
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



ADVERSARIAL ROBUSTNESS WITH
DIFFUSION MODELS

XUELONG DAI

PhD

The Hong Kong Polytechnic University

2025



The Hong Kong Polytechnic University

Department of Computing

Adversarial Robustness with Diffusion Models

Xuelong Dai

A thesis
submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

May 2025



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material that

has been accepted for the award of any other degree or diploma, except where due

acknowledgement has been made in the text.

(Signed)

Xuelong Dai (Name of student)





Abstract

Artificial Intelligence (AI) and Deep Learning (DL) have experienced rapid develop-

ment and widespread industry deployment in recent years. Among the various deep

learning models, Computer Vision (CV) stands out as one of the most advanced fields.

DL models have achieved performance comparable to human experts across a range

of 2D and 3D tasks. However, adversarial attacks pose a significant threat to the

further application of DL-based CV techniques. These attacks involve adding small

perturbations to input data, which do not affect human classification but lead to

high-confidence misclassification by the target deep learning network. This challenge

highlights the urgent need to evaluate and enhance the adversarial robustness of deep

learning models.

Diffusion models, a recently proposed generative model known for its outstanding

performance, have made a significant impact due to their impressive data genera-

tion capabilities and user-friendly interface. In addition to their excellent generative

performance, these models have demonstrated the ability to conduct high-quality ad-

versarial attacks by generating adversarial data, posing a new threat to the security

of deep learning models. Consequently, it is important to investigate the attack ca-

pabilities of diffusion models under various threat scenarios and to explore strategies

for enhancing adversarial robustness against attacks driven by these models.

Firstly, we observe that current adversarial attacks utilizing diffusion models typ-

ically employ PGD-like gradients to guide the creation of adversarial examples. How-

ever, the generation process of diffusion models should adhere strictly to the learned

diffusion process. As a result, these current attacks often produce low-quality ad-

versarial examples with limited effectiveness. To address these issues, we introduce

AdvDiff, a theoretically provable adversarial attack method that leverages diffusion

models. We have developed two novel adversarial guidance techniques to sample

adversarial examples by following the trained reverse generation process of diffusion

models. These guidance techniques are effective and stable, enabling the generation

of high-quality, realistic adversarial examples by integrating the gradients of the tar-
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get classifier in an interpretable manner. Experimental results on the MNIST and

ImageNet datasets demonstrate that AdvDiff excels in generating unrestricted adver-

sarial examples, surpassing state-of-the-art unrestricted adversarial attack methods

in both attack performance and generation quality.

Secondly, we note that in no-box adversarial scenarios, where the attacker lacks

access to both the training dataset and the target model, the performance of existing

attack methods is significantly hindered by limited data access and poor inference

from the substitute model. To overcome these challenges, we propose a no-box ad-

versarial attack method that leverages the generative and adversarial capabilities of

diffusion models. Specifically, our approach involves generating a synthetic dataset

using diffusion models to train a substitute model. We then fine-tune this substitute

model using a classification diffusion model, taking into account model uncertainty

and incorporating noise augmentation. Finally, we generate adversarial examples from

the diffusion models by averaging approximations over the diffusion substitute model

with multiple inferences. Extensive experiments on the ImageNet dataset demon-

strate that our proposed attack method achieves state-of-the-art performance in both

no-box and black-box attack scenarios.

Thirdly, we find that existing adversarial research on 3D point cloud models pre-

dominantly focuses on white-box scenarios and struggles to achieve successful transfer

attacks on recently developed 3D deep-learning models. Moreover, the adversarial

perturbations in current 3D attacks often cause noticeable shifts in point coordi-

nates, resulting in unrealistic adversarial examples. To address these challenges, we

propose a high-quality adversarial point cloud shape completion method that lever-

ages the generative capabilities of 3D diffusion models. By using partial points as

prior knowledge, we generate realistic adversarial examples through shape comple-

tion with adversarial guidance. To enhance attack transferability, we explore the

characteristics of 3D point clouds and utilize model uncertainty for improved model

classification inference through random down-sampling of point clouds. We employ

ensemble adversarial guidance to improve transferability across different network ar-

chitectures. To maintain generation quality, we restrict our adversarial guidance to
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the critical points of the point clouds by calculating saliency scores. Extensive experi-

ments demonstrate that our proposed attacks outperform state-of-the-art adversarial

attack methods against both black-box models and defenses. Our black-box attack

establishes a new baseline for evaluating the robustness of various 3D point cloud

classification models.

Fourthly, we notice that while current diffusion-based adversarial purification

methods offer effective and practical defense against adversarial attacks, they suffer

from low time efficiency and limited performance against recently developed unre-

stricted adversarial attacks. To address these issues, we propose an effective and effi-

cient diffusion-based adversarial purification method that counters both perturbation-

based and unrestricted adversarial attacks. Our defense is inspired by the observation

that adversarial attacks typically occur near the decision boundary and are sensitive to

pixel changes. To tackle this, we introduce adversarial anti-aliasing to mitigate adver-

sarial modifications. Additionally, we propose adversarial super-resolution, which uses

prior knowledge from clean datasets to benignly recover images. These approaches

do not require additional training and are computationally efficient, as they do not

involve gradient calculations. Extensive experiments against both perturbation-based

and unrestricted adversarial methods demonstrate that our defense method outper-

forms state-of-the-art adversarial purification techniques.
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Chapter 1

Introduction

AI and DL have achieved significant breakthroughs in both efficiency and accuracy

across numerous challenging tasks. These advanced technologies have been widely

adopted in industries such as medical care, security identification, autonomous driv-

ing, and smart cities. Their impressive performance in various fields has garnered

increasing attention in research. Major directions in DL research include computer

vision, natural language processing, and more. There are virtually no other algo-

rithms that can surpass deep learning models in the field of computer vision when it

comes to both usability and accuracy. The convolutional layer has significantly en-

hanced the performance of deep learning models across various challenging computer

vision tasks. Due to their reliable performance in tasks such as image classification

and object detection, an increasing number of real-world applications, such as face

recognition and smart driving, have been developed based on deep learning models.

While deep learning models have shown significant improvements in various com-

puter vision tasks, researchers have discovered that these models are highly vulnerable

to adversarial attacks. An adversarial attack involves adding small perturbations to

input data that are imperceptible to humans but can easily alter the classification

results of a deep learning classifier with high confidence. These modified inputs are

known as adversarial examples. To further deploy DL models in security-critical ap-

plications, there has been considerable interest among researchers in both adversarial

attacks and defenses. Based on the knowledge accessible to the adversary, adversarial
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attacks are categorized into two types: white-box adversarial attacks and black-box

adversarial attacks. White-box attacks assume that the adversary has full knowledge

of the target model, allowing adversarial examples to be crafted directly using the

gradient of the target model’s loss function. On the other hand, black-box adversarial

attacks do not permit direct access to the parameters and architecture of the target

model. Instead, the adversary conducts attacks by querying the target model or

exploiting the transferability of adversarial examples for effective black-box attacks.

Deep learning models commonly process 2D data, such as images and videos.

However, in practice, people also encounter 3D data, like 3D point clouds or 3D grids.

Learning from 3D data is fundamentally different from 2D data, and 3D deep learning

require more computational resources. Since Qi et al. introduced PointNet, a deep

learning model that uses a specialized layer to extract global features from 3D point

clouds, there has been a surge in 3D deep learning research. PointNet++ and DGCNN

are two widely recognized models in this field. Additionally, 3D adversarial attacks

have been shown to be effective against 3D deep learning models. Recent works

in this area can be categorized into three types: 2D-attack-based methods, such as

IFGM and C&W attacks on 3D point clouds; point-modification-based methods, like

isometry transformation attacks and point occlusion attacks; and generative-based

methods, such as LG-GAN and AdvPC. These various attack algorithms employ

different strategies to target 3D deep learning models, and most achieve a high success

rate when attacking state-of-the-art 3D DL models.

However, the perturbations generated by most attack algorithms are easily de-

tectable by humans, as they often produce noisy patterns on images. Consequently,

these attacks can be countered by various defense methods and are challenging to

implement in the physical world. Therefore, it is valuable to develop a natural and

realistic adversarial example generation algorithm to enhance the effectiveness of ad-

versarial attacks.
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1.1 Unrestricted Adversarial Attacks with Diffusion

Models

With the development of generative models, these models bring new threats to the

robustness of the deep learning models. The adversary adopts the generation ability

of the Generative Adversarial Networks (GAN) models to craft adversarial examples

by generating perturbations. However, these existing methods require re-training of

the GAN models and harm the original generation performance of the benign GAN

models. Therefore, their performances are limited by their perturbation-based attack

algorithms. Unrestricted adversarial attacks, on the other hand, craft adversarial

examples from scratch. These adversarial examples are visually indistinguishable from

the benign samples while deceiving the deep-learning models with high confidence.

Followed by Song et al. pioneering work, more and more GAN-based unrestricted

adversarial attacks are proposed.

Diffusion models have demonstrated superior performance in image generation

compared to their competitor GANs. With the development of diffusion models,

recent works demonstrated that diffusion models can be used to generate unrestricted

adversarial examples, although these studies have been limited to black-box scenarios

and have not thoroughly explored the capabilities of diffusion models as adversaries.

Therefore, our work will exploit the remarkable generation ability of diffusion mod-

els for discussing attack performance under no-box scenarios with a comprehensive

and end-to-end discussion from the generation of the training dataset and adversarial

examples.

1.2 Thesis Contribution

In our thesis, we conduct a comprehensive investigation into the adversarial robust-

ness of diffusion models across a wide range of topics, including 2D and 3D scenarios,

white-box and black-box settings, and both attack and defense strategies. The gen-

eral framework of our work is given in Figure. 1.1. Leveraging the strong generative
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capabilities of diffusion models, we design effective adversarial guidance to direct

the diffusion model in generating high-quality, unrestricted adversarial examples by

adhering to the benign generation diffusion process. Our adversarial guidance does

not interfere with the trained sampling process of diffusion models, thereby producing

adversarial examples with superior generation quality and attack performance. More-

over, we explore the efficacy of diffusion models in more challenging attack scenarios,

namely black-box and no-box environments. We synthesize datasets using diffusion

models and enhance attack performance through a diffusion classification substitute

model. With advancements in diffusion models, they have demonstrated impressive

performance in 3D point cloud generation. To provide a comprehensive discussion on

the adversarial capabilities of diffusion models, we introduce a transferable adversar-

ial shape completion method utilizing diffusion models. We begin by evaluating the

robustness of recently proposed 3D point cloud classifiers, achieving state-of-the-art

performance in black-box attacks.

The denoising-like generation process of diffusion models facilitates diffusion-based

adversarial purification for defensive purposes. However, current diffusion-based de-

fenses often suffer from low time efficiency and limited effectiveness against unre-

stricted adversarial attacks. To address these issues, we propose a gradient-free ad-

versarial defense method based on diffusion models. Our approach offers a more

effective defense against unrestricted adversarial attacks.

1.2.1 Generating Unrestricted Adversarial Examples

Recent research has demonstrated that diffusion models are capable of executing

unrestricted adversarial attacks. However, existing attack methods frequently incor-

porate the gradient from traditional perturbation-based adversarial attacks into the

generation process of diffusion models. This practice can substantially diminish the

generation quality, rendering the attacks easily detectable by humans and current de-

fense mechanisms. Consequently, it is essential to develop an unrestricted adversarial

attack that aligns with the benign generation process of diffusion models.

We introduce AdvDiff, an interpretable method for executing unrestricted adver-
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sarial attacks using diffusion models. Our approach involves adding two effective ad-

versarial guidance techniques to the reverse generation process of the diffusion model.

Notably, our attack does not require retraining the diffusion model; instead, we utilize

a pre-trained conditional diffusion model. The two adversarial guidance techniques

we propose are: 1) Incrementally incorporating adversarial guidance throughout the

reverse generation process by increasing the likelihood of the target attack label,

and 2) Repeatedly executing the reverse generation process while infusing adversarial

prior knowledge into the initial noise through noise sampling guidance. We provide

a theoretical analysis of our attack method to demonstrate that the adversarial guid-

ance does not alter the original sampling patterns of benign diffusion models. To

further validate the effectiveness of AdvDiff, we conduct extensive experiments on

two datasets and evaluate using four metrics: attack success rate, generation quality,

transfer attack performance, and attack performance against defenses. The experi-

mental results show that our attack achieves state-of-the-art performance compared

to perturbation-based attacks and previous diffusion-based unrestricted adversarial

attacks.

1.2.2 Strong No-Box Unrestricted Adversarial Attack

In a black-box threat model, access to the model parameters is restricted, while in a

no-box threat model, access to the training data is not permitted. These two threat

models are more practical than white-box attacks and are better suited for evaluating

model robustness. However, current no-box adversarial attacks still require access to

a limited amount of data from the training set. Conducting a no-box attack without

any access to the target model’s data remains a significant challenge.

Leveraging the generative capabilities of diffusion models, we can construct a

training dataset exclusively using these models. Our approach offers a solution for

training a substitute model for no-box adversarial attacks using a synthetic dataset

generated by the diffusion model. To further enhance the transferability of our adver-

sarial examples, we employ a classification diffusion model as the substitute model.

This model utilizes the probability distribution of labels to infer input data, which
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can be combined with uncertainty estimation techniques to improve attack transfer-

ability. Additionally, we incorporate scheduled noise during the training phase of

the substitute model. Once the substitute model is trained, we use the same dif-

fusion model to generate the dataset for executing no-box unrestricted adversarial

attacks. We adopt an ensemble-like strategy by applying the Monte Carlo sampling

method across multiple conditional distribution predictions from the diffusion sub-

stitute model. We conduct experiments in both black-box and no-box scenarios to

demonstrate the effectiveness of our proposed attack. Compared to existing attack

methods, our no-box unrestricted adversarial attack achieves superior performance in

terms of attack success rate and generation quality.

1.2.3 Transferable Adversarial 3D Shape Completion

3D point cloud data store xyz coordinates, and perturbation-based adversarial at-

tacks can lead to the generation of outlier points by adding perturbations to this

data. Even more concerning, existing attacks struggle to overcome the defenses of

recently proposed 3D point cloud classifiers. Consequently, generating natural and

realistic adversarial point clouds against state-of-the-art target models has become

an important research topic.

Diffusion models have demonstrated strong generative capabilities for 3D point

clouds. However, their ability to generate 3D adversarial point clouds has not been

thoroughly explored. We propose a 3D point cloud adversarial attack method using

diffusion models, leveraging a shape completion task to enhance generation quality.

To conduct effective black-box adversarial attacks, we first use a Monte Carlo esti-

mate over the inference of multiple down-sampled point clouds to account for model

uncertainty, thereby improving attack transferability. Secondly, we employ ensemble

logits to incorporate adversarial guidance into the 3D diffusion model. To further

enhance generation quality, we restrict the application of adversarial guidance to

selected critical points identified by our proposed saliency scores. Experimental re-

sults demonstrate that the proposed transferable adversarial 3D shape completion

method achieves state-of-the-art black-box performance across a wide range of 3D
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target models, including recently proposed 3D point cloud classifiers.

1.2.4 Gradient-Free Diffusion-Based Adversarial Purification

The diffusion model’s generation process gradually removes noise from the latent

space, making it suitable for eliminating adversarial perturbations from adversarial ex-

amples. However, the sampling speed of the diffusion generation process is slow. Ex-

isting diffusion-based adversarial purification methods are less time-efficient compared

to previous approaches. Additionally, their performance is limited when defending

against unrestricted adversarial examples. Developing a time-efficient diffusion-based

adversarial purification method that effectively counters both perturbation-based and

unrestricted adversarial attacks remains a significant challenge.

We identify common characteristics between perturbation-based and unrestricted

adversarial examples, noting that these examples are generated near the decision

boundary with minimal alterations, which makes them sensitive to pixel changes.

To address this, our defense first applies a preprocessing step of adversarial anti-

aliasing, which extracts the semantic shape from adversarial examples by blurring

the adversarial perturbations. Next, we employ diffusion models to achieve adver-

sarial super-resolution by upscaling the anti-aliased adversarial examples, utilizing

prior knowledge of clean data from pre-trained diffusion models. To demonstrate

the effectiveness of our proposed defense, we further evaluate its performance by us-

ing upscaled adversarial examples as input for adversarial purification. Experiments

conducted across various datasets show that our defense outperforms state-of-the-art

adversarial defenses in terms of adversarial purification.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 introduces the back-

ground knowledge for this thesis. Chapter 3 showcases our work on AdvDiff. Chapter

4 presents the no-box adversarial attack method utilizing diffusion models. Chapter

5 proposes our work on transferable 3D adversarial shape completion. Chapter 6
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presents a gradient-free adversarial purification approach using diffusion models. Fi-

nally, we provide the conclusion and outline directions for future work in Chapter

7.

The primary research outputs are selected from the following references:

• AdvDiff: Generating Unrestricted Adversarial Examples using Diffusion Models,

Xuelong Dai, Kaisheng Liang, Bin Xiao. ECCV 2024.

• Diffusion Models as Strong Adversaries, Xuelong Dai, Yanjie Li, Mingxing

Duan, Bin Xiao. IEEE Transactions on Image Processing.

• Transferable 3D Adversarial Shape Completion using Diffusion Models, Xue-

long Dai, Bin Xiao. ECCV 2024.

• Gradient-Free Adversarial Purification with Diffusion Models, Xuelong Dai,

Dong Wang, Mingxing Duan, Bin Xiao. Under Review.
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Chapter 2

Preliminary

In this chapter, we provide the foundational knowledge necessary for the thesis. The

chapter is organized as follows: First, we introduce the background of 2D and 3D

deep learning. Then, we explore diffusion models in the context of image synectics

tasks. Next, we discuss related work on adversarial attacks, covering both 2D and

3D approaches, perturbation-based and unrestricted attacks, as well as white-box and

black-box threat models. Finally, we discuss various strategies for adversarial defense.

2.1 Deep Learning

Neural Network A neural network is a machine learning algorithm that consists of

multiple neurons connected to each other like the human brain neurons. Each neuron

in a neural network processes the input from the given data or a previously activated

neuron and produces its activation to the next node. An example of a neuron is given

in Figure 2.1. A neuron node is made up of inputs, weights, activation function, and

the output.

In a standard neural network, there are multiple layers of connected neurons. The

layers are categorized into three types: the input layer, the hidden layer, and the

output layer. Figure 2.2 shows the layers of a neural network. The three layers are

connected to each other by taking the input from the previous layer’s output. The

neurons in the same layer are not connected to each other. By training the neural
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Figure 2.1: An example of a neuron

network with sufficient data, the neural networks have wide applications in many

industries: computer vision [29], medical care [91], and speech processing [86].

Input
Layer

Hidden
Layer

Output

Layer

Figure 2.2: Layers of a neural network

Deep Learning Deep learning has been extensively studied as it largely improved

the performance of neural networks in various tasks. The deep learning network’s

structure is similar to the standard neural network with multiple hidden layers. With

more hidden layers, the deep learning network has more capability to simulate more

complicated functions. The deep learning networks can be further classified according

to their basic neuron: Convolutional Neural Networks (CNNs), recurrent neural net-

works (RNNs), deep belief networks, and so on. The Convolutional Neural Networks

(CNNs) will be the focus of this paper because it has been proved that high effective

at computer vision tasks.
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Figure 2.3: The CNN pipeline

Figure 2.3 shows the pipeline of a convolutional neural network [59]. A CNN is

consists of the input layer, the output layer, the convolutional layers, the pooling

layers, and the fully connected layers. The convolutional layer adopts a convolutional

operation to process the input image or feature maps. The convolutional operations

share the same weight (convolutional kernel) to process the same feature map. The

convolutional kernel learns the local information from the data, and it is invariant to

the location. The pooling layer is adopted to reduce the dimension of the network

parameters and the feature maps. Finally, the fully-connected layer converts the 2D

feature map into a 1D vector, which outputs the final classification labels.

Deep learning networks are achieving leading performance in various major direc-

tions of machine learning tasks like computer vision [59], natural language process-

ing [119], etc. Also, deep learning has been widely applied in many scenarios like

healthcare [30], automotive [55,82], smart city [14,57], and so on.

2.1.1 3D deep learning

Since the development of LiDAR (light detection and ranging) and 3D scanner, 3D

data has become easier to access by the consumer. A variety of large 3D datasets have

emerged. However, feature learning in the 3D dataset was a difficult task as it contains

richer information than 2D data. Also, 3D data have different types, like point cloud,

mesh, voxel, etc. Deploying 3D data in the real-life scenario can achieve more accuracy

and robustness than only using 2D data. Since the emergence of the deep learning

technique, 3D feature learning has been received rapid development. PointNet [95]
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was the first approach to solve the 3D feature learning problem, and remarkably

improved the performance of the 3D classification task. It learns 3D features by

adopting a symmetric function to extract features with the disorder input. Since

the success of PointNet, 3D deep learning has received a surge of related research.

To further improve the performance of 3D feature learning, the researchers adopt

graph convolutional operations to learn features from both local neighbors and global

shapes. PointNet++ [96] and DGCNN [122] are two state-of-art 3D deep learning

networks that adopted graph convolutional layers. Therefore, We select PointNet,

PointNet++, and DGCNN as the targeted network in the adversarial settings for

their state-of-art performance on the current 3D dataset.

2.2 Diffusion Models

Diffusion models have shown great generation quality and diversity in the image syn-

thesis task since Ho et al. [46] proposed a probabilistic diffusion model for image gen-

eration that greatly improved the performance of diffusion models. Diffusion models

for conditional image generation are extensively developed for more usable and flex-

ible image synthesis. Dhariwal & Nichol [25] proposed a conditional diffusion model

that adopted classifier-guidance for incorporating label information into the diffusion

model. They trained the classifier separately and used its gradient for conditional

image generation. Jonathan Ho & Tim Salimans [48], on the other hand, performed

conditional guidance without an extra classifier. They trained a conditional diffusion

model alongside a standard diffusion model and used a combination of the two mod-

els during sampling. Their idea is motivated by an implicit classifier with the Bayes

rule. Followed by [25, 48]’s works, many research [31, 81, 100] have been proposed to

achieve state-of-the-art performance on image generation, image inpainting, and text-

to-image generation tasks. Latent Diffusion Model (LDM) [100] and its text-to-image

variant, Stable Diffusion, are capable of generating photo-realistic images. They are

able to generate data that is highly related to the dataset of the target model with

certain prompts or conditional labels, especially on open-source high-quality datasets
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like ImageNet [23]. In this paper, we adopt the Denoising Diffusion Implicit Mod-

els (DDIM) for image generation. The DDIM consists of two main processes: the

forward diffusion process and the reverse generation process, as shwon in Figure 2.4.

The forward diffusion process gradually adds Gaussian noise to the sampled data 𝑥0

with the predefined scheduling parameter 𝛼 and pre-defined 𝑇 time steps:

𝑞𝜎(𝑥𝑡−1|𝑥𝑡, 𝑥0) = 𝒩 (
√
𝛼𝑡−1𝑥0+√︀

1− 𝛼𝑡−1 − 𝜎2
𝑡 ·

𝑥𝑡 −
√
𝛼𝑡𝑥0√

1− 𝛼𝑡

, 𝜎2
𝑡 I)

(2.1)

where 𝑞𝜎(𝑥𝑇 |𝑥0) = 𝒩 (
√
𝛼𝑇𝑥0, (1 − 𝛼𝑇 )I) and 𝜎 is the magnitude of the Gaussian

noise.

Reverse Generation Process

Forward Diffusion Process

Figure 2.4: The diffusion pipeline

The reverse generation process aims to recover the data 𝑥0 by a denoising-like

process starting with a random noise. With 𝑇 time steps, we generate a sample 𝑥𝑡−1

from a sample 𝑥𝑡:

𝑥𝑡−1 =
√
𝛼𝑡−1

(︃
𝑥𝑡 −

√
1− 𝛼𝑡𝜖

(𝑡)
𝜃 (𝑥𝑡)√

𝛼𝑡

)︃
+

√︀
1− 𝛼𝑡−1 − 𝜎2

𝑡 · 𝜖
(𝑡)
𝜃 (𝑥𝑡) + 𝜎𝑡𝜖𝑡

(2.2)

where 𝜖𝑡 ∼ 𝒩 (0, I) is an independent Gaussian noise, and 𝜖𝜃 is the trainable model

to predict the added Gaussian noise in the forward diffusion process. After training
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the 𝜖𝜃, we will be able to sample high-quality data with a random initial noise.

