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Abstract

In recent years, continuous generative models based on ordinary differential equations
(ODEs) and stochastic differential equations (SDEs) have played a central role in the
rapidly expanding field of generative Als. These generative Als have shown remark-
able empirical success across various applications, including large-scale image synthe-
sis, protein structure prediction, and molecule generation. In this thesis, we aim to
investigate the theoretical properties of these continuous generative models by consid-
ering the regularity of the differential equations, the ability to approximate them with
deep neural networks, and the non-asymptotic convergence rate of these continuous

generative models.

In the first part, we address the regularity of a class of simulation-free continuous
normalizing flows (CNFs) constructed with ODEs. Through a unified framework of the
flow models termed Gaussian interpolation flows, we establish the Lipschitz regularity
of the flow velocity field, the existence and uniqueness of the flow, and the Lipschitz
continuity of the flow map and the time-reversed flow map for several rich classes of
target distributions. This analysis also sheds light on the auto-encoding and cycle con-
sistency properties of Gaussian interpolation flows. Our findings offer valuable insights
into the learning techniques and accumulations of errors when employing Gaussian in-

terpolation flows for generative modeling.

In the second part, we study the theoretical properties of continuous normalizing
flows with linear interpolation in learning probability distributions from a finite random
sample, using a flow-matching objective function. We establish non-asymptotic error
bounds for the distribution estimator based on CNFs, in terms of the Wasserstein-2 dis-
tance. We present a convergence analysis framework that encompasses the error due to
velocity estimation, the discretization error, and the early stopping error. A key step in
our analysis involves establishing the regularity properties of the velocity field and its
estimator for CNFs constructed with linear interpolation. This necessitates the develop-
ment of uniform error bounds with Lipschitz regularity control of deep ReLU networks
that approximate the Lipschitz function class. Our nonparametric convergence analy-
sis offers theoretical guarantees for using CNFs to learn probability distributions from
a finite random sample.
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The last part of the thesis addresses the convergence properties of a Bayesian fine-
tuning approach for large diffusion models. Diffusion models are a class of continuous
generative models built with SDEs whose generation ability has been largely reinforced
by various fine-tuning procedures. However, the mystery of fine-tuning has seldom
been uncovered from a statistical perspective. In this part, we address the gap in the
systematic understanding of the advantages of fine-tuning mechanisms from a statis-
tical perspective. We prove that a pre-trained large diffusion model can gain a faster
convergence rate from the Bayesian fine-tuning procedure when adapted to perform
conditional generation tasks. This improvement in the convergence rate justifies that
a pre-trained large diffusion model would perform better on a downstream conditional
generation task than a standard conditional diffusion model, whenever an appropriate

fine-tuning procedure is implemented.
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Chapter 1

Introduction

Let {X;}i_; be independent and identically distributed (i.i.d.) random variables drawn

from an underlying probability distribution v with support in R?. The task of genera-
tive learning is to learn v from the data {X;}?_; by generating new samples [Salakhutdi-
nov, 2015]. Several generative learning methods have been developed during the recent
decade, including generative adversarial networks [Goodfellow et al., 2014], variational
auto-encoders [Kingma and Welling, 2014], diffusion models [Sohl-Dickstein et al., 2015,
Ho et al., 2020, Song et al., 2021b], and normalizing flows [Tabak and Turner, 2013,
Rezende and Mohamed, 2015, Chen et al., 2018]. Deep neural networks [LeCun et al.,

2015], as a powerful modeling tool, have played an important role in the development

of these methods.

Among the generative learning methods, continuous normalizing flows (CNFs) use
ordinary differential equations (ODEs) to determine a stochastic process for transport-
ing a Gaussian distribution to the target distribution, achieving the goal of generative
learning. CNFs have achieved impressive empirical performance across various applica-
tions. These applications include large-scale image synthesis [Ma et al., 2024], protein
structure prediction [Jing et al., 2023], and 3D molecule generation [Song et al., 2023b].
Rectified flow [Liu et al., 2023], a CNF model that linearly interpolates Gaussian noise
and data, has been recently implemented in the large image model Stable Diffusion 3
[Esser et al., 2024]. Simulation-free CNFs that use flow matching to learn probability dis-
tributions have been the focus of much recent attention [Albergo and Vanden-Eijnden,

2023, Lipman et al., 2023, Liu et al., 2023, Neklyudov et al., 2023].

An early model of CNFs was proposed by Chen et al. [2018]. This model is based on
neural ODEs and employs a simulation-based maximum likelihood method to estimate
velocity fields. However, simulation-based CNFs are computationally demanding in
large-scale applications. To address the computational challenges of simulation-based

CNFs, significant efforts have been made to develop simulation-free CNFs, where ve-
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locity fields can be represented in terms of conditional expectations. Noteworthy exam-
ples include the probability flows of diffusion models [Song et al., 2021b] and denois-
ing diffusion implicit models [Song et al., 2021a], which are trained using a denoising
score matching objective function. In contrast, the flow matching method solves a least
squares problem to estimate the conditional expectation that represents the velocity

field [Albergo and Vanden-Eijnden, 2023, Lipman et al., 2023, Liu et al., 2023].

The essence of CNFs lies in defining ODEs that govern the evolution of CNFs in terms
of continuous trajectories. Inspired by the Gaussian denoising approach, which learns
a target distribution by denoising its Gaussian smoothed counterpart, many authors
have considered simulation-free estimation methods that have shown great potential in
large-scale applications [Song et al., 2021a, Liu et al., 2023, Albergo and Vanden-Eijnden,
2023, Lipman et al., 2023, Neklyudov et al., 2023, Tong et al., 2023, Chen and Lipman,
2023, Albergo et al., 2023b, Shaul et al., 2023, Pooladian et al., 2023]. However, despite
the empirical success of simulation-free CNFs based on Gaussian denoising, a rigorous

theoretical analysis of these CNFs has received limited attention thus far.

One target of this thesis is to explore an ODE flow-based approach for generative
modeling, which we refer to as Gaussian interpolation flows (GIFs). This method is
derived from the Gaussian stochastic interpolation. GIFs represent a straightforward
extension of the stochastic interpolation method [Albergo and Vanden-Eijnden, 2023,
Liu et al., 2023, Lipman et al., 2023]. They can be considered a class of CNFs and encom-
pass various ODE flows as special cases. According to the classical Cauchy-Lipschitz
theorem, also known as the Picard-Lindel6f theorem [Hartman, 2002b, Theorem 1.1], a
unique solution to the initial value problem for an ODE flow exists if the velocity field is
continuous in the time variable and uniformly Lipschitz continuous in the space variable.
In the case of GIFs, the velocity field depends on the score function of the push-forward
measure. Therefore, it remains to be shown that this velocity field satisfies the regular-
ity conditions stipulated by the Cauchy-Lipschitz theorem. These regularity conditions
are commonly assumed in the literature when analyzing the convergence properties of
CNFs or general neural ODEs [Chen et al., 2018, Bilos et al., 2021, Marion et al., 2023,
Marion, 2023, Marzouk et al., 2023]. However, there is a theoretical gap in understand-
ing how to translate these regularity conditions on velocity fields into conditions on

target distributions.



When a random sample from the target distribution is available, the process of learn-
ing simulation-free CNFs involves statistically and numerically solving a class of ODE-
based initial value problems (IVPs). Let v denote an easy-to-sample source distribution.
We consider the IVP on the unit time interval

ax,

T (x) =v(t,X4(x)), Xo(x)=x~p (t,x)€[0,1] x RY, (1.1)

where v represents the velocity field, which can be estimated based on data. The solution
to the IVP (1.1) is a family of flow maps (X);c[o,1] indexed by the time variable, which
generates a smoothing path between the source and target distributions. Gao et al.
[2024a] have studied the mathematical properties of these ODE-based IVPs under the
framework of Gaussian interpolation flow. This defines a Gaussian smoothing path as a
transport map that pushes forward a Gaussian distribution onto the target distribution

in terms of measure transport.

Simulation-free CNFs adopt a two-step “estimation-then-simulation” approach to
learning the desired transport map based on a random sample. In the estimation stage,
a deep learning model is trained to estimate the velocity field without simulating the
ODE that defines the CNF. During the simulation stage, numerical solvers simulate the
numerical solution of the ODE associated with the estimated velocity field, and the
generated data is collected at the end time point. Another target of this thesis is to
establish statistical convergence guarantees for these simulation-free CNFs in terms of
error bounds of distribution learning. These convergence guarantees are necessary to
broaden applications of simulation-free CNFs in statistical and machine learning meth-
ods, such as transfer learning, statistical hypothesis testing, and semi-supervised learn-
ing.

