based methods, which is re-
flected by the decrease in the Precision score and the increase in the Recall score.
Figure [3.4] illustrates this problem with some examples. It can be further proved
that U-BigGAN achieves much higher image quality on non-reference metrics than
reference metrics, as shown in Table

We find the IS score is heavily affected by the transferability of adversarial exam-
ples due to the calculation method. Therefore, we further compare the image quality
of adversarial examples by commonly used metrics in Table The results show that
AdvDiff (average 5 out of 5) and AdvDiff-Untargeted (average 4 out of 5) outperform
existing adversarial attack methods using diffusion models. The perturbation-based

adversarial attacks, i.e., AutoAttack, achieve much worse image quality compared

with UAEs.
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Table 3.3: The generation performance on the ImagetNet dataset.

Method FID () sFID (J) IS (1) Precision (1) Recall (1)
SAGAN 41.9 50.2 26.7 0.50 0.51
BigGAN 19.3 45.7 250.3 0.95 0.21
LDM 12.3 25.4 385.5 0.94 0.73
U-SAGAN 52.8/126% 52.2/+4%  12.5/-53% 0.58 0.57
U-BigGAN 25.4/+31%  52.1/+14% 129.4/-48% 0.81 0.35
AdvDiffuser 26.8/+117% 38.6/+51%  206.8/-46% 0.70 0.75
Diff Attack 20.5/+66%  40.2/+58%  264.3/-31% 0.83 0.73
AdvDiff 16.2/+31% 30.4/+20% 343.8/-10% 0.90 0.75
AdvDiff-Untargeted | 22.8/485%  33.4/+28%  220.8/-45% 0.85 0.76
Table 3.4: The image quality on the ImagetNet dataset.
Method FID () LPIPS (}) SSIM (1) | BRISQUE [85| (}) TRES (1)
AutoAttack 26.5 0.72 0.21 34.4 69.8
U-BigGAN 25.4 0.50 0.32 19.4 80.3
AdvDiffuser 26.8 0.21 0.84 18.9 75.6
DiffAttack 20.5 0.15 0.75 22.6 67.8
AdvDift 16.2 0.03 0.96 18.1 82.1
AdvDiff-Untargeted 22.8 0.14 0.85 23.4 76.8

3.4.3 UAEs against Defenses and Black-box Models

Current defenses assume the adversarial examples are based on perturbations over

data from the training dataset, i.e., T,q, = * + VL, € D. However, UAEs are

synthetic data generated by the generative model. Because of different data sources,

current defenses are hard to defend UAEs, which brings severe security concerns to

deep learning applications. The proposed AdvDiff achieves an average of 36.8% ASR

against various defenses, while AutoAttack only achieves 30.7% ASR with significantly

lower image quality. We also test the attack transferability of AdvDiff and the results

show that the untargeted version of AdvDiff achieves the best performance against

black-box models. Experiment results are given in Table [3.5]
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Table 3.5: The attack success rates (%) of ResNet50 examples for transfer
attack and attack against defenses on the ImagetNet dataset.

Method ResNet-152 [43]  Inception v3 [113]  ViT-B |28] BEIiT [5]
AutoAttack 32.5 38.6 9.3 453
U-BigGAN 30.8 35.3 30.1 69.4
AdvDiffuser 18.3 20.0 18.5 79.4
DiffAttack 21.1 43.9 17.4 78.0
AdvDiff 20.5 14.9 17.8 78.8
AdvDiff-Untargeted 52.0 42.7 36.0 81.5
Method Adv-Inception [84)  AdvProp [131]  DiffPure |89 HGD |73
AutoAttack 14.6 69.6 22.2 205
U-BigGAN 40.6 75.2 40.1 22.6
AdvDiffuser 24.4 84.0 30.5 10.8
DiffAttack 30.9 85.1 30.6 20.5
AdvDiff 194 89.7 41.6 17.8
AdvDiff-Untargeted 60.1 95.3 75.2 53.8
Method R&P [132] RS [17] NRP |88 Bit-Red [135]
AutoAttack 20.6 38.9 39.4 19.8
U-BigGAN 14.2 34.5 30.9 13.1
AdvDiffuser 154 38.4 40.5 114
DiffAttack 23.7 40.8 38.5 20.1
AdvDiff 174 47.6 45.2 15.8
AdvDiff-Untargeted 56.8 82.8 74.2 52.6

3.4.4 Better Adversarial Diffusion Sampling

We present detailed comparisons with DiffAttack and AdvDiffuser. The results show
that the proposed adversarial guidance achieves significantly higher generation quality
than PGD-based adversarial guidance. With PGD gradient guidance, the diffusion
model generates images with a similar Recall score but a much lower Precision score,
which indicates that the PGD gradient influences the benign generation process and
causes the generation of low-quality images. The result proves that the adversarial
guidance of diffusion models should be carefully designed without affecting the benign
sampling process. Meanwhile, the generation speed of AdvDiff is the best among the
existing diffusion attack methods. Note that AdvDiff (36.8%) sightly outperforms
AdvDiffuser (32.0%) and DiffAttack (36.2%) against defenses. However, previous
attacks achieve slightly better transfer attack performance than the original AdvDiff.

The reason could be the gradient of the cross-entropy loss is shared among nearly
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all the deep learning models and is better at attack transferability against these
models. Nevertheless, the untargeted version of AdvDiff achieves overwhelmingly
better performance, which further demonstrates the effectiveness of the proposed
adversarial sampling. But the generation quality is affected, we leave a better design

in the future work.

3.4.5 Ablation Study

We discuss the impact of the parameters of AdvDiff in the subsection. Note that our
proposed method does not require re-training the conditional diffusion models. The

ablation study is performed only on the sampling process.

Adversarial Guidance Scale s and a. The magnitudes of s and a greatly affect
the ASR of AdvDiff, as shown in Figure 3.5] Noted that we witness the generation

of unrealistic images when setting the adversarial guidance extremely large.

Noise Sampling Guidance Steps N. Like the iteration times of GAN-based
unrestricted adversarial attacks, larger steps N can effectively increase the attack
performance against an accurate classifier, as shown in Figure However, it can
affect the initial noise distribution and hence decreases the generation quality. During
experiments, we observe that adversarial guidance is already capable of generating
adversarial examples with high ASR. Thus, we can set a small noise sampling guidance

step N for better sample quality.

Adversarial Guidance Timestep t*. The reverse diffusion process gradually de-
noises the input noise. Therefore we generally get noisy images at most timesteps.
Because the target classifier is not able to classify the noisy input, the adversarial
guidance is not effective in the early reverse diffusion process. Figure [3.5] shows our
results, and we can improve the performance of adversarial guidance by training a

separate classifier, which we leave for future work.
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3.5 Conclusion

In this work, we propose a new method called AdvDiff, which can conduct unrestricted
adversarial attacks using any pre-trained conditional diffusion model. We propose two
novel adversarial guidance techniques in AdvDiff that lead diffusion models to obtain
high-quality, realistic adversarial examples without disrupting the diffusion process.
Experiments show that our AdvDiff vastly outperforms GAN-based and diffusion-
based attacks in terms of attack success rate and image generation quality, especially
in the ImageNet dataset. AdvDiff indicates that diffusion models have demonstrated
effectiveness in adversarial attacks, and highlights the need for further research to

enhance Al model robustness against unrestricted attacks.

3.6 Appendix

3.6.1 Detailed Proof of Equation [3.6

We can obtain the sample x;_; with condition label y, according to the sampling
with the classifier-free guidance. To get the unrestricted adversarial example x}_,,
we add adversarial guidance to the conditional sampling process with Equation 8.
With Bayes’ theorem, we want to deduce the adversarial sampling with adversarial

guidance at timestep ¢ by:

p(alzi_1)p(x}_4)
P(Ya)

p(@i_1lya) = (3.9)

with Equation [3.9] we want to sample the adversarial examples with the target label

Yq. Starting from x;, the sampling of the reverse generation process with AdvDiff is:

PWalT}_y, ve)p(7f 4 |71)
p(ya|xt)

p(i_q|ze, ya) = (3.10)

Noted that Equation is the same as the deviation of classifier-guidance in [25]’s

Section 4.1, where they treated p(y,|z;) as a constant. Because p(z}_;|z;) is the known
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P(Yalzy_1,2¢)

sampling process by our conditional diffusion sampling, we evaluate S ORED,

by:
log ps(Yalzi_1) — log py(yala) (3.11)

We can approximate Equation using a Taylor expansion around z; | = pu(z;) as:

log ps(Yalzi_1) — log Py (Yal|zs) = log ps(Yalpe(x:))
+ (x:—l - M(%))vu(xt) logpf(yaW(mt))
—log py(ya|z:) + C

= (@1 = 1(20)) Vg log Py (yalp(20)) + € (3.12)
Assume p(z7_|x) = N(z7_y; p(2y), 02I) o e~ @m0 /207 we have:

(@ 20, ) o €= E A=) 202+ =(a0)V i o8 ()
o o~ @1=m(@) =07V y(zy) log s (Yal(0)))? /2074 (V (ay) log P (valp(x1)))? /207

o e~ @1 = @) =07V ey 108 s (Yalu(@1)))? /207 +C

~ N (@i (@) + 07V ) log D (Yol (), 071) (3.13)

Sampling with Equation should be:

vy = @ y) + 0 + 075V ) Log pr (Yl () (3.14)

where pi(xy,y) is the conditional mean value and e is sampled from ¢ ~ N(0,1).
Note that u(z,y) + o is the normal sampling process that we will get z;_;. In
practice, in each diffusion step, the difference between z;,_; and p(z;) should be small
enough [25,/46] for a reasonable and stable diffusion sampling. Therefore, we adopt
;1 to calculate the adversarial gradient after the sampling with the conditional

diffusion model, and we have:

Ty = (e, y) + 018 + 075V w108y (Yo 1)) & 2421 + 075V 4, 10g Py (YalTi-1)
(3.15)
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where s is the adversarial guidance scale. 0

3.6.2 Detailed Proof of Equation [3.8

The deviation of Equation 10 is similar to Equation 8, where the noise sampling

guidance is added with the forward diffusion process. Similarly, we have Equation 9:

_p(yale)p(:z:T) _ PWalzT, 20)P(27[70)

p(@r|ya) = = (3.16)

P(¥a) P(yalo)

And Taylor expansion around xr = xy to evaluate ’%.
log ps(Yalzr) — log ps(yalzo) = (27 — 20) Vo l0g ps(Yalxo) + C (3.17)

From ¢ to zr, we gradually add the Gaussian noise with the predefined schedule [46]:
p(zr|ze) = N(271; Varzo, (1 — ar)l) (3.18)
The noise sampling guidance is as follows:

T = (ﬂ(l’o, y) + 5T5> + 5%avmo 10gpf<ya|$0)

=x7 + 6%@Vx0 logpf(ya’$0) (3.19)

where [i(zg,y) + ore is the forward diffusion process to get xr with 2y and a is the

noise sampling guidance scale. 0
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Chapter 4

Diffusion Models as Strong

Adversaries

4.1 Introduction

The adversarial vulnerability [114] of deep learning models is a severe security is-
sue that threatens the deployment of AI applications. Adversarial attacks aim to
deceive deep learning models by introducing small perturbations to the input data
[1,[34,/60}/114]. Based on the knowledge the attacker possesses to generate these per-
turbations, adversarial attacks can be categorized as white-box attacks or black-box
attacks. White-box attacks assume that the attacker has access to the target model’s
parameters or network structure, allowing them to craft effective adversarial exam-
ples. On the other hand, black-box attacks assume that the adversary has no such
access and can only interact with the model through input-output queries. Despite
this limitation, black-box attacks have shown the ability to achieve high attack suc-
cess rates against state-of-the-art models in practical scenarios. As a result, deep
learning model applications face threats from potential adversaries.

In previous black-box attacks, the transferability of adversarial examples was ex-
ploited to deceive the target model. These attacks involved generating adversarial
examples against a substitute model that was trained on the same dataset as the

target model. However, a more practical scenario is that the adversary may not have
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Figure 4.1: The generated clean images (left) and UAE from the diffusion
model. Our proposed attack is capable of producing high-quality UAEs under the
no-box threat model. It’s worth noting that these UAEs are generated without any
conspicuous noisy patterns, unlike perturbation-based attacks.

access to the training dataset of the target model, where we call this type of attack as
a no-box attack. The no-box threat model, introduced by Li et al. , imposes more
practical constraints on the adversary. In this scenario, the attacker is not allowed
to access the training data or the outputs of the black-box target model. Only a
few correctly labeled data are leaked to the adversary, which limits their knowledge
about the target model. Existing works on no-box adversarial attacks leverage the
transferability of adversarial examples from a substitute model [65],[112]. However,
these works still rely on using data from the validation set of the target model, which
may not be available or permissible in many security-concerned applications. Addi-
tionally, these attacks require a relatively larger norm perturbation than black-box
attacks for successful adversarial examples generation. Therefore, it is still a challenge

to conduct effective adversarial attacks under a no-box scenario.

With the advancements in generative models, there is a growing concern regard-
ing their potential threats to humans and deep learning applications. Diffusion mod-
els [46,[108] are particularly powerful generative models that have gained attention
from both the research community and the general public. Large-scale public text-
to-image diffusion models, such as Stable Diffusion , have demonstrated their

ability to generate Al-manipulated images that can deceive humans with false in-
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formation. This raises important security issues that require the attention of the
research community to address and mitigate the risks involved. Given the impressive
generative capabilities of diffusion models across various tasks, it is worth exploring
whether diffusion models can serve as strong adversaries by self-generating training
data for adversarial attacks. However, only a few works [13}|15|16}]20] have discussed
the ability of diffusion models for adversarial attacks. And none of them perform

adversarial attacks under the no-box scenario.

In this chapter, we investigate and demonstrate the effectiveness of diffusion mod-
els as powerful adversaries under the no-box and black-box threat models. Specifi-
cally, the training data of the proposed attack is only consisting of generated data by
the diffusion model for no-box attack. We leverage a technique called classifier-free
guidance [48] to conditionally generate data using label information from the target
model’s training dataset, which we utilized the generated data as the training dataset.
To provide a comprehensive discussion of the diffusion model, we utilize a classifica-
tion diffusion model as the substitute model in our attack. This substitute model
estimates the distribution of labels based on the input data, employing uncertainty
estimation techniques. To improve the transferability of adversarial examples, we
introduce scheduled noise during the training of the substitute model. Once the sub-
stitute model is trained, we utilize the same diffusion model to generate a dataset for
performing no-box unrestricted adversarial attacks as shown in Figure [d.1] We adopt
an ensemble-like approach using the Monte Carlo sampling method over multiple con-
ditional distribution predictions from the diffusion substitute model. The generation
pipeline of our proposed attack is given in Figure[4.2l We conduct experiments on the
ImageNet [23] dataset to demonstrate the effectiveness of diffusion models as strong
adversaries against deep learning models even in a no-box attack threat model. Our
work emphasizes the need for the community to focus on developing more robust
defenses against adversarial attacks involving diffusion models. Besides the no-box
attack, we also test the attack performance of diffusion models under the standard

black-box attack scenario.