Besides the data synthesis task, diffusion models achieve satisfying performance on

various tasks like classification [41], segmentation [6], and representation learning [94].

2.3 Adversarial Attacks

White-box attacks. Szegedy et al. [114] demonstrated that these models can be vul-

nerable to imperceptible perturbations, denoted as 𝑥adv = 𝑥+ 𝛿, which maximize the

network’s prediction error. The objective of the white-box attack is to find the pertur-

bation that satisfies the constraint ||𝛿||𝑝 < dist, where 𝛿 represents the perturbation

bounded by the 𝑙𝑝 norm. In this scenario, the attacker has full knowledge of the tar-

get model, including its parameters and network architecture. The perturbations are

typically guided by the gradient of the target model’s loss function. Adversarial meth-

ods such as FGSM [34], I-FGSM [60], and PGD [84] are commonly used to perform

white-box attacks. Simultaneously, effective defense methods [67,76,80,84,87,89,143]

are proposed to defend against the adversary.

Black-box attacks. In a black-box attack scenario, the attacker does not have

access to the parameters of the target model and can only make limited queries to the

model. Existing black-box attack methods achieve adversarial attacks by leveraging

the transferability of a substitute model or estimating the gradient of the target

model through multiple queries. However, query-based attacks [7,12] typically require

a large number of queries to successfully execute a single attack, which may not

be feasible in many cases. Recent research efforts have focused on enhancing the

adversarial transferability by modifying the backpropagation computation, as seen

in approaches like LinBP [38], ILA++ [39], TAIG [52], and LGV [36]. Another

direction is to increase the input diversity to improve the success rate of black-box

attacks. Techniques such as TIM [27], SIM [75], Admix [121], and MBA [66] have

been proposed to achieve this goal. These methods aim to find adversarial examples

by exploring different input variations and perturbations. With the capability of

generative models, researchers find new effective attacks [105, 144] against the data-
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free black-box threat model, where the adversary uses the synthetic data by generative

models to perform the black-box attack by querying the target models. Nonetheless,

despite the data-free threat model being more practical than the traditional black-

box threat model, it still requires querying the target model multiple times and can

be inapplicable to security-concerned applications that are able to detect aggressive

queries.

2.3.1 3D Point Cloud Adversarial Attacks

3D deep-learning models exhibit vulnerability to adversarial attacks, even when using

2D adversarial approaches. However, the perturbations applied to 3D point cloud data

are more perceptible to humans due to the specific data structure of point clouds.

Adversarial perturbations that shift coordinates lead to noticeable changes in the

original shape of 3D objects, presenting a challenge in devising stronger and more

realistic adversarial attack methods. Early adversarial attack methods, such as those

proposed by Liu et al. [78] and Xiang et al. [129], involve adding points generated

from 2D FGSM, PGD, and C&W attack methods. Zheng et al. [146] demonstrated

high attack performance on the PointNet network by dropping points with the lowest

salience scores based on the saliency map. However, these attacks are easily detectable

as they alter the number of points in the clean point cloud.

Subsequent works aim to create imperceptible perturbations by shifting point co-

ordinates within the clean point clouds. Approaches like ISO [145], GeoA3 [123], SI-

Adv [51], and PF-Attack [42] achieved imperceptible shifting by leveraging geometric

and shape information from clean point clouds. LG-GAN [147] and AdvPC [40] uti-

lized generative models to generate camouflaged perturbations effectively. However,

only AdvPC and PF-Attack achieved effective black-box attacks against 3D point

cloud classifiers. Nonetheless, these methods face challenges in being effective against

recently proposed state-of-the-art 3D deep-learning models, resulting in a huge gap

in the development between adversarial attacks and benign models.
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2.4 Unrestricted Adversarial Attacks

With the development of generative models, these models bring new threats to the

robustness of the deep learning models. The adversary adopts the generation ability

of the GAN models to craft adversarial examples by generating perturbations [4,93].

However, these existing methods require re-training of the GAN models and harm

the original generation performance of the benign GAN models. Therefore, their

performances are limited by their perturbation-based attack algorithms.

Unrestricted adversarial attacks, on the other hand, craft adversarial examples

from scratch. These adversarial examples are visually indistinguishable from the

benign samples while deceiving the deep-learning models with high confidence. Fol-

lowed by Song et al. [110] pioneering work, more and more GAN-based unrestricted

adversarial attacks [64, 92] are proposed. With the development of diffusion mod-

els, recent works [13, 16, 20, 21] demonstrated that diffusion models can be used to

generate unrestricted adversarial examples, although these studies have been limited

to black-box scenarios and have not thoroughly explored the capabilities of diffusion

models as adversaries. Therefore, our work will exploit the remarkable generation

ability of diffusion models for discussing attack performance under no-box scenarios

with a comprehensive and end-to-end discussion from the generation of the training

dataset and adversarial examples.

Particularly, our unrestricted adversarial examples are defined as:

𝑥UAE = 𝒢(𝑧𝑎𝑑𝑣, 𝑦), 𝑠.𝑡. 𝑦 ̸= 𝑓(𝑥UAE) (2.3)

where 𝑧𝑎𝑑𝑣 and 𝑦 are the input adversarial latent of the generate model and class

label, respectively, 𝒢 is the generator, and 𝑓(·) is the target classifier. The 𝑧𝑎𝑑𝑣 is

commonly sampled from random Gaussian noise.

The unrestricted adversarial examples (UAE) are generated by generative models

from scratch. Because these examples are not crafted by adding gradient perturbation

to clean images, UAEs are hard to detect and defend by current perturbation-based

adversarial defense methods.
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2.5 Adversarial Defenses

Adversarial Training Adversarial training (AT) is one of the most practical meth-

ods for enhancing a model’s robustness against adversarial attacks. It involves train-

ing the model with both benign and adversarial data simultaneously during the train-

ing phase. However, robustness against unseen attacks remains a significant challenge

that affects the defense performance of traditional adversarial training [84]. To ad-

dress this, Gowal et al. [35] and Rebuffi et al. [98] have incorporated generated and

augmented data to improve generalization by increasing data diversity. In addition

to leveraging diverse data, refining the objective formulation of AT has also proven

effective. By considering model weights, a wide range of adversarial training meth-

ods [54,126] have been proposed.

Adversarial Purification Adversarial purification aims to eliminate adversarial

perturbations in adversarial examples without requiring the re-training of deep learn-

ing models. These methods leverage the generative capabilities of generative models.

Previous works utilizing GANs [103] and score-based matching models [111,136] have

demonstrated state-of-the-art performance compared to adversarial training. With

the advent of diffusion models, Nie et al. [89] discovered that diffusion-based adversar-

ial purification methods outperform previous approaches in recovering clean images.

However, finding the optimal generation steps for diffusion-based adversarial purifi-

cation remains challenging. Additionally, adversarial images can negatively impact

the reverse generation process of diffusion models. To address these issues, several

works [63, 109, 120] have proposed various solutions to enhance the performance of

adversarial purification. Increasing the number of purification steps improves defense

performance [89, 120]. However, they cannot utilize the full diffusion process for pu-

rification because they need to preserve image consistency and the clean data prior.

Recent works ( [63,109]) show that gradient-based guidance is an effective method to

advance adversarial purification, although it is not time-efficient. Moreover, Lin et

al. [74] present an alternative involving supervised additional training on the diffusion

model, which tends to suffer in terms of usability and transferability.
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Chapter 3

AdvDiff: Generating Unrestricted

Adversarial Examples using Diffusion

Models

3.1 Introduction

While the DL community continues to explore the wide range of applications of DL

models, researchers [114] have demonstrated that these models are highly susceptible

to deception by adversarial examples. Adversarial examples are generated by adding

perturbations to clean data. The perturbed examples can deceive DL classifiers with

high confidence while remaining imperceptible to humans. Many strong attack meth-

ods [10, 19, 26, 68, 71, 84] are proposed and investigated to improve the robustness of

DL models.

In contrast to existing perturbation-based adversarial attacks, Song et al. [110]

found that using a well-trained generative adversarial network with an auxiliary

classifier (AC-GAN) [90] can directly generate new adversarial examples without

perturbing the clean data. These newly generated examples are considered unre-

stricted as they are obtained by optimizing input noise vectors without any norm

restrictions. Compared to traditional adversarial examples, unrestricted adversarial
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examples [22, 97] are more aggressive against current adversarial defenses. A mali-

cious adversary can also generate an unlimited number of unrestricted adversarial

examples using a trained GAN.

Diffusion models [46] are likelihood-based generative models proposed recently,

which emerged as a strong competitor to GANs. Diffusion models have outperformed

GANs for image synthesis tasks [25, 56, 100]. Compared with GAN models, diffusion

models are more stable during training and provide better distribution coverage.

Diffusion models contain two processes: a forward diffusion process and a reverse

generation process. The forward diffusion process gradually adds Gaussian noise to

the data and eventually transforms it into noise. The reverse generation process

aims to recover the data from the noise by a denoising-like technique. A well-trained

diffusion model is capable of generating images with random noise input. Similar

to GAN models, diffusion models can achieve adversarial attacks by incorporating

adversarial objectives [13, 15,16].

GAN-based unrestricted adversarial attacks often exhibit poor performance on

high-quality datasets, particularly in terms of visual quality, because they directly

add the PGD perturbations to the GAN latents without theoretic supports. These

attacks tend to generate low-quality adversarial examples compared to benign GAN

examples [110]. Therefore, these attacks are not imperceptible among GAN synthetic

data. Diffusion models, however, offer state-of-the-art generation performance [25]

on challenging datasets like LSUN [137] and ImageNet [23]. The conditional diffusion

models can generate images based on specific conditions by sampling from a per-

turbed conditional Gaussian noise, which can be carefully modified with adversarial

objectives. These properties make diffusion models more suitable for conducting un-

restricted adversarial attacks. Nevertheless, existing adversarial attack methods using

diffusion models [13, 15, 16] adopt similar PGD perturbations to the sample in each

reverse generation process, making them generate relatively low-quality adversarial

examples.

In this chapter, we propose a novel and interpretable unrestricted adversarial

attack method called AdvDiff that utilizes diffusion models for adversarial examples
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Figure 3.1: The two new guidance techniques in our AdvDiff to generate
unrestricted adversarial examples. During the reverse generation process, the
adversarial guidance is added at timestep 𝑥𝑡, which injects the adversarial objective
𝑦𝑎 into the diffusion process. The noise sampling guidance modifies the original noise
by increasing the conditional likelihood of 𝑦𝑎.

generation, as shown in Figure 3.1. Specifically, AdvDiff uses a trained conditional

diffusion model to conduct adversarial attacks with two new adversarial guidance

techniques. 1) During the reverse generation process, we gradually add adversarial

guidance by increasing the likelihood of the target attack label. 2) We perform the

reverse generation process multiple times, adding adversarial prior knowledge to the

initial noise with the noise sampling guidance.

Our theoretical analysis indicates that these adversarial guidance techniques can

effectively craft adversarial examples by the reverse generation process with adversar-

ial conditional sampling. Furthermore, the sampling of AdvDiff benefits from stable

and high sample quality of the diffusion models sampling, which leads to the gener-

ation of realistic unrestricted adversarial examples. Through extensive experiments

conducted on two datasets, i.e., the high-quality dataset ImageNet, and the small,

robust dataset MNIST, we have observed a significant improvement in the attack per-

formance using AdvDiff with diffusion models. These results prove that our proposed

AdvDiff is more effective than previous unrestricted adversarial attack methods in

conducting unrestricted adversarial attacks to generate high-fidelity and diverse ex-

amples without decreasing the generation quality.

Our contributions can be summarized as follows:

21



• We propose AdvDiff, the new form unrestricted adversarial attack method that

utilizes the reverse generation process of diffusion models to generate realistic

adversarial examples.

• We design two new effective adversarial guidance techniques to the sampling

process that incorporate adversarial objectives to the diffusion model without

re-training the model. Theoretical analysis reveals that AdvDiff can generate

unrestricted adversarial examples while preserving the high-quality and stable

sampling of the conditional diffusion models.

• We perform extensive experiments to demonstrate that AdvDiff achieves an

overwhelmingly better performance than GAN models on unrestricted adver-

sarial example generation.

3.2 Preliminaries

In this section, we introduce the diffusion model and the classifier guidance for con-

structing our adversarial diffusion model.

3.2.1 Classifier-Guided Guidance

Dhariwal et al. [25] achieved conditional diffusion sampling by adopting a trained clas-

sifier. The conditional information is injected into the diffusion model by modifying

the mean value 𝜇𝜃(𝑥𝑡, 𝑡) of the samples according to the gradient of the prediction of

the target class 𝑦 by the trained classifier. They adopted log probability to calculate

the gradient, and the mean value is given by:

𝜇̂𝜃(𝑥𝑡, 𝑡) = 𝜇𝜃(𝑥𝑡, 𝑡) + 𝑠 · ∇𝑥𝑡 log 𝑝𝜑(𝑦|𝑥𝑡) (3.1)

where 𝑠 is the guidance scale.
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3.2.2 Classifier-Free Guidance

Ho et al. [47] recently proposed a new conditional diffusion model using classifier-free

guidance that injects class information without adopting an additional classifier. The

classifier-free guidance utilizes a conditional diffusion model 𝑝𝜃(𝑥|𝑦) for image syn-

thesis with given labels. For effective training, they jointly train the unconditional

diffusion model 𝑝𝜃(𝑥|∅) and the conditional diffusion model 𝑝𝜃(𝑥|𝑦), where the uncon-

ditional diffusion model is simply replacing the label information with ∅. Sampling is

performed by pushing the model towards the latent space of 𝑝𝜃(𝑥|𝑦) and away from

𝑝𝜃(𝑥|∅):

𝜖𝜃(𝑥𝑡|𝑦) = 𝜖𝜃(𝑥𝑡|∅) + 𝑤 · (𝜖𝜃(𝑥𝑡|𝑦)− 𝜖𝜃(𝑥𝑡|∅)) (3.2)

where 𝑤 is the weight parameter for class guidance and ∅ is the empty set.

The idea of classifier-free guidance is inspired by the gradient of an implicit clas-

sifier 𝑝𝑖(𝑦|𝑥) ∝ 𝑝(𝑥|𝑦)/𝑝(𝑥), the gradient of the classifier would be:

∇𝑥𝑙𝑜𝑔𝑝
𝑖(𝑦|𝑥) ∝ ∇𝑥𝑙𝑜𝑔𝑝(𝑥|𝑦)−∇𝑥𝑙𝑜𝑔𝑝(𝑥)

∝ 𝜖𝜃(𝑥𝑡|𝑦)− 𝜖𝜃(𝑥𝑡|∅) (3.3)

The classifier-free guidance has a good capability of generating high-quality con-

ditional images, which is critical for performing adversarial attacks. The generation

of these images does not rely on a classification model and thus can better fit the

conditional distribution of the data.

3.3 Adversarial Diffusion Sampling

3.3.1 Rethinking Unrestricted Adversarial Examples

Song et al. [110] presented a new form of adversarial examples called UAEs. These

adversarial examples are not generated by adding perturbations over the clean data

but are directly generated by any generative model. UAEs can be viewed as false

negative errors in the classification tasks, and they can also bring severe security
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problems to deep learning models. These generative-based UAEs can be formulated

as:

𝐴UAE ≜ {𝑥 ∈ 𝒢(𝑧adv, 𝑦)|𝑦 ̸= 𝑓(𝑥)} (3.4)

where 𝑓(·) is the target model for unrestricted adversarial attacks. The unrestricted

adversarial attacks aim to generate UAEs that fool the target model while still can

be visually perceived as the image from ground truth label 𝑦.

Previous UAE works adopt GAN models for the generation of UAEs, and these

works perturb the GAN latents by maximizing the cross-entropy loss of the target

model, i.e., max𝑧adv ℒ(𝑓(𝒢(𝑧adv, 𝑦)), 𝑦). Ideally, the generated UAEs should guarantee

similar generation quality to the samples crafted by standard 𝑧 because successful

adversarial examples should be imperceptible to humans. In other words, UAEs

should not be identified among the samples with adversarial latents and standard

latents.

However, due to GAN’s poor interpretability, there’s no theoretical support on

𝑧𝑎𝑑𝑣 that can craft UAEs with normally trained GANs. The generator of GAN is not

trained with 𝑧𝑎𝑑𝑣 = 𝑧 +∇ℒ but only 𝑧 ∼ 𝒩 (0, I). Therefore, GAN-based UAEs en-

counter a significant decrease in generation quality because samples with 𝑧𝑎𝑑𝑣 are not

well-trained compared with samples with 𝑧 ∼ 𝒩 (0, I). Moreover, the GAN latents are

sampled from low dimensional latent spaces. Therefore, GANs are extremely sensitive

to the latent 𝑧 [72, 106]. If we inject gradients of the classification results into GAN

latents, GAN-based methods are more likely to generate flipped-label UAEs (images

corresponding to the targeted attack label 𝑦𝑎 instead of the conditional generation

label 𝑦) and distorted UAEs. However, these generation issues are hard to address

only by attack success rate (ASR). In other words, even with a high ASR, some of

the successful UAEs with GAN-based methods should be identified as failure cases

for poor visual quality. However, such cases can not be reflected by ASR but can be

evaluated by generation quality. All these problems may indicate that GAN models

are not suitable for generative-based adversarial attacks.
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Figure 3.2: Unrestricted adversarial examples generated by the diffusion
model. The generated adversarial examples should be visually indistinguishable
from clean data with label 𝑦 but wrongly classified by the target classifier 𝑓 .

Diffusion models have shown better performance on image generation than GAN

models [25]. They are log-likelihood models with interpretable generation processes.

In this chapter, we aim to generate UAEs by injecting the adversarial loss with theo-

retical proof and without sabotaging the benign generation process, where we increase

the conditional likelihood on the target attack label by following the diffusion process.

The perturbations are gradually injected with the backward generation process of the

diffusion model by the same sample procedure. As shown in Figure 3.2, the diffusion

model can sample images from the conditional distribution 𝑝(𝑥|𝑦). The samples from

𝑝(𝑥|𝑦, 𝑓(𝑥) ̸= 𝑦) are the adversarial examples that are misclassified by 𝑓(·). These

examples also follow the data distribution 𝑝(𝑥|𝑦) but on the other side of the label

𝑦 ’s decision boundary of 𝑓(·). Moreover, the diffusion model’s generation process

takes multiple sampling steps. Thus, we don’t need one strong perturbation to the

latent like GAN-based methods. The AdvDiff perturbations at each step are unno-

ticeable, and perturbations are added to the high dimensional sampled data rather

than low dimensional latents. Therefore, AdvDiff with diffusion models can preserve

the generation quality and barely generates flipped-label or distorted UAEs.
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3.3.2 Adversarial Diffusion Sampling with Theoretical Sup-

port

There are several existing adversarial attack methods [13,15,16] that adopt diffusion

models to generate adversarial examples. However, these methods still adopt PGD

or I-FGSM gradients to perturb the diffusion process for constructing adversarial

examples. As discussed earlier, the generation process of diffusion models is a specially

designed sampling process from given distributions. Such adversarial gradients change

the original generation process and can harm the generation quality of the diffusion

model. Additionally, these methods fail to give a comprehensive discussion of the

adversarial guidance with theoretical analysis. Therefore, we aim to design a general

and interpretable method to generate adversarial examples using diffusion models

without affecting the benign diffusion process.

3.3.3 Adversarial Guidance

Inspired by Dhariwal’s work [25] that achieves the conditional image generation by

classifier gradient guidance ∇𝑥𝑡 log 𝑝𝜑(𝑦|𝑥𝑡), we generate our UAEs with adversarial

gradient guidance over the reverse generation process. Our attack aims at utilizing

a conditional diffusion model 𝜖𝜃(𝑥𝑡, 𝑦) to generate 𝑥0 that fits the ground truth label

𝑦 while deceiving the target classifier with 𝑝𝑓 (𝑥0) ̸= 𝑦. These generated samples are

the false negative results in 𝑝𝑓 ’s classification results.

Normally, we will obtain the images with label 𝑦 by following the standard reverse

generation process with classifier-free guidance:

𝑥𝑡−1 = 𝜇(𝑥𝑡, 𝑦) + 𝜎𝑡𝜀 (3.5)

where 𝜇(𝑥𝑡, 𝑦) is the conditional mean value and 𝜀 is sampled from 𝜀 ∼ 𝒩 (0, I).

Sampling by Equation 3.5, we obtain the samples with the generation process

𝑝(𝑥𝑡−1|𝑥𝑡, 𝑦). Following the above-mentioned definition of UAEs, we can get our

adversarial examples by adding adversarial guidance to the standard reverse pro-
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cess, which is performing another sampling with the adversarial generation process

𝑝(𝑥*
𝑡−1|𝑥𝑡−1, 𝑓(𝑥) ̸= 𝑦). We find that specifying a target label for the adversarial

generation process is more effective during experiments. Suggest the target label 𝑦𝑎

is the target for the adversarial attacks, the adversarial example is sampled by the

following steps:

𝑥*
𝑡−1 = 𝑥𝑡−1 + 𝜎2

𝑡 𝑠∇𝑥𝑡−1 log 𝑝𝑓 (𝑦𝑎|𝑥𝑡−1) (3.6)

where 𝑠 is the adversarial guidance scale. The derivation of Equation 3.6 is given

in the Appendix. Intuitively, the adversarial guidance encourages the generation of

samples with a higher likelihood of the target label.

In practice, we utilize the classifier-free guidance to train a conditional diffusion

model 𝜖𝜃(·) as our basic generation model.

3.3.4 Noise Sampling Guidance

We can improve the reverse process by adding an adversarial label prior to the noise

data 𝑥𝑇 . The UAEs are a subset of the dataset labeled with 𝑦. They can be viewed as

the conditional probability distribution with 𝑝(𝑥|𝑦, 𝑓(𝑥) = 𝑦𝑎) during sampling, and

𝑦𝑎 is the target label for the adversarial attack. Therefore, we can add the adversarial

label prior to 𝑥𝑇 with Bayes’ theorem:

𝑝(𝑥𝑇 |𝑦𝑎) =
𝑝(𝑦𝑎|𝑥𝑇 )𝑝(𝑥𝑇 )

𝑝(𝑦𝑎)
=

𝑝(𝑦𝑎|𝑥𝑇 , 𝑥0)𝑝(𝑥𝑇 |𝑥0)

𝑝(𝑦𝑎|𝑥0)

=𝑝(𝑥𝑇 |𝑥0)𝑒
log 𝑝(𝑦𝑎|𝑥𝑇 )−log 𝑝(𝑦𝑎|𝑥0) (3.7)

We can infer the 𝑥𝑇 with the adversarial prior by Equation 3.16, i.e.,

𝑥𝑇 = (𝜇(𝑥0, 𝑦) + 𝜎𝑡𝜀) + 𝜎̄2
𝑇𝑎∇𝑥0 log 𝑝𝑓 (𝑦𝑎|𝑥0) (3.8)

where 𝑎 is the noise sampling guidance scale. See the Appendix for detailed proof.

Equation 3.8 is similar to Equation 3.6 as they both add adversarial guidance to

the reverse generation process. However, the noise sampling guidance is added to 𝑥𝑇

27



Algorithm 1 DDPM Adversarial Diffusion Sampling
Require: 𝑦𝑎: target label for adversarial attack, 𝑦: ground truth class label, 𝑠, 𝑎:

adversarial guidance scale, 𝑤: classification guidance scale, 𝑁 : noise sampling
guidance steps, 𝑇 : reverse generation process timestep

1: 𝑥𝑇 ∼ 𝒩 (0, I)
2: 𝑥𝑎𝑑𝑣 = ∅
3: for 𝑖 = 1 . . . 𝑁 do
4: for 𝑡 = 𝑇, . . . , 1 do
5: 𝜖𝑡 = (1 + 𝑤)𝜖𝜃(𝑥𝑡, 𝑦)− 𝑤𝜖𝜃(𝑥𝑡)
6: Classifier-free sampling 𝑥𝑡−1 with 𝜖𝑡.
7: Input 𝑥𝑡−1 to target model and get the gradient log 𝑝𝑓 (𝑦𝑎|𝑥𝑡−1))
8: 𝑥*

𝑡−1 = 𝑥𝑡−1 + 𝜎2
𝑡 𝑠∇𝑥𝑡−1 log 𝑝𝑓 (𝑦𝑎|𝑥𝑡−1)

9: end for
10: Obtain classification result from 𝑓(𝑥0)
11: Compute the gradient with log 𝑝𝑓 (𝑦𝑎|𝑥0)
12: Update 𝑥𝑇 by 𝑥𝑇 = 𝑥𝑇 + 𝜎̄2

𝑇𝑎∇𝑥0 log 𝑝𝑓 (𝑦𝑎|𝑥0)
13: 𝑥𝑎𝑑𝑣 ← 𝑥0 if 𝑓(𝑥0) = 𝑦𝑎
14: end for
15: return 𝑥𝑎𝑑𝑣

according to the final classification gradient ∇𝑥0 log 𝑝𝑓 (𝑦𝑎|𝑥0), which provides a strong

adversarial guidance signal directly to the initial input of the generative model. The

gradient of Equation 3.8 is effective as it reflects the eventual classification result of

the target classifier.