In addition to the ODE-based flow models, a lot of efforts have been made to the de-
velopment of diffusion models that are built on stochastic differential equations (SDEs).
Diffusion models are a promising approach to deep generative modeling that has evolved
rapidly since its emergence [Song and Ermon, 2019, 2020, Ho et al., 2020, Song et al.,
2021b,a]. The basis of diffusion models lies in the notion of the score function, which
characterizes the gradient of the log-density function of a given distribution. Compared
with learning the law of a random vector with the principle of generative modeling, con-
ditional generative modeling, which learns the law of a random vector given another

3



one, has gained more interest among practical generation tasks. To tackle a conditional
generation task, we need to resort to conditional diffusion models that are defined by
conditional score functions. The required conditional score is directly linked with the
unconditional score of the unconditional diffusion model due to the classical Bayes’ rule.
Such a relation between the score and the conditional score has inspired the proposal
of a Bayesian fine-tuning approach [Ho and Salimans, 2022, Huang et al., 2024]. This
fine-tuning approach involves taking an unconditional diffusion model that has already
been trained on a broad dataset and refining it using a smaller, task-specific dataset for
conditional generation. The goal is to use the general knowledge embedded in the large
diffusion model while tailoring its capabilities to meet particular needs. This kind of
fine-tuning not only enhances performance on specialized conditional generation tasks
but also reduces the computational resources and time required compared to training a
model from scratch. Due to such observations, we focus on investigating the benefits
of the Bayesian fine-tuning approach from a statistical perspective. These theoretical

investigations form the third part of the thesis.

1.1 Main contributions

This thesis is based on our recent work [Gao et al., 2024a,b] and an ongoing work jointly
with Ding Huang, Jian Huang, and Ting Li. We summarize the main contributions into

three parts.

1.1.1 Regularity analysis of CNFs constructed with stochastic in-

terpolation

The nature of CNFs is an ODE with a random starting point. To establish the well-
posedness properties of these CNFs, we resort to the classical Cauchy-Lipschitz theo-
rem. We first show that the regularity conditions of the Cauchy-Lipschitz theorem are
satisfied for several rich classes of probability distributions using variance inequalities.
Based on the obtained regularity results, we further expose the well-posedness of GIFs,
the Lipschitz continuity of flow mappings, and applications to generative modeling. The
well-posedness results are crucial for studying the approximation and convergence prop-

erties of GIFs learned with the flow or score matching method. When applied to gen-
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erative modeling, our results further elucidate the auto-encoding and cycle consistency

properties exhibited by GIFs.

Related work. There is a series of papers exploring the idea of Gaussian denois-
ing for constructing continuous normalizing flows for generative modeling [Song et al.,
2021b,a, Liu et al.,, 2023, Albergo and Vanden-Eijnden, 2023, Albergo et al., 2023b, Nek-
lyudov et al., 2023, Tong et al., 2023, Chen and Lipman, 2023, Albergo et al., 2023b, Shaul
etal., 2023, Pooladian et al., 2023, Albergo et al., 2023a,c]. Most of them focus on the mod-
eling and computation aspects of the flow models. For the target of analyzing the regu-
larity properties of flow models, we find a substantial body of research on the Lipschitz
properties of transport maps is closely related to ours. The celebrated Caffarelli’s con-
traction theorem [Caffarelli, 2000, Theorem 2] establishes the Lipschitz continuity of op-
timal transport maps that push the standard Gaussian measure onto a log-concave mea-
sure. Colombo et al. [2017] study a Lipschitz transport map between perturbations of
log-concave measures using optimal transport theory. Mikulincer and Shenfeld [2024]
demonstrate that the Brownian transport map, defined by the Follmer process, is Lips-
chitz continuous when it pushes forward the Wiener measure on the Wiener space to
the target measure on the Euclidean space. Additionally, Neeman [2022] and Mikulincer
and Shenfeld [2023] prove that the transport map along the reverse heat flow of certain
target measures is Lipschitz continuous. Our analysis is based on establishing similar
regularity properties of the GIFs. We show that GIFs share similar Lipschitz continuity
properties using the techniques developed in the literature on Lipschitz properties of

transport maps.

1.1.2 Convergence analysis of flow matching for learning CNFs

We contribute to conducting a non-asymptotic convergence analysis of CNFs learned
with the simulation-free flow matching approach. We develop a general framework for
error analyses of CNFs with flow matching for learning probability distributions based
on a random sample. Central to simulation-free CNFs, deep ReLU networks are em-
ployed for function approximation and nonparametric estimation of the velocity field.
We establish the approximation properties of deep ReLU networks with Lipschitz reg-
ularity control, which is essential for analyzing the impact of the estimated velocity

field on the distribution of the data generated through the flow. In particular, it is cru-
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cial to control the Lipschitz regularity of the estimated velocity field to ensure that the

associated IVP is well-posed.

Related work. In existing literature, it is typical to assume strong regularity con-
ditions directly on the velocity field (or score function) and its estimator. Moreover,
current studies often only consider certain sources of errors, neglecting either the dis-
cretization error or the estimation error of the velocity field (or score function). For
example, Albergo and Vanden-Eijnden [2023] used a Lipschitz assumption for the es-
timated velocity field. Chen et al. [2023e] considered second-order smoothness in the
space variable and Holder-type regularity in the time variable for the score function,
and their analysis ignored the score estimation error. Chen et al. [2023c] assumed that
the score function and the score estimator both have Lipschitz regularity in the space

variable and that the score estimation error is sufficiently small in the L? distance.

In our study, we conduct an end-to-end convergence analysis of the CNF distribution
estimator with flow matching. Furthermore, we only stipulate general assumptions on
the target distribution, rather than making assumptions on the velocity field (or score

function) and its estimator.

1.1.3 Statistical analysis of a Bayesian fine-tuning approach

From a statistical perspective, we provide a systematic investigation of the pre-training
and fine-tuning mechanisms for diffusion models. We consider Stable Diffusion - a
cutting-edge open-source large image model, and the Bayesian fine-tuning approach
[Ho and Salimans, 2022, Huang et al., 2024] that is widely used in diffusion models and
has demonstrated effectiveness in numerous experiments.

We prove that, under some regularity conditions, the Bayesian fine-tuning approach

__% 2a
achieves the convergence rate m 9+2f vV n~@k+2a, where m is the sample size of pre-

training, n is the labeled data size for fine-tuning, and 5, & are smoothness indices. Then,

if we train a conditional diffusion model from scratch using only the labeled data, the
20

convergence rate is n~ 4+k+25 with 6 < min(a, ). Our result rigorously shows the benefit

of pre-training when we have abundant data (m >> n) from the prior data space.

Related work. The idea of fine-tuning diffusion models can be dated back to the
approaches termed classifier guidance [Dhariwal and Nichol, 2021] and classifier-free
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guidance [Ho and Salimans, 2022]. More generally, the guidance plays a central role in
steering the samples generated by diffusion models toward a desired property. Subse-
quently, a series of work [Mou et al., 2024, Zhang et al., 2023, Huang et al., 2024] explore
flexible deep learning models to add guidance to the generation process of a pre-trained
unconditional model. Meanwhile, several fine-tuning approaches based on reinforce-
ment learning are proposed to achieve the goal of guidance [Black et al., 2024, Fan et al.,

2023].

The target of our statistical analysis is to justify that conditional diffusion models
can perform better with the proper usage of additional unlabelled data. In the litera-
ture, there are several papers studying the convergence of conditional diffusion mod-
els learned with classifier or classifier-free guidance [Fu et al., 2024, Wu et al., 2024].
However, their works do not focus on justifying the efficiency of fine-tuning diffusion

models.

The rest of this thesis is organized as follows. Chapter 2 introduces Gaussian inter-
polation flows, and we conduct regularity studies of the flows throughout this chapter.
In Chapter 3, we study the convergence properties of CNFs based on flow matching in
learning probability distributions from a finite random sample. In Chapter 4, we pro-
vide a statistical investigation into the Bayesian fine-tuning approach. Finally, Chapter

5 concludes the thesis and presents a further discussion on it.

1.2 Notations

Here we summarize the notations used throughout this thesis.

Number. For two numbers X, Y e R, weuse X <Y and Y > X todenote X < CY
for some constant C > 0. The notation X =< Y indicatesthat X <Y < X. For X,Y € R,
we denote X VY := max{X, Y}.

Vector. We use ||x[|, to denote the £,-norm of a vector x € R for p € [1,00]. Espe-
cially, we use || - || and (-, -) to denote the Euclidean metric and the corresponding inner

product. For two vectors x, € RY, we denote x Ry = xyT.

Matrix. For a matrix A € R**_ we use AT for the transpose, and the spectral norm

is denoted by ||Al|;,, := sup,gi-1||Ax||. For a square matrix A € R4 we use det(A)



for the determinant and Tr(A) for the trace. We use I; to denote the d x d identity
matrix. For two symmetric matrices A, B € R9>d ,wedenote A>BorB<AifA-Bis

positive semi-definite.

Set. Let IN and IN denote the set of non-negative integers and the set of positive
integers, respectively, thatis, N = {1, 2,3,---} and Ny = INU{0}. For an integer N € IN,
let [N] :={0,1,..,N}. Let 3971 := {x e R : |Ixll, = 1}, BY(xo, 7.l Il,) := {x € R? :
llx = xoll, < r}, and B%(xo,1,]| - Ip) :={x € R? llx = xoll, < 7). Foraset Q C R?, let
Q°:={xeR?:x¢Q}, and we use Id : R? — {0, 1} to denote the indicator function
of Q.