Our contributions are summarized as follows:
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Figure 4.2: The attack pipeline of the proposed adversarial attack. The gen-
eration of our unrestricted adversarial examples follows the normal reverse generation
pattern of the diffusion models, where we incorporate adversarial guidance from the
substitute model to adversarially sample the UAEs.

e We propose an effective no-box adversarial attack method using diffusion models
against existing deep learning models. Our proposed attack does not rely on any
training data or queries from the target model, making it a practical approach
for no-box attacks. Additionally, the proposed method demonstrates significant

effectiveness in black-box adversarial attacks.

e We design effective approaches to generate no-box adversarial examples with dif-
fusion models under the no-box threat model, including the generation method
for constructing the dataset, a special fine-tuning method that incorporates
model uncertainty and noise augmentation to enhance the model transferabil-
ity, and a novel ensemble-like no-box unrestricted adversarial attack method
that leverages the average prediction from the diffusion substitute model for

the generation of strong adversarial examples.

e We conduct extensive experiments to validate the effectiveness of our approach.
Our results show that the proposed attack can generate effective no-box and
black-box adversarial examples, achieving a state-of-the-art attack success rate

compared to existing methods.
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4.2 Background

4.2.1 Adversarial Attacks

No-box attacks.

We give the definition of the no-box threat model in our chapter following Li et
al. [65] that we assume the attacker can access neither the whole training dataset nor
any pre-trained target model. Accessing the validation data or testing data is also
prohibited. The attacker can only have some basic information about the dataset
and the target model following the label-only data-free setting [144|, such as label
encoding, label information, data structure, model input and output structure, and
any other auxiliary information.

In this chapter, we utilize the generative capabilities of diffusion models to con-
struct the training dataset for the substitute model. The selection of diffusion models
for this purpose needs to meet two requirements: (1) the diffusion models should be
open-source and publicly available for practical reasons, and (2) the diffusion models
should be capable of generating data that is similar to the training data of the target
classifier. To generate the training dataset, we employ conditional labels for DDIM
models with classifier-free guidance and prompts with label text for text-to-image
diffusion models. By using these techniques, we create a dataset that closely approx-
imates the target classifier’s training data. Once the training dataset is obtained,
we can train the substitute model using this data to perform the no-box adversarial
attack. This allows us to craft adversarial examples that can successfully fool the
target classifier, even without direct access to its training data or the ability to query

it.

4.2.2 Adversarial Attacks with Generative Models

Inspired by Dai’s work [20], diffusion models are a powerful model to generate human
imperceptible UAEs. To sample UAEs with the diffusion model, adversarial guidance

is added in the reverse generation process:
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where a; is the scale of the adversarial guidance and y, is the target label for the
adversarial attack.
The noise sampling guidance is added to the initial noise to better sample the

UAEs with prior knowledge:

rr =Tp +ay- V1 —arVy, 10gpf(ya|$o) (4-2)

where as is the noise sampling guidance scale.

4.3 Methodology

The proposed attack achieves no-box adversarial attacks by UAEs generated by the
diffusion models. The whole attack pipeline is given in Figure [£.3] The substitute
model is trained by the generated dataset with the same diffusion models for attack.
We will introduce our training mechanisms for the substitute model with the gen-
erative ability of diffusion models in Section III.A, and the fine-tuning method with
model uncertainty in Section III.B. The no-box adversarial attack algorithms will be

illustrated in Section I1I.C with detailed discussions.

4.3.1 Training Mechanisms with Diffusion Models

With the development of diffusion models like the LDM [100] and its successor Stable
Diffusion, these models have shown remarkable capabilities in generating high-quality
and high-resolution images. Previous works have demonstrated that utilizing gener-

ative models as an additional source of training data can enhance the performance of
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Figure 4.3: The attack pipeline of our proposed no-box adversarial attacks.
Firstly, we employ the diffusion model to generate the training dataset. This genera-
tion is guided by conditional sampling with class information from the original train-
ing dataset of the no-box models (Section III.A). Secondly, we train the substitute
Classification And Regression Diffusion (CARD) model using the synthetic dataset.
A unique fine-tuning mechanism is implemented to enhance the performance of the
proposed attack (Section III.B). Finally, we execute the unrestricted adversarial at-
tack against the substitute CARD model using the diffusion model. We leverage
adversarial guidance from multiple inferences of the CARD model to sample the im-
age adversarially (Section III.C). Ideally, images from the synthetic training dataset
should be accurately classified by the target model, while images with adversarial
guidance should mislead the target model, resulting in incorrect classification.
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classifiers. However, a crucial question arises: Can we solely rely on generative models
for training a classifier? In white-box settings, it is unlikely that the classifier trained
solely using generative models will be compatible or optimal. Generative models ex-
cel at producing realistic samples, but they may not capture all the complexities and
nuances of the real training data that the target classifier has been trained on. How-
ever, in real-world scenarios, such as applications concerned with privacy, we cannot
always access the training details of the target classifier. This practical limitation
inspires our approach of exclusively using data generated from diffusion models to
train the substitute model. While we recognize that relying solely on diffusion mod-
els for training may not produce a classifier that perfectly mirrors the target classifier
in white-box settings, our goal is to devise effective adversarial attacks within the
constraints of real-world settings. In these scenarios, accessing the training details of

the target classifier is often impractical or even prohibited.

Our work considers two training scenarios based on how the diffusion model is
trained for a comprehensive discussion on no-box attacks. For standard no-box set-
ting, we adopt pre-trained class-conditional LDM with public checkpoints. The gen-
eration of the training dataset is formulated as follows:

T
D £ {z ~plar) | [ po(wi|ze,9)} (4.3)
t=1

where y is the label encoding of the generated data.

A strict no-box scenario is that we assume the diffusion model is trained on mul-
tiple datasets without any fine-tuning on the training dataset of the target model. In
our work, we use Stable Diffusion 2.0 [100], a text-to-image diffusion model available
to the public. To construct the training dataset, we utilize the label text from the

target model as prompts for text-to-image generation, which is formulated as:
&y (w1ly) = € (@el0) +w - (e (w:l70(y)) — € (2:/0)) (4.4)

where the conditional guidance is incorporated with classifier-free guidance [48|, and
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T9(y) is the text prompt.

After obtaining the training dataset generated using diffusion models, we proceed
with the standard training of the substitute model. Besides, we also include standard
geometric transformations to enhance the performance of the substitute model in the

initial training.

4.3.2 Fine-Tuning with Model Uncertainty

Recent works demonstrate that uncertainty learning is beneficial for the decision-
making capabilities of deep learning models. Li et al. [66] also found that adopting
an approximate Bayesian inference technique to the substitute model can enhance the
performance of black-box attacks by a large margin. In the case of no-box attacks, it is
crucial to avoid overconfident predictions from the substitute model, which may arise
due to its under-fitted training on the synthetic dataset generated by diffusion models.
To address this, we propose a fine-tuning method that leverages model uncertainty
to enhance the transferability of the substitute model.

Diffusion probabilistic models, such as the Classification And Regression Diffusion
(CARD) model proposed by Han et al. [41], provide an effective way to capture model
uncertainty through variational inference. The inference for the classification task is

formulated as follows:

T

y ~ pearn (yr) [ [ poaroo(vi-1lur, ) (4.5)
t=1

where 1 = Yoo + Y1y + Vafs(x) + \/Eet, yr ~ N (fs(2),I), v is the pre-defined
hyper-parameter, €, is the forward diffusion noise, and f, is the pre-trained substitute
model.

Mathematically, the CARD model adopts the diffusion process to finally predict
the probability of k' class by:

_exp(=(yo - 1);)
> exp(—(yo — 1)3)
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where yo is the output of the CARD model, and (yo— 1) represent the k-th dimension

of the yo vector.

CARD model performs classification tasks through the classification likelihoods
through its probability predictions. Therefore, it is more suitable to calculate the
adversarial guidance which also uses log-likelihoods to guide the diffusion model to
sample UAEs. The unrestricted adversarial attacks aiming at target label y, with
diffusion models and the CARD model are performed by replacing the original ad-

versarial guidance with:

exp(—((yolz:) — 1)3)
225 exp(—((yolze) — 1)7)

Vo, log pr(yalz) = Vy, log (4.7)

The original CARD model did not consider the input of noisy images. There-
fore, the performance of the CARD model with the input of images from the internal
sampling steps of the diffusion model is limited. Data augmentations like noise in-
jection |150] are effective methods to reduce over-fitting and improve the robustness
of a deep learning model. As our no-box attack follows the reverse diffusion process
to generate adversarial examples, utilizing noise augmentation would further improve
the attack performance which makes the substitute model able to classify noisy inputs.
Hence, different from simply adding Gaussian noise, our proposed noise augmenta-
tion method injects noises from the forward diffusion process. More specifically, the
fine-tuning training algorithm is given in Algorithm [2 Noted that we first train a
ResNet-50 [43] model as f.

The proposed noise augmentation method assists the substitute model in classi-
fying samples from the reverse diffusion process. We only select the last 20% of T'
steps for sampling the noisy images, as the early sampling steps merely generate noise
patterns that are barely recognizable. After fine-tuning the CARD model, we execute

our no-box adversarial attacks using the CARD model as the substitute model.
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Algorithm 2 Fine-Tuning Training Algorithm

Require: f;: pre-trained substitute model, zj: original sampled image without
noise, a: linear noise schedules for CARD, &: linear noise schedules for LDM, T"
reverse generation process timestep for CARD, Ty py: reverse generation process
timestep for LDM

1: repeat
2: tg ~ Uniform({1...Trpm})
3: Sample e With forward process of the LDM model

CI(xnoise’xO) = N(mnoise; dtftx(]a (1 - dtft)I)

Yo ~ Q(y(]’xnoise)
t ~ Uniform({1...7T})

e ~ N(0,1)
Compute noise estimation loss
L= HG — €9 (xnoisea \/d_tyO
— — 2
+ v 1—- Q€ + (1 - \/a_t)f¢>(xnoise)a fqb(mnoise)a t) H

8: Optimization over VgL,
9: until Convergence

4.3.3 No-box Adversarial Attacks with Diffusion Models

When conducting adversarial attacks against a classification diffusion model, the goal
is to find perturbations that can deceive the model’s softmax output, resulting in
misclassification. This process is similar to standard adversarial attacks, where the
objective is to find small perturbations that can fool the model’s decision-making
process. Under the no-box attack scenario, it is more practical that we utilize the
generative diffusion model that constructs the training data to conduct unrestricted
adversarial attacks against the substitute diffusion model. The no-box adversarial
attack with diffusion models samples the adversarial examples with the guidance of
the gradient from the substitute diffusion model, which is formulated as Equation
and

As the classification diffusion model can also be viewed as an approach to model
p(y|z), we can approximate the exact inference by adopting the Monte Carlo sampling
method p(y|x) = %Zf\ilp(yzm), where p(y;|x) is obtained by multiple sampling.

We select the ground truth class for the no-box adversarial attack in this chapter.
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Algorithm 3 No-Box Adversarial Attack Algorithm

Require: fcagp: pre-trained CARD model, yg: ground truth class label, N: noise
sampling guidance steps, Typwm: reverse generation process timestep for LDM,
T.av: timestep for adversarial guidance

L Trpu ™~ N(O> I)

2 Togo = I

3: yo = OneHotEnc(yg)

4: fori=1...N do

5: fOI‘t:TLDM,...,ldO

6: if t is in T4, then

7: Obtain adversarial guidance with Equation
8: Sample x;_; with Equation

9: else

10: Sample x;_; with Equation

11: end if

12: end for

13: Obtain adversarial guidance with Equation 4.8|
14: Update x7,,,, with Equation

15: Tady < To if foarp(To) # Vet

16: end for

17: return x4,

The proposed no-box unrestricted adversarial attack is achieved with the ensemble of
multiple inferences. Detailed attack algorithm is given in Algorithm [3] We use DDIM

with classifier-free guidance from the ground truth label y, for diffusion sampling.

exp yo|l’t,€z') - 1)2t)
logp; = ;
ngf(ya|xt Z Z exp ((y0|xt7 Ei) - 1)?)

where €; ~ N(0,I).

The multiple inferences are accomplished by M independent classification results
from the trained CARD model, with M instances of random initial diffusion noise
€. The proposed attack achieves an ensemble-like adversarial attack, leveraging the
characteristics of diffusion models without the need to train multiple substitute mod-

els.
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4.4 Experiments

Datasets and Substitute Models. We use the ImageNet 23] dataset for major
evaluation. Under no-box settings, the dataset is generated by diffusion models with
224 %224 pixels. The substitute model is ResNet-50 [43|. Under black-box settings,
the dataset is from the ImageNet 2012 validation dataset. The base model for gen-
erating the adversarial examples is also ResNet-50 [43|. Following existing previous
work [38,66], we adopt the common settings for transfer-based adversarial attacks. We
randomly sample 5 data from each class of the training dataset (no-box) or validation

set (black-box) to conduct the adversarial attack for baselines.

Parameter Settings. LDM and Stable Diffusion v2.0 |100] are selected as source
model in our work. While sampling data, the timestep for the diffusion process is
set to 200 for LDM and 50 for Stable Diffusion. Both diffusion models’ 7 are set
to 0 for deterministic sampling. The classifier-free guidance scale w is set to 3.0
for LDM and 9.0 for Stable Diffusion. We use public checkpoints from the official
release for LDM and Stable Diffusion. In fine-tuning with CARD [41], the diffusion
timestep for classification is set to 100. The linear noise schedules are set accordingly
as the official implementation. In generating the adversarial examples, we set N = 5,
a; = 0.5, ay = 0.5 for adversarial guidance, and M = 10 for multiple inferences.
We use DMSA1py to denote the proposed attack with LDM implementation and
DMSAgp for Stable Diffusion implementation. The basic attack is performed by
replacing the foarp with ResNet-50 trained by our synthetic dataset in Algorithm [3]

Combining with Perturbation-Based Attacks. Our method aims to generate
high-quality non-perturbed adversarial examples with the benign diffusion process.
In other words, the sampled adversarial examples can be treated as benign images.
Therefore, it is possible to interrogate the perturbation-based adversarial attacks with
our generated adversarial examples. Besides using the diffusion model for generating
adversarial examples, we perform 200 steps I-FGSM over the generated examples to

enhance their performance on no-box models.

Target Models. We select various widely adopted target models for ImageNet
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Figure 4.4: Comparisons of no-box adversarial examples with our method
and Li et al.’s method. Note that our method achieves a similar ASR with a
significantly lower perturbation. The adversarial examples are generated by latent
inversion.

to test the attack performance: ResNet-50 [43], VGG-19 [107], ResNet-152 [43], In-
ception v3 , DenseNet-121 , MobileNet v2 , SENet-154 , ResNeXt-
101 [133], WRN-101 [139], PNASNet [77], and MNASNet [115]. Because these models
take different resolution inputs, we adopt different re-scale functions before perform-

ing the adversarial attack according to their original implementation. We adopt the

public checkpoints from the timm [124] library for these models.

