

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

EFFECTIVE FAULT DETECTION FOR STATIC

ANALYZERS VIA AUTOMATED TESTING

HUAIEN ZHANG

PhD

The Hong Kong Polytechnic University

2025

The Hong Kong Polytechnic University

Department of Computing

Effective Fault Detection for Static Analyzers via Automated

Testing

Huaien Zhang

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

March 2025

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published or

written, nor material that has been accepted for the award of any other degree

or diploma, except where due acknowledgment has been made in the text.

Signature:

Name of Student: Huaien Zhang

Abstract

Static analyzers comprehend and analyze input programs without dynamically executing

them to gather insights into and detect flaws in their properties and behaviors. These tools

are indispensable for ensuring software quality and supporting various software engineer-

ing tasks, including vulnerability detection, privacy leakage identification, and malware

analysis. Despite their widespread adoption in real-world software development and main-

tenance, static analyzers, like other computer programs, are susceptible to implementation

faults, and it is a common practice for static analyzers to detect such faults via testing. Man-

ually creating test cases for static analyzers, however, is highly time-consuming and labor-

intensive because both constructing input programs to trigger specific analyses and deriving

the correct analysis results for the input programs are non-trivial tasks. Meanwhile, existing

research efforts to automatically generate test cases and uncover faults in static analyzers

suffer from three important limitations that restrict their applicability. These efforts de-

pend on dedicated oracles designed for specific programming languages or particular sets

of static analyzers, have limited support for certain program elements, or overlook bugs re-

flected in only the intermediate representations constructed by the static analyzers but not

the warnings they report.

To address these limitations, we develop three novel techniques, namely Statfier, An-

naTester, and SAScope. The Statfier technique leverages semantics-preserving program

transformations to derive valid variants from existing test input programs for static analyz-

ers, and it discovers faults in the static analyzers via metamorphic testing. We systemati-

i

cally investigate the impact of program annotations on static analyzers and propose another

metamorphic testing technique, AnnaTester, to automatically identify annotation-induced

faults. Furthermore, we comprehensively study the root causes of program representation

faults and their fix strategies and develop the SAScope technique to detect relevant faults

via automated testing.

We have implemented the techniques into three testing frameworks with the same names.

Using the testing frameworks, we identify 141 faults in popular static analyzers. We have

reported all identified faults to the respective developers via issue tracking systems, with

72 of them confirmed or fixed.

ii

Publications Arising from the Thesis

(* indicates the corresponding author.)

1. Huaien Zhang, Yu Pei, Shuyun Liang, Zezhong Xing, and Shin Hwei Tan, “Character-

izing and Detecting Program Representation Faults of Static analyzers”, in the 33rd ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2024).

2. Huaien Zhang, Yu Pei, Shuyun Liang, and Shin Hwei Tan, “Understanding and De-

tecting Annotation-Induced Faults of Static Analyzers”, in the 32nd ACM International

Conference on the Foundations of Software Engineering (FSE 2024).

3. Huaien Zhang, Yu Pei, Junjie Chen, and Shin Hwei Tan∗. 2023, “Statfier: Automated

Testing of Static Analyzers via Semantic-Preserving Program Transformations”, in the

31st ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE 2023).

4. Ying Li, Haibo Wang, Huaien Zhang, Shin Hwei Tan, “Classifying Code Comments via

Pre-trained Programming Language Model”, in the 2nd ICSE Workshop on NL-based

Software Engineering (NLBSE 2023).

5. Haibo Wang, Zhuolin Xu, Huaien Zhang∗, Shin Hwei Tan, “An Empirical Study of

Refactoring Engine Bugs”, submitted to TOSEM, under revision.

6. Xiaowen Zhang, Huaien Zhang∗, Shin Hwei Tan, “Symbiotic Code and Test Reuse for

Redesigned Projects”, submitted to TOSEM, under review.

iii

Acknowledgments

First and foremost, I feel profound gratitude towards my supervisors, Prof. Yu Pei and Prof.

Shin Hwei Tan, for all their meticulous efforts through every stage of my study. Learning

and working under their supervision is a precious experience of a lifetime. They are always

optimistic, energetic, and inspiring, which profoundly affects me. I have learned a lot from

our countless discussions; they are always full of fascinating ideas that can turn a difficult

problem I encountered into a chance, and they always welcome and attentively listen to

my immature research thoughts. Looking back on my PhD journey, choosing them as my

supervisors was, without a doubt, the absolute best decision I could have made.

I would like to thank my co-supervisor, Prof. Yuqun Zhang. His meticulous approach to

research serves as an exemplary paradigm for an outstanding scholar. I also learned a great

deal from him, encompassing writing skills and research strategies.

I am hugely appreciative of Prof. Junjie Chen, who gave me much valuable advice on my

first research paper. His generous assistance and insightful ideas made our achievements

possible, making the process significantly easier than it would have been otherwise. I am

also deeply grateful to Prof. Minxue Pan, Prof. Yepang Liu, Prof. Tian Zhang, Prof. Geng

Hong, Dr. Liushan Chen, Dr. Sen Yang, Dr. Mingyuan Wu, and Dr. Xin Tan for their

precious help and sincere suggestions on my career choice.

At last, I want to thank my parents, colleagues, and friends, for supporting me with their

love and selfless help during my PhD study.

iv

Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgments iv

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Main Contributions . 3

1.2 Terminology . 6

1.3 Thesis Organization . 6

2 Related Work 8

2.1 Static Analyzer Testing . 8

2.1.1 Differential Testing . 9

2.1.2 Random Testing . 10

2.1.3 Bug Injection . 11

2.2 Compiler Testing . 12

2.2.1 Differential Testing . 12

2.2.2 Metamorphic Testing . 15

v

3 Statfier: Testing Static Analyzers via Semantics-Preserving Program Trans-

formations 19

3.1 Illustrative Example . 22

3.2 Methodology . 25

3.2.1 Selection of Input Programs . 28

3.2.2 Variant Generation via Program Transformations 30

3.2.3 Heuristic-Based Testing Process 33

3.3 Evaluation . 36

3.3.1 Experimental Setup . 36

3.3.2 RQ 3.1: Assessing Effectiveness of Statfier 37

3.3.3 RQ 3.2: Assessing Effectiveness of Heuristics 43

3.3.4 RQ 3.3: Assessing Effectiveness of Transformations 46

3.4 Summary . 48

4 AnnaTester: Understanding and Detecting Annotation-Induced Faults of

Static Analyzers 49

4.1 Empirical Study of Annotation-Induced Faults 53

4.1.1 Target Static Analyzers . 53

4.1.2 Data Collection . 53

4.1.3 Issue Labeling and Reliability Analysis 54

4.1.4 RQ 4.1: AIF-Prone Annotation . 55

4.1.5 RQ 4.2: Root Cause . 56

4.1.6 RQ 4.3: Symptom . 62

4.1.7 Correlation Analysis between Root Cause and Symptom 63

4.1.8 RQ 4.4: Fix Strategy . 65

4.1.9 Correlation Analysis between Root Cause and Fix Strategy 69

4.2 Implementation of AnnaTester Framework 71

4.2.1 Issue Checkers and Metamorphic Relations 71

4.2.2 Annotated Program Synthesizer 74

vi

4.3 Effectiveness of AnnaTester . 76

4.4 Case Study . 78

4.5 Implication . 79

4.5.1 Implication for Developers . 79

4.5.2 Implication for Researchers . 80

4.6 Summary . 81

5 SAScope: Characterizing and Detecting Program Representation Faults of

Static Analyzers 82

5.1 Empirical Study of Program Representation Faults 85

5.1.1 Tool Selection . 85

5.1.2 Issue Collection and Labeling . 86

5.1.3 RQ 5.1: Fault-Prone Program Representations 87

5.1.4 RQ 5.2: Symptom and Root Cause 89

5.1.5 RQ 5.3: Fix Strategy . 96

5.1.6 RQ 5.4: Oracle Design . 101

5.2 Methodology of SAScope . 102

5.2.1 Testing Approaches and Oracle Design 104

5.2.2 Property-Based Grouping . 107

5.3 Effectiveness of SAScope . 107

5.3.1 Q1: Evaluating Effectiveness of SAScope 109

5.3.2 Q2: Evaluating Effectiveness of Property-Based Grouping 111

5.4 Implication . 111

5.4.1 Implication for Developers . 111

5.4.2 Implication for Researchers . 112

5.5 Summary . 113

6 Conclusion and Future Work 114

6.1 Conclusion . 114

vii

6.2 Future Work . 115

References 119

viii

List of Figures

1.1 General workflow of a static analyzer . 2

1.2 An annotated Java program causing PMD to crash 5

3.1 Overview of Statfier . 25

3.2 Effects of execution time on the number of found faults by each static analyzer 37

3.3 A null dereference fault in Infer . 41

3.4 An FN for the rule MS EXPOSE REP in SpotBugs 41

3.5 An FP for the PMD rule UseStringBufferForStringAppends 42

3.6 An FP for the PMD rule RedundantFieldInitializer 43

3.7 An FN caused by Java version in SpotBugs 43

3.8 Number of faults detected by each transformation in Statfier 47

4.1 SONARQUBE-3438 [119]: A crash due to an unsupported initialization

pattern . 50

4.2 Number of issues induced by top 30 most AIF-prone annotations 56

4.3 An incomplete semantics example in SONARQUBE-3804 [157] 58

4.4 SONARQUBE-3536 [118]: A false negative caused by UEA 60

4.5 SONARQUBE-3045 [106]: An incorrect type resolution in SonarQube . . . 60

4.6 PMD-1641 [158]: Fixing incorrect traversal algorithm 66

4.7 PMD-1782 [88]: Redesigning rule pattern to recognize package declaration 68

4.8 SOOT-123 [115]: Incorrect invocation of toSoot to construct an Annota-

tionTag . 68

ix

4.9 CHECKSTYLE-2202 [26]: Failing to recognize the camel case leads to an

FP . 68

4.10 SONARQUBE-2083 [105]: Failing to resolve the fully qualified name of

an annotation . 70

4.11 Overall workflow of AnnaTester . 71

4.12 Definition of the dummy annotation . 75

4.13 A crash in PMD detected by AnnaTester 78

4.14 An FP in SonarQube detected by AnnaTester 79

4.15 An FP in PMD detected by AnnaTester 79

5.1 SootUp incorrectly processes clinit methods 90

5.2 SootUp wrongly implemented the RTA algorithm 90

5.3 Soot-385 [25]: Incorrect control flow graph construction 91

5.4 Wrong IR construction for lambda expression 92

5.5 SootUp-326 [41]: An operand stack underrun issue 93

5.6 A concurrency bug in class hierarchy of Soot 93

5.7 Incorrect boolean expression resolution in SootUp 94

5.8 Wrong return of a compiler-synthetic method 95

5.9 Incorrect goto instruction insertion . 97

5.10 Pedantic throw analysis leads to verification error 100

5.11 Overall workflow of SAScope . 104

5.12 A template example for the Soot RTA algorithm 104

5.13 Relative precision lattice of tested algorithms 106

5.14 A MEPR fault in WALA and its group . 107

5.15 A MEPR fault in SootUp . 110

5.16 An IEPR fault in Soot . 110

x

List of Tables

3.1 Rule coverage of input programs for all evaluated static analyzers 28

3.2 Semantic-preserving program transformations supported in Statfier 31

3.3 Status of submitted fault reports . 38

3.4 Number of detected faults . 39

3.5 Statistics for root causes of faults in static analyzers 40

3.6 Number of detected bugs across five seeds 45

3.7 Variant selection percentage for AL*SS versus AL*RS 46

4.1 Issue distribution among six static analyzers 54

4.2 Number of faults due to different root causes in each static analyzer 57

4.3 Number of issues for the four categories of symptoms across the static an-

alyzers . 64

4.4 Correlation analysis between root cause and symptom 64

4.5 Correlation analysis between root cause and fix strategy 70

4.6 Effectiveness of Statfier . 77

5.1 Issue distribution for four static analyzers 85

5.2 Number of PRFs we inspected and the breakdown of that number to differ-

ent types of program representations . 88

5.3 Distribution of symptoms at each phase of workflow 89

5.4 Distribution of fix strategy among static analyzers 96

5.5 Effectiveness of SAScope . 109

xi

Chapter 1

Introduction

Static analyzers comprehend and analyze the input programs without dynamically execut-

ing them to gather insights into their properties and behaviors. The insights can be utilized

to facilitate a wide range of downstream software engineering tasks, including, e.g., bug

detection [7, 14, 16, 17], privacy leakage recognition [69, 145, 218], and vulnerability iden-

tification [84, 216].

Popular static analyzers typically go through a three-step process in analyzing the input pro-

grams and producing the analysis reports [53,76,124,206]. In particular, given the program

code and relevant configurations as input, a static analyzer first parses the code via lexical

and syntactic analyses and then constructs the corresponding abstract syntax trees (ASTs)

and intermediate representations (IRs) for the program; next, it builds more sophisticated

program representations like class hierarchy, control flow graph, and call graph, as models

of the program to support the following analyses; finally, when applicable, it invokes in-

tegrated rule checkers to identify flaws based on the constructed program representations

and warns the users against them. Figure 1.1 illustrates the process.

Although static analyzers are widely used in practice to help enhance software quality, they

sometimes produce erroneous results due to faults mistakenly introduced by their develop-

ers during tool design and/or implementation. For instance, prior research [182] showed

1

Rule CheckersClass Hierarchy

Control Flow GraphSyntactic Analysis
Dataflow Graph

Lexical Analysis

……

Configuration

Input Program

Dependency Graph

Analysis Report
Call GraphAST

Violated?

Input Data IR Construction Program Representations Flaw Identification

Program
Analysis

IR

Figure 1.1: General workflow of a static analyzer

that the buggy implementations of call graph construction algorithms and the lack of sup-

port for certain programming language features were two leading root causes of incomplete

or inaccurate call graphs [173, 191]. So far, testing is the most widely applied technique to

effectively discover the faults in static analyzers, and a considerable amount of test cases in

static analyzer testing were crafted manually [208]. Such a manual approach to test prepa-

ration, however, is highly insufficient because the number of viable ways to implement

specific functionalities by combining different language constructs is typically vast, while

the number of combinations covered by manual tests is often very limited.

In view of that, researchers have proposed various techniques to automatically test the

static analyzers in the past few years. The state-of-the-art automatic testing techniques for

static analyzers can be classified into three main categories, namely techniques based on

differential testing, random testing, and fault injection. For instance, Wang et al. [208] use

a natural language processing approach to identify equivalent rule checkers between two

static analyzers and reveal inconsistencies among these detectors via differential testing.

Cuoq et al. [85] propose an approach that generates mutants and designs specific oracles

for internal analyses in Frama-C. SolidiFI [97] mutates programs written in the Solidity

programming language for developing smart contracts by injecting seven types of bugs and

evaluates the effectiveness of smart contract analysis tools based on how often they can

detect the injected faults. Overall, we identify three major limitations in existing static an-

alyzer testing techniques that restrict their effectiveness and applicability. First, they rely

2

on dedicated oracles designed for a specific programming language (e.g., Solidity) or static

analyzers with specific properties (e.g., those implementing rule checkers with equivalent

functionalities). Second, although certain language constructs (e.g., annotation) can con-

siderably influence the programs’ semantics, static analyzers often have limited support for

such constructs. Third, they solely focus on the warnings reported in the analysis results

and essentially ignore the other problems with the representations that the static analyzers

construct and pass on for downstream tools to consume without causing any warnings.

1.1 Main Contributions

This thesis focuses on developing automated software testing techniques to (partially) over-

come the aforementioned limitations and effectively detect faults in static analyzers. We

started by proposing a testing framework called Statfier to detect generic faults in static an-

alyzers. In our experimental evaluation of Statfier, we identified two dominant root causes

for the detected faults. First, static analyzers may fail to handle certain language features

correctly and effectively. Second, due to the inherent complexity in understanding and

modeling the intricate relationships among program elements, static analyzers may mis-

represent the programs under analysis. Based on these findings, we conducted empirical

studies on faults due to these root causes and proposed two automated testing approaches,

namely AnnaTester and SAScope, to uncover these types of faults in static analyzers.

More concretely, the main contributions of this thesis include the following.

• Statfier: testing static analyzers via semantics-preserving program transformations.

Testing static analyzers in a general and automated manner begins with addressing

the test oracle problem, a significant challenge. This problem is ubiquitous in the

automated testing of various software systems. One widely used technique to par-

tially address this challenge is differential testing, which relies on the behaviors of

similar applications or different implementations of the same application as cross-

3

references. However, differential testing is not always viable for testing static ana-

lyzers, particularly their checkers (e.g., flaw detectors), because these checkers often

verify different properties and detect various types of bugs [108, 208], making their

analysis reports seldom directly comparable.

Another challenge is the automated preparation of high-quality input programs for

static analyzers. Given the property being checked by the analyzers, effective and

efficient testing requires input programs that contain essential elements to activate the

corresponding checker, while remaining minimal to facilitate easy comprehension of

the analysis reports. These requirements make the preparation of high-quality test

inputs for static analyzers particularly demanding.

To address the two challenges, we propose the Statfier technique that can effectively

enhance the flaw detection capability of test suites in static analyzers. Statfier lever-

ages semantics-preserving transformations and metamorphic testing to generate new

input programs, thereby overcoming the oracle challenge. To improve test generation

effectiveness, Statfier employs two novel heuristics: analysis report guided location

selection and structure diversity driven variant selection. Additionally, we reuse the

official test suites and documentation to extract seed input programs and achieve a

high rule coverage to solve the input program challenge. To validate the effective-

ness of our approach, we apply Statfier to five popular static analyzers, identifying

79 faults, 46 of which have been fixed or confirmed by developers.

• AnnaTester: understanding and detecting annotation-induced faults of static ana-

lyzers. In recent years, annotations have been widely adopted in practical software

development, providing a structured way to attach helpful information to program

elements such as classes, methods, variables, and types. Popular frameworks like

Spring, JUnit, and Lombok rely heavily on their homebrewed annotations to sim-

plify reusing the frameworks.

In general, the presence of annotations poses two challenges to ensuring the cor-

rectness and reliability of static analyzers. First, annotations in programs introduce

4

additional tokens that analyzers need to parse. An unprepared analyzer may overlook

or mishandle these tokens, resulting in incorrect analysis results or even premature

runtime termination. For example, given the simple Java class in Figure 1.2 as input,

PMD will crash because it is not designed to handle the annotated array access op-

erators in line 6. Second, annotations can alter the structure or behavior of programs

at compile or execution time. Since the detailed changes are defined by annotation

processors which are programs themselves, it is impractical to fully understand the

impact of all annotations without running those processors. Consequently, static an-

alyzers may produce incorrect results if annotations interfere with the properties or

behaviors being analyzed.

1 @Retention(RetentionPolicy.CLASS)

2 @Target({TYPE_USE})

3 @interface Anno {}

4 public class Main {

5 // Causes PMD to crash

6 public <T> T[][] check(T @Anno[] @Anno [] arr) {

7 if (arr == null) {

8 throw new NullPointerException();

9 }

10 return arr;

11 }

12 }

Figure 1.2: An annotated Java program causing PMD to crash

We conduct the first empirical study on annotation-induced faults in static analyz-

ers based on 238 issues from six popular open-source analyzers. We analyze the

root causes, symptoms, and fix strategies of these issues, leading to ten key find-

ings and several practical guidelines for detecting and repairing annotation-induced

faults. Additionally, we develop an automated testing framework called AnnaTester

based on three metamorphic relations derived from our findings. AnnaTester gen-

erates new tests from the official test suites of static analyzers and uncovers 43 new

faults, 20 of which have been fixed. The results confirm the value of our study and

its findings.

5

• SAScope: characterizing and detecting program representation faults of static ana-

lyzers. Static analyzers typically construct various program representations, such as

call graphs, control flow graphs, and intermediate representations, which encode the

properties and behaviors of the given program for further analysis [65, 140, 209].

However, developers of static analyzers may make mistakes when implementing

different analysis algorithms, resulting in incomplete/inefficient analysis processes

and/or incorrect program representations. For instance, prior research shows that

buggy implementations of complex call graph construction algorithms and missing

support for certain programming language features are two main reasons for incor-

rectly constructed call graphs [173, 191].

We conduct the first empirical study on program representation faults in static analyz-

ers and develop SAScope, an automated testing framework that detects these faults

using metamorphic and differential testing. In our metamorphic testing component,

we propose a new metamorphic relation based on the relative precision lattice of

various program representation algorithms. In summary, SAScope can identify 19

program representation faults, 5 of which have been fixed by developers.

1.2 Terminology

In this thesis, we use the term “fault” to refer to issues identified by our proposed testing

approaches, and the term “flaw” to refer to bugs, vulnerabilities, and code smells detected

by static analyzers.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 reviews existing research work

closely related to the automatic testing of static analyzers. Chapters 3, 4, and 5 elaborate

6

on our efforts to address the limitations in existing approaches to automated testing of static

analyzers, respectively. Chapter 6 concludes the thesis and discusses possible future work.

7

Chapter 2

Related Work

Given the vital importance of static analyzers for software development and maintenance,

extensive research has been conducted to understand and improve the quality of static ana-

lyzers from various aspects. For instance, previous studies have assessed the efficiency of

static analysis methods [70,71,83,108,120] and proposed techniques to prioritize the warn-

ings they report and therefore improve their user friendliness [112,127,184]. In contrast to

these studies, Our work evaluates the effectiveness of static analyzers and develops novel

methods for detecting faults in static analyzers through automated testing. In this chapter,

we systematically review related work in the areas of static analyzer testing and compiler

testing.

2.1 Static Analyzer Testing

Several approaches have been proposed for testing static analyzers [85, 135, 196, 208], in-

cluding those based on differential testing, random testing, and fault injection.

8

2.1.1 Differential Testing

To identify potential bugs in complex software systems such as static analyzers and compil-

ers, McKeeman [153] proposes the differential testing method. This approach is a software

testing technique that identifies bugs by providing the same input to a series of equiv-

alent software systems and observing inconsistencies during the program execution. It

has been successfully used to detect semantic bugs successfully in diverse real-world sys-

tems like web application firewalls [67], security policies for APIs [189], and antivirus

software [116, 168]. Wang et al. [208] adopt a natural language processing approach to

recognizing equivalent bug checkers between two static analyzers and revealing inconsis-

tencies among them. However, static analyzers often have different objectives and may not

have common equivalent checkers to fulfill the requirements of differential testing. In con-

trast, we combine semantics-preserving program transformations and metamorphic testing

to generate variants that can test frameworks generally.

Taneja et al. [196] propose the SMT solver based differential testing approach. The authors

first select some typical static analyses deployed in the LLVM compiler. Then, they imple-

ment these analyses via an SMT solver, and performed differential analysis on the results

provided by LLVM and SMT solver, aiming to identify precision and soundness issues from

their inconsistencies. In contrast, we use transformed programs as variants for the test gen-

eration, which is more efficient because utilizing an SMT solver is often time-consuming

and requires extensive processing to resolve complex constraints. The experimental results

also confirm that our test generation approach is practical and can generally find bugs in

multiple static analyzers.

Kapus and Cadar combine fuzzing with a differential testing approach to find bugs in sym-

bolic execution engines [123]. They create three models of programs, including concrete

mode, single-path mode, and multi-path mode. Besides, they also design three differential

testing based oracles via executor crash, output, and function call chain perspectives. Un-

like our approach, this work specifically targets symbolic execution engines and compares

9

them to randomly generated programs which have proved ineffective in detecting bugs in

static analyzers.

Karine et al. [95] introduce GrayC, an open-source greybox fuzzing and differential testing

tool, designed to detect faults in C program analyzers. GrayC generates valid program vari-

ants in statically-typed languages through semantics-aware mutation operators, capable of

triggering deep-seated faults in static analyzers. This approach combines the effectiveness

of syntax-based blackbox fuzzing with the targeted search capabilities of greybox methods.

GrayC performs mutations at the abstract syntax tree (AST) level, including modifications

to individual programs and combinations of multiple program elements. However, apply-

ing GrayC to static analyzers still needs a couple of static analyzers to compare the analysis

results. Otherwise, it can only detect crash bugs without identifying soundness and preci-

sion issues.

2.1.2 Random Testing

Random testing is a black-box software testing approach in which programs are generated

randomly without relying on specific inputs. The output results are evaluated against the

software specifications to determine whether the test output meets the pass or fail criteria.

In the absence of specifications, language exceptions are utilized as a criterion; specifically,

if an exception is raised during test execution, it indicates the presence of a fault in the

program. This approach also helps mitigate the risk of biased testing.

Frama-C [128] can perform static analysis on C programs. Cuoq et al. [85] reuse Csmith,

an automatic program generator [211], to randomly create C programs and design some

specific oracles to detect bugs in the static analyses of Frama-C. Since the value analysis

in Frama-C is an over-approximation, they attempt to make Frama-C function as an inter-

preter and compare its interpretation results with those of the compiled execution, revealing

precision issues where the analyzer loses information that should not be omitted. In addi-

tion to comparing with actual execution results, they insert assertions (containing variable

10

range information derived from value analysis, e.g., x > 3 and x < 7) into the source code

and verify correctness via runtime execution at a finer granularity. For constant propaga-

tion, they compare the checksums of all global variables in the transformed and original

programs.

In contrast to these studies, we implement more general oracles to identify potential faults

across various static analyses, without being limited by their specific types. Moreover,

while random testing is highly effective at revealing crash bugs, it is challenging to con-

struct programs that identify logic bugs, such as precision and soundness faults.

2.1.3 Bug Injection

Several previous studies have adopted the bug injection approach to testing static analysis

tools [97, 113, 148]. This approach typically injects known bugs (which can be detected

by the static code analyzers) into source programs. Subsequently, the corresponding anal-

ysis reports from static analyzers are examined to verify whether the bugs are identified.

This process allows for the direct observation of soundness and precision faults in static

analyzers.

SolidiFI [97] evaluates the performance of smart contract analysis tools by injecting seven

types of well-known code security bugs to generate mutants. As the injected bugs are prede-

fined, SolidiFI can infer the analysis results based on the types of inserted bugs. However,

it is not applicable to general static analyzers, as the injected bug types are determined

by the evaluated tools, and it is not possible to predict whether these tools can detect the

bugs without manual analysis. Furthermore, the injected bugs in SolidiFI are specifically

designed for smart contracts. Hu et al. [113] use an automated bug injection approach to

construct a baseline dataset for evaluating the effectiveness of the popular symbolic exe-

cution engine KLEE. However, their work lacks generality and does not extend to other

similar tools.

Parveen et al. [166] propose a mutation-based approach for injecting tainted data flow into

11

seed applications and evaluating taint analysis tools. They design operators that inject

tainted data flow into the original input programs and mutate the relevant program slices.

However, these operators are tailored for specific IoT applications and cannot be general-

ized to other types of applications. For example, they mutate string literals in APIs like

sendPush.

In contrast to these bug injection approaches targeting domain-specific applications, our

approach focuses on general-purpose static analyzers and can effectively detect potential

faults.

2.2 Compiler Testing

Since compiler front-ends, just like static analyzers, also need to statically analyze the

programs to compile and report the detected flaws, techniques for testing static analyzers

and compilers often share common purposes, designs, and properties.

2.2.1 Differential Testing

Differential testing for compilers generally requires at least two compilers designed and im-

plemented based on equivalent specifications. The compiled results from these compilers

are then inspected to identify potential bugs. In summary, existing research methodologies

can be categorized into three approaches: cross-compiler, cross-optimization, and cross-

version. The cross-compiler approach detects compiler bugs by performing differential

analysis on the results produced by different compilers. This is the most general approach

in differential testing for compilers. The cross-optimization approach focuses on detecting

compiler bugs by comparing the results produced by different optimization levels of a sin-

gle compiler. The cross-version approach requires multiple versions of an official compiler.

Sheridan [186] tests a C99 compiler, specifically the PalmSource Cobalt ARM C/C++ em-

12

bedded cross-compiler, using the cross-compiler strategy. In this study, Sheridan examines

the output differences between the compiler under test and existing tools to identify com-

piler bugs. Specifically, the GNU C Compiler in C99 mode and the ARM ADS assembler

are employed as reference tools. The rationale for employing this strategy hinges on three

key observations: First, compilers for the same programming language should ideally gen-

erate identical outputs for the same input. Second, when a bug is triggered by the input,

different compilers rarely exhibit the same bug or produce the same erroneous output, given

the disparities in their implementations. Third, if two compilers produce different outputs

for the same input, it is likely that one of them contains a bug.

Ofenbeck et al. [161] introduce RandIR, a method for detecting compiler bugs by using

random instances of an intermediate representation (IR) as inputs for differential testing.

Their study focuses on vanilla Scala code. To use RandIR, users must provide the grammar

of the code represented by the IR, which consists of a collection of typed functions and op-

erations. Specifically, RandIR randomly generates these operations and records them in a

typed dependency graph. It then translates the generated operations into regular Scala func-

tions. For differential testing, an additional regular Scala program is required, which can

be derived either from the typed dependency graph or through another compiler pipeline

that converts IRs into Scala functions. In essence, the cross-compiler approach is applied

for differential testing.

Yang et al. [211] develop another popular compiler testing tool Csmith, which adopts the

cross-compiler strategy to identify bugs in compilers. It generates mutant programs by

applying eight features, ensuring both well-formed structure and maximum expressiveness.

Mendoza et al. [94] design CsmithEdge that removes some constraints of Csmith, and

the generated programs may contain undefined behaviors. They investigate the effects of

Csmith’s UB-free constraints on finding compiler bugs. However, these differential testing

based approaches necessitate a pair of equivalent compilers, such as Clang and GCC, to

verify the consistency among them. Consequently, if such conditions are not met, they can

only detect faults with more obvious symptoms, such as runtime crashes, thereby imposing

13

significant limitations on the tested tools.

Differential testing is also extensively applied to Java virtual machines (JVMs) [81,82]. As

JVMs from different providers should comply with one specification [147], ClassFuzz [82]

adopted the mutation-based approach to generating test cases and verifying the consistency

of behaviors across different JVMs. Classming [81] builds upon ClassFuzz, enhancing it

by deliberately disrupting variable dependencies to produce more valid seeds and reveal

flawed data flow patterns. Similar to the introduced JVM testing approaches, our research

also generates Java programs. However, unlike these approaches, which use various JVM

implementations for differential testing, we apply metamorphic testing to static analyzers,

with our test generation heuristics designed to detect bugs in static analyzers rather than

JVM implementations.

Le et al. [143] introduce Proteus, a tool designed to evaluate the link-time optimization

(LTO) of compilers using a cross-optimization approach. Proteus employs three distinct

compilation methods to assess the compiler’s behavior. First, the test program is compiled

directly by the target compiler without enabling LTO. Next, the same program is compiled

with LTO, and additional optimizations are activated. Finally, the test program is divided

into multiple compilation units, each compiled separately with various optimizations, and

then linked with LTO enabled. Consistency across the results of these three methods is

expected; any discrepancies indicate the presence of a compiler bug.