Function. For Q; c R¥,Q, c R%, n > 1, we denote by C"(€21;(),) the space of
continuous functions f : (3; — (), that are n times differentiable and whose partial
derivatives of order n are continuous. If Q, C R, we simply write C"(€);). For any
f(x) € C*(R%),let V. f and f denote its gradient and let V2f, V- f,and A, f denote its
Hessian, divergence, and Laplacian, respectively. The function composition operation

is marked as g o f := g(f(x)) for functions f and g.

Measure. The Borel o-algebra of R is denoted by B(IR?). The space of probabil-
ity measures defined on (R?, B(IR?)) is denoted as P(IR?). For any R?-valued random
variable X, we use [E[X] and Cov(X) to denote its expectation and covariance matrix,
respectively. We use p* v to denote the convolution for any two probability measures

p and v. For a random variable X, let Law(X) denote its probability distribution. For

two random variables X and Y, let X 4 Y mean that X and Y have the same distribu-
tion. Let g : R¥ — R? be a measurable map and u be a probability measure on R¥. The

push-forward measure fiu of a measurable set A is defined as fyp := p(f 1 (A)).

Let N(m,Y) denote a d-dimensional Gaussian random variable with mean vector
m € R? and covariance matrix ¥ € R?*?. For simplicity, let Va2 = N(0,0%1;), and
let ¢, 52(x) denote the probability density function of N (11, 0%1,) with respect to the

Lebesgue measure. If m = 0,0 = 1, we abbreviate these as y; and ¢(x).

Lebesgue space. Let LP(IR%;IR’, 1) denote the LP space with the LP norm for p €
[1,00] w.r.t. a measure p. To simplify the notation, we write LP(R?, u) if € = 1, LP(R%;RY)
if the Lebesgue measure is used, and LP(IR) if both hold.



Chapter 2

Gaussian Interpolation Flows

Gaussian denoising has emerged as a powerful method for constructing simulation-free
continuous normalizing flows for generative modeling. Despite their empirical suc-
cesses, theoretical properties of these flows and the regularizing effect of Gaussian de-
noising have remained largely unexplored. In this chapter, we aim to address this gap
by investigating the well-posedness of simulation-free continuous normalizing flows
built on Gaussian denoising. Through a unified framework termed Gaussian interpola-
tion flow, we establish the Lipschitz regularity of the flow velocity field, the existence
and uniqueness of the flow, and the Lipschitz continuity of the flow map and the time-
reversed flow map for several rich classes of target distributions. This analysis also sheds
light on the auto-encoding and cycle consistency properties of Gaussian interpolation
flows. Additionally, we study the stability of these flows in source distributions and
perturbations of the velocity field, using the quadratic Wasserstein distance as a metric.
Our findings offer valuable insights into the learning techniques employed in Gaussian
interpolation flows for generative modeling, providing a solid theoretical foundation
for end-to-end error analyses of learning Gaussian interpolation flows with empirical

observations.

2.1 Main results

The main focus of this chapter is to study and establish the theoretical properties of
Gaussian interpolation flow and its corresponding flow map. We show that the regular-
ity conditions of the Cauchy-Lipschitz theorem are satisfied for several rich classes of
probability distributions using variance inequalities. Based on the obtained regularity
results, we further expose the well-posedness of GIFs, the Lipschitz continuity of flow
mappings, and applications to generative modeling. The well-posedness results are cru-

cial for studying the approximation and convergence properties of GIFs learned with



the flow or score matching method. When applied to generative modeling, our results

further elucidate the auto-encoding and cycle consistency properties exhibited by GIFs.

[ Geometric regularity (Assumption 2.5) ] [ Gaussian interpolation flows ]

Lemma 2.20
Lemma 2.44

Lemma 2.46

[ Lipschitz velocity fields (Proposition 2.22) ]—»[ Well-posedness (Theorems 2.27, 2.28) ]

Lemma 2.42
Corollary 2.29
Lemma 2.31

[ Lipschitz flow maps (Propositions 2.32, 2.33) ]—»[ Auto-encoding, cycle consistency ]

Lemma 2.40
Corollary 2.38
Corollary 2.43

[ Stability in source distributions, stability in velocity fields (Propositions 2.39, 2.41) ]

Figure 2.1. Roadmap of the main results.

We provide an overview of the main results in Figure 2.1, in which we indicate the
assumptions used in our analysis and the relationship between the results. We also

summarize our main contributions below.

e In Section 2.3, we extend the framework of stochastic interpolation proposed in
Albergo and Vanden-Eijnden [2023]. Various ODE flows can be considered special
cases of the extended framework. We prove that the marginal distributions of
GIFs satisty the continuity equation converging to the target distribution in the
weak sense. Several explicit formulas of the velocity field and its derivatives are

derived, which can facilitate computation and regularity estimation.

e In Sections 2.4 and 2.5, we establish the spatial Lipschitz regularity of the veloc-
ity field for a range of target measures with rich structures, which is sufficient to
guarantee the well-posedness of GIFs. Additionally, we deduce the Lipschitz regu-

larity of both the flow map and its time-reversed counterpart. The well-posedness

10



of GIFs is an essential attribute, serving as a foundational requirement for inves-
tigating numerical solutions of GIFs. It is important to note that while the flow
maps are demonstrated to be Lipschitz continuous transport maps for generative
modeling, the Lipschitz regularity for optimal transport maps has only been par-

tially established to date.

e In Section 2.6, we show that the auto-encoding and cycle consistency properties
of GIFs are inherently satisfied when the flow maps exhibit Lipschitz continuity
with respect to the spatial variable. This demonstrates that exact auto-encoding
and cycle consistency are intrinsic characteristics of GIFs. Our findings lend the-
oretical support to the findings made by Su et al. [2023], as illustrated in Figures
2.3 and 2.4.

e In Section 2.6, we conduct the stability analysis of GIFs, examining how they re-
spond to changes in source distributions and to perturbations in the velocity field.
This analysis, conducted in terms of the quadratic Wasserstein distance, provides
valuable insights that justify the use of learning techniques such as Gaussian ini-

tialization and flow or score matching.

2.2 Preliminaries

In this section, we include several preliminary setups to show basic assumptions and

several useful variance inequalities.

2.2.1 Assumptions

We focus on the probability distributions satisfying several types of assumptions of weak
convexity, which offer a geometric notion of regularity in the study of high-dimensional
distributions [Klartag, 2010]. The index of these regularity conditions would not explic-
itly depend on the dimension. On the one hand, weak-convexity regularity conditions
are useful in deriving dimension-free guarantees for generative modeling and sampling
from high-dimensional distributions. On the other hand, they accommodate distribu-

tions with complex shapes, including those with multiple modes.

11



Definition 2.1 (Cattiaux and Guillin, 2014). A probability measure y(dx) = exp(—U)dx
is x-semi-log-concave for some « € R if its support Q) C R is convex and its potential

function U € C?(Q) satisfies

ViU(x) = kI;, VYxeQ.

The x-semi-log-concavity condition is a relaxed notion of log-concavity, since here
k < 0 is allowed. When x > 0, we are considering a log-concave probability measure
that is proved to be unimodal [Saumard and Wellner, 2014]. However, when x < 0, a

K-semi-log-concave probability measure can be multimodal.

Definition 2.2 (Eldan and Lee, 2018). A probability measure p(dx) = exp(—U)dx is
pB-semi-log-convex for some p > 0 if its support O C RY is convex and its potential

function U € C%(Q)) satisfies

ViU(x) < Bl;, VYxeQ.

The following definition of L-log-Lipschitz continuity is a variant of L-Lipschitz
continuity. It characterizes a first-order condition on the target function rather than a
second-order condition such as k-semi-log-concavity and -semi-log-convexity in Def-

initions 2.1 and 2.2.

Definition 2.3. A function f : R? — R, is L-log-Lipschitz continuous if its logarithm

is L-Lipschitz continuous for some L > 0.

Based on the definitions, we present two assumptions on the target distribution. As-
sumption 2.4 concerns the absolute continuity and the moment condition. Assumption

2.5 imposes geometric regularity conditions.

Assumption 2.4. The probability measure v is absolutely continuous with respect to

the Lebesgue measure and has a finite second moment.

Assumption 2.5. Let D := (1/v2)diam(supp(v)). The probability measure v satisfies

one or more of the following conditions:

(i) v is p-semi-log-convex for some > 0 and x-semi-log-concave for some x > 0
with supp(v) = R%;
12



(ii) v is k-semi-log-concave for some x € IR with D € (0, o0);

(iii) v = Y442 * p where p is a probability measure supported on a Euclidean ball of

radius R on R?;

(iv) v is B-semi-log-convex for some 8 > 0, k-semi-log-concave for some x < 0, and

o?_)l;(x) is L-log-Lipschitz in x for some L > 0 with supp(v) = RY.