Evaluation. We mainly use ASR to evaluate the performance of various adver-
sarial attack methods. As our attack is aimed at attacking no-box and black-box
models, the attack success rate is calculated by how many transfer-based adversarial
examples can fool the target model. The adversarial examples are first generated
by attacking the substitute model training by the adversary. Then, we adopt the
generated adversarial examples to check if they can be misclassified by the no-box
or black-box target model. We do not perform any query to the target model to
fine-tune the adversarial examples. To ensure fair comparisons, we evaluate our at-
tacks by using latent inversion from images in the validation set to generate the
adversarial examples when compared with previous attacks (The process of training

and fine-tuning the substitute model is unchanged).
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4.4.1 No-Box Threat Model

Under the no-box threat model, we compare our method with the state-of-the-art
method [65], where they used supervised ResNets and unsupervised auto-encoders
for no-box attacks (Naivel and Prototypical). It’s important to note that Li et al.’s
method uses 20 images from the original training dataset to train the substitute
model. As a result, their method only supports attacking a limited number of im-
ages and requires a relatively large perturbation under 6 = 0.1. Furthermore, their
method does not support attacking all classes simultaneously, which further restricts
the applicability of their method. For a fair comparison with their works, we use the
latent inversion [100] from images in the validation set to generate our adversarial ex-
amples. The performance of the state-of-the-art methods and our proposed methods

are displayed in Table and Figure 4.4

For Li et al.’s attack, they achieve around 68% ASR on different no-box target
models with perturbations of § = 0.1. Their best performance is achieved with 20
decoders Prototypical*, 200 steps [-FGSM, and 100 steps ILA attack. Furthermore,
using an auto-encoder over clean images brings visual quality problems as the recon-
structed images can be identified by humans. Training of the Prototypical* requires
random selections of the required training images, which limits the reproducibility of

their methods. Therefore, their method is very limited in usability.

On the other hand, our method achieves the state-of-the-art attack success rate
without adding I-FGSM gradients. This result indicates that diffusion models, cou-
pled with our proposed attack methods, are more formidable adversaries with supe-
rior performance than traditional perturbation-based methods. Adopting the CARD
model can notably improve the transfer ASR by around 15% without largely in-
creasing the magnitude of the perturbation. This is more effective than adopting
20 decoders in Li et al.’s work with only a 2% increase in ASR. Moreover, Figure
[4.4] further demonstrates that without using I-FGSM, the visual quality of the pro-
posed method is noticeably better than Li et al.’s work. Note that both DMSApum

and DMSAgp use synthetic dataset rather than validation set from the no-box target
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model to train the substitute model. Therefore, the performance of proposed attacks
can be further improved by using the substitute model from Li et al.’s work.

Furthermore, we test the performance of proposed attacks using the randomly
sampled latents. Table demonstrates that the proposed attack methods signifi-
cantly outperform the previous attacks. The substitute model for the previous at-
tacks is trained with the same dataset as DMSArpy. By only using the synthetic
dataset generated by diffusion models, the state-of-the-art attack methods perform
much worse than our methods. These findings further indicate the effectiveness of
the proposed attacks. The proposed attack with Stable Diffusion performs slightly
worse than the LDM settings. This could be due to the different training data of
the original model. Stable Diffusion utilizes multiple large-scale datasets for train-
ing. Consequently, the data distribution of the no-box training dataset generated by
Stable Diffusion is likely to be inconsistent with the original ImageNet dataset. As
a result, the adversarial examples from the trained substitute model may struggle to
transfer to the no-box target model.

Figure demonstrates that the benign images generated by diffusion models
attain a classification accuracy similar to the standard ImageNet validation dataset,
which attests to the generation quality of our method. Moreover, the basic and
CARD attacks achieve over 50% ASR with significantly less noticeable perturbations

compared to Li et al.’s method.

4.4.2 Image Quality

We evaluate the image quality of no-box adversarial examples using the FID score [44].
As shown in Table[4.1], our proposed attacks achieve significantly better image quality
compared to those by Li et al., demonstrating that diffusion models can serve as potent
adversaries to deep learning models. However, it is important to note that adversarial
guidance can negatively impact the original generation quality of the diffusion model.
Since adversarial guidance is integrated based on the benign diffusion guidance of the
model, it should be within the range of [0, 1.0]. For more stable and high-quality

image generation, we recommend setting a; and as to values smaller than 0.5 for no-
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Table 4.1: Attack success rates of transfer-based no-box attacks on Imaget-
Net with ResNet-50 as the substitute model, the perturbation of baseline
is /o, with 0 = 0.1. We use latent inversion from the data of the baseline to generate
our adversarial examples.

Method VGG-19 Inception v3 ResNet-152 DenseNet  SENet WRN  PNASNet MobileNet Average FID ({)
Naive! 23.80% 19.14% 16.24% 21.06% 13.00%  15.84% 13.04% 27.56% 18.71% 10.2
Prototypical ~ 80.22% 63.54% 62.08% 70.84%  55.44%  62.72% 51.42% 82.22% 66.06% 7.8
Prototypical*  81.26% 66.32% 65.28% 73.94%  57.64%  66.86% 54.98% 83.66% 68.74% 85.4
DMSApm 65.72% 53.15% 60.77% 71.44%  45.74%  63.25% 45.53% 75.27% 60.10% 15.6
+ CARD 82.11% 68.62% 78.74% 81.81% 61.26% 77.29% 60.18% 89.54% 74.94%  26.8
DMSAgp 58.57% 49.62% 62.31% 64.68%  42.78%  46.96% 41.53% 66.13% 54.07% 13.1
+ CARD 74.31% 62.85% 78.26% 78.62%  59.47%  60.02% 57.66% 79.89% 68.89% 24.4

Table 4.2: Attack success rates of transfer-based no-box attacks on Imaget-
Net with ResNet-50 as the substitute model, the perturbation of baseline
is o with 6 = 0.1. We use the generated images from the LDM model as the clean
data for the previous attacks.

Method VGG-19 Inception v3 ResNet-152 DenseNet  SENet WRN  PNASNet MobileNet Average
I-FGSM 24.17% 20.87% 19.67% 21.37% 18.97%  20.47% 18.47% 25.73% 21.22%
ILA++ (2022) 40.51% 22.65% 31.51% 26.03% 26.81%  36.33% 29.05% 48.27% 32.65%
MBA (2023) 45.67% 32.93% 34.43% 41.63%  33.37%  38.03%  32.90% 53.80% 39.10%
DMSALpm 52.95% 30.41% 36.06% 39.67% 29.37%  40.37% 26.89% 50.22% 38.24%
+ CARD 59.60% 38.70% 55.30% 59.48%  37.75%  57.08%  36.49% 72.16% 52.07%
+ CARD I-FGSM  93.98% 81.23% 87.54% 91.47% 83.15% 87.58% 79.18% 96.15% 87.53%
DMSAsgp 35.80% 36.70% 34.29% 35.13%  37.21%  34.04%  32.21% 39.17% 35.61%
+ CARD 54.40% 45.78% 53.52% 50.21% 53.87%  46.32% 38.05% 56.32% 49.80%
+ CARD -FGSM  80.53% 66.48% 68.98% 74.06%  68.32%  77.52%  58.01% 86.30% 72.53%

box adversarial attacks. Additionally, employing stronger diffusion models, such as
Stable Diffusion, can enhance generation quality. Utilizing the CARD ensemble attack
is also more effective in improving the ASR than merely increasing the adversarial

guidance.

4.4.3 Black-Box Threat Model

For a comprehensive discussion on the adversarial ability of diffusion models, we
perform standard black-box adversarial attacks with the proposed attack. A variety
of state-of-the-art black-box adversarial attacks are selected as comparisons, including
LinBP [38], ILA++ [39], TAIG [52] and LGV [36], TIM [27], SIM [75], Admix [121]
and MBA [66] with the £, attack budget § = 8/255. We also include more black-box
target networks for complete comparisons.

Prior to the year of 2022, previous works achieved relatively lower performance
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than white-box attacks because black-box attacks could not access the gradient of the
target model. As a result, existing methods tend to enhance attack transferability by
better inferring the gradient of the black-box model with the substitute model. The
MBA attack by Li et al. [66] significantly improves the ASR of black-box attacks by
using an ensemble-like approach with Bayesian fine-tuning. However, their method
necessitates re-training the standard substitute model, and the ensemble attack fur-

ther restricts the efficiency of their attacks.

For our proposed attack, we utilize the LDM as the base model. We use the
latent inversion [100] from images in the validation set to generate our adversarial
examples. The standard pre-trained ResNet-50 is adopted as the substitute model.
Table shows that under standard settings, the proposed adversarial attack with
the diffusion model already achieves an 89% ASR without any fine-tuning. This result
demonstrates that diffusion models have the potential to execute stronger and more
concealed black-box adversarial attacks than traditional perturbation-based attacks.
When adopting the CARD model for black-box adversarial attack, the proposed at-
tack outperforms the state-of-the-art attack methods without adding gradient-based
perturbations. The attack performance of our proposed method can be further en-
hanced by combining it with simple perturbation-based attacks, which are similar to

the no-box attack settings.

It’s worth noting that most of the black-box target networks employ similar convo-
lution blocks for feature learning, which results in low robust accuracy against transfer
adversarial examples from the ResNet-50 networks. These networks also use the same
image transformations before feeding the input to the networks. Consequently, we
observe a significant drop in ASR on target networks with different network struc-
tures and image transformations, such as Inception v3 and PNASNet. This insight
could contribute to the design of better defenses against both perturbation-based

adversarial attacks and diffusion-model-based adversarial attacks.
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Table 4.3: Attack success rates of transfer-based black-box attacks on Im-
agetNet with ResNet-50 as the substitute model, the perturbation is /.,
with 6 = 8/255. We use latent inversion from the data of the baseline to generate
our adversarial examples.

Method ResNet-50 VGG-19 ResNet-152 Inception v3  DenseNet MobileNet
I-FGSM 100.00%  39.22% 29.18% 15.60% 35.58% 37.90%
TIM (2019) 100.00%  44.98% 35.14% 22.21% 46.19% 42.67%
SIM (2020) 100.00%  53.30% 46.80% 27.04% 54.16% 52.54%
LinBP (2020) 100.00%  72.00% 58.62% 29.98% 63.70% 64.08%
Admix (2021) 100.00%  57.95% 45.82% 23.59% 52.00% 55.36%
TAIG (2022) 100.00%  54.32% 45.32% 28.52% 53.34% 55.18%
ILA++ (2022) 99.96% 74.94% 69.64% 41.56% 71.28% 71.84%
LGV (2022) 100.00%  89.02% 80.38% 45.76% 88.20% 87.18%
MBA (2023) 100.00%  97.79% 97.13% 73.12% 98.02% 97.49%
DMSApM 100.00%  93.95% 94.26% 77.04% 94.57% 97.91%

DMSA;pm + CARD  100.00%  98.02% 98.45% 84.21% 98.12% 99.33%

Method SENet ResNeXt WRN PNASNet MNASNet  Average
I-FGSM 17.66% 26.18% 27.18% 12.80% 35.58% 27.69%
TIM (2019) 22.47% 32.11% 33.26% 21.09% 39.85% 34.00%
SIM (2020) 27.04% 41.28% 42.66% 21.74% 50.36% 41.69%
LinBP (2020) 41.02% 51.02% 54.16% 29.72% 62.18% 52.65%
Admix (2021) 30.28% 41.94% 42.78% 21.91% 52.32% 42.40%
TAIG (2022) 24.82% 38.36% 42.16% 17.20% 54.90% 41.41%
ILA++ (2022) 53.12% 65.92% 65.64% 44.56% 70.40% 62.89%
LGV (2022) 54.82% 71.22% 75.14% 46.50% 84.58% 72.28%
MBA (2023) 85.41% 94.16% 95.39% 77.60% 97.15% 91.33%
DMSApum 79.33% 89.77% 94.05% 78.18% 95.82% 89.49%

DMSA;py + CARD  88.21%  95.25% 97.56% 85.71% 96.73% 94.16%

4.4.4 Adversarial Robust Models and Vision Transformers

It has been reported that adversarial defense methods like adversarial training can ef-
fectively improve the adversarial robustness of deep learning models. It is practical to
test the performance of adversarial attacks under defenses to test the performance on
real-world scenarios. We test the performance of various attack methods against ad-
versarial robust models using latent inversion, including adversarial-trained Inception
v3, EfficientNet-B0, ResNet-50, a robust DeiT-S [116], and a diffusion-based adversar-
ial purification method DiffPure [89]. Checkpoints from Inception v3, EfficientNet-B0,
ResNet-50 follows [66]. Table|4.4|shows that adversarial training is effective at defend-
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ing black-box adversarial attacks, especially for adversarial-trained ResNet-50 which
successfully defends around 90% of the state-of-the-art black-box attack methods.
Our proposed attack does not directly add the adversarial gradient to the generated
adversarial examples. Therefore, our methods remarkably outperform perturbation-
based black-box attacks on various adversarial-trained and denoising deep-learning

models.

Vision transformers are recent transformer-based models with state-of-the-art per-
formance but different network artifacts. They achieve relatively high robust accuracy
under adversarial attacks for their special feature learning techniques. We also test
the attack performance of adversarial examples with recent vision transformers us-
ing latent inversion, i.e., ViT-B [28|, a DeiT-B [116], a Swin-B [79], and a BEiT [5].
Table demonstrates that perturbation-based adversarial examples hardly transfer
to vision transformers for adversarial attacks. As vision transformers adopt spe-
cial patch embedding for feature learning, the adversarial perturbations are very
likely to be sabotaged during patching. Therefore, vision transformers are robust to
perturbation-based attacks even without any defenses. However, our proposed at-
tacks seek adversarial examples by adversarial sampling, which generates UAEs with
adversarial global features rather than special perturbation patterns. Hence, the pro-
posed attacks achieve overwhelmingly better performance against vision transformers

than previous methods.

The adversarial examples sampled by diffusion models are more effective at deceiv-
ing defense methods and vision transformers due to their adversarial sampling with
the diffusion process, rather than simply adding noise patterns to the image. This
presents significant challenges to current deep-learning applications and underscores

the need for effective designs of adversarial defense methods.

We also compare our attacks with the state-of-the-art diffusion model based black-
box attacks, DiffAttack [13]. The results are given in Table [4.5] Our attack signifi-
cantly outperforms DiffAttack on our Basic attack in both ASR and FID score [44]

for generation quality on most black-box target models (6 out of 8).
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Table 4.4: Attack success rates of transfer-based black-box attacks on Im-
agetNet against robust models and vision transformers with ResNet-50 as
the substitute model, the perturbation is /., with § = 8/255. We use latent
inversion from the data of the baseline to generate our adversarial examples.

Method Vision transformers Robust models

ViT-B  DeiT-B Swin-B BEiT  Inception v3 EfficientNet ResNet-50 DeiT-S  DiffPure

-FGSM 4.70% 5.92% 5.18% 3.64% 11.94% 9.48% 9.26% 10.68% 6.65%
ILA++ (2022) 9.48%  21.34% 14.88%  11.76% 15.54% 30.90% 10.08% 11.08% 7.25%
LGV (2022) 7.18%  20.02%  12.14%  11.66% 18.00% 39.06% 10.56% 11.50% 8.10%
MBA (2023) 21.66%  43.53%  21.84%  29.78% 25.89% 67.05% 11.02% 12.02% 9.45%
DMSA1pMm 49.33%  56.21%  52.85%  83.24% 53.31% 88.55% 75.91% 63.21%  74.22%
DMSA;py - CARD 61.68% 63.36% 59.74% 88.52%  67.67% 93.20%  82.25% 71.08% 78.30%

Table 4.5: Attack success rates of transfer-based black-box attacks on Im-
agetNet comparing with DiffAttack, the perturbation is /., with ¢ = 8/255.
FID is evaluated on our selected ImageNet validation data. We use latent inversion
from the data of the baseline to generate our adversarial examples.