3.3.5 Training-Free Adversarial Attack

The proposed adversarial attack does not require additional modification on the train-

ing of the diffusion model. The adversarial examples are sampled by using Algorithm

1 over the trained classifier-free diffusion model 𝜖𝜃(·).

3.4 Experiments

Datasets and Target Models. We use two datasets for major evaluation: MNIST

[24] and ImageNet [23]. MNIST is a 10-classes dataset consisting of handwritten

numbers from 0 to 9. We adopt the MNIST dataset to evaluate our method for

low-quality robust image generation. ImageNet is a large visual database with 1000
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Figure 3.3: Adversarial examples on the MNIST dataset. Perturbation-based
attack methods generate noise patterns to conduct attacks, while unrestricted adver-
sarial attacks (U-GAN and AdvDiff) are imperceptible to the clean data.

object classes and is used for the high-quality generation task. For target classifiers,

we adopt simple LeNet5 [61], and ResNet18 [43] for the MNIST dataset, and the

widely-used ResNet50 [43] and WideResNet50-2 [140] for the ImageNet dataset.

Comparisons. It is not applicable to give a clear comparison between pertur-

bation attacks and unrestricted attacks because perturbation attacks have the cor-

responding ground truth while unrestricted attacks do not. We mainly compare our

method with the unrestricted adversarial attack U-GAN [110] and give the discussion

with the AutoAttack [19], PGD [84], BIM [26], and C&W [10] perturbation-based at-

tacks under norm ℓinf = 8/255. For U-GAN, We adopt AC-GAN [90] for the MNIST

dataset, and SAGAN [142] and BigGAN [8] for the ImageNet dataset, as AC-GAN has

shown poor performance on ImageNet. We use the official code from DiffAttack [13]

and implement AdvDiffuser by ourselves [15] for comparisons. We do not compare

with Chen et al. [16], because they use a similar method as DiffAttack and without

official code. Because existing diffusion model attacks are all untargeted attacks, we

include the untargeted version of AdvDiff for a clear comparison, which is represented

by “AdvDiff-Untargeted”.

Implementation Details. Because our adversarial diffusion sampling does not

require additional training to the original diffusion model, we use the pre-trained

diffusion model in our experiment. We adopt DDPM [46] with classifier-free guidance

29



Benign

UAE

Benign

UAE

0 0 2 0 0 00 0 2 0 0

55 6 5 5 5

mushroommushroom burrito

cornagaric umbrella

ASR 6/6
Quailty 4/6

ASR 1/6
Quailty 6/6

ASR 3/3
Quailty 1/3

ASR 1/3
Quailty 3/3

ASR 3/3
Quailty 3/3

ASR 1/6
Quailty 6/6

ASR 6/6
Quailty 6/6

ASR 1/3
Quailty 3/3

00 0 3 0 0

UAE

Benign

UAE

53 5 2 5 5

mushroommushroom harvester

shopping
basket

agaric harvester

Benign

Figure 3.4: Comparisons of unrestricted adversarial attacks between GANs
and diffusion models on two datasets.. Left: generated samples from U-GAN
(BigGAN for ImageNet dataset). Right: generated samples from AdvDiff. We gener-
ate unrestricted adversarial examples on the MNIST “0" label and ImageNet “mush-
room" label. U-GAN is more likely to generate adversarial examples with the target
label, i.e., examples with red font. However, AdvDiff tends to generate the “false
negative" samples by the target classifier by combing features from the target label.

for the MNIST dataset and LDM [100] with DDIM sampler for the ImageNet dataset.

For MNIST dataset, we use 𝑁 = 10, 𝑠 = 0.5, and 𝑎 = 1.0, And 𝑁 = 5, 𝑠 = 0.7, and

𝑎 = 0.5 for ImageNet dataset.

Evaluation Metrics. We utilize the top-1 classification result to evaluate the

ASR on different attack methods under untargeted attack settings. As discussed

earlier, GAN-based UAEs often encounter severe generation quality drops compared

to benign GAN samples. Therefore, we give comparisons of generation performance

on ImageNet to evaluate the attack performance of different UAEs in imperceptibly.

The results are averaged with five runs. We use ResNet50 as the target model for

default settings.

3.4.1 Attack Performance

MNIST We show the attack success rate against the normally trained model and

adversarially trained model [84] in the MNIST dataset. All the selected adversarial
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Table 3.1: The attack success rate on MNIST dataset.

Method
ASR(%)

LeNet5 ResNet18
Clean PGD-AT Clean PGD-AT

PGD 99.8 25.6 99.3 20.8
BIM 99.6 34.6 100 31.5
C&W 100 68.6 100 64.5
U-GAN 88.5 79.4 85.6 75.1
AdvDiff 94.2 88.6 92.1 86.5

Table 3.2: The attack success rate on ImageNet dataset. U-SAGAN and
U-BigGAN represent the base GAN models for U-GAN are SAGAN and BigGAN,
respectively.

Method
ASR(%)

Time (s)ResNet50 WideResNet50-2
Clean DiffPure PGD-AT Clean DiffPure PGD-AT

AutoAttack 95.1 22.2 56.2 94.9 20.6 55.4 0.5
U-SAGAN 99.3 30.5 80.6 98.9 28.6 70.1 10.4
U-BigGAN 96.8 40.1 81.5 96.5 35.5 78.4 11.2
AdvDiffuser 95.4 28.9 90.6 94.6 26.5 88.9 38.6
DiffAttack 92.8 30.6 88.4 90.6 27.6 85.3 28.2
AdvDiff 99.8 41.6 92.4 99.9 38.5 90.6 9.2
AdvDiff-Untargeted 99.5 75.2 94.5 99.4 70.5 92.6 9.6

attacks achieve over 90% attack success rate against the normally trained model.

The adversarially trained model can effectively defend against perturbation-based

adversarial attacks for their noise-like perturbation generation patterns, as reported

in Table 3.1. However, the UAEs obviously perform better with their non-perturbed

image generation. Despite the fact that the unrestricted attack can break through

the adversarial defenses, the crafted adversarial examples should also be imperceptible

to humans for a reasonably successful attack. The visualized adversarial examples

in Figure 3.3 show that the perturbation-based adversarial attacks tend to blur the

original images while U-GAN can generate mislabeled adversarial examples.

ImageNet It is reported that deep learning models on ImageNet are extremely vul-

nerable to adversarial attacks. However, the state-of-the-art adversarial defense Diff-

Pure [89] and adversarial training [84] can still defend against the perturbation-based

attacks, as reported in Table 3.2. More UAEs evade the current defenses, but the

31



generation quality of U-GAN is relatively poor compared to our adversarial examples.

This phenomenon also shows that the performance of UAEs is heavily affected by the

generation quality of the generation model. The adversarial examples generated by

AdvDiff are more aggressive and stealthy than U-GAN’s. Meanwhile, the generation

speed of AdvDiff is the best among all the unrestricted adversarial attack methods.

Note that we adopt the clean images generated by LDM to achieve DiffAttack and

AutoAttack for a fair comparison.

3.4.2 Generation Quality: True ASR for UAEs

We witness similar ASR with U-GAN and AdvDiff. However, imperceptibility is also

critical for a successful unrestricted adversarial attack, so we adopt the evaluation

metrics in [25] to compare the generation quality with and without performing unre-

stricted attacks. Table 3.3 shows that the AdvDiff achieves an overwhelming better

IS score and similar FID score on the large-scale ImageNet dataset, where FID [44]

and IS [101] scores are commonly adopted for evaluating the quality of a generative

model. Because the generation of UAEs does not modify the data distribution of the

generated images, the Precision score can be inferred as generation quality, while the

Recall score indicates the flipped-label problems. We witness the frequent generation

of flipped-label UAEs and low-quality UAEs from GAN-based methods, which is re-

flected by the decrease in the Precision score and the increase in the Recall score.

Figure 3.4 illustrates this problem with some examples. It can be further proved

that U-BigGAN achieves much higher image quality on non-reference metrics than

reference metrics, as shown in Table 3.4.

We find the IS score is heavily affected by the transferability of adversarial exam-

ples due to the calculation method. Therefore, we further compare the image quality

of adversarial examples by commonly used metrics in Table 3.4. The results show that

AdvDiff (average 5 out of 5) and AdvDiff-Untargeted (average 4 out of 5) outperform

existing adversarial attack methods using diffusion models. The perturbation-based

adversarial attacks, i.e., AutoAttack, achieve much worse image quality compared

with UAEs.

32



Table 3.3: The generation performance on the ImagetNet dataset.

Method FID (↓) sFID (↓) IS (↑) Precision (↑) Recall (↑)
SAGAN 41.9 50.2 26.7 0.50 0.51
BigGAN 19.3 45.7 250.3 0.95 0.21
LDM 12.3 25.4 385.5 0.94 0.73
U-SAGAN 52.8/+26% 52.2/+4% 12.5/-53% 0.58 0.57
U-BigGAN 25.4/+31% 52.1/+14% 129.4/-48% 0.81 0.35
AdvDiffuser 26.8/+117% 38.6/+51% 206.8/-46% 0.70 0.75
DiffAttack 20.5/+66% 40.2/+58% 264.3/-31% 0.83 0.73
AdvDiff 16.2/+31% 30.4/+20% 343.8/-10% 0.90 0.75
AdvDiff-Untargeted 22.8/+85% 33.4/+28% 220.8/-45% 0.85 0.76

Table 3.4: The image quality on the ImagetNet dataset.

Method FID (↓) LPIPS (↓) SSIM (↑) BRISQUE [85] (↓) TRES (↑)
AutoAttack 26.5 0.72 0.21 34.4 69.8
U-BigGAN 25.4 0.50 0.32 19.4 80.3
AdvDiffuser 26.8 0.21 0.84 18.9 75.6
DiffAttack 20.5 0.15 0.75 22.6 67.8
AdvDiff 16.2 0.03 0.96 18.1 82.1
AdvDiff-Untargeted 22.8 0.14 0.85 23.4 76.8

3.4.3 UAEs against Defenses and Black-box Models

Current defenses assume the adversarial examples are based on perturbations over

data from the training dataset, i.e., 𝑥𝑎𝑑𝑣 = 𝑥 + ∇ℒ, 𝑥 ∈ 𝐷. However, UAEs are

synthetic data generated by the generative model. Because of different data sources,

current defenses are hard to defend UAEs, which brings severe security concerns to

deep learning applications. The proposed AdvDiff achieves an average of 36.8% ASR

against various defenses, while AutoAttack only achieves 30.7% ASR with significantly

lower image quality. We also test the attack transferability of AdvDiff and the results

show that the untargeted version of AdvDiff achieves the best performance against

black-box models. Experiment results are given in Table 3.5.
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Table 3.5: The attack success rates (%) of ResNet50 examples for transfer
attack and attack against defenses on the ImagetNet dataset.

Method ResNet-152 [43] Inception v3 [113] ViT-B [28] BEiT [5]
AutoAttack 32.5 38.6 9.3 45.3
U-BigGAN 30.8 35.3 30.1 69.4
AdvDiffuser 18.3 20.0 18.5 79.4
DiffAttack 21.1 43.9 17.4 78.0
AdvDiff 20.5 14.9 17.8 78.8
AdvDiff-Untargeted 52.0 42.7 36.0 81.5
Method Adv-Inception [84] AdvProp [131] DiffPure [89] HGD [73]
AutoAttack 14.6 69.6 22.2 20.5
U-BigGAN 40.6 75.2 40.1 22.6
AdvDiffuser 24.4 84.0 30.5 10.8
DiffAttack 30.9 85.1 30.6 20.5
AdvDiff 19.4 89.7 41.6 17.8
AdvDiff-Untargeted 60.1 95.3 75.2 53.8
Method R&P [132] RS [17] NRP [88] Bit-Red [135]
AutoAttack 20.6 38.9 39.4 19.8
U-BigGAN 14.2 34.5 30.9 13.1
AdvDiffuser 15.4 38.4 40.5 11.4
DiffAttack 23.7 40.8 38.5 20.1
AdvDiff 17.4 47.6 45.2 15.8
AdvDiff-Untargeted 56.8 82.8 74.2 52.6

3.4.4 Better Adversarial Diffusion Sampling

We present detailed comparisons with DiffAttack and AdvDiffuser. The results show

that the proposed adversarial guidance achieves significantly higher generation quality

than PGD-based adversarial guidance. With PGD gradient guidance, the diffusion

model generates images with a similar Recall score but a much lower Precision score,

which indicates that the PGD gradient influences the benign generation process and

causes the generation of low-quality images. The result proves that the adversarial

guidance of diffusion models should be carefully designed without affecting the benign

sampling process. Meanwhile, the generation speed of AdvDiff is the best among the

existing diffusion attack methods. Note that AdvDiff (36.8%) sightly outperforms

AdvDiffuser (32.0%) and DiffAttack (36.2%) against defenses. However, previous

attacks achieve slightly better transfer attack performance than the original AdvDiff.

The reason could be the gradient of the cross-entropy loss is shared among nearly
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all the deep learning models and is better at attack transferability against these

models. Nevertheless, the untargeted version of AdvDiff achieves overwhelmingly

better performance, which further demonstrates the effectiveness of the proposed

adversarial sampling. But the generation quality is affected, we leave a better design

in the future work.

3.4.5 Ablation Study

We discuss the impact of the parameters of AdvDiff in the subsection. Note that our

proposed method does not require re-training the conditional diffusion models. The

ablation study is performed only on the sampling process.

Adversarial Guidance Scale 𝑠 and 𝑎. The magnitudes of 𝑠 and 𝑎 greatly affect

the ASR of AdvDiff, as shown in Figure 3.5. Noted that we witness the generation

of unrealistic images when setting the adversarial guidance extremely large.

Noise Sampling Guidance Steps 𝑁 . Like the iteration times of GAN-based

unrestricted adversarial attacks, larger steps 𝑁 can effectively increase the attack

performance against an accurate classifier, as shown in Figure 3.5. However, it can

affect the initial noise distribution and hence decreases the generation quality. During

experiments, we observe that adversarial guidance is already capable of generating

adversarial examples with high ASR. Thus, we can set a small noise sampling guidance

step 𝑁 for better sample quality.

Adversarial Guidance Timestep 𝑡*. The reverse diffusion process gradually de-

noises the input noise. Therefore we generally get noisy images at most timesteps.

Because the target classifier is not able to classify the noisy input, the adversarial

guidance is not effective in the early reverse diffusion process. Figure 3.5 shows our

results, and we can improve the performance of adversarial guidance by training a

separate classifier, which we leave for future work.
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3.5 Conclusion

In this work, we propose a new method called AdvDiff, which can conduct unrestricted

adversarial attacks using any pre-trained conditional diffusion model. We propose two

novel adversarial guidance techniques in AdvDiff that lead diffusion models to obtain

high-quality, realistic adversarial examples without disrupting the diffusion process.

Experiments show that our AdvDiff vastly outperforms GAN-based and diffusion-

based attacks in terms of attack success rate and image generation quality, especially

in the ImageNet dataset. AdvDiff indicates that diffusion models have demonstrated

effectiveness in adversarial attacks, and highlights the need for further research to

enhance AI model robustness against unrestricted attacks.

3.6 Appendix

3.6.1 Detailed Proof of Equation 3.6

We can obtain the sample 𝑥𝑡−1 with condition label 𝑦, according to the sampling

with the classifier-free guidance. To get the unrestricted adversarial example 𝑥*
𝑡−1,

we add adversarial guidance to the conditional sampling process with Equation 8.

With Bayes’ theorem, we want to deduce the adversarial sampling with adversarial

guidance at timestep 𝑡 by:

𝑝(𝑥*
𝑡−1|𝑦𝑎) =

𝑝(𝑦𝑎|𝑥*
𝑡−1)𝑝(𝑥

*
𝑡−1)

𝑝(𝑦𝑎)
(3.9)

with Equation 3.9, we want to sample the adversarial examples with the target label

𝑦𝑎. Starting from 𝑥𝑡, the sampling of the reverse generation process with AdvDiff is:

𝑝(𝑥*
𝑡−1|𝑥𝑡, 𝑦𝑎) =

𝑝(𝑦𝑎|𝑥*
𝑡−1, 𝑥𝑡)𝑝(𝑥

*
𝑡−1|𝑥𝑡)

𝑝(𝑦𝑎|𝑥𝑡)
(3.10)

Noted that Equation 3.10 is the same as the deviation of classifier-guidance in [25]’s

Section 4.1, where they treated 𝑝(𝑦𝑎|𝑥𝑡) as a constant. Because 𝑝(𝑥*
𝑡−1|𝑥𝑡) is the known
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sampling process by our conditional diffusion sampling, we evaluate 𝑝(𝑦𝑎|𝑥*
𝑡−1,𝑥𝑡)

𝑝(𝑦𝑎|𝑥𝑡)
by:

log 𝑝𝑓 (𝑦𝑎|𝑥*
𝑡−1)− log 𝑝𝑓 (𝑦𝑎|𝑥𝑡) (3.11)

We can approximate Equation 3.11 using a Taylor expansion around 𝑥*
𝑡−1 = 𝜇(𝑥𝑡) as:

log 𝑝𝑓 (𝑦𝑎|𝑥*
𝑡−1)− log 𝑝𝑓 (𝑦𝑎|𝑥𝑡) ≈ log 𝑝𝑓 (𝑦𝑎|𝜇(𝑥𝑡))

+ (𝑥*
𝑡−1 − 𝜇(𝑥𝑡))∇𝜇(𝑥𝑡) log 𝑝𝑓 (𝑦𝑎|𝜇(𝑥𝑡))

− log 𝑝𝑓 (𝑦𝑎|𝑥𝑡) + 𝐶

= (𝑥*
𝑡−1 − 𝜇(𝑥𝑡))∇𝜇(𝑥𝑡) log 𝑝𝑓 (𝑦𝑎|𝜇(𝑥𝑡)) + 𝐶 (3.12)

Assume 𝑝(𝑥*
𝑡−1|𝑥𝑡) = 𝒩 (𝑥*

𝑡−1;𝜇(𝑥𝑡), 𝜎
2
𝑡 I) ∝ 𝑒−(𝑥*

𝑡−1−𝜇(𝑥𝑡))2/2𝜎2
𝑡 , we have:

𝑝(𝑥*
𝑡−1|𝑥𝑡, 𝑦𝑎) ∝ 𝑒−(𝑥*

𝑡−1−𝜇(𝑥𝑡))2/2𝜎2
𝑡+(𝑥*

𝑡−1−𝜇(𝑥𝑡))∇𝜇(𝑥𝑡)
log 𝑝𝑓 (𝑦𝑎|𝜇(𝑥𝑡))

∝ 𝑒−(𝑥*
𝑡−1−𝜇(𝑥𝑡)−𝜎2

𝑡∇𝜇(𝑥𝑡)
log 𝑝𝑓 (𝑦𝑎|𝜇(𝑥𝑡)))2/2𝜎2

𝑡+(∇𝜇(𝑥𝑡)
log 𝑝𝑓 (𝑦𝑎|𝜇(𝑥𝑡)))2/2𝜎2

𝑡

∝ 𝑒−(𝑥*
𝑡−1−𝜇(𝑥𝑡)−𝜎2

𝑡∇𝜇(𝑥𝑡)
log 𝑝𝑓 (𝑦𝑎|𝜇(𝑥𝑡)))2/2𝜎2

𝑡+𝐶

≈ 𝒩 (𝑥*
𝑡−1;𝜇(𝑥𝑡) + 𝜎2

𝑡∇𝜇(𝑥𝑡) log 𝑝𝑓 (𝑦𝑎|𝜇(𝑥𝑡)), 𝜎
2
𝑡 I) (3.13)

Sampling with Equation 3.13 should be:

𝑥*
𝑡−1 = 𝜇(𝑥𝑡, 𝑦) + 𝜎𝑡𝜀+ 𝜎2

𝑡 𝑠∇𝜇(𝑥𝑡) log 𝑝𝑓 (𝑦𝑎|𝜇(𝑥𝑡)) (3.14)

where 𝜇(𝑥𝑡, 𝑦) is the conditional mean value and 𝜀 is sampled from 𝜀 ∼ 𝒩 (0, I).

Note that 𝜇(𝑥𝑡, 𝑦) + 𝜎𝑡𝜀 is the normal sampling process that we will get 𝑥𝑡−1. In

practice, in each diffusion step, the difference between 𝑥𝑡−1 and 𝜇(𝑥𝑡) should be small

enough [25, 46] for a reasonable and stable diffusion sampling. Therefore, we adopt

𝑥𝑡−1 to calculate the adversarial gradient after the sampling with the conditional

diffusion model, and we have:

𝑥*
𝑡−1 = 𝜇(𝑥𝑡, 𝑦) + 𝜎𝑡𝜀+ 𝜎2

𝑡 𝑠∇𝜇(𝑥𝑡) log 𝑝𝑓 (𝑦𝑎|𝜇(𝑥𝑡)) ≈ 𝑥𝑡−1 + 𝜎2
𝑡 𝑠∇𝑥𝑡−1 log 𝑝𝑓 (𝑦𝑎|𝑥𝑡−1)

(3.15)
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where 𝑠 is the adversarial guidance scale. □

3.6.2 Detailed Proof of Equation 3.8

The deviation of Equation 10 is similar to Equation 8, where the noise sampling

guidance is added with the forward diffusion process. Similarly, we have Equation 9:

𝑝(𝑥𝑇 |𝑦𝑎) =
𝑝(𝑦𝑎|𝑥𝑇 )𝑝(𝑥𝑇 )

𝑝(𝑦𝑎)
=

𝑝(𝑦𝑎|𝑥𝑇 , 𝑥0)𝑝(𝑥𝑇 |𝑥0)

𝑝(𝑦𝑎|𝑥0)
(3.16)

And Taylor expansion around 𝑥𝑇 = 𝑥0 to evaluate 𝑝(𝑦𝑎|𝑥𝑇 ,𝑥0)
𝑝(𝑦𝑎|𝑥0)

.

log 𝑝𝑓 (𝑦𝑎|𝑥𝑇 )− log 𝑝𝑓 (𝑦𝑎|𝑥0) = (𝑥𝑇 − 𝑥0)∇𝑥0 log 𝑝𝑓 (𝑦𝑎|𝑥0) + 𝐶 (3.17)

From 𝑥0 to 𝑥𝑇 , we gradually add the Gaussian noise with the predefined schedule [46]:

𝑝(𝑥𝑇 |𝑥0) = 𝒩 (𝑥𝑇 ;
√
𝛼̄𝑇𝑥0, (1− 𝛼̄𝑇 )I) (3.18)

The noise sampling guidance is as follows:

𝑥𝑇 ≈ (𝜇̄(𝑥0, 𝑦) + 𝜎̄𝑇 𝜀) + 𝜎̄2
𝑇𝑎∇𝑥0 log 𝑝𝑓 (𝑦𝑎|𝑥0)

= 𝑥𝑇 + 𝜎̄2
𝑇𝑎∇𝑥0 log 𝑝𝑓 (𝑦𝑎|𝑥0) (3.19)

where 𝜇̄(𝑥0, 𝑦) + 𝜎̄𝑇 𝜀 is the forward diffusion process to get 𝑥𝑇 with 𝑥0 and 𝑎 is the

noise sampling guidance scale. □
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Chapter 4

Diffusion Models as Strong

Adversaries

4.1 Introduction

The adversarial vulnerability [114] of deep learning models is a severe security is-

sue that threatens the deployment of AI applications. Adversarial attacks aim to

deceive deep learning models by introducing small perturbations to the input data

[1, 34, 60, 114]. Based on the knowledge the attacker possesses to generate these per-

turbations, adversarial attacks can be categorized as white-box attacks or black-box

attacks. White-box attacks assume that the attacker has access to the target model’s

parameters or network structure, allowing them to craft effective adversarial exam-

ples. On the other hand, black-box attacks assume that the adversary has no such

access and can only interact with the model through input-output queries. Despite

this limitation, black-box attacks have shown the ability to achieve high attack suc-

cess rates against state-of-the-art models in practical scenarios. As a result, deep

learning model applications face threats from potential adversaries.