Multimodal distributions. Assumption 2.5 enumerates scenarios where probabil-
ity distributions are endowed with geometric regularity. We examine the scenarios and
clarify whether they cover multimodal distributions. Scenario (i) is referred to as the
classical strong log-concavity case (k > 0), and thus, describes unimodal distributions.
Scenario (ii) allows x < 0 and requires that the support is bounded. Mixtures of Gaus-
sian distributions are considered in Scenario (iii), and typically are multimodal distri-
butions. Scenario (iv) also allows k¥ < 0 when considering a log-Lipschitz perturbation
of the standard Gaussian distribution. Both Scenario (ii) and Scenario (iv) incorporate

multimodal distributions due to the potential negative lower bound x.

Lipschitz score. Lipschitz continuity of the score function is a basic regularity as-
sumption on target distributions in the study of sampling algorithms based on Langevin
and Hamiltonian dynamics. Even for high-dimensional distributions, this assumption
endows a great source of regularity. For an L-Lipschitz score function, its corresponding

distribution is both L-semi-log-convex and (—L)-semi-log-concave for some L > 0.

2.2.2 Variance inequalities

Variance inequalities like the Brascamp-Lieb inequality and the Cramér-Rao inequality
are fundamental inequalities for explaining the regularizing effect of Gaussian denois-
ing. Combined with x-semi-log-concavity and f-semi-log-convexity, these inequalities
are crucial for deducing the Lipschitz regularity of the velocity fields of GIFs in Propo-
sition 2.22-(b) and (c).

Lemma 2.6 (Brascamp-Lieb inequality). Let u(dx) = exp(—U(x))dx be a probability
measure on a convex set Q) C IR? whose potential function U : QO — R is of class C? and

strictly convex. Then for every locally Lipschitz function f € L*(Q, ),

Var, (f) < B, [(Vaf, (VIU) 'V, f)]. 21)
13



When applied to functions of the form f : x > (x, e) for any e € $4~1, the Brascamp-

Lieb inequality yields an upper bound of the covariance matrix

Cov

W(X) < B, [(ViU ()] (2.2)

with equality if X ~ N (m, X) with ¥ positive definite.

Under the strong log-concavity condition, that is, y is k-semi-log-concave with
« > 0, and if the Euclidean Bakry-Emery criterion is satisfied [Bakry and Emery, 1985],
the Brascamp-Lieb inequality instantly recovers the Poincaré inequality (see Definition

2.50).

The Brascamp-Lieb inequality originally appeared in [Brascamp and Lieb, 1976, The-
orem 4.1]. Alternative proofs are provided in Bobkov and Ledoux [2000], Bakry et al.
[2014], Cordero-Erausquin [2017]. The dimension-free inequality (2.1) can be further

strengthened to obtain several variants with dimensional improvement.

Lemma 2.7 (Cramér-Rao inequality). Let u(dx) = exp(—U(x))dx be a probability mea-
sure on IR? whose potential function U : R — R is of class C?. Then forevery f € C'(R%),

Var,(f) 2 (B, [V, f ), (EV2U]) " E,[V.f)). (23)

When applied to functions of the form f : x > (x, e) for any e € $%~!, the Cramér-

Rao inequality yields a lower bound of the covariance matrix
) -1
Cov,(X) = (E,[ViU(x)]) (2.4)

with equality as well if X ~ N (m, X) with ¥ positive definite.

The Cramér-Rao inequality plays a central role in asymptotic statistics as well as in
information theory. The inequality (2.4) has an alternative derivation from the Cramér-
Rao bound for the location parameter. For detailed proofs of the Cramér-Rao inequality,
readers are referred to Chewi and Pooladian [2022], Dai et al. [2023], and the references

therein.

2.3 Gaussian interpolation flows

Simulation-free CNFs represent a potent class of generative models based on ODE flows.
Albergo and Vanden-Eijnden [2023] and Albergo et al. [2023b] introduce an innovative
14



CNF that is constructed using stochastic interpolation techniques, such as Gaussian
denoising. They conduct a thorough investigation of this flow, particularly examining

its applications and effectiveness in generative modeling.

We study the ODE flow and its associated flow map as defined by the Gaussian
denoising process. This process has been explored from various perspectives, including
diffusion models and stochastic interpolants. Building upon the work of Albergo and
Vanden-Eijnden [2023] and Albergo et al. [2023b], we expand the stochastic interpolant
framework by relaxing certain conditions on the functions a; and b;, offering a more

comprehensive perspective on the Gaussian denoising process.

In our generalization, we introduce an adaptive starting point to the stochastic in-
terpolation framework, which allows for greater flexibility in the modeling process. By
examining this modified framework, we aim to demonstrate that the Gaussian denoising

principle is effectively implemented within the context of stochastic interpolation.

Definition 2.8 (Vector interpolation). Let z € R?, x; € R? be two vectors in the Eu-
clidean space and let x( := agz + byx; with ag > 0,by > 0. Then we construct an inter-

polant between x( and x; over time t € [0, 1] through I;(xg, x;), defined by
Ii(xp,x1) = a;z2+ bsxq, (2.5)

where a;, b; satisfy
i, <0, b;>0, ap>0, by>0, a3 =0, b =1,
a; >0 forany te€(0,1), b;>0 foranyte€(0,1), (2.6)

a, b, € C*([0,1)), a?eCY([0,1]), b, eC([0,1)).

Remark 2.9. Compared with the vector interpolant defined by Albergo and Vanden-
Eijnden [2023] (a.k.a. one-sided interpolant in Albergo et al. [2023b]), we extend its
definition by relaxing the requirements that ay = 1, b = 0 with ag > 0, by > 0. This con-
sideration is largely motivated by analyzing the probability flow ODEs of the variance-
exploding (VE) SDE and the variance-preserving (VP) SDE [Song et al., 2021b]. We
illustrate examples of interpolants incorporated by Definition 2.8 in Table 2.1. In this
table, we consider the VE interpolant [Song et al., 2021b], VP interpolant [Song et al.,
2021b], linear interpolant [Liu et al., 2023], Follmer interpolant [Dai et al., 2023], and
trigonometric interpolant [Albergo and Vanden-Eijnden, 2023]. There are two types of
15



source measures including a standard Gaussian distribution y; and a convoluted distri-

bution consisting of the target distribution and .

Remark 2.10. We have eased the smoothness conditions for the functions a; and b, re-
quired in Albergo and Vanden-Eijnden [2023]. Specifically, we consider the case where
a,, b, € C%([0,1)), a> € C'([0,1]), and b; € C'([0,1]). This relaxation enables us to in-
clude the Follmer flow into our framework, characterized by a; = V1-+2 and b, =t
It is evident that a; = V1 - 12 does not fulfill the condition a; € C%([0,1]), but it does
meet the requirements a, € C2([0,1)) and a? € C'([0,1]).

Remark 2.11. The C? regularity of a,, b, is necessary to derive the regularity of the
velocity field v(t,x) in Eq. (2.9) concerning the time variable ¢. In addition, the C!
regularity of a%, b, is sufficient to ensure the Lipschitz regularity of the velocity field

v(t,x) in Eq. (2.9) concerning the space variable x.

A natural generalization of the vector interpolant (2.5) is to construct a set inter-
polant between two convex sets through Minkowski sum, which is common in convex
geometry. A set interpolant stimulates the construction of a measure interpolant be-

tween a structured source measure and a target measure.

As noted, we can construct a measure interpolation using a Gaussian convolution
path. The measure interpolation is particularly relevant to Gaussian denoising and Gaus-
sian channels in information theory as elucidated in Remark 2.18. Because of this con-
nection with Gaussian denoising, we call the measure interpolation a Gaussian stochas-
tic interpolation. The Gaussian stochastic interpolation can be understood as a collec-
tion of linear combinations of a standard Gaussian random variable and the target ran-
dom variable. The coefficients of the linear combinations vary with time ¢ € [0,1] as
shown in Definition 2.8. Later in this section, we will show this Gaussian stochastic

interpolation can be transformed into a deterministic ODE flow.

Gaussian stochastic interpolation has been investigated from several perspectives
in the literature. The rectified flow has been proposed in Liu et al. [2023], and its the-
oretical connection with optimal transport has been investigated in Liu [2022]. The
formulation of the rectified flow is to learn the ODE flow defined by stochastic inter-
polation with linear time coefficients. In Appendix C of Liu et al. [2023], there is a
nonlinear extension of the rectified flow in which the linear coefficients are replaced by

16



general nonlinear coeflicients. Albergo et al. [2023b] extends the stochastic interpolant
framework proposed in [Albergo and Vanden-Eijnden, 2023] by considering a linear
combination among three random variables. In Section 3 of Albergo et al. [2023b], the
original stochastic interpolant framework is recovered as a one-sided interpolant be-
tween the Gaussian distribution and the target distribution. Moreover, Lipman et al.
[2023] propose a flow matching method which directly learns a Gaussian conditional
probability path with a neural ODE. In Section 4.1 of Lipman et al. [2023], the velocity
fields of the variance exploding and variance preserving probability flows are shown
as special instances of the flow matching framework. We summarize these formula-
tions as Gaussian stochastic interpolation by slightly extending the original stochastic

interpolant framework.