Method CNNs Vision transformers FID (1)
ResNet-50 VGG-19 MobileNet Inception v3  ViT-B Swin-B  DeiT-B  DeiT-S
DiffAttack (2023) 96.3% 75.6% 77.1% 69.0% 51.2% 56.2% 50.5% 55.0% 25.2
DMSALbm 100.00%  93.95% 97.91% 77.04% 49.33%  52.85%  56.21%  64.52% 16.4

DMSApm + CARD  100.00% 98.02%  97.97% 84.21% 61.68% 59.74% 63.36% 69.91% 25.9

4.4.5 Time Efficiency

The proposed attack model is trained and evaluated on a Nvidia GeForce RTX 3090
GPU. We demonstrate the time efficiency of each component to perform our attacks
in Table 4.6, Since the CARD model requires only a single training session, the
training cost of the proposed methods can be considered negligible. However, the
time efficiency in generating the no-box adversarial image is relatively low due to the
use of the CARD model and multiple inferences. Nonetheless, adopting the CARD
model significantly increases the attack success rate, presenting a tradeoff between
ASR and time efficiency. We can reduce the time cost by adopting time-efficient
diffusion substitute models and diffusion models, which we plan to explore in future

work.
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Table 4.6: Time cost (s) of proposed DMSA attacks in training and attack-
ing process.

Method Training Dataset (per image) Training CARD  Fine-tuning CARD  Adversarial Attack (per image) Adversarial Attack with CARD (per image)

DMSA by 6.4 9251.5 5428.8 11.3 415
DMSAsp 4.9 9214.2 4412.1 9.6 20.7

Try the API

Labels Properties Safe Search Try the API

[B\rd 97% ] Objects Labels Properties Safe Search

Plant 93%

Plant 94%

Leaf 90%

Leaf 90%

Beak 89%

Terres trial Plant 86%
Botany 87% -
Organism 85%
Parrot 87% -_—
“ —y i Grass 75% -
DMSA| pMm
Clean Image
CARD Attack

Figure 4.5: A successful attack against Google Vision. The confidence level for
"bird" is reduced, causing it to drop out of the top three labels.

4.4.6 Attacking Commercial CNNs

A practical scenario for our proposed no-box adversarial attacks involves targeting
commercial CNNs, such as Google Vision. To further validate the effectiveness of
our methods, we randomly selected 100 images from the no-box adversarial examples
from DMSApy to test the attack success rate against Google Vision. An attack
is considered successful if it reduces the confidence of the correct label out of the
top three labels. An example of a successful attack is shown in Figure Out of
the 100 images, 86 successfully deceived Google Vision, demonstrating that no-box

adversarial attacks pose a significant threat to deep learning models.

Google Vision is a multi-label classification model capable of detecting over 1,000
ImageNet classes. The results suggest that the proposed attack can successfully de-
ceive the no-box target model with only practical knowledge of the label information,

which we plan to explore further in future work.
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4.5 Ablation Studies

The proposed attacks contain three complicated processes to perform the no-box
attack. We give comprehensive ablation studies on each important process that con-
tributes to the attack performance in this section. We select the LDM model with
the CARD substitute model for major experiments. We use the no-box threat model
to conduct the adversarial attacks using random latents. For clarity, we only cover
a part of the target model to test the attack performance. By default, the attack

success rate is the average ASR over the no-box 8 target models.

4.5.1 Training Dataset

In this section, we delve into the crucial role that the quality of the substitute model
plays in the performance of transfer-based adversarial attacks, particularly in the
context of no-box adversarial attacks. The impact of the scale of the training dataset
on the proposed attacks is explored by adopting four different quantities of images per
class to construct the training dataset, with the results summarized in Table[4.7] The
outcomes clearly illustrate that a larger training dataset significantly enhances both
clean accuracy and attack transferability. Notably, when utilizing a dataset with only
100 images per class, the substitute model tends to be under-fitted, resulting in the
poorest performance compared to models trained on larger datasets. However, the
ASR did not largely increase when the training dataset was set to 2000 images per
class. The reason may be the over-fitting of the substitute model. Remarkably, even
in the absence of real data from the original training dataset, our proposed substitute
model achieves an impressive approximately 80% top-5 classification accuracy on the
validation dataset of ImageNet. This outcome underscores the efficacy of our novel

training method.

4.5.2 CARD Model

The CARD model is a diffusion model, which may cause large computation overheads

to the attack algorithm. In this section, we investigate the time efficiency and attack
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Table 4.7: Attack success rates of transfer-based no-box attacks on Imaget-
Net with ResNet-50 as the substitute model in terms of the scale of the
training dataset. n represents the scale of images per class. Substitute model clas-
sification accuracy on the ImageNet validation set is further evaluated.

Method VGG-19 Inception v3 ResNet-152 DenseNet  SENet WRN  PNASNet MobileNet Average Clean Top-5 Acc
DMSALpy 7= 1000 59.60% 38.70% 55.30% 59.48%  37.75% 57.08%  36.49% 72.16% 52.07% 79.85%
DMSApy n =100  50.32% 28.41% 35.05% 40.98%  24.30%  37.87% 20.71% 55.30% 36.61% 58.32%
DMSApy n =500  57.14% 33.19% 43.31% 48.83%  32.91%  46.84% 29.64% 64.75% 44.57% 68.50%
DMSApy n = 2000 62.10% 39.21% 56.21% 60.32% 40.80% 58.45% 38.01% 75.50% 53.82% 80.65%

Table 4.8: Attack success rates of transfer-based no-box attacks on Imaget-
Net with ResNet-50 as the substitute model in terms of the fine-tuning
for the CARD model.

Method VGG-19 Inception v3 ResNet-152 DenseNet SENet WRN  PNASNet MobileNet Average
DMSApy w/o fine-tuning  54.84% 32.83% 50.00% 53.96%  28.06% 50.38%  25.79% 60.85% 44.59%
DMSALbM 59.60% 38.70% 55.30% 59.48%  37.75% 57.08%  36.49% 72.16% 52.07%

performance of the CARD model under different numbers of diffusion timesteps.
Figure |4.6] shows the results that larger timesteps for the CARD model will cause
a significant increase in average time to generate one adversarial example. However,
the ASR does not notably increase after the settings of |T'| = 100. Furthermore, we
test the power of fine-tuning in Table £.§l With the proposed fine-tuning, the ASR of
the proposed attack is improved by 8% on average. At the same time, the proposed
fine-tuning does not require additional computation or lower the generation quality

of the generated adversarial examples.

4.5.3 Model Uncertainty

The proposed adversarial attack method exhibits superior performance compared to
state-of-the-art methods by leveraging model uncertainty. However, the utilization
of multiple inferences introduces additional computational demands. In this section,
we assess the transferability of generated adversarial examples and analyze the time
complexity of the attack algorithm across varying numbers of inferences. The results,
illustrated in Figure [£.7] indicate that a higher number of inferences can enhance
the attack performance of the proposed method. Nonetheless, this comes at the cost
of significantly slowing down the attack speed of the diffusion model. The figure

depicts a clear trade-off: while an increased number of inferences improves attack
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Figure 4.6: The performance of our proposed attacks under different settings
of diffusion timesteps for the CARD model. Time represents the average time
to generate one UAE.
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Figure 4.7: The performance of our proposed attacks under different num-
bers of inferences from the substitute CARD model.

performance, it concurrently imposes a notable delay on the execution speed of the
diffusion model. Notably, the CARD model employed in this section utilizes 100
timesteps for classification. Importantly, the findings reveal that despite the com-
putational overhead, employing multiple inferences substantially boosts the attack
transferability compared to relying on a single deterministic substitute model. This
trade-off underscores the importance of carefully considering the computational re-

sources available and the desired balance between attack speed and transferability

when implementing the proposed adversarial attack method.
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4.5.4 Adversarial Guidance

In this section, we systematically evaluate the performance of our proposed attacks
across different settings of a; and as. Intuitively, one would expect the attack success
rate to increase as a; and ay are set to relatively large values. However, a critical
trade-off exists, while higher values of a; and a, may enhance the attack success
rate, they can simultaneously lead to a decrease in generation quality. To quantify
this, we assess the generation quality using the Frechet Inception Distance (FID)
score [44]. Figure illustrates a significant decrease in the FID score as adversarial
guidance, represented by a; and as, increases. Concurrently, the ASR surpasses 80%.
Even with an 80% ASR, the FID score of our proposed attack still outperforms
the PGD attack with 6 = 8/255. For a more visual understanding, we provide a
comparison of adversarial examples generated by our attacks and the PGD attack
in Figure [4.9) Notably, our attacks tend to produce distinctive textures to deceive
the target network. It is noteworthy that the adversarial examples generated by our
attack maintain a natural and realistic appearance, especially when a; and a, are
set to relatively small values. The a, tends to generate unrealistic examples when
set to a larger value. The reason could be modification to the original xr disturbs
the distribution of the initial latent and hence decreases the generation quality. This
observation underscores the nuanced balance between maximizing attack success and

preserving the visual coherence of the generated adversarial examples.

4.6 Discussion

Experiment results show that even without training data from the target model, our
method can achieve state-of-the-art ASR under the no-box threat model. Note that
the above 95% benign sampled images from the diffusion model can be correctly
classified by the target model. However, the basic attack of our method’s ASR is rel-
atively lower than the baseline. The reason may be the different data of our proposed
attack. Because the data generated by the diffusion model are not from the standard

validation set of the training data, they may perform worse on the transferability.
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Therefore, it is better we use some data from the original training dataset to enhance
the attack performance. Moreover, our adversarial examples exhibit overwhelming
performance against robust models and vision transformers. This emphasizes the
imperative need for designing effective defense mechanisms. The discussion on de-
fending against adversarial attacks by diffusion models is crucial, as these models
introduce a potent and novel form of adversarial attack, posing new challenges to the

enhancement of deep learning models’ robustness.

4.7 Ethic Concerns

The chapter is driven by the comprehensive evaluation of the adversarial capabilities
of diffusion models within the context of the no-box attack scenario. Capitalizing on
the robust generation prowess of diffusion models, we demonstrate their capacity to
generate adversarial examples without necessitating access to the training dataset of
the target model. Notably, the motivation arises from the realization that current
defense methods focus on fortifying defenses against perturbation-based attacks. Un-
fortunately, these defenses exhibit bad performance when defended with adversarial
examples generated by diffusion models and fare even worse in the face of a combina-
tion of both perturbation-based and diffusion attacks. In light of these challenges, we
advocate for the development of effective defense mechanisms specifically tailored to
counter adversarial diffusion models. The overarching goal is to augment the usability
and robustness of deep learning models, acknowledging the evolving threat landscape

posed by advanced attack methodologies such as those involving diffusion models.

4.8 Weakness

While the proposed attack achieves state-of-the-art performance in the no-box ad-
versarial attack setting, it does face a limitation: the generated images may appear
visually unrealistic when compared to the adversarial examples produced under the

black-box scenario. This discrepancy arises due to the potential impact of adversar-
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ial guidance on the normal diffusion process, especially when setting V., log f(y.|z:)
as —Vz¢log f(yet|z:). Furthermore, it is acknowledged that the proposed method
for generating the training dataset still exhibits gaps in comparison to the original
dataset. As a consequence, there is room for improvement in the performance of the
proposed attack. This improvement may be achieved through refining adversarial
guidance and adopting more effective methods for generating datasets. Enhancing
the time efficiency of the diffusion model can further improve the usability of the

proposed attacks.

4.9 Conclusion

In this chapter, we investigate the attack ability of diffusion models as strong ad-
versaries. Our attacks offer a novel solution to no-box adversarial attacks without
requiring access to the entire dataset of the no-box target model. Additionally, our
work is pioneering in incorporating diffusion models as substitute models for adver-
sarial attacks. Specifically, we first train the substitute model with the data generated
by the diffusion models with label priors from the original training dataset. To further
fine-tune the performance of the substitute model, we adopt the classification diffusion
probabilistic model to obtain the inference for the classification task. We introduce
noise augmentation during the training of the substitute model. After training the
substitute model, the adversarial examples are generated by the diffusion model with
an ensemble-like attack over the multiple inferences from the classification diffusion
substitute model. Extensive experiments on the ImageNet dataset have demonstrated
the performance of the proposed attack. We show the strong adversarial ability of
diffusion models even without any data or information from the target model. Our
work urges effective defense mechanisms against adversarial examples generated by

diffusion models.
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Chapter 5

Transferable 3D Adversarial Shape

Completion using Diffusion Models

5.1 Introduction

Deep-learning models have demonstrated their overwhelming performance on 2D [43]
79] and 3D computer vision [37,/99}/130] tasks. An increasing number of applications
rely on deep-learning models to achieve efficient and accurate services. Therefore, the
security of deep-learning models is crucial and significant.

Similar to the 2D scenario [10,[1968}71,84], 3D point cloud deep learning is also
susceptible to adversarial attacks |78]/129,146|. These 3D adversarial attacks generate
adversarial examples by introducing perturbations to the xyz coordinates. However,
such perturbations often lead to a significant degradation in visual quality, which
can be easily detected by humans. Subsequent studies [51}123,/145] have aimed to
create less perceptible perturbations by taking into account geometric characteristics.
Despite this, these attacks have been shown to perform poorly against defenses [53].
Moreover, most existing attacks primarily focus on white-box settings, limiting their
practicality in real-world scenarios. Existing black-box attacks [40/42] mainly target
early 3D point cloud deep-learning models, leaving a substantial gap in the learning
between adversarial and benign models.

In this chapter, our objective is to execute high-quality black-box 3D adversar-
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Figure 5.1: The adversarial shape completion. Starting from the partial shape
2o, we construct our adversarial shape x,4, by utilizing diffusion models with proposed
adversarial guidance.

ial attacks using diffusion models. To generate natural adversarial point clouds, we
employ diffusion models, which are state-of-the-art generative models known for cre-
ating high-quality 2D images , and 3D point clouds . It has been
demonstrated that 2D diffusion models can generate adversarial examples , by
altering the diffusion process. By extension, it is intuitive that 3D diffusion mod-
els, with their impressive generation performance, are capable of creating adversarial
examples. Specifically, we craft adversarial examples by employing diffusion models
for shape completion tasks, as shown in Figure Using a partial shape as prior
knowledge, our attack generates adversarial examples by completing shapes with the
proposed adversarial guidance. Our approach to conducting adversarial attacks in-
volves generating unseen data rather than introducing perturbations to clean data,

effectively addressing the issue of unrealistic perturbations to xyz coordinates.

In order to enhance the transferability of our crafted adversarial examples against
black-box 3D models, we initially incorporate model uncertainty into the gradient
inference of the substitute models. Li et al. demonstrated that the introduc-
tion of probability measures to the substitute models can significantly enhance the
performance of black-box attacks. They execute adversarial attacks by training the
substitute model in a Bayesian manner. In our attack, we leverage the characteristics
of 3D point clouds and incorporate model uncertainty through a Monte Carlo esti-

mate over the inference from multiple down-sampled point clouds. Additionally, to
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improve the attack transferability against various network architectures, we employ
ensemble logits to generate the adversarial guidance for the 3D diffusion model. To
preserve the generation quality, we limit our adversarial guidance solely to the crit-
ical points that are selected based on the saliency scores. Our proposed black-box
attack is capable of conducting black-box adversarial attacks against state-of-the-art
3D point cloud deep-learning models without the need to re-train the diffusion model.