In previous black-box attacks, the transferability of adversarial examples was ex-

ploited to deceive the target model. These attacks involved generating adversarial

examples against a substitute model that was trained on the same dataset as the

target model. However, a more practical scenario is that the adversary may not have
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Clean UAE

Figure 4.1: The generated clean images (left) and UAE from the diffusion
model. Our proposed attack is capable of producing high-quality UAEs under the
no-box threat model. It’s worth noting that these UAEs are generated without any
conspicuous noisy patterns, unlike perturbation-based attacks.

access to the training dataset of the target model, where we call this type of attack as

a no-box attack. The no-box threat model, introduced by Li et al. [65], imposes more

practical constraints on the adversary. In this scenario, the attacker is not allowed

to access the training data or the outputs of the black-box target model. Only a

few correctly labeled data are leaked to the adversary, which limits their knowledge

about the target model. Existing works on no-box adversarial attacks leverage the

transferability of adversarial examples from a substitute model [65, 112]. However,

these works still rely on using data from the validation set of the target model, which

may not be available or permissible in many security-concerned applications. Addi-

tionally, these attacks require a relatively larger norm perturbation than black-box

attacks for successful adversarial examples generation. Therefore, it is still a challenge

to conduct effective adversarial attacks under a no-box scenario.

With the advancements in generative models, there is a growing concern regard-

ing their potential threats to humans and deep learning applications. Diffusion mod-

els [46, 108] are particularly powerful generative models that have gained attention

from both the research community and the general public. Large-scale public text-

to-image diffusion models, such as Stable Diffusion [100], have demonstrated their

ability to generate AI-manipulated images that can deceive humans with false in-
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formation. This raises important security issues that require the attention of the

research community to address and mitigate the risks involved. Given the impressive

generative capabilities of diffusion models across various tasks, it is worth exploring

whether diffusion models can serve as strong adversaries by self-generating training

data for adversarial attacks. However, only a few works [13,15,16,20] have discussed

the ability of diffusion models for adversarial attacks. And none of them perform

adversarial attacks under the no-box scenario.

In this chapter, we investigate and demonstrate the effectiveness of diffusion mod-

els as powerful adversaries under the no-box and black-box threat models. Specifi-

cally, the training data of the proposed attack is only consisting of generated data by

the diffusion model for no-box attack. We leverage a technique called classifier-free

guidance [48] to conditionally generate data using label information from the target

model’s training dataset, which we utilized the generated data as the training dataset.

To provide a comprehensive discussion of the diffusion model, we utilize a classifica-

tion diffusion model as the substitute model in our attack. This substitute model

estimates the distribution of labels based on the input data, employing uncertainty

estimation techniques. To improve the transferability of adversarial examples, we

introduce scheduled noise during the training of the substitute model. Once the sub-

stitute model is trained, we utilize the same diffusion model to generate a dataset for

performing no-box unrestricted adversarial attacks as shown in Figure 4.1. We adopt

an ensemble-like approach using the Monte Carlo sampling method over multiple con-

ditional distribution predictions from the diffusion substitute model. The generation

pipeline of our proposed attack is given in Figure 4.2. We conduct experiments on the

ImageNet [23] dataset to demonstrate the effectiveness of diffusion models as strong

adversaries against deep learning models even in a no-box attack threat model. Our

work emphasizes the need for the community to focus on developing more robust

defenses against adversarial attacks involving diffusion models. Besides the no-box

attack, we also test the attack performance of diffusion models under the standard

black-box attack scenario.

Our contributions are summarized as follows:
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Substitute Model

Sampling ... Sampling

Adversarial Guidance

UAE

Figure 4.2: The attack pipeline of the proposed adversarial attack. The gen-
eration of our unrestricted adversarial examples follows the normal reverse generation
pattern of the diffusion models, where we incorporate adversarial guidance from the
substitute model to adversarially sample the UAEs.

• We propose an effective no-box adversarial attack method using diffusion models

against existing deep learning models. Our proposed attack does not rely on any

training data or queries from the target model, making it a practical approach

for no-box attacks. Additionally, the proposed method demonstrates significant

effectiveness in black-box adversarial attacks.

• We design effective approaches to generate no-box adversarial examples with dif-

fusion models under the no-box threat model, including the generation method

for constructing the dataset, a special fine-tuning method that incorporates

model uncertainty and noise augmentation to enhance the model transferabil-

ity, and a novel ensemble-like no-box unrestricted adversarial attack method

that leverages the average prediction from the diffusion substitute model for

the generation of strong adversarial examples.

• We conduct extensive experiments to validate the effectiveness of our approach.

Our results show that the proposed attack can generate effective no-box and

black-box adversarial examples, achieving a state-of-the-art attack success rate

compared to existing methods.
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4.2 Background

4.2.1 Adversarial Attacks

No-box attacks.

We give the definition of the no-box threat model in our chapter following Li et

al. [65] that we assume the attacker can access neither the whole training dataset nor

any pre-trained target model. Accessing the validation data or testing data is also

prohibited. The attacker can only have some basic information about the dataset

and the target model following the label-only data-free setting [144], such as label

encoding, label information, data structure, model input and output structure, and

any other auxiliary information.

In this chapter, we utilize the generative capabilities of diffusion models to con-

struct the training dataset for the substitute model. The selection of diffusion models

for this purpose needs to meet two requirements: (1) the diffusion models should be

open-source and publicly available for practical reasons, and (2) the diffusion models

should be capable of generating data that is similar to the training data of the target

classifier. To generate the training dataset, we employ conditional labels for DDIM

models with classifier-free guidance and prompts with label text for text-to-image

diffusion models. By using these techniques, we create a dataset that closely approx-

imates the target classifier’s training data. Once the training dataset is obtained,

we can train the substitute model using this data to perform the no-box adversarial

attack. This allows us to craft adversarial examples that can successfully fool the

target classifier, even without direct access to its training data or the ability to query

it.

4.2.2 Adversarial Attacks with Generative Models

Inspired by Dai’s work [20], diffusion models are a powerful model to generate human

imperceptible UAEs. To sample UAEs with the diffusion model, adversarial guidance

is added in the reverse generation process:
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𝑥𝑡−1 =
√
𝛼𝑡−1

(︃
𝑥𝑡 −

√
1− 𝛼𝑡𝜖

(𝑡)
𝜃 (𝑥𝑡)√

𝛼𝑡

)︃
+
√︀

1− 𝛼𝑡−1 − 𝜎2
𝑡 · 𝜖

(𝑡)
𝜃 (𝑥𝑡)

+ 𝜎𝑡𝜖𝑡 + 𝑎1 ·
√
1− 𝛼𝑡∇𝑥𝑡 log 𝑓(𝑦𝑎|𝑥𝑡) (4.1)

where 𝑎1 is the scale of the adversarial guidance and 𝑦𝑎 is the target label for the

adversarial attack.

The noise sampling guidance is added to the initial noise to better sample the

UAEs with prior knowledge:

𝑥𝑇 = 𝑥𝑇 + 𝑎2 ·
√
1− 𝛼𝑇∇𝑥0 log 𝑝𝑓 (𝑦𝑎|𝑥0) (4.2)

where 𝑎2 is the noise sampling guidance scale.

4.3 Methodology

The proposed attack achieves no-box adversarial attacks by UAEs generated by the

diffusion models. The whole attack pipeline is given in Figure 4.3. The substitute

model is trained by the generated dataset with the same diffusion models for attack.

We will introduce our training mechanisms for the substitute model with the gen-

erative ability of diffusion models in Section III.A, and the fine-tuning method with

model uncertainty in Section III.B. The no-box adversarial attack algorithms will be

illustrated in Section III.C with detailed discussions.

4.3.1 Training Mechanisms with Diffusion Models

With the development of diffusion models like the LDM [100] and its successor Stable

Diffusion, these models have shown remarkable capabilities in generating high-quality

and high-resolution images. Previous works have demonstrated that utilizing gener-

ative models as an additional source of training data can enhance the performance of

45



CARD Model

Sampling ... Sampling

Adversarial Guidance

Diffusion Model

Sampling ... Sampling

Synthetic Dataset

Class:
crampfish

No-box
Training

Class:
shark

Target Model

Figure 4.3: The attack pipeline of our proposed no-box adversarial attacks.
Firstly, we employ the diffusion model to generate the training dataset. This genera-
tion is guided by conditional sampling with class information from the original train-
ing dataset of the no-box models (Section III.A). Secondly, we train the substitute
Classification And Regression Diffusion (CARD) model using the synthetic dataset.
A unique fine-tuning mechanism is implemented to enhance the performance of the
proposed attack (Section III.B). Finally, we execute the unrestricted adversarial at-
tack against the substitute CARD model using the diffusion model. We leverage
adversarial guidance from multiple inferences of the CARD model to sample the im-
age adversarially (Section III.C). Ideally, images from the synthetic training dataset
should be accurately classified by the target model, while images with adversarial
guidance should mislead the target model, resulting in incorrect classification.
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classifiers. However, a crucial question arises: Can we solely rely on generative models

for training a classifier? In white-box settings, it is unlikely that the classifier trained

solely using generative models will be compatible or optimal. Generative models ex-

cel at producing realistic samples, but they may not capture all the complexities and

nuances of the real training data that the target classifier has been trained on. How-

ever, in real-world scenarios, such as applications concerned with privacy, we cannot

always access the training details of the target classifier. This practical limitation

inspires our approach of exclusively using data generated from diffusion models to

train the substitute model. While we recognize that relying solely on diffusion mod-

els for training may not produce a classifier that perfectly mirrors the target classifier

in white-box settings, our goal is to devise effective adversarial attacks within the

constraints of real-world settings. In these scenarios, accessing the training details of

the target classifier is often impractical or even prohibited.

Our work considers two training scenarios based on how the diffusion model is

trained for a comprehensive discussion on no-box attacks. For standard no-box set-

ting, we adopt pre-trained class-conditional LDM with public checkpoints. The gen-

eration of the training dataset is formulated as follows:

𝐷 ≜ {𝑥 ∼ 𝑝(𝑥𝑇 )
𝑇∏︁
𝑡=1

𝑝𝜃(𝑥𝑡−1|𝑥𝑡, 𝑦)} (4.3)

where 𝑦 is the label encoding of the generated data.

A strict no-box scenario is that we assume the diffusion model is trained on mul-

tiple datasets without any fine-tuning on the training dataset of the target model. In

our work, we use Stable Diffusion 2.0 [100], a text-to-image diffusion model available

to the public. To construct the training dataset, we utilize the label text from the

target model as prompts for text-to-image generation, which is formulated as:

𝜖̂
(𝑡)
𝜃 (𝑥𝑡|𝑦) = 𝜖

(𝑡)
𝜃 (𝑥𝑡|∅) + 𝑤 · (𝜖(𝑡)𝜃 (𝑥𝑡|𝜏𝜃(𝑦))− 𝜖

(𝑡)
𝜃 (𝑥𝑡|∅)) (4.4)

where the conditional guidance is incorporated with classifier-free guidance [48], and
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𝜏𝜃(𝑦) is the text prompt.

After obtaining the training dataset generated using diffusion models, we proceed

with the standard training of the substitute model. Besides, we also include standard

geometric transformations to enhance the performance of the substitute model in the

initial training.

4.3.2 Fine-Tuning with Model Uncertainty

Recent works demonstrate that uncertainty learning is beneficial for the decision-

making capabilities of deep learning models. Li et al. [66] also found that adopting

an approximate Bayesian inference technique to the substitute model can enhance the

performance of black-box attacks by a large margin. In the case of no-box attacks, it is

crucial to avoid overconfident predictions from the substitute model, which may arise

due to its under-fitted training on the synthetic dataset generated by diffusion models.

To address this, we propose a fine-tuning method that leverages model uncertainty

to enhance the transferability of the substitute model.

Diffusion probabilistic models, such as the Classification And Regression Diffusion

(CARD) model proposed by Han et al. [41], provide an effective way to capture model

uncertainty through variational inference. The inference for the classification task is

formulated as follows:

𝑦 ∼ 𝑝CARD(𝑦𝑇 )
𝑇∏︁
𝑡=1

𝑝CARD𝜃(𝑦𝑡−1|𝑦𝑡, 𝑥) (4.5)

where 𝑦𝑡−1 = 𝛾0𝑦0 + 𝛾1𝑦𝑡 + 𝛾2𝑓𝜑(𝑥) +

√︁
𝛽𝑡𝜖𝑡, 𝑦𝑇 ∼ 𝒩 (𝑓𝜑(𝑥), I), 𝛾 is the pre-defined

hyper-parameter, 𝜖𝑡 is the forward diffusion noise, and 𝑓𝜑 is the pre-trained substitute

model.

Mathematically, the CARD model adopts the diffusion process to finally predict

the probability of 𝑘𝑡ℎ class by:

Pr(𝑦 = 𝑘) =
exp(−(𝑦0 − 1)2𝑘)∑︀
𝑗 exp(−(𝑦0 − 1)2𝑗)

(4.6)
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where 𝑦0 is the output of the CARD model, and (𝑦0−1)𝑘 represent the 𝑘-th dimension

of the 𝑦0 vector.

CARD model performs classification tasks through the classification likelihoods

through its probability predictions. Therefore, it is more suitable to calculate the

adversarial guidance which also uses log-likelihoods to guide the diffusion model to

sample UAEs. The unrestricted adversarial attacks aiming at target label 𝑦𝑎 with

diffusion models and the CARD model are performed by replacing the original ad-

versarial guidance with:

∇𝑥𝑡 log 𝑝𝑓 (𝑦𝑎|𝑥𝑡) = ∇𝑥𝑡 log
exp(−((𝑦0|𝑥𝑡)− 1)2𝑎)∑︀
𝑗 exp(−((𝑦0|𝑥𝑡)− 1)2𝑗)

(4.7)

The original CARD model did not consider the input of noisy images. There-

fore, the performance of the CARD model with the input of images from the internal

sampling steps of the diffusion model is limited. Data augmentations like noise in-

jection [150] are effective methods to reduce over-fitting and improve the robustness

of a deep learning model. As our no-box attack follows the reverse diffusion process

to generate adversarial examples, utilizing noise augmentation would further improve

the attack performance which makes the substitute model able to classify noisy inputs.

Hence, different from simply adding Gaussian noise, our proposed noise augmenta-

tion method injects noises from the forward diffusion process. More specifically, the

fine-tuning training algorithm is given in Algorithm 2. Noted that we first train a

ResNet-50 [43] model as 𝑓𝜑.

The proposed noise augmentation method assists the substitute model in classi-

fying samples from the reverse diffusion process. We only select the last 20% of 𝑇

steps for sampling the noisy images, as the early sampling steps merely generate noise

patterns that are barely recognizable. After fine-tuning the CARD model, we execute

our no-box adversarial attacks using the CARD model as the substitute model.
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Algorithm 2 Fine-Tuning Training Algorithm
Require: 𝑓𝜑: pre-trained substitute model, 𝑥0: original sampled image without

noise, 𝛼̄: linear noise schedules for CARD, 𝛼̂: linear noise schedules for LDM, 𝑇 :
reverse generation process timestep for CARD, 𝑇LDM: reverse generation process
timestep for LDM

1: repeat
2: 𝑡ft ∼ Uniform({1 . . . 𝑇LDM})
3: Sample 𝑥noise with forward process of the LDM model

𝑞(𝑥noise|𝑥0) = 𝒩 (𝑥noise;
√︀

𝛼̂𝑡ft𝑥0, (1− 𝛼̂𝑡ft)I)

4: 𝑦0 ∼ 𝑞(𝑦0|𝑥noise)
5: 𝑡 ∼ Uniform({1 . . . 𝑇})
6: 𝜖 ∼ 𝒩 (0, I)
7: Compute noise estimation loss

ℒ𝜖 =
⃒⃒⃒⃒
𝜖− 𝜖𝜃

(︀
𝑥noise,

√
𝛼̄𝑡𝑦0

+
√
1− 𝛼̄𝑡𝜖+ (1−

√
𝛼̄𝑡)𝑓𝜑(𝑥noise), 𝑓𝜑(𝑥noise), 𝑡

)︀⃒⃒⃒⃒2
8: Optimization over ∇𝜃ℒ𝜖

9: until Convergence

4.3.3 No-box Adversarial Attacks with Diffusion Models

When conducting adversarial attacks against a classification diffusion model, the goal

is to find perturbations that can deceive the model’s softmax output, resulting in

misclassification. This process is similar to standard adversarial attacks, where the

objective is to find small perturbations that can fool the model’s decision-making

process. Under the no-box attack scenario, it is more practical that we utilize the

generative diffusion model that constructs the training data to conduct unrestricted

adversarial attacks against the substitute diffusion model. The no-box adversarial

attack with diffusion models samples the adversarial examples with the guidance of

the gradient from the substitute diffusion model, which is formulated as Equation 4.1

and 4.2.

As the classification diffusion model can also be viewed as an approach to model

𝑝(𝑦|𝑥), we can approximate the exact inference by adopting the Monte Carlo sampling

method 𝑝(𝑦|𝑥) = 1
𝑀

∑︀𝑀
𝑖=1 𝑝(𝑦𝑖|𝑥), where 𝑝(𝑦𝑖|𝑥) is obtained by multiple sampling.

We select the ground truth class for the no-box adversarial attack in this chapter.
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Algorithm 3 No-Box Adversarial Attack Algorithm
Require: 𝑓CARD: pre-trained CARD model, 𝑦gt: ground truth class label, 𝑁 : noise

sampling guidance steps, 𝑇LDM: reverse generation process timestep for LDM,
𝑇adv: timestep for adversarial guidance

1: 𝑥𝑇LDM ∼ 𝒩 (0, I)
2: 𝑥𝑎𝑑𝑣 = ∅
3: 𝑦0 = OneHotEnc(𝑦gt)
4: for 𝑖 = 1 . . . 𝑁 do
5: for 𝑡 = 𝑇LDM, . . . , 1 do
6: if 𝑡 is in 𝑇adv then
7: Obtain adversarial guidance with Equation 4.8
8: Sample 𝑥𝑡−1 with Equation 4.1
9: else

10: Sample 𝑥𝑡−1 with Equation 3.9
11: end if
12: end for
13: Obtain adversarial guidance with Equation 4.8.
14: Update 𝑥𝑇LDM with Equation 4.2
15: 𝑥𝑎𝑑𝑣 ← 𝑥0 if 𝑓CARD(𝑥0) ̸= 𝑦gt

16: end for
17: return 𝑥𝑎𝑑𝑣

The proposed no-box unrestricted adversarial attack is achieved with the ensemble of

multiple inferences. Detailed attack algorithm is given in Algorithm 3. We use DDIM

with classifier-free guidance from the ground truth label 𝑦gt for diffusion sampling.

log 𝑝𝑓 (𝑦𝑎|𝑥𝑡) = −
1

𝑀

𝑀∑︁
𝑖=1

log
exp(−((𝑦0|𝑥𝑡, 𝜖𝑖)− 1)2gt)∑︀
𝑗 exp(−((𝑦0|𝑥𝑡, 𝜖𝑖)− 1)2𝑗)

(4.8)

where 𝜖𝑖 ∼ 𝒩 (0, I).

The multiple inferences are accomplished by 𝑀 independent classification results

from the trained CARD model, with 𝑀 instances of random initial diffusion noise

𝜖. The proposed attack achieves an ensemble-like adversarial attack, leveraging the

characteristics of diffusion models without the need to train multiple substitute mod-

els.
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4.4 Experiments

Datasets and Substitute Models. We use the ImageNet [23] dataset for major

evaluation. Under no-box settings, the dataset is generated by diffusion models with

224×224 pixels. The substitute model is ResNet-50 [43]. Under black-box settings,

the dataset is from the ImageNet 2012 validation dataset. The base model for gen-

erating the adversarial examples is also ResNet-50 [43]. Following existing previous

work [38,66], we adopt the common settings for transfer-based adversarial attacks. We

randomly sample 5 data from each class of the training dataset (no-box) or validation

set (black-box) to conduct the adversarial attack for baselines.

Parameter Settings. LDM and Stable Diffusion v2.0 [100] are selected as source

model in our work. While sampling data, the timestep for the diffusion process is

set to 200 for LDM and 50 for Stable Diffusion. Both diffusion models’ 𝜂 are set

to 0 for deterministic sampling. The classifier-free guidance scale 𝑤 is set to 3.0

for LDM and 9.0 for Stable Diffusion. We use public checkpoints from the official

release for LDM and Stable Diffusion. In fine-tuning with CARD [41], the diffusion

timestep for classification is set to 100. The linear noise schedules are set accordingly

as the official implementation. In generating the adversarial examples, we set 𝑁 = 5,

𝑎1 = 0.5, 𝑎2 = 0.5 for adversarial guidance, and 𝑀 = 10 for multiple inferences.

We use DMSALDM to denote the proposed attack with LDM implementation and

DMSASD for Stable Diffusion implementation. The basic attack is performed by

replacing the 𝑓CARD with ResNet-50 trained by our synthetic dataset in Algorithm 3.

Combining with Perturbation-Based Attacks. Our method aims to generate

high-quality non-perturbed adversarial examples with the benign diffusion process.

In other words, the sampled adversarial examples can be treated as benign images.

Therefore, it is possible to interrogate the perturbation-based adversarial attacks with

our generated adversarial examples. Besides using the diffusion model for generating

adversarial examples, we perform 200 steps I-FGSM over the generated examples to

enhance their performance on no-box models.

Target Models. We select various widely adopted target models for ImageNet
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Figure 4.4: Comparisons of no-box adversarial examples with our method
and Li et al.’s method. Note that our method achieves a similar ASR with a
significantly lower perturbation. The adversarial examples are generated by latent
inversion.

to test the attack performance: ResNet-50 [43], VGG-19 [107], ResNet-152 [43], In-

ception v3 [113], DenseNet-121 [50], MobileNet v2 [104], SENet-154 [49], ResNeXt-

101 [133], WRN-101 [139], PNASNet [77], and MNASNet [115]. Because these models

take different resolution inputs, we adopt different re-scale functions before perform-

ing the adversarial attack according to their original implementation. We adopt the

public checkpoints from the timm [124] library for these models.

Evaluation. We mainly use ASR to evaluate the performance of various adver-

sarial attack methods. As our attack is aimed at attacking no-box and black-box

models, the attack success rate is calculated by how many transfer-based adversarial

examples can fool the target model. The adversarial examples are first generated

by attacking the substitute model training by the adversary. Then, we adopt the

generated adversarial examples to check if they can be misclassified by the no-box

or black-box target model. We do not perform any query to the target model to

fine-tune the adversarial examples. To ensure fair comparisons, we evaluate our at-

tacks by using latent inversion [100] from images in the validation set to generate the

adversarial examples when compared with previous attacks (The process of training

and fine-tuning the substitute model is unchanged).
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4.4.1 No-Box Threat Model

Under the no-box threat model, we compare our method with the state-of-the-art

method [65], where they used supervised ResNets and unsupervised auto-encoders

for no-box attacks (Naïve† and Prototypical). It’s important to note that Li et al.’s

method uses 20 images from the original training dataset to train the substitute

model. As a result, their method only supports attacking a limited number of im-

ages and requires a relatively large perturbation under 𝛿 = 0.1. Furthermore, their

method does not support attacking all classes simultaneously, which further restricts

the applicability of their method. For a fair comparison with their works, we use the

latent inversion [100] from images in the validation set to generate our adversarial ex-

amples. The performance of the state-of-the-art methods and our proposed methods

are displayed in Table 4.1 and Figure 4.4.