Type VE VP Linear Follmer Trigonometric
a; o, a, 1-t V1-t2 cos(5t)
b 1 \J1-af t t sin(Zt)
ap (04 o)) 1 1 1
bo 1 J1-a? 0 0 0
Source Convolution Convolution 4 Vd Vd

Table 2.1. Summary of various measure interpolants.

Definition 2.12 (Measure interpolation). Let u = Law(X() and v = Law(X;) be two
probability measures satisfying X = a¢Z + bgX; where Z ~ y; := N(0,1,) is indepen-
dent from X;. We call (X;)e[0,1] @ Gaussian stochastic interpolation from the source
measure y to the target measure v, which is defined through I; over time interval [0, 1]
as follows

Xt = It(x()l Xl ), XO = aOZ + boxl, Z~ Zr Xl ~ V. (27)

Remark 2.13. It is obvious that the marginal distribution of X; satisfies X; 4 a;,Z+b; Xy

with Z ~ y,4,X; ~ v.

Motivated by the time-varying properties of the Gaussian stochastic interpolation,
we derive that its marginal flow satisfies the continuity equation. This result character-

izes the dynamics of the marginal density flow of the Gaussian stochastic interpolation.
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Theorem 2.14. Suppose that Assumption 2.4 holds. Then the marginal flow (p;)sef0,1] of
the Gaussian stochastic interpolation (X;):e[0,1] between p and v satisfies the continuity

equation

Ipe+ Ve (p(£x) =0, (x)€[0,1]x R, polx) = F(x), pi(x) = (x) (28)

in the weak sense with the velocity field

v(t,x) = E[a,Z+ b XX, =x], te(0,1), (2.9)
v(0,x):=limv(t,x), v(1,x):=limv(t,x). (2.10)
10 71

Remark 2.15. We notice that x = a,E[Z|X; = x]+ b, E[X{|X; = x] due to Eq. (2.7). Then
it holds that
v(t,x) = 2x+ (bt —%p ) E[X X, =x], te(0,1). (2.11)

We also notice that, according to Tweedie’s formula (cf. Lemma 2.51), it holds that

s(t,x) = 2—§1E[xl|xt =x] - %x, te(0,1), (2.12)

t

where s(t, x) is the score function of the marginal distribution of X; ~ p;.

Combining (2.11) and (2.12), it follows that the velocity field is a gradient field and

its nonlinear term is the score function s(t, x), namely, for any ¢ € (0, 1),

v(t,x) = Z—ix+(§—iaf—dtat)s(t,x). (2.13)

Remark 2.16. A relevant result has been provided in the proof of [Albergo and Vanden-
Eijnden, 2023, Proposition 4] in a restricted case that ag = 1,b; = 0. In this case, if

dg,dq, bo, f?l are well-defined, the velocity field reads

v(0,x) = dox + boE, [X;],  v(1,x)=byx+ a1 B, [Z]

at time 0 and 1. Otherwise, if any one of dg, d;, 150, 151 is not well-defined, the velocity
field v(0, x) or v(1, x) should be considered on a case-by-case basis. In addition, we pro-
vide an alternative viewpoint of the relationship between the velocity field associated
with stochastic interpolation and the score function of its marginal flow using Tweedie’s

formula in Lemma 2.51.
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Figure 2.2. Snapshots of a Gaussian interpolation flow based on the Féllmer interpolant.

Remark 2.17 (Diffusion process). The marginal flow of the Gaussian stochastic inter-
polation (2.7) coincides with the time-reversed marginal flow of a diffusion process

(Xt)te[o,l) [Albergo et al., 2023b, Theorem 3.5] defined by

dX, = -2=X, + \/2(%a§_t - dl_tal_t)dwt.

Remark 2.18 (Gaussian denoising). The Gaussian stochastic interpolation has an information-

theoretic interpretation as a time-varying Gaussian channel. Here a? and b?/a? stand
for the noise level and signal-to-noise ratio (SNR) for time ¢ € [0, 1], respectively. As
time t — 1, we are approaching the high-SNR regime, that is, the SNR b?/a? grows
to co. Moreover, the SNR btz/ atz is monotonically increasing in time ¢ over [0,1]. The

Gaussian noise level gets reduced through this Gaussian denoising process.

We are now ready to define Gaussian interpolation flows by representing the conti-
nuity equation (2.8) with Lagrangian coordinates [Ambrosio and Crippa, 2014]. A basic
observation is that GIFs share the same marginal density flow with Gaussian stochastic
interpolations. The continuity equation (2.8) plays a central role in the derandomization
procedure from Gaussian stochastic interpolations to GIFs. We additionally illustrate
GIFs using a two-dimensional example as in Figure 2.2. The source distribution is the

standard two-dimensional Gaussian distribution ,, and the target distribution is a mix-
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ture of six two-dimensional Gaussian distributions as the shape of a circle. The image

panels are placed sequentially from time t = 0 to time t = 1.

Definition 2.19 (Gaussian interpolation flow). Suppose that probability measure v sat-
isfies Assumption 2.4. If (X;),¢[o,1] solves the initial value problem (IVP)

dx,

L) = (L X, (), Xolx)~ g e (0,1, (2149)

where p is defined in Definition 2.12 and the velocity field v is given by Eq. (2.9) and
(2.10), we call (X;)e[0,1] @ Gaussian interpolation flow associated with the target mea-

sure v.

2.4 Spatial Lipschitz estimates for the velocity field

We have explicated the idea of Gaussian denoising with the procedure of Gaussian
stochastic interpolation or a Gaussian channel with increasing SNR w.r.t. time. By
interpreting the process as an ODE flow, we derive the framework of Gaussian interpo-
lation flows. First and foremost, an intuition is that the regularizing effect of Gaussian
denoising would ensure the Lipschitz smoothness of the velocity field. Since the stan-
dard Gaussian distribution is both 1-semi-log-concave and 1-semi-log-convex, its con-
volution with a target distribution will maintain its high regularity as long as the target
distribution satisfies the regularity conditions. We rigorously justify this intuition by
establishing spatial Lipschitz estimates for the velocity field. These estimates are estab-
lished based on the upper bounds and lower bounds regarding the Jacobian matrix of
the velocity field v(t,x) according to the Cauchy-Lipschitz theorem, which are given
in Proposition 2.22 below. To deal with the Jacobian matrix V,v(¢,x), we introduce a

covariance expression of it and present the associated upper bounds and lower bounds.

The velocity field v(t,x) is decomposed into a linear term and a nonlinear term,
the score function s(t,x). To analyze the Jacobian V,v(t,x), we only need to focus on
V.s(t, x), that is, V21log p;(x). To ease the notation, we would henceforth use Y for X;.

Correspondingly, we replace p;(x) with p;(y) for the density function of Y.

According to Bayes’ rule, the marginal density p; of X; satisfies

pilx) = jp(t,xm(y)dy
20



where Y ~ p;(y) and p(t,x|y) = (szy,atz(x) is a conditional distribution induced by the
Gaussian noise. Due to the factorization p;(x)p(y|t,x) = p(t, x[y)p1(v), the score func-

tion s(t, x) and its derivative V,s(t, x) have the following expressions

x—by
af

s(t,x) = -V, logp(y|t,x) — ,  Vys(t,x) = —V,ZC logp(ylt, x) — ;—21d.

Thanks to the expressions above, a covariance matrix expression of V,s(t, x) is endowed

by the exponential family property of p(y|t, x).

Lemma 2.20. The conditional distribution p(y|t, x) is an exponential family distribution
and a covariance matrix expression of the log-Hessian matrix V2logp(y|t, x) for any t €
(0,1) is given by
2
% logp(ylt, x) = —z—ﬁlCov(let = X), (2.15)
t

where Cov(Y|X; = x) is the covariance matrix of Y|X; = x ~ p(yl|t, x). Moreover, for any

t € (0,1), it holds that

2
Vas(t,x) = Z£Cov(Y|X, = x) - L1, (2.16)
t t
and that
2 3 . .
V., v(t x) = z_%(g - Z—;)COV(YW = x)+ &1, 2.17)

2 2 ({7 .
Remark 2.21. Since d; (Z—;) = % (g—; - ﬂ), it follows from (2.17) that the derivative of
t

a
ay t

the SNR with respect to time ¢ controls the dependence of V,v(t,x) on Cov(Y|X; = x).

The representation (2.17) can be used to upper bound and lower bound V,v(¢,x).
This technique has been widely used to deduce the regularity of the score function con-
cerning the space variable [Mikulincer and Shenfeld, 2024, 2023, Chen et al., 2023d, Lee
et al., 2023, Chen et al,, 2023a]. The covariance matrix expression (2.16) of the score
function has a close connection with the Hatsell-Nolte identity in information theory
[Hatsell and Nolte, 1971, Palomar and Verdu, 2005, Wu and Verdu, 2011, Cai and Wu,
2014, Wibisono et al., 2017, Wibisono and Jog, 2018a,b, Dytso et al., 2023a,b].