Liu et al. [151] implement Tzer which can set different values of optimization levels, and

compare the results of a single tensor compiler to find inconsistency bugs. Kitaura [129]

leverages differential testing to identify performance degradation. They propose a hybrid

approach, combining static and dynamic based code comparison strategies. In the static

step, it differentiates the assembly codes generated from given test programs under two

different compilers or versions to detect an inconsistency bug. It then reduces the test

program to isolate the difference. In the dynamic step, it runs the codes produced from the

reduced test programs under two different compilers or versions to compare their actual

execution time. Sharma et al. [183] propose RustSmith, the first Rust differential testing

14

tool for end-to-end unveiling bugs of Rust compilers. RustSmith constructs valid mutants

that not only adhere to Rust’s advanced type system but also respect borrowing and lifetime

rules, thereby guaranteeing well-defined outputs. Consequently, RustSmith is highly well-

suited for differential testing among compilers and optimization levels. When applied to

multiple versions of the official Rust compiler, RustSmith can uncover elusive historical

bugs that remained undetected for a long period. Although these approaches are effective in

testing compilers, static analyzers have completely different configurations with compilers.

Hence, the cross-optimization based testing approach cannot be applied to static analyzers

directly.

2.2.2 Metamorphic Testing

Metamorphic testing [80] is another popular approach for addressing the test-oracle prob-

lem. The core challenge to implement metamorphic testing is constructing metamorphic

relations, which specify how particular changes to the input of the project under test would

change the output. For instance, when testing the sine function, it is too hard to infer the

expected value of sin(1). However, the mathematical property of the sine function, i.e.,

sin(x) = sin(2π + x), can help test the implementations of the sine function. In essence,

we can test whether sin(1) = sin(2π + 1) to perform the testing of the sine function. There

are two common types of metamorphic relations in the compiler testing domain: (1) gen-

eral equivalence and (2) equivalence under a specific set of testing inputs. Many research

methodologies rely on the general equivalent relation as the metamorphic relation for ad-

dressing the lack of oracle problem in compiler testing [92, 155, 198].

Donaldson and Lascu [93] pioneer the application of metamorphic testing in the evalu-

ation of OpenGL compilers. Their research introduces a novel approach wherein dead

code is strategically injected into existing test programs to generate functionally equivalent

program variants. According to their methodology, both the original test program and its

derived equivalents are expected to yield identical results. Any divergence in the outcomes

15

thus serves as a definitive indicator of a compiler bug. Subsequently, Donaldson et al. [92]

propose a metamorphic testing based approach called GLFuzz to mining faults in OpenGL

compilers. This approach adopts domain-specific program transformations to automati-

cally construct families of semantically equivalent mutant shaders from existing valuable

seed shader programs. While the authors conduct various effectiveness experiments over

seven GPU providers the effectiveness of their technique by detecting more than 60 shader

compiler faults, GLFuzz is specifically designed for GPU programs, unable to apply to

static analyzers.

Nakamura and Ishiura [155] develop a testing framework Orange4 that generates mutant

programs through equivalent transformations to test C programming language compilers.

However, the designed program transformations are not systematic, and the authors did not

discuss the effectiveness of Orange4, e.g., the number of detected bugs. Similar to these ap-

proaches, we also rely on equivalent relation (i.e., applying semantics-preserving program

transformations, and checking for differential analysis results of transformed programs) to

address the lack of an oracle problem, but our set of transformations is more diverse (e.g.,

the class-level transformations), which helps to test the effectiveness of analyzers in an-

alyzing programs with different AST structures. Moreover, we have designed techniques

to reduce locations to be transformed and select variants that are more likely to represent

distinct bugs in static analyzers.

Tao et al. [198] introduce Mettoc, a metamorphic testing framework designed to evalu-

ate compilers by leveraging the concept of equivalence-preservation as the metamorphic

relation. Mettoc systematically generates pairs of equivalent test programs, which are sub-

sequently compiled using the target compiler to produce executable binaries. Discrepancies

in the output results of these executables indicate the presence of a compiler bug. To gen-

erate equivalent test programs, Mettoc employs techniques such as constructing equivalent

expressions, assignment blocks, and submodules. Here, the term “assignment block” de-

notes a compound statement comprising a sequence of assignments, while “submodule”

refers to a compound statement that may include conditional structures. Specifically, Met-

16

toc begins by constructing a general control flow graph, where each block node represents

a submodule. It then populates each block node with equivalent statements or expressions.

Finally, Mettoc traverses the populated graph to synthesize the equivalent test programs.

Although Mettoc can efficiently test compilers, the

The most representative metamorphic testing approach related to the equivalence under

a specific set of testing inputs is equivalence modulo inputs (EMI) [141, 142]. The key

motivation of EMI is to leverage the interplay between dynamically running a program

P on a subset of inputs and compiling the program to work on the entire input data. To

clarify, given a program p and a set of input values I from the input space, the input set

I produces a natural set of programs C such that every program q ∈ C is equivalent to p

modulo I : ∀i ∈ I,Q(i) = P(i). Then, the set C can be used to perform differential testing

of any compiler Comp : If Comp(P)(i) , Comp(Q)(i) for i ∈ I and Q ∈ C, Comp has a

potential bug.

Le et al. [141] propose the first EMI-based research work to test C programming language

compilers. Orion [141] generates the variant programs by removing the dead code seg-

ments under a specific sect of test inputs. Athena [142] not only removes the dead regions

but also inserts code into unreachable code regions, consequently producing more diverse

mutants to reveal potential bugs. It also adopts a statistical learning based algorithm to

optimize the mutant generation process when performing the transformations. However,

these two implemented EMI testing tools usually need dynamic analysis (e.g., profilers)

of input programs and rely on the specific input test data, contradicted with the rationale

of static analysis techniques. Besides, our approach can generate variant programs stati-

cally, independent of any execution information. Besides, they can only transform part of

the source code, while our approach can directly mutate any valid program element in the

whole input program.

Samet [178–180] introduces a novel compiler testing methodology that leverages meta-

morphic testing to detect compiler bugs by assessing the equivalence between a source

program and its compiled object program. This approach relies on intermediate repre-

17

sentations (IRs) to establish the metamorphic relations needed to identify discrepancies

indicative of potential bugs. Specifically, the methodology follows a multi-step process:

First, the source program is translated into an IR to capture its semantic essence. Then, the

object program generated by the compiler under test is also converted into an IR, ensuring

both representations can be directly compared. Finally, the equivalence between these two

IRs is rigorously verified through symbolic interpretation, which allows for precise analy-

sis of program semantics. This method is particularly innovative in its use of metamorphic

relations, which are specifically designed to mutate high-level programs while preserving

their semantic integrity. By comparing the execution results of the original and mutated

programs, the framework can effectively uncover erroneous compilations that might oth-

erwise go undetected. Notably, the symbolic interpretation process used to derive the IR

of the object program is crucial for maintaining the fidelity of the comparison, ensuring

that any detected differences reflect genuine compiler bugs rather than artifacts of the test-

ing process. Despite this, Samet’s approach represents a significant advancement in the

systematic evaluation of compiler correctness, it faces limitations when dealing with the

diverse properties described by static analyzers. The linear IR cannot adequately capture

their semantics. For example, graphical structures are typically used to characterize the

properties of function calling chains and control flow.

18

Chapter 3

Statfier: Testing Static Analyzers via

Semantics-Preserving Program

Transformations

Within this chapter, we present the Statfier technique, a novel approach designed to pro-

ficiently identify faults in static analyzers. Our technique accomplishes this by performing

semantics-preserving transformations on existing test suites and subsequently comparing

the analyzer’s reports generated for these variant programs. When we refer to “semantics-

preserving”, we emphasize that these transformations do not alter the program’s behavior.

We identify two challenges in the automated testing of static analyzers: (C1) the lack of

oracles for automated testing; (C2) the automated preparation of high-quality input pro-

grams. To address the first challenge, i.e., the test oracle problem, Statfier employs meta-

morphic testing. Metamorphic testing leverages metamorphic relations, i.e., relationships

between the expected outputs from multiple system executions, to determine whether the

systems have executed correctly, and it has been successfully applied to verify compil-

ers [92,141,198], machine learning systems [91,210,215], and interactive debuggers [200].

Specifically, given an initial input program for a static analyzer, Statfier iteratively ap-

19

plies semantics-preserving transformations to the program to generate a group of variant

programs, runs the static analyzer on both the input program and the relevant variant pro-

grams, and compares the produced analysis reports to determine whether the static analyzer

contains any faults. The rationale here is that, since the transformations are semantics-

preserving, the input and variant programs should have the same behavior, and the analysis

reports produced by the static analyzer on the programs should also be equivalent. There-

fore, if the analysis reports for a pair of input and variant programs differ, an issue has

been found in the static analyzer. Furthermore, non-semantics-preserving transformations

will produce variant programs that are distinct from the input programs, almost inevitably

violating the metamorphic relation on which Statfier is built. Based on this property, our

transformations help ensure that the semantic errors in the original programs are preserved

after variant generation.

To address the second challenge, Statfier utilizes the programs within the existing test

suites for the static analyzers and those included in the tool documentation as input pro-

grams. Developers of static analyzers often craft their own test suites, containing both test

input programs and expected analysis reports, for verification purposes. They also include

example programs in tool documentation to help explain the performed analyses. Given

that such programs are typically small, and they can usually activate the checking of most

checkers supported by the corresponding static analyzers, they make perfect input programs

for Statfier.

Moreover, based on the observation that not all transformations applied at all possible lo-

cations have the same chance of affecting the analysis reports, Statfier incorporates two

heuristics to further improve its effectiveness in flaw detection. When choosing locations

from input programs to be transformed, the first heuristic, known as analysis report guided

location selection, prioritizes those already included in analysis reports; When transform-

ing variant programs, the second heuristic, known as structure diversity driven variant

selection, prioritizes transformations that have not yet been applied.

We implement the Statfier technique into a tool with the same name. The tool supports

20

12 types of semantics-preserving program transformations gathered from existing litera-

ture [78, 90, 92, 146, 155, 192], and it reports a fault to the user if the results produced by

a static analyzer on an input program and a corresponding variant program turn out to be

different. To empirically evaluate the effectiveness of Statfier and its heuristics, we apply

Statfier to detect faults in five popular static analyzers: PMD, SpotBugs, Infer, SonarQube,

and CheckStyle. PMD [14] is a cross-language static analyzer that finds common program-

ming falws (e.g., unused variables). Rules in PMD are written either in Java or XPath.

SpotBugs [17] is a fork of FindBugs (which is now deprecated) that detects common falws

in Java code via a set of patterns; SonarQube [16] is a platform developed by SonarSource

for continuous code inspection; CheckStyle [1] is used for checking if Java code adheres

to a coding standard; Infer [7] is a static analyzer designed by Meta that detects flaws for

Java, C, C++, and Objective-C programs.

We select these tools because they (1) are widely used open-source tools for Java programs,

(2) have been used in prior studies on static analyzers [70,71,83,108,120,187], and (3) are

representative of static analyzers adopted for different purposes (e.g., SonarQube supports

automated code review, whereas CheckStyle checks coding style) and by different compa-

nies (e.g., SpotBugs is used in Google [70], whereas Infer is used in Meta [12]). Statfier

successfully detected 79 faults, of which 46 have been confirmed by the developers of the

corresponding static analyzers, and 26 have been fixed by the developers. Moreover, the

variant programs generated by Statfier for detecting 26 faults have been incorporated into

the official test suites of the analyzers. The experimental results suggest that both heuristics

are essential for the effectiveness of Statfier.

Overall, this work makes the following contributions:

• We propose the Statfier technique to effectively enhance the fault detection capabil-

ity of test suites in static analyzers by generating new input programs using semantics-

preserving transformations and metamorphic testing. To improve the effectiveness of

test generation, Statfier employs two novel heuristics: analysis report guided location

selection and structure diversity driven variant selection;

21

• We empirically evaluate and confirm the appropriateness of using existing test input pro-

grams to drive automated testing of static analyzers with Statfier. Input programs from

the official test suites and examples in documentation of static analyzers can activate

the checking of a high percentage of rules (e.g., up to 100% for PMD and CheckStyle)

during testing, and they are small in size;

• We implement the Statfier technique into a tool with the same name and experimentally

evaluate the tool by applying it to detect faults in five popular static analyzers. The

experimental results show that both Statfier and its heuristics are effective.

3.1 Illustrative Example

Before presenting the heuristics used in Statfier, we first provide the following definitions:

Definition 1 (Structurally Diverse). We construct a new test program P′ by applying a se-

quence of transformations T1, . . . ,Ti to the input program with program contexts C1, . . . ,Ci

(a program context C denotes the type and location information of program element to be

transformed) where P′ is represented by {C1 : T1, . . . ,Ci : Ti}. We consider P′ to be a

structurally diverse program if the sequence {C1 : T1, . . . ,Ci : Ti} applied to the origi-

nal program P to generate P′ is distinct among all generated variants, namely for any pair

Ci : Ti and C j : T j (i , j) in the sequence are different.

Definition 2 (Differential Analysis Results). Given a program P, and a variant program P′

(where P′ is obtained via a semantics-preserving transformation to P), we consider a static

analyzer S generates differential analysis results if op=invoke(S , P) and op′=invoke(S , P′)

where |op| , |op′ |. Here, |op| represents the type and number of warnings in the report

generated by running P on a static analyzer.

We illustrate the general workflow of Statfier using an example fault found by Statfier

in PMD. Given a static analyzer under test S , Statfier first extracts input programs from

22

either the test suite of S or the documentation of S . Listing 3.1 shows a program P extracted

from the official test cases in PMD [45]. PMD developers designed the program P to test the

“HardCodedCryptoKey” rule (i.e., checks if hardcoded values are used for cryptographic

keys).

Prior Approaches. Existing approaches that test static analyzers [85, 196, 208] fail to

find this fault because they rely on either static analysis rule pairs [208] or specialized

oracles [85,196]. Specifically, the “HardCodedCryptoKey” rule cannot be tested by a prior

approach [208] that relies on differential testing of static analysis rule pairs, because only

PMD supports this rule, while SonarQube does not have a matching rule [15]. Meanwhile,

an approach that randomly generates and selects variants [85] wastes time in evaluating

variants that do not help discover new faults in static analyzers.

To address the limitations of prior approaches, we propose two key heuristics, including (1)

analysis report guided location selection (AL) and (2) structurally diverse variant selection

(SS), which we will explain using the example in Listing 3.1.

Analysis Report Guided Location Selection (AL). Given an input program P for a spe-

cific rule (e.g., “HardCodedCryptoKey” checked by PMD), Statfier invokes S to generate

an analysis report for P. Each analysis report includes the location where the rule violation

occurs (e.g., line 4 in Listing 3.1). After obtaining the line L in which the violation occurs

and all statements within the backward slice of L (no other statement is data- or control-

dependent on L in this example), Statfier systematically explores all semantics-preserving

program transformations that are valid at line L (i.e., those that fulfill the prerequisite for

a given transformation). Listing 3.2 shows one such valid transformation (program P′)

that modifies line 4 in Listing 3.1 by extracting a local variable str. For each variant pro-

gram that reports the same rule violation as the original program, we keep it in a queue for

further modifications. In this example, program P′ causes the same rule violation as the

one reported in P, so Statfier further modifies it to P′′ by moving the assignment at line

4 (Listing 3.3). Since Statfier only introduces semantics-preserving program transforma-

tions, the static analyzer S should report the same rule violation for Listing 3.3. However,

23

Listing 3.1: Original input program P triggering a Hardcoded-

CryptoKey warning in PMD

1 i m p o r t j a v a x . c r y p t o . spec . Sec re tKeySpec ;

2 p u b l i c c l a s s Foo {

3 vo id e n c r y p t () {

4 Sec re tKeySpec keySpec =

5 new Secre tKeySpec (” Hardcoded Cryp to Key” . g e t B y t e s () , ”AES”) ; // warning

6 }

7 }

Listing 3.2: Transformed program P′ generated by Statfier

1 i m p o r t j a v a x . c r y p t o . spec . Sec re tKeySpec ;

2 p u b l i c c l a s s Foo {

3 vo id e n c r y p t () {

4 + S t r i n g s t r = ” Hardcoded Cryp to Key ” ;

5 Sec re tKeySpec keySpec =

6 new Secre tKeySpec (s t r . g e t B y t e s () , ”AES”) ; // warning

7 }

8 }

Listing 3.3: Generated program by transforming P′ to P′′

1 i m p o r t j a v a x . c r y p t o . spec . Sec re tKeySpec ;

2 p u b l i c c l a s s Foo {

3 vo id e n c r y p t () {

4 − S t r i n g s t r = ” Hardcoded Cryp to Key ” ;

5 + S t r i n g s t r ;

6 + s t r = ” Hardcoded Cryp to Key ” ;

7 Sec re tKeySpec s e c r e t K e y S p e c = new Secre tKeySpec (s t r . g e t B y t e s () , ”AES”) ; // False negative

8 }

24

when Statfier runs PMD for P′′, it reports differential analysis results, so we consider the

missing rule violation as a false negative (FN). We reported this fault to PMD developers,

who confirmed and fixed it. According to the developers’ feedback of the submitted issue,

the problem occurs because “The rule currently only checks the initializer of the variable.

Since the variable str is not initialized at all, the rule does not see a problem” [89].

Structurally Diverse Variant Selection (SS). As stated in Definition 1, this approach rep-

resents each variant as P′ = {C1 : T1, . . . ,Ci : Ti}, where C1, . . . ,Ci refer to the program

contexts, and T1, . . . ,Ti denote the sequence of transformation types applied to the orig-

inal input program P. Specifically, we represent the variant in Listing 3.2 as {C1 : T1}

= {StringLiteral, Line=4, Column=[52,72], “Extract local variable”}. To guide the search

toward structurally diverse variants, this approach avoids selecting a new variant k where

the context and the selected type of semantics-preserving transformation are the same as

in Listing 3.2 (e.g., Ck=C1 and Tk=T1). Compared to a random approach that searches

through 112 variants, the SS approach is more efficient as it can find the same fault in

Listing 3.3 after iterating through only 51 variants.

3.2 Methodology

Semantic-preserving
Program

Transformations

Reduced Variants

Variant
Selection

Automated Testing Analysis Reports

Differential
Analysis

Result

Input
Program

Static Analyzer

Variants

Figure 3.1: Overview of Statfier

25

Algorithm 1: Algorithm for Heuristic-based Automated Testing of Static Analyzers
Input: Input programs Progs for a rule R in a static analyzer S , a set of transformations Trans, timeout

timeL

Output: A set errP containing test programs that produce differential analysis results

1 errP← ∅

2 normP← ∅

3 disSeq← ∅

4 initializeT imer(execT ime)

5 for P ∈ Progs do

6 Q← initQueue(P)

7 while execTime ≤ timeL do

8 currP← dequeue(Q)

9 (numWB, typeWB, locB)← run(currP)

10 locs← getBackwardSlice(currP, S , locb)

11 for loc ∈ locs do

12 nodeType← getASTNode(currP, loc)

13 for t ∈ Trans do

/* select structurally diverse variant */

14 if (nodeType, t) < disSeq then

15 disSeq← disSeq ∪ (nodeType, t)

16 newP← transform(currP, t, loc)

17 if isDifferential(newP, numWB, typeWB) then

18 errP← errP ∪ {newP}

19 else

/* store new variants */

20 normP← normP ∪ {newP}

21 Q← Q.enqueue(normP)

22 return errP

23 Func isDifferential (newP, numWarnB, typeWarnB):

/* run new program on static analyzer */

24 (numWarnA, typeWarnA, locA)← run(newP)

25 return numWarnB , numWarnA or typeWarnB ̸= typeWarnA

26

Figure 3.1 provides an overview of Statfier. Given an input program, Statfier applies

semantics-preserving transformations and uses variant selection to obtain a reduced set of

variants, which are run against the static analyzers to check for differential analysis re-

sults. After obtaining variants that produce differential analysis results, Statfier uses them

as input programs to trigger faults in static analyzers under test. Algorithm 1 shows our

test generation algorithm. Our algorithm consists of four components: (1) variant gener-

ation, (2) selection of program locations for transformation, (3) variant selection, and (4)

feedback-driven exploration. Given a set of input programs Progs for a rule R in a static

analyzer S , a set of semantics-preserving transformations Trans, and a timeout timeL, our

test generation algorithm produces a set of programs that indicate faults for the rule R in the

static analyzer S . Specifically, Statfier initializes the algorithm parameters at lines 1–4 of

the algorithm, whereas lines 5–22 constitute the core logic of the algorithm. After initializ-

ing the output set errP (line 1), the normal variant set normP (line 2), and a set disS eq for

variant selection (line 3), Statfier retrieves the first element of Q as the program currP to

be transformed (line 8), and runs a static analyzer on currP to obtain the number, type, and

location of warnings (line 9). After that, it performs backward slicing to obtain all related

locations locs and gets the corresponding node type nodeType at lines 10–12. Finally, it

iteratively applies each transformation t in Trans to loc and performs structure diversity

driven variant selection at lines 13–16. At lines 17–20, the isDifferential function com-

pares the analysis reports of currP and newP to recognize inconsistencies as the potential

faults. Statfier requires manual analysis of the detected inconsistencies to classify the

fault types. If no faults are found, newP is added into Q (line 21). Note that, instead of

generating an extensive test suite to check all rules in a static analyzer, our test generation

algorithm produces test programs for each rule separately as each rule has its own set of in-

put programs. Mixing input programs from different rules would make it difficult to isolate

the fault.

27

Table 3.1: Rule coverage of input programs for all evaluated static analyzers

Static Analyzer
Tests within the test suite Documentation Combined Rule

Coverage (%)#o f covered rules
Total # o f rules Rule Coverage (%) #o f covered rules

Total # o f rules Rule Coverage (%)

PMD 274
274 100% 273

274 99.6% 100%

SpotBugs 360
458 78.6% 52

458 11.4% 78.6%

SonarQube 581
617 94.2% 587

617 95.1% 95.3%

CheckStyle 183
183 100% 159

183 86.9% 100%

Infer 67
92 72.8% 30

92 32.6% 77.2%

Total 1465
1624 90.2% 1101

1624 67.8% 92.2%

3.2.1 Selection of Input Programs

As stated in C2, before testing static analyzers, we need to obtain input programs with

high rule coverage to serve as the initial set for transformation. Static analyzers rely on

rule checkers to detect faults in a given input program. To help users understand the re-

ported rule violations, static analyzers typically include code examples that explain the

problematic code. Hence, our key insight to solve C2 is the input programs designed by

the developers of static analyzers can address the challenge of constructing input programs

which can trigger more rule violations. Based on this insight, we extract input programs

from two sources: (1) the official test suite and (2) code examples of each rule given in

the documentation of the static analyzer. When extracting input programs from the pro-

vided test suite, we first obtain the folder storing the input programs of a static analyzer

(e.g., src/test/resources/net/sourceforge/pmd/lang/java/rules for PMD), and then automati-

cally crawl the directories to obtain the input programs for each rule. To reuse code ex-

amples in the documentation, we manually create complete input programs from the code

snippets in documentation by adding the missing (1) variable/method/class declarations

and (2) import statements. Our goal is to obtain as many input programs as possible to

maximize rule coverage (the percentage of rules checked by a static analyzer that contains

28

at least one input program) and to test different behaviors of the covered rule checker. After

obtaining the input programs, we run them against the static analyzer (from which the input

programs originated) to measure the quality of these initial input programs. Furthermore,

86% of the extracted input programs have more than one violation, 8% have one violation,

and the remaining 6% have no violations.

Since the input programs are from two sources, i.e., the official documentation and test

suites, we study the rule coverage achieved by input programs from different sources both

separately and as a whole. Particularly, we manually analyzed the official documentation

of each static analyzer and counted the rules mentioned in the documentation as the total

number of rules supported by each tool. Meanwhile, we ran each static analyzer on all

the input programs extracted for it and considered a rule to be activated, or covered, if

and only if a flaw was reported because a violation of the rule was detected in an input

program. Table 3.1 shows the rule coverage information for all evaluated static analyzers.

The second and the third columns denote the ratio of covered rules and the rule coverage

given by the input programs within the test suite, whereas the fourth and fifth columns

show similar measurements given by the documentation of each rule. Given the set T of

the rules covered by the test suite and the set D of the rule covered by the documentation,

the “Combined Rule Coverage (%)” column presents the overall rule percentage of T ∪ D.

Instead of obtaining input programs from a test suite, an alternative approach is to extract

them from real-world projects. However, a prior evaluation [208] that uses input pro-

grams from 2,728 projects shows that this alternative approach can only achieve 74%–89%

rule coverage for four static analyzers. Another alternative is to adopt Defects4J [122], a

widely used dataset with faulty Java programs, while prior studies [109] reveals that the

rule coverage achieved by static analyzers in Defects4J is only around 2%–4%. Com-

pared to these alternatives, our study shows that reusing programs from official test suites

of static analyzers can cover more rules and increase coverage. As shown in the third col-

umn of Table 3.1, rule coverage achieved by the test suites of static analyzers ranges from

72.8%–100%, specifically all rules in PMD and CheckStyle can be covered. Our study

29

of the test suite of analyzers also gives evidence for the hypothesis that most bugs have

small counter-examples [114] because we observed that test input programs in analyzers

are small, i.e., they have an average of 1.25 classes (max=30), 3.16 methods (max=106),

1.33 fields (max=1000), and 49.42 lines of code (max=65544).

Based on the combined rule coverage, we observe that the rule coverage of SpotBugs,

CheckStyle, and SonarQube can be further improved if we add code examples from the

documentation. Moreover, some analyzers are equipped with at least one input program

for each implemented rule (e.g., CheckStyle has combined rule coverage of 100%). The

high combined rule coverage achieved by these input programs confirms our intuition that

these input programs can be used as the initial set of input programs for testing analyzers.

3.2.2 Variant Generation via Program Transformations

Program transformations have been successfully applied to enhance many software en-

gineering tasks, including producing simulated source code plagiarism [78], improving

testability (i.e., transforming a program to make it easier for a given test generation method

to generate test data) [110, 111], enhancing the generalizability of neural program mod-

els [172], and testing refactoring engines [90]. Given an input program P, Statfier pro-

duces variants by applying a set of program transformations (line 16 in Algorithm 1), and

these transformations should be semantics-preserving. To obtain a comprehensive set of

transformations, we refer to existing literature on semantics-preserving program transfor-

mations [78, 90, 92, 146, 155, 192]. We use the following design principles when selecting

our set of program transformations:

Multi-Level Transformations. Based on the program elements to be transformed, we

divide the space of transformations into five levels: variable, expression, statement, method,

and class. We adopt the transformations from existing literature [78, 90, 146, 192] for the

first four levels (i.e., variable, expression, statement, method). Since no prior approaches

focus on class-level semantics-preserving program transformations, we refer to GitHub

30

Table 3.2: Semantic-preserving program transformations supported in Statfier

Level Transformation Example Source

Variable-level
Extract local variable

- invokeMethod("StringLiteral");

+ String str="StringLiteral";

+ invokeMethod(str);

[78, 155]

Move assignment
- int var=10;

+ int var;

+ var=10;

[78]

Expression-level

Equivalent boolean expression:

Add || f alse or &&true expression

Swap symmetrical elements, e.g., a == b→ b == a

- boolean tag=true;

+ boolean tag=true||false;
[92, 99]

Equivalent arithmetic expression:

Add +0, -0, or +1-1 expression

- int value=10;

+ int value=10 + 0;
[66, 92]

Add parenthesis to expression - int value=10;

+ int value=(10);
[78, 90]

Statement-level

Equivalent statement conversion:

Convert to equivalent for/while/do-while/lambda

- for(i = 0; i<1; i++) {}

+ i = 0;

+ while(i++ < 1) {}

[78]

Statement wrapping:

Wrap statements with if/while/for/do-while

- target_statement;

+ if(true) { target_statement; }
[92, 192]

Dead code injection:

Insert dead if/while/for statement

target_statement;

+ for(int i=0; i<0;) {

+ target_statement;

+ }

[146, 155]

Method-level Encapsulate field

- SecretKeySpec("Hardcode");

+ String getHardcode() {

+ return "Hardcode";

+ }

+ SecretKeySpec(getHardcode());

[78, 90]

Class-level

Nested class wrapping

- original_program;

+ class NestClass {

+ original_program;

+ }

[86]

Anonymous class wrapping

- original_program;

+ Object c = new Object() {

+ original_program;

+ };

[87]

Enum wrapping

- original_program;

+ enum enumClass {

+ original_program;

+ }

[8]

31

issues of static analyzers to derive the class-level transformations [8, 86, 87].

Dead and Live Code Injections. We include two types of transformations: (1) transfor-

mations that inject dead code into the original program (e.g. “Unreachable code injec-

tion”) [146, 192] and (2) transformations that inject live code into the original program

(e.g., “Statement wrapping”) [92, 155].

Incorporating Analysis Capability of Static Analyzers. Considering the trade-off be-

tween accuracy and efficiency, static analyzers may support different levels of analysis ca-

pabilities for producing more precise or faster analysis. For example, Infer and SonarQube

support inter-procedural analysis, while PMD and SpotBugs only support intra-procedural

analysis. For analyzers that do not support inter-procedural analysis, variants generated

through method-level program transformation (i.e., Encapsulate field) are not meaningful

as detecting these variants exceeds their analysis capability. Our design integrates the anal-

ysis capability of each studied analyzer by excluding transformations that are beyond its

analysis capability.

No Style-Related Transformations. We exclude program transformations that involve

changes in coding style (e.g., changing comments or identifier names) because (1) these

transformations may trigger inaccurate differential analysis results in tools like CheckStyle

that check for coding standards, and (2) transformations such as renaming requires en-

coding Java naming conventions into the transformation rules, which is beyond the scope

of this work. Specifically, we exclude all transformations in “Level 1–Changes to Com-

ments&Indentation” and “Level 2–Changes to Identifiers” from prior work [78].

Table 3.2 shows the 12 types of semantics-preserving program transformations supported

in Statfier, each with an example. The “Source” column indicates the relevant work from

which we derived the corresponding transformation.

In the context of static analyzers, randomized program transformation has been used for

testing [85]. Meanwhile, a prior work [156] has formalized the impact of program trans-

formations on the results of static analysis by setting up a mathematical framework. Al-

32

though we derive our set of semantics-preserving transformations from existing litera-

ture [78, 90, 155], our set of transformations is more comprehensive because it includes

transformations of program elements at different levels, and our set of transformations is

specifically used for testing static analyzers rather than for other applications. The most

closely related to our transformation mechanism is the recent work [204] which uses pro-

gram transformations to resolve false positives of static analyzers. Our approach differs

from prior work [204] in several aspects: (1) we generate input programs for testing static

analyzers, and file analysis reports to indicate bugs, whereas prior work improves static

analyzers from the perspective of the analysis user (no reports are filed as a result); (2) we

use different transformations (we use semantics-preserving transformations that are gen-

eral instead of using rewrite templates that are tool-specific in prior work [204]); (3) our

research can identify various types of faults (including false negatives, false positives, and

runtime crashes) to improve the overall reliability of static analyzers, whereas prior work

primarily focuses on resolving false positives.

3.2.3 Heuristic-Based Testing Process

After applying semantics-preserving transformations, Statfier first feeds all variants to

static analyzers, obtains reports, and then performs differential analysis to determine if

there is a fault. The core factors that affect the efficiency of testing are: (1) identifying

locations to be transformed, and (2) removing redundant variants that are unlikely to trigger

new faults. Hence, we designed the following heuristics to accelerate the testing process:

Analysis Report Guided Location Selection. The program locations in which we choose

to apply the transformations affect the effectiveness of variant generation and selection. Our

main insight is that we can select program locations for transformations based on the lo-

cations listed in the analysis reports generated by static analyzers. Specifically, given an

input program P, Statfier applies a static analyzer to P to obtain (1) the number of re-

ported warnings and (2) the program locations where the analyzer reports violations (line

33

9 in Algorithm 1). Instead of relying solely on the reported program locations which may

be incomplete, our goal is to obtain the set of locations that have either control or data

dependencies with respect to each program location stated in the analysis report. Hence,

after executing the program against the static analyzer under test, Statfier obtains the back-

ward slice of the program starting from each program location stated in the analysis report.