Our contributions are summarized as follows:

e We generate adversarial examples through shape completion using diffusion
models, offering a novel perspective on the creation of imperceptible adversarial
examples. The proposed attack introduces diffusion models to the topic of 3D

adversarial robustness.

e We propose a variety of strategies to enhance the transferability of the proposed
attacks without compromising the quality of generation. These strategies in-
clude: employing model uncertainty for improved inference of predictions, en-
semble adversarial guidance to boost attack performance against unseen models,
and generation quality augmentation to identify critical points and maintain the

quality of generation.

e We conduct a comprehensive evaluation against existing state-of-the-art black-
box 3D deep-learning models. Our experiments demonstrate that our proposed
attack achieves state-of-the-art performance against both black-box models and

defenses.

5.2 Preliminary

5.2.1 Threat Model

Consider a point cloud x € PE*3 consisting of K points, where each point z; € P?
is represented by 3D xyz coordinates. A classifier f is employed to classify the input

point cloud and assign a label, denoted as f(x) — y. In the context of adversarial
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attacks, an adversary seeks to generate an adversarial example .4, With the objective
of causing the target classifier f to produce an incorrect classification result, repre-
sented as y,q,. Formally, the goal of the point cloud adversarial attack is defined

as:

min D(x, Zaay), st f(Tadw) = Yado (5.1)

Equation is designed to generate an imperceptible adversarial example x,4, from
the original point cloud x. This chapter primarily concentrates on untargeted attacks,

where y,4, can be any label distinct from the ground truth label y.

5.2.2 3D Point Cloud Generation and Completion

Recent advancements in diffusion models [25]46,56,/100] applied to 2D image gen-
eration have showcased remarkable performance in terms of both generation quality
and diversity. Likewise, recent studies on 3D diffusion models [83}|141}|149] have
demonstrated state-of-the-art performance in 3D point cloud generation tasks. The
3D denoising diffusion probabilistic model generates 3D point clouds with a denoising
generation process. Starting from Gaussian noise z7, the denoising process gradually
produces the final output by a sequence of denoising-like steps, i.e., xp, x7r_1,. .., To.

The generative diffusion model, denoted as py(zo.r), aims to learn the Gaussian
transitions from p(zr) = N (z7;0,I) by reconstructing z from the diffusion data
distribution g(zo.z). This distribution introduces Gaussian noise to zo over the course
of T steps. More specifically, these processes of adding noise and subsequent denoising

can be formulated as a Markov transition:

1~

Q($0:T) = Q(JCO) Q($t|$t—1)

t

Il
—_

(5.2)

1~

po(zo.r) = p(xr) | | po(wi—1]ze)

o~
Il
—

where we name the q(x;|z;_1) as forward diffusion process and pg(xy_1|2;) as reverse

generative process. Each detailed transition for each process is defined in accordance
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with the scheduling function 5y, ..., Br:

q(ze|i_q) == N(xp /1 — Brzi_1, Bi)

Po(xi1|7e) i= N(weo1 : pg(2, 1), 07T)

(5.3)

where pp (4, t) is the inference of the diffusion model to predict the shape of the point
cloud. We set 0?2 = 3; based on empirical knowledge.

The 3D point cloud generation task can be easily modified to achieve shape com-
pletion with an fixed partial shape 2y € PX»*3 [149|. The forward diffusion process

and reverse generative process are formulated as:

Q(ftﬁ‘t—l, Zo) = N(ft V1= Btft—l,ﬁtl)

Po(Ti_11%4, 20) = N(Zy_1 : po(e, 20, 1), 07 1)

(5.4)

While recent studies have extensively explored the generation capabilities of 3D
diffusion models, their potential in crafting adversarial point clouds remains largely
unexplored. In this chapter, we aim to generate high-quality adversarial point clouds
with the reverse generative process of pre-trained 3D diffusion models. Note that we

don’t modify the training part of pre-trained models.

5.3 Methodology

5.3.1 Diffusion Model for 3D Adversarial Shape Completion

In crafting high-quality adversarial examples, our aim is to utilize diffusion models for
their superior performance in 3D point cloud generation. Unlike previous generative
models, the denoising generation process of diffusion models can naturally incorporate
adversarial objectives 15,20, which can be viewed as a process of iterative adversarial
attacks. Previous perturbation-based adversarial attacks perturb each point in the
clean point cloud, commonly altering the shape of the original point cloud. In our
work, we aim to minimize the impact of adversarial perturbations on the point cloud

data and achieve adversarial attacks with our proposed method, the 3D adversarial
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shape completion attack.

The proposed attack generates adversarial point clouds with a fixed partial shape
29 € PE»*3. We utilize any pre-trained 3D shape completion diffusion model € to
gradually generate the completed adversarial point cloud xy = (29, %) through the
reverse generative process pg(Z;_1|%4,20), t = T,...,1. For any intermediate shape

xy = (20, Z¢), the adversarial generative process is defined as:

Po(Ti-1|T, 20) = N (T1—1 + po(xy, 20, 1), BI) — aB Ve, L(f (24),y) (5.5)

where y represents the ground truth label of the original point cloud, £ denotes the
cross, and the scale of adversarial guidance a € (0,1). We employ the untargeted I-
FGSM-like gradient as the adversarial guidance for the adversarial generative process
[15].

We sample benign ;1 from N (Z;_1 : pe(24, 20, t), 5I) by following PVD [149]:

Bpq = \/% (i:t — %69(@,%,1&0 + 1/ Bee, (5.6)

where o and 8 are hyper-parameters from the pre-trained €y, and £ ~ N(0,I).

5.3.2 Diffusion Model with Boosting Transferbility

In order to improve the effectiveness of the proposed attack on a black-box target
model, we have outlined several effective strategies to enhance the transferability of
the generated 3D point clouds, all without increasing the magnitude of the adversarial
guidance.

Employing Model Uncertainty. Previous works [9,69] have shown that leveraging
model uncertainty for feature learning is proposed to be more robust to adversarial
attacks compared to standard deep learning models. These Bayesian deep neural
networks are probabilistic models that predict input by computing expectations from
maximum likelihood estimation over model parameters. Furthermore, utilizing model

uncertainty [66] demonstrates improved adversarial transferability. However, the ap-
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plication of model uncertainty in 3D contexts is currently underexplored. Considering
the characteristics of 3D point clouds, which comprise unordered 3D points, the re-
moval of some points does not alter the classification outcome of the original point
cloud [148]. Therefore, we are able to straightforwardly adopt model uncertainty to
3D deep-learning models with the MC' dropout-like [32] approach over the input. In
our attack, we adopt Simple Random Sampling over the 3D point clouds and use
the Monte Carlo estimate over M re-sampled point clouds to obtain the estimated

adversarial guidance:

M
1
Va Lno(f(20).9)) = 47 ; Vi L(f(25),y) (5.7)
The x; is obtained by simple random sampling from x; = (29, Z;):
P(z;) = {1.|x € 4,1, ~ Ber(0.5)} (5.8)

where z is sampled from a Bernoulli(0.5) distribution to indicate the existence of  in

the s = (20, Z5) point cloud re-sampled from ith point of ;, and z is not re-sampled.

Ensemble Adversarial Guidance. In the 2D attack scenario, the ensemble attack
is an effective way to enhance the attack transferability by utilizing multiple white-
box models to calculate the average gradient of the objective loss. Ensemble gradient
in 2D results in perturbation in the given pixel of the 2D image. In our attack, we
ensemble the logits of selected substitute models according to the generative process
in Equation [.5] Formally, with ne,s substitute models, the ensemble adversarial
objective function is defined as:

L(fens (1), y) = — log(softmax Y " w,py, (ylz1)) (5.9)

n=1

where w, is the weight parameters, and we use the proportion of correctly classified

point clouds for an adaptive ensemble attack; p; is the predictive distribution of f.

Generation Quality Augmentation. Previous work [146| has shown that individ-
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ual points within a point cloud can have varying degrees of impact on the classification
outcome of a 3D deep-learning model. This insight suggests that identifying critical
points within the point cloud could achieve strong adversarial attacks. Due to the
significant reduction in visual quality caused by perturbations to 3D coordinates, it
is advisable to control these perturbations by constraining the ¢, distance between
the adversarial and benign point clouds. Thus, our objective is to create adversarial
examples by altering only a subset of N points of the benign point cloud. The saliency

score of given point x is calculated as:

OL(f (1), y)
score, = _— 5.10
where the saliency score is the sum of zyz channels of point x. Moreover, we fur-
ther adopt /i, norm restriction to the perturbation at each diffusion step for a fair

comparison with perturbation-based adversarial attacks.

5.3.3 Transferable 3D Adversarial Shape Completion Attack

We summarize the proposed black-box 3D adversarial attack in Algorithm [4 In the
early generation process, the generated point clouds are disorganized. Therefore, we
only perform adversarial guidance at given timestep T,q,. We apply the Clip [34]

function to the /¢ norm to limit the perturbation in adversarial guidance.

5.3.4 Revisiting 3D Black-Box Adversarial Attack

Black-box adversarial attacks present a significantly greater challenge than white-box
adversarial attacks, with 3D black-box adversarial attacks proving even more difficult
than their 2D counterparts. As illustrated in Figure the data distribution of the
existing ShapeNet 3D dataset is long-tailed. Consequently, existing adversarial attack
methods tend to achieve a higher ASR on classes with less data (the top 5 classes
contain 50% data but only contribute 14% success adversarial examples). This issue

is similar in the ModelNet40 dataset, in which the top 5 classes contain 30% of data.
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Algorithm 4 Transferable 3D Adversarial Shape Completion Attack Algorithm

Require: f.,: substitute models, zy: partial shape for shape completion, y: class
label for shape completion, T reverse generation process timestep for LDM,
T.av: timestep for adversarial guidance, N: number of perturbed points at each
diffusion step, M: number of simple random sampling

1 Tp ~ N(O, I), xrr = (ZQ,i’T)

2! Todo = I

3 fort=1T,...,1do

4: if tisin T,4, then

5: Sample 7;_; with Equation

6: form=1,...,M do

7 Simple random sampling with Equation

8: Obtain the ensemble adversarial loss with Equation
9: end for
10: Monte Carlo estimate with Equation

11: Calculate the saliency score of #;_; with Equation [5.10]

12: Update top-N points from step 11 of 7, ; with Equation
13: Zy—1 = Clip(7;_1)

14: else

15: Sample 7;_; with Equation

16: end if

17: end for

18: xg = (Zo, ii'o)

19: Zogy < Zo if fens(IO) 3& Yy
20: return z,4,

Another significant challenge in 3D black-box adversarial attacks lies in the varying
model architectures. To provide a comprehensive discussion on the transferability
between different 3D models, we have demonstrated the cosine similarity from the
logit outputs by the same input of various models in Figure [5.4l The results indicate
that gradients from models with different architectures vary significantly, thus posing
a considerable challenge for 3D black-box adversarial attacks. These challenging
problems make existing 3D black-box adversarial attacks effective against only a few

3D models on the ModelNet40 dataset.

To execute an effective black-box 3D adversarial attack, we employ diffusion mod-
els to directly generate adversarial examples. The gradual diffusion generation process
allows for the introduction of adversarial guidance with significantly less perturbation

than existing adversarial attacks. Adversarial shape completion aids in identifying
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Table 5.1: The attack success rate (ASR %) of transfer attack on the
ShapeNet dataset. The adversarial examples of existing attack methods are gen-
erated from the PointNet model. The Average ASR is calculated among the seven
black-box models (3DAdvDiff.,s is calculated among the five black-box models).

Dataset | Method PointNet | PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average
PGD 99.7 1.0 0.9 1.2 0.7 14 0.9 2.1 1.2
KNN 99.2 0.8 0.8 1.0 0.4 1.2 1.0 2.1 1.0
GeoA3 99.6 0.9 0.8 1.2 0.7 0.8 1.0 0.9 0.9
Chair | SI-Adv 82.4 1.2 1.2 1.5 1.5 14 2.3 2.2 1.6
AdvPC 71.8 2.2 0.9 1.5 1.8 2.1 2.6 2.0 1.6
PF-Attack 99.0 20.2 5.6 4.8 3.2 1.0 2.5 1.6 5.5
3DAdvDift 99.9 60.6 8.7 23.5 9.8 6.9 149 8.9 19.0
3DAdvDiff. s 99.9 94.5 99.9 91.3 88.6 65.8 99.9 85.6 85.2
Dataset | Method PointNet | PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average
PGD 99.9 2.1 0.7 0.8 0.5 0.4 0.7 1.6 0.9
KNN 99.9 2.2 0.7 0.7 0.5 0.6 1.1 1.6 1.1
GeoA3 99.8 2.0 1.5 1.4 0.9 0.6 0.9 1.1 1.2
All SI-Adv 92.5 2.0 1.7 1.5 1.2 1.0 1.3 1.0 14
AdvPC 89.6 0.4 0.2 0.5 0.4 0.6 0.7 0.5 0.5
PF-Attack 99.6 24.2 6.7 5.1 3.8 1.2 2.4 1.9 6.2
3DAdvDiff 99.9 73.2 12.6 55.3 40.5 326 259 16.0 36.6
3DAdvDiffe,s 99.9 97.0 99.9 94.5 93.5 80.5 99.9 85.2 90.1

the vulnerable rotation for more potent adversarial attacks and ensures the reliable
generation of natural point clouds, surpassing shape generation tasks. In addition
to utilizing an ensemble attack approach, we also employ random sampling to lever-
age model uncertainty and enhance performance against defenses. By taking into
account the characteristics of 3D point clouds and the generation performance of
diffusion models, we are able to achieve an effective and high-quality black-box 3D

adversarial attack.

5.4 Experiments

5.4.1 Experimental Setup

Dataset. Due to ModelNet40 being insufficient to train the diffusion model, we use
the ShapeNet [11]| dataset for major evaluations. The ShapeNetCore split is adopted,
which contains 42003 point clouds with 55 categories, of which 31535 samples are
used for training and 10468 samples are used for testing. We select PVD [149] for
the diffusion model in this chapter. The proposed attack does not require additional

training in the diffusion model, we follow settings as in the original PVD chapter for
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selecting shape completion’s partial shapes. Public checkpoints [149| from Airplane,
Chair, and Car are selected for repeatability.

Target Models. For a better evaluation of different network architectures, we select
eight widely adopted 3D deep-learning models as the black-box models, including
PointNet [95], Pointnet+-+ (SSG) [96], DGCNN [122], PointConv (SSG) [127], Cur-
veNet [130], PCT [37], PRC [99], and GDANet [134].

Comparisons. We have chosen four white-box 3D adversarial attacks as our baseline
for comparison, namely: PGD |78, KNN [117], GeoA3 [123|, and SI-Adv [51]. We also
employ existing black-box 3D adversarial attacks, specifically: AdvPC [40] and PF-
Attack [42]. We use PointNet as the substitute model by default and the perturbations
are constrained under the ¢;,;-normal ball with a radius of 0.16. We use 3DAdvDiff to
denote the white-box version of the proposed attack and 3DAdvDiff.,s for boosting
transferability version.