Employing the covariance expression in Lemma 2.20, we establish several bounds

on V,v(t,x) in the following proposition.
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Proposition 2.22. Let v(dy) = p;(v)dy be a probability measure on R with
D := (1/V2)diam(supp(v)).

(a) Foranyte(0,1),

ﬂld <V, v(tx) < {Ml)z + ﬂ}ld-
a; a; a

(b) Suppose that p, is p-semi-log-convex with > 0 and supp(p;) = R?. Then for any
te(0,1],

> Basa; + btth

V., v(t,x) > .
X ( ) ﬁa%‘i‘b? d

(c) Suppose that py is k-semi-log-concave with k € R. Then for any t € (to,1],

V,v(t, x) < ds

2_ 12
Ka; + b;

2
where t is the root of the equation k + % =0 overte€(0,1)ifk <0 andty=0if
t

x> 0.

(d) Fix a probability measure p on R? supported on a Euclidean ball of radius R, and
let v := 7y, ,2%p witho > 0. Then foranyt € (0,1),

d;a; + 0°b.b,

ﬂtbt(atht —diby) o dpap+ Uzétbt}ld

I, <V, v(tx)=<
a2 Vv(x) { (@2 + 07b)? 2+ oh?

a? + o2b?
(e) Suppose that f—)};(x) is L-log-Lipschitz for some L > 0. Then for any t € (0,1),

. 2 .
h 2_ _ _ 2 bt dtat+btbt
{(bt“f “f“f)( B 1) )+ P

ﬁ VxV(t,X) ﬁ {(Z—ia% —dtat)Bt + M}Id,

2.2
a;+b;

where By := 5Lb, (a2 + b?) "3 (L + (log(nJa? + b2/b,))?).

Comparing part (a) with part (d) in Proposition 2.22, we can see that the bounds in (a)
are consistent with those in (d) in the sense that (a) is a limiting case of part (d) as 0 — 0.
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The lower bound in part (a) blows up at time ¢ = 1 owing to a; = 0, while in part (d) it
behaves well since the lower bound in part (d) coincides with a lower bound indicated
by the #—semi—log—convex property. It reveals that the regularity of the velocity field
v(t,x) with respect to the space variable x improves when the target random variable

is bounded and is subject to Gaussian perturbation.

The lower bound in part (b) and the upper bound in part (c) are tight in the sense

that both of them are attainable for a Gaussian target distribution, that is,

i, +b,b
Vu(t,x) = —ﬁata2t+ tz !
Ba; + by

I, ifv= Vi, /p-

The upper and lower bounds in Proposition 2.22-(a) and (e) become vacuous as they
both blow up at time ¢+ = 1. The intuition behind is that the Jacobian matrix of the
velocity field can be both lower and upper bounded at time ¢ = 1 only if the score
function of the target measure is Lipschitz continuous in the space variable x. Under
an additional Lipschitz score assumption (equivalently, f-semi-log-convex and x-semi-
log-concave for some f§ = —« > 0), the upper and lower bounds in part (a) and part (e)
can be strengthened at time t = 1 based on the lower bound in (b) and the upper bound

in part (c).

According to Proposition 2.22-(a) and (c), there are two upper bounds available that
shall be compared with each other. One is the D?-based bound in part (a), and the other
is the k-based bound in part (c). According to the proof of Proposition 2.22, these two
upper bounds are equal if and only if the corresponding upper bounds on Cov(Y|X; = x)

are equal, that is,

2 b2\
D*=x+—2%) . (2.18)
a
t

Then the critical case is kD? = 1 since simplifying Eq. (2.18) reveals that

_b

5
ay

D?%—« (2.19)

We note that b?/a?, ranging over (0, o), is monotonically increasing w.r.t. t € (0,1).

Suppose that kD? > 1. Then (2.19) has no root over t € (0,1), which implies that the
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k-based bound is tighter over [0, 1), i.e.,

b2\~
D?> (K+—t2) , Vte[o,1).
a
t
Otherwise, suppose that kD? < 1. Then (2.19) has a root t; € (0, 1), which implies that
the D2-based bound is tighter over [0, 1), i.e.,
b2\~
D2<(K+-i) , Yte[0,t)),

2
ay

and that the x-based bound is tighter over [#;, 1), i.e.,
b2\~
D?> (K+ —;) , Vte[t,1).
a
Next, we present several upper bounds on the maximum eigenvalue of the Jacobian

matrix of the velocity field A,,,4(V,v(t,x)) and its exponential estimates for studying

the Lipschitz regularity of the flow maps as noted in Lemma 2.31.

Corollary 2.23. Let v be a probability measure on R? with D := (1/v2)diam(supp(v))

and suppose that v is k-semi-log-concave with xk > 0.

(a) IfkD? > 1, then

2

Amax(Vv(t,x)) <6, := 5
Ka; + b;

, te[0,1]. (2.20)

(b) IfkD? < 1, then

btz([?t dt)DZ dy
b (b _d)p2yd e, g)),
Amax(Vyv(£,x) < 0, 1= 9 \Pt 4 “

K“tdt“'btbt
ka?+b? ’ telt, 1],

(2.21)

where t; solves (2.19).

Corollary 2.24. Let v be a probability measure on R? with D := (1/v2)diam(supp(v)) <

oo and suppose that v is k-semi-log-concave with k¥ < 0. Then

o 4 +2L,  te(0,t),
/\maX(va(t, x)) S Gt = a% bt az az

Kﬂtdt+btbt 1
ka?+b? ’ te [tl' ]’

(2.22)

where t; solves (2.19).
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Corollary 2.25. Fix a probability measure p on R? supported on a Euclidean ball of radius
Randletv:=y;,2%p witho > 0. Then

deaz + Uzbtbt atbt(atbt —diby)

Amax(Viv(t,x)) < 6; =
ma ( x ( )) t at2+(72bt2 (at2+62btz)2

(2.23)

Corollary 2.26. Suppose that v is k-semi-log-concave for some k¥ < 0, and d(%(x) is

L-log-Lipschitz for some L > 0. Then

big2 g dyap+byby
(btat atat)Bt—i- e t€[0,t,),

Kﬂtdi+btbt t 1
ka?+b? ’ telt1],

Amax(Vyv(t,x)) < 0, := (2.24)

1

where B, := 5Lb,(a? + bf)_%(L + (log(~/a? + b?/b,))"2) and t, € (o, 1).

2.5 Well-posedness and Lipschtiz flow maps

In this section, we study the well-posedness of GIFs and the Lipschitz properties of their
flow maps. We also show that the marginal distributions of GIFs satisfy the log-Sobolev

inequality and the Poincaré inequality if Assumptions 2.4 and 2.5 are satisfied.

Theorem 2.27 (Well-posedness). Suppose Assumptions 2.4 and 2.5-(i), (iii), or (iv) are
satisfied. Then there exists a unique solution (X)[0,1] to the IVP (2.14). Moreover, the

push-forward measure satisfies X; 4y = Law(a;Z + by Xy) withZ ~ y3, Xy ~v.

Theorem 2.28. Suppose Assumptions 2.4 and 2.5-(ii) are satisfied. Foranyt € (0,1), there
exists a unique solution (X)e[o,1-¢) to the IVP (2.14). Moreover, the push-forward measure

satisfies Xyup = Law(a;Z + by Xy) withZ ~ v, X1 ~ v.

Corollary 2.29 (Time-reversed flow). Suppose Assumptions 2.4 and 2.5-(i), (iii), or (iv)
are satisfied. Then the time-reversed flow (X ):e[0,1] associated with v is a unique solution

to the IVP:
dX;
dt

(x)=-v(1-t,X[(x), Xyx)~v, tel0,1] (2.25)

The push-forward measure satisfies X; ,v = Law(ay_;Z + by_4X;) where Z ~ y;,X; ~ v.

Moreover, the flow map satisfies X;(x) = X; ! (x).
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Corollary 2.30. Suppose Assumptions 2.4 and 2.5-(ii) are satisfied. For anyt € (0,1), the

time-reversed flow (X{);e[;,1) associated with v is a unique solution to the IVP:

dx;

T = (1= X{(x), Xi(x)~Law(aZ+b X)), te[tl],  (226)

where Z ~ y4, X ~ v. The push-forward measure satisfies X;,v = Law(a;_Z+ b;_;Xy).

Moreover, the flow map satisfies X;(x) = X; ! (x).

Based on the well-posedness of the flow, we can provide an upper bound on the

Lipschitz constant of the induced flow map.