Specifically, the getBackwardSlice(currP, S , locb) function takes as input (1) the input

program currP, (2) the static analyzer under test S , and (3) the program locations locb for

the reported violations to produce a set of locations locs that include all locations stated in

the analysis report, together with their backward slices (line 10 in Algorithm 1). This step

produces a set of program locations where we apply the set of semantics-preserving trans-

formations. Since we use an analysis report to guide the selection of program locations, we

refer to this step analysis report guided location selection.

Structure Diversity Driven Variant Selection. Given that Statfier can easily generate

many more variants than can be checked in a reasonable amount of time, we propose struc-

ture diversity driven variant selection to prioritize variants based on the heuristic that vari-

ants with unique structures are more likely to trigger distinct faults and cover overlooked

corner cases. This heuristic is based on the rationale that, static analyzers detect flaws

by looking for specific syntactic patterns, hence structurally diversified variants are more

likely to be matched with different patterns than the structurally similar ones. The ratio-

nale can be exemplified by real-world GitHub issues. For instance, PMD issues #5046 [98]

and #5049 [96] were marked as “duplicate” by developers because both involve try-catch

statements analyzed by the same rule checker.

Specifically, given an original program P, we represent each variant P′ = {C1 : T1, . . . ,Ci :

Ti} by checking (1) the program context C1, . . . ,Ci under which each transformation has

been applied to, and (2) the transformation types T1, . . . ,Ti that have been applied starting

from P. Given a variant program location loc, we determine the program context by check-

ing the AST node type as follows: (1) if the AST node at loc is a leaf node, we use its AST

node type (e.g., operand) as the program context; (2) if the AST node at loc is a non-leaf

34

node, we use the AST node type of the root of the subtree (e.g., if-statement) to represent

the program context.

As shown at lines 11–16, Statfier checks if the current program context (represented by

nodeType) and transformation type (represented by t) exist in the previously encountered

sequence disS eq. This selection aims to eliminate variants with the same program context

and use the same transformation type as previously chosen variants. Subsequently, the

selected variants are structurally diverse (see Definition 1).

Feedback-Driven Exploration. The test generation algorithm of Randoop avoids extend-

ing illegal method sequences (e.g., those that lead to exceptional behavior) based on the

feedback obtained from executing test inputs during test generation [164]. Inspired by

Randoop’s test generation algorithm, we use a feedback-driven approach for our test gen-

eration by avoiding further exploration of input programs that lead to differential analysis

results (see Definition 2), essentially incorporating feedback obtained from running a static

analyzer. At lines 17–21 in Algorithm 1, we store the newly generated variant program

newP in the normP set for further extension of legal program sequences (those that do not

lead to differential analysis results) and return all programs in the errP set, which contains

programs that indicate faults in a static analyzer.

Statfier inspects differential analysis results in the isDifferential function in Algorithm 1.

The function (1) runs the variant program on the given static analyzer (line 24), and (2)

compares the number and type of warnings before and after applying the transformation and

returns true if the number of warnings differs (line 25). In general, the differential analysis

results represent two cases: (1) a false negative (FN) in S if the original program P produces

a warning in S but the variant program P′ does not give a warning (a warning is missing),

and (2) a false positive (FP) in S if the original program P does not produce a warning but

the variant program P′ leads to a warning (indicating a false warning). Furthermore, we add

a filter that checks for newly added types of reported warnings to remove false positives, as

stated in Section 3.3.2.

35

3.3 Evaluation

We applied Statfier to five static analyzers, including PMD, SpotBugs, CheckStyle, Sonar-

Qube, and Infer, to address the following research questions:

RQ 3.1: How many unique faults can Statfier detect, and what are the characteristics of

these faults?

RQ 3.2: Can the proposed heuristics in Statfier reduce the number of variants while pre-

serving its fault-finding capability?

RQ 3.3: How many faults can each transformation detect?

3.3.1 Experimental Setup

We implement semantics-preserving program transformations and backward slicing us-

ing the Eclipse JDT library with over 7000 lines of Java code. We do not use existing

slicers because (1) using the same library for program transformations and slicing can sim-

plify traversing and matching the AST, and (2) the Eclipse JDT library is widely used for

semantics-preserving transformations (e.g., it supports refactoring operations [2]). Specifi-

cally, Statfier constructs the program dependency graph based on Eclipse JDT and extracts

the control and data dependency information. Since most static analyzers cannot perform

inter-procedural analysis well, we construct only intra-procedural backward slicing with-

out alias analysis. Based on the appropriate values for parameters selected through our

experiment in Figure 3.2, we set the time limit timeL of each static analyzer to six hours

(which includes transforming and checking all input programs for an analyzer) for running

Statfier in RQ 3.1 and RQ 3.2. For each rule in each static analyzer, we reuse the config-

uration specified in the test case if available; otherwise, we use the default configuration

recommended by the static analyzer. For static analyzers that require compilation (e.g.,

SpotBugs), we compile each program using Oracle JDK 8 and JDK 11. All experiments

36

were conducted on a machine with an Intel Xeon(R) 6134 CPU (3.20GHz) and 192GB

RAM.

Time: 6 hours

Figure 3.2: Effects of execution time on the number of found faults by each static analyzer

3.3.2 RQ 3.1: Assessing Effectiveness of Statfier

We use the number of discovered unique faults to evaluate the effectiveness of proposed

approaches. Notably, we consider a fault to be a unique fault if it is in (1) different rule

checkers triggered by various transformations, (2) different faulty locations (determined

by root cause diagnosis) in a static analyzer, and (3) not the nine false positives discussed

in Section 3.3.3. We use this definition of unique fault because developers of static an-

alyzers adopt a similar definition when checking for duplicate faults [5, 6], and usually

repair faults for different rules in different program locations for their corresponding rule

checkers. Specifically, we adopt the type of rule checker and the applied transformation to

automatically cluster variants which lead to discrepant analysis results. We consider vari-

ants in the same cluster as equivalent and randomly pick one representative variant from

37

each cluster. After automated clustering differential analysis results based on our definition

of a unique fault, Statfier can find 79 faults that span across all of the evaluated static

analyzers.

Status of Reported Faults. We have reported the 79 unique faults to developers of static

analyzers. Table 3.3 shows the current status of our submitted reports. We classify them

into four categories based on the responses that we have received from developers of static

analyzers so far. The categories are listed below:

Fixed: The fault report was fixed by a merged pull request.

Confirmed: The fault was confirmed by the developer, but has not been fixed so far.

Pending: We have not received a response from developers.

Won’t fix: The developer acknowledged that the fault is a limitation of the static analyzer,

but will not fix it.

Table 3.3: Status of submitted fault reports

Issue Status PMD SpotBugs SonarQube CheckStyle Infer Total

Fixed 14 3 5 4 0 26

Confirmed 11 3 5 2 0 21

Pending 19 6 0 1 3 29

Won’t fix 0 0 2 1 0 3

Total 44 12 12 8 3 79

Among all the evaluated static analyzers, we observe that Statfier finds the most signif-

icant number of faults in PMD. This is because PMD has the highest rule coverage with

the greatest number of input programs (as shown in Table 3.1). With more input programs,

our approach can further transform these programs, making it more likely to discover new

38

faults in PMD. For each fault found by Statfier, we manually inspect it to filter FPs, and

report to developers only after checking for its validity. As illustrated in Table 3.3, except

for “Won’t Fix” where developers have decided not to fix the faults, all our reports are per-

ceived positively by developers (i.e., we did not have any rejected fault reports), and nearly

half of them have been fixed or confirmed. It is worthwhile to note that Statfier generated

variants for 26 of the submitted faults have been integrated into official test suites by the de-

velopers of static analyzers, demonstrating the importance of input program generation for

testing static analyzers. Moreover, as SonarQube is the only evaluated analyzer that uses

Jira for issue tracking, we manually checked the assigned severity of the reported faults.

Among the 10 confirmed faults in SonarQube, 7 are marked as major, and 3 are minor.

We also compare Statfier with a mutation testing based approach [99] that compares the

effectiveness of static analyzers. It considers a static analyzer that kills a mutant when the

number of warnings or errors increases with mutation and adopts the Universal Mutator

(UM) [100] to finish the mutation process. As the tool for prior approach [99] is not pub-

licly available, we re-implement it by (1) using the open-source Universal Mutator [100],

and (2) reproducing the oracle in their paper (i.e., the number of warnings or errors in-

creases). To ensure a fair comparison, we measure its effectiveness in detecting faults in

static analyzers using the same timeout as Statfier. Table 3.4 demonstrates the compari-

son result. Among the 472637 mutants generated for all static analyzers, it only finds one

real fault in PMD and produces two false positives in SpotBugs. This result indicates that

the prior mutation testing approach is less effective than Statfier in finding faults in static

analyzers.

Table 3.4: Number of detected faults

Approach PMD SpotBugs SonarQube CheckStyle Infer Total

Statfier 44 12 12 8 3 79

UM 1 0 0 0 0 1

39

Limitations. We notice two limitations of our approach during the manual analysis of

the identified faults. Firstly, as common in a testing tool, our approach may produce FPs

(the discovered faults are not real faults). For example, when applying the “Statement

wrapping” transformations to wrap code with if-statement, SpotBugs may report one more

DB DUPLICATE BRANCHES warning, but this extra warning is triggered by our applied

transformation (not a real fault) because this rule detects duplicate if-else branches. How-

ever, in our experiment, we only find nine FPs and they are excluded from Table 3.3 and

Table 3.6. Our filter can remove these FPs automatically. The second limitation is that the

tested static analyzers need to be able to generate an analysis report, and the report should

include the warning types and locations. In the future, it is worthwhile to investigate how

to extend our technique to support other types of analysis (e.g., we can perform differential

analysis on the reports of info-flow analysis between the input program and its variants as

their behaviors should be equivalent).

Table 3.5: Statistics for root causes of faults in static analyzers

Root Cause PMD SpotBugs SonarQube CheckStyle Infer

Variable declaration 13 3 6 0 1

Complex class structure 12 4 0 3 1

Control flow structure 8 2 5 1 1

Compound expression 10 1 1 3 0

Java version and new features 1 2 0 1 0

Root Causes of Detected Faults. We manually analyze the root causes behind the found

faults and summarize them into five categories. Table 3.5 shows the numbers of each root

cause for these faults, this table is sorted in descending order by the number of discovered

faults. We discuss representative examples of each category below.

Variable Declaration. When analyzing variables, rules in static analyzers either (1) only

check for direct initialization, or (2) fail to analyze declarations at the global level. For

40

example, Listing 3.3 shows that PMD fails to detect the hardcoded key of the assignment

statement at line 6 as it does not analyze the usage for the str variable. Statfier also

found FNs due to incomplete analysis of global variables (fields). Figure 3.3 shows an

example [3] where Infer fails to report the null pointer dereference for the field at line 6 but

can detect the dereference if color is a local variable.

1 enum Color { BLACK, WHITE; }

2 public class SwitchCase {

3 + Color color = null;

4 public String switchOnNullIsBad() {

5 - Color color = null;

6 switch(color) { ... // should report a warning

Figure 3.3: A null dereference fault in Infer

Complex Class Structure. Static analyzers may need to retrieve methods or fields within

classes, but the retrieval can be incomplete if the given program’s class structure is complex,

e.g., when there are nested classes. Figure 3.4 shows such an example in SpotBugs for the

MS EXPOSE REP rule (this rule detects a security flaw that occurs when a public static

method returns a reference to an array that is part of the static state of the class) [10]. Given

the original input program, SpotBugs can detect the rule where the method faultMethod

leaks the private field key. However, after Statfier transforms the program via “Nested

class wrapping”, the SpotBugs detector “FindReturnRef” for this rule can no longer detect

the reference in the nested class. The developer has prepared a fix for the fault soon after

reporting.

1 public class Bug1397 {

2 private static String[] key;

3 + static class NestedClass {

4 public static String[] faultMethod() {

5 return key; // should report a warning

6 }

7 + }

8 }

Figure 3.4: An FN for the rule MS EXPOSE REP in SpotBugs

Control Flow Structure. Our manual analysis shows that programs with complex control

41

flow structures can lead to unexpected results in static analyzers. For example, the PMD

rule UseStringBufferForStringAppends recognizes the use of the += operator for appending

strings and warns that the operator causes the JVM to use an internal StringBuffer, which

is inefficient. Figure 3.5 shows an example [52] where PMD reports one warning for this

rule at line 3 and two duplicate warnings (warnings that are exactly the same) for the same

rule at line 5. Although line 3 and line 5 are equivalent, the duplicate warnings at line 5

show two problems in PMD: (1) an FP caused by the statements, and (2) the failure to filter

duplicate warnings. Moreover, our analysis also shows that some rule checkers in static

analyzers may fail to support different control flow structures (e.g., SonarQube can detect

infinite for and while loops, but does not consider do-while loop [9], and the developer has

fixed the fault upon receiving our report).

1 public void bar() {

2 String x = "foo";

3 x += "bar" + x; // report one warning

4 + if (false) {

5 + x += "bar" + x; // report duplicate warnings

6 + }

7 }

Figure 3.5: An FP for the PMD rule UseStringBufferForStringAppends

Compound Expression. When analyzing compound expressions such as parenthesized

expression and binary expression, static analyzers like PMD may fail to check the subex-

pression either due to (1) incomplete AST node representation (the Java AST library in

PMD does not model ParenthesizedExpression as an AST node type but its JavaScript

AST library does not have this problem) or (2) fail to traverse the subexpression. Fig-

ure 3.6 shows a false positive example [4] for the PMD rule RedundantFieldInitializer that

detects a redundant initialization (assigning a field to its default values). The FP occurs

because PMD fails to check the subexpression by traversing only the first operand (value 0

is the default value for a char) in the binary expression, and mistakenly reports the field c

to be a redundant initialization.

Java Version and New Features. With the release of new Java versions, new faults may

42

1 class A {

2 - char c = 1;

3 + char c = 0 + 1; // should not report a warning

4 }

Figure 3.6: An FP for the PMD rule RedundantFieldInitializer

occur in static analyzers either due to (1) the differences in the generated Java bytecodes or

(2) insufficient support of new language features such as lambda expression and annotation.

When communicating with developers of static analyzers, they noted that the fault failed

to reproduce in different Java versions, pinpointing the root causes to be the different Java

versions used, e.g., DMI INVOKING TOSTRING ON ARRAY rule in SpotBugs can detect

the issue shown in Figure 3.7 when we compile with Java 8 but SpotBugs fails to detect

the issue when using newer Java versions (Java 11, 16, 17) [11]. In our experiment, we

only tested input programs with Java 8 and 11, it is worthwhile to study a differential

testing approach that checks the input programs against different Java versions in the future,

especially for analyzers like SpotBugs that act on bytecodes. For the new language feature

example, the CheckStyle rule ParameterAssignment that detects assignment to parameters

fails to recognize parameters in the lambda expression list.forEach((i)→{i*=10;}); [13].

We reported this fault and it has been fixed by the CheckStyle developer.

1 + final String[] gargs = new String[] {"1", "2"};

2 public void print() {

3 - final String[] gargs = new String[]{"1", "2"};

4 System.out.println(""+gargs); //should give a warning

5 }

Figure 3.7: An FN caused by Java version in SpotBugs

3.3.3 RQ 3.2: Assessing Effectiveness of Heuristics

We construct several baselines below to measure the effectiveness of different heuristics in

Statfier:

43

Random Location (RL): An approach that randomly selects program locations to trans-

form.

Analysis Report Guided Location Selection (AL): An approach that uses analysis re-

ports for selecting program locations (see Section 3.2.3).

Random Variant Selection (RS): An approach that randomly selects variants generated

via semantics-preserving transformations.

Structurally Diverse Variant Selection (SS): An approach that selects structurally diverse

variants (see Section 3.2.3).

Although there are several prior approaches that test static analyzers [85, 135, 196, 208],

most of them do not generate variants [196, 208] so we exclude them from comparison.

To ensure a fair comparison with prior work that uses Csmith for generating variants for

C programs via random mutations [85], we emulate prior work using the baseline RL*RS

that reuses the same set of transformations and the same oracle (differential analysis results)

as Statfier but randomly selects variants and locations to transform. When generating new

variants by RL, we remove duplicate variants and set the number of transformations equal

to AL to ensure fairness. As all approaches (except for Statfier that uses AL*SS) rely on

randomized algorithms that may produce different results across different runs, we re-run

each randomized approach five times with different random seeds.

Table 3.6 shows the effectiveness of each evaluated approach where each cell represents

the (minimum, maximum, median) number of detected faults by the four approaches (note

that Statfier that uses AL and SS is deterministic, so we do not need to rerun it five times).

We observe that all approaches that use “Random location (RL)” fail to detect any fault

in all evaluated static analyzers, including RL*RS that emulates prior work [85]. Indeed,

as the RL approaches can skip the static analysis steps (i.e., analysis report generation

and backward slicing), they perform transformations on many randomly selected program

locations rather quickly, causing rapid growth of variants and consuming too much time

to analyze all variants. This indicates that our proposed analysis report guided location

44

Table 3.6: Number of detected bugs across five seeds

Static Analyzer RL*RS [85] AL*RS RL*SS AL*SS (Statfier)

PMD (0, 0, 0) (36, 40, 38) (0, 0, 0) 44

SpotBugs (0, 0, 0) (11, 12, 12) (0, 0, 0) 12

SonarQube (0, 0, 0) (11, 12, 12) (0, 0 ,0) 12

CheckStyle (0, 0, 0) (7, 8, 7) (0, 0, 0) 8

Infer (0, 0, 0) (3, 3, 3) (0, 0 ,0) 3

Total/Avg (0, 0, 0) (68, 75, 72) (0, 0, 0) 79

selection heuristic plays an essential role in reducing the number of locations selected for

modifications, subsequently guiding the test generation towards producing more valuable

variants. Compared to Statfier that discovers 79 faults, the AL*RS approach that uses

random variant selection only finds 68–75 faults across the five runs. As we designed

the structure diversity driven variant selection heuristic to avoid evaluating variants that

trigger similar faults, the fact that Statfier outperforms the AL*RS approach shows that

this heuristic guides Statfier in finding distinct faults.

During the test generation, the number of variants can proliferate based on the number

of valid transformations. Too many variants take a considerable amount of time. Hence,

we propose structurally diverse variant selection and compare this technique with other

baseline approaches. As shown in Table 3.6, RL*RS and RL*SS approaches fail to find

any fault in static analyzers. Hence, we only compare the number of generated variants

between AL*RS and AL*SS. We define variant selection percentage below:

Variant S election Percentage =
total # o f variants by AL∗S S
total # o f variants by AL∗RS %

Based on the above equation, a lower number for the variant selection percentage de-

notes a better approach (with greater selection power) that only needs to evaluate fewer

variants (e.g., for all evaluated analyzers, Statfier needs to run fewer variants compared

to AL*RS to find the same number of faults in SpotBugs). Table 3.7 depicts the variant

45

selection percentage across the five seeds; each cell is of the form “number of generated

variants(variant selection percentage)”. On average, the AL*SS heuristic in Statfier selects

40.28%–41.27% variants compared to AL*RS. Based on Table 3.6 and Table 3.7, although

the AL*SS heuristic evaluates fewer variants, it still finds more unique faults than AL*RS.

Hence, we believe that the proposed AL*SS heuristic is effective in reducing the number of

variants while preserving its fault finding capability.

Table 3.7: Variant selection percentage for AL*SS versus AL*RS

Seed PMD SpotBugs SonarQube CheckStyle Infer Average

S1 329492(60.09%) 7444(56.56%) 58012(49.76%) 26301(15.23%) 28963(20.41%) 40.41%

S2 318988(62.06%) 7635(55.14%) 58749(48.83%) 25472(15.72%) 29367(20.13%) 40.38%

S3 339986(58.23%) 7298(57.69%) 54004(53.12%) 24795(16.15%) 27950(21.15%) 41.27%

S4 330262(59.94%) 7690(54.75%) 57277(50.40%) 25863(15.49%) 28375(20.83%) 40.28%

S5 328954(60.18%) 7594(55.44%) 56051(51.18%) 26371(15.19%) 29013(20.37%) 40.47%

3.3.4 RQ 3.3: Assessing Effectiveness of Transformations

We further analyze the effectiveness of each supported semantics-preserving program trans-

formation. Figure 3.8 shows the number of faults found using different types of program

transformations. According to the fault distribution, each supported program transforma-

tion can find at least one fault in the evaluated analyzers. This means all of the implemented

transformations are effective. Moreover, we observe that transformations that involve ex-

tracting a variable (e.g., “Extract local variable” and “Move assignment”) are more likely

to find faults in the evaluated analyzers.

Comparison with Prior Mutation Testing Technique. Prior work [66] mainly provides

evidence on the correspondence between mutations and some types of static warnings.

However, it does not focus on detecting and reporting faults in static analyzers. After com-

paring the transformations used in this work, there are three transformations IOR (Over-

46

Figure 3.8: Number of faults detected by each transformation in Statfier

ridden method rename), AOR (Arithmetic operator replacement), and AOI (Arithmetic op-

erator insertion) that are semantics-preserving and related to Statfier. However, as stated

in section 4.2, we exclude style-related transformations like changing identifier names be-

cause it may lead to inaccurate differential analysis results. Hence, we do not consider

the transformation IOR. The remaining AOI and AOR are similar to the transformation

“Equivalent arithmetic expression”. Overall, as shown in Figure 3.8, this transformation

can find nine faults, which is less than our findings.

Comparison with Prior Compiler Testing Technique. In a related prior approach for

compiler testing [192], the Hermes tool synthesizes predicates representing known boolean

values in control flow statements by executing the input programs to obtain runtime infor-

mation, whereas Statfier does not need to execute the input programs which is also the

characteristic of static analyzers. Besides, the Hermes tool is input sensitive as it relies on

profiling analysis which is determined by the input, whereas our approach only requires

static information and is more general. Additionally, we provide more transformations to

make variants diverse. As mentioned in the design principle (Section 3.2.2), our design

incorporates the analysis capability of static analyzers by excluding transformations that

are beyond the analysis capability of existing analyzers. Hence, we adapted the prior com-

piler testing technique [192] for testing static analyzers by representing it with the “state-

ment wrapping” transformation, which uses literal boolean values as predicates. Figure 3.8

47

shows that the “statement wrapping” transformation can only detect eight faults in total,

which is less effective than Statfier.

3.4 Summary

We present Statfier, a heuristic-based testing approach that automatically generates input

programs via semantics-preserving program transformations for discovering faults in static

analyzers. Statfier relies on two key heuristics: analysis report guided location selection

and structure diversity driven variant selection. Our experiments show that Statfier outper-

forms the evaluated baselines by finding more faults yet iterating through fewer variants.

Overall, Statfier has discovered 79 faults, of which 46 have been confirmed. Our results

suggest that developers of static analyzers can incorporate our approach into their test suites

to further improve the fault detection capability of existing test suites. In fact, 26 of the in-

put programs we generated have been integrated into the official test suites of the evaluated

static analyzers. While we focus on faults that lead to differential analysis results in this

work, it would be worthwhile to study other faults in static analyzers in the future (e.g.,

inconsistencies between documentation and the behavior of static analyzers [195]). An-

other direction is to improve the effectiveness of Statfier by tuning configurations of static

analyzers as prior work shows that configurable software such as program verification tools

can be tuned [136].

48

Chapter 4

AnnaTester: Understanding and

Detecting Annotation-Induced Faults of

Static Analyzers

Currently, annotations are widely used in practical software development. According to

a previous study on a large number of open-source projects hosted on GitHub, the me-

dian number of annotations per project is up to 1,707 [212]. An annotation essentially

contains a (possibly empty) list of property-value pairs, where the properties specified in

the annotation’s definition and the values associated with the properties when each anno-

tation declaration is used to annotate a program element. Java annotations themselves do

not affect program semantics, but programs can implement annotation processors to ad-

just the program’s code or even behavior based on specific annotations, thereby effectively

extending the capabilities of the Java programming language. For instance, the annota-

tion @java.lang.Override triggers a compile-time check for the existence of the method it

annotates in the current class’s superclass, and an error is issued if the check fails.

Java programs can use meta-annotations (i.e., annotations that are applicable to other an-

notations) to restrict the application and effect of other annotations. For example, the meta-

49

annotation @Target specifies the types of elements (e.g., Class, Method, and Field) to

which an annotation can be applied, while meta-annotation @Retention determines how

long an annotation should be retained during a program’s lifecycle:

• Source retention: The annotation is not retained after the source code is compiled into

bytecode.

• Class retention: The annotation is retained in the bytecode but discarded when the

bytecode is loaded into the JVM.

• Runtime retention: The annotation is always retained and can be retrieved at runtime.

Before delving into the details of research work, we first provide the definition of annotation-

induced faults. An Annotation-Induced Fault (AIF) occurs when a static analyzer fails to

correctly handle program annotations, leading to incorrect analysis results or unexpected

runtime failures. The presence of annotations poses two challenges to the correctness of

static analyzers from both syntactic and semantic perspectives. To better understand the

impact of annotations on the reliability of static analyzers, we conducted the first large-

scale empirical study on annotation-induced faults (AIFs) in static analyzers. For instance,

in SONARQUBE-3438 [119], the development team overlooked the potential initialization

of annotations through constant identifiers, ultimately resulting in a runtime crash as shown

in Figure 4.1.

1 final static String STAR = "*";

2 @CrossOrigin(MyClass.STAR)

3 @CrossOrigin(STAR)

Figure 4.1: SONARQUBE-3438 [119]: A crash due to an unsupported initialization pattern

Although prior work has studied the usage and evolution of program annotations [152,159,

176, 212], the maintenance of testing-related annotations [126], the design of annotations

for special purposes [77, 197], and the faults for diverse types of software systems (e.g.,

50

machine learning systems [185, 199], blockchains [207], compilers [193], and static ana-

lyzers [149]), research on AIFs in static analyzers remains limited.

Existing work related to AIFs primarily focuses on common code annotation practices in

Java [160, 165, 169, 176, 212]. These studies show that annotations are widely adopted

by Java developers and have served as motivations for our study. Among these studies,

the work on annotation-related faults and the mutation operators that mimic these faults is

the most closely related [169]. For example, the insertion of annotations in AnnaTester

is similar to the ADA operator, which adds an annotation to a valid target in prior work.

However, the ADA operator requires users to manually specify the annotation, whereas

we generate annotations from our annotation database. Nevertheless, our study and pro-

posed technique differ from prior studies in several important aspects: (1) Prior studies

have identified only two categories of annotation-related faults (“misuse” and “wrong an-

notation parsing”), whereas our study focuses on the impacts of annotation-induced faults

in static analyzers. The root cause categories of annotation-induced faults in our study are

more diverse than those in prior studies. (2) Prior techniques focus on mutating code an-

notations [169] via a set of operators but cannot detect annotation-induced faults due to the

lack of oracles. In contrast, AnnaTester injects annotations into input programs and uses a

well-designed set of oracles to reveal annotation-induced faults in static analyzers.

Consequently, our study aims to fill this gap by addressing the following research questions:

RQ 4.1: What kinds of annotations are more likely to trigger AIFs? In RQ 4.1, we examine

annotations that require attention when designing static analyzers.

RQ 4.2: What are the root causes of annotation-induced faults in static analyzers? In RQ

4.2, we study the reasons behind annotation-induced faults to prevent them from recurrence

in the future.

RQ 4.3: What are the symptoms of annotation-induced faults? In RQ 4.3, we investigate

the consequences of annotation-induced faults, which helps us assess their significance.

51

RQ 4.4: What are the fix strategies that developers employ when fixing AIFs? In RQ

4.4, we strive to establish a comprehensive understanding of viable ways to fix annotation-

induced faults, which is essential for reducing debugging efforts.

To address the aforementioned research questions, we manually analyze 238 annotation-

induced issues and their corresponding patches from six popular open-source static ana-

lyzers, namely PMD, SpotBugs, Infer, CheckStyle, SonarQube, and Soot. As a result, we

uncover seven main reasons for the annotation-induced faults, identify four symptoms of

those faults, and unveil six strategies that developers adopted to fix the faults. We summa-

rize nine major findings from the analysis results and discuss their implications for avoiding

similar faults in the future. Based on our findings, we develop a metamorphic testing based

framework named AnnaTester to automatically detect three types of annotation-induced

faults in static analyzers. On the six aforementioned static analyzers, AnnaTester can suc-

cessfully detect 43 faults that were revealed for the first time. We have reported the faults to

the corresponding developers, and 20 of them have been fixed, which clearly demonstrates

the value of our framework, study, and findings.

In summary, this work makes the following contributions:

• To the best of our knowledge, we conduct the first empirical study on annotation-induced

faults in static analyzers based on 238 issues from six popular open-source analyzers. We

analyze their root causes, symptoms, fix strategies, and types of annotations, deriving

nine findings.

• Based on our findings, we propose AnnaTester, a novel automated testing framework

that uses metamorphic testing with a customized annotated program generator to detect

three types of annotation-induced faults in static analyzers.

• We evaluate AnnaTester on six static analyzers, and it can reveal 43 new faults in these

analyzers, 20 of which have been confirmed and fixed.

52

4.1 Empirical Study of Annotation-Induced Faults

4.1.1 Target Static Analyzers

We select target static analyzers based on the following three criteria: (1) The analyzer

must be open-source and use a public issue tracking system (GitHub or Jira) to record

all its issues that have been reported and resolved, so that we can identify and analyze

its annotation-induced faults (AIFs) and corresponding fixes; (2) The analyzer should be

popular and widely used so that its issues are representative of the real problems faced by

users of analyzers. Specifically, we focus on analyzers with at least 2,000 stars on GitHub

in this study; (3) The analyzer should support the analysis of Java programs. Based on these

criteria, we select six static analyzers: (1) PMD [14] is a cross-language static analyzer that

detects common code smells, e.g., unused variables; (2) SpotBugs [17] is a fork of the now

deprecated analyzer FindBugs that detects common flaws in Java programs via a set of code

patterns; (3) CheckStyle [1] checks the conformity of Java code to a set of coding rules; (4)

Infer [7] is an analyzer designed by Meta to detect flaws for Java, C, C++, and Objective-C

programs; (5) SonarQube [16] is a continuous code inspection platform that detects bugs

and code smells for various programming and markup languages; (6) Soot [58] is a static

analyzer that can analyze, instrument, and optimize Java and Android applications.