For Li et al.’s attack, they achieve around 68% ASR on different no-box target

models with perturbations of 𝛿 = 0.1. Their best performance is achieved with 20

decoders Prototypical*, 200 steps I-FGSM, and 100 steps ILA attack. Furthermore,

using an auto-encoder over clean images brings visual quality problems as the recon-

structed images can be identified by humans. Training of the Prototypical* requires

random selections of the required training images, which limits the reproducibility of

their methods. Therefore, their method is very limited in usability.

On the other hand, our method achieves the state-of-the-art attack success rate

without adding I-FGSM gradients. This result indicates that diffusion models, cou-

pled with our proposed attack methods, are more formidable adversaries with supe-

rior performance than traditional perturbation-based methods. Adopting the CARD

model can notably improve the transfer ASR by around 15% without largely in-

creasing the magnitude of the perturbation. This is more effective than adopting

20 decoders in Li et al.’s work with only a 2% increase in ASR. Moreover, Figure

4.4 further demonstrates that without using I-FGSM, the visual quality of the pro-

posed method is noticeably better than Li et al.’s work. Note that both DMSALDM

and DMSASD use synthetic dataset rather than validation set from the no-box target
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model to train the substitute model. Therefore, the performance of proposed attacks

can be further improved by using the substitute model from Li et al.’s work.

Furthermore, we test the performance of proposed attacks using the randomly

sampled latents. Table 4.2 demonstrates that the proposed attack methods signifi-

cantly outperform the previous attacks. The substitute model for the previous at-

tacks is trained with the same dataset as DMSALDM. By only using the synthetic

dataset generated by diffusion models, the state-of-the-art attack methods perform

much worse than our methods. These findings further indicate the effectiveness of

the proposed attacks. The proposed attack with Stable Diffusion performs slightly

worse than the LDM settings. This could be due to the different training data of

the original model. Stable Diffusion utilizes multiple large-scale datasets for train-

ing. Consequently, the data distribution of the no-box training dataset generated by

Stable Diffusion is likely to be inconsistent with the original ImageNet dataset. As

a result, the adversarial examples from the trained substitute model may struggle to

transfer to the no-box target model.

Figure 4.4 demonstrates that the benign images generated by diffusion models

attain a classification accuracy similar to the standard ImageNet validation dataset,

which attests to the generation quality of our method. Moreover, the basic and

CARD attacks achieve over 50% ASR with significantly less noticeable perturbations

compared to Li et al.’s method.

4.4.2 Image Quality

We evaluate the image quality of no-box adversarial examples using the FID score [44].

As shown in Table 4.1, our proposed attacks achieve significantly better image quality

compared to those by Li et al., demonstrating that diffusion models can serve as potent

adversaries to deep learning models. However, it is important to note that adversarial

guidance can negatively impact the original generation quality of the diffusion model.

Since adversarial guidance is integrated based on the benign diffusion guidance of the

model, it should be within the range of [0, 1.0]. For more stable and high-quality

image generation, we recommend setting 𝑎1 and 𝑎2 to values smaller than 0.5 for no-
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Table 4.1: Attack success rates of transfer-based no-box attacks on Imaget-
Net with ResNet-50 as the substitute model, the perturbation of baseline
is ℓ∞ with 𝛿 = 0.1. We use latent inversion from the data of the baseline to generate
our adversarial examples.

Method VGG-19 Inception v3 ResNet-152 DenseNet SENet WRN PNASNet MobileNet Average FID (↓)

Naïve† 23.80% 19.14% 16.24% 21.06% 13.00% 15.84% 13.04% 27.56% 18.71% 10.2
Prototypical 80.22% 63.54% 62.08% 70.84% 55.44% 62.72% 51.42% 82.22% 66.06% 77.8
Prototypical* 81.26% 66.32% 65.28% 73.94% 57.64% 66.86% 54.98% 83.66% 68.74% 85.4

DMSALDM 65.72% 53.15% 60.77% 71.44% 45.74% 63.25% 45.53% 75.27% 60.10% 15.6
+ CARD 82.11% 68.62% 78.74% 81.81% 61.26% 77.29% 60.18% 89.54% 74.94% 26.8
DMSASD 58.57% 49.62% 62.31% 64.68% 42.78% 46.96% 41.53% 66.13% 54.07% 13.1
+ CARD 74.31% 62.85% 78.26% 78.62% 59.47% 60.02% 57.66% 79.89% 68.89% 24.4

Table 4.2: Attack success rates of transfer-based no-box attacks on Imaget-
Net with ResNet-50 as the substitute model, the perturbation of baseline
is ℓ∞ with 𝛿 = 0.1. We use the generated images from the LDM model as the clean
data for the previous attacks.

Method VGG-19 Inception v3 ResNet-152 DenseNet SENet WRN PNASNet MobileNet Average

I-FGSM 24.17% 20.87% 19.67% 21.37% 18.97% 20.47% 18.47% 25.73% 21.22%
ILA++ (2022) 40.51% 22.65% 31.51% 26.03% 26.81% 36.33% 29.05% 48.27% 32.65%
MBA (2023) 45.67% 32.93% 34.43% 41.63% 33.37% 38.03% 32.90% 53.80% 39.10%

DMSALDM 52.95% 30.41% 36.06% 39.67% 29.37% 40.37% 26.89% 50.22% 38.24%
+ CARD 59.60% 38.70% 55.30% 59.48% 37.75% 57.08% 36.49% 72.16% 52.07%
+ CARD I-FGSM 93.98% 81.23% 87.54% 91.47% 83.15% 87.58% 79.18% 96.15% 87.53%
DMSASD 35.80% 36.70% 34.29% 35.13% 37.21% 34.04% 32.21% 39.17% 35.61%
+ CARD 54.40% 45.78% 53.52% 50.21% 53.87% 46.32% 38.05% 56.32% 49.80%
+ CARD I-FGSM 80.53% 66.48% 68.98% 74.06% 68.32% 77.52% 58.01% 86.30% 72.53%

box adversarial attacks. Additionally, employing stronger diffusion models, such as

Stable Diffusion, can enhance generation quality. Utilizing the CARD ensemble attack

is also more effective in improving the ASR than merely increasing the adversarial

guidance.

4.4.3 Black-Box Threat Model

For a comprehensive discussion on the adversarial ability of diffusion models, we

perform standard black-box adversarial attacks with the proposed attack. A variety

of state-of-the-art black-box adversarial attacks are selected as comparisons, including

LinBP [38], ILA++ [39], TAIG [52] and LGV [36], TIM [27], SIM [75], Admix [121]

and MBA [66] with the ℓ∞ attack budget 𝛿 = 8/255. We also include more black-box

target networks for complete comparisons.

Prior to the year of 2022, previous works achieved relatively lower performance

56



than white-box attacks because black-box attacks could not access the gradient of the

target model. As a result, existing methods tend to enhance attack transferability by

better inferring the gradient of the black-box model with the substitute model. The

MBA attack by Li et al. [66] significantly improves the ASR of black-box attacks by

using an ensemble-like approach with Bayesian fine-tuning. However, their method

necessitates re-training the standard substitute model, and the ensemble attack fur-

ther restricts the efficiency of their attacks.

For our proposed attack, we utilize the LDM as the base model. We use the

latent inversion [100] from images in the validation set to generate our adversarial

examples. The standard pre-trained ResNet-50 is adopted as the substitute model.

Table 4.3 shows that under standard settings, the proposed adversarial attack with

the diffusion model already achieves an 89% ASR without any fine-tuning. This result

demonstrates that diffusion models have the potential to execute stronger and more

concealed black-box adversarial attacks than traditional perturbation-based attacks.

When adopting the CARD model for black-box adversarial attack, the proposed at-

tack outperforms the state-of-the-art attack methods without adding gradient-based

perturbations. The attack performance of our proposed method can be further en-

hanced by combining it with simple perturbation-based attacks, which are similar to

the no-box attack settings.

It’s worth noting that most of the black-box target networks employ similar convo-

lution blocks for feature learning, which results in low robust accuracy against transfer

adversarial examples from the ResNet-50 networks. These networks also use the same

image transformations before feeding the input to the networks. Consequently, we

observe a significant drop in ASR on target networks with different network struc-

tures and image transformations, such as Inception v3 and PNASNet. This insight

could contribute to the design of better defenses against both perturbation-based

adversarial attacks and diffusion-model-based adversarial attacks.
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Table 4.3: Attack success rates of transfer-based black-box attacks on Im-
agetNet with ResNet-50 as the substitute model, the perturbation is ℓ∞
with 𝛿 = 8/255. We use latent inversion from the data of the baseline to generate
our adversarial examples.

Method ResNet-50 VGG-19 ResNet-152 Inception v3 DenseNet MobileNet

I-FGSM 100.00% 39.22% 29.18% 15.60% 35.58% 37.90%
TIM (2019) 100.00% 44.98% 35.14% 22.21% 46.19% 42.67%
SIM (2020) 100.00% 53.30% 46.80% 27.04% 54.16% 52.54%

LinBP (2020) 100.00% 72.00% 58.62% 29.98% 63.70% 64.08%
Admix (2021) 100.00% 57.95% 45.82% 23.59% 52.00% 55.36%
TAIG (2022) 100.00% 54.32% 45.32% 28.52% 53.34% 55.18%

ILA++ (2022) 99.96% 74.94% 69.64% 41.56% 71.28% 71.84%
LGV (2022) 100.00% 89.02% 80.38% 45.76% 88.20% 87.18%
MBA (2023) 100.00% 97.79% 97.13% 73.12% 98.02% 97.49%

DMSALDM 100.00% 93.95% 94.26% 77.04% 94.57% 97.91%
DMSALDM + CARD 100.00% 98.02% 98.45% 84.21% 98.12% 99.33%

Method SENet ResNeXt WRN PNASNet MNASNet Average

I-FGSM 17.66% 26.18% 27.18% 12.80% 35.58% 27.69%
TIM (2019) 22.47% 32.11% 33.26% 21.09% 39.85% 34.00%
SIM (2020) 27.04% 41.28% 42.66% 21.74% 50.36% 41.69%

LinBP (2020) 41.02% 51.02% 54.16% 29.72% 62.18% 52.65%
Admix (2021) 30.28% 41.94% 42.78% 21.91% 52.32% 42.40%
TAIG (2022) 24.82% 38.36% 42.16% 17.20% 54.90% 41.41%

ILA++ (2022) 53.12% 65.92% 65.64% 44.56% 70.40% 62.89%
LGV (2022) 54.82% 71.22% 75.14% 46.50% 84.58% 72.28%
MBA (2023) 85.41% 94.16% 95.39% 77.60% 97.15% 91.33%

DMSALDM 79.33% 89.77% 94.05% 78.18% 95.82% 89.49%
DMSALDM + CARD 88.21% 95.25% 97.56% 85.71% 96.73% 94.16%

4.4.4 Adversarial Robust Models and Vision Transformers

It has been reported that adversarial defense methods like adversarial training can ef-

fectively improve the adversarial robustness of deep learning models. It is practical to

test the performance of adversarial attacks under defenses to test the performance on

real-world scenarios. We test the performance of various attack methods against ad-

versarial robust models using latent inversion, including adversarial-trained Inception

v3, EfficientNet-B0, ResNet-50, a robust DeiT-S [116], and a diffusion-based adversar-

ial purification method DiffPure [89]. Checkpoints from Inception v3, EfficientNet-B0,

ResNet-50 follows [66]. Table 4.4 shows that adversarial training is effective at defend-
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ing black-box adversarial attacks, especially for adversarial-trained ResNet-50 which

successfully defends around 90% of the state-of-the-art black-box attack methods.

Our proposed attack does not directly add the adversarial gradient to the generated

adversarial examples. Therefore, our methods remarkably outperform perturbation-

based black-box attacks on various adversarial-trained and denoising deep-learning

models.

Vision transformers are recent transformer-based models with state-of-the-art per-

formance but different network artifacts. They achieve relatively high robust accuracy

under adversarial attacks for their special feature learning techniques. We also test

the attack performance of adversarial examples with recent vision transformers us-

ing latent inversion, i.e., ViT-B [28], a DeiT-B [116], a Swin-B [79], and a BEiT [5].

Table 4.4 demonstrates that perturbation-based adversarial examples hardly transfer

to vision transformers for adversarial attacks. As vision transformers adopt spe-

cial patch embedding for feature learning, the adversarial perturbations are very

likely to be sabotaged during patching. Therefore, vision transformers are robust to

perturbation-based attacks even without any defenses. However, our proposed at-

tacks seek adversarial examples by adversarial sampling, which generates UAEs with

adversarial global features rather than special perturbation patterns. Hence, the pro-

posed attacks achieve overwhelmingly better performance against vision transformers

than previous methods.

The adversarial examples sampled by diffusion models are more effective at deceiv-

ing defense methods and vision transformers due to their adversarial sampling with

the diffusion process, rather than simply adding noise patterns to the image. This

presents significant challenges to current deep-learning applications and underscores

the need for effective designs of adversarial defense methods.

We also compare our attacks with the state-of-the-art diffusion model based black-

box attacks, DiffAttack [13]. The results are given in Table 4.5. Our attack signifi-

cantly outperforms DiffAttack on our Basic attack in both ASR and FID score [44]

for generation quality on most black-box target models (6 out of 8).

59



Table 4.4: Attack success rates of transfer-based black-box attacks on Im-
agetNet against robust models and vision transformers with ResNet-50 as
the substitute model, the perturbation is ℓ∞ with 𝛿 = 8/255. We use latent
inversion from the data of the baseline to generate our adversarial examples.

Method Vision transformers Robust models

ViT-B DeiT-B Swin-B BEiT Inception v3 EfficientNet ResNet-50 DeiT-S DiffPure

I-FGSM 4.70% 5.92% 5.18% 3.64% 11.94% 9.48% 9.26% 10.68% 6.65%
ILA++ (2022) 9.48% 21.34% 14.88% 11.76% 15.54% 30.90% 10.08% 11.08% 7.25%
LGV (2022) 7.18% 20.02% 12.14% 11.66% 18.00% 39.06% 10.56% 11.50% 8.10%
MBA (2023) 21.66% 43.53% 21.84% 29.78% 25.89% 67.05% 11.02% 12.02% 9.45%

DMSALDM 49.33% 56.21% 52.85% 83.24% 53.31% 88.55% 75.91% 63.21% 74.22%
DMSALDM + CARD 61.68% 63.36% 59.74% 88.52% 67.67% 93.20% 82.25% 71.08% 78.30%

Table 4.5: Attack success rates of transfer-based black-box attacks on Im-
agetNet comparing with DiffAttack, the perturbation is ℓ∞ with 𝛿 = 8/255.
FID is evaluated on our selected ImageNet validation data. We use latent inversion
from the data of the baseline to generate our adversarial examples.

Method CNNs Vision transformers FID (↓)
ResNet-50 VGG-19 MobileNet Inception v3 ViT-B Swin-B DeiT-B DeiT-S

DiffAttack (2023) 96.3% 75.6% 77.1% 69.0% 51.2% 56.2% 50.5% 55.0% 25.2

DMSALDM 100.00% 93.95% 97.91% 77.04% 49.33% 52.85% 56.21% 64.52% 16.4
DMSALDM + CARD 100.00% 98.02% 97.97% 84.21% 61.68% 59.74% 63.36% 69.91% 25.9

4.4.5 Time Efficiency

The proposed attack model is trained and evaluated on a Nvidia GeForce RTX 3090

GPU. We demonstrate the time efficiency of each component to perform our attacks

in Table 4.6. Since the CARD model requires only a single training session, the

training cost of the proposed methods can be considered negligible. However, the

time efficiency in generating the no-box adversarial image is relatively low due to the

use of the CARD model and multiple inferences. Nonetheless, adopting the CARD

model significantly increases the attack success rate, presenting a tradeoff between

ASR and time efficiency. We can reduce the time cost by adopting time-efficient

diffusion substitute models and diffusion models, which we plan to explore in future

work.

60



Table 4.6: Time cost (s) of proposed DMSA attacks in training and attack-
ing process.

Method Training Dataset (per image) Training CARD Fine-tuning CARD Adversarial Attack (per image) Adversarial Attack with CARD (per image)

DMSALDM 6.4 9251.5 5428.8 11.3 41.5
DMSASD 4.9 9214.2 4412.1 9.6 29.7

Clean Image
DMSALDM

CARD Attack

Figure 4.5: A successful attack against Google Vision. The confidence level for
"bird" is reduced, causing it to drop out of the top three labels.

4.4.6 Attacking Commercial CNNs

A practical scenario for our proposed no-box adversarial attacks involves targeting

commercial CNNs, such as Google Vision. To further validate the effectiveness of

our methods, we randomly selected 100 images from the no-box adversarial examples

from DMSALDM to test the attack success rate against Google Vision. An attack

is considered successful if it reduces the confidence of the correct label out of the

top three labels. An example of a successful attack is shown in Figure 4.5. Out of

the 100 images, 86 successfully deceived Google Vision, demonstrating that no-box

adversarial attacks pose a significant threat to deep learning models.

Google Vision is a multi-label classification model capable of detecting over 1,000

ImageNet classes. The results suggest that the proposed attack can successfully de-

ceive the no-box target model with only practical knowledge of the label information,

which we plan to explore further in future work.
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4.5 Ablation Studies

The proposed attacks contain three complicated processes to perform the no-box

attack. We give comprehensive ablation studies on each important process that con-

tributes to the attack performance in this section. We select the LDM model with

the CARD substitute model for major experiments. We use the no-box threat model

to conduct the adversarial attacks using random latents. For clarity, we only cover

a part of the target model to test the attack performance. By default, the attack

success rate is the average ASR over the no-box 8 target models.

4.5.1 Training Dataset

In this section, we delve into the crucial role that the quality of the substitute model

plays in the performance of transfer-based adversarial attacks, particularly in the

context of no-box adversarial attacks. The impact of the scale of the training dataset

on the proposed attacks is explored by adopting four different quantities of images per

class to construct the training dataset, with the results summarized in Table 4.7. The

outcomes clearly illustrate that a larger training dataset significantly enhances both

clean accuracy and attack transferability. Notably, when utilizing a dataset with only

100 images per class, the substitute model tends to be under-fitted, resulting in the

poorest performance compared to models trained on larger datasets. However, the

ASR did not largely increase when the training dataset was set to 2000 images per

class. The reason may be the over-fitting of the substitute model. Remarkably, even

in the absence of real data from the original training dataset, our proposed substitute

model achieves an impressive approximately 80% top-5 classification accuracy on the

validation dataset of ImageNet. This outcome underscores the efficacy of our novel

training method.

4.5.2 CARD Model

The CARD model is a diffusion model, which may cause large computation overheads

to the attack algorithm. In this section, we investigate the time efficiency and attack
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Table 4.7: Attack success rates of transfer-based no-box attacks on Imaget-
Net with ResNet-50 as the substitute model in terms of the scale of the
training dataset. 𝑛 represents the scale of images per class. Substitute model clas-
sification accuracy on the ImageNet validation set is further evaluated.

Method VGG-19 Inception v3 ResNet-152 DenseNet SENet WRN PNASNet MobileNet Average Clean Top-5 Acc

DMSALDM 𝑛 = 1000 59.60% 38.70% 55.30% 59.48% 37.75% 57.08% 36.49% 72.16% 52.07% 79.85%
DMSALDM 𝑛 = 100 50.32% 28.41% 35.05% 40.98% 24.30% 37.87% 20.71% 55.30% 36.61% 58.32%
DMSALDM 𝑛 = 500 57.14% 33.19% 43.31% 48.83% 32.91% 46.84% 29.64% 64.75% 44.57% 68.50%
DMSALDM 𝑛 = 2000 62.10% 39.21% 56.21% 60.32% 40.80% 58.45% 38.01% 75.50% 53.82% 80.65%

Table 4.8: Attack success rates of transfer-based no-box attacks on Imaget-
Net with ResNet-50 as the substitute model in terms of the fine-tuning
for the CARD model.

Method VGG-19 Inception v3 ResNet-152 DenseNet SENet WRN PNASNet MobileNet Average

DMSALDM w/o fine-tuning 54.84% 32.83% 50.00% 53.96% 28.06% 50.38% 25.79% 60.85% 44.59%
DMSALDM 59.60% 38.70% 55.30% 59.48% 37.75% 57.08% 36.49% 72.16% 52.07%

performance of the CARD model under different numbers of diffusion timesteps.

Figure 4.6 shows the results that larger timesteps for the CARD model will cause

a significant increase in average time to generate one adversarial example. However,

the ASR does not notably increase after the settings of |𝑇 | = 100. Furthermore, we

test the power of fine-tuning in Table 4.8. With the proposed fine-tuning, the ASR of

the proposed attack is improved by 8% on average. At the same time, the proposed

fine-tuning does not require additional computation or lower the generation quality

of the generated adversarial examples.

4.5.3 Model Uncertainty

The proposed adversarial attack method exhibits superior performance compared to

state-of-the-art methods by leveraging model uncertainty. However, the utilization

of multiple inferences introduces additional computational demands. In this section,

we assess the transferability of generated adversarial examples and analyze the time

complexity of the attack algorithm across varying numbers of inferences. The results,

illustrated in Figure 4.7, indicate that a higher number of inferences can enhance

the attack performance of the proposed method. Nonetheless, this comes at the cost

of significantly slowing down the attack speed of the diffusion model. The figure

depicts a clear trade-off: while an increased number of inferences improves attack
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Figure 4.6: The performance of our proposed attacks under different settings
of diffusion timesteps for the CARD model. Time represents the average time
to generate one UAE.
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Figure 4.7: The performance of our proposed attacks under different num-
bers of inferences from the substitute CARD model.

performance, it concurrently imposes a notable delay on the execution speed of the

diffusion model. Notably, the CARD model employed in this section utilizes 100

timesteps for classification. Importantly, the findings reveal that despite the com-

putational overhead, employing multiple inferences substantially boosts the attack

transferability compared to relying on a single deterministic substitute model. This

trade-off underscores the importance of carefully considering the computational re-

sources available and the desired balance between attack speed and transferability

when implementing the proposed adversarial attack method.
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4.5.4 Adversarial Guidance

In this section, we systematically evaluate the performance of our proposed attacks

across different settings of 𝑎1 and 𝑎2. Intuitively, one would expect the attack success

rate to increase as 𝑎1 and 𝑎2 are set to relatively large values. However, a critical

trade-off exists, while higher values of 𝑎1 and 𝑎2 may enhance the attack success

rate, they can simultaneously lead to a decrease in generation quality. To quantify

this, we assess the generation quality using the Frechet Inception Distance (FID)

score [44]. Figure 4.8 illustrates a significant decrease in the FID score as adversarial

guidance, represented by 𝑎1 and 𝑎2, increases. Concurrently, the ASR surpasses 80%.

Even with an 80% ASR, the FID score of our proposed attack still outperforms

the PGD attack with 𝛿 = 8/255. For a more visual understanding, we provide a

comparison of adversarial examples generated by our attacks and the PGD attack

in Figure 4.9. Notably, our attacks tend to produce distinctive textures to deceive

the target network. It is noteworthy that the adversarial examples generated by our

attack maintain a natural and realistic appearance, especially when 𝑎1 and 𝑎2 are

set to relatively small values. The 𝑎2 tends to generate unrealistic examples when

set to a larger value. The reason could be modification to the original 𝑥𝑇 disturbs

the distribution of the initial latent and hence decreases the generation quality. This

observation underscores the nuanced balance between maximizing attack success and

preserving the visual coherence of the generated adversarial examples.

4.6 Discussion

Experiment results show that even without training data from the target model, our

method can achieve state-of-the-art ASR under the no-box threat model. Note that

the above 95% benign sampled images from the diffusion model can be correctly

classified by the target model. However, the basic attack of our method’s ASR is rel-

atively lower than the baseline. The reason may be the different data of our proposed

attack. Because the data generated by the diffusion model are not from the standard

validation set of the training data, they may perform worse on the transferability.
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Figure 4.8: The performance of our proposed attacks under different settings
of 𝑎1 and 𝑎2 for adversarial guidance.