Lemma 2.31. Suppose that a flow (X;).e[0,1] is well-posed with a velocity field v(t,x) :
[0,1]xR? — R? of class C' in x, and that for any (t,x) € [0,1]xR?, it holds Vv (t,x) <
0,1,. Let the flow map X ; : R? — RY be of class C! in x for any 0 <s <t < 1. Then the

flow map X ; is Lipschitz continuous with an upper bound of its Lipschitz constant given

by

t
IV, X s ()l Sexp(f eudu). (227
S

Using Lemma 2.31, we show that the flow map of a GIF is Lipschitz continuous in

the space variable x.
Proposition 2.32 (Lipschitz mappings). Suppose that Assumptions 2.4 and 2.5-(i) hold.
(i) If v is x-semi-log-concave for some k > 0, then the flow map X;(x) is a Lipschitz
mapping, that is,
1

—)
/ 2,12
1<a0+b0

In particular, ifag =1 and by = 0, then

IVeX1(x)ll2,2 < Vx e RY.

1
VX (a2 < 7= Vxe R,

(ii) If v is B-semi-log-convex for some ff > 0, then the time-reversed flow map Xj(x) is

a Lipschitz mapping, that is,

IV X5 (%)ll,2 < /Bag + b5, ¥x € supp(v).
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In particular, ifag =1 and by = 0, then

IV X; ()llo2 < /B, Vx € supp(v).

Proposition 2.33 (Gaussian mixtures). Suppose that Assumptions 2.4 and 2.5-(iii) hold.
Then the flow map X (x) is a Lipschitz mapping, that is,

- o ( aj R?
22 S exp 5 .
’ 2p2 202
,/a%+02b(2) ap +0°by

In particular, ifag = 1 and by = 0, then

IV X1 (x)

), Vx € R,

2

R
VX1 ()]l < UeXp(T‘z), —

Moreover, the time-reversed flow map X7 (x) is a Lipschitz mapping, that is,

IV X (X)lla,2 < vJo2ad +b3, Vx €supp(v).

In particular, ifag = 1 and by = 0, then
. 1
IVXi(0)loa < =, V€ supp(v).

Remark 2.34. Well-posed GIFs produce diffeomorphisms that transport the source
measure onto the target measure. The diffeomorphism property of the transport maps
are relevant to the auto-encoding and cycle consistency properties of their generative

modeling applications. We defer a detailed discussion to Section 2.6.

Early stopping implicitly mollifies the target measure with a small Gaussian noise.
For image generation tasks (with bounded pixel values), the mollified target measure is
indeed a Gaussian mixture distribution considered in Theorem 2.33. The regularity of
the target measure largely gets enhanced through such mollification, especially when
the target measure is supported on a low-dimensional manifold in accordance with the
data manifold hypothesis. Therefore, although such a diffeomorphism X; (x) may not be
well-defined for general bounded target measures, an off-the-shelf solution would be to
perturb the target measure with a small Gaussian noise or to employ the early stopping
technique. Both approaches will smooth the landscape of the target measure.
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Proposition 2.35. Suppose the target measure v satisfies the log-Sobolev inequality with
constant Cys(v). Then the marginal distribution of the GIF (p;)ic[o,1] Satisfies the log-

Sobolev inequality, and its log-Sobolev constant Cys(p;) is bounded as

Crs(ps) < af + b7 Crs(v).

Moreover, suppose the target measure v satisfies the Poincaré inequality with constant
Cp(v). Then the marginal distribution of the GIF (p;);e[0,1] Satisfies the Poincaré inequality,

and its Poincaré constant Cp(p;) is bounded as

Co(ps) < a; + b7 Cp(v).

The log-Sobolev and Poincaré inequalities (see Definitions 2.49 and 2.50) are fun-
damental tools for establishing convergence guarantees for Langevin Monte Carlo al-
gorithms. From an algorithmic viewpoint, the predictor-corrector algorithm in score-
based diffusion models and the corresponding probability flow ODEs essentially com-
bine the ODE numerical solver (performing as the predictor) and the overdamped Langevin
diffusion (performing as the corrector) to simulate samples from the marginal distribu-
tions [Song et al., 2021b]. Proposition 2.35 shows that the marginal distributions all
satisfy the log-Sobolev and Poincaré inequalities under mild assumptions on the target
distribution. This conclusion suggests that Langevin Monte Carlo algorithms are cer-
tified to have convergence guarantees for sampling from the marginal distributions of
GIFs. Furthermore, the target distributions covered in Assumption 2.5 are shown to
satisfy the log-Sobolev and Poincaré inequalities [Mikulincer and Shenfeld, 2024, Dai
et al., 2023, Fathi et al., 2023], which suggests that the assumptions of Proposition 2.35
generally hold.

2.6 Applications to generative modeling

Auto-encoding is a primary principle in learning a latent representation with gener-
ative models [Goodfellow et al., 2016, Chapter 14]. Meanwhile, the concept of cycle
consistency is important to unpaired image-to-image translation between the source
and target domains [Zhu et al., 2017]. The recent work by Su et al. [2023] propose the
dual diffusion implicit bridges (DDIB) for image-to-image translation, which shows a
strong pattern of exact auto-encoding and image-to-image translation. DDIBs are built
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upon the denoising diffusion implicit models (DDIM), which share the same probabil-
ity flow ODE with VESDE (considered as VE interpolant in Table 2.1), as pointed out
by [Song et al., 2021a, Proposition 1]. First, DDIBs attain latent embeddings of source
images encoded with one DDIM operating in the source domain. The encoding embed-
dings are then decoded using another DDIM trained in the target domain to construct
target images. The whole process consisting of two DDIMs seems to be cycle consistent
up to numerical errors. Several phenomena of auto-encoding and cycle consistency are

observed in the unpaired data generation procedure with DDIBs.

We replicate the two-dimensional experiments by Su et al. [2023] in Figures 2.3 and
2.4 to show the phenomena of approximate auto-encoding and cycle consistency of

GIFs.

In Figure 2.3, the Concentric Rings data in the source domain (the first panel) is
encoded into the latent domain (the second panel), and then decoded into the source
domain (the third panel). According to the consistent color pattern and pointwise cor-
respondences across the domains, both the learned encoder mapping and the learned
decoder mapping exhibit approximate Lipschitz continuity with respect to the space
variable. One justification of such auto-encoding observation is presented in Corollary
2.36 where we prove that the composition of the encoder map and the decoder map

yields an identity map.

In Figure 2.4, the cycle consistency property is manifested through the consistency
of color patterns across the transformations. We transform the Moons data in the source
domain onto the Concentric Squares data in the target domain, and then complete the
cycle by mapping the target data back to the source domain. The latent spaces play
a central role in the bidirectional translation. We provide a proof in Corollary 2.37

accounting for the cycle consistency property.

To elucidate the empirical auto-encoding and cycle consistency for measure trans-
port, we derive Corollaries 2.36 and 2.37 below and analyze the transport maps defined
by GIFs (covering the probability flow ODE of VESDE used by DDIBs). We consider the
continuous-time framework and the population level, which precludes learning errors
including the time discretization errors and velocity field estimation errors, and show

that the transport maps naturally possess the exact auto-encoding and cycle consistency

'The implementation is based on the GitHub repository at https://github.com /suxuann/ddib.
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Figure 2.3. An illustration of auto-encoding using DDIBs.

properties at the population level.

Corollary 2.36 (Auto-encoding). Suppose Assumptions 2.4 and 2.5-(i), (iii), or (iv) hold for
a target measure v. The Gaussian interpolation flow (X;),c[o,1] and its time-reversed flow
(X?)tefo,1] form an auto-encoder with a Lipschitz encoder X7(x) and a Lipschitz decoder

X1(x). The auto-encoding property holds in the sense that
Xy0X] =14 (2.28)

Corollary 2.37 (Cycle consistency). Suppose Assumptions 2.4 and 2.5-(i), (iii), or (iv)
hold for the target measures v{ and v,. For the target measure v, we define the Gaus-
sian interpolation flow (X1 t)sc[o,1] and its time-reversed flow (X{ ,)ic[0,1]- We also define
the Gaussian interpolation flow (X3,¢)sc[0,1] and its time-reversed flow (X3 ;)sc[o,1] for the
target measure v, using the same a; and b;. Then the transport maps X1 1(x), Xj ;(x),
X3,1(x), and X5 | (x) are Lipschitz continuous in the space variable x. Furthermore, the

cycle consistency property holds in the sense that

Xl,l OX;,l O XZ,l O XI,l = Id. (229)

Corollaries 2.36 and 2.37 show that the auto-encoding and cycle consistency prop-
erties hold for the flows at the population level. These results provide insights to the

approximate auto-encoding and cycle consistency properties at the sample level.

There are several types of errors introduced in the training of GIFs. On the one hand,
the approximation in specifying source measures would exert influence on modeling
the distribution. On the other hand, the approximation in the velocity field also affects
the distribution learning error. We use the stability analysis method in the differential

equations theory to address the potential effects of these errors.
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Figure 2.4. An illustration of cycle consistency using DDIBs.