4.1.2 Data Collection

Among the six target analyzers, SonarQube uses Jira for tracking issues, while the other

tools use GitHub. Since the issue tracking systems of these static analyzers contain around

14,000 issues, we refrain from manually inspecting all the issues to select only those related

to annotation-induced faults. Instead, we first used the keyword “annotation” to search for

closed issues that are likely annotation-induced. We only focus on closed issues because

how an issue was resolved sheds light on its root cause and fixing strategy, and we consider

a closed issue relevant to annotations if and only if the keyword “annotation” appears in

53

the issue’s title or description. The search returned 269 issues in total. Then, we manually

checked these issues and excluded those that were not associated with any fixing commits

or not related to annotations. Subsequently, we collected 238 faults to be analyzed in our

study. Table 4.1 lists the total number of issues for each analyzer in its issue tracking system

(#Issuet), the number of likely annotation-induced issues returned by the keyword-based

search (#Issues), and the number of annotation-induced faults confirmed by the manual

check and to be analyzed (#Issuea). In the remaining part, we refer to faults using their IDs

in the form TOOL-###, where TOOL denotes the name of a static analyzer, and ### denotes

the corresponding issue ID on GitHub or JIRA. As all collected issues were confirmed by

the developers, we do not manually reproduce them again.

Table 4.1: Issue distribution among six static analyzers

Static Analyzer #Issuet #Issues #Issuea

SonarQube 4370 138 128

CheckStyle 4768 60 52

PMD 2161 53 43

SpotBugs 1043 10 7

Infer 1304 8 6

Soot 1147 39 10

Total 14793 269 238

4.1.3 Issue Labeling and Reliability Analysis

In this study, we identify annotation-induced issues and analyze them from three aspects:

the root cause, the symptom exhibited, and the fix strategy. The entire study takes around

six months to complete. To categorize (or label) the issues from each aspect, we follow

previous work [185, 217] to adapt existing taxonomies [79, 185, 194, 217, 219] to our task

via an open-coding scheme. Specifically, one author first reviewed all the reports and pull

54

requests of those issues to determine the labels for these three aspects, including adding

domain-specific categories and eliminating unnecessary ones. Then, two authors indepen-

dently labeled the collected issues using the predefined categories. We used Cohen’s Kappa

coefficient [205] to assess the agreement between the two authors. First, the two authors

labeled 5% of the issues, and the Cohen’s Kappa coefficient was nearly 0.69. Then, we con-

ducted a training discussion and labeled 10% of the issues (including the previous 5%). At

this stage, the Cohen’s Kappa coefficient reached 0.93. After an in-depth discussion on the

issues with different labels, the two authors labeled the remaining issues in nine iterations,

each covering an additional 10% of the issues, with the Cohen’s Kappa coefficient remain-

ing above 0.9 throughout the process. In each iteration, the two authors discussed with the

third author if they had any disagreement. Finally, all issues were labeled consistently.

4.1.4 RQ 4.1: AIF-Prone Annotation

We collect annotations that trigger AIFs in the studied issues (we refer to them as AIF-

prone annotations) and sort them in descending order of occurrence. Figure 4.2 shows the

top 30 most frequently occurring annotations in our study. The x-axis displays the names

of the annotations, and the y-axis presents the number of issues caused by each annotation.

Overall, we observe that annotations used to specify the nullability of program elements

(i.e., @Nullable, @Nonnull, @NonNull, @CheckForNull, @NonNullApi, and @NotNull)

are generally AIF-prone. These nullability-related annotations trigger the most issues as

static analyzers typically have many rules for checking the nullability of various program

elements, and the implied semantics of these annotations may affect the analysis results.

Meanwhile, the annotation @SuppressWarnings is often used to suppress specific warnings

in static analyzers, e.g., @SuppressWarnings(“WarningName”). It causes the second most

issues, presumably because many static analyzers, such as PMD and SonarQube, support

this annotation, and programmers frequently use it to filter out unwanted warnings Several

test-related annotations (@Test, @ExtendWith, and @VisibleForTesting) are AIF-prone due

55

to their widespread use for marking tests. Annotations @Inject and @Autowired support

the automated injection of data dependencies on annotated variables [63]. Understandably,

static analyzers may produce incorrect analysis results if they are unaware of the implicit

data flow introduced by these annotations. In Figure 4.2, around 23% (i.e., 7/30) of the

annotations (such as @Value, @Data, and @Getter) can modify the original code, and

failure to capture such changes can lead to faults in static analyzers.

Finding 1: Annotations that (1) specify the nullability of program elements, (2) are

widely used (for marking unit tests or suppressing undesirable warnings), and (3) alter

the data dependence or structure of the original code induce the largest number of faults

in static analyzers.

Figure 4.2: Number of issues induced by top 30 most AIF-prone annotations

4.1.5 RQ 4.2: Root Cause

We uncover a total of seven main reasons for the annotation-induced faults. In this section,

we explain these reasons using examples, in decreasing order of their total occurrences

in our study. Table 4.2 shows the number of faults caused by each reason for each static

56

analyzer.

Table 4.2: Number of faults due to different root causes in each static analyzer

Static Analyzer IS IAT UEA ETO IAG MCF Others Total

SonarQube 66 23 21 11 4 2 1 128

CheckStyle 0 39 1 0 10 1 1 52

PMD 19 9 0 4 7 4 0 43

SpotBugs 4 0 0 3 0 0 0 7

Infer 4 0 0 1 0 1 0 6

Soot 0 3 2 4 0 1 0 10

Total 93 74 24 23 21 9 2 238

IS: Incomplete Semantics; IAT: Improper AST Traversal; UEA: Unrecognized Equivalent Annotations;

ETO: Erroneous Type Operation; IAG: Incorrect AST Generation; MCF: Misprocessing of Configuration

File.

Root Cause 1: Incomplete Semantics (IS)

The most (38%) common reason for AIFs is that static analyzers usually only have incom-

plete knowledge about the semantics of annotations and, therefore, the semantics of the

annotated programs. Understandably, if an analyzer only has access to partial information

it relies on, it is bound to produce inaccurate results. Notably, neither CheckStyle nor Soot

is related to this root cause because both tools largely ignore the semantics of the input

program. CheckStyle checks for coding styles, whereas Soot provides APIs for different

analyses.

One fault induced by this root cause is SONARQUBE-3804 [157], shown in Figure 4.3.

SonarQube has a rule stipulating that the keyword volatile should not be applied to non-

primitive fields since when applied to a reference, the keyword ensures that the reference

itself, rather than the object it refers to, is never cached, which may cause obsolete object

57

data to be cached and used by some program threads. However, this stipulation should be

disregarded when the reference type’s class is annotated with @Immutable or @Thread-

Safe1 since both annotations imply that the class’s objects can be safely operated in multi-

thread environments. Being unaware of the semantics of these annotations, SonarQube

reported violations at lines 4 and 5 of the program in Figure 4.3.

1 @javax.annotation.concurrent.Immutable

2 class MyImmutable {}

3 @javax.annotation.concurrent.ThreadSafe

4 class MyThreadSafe {}

5 class Main {

6 private volatile MyImmutable x;

7 private volatile MyThreadSafe y;

8 }

Figure 4.3: An incomplete semantics example in SONARQUBE-3804 [157]

Finding 2: Incomplete semantics is the most common root cause for faults in all studied

analyzers, except for CheckStyle and Soot. Since annotations may introduce changes to

the program properties and behaviors, failing to grasp the semantics encoded by these

annotations will cause static analyzers to produce inaccurate results.

Root Cause 2: Improper AST Traversal (IAT)

After the developers of static analyzers have correctly constructed the abstract syntax

tree (AST) for a program under syntactic analysis, they tend to misunderstand the im-

pact of annotations on the AST and perform improper AST traversal. In CHECKSTYLE-

7522 [40], the analyzer may encounter an ANNOTATION MEMBER VALUE PAIR node,

i.e., a type of AST node used to represent the key-value pairs in annotation declarations

like @Deprecated(removal=true), when it is not expecting one, causing a runtime crash. In

CHECKSTYLE-9941 [43], an annotation for a method pushes the nodes for the method’s

header comment one level down in the corresponding AST. Therefore, the static analyzer

1Both annotations are defined in the package javax.annotation.concurrent.

58

needs to access those nodes accordingly depending on the presence of annotations. Failing

to do that, CheckStyle produced incorrect results when analyzing annotated methods.

Finding 3: Developers of static analyzers tend to misunderstand the impact of anno-

tations on ASTs, causing improper AST traversal to be the second most common root

cause.

Root Cause 3: Unrecognized Equivalent Annotations (UEA)

Many annotations with equivalent semantics, but developers of static analyzers often fail to

recognize these annotations. There are two types of equivalent annotations: (1) Annotations

from different libraries can have identical semantics and usage styles, but static analyzers

often only recognize some of them, leading to inconsistent analysis reports. For example,

the annotation @Nullable means that the annotated element can hold a null value, and it has

been supported in many popular third-party libraries (e.g., Google Android support, Mon-

goDB, and Spring). Rules that check for null pointers need to analyze the program element

annotated with @Nullable to determine the nullability of the element. Moreover, with the

dormition of JSR-305 [171] (Java Specification Requests that aim to develop standard an-

notations for Java programs to assist software fault detection tools), several new libraries

(e.g., Google JSR-305 [162]) have been proposed to implement annotations in JSR-305.

The annotations in these new libraries may cause UEA issues as they all comply with the

same specification but have different names. For example, while SonarQube disallows vari-

ables of primitive data types to be declared as nullable in general, it reports a warning when

@android.support.annotation.Nullable is used to mark a boolean value as nullable but fails

to report a warning when an equivalent annotation (i.e., @android.annotation.Nullable) is

used in the same way (lines 1 and 2 in Figure 4.4). (2) As a library evolves, the fully

qualified names of annotations defined in the library may also evolve. For example, in

SONARQUBE-3174 [117], the fully qualified package name of annotation @Generated

changed from javax.annotation to javax.annotation.processing but SonarQube’s develop-

59

ers were unaware of the change and failed to handle the renamed annotation correctly,

causing inaccurate analysis results.

1 @android.support.annotation.Nullable

2 boolean fun1() {} // Report a warning

3 @android.annotation.Nullable

4 boolean fun2() {} // No warning reported, an FN

Figure 4.4: SONARQUBE-3536 [118]: A false negative caused by UEA

Finding 4: Most (88%) of the UEA faults are identified in SonarQube. Equivalent anno-

tations may come from (1) different libraries or (2) different versions of the same library.

Root Cause 4: Erroneous Type Operations (ETO)

Several annotation-induced faults were due to erroneous type-related operations (e.g., miss-

ing type resolution, incorrect type casting/type checking). In SONARQUBE-3438 [119],

developers of SonarQube mistakenly believed that the values stored in annotations could

only be literals and incorrectly cast the AST of an annotation from ExpressionTree to

LiteralTree, resulting in a runtime exception. Figure 4.5 shows that in SONARQUBE-

3045 [106], developers forgot to resolve the type of the annotation (i.e., @MyAnnotation)

applied to the actual type parameter (i.e., MyClass), leaving the type parameter annotated

with an unknown type.

1 @Target(ElementType.TYPE_USE)

2 @interface

3 MyAnnotation {}

4 List<@MyAnnotation MyClass> field; // Unknown annotation type

Figure 4.5: SONARQUBE-3045 [106]: An incorrect type resolution in SonarQube

60

Root Cause 5: Incorrect AST Generation (IAG)

Static analyzers may construct incorrect ASTs at the end of the intermediate representation

(IR) construction stage (Figure 1.1). One main reason for such problems is the grammar

implemented by the static analyzers becomes obsolete after incorporating new rules about

the usage of annotations into the specifications of new Java versions. For example, the

obsolete grammar prevented CheckStyle from correctly parsing the annotations applied to

the compact constructors of record types in CHECKSTYLE-8734 [38]. Similarly, Sonar-

Qube and CheckStyle incorrectly handled type annotations introduced by JSR-308 [121]

in SONARQUBE-1420 [167] and CHECKSTYLE-3238 [27]. Meanwhile, some static an-

alyzers may make errors in constructing ASTs from the tokens returned by the lexers. For

example, in SONARQUBE-1167 [102], although SonarQube correctly extracted the anno-

tations placed on type parameter declarations, it failed to store the information correctly in

the corresponding AST, leading to an incorrect AST.

Finding 5: Incorrect AST generation is a common root cause, and most (85.7%) of the

IAG faults are due to the obsolete grammar that static analyzers implement.

Root Cause 6: Misprocessing of Configuration File (MCF)

As shown in Figure 1.1, a static analyzer usually expects as input both the program files to

be analyzed and a configuration file that specifies rules to be enabled and/or disabled, loca-

tions of the auxiliary libraries, etc. Several faults occurred because static analyzers failed

to process the given configuration files correctly. For example, PMD reads from the config-

uration file a list of annotations to be ignored in its analysis. In PMD-2454 [48], developers

forgot to trim the leading and trailing whitespaces when extracting annotation names from

the configuration files, causing the failure to match “@PreDestroy ” with “@PreDestroy”.

61

Root Cause 7: Others

The “Others” category comprises issues with high variability and limited quantity, and we

deliberately avoided creating new taxonomic categories for them. Two faults were highly

specific to their corresponding tool implementations and cannot be attributed to any of the

aforementioned reasons. In SONARQUBE-3108 [107], SonarQube crashed with an Out-

OfMemory exception when analyzing a method with 24 parameters, all annotated with

@Nullable. The reason is that SonarQube created two symbolic starting states (“NULL”

and “NOT NULL”) for each nullable parameter, requiring the creation of 224 symbolic

states for parameters of the method, which exceeded the available memory in the JVM.

In CHECKSTYLE-2202 [26], @SuppressWarnings is utilized to suppress warnings speci-

fied by the annotation parameters. However, developers ignored the parameters named in

camel-case notation, leading to a false positive.

4.1.6 RQ 4.3: Symptom

In this section, we describe the four symptoms and then relate them to the seven root causes

to help users and developers assess the impacts of different root causes. All symptoms

caused by annotation-induced faults are listed below:

• False Positive: Symptoms in this category involve analysis reports with undesirable

warnings.

• False Negative: Symptoms in this category involve analysis reports that are missing

warnings.

• Crash/Error: Symptoms in this category involve premature terminations or compilation

errors.

• Other Wrong Results: While most reports of the studied faults contain descriptions of

the symptoms caused w.r.t. the final results produced by analyzers, some reports only

62

refer to incorrect intermediate results generated during the analyses without explaining

how these intermediate results affect the overall analysis outcome. We classify those

faults into this category. For instance, the issue report of CHECKSTYLE-8734 [38]

explains that CheckStyle cannot parse the annotation on Java records and constructs

only a partial AST for the program under analysis.

Table 4.3 shows the distribution of the four categories of symptoms across the six static

analyzers. We observe that most of the studied faults fall into the false positive (FP) cat-

egory, probably because these faults are discovered during the actual use of the analyzers,

and users are more sensitive to undesirable warnings in analysis reports. The prevalence of

FPs is also in line with the findings of prior studies on static analyzers [70,71,83,108,120].

Note that we identify one symptom for each fault in our study based on the issue report,

which is reasonable because each issue report usually focuses on only one particular nega-

tive impact. Although it may happen in practice that a run of an analyzer exhibits multiple

symptoms from different categories, we can reliably make the following finding.

Finding 6: Annotation-induced faults may cause static analyzers to produce inaccurate

analysis results, to crash at runtime, or to generate incorrect intermediate results.

4.1.7 Correlation Analysis between Root Cause and Symptom

So far, we have summarized the root causes and symptoms of annotation-induced faults.

Understanding their relationship can help us better comprehend the impact of various root

causes on static analysis results. Table 4.4 shows the relationship between the root causes

and symptoms. Although IS is the most common root cause, we observe that it never

triggers runtime crashes, which are mostly caused by IAG. IS only leads to inaccurate

analysis results, especially at the program analysis stage, while crashes often occur at the

IR construction stage. We also observe that while FP results can be triggered by all root

causes of AIFs, FN and CE results are never caused by incomplete semantics.

63

Table 4.3: Number of issues for the four categories of symptoms across the static analyzers

Static Analyzer FP CE FN OWR Total

SonarQube 99 7 12 10 128

CheckStyle 26 14 10 2 52

PMD 28 8 7 0 43

SpotBugs 4 0 3 0 7

Infer 5 0 1 0 6

Soot 0 6 0 4 10

Total 162 35 33 16 238

FP: False Positive, CE: Crash/Error, FN: False Negative, and OWR: Other Wrong Results.

Finding 7: All identified root causes in our study lead to FPs. Incomplete semantics is

the most common root cause and typically leads to incorrect analysis results (i.e., FP).

Table 4.4: Correlation analysis between root cause and symptom

Symptom IS IAT UEA ETO IAG MCF Others Total

False Positive 93 40 11 9 4 4 1 162

Crash/Error 0 8 2 8 14 2 1 35

False Negative 0 19 7 4 0 3 0 33

Wrong Intermediate Result 0 7 4 2 3 0 0 16

IS: Incomplete Semantics; IAT: Improper AST Traversal; UEA: Unrecognized Equivalent Annotations;

ETO: Erroneous Type Operation; IAG: Incorrect AST Generation; MCF: Misprocessing of Configura-

tion File.

64

4.1.8 RQ 4.4: Fix Strategy

We unveil six common fix strategies for fixing annotation-induced faults. In this section,

we first introduce each fix strategy and then relate the fix strategies to the root causes of the

faults.

Fix Strategy 1: Fix Incorrect Use of Annotation Filter (FAF)

As there can be many programmer-defined annotations with distinct semantics, a static an-

alyzer often utilizes white and black lists to filter the annotations that it will or will not

support. Such a list can be hard-coded into the static analyzer or fed to the static an-

alyzer as part of a configuration file. For example, the ignoredAnnotations property in

PMD’s configuration file is used to specify the annotations to be neglected by specific

rule checkers. In general, annotation filtering may suffer from two types of problems.

First, a list may miss some annotations or contain undesirable annotations. For instance, in

SONARQUBE-1513 [103], a rule checker was used to identify subclasses that should over-

ride the equals method, but it mistakenly ignored the annotation @EqualsAndHashCode in

Lombok which. Applying this annotation to a class causes boilerplate implementations

of the equals and the hashCode methods to be inserted. To fix this fault, the developers

added the annotation to the white list, and SonarQube defaults to considering classes with

this annotation as having overridden the equals method. Second, the utilization of the lists

may be faulty. For example, in PMD-2876 [42], a PMD user specified the list of ignored

annotations in the configuration file to customize the Lombok annotations to be neglected

by the tool, but the customization failed due to PMD’s incorrect handling of the list.

Finding 8: Incorrect use of annotation filters can be fixed by adjusting the annotation lists

in 90.2% instances and correcting the mishandling of annotation lists in the remaining

9.8% cases.

65

Fix Strategy 2: Fix AST Node Retrieval (FAN)

The ASTs of programs under analysis are essential information for static analyzers, but

the process of information extraction from ASTs may suffer from two types of prob-

lems. First, the analyzers may misunderstand the structure of the ASTs, especially when

the annotations used in the programs introduce changes to the ASTs. For instance, in

CHECKSTYLE-10945 [44], tool developers mistakenly neglected ARRAY INIT ARRAY

nodes as part of the annotations in the ASTs. To fix such problems, programmers need

to adjust their traversal algorithms based on the actual structure of the ASTs. Second, the

computation performed by an analyzer when traversing an AST may be faulty. For exam-

ple, PMD employs a flag variable named hasLombok to track in a depth-first AST traversal

whether a class has an annotation from the Lombok library, suppressing all the Singu-

larField warnings on classes where the variable value is true. In PMD-1641 [158], the

traversal algorithm failed to restore the variable’s value to false after visiting an inner class,

causing an unwanted SingularField warning. The code snippet in Figure 4.6 illustrates how

the fault was fixed.

1 + boolean tmp = hasLombok;

2 hasLombok = hasLombokAnnotation(node);

3 Object result = super.visit(node, data);

4 + hasLombok = tmp;

Figure 4.6: PMD-1641 [158]: Fixing incorrect traversal algorithm

Fix Strategy 3: Fix Incorrect Type Operation (FIT).

This strategy involves fixing erroneous type-related operations (e.g., type resolution and

type casting). For example, in SONARQUBE-2205 [104], developers mistakenly resolved

the type of an annotation based on its simple name, and the fix involved replacing the

simple name with the annotation’s fully qualified name. In PMD-1369 [31], a runtime

crash occurred due to an incorrect cast of a reference from type ASTAnnotation to type

66

ASTClassOrInterfaceType. To fix this, a type compatibility check was added to guard the

type casting.

Fix Strategy 4: Fix Grammar Issue (FGI)

As shown in Figure 1.1, static analyzers rely on predefined grammar to perform lexical and

syntactic analysis to generate intermediate representations. We classify grammar-related

fix strategies into two subcategories: (1) Fix lookahead parameter. Lookahead is often

used in the lexical analysis stage. It can match the specific tokens in the source code

to be analyzed. (2) Fix grammar patterns. Static analyzers can define grammar patterns to

recognize corresponding syntax structures. However, these patterns may ignore annotations

directly, or new usages of annotation, e.g., in CHECKSTYLE-3238 [27], developers did not

define grammar patterns to recognize annotations on variable-length parameters and failed

to parse them consequently.

Fix Strategy 5: Fix Value Check (FVC)

This fix strategy involves adding checks that are missing or rectifying checks that are inap-

propriate. For example, in CHECKSTYLE-4472 [29], a missing null value check caused a

runtime crash, and the fix was to add the missing check.

Fix Strategy 6: Redesign Rule Checker Pattern (RRC)

Static analyzers based on rule checkers (e.g., all evaluated tools except for Soot) use pre-

defined patterns to detect bugs, but these patterns may be incorrect and need to be re-

designed. For instance, Figure 4.7 shows that in PMD-1782 [88] the rule checker initially

only checked if a class or interface has a package definition (ignoring annotations). At line

2, PMD checked whether a package definition exists by counting the number of occurrences

of the PackageDeclaration node in the XPath (which represents the AST as an XML-like

67

DOM structure) but mistakenly omitted annotations when writing the XPath. To fix this

issue, the developers redesigned the rule in the XPath to check if a package declaration

exists in the initial lines of a compilation unit.

1 - /ClassOrInterfaceDeclaration[count(preceding::PackageDeclaration)=0]

2 + CompilationUnit[not(./PackageDeclaration)]/TypeDeclaration[1]

Figure 4.7: PMD-1782 [88]: Redesigning rule pattern to recognize package declaration

Fix Strategy 7: Fix Incorrect API Usage (FIA)

This fix strategy involves repairing incorrect API usages, primarily by using the correct

API to retrieve elements or parse the signature of an annotation. Figure 4.8 shows that in

SOOT-123 [115] when creating an AnnotationTag object, Soot incorrectly invoked the API

DexType.toSoot (line 1) to prepare a type descriptor as the actual parameter for invoking

the AnnotationTag constructor. Figure 4.9 shows that in CHECKSTYLE-2202 [26], users

adopted the @SuppressWarnings annotation to disable a warning, but CheckStyle only

recognized rule names in lower case (line 1) and failed to detect equivalent rule names

in camel case (line 2). To fix this, developers replaced equals with equalsIgnoreCase to

recognize all equivalent rule names.

1 - AnnotationTag aTag = new AnnotationTag(DexType.toSoot(a.getType()).toString());

2 + AnnotationTag aTag = new AnnotationTag(a.getType());

Figure 4.8: SOOT-123 [115]: Incorrect invocation of toSoot to construct an AnnotationTag

1 @SuppressWarnings("checkstyle:redundantmodifier") // No warnings

2 @SuppressWarnings("checkstyle:RedundantModifier") // Report a warning, but it is an FP

Figure 4.9: CHECKSTYLE-2202 [26]: Failing to recognize the camel case leads to an FP

68

Fix Strategy 8: Others

Three faults were not fixed by the fix strategies discussed previously. In INFER-559 [30],

Infer reported an FP because it only used method signature information to analyze the

parameter properties for compiled Java programs. Since no annotation is retained in the

method signature information, the analyzer missed all annotations on method parameters.

4.1.9 Correlation Analysis between Root Cause and Fix Strategy

Knowledge about the relationship between root causes and fix strategies is valuable for

guiding the fix of annotation-induced faults. Table 4.5 shows the number of annotation-

induced faults caused by each root cause and fixed with each strategy. As shown in the

table, FAF is the most commonly adopted fix strategy. Moreover, most faults fixed by

strategy FAF are due to root causes IS or UEA, probably because it is too challenging for

the static analyzers to correctly handle the semantics of the annotations involved in those

faults. Therefore, tool developers resorted to the filter-based solution as a workaround for

the faults.

Finding 9: FAF is the most common fix strategy, especially for faults caused by IS and

UEA.

FIT is also a popular fix strategy and can address most root causes except for IS and UEA

(both are primarily fixed by FAF). Most FIT-related issues stem from fixing type resolution

(15) and type checking (11). Section 4.1.5 states that type resolution issues are caused by

incorrect auxiliary library configuration and missing identifier resolution. To fix the former

type resolution issue, developers need to load the proper libraries and find the correct class

file to resolve the annotation. For the latter, developers should consider all possible program

elements that need resolution (e.g., the fault in Figure 4.10 occurs because it fails to resolve

the annotation in fully qualified name org.foo.@MyAnnotation, leading to an unused import

FP at line 2). FGI mainly appears in one root cause (IAG) because incorrect grammar leads

69

Table 4.5: Correlation analysis between root cause and fix strategy

Root Cause FAF FAN FIT FGI FVC RRC FIA Others Total

Incomplete Semantics (IS) 83 0 0 0 3 4 0 3 93

Improper AST Traversal (IAT) 7 36 13 0 13 5 0 0 74

Unrecognized Equivalent Annotations (UEA) 21 1 0 1 1 0 0 0 24

Erroneous Type Operations (ETO) 1 1 16 0 3 0 2 0 23

Incorrect AST Generation (IAG) 0 0 1 20 0 0 0 0 21

Misprocessing of Configuration File (MCF) 2 0 3 1 0 1 1 1 9

Others 0 0 0 1 0 0 1 0 2

Total 114 38 33 23 20 10 4 4 238

FAF: Fix Incorrect Use of Annotation Filter; FAN: Fix AST Node Retrieval; FIT: Fix Incorrect Type

Operation; FGI: Fix Grammar Issue; FVC: Fix Value Check; RRC: Redesign Rule Checker Pattern;

FIA: Fix Incorrect API Usage.

to parsing failure. To fix these issues, developers should check whether the next token from

the lexical stream is a “@” symbol. Based on our study, developers often made mistakes

when handling annotations on throw types, variable arguments, and generic types.

1 package org.foo;

2 import org.foo.bar.MyAnnotation; // report an FP

3 class A {

4 org.foo.@MyAnnotation B myB;

5 }

Figure 4.10: SONARQUBE-2083 [105]: Failing to resolve the fully qualified name of an

annotation

Finding 10: Among all fix strategies, FIT covers the greatest number of root causes.

Fixing incorrect typecast and type resolution accounts for the majority of issues.

70

4.2 Implementation of AnnaTester Framework

We propose AnnaTester, an automated testing framework to detect annotation-induced

faults through metamorphic testing, and it includes three checkers motivated by our study

findings. Figure 4.11 shows the overall workflow of AnnaTester. Given a set of input

programs obtained from the test suite of a static analyzer under test, AnnaTester detects

annotation-induced faults in the analyzer in two steps: (1) It generates annotated programs

by injecting annotations into the input programs; (2) It checks whether the analysis reports

produced by the analyzer on the input programs, both with and without annotations, satisfy

the corresponding metamorphic relations. We adopt the Eclipse JDT library to parse source

seed files and inject annotations.

org.junit.AfterClassorg.testng.AfterClass

Analysis
Reports

Annotation
Injector

Seed
File

Source level
annotation

Dummy
annotation

Equivalent
annotations

@Data, @Value,...

@MockAnnotation

@org.junit.AfterClass
@org.testing.AfterClass
...

Annotation
Database

Annotation Generator

Automated
Testing

Differential
Analysis

Metamorphic
Relations Static Analyzers

Seed Corpus

Equivalent
Mutants

Bugs

Figure 4.11: Overall workflow of AnnaTester

4.2.1 Issue Checkers and Metamorphic Relations

AnnaTester essentially relies on three checkers to detect AIFs, each of which is based on

a metamorphic relation concerning analysis reports on programs with and without annota-

tions. When the metamorphic relation of a checker is violated, an AIF is detected, and the

71

checker reports the violations together with the input programs (both with and without an-

notations) to users for further analysis. All metamorphic relations are based on the analysis

of equivalence relations between programs as below:

Definition 3 (Analysis Equivalence). Two programs P and P′ are analysis equivalent w.r.t.

a static analyzer S , denoted as P ≡S P′, if and only if (1) S reports the same issues on P

and P′ and (2) S terminates in the same state, i.e., successful or with errors when applied

to P and P′. We use P ≡ P′ to denote that P and P′ are analysis equivalent w.r.t. any static

analyzer.

In the rest of this subsection, we use the following notations. Let P be a Java program, a be

an annotation, P(P) denotes the resultant program produced by processing the annotations

in P; I(P, a) denotes the set of all programs produced by applying a to appropriate elements

in P.

Incomplete Semantics Checker (ISC)

Incomplete semantics (IS) is the most common root cause for AIFs. In our study, one

fault in PMD due to IS was evidenced by contrasting the analysis reports produced on

two programs that were supposed to be analysis equivalent since the second program was

derived by processing all the annotations in the first one [150]. Motivated by this example

and Finding 2, we design a metamorphic relation requiring that a program P should be

analysis equivalent to the resultant program produced by processing the annotations in P.

Definition 4 (MR1). Given a program P, P and P(P) should be analysis equivalent, i.e.,

P ≡ P(P).

As stated in Section 2, source-level annotations are not retained in the compiled code (i.e.,

the semantics of those annotations must be fully processed and incorporated into the pro-

gram code during compilation). Hence, the discrepancies between static analysis results

72

of the programs before and after their source-level annotations have been processed indi-

cate potential annotation-induced faults due to IS in the analyzers. In view of this, the

incomplete semantics checker focuses on detecting IS faults caused by source-level anno-

tations. Since IS never led to faults in CheckStyle and Soot (Finding 2), we do not apply

this checker to detect faults in these two analyzers.

Annotation Syntax Checker (ASC)

Findings 3 and 5 indicate that incorrect AST generation and traversal may cause static an-

alyzers to produce inaccurate analysis results or even crashes. As such negative influences

are independent of the semantics of the involved annotations, we implement an annota-

tion syntax checker based on the following metamorphic relation on dummy annotations

(i.e., annotations that mark program elements but have no impact on programs’ semantics).

Notably, metamorphic relation MR2 states that adding dummy annotations to a program

should not affect the static analysis detection results produced on the program.

Definition 5 (MR2). Given a program P and a dummy annotation d, ∀p ∈ I(P, d) : P ≡ p.

Equivalent Annotation Checker (EAC)

To identify inconsistent behaviors across equivalent annotations, we design the following

metamorphic relation motivated by Finding 4:

Definition 6 (MR3). Given a program P annotated with an annotation a1 and another anno-

tation a2 that is equivalent to a1, P and Pa1 |a2 should be analysis equivalent, i.e., P ≡ Pa1 |a2 ,

where Pa1 |a2 denotes the resultant program produced by replacing annotation a1 with a2 in

P.

Our study shows that static analyzers sometimes fail to recognize all annotations with the

same semantics. To address this limitation, we devise an equivalent annotation checker

73

based on this metamorphic relation to automatically detect annotation-induced faults due

to the UEA root cause.

4.2.2 Annotated Program Synthesizer

We design and implement an annotated program synthesizer to automatically derive anno-

tated programs from the input programs. The generated programs with annotations will

be fed together with the original input programs to the static analyzers, and their analysis

results will be checked by the checkers with respect to the aforementioned metamorphic

relations. The synthesizer has three core components: (1) an annotation database, (2) an

annotation generator, and (3) an annotation injector.