Clean UAE Li et al. Low-quality
UAE

Figure 4.9: The visual comparison of different no-box adversarial examples.
Details are zoomed in for better comparisons. The perturbations of UAEs are more
camouflaged.
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Therefore, it is better we use some data from the original training dataset to enhance

the attack performance. Moreover, our adversarial examples exhibit overwhelming

performance against robust models and vision transformers. This emphasizes the

imperative need for designing effective defense mechanisms. The discussion on de-

fending against adversarial attacks by diffusion models is crucial, as these models

introduce a potent and novel form of adversarial attack, posing new challenges to the

enhancement of deep learning models’ robustness.

4.7 Ethic Concerns

The chapter is driven by the comprehensive evaluation of the adversarial capabilities

of diffusion models within the context of the no-box attack scenario. Capitalizing on

the robust generation prowess of diffusion models, we demonstrate their capacity to

generate adversarial examples without necessitating access to the training dataset of

the target model. Notably, the motivation arises from the realization that current

defense methods focus on fortifying defenses against perturbation-based attacks. Un-

fortunately, these defenses exhibit bad performance when defended with adversarial

examples generated by diffusion models and fare even worse in the face of a combina-

tion of both perturbation-based and diffusion attacks. In light of these challenges, we

advocate for the development of effective defense mechanisms specifically tailored to

counter adversarial diffusion models. The overarching goal is to augment the usability

and robustness of deep learning models, acknowledging the evolving threat landscape

posed by advanced attack methodologies such as those involving diffusion models.

4.8 Weakness

While the proposed attack achieves state-of-the-art performance in the no-box ad-

versarial attack setting, it does face a limitation: the generated images may appear

visually unrealistic when compared to the adversarial examples produced under the

black-box scenario. This discrepancy arises due to the potential impact of adversar-
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ial guidance on the normal diffusion process, especially when setting ∇𝑥𝑡 log 𝑓(𝑦𝑎|𝑥𝑡)

as −∇𝑥𝑡 log 𝑓(𝑦gt|𝑥𝑡). Furthermore, it is acknowledged that the proposed method

for generating the training dataset still exhibits gaps in comparison to the original

dataset. As a consequence, there is room for improvement in the performance of the

proposed attack. This improvement may be achieved through refining adversarial

guidance and adopting more effective methods for generating datasets. Enhancing

the time efficiency of the diffusion model can further improve the usability of the

proposed attacks.

4.9 Conclusion

In this chapter, we investigate the attack ability of diffusion models as strong ad-

versaries. Our attacks offer a novel solution to no-box adversarial attacks without

requiring access to the entire dataset of the no-box target model. Additionally, our

work is pioneering in incorporating diffusion models as substitute models for adver-

sarial attacks. Specifically, we first train the substitute model with the data generated

by the diffusion models with label priors from the original training dataset. To further

fine-tune the performance of the substitute model, we adopt the classification diffusion

probabilistic model to obtain the inference for the classification task. We introduce

noise augmentation during the training of the substitute model. After training the

substitute model, the adversarial examples are generated by the diffusion model with

an ensemble-like attack over the multiple inferences from the classification diffusion

substitute model. Extensive experiments on the ImageNet dataset have demonstrated

the performance of the proposed attack. We show the strong adversarial ability of

diffusion models even without any data or information from the target model. Our

work urges effective defense mechanisms against adversarial examples generated by

diffusion models.
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Chapter 5

Transferable 3D Adversarial Shape

Completion using Diffusion Models

5.1 Introduction

Deep-learning models have demonstrated their overwhelming performance on 2D [43,

79] and 3D computer vision [37,99,130] tasks. An increasing number of applications

rely on deep-learning models to achieve efficient and accurate services. Therefore, the

security of deep-learning models is crucial and significant.

Similar to the 2D scenario [10, 19, 68, 71, 84], 3D point cloud deep learning is also

susceptible to adversarial attacks [78,129,146]. These 3D adversarial attacks generate

adversarial examples by introducing perturbations to the 𝑥𝑦𝑧 coordinates. However,

such perturbations often lead to a significant degradation in visual quality, which

can be easily detected by humans. Subsequent studies [51, 123, 145] have aimed to

create less perceptible perturbations by taking into account geometric characteristics.

Despite this, these attacks have been shown to perform poorly against defenses [53].

Moreover, most existing attacks primarily focus on white-box settings, limiting their

practicality in real-world scenarios. Existing black-box attacks [40, 42] mainly target

early 3D point cloud deep-learning models, leaving a substantial gap in the learning

between adversarial and benign models.

In this chapter, our objective is to execute high-quality black-box 3D adversar-
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Partial Shape Initial Shape Adversarial Shape

Adversarial GuidanceRandom Noise

Figure 5.1: The adversarial shape completion. Starting from the partial shape
𝑧0, we construct our adversarial shape 𝑥𝑎𝑑𝑣 by utilizing diffusion models with proposed
adversarial guidance.

ial attacks using diffusion models. To generate natural adversarial point clouds, we

employ diffusion models, which are state-of-the-art generative models known for cre-

ating high-quality 2D images [25, 100] and 3D point clouds [141, 149]. It has been

demonstrated that 2D diffusion models can generate adversarial examples [15,20] by

altering the diffusion process. By extension, it is intuitive that 3D diffusion mod-

els, with their impressive generation performance, are capable of creating adversarial

examples. Specifically, we craft adversarial examples by employing diffusion models

for shape completion tasks, as shown in Figure 5.1. Using a partial shape as prior

knowledge, our attack generates adversarial examples by completing shapes with the

proposed adversarial guidance. Our approach to conducting adversarial attacks in-

volves generating unseen data rather than introducing perturbations to clean data,

effectively addressing the issue of unrealistic perturbations to 𝑥𝑦𝑧 coordinates.

In order to enhance the transferability of our crafted adversarial examples against

black-box 3D models, we initially incorporate model uncertainty into the gradient

inference of the substitute models. Li et al. [66] demonstrated that the introduc-

tion of probability measures to the substitute models can significantly enhance the

performance of black-box attacks. They execute adversarial attacks by training the

substitute model in a Bayesian manner. In our attack, we leverage the characteristics

of 3D point clouds and incorporate model uncertainty through a Monte Carlo esti-

mate over the inference from multiple down-sampled point clouds. Additionally, to
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improve the attack transferability against various network architectures, we employ

ensemble logits to generate the adversarial guidance for the 3D diffusion model. To

preserve the generation quality, we limit our adversarial guidance solely to the crit-

ical points that are selected based on the saliency scores. Our proposed black-box

attack is capable of conducting black-box adversarial attacks against state-of-the-art

3D point cloud deep-learning models without the need to re-train the diffusion model.

Our contributions are summarized as follows:

• We generate adversarial examples through shape completion using diffusion

models, offering a novel perspective on the creation of imperceptible adversarial

examples. The proposed attack introduces diffusion models to the topic of 3D

adversarial robustness.

• We propose a variety of strategies to enhance the transferability of the proposed

attacks without compromising the quality of generation. These strategies in-

clude: employing model uncertainty for improved inference of predictions, en-

semble adversarial guidance to boost attack performance against unseen models,

and generation quality augmentation to identify critical points and maintain the

quality of generation.

• We conduct a comprehensive evaluation against existing state-of-the-art black-

box 3D deep-learning models. Our experiments demonstrate that our proposed

attack achieves state-of-the-art performance against both black-box models and

defenses.

5.2 Preliminary

5.2.1 Threat Model

Consider a point cloud 𝑥 ∈ 𝒫𝐾×3 consisting of 𝐾 points, where each point 𝑥𝑖 ∈ 𝒫3

is represented by 3D 𝑥𝑦𝑧 coordinates. A classifier 𝑓 is employed to classify the input

point cloud and assign a label, denoted as 𝑓(𝑥) → 𝑦. In the context of adversarial
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attacks, an adversary seeks to generate an adversarial example 𝑥𝑎𝑑𝑣 with the objective

of causing the target classifier 𝑓 to produce an incorrect classification result, repre-

sented as 𝑦𝑎𝑑𝑣. Formally, the goal of the point cloud adversarial attack is defined

as:

min𝐷(𝑥, 𝑥𝑎𝑑𝑣), s.t. 𝑓(𝑥𝑎𝑑𝑣) = 𝑦𝑎𝑑𝑣 (5.1)

Equation 5.1 is designed to generate an imperceptible adversarial example 𝑥𝑎𝑑𝑣 from

the original point cloud 𝑥. This chapter primarily concentrates on untargeted attacks,

where 𝑦𝑎𝑑𝑣 can be any label distinct from the ground truth label 𝑦.

5.2.2 3D Point Cloud Generation and Completion

Recent advancements in diffusion models [25, 46, 56, 100] applied to 2D image gen-

eration have showcased remarkable performance in terms of both generation quality

and diversity. Likewise, recent studies on 3D diffusion models [83, 141, 149] have

demonstrated state-of-the-art performance in 3D point cloud generation tasks. The

3D denoising diffusion probabilistic model generates 3D point clouds with a denoising

generation process. Starting from Gaussian noise 𝑥𝑇 , the denoising process gradually

produces the final output by a sequence of denoising-like steps, i.e., 𝑥𝑇 , 𝑥𝑇−1, . . . , 𝑥0.

The generative diffusion model, denoted as 𝑝𝜃(𝑥0:𝑇 ), aims to learn the Gaussian

transitions from 𝑝(𝑥𝑇 ) = 𝒩 (𝑥𝑇 ; 0, I) by reconstructing 𝑥0 from the diffusion data

distribution 𝑞(𝑥0:𝑇 ). This distribution introduces Gaussian noise to 𝑥0 over the course

of 𝑇 steps. More specifically, these processes of adding noise and subsequent denoising

can be formulated as a Markov transition:

𝑞(𝑥0:𝑇 ) = 𝑞(𝑥0)
𝑇∏︁
𝑡=1

𝑞(𝑥𝑡|𝑥𝑡−1)

𝑝𝜃(𝑥0:𝑇 ) = 𝑝(𝑥𝑇 )
𝑇∏︁
𝑡=1

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

(5.2)

where we name the 𝑞(𝑥𝑡|𝑥𝑡−1) as forward diffusion process and 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) as reverse

generative process. Each detailed transition for each process is defined in accordance
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with the scheduling function 𝛽1, . . . , 𝛽𝑇 :

𝑞(𝑥𝑡|𝑥𝑡−1) := 𝒩 (𝑥𝑡 :
√︀
1− 𝛽𝑡𝑥𝑡−1, 𝛽𝑡I)

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) := 𝒩 (𝑥𝑡−1 : 𝜇𝜃(𝑥𝑡, 𝑡), 𝜎
2
𝑡 I)

(5.3)

where 𝜇𝜃(𝑥𝑡, 𝑡) is the inference of the diffusion model to predict the shape of the point

cloud. We set 𝜎2
𝑡 = 𝛽𝑡 based on empirical knowledge.

The 3D point cloud generation task can be easily modified to achieve shape com-

pletion with an fixed partial shape 𝑧0 ∈ 𝒫𝐾𝑝×3 [149]. The forward diffusion process

and reverse generative process are formulated as:

𝑞(𝑥̃𝑡|𝑥̃𝑡−1, 𝑧0) := 𝒩 (𝑥̃𝑡 :
√︀
1− 𝛽𝑡𝑥̃𝑡−1, 𝛽𝑡I)

𝑝𝜃(𝑥̃𝑡−1|𝑥̃𝑡, 𝑧0) := 𝒩 (𝑥̃𝑡−1 : 𝜇𝜃(𝑥𝑡, 𝑧0, 𝑡), 𝜎
2
𝑡 I)

(5.4)

While recent studies have extensively explored the generation capabilities of 3D

diffusion models, their potential in crafting adversarial point clouds remains largely

unexplored. In this chapter, we aim to generate high-quality adversarial point clouds

with the reverse generative process of pre-trained 3D diffusion models. Note that we

don’t modify the training part of pre-trained models.

5.3 Methodology

5.3.1 Diffusion Model for 3D Adversarial Shape Completion

In crafting high-quality adversarial examples, our aim is to utilize diffusion models for

their superior performance in 3D point cloud generation. Unlike previous generative

models, the denoising generation process of diffusion models can naturally incorporate

adversarial objectives [15,20], which can be viewed as a process of iterative adversarial

attacks. Previous perturbation-based adversarial attacks perturb each point in the

clean point cloud, commonly altering the shape of the original point cloud. In our

work, we aim to minimize the impact of adversarial perturbations on the point cloud

data and achieve adversarial attacks with our proposed method, the 3D adversarial
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shape completion attack.

The proposed attack generates adversarial point clouds with a fixed partial shape

𝑧0 ∈ 𝒫𝐾𝑝×3. We utilize any pre-trained 3D shape completion diffusion model 𝜖𝜃 to

gradually generate the completed adversarial point cloud 𝑥0 = (𝑧0, 𝑥̃0) through the

reverse generative process 𝑝𝜃(𝑥̃𝑡−1|𝑥̃𝑡, 𝑧0), 𝑡 = 𝑇, . . . , 1. For any intermediate shape

𝑥𝑡 = (𝑧0, 𝑥̃𝑡), the adversarial generative process is defined as:

𝑝𝜃(𝑥̃𝑡−1|𝑥̃𝑡, 𝑧0) := 𝒩 (𝑥̃𝑡−1 : 𝜇𝜃(𝑥𝑡, 𝑧0, 𝑡), 𝛽𝑡I)− 𝑎𝛽𝑡∇𝑥𝑡ℒ(𝑓(𝑥𝑡), 𝑦) (5.5)

where 𝑦 represents the ground truth label of the original point cloud, ℒ denotes the

cross, and the scale of adversarial guidance 𝑎 ∈ (0, 1). We employ the untargeted I-

FGSM-like gradient as the adversarial guidance for the adversarial generative process

[15].

We sample benign 𝑥̃𝑡−1 from 𝒩 (𝑥̃𝑡−1 : 𝜇𝜃(𝑥𝑡, 𝑧0, 𝑡), 𝛽𝑡I) by following PVD [149]:

𝑥̃𝑡−1 =
1
√
𝛼𝑡

(︂
𝑥̃𝑡 −

1− 𝛼𝑡√
1− 𝛼̃𝑡

𝜖𝜃(𝑥̃𝑡, 𝑧0, 𝑡)

)︂
+
√︀
𝛽𝑡𝜀, (5.6)

where 𝛼 and 𝛽 are hyper-parameters from the pre-trained 𝜖𝜃, and 𝜀 ∼ 𝑁(0, I).

5.3.2 Diffusion Model with Boosting Transferbility

In order to improve the effectiveness of the proposed attack on a black-box target

model, we have outlined several effective strategies to enhance the transferability of

the generated 3D point clouds, all without increasing the magnitude of the adversarial

guidance.

Employing Model Uncertainty. Previous works [9,69] have shown that leveraging

model uncertainty for feature learning is proposed to be more robust to adversarial

attacks compared to standard deep learning models. These Bayesian deep neural

networks are probabilistic models that predict input by computing expectations from

maximum likelihood estimation over model parameters. Furthermore, utilizing model

uncertainty [66] demonstrates improved adversarial transferability. However, the ap-
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plication of model uncertainty in 3D contexts is currently underexplored. Considering

the characteristics of 3D point clouds, which comprise unordered 3D points, the re-

moval of some points does not alter the classification outcome of the original point

cloud [148]. Therefore, we are able to straightforwardly adopt model uncertainty to

3D deep-learning models with the MC dropout-like [32] approach over the input. In

our attack, we adopt Simple Random Sampling over the 3D point clouds and use

the Monte Carlo estimate over 𝑀 re-sampled point clouds to obtain the estimated

adversarial guidance:

∇𝑥𝑡ℒMU(𝑓(𝑥𝑡), 𝑦)) =
1

𝑀

𝑀∑︁
𝑠=1

∇𝑥𝑠ℒ(𝑓(𝑥𝑠), 𝑦) (5.7)

The 𝑥𝑠 is obtained by simple random sampling from 𝑥𝑡 = (𝑧0, 𝑥̃𝑡):

𝑃𝑖(𝑥̃𝑡) = {1𝑥|𝑥 ∈ 𝑥̃𝑡, 1𝑥 ∼ 𝐵𝑒𝑟(0.5)} (5.8)

where 𝑥 is sampled from a 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) distribution to indicate the existence of 𝑥 in

the 𝑥𝑠 = (𝑧0, 𝑥̃𝑠) point cloud re-sampled from 𝑖th point of 𝑥̃𝑡, and 𝑧0 is not re-sampled.

Ensemble Adversarial Guidance. In the 2D attack scenario, the ensemble attack

is an effective way to enhance the attack transferability by utilizing multiple white-

box models to calculate the average gradient of the objective loss. Ensemble gradient

in 2D results in perturbation in the given pixel of the 2D image. In our attack, we

ensemble the logits of selected substitute models according to the generative process

in Equation 5.5. Formally, with 𝑛ens substitute models, the ensemble adversarial

objective function is defined as:

ℒ(𝑓𝑒𝑛𝑠(𝑥𝑡), 𝑦) = − log(softmax
𝑛ens∑︁
𝑛=1

𝑤𝑛𝑝𝑓𝑛(𝑦|𝑥𝑡)) (5.9)

where 𝑤𝑛 is the weight parameters, and we use the proportion of correctly classified

point clouds for an adaptive ensemble attack; 𝑝𝑓 is the predictive distribution of 𝑓 .

Generation Quality Augmentation. Previous work [146] has shown that individ-
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ual points within a point cloud can have varying degrees of impact on the classification

outcome of a 3D deep-learning model. This insight suggests that identifying critical

points within the point cloud could achieve strong adversarial attacks. Due to the

significant reduction in visual quality caused by perturbations to 3D coordinates, it

is advisable to control these perturbations by constraining the ℓ0 distance between

the adversarial and benign point clouds. Thus, our objective is to create adversarial

examples by altering only a subset of 𝑁 points of the benign point cloud. The saliency

score of given point 𝑥 is calculated as:

score𝑥 =
∑︁
3

𝜕ℒ(𝑓(𝑥𝑡), 𝑦)

𝜕𝑥
(5.10)

where the saliency score is the sum of 𝑥𝑦𝑧 channels of point 𝑥. Moreover, we fur-

ther adopt ℓinf norm restriction to the perturbation at each diffusion step for a fair

comparison with perturbation-based adversarial attacks.

5.3.3 Transferable 3D Adversarial Shape Completion Attack

We summarize the proposed black-box 3D adversarial attack in Algorithm 4. In the

early generation process, the generated point clouds are disorganized. Therefore, we

only perform adversarial guidance at given timestep 𝑇adv. We apply the Clip [34]

function to the ℓinf norm to limit the perturbation in adversarial guidance.

5.3.4 Revisiting 3D Black-Box Adversarial Attack

Black-box adversarial attacks present a significantly greater challenge than white-box

adversarial attacks, with 3D black-box adversarial attacks proving even more difficult

than their 2D counterparts. As illustrated in Figure 5.4, the data distribution of the

existing ShapeNet 3D dataset is long-tailed. Consequently, existing adversarial attack

methods tend to achieve a higher ASR on classes with less data (the top 5 classes

contain 50% data but only contribute 14% success adversarial examples). This issue

is similar in the ModelNet40 dataset, in which the top 5 classes contain 30% of data.
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Algorithm 4 Transferable 3D Adversarial Shape Completion Attack Algorithm
Require: 𝑓ens: substitute models, 𝑧0: partial shape for shape completion, 𝑦: class

label for shape completion, 𝑇 : reverse generation process timestep for LDM,
𝑇adv: timestep for adversarial guidance, 𝑁 : number of perturbed points at each
diffusion step, 𝑀 : number of simple random sampling

1: 𝑥̃𝑇 ∼ 𝒩 (0, I), 𝑥𝑇 = (𝑧0, 𝑥̃𝑇 )
2: 𝑥𝑎𝑑𝑣 = ∅
3: for 𝑡 = 𝑇, . . . , 1 do
4: if 𝑡 is in 𝑇adv then
5: Sample 𝑥̃𝑡−1 with Equation 5.4
6: for 𝑚 = 1, . . . ,𝑀 do
7: Simple random sampling with Equation 5.8
8: Obtain the ensemble adversarial loss with Equation 5.9
9: end for

10: Monte Carlo estimate with Equation 5.7
11: Calculate the saliency score of 𝑥̃𝑡−1 with Equation 5.10
12: Update top-𝑁 points from step 11 of 𝑥̃𝑡−1 with Equation 5.5
13: 𝑥̃𝑡−1 = Clip(𝑥̃𝑡−1)
14: else
15: Sample 𝑥̃𝑡−1 with Equation 5.4
16: end if
17: end for
18: 𝑥0 = (𝑧0, 𝑥̃0)
19: 𝑥𝑎𝑑𝑣 ← 𝑥0 if 𝑓ens(𝑥0) ̸= 𝑦
20: return 𝑥𝑎𝑑𝑣

Another significant challenge in 3D black-box adversarial attacks lies in the varying

model architectures. To provide a comprehensive discussion on the transferability

between different 3D models, we have demonstrated the cosine similarity from the

logit outputs by the same input of various models in Figure 5.4. The results indicate

that gradients from models with different architectures vary significantly, thus posing

a considerable challenge for 3D black-box adversarial attacks. These challenging

problems make existing 3D black-box adversarial attacks effective against only a few

3D models on the ModelNet40 dataset.

To execute an effective black-box 3D adversarial attack, we employ diffusion mod-

els to directly generate adversarial examples. The gradual diffusion generation process

allows for the introduction of adversarial guidance with significantly less perturbation

than existing adversarial attacks. Adversarial shape completion aids in identifying
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Table 5.1: The attack success rate (ASR %) of transfer attack on the
ShapeNet dataset. The adversarial examples of existing attack methods are gen-
erated from the PointNet model. The Average ASR is calculated among the seven
black-box models (3DAdvDiffens is calculated among the five black-box models).

Dataset Method PointNet PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average

Chair

PGD 99.7 1.0 0.9 1.2 0.7 1.4 0.9 2.1 1.2
KNN 99.2 0.8 0.8 1.0 0.4 1.2 1.0 2.1 1.0
GeoA3 99.6 0.9 0.8 1.2 0.7 0.8 1.0 0.9 0.9
SI-Adv 82.4 1.2 1.2 1.5 1.5 1.4 2.3 2.2 1.6
AdvPC 71.8 2.2 0.9 1.5 1.8 2.1 2.6 2.0 1.6
PF-Attack 99.0 20.2 5.6 4.8 3.2 1.0 2.5 1.6 5.5
3DAdvDiff 99.9 60.6 8.7 23.5 9.8 6.9 14.9 8.9 19.0
3DAdvDiffens 99.9 94.5 99.9 91.3 88.6 65.8 99.9 85.6 85.2

Dataset Method PointNet PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average

All

PGD 99.9 2.1 0.7 0.8 0.5 0.4 0.7 1.6 0.9
KNN 99.9 2.2 0.7 0.7 0.5 0.6 1.1 1.6 1.1
GeoA3 99.8 2.0 1.5 1.4 0.9 0.6 0.9 1.1 1.2
SI-Adv 92.5 2.0 1.7 1.5 1.2 1.0 1.3 1.0 1.4
AdvPC 89.6 0.4 0.2 0.5 0.4 0.6 0.7 0.5 0.5
PF-Attack 99.6 24.2 6.7 5.1 3.8 1.2 2.4 1.9 6.2
3DAdvDiff 99.9 73.2 12.6 55.3 40.5 32.6 25.9 16.0 36.6
3DAdvDiffens 99.9 97.0 99.9 94.5 93.5 80.5 99.9 85.2 90.1

the vulnerable rotation for more potent adversarial attacks and ensures the reliable

generation of natural point clouds, surpassing shape generation tasks. In addition

to utilizing an ensemble attack approach, we also employ random sampling to lever-

age model uncertainty and enhance performance against defenses. By taking into

account the characteristics of 3D point clouds and the generation performance of

diffusion models, we are able to achieve an effective and high-quality black-box 3D

adversarial attack.

5.4 Experiments

5.4.1 Experimental Setup

Dataset. Due to ModelNet40 being insufficient to train the diffusion model, we use

the ShapeNet [11] dataset for major evaluations. The ShapeNetCore split is adopted,

which contains 42003 point clouds with 55 categories, of which 31535 samples are

used for training and 10468 samples are used for testing. We select PVD [149] for

the diffusion model in this chapter. The proposed attack does not require additional

training in the diffusion model, we follow settings as in the original PVD chapter for
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selecting shape completion’s partial shapes. Public checkpoints [149] from Airplane,

Chair, and Car are selected for repeatability.