Defenses. We select SRS [148], SOR [148], DUP-Net [148], IF-Defense |128], and Ad-
versarial Hybrid Training [53| for evaluation under defenses. All the defense settings
are followed according to [53].

Attack Settings. We select PointNet, DGCNN, and PRC for ensemble adversarial
guidance on 3DAdvDiff,,s. The hyper-parameters of the proposed attack are set to:
a = 04,7 = 1000, T,qy = (0,0.27), N = 200, M = 5, K = 2048. We also adopt
ling = 0.16 restriction to the adversarial guidance. We set 200 points for partial
shapes. For each partial shape, we generate 20 views and only save the views that
successfully attack the substitute models. To evaluate the attack performance, we use
the top-1 accuracy of the target model to evaluate the ASR. The experiment results

are averaged over 10 attacks.

5.4.2 Attack Performance

Transfer Attack. We evaluate the transfer attack performance of current point
cloud adversarial attack methods on selected robust classes. The results are given
in Table [5.1] As we discussed in Section 4.4, the adversarial examples from state-

of-the-art attacks merely transfer to different models, particularly those recently de-
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Table 5.2: The attack success rate (ASR %) of different adversarial attack
methods against defenses. All attacks are evaluated under white-box settings
against the PointNet model.

Method ASR | SRS SOR DUP-Net IF-Defense HybridTraining
PGD 999 | 59 1.0 0.7 13.8 1.9
KNN 99.9 | 4.0 0.9 0.4 13.0 1.3
GeoA3 99.8 | 49 16 0.8 13.6 2.2
SI-Adv 92.5 | 10.8 0.9 0.9 14.9 2.0
AdvPC 89.6 | 4.1 1.5 0.7 13.2 1.9
PF-Attack 99.6 | 85 3.6 2.8 13.9 2.0
3DAdvDiff 99.9 | 82.2 99 9.6 30.0 9.4
3DAdvDiff,,s | 99.9 | 85.9 49.1 36.9 22.5 96.1

veloped 3D models. Models trained on long-tailed datasets typically exhibit limited
generalization. However, our proposed white-box 3DAdvDiff achieves notably better
performance even on the black-box adversarial attack. Furthermore, 3DAdvDiff,
considerably boosts the attack performance of 3DAdvDiff without augmenting the
magnitude of the adversarial guidance, thereby validating the effectiveness of our

proposed methods.

Adversarial Defenses. We evaluate the adversarial examples against a variety of
defenses under white-box settings, as shown in Table [5.2] The findings indicate that
current defenses can effectively counter existing adversarial attacks, even with simple
SRS (Simple Random Sampling). Defense methods that rely on outlier point removal
exhibit the best performance among all defenses, suggesting that perturbation-based
attack methods tend to displace points outside the original shape by adding perturba-
tions to xyz coordinates. Our proposed 3DAdvDIff significantly outperforms state-of-
the-art adversarial attacks. Due to its utilization of model uncertainty, 3DAdvDiff is
particularly effective against random sampling. The proposed critical point selection
of 3DAdAvDiff., is effective against outlier removal defenses. However, the perfor-
mance of 3DAdvDiff,,s against IF-Defense is not satisfying due to the selection of
critical points. Balancing generation quality and defense performance remains a chal-
lenge. In future work, we aim to enhance attack performance against reconstruction-

based defenses.
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Figure 5.2: The visual quality of adversarial examples. The black-box adver-
sarial examples are relatively unnatural compared to white-box adversarial examples.

Generation Quality. We further assess the distance between benign and adver-
sarial examples to evaluate the visual quality of existing adversarial attack methods,
as shown in Table [5.3] The Chamfer Distance (CD), Hausdorff Distance (HD), and
Mean Square Error (MSE) are selected. Given that we apply the same £,y = 0.16
norm to limit the perturbation for each attack, the visual quality across different at-
tack methods is relatively similar. However, it is hard to give a fair comparison with
3DAdvDift’s adversarial examples, because the adversarial sampling of diffusion mod-
els can lead to the generation of new point clouds with completely different shapes.
Therefore, the generation quality of 3DAdvDiff,,s is evaluated by the difference be-
tween the benign samples and the adversarial examples with fixed sampling. A visual
comparison is provided in Figure for a more comprehensive demonstration. The
point clouds generated by 3DAdvDiff.,s is smoother than existing attacks.

Table 5.3: The generation quality on the ShapeNet dataset. The CD distance
is multiplied by 1072.

Method | PGD KNN GeoA3 SI-Adv AdvPC PF-Attack 3DAdvDiff,,
HD 0.136 0.105 0.039  0.071  0.028 0.046 0.098
CD 0.46 0.42 0.10 0.33 0.27 0.25 0.14
MSE 271 2.42 1.50 3.08 2.04 1.85 1.18
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Time Efficiency. Despite the proposed 3DAdvDiff achieves overwhelming perfor-
mance on black-box adversarial attacks. The generation speed of diffusion models is a
critical problem that influences their development. As shown in Table[5.4] the running
time of the proposed 3DAdvDIff is relatively slower than previous perturbation-based
attack methods. However, we can improve the sampling speed by adopting DDIM
sampling to PVD.

Table 5.4: The average running time to generate one adversarial example.

Method | PGD KNN GeoA3 SL-Adv AdvPC PF-Attack 3DAdvDiffo
Time (s) | 1.1 173 816 7.0 2.5 38.6 60.8

Integration with Other Methods. To completely demonstrate the effectiveness
of the proposed transferability boosting methods, we integrate the proposed improve-
ment methods with existing attacks. As shown in Table [5.5] our proposed enhance-
ment methods markedly improve the performance of PGD, SI-Adv, and AdvPC on
black-box attacks. However, the performance increase of adversarial attacks is limited

without the diffusion models.

Table 5.5: The ensemble of proposed boosting transferability methods with
existing attack methods. The experiments are performed on the whole test
dataset of the ShapeNet dataset.

Method PointNet | PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average
PGD 99.8 10.8 8.9 11.1 7.1 7.3 9.1 10.1 9.2
PGD + 3DAdvDiff 99.5 48.9 93.6 21.7 25.6 14.2 96.1 14.5 25.0
SI-Adv 97.6 12.2 10.2 11.9 7.5 8.8 12.8 8.3 10.2
SI-Adv + 3DAdvDiff 70.5 42.8 45.9 19.2 24.9 20.4 38.6 21.7 25.8
AdvPC 96.9 7.7 6.1 6.3 10.9 5.4 6.8 6.1 7.0
AdvPC + 3DAdvDiff 95.2 57.5 75.8 38.1 35.4 21.8 63.0 16.1 33.8

5.4.3 Ablation Study

We conduct a series of ablation studies to investigate the effectiveness of various
approaches in 3DAdvDiff. s for enhancing transferability, including model uncertainty,
ensemble adversarial guidance, and generation quality augmentation.

Adversarial Guidance. The parameter a of the adversarial guidance is critical to

the attack success rate and the generation quality, as shown in Figure However,
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Figure 5.3: The ablation study of proposed 3DAdvDiff.,s. The results are
evaluated on the Chair class of the ShapeNet dataset. We use average ASR to test
the black-box attack performance.

our proposed 3DAdvDiff generates adversarial examples by finding the most vulner-
able rotation from multiple views. Therefore, we can easily balance ASR and the
generation quality without largely decreasing ASR.

Model Uncertainty. We evaluate the performance of model uncertainty with vary-
ing settings of M. Figure [5.3] indicates that attack transferability increases with a
larger M. However, this significantly impacts the time efficiency required to gener-
ate adversarial examples. As shown in Table [5.6] incorporating model uncertainty
significantly improves the transfer attack performance of 3DAdvDiff combined with
the sampling of the diffusion model. These results further validate the effectiveness
of our proposed model uncertainty approach.

Table 5.6: The ensemble of model uncertainty with 3DAdvDiff. The experi-
ments are performed on the Chair class of the ShapeNet dataset.

Method PointNet | PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average
3DAdvDiff 99.9 60.6 8.7 23.5 9.8 6.9 149 8.9 19.0
3DAdvDIff + MU 99.9 82.6 78.6 85.6 84.2 68.1 59.5 70.2 75.5

Ensemble Adversarial Guidance. We test the performance of 3DAdvDiff with en-
semble adversarial guidance. Table shows that the proposed adversarial guidance
can effectively improve the performance of transfer attacks against black-box models.
Simultaneously, the use of ensemble adversarial guidance does not compromise the
generation quality of the proposed attack.

Generation Quality Augmentation. Current 3D distance measurements take

into account the difference between the entire point set. Therefore, to improve the
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Table 5.7: The performance of ensemble adversarial guidance. The experi-
ments are performed on the Chair class of the ShapeNet dataset.

Method PointNet | PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average
3DAdvDiff 99.9 60.6 8.7 23.5 9.8 6.9 149 8.9 19.0
3DAdvDIiff + EAG 99.9 70.8 99.9 79.5 75.9 45.3 99.9 54.3 65.2

generation quality, we should limit the ¢, distance between the adversarial and benign
examples. The proposed augmentation notably enhances the quality of the generated
point clouds without compromising the attack performance. The results are given in

Figure 5.3

5.5 Discussion

Experiments demonstrate that current attacks perform poorly against black-box mod-
els under the ¢,y = 0.16 constraint, particularly in the Chair, Airplane, and Car cat-
egories. However, these black-box models are extremely vulnerable to the proposed
3DAdvDIiff due to the long-tail training dataset. Consequently, we advocate for a
more balanced training approach for 3D point cloud models and the creation of large-
scale datasets with a similar scale to the 2D ImageNet. While 3DAdvDiff delivers
satisfactory attack performance, its major weakness lies in the need for improved time

efficiency to ensure better generalization.

5.6 Conclusion

In this chapter, we introduce the first-ever method designed to execute a black-box
adversarial attack on recently developed 3D point cloud classification models. Our
research is also a pioneering work in the use of diffusion models for 3D adversarial
attacks. Specifically, we generate adversarial examples through 3D adversarial shape
completion, ensuring reliable and high-quality point cloud generation. We propose
several strategies to enhance the transferability of our proposed attack, including the
use of model uncertainty for improved prediction inference, enhancing adversarial

guidance through ensemble logits from various substitute models, and the improve-
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ment of generation quality via critical points selection. Comprehensive experiments
on the robust dataset validate the effectiveness of our proposed attacks. Our methods

establish a solid baseline for future development in black-box 3D adversarial attacks.
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Figure 5.4: The challenging 3D black-box adversarial attacks. The value in the Heatmap is re-scaled for better visual-
ization. We use the top 13 classes from the ShapeNet dataset to demonstrate the long-tailed dataset problem. We use PGD
with ¢, = 0.16 on PointNet to evaluate the black-box ASR.
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Chapter 6

Gradient-Free Adversarial

Purification with Diffusion Models

6.1 Introduction

Deep learning models have demonstrated remarkable performance across various tasks
[43.79,130]. With the rapid advancement and widespread deployment of these models,
their security and robustness are garnering increasing attention.

It is widely recognized that deep learning models are highly vulnerable to adver-
sarial attacks [10,[84]. These attacks are performed by adding imperceptible pertur-
bations to clean images. The perturbed images, known as adversarial examples, can
deceive trained deep learning classifiers with high confidence while appearing natural
and realistic to human observers. To mitigate adversarial attacks and ensure the sta-
bility of deep learning models, adversarial training [35,84] has been developed. This
approach aims to defend against adversarial attacks by training the classifier with
adversarial examples. However, adversarial training tends to perform poorly against
unknown attacks.

Recently, with the development of diffusion models [25}/100|, adversarial purifica-
tion [89}/109] has shown promising defense performance by recovering the adversarial
examples to clean images. These works adopt the diffusion model’s reverse genera-

tion process to gradually remove the Gaussian noise from the forward process and the
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Figure 6.1: The proposed adversarial defense pipeline. We give an adversarial
example of “cock” class with AutoAttack ¢,y = 8/255 on ImageNet dataset. Ad-
versarial anti-aliasing aims to eliminate adversarial perturbations, while adversarial
super-resolution seeks to restore benign images from blurred adversarial examples
using prior knowledge from the clean dataset.

adversarial perturbations. Nevertheless, these methods require heavy computational

resources during the purification, which may not be practical in real-time scenarios.

Diffusion models also facilitate stronger unrestricted adversarial attacks [1516}20].
These UAEs are generated through the reverse generation process by incorporat-
ing adversarial guidance. Unlike traditional perturbation-based adversarial attacks,
UAEs exhibit superior attack performance against current defenses due to their dis-
tinct threat models. These attacks pose a new threat to the development of deep
learning models and urgently need to be addressed. Even worse, existing defenses

have merely covered the discussion against UAEs.

In this chapter, we propose an effective adversarial defense method that detects
both perturbation-based adversarial examples and unrestricted adversarial examples.
To achieve the defense objective, we locate and utilize the common characteristic of
these two types of attacks that both adversarial examples are generated close to the
decision boundary for minimal perturbations, which makes these adversarial examples

susceptible to changes in pixels.

Our defense employs zero-shot adversarial purification by extracting the “semantic
shape” information from images without the image details, as illustrated in Figure

[6.1] Specifically, we use adversarial anti-aliasing with specialized filters to blur the
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detailed adversarial modifications in the adversarial examples. Following this, we
apply adversarial super-resolution to the anti-aliased adversarial examples, upscal-
ing the blurred images using details from pre-trained clean super-resolution diffusion
models. These two methods are time-efficient and do not require any modifications
to the original models. To demonstrate the effectiveness of our proposed defense, we
further validate its performance by using the upscaled adversarial examples as input
for adversarial purification. Experiments on various datasets show that our defense

outperforms state-of-the-art adversarial defenses in adversarial purification.

Our contributions are summarized as follows:

e We propose a novel adversarial defense capable of countering both perturbation-
based adversarial examples and unrestricted adversarial examples, addressing

the current gap in effective defenses against unrestricted adversarial attacks.

e We introduce various zero-shot and gradient-free defense strategies that preserve
the semantic information of adversarial examples while eliminating adversarial
modifications. These strategies include adversarial anti-aliasing for “semantic”
extraction and adversarial super-resolution for incorporating benign priors and

recovering benign details from adversarial examples.

e We conduct extensive experiments on various datasets against adaptive ad-
versarial attacks. The results demonstrate the effectiveness of our proposed
defense method compared to state-of-the-art adversarial defenses. Moreover,
anti-aliased and upscaled adversarial examples effectively integrate with existing
diffusion-based adversarial purification, validating the usability and scalability

of our approach.
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6.2 Preliminary

6.2.1 Threat Model

Adversarial examples conduct attacks by deceiving the target model with wrong clas-
sification results. Considering the untargeted attack scenario, the perturbation-based

adversarial examples are defined as:

Apg 2 {2aqy = 2+ 6|y # f(2),2 € D, |§] < €} (6.1)

where § is the adversarial perturbation, f(-) is the target model, D is the clean
dataset, and € is the perturbation norm constraint.

These adversarial examples are generated by adding the perturbations to the clean
images. However, such perturbations can degenerate the image quality. By utilizing
the generation models, Song et al. [110| presented unrestricted adversarial examples
by directly generating adversarial examples with the generation tasks, which can be

formulated as:

Auar = {Zaav € G(Zaav, ¥)|y # f(2)} (6.2)

where G is the generation model, z,q, is the latent code for generation.
These two adversarial examples are generated with different threat models. How-
ever, they both can successfully conduct attacks against the given target model. A

robust defense method should be able to defend against these attacks simultaneously.