Annotation Database

To build a database containing widely-used Java annotations, we obtain annotations from

two kinds of libraries in Maven Repo [163]: (1) the top 100 popular Java libraries and

(2) the top 100 popular libraries labeled as “Annotation libraries”. In total, our database

contains 1616 annotations from 194 Java libraries (two libraries are duplicated, and four

cannot be downloaded).

Annotation Generator

Our generator produces three types of annotations: (1) source-level annotations, (2) dummy

annotations, and (3) equivalent annotation tuples. They correspond to the three checkers

(i.e., ISC, ASC, and EAC).

Source-Level Annotations. AnnaTester automatically selects source-level annotations

from the database and generates annotation declarations without explicitly specified prop-

erty values. Thus, AnnaTester effectively associates all the annotations’ properties to their

default values.

74

Dummy Annotations. AnnaTester uses the dummy annotation defined in Figure 4.12. We

set its target to include all types of program elements that can be annotated to test the inter-

play between the annotation and static analyzers’ AST-related operations more thoroughly.

We set its retention policy to RUNTIME so that the annotation will be retained for a longer

time and hopefully can help us detect more annotation-induced faults at different stages of

a static analyzer.

1 import java.lang.annotation.*;

2 @Target({ElementType.METHOD, ...}) // Other targets omitted for space reasons

3 @Retention(RetentionPolicy.RUNTIME)

4 public @interface DummyAnnotation {}

Figure 4.12: Definition of the dummy annotation

Equivalent Annotation Tuples. As explained in Section 4.1.5, equivalent annotations

should have similar semantics. AnnaTester conservatively considers two annotations to be

equivalent if and only if they have the same name and target set. As all the annotations in

a tuple are semantically equivalent and applied to identical program elements, their anal-

ysis scopes are the same. In total, we have collected 132 equivalent annotation tuples. If

AnnaTester were to use all 132 tuples, too many mutants could be generated (each tuple

generates at least two annotated programs). Hence, we select 24 tuples based on the top

30 AIF-prone annotations identified in RQ 4.1. All tuples have been manually verified that

they are indeed equivalent tuples by two authors. Additionally, using all tuples will signifi-

cantly increase the running time. For example, in PMD (the fastest among evaluated tools),

tuple selection can reduce the running time by 91.3% (all tuples = 69 hours, selected tuples

= 6 hours) while finding the same number of faults.

Annotation Injector

Given an input program P and an annotation a generated by the annotation generator, the

annotation injector first analyzes the annotation to determine the set of valid targets for it,

then goes through the program to collect specific locations where the annotation can be ap-

75

plied, and finally automatically inserts the annotation in all those locations. For example, if

ElementType.METHOD is a valid target for an annotation, the annotation can be applied to

annotate method declarations. The output of the annotation injector is a set of P’s variants,

or mutants, each with the annotation being injected in a different location. Some injected

annotations may cause compilation errors (around 2%) if their corresponding properties

require explicit initialization. Therefore, AnnaTester discards these syntactically invalid

variants before proceeding to subsequent steps.

4.3 Effectiveness of AnnaTester

We applied AnnaTester to PMD, SpotBugs, CheckStyle, Infer, SonarQube and Soot and

conducted experiments to measure the effectiveness of AnnaTester by reusing test suites

from the official repositories of static analyzers as the seed corpus as prior work shows that

these tests can help us cover more rule checkers to reveal more faults [213]. All experi-

ments were conducted on a machine with Intel Xeon(R) 6134 CPU 3.20GHz and 192GB

RAM. For static analyzers that require compilation (e.g., SpotBugs), we compile each pro-

gram using Oracle JDK 17. For each checker and its corresponding annotations, we run

AnnaTester on all analyzers in parallel until all generated mutants have been evaluated and

do not set any timeout. We do not test AnnaTester on known issues as it is designed based

on insights gained from these issues. Testing AnnaTester on the same issues would intro-

duce bias. We also identify two challenges in evaluating AnnaTester on known issues: (1)

it involves building old versions of analyzers from their source code, which can be quite

demanding (e.g., due to the absence of required external libraries and the intricacies of the

compilation process), (2) we are missing compilable input programs to reproduce some

known issues, but those programs can be hard to construct manually, and AnnaTester re-

quires them as the input.

Table 4.6 shows the experiment results. We measure the effectiveness of AnnaTester by

counting the unique faults detected by each checker (“#UniqFaults” column). Specifically,

76

Table 4.6: Effectiveness of Statfier

Checker #Violations #UniqFaults #FP #Fixed Time (min, max) (hour)

ISC 258 19 8 11 (4,62)

ASC 52 8 0 4 (2,24)

EAC 123 16 0 5 (6,87)

Total 433 43 8 20 (6,87)

we manually analyze the root causes of the identified faults and remove duplicates. Notably,

we consider two faults duplicated if they are in (1) an identical rule checker and (2) an

identical faulty location (determined by root cause diagnosis) in a static analyzer. Table 4.6

shows that AnnaTester found 43 AIFs in evaluated static analyzers, and 20 have been fixed

via merged pull requests (9 by developers and 11 by authors). Overall, AnnaTester finds

the greatest number of faults using ISC. This result is consistent with Finding 2, which

shows the prevalence of IS in static analyzers. The “Time” column shows the minimum

and maximum total execution time for all checkers on the six static analyzers. Although

different checkers use the same seed corpus, the time taken by different checkers varies

because the number of annotations and the number of valid program locations to inject

these annotations are different.

Fix Strategies for AIFs Found by AnnaTester. To further analyze the fixed faults, we

classify the fix strategies of the 20 fixed faults. All of them fit into our taxonomy of fix

strategies: 14 by FAF, 3 by FGI, 2 by FAN, and 1 by FIA. The result illustrates the gener-

ality of our taxonomy.

Limitations. Like other testing tools, AnnaTester also reports nine FPs (“#FP” column in

Table 4.6). Our manual analysis of the FPs revealed that all FPs are caused by the source

code changes induced by applying MR1 to recover annotation semantics. For example,

@NoArgsConstructor is semantically equivalent to injecting a no-argument constructor

77

into source code, but the constructor triggers a UnnecessaryConstructor warning in PMD,

causing an FP (this extra warning misleads AnnaTester into thinking that the programs

before and after annotation processing are not analysis equivalent). Another limitation is

AnnaTester requires manual effort to verify the correctness of the 43 identified unique

faults.

4.4 Case Study

We select three faults detected by AnnaTester to show AnnaTester’s fault finding capabil-

ity. For each fault, we present its root cause, the affected analyzer, and how AnnaTester

found the issue.

A Crash in PMD [54]. Finding 5 shows that static analyzers cannot handle special annota-

tion syntax as developers tend to neglect them. Figure 4.13 shows a crash example in PMD

discovered by AnnaTester. At line 7 of this example, PMD fails to process the annotation

@DummyAnnotation placed on the class constructor reference ::new due to the grammar

issue, consequently leading to a runtime crash. The developers have fixed this issue upon

receiving our report.

1 import java.util.function.Function;

2 public class Main {

3 public class Inner {

4 public Inner(Object o) {}

5 }

6 public Function func(Main this) {

7 return @DummyAnnotation Main.Inner::new; // Crash

8 }

9 }

Figure 4.13: A crash in PMD detected by AnnaTester

An FP in SonarQube [51]. Figure 4.14 shows a fault caused by incomplete seman-

tics. SonarQube reports an unclosed stream warning at line 2, but it is an FP because

the @Cleanup annotation will generate a try-finally statement to close FileInputStream in

78

the finally block. This issue has been confirmed and marked as “Major” priority by the

developer, indicating the importance of the fault.

1 public static void main(String[] args) throws IOException {

2 @Cleanup

3 InputStream in = new FileInputStream(args[0]); // FP

4 ...

Figure 4.14: An FP in SonarQube detected by AnnaTester

An FP in PMD [47]. Figure 4.15 shows that PMD reports a warning against the unnec-

essary constructor at line 4. However, this is an FP because the annotation @Inject uses

this constructor for dependency injection. In Figure 4.15, PMD does not consider the an-

notation “com.google.inject.Inject”, but it has considered another equivalent annotation,

“javax.inject.Inject”. EAC can automatically detect this FP. We have fixed this fault via a

merged PR in collaboration with the developers.

1 import com.google.inject.Inject;

2 public class Foo { private Foo() {} }

3 public class Bar extends Foo {

4 @Inject public Bar() {} // Report a warning, but it is an FP

5 }

Figure 4.15: An FP in PMD detected by AnnaTester

4.5 Implication

We discuss the implications for developers and researchers based on our study findings in

the subsequent section.

4.5.1 Implication for Developers

Our study identifies the common root causes and their corresponding symptoms and fix

strategies that may help developers of static analyzers to detect, understand, and repair

79

faults caused by annotation. We also study AIF-prone annotations, implying that develop-

ers should pay attention to these annotations (Finding 1). Based on this finding, we design

AnnaTester to select AIF-prone annotations. In the future, it is worthwhile to investigate

more advanced techniques for annotation selection. Based on the two most common root

causes of annotation-induced faults in our study (IS and IAT), we realized that developers

of static analyzers tend to either (1) be unaware of the semantics encoded by annotations

(Finding 2) or (2) neglect the impact of annotations on program ASTs (Finding 3). Hence,

we hope that our study will raise awareness among developers on the impacts of Java an-

notations on static analyzers to improve the accuracy and correctness of static analyzers.

In terms of the static analyzer workflow, our study revealed that developers should pay

careful attention to annotations when performing syntax analysis because all studied static

analyzers have annotation-induced faults in the syntactic analysis stage, especially when

annotations are placed on the types such as generic type arguments and type casts since

JSR-308 [121]. With the evolution of Java specification, developers should also consider

annotation-induced faults when updating the grammar (Finding 5). Meanwhile, as our

study also revealed that there exists a set of equivalent annotations that come from different

libraries or different versions of the same libraries (Finding 4), developers should consider

these related annotation libraries when designing rule checkers to provide comprehensive

support for the related annotations.

4.5.2 Implication for Researchers

Our study and proposed framework lay the foundation for research in three promising di-

rections. First, encoding the semantics of annotations into static analyzers is essential in

improving the accuracy of the analysis because current analyzers fail to model the behavior

of annotations well. Incomplete semantics is the most common root cause of AIFs in our

study (Finding 2) and the greatest number of faults detected by AnnaTester. Therefore,

failing to solve this problem can affect the fault detection capability of static analyzers.

Second, detecting AIFs is necessary but yet often neglected. For static analyzers, elimi-

80

nating FPs is a worthwhile and long-term research direction [125]. As shown in Table 4.3,

FP is the most common symptom caused by AIFs. Consequently, detecting AIFs is re-

warding for reducing FPs. Metamorphic testing is a promising approach for this purpose.

Researchers can produce annotated program pairs and compare their analysis reports to de-

tect FPs (such as ISC). Third, our fix strategies (Finding 8–10) serve as preliminary studies

for future research on the automated repair of AIFs. We observe that several fix strategies

in our study can be automated to reduce the effort in fixing them (e.g., Fix Annotation Filter

(FAF) can fix more than half of the issues). Most of them are implemented by creating an

annotation filter or extending an existing filter.

4.6 Summary

We conduct the first comprehensive study which focuses on understanding and detecting

annotation-induced faults of static analyzers as annotation has become a popular program-

ming paradigm. We manually investigate 238 issues from six representative and diverse

static analyzers (SonarQube, CheckStyle, PMD, SpotBugs, Infer, and Soot), identify seven

root causes, four symptoms, and six fix strategies. Moreover, we summarize nine findings

in the study. Based on these findings, we introduce a set of guidelines for AIF detection

and repair, and propose AnnaTester, the first metamorphic testing based framework to au-

tomatically identify AIFs in static analyzers. With our annotation synthesizer and three

metamorphic relations, it can generate new tests based on official test suites and find 43

faults where 20 of them have been fixed.

81

Chapter 5

SAScope: Characterizing and Detecting

Program Representation Faults of Static

Analyzers

Users often invoke program analyzers to construct various program representations [65,

140,209] such as call graphs, control flow graphs, and intermediate representations, which

encode the properties and behaviors of the given program, to support further analysis. How-

ever, developers of static analyzers may make mistakes when implementing different anal-

ysis algorithms, resulting in incomplete or inefficient analysis processes and incorrect pro-

gram representations. For instance, prior research shows that buggy implementations of

complex call graph construction algorithms and missing support for certain programming

language features are two main reasons for incorrectly constructed call graphs [173, 191].

Although ensuring the correctness of generated program representations is essential, prior

studies have primarily focused on (1) investigating a single type of program representation

(e.g., call graphs), (2) pruning false positive edges from call graphs [144, 191], and (3) de-

veloping new call graph construction approaches that consider more specific aspects, such

as invocations to Java libraries and implicit processes like object serialization/deserializa-

82

tion [64, 181]. To develop a comprehensive understanding of the reasons for, the impacts

of, and the fixes for the faults in static analyzers that lead to the aforementioned undesirable

behaviors, which we refer to as program representation faults (PRFs), we conduct the first

empirical study of those faults in static analyzers. Our study aims to answer the following

research questions (RQs):

RQ 5.1: Which program representations are more likely to be faulty? This RQ aims to

study the representations that are more prone to PRFs and require more attention from

developers during construction.

RQ 5.2: What symptoms can PRFs induce, and what are their root causes at each stage?

This RQ aims to understand the effects and causes of PRFs at each stage of the static

analyzer workflow.

RQ 5.3: What strategies do developers adopt when fixing PRFs? This RQ aims to under-

stand viable ways to fix PRFs, which is essential for reducing the effort required to repair

them.

RQ 5.4: How do developers detect PRFs? This RQ reviews the oracles developers used to

determine whether a fault is a PRF, with the goal of deriving better designs for automated

PRF detection.

To address these research questions, we first manually collect PRFs and their patches from

four popular static analyzers: Soot, WALA, SootUp, and Doop. Subsequently, we identify

four symptoms, analyze their root causes at each stage of the static analysis workflow, and

reveal six fix strategies to help analyzer developers debug and repair PRFs. We also make

eight findings and discuss the implications of our study for developers and researchers.

In particular, we find that, while it is generally difficult to check the correctness of pro-

gram representations since they are often large and have distinct and complex structures,

comparing program representations based on their corresponding analysis precision and

83

functionality is a promising approach to automatically detecting certain types of PRFs.

Based on the findings of our study, we propose SAScope, a novel automated testing frame-

work that detects PRFs in static analyzers using (1) a new metamorphic relation defined

over different program representations and algorithms, (2) differential testing to verify the

correctness of the same program representation across different static analyzers, and (3) a

property-based approach to group detected faults. Inspired by Finding 8 in the empirical

study, our first key insight is that a static analyzer commonly supports multiple program

representations constructed using algorithms with various precision levels. Based on the

precision lattice, we design a metamorphic relation that detects faults among program rep-

resentations generated by different algorithms with different precision levels in a static

analyzer. We also observe that algorithms with the same functionality are implemented in

different static analyzers. Since the computed results from algorithms with the same func-

tionality should be equivalent under the same inputs, we employ differential testing to find

the discrepancies among them. We evaluate SAScope on the aforementioned four static

analyzers, identifying 19 new faults. All of them have been submitted to the corresponding

developers, and five have been fixed.

In summary, our work makes the following contributions:

• To the best of our knowledge, we conduct the first empirical study on program represen-

tation faults in static analyzers, involving 141 issues from four popular static analyzers.

• Inspired by the findings of our study, we implement the SAScope automated testing

framework to detect program representation faults based on metamorphic and differential

testing. In our metamorphic testing component, we propose a new metamorphic relation

that uses the relative precision lattice of various program representation algorithms.

• We evaluate SAScope on four studied static analyzers and identify 19 new faults, five of

which have been fixed by developers.

84

5.1 Empirical Study of Program Representation Faults

5.1.1 Tool Selection

We select static analyzers for study based on the following criteria: (1) It should be popular

and widely used so that its issues are representative of practical problems faced by the users

of analyzers. Particularly, we focus on static analyzers with at least 100 stars on GitHub

and that have appeared in related researches [144, 154, 173, 181, 201]; (2) It must be open-

source and use a public issue tracking system to record all issues that have been reported

and resolved so that we can identify and analyze their program representation faults and the

corresponding fixes; (3) It should provide APIs for users to access fundamental program

representations, such as different intermediate representations and analysis graphs. Other-

wise, it is difficult for us to identify PRFs in collected issues. Based on these criteria, we

selected four static analyzers: (1) WALA [137] can analyze Java, Android, and JavaScript

programs using many standard static program analysis techniques. (2) Soot [139] is a

static analyzer that analyzes, instruments, and optimizes Java and Android applications.

(3) SootUp [124] is a new version of Soot with a completely overhauled architecture. (4)

Doop [75] is a static analyzer specifically designed for different Java pointer analysis algo-

rithms.

Table 5.1: Issue distribution for four static analyzers

Static Analyzer #Star #Issuec #Issuek #Issuea

Soot 2782 773 168 64

Wala 724 321 119 30

SootUp 486 319 79 38

Doop 129 45 26 9

Total 4121 1458 392 141

85

5.1.2 Issue Collection and Labeling

Among the studied static analyzers, Doop uses BitBucket for issue tracking, while the oth-

ers use GitHub instead. Since there are around 1458 closed issues in their issue tracking

systems, we filtered out the irrelevant ones to keep the manual inspection of the issues

manageable. In particular, we used keywords representing various forms of program repre-

sentations, including “IR”, “AST”, “hierarchy”, and “graph”, to search for relevant closed

issues. Overall, we collected 392 issues based on the keywords. Then, we manually re-

viewed the issues and removed the ones that are not faults, have no fixing commits, or are

irrelevant to program representations. Table 5.1 lists, for each static analyzer, the number of

stars in its open-source repository, the total number of closed issues in its issue tracking sys-

tem (#Issuec), the number of program representation issues returned by the keyword-based

search (#Issuek), and the number of PRFs confirmed by the manual analysis (#Issuea). In

the rest of this work, we refer to the PRFs using their IDs in the form Tool-###, where

Tool denotes the name of a static analyzer and ### represents the corresponding issue ID

on BitBucket or GitHub. Since the developers have confirmed and fixed all the PRFs, we

did not attempt to reproduce them manually.

Reliability Analysis. This study focuses on issues related to program representation faults

and analyzes them from three aspects: the symptoms exhibited, root causes at each stage,

and fix strategies. The entire study took around six months to complete. To categorize

(or label) the issues from each aspect, we followed the taxonomies of previous work [79,

185, 194, 214, 219] and adapted them to our task. Specifically, one author first looked

through all the issue reports and pull requests to determine the labels for these three aspects,

including adding domain-specific categories and eliminating unnecessary categories. Then,

two authors independently labeled these issues using the previously defined categories. We

used Cohen’s Kappa coefficient [205] to assess the agreement between the two authors.

First, the two authors labeled 5% of the issues, and Cohen’s Kappa coefficient was nearly

0.65. Then, they conducted a training discussion and labeled 10% of the issues (including

the previous 5%). At this stage, the Cohen’s Kappa coefficient reached 0.92. After an in-

86

depth discussion on the issues with different labels, the two authors labeled the remaining

issues in nine iterations, each covering ten more percent of the issues. Cohen’s Kappa

coefficient remained above 0.9 throughout the process, and the two authors discussed with

a third author to settle any disagreement between them in each iteration. Finally, all issues

were labeled consistently.

5.1.3 RQ 5.1: Fault-Prone Program Representations

In this section, we focus on understanding which program representations are more prone

to faults. We reviewed existing literature [18, 75, 101, 124, 139, 202, 203] to obtain a set

of eight types of program representations commonly supported by mainstream static ana-

lyzers, including abstract syntax tree (AST), intermediate representation (IR, i.e., code in

an intermediate language), call graph (CG), control flow graph (CFG), data flow graphs

(DG), class hierarchy (CH), pointer assignment graph (PAG), and program dependency

graph (PDG). On the one hand, a static analyzer usually parses the input program into an

AST or converts it into an intermediate language, both of which fully encode the semantics

of the input program. For instance, Soot utilizes the Jimple intermediate language [203]

and performs optimization on Jimple code, while Doop [75] uses the Shimple intermediate

language, which is essentially the static single assignment (SSA) variant of Jimple. On the

other hand, a static analyzer may also construct one or more graphical representations of

the input program, each focusing on one aspect of the program’s semantics. A call graph

represents the calling relationships between different methods within a program. A con-

trol flow graph adopts graph notation to model all paths that might be exercised during a

program’s execution, A data flow graph represents the set of values defined and used in

calculations at various locations in a program, whereas a pointer assignment graph is a di-

rected graph showing the viable types that each variable can point to. A class hierarchy

models the inheritance relationships between program classes. Table 5.2 shows, for each

static analyzer, the total number of PRFs we inspected and the breakdown of that number

to different types of program representations.

87

Table 5.2: Number of PRFs we inspected and the breakdown of that number to different types of

program representations

Static Analyzer CG IR CFG CH DG PAG PDG AST Total

Soot 14 17 11 11 5 3 1 2 64

SootUp 9 12 9 5 3 0 0 0 38

WALA 16 1 2 5 3 1 1 1 30

Doop 4 1 0 1 0 1 2 0 9

Total 43 31 22 22 11 5 4 3 141

IR: Intermediate Representation, CG: Call Graph, CFG: Control Flow Graph, DG: Dataflow Graph, CH:

Class Hierarchy, PAG: Pointer Assignment Graph, PDG: Program Dependency Graph, AST: Abstract Syntax

Tree.

Table 5.2 confirms that static analyzers have faults that affect all of the studied program

representations. The call graph is the most fault-prone program representation among the

eight program representations partly because call graphs can be rather complex and hard

to get all right and partly because they provide the foundation for many other analyses

and, therefore, are more thoroughly tested. The intermediate representation is the second

common fault-prone representation, especially in issues related to Soot and SootUp. The

number of issues related to AST is the lowest because static analyzers usually adopt class

files as input and convert them into IR for further analysis, only WALA supports a mature

source code frontend among four evaluated static analyzers.

Finding 1: The top two most fault-prone program representations are call graphs and

intermediate representations, accounting for 52.5% of the studied issues.

88

5.1.4 RQ 5.2: Symptom and Root Cause

In this section, we attempt to understand the symptoms (S) caused by the analyzed is-

sues, their distribution across different stages of the static analyzer workflow, and their root

causes. Overall, we summarize four symptoms. Table 5.3 shows the symptom distribution

in the workflow of static analyzers.

Table 5.3: Distribution of symptoms at each phase of workflow

Symptom Core Analysis Program Parse Data Input/Output Total

MEPR 40 7 5 52

FPRG 21 26 2 49

IEPR 18 11 0 29

IPRG 8 3 0 11

Total 87 47 7 141

MEPR: Missing Elements in Program Representation, FPRG: Failed Program Representation Generation,

IEPR: Incorrect Elements in Program Representation, IPRG: Inefficient Program Representation Generation.

Symptom 1: Missing Elements in Program Representation (MEPR)

Table 5.3 shows that missing elements in program representation is the most popular symp-

tom. This symptom category involves program representations that are missing elements.

Table 5.3 shows that this symptom may be observed in all phases and occur most fre-

quently in the core analysis stage (40/52, 76.9%). Most MEPR issues at this stage are

due to improper handling of (implicit) invocations to special methods during call graph

construction (23/40, 57.5%). For instance, Figure 5.1 shows a piece of code that reveals

SootUp-459 [130]. SootUp should be able to identify an invocation from A.foo to the class

initialization method A.clinit in the code if method foo is set as an entry method during call

graph construction, but it failed to do so. Besides, developers may misunderstand the pro-

89

1 class A {
2 static { System.out.println("A.<clinit>"); }
3 public void foo(){
4 System.out.println("foo");
5 }

6}

missing

Figure 5.1: SootUp incorrectly processes clinit methods

gram representation construction algorithm. In SootUp-456 [132], the Rapid Type Analysis

(RTA) algorithm [72] wrongly set the processed methods as completed after the first-round

process as the RTA algorithm is implemented via a worklist, which can traverse the meth-

ods iteratively to find more caller and callee targets. Hence, the RTA algorithm may process

each method multiple times rather than once. Figure 5.2 shows that in SootUp-456 [132],

the call edge from A.process to C.target should be added to the call graph, but A.process

method was labeled as “completed” after the first visit at line 6, causing the re-visiting at

line 10 to have no effects. In general, to construct correct call graphs, developers should

(1) take note of special methods like clinit and concrete methods in abstract classes, (2)

consider the inheritance relationships between classes, and (3) traverse the graphs to obtain

information about all classes.

1 class B { public void target() {} }
2 class C extends B { public void target() {} }
3 class D extends B { public void target() {} }
4 class A {
5 public void foo() {
6 process(new D());
7 second();
8 }
9 public void process(B b) { b.target(); }
10 public void second() { process(new C()); }
11}

missing

Figure 5.2: SootUp wrongly implemented the RTA algorithm

Meanwhile, class hierarchies and control flow graphs are other common representations

that trigger MEPR issues at the core analysis stage. For instance, in WALA-322 [188],

90

developers failed to add unresolved superclasses to the class hierarchy graph. However,

unresolved superclasses may not affect some analysis functionalities (e.g., building IR),

and developers provided the phantom class to handle it. In Soot-385 [25], Soot tried to

convert the Shimple-based control flow graph to Jimple-based, both of which are interme-

diate representations. To achieve that, Soot had to eliminate the Phi() function in Label 2

of Figure 5.3. However, it incorrectly put the instruction r0 2=r0 in the last slot of Label 1

block as this block is a try handler of a trap statement, and preceding statements may lead

to uninitialization errors of r0 2.

Label 2:
$r4 = @caughtexception
r0_2 = Phi(r0 #0,r0_1 #1)
r5 = $r4

r0 = null
Label 1:

$r2 = new java.util.Scanner
$r3 = java.lang.System.in
r0_2 = r0 // wrong slot

Specialinvoke $r2.<init>($r3)

r1 = $r2

r0_1 = r1.nextLine()

Figure 5.3: Soot-385 [25]: Incorrect control flow graph construction

Data input/output is also a common phase for MEPR issues (5/52) due to the wrong process

for setting input/output data related to program representations. For instance, in Soot-

524 [28], developers did not reset the variable that configures the input class path, leading

to incomplete elements in analysis results.

Finding 2: MEPR is the most common symptom of PRFs, and many such PRFs occur

at the core analysis phase. Two common root causes of MEPR are (1) neglecting certain

methods and (2) misunderstanding of graph construction algorithms.

91

Symptom 2: Failed Program Representation Generation (FPRG)

Failed program representation generation is the second most popular symptom (49/141,

34.7%), especially for the program parsing stage (26/49, 53%). This refers to the scenario

where the program representation generation terminates unexpectedly. At the program

parsing stage, most issues are due to a lack of consideration of specific language features.

Figure 5.4 shows an example where WALA used LambdaMetaFactory to parse a lambda

invocation expression (represented by invokedynamic instruction in bytecode) and get the

callee target (println) method at line 1. However, developers wrongly used this function

to parse the new LambdaMetaFactory statement at line 2 as they mistakenly treated this

call site as being generated by the compiler to handle lambda invocations, and actually this

statement is an invokevirtual instruction in bytecode. Our study revealed that all evaluated

static analyzers (except for Doop) have issues parsing lambda expressions.

1 new Thread(() -> System.out.println("Lambda")).start();
2 LambdaMetaFactory factory = new LambdaMetaFactory();

Figure 5.4: Wrong IR construction for lambda expression

The second root cause triggering FPRG is incorrect intermediate representation (IR) opti-

mization. Static analyzers include many optimization algorithms to optimize IR (e.g., dead

assignment and unused local variable elimination [139]), but these algorithms may have

implementation errors. For example, in Soot-358 [73], developers mistakenly marked the

code in the trap to be removed as reachable when performing dead code elimination. The

third root cause is related to the operand stack. As JVM is a stack-based virtual machine,

static analyzers adopt an operand stack for simulation. Figure 5.5 shows SootUp-326 [41]

that developers first initialize the operand stack before block 1 to simulate the IR construc-

tion of the left path (1- 2- 4). However, they do not recover the operand stack before the

IR construction of the right path. Hence, the operand stack has insufficient elements when

basic block 4 is re-processed, causing a stack underrun error.

92

A1,A2:fields of this class

ALOAD 0
GETFIELD A1:I

2

IFEQ
1

INVOKEVIRTUAL
java/io/
PrintStream.println
(Ljava/lang/Object;)V

this

condition

Operand StackOperand Stack

this

condition

Operand Stack

ALOAD 0
GETFIELD A2:I

3

4

this

A1

Operand StackOperand Stack

this

A1

Operand Stack

Operand StackOperand Stack

A2

Operand StackOperand Stack

A2

Operand Stack

this

Operand StackOperand Stack

this

Operand Stack

stack underrun

Figure 5.5: SootUp-326 [41]: An operand stack underrun issue

Finding 3: Three common root causes for failed program representation generation at

the program parsing stage are (1) missing consideration of specific program elements,

(2) incorrect IR optimization, and (3) wrong operand stack for simulating the JVM stack.

The second FPRG-prone stage is core analysis (21/49, 42.9%). Two leading root causes are

(1) concurrency bugs in class hierarchy and (2) inadequate handling of edge representation.

The class hierarchy is often accessed and modified by different threads. Figure 5.6 shows

that in Soot-1189 [33], different threads simultaneously invoked getOrMakeFastHierarchy,

leading to a runtime error due to concurrent hierarchy construction. Besides, inadequate

handling of edge representation is the second most popular root cause. In Soot-416 [24],

Soot threw a runtime exception when handling a graph where the dominator of a block is

the same as the block itself.

1 public FastHierarchy getOrMakeFastHierarchy() {
2 if (!hasFastHierarchy()) { setFastHierarchy(new FastHierarchy()); }
3 return getFastHierarchy();
4 }

Figure 5.6: A concurrency bug in class hierarchy of Soot

93

Symptom 3: Incorrect Elements in Program Representation (IEPR)

IEPR is the third most common symptom (29/141, 20.6%). This category involves pro-

gram representations containing incorrect or redundant program elements. 62.1% of IEPR

issues occur at the core analysis stage. For example, in SootUp-495 [133], developers fix

the RTA implementation by only considering the new() expression as the instantiated class

rather than init method in bytecode. Otherwise, the RTA algorithm may mistakenly regard

statements like super(); as class instantiations, leading to incorrect edges in the call graph.

In SootUp-715 [134], developers fail to add the essential libraries from the configuration

for specifying dependencies (used to provide knowledge for analyzing input programs) to

the call graph, and static analyzers should not perform core analyses on the libraries. The

remaining 37.9% of issues are related to the program parsing stage, including two root

causes: (1) incorrect type assignment and (2) miscompilation in compiler-synthetic meth-

ods. Figure 5.7 shows an example of incorrect type assignment in SootUp-103 [34] where

developers incorrectly resolve a boolean expression at line 1 to the integer type because

SootUp does not support boolean type and used integer values 1 or 0 to represent true or

false, resulting in an incorrect return statement at line 8. Figure 5.8 shows an example of

1 public boolean logicalOr(boolean a,boolean b){ return a||b; }

1 r0 := @this:BinaryOperations
2 $z0 := @parameter0: boolean
3 $z1 := @parameter1: boolean
4 if $z0 ==0 goto $i0 = $z1
5 $i0 = 1
6 goto [?= return $i0]
7 $i0 =$z1

8 return $i0

Figure 5.7: Incorrect boolean expression resolution in SootUp

miscompilation in compiler-synthetic methods where the compiler would generate a get

method for the Supplier<Object> at line 1 to obtain the inner object, but Soot fails to con-

sider the return type of new at line 1 when parsing the generated get method, causing an

incorrect return statement with void type at line 7.