Target Models. For a better evaluation of different network architectures, we select

eight widely adopted 3D deep-learning models as the black-box models, including

PointNet [95], Pointnet++ (SSG) [96], DGCNN [122], PointConv (SSG) [127], Cur-

veNet [130], PCT [37], PRC [99], and GDANet [134].

Comparisons. We have chosen four white-box 3D adversarial attacks as our baseline

for comparison, namely: PGD [78], KNN [117], GeoA3 [123], and SI-Adv [51]. We also

employ existing black-box 3D adversarial attacks, specifically: AdvPC [40] and PF-

Attack [42]. We use PointNet as the substitute model by default and the perturbations

are constrained under the ℓinf-normal ball with a radius of 0.16. We use 3DAdvDiff to

denote the white-box version of the proposed attack and 3DAdvDiffens for boosting

transferability version.

Defenses. We select SRS [148], SOR [148], DUP-Net [148], IF-Defense [128], and Ad-

versarial Hybrid Training [53] for evaluation under defenses. All the defense settings

are followed according to [53].

Attack Settings. We select PointNet, DGCNN, and PRC for ensemble adversarial

guidance on 3DAdvDiffens. The hyper-parameters of the proposed attack are set to:

𝑎 = 0.4, 𝑇 = 1000, 𝑇adv = (0, 0.2𝑇 ], 𝑁 = 200,𝑀 = 5, 𝐾 = 2048. We also adopt

ℓinf = 0.16 restriction to the adversarial guidance. We set 200 points for partial

shapes. For each partial shape, we generate 20 views and only save the views that

successfully attack the substitute models. To evaluate the attack performance, we use

the top-1 accuracy of the target model to evaluate the ASR. The experiment results

are averaged over 10 attacks.

5.4.2 Attack Performance

Transfer Attack. We evaluate the transfer attack performance of current point

cloud adversarial attack methods on selected robust classes. The results are given

in Table 5.1. As we discussed in Section 4.4, the adversarial examples from state-

of-the-art attacks merely transfer to different models, particularly those recently de-
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Table 5.2: The attack success rate (ASR %) of different adversarial attack
methods against defenses. All attacks are evaluated under white-box settings
against the PointNet model.

Method ASR SRS SOR DUP-Net IF-Defense HybridTraining
PGD 99.9 5.9 1.0 0.7 13.8 1.9
KNN 99.9 4.0 0.9 0.4 13.0 1.3
GeoA3 99.8 4.9 1.6 0.8 13.6 2.2
SI-Adv 92.5 10.8 0.9 0.9 14.9 2.0
AdvPC 89.6 4.1 1.5 0.7 13.2 1.9
PF-Attack 99.6 8.5 3.6 2.8 13.9 2.0
3DAdvDiff 99.9 82.2 9.9 9.6 30.0 9.4
3DAdvDiffens 99.9 85.9 49.1 36.9 22.5 96.1

veloped 3D models. Models trained on long-tailed datasets typically exhibit limited

generalization. However, our proposed white-box 3DAdvDiff achieves notably better

performance even on the black-box adversarial attack. Furthermore, 3DAdvDiffens

considerably boosts the attack performance of 3DAdvDiff without augmenting the

magnitude of the adversarial guidance, thereby validating the effectiveness of our

proposed methods.

Adversarial Defenses. We evaluate the adversarial examples against a variety of

defenses under white-box settings, as shown in Table 5.2. The findings indicate that

current defenses can effectively counter existing adversarial attacks, even with simple

SRS (Simple Random Sampling). Defense methods that rely on outlier point removal

exhibit the best performance among all defenses, suggesting that perturbation-based

attack methods tend to displace points outside the original shape by adding perturba-

tions to 𝑥𝑦𝑧 coordinates. Our proposed 3DAdvDiff significantly outperforms state-of-

the-art adversarial attacks. Due to its utilization of model uncertainty, 3DAdvDiff is

particularly effective against random sampling. The proposed critical point selection

of 3DAdvDiffens is effective against outlier removal defenses. However, the perfor-

mance of 3DAdvDiffens against IF-Defense is not satisfying due to the selection of

critical points. Balancing generation quality and defense performance remains a chal-

lenge. In future work, we aim to enhance attack performance against reconstruction-

based defenses.
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Clean PGD GeoA3

SI-Adv PF-Attack 3DAdvDiff

Figure 5.2: The visual quality of adversarial examples. The black-box adver-
sarial examples are relatively unnatural compared to white-box adversarial examples.

Generation Quality. We further assess the distance between benign and adver-

sarial examples to evaluate the visual quality of existing adversarial attack methods,

as shown in Table 5.3. The Chamfer Distance (CD), Hausdorff Distance (HD), and

Mean Square Error (MSE) are selected. Given that we apply the same ℓinf = 0.16

norm to limit the perturbation for each attack, the visual quality across different at-

tack methods is relatively similar. However, it is hard to give a fair comparison with

3DAdvDiff’s adversarial examples, because the adversarial sampling of diffusion mod-

els can lead to the generation of new point clouds with completely different shapes.

Therefore, the generation quality of 3DAdvDiffens is evaluated by the difference be-

tween the benign samples and the adversarial examples with fixed sampling. A visual

comparison is provided in Figure 5.2 for a more comprehensive demonstration. The

point clouds generated by 3DAdvDiffens is smoother than existing attacks.

Table 5.3: The generation quality on the ShapeNet dataset. The CD distance
is multiplied by 10−2.

Method PGD KNN GeoA3 SI-Adv AdvPC PF-Attack 3DAdvDiffens

HD 0.136 0.105 0.039 0.071 0.028 0.046 0.098
CD 0.46 0.42 0.10 0.33 0.27 0.25 0.14
MSE 2.71 2.42 1.50 3.08 2.04 1.85 1.18
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Time Efficiency. Despite the proposed 3DAdvDiff achieves overwhelming perfor-

mance on black-box adversarial attacks. The generation speed of diffusion models is a

critical problem that influences their development. As shown in Table 5.4, the running

time of the proposed 3DAdvDiff is relatively slower than previous perturbation-based

attack methods. However, we can improve the sampling speed by adopting DDIM

sampling to PVD.

Table 5.4: The average running time to generate one adversarial example.

Method PGD KNN GeoA3 SI-Adv AdvPC PF-Attack 3DAdvDiffens

Time (s) 1.1 17.3 81.6 7.0 2.5 38.6 60.8

Integration with Other Methods. To completely demonstrate the effectiveness

of the proposed transferability boosting methods, we integrate the proposed improve-

ment methods with existing attacks. As shown in Table 5.5, our proposed enhance-

ment methods markedly improve the performance of PGD, SI-Adv, and AdvPC on

black-box attacks. However, the performance increase of adversarial attacks is limited

without the diffusion models.

Table 5.5: The ensemble of proposed boosting transferability methods with
existing attack methods. The experiments are performed on the whole test
dataset of the ShapeNet dataset.

Method PointNet PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average
PGD 99.8 10.8 8.9 11.1 7.1 7.3 9.1 10.1 9.2
PGD + 3DAdvDiff 99.5 48.9 93.6 21.7 25.6 14.2 96.1 14.5 25.0
SI-Adv 97.6 12.2 10.2 11.9 7.5 8.8 12.8 8.3 10.2
SI-Adv + 3DAdvDiff 70.5 42.8 45.9 19.2 24.9 20.4 38.6 21.7 25.8
AdvPC 96.9 7.7 6.1 6.3 10.9 5.4 6.8 6.1 7.0
AdvPC + 3DAdvDiff 95.2 57.5 75.8 38.1 35.4 21.8 63.0 16.1 33.8

5.4.3 Ablation Study

We conduct a series of ablation studies to investigate the effectiveness of various

approaches in 3DAdvDiffens for enhancing transferability, including model uncertainty,

ensemble adversarial guidance, and generation quality augmentation.

Adversarial Guidance. The parameter 𝑎 of the adversarial guidance is critical to

the attack success rate and the generation quality, as shown in Figure 5.3. However,
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Figure 5.3: The ablation study of proposed 3DAdvDiffens. The results are
evaluated on the Chair class of the ShapeNet dataset. We use average ASR to test
the black-box attack performance.

our proposed 3DAdvDiff generates adversarial examples by finding the most vulner-

able rotation from multiple views. Therefore, we can easily balance ASR and the

generation quality without largely decreasing ASR.

Model Uncertainty. We evaluate the performance of model uncertainty with vary-

ing settings of 𝑀 . Figure 5.3 indicates that attack transferability increases with a

larger 𝑀 . However, this significantly impacts the time efficiency required to gener-

ate adversarial examples. As shown in Table 5.6, incorporating model uncertainty

significantly improves the transfer attack performance of 3DAdvDiff combined with

the sampling of the diffusion model. These results further validate the effectiveness

of our proposed model uncertainty approach.

Table 5.6: The ensemble of model uncertainty with 3DAdvDiff. The experi-
ments are performed on the Chair class of the ShapeNet dataset.

Method PointNet PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average
3DAdvDiff 99.9 60.6 8.7 23.5 9.8 6.9 14.9 8.9 19.0
3DAdvDiff + MU 99.9 82.6 78.6 85.6 84.2 68.1 59.5 70.2 75.5

Ensemble Adversarial Guidance. We test the performance of 3DAdvDiff with en-

semble adversarial guidance. Table 5.7 shows that the proposed adversarial guidance

can effectively improve the performance of transfer attacks against black-box models.

Simultaneously, the use of ensemble adversarial guidance does not compromise the

generation quality of the proposed attack.

Generation Quality Augmentation. Current 3D distance measurements take

into account the difference between the entire point set. Therefore, to improve the
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Table 5.7: The performance of ensemble adversarial guidance. The experi-
ments are performed on the Chair class of the ShapeNet dataset.

Method PointNet PointNet++ DGCNN PointConv CurveNet PCT PRC GDANet Average
3DAdvDiff 99.9 60.6 8.7 23.5 9.8 6.9 14.9 8.9 19.0
3DAdvDiff + EAG 99.9 70.8 99.9 79.5 75.9 45.3 99.9 54.3 65.2

generation quality, we should limit the ℓ0 distance between the adversarial and benign

examples. The proposed augmentation notably enhances the quality of the generated

point clouds without compromising the attack performance. The results are given in

Figure 5.3.

5.5 Discussion

Experiments demonstrate that current attacks perform poorly against black-box mod-

els under the ℓinf = 0.16 constraint, particularly in the Chair, Airplane, and Car cat-

egories. However, these black-box models are extremely vulnerable to the proposed

3DAdvDiff due to the long-tail training dataset. Consequently, we advocate for a

more balanced training approach for 3D point cloud models and the creation of large-

scale datasets with a similar scale to the 2D ImageNet. While 3DAdvDiff delivers

satisfactory attack performance, its major weakness lies in the need for improved time

efficiency to ensure better generalization.

5.6 Conclusion

In this chapter, we introduce the first-ever method designed to execute a black-box

adversarial attack on recently developed 3D point cloud classification models. Our

research is also a pioneering work in the use of diffusion models for 3D adversarial

attacks. Specifically, we generate adversarial examples through 3D adversarial shape

completion, ensuring reliable and high-quality point cloud generation. We propose

several strategies to enhance the transferability of our proposed attack, including the

use of model uncertainty for improved prediction inference, enhancing adversarial

guidance through ensemble logits from various substitute models, and the improve-

84



ment of generation quality via critical points selection. Comprehensive experiments

on the robust dataset validate the effectiveness of our proposed attacks. Our methods

establish a solid baseline for future development in black-box 3D adversarial attacks.

85



H
eatm

ap
L

ong-tail D
ataset

F
igure

5.4:
T

h
e

ch
allen

gin
g

3D
b
lack-b

ox
ad

versarial
attacks.

T
he

value
in

the
H

eatm
ap

is
re-scaled

for
better

visual-
ization.

W
e

use
the

top
13

classes
from

the
ShapeN

et
dataset

to
dem

onstrate
the

long-tailed
dataset

problem
.

W
e

use
P

G
D

w
ith

ℓinf
=

0.16
on

P
ointN

et
to

evaluate
the

black-box
A

SR
.

86



Chapter 6

Gradient-Free Adversarial

Purification with Diffusion Models

6.1 Introduction

Deep learning models have demonstrated remarkable performance across various tasks

[43,79,130]. With the rapid advancement and widespread deployment of these models,

their security and robustness are garnering increasing attention.

It is widely recognized that deep learning models are highly vulnerable to adver-

sarial attacks [10, 84]. These attacks are performed by adding imperceptible pertur-

bations to clean images. The perturbed images, known as adversarial examples, can

deceive trained deep learning classifiers with high confidence while appearing natural

and realistic to human observers. To mitigate adversarial attacks and ensure the sta-

bility of deep learning models, adversarial training [35, 84] has been developed. This

approach aims to defend against adversarial attacks by training the classifier with

adversarial examples. However, adversarial training tends to perform poorly against

unknown attacks.

Recently, with the development of diffusion models [25,100], adversarial purifica-

tion [89,109] has shown promising defense performance by recovering the adversarial

examples to clean images. These works adopt the diffusion model’s reverse genera-

tion process to gradually remove the Gaussian noise from the forward process and the
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Label: pomegranate
Confidence: 38.17%

Adversarial
Super-Resolution

Adversarial
Anti-Aliasing

Adversarial Example

Label: pomegranate
Confidence: 1.79%

Label: Cock
Confidence: 23.51%

Figure 6.1: The proposed adversarial defense pipeline. We give an adversarial
example of “cock” class with AutoAttack ℓinf = 8/255 on ImageNet dataset. Ad-
versarial anti-aliasing aims to eliminate adversarial perturbations, while adversarial
super-resolution seeks to restore benign images from blurred adversarial examples
using prior knowledge from the clean dataset.

adversarial perturbations. Nevertheless, these methods require heavy computational

resources during the purification, which may not be practical in real-time scenarios.

Diffusion models also facilitate stronger unrestricted adversarial attacks [15,16,20].

These UAEs are generated through the reverse generation process by incorporat-

ing adversarial guidance. Unlike traditional perturbation-based adversarial attacks,

UAEs exhibit superior attack performance against current defenses due to their dis-

tinct threat models. These attacks pose a new threat to the development of deep

learning models and urgently need to be addressed. Even worse, existing defenses

have merely covered the discussion against UAEs.

In this chapter, we propose an effective adversarial defense method that detects

both perturbation-based adversarial examples and unrestricted adversarial examples.

To achieve the defense objective, we locate and utilize the common characteristic of

these two types of attacks that both adversarial examples are generated close to the

decision boundary for minimal perturbations, which makes these adversarial examples

susceptible to changes in pixels.

Our defense employs zero-shot adversarial purification by extracting the “semantic

shape” information from images without the image details, as illustrated in Figure

6.1. Specifically, we use adversarial anti-aliasing with specialized filters to blur the
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detailed adversarial modifications in the adversarial examples. Following this, we

apply adversarial super-resolution to the anti-aliased adversarial examples, upscal-

ing the blurred images using details from pre-trained clean super-resolution diffusion

models. These two methods are time-efficient and do not require any modifications

to the original models. To demonstrate the effectiveness of our proposed defense, we

further validate its performance by using the upscaled adversarial examples as input

for adversarial purification. Experiments on various datasets show that our defense

outperforms state-of-the-art adversarial defenses in adversarial purification.

Our contributions are summarized as follows:

• We propose a novel adversarial defense capable of countering both perturbation-

based adversarial examples and unrestricted adversarial examples, addressing

the current gap in effective defenses against unrestricted adversarial attacks.

• We introduce various zero-shot and gradient-free defense strategies that preserve

the semantic information of adversarial examples while eliminating adversarial

modifications. These strategies include adversarial anti-aliasing for “semantic”

extraction and adversarial super-resolution for incorporating benign priors and

recovering benign details from adversarial examples.

• We conduct extensive experiments on various datasets against adaptive ad-

versarial attacks. The results demonstrate the effectiveness of our proposed

defense method compared to state-of-the-art adversarial defenses. Moreover,

anti-aliased and upscaled adversarial examples effectively integrate with existing

diffusion-based adversarial purification, validating the usability and scalability

of our approach.
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6.2 Preliminary

6.2.1 Threat Model

Adversarial examples conduct attacks by deceiving the target model with wrong clas-

sification results. Considering the untargeted attack scenario, the perturbation-based

adversarial examples are defined as:

𝐴AE ≜ {𝑥adv = 𝑥+ 𝛿|𝑦 ̸= 𝑓(𝑥), 𝑥 ∈ 𝐷, |𝛿| ≤ 𝜖} (6.1)

where 𝛿 is the adversarial perturbation, 𝑓(·) is the target model, 𝐷 is the clean

dataset, and 𝜖 is the perturbation norm constraint.

These adversarial examples are generated by adding the perturbations to the clean

images. However, such perturbations can degenerate the image quality. By utilizing

the generation models, Song et al. [110] presented unrestricted adversarial examples

by directly generating adversarial examples with the generation tasks, which can be

formulated as:

𝐴UAE ≜ {𝑥adv ∈ 𝒢(𝑧adv, 𝑦)|𝑦 ̸= 𝑓(𝑥)} (6.2)

where 𝒢 is the generation model, 𝑧adv is the latent code for generation.

These two adversarial examples are generated with different threat models. How-

ever, they both can successfully conduct attacks against the given target model. A

robust defense method should be able to defend against these attacks simultaneously.

6.2.2 Diffusion-Based Adversarial Purification

The diffusion model [46] learns to recover the image from the denoising-like process,

i.e., reverse generation process. The reverse generation process takes 𝑇 time steps to

obtain a sequence of noisy data {𝑥𝑇−1, . . . , 𝑥1} and get the data 𝑥0 at the last step.

Specifically, it can be formulated as:

𝑝𝜃(𝑥𝑡−1|𝑥𝑡) = 𝒩 (𝑥𝑡−1 : 𝜇𝜃(𝑥𝑡, 𝑡), 𝜎
2
𝑡 I) (6.3)
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Figure 6.2: The comparisons of state-of-the-art diffusion-based adversarial
purification pipelines. We mark the defense process in blue to represent time-
consuming approaches. We use red font to indicate non-purified adversarial input.

The forward diffusion process is where we iteratively add Gaussian noise to the

data for training the diffusion model to learn 𝑝𝜃(𝑥𝑡−1|𝑥𝑡). It is defined as:

𝑞(𝑥𝑡|𝑥𝑡−1) = 𝒩 (𝑥𝑡 :
√︀
1− 𝛽𝑡𝑥𝑡−1, 𝛽𝑡I) (6.4)

where 𝜎 is the noise schedule.

Nie et al. [89] attempted to find the optimal 𝑡* where it satisfy that:

𝑥𝑡* =
√
𝜎𝑡*𝑥adv +

√
1− 𝜎𝑡*𝜀 (6.5)

=
√
𝜎𝑡*(𝑥+ 𝛿) +

√
1− 𝜎𝑡*𝜀

where 𝜀 is the Gaussian noise 𝜀 ∼ 𝒩 (0, I). After we obtain the optimal 𝑡*, we can

utilize the reverse generation process over 𝑥adv to recover the clean 𝑥.

Song et al. [109] utilized the whole reverse generation process from 𝑇 diffusion

timesteps; they used adversarial sample 𝑥adv as guidance rather than an intermediate

time step state. At each time step 𝑡, the guidance is added to the 𝑥𝑡 after the original

reverse generation process and can be formulated as:

∇𝑥 log 𝑝(𝑥adv|𝑥𝑡; 𝑡) = −𝑅𝑡∇𝑥𝑡𝑑(𝑥̂𝑡, 𝑥adv) (6.6)
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AutoAttack Example
Robust Acc: 0%

RGB conversion
Robust Acc: 38.25%

Adv. Anti-Aliasing
Robust Acc: 55.85%

Figure 6.3: The vulnerability of adversarial examples to the changes in
pixels. The RGB conversion is performed by converting the images to RGB space
after the ImageNet normalization and achieves 38% robust accuracy. The proposed
adversarial anti-aliasing is more effective while preserving the image quality.

AutoAttack Example MimicDiffusion Adv.
Super-Resolution

Figure 6.4: The example of proposed adversarial super-resolution. Our
method achieves similar adversarial purification without any gradient calculation of
diffusion models.

where 𝑅𝑡 is the scale factor at 𝑡 time step, 𝑑(·) is the distance measurement, and 𝑥̂𝑡

is the estimation for 𝑥0 at 𝑡 time step. The 𝑥̂𝑡 is defined as:

𝑥̂𝑡 =
𝑥𝑡 −
√
1− 𝜎𝑡𝑠𝜃(𝑥𝑡)√

𝜎𝑡

(6.7)

where the 𝑠𝜃 known score function is defined as [111].
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6.3 Methodology

6.3.1 Motivation

With the advancement of diffusion models, diffusion-based adversarial purification has

emerged as a leading approach for adversarial defenses. However, current methods

still face significant challenges that impact their effectiveness. Figure 6.2 illustrates

typical diffusion-based purification pipelines from state-of-the-art methods. Nie et

al. [89] achieved purification by utilizing the adversarial latent generated by the for-

ward process of adversarial examples. Unfortunately, this approach can introduce

adversarial perturbations into the purified examples, as these perturbations persist

in the adversarial latent. Song et al. [109] sought to mitigate the impact of adver-

sarial perturbations by using random latents, employing adversarial examples solely

as guidance. However, this method requires gradient calculations at each step of the

reverse process, making it computationally intensive. Consequently, achieving both

time-efficient and perturbation-isolated diffusion-based adversarial purification

remains a challenge. Furthermore, existing defenses fail to defend against the recently

proposed unrestricted adversarial attacks.

6.3.2 Perturbation-Isolated Adversarial Purification

Perturbation-based adversarial examples are precisely calculated based on the gra-

dient of the loss function, whereas unrestricted adversarial examples are sampled

near the decision boundary. Despite employing different threat models, both types

of attacks produce adversarial examples that are sensitive to pixel changes. Since

adversarial examples are designed to be imperceptible compared to clean images, the

semantic shapes of objects within the images should correspond to their original la-

bels. Therefore, our defense strategy focuses on extracting the semantic shapes from

the adversarial examples and eliminating the adversarial pixel-level details.
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Adversarial Anti-Aliasing

To achieve effective defenses against both unrestricted and perturbation-based ad-

versarial attacks, it is essential to address their common characteristics. One critical

factor is the value range of images: a valid RGB value is an integer between 0 and

255. However, the modifications introduced by various adversarial attacks are often

performed using non-integer data types for gradient calculations. These modifications

can become ineffective when transformed back to the RGB image format. Figure 6.3

supports our findings, showing that approximately 38% of adversarial examples from

AutoAttack fail with the combinations of RGB conversions and image normalization

for deep-learning models. The reasons for this phenomenon could be that adversar-

ial examples are typically located near the decision boundary and are sensitive to

pixel changes. However, simple RGB conversion can be effectively compromised by

adaptive attacks [2]. Therefore, in this chapter, we aim to propose more effective

transformations.

Anti-aliasing is a straightforward, zero-shot method for smoothing image details,

including adversarial perturbations [70, 118]. Unlike previous works, we have found

that anti-aliasing with non-square filters is particularly effective against adversarial

attacks while preserving clean accuracy. Additionally, using the average value from

neighboring pixels, excluding the original pixel, has also proven effective. This is be-

cause adversarial perturbations are calculated on a pixel-wise basis and are sensitive

to pixel changes. These two approaches greatly enhance the effectiveness of anti-

aliasing. Even with simple anti-aliasing, we achieve moderate defense performance,

underscoring the effectiveness of our approach. Although adversarial anti-aliasing

can produce blurred images, the semantic features are preserved because the adver-

sarial perturbation should remain imperceptible. Therefore, it effectively reduces the

magnitude of adversarial perturbations while maintaining the semantic information

necessary for classification. To maintain the resolution of the output image, we use

padding, which is calculated as follows:

𝑅𝑜𝑢𝑡 = ⌊𝑅𝑖𝑛 + 2× Padding− filter_size⌋ (6.8)
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Table 6.1: The standard and robust accuracy against left: AutoAttack
(ℓinf = 8/255), right: PGD-EOT (ℓinf = 8/255) on CIFAR-10.