6.2.2 Diffusion-Based Adversarial Purification

The diffusion model [46] learns to recover the image from the denoising-like process,
i.e., reverse generation process. The reverse generation process takes 7' time steps to
obtain a sequence of noisy data {z7_1,...,21} and get the data z( at the last step.

Specifically, it can be formulated as:

po(xs_1|me) = N (241 : ,ug(xt,t),afl) (6.3)
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Figure 6.2: The comparisons of state-of-the-art diffusion-based adversarial
purification pipelines. We mark the defense process in blue to represent time-
consuming approaches. We use red font to indicate non-purified adversarial input.

The forward diffusion process is where we iteratively add Gaussian noise to the

data for training the diffusion model to learn py(x;_1|x;). It is defined as:

Q(xt‘xtfl) = N(ft Ve B, BtI) (6-4)

where o is the noise schedule.

Nie et al. [89] attempted to find the optimal ¢* where it satisfy that:

Tpx =1/ OpxTadqy +V 1-— O+ € (65)
=\/T-(x +8) +v1 — ope

where ¢ is the Gaussian noise ¢ ~ N(0,I). After we obtain the optimal ¢*, we can
utilize the reverse generation process over x.q, to recover the clean x.

Song et al. [109] utilized the whole reverse generation process from 7' diffusion
timesteps; they used adversarial sample x,q, as guidance rather than an intermediate
time step state. At each time step ¢, the guidance is added to the x; after the original

reverse generation process and can be formulated as:

Vi log p(xagy|T; t) = —Ri Vi, d(Z, Tagy) (6.6)
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AutoAttack Example RGB conversion Adv. Anti-Aliasing
Robust Acc: 0% Robust Acc: 38.25% Robust Acc: 55.85%

Figure 6.3: The vulnerability of adversarial examples to the changes in
pixels. The RGB conversion is performed by converting the images to RGB space
after the ImageNet normalization and achieves 38% robust accuracy. The proposed
adversarial anti-aliasing is more effective while preserving the image quality.

Adyv.
Super-Resolution

AutoAttack Example MimicDiffusion

Figure 6.4: The example of proposed adversarial super-resolution. Our
method achieves similar adversarial purification without any gradient calculation of
diffusion models.

where R; is the scale factor at ¢ time step, d(-) is the distance measurement, and z;

is the estimation for xy at ¢t time step. The Z; is defined as:

. xy —/1 — oysg(xy)
¢ NG (6.7)

where the sy known score function is defined as [111].
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6.3 Methodology

6.3.1 Motivation

With the advancement of diffusion models, diffusion-based adversarial purification has
emerged as a leading approach for adversarial defenses. However, current methods
still face significant challenges that impact their effectiveness. Figure illustrates
typical diffusion-based purification pipelines from state-of-the-art methods. Nie et
al. [89] achieved purification by utilizing the adversarial latent generated by the for-
ward process of adversarial examples. Unfortunately, this approach can introduce
adversarial perturbations into the purified examples, as these perturbations persist
in the adversarial latent. Song et al. [109] sought to mitigate the impact of adver-
sarial perturbations by using random latents, employing adversarial examples solely
as guidance. However, this method requires gradient calculations at each step of the
reverse process, making it computationally intensive. Consequently, achieving both
time-efficient and perturbation-isolated diffusion-based adversarial purification
remains a challenge. Furthermore, existing defenses fail to defend against the recently

proposed unrestricted adversarial attacks.

6.3.2 Perturbation-Isolated Adversarial Purification

Perturbation-based adversarial examples are precisely calculated based on the gra-
dient of the loss function, whereas unrestricted adversarial examples are sampled
near the decision boundary. Despite employing different threat models, both types
of attacks produce adversarial examples that are sensitive to pixel changes. Since
adversarial examples are designed to be imperceptible compared to clean images, the
semantic shapes of objects within the images should correspond to their original la-
bels. Therefore, our defense strategy focuses on extracting the semantic shapes from

the adversarial examples and eliminating the adversarial pixel-level details.
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Adversarial Anti-Aliasing

To achieve effective defenses against both unrestricted and perturbation-based ad-
versarial attacks, it is essential to address their common characteristics. One critical
factor is the value range of images: a valid RGB value is an integer between 0 and
255. However, the modifications introduced by various adversarial attacks are often
performed using non-integer data types for gradient calculations. These modifications
can become ineffective when transformed back to the RGB image format. Figure
supports our findings, showing that approximately 38% of adversarial examples from
AutoAttack fail with the combinations of RGB conversions and image normalization
for deep-learning models. The reasons for this phenomenon could be that adversar-
ial examples are typically located near the decision boundary and are sensitive to
pixel changes. However, simple RGB conversion can be effectively compromised by
adaptive attacks |2]. Therefore, in this chapter, we aim to propose more effective
transformations.

Anti-aliasing is a straightforward, zero-shot method for smoothing image details,
including adversarial perturbations [70,/118|. Unlike previous works, we have found
that anti-aliasing with non-square filters is particularly effective against adversarial
attacks while preserving clean accuracy. Additionally, using the average value from
neighboring pixels, excluding the original pixel, has also proven effective. This is be-
cause adversarial perturbations are calculated on a pixel-wise basis and are sensitive
to pixel changes. These two approaches greatly enhance the effectiveness of anti-
aliasing. Even with simple anti-aliasing, we achieve moderate defense performance,
underscoring the effectiveness of our approach. Although adversarial anti-aliasing
can produce blurred images, the semantic features are preserved because the adver-
sarial perturbation should remain imperceptible. Therefore, it effectively reduces the
magnitude of adversarial perturbations while maintaining the semantic information
necessary for classification. To maintain the resolution of the output image, we use

padding, which is calculated as follows:

Rout = | Rin, + 2 x Padding — filter _size| (6.8)
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Table 6.1:

The standard and robust accuracy against left:
(ling = 8/255), right: PGD-EOT ({;,¢r = 8/255) on CIFAR-10.

AutoAttack

Method Target Model Standard Acc(%) AutoAttack Acc(%) PGD-EOT Acc(%)
Wu et al. [126] WideResNet-28-10 85.36 59.18 62.16
Gowal et al. |35] WideResNet-28-10 87.33 61.72 64.68
Rebuffi et al. [98] WideResNet-28-10 87.50 65.24 68.89
Wang et al. [120] WideResNet-28-10 84.85 71.18 68.36

Nie et al. |89 WideResNet-28-10 89.23 71.03 46.84
Lee et al. |63] WideResNet-28-10 90.16 70.47 55.82
Song et al. [109]  WideResNet-28-10 92.10 75.45 68.20
Ours WideResNet-28-10  92.54 + 1.66 82.02 +£ 1.17 80.86 + 1.33
Rebuffi et al. [98] WideResNet-70-16 88.54 64.46 68.23
Gowal et al. |35]  WideResNet-70-16 88.74 66.60 69.48

Nie et al. |89 WideResNet-70-16 91.04 71.84 51.13
Lee et al. |63 WideResNet-70-16 90.43 66.06 56.88
Song et al. [109]  WideResNet-70-16 93.25 76.60 69.55
Ours WideResNet-70-16 93.42 £ 1.51 83.65 £ 2.90 81.60 £ 1.75

where R is the shape of the data. We use stride = 1.

Adversarial Super-Resolution

During the adversarial anti-aliasing phase, we significantly reduce adversarial pertur-
bations by directly decreasing pixel-wise modifications of adversarial examples. How-
ever, this approach may not be effective against unrestricted adversarial examples,
as they are not generated by adding explicit perturbations. Additionally, blurring
the images can negatively impact the clean accuracy of the target model. Super-
resolution offers an effective way to recover high-quality images from our adversarial
anti-aliased images. Previous super-resolution methods [33.62] typically modify the
original pixels of the low-resolution image and use the residual features of the original
low-resolution image. These methods can inadvertently transfer negative effects from
the adversarial examples to the final high-resolution images, making them ineffec-
tive for adversarial super-resolution. Diffusion-model-based super-resolution [100,13§]
provides a more isolated approach for super-resolution. These models generate high-
resolution images through a denoising-like process over randomly sampled noise, using

the low-resolution image as conditions.

95



In this work, we adopt the ResShift method by Yue et al. [138| for our super-
resolution process. This super-resolution model can also incorporate benign priors
for defense, as it is trained with the clean dataset of the target model. Figure
demonstrates that the proposed super-resolution method achieves results comparable
to diffusion-based adversarial purification [109], which do not require the calculation

of gradient.

Adversarial Purification

The proposed adversarial purification is performed by the combination of adversarial
anti-aliasing and adversarial super-resolution. We resize the purified images after the
adversarial super-resolution for the target model. Additionally, our approach does

not require any training of the target model or the defense model.

y = {/(SR(AA(2aav))))} (6.9)

6.3.3 Discussions on Improved Time Efficiency

As previously discussed, employing the entire reverse process with adversarial exam-
ple guidance is computationally intensive, while using only a partial reverse process
diminishes defense performance. In this chapter, we propose a two-fold solution to ad-
dress this issue. First, we introduce an effective preprocessing approach, specif-
ically anti-aliasing, to mitigate the impact of adversarial perturbations.
Previous research has shown that diffusion-based adversarial purification should avoid
introducing adversarial perturbations into the diffusion model. Therefore, a more ef-
fective strategy is to remove some of these perturbations before feeding adversarial
examples into the diffusion models. Unlike previous methods that directly utilize
adversarial examples for purification, our approach offers a preliminary filtering step.

Second, we employ diffusion-based super-resolution instead of diffusion-
based image generation. It is well-known that the reverse process of diffusion

models is time-consuming, as illustrated in Figure and the gradient calculation
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exacerbates this issue. However, we may not require the entire reverse process for
purification, given that we already have a reference adversarial example, which is also
discussed in Nie et al. [89]’s work. Since adversarial perturbations are pixel-wise,
we opt for a relatively lightweight generation task, namely super-resolution, which
also focuses on pixel modification. The diffusion-based super-resolution method used
in this chapter requires only tens of steps, compared to the hundreds or thousands
of diffusion steps needed in previous works. With these two approaches, we signifi-
cantly enhance the time efficiency of diffusion-based adversarial purification without

compromising defense performance.

6.4 Experiments

6.4.1 Experimental Setup

Dataset and Target Models. We consider CIFAR-10 [58] and ImageNet [23] for
major evaluation. For target models, we adopt WideResNet-28-10 and WideResNet-
70-16 |140] for CIFAR-10 dataset and ResNet50 [43] for ImageNet dataset. These are
commonly adopted backbones for adversarial robustness evaluation.

Comparisons. We compared our defense methods with various state-of-the-art de-
fenses by the standardized benchmark: RobustBench [18]. We compare four diffusion-
based adversarial purification methods: Nie et al.’s DiffPure [89], Wang et al.’s |120],
Lee et al.’s [63] and Song et al.’s MimicDiffusion [109]. We mainly compare our
method with MimicDiffusion as it is the current state-of-the-art method. We use
the Score SDE [111] implementation of MimicDiffusion on CIFAR-10 for fair compar-
isons. The defense methods that use extra data are not compared for fairness. We
only evaluate the adversarial purification methods against unrestricted adversarial
attacks as the adversarial training’s different threat model.

Attack Settings. We evaluate our method with both perturbation-based attacks
and diffusion-based unrestricted adversarial attacks. For perturbation-based attacks,

we select AutoAttack [19], PGD [84]. For diffusion-based unrestricted adversarial
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attacks, we use DiffAttack |13] and AdvDiff [20] for comparisons. DiffAttack is only
evaluated on the ImageNet dataset according to the original chapter. To ensure a
fair comparison with previous diffusion-based adversarial purification, we include the
evaluation against the adaptive attack, i.e., reverse pass differentiable approximation
(BPDA) [45]. We also evaluate the performance against PGD+EOT that is discussed
in [63]. On CIFAR-10, the attack settings follow DiffPure [89]. On ImageNet, we
randomly sample 5 images from each class and average over 10 runs. The PGD+EOT
settings all follow Lee et al. [63].

Implementation Details. We adopt the mean filter with [[1,1],[1, 1]] for adversar-
ial anti-aliasing on CIFAR-10, and [[1,1,1,1,1],[1,1,0,1,1],[1,1,1, 1, 1]] in ImageNet.
ResShift [138] is utilized for adversarial super-resolution. We use the official Score
SDE |111] checkpoint for CIFAR-10 and LDM [100] checkpoint for ImageNet to gen-
erate UAEs.

Evaluation Metrics. Following Nie et al. [89], we use standard accuracy and ro-
bust accuracy as the evaluation metrics. Both are calculated according to the top-1

classification accuracy.

6.4.2 Attack Performance
CIFAR-10

Perturbation-based Adversarial Attack. Table presents the defense perfor-
mance against AutoAttack (fi,s = 8/255) on the CIFAR-10 dataset. The results
demonstrate that our proposed method achieves better standard accuracy and robust
accuracy than previous attack methods. Because images in the CIFAR-10 dataset are
only with 32 x 32 resolution, we set our anti-aliasing filter to a relatively small size.
Table indicates that the robustness performance of the proposed method is on par
with the state-of-the-art method [89]. This finding suggests that our method is more
suitable for high-resolution images, as 32 x 32 may not be large enough to effectively
extract the semantic shape for our approach. However, we can further enhance our

performance by incorporating adversarial purification techniques from previous work.
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Table 6.2: The standard and robust accuracy against BPDA ({i,s = 8/255)
on the CIFAR-10 dataset with WideResNet-28-10 as the target model.

Method Purification  Standard Acc(%) Robust Acc(%)
Nie et al. [89|(t* = 0.0075)  Diffusion 91.38 77.62

Nie et al. [89|(t* = 0.1) Diffusion 89.23 81.56
Wang et al. |120)] Diffusion 90.36 77.31
Song et al. [109) Diffusion 91.41 76.45
Ours Diffusion 91.52 + 1.28 81.24 £ 2.51

Table 6.3: The standard and robust accuracy against AdvDiff on the
CIFAR-10 dataset.

Method Target Model Standard Acc(%) Robust Acc(%)
Nie et al. |89 WideResNet-28-10 95.42 21.56
Wang et al. [120] WideResNet-28-10 95.86 26.68
Lee et al. |63] WideResNet-28-10 95.29 24.94
Song et al. |[109]  WideResNet-28-10 96.21 23.23
Ours WideResNet-28-10 96.80 £+ 0.37 33.97 £ 0.77

Our defense’s performance against PGD-EOT showcases its ability to defend
against adaptive attacks. This is because our approach focuses on extracting and
recovering the semantic features from adversarial images, rather than inferring and
denoising the adversarial perturbations. As a result, our defense maintains similar
effectiveness against both adaptive and standard attacks.

Unrestricted Adversarial Attack. Unrestricted adversarial examples on the CIFAR-
10 dataset are challenging to defend against, as shown in Table [6.3] Our purification
method outperforms the previous adversarial purification approach [109] by an aver-

age of 10%, validating the effectiveness of our proposed defense.

ImageNet

Perturbation-based Adversarial Attack. Tables [6.4] and [6.5 demonstrate that
the proposed defense method achieves significantly higher performance in both stan-

dard accuracy and robust accuracy. Our defense’s standard accuracy notably sur-
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Table 6.4: The standard and robust accuracy against AutoAttack (lins =
8/255) on the ImageNet dataset.