94

1 public java.lang.Object get() {
2 A$init__1 $r0;
3 java.lang.Object $r1;
4 $r0 := @this: A$init__1;
5 $r1 = new java.lang.Object;
6 specialinvoke $r1.<java.lang.Object: void <init>()>();
7 return;

8 }

1 public Supplier<Object> constructorReferereturn(){ return Object::new; }

Figure 5.8: Wrong return of a compiler-synthetic method

Finding 4: IEPR mainly appears at the core analysis and program parsing stages. To

avoid it, developers should take note of (1) type resolution and (2) IR generation of

compiler-synthetic methods.

Symptom 4: Inefficient Program Representation Generation (IPRG)

This symptom category occurs when the time cost for generating program representations

exceeds the expectations of developers or users. Although this symptom is less frequent

(11/141, 7.8%), it still affects the usability of static analyzers. 72.7% (8/11) of IPRG issues

arose during the core analysis phase. This phase involves three common root causes. First,

developers implemented inefficient core analysis algorithms. For example, in SootUp-

728 [57], CHA is invoked twice to resolve call sites for inter-procedural CFG construction,

which is time-consuming. The second root cause is using immutable data structures. In

SootUp-281 [37], developers use the Guava library [170] to implement the graph struc-

tures but Guava only provides immutable structures, and each operation on them involves

costly deep copying of objects. Third, the lack of caching for program representations can

lead to inefficiencies. In WALA-9 [19], developers repeatedly construct the IR and def-use

chain (both time-consuming operations) of a method. To avoid performance degradation,

developers cache the IR and def-use chain and adopt WeakReference to relieve the garbage

collection issues. Overall, we suggest developers to: (1) avoid redundant analysis opera-

tions (e.g., resolving call sites when constructing ICFG); (2) avoid using immutable data

structures to store analysis results; (3) use the cache to store the results of time-consuming

95

operations.

Finding 5: Most inefficient program representation generation issues take place at the

core analysis stage (8/11) due to algorithm implementation, immutable structure, and

cache missing.

5.1.5 RQ 5.3: Fix Strategy

We uncovered six fix strategies for fixing PRFs. In this section, we first summarize each

strategy and illustrate fix patterns associated with each strategy. Table 5.4 shows the distri-

bution of fix strategies among the four static analyzers.

Table 5.4: Distribution of fix strategy among static analyzers

Symptom FAD FIR FIT FPC FLF FCB Others Total

Soot 24 17 8 4 4 5 2 64

SootUp 18 9 6 0 4 1 0 38

WALA 7 9 12 1 1 0 0 30

Doop 0 3 2 4 0 0 0 9

Total 49 38 28 9 9 6 2 141

Fix Strategy 1: Fix Improper Program Representation Construction Algorithm De-

sign (FAD)

Table 5.4 shows that FAD is the most popular fix strategy (49/141). This strategy fixes

design flaws such as misunderstandings of the construction algorithm or neglect of specific

program elements, that affect the results. FAD involves three patterns: (1) Adding func-

tionality to handle specific program elements, such as concrete methods in abstract classes

or interfaces. In Soot-514 [21], developers forgot to consider all types of concrete methods

96

when computing the local pointer assignment graphs (PAG). To fix the issue, developers

changed the conditions to filter these unprocessed methods. (2) Fixing incorrect logic of al-

gorithm implementation. Figure 5.9 shows that in Soot-486 [22], developers inserted goto

instructions to implement control flow jumps from the current instruction S to the target

instruction T . However, due to the restriction of jump distance, one goto cannot bridge the

gap between S and T . Developers used multiple goto and inserted one S
′

in the next slot,

which cannot reduce the actual distance to T as it was also moved to the next slot, causing

endless goto insertion and an infinite loop. To fix this, developers used binary search to

determine the farthest slot a goto instruction can reach and insert it, thereby closing the gap

to T . (3) Avoiding redundant computational operations. In SootUp-728 [57], developers

constructed call graphs twice to build the inter-procedural control flow graph. To optimize

this, they removed the second call graph construction and reused the previous results.

Jump Instruction S

Target Instruction T

Jump Instruction S

Target Instruction T

New Jump Instruction S’ Distance x

Distance x

…

…

Figure 5.9: Incorrect goto instruction insertion

Finding 6: FAD is the most frequently used fix strategy (34.8%), covering three fix

patterns: (1) fixing missing functionalities to handle specific program elements, (2) fixing

incorrect logic of algorithm implementation, and (3) avoiding redundant computational

operations.

Fix Strategy 2: Fix Incorrect Program Element Resolution (FIR)

The second most common fix strategy is FIR (38/141). Static analyzers rely on resolution

to understand the type and property of a specific program element (e.g., for a call site, res-

olution analyzes the symbolic information attached to the call site and identifies the actual

method to be invoked). Fixing the call site resolution of the invokedynamic instruction,

97

introduced by JSR-292 [177], is a popular pattern in FIR. In WALA-285 [138], develop-

ers misused the invokedynamic handler to resolve the statement new LambdaMetaFactory,

causing a crash. To fix this, they changed the condition for resolving the invokedynamic

instruction to filter out <init> methods. Type dispatch via class hierarchy is a common

practice when resolving classes or methods. Type dispatch analyzes program elements

from two perspectives: (1) searching for unimplemented methods or fields in the super-

class, e.g., constructor; (2) traversing down the hierarchy to find potential targets when

the call site target defined in the superclass does not have a specific implementation. In

SootUp-499 [131], SootUp did not find the concrete method implementation in the cur-

rent class, and the fix involved getting it from the superclass. Another common strategy is

fixing incorrect type resolution as developers either ignore the type resolution or confuse

the types with similar ones. In Soot-1739 [49], WeakObjectType is a subclass of RefType

that includes a SootClass-type field. However, Soot only resolves the name of WeakOb-

jectType-defined variables without the information saved in SootClass like internal fields

or methods. Developers added the missing resolution for the SootClass-type field to fix the

issue. The last sub-strategy of FIR is fixing incorrect dependent libraries, which involves

the original symbolic information for type resolution. Developers usually added missing

libraries or updated dependent libraries. In Doop-1 [36], developers updated the version of

Souffle in Doop to fix the fault.

Finding 7: FIR is the second most common fix strategy (27%), which includes fixing

incorrect dispatch or resolution of dynamicinvoke call sites, repairing expression type

assignment, and accomplishing type resolutions due to inheritance.

Fix Strategy 3: Fix Incorrect Program Representation Traversal (FIT)

Fixing incorrect program representation traversal is the third most common fix strategy

(28/141). Traversal is used to obtain information from program representation. We find

two main fix patterns of this strategy. The first pattern is fixing incomplete traversal. For

98

example, in Soot-875 [32], developers did not visit and resolve the inner class, so the fix

involved rounding out the traversal. The second pattern is fixing the incorrect settings of

state variables. Soot’s developers did not realize that the successor of a statement may

include itself and failed to mark the visited statements, leading to a dead loop fault in

SootUp-798 [59]. Developers added a state label to mark the visited statement. Figure 5.5

shows another example: when traversing the two control flow paths, SootUp did not recover

the operand stack after traversing the first path. To fix this, developers used a deep copy of

the stack instead of directly using the operand stack attached to the entry block.

Fix Strategy 4: Fix Incorrect Processing of Configuration (FPC)

FPC includes nine issues that address incorrect configurations. We divide them into two

categories. The first category is fixing incorrect logic for processing configurations. For

example, in Doop-4 [39], Doop gave incorrect results when given an input name with

spaces, as it splits input commands by spaces, and the name was incorrectly divided into

multiple tokens. To fix the issue, developers used quotation marks to isolate the file path and

avoid segmentation. Another category is adding new options to offer more analysis methods

for users to choose. For instance, Figure 5.10 shows Soot-109 [68] that the pedantic throw

analysis added an edge from each statement in the try branch to the catch handler (namely,

statements at lines 3–7 to handler 8–10). However, the edge from line 6 to the catch handler

is incorrect, as the path (1-2) →6→(9-10) led to an uninitialization error of r4 at line 10.

Hence, developers added an option for users to select the throw analysis mode to avoid

applying pedantic throw analysis to such input programs.

Fix Strategy 5: Fix Concurrency Bug (FCB)

We find six issues due to incorrect concurrency operations. Five of them stem from concur-

rent access to the hierarchy. Developers adopted two sub-strategies: (1) using thread-safe

data structures (e.g., in SootUp-591 [56], as HashMap cannot support concurrent opera-

99

1 java.lang.Object $r4;
2 if $r1 != null goto Label 1;
3 $r4 = <com.google.ads.AdActivity: java.lang.Object b>;
4 goto Label 2;
5 Label 1:
6 return;
7 // ...
8 Label 2:
9 $r8 := @caughtexception;
10 exitmonitor $r4;

Figure 5.10: Pedantic throw analysis leads to verification error

tions, developers replaced it with Cache from Guava); (2) using synchronized statements

(e.g., in Soot-1125 [35], different threads simultaneously visited the hierarchy, trigger-

ing concurrent modification exception, and developers added synchronized to the read(),

write(), and clear() methods of the hierarchy). The remaining issue is due to the fields

defined in a transformation class used by multiple threads, and developers changed these

fields to local variables.

Fix Strategy 6: Fix Neglected Language Feature (FLF)

Due to frequent updates to Java/Android versions, static analyzers may not meet the spec-

ification requirements. For instance, in Soot-35 [20], developers considered the neglected

annotations in the Dalvik bytecode that Jimple converts.

Fix Strategy 7: Others

Two faults were not fixed by the previously discussed fix strategies. In Soot-502 [23],

developers wrongly used decrement operators (index-- instead of --index), causing an out-

of-bounds read error. In Soot-1874 [50], the this reference was missing on the object,

leading to edges.remove(edges) instead of this.edges.removeedges.

100

5.1.6 RQ 5.4: Oracle Design

In this section, we attempt to understand how developers identify an issue as a PRF and

the oracles they use. This research question helps us design oracles for automated PRF

detection.

Most issues involving missing or incorrect elements in program representation are identi-

fied when the analysis results violating the expectations of static analyzer users or the unit

tests manually crafted by the developers. These two approaches rely on prior knowledge of

developers and users, and thus cannot be directly applied to automatically detect program

representation faults. Another two approaches are based on comparing analysis results.

The first approach compares analysis results between algorithms with the same purpose

but different precision [46,74], and the second approach compares the analysis results from

different tools with the same target (e.g., Doop-1 [36] compared the results from different

datalog engines). This leads us to a differential testing approach that can be automated. All

failed program representation generation issues are recognized by exceptions that cause

crashes. Inefficient program representation generation issues are typically identified by

measuring the actual waiting time of the generation. Users may perceive long waiting time

as a performance issue, especially when the input program is relatively small (e.g., 10 min-

utes in SootUp-558 [55]). Hence, failure to achieve results within a conservative time limit

can serve as an oracle for detecting performance issues. The remaining issues are spotted

by developers as they proactively found redundant computational operations.

Finding 8: Comparing the analysis results based on algorithm precision and functional-

ity is a promising approach for MEPR and FPRG detection. For FPRG faults, inspecting

the exception stack trace can recognize them.

101

5.2 Methodology of SAScope

We propose and implement SAScope, an automated testing framework for detecting pro-

gram representation faults via two-dimensional testing. Figure 5.11 shows the overall

workflow of SAScope. It involves two main components: metamorphic testing and dif-

ferential testing components, which are inspired by the Finding 8 in our study. First, we

give a formal definition 7 of program representation based on existing work [65, 140, 209].

For instance, a node V in the call graph represents a method (caller or callee), and an edge

E represents the calling relationship between two methods.

Definition 7 (Program Representation). Program representations include different forms of

modeling programs, such as graphical representations and instruction representations. For

a graphical representation, we formally describe it using a directed graph G =< V, E >.

Here, V involves all program elements and E =< vi, v j > depicts the relationships between

program elements vi and v j in V . For a instruction representation, we define it using a list

L = [l1, . . . , ln](n ≥ 1), and each element li(1 ≤ i ≤ n) in L represents an instruction.

Algorithm 2 shows more details of these two components, and currently, we focus on test-

ing graphical program representations. Given an input program p in Progs, SAScope first

invokes a static analyzer S via the invocation template (lines 4–5) to obtain program repre-

sentations using different algorithms at lines 27–33. ResList stores the program representa-

tions of S , sorted by the precision in ascending order. If InvokeTemplate terminates unex-

pectedly or cannot obtain any analysis result within the timeL, ResList will be empty, and

SAScope records a potential crash (lines 6–8). For the program representations generated

by identical static analyzers with different algorithms, SAScope leverages metamorphic

testing at lines 9–16 to reveal potential faults. Then, the analysis results are appended to R.

In lines 18–25, SAScope uses differential testing to inspect program representations from

different static analyzers with the same input program and analysis algorithm. It records

the inconsistencies between them as potential faults.

Invocation Template. To analyze input programs, we design a template to invoke various

102

Algorithm 2: Overall SAScope Testing Approach
Input: Input programs Progs, a set of static analyzers SAs, timeout timeL

Output: A set of potential faults in static analyzers I

1 I ← ∅

2 for P ∈ Progs do

3 R← []

4 for S ∈ SAs do

5 ResList = InvokeTemplate(P, S , timeL)

6 if ResList == null then

7 I = I ∪ {P, S }

8 continue

9 for i = 1→ |ResList| − 1 do

10 if ResListi.V ⊉ ResListi+1.V then

11 I = I ∪ {ResListi.V,ResListi+1.V}

12 for v ∈ ResListi.V ∩ ResListi+1.V do

13 E1 = Ad jacentEdge(ResListi, v)

14 E2 = Ad jacentEdge(ResListi+1, v)

15 if |E1 | ⊉ |E2 | then

16 I = I ∪ {E1, E2}

17 R.append(ResList)

18 for i = 1→ |R| − 1 do

19 if Ri.v , Ri+1.v then

20 I = I ∪ {Ri.V,Ri+1.V}

21 for v ∈ Ri.V ∩ Ri+1.V do

22 E1 = Ad jacentEdge(Ri, v)

23 E2 = Ad jacentEdge(Ri+1, v)

24 if E1 , E2 then

25 I = I ∪ {E1, E2}

26 return I

27 Func InvokeTemplate (P, S, timeL):

28 ResList ← ∅

/* sorted by the precision in ascending order */

29 while execT ime < timeL do

/* Ψ denotes algorithms supported by S */

30 for ψ ∈ Ψ do

/* Invoke S on P to get analysis results */

31 Result = S .invoke(P, ψ)

32 ResList.append(Result)

33 return ResList

103

Invocation Template

Tool: SootUp
Program Representation:
Call graph
Analysis Precision: CHA

Tool: Wala
Program Representation:
Call graph
Analysis Precision: CHA

Differential
Analysis

Metamorphic
Relation

Tool: SootUp
Program Representation:
Call graph
Analysis Precision: VTA

Property-Based
Grouping

……

Static Analyzers

……

Oracle

Fault Warnings

Potential Faults

Figure 5.11: Overall workflow of SAScope

analysis modules in the evaluated static analyzers. For each static analyzer, the template

retains all configurations except for the input programs before starting an analysis. Fig-

ure 5.12 shows a template example used to activate the RTA analysis in Soot. For config-

urations not involved in the template, we reuse the default values of the evaluated static

analyzers.

1 AnalysisInputLocation input = new JavaClassPathAnalysisInputLocation(
2 "INPUT_PATH", SourceType.Application);
3 JavaView view = new JavaView(new ArrayList<>() {{add(input);}});
4 CallGraphAlgorithm rta = new RapidTypeAnalysisAlgorithm(view);
5 CallGraph cg = rta.initialize(entryMethods);

Figure 5.12: A template example for the Soot RTA algorithm

5.2.1 Testing Approaches and Oracle Design

In general, SAScope depends on two testing approaches to recognizing program represen-

tation faults. Both approaches rely on the analysis results of the static analyzers. In the rest

of this section, we use ϕ denotes a program representation and δ to denote its generation

algorithm.

Metamorphic Testing. Our key insight is that static analyzers usually support multiple

104

program representations constructed using different algorithms with various precision lev-

els (where one representation is more precise than the other). Based on this insight, we

design SAScope that adopts a new metamorphic relation. Specifically, the metamorphic

relation leverages the total order relation of different program representation algorithms in

the precision lattice. As prior work [101] includes the proofs for many algorithms in the

precision lattice, we extract and focus only on the related algorithms supported by evaluated

static analyzers. Figure 5.13 shows the precision lattice of tested algorithms in our work.

“CFA” means call site sensitive, “Obj” denotes object sensitive, and the precision increases

gradually from the bottom-up direction in the lattice. For instance, rapid type analysis

(RTA) and class hierarchy analysis (CHA) are popular call graph generation algorithms.

Figure 5.13 shows that the RTA algorithm is more precise than CHA, as it prunes nodes

where internal types are never instantiated [72]. Currently, our metamorphic relation only

conservatively supports algorithms for call graphs and pointer assignment graphs that have

been proven in prior work [101]. In the future, it is worthwhile to include other program

representations with different precision levels (e.g., IR with different precision [175]) to de-

tect more faults. Definition 9 presents the metamorphic relation used in our metamorphic

testing.

Definition 8 (Less Precise Operator (≼)). Given two program representation construction

algorithms δ1 and δ2, we denote δ1 ≼ δ2 if and only if δ1 is less precise than δ2 based on the

precision lattice in Figure 5.13.

Definition 9 (Metamorphic Relation). Given the program representations ϕ1 and ϕ2 gener-

ated by δ1 and δ2 under the same input program, they should possess the property ϕ1 ⊇ ϕ2

if δ1 ≼ δ2.

According to Definition 9, ResListi+1.V (line 10 in Algorithm 2) should be a subset of

ResListi.V since the former is more precise than the latter. Hence, we first check the node

set relationship at lines 10–11. Then, we compute the intersection of node sets and compare

the adjacent edges of each common node at lines 12–16. Any violation of the Definition 9

105

Lower
Bound

CHA

RTA

VTA

1-CFA 1-Obj

0-CFA

2-CFA 2-Obj

Upper
Bound

…… ……

Lower
Bound

CHA

RTA

VTA

1-CFA 1-Obj

0-CFA

2-CFA 2-Obj

Upper
Bound

…… ……

Figure 5.13: Relative precision lattice of tested algorithms

will be regarded as a fault.

Definition 10 (Equivalent Program Representation). Two program representation ϕ1 and

ϕ2 are equivalent if and only if (1) G1 = G2 or L1 = L2; (2) ϕ1 and ϕ2 are generated by the

same algorithm.

Differential Testing. We observe that different static analyzers usually implement the same

analysis algorithms, and should produce analysis reports with equivalent program represen-

tation (Definition 10) given the same input program. Hence, differential testing is naturally

well-suited for this scenario. Specifically, SAScope first selects two analysis reports Ri.v

and Ri+1.v, generated by the same algorithm in different static analyzers (lines 18–19 in

Algorithm 2), and performs differential analysis on these reports. SAScope compares the

node sets (lines 19–20) and adjacent edges (lines 21–25). Then, it reports all discrepancies

as potential faults.

106

5.2.2 Property-Based Grouping

As too many warnings are reported from previous steps, we need to group them based on

their underlying root causes to reduce the manual efforts required to examine these warn-

ings. As observed from Findings 3, 4, and 7, most program representation faults have

distinct syntax and type features. Hence, we consider several characteristics to classify the

detected warnings: (1) the testing approach; (2) types of related static analyzers; (3) types

of related generation algorithms; (4) fine-grained properties of related program elements

(e.g., for a fault in call graph, we consider the invocation instruction type and the access

modifiers of the caller and callee). Figure 5.14 shows a missing element in the program

representation fault found by SAScope, where the left side shows the minimized code ex-

ample and the right side shows the group that includes this fault. The fault is caused by the

incorrect implementation of the CHA algorithm in WALA, leading to a missing call edge

from the constructor Test() to foo(). We identify this fault via metamorphic testing, as the

0-CFA algorithm correctly constructed the call graph.

1 public class Test {
2 public Test() {
3 foo();
4 }
5 public void foo() {}

6 }

Approach: Metamorphic Testing
Tool: Wala
Algorithm: <CHA, 0-CFA>
Invocation Type: InvokeVirtual
Modifier: <public, public>

Figure 5.14: A MEPR fault in WALA and its group

5.3 Effectiveness of SAScope

We applied SAScope to Soot 4.4.2, WALA 1.6.2, SootUp 1.1.2, and Doop 4.24.10 and

conducted experiments to evaluate the effectiveness of SAScope based on the following

experimental questions:

107

Q1: How many unique PRFs can SAScope identify?

Q2: What is the effectiveness of the property-based grouping?

Input Program Selection. We select the top 200 popular projects (ranked by the number of

usages) in Maven Central [60] as the input programs because they are popular real-world

projects. We do not reuse benchmarks from prior testing approaches of static analysis

tools [173, 190, 208, 213] because: (1) benchmarks in prior work [122, 174] are designed

for specific tasks, whereas JCG [173] is designed for evaluating the recall of call graphs

and only uses top 50 popularity projects in Maven, Defects4J is used for debugging and

program repair with only 17 projects. Both are too small to reveal faults in static analyzers.

(2) some approaches [208, 213] use the official test suites to test static analyzers, but these

suites only include small programs for unit testing which may not contain complex struc-

tures (e.g., programs with multiple methods are required for call graph constructions) for

reaching the deep state of static analyzers and revealing faults.

All experiments were conducted on a server with Intel Xeon(R) CPU 3.20GHz and 192GB

RAM. For each input library, we run SAScope on all analyzers in parallel and set the time-

out timeL to 5 hours. Note that we do not test SAScope on analyzed issues, as it is designed

based on insights from these issues. On the one hand, testing SAScope on the same issues

can introduce bias. On the other hand, there are two challenges in evaluating SAScope on

known issues: (1) it involves building old versions of static analyzers from their source

code, which can be quite demanding (e.g., due to the absence of required external libraries

and the intricacies of the compilation process) and (2) we are missing compilable input

programs to reproduce some of the known issues, but these programs can be hard to con-

struct manually, and SAScope requires them as input. Overall, the testing times for static

analyzers are 10 hours (SootUp), 32 hours (WALA), 35 hours (Soot), and 37 (Doop) hours.

108

5.3.1 Q1: Evaluating Effectiveness of SAScope

Table 5.5 shows the experimental results. We measure the effectiveness of SAScope by

counting the unique faults detected by each approach (“#UniqFaults” column). We use

a property-based approach (Section 5.2.2) to group warnings and consider all warnings

within the same group as one unique fault. In total, SAScope can identify 19 faults in the

evaluated static analyzers, five have been fixed via merged pull requests (“#Fixed” column).

Table 5.5: Effectiveness of SAScope

Static Analyzer #Warnings #Groups #UniqFaults #Fixed

WALA 26951 10 8 1

SootUp 31734 11 7 4

Soot 21051 6 3 0

Doop 12896 4 1 0

Total 92632 31 19 5

We select two faults found by SAScope to demonstrate its fault detection capability. For

each fault, we present its root cause, the affected static analyzer, and how SAScope found

the issue.

A Missing Elements in Program Representation Fault in SootUp [62]. Figure 5.15

shows a fault detected by SAScope, where the call graph misses an edge from m1 to m2.

The fault occurs due to the incorrect resolution of the lambda invocation at lines 3–4. As

WALA currently supports MethodHandle resolving and includes this edge in the call graph,

SAScope can detect this fault via differential testing. We submit this fault and SootUp’s

developer replies to us saying that it is an indirect edge which is currently not covered as

MethodHandle resolving is currently not supported in SootUp.

An Incorrect Elements in Program Representation Fault in Soot [61]. Figure 5.16

shows a fault caused by the incorrect implementation of the RTA algorithm in Soot, re-

109

1 public class Test {
2 public void m1() {
3 Runnable runnable = this::m2;
4 runnable.run();
5 }
6 public void m2() { System.out.println("m2"); }

7 }

missing

1 public class Test {
2 public void m1() {
3 Runnable runnable = this::m2;
4 runnable.run();
5 }
6 public void m2() { System.out.println("m2"); }

7 }

missing

Figure 5.15: A MEPR fault in SootUp

sulting in an incorrect call edge from main to Thread2.run(). SAScope identifies it via

metamorphic testing, as the CHA algorithm correctly constructed the call graph.

1 class Thread1 extends Thread { public void run() {}}
2 class Thread2 extends Thread { public void run() {}}
3 public class Main {
4 public static void main(String[] args) {
5 Thread t = new Thread1();
6 t.start();
7 }

8 }

Figure 5.16: An IEPR fault in Soot

Limitations. Similar to other testing tools, SAScope may report false positives. Our man-

ual analysis shows that it only reported two FPs. Both FPs are caused by minor differences

among static analyzers. The first FP is due to Soot adding single quotes (‘’) around re-

served words that appear in signatures. For instance, Soot uses ‘with’ when the method

name is with, leading to the signature discrepancy with other static analyzers. The second

FP is related to the handling of the bridge method. The bridge method is generated by the

compiler to bridge the gap between the subclass methods with different erasure signatures

and their superclass methods. WALA connects them via compiler-synthetic bridge meth-

ods, whereas Soot and SootUp directly add a call graph edge connecting methods in the

subclass and superclass. Both FPs can be mitigated by configuring SAScope to consider

these special cases.

110

5.3.2 Q2: Evaluating Effectiveness of Property-Based Grouping

Table 5.5 also shows the grouping results of the evaluated analyzers. The “#Warnings”

column represents the total number of fault warnings and the “#Group” column shows

the number of groups generated by the approach described in Section 5.2.2. In total, the

property-based grouping approach can refine 92,632 warnings down to 31 distinct groups.

After investigation, we find some groups represent duplicated faults and 19 of them are

unique faults. We randomly sample 30 warnings from each group (930 warnings in total)

to validate the uniqueness of each group; all warnings in the same group are caused by

an identical root cause. This indicates that our property-based grouping helps SAScope

identify unique faults and significantly reduces the time required for manual inspection of

the 92,632 warnings.

5.4 Implication

Based on our study and findings, we discuss the implications from the perspectives of

researchers and developers.

5.4.1 Implication for Developers

Our study identifies common symptoms and their corresponding root causes at each stage

and fix strategies that may help developers of static analyzers detect, understand, and fix

program representation faults. We also highlight program representations that are partic-

ularly fault-prone, implying that developers should pay attention to these representations

(Finding 1). Based on the two most common symptoms of program representation faults in

our study (MEPR and FPRG), we realize that developers of static analyzers tend to either

(1) neglect specific program elements or (2) misunderstand the construction or optimiza-

tion algorithms (Findings 2, 3). We hope our study raises awareness among developers on

111

the importance of generating correct program representations to improve the accuracy of

analyzers. In terms of the workflow, our study reveals that developers should pay careful

attention to the core analysis stage because all studied analyzers have the greatest number

of PRFs at this stage, especially when constructing call graphs and class hierarchies. With

the evolution of the Java specification, developers should also consider program represen-

tation faults when updating the grammar (Findings 3, 7). Meanwhile, our study also shows

that redundant analysis operations, immutable structures, and the lack of caching can lead

to performance issues. Developers should consider these scenarios when designing static

analyzers to improve analysis efficiency.

5.4.2 Implication for Researchers

Our study and proposed testing framework establish a basis for research in two promising

directions. First, automated detection of program representation faults is important yet of-

ten neglected. For a static analyzer, completing missing or eliminating incorrect elements

in various forms of program representations is a worthwhile and long-term research direc-

tion [144, 190, 191]. As shown in Table 5.3, MEPR and IEPR account for 57.4% of all

analyzed issues, indicating that detecting PRFs is rewarding for fixing MEPR and IEPR

faults. Finding 8 suggests that metamorphic testing is a promising approach for detecting

PRFs. Researchers can generate program representations in various precision levels and

perform differential analysis based on their metamorphic relations to detect PRFs. Second,

our fix strategies (Findings 6, 7) serve as preliminary studies for future research on auto-

mated repair of PRFs. We observe that several fix strategies in our study can be automated

to reduce the effort required to address these issues. For example, Fix Incorrect Algorithm

Design (FAD) can resolve over one-third of the issues. Most of them are implemented

using similar patterns (e.g., considering a particular element in program representation) or

fixing the logic errors in the generation algorithms.

112

5.5 Summary

We conduct the first empirical study focusing on characterizing and detecting program

representation faults of static analyzers, as program representation lies at the core of static

analysis. We study 141 issues from four representative and diverse static analyzers (Soot,

WALA, SootUp, and Doop), identify four symptoms and six fix strategies. Moreover, we

also summarize eight findings. Based on these findings, we introduce a set of guidelines for

PRF detection and repair. We also propose SAScope, the first metamorphic and differential

testing framework to automatically identify PRFs in analyzers. With a two-dimensional

testing approach, SAScope can automatically inspect the generated program representations

based on the top 200 popular projects in Maven Central and find 19 faults. In the experiment

section, SAScope uses only program representations originating from real-world projects to

detect PRFs. Future improvements to SAScope can focus on constructing new metamorphic

relations that are independent of existing algorithm families. For instance, we can verify

whether inserting a function call necessarily introduces a new edge in the call graph.

113

Chapter 6

Conclusion and Future Work

This chapter summarizes our contributions to static analyzer testing as presented in this

thesis and outlines potential directions for future research. Section 6.1 recapitulates the

major contributions, and Section 6.2 describes future work.

6.1 Conclusion

In this thesis, we first introduce an overview and discuss the necessity of testing static ana-

lyzers. Then, we investigate the limitations of existing work and summarize three emerging

research questions affecting the reliability and usability of static analyzers. After that, we

illustrate the main results and contributions of our three research projects, which address

the proposed open research problems.

In the first research work, we present Statfier, a heuristic-based testing technique that au-

tomatically generates input programs via semantics-preserving program transformations to

discover faults in static analyzers. Statfier relies on two key heuristics: analysis report

guided location selection and structure diversity driven variant selection. Our experiments

confirm that Statfier outperforms the evaluated baselines by finding more faults yet iter-

114

ating through fewer variants. Overall, Statfier has discovered 79 faults, of which 46 have

been confirmed.

In the second research work, we conduct the first comprehensive study focusing on under-

standing and detecting annotation-induced faults in static analyzers. We manually investi-

gate 238 issues from five representative and popular static analyzers (SonarQube, Check-

Style, PMD, SpotBugs, and Infer), identify seven root causes, four symptoms, and six

fix strategies. Moreover, we also summarize nine findings. Based on these findings, we

introduce a set of guidelines for annotation-induced fault detection and repair, and pro-

pose the first metamorphic testing based framework AnnaTester to automatically identify

annotation-induced faults in static analyzers. Overall, our framework can detect 43 faults

where 20 of them have been fixed.

In the third research work, we focus on the program representation faults of static analyzers.