Method Target Model Standard Acc(%) AutoAttack Acc(%) PGD-EOT Acc(%)

Wu et al. [126] WideResNet-28-10 85.36 59.18 62.16
Gowal et al. [35] WideResNet-28-10 87.33 61.72 64.68
Rebuffi et al. [98] WideResNet-28-10 87.50 65.24 68.89
Wang et al. [120] WideResNet-28-10 84.85 71.18 68.36
Nie et al. [89] WideResNet-28-10 89.23 71.03 46.84
Lee et al. [63] WideResNet-28-10 90.16 70.47 55.82
Song et al. [109] WideResNet-28-10 92.10 75.45 68.20

Ours WideResNet-28-10 92.54 ± 1.66 82.02 ± 1.17 80.86 ± 1.33

Rebuffi et al. [98] WideResNet-70-16 88.54 64.46 68.23
Gowal et al. [35] WideResNet-70-16 88.74 66.60 69.48
Nie et al. [89] WideResNet-70-16 91.04 71.84 51.13
Lee et al. [63] WideResNet-70-16 90.43 66.06 56.88
Song et al. [109] WideResNet-70-16 93.25 76.60 69.55

Ours WideResNet-70-16 93.42 ± 1.51 83.65 ± 2.90 81.60 ± 1.75

where 𝑅 is the shape of the data. We use stride = 1.

Adversarial Super-Resolution

During the adversarial anti-aliasing phase, we significantly reduce adversarial pertur-

bations by directly decreasing pixel-wise modifications of adversarial examples. How-

ever, this approach may not be effective against unrestricted adversarial examples,

as they are not generated by adding explicit perturbations. Additionally, blurring

the images can negatively impact the clean accuracy of the target model. Super-

resolution offers an effective way to recover high-quality images from our adversarial

anti-aliased images. Previous super-resolution methods [33, 62] typically modify the

original pixels of the low-resolution image and use the residual features of the original

low-resolution image. These methods can inadvertently transfer negative effects from

the adversarial examples to the final high-resolution images, making them ineffec-

tive for adversarial super-resolution. Diffusion-model-based super-resolution [100,138]

provides a more isolated approach for super-resolution. These models generate high-

resolution images through a denoising-like process over randomly sampled noise, using

the low-resolution image as conditions.

95



In this work, we adopt the ResShift method by Yue et al. [138] for our super-

resolution process. This super-resolution model can also incorporate benign priors

for defense, as it is trained with the clean dataset of the target model. Figure 6.4

demonstrates that the proposed super-resolution method achieves results comparable

to diffusion-based adversarial purification [109], which do not require the calculation

of gradient.

Adversarial Purification

The proposed adversarial purification is performed by the combination of adversarial

anti-aliasing and adversarial super-resolution. We resize the purified images after the

adversarial super-resolution for the target model. Additionally, our approach does

not require any training of the target model or the defense model.

𝑦 = {𝑓(SR(AA(𝑥adv))))} (6.9)

6.3.3 Discussions on Improved Time Efficiency

As previously discussed, employing the entire reverse process with adversarial exam-

ple guidance is computationally intensive, while using only a partial reverse process

diminishes defense performance. In this chapter, we propose a two-fold solution to ad-

dress this issue. First, we introduce an effective preprocessing approach, specif-

ically anti-aliasing, to mitigate the impact of adversarial perturbations.

Previous research has shown that diffusion-based adversarial purification should avoid

introducing adversarial perturbations into the diffusion model. Therefore, a more ef-

fective strategy is to remove some of these perturbations before feeding adversarial

examples into the diffusion models. Unlike previous methods that directly utilize

adversarial examples for purification, our approach offers a preliminary filtering step.

Second, we employ diffusion-based super-resolution instead of diffusion-

based image generation. It is well-known that the reverse process of diffusion

models is time-consuming, as illustrated in Figure 6.2, and the gradient calculation
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exacerbates this issue. However, we may not require the entire reverse process for

purification, given that we already have a reference adversarial example, which is also

discussed in Nie et al. [89]’s work. Since adversarial perturbations are pixel-wise,

we opt for a relatively lightweight generation task, namely super-resolution, which

also focuses on pixel modification. The diffusion-based super-resolution method used

in this chapter requires only tens of steps, compared to the hundreds or thousands

of diffusion steps needed in previous works. With these two approaches, we signifi-

cantly enhance the time efficiency of diffusion-based adversarial purification without

compromising defense performance.

6.4 Experiments

6.4.1 Experimental Setup

Dataset and Target Models. We consider CIFAR-10 [58] and ImageNet [23] for

major evaluation. For target models, we adopt WideResNet-28-10 and WideResNet-

70-16 [140] for CIFAR-10 dataset and ResNet50 [43] for ImageNet dataset. These are

commonly adopted backbones for adversarial robustness evaluation.

Comparisons. We compared our defense methods with various state-of-the-art de-

fenses by the standardized benchmark: RobustBench [18]. We compare four diffusion-

based adversarial purification methods: Nie et al.’s DiffPure [89], Wang et al.’s [120],

Lee et al.’s [63] and Song et al.’s MimicDiffusion [109]. We mainly compare our

method with MimicDiffusion as it is the current state-of-the-art method. We use

the Score SDE [111] implementation of MimicDiffusion on CIFAR-10 for fair compar-

isons. The defense methods that use extra data are not compared for fairness. We

only evaluate the adversarial purification methods against unrestricted adversarial

attacks as the adversarial training’s different threat model.

Attack Settings. We evaluate our method with both perturbation-based attacks

and diffusion-based unrestricted adversarial attacks. For perturbation-based attacks,

we select AutoAttack [19], PGD [84]. For diffusion-based unrestricted adversarial
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attacks, we use DiffAttack [13] and AdvDiff [20] for comparisons. DiffAttack is only

evaluated on the ImageNet dataset according to the original chapter. To ensure a

fair comparison with previous diffusion-based adversarial purification, we include the

evaluation against the adaptive attack, i.e., reverse pass differentiable approximation

(BPDA) [45]. We also evaluate the performance against PGD+EOT that is discussed

in [63]. On CIFAR-10, the attack settings follow DiffPure [89]. On ImageNet, we

randomly sample 5 images from each class and average over 10 runs. The PGD+EOT

settings all follow Lee et al. [63].

Implementation Details. We adopt the mean filter with [[1, 1], [1, 1]] for adversar-

ial anti-aliasing on CIFAR-10, and [[1, 1, 1, 1, 1], [1, 1, 0, 1, 1], [1, 1, 1, 1, 1]] in ImageNet.

ResShift [138] is utilized for adversarial super-resolution. We use the official Score

SDE [111] checkpoint for CIFAR-10 and LDM [100] checkpoint for ImageNet to gen-

erate UAEs.

Evaluation Metrics. Following Nie et al. [89], we use standard accuracy and ro-

bust accuracy as the evaluation metrics. Both are calculated according to the top-1

classification accuracy.

6.4.2 Attack Performance

CIFAR-10

Perturbation-based Adversarial Attack. Table 6.1 presents the defense perfor-

mance against AutoAttack (ℓinf = 8/255) on the CIFAR-10 dataset. The results

demonstrate that our proposed method achieves better standard accuracy and robust

accuracy than previous attack methods. Because images in the CIFAR-10 dataset are

only with 32 × 32 resolution, we set our anti-aliasing filter to a relatively small size.

Table 6.2 indicates that the robustness performance of the proposed method is on par

with the state-of-the-art method [89]. This finding suggests that our method is more

suitable for high-resolution images, as 32× 32 may not be large enough to effectively

extract the semantic shape for our approach. However, we can further enhance our

performance by incorporating adversarial purification techniques from previous work.
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Table 6.2: The standard and robust accuracy against BPDA (ℓinf = 8/255)
on the CIFAR-10 dataset with WideResNet-28-10 as the target model.

Method Purification Standard Acc(%) Robust Acc(%)

Nie et al. [89](𝑡* = 0.0075) Diffusion 91.38 77.62
Nie et al. [89](𝑡* = 0.1) Diffusion 89.23 81.56
Wang et al. [120] Diffusion 90.36 77.31
Song et al. [109] Diffusion 91.41 76.45

Ours Diffusion 91.52 ± 1.28 81.24 ± 2.51

Table 6.3: The standard and robust accuracy against AdvDiff on the
CIFAR-10 dataset.

Method Target Model Standard Acc(%) Robust Acc(%)

Nie et al. [89] WideResNet-28-10 95.42 21.56
Wang et al. [120] WideResNet-28-10 95.86 26.68
Lee et al. [63] WideResNet-28-10 95.29 24.94
Song et al. [109] WideResNet-28-10 96.21 23.23

Ours WideResNet-28-10 96.80 ± 0.37 33.97 ± 0.77

Our defense’s performance against PGD-EOT showcases its ability to defend

against adaptive attacks. This is because our approach focuses on extracting and

recovering the semantic features from adversarial images, rather than inferring and

denoising the adversarial perturbations. As a result, our defense maintains similar

effectiveness against both adaptive and standard attacks.

Unrestricted Adversarial Attack. Unrestricted adversarial examples on the CIFAR-

10 dataset are challenging to defend against, as shown in Table 6.3. Our purification

method outperforms the previous adversarial purification approach [109] by an aver-

age of 10%, validating the effectiveness of our proposed defense.

ImageNet

Perturbation-based Adversarial Attack. Tables 6.4 and 6.5 demonstrate that

the proposed defense method achieves significantly higher performance in both stan-

dard accuracy and robust accuracy. Our defense’s standard accuracy notably sur-
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Table 6.4: The standard and robust accuracy against AutoAttack (ℓinf =
8/255) on the ImageNet dataset.

Method Target Model Standard Acc(%) Robust Acc(%)

Engstrom et al. [18] ResNet50 62.56 31.06
Wong et al. [125] ResNet50 55.62 26.95
Salman et al. [102] ResNet50 64.02 37.89
Bai et al. [3] ResNet50 67.38 35.51
Nie et al. [89] ResNet50 68.22 43.89
Song et al. [109] ResNet50 66.92 61.53

Ours ResNet50 75.28 ± 1.06 67.61 ± 1.95

Table 6.5: The standard and robust accuracy against left: PGD (ℓinf =
4/255), right: PGD+EOT (ℓinf = 4/255) on ImageNet dataset.

Method Target Model Standard Acc(%) PGD Acc(%) PGD+EOT Acc(%)

Wong et al. [125] ResNet50 55.62 26.24 30.51
Salman et al. [102] ResNet50 64.02 34.96 38.62
Bai et al. [3] ResNet50 67.38 40.27 43.42
Nie et al. [89] ResNet50 68.22 42.88 38.71
Lee et al. [63] ResNet50 70.74 46.31 42.15
Wang et al. [120] ResNet50 70.17 68.78 40.22
Song et al. [109] ResNet50 66.92 62.16 52.66

Ours ResNet50 75.28 ± 1.06 69.75 ± 2.61 66.87 ± 1.85

passes previous work, further validating that adversarial super-resolution effectively

leverages prior knowledge from the training dataset to achieve better classification ac-

curacy. Adversarial anti-aliasing proves to be particularly effective on the ImageNet

dataset, where the filter successfully blurs adversarial perturbations in the detailed

pixels of adversarial examples. The performance against PGD-EOT further validates

the effectiveness of our proposed defense pipeline.

Unrestricted Adversarial Attack. We present the defense performance of various

methods against the unrestricted adversarial attack AdvDiff and DiffAttack in Table

6.6 and 6.7. The results indicate that current defenses are ineffective against the

recently proposed unrestricted adversarial attacks. The high standard accuracy can
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be attributed to the strong generative performance of benign diffusion models. Our

defense method is capable of achieving significantly higher robust accuracy compared

to previous defenses while preserving the standard accuracy.

Table 6.6: The standard and robust accuracy against AdvDiff on the Ima-
geNet dataset.

Method Target Model Standard Acc(%) Robust Acc(%)

Nie et al. [89] ResNet50 91.48 24.82
Wang et al. [120] ResNet50 92.31 26.74
Lee et al. [63] ResNet50 91.80 25.34
Song et al. [109] ResNet50 92.54 25.35

Ours ResNet50 97.83 ± 1.36 42.21 ± 3.41

Table 6.7: The standard and robust accuracy against DiffAttack on the
ImageNet dataset.

Method Target Model Standard Acc(%) Robust Acc(%)

Nie et al. [89] ResNet50 68.22 59.15
Wang et al. [120] ResNet50 69.54 62.33
Lee et al. [63] ResNet50 70.74 61.56
Song et al. [109] ResNet50 66.92 60.17

Ours ResNet50 75.28 ± 1.06 65.51 ± 1.33

6.4.3 Time efficiency

We evaluate the average time for defending against one adversarial example as shown

in Table 6.8. The results indicate that our proposed method achieves better robust

accuracy with significantly lower time costs, as it does not require any gradient cal-

culations over the diffusion model. Notably, our adversarial anti-aliasing can defend

against approximately 57% of adversarial examples in just 3e−3 seconds. Further-

more, we can enhance the defense performance of our method by combining it with

previous purification methods, with only a minimal tradeoff in time cost.
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Table 6.8: The average time cost of defending one image against PGD
(ℓinf = 4/255) on the ImageNet dataset.

Method Defend Method Time Cost(s) Robust Acc(%)

Nie et al. [89] Diffusion 13.3 42.88
Wang et al. [120] Diffusion 62.8 68.78
Lee et al. [63] Diffusion 32.4 46.31
Song et al. [109] Diffusion 146.1 62.16

Ours Adversarial Anti-Aliasing 3e−3 57.61
+ Adversarial Super-Resolution 1.1 69.75
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Figure 6.5: The ablation study of filter size. The weight of the filter at each
position is set to 1 except for the center, which we set to 0.

6.4.4 Ablation Study

We perform ablation studies to validate the performance of the proposed methods.

We evaluate the defense method against AutoAttack (ℓinf = 8/255) on the ImageNet

dataset by default.

Adversarial Anti-Aliasing. Despite the satisfactory robustness performance of the

proposed adversarial anti-aliasing, the choice of filter settings is critical for optimal

defense performance. We present the defense performance with different filters in

Figure 6.5. The results indicate a tradeoff between robust accuracy and standard

accuracy. Robust accuracy tends to stabilize when using a filter larger than 3× 3 in

size. Therefore, it is relatively straightforward to identify a suitable filter with a few

attempts. Furthermore, the filter settings are generalized across different adversarial

attacks within the same dataset, as demonstrated in Tables 6.4, 6.5, and 6.6.
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Table 6.9: The ablation study of proposed methods.

(a) The ablation study of proposed adver-
sarial super-resolution.

Method Robust Acc(%)

Nie et al. [89] 43.89
Song et al. [109] 61.53

Adversarial AA 55.85
Adversarial SR 41.23
Adversarial AA+SR 67.61

(b) The performance of integrating our
method with previous adversarial purifi-
cation.

Method Robust Acc(%)

Nie et al. [89] 43.89
+ Ours 69.44

Song et al. [109] 61.53
+ Ours 72.18

Adversarial Super-Resolution. The proposed adversarial super-resolution achieves

a similar purification function to previous diffusion-based adversarial purification

methods, but without the need for computationally expensive gradient calculations.

Table 6.9a demonstrates that our method slightly outperforms traditional adversar-

ial purification when using anti-aliased adversarial examples as input. However, it

is crucial to use anti-aliased adversarial examples for optimal performance in adver-

sarial super-resolution, as we do not account for the adversarial gradient during the

super-resolution process.

Adversarial Purification. We can enhance diffusion-based adversarial purification

methods from previous works by replacing the adversarial input with the adversarial

examples after the proposed purification. The processed adversarial examples are

more benign and closer to the clean images, thereby enabling better purification

performance, as demonstrated in Table 6.9b.

6.5 Conclusion

In this chapter, we present an effective and efficient adversarial defense method against

both perturbation-based and unrestricted adversarial attacks. The proposed tech-

niques, adversarial anti-aliasing and adversarial super-resolution, effectively eliminate

adversarial modifications and recover benign images with minimal computational

overhead. Comprehensive experiments on the CIFAR-10 and ImageNet datasets
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validate that our proposed defense outperforms state-of-the-art defense methods.

Our work demonstrates that simple adversarial anti-aliasing can achieve moderate

model robustness with almost no additional cost. Furthermore, the proposed super-

resolution method can perform adversarial purification without requiring the calcula-

tion of the diffusion model’s gradient. We hope our work will serve as a baseline for

the further development of adversarial defenses.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

Generative models, particularly diffusion models, hold significant potential for ad-

vancing AI Generated Content (AIGC) research. Recent progress in Multi-model

Large Language Models (MLLMs) with image and text input has further highlighted

the importance of diffusion models. There is an urgent need to thoroughly investi-

gate the adversarial capabilities of diffusion models to ensure the secure and robust

deployment of AIGC models.

In the work of unrestricted adversarial attacks, we propose AdvDiff, which pro-

vides a interpretable unrestricted adversarial attack using diffusion models by fol-

lowing the benign diffusion generation process. Existing diffusion-based adversarial

attacks typically use the gradients of the target model’s loss function to guide the

generation process. However, these methods can compromise the generation qual-

ity of diffusion models, resulting in low-quality adversarial examples. AdvDiff offers

two effective forms of adversarial guidance: adversarial guidance and noise sampling

guidance. These strategies follow the diffusion generation process and enhance the

generation of adversarial examples by increasing the conditional likelihood of the tar-

get attack label. Our experiments demonstrate that AdvDiff significantly improves

the generation quality of diffusion-based unrestricted adversarial attacks across var-

ious evaluation metrics. Additionally, we achieve a higher attack success rate in
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both white-box and black-box scenarios, with improved time efficiency in generating

adversarial examples.

In the work of no-box adversarial attacks, we propose a practical approach using a

diffusion classification model and a diffusion model. The no-box attack threat model

prohibits access to the target model’s training dataset, whereas existing methods still

rely on a small sub-dataset to train a substitute model. To perform no-box adversarial

attacks without any dataset access, we harness the generative capabilities of diffusion

models. Our training dataset is entirely generated by diffusion models using only

label information. Subsequently, we employ the diffusion classification model as the

substitute model, fine-tuning it with model uncertainty to enhance the transferability

of adversarial examples. The no-box unrestricted adversarial examples are generated

by the diffusion model using ensemble-like Monte Carlo sampling methods from the

substitute model. Through extensive experiments, we demonstrate that our no-box

adversarial attack achieves state-of-the-art performance in both no-box and black-box

adversarial attack scenarios. Additionally, our approach improves generation quality

and performance against various defenses.

In the work of 3D adversarial attacks, we propose a transferable adversarial 3D

shape completion method using diffusion models. Creating natural 3D adversarial

point clouds is more challenging than working with 2D images, as perturbations in

3D point clouds lead to shifts in 3D coordinates. Moreover, existing adversarial at-

tacks often struggle to successfully execute black-box attacks on recently developed

3D classifiers. Our proposed 3D adversarial attack utilizes the strong generative capa-

bilities of diffusion models to produce adversarial examples within the shape comple-

tion task. To enhance black-box adversarial attack performance, we employ a Monte

Carlo estimate over multiple down-sampled point clouds to infer the model’s gradient,

and we aggregate logits from multiple substitute models. Our adversarial guidance

is applied only to selected critical points, identified by proposed saliency scores, to

preserve the quality of point cloud generation. Experimental results demonstrate that

our adversarial 3D shape completion method achieves leading performance against a

wide range of black-box 3D target classifiers.
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In the work of diffusion-based adversarial purification, we introduce a gradient-free

approach that incorporates adversarial anti-aliasing and adversarial super-resolution.

Diffusion-based adversarial purification methods have shown promising defense capa-

bilities due to their denoising-like generation process. However, these defenses often

struggle against newly developed unrestricted adversarial attacks and suffer from poor

time efficiency due to the iterative nature of diffusion timesteps. Our defense offers

an effective and efficient preprocessing step with adversarial anti-aliasing to extract

semantic shapes from both perturbation-based and unrestricted adversarial attacks.

We then deploy super-resolution diffusion models to leverage the clean prior from be-

nign data to purify adversarial examples. Experimental results demonstrate that our

proposed purification method significantly improves the time efficiency of diffusion-

based adversarial purification across various datasets. We achieve state-of-the-art

performance in defending against both perturbation-based and unrestricted adver-

sarial attacks. Our approach provides a new pipeline for diffusion-based adversarial

defense with enhanced time efficiency.

7.2 Future Work

With the development of text-to-image diffusion models, such as Stable Diffusion,

and MLLMs, it enables stronger adversarial attacks with diffusion models. Our re-

search aims to further explore these techniques. In future work, we plan to focus on

utilizing text-to-image diffusion models to generate more aggressive adversarial exam-

ples by incorporating both adversarial guidance and text prompts. Additionally, we

intend to train adversarial LoRA models for efficient adversarial example generation.

Simultaneously, we will explore attacking MLLMs using diffusion models. Enhanc-

ing diffusion-based purification methods to defend against unrestricted adversarial

attacks is also a key objective to address security concerns.

107



7.2.1 Effective Adversarial Sampling with Prompt

Text-to-image diffusion models enable more precise and consistent image synthesis

based on user prompts, offering the potential for creating more camouflaged and flex-

ible adversarial examples compared to using adversarial guidance alone. In future

work, we plan to design aggressive prompts that incorporate adversarial gradients.

By using adversarial prompts, we aim to reduce the reliance on adversarial guidance

during sampling and enhance the quality of the generated adversarial examples. Fur-

thermore, we intend to design prompts that utilize ensemble logits and transferable

loss objectives to improve the transferability of adversarial attacks.

7.2.2 Training Adversarial LoRA

Low-Rank Adaptation (LoRA) of Large Language Models facilitates effective and

efficient fine-tuning for text-to-image diffusion models, particularly for generating

content from specific domains. Current diffusion-based adversarial attacks suffer from

low time efficiency when generating adversarial examples. Training a LoRA can help

reduce the computational overhead during adversarial sampling. We plan to propose

adversarial attack methods by training adversarial LoRAs for efficient sampling of

adversarial examples. Our approach will involve training LoRAs with adversarial

objectives against a target model. Once trained, we can directly generate adversarial

examples without the need for adversarial guidance during diffusion sampling. With a

trained LoRA, we will be able to generate adversarial examples with significantly lower

time costs compared to existing diffusion-based adversarial attacks. Additionally, the

generation quality is improved without relying on adversarial guidance.

7.2.3 Breaking through Multi-model Large Language Models

LLMs and MLLMs have demonstrated remarkable performance in content generation

and autonomous task solving. The development of LLMs is becoming a key trend

in the advancement of AI. However, LLMs have been shown to be vulnerable to ad-

versarial attacks or exploitation by malicious users. These security risks significantly
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impact the deployment of LLMs in security-related applications. To thoroughly inves-

tigate the security of LLMs and MLLMs, we plan to propose effective attacks against

MLLMs using diffusion models. As MLLMs accept both text and image inputs from

users, it is possible to use images generated by diffusion models to breach MLLM

defenses and generate content prohibited by user policies. We will utilize gradients

from MLLMs to create adversarial guidance for the adversarial sampling of diffusion

models. Our attack aims to elicit sensitive responses from MLLMs using malicious

prompts and adversarial examples from diffusion models.

Another adversarial attack strategy against MLLMs involves adversarial fine-

tuning using data generated by diffusion models. MLLMs support user-driven fine-

tuning to provide customized services based on a user’s dataset or specified tasks.

This fine-tuning capability also allows us to manipulate the functionality of MLLMs.

In the future, we plan to generate malicious content from diffusion models through

MLLM fine-tuning. We will create adversarial examples from diffusion models to

induce MLLMs to output malicious content. These adversarial examples can be used

as a fine-tuning dataset to compromise the defenses of MLLMs and provoke malicious

responses.

7.2.4 Robust Adversarial Purification against Unrestricted Ad-

versarial Attack

Unrestricted adversarial examples generated by diffusion models pose significant se-

curity concerns for adversarial defenses, as they employ different threat models com-

pared to traditional perturbation-based attacks. In future work, we plan to propose

a diffusion-based adversarial purification method specifically designed to counter un-

restricted adversarial attacks. Our defense strategy will begin with preprocessing

to extract the semantic shape from adversarial examples. We will then use latent

inversion with a text-to-image diffusion model, employing safety-oriented prompts

to guide the model in generating benign images. Our adversarial defense will focus

on reconstructing the semantic objects from adversarial examples and will be more
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generalized across different attack threat models.
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