Method Target Model Standard Acc(%) Robust Acc(%)
Engstrom et al. |18 ResNet50 62.56 31.06
Wong et al. |125] ResNet50 55.62 26.95
Salman et al. |102) ResNet50 64.02 37.89
Bai et al. |3 ResNet50 67.38 35.51
Nie et al. [89] ResNet50 68.22 43.89
Song et al. [109] ResNet50 66.92 61.53
Ours ResNet50 75.28 + 1.06 67.61 + 1.95

Table 6.5: The standard and robust accuracy against left: PGD ({jne =
4/255), right: PGD+EQOT ({i,s = 4/255) on ImageNet dataset.

Method Target Model ~Standard Acc(%) PGD Acc(%) PGD+EOT Ace(%)
Wong et al. [125! ResNetb0 95.62 26.24 30.51
Salman et al. [102] ResNet50 64.02 34.96 38.62

Bai et al. |3 ResNet50 67.38 40.27 43.42

Nie et al. |89 ResNet50 68.22 42.88 38.71

Lee et al. |63 ResNet50 70.74 46.31 42.15

Wang et al. 120 ResNet50 70.17 68.78 40.22

Song et al. |109 ResNet50 66.92 62.16 52.66

Ours ResNet50 75.28 + 1.06 69.75 + 2.61 66.87 + 1.85

passes previous work, further validating that adversarial super-resolution effectively

leverages prior knowledge from the training dataset to achieve better classification ac-

curacy. Adversarial anti-aliasing proves to be particularly effective on the ImageNet

dataset, where the filter successfully blurs adversarial perturbations in the detailed

pixels of adversarial examples. The performance against PGD-EOT further validates

the effectiveness of our proposed defense pipeline.

Unrestricted Adversarial Attack. We present the defense performance of various

methods against the unrestricted adversarial attack AdvDiff and DiffAttack in Table

and The results indicate that current defenses are ineffective against the

recently proposed unrestricted adversarial attacks. The high standard accuracy can
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be attributed to the strong generative performance of benign diffusion models. Our
defense method is capable of achieving significantly higher robust accuracy compared
to previous defenses while preserving the standard accuracy.

Table 6.6: The standard and robust accuracy against AdvDiff on the Ima-
geNet dataset.

Method Target Model Standard Acc(%) Robust Acc(%)
Nie et al. [89) ResNet50 91.48 24.82
Wang et al. [120]  ResNet50 92.31 26.74
Lee et al. |63 ResNet50 91.80 25.34
Song et al. [109]  ResNet50 92.54 25.35
Ours ResNet50 97.83 + 1.36 42.21 £+ 3.41

Table 6.7: The standard and robust accuracy against DiffAttack on the
ImageNet dataset.

Method Target Model ~Standard Acc(%) Robust Acc(%)
Nie et al. |89] ResNet50 68.22 59.15
Wang et al. [120]  ResNet50 69.54 62.33
Lee et al. |63 ResNet50 70.74 61.56
Song et al. |109] ResNet50 66.92 60.17
Ours ResNetb0 75.28 + 1.06 65.51 + 1.33

6.4.3 Time efficiency

We evaluate the average time for defending against one adversarial example as shown
in Table The results indicate that our proposed method achieves better robust
accuracy with significantly lower time costs, as it does not require any gradient cal-
culations over the diffusion model. Notably, our adversarial anti-aliasing can defend
against approximately 57% of adversarial examples in just 3e~3 seconds. Further-
more, we can enhance the defense performance of our method by combining it with

previous purification methods, with only a minimal tradeoff in time cost.
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Table 6.8: The average time cost of defending one image against PGD
(ling = 4/255) on the ImageNet dataset.

Method Defend Method Time Cost(s) Robust Acc(%)
Nie et al. | Diffusion 13.3 42.88
Wang et al. \ Diffusion 62.8 68.78
Lee et al. |63 Diffusion 32.4 46.31
Song et al. [109 Diffusion 146.1 62.16
Ours Adversarial Anti-Aliasing 3e3 57.61
+ Adversarial Super-Resolution 1.1 69.75

Robust Accuracy(%)
2
2

Standard Accuracy(%)

E  Robust Accuracy
10 I Standard Accuracy | 10

2x2 3x3 3x5 5x5 %7

Filter Size

Figure 6.5: The ablation study of filter size. The weight of the filter at each
position is set to 1 except for the center, which we set to 0.

6.4.4 Ablation Study

We perform ablation studies to validate the performance of the proposed methods.
We evaluate the defense method against AutoAttack (¢, = 8/255) on the ImageNet
dataset by default.

Adversarial Anti-Aliasing. Despite the satisfactory robustness performance of the
proposed adversarial anti-aliasing, the choice of filter settings is critical for optimal
defense performance. We present the defense performance with different filters in
Figure 6.5, The results indicate a tradeoff between robust accuracy and standard
accuracy. Robust accuracy tends to stabilize when using a filter larger than 3 x 3 in
size. Therefore, it is relatively straightforward to identify a suitable filter with a few
attempts. Furthermore, the filter settings are generalized across different adversarial

attacks within the same dataset, as demonstrated in Tables [6.4] [6.5 and [6.6]
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Table 6.9: The ablation study of proposed methods.

(b) The performance of integrating our
(a) The ablation study of proposed adver- method with previous adversarial purifi-

sarial super-resolution. cation.
Method Robust Acc(%) Method Robust Acc(%)
Nie et al. |89| 7 43.89 Nie et al. l89:‘ 43.89
Song et al. [109] 61.53 1 Ours 69.44
Adversarial AA 55.85 :
Adversarial SR 41.23 Song et al. [109] 61.53
Adversarial AA+SR 67.61 + Ours 72.18

Adversarial Super-Resolution. The proposed adversarial super-resolution achieves
a similar purification function to previous diffusion-based adversarial purification
methods, but without the need for computationally expensive gradient calculations.
Table demonstrates that our method slightly outperforms traditional adversar-
ial purification when using anti-aliased adversarial examples as input. However, it
is crucial to use anti-aliased adversarial examples for optimal performance in adver-
sarial super-resolution, as we do not account for the adversarial gradient during the
super-resolution process.

Adversarial Purification. We can enhance diffusion-based adversarial purification
methods from previous works by replacing the adversarial input with the adversarial
examples after the proposed purification. The processed adversarial examples are
more benign and closer to the clean images, thereby enabling better purification

performance, as demonstrated in Table [6.95]

6.5 Conclusion

In this chapter, we present an effective and efficient adversarial defense method against
both perturbation-based and unrestricted adversarial attacks. The proposed tech-
niques, adversarial anti-aliasing and adversarial super-resolution, effectively eliminate
adversarial modifications and recover benign images with minimal computational

overhead. Comprehensive experiments on the CIFAR-10 and ImageNet datasets

103



validate that our proposed defense outperforms state-of-the-art defense methods.
Our work demonstrates that simple adversarial anti-aliasing can achieve moderate
model robustness with almost no additional cost. Furthermore, the proposed super-
resolution method can perform adversarial purification without requiring the calcula-
tion of the diffusion model’s gradient. We hope our work will serve as a baseline for

the further development of adversarial defenses.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Generative models, particularly diffusion models, hold significant potential for ad-
vancing Al Generated Content (AIGC) research. Recent progress in Multi-model
Large Language Models (MLLMs) with image and text input has further highlighted
the importance of diffusion models. There is an urgent need to thoroughly investi-
gate the adversarial capabilities of diffusion models to ensure the secure and robust
deployment of AIGC models.

In the work of unrestricted adversarial attacks, we propose AdvDiff, which pro-
vides a interpretable unrestricted adversarial attack using diffusion models by fol-
lowing the benign diffusion generation process. Existing diffusion-based adversarial
attacks typically use the gradients of the target model’s loss function to guide the
generation process. However, these methods can compromise the generation qual-
ity of diffusion models, resulting in low-quality adversarial examples. AdvDiff offers
two effective forms of adversarial guidance: adversarial guidance and noise sampling
guidance. These strategies follow the diffusion generation process and enhance the
generation of adversarial examples by increasing the conditional likelihood of the tar-
get attack label. Our experiments demonstrate that AdvDiff significantly improves
the generation quality of diffusion-based unrestricted adversarial attacks across var-

ious evaluation metrics. Additionally, we achieve a higher attack success rate in
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both white-box and black-box scenarios, with improved time efficiency in generating

adversarial examples.

In the work of no-box adversarial attacks, we propose a practical approach using a
diffusion classification model and a diffusion model. The no-box attack threat model
prohibits access to the target model’s training dataset, whereas existing methods still
rely on a small sub-dataset to train a substitute model. To perform no-box adversarial
attacks without any dataset access, we harness the generative capabilities of diffusion
models. Our training dataset is entirely generated by diffusion models using only
label information. Subsequently, we employ the diffusion classification model as the
substitute model, fine-tuning it with model uncertainty to enhance the transferability
of adversarial examples. The no-box unrestricted adversarial examples are generated
by the diffusion model using ensemble-like Monte Carlo sampling methods from the
substitute model. Through extensive experiments, we demonstrate that our no-box
adversarial attack achieves state-of-the-art performance in both no-box and black-box
adversarial attack scenarios. Additionally, our approach improves generation quality

and performance against various defenses.

In the work of 3D adversarial attacks, we propose a transferable adversarial 3D
shape completion method using diffusion models. Creating natural 3D adversarial
point clouds is more challenging than working with 2D images, as perturbations in
3D point clouds lead to shifts in 3D coordinates. Moreover, existing adversarial at-
tacks often struggle to successfully execute black-box attacks on recently developed
3D classifiers. Our proposed 3D adversarial attack utilizes the strong generative capa-
bilities of diffusion models to produce adversarial examples within the shape comple-
tion task. To enhance black-box adversarial attack performance, we employ a Monte
Carlo estimate over multiple down-sampled point clouds to infer the model’s gradient,
and we aggregate logits from multiple substitute models. Our adversarial guidance
is applied only to selected critical points, identified by proposed saliency scores, to
preserve the quality of point cloud generation. Experimental results demonstrate that
our adversarial 3D shape completion method achieves leading performance against a

wide range of black-box 3D target classifiers.
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In the work of diffusion-based adversarial purification, we introduce a gradient-free
approach that incorporates adversarial anti-aliasing and adversarial super-resolution.
Diffusion-based adversarial purification methods have shown promising defense capa-
bilities due to their denoising-like generation process. However, these defenses often
struggle against newly developed unrestricted adversarial attacks and suffer from poor
time efficiency due to the iterative nature of diffusion timesteps. Our defense offers
an effective and efficient preprocessing step with adversarial anti-aliasing to extract
semantic shapes from both perturbation-based and unrestricted adversarial attacks.
We then deploy super-resolution diffusion models to leverage the clean prior from be-
nign data to purify adversarial examples. Experimental results demonstrate that our
proposed purification method significantly improves the time efficiency of diffusion-
based adversarial purification across various datasets. We achieve state-of-the-art
performance in defending against both perturbation-based and unrestricted adver-
sarial attacks. Our approach provides a new pipeline for diffusion-based adversarial

defense with enhanced time efficiency.

7.2 Future Work

With the development of text-to-image diffusion models, such as Stable Diffusion,
and MLLMs, it enables stronger adversarial attacks with diffusion models. Our re-
search aims to further explore these techniques. In future work, we plan to focus on
utilizing text-to-image diffusion models to generate more aggressive adversarial exam-
ples by incorporating both adversarial guidance and text prompts. Additionally, we
intend to train adversarial LoRA models for efficient adversarial example generation.
Simultaneously, we will explore attacking MLLMs using diffusion models. Enhanc-
ing diffusion-based purification methods to defend against unrestricted adversarial

attacks is also a key objective to address security concerns.
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7.2.1 Effective Adversarial Sampling with Prompt

Text-to-image diffusion models enable more precise and consistent image synthesis
based on user prompts, offering the potential for creating more camouflaged and flex-
ible adversarial examples compared to using adversarial guidance alone. In future
work, we plan to design aggressive prompts that incorporate adversarial gradients.
By using adversarial prompts, we aim to reduce the reliance on adversarial guidance
during sampling and enhance the quality of the generated adversarial examples. Fur-
thermore, we intend to design prompts that utilize ensemble logits and transferable

loss objectives to improve the transferability of adversarial attacks.

7.2.2 Training Adversarial LoRA

Low-Rank Adaptation (LoRA) of Large Language Models facilitates effective and
efficient fine-tuning for text-to-image diffusion models, particularly for generating
content from specific domains. Current diffusion-based adversarial attacks suffer from
low time efficiency when generating adversarial examples. Training a LoRA can help
reduce the computational overhead during adversarial sampling. We plan to propose
adversarial attack methods by training adversarial LoRAs for efficient sampling of
adversarial examples. Our approach will involve training LoRAs with adversarial
objectives against a target model. Once trained, we can directly generate adversarial
examples without the need for adversarial guidance during diffusion sampling. With a
trained LoRA, we will be able to generate adversarial examples with significantly lower
time costs compared to existing diffusion-based adversarial attacks. Additionally, the

generation quality is improved without relying on adversarial guidance.

7.2.3 Breaking through Multi-model Large Language Models

LLMs and MLLMs have demonstrated remarkable performance in content generation
and autonomous task solving. The development of LLMs is becoming a key trend
in the advancement of AI. However, LLMs have been shown to be vulnerable to ad-

versarial attacks or exploitation by malicious users. These security risks significantly
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impact the deployment of LLMs in security-related applications. To thoroughly inves-
tigate the security of LLMs and MLLMs, we plan to propose effective attacks against
MLLMs using diffusion models. As MLLMs accept both text and image inputs from
users, it is possible to use images generated by diffusion models to breach MLLM
defenses and generate content prohibited by user policies. We will utilize gradients
from MLLMs to create adversarial guidance for the adversarial sampling of diffusion
models. Our attack aims to elicit sensitive responses from MLLMs using malicious
prompts and adversarial examples from diffusion models.

Another adversarial attack strategy against MLLMs involves adversarial fine-
tuning using data generated by diffusion models. MLLMs support user-driven fine-
tuning to provide customized services based on a user’s dataset or specified tasks.
This fine-tuning capability also allows us to manipulate the functionality of MLLMs.
In the future, we plan to generate malicious content from diffusion models through
MLLM fine-tuning. We will create adversarial examples from diffusion models to
induce MLLMs to output malicious content. These adversarial examples can be used
as a fine-tuning dataset to compromise the defenses of MLLMs and provoke malicious

responses.

7.2.4 Robust Adversarial Purification against Unrestricted Ad-

versarial Attack

Unrestricted adversarial examples generated by diffusion models pose significant se-
curity concerns for adversarial defenses, as they employ different threat models com-
pared to traditional perturbation-based attacks. In future work, we plan to propose
a diffusion-based adversarial purification method specifically designed to counter un-
restricted adversarial attacks. Our defense strategy will begin with preprocessing
to extract the semantic shape from adversarial examples. We will then use latent
inversion with a text-to-image diffusion model, employing safety-oriented prompts
to guide the model in generating benign images. Our adversarial defense will focus

on reconstructing the semantic objects from adversarial examples and will be more
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generalized across different attack threat models.
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