To understand the characteristics of this type of fault, we first conduct an empirical study

on their symptoms, root causes, and fix strategies. Next, we design an automated testing

approach SAScope, combining differential and metamorphic testing, to mining the potential

faults in static analyzers. In summary, SAScope can identify 19 new faults and five of them

have been fixed by developers.

6.2 Future Work

We identify three promising research directions that are worth exploring in the future.

Understanding and detecting faults caused by various program elements in static analyz-

ers. Although we evaluate the impacts of annotations on static analyzers and introduce

three metamorphic relations in our framework AnnaTester to identify annotation-induced

faults, the work has limitations. For instance, the framework only enables static analyz-

ers to better handle one additional type of syntactic element, i.e., annotations. Still, there

are many other types of elements, e.g., assertions, extensively used in programs. In many

115

popular programming languages, developers write assertions to express their expectations

about the runtime states or behaviors of the programs, and when an assertion is violated,

an exception is thrown and the normal execution is suspended till the exception is han-

dled. Given that such properties are critical enough for the developers’ to spend extra effort

to explicitly specify, we believe such properties, if utilized properly, can help static ana-

lyzers better understand the program behaviors and improve the quality of their analysis

results. We are interested in detecting two types of assertion-related static analyzer faults

in the future. First, faults that prevent static analyzers from effectively identifying asser-

tions that may not hold or will never hold. Second, faults that cause static analyzers to

overlook/misuse the program properties explicitly specified in assertions and therefore, to

produce false-positive or false-negative results.

Expanding automated testing techniques to advanced static analysis techniques. Our re-

search work AnnaTester and SAScope focus on testing fundamental analysis techniques

in static analyzers. In future research, it is worth exploring how to extend our techniques

to support other advanced static analysis methods, making them more general and com-

prehensive. For example, taint analysis is a popular program analysis technique in the

security domain, particularly for detecting privacy leaks [69]. It tracks how private infor-

mation flows through a program and determines whether it may leak to public observers.

Generally, this technique traces sensitive ”tainted” data by starting at a predefined source

(e.g., an API method returning a user identifier) and following the data flow until it reaches

a sink (e.g., a method sending the information via SMS), providing precise details about

potential data leaks. To test taint analysis, we can apply semantics-preserving program

transformations to the source code of taint analysis tools, ensuring that the sensitive data

flow remains unchanged. Then, we should compare the analysis reports before and after

the transformation to identify inconsistencies. However, we face two main challenges: 1)

existing program transformations may not suit the new systems under test, and the gener-

ated variants may fail to trigger potential faults; 2) the system under testing may not report

warning locations and types in the analysis reports (e.g., some tools only output the infor-

116

mation flow of programs, which constitutes the intermediate data used for taint analysis),

making our feedback-driven heuristic for differential testing ineffective. To address these

challenges, we need to devise more transformation operations and summarize their char-

acteristics. Additionally, we should develop a method to analyze a broader range of report

types, beyond just those containing warning locations and types.

Enhancing the effectiveness of testing static analyzers using learning-based techniques.

At present, artificial intelligence techniques such as large language models (LLMs) have

gained significant traction. Some complex testing tasks are challenging to address with

traditional methods, but substantial progress can be achieved using learning-based tech-

niques. First, the AnnaTester testing framework cannot handle runtime-level annotations,

which constitute a substantial portion of the existing annotations, because it cannot leverage

the corresponding annotation processors to recover the semantics of runtime-level annota-

tions. Incomplete semantics is also the most common root cause in static analyzers, as

identified in Finding 1 of our second study. Thus, failing to analyze their semantics can

impair the fault detection capability of static analyzers. To address this, we need to accu-

rately model the behaviors of runtime-level annotations. Developers typically implement

runtime-level annotations in corresponding third-party libraries (TPLs), which often have

large and complex codebases. Therefore, understanding the semantics of runtime anno-

tations and injecting them into source code via traditional approaches is difficult. LLMs,

trained on massive amounts of data, possess strong semantic understanding capabilities.

Generating mutants with runtime annotations using LLMs is a promising approach. Sec-

ond, we use an enumeration-based strategy to mutate program elements in the source code

when generating variants, which may produce many ineffective variants and consume sig-

nificant time. To improve performance, we can adopt a learning-based algorithm to reduce

the search space and execution time. The main challenges include constructing a high-

quality training set and training an effective learning model. Third, annotations are highly

configurable and can provide different functionalities by setting parameters. However, due

to the infinite search space of annotation parameters, we only add annotations with default

117

configurations in the second study. Using LLMs or reinforcement learning-based methods

to configure annotation parameters and generate diverse mutants for fault detection holds

significant potential.

118

References

[1] Checkstyle. URL: https://checkstyle.sourceforge.io/.

[2] Eclipse java development tools. URL: https://www.eclipse.org/jdt/.

[3] A false negative about null dereference. URL: https://github.com/facebook/

infer/issues/1628.

[4] A false positive about the rule redundantfieldinitializer. URL: https://github.

com/pmd/pmd/issues/4070.

[5] How to contribute to pmd. URL: https://github.com/pmd/pmd/blob/

49d35d0973d91dcd6526f67433ce701f2e291644/CONTRIBUTING.md.

[6] How to report an issue? URL: https://checkstyle.sourceforge.io/

report_issue.html.

[7] Infer static analyzer. URL: https://fbinfer.com/.

[8] [java] compareobjectswithequalsrule: False positive with enums. URL: https://

github.com/pmd/pmd/issues/2716.

[9] [java] rspec-2189 should consider do-while loop.

URL: https://community.sonarsource.com/t/

java-rspec-2189-should-consider-do-while-loop/55080.

119

https://checkstyle.sourceforge.io/
https://www.eclipse.org/jdt/
https://github.com/facebook/infer/issues/1628
https://github.com/facebook/infer/issues/1628
https://github.com/pmd/pmd/issues/4070
https://github.com/pmd/pmd/issues/4070
https://github.com/pmd/pmd/blob/49d35d0973d91dcd6526f67433ce701f2e291644/CONTRIBUTING.md
https://github.com/pmd/pmd/blob/49d35d0973d91dcd6526f67433ce701f2e291644/CONTRIBUTING.md
https://checkstyle.sourceforge.io/report_issue.html
https://checkstyle.sourceforge.io/report_issue.html
https://fbinfer.com/
https://github.com/pmd/pmd/issues/2716
https://github.com/pmd/pmd/issues/2716
https://community.sonarsource.com/t/java-rspec-2189-should-consider-do-while-loop/55080
https://community.sonarsource.com/t/java-rspec-2189-should-consider-do-while-loop/55080

[10] Ms expose rep cannot detect nested class. URL: https://github.com/

spotbugs/spotbugs/issues/2042.

[11] New java versions lead to fn about the rule dmi invoking tostring on array. URL:

https://github.com/spotbugs/spotbugs/issues/1874.

[12] Open-sourcing facebook infer: Identify bugs before you ship. URL:

https://engineering.fb.com/2015/06/11/developer-tools/

open-sourcing-facebook-infer-identify-bugs-before-you-ship/.

[13] Parameterassignment does not detect problem for lambda parameters. URL: https:

//github.com/checkstyle/checkstyle/issues/11038.

[14] Pmd an extensible cross-language static code analyzer. URL: https://pmd.

github.io/.

[15] Sonarqube and pmd. URL: https://github.com/wuchiuwong/

Diff-Testing-01/blob/master/RulePair/Sonarqube%20and%20PMD.csv.

[16] Sonarqube code quality and code security. URL: https://www.sonarqube.org/.

[17] Spotbugs find bugs in java programs. URL: https://spotbugs.github.io/.

[18] T.j. watson libraries for analysis, 2006. URL: https://github.com/wala/WALA/.

[19] Performance improvement when caching the ir and defuse within cgnode, 2013.

URL: https://github.com/wala/WALA/issues/9.

[20] todex: ”check-cast on non-reference in v0” with k9mail apk, 2013. URL: https:

//github.com/soot-oss/soot/issues/35.

[21] Exception while building rta callgraph, 2015. URL: https://github.com/

soot-oss/soot/issues/514.

[22] Infinite loop occurs in dexprinter.findlongjumps() while processing android frame-

work, 2015. URL: https://github.com/soot-oss/soot/issues/502.

120

https://github.com/spotbugs/spotbugs/issues/2042
https://github.com/spotbugs/spotbugs/issues/2042
https://github.com/spotbugs/spotbugs/issues/1874
https://engineering.fb.com/2015/06/11/developer-tools/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
https://engineering.fb.com/2015/06/11/developer-tools/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
https://github.com/checkstyle/checkstyle/issues/11038
https://github.com/checkstyle/checkstyle/issues/11038
https://pmd.github.io/
https://pmd.github.io/
https://github.com/wuchiuwong/Diff-Testing-01/blob/master/RulePair/Sonarqube%20and%20PMD.csv
https://github.com/wuchiuwong/Diff-Testing-01/blob/master/RulePair/Sonarqube%20and%20PMD.csv
https://www.sonarqube.org/
https://spotbugs.github.io/
https://github.com/wala/WALA/
https://github.com/wala/WALA/issues/9
https://github.com/soot-oss/soot/issues/35
https://github.com/soot-oss/soot/issues/35
https://github.com/soot-oss/soot/issues/514
https://github.com/soot-oss/soot/issues/514
https://github.com/soot-oss/soot/issues/502

[23] java.lang.arrayindexoutofboundsexception in davaflowset when decompiling an apk,

2015. URL: https://github.com/soot-oss/soot/issues/502.

[24] java.lang.runtimeexception: Assertion failed. at

soot.toolkits.graph.simpledominatorsfinder.getimmediatedominator, 2015. URL:

https://github.com/soot-oss/soot/issues/416.

[25] Jvm verifyerror after transformation from .class via shimple, 2015. URL: https:

//github.com/soot-oss/soot/issues/385.

[26] Suppresswarnings should support camelcase, 2015. URL: https://github.com/

checkstyle/checkstyle/issues/2202.

[27] Java 8 grammar: annotations on varargs parameters, 2016. URL: https://

github.com/checkstyle/checkstyle/issues/3238.

[28] Reset classpath for android, 2016. URL: https://github.com/soot-oss/soot/

issues/524.

[29] Emptyblock: Npe on annotation declaration, 2017. URL: https://github.com/

checkstyle/checkstyle/issues/4472.

[30] Eradicate not reading annotations from class file, 2017. URL: https://github.

com/facebook/infer/issues/559.

[31] [java] processing error (classcastexception) if a type use annotation is used on a

base class in the ”extends” clause, 2018. URL: https://github.com/pmd/pmd/

issues/1369.

[32] java.lang.runtimeexception when ..., 2018. URL: https://github.com/

soot-oss/soot/issues/875.

[33] Nondeterministic crashes from packmanager.retrieveallbodies(), 2019. URL:

https://github.com/soot-oss/soot/issues/1189.

121

https://github.com/soot-oss/soot/issues/502
https://github.com/soot-oss/soot/issues/416
https://github.com/soot-oss/soot/issues/385
https://github.com/soot-oss/soot/issues/385
https://github.com/checkstyle/checkstyle/issues/2202
https://github.com/checkstyle/checkstyle/issues/2202
https://github.com/checkstyle/checkstyle/issues/3238
https://github.com/checkstyle/checkstyle/issues/3238
https://github.com/soot-oss/soot/issues/524
https://github.com/soot-oss/soot/issues/524
https://github.com/checkstyle/checkstyle/issues/4472
https://github.com/checkstyle/checkstyle/issues/4472
https://github.com/facebook/infer/issues/559
https://github.com/facebook/infer/issues/559
https://github.com/pmd/pmd/issues/1369
https://github.com/pmd/pmd/issues/1369
https://github.com/soot-oss/soot/issues/875
https://github.com/soot-oss/soot/issues/875
https://github.com/soot-oss/soot/issues/1189

[34] Source code frontend assigns boolean to int, 2019. URL: https://github.com/

soot-oss/SootUp/issues/103.

[35] Unit test lambdametafactoryadapttest: Concurrentmodificationexception, 2019.

URL: https://github.com/soot-oss/soot/issues/1125.

[36] Very different results of the same analysis with different engines, 2019. URL:

https://bitbucket.org/yanniss/doop/issues/1.

[37] adapt castandreturninliner to use stmt graph, 2020. URL: https://github.com/

soot-oss/SootUp/issues/281.

[38] Compact constructor ast is missing annotations, 2020. URL: https://github.

com/checkstyle/checkstyle/issues/8734.

[39] Doop doesn’t handle names/directories with spaces, 2020.

URL: https://bitbucket.org/yanniss/doop/issues/4/

doop-doesnt-handle-names-directories-with.

[40] Exception when using suppresswarningsholder with @suppresswarnings as an anno-

tation property, 2020. URL: https://github.com/checkstyle/checkstyle/

issues/7522.

[41] stack underrun: Asmmethodsource.convertbinopinsn, 2020. URL: https://

github.com/soot-oss/SootUp/issues/326.

[42] Unusedprivatefield cannot override ignored annotations property, 2020. URL:

https://github.com/pmd/pmd/issues/2876.

[43] Atclauseorder: Falsely ignores method with annotation, 2021. URL: https://

github.com/checkstyle/checkstyle/issues/9941.

[44] Operatorwrap with token assign too strict for annotations, 2021. URL: https:

//github.com/checkstyle/checkstyle/issues/10945.

122

https://github.com/soot-oss/SootUp/issues/103
https://github.com/soot-oss/SootUp/issues/103
https://github.com/soot-oss/soot/issues/1125
https://bitbucket.org/yanniss/doop/issues/1
https://github.com/soot-oss/SootUp/issues/281
https://github.com/soot-oss/SootUp/issues/281
https://github.com/checkstyle/checkstyle/issues/8734
https://github.com/checkstyle/checkstyle/issues/8734
https://bitbucket.org/yanniss/doop/issues/4/doop-doesnt-handle-names-directories-with
https://bitbucket.org/yanniss/doop/issues/4/doop-doesnt-handle-names-directories-with
https://github.com/checkstyle/checkstyle/issues/7522
https://github.com/checkstyle/checkstyle/issues/7522
https://github.com/soot-oss/SootUp/issues/326
https://github.com/soot-oss/SootUp/issues/326
https://github.com/pmd/pmd/issues/2876
https://github.com/checkstyle/checkstyle/issues/9941
https://github.com/checkstyle/checkstyle/issues/9941
https://github.com/checkstyle/checkstyle/issues/10945
https://github.com/checkstyle/checkstyle/issues/10945

[45] Pmd, 2021. URL: https://github.com/pmd/pmd/blob/

ac26d3dc6d7c121de72e6e7ddc1769caf8986e85/pmd-java/src/test/

resources/net/sourceforge/pmd/lang/java/rule/security/xml/

HardCodedCryptoKey.xml.

[46] Spark missing support for collection element type, 2021. URL: https://github.

com/soot-oss/soot/issues/1755.

[47] Unnecessaryconstructor: false-positive with @inject, 2021. URL: https://

github.com/pmd/pmd/issues/4487.

[48] Unusedprivatemethod violation for disabled class in 6.23, 2021. URL: https://

github.com/pmd/pmd/issues/2454.

[49] Weakobjecttypes should (maybe?) keep track of the sootclass, 2021. URL: https:

//github.com/soot-oss/soot/issues/1739.

[50] Callgraph’s removeedges method maybe has a bug, 2022. URL: https://github.

com/soot-oss/soot/issues/1874.

[51] A false positive about rule rspec-2095, 2022. URL: https://community.

sonarsource.com/t/a-false-positive-about-rule-rspec-2095/67536.

[52] False positive about the rule usestringbufferforstringappends, 2022. URL: https:

//github.com/pmd/pmd/issues/4078.

[53] How pmd works, 2022. URL: https://docs.pmd-code.org/pmd-doc-6.53.

0/pmd_devdocs_how_pmd_works.html.

[54] Parse error on array type annotations, 2022. URL: https://github.com/pmd/

pmd/issues/4152#issuecomment-1277447394.

[55] Callgraph taking a while to build, 2023. URL: https://github.com/soot-oss/

SootUp/issues/558.

123

https://github.com/pmd/pmd/blob/ac26d3dc6d7c121de72e6e7ddc1769caf8986e85/pmd-java/src/test/resources/net/sourceforge/pmd/lang/java/rule/security/xml/HardCodedCryptoKey.xml
https://github.com/pmd/pmd/blob/ac26d3dc6d7c121de72e6e7ddc1769caf8986e85/pmd-java/src/test/resources/net/sourceforge/pmd/lang/java/rule/security/xml/HardCodedCryptoKey.xml
https://github.com/pmd/pmd/blob/ac26d3dc6d7c121de72e6e7ddc1769caf8986e85/pmd-java/src/test/resources/net/sourceforge/pmd/lang/java/rule/security/xml/HardCodedCryptoKey.xml
https://github.com/pmd/pmd/blob/ac26d3dc6d7c121de72e6e7ddc1769caf8986e85/pmd-java/src/test/resources/net/sourceforge/pmd/lang/java/rule/security/xml/HardCodedCryptoKey.xml
https://github.com/soot-oss/soot/issues/1755
https://github.com/soot-oss/soot/issues/1755
https://github.com/pmd/pmd/issues/4487
https://github.com/pmd/pmd/issues/4487
https://github.com/pmd/pmd/issues/2454
https://github.com/pmd/pmd/issues/2454
https://github.com/soot-oss/soot/issues/1739
https://github.com/soot-oss/soot/issues/1739
https://github.com/soot-oss/soot/issues/1874
https://github.com/soot-oss/soot/issues/1874
https://community.sonarsource.com/t/a-false-positive-about-rule-rspec-2095/67536
https://community.sonarsource.com/t/a-false-positive-about-rule-rspec-2095/67536
https://github.com/pmd/pmd/issues/4078
https://github.com/pmd/pmd/issues/4078
https://docs.pmd-code.org/pmd-doc-6.53.0/pmd_devdocs_how_pmd_works.html
https://docs.pmd-code.org/pmd-doc-6.53.0/pmd_devdocs_how_pmd_works.html
https://github.com/pmd/pmd/issues/4152#issuecomment-1277447394
https://github.com/pmd/pmd/issues/4152#issuecomment-1277447394
https://github.com/soot-oss/SootUp/issues/558
https://github.com/soot-oss/SootUp/issues/558

[56] How to parallelize?, 2023. URL: https://github.com/soot-oss/SootUp/

issues/591.

[57] The icfg dotexporter should use a call graph to decide which methods are called,

2023. URL: https://github.com/soot-oss/SootUp/issues/728.

[58] Soot - a framework for analyzing and transforming java and android applications,

2023. URL: http://soot-oss.github.io/soot/.

[59] Fix localsplitter, 2024. URL: https://github.com/soot-oss/SootUp/

issues/798.

[60] Maven repository: Top projects, 2024. URL: https://mvnrepository.com/

popular.

[61] Soot reports a false positive edge in call graph, 2024. URL: https://github.

com/soot-oss/soot/issues/2061.

[62] Support methodhandle resolve in callgraph algorithm, 2024. URL: https://

github.com/soot-oss/SootUp/issues/906.

[63] Dima Alhadidi, Amine Boukhtouta, Nadia Belblidia, Mourad Debbabi, and Pra-

bir Bhattacharya. The dataflow pointcut: a formal and practical framework. In

Proceedings of the 8th ACM international conference on Aspect-oriented software

development, pages 15–26, 2009.

[64] Karim Ali and Ondřej Lhoták. Application-only call graph construction. In

Proceedings of the 26th European Conference on Object-Oriented Programming,

ECOOP’12, page 688–712, Berlin, Heidelberg, 2012. Springer-Verlag. doi:10.

1007/978-3-642-31057-7_30.

[65] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to

represent programs with graphs. arXiv preprint arXiv:1711.00740, 2017.

124

https://github.com/soot-oss/SootUp/issues/591
https://github.com/soot-oss/SootUp/issues/591
https://github.com/soot-oss/SootUp/issues/728
http://soot-oss.github.io/soot/
https://github.com/soot-oss/SootUp/issues/798
https://github.com/soot-oss/SootUp/issues/798
https://mvnrepository.com/popular
https://mvnrepository.com/popular
https://github.com/soot-oss/soot/issues/2061
https://github.com/soot-oss/soot/issues/2061
https://github.com/soot-oss/SootUp/issues/906
https://github.com/soot-oss/SootUp/issues/906
https://doi.org/10.1007/978-3-642-31057-7_30
https://doi.org/10.1007/978-3-642-31057-7_30

[66] Cláudio A Araújo, Marcio E Delamaro, José C Maldonado, and Auri MR Vin-

cenzi. Correlating automatic static analysis and mutation testing: towards incremen-

tal strategies. Journal of Software Engineering Research and Development, 4(1):1–

32, 2016.

[67] George Argyros, Ioannis Stais, Suman Jana, Angelos D. Keromytis, and Aggelos

Kiayias. Sfadiff: Automated evasion attacks and fingerprinting using black-box dif-

ferential automata learning. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, CCS ’16, page 1690–1701, New York,

NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2976749.

2978383.

[68] Steven Arzt. Pedantic validation rejects code that is arguably ok, 2013. URL:

https://github.com/soot-oss/soot/issues/109.

[69] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:

precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for

android apps. In Proceedings of the 35th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI ’14, page 259–269, New York,

NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2594291.

2594299.

[70] Nathaniel Ayewah and William Pugh. The google findbugs fixit. pages 241–252, 01

2010. doi:10.1145/1831708.1831738.

[71] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian

Zhou. Evaluating static analysis defect warnings on production software. In Pro-

ceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering, PASTE ’07, page 1–8, New York, NY, USA, 2007.

Association for Computing Machinery. doi:10.1145/1251535.1251536.

125

https://doi.org/10.1145/2976749.2978383
https://doi.org/10.1145/2976749.2978383
https://github.com/soot-oss/soot/issues/109
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1831708.1831738
https://doi.org/10.1145/1251535.1251536

[72] David F. Bacon and Peter F. Sweeney. Fast static analysis of c++ virtual function

calls. SIGPLAN Not., 31(10):324–341, oct 1996. doi:10.1145/236338.236371.

[73] Bernhard J. Berger. Exception in unitthrowanalysis, 2015. URL: https://github.

com/soot-oss/soot/issues/358.

[74] Eric Bodden. Incomplete call graph in spark’s rta mode, 2014. URL: https://

github.com/soot-oss/soot/issues/297.

[75] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of

sophisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN Confer-

ence on Object Oriented Programming Systems Languages and Applications, OOP-

SLA ’09, page 243–262, New York, NY, USA, 2009. Association for Computing

Machinery. doi:10.1145/1640089.1640108.

[76] G Ann Campbell and Patroklos P Papapetrou. SonarQube in action. Manning Pub-

lications Co., 2013.

[77] Walter Cazzola and Edoardo Vacchi. @ java: Bringing a richer annotation model to

java. Computer Languages, Systems & Structures, 40(1):2–18, 2014.

[78] Hayden Cheers, Yuqing Lin, and Shamus P Smith. Spplagiarise: A tool for gen-

erating simulated semantics-preserving plagiarism of java source code. In 2019

IEEE 10th International conference on software engineering and service science

(ICSESS), pages 617–622. IEEE, 2019.

[79] Haicheng Chen, Wensheng Dou, Yanyan Jiang, and Feng Qin. Understanding

exception-related bugs in large-scale cloud systems. In Proceedings of the 34th

IEEE/ACM International Conference on Automated Software Engineering, ASE ’19,

page 339–351. IEEE Press, 2019. doi:10.1109/ASE.2019.00040.

[80] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse,

and Zhi Quan Zhou. Metamorphic testing: A review of challenges and opportunities.

ACM Comput. Surv., 51(1), jan 2018. doi:10.1145/3143561.

126

https://doi.org/10.1145/236338.236371
https://github.com/soot-oss/soot/issues/358
https://github.com/soot-oss/soot/issues/358
https://github.com/soot-oss/soot/issues/297
https://github.com/soot-oss/soot/issues/297
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1109/ASE.2019.00040
https://doi.org/10.1145/3143561

[81] Yuting Chen, Ting Su, and Zhendong Su. Deep differential testing of jvm implemen-

tations. In 2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE), pages 1257–1268. IEEE, 2019.

[82] Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. Coverage-

directed differential testing of jvm implementations. In proceedings of the 37th

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, pages 85–99, 2016.

[83] Maria Christakis and Christian Bird. What developers want and need from program

analysis: an empirical study. In Proceedings of the 31st IEEE/ACM international

conference on automated software engineering, pages 332–343, 2016.

[84] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect ma-

licious patterns. In 12th USENIX Security Symposium (USENIX Security 03), 2003.

[85] Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John Regehr, Boris

Yakobowski, and Xuejun Yang. Testing static analyzers with randomly generated

programs. In Proceedings of the 4th International Conference on NASA Formal

Methods, NFM’12, page 120–125, Berlin, Heidelberg, 2012. Springer-Verlag. doi:

10.1007/978-3-642-28891-3_12.

[86] Andreas Dangel. [java] arrayisstoreddirectly doesn’t consider nested classes. URL:

https://github.com/pmd/pmd/issues/3613.

[87] Andreas Dangel. [java] unusedformalparameter doesn’t consider anonymous

classes. URL: https://github.com/pmd/pmd/issues/3618.

[88] Andreas Dangel. Nopackage: False negative for enums, 2019. URL: https://

github.com/pmd/pmd/issues/1782.

[89] Andreas Dangel. [java] hardcodedcryptokey false negative with variable

assignments, 2021. URL: https://github.com/pmd/pmd/issues/3368#

issuecomment-872794683.

127

https://doi.org/10.1007/978-3-642-28891-3_12
https://doi.org/10.1007/978-3-642-28891-3_12
https://github.com/pmd/pmd/issues/3613
https://github.com/pmd/pmd/issues/3618
https://github.com/pmd/pmd/issues/1782
https://github.com/pmd/pmd/issues/1782
https://github.com/pmd/pmd/issues/3368#issuecomment-872794683
https://github.com/pmd/pmd/issues/3368#issuecomment-872794683

[90] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. Automated testing of

refactoring engines. In Proceedings of the the 6th joint meeting of the European soft-

ware engineering conference and the ACM SIGSOFT symposium on The foundations

of software engineering, pages 185–194, 2007.

[91] Junhua Ding, Xiaojun Kang, and Xin-Hua Hu. Validating a deep learning frame-

work by metamorphic testing. In 2017 IEEE/ACM 2nd International Workshop on

Metamorphic Testing (MET), pages 28–34. IEEE, 2017.

[92] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. Auto-

mated testing of graphics shader compilers. Proc. ACM Program. Lang., 1(OOP-

SLA), oct 2017. doi:10.1145/3133917.

[93] Alastair F. Donaldson and Andrei Lascu. Metamorphic testing for (graphics) compil-

ers. In 2016 IEEE/ACM 1st International Workshop on Metamorphic Testing (MET),

pages 44–47, 2016. doi:10.1145/2896971.2896978.

[94] Karine Even-Mendoza, Cristian Cadar, and Alastair F. Donaldson. Csmithedge:

more effective compiler testing by handling undefined behaviour less conser-

vatively. Empirical Softw. Engg., 27(6), November 2022. doi:10.1007/

s10664-022-10146-1.

[95] Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and Cristian Cadar.

Grayc: Greybox fuzzing of compilers and analysers for c. In Proceedings of the 32nd

ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA

2023, page 1219–1231, New York, NY, USA, 2023. Association for Computing

Machinery. doi:10.1145/3597926.3598130.

[96] Clément Fournier. [java] localvariablecouldbefinal false positive in exception han-

dling, 2024. URL: https://github.com/pmd/pmd/issues/5049.

[97] Asem Ghaleb and Karthik Pattabiraman. How effective are smart contract analysis

tools? evaluating smart contract static analysis tools using bug injection. In Pro-

128

https://doi.org/10.1145/3133917
https://doi.org/10.1145/2896971.2896978
https://doi.org/10.1007/s10664-022-10146-1
https://doi.org/10.1007/s10664-022-10146-1
https://doi.org/10.1145/3597926.3598130
https://github.com/pmd/pmd/issues/5049

ceedings of the 29th ACM SIGSOFT International Symposium on Software Testing

and Analysis, pages 415–427, 2020.

[98] Philip Graf. [java] localvariablecouldbefinal false positive with try/catch, 2024.

URL: https://github.com/pmd/pmd/issues/5046.

[99] Alex Groce, Iftekhar Ahmed, Josselin Feist, Gustavo Grieco, Jiri Gesi, Mehran Mei-

dani, and Qihong Chen. Evaluating and improving static analysis tools via differ-

ential mutation analysis. In 2021 IEEE 21st International Conference on Software

Quality, Reliability and Security (QRS), pages 207–218. IEEE, 2021.

[100] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang. An

extensible, regular-expression-based tool for multi-language mutant generation. In

Proceedings of the 40th International Conference on Software Engineering: Com-

panion Proceeedings, ICSE ’18, page 25–28, New York, NY, USA, 2018. Associa-

tion for Computing Machinery. doi:10.1145/3183440.3183485.

[101] David Grove and Craig Chambers. A framework for call graph construction al-

gorithms. ACM Trans. Program. Lang. Syst., 23(6):685–746, nov 2001. doi:

10.1145/506315.506316.

[102] Michael Gumowski. Annotations should be handled in all cases allowed

by java 8, 2015. URL: https://sonarsource.atlassian.net/browse/

SONARJAVA-1167.

[103] Michael Gumowski. Classes annotated with lombok’s @equalsandhashcode should

be ignored, 2016. URL: https://sonarsource.atlassian.net/browse/

SONARJAVA-1513.

[104] Michael Gumowski. Annotations on type in a fully qualified name are

not resolved, 2017. URL: https://sonarsource.atlassian.net/browse/

SONARJAVA-2205.

129

https://github.com/pmd/pmd/issues/5046
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1145/506315.506316
https://doi.org/10.1145/506315.506316
https://sonarsource.atlassian.net/browse/SONARJAVA-1167
https://sonarsource.atlassian.net/browse/SONARJAVA-1167
https://sonarsource.atlassian.net/browse/SONARJAVA-1513
https://sonarsource.atlassian.net/browse/SONARJAVA-1513
https://sonarsource.atlassian.net/browse/SONARJAVA-2205
https://sonarsource.atlassian.net/browse/SONARJAVA-2205

[105] Michael Gumowski. Fp on s1128 (uselessimportcheck) when annotation is used

in fully qualified name, 2017. URL: https://sonarsource.atlassian.net/

browse/SONARJAVA-2083.

[106] Michael Gumowski. Annotations are not always resolved when used in param-

eterized types, 2019. URL: https://sonarsource.atlassian.net/browse/

SONARJAVA-3045.

[107] Michael Gumowski. Generating starting states make analysis crash (outofmem-

ory) when too many annotated parameters, 2019. URL: https://sonarsource.

atlassian.net/browse/SONARJAVA-3108.

[108] A. Habib and M. Pradel. How many of all bugs do we find? A study of static bug

detectors. In 2018 33rd IEEE/ACM International Conference on Automated Software

Engineering (ASE), pages 317–328, 2018. doi:10.1145/3238147.3238213.

[109] Andrew Habib and Michael Pradel. How many of all bugs do we find? a study of

static bug detectors. In 2018 33rd IEEE/ACM International Conference on Auto-

mated Software Engineering (ASE), pages 317–328. IEEE, 2018.

[110] Mark Harman. We need a testability transformation semantics. In International

Conference on Software Engineering and Formal Methods, pages 3–17. Springer,

2018.

[111] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen Sthamer, André

Baresel, and Marc Roper. Testability transformation. IEEE Transactions on Software

Engineering, 30(1):3–16, 2004.

[112] Sarah Heckman and Laurie Williams. A systematic literature review of actionable

alert identification techniques for automated static code analysis. Information and

Software Technology, 53(4):363–387, 2011.

130

https://sonarsource.atlassian.net/browse/SONARJAVA-2083
https://sonarsource.atlassian.net/browse/SONARJAVA-2083
https://sonarsource.atlassian.net/browse/SONARJAVA-3045
https://sonarsource.atlassian.net/browse/SONARJAVA-3045
https://sonarsource.atlassian.net/browse/SONARJAVA-3108
https://sonarsource.atlassian.net/browse/SONARJAVA-3108
https://doi.org/10.1145/3238147.3238213

[113] Yu Hu, Zekun Shen, and Brendan Dolan-Gavitt. Characterizing and improving bug-

finders with synthetic bugs. In 2022 IEEE International Conference on Software

Analysis, Evolution and Reengineering (SANER), pages 971–982. IEEE, 2022.

[114] Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT press,

2012.

[115] Konrad Jamrozik. Regression: Error/dalvikvm(1854): Invalid type descrip-

tor: ’dalvik.annotation.enclosingclass’, 2013. URL: https://github.com/

soot-oss/soot/issues/123.

[116] Suman Jana and Vitaly Shmatikov. Abusing file processing in malware detectors

for fun and profit. In 2012 IEEE Symposium on Security and Privacy, pages 80–94,

2012. doi:10.1109/SP.2012.15.

[117] Quentin Jaquier. Support java 11 generated annotation, 2019. URL: https://

sonarsource.atlassian.net/browse/SONARJAVA-3174.

[118] Quentin Jaquier. Consistently support nullable/checkfornull/nonnull annota-

tions in rules, 2020. URL: https://sonarsource.atlassian.net/browse/

SONARJAVA-3536.

[119] Quentin Jaquier. S5122: Classcastexception when annotation is defined with

an identifier, 2023. URL: https://sonarsource.atlassian.net/browse/

SONARJAVA-3438.

[120] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why

don’t software developers use static analysis tools to find bugs? In 2013 35th

International Conference on Software Engineering (ICSE), pages 672–681, 2013.

doi:10.1109/ICSE.2013.6606613.

[121] Josh Juneau. Jsr 308 explained: Java type annotations, 2022. URL:

https://www.oracle.com/technical-resources/articles/java/

ma14-architect-annotations.html.

131

https://github.com/soot-oss/soot/issues/123
https://github.com/soot-oss/soot/issues/123
https://doi.org/10.1109/SP.2012.15
https://sonarsource.atlassian.net/browse/SONARJAVA-3174
https://sonarsource.atlassian.net/browse/SONARJAVA-3174
https://sonarsource.atlassian.net/browse/SONARJAVA-3536
https://sonarsource.atlassian.net/browse/SONARJAVA-3536
https://sonarsource.atlassian.net/browse/SONARJAVA-3438
https://sonarsource.atlassian.net/browse/SONARJAVA-3438
https://doi.org/10.1109/ICSE.2013.6606613
https://www.oracle.com/technical-resources/articles/java/ma14-architect-annotations.html
https://www.oracle.com/technical-resources/articles/java/ma14-architect-annotations.html

[122] René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: a database of existing

faults to enable controlled testing studies for java programs. In Proceedings of the

2014 International Symposium on Software Testing and Analysis, ISSTA 2014, page

437–440, New York, NY, USA, 2014. Association for Computing Machinery. doi:

10.1145/2610384.2628055.

[123] Timotej Kapus and Cristian Cadar. Automatic testing of symbolic execution engines

via program generation and differential testing. In 2017 32nd IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE), pages 590–600, 2017.

doi:10.1109/ASE.2017.8115669.

[124] Kadiray Karakaya, Stefan Schott, Jonas Klauke, Eric Bodden, Markus Schmidt,

Linghui Luo, and Dongjie He. Sootup: A redesign of the soot static analysis

framework. In International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 229–247. Springer, 2024. doi:10.1007/

978-3-031-57246-3_13.

[125] Anant Kharkar, Roshanak Zilouchian Moghaddam, Matthew Jin, Xiaoyu Liu, Xin

Shi, Colin Clement, and Neel Sundaresan. Learning to reduce false positives in ana-

lytic bug detectors. In Proceedings of the 44th International Conference on Software

Engineering, pages 1307–1316, 2022.

[126] Dong Jae Kim, Nikolaos Tsantalis, Tse-Hsun Chen, and Jinqiu Yang. Studying

test annotation maintenance in the wild. In 2021 IEEE/ACM 43rd International

Conference on Software Engineering (ICSE), pages 62–73, 2021. doi:10.1109/

ICSE43902.2021.00019.

[127] Sunghun Kim and Michael D Ernst. Which warnings should I fix first? In Proceed-

ings of the the 6th joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on The foundations of software engineering,

pages 45–54, 2007.

132

https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/ASE.2017.8115669
https://doi.org/10.1007/978-3-031-57246-3_13
https://doi.org/10.1007/978-3-031-57246-3_13
https://doi.org/10.1109/ICSE43902.2021.00019
https://doi.org/10.1109/ICSE43902.2021.00019

[128] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris

Yakobowski. Frama-c: A software analysis perspective. Formal aspects of comput-

ing, 27(3):573–609, 2015.

[129] Kota Kitaura and Nagisa Ishiura. Random testing of compilers’ performance based

on mixed static and dynamic code comparison. In Proceedings of the 9th ACM

SIGSOFT International Workshop on Automating TEST Case Design, Selection, and

Evaluation, A-TEST 2018, page 38–44, New York, NY, USA, 2018. Association for

Computing Machinery. doi:10.1145/3278186.3278192.

[130] Jonas Klauke. Callgraph generation ignores ¡clinit¿, 2022. URL: https://

github.com/soot-oss/SootUp/issues/459.

[131] Jonas Klauke. Callgraph: search for the concrete dispatch if the method is not imple-

mented, 2022. URL: https://github.com/soot-oss/SootUp/issues/499.

[132] Jonas Klauke. Rta ignores new instantiated classes at a later method call, 2022.

URL: https://github.com/soot-oss/SootUp/issues/456.

[133] Jonas Klauke. Rta should only consider classes as instantiated with new, 2022. URL:

https://github.com/soot-oss/SootUp/issues/495.

[134] Jonas Klauke. Sources marked as library shouldn’t be further analyzed in the

call graph generation, 2023. URL: https://github.com/soot-oss/SootUp/

issues/715.

[135] Christian Klinger, Maria Christakis, and Valentin Wüstholz. Differentially testing

soundness and precision of program analyzers. In Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019,

page 239–250, New York, NY, USA, 2019. Association for Computing Machinery.

doi:10.1145/3293882.3330553.

[136] Ugur Koc, Austin Mordahl, Shiyi Wei, Jeffrey S Foster, and Adam A Porter. Satune:

a study-driven auto-tuning approach for configurable software verification tools. In

133

https://doi.org/10.1145/3278186.3278192
https://github.com/soot-oss/SootUp/issues/459
https://github.com/soot-oss/SootUp/issues/459
https://github.com/soot-oss/SootUp/issues/499
https://github.com/soot-oss/SootUp/issues/456
https://github.com/soot-oss/SootUp/issues/495
https://github.com/soot-oss/SootUp/issues/715
https://github.com/soot-oss/SootUp/issues/715
https://doi.org/10.1145/3293882.3330553

2021 36th IEEE/ACM International Conference on Automated Software Engineering

(ASE), pages 330–342. IEEE, 2021.

[137] Rahul Krishna, Raju Pavuluri, Saurabh Sinha, Divya Sankar, Julian Dolby, and

Rangeet Pan. Towards supporting universal static analysis using wala. In ACM SIG-

PLAN Conference on Programming Language Design and Implementation, 2023.

[138] Florian Kübler. java.lang.classcastexception when using subtypesentrypoint, 2018.

URL: https://github.com/wala/WALA/issues/285.

[139] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot framework

for java program analysis: a retrospective. In Cetus Users and Compiler Infastruc-

ture Workshop (CETUS 2011), volume 15, 2011.

[140] C. Lattner and V. Adve. Llvm: a compilation framework for lifelong program

analysis & transformation. In International Symposium on Code Generation and

Optimization, 2004. CGO 2004., pages 75–86, 2004. doi:10.1109/CGO.2004.

1281665.

[141] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence

modulo inputs. In Proceedings of the 35th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI ’14, page 216–226, New York,

NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2594291.

2594334.

[142] Vu Le, Chengnian Sun, and Zhendong Su. Finding deep compiler bugs via guided

stochastic program mutation. ACM SIGPLAN Notices, 50(10):386–399, 2015.

[143] Vu Le, Chengnian Sun, and Zhendong Su. Randomized stress-testing of link-time

optimizers. In Proceedings of the 2015 International Symposium on Software Testing

and Analysis, ISSTA 2015, page 327–337, New York, NY, USA, 2015. Association

for Computing Machinery. doi:10.1145/2771783.2771785.

134

https://github.com/wala/WALA/issues/285
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2771783.2771785

[144] Thanh Le-Cong, Hong Jin Kang, Truong Giang Nguyen, Stefanus Agus Haryono,

David Lo, Xuan-Bach D. Le, and Quyet Thang Huynh. Autopruner: transformer-

based call graph pruning. In Proceedings of the 30th ACM Joint European Software

Engineering Conference and Symposium on the Foundations of Software Engineer-

ing, ESEC/FSE 2022, page 520–532, New York, NY, USA, 2022. Association for

Computing Machinery. doi:10.1145/3540250.3549175.

[145] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,

Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-

Daniel. Iccta: Detecting inter-component privacy leaks in android apps. In 2015

IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 1,

pages 280–291. IEEE, 2015.

[146] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson.

Many-core compiler fuzzing. ACM SIGPLAN Notices, 50(6):65–76, 2015.

[147] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java virtual

machine specification. Addison-wesley, 2013.

[148] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. An empirical study on

the effectiveness of static c code analyzers for vulnerability detection. In Proceed-

ings of the 31st ACM SIGSOFT International Symposium on Software Testing and

Analysis, pages 544–555, 2022.

[149] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. An empirical study on

the effectiveness of static c code analyzers for vulnerability detection. In Proceed-

ings of the 31st ACM SIGSOFT International Symposium on Software Testing and

Analysis, pages 544–555, 2022.

[150] Dongmiao Liu. Sonarjava-73 add more lombok’s used annotations for unusedpri-

vatefieldcheck, 2022. URL: https://github.com/SonarSource/sonar-java/

pull/102#issuecomment-87545890.

135

https://doi.org/10.1145/3540250.3549175
https://github.com/SonarSource/sonar-java/pull/102#issuecomment-87545890
https://github.com/SonarSource/sonar-java/pull/102#issuecomment-87545890

[151] Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. Coverage-

guided tensor compiler fuzzing with joint ir-pass mutation. Proc. ACM Program.

Lang., 6(OOPSLA1), April 2022. doi:10.1145/3527317.

[152] Yi Liu, Yadong Yan, Chaofeng Sha, Xin Peng, Bihuan Chen, and Chong Wang.

Deepanna: Deep learning based java annotation recommendation and misuse detec-

tion. In 2022 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER), pages 685–696. IEEE, 2022.

[153] William M McKeeman. Differential testing for software. Digital Technical Journal,

10(1):100–107, 1998.

[154] Austin Mordahl. Automatic testing and benchmarking for configurable static anal-

ysis tools. In Proceedings of the 32nd ACM SIGSOFT International Symposium on

Software Testing and Analysis, ISSTA 2023, page 1532–1536, New York, NY, USA,

2023. Association for Computing Machinery. doi:10.1145/3597926.3605232.

[155] Kazuhiro Nakamura and Nagisa Ishiura. Random testing of c compilers based on

test program generation by equivalence transformation. In 2016 IEEE Asia Pacific

Conference on Circuits and Systems (APCCAS), pages 676–679. IEEE, 2016.

[156] Kedar S Namjoshi and Zvonimir Pavlinovic. The impact of program transformations

on static program analysis. In International Static Analysis Symposium, pages 306–

325. Springer, 2018.

[157] Marharyta Nedzelska. Fp in s3077 when volatile is used with @immutable and

@threadsafe annotations, 2021. URL: https://sonarsource.atlassian.net/

browse/SONARJAVA-3804.

[158] Phokham Nonava. False-positive with lombok and inner classes, 2019. URL:

https://github.com/pmd/pmd/issues/1641.

[159] Batyr Nuryyev, Ajay Kumar Jha, Sarah Nadi, Yee-Kang Chang, Emily Jiang, and

Vijay Sundaresan. Mining annotation usage rules: A case study with microprofile. In

136

https://doi.org/10.1145/3527317
https://doi.org/10.1145/3597926.3605232
https://sonarsource.atlassian.net/browse/SONARJAVA-3804
https://sonarsource.atlassian.net/browse/SONARJAVA-3804
https://github.com/pmd/pmd/issues/1641

2022 38th International Conference on Software Maintenance and Evolution, IEEE,

2022.

[160] Batyr Nuryyev, Ajay Kumar Jha, Sarah Nadi, Yee-Kang Chang, Emily Jiang, and

Vijay Sundaresan. Mining annotation usage rules: A case study with microprofile.

In 2022 IEEE International Conference on Software Maintenance and Evolution

(ICSME), pages 553–562. IEEE, 2022.

[161] Georg Ofenbeck, Tiark Rompf, and Markus Püschel. Randir: differential testing for

embedded compilers. In Proceedings of the 2016 7th ACM SIGPLAN Symposium

on Scala, SCALA 2016, page 21–30, New York, NY, USA, 2016. Association for

Computing Machinery. doi:10.1145/2998392.2998397.

[162] Fernando Rodriguez Olivera. Findbugs jsr305, 2017. URL: https://

mvnrepository.com/artifact/com.google.code.findbugs/jsr305.

[163] Fernando Rodriguez Olivera. Mvnrepository, 2023. URL: https://

mvnrepository.com/.

[164] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random testing

for java. In Companion to the 22nd ACM SIGPLAN conference on Object-oriented

programming systems and applications companion, pages 815–816, 2007.

[165] Chris Parnin, Christian Bird, and Emerson Murphy-Hill. Adoption and use of java

generics. Empirical Software Engineering, 18(6):1047–1089, 2013.

[166] Sajeda Parveen and Manar H Alalfi. A mutation framework for evaluating security

analysis tools in iot applications. In 2020 IEEE 27th International Conference on

Software Analysis, Evolution and Reengineering (SANER), pages 587–591. IEEE,

2020.

[167] Nicolas Peru. Annotation on array type should be properly handled, 2015. URL:

https://sonarsource.atlassian.net/browse/SONARJAVA-1420.

137

https://doi.org/10.1145/2998392.2998397
https://mvnrepository.com/artifact/com.google.code.findbugs/jsr305
https://mvnrepository.com/artifact/com.google.code.findbugs/jsr305
https://mvnrepository.com/
https://mvnrepository.com/
https://sonarsource.atlassian.net/browse/SONARJAVA-1420

[168] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D. Keromytis, and Suman

Jana. Nezha: Efficient domain-independent differential testing. In 2017 IEEE Sym-

posium on Security and Privacy (SP), pages 615–632, 2017. doi:10.1109/SP.

2017.27.

[169] Pedro Pinheiro, José Carlos Viana, Márcio Ribeiro, Leo Fernandes, Fabiano Ferrari,

Rohit Gheyi, and Baldoino Fonseca. Mutating code annotations: An empirical eval-

uation on java and c# programs. Science of Computer Programming, 191:102418,

2020.

[170] Chris Povirk. Guava, 2024. URL: https://guava.dev/.

[171] William Pugh. Jsr 305: Annotations for software defect detection, 2022. URL:

https://jcp.org/en/jsr/detail?id=305.

[172] Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and

Mohammad Amin Alipour. On the generalizability of neural program models with

respect to semantic-preserving program transformations. Information and Software

Technology, 135:106552, 2021.

[173] Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira Mezini.

Judge: identifying, understanding, and evaluating sources of unsoundness in call

graphs. In Proceedings of the 28th ACM SIGSOFT International Symposium on

Software Testing and Analysis, ISSTA 2019, page 251–261, New York, NY, USA,

2019. Association for Computing Machinery. doi:10.1145/3293882.3330555.

[174] Michael Reif, Florian Kübler, Michael Eichberg, and Mira Mezini. Systematic

evaluation of the unsoundness of call graph construction algorithms for java. In

Companion Proceedings for the ISSTA/ECOOP 2018 Workshops, ISSTA ’18, page

107–112, New York, NY, USA, 2018. Association for Computing Machinery. doi:

10.1145/3236454.3236503.

138

https://doi.org/10.1109/SP.2017.27
https://doi.org/10.1109/SP.2017.27
https://guava.dev/
https://jcp.org/en/jsr/detail?id=305
https://doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/3236454.3236503
https://doi.org/10.1145/3236454.3236503

[175] Michael Reif, Florian Kübler, Dominik Helm, Ben Hermann, Michael Eichberg, and

Mira Mezini. Tacai: an intermediate representation based on abstract interpretation.

In Proceedings of the 9th ACM SIGPLAN International Workshop on the State Of

the Art in Program Analysis, SOAP 2020, page 2–7, New York, NY, USA, 2020.

Association for Computing Machinery. doi:10.1145/3394451.3397204.

[176] Henrique Rocha and Marco Tulio Valente. How annotations are used in java: An

empirical study. In SEKE, pages 426–431, 2011.

[177] John Rose. Jsr 292: Supporting dynamically typed languages on the javatm platform,

2011. URL: https://jcp.org/en/jsr/detail?id=292.

[178] H. Samet. A machine description facility for compiler testing. IEEE Transactions on

Software Engineering, SE-3(5):343–351, 1977. doi:10.1109/TSE.1977.231159.

[179] Hanan Samet. Compiler testing via symbolic interpretation. In Proceedings of the

1976 Annual Conference, ACM ’76, page 492–497, New York, NY, USA, 1976.

Association for Computing Machinery. doi:10.1145/800191.805648.

[180] Hanan Samet. A normal form for compiler testing. In Proceedings of the 1977

Symposium on Artificial Intelligence and Programming Languages, page 155–162,

New York, NY, USA, 1977. Association for Computing Machinery. doi:10.1145/

800228.806945.

[181] Joanna Santos, Mehdi Mirakhorli, and Ali Shokri. Sound call graph construction for

java object deserialization. arXiv preprint arXiv:2311.00943, 2023.

[182] Joanna C. S. Santos, Mehdi Mirakhorli, and Ali Shokri. Seneca: Taint-based call

graph construction for java object deserialization. Proc. ACM Program. Lang.,

8(OOPSLA1), April 2024. doi:10.1145/3649851.

[183] Mayank Sharma, Pingshi Yu, and Alastair F. Donaldson. Rustsmith: Random dif-

ferential compiler testing for rust. In Proceedings of the 32nd ACM SIGSOFT

139

https://doi.org/10.1145/3394451.3397204
https://jcp.org/en/jsr/detail?id=292
https://doi.org/10.1109/TSE.1977.231159
https://doi.org/10.1145/800191.805648
https://doi.org/10.1145/800228.806945
https://doi.org/10.1145/800228.806945
https://doi.org/10.1145/3649851

International Symposium on Software Testing and Analysis, ISSTA 2023, page

1483–1486, New York, NY, USA, 2023. Association for Computing Machinery.

doi:10.1145/3597926.3604919.

[184] Haihao Shen, Jianhong Fang, and Jianjun Zhao. EFindBugs: Effective error ranking

for findbugs. In 2011 Fourth IEEE International Conference on Software Testing,

Verification and Validation, pages 299–308. IEEE, 2011.

[185] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,

and Xiang Chen. A comprehensive study of deep learning compiler bugs. In Pro-

ceedings of the 29th ACM Joint Meeting on European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering, ESEC/FSE 2021,

page 968–980, New York, NY, USA, 2021. Association for Computing Machinery.

doi:10.1145/3468264.3468591.

[186] Flash Sheridan. Practical testing of a c99 compiler using output comparison. Softw.

Pract. Exper., 37(14):1475–1488, November 2007.

[187] Devarshi Singh, Varun Ramachandra Sekar, Kathryn T Stolee, and Brittany Johnson.

Evaluating how static analysis tools can reduce code review effort. In 2017 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages

101–105. IEEE, 2017.

[188] Manu Sridharan. Allow wala to support missing superclasses?, 2018. URL: https:

//github.com/wala/WALA/issues/322.

[189] Varun Srivastava, Michael D. Bond, Kathryn S. McKinley, and Vitaly Shmatikov. A

security policy oracle: detecting security holes using multiple api implementations.

In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’11, page 343–354, New York, NY, USA, 2011.

Association for Computing Machinery. doi:10.1145/1993498.1993539.

140

https://doi.org/10.1145/3597926.3604919
https://doi.org/10.1145/3468264.3468591
https://github.com/wala/WALA/issues/322
https://github.com/wala/WALA/issues/322
https://doi.org/10.1145/1993498.1993539

[190] Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and Amjed Tahir. On the

soundness of call graph construction in the presence of dynamic language features-

a benchmark and tool evaluation. In Programming Languages and Systems: 16th

Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2–6, 2018,

Proceedings 16, pages 69–88. Springer, 2018. URL: https://doi.org/10.1007/

978-3-030-02768-1_4.

[191] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. On the recall of static

call graph construction in practice. In Proceedings of the ACM/IEEE 42nd Interna-

tional Conference on Software Engineering, ICSE ’20, page 1049–1060, New York,

NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3377811.

3380441.

[192] Chengnian Sun, Vu Le, and Zhendong Su. Finding compiler bugs via live code

mutation. In Proceedings of the 2016 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications, pages 849–

863, 2016.

[193] Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. Toward understanding

compiler bugs in gcc and llvm. In Proceedings of the 25th International Symposium

on Software Testing and Analysis, ISSTA 2016, page 294–305, New York, NY, USA,

2016. Association for Computing Machinery. doi:10.1145/2931037.2931074.

[194] Xiaobing Sun, Tianchi Zhou, Gengjie Li, Jiajun Hu, Hui Yang, and Bin Li. An

empirical study on real bugs for machine learning programs. In 2017 24th Asia-

Pacific Software Engineering Conference (APSEC), pages 348–357, 2017. doi:

10.1109/APSEC.2017.41.

[195] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T Leavens. @ tcomment: Testing

javadoc comments to detect comment-code inconsistencies. In 2012 IEEE Fifth

International Conference on Software Testing, Verification and Validation, pages

260–269. IEEE, 2012.

141

https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1109/APSEC.2017.41
https://doi.org/10.1109/APSEC.2017.41

[196] Jubi Taneja, Zhengyang Liu, and John Regehr. Testing static analyses for precision

and soundness. In Proceedings of the 18th ACM/IEEE International Symposium on

Code Generation and Optimization, CGO 2020, page 81–93, New York, NY, USA,

2020. Association for Computing Machinery. doi:10.1145/3368826.3377927.

[197] Daniel Tang, Ales Plsek, and Jan Vitek. Static checking of safety critical java anno-

tations. In Proceedings of the 8th International Workshop on Java Technologies for

Real-Time and Embedded Systems, pages 148–154, 2010.

[198] Qiuming Tao, Wei Wu, Chen Zhao, and Wuwei Shen. An automatic testing approach

for compiler based on metamorphic testing technique. In 2010 Asia Pacific Software

Engineering Conference, pages 270–279, 2010. doi:10.1109/APSEC.2010.39.

[199] Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. An empirical study

of bugs in machine learning systems. In 2012 IEEE 23rd International Symposium

on Software Reliability Engineering, pages 271–280. IEEE, 2012.

[200] Sandro Tolksdorf, Daniel Lehmann, and Michael Pradel. Interactive metamorphic

testing of debuggers. In Proceedings of the 28th ACM SIGSOFT International Sym-

posium on Software Testing and Analysis, pages 273–283, 2019.

[201] Akshay Utture, Shuyang Liu, Christian Gram Kalhauge, and Jens Palsberg. Striking

a balance: Pruning false-positives from static call graphs. In 2022 IEEE/ACM 44th

International Conference on Software Engineering (ICSE), pages 2043–2055, 2022.

doi:10.1145/3510003.3510166.

[202] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

Vijay Sundaresan. Soot - a java bytecode optimization framework. In Proceedings of

the 1999 Conference of the Centre for Advanced Studies on Collaborative Research,

CASCON ’99, page 13. IBM Press, 1999.

142

https://doi.org/10.1145/3368826.3377927
https://doi.org/10.1109/APSEC.2010.39
https://doi.org/10.1145/3510003.3510166

[203] Raja Vallee-Rai and Laurie J Hendren. Jimple: Simplifying java bytecode for anal-

yses and transformations. Technical report, Technical report, McGill University,

1998.

[204] Rijnard van Tonder and Claire Le Goues. Tailoring programs for static analysis

via program transformation. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, pages 824–834, 2020.

[205] Susana M. Vieira, Uzay Kaymak, and João M. C. Sousa. Cohen’s kappa coefficient

as a performance measure for feature selection. In International Conference on

Fuzzy Systems, pages 1–8, 2010. doi:10.1109/FUZZY.2010.5584447.

[206] Jules Villard. Infer workflow, 2020. URL: https://fbinfer.com/docs/

infer-workflow.

[207] Zhiyuan Wan, David Lo, Xin Xia, and Liang Cai. Bug characteristics in blockchain

systems: a large-scale empirical study. In 2017 IEEE/ACM 14th International Con-

ference on Mining Software Repositories (MSR), pages 413–424. IEEE, 2017.

[208] Junjie Wang, Yuchao Huang, Song Wang, and Qing Wang. Find bugs in static bug

finders. In Proceedings of the 30th IEEE/ACM International Conference on Program

Comprehension, ICPC ’22, page 516–527, New York, NY, USA, 2022. Association

for Computing Machinery. doi:10.1145/3524610.3527899.

[209] Xiao Xiao. On the importance of program representations in static analysis. 2013.

[210] Xiaoyuan Xie, Zhiyi Zhang, Tsong Yueh Chen, Yang Liu, Pak-Lok Poon, and

Baowen Xu. Mettle: A metamorphic testing approach to assessing and validat-

ing unsupervised machine learning systems. IEEE Transactions on Reliability,

69(4):1293–1322, 2020.

[211] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understand-

ing bugs in c compilers. In Proceedings of the 32nd ACM SIGPLAN Conference

143

https://doi.org/10.1109/FUZZY.2010.5584447
https://fbinfer.com/docs/infer-workflow
https://fbinfer.com/docs/infer-workflow
https://doi.org/10.1145/3524610.3527899

on Programming Language Design and Implementation, PLDI ’11, page 283–294,

New York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/

1993498.1993532.

[212] Zhongxing Yu, Chenggang Bai, Lionel Seinturier, and Martin Monperrus. Char-

acterizing the usage, evolution and impact of java annotations in practice. IEEE

Transactions on Software Engineering, 47(5):969–986, 2021. doi:10.1109/TSE.

2019.2910516.

[213] Huaien Zhang, Yu Pei, Junjie Chen, and Shin Hwei Tan. Statfier: Automated

testing of static analyzers via semantic-preserving program transformations. In

Proceedings of the 31st ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023,

page 237–249, New York, NY, USA, 2023. Association for Computing Machinery.

doi:10.1145/3611643.3616272.

[214] Huaien Zhang, Yu Pei, Shuyun Liang, and Shin Hwei Tan. Understanding and de-

tecting annotation-induced faults of static analyzers. Proc. ACM Softw. Eng., 1(FSE),

jul 2024. doi:10.1145/3643759.

[215] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.

Deeproad: Gan-based metamorphic testing and input validation framework for au-

tonomous driving systems. In 2018 33rd IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 132–142. IEEE, 2018.

[216] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-aware android mal-

ware classification using weighted contextual api dependency graphs. In Proceed-

ings of the 2014 ACM SIGSAC Conference on Computer and Communications Secu-

rity, CCS ’14, page 1105–1116, New York, NY, USA, 2014. Association for Com-

puting Machinery. doi:10.1145/2660267.2660359.

144

https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/TSE.2019.2910516
https://doi.org/10.1109/TSE.2019.2910516
https://doi.org/10.1145/3611643.3616272
https://doi.org/10.1145/3643759
https://doi.org/10.1145/2660267.2660359

[217] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.

An empirical study on program failures of deep learning jobs, 2020.

[218] Ruide Zhang, Ning Zhang, Assad Moini, Wenjing Lou, and Y. Thomas Hou. Priva-

cyscope: Automatic analysis of private data leakage in tee-protected applications.

In 2020 IEEE 40th International Conference on Distributed Computing Systems

(ICDCS), pages 34–44, 2020. doi:10.1109/ICDCS47774.2020.00013.

[219] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. An

empirical study on tensorflow program bugs. In Proceedings of the 27th ACM SIG-

SOFT International Symposium on Software Testing and Analysis, ISSTA 2018,

page 129–140, New York, NY, USA, 2018. Association for Computing Machinery.

doi:10.1145/3213846.3213866.

145

https://doi.org/10.1109/ICDCS47774.2020.00013
https://doi.org/10.1145/3213846.3213866

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Main Contributions
	Terminology
	Thesis Organization

	Related Work
	Static Analyzer Testing
	Differential Testing
	Random Testing
	Bug Injection

	Compiler Testing
	Differential Testing
	Metamorphic Testing

	Statfier: Testing Static Analyzers via Semantics-Preserving Program Transformations
	Illustrative Example
	Methodology
	Selection of Input Programs
	Variant Generation via Program Transformations
	Heuristic-Based Testing Process

	Evaluation
	Experimental Setup
	RQ 3.1: Assessing Effectiveness of Statfier
	RQ 3.2: Assessing Effectiveness of Heuristics
	RQ 3.3: Assessing Effectiveness of Transformations

	Summary

	AnnaTester: Understanding and Detecting Annotation-Induced Faults of Static Analyzers
	Empirical Study of Annotation-Induced Faults
	Target Static Analyzers
	Data Collection
	Issue Labeling and Reliability Analysis
	RQ 4.1: AIF-Prone Annotation
	RQ 4.2: Root Cause
	RQ 4.3: Symptom
	Correlation Analysis between Root Cause and Symptom
	RQ 4.4: Fix Strategy
	Correlation Analysis between Root Cause and Fix Strategy

	Implementation of AnnaTester Framework
	Issue Checkers and Metamorphic Relations
	Annotated Program Synthesizer

	Effectiveness of AnnaTester
	Case Study
	Implication
	Implication for Developers
	Implication for Researchers

	Summary

	SAScope: Characterizing and Detecting Program Representation Faults of Static Analyzers
	Empirical Study of Program Representation Faults
	Tool Selection
	Issue Collection and Labeling
	RQ 5.1: Fault-Prone Program Representations
	RQ 5.2: Symptom and Root Cause
	RQ 5.3: Fix Strategy
	RQ 5.4: Oracle Design

	Methodology of SAScope
	Testing Approaches and Oracle Design
	Property-Based Grouping

	Effectiveness of SAScope
	Q1: Evaluating Effectiveness of SAScope
	Q2: Evaluating Effectiveness of Property-Based Grouping

	Implication
	Implication for Developers
	Implication for Researchers

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	References