Corollary 2.38. Suppose Assumptions 2.4 and 2.5-(i), (iii), or (iv) hold. It holds that

Cyi=sup||ViX1(x)llz2 <00, Cy:=  sup [V v(tx)p, <oo.
x€R4 (t,x)€[0,1]xRY

Proposition 2.39 (Stability in the source distribution). Suppose Assumptions 2.4 and
2.5-(i), (iii), or (iv) hold. If the source measure p = Law(agZ + bgXy) is replaced with the

Gaussian measure Va2 then the stability of the transport map X, is guaranteed by the W,

distance between the push-forward measure X, 4, a3 and the target measure v = Law/(X;)

Wo(X1474,02,v) < Crboy B, [IX1[17]exp(Cod). (2.30)

The stability analysis in Proposition 2.39 provides insights into the selection of source

as follows

measures for learning probability flow ODEs and GIFs. The error bound (2.30) demon-
strates that when the signal intensity is reasonably small in the source measure, that is,
by < 1, the distribution estimation error, induced by the approximation with a Gaus-
sian source measure, is small as well in the sense of the quadratic Wasserstein distance.
Using a Gaussian source measure to replace the true convolution source measure is a
common approximation method for learning probability flow ODEs and GIFs. Our anal-

ysis shows this replacement is reasonable for the purpose of distribution estimation.

The Alekseev-Grobner formula and its stochastic variants [Del Moral and Singh,

2022] have been shown effective in quantifying the stability of well-posed ODE and
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SDE flows against perturbations of its velocity field or drift [Bortoli, 2022, Benton et al.,

2023]. We state these results below for convenience.

Lemma 2.40. [Hairer et al., 1993, Theorem 14.5] Let (X;);e0,1] and (Y})e[o,1] solve the
following IVPs, respectively

dx
—L=v(t,X,), Xo=x te[0,1]
dt
dy,
d—tt =9(t,Y,), Yyp=x09 te[0,1],

where v(t,x): [0,1] x R? = RY and 9(t,x) : [0,1] x R — R? are the velocity fields.

(i) Suppose that v is of class C' in x. Then the Alekseev-Grobner formula for the differ-
ence X;(xo) — Yi(xq) is given by

t
Xi(xo) = Yi(xo) = JO (Ve Xs1)(Ys(x0)) T (v(s, Ys(x0)) = (s, Ys(xg)))ds  (2.31)

where V, X, ;(x) satisfies the variational equation

at(vas,t(x)) = (VXV)(t, Xs,t(x))vas,t(x); vas,s(x) = Id- (2-32)

(ii) Suppose that v is of class C' in x. Then the Alekseev-Grobner formula for the differ-
ence Y;(xq) — X¢(xq) is given by

t
Yi(x0) = Xi(x0) = J; (Vi Ys1)(X5(x0)) " (9(s, X5(x0)) = v(s, Xs(x0)))ds  (2.33)

where V., Y, 4(x) satisfies the variational equation

at(vas,t(x)) = (Vxﬁ)(tJ Ys,t(x))Vst,t(x)' Vst,s(x) =14 (2.34)

Exploiting the Alekseev-Grobner formulas in Lemma 2.40 and uniform Lipschitz
properties of the velocity field, we deduce two error bounds in terms of the quadratic
Wasserstein (W,) distance to show the stability of the ODE flow when the velocity field

is not accurate.

Proposition 2.41 (Stability in the velocity field). Suppose Assumptions 2.4 and 2.5 hold.
Let §; denote the density function of Y p.
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(i) Suppose that

1
j j lv(t, x) — 9(t, x)||*G, (x)dxdt < e. (2.35)
0 JR4
Then

1 1

Wf(Yl#y,v)SEJ exp(2j E)udu)ds. (2.36)
0 s

(ii) Suppose that
sup [V 7(t,x)ll,2 < Cs.
(t,x)€[0,1]xIRY

Then

exp(2Cs)—1 (! _
W tigny) < SEELIL [ e -0l pdxds. (237)
2C3 0 R4

Proposition 2.41 provides a stability analysis against the estimation error of the ve-
locity field using the W, distance. The estimation error originates from the flow match-
ing or score matching procedures and the approximation error rising from using deep
neural networks in estimating the velocity field or the score function. These two W,
bounds imply that the distribution estimation error is controlled by the L, estimation
error of flow matching and score matching. Indeed, this point justifies the soundness
of the approximation method through flow matching and score matching. The first
W, bound (2.36) relies on the L, control (2.35) of the perturbation error of the veloc-
ity field. The second W, bound (2.37) is slightly better than that provided in [Albergo
and Vanden-Eijnden, 2023, Proposition 3] but still has exponential dependence on the

Lipschitz constant of 7(¢, x).
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Figure 2.5. An approximately linear relation between b, and the Wasserstein-2 distance.

To demonstrate the bounds presented in Propositions 2.39 and 2.41, we conducted
further experiments with a mixture of eight two-dimensional Gaussian distributions.
These propositions provide bounds for the stability of the flow when subjected to pertur-
bations in either the source distribution or the velocity field. Let the target distribution

be the following two-dimensional Gaussian mixture

8
px) =) dlxp, %)),

j=1

where ¢(x; p;,3;) is the probability density function for the Gaussian distribution with

mean y; = 12(sin(2(j —1)7/8),cos(2(j —1)m and covariance matrix ¥; = 0. 2
pj =12(sin(2(j —1)7/8 2(j—1)7/8))T and i ix ¥ = 0.03°1

for j =1,---,8. For Gaussian mixtures, the velocity field has an explicit formula, which

facilitates the perturbation analysis.

To illustrate the bound in Proposition 2.39, we consider a perturbation of the source

distribution for the following model:

t+C t+C
X, =a,Z+b,X with =1-—2, b =—=
t=a; t 1 a; 140 t

where C € [0,0.3] is a value controlling the perturbation level. It is easy to see ay =
1/(1+C),bg = C/(1 + Q). Thus, the source distribution Law(agZ + byX) is a mixture of

Gaussian distributions. Practically, we can use a Gaussian distribution , a2 to replace
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Figure 2.6. A linear relation between Av; and the squared Wasserstein-2 distance.

this source distribution. In Proposition 2.39, we bound the error between the distribu-

tions of generated samples due to the replacement, that is,

Wa(X14¥4,42,v) < Cbo,

where C is a constant. We illustrate this theoretical bound using the mixture of Gaussian
distributions and the Gaussian interpolation flow given above. We consider a mesh for
the variable C and plot the curve for b, and W2(X1#yd’a(z),v) in Figure 2.5. Through
Figure 2.5, an approximate linear relation between by and W, (X147, a2 V) is observed,

which supports the results of Proposition 2.39.

We now consider perturbing the velocity field v; by adding random noise. Let € €
[0.5,5.5]. The random noise is generated using a Bernoulli random variable supported

on {—¢, €}. Let ¥; denote the perturbed velocity field. Then we can compute

~ 112 2
Avt = ||vt —vt” = 26 .

We use the velocity field v; and the perturbed velocity field ; to generate samples and
compute the squared Wasserstein-2 distance between the sample distributions. Accord-

ing to Proposition 2.41, the squared Wasserstein-2 distance should be linearly upper

bounded as O(Av;), that is,

1
sz(Yl#y,v) < CJ J ezpt(x)dxdt =Ce?,
0 JR?
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where C is a constant. This theoretical insight is illustrated in Figure 2.6, where a linear

relationship between these two variables is observed.

2.7 Related work

GIFs and the induced transport maps are related to CNFs and score-based diffusion mod-
els. Mathematically, they interrelate with the literature on Lipschitz mass transport and
Wasserstein gradient flows. A central question in developing the ODE flow or transport
map method for generative modeling is how to construct an ODE flow or transport map
that are sufficiently smooth and enable efficient computation. Various approaches have

been proposed to answer the question.

CNFs construct invertible mappings between an isotropic Gaussian distribution and
a complex target distribution [Chen et al., 2018, Grathwohl et al., 2019]. They fall within
the broader framework of neural ODEs [Chen et al., 2018, Ruiz-Balet and Zuazua, 2023].
A major challenge for CNFs is designing a time-dependent ODE flow whose marginal
distribution converges to the target distribution while allowing for efficient estimation
of its velocity field. Previous work has explored several principles to construct such
flows, including optimal transport, Wasserstein gradient flows, and diffusion processes.
Additionally, Gaussian denoising has emerged as an effective principle for constructing

simulation-free CNFs in generative modeling.

Liu et al. [2023] propose the rectified flow, which is based on a linear interpolation
between a standard Gaussian distribution and the target distribution, mimicking the
Gaussian denoising procedure. Albergo and Vanden-Eijnden [2023] study a similar for-
mulation called stochastic interpolation, defining a trigonometric interpolant between a
standard Gaussian distribution and the target distribution. Albergo et al. [2023b] extend
this idea by proposing a stochastic bridge interpolant between two arbitrary distribu-
tions. Under a few regularity assumptions, the velocity field of the ODE flow modeling
the stochastic bridge interpolant is proven to be continuous in the time variable and

smooth in the space variable.

Lipman et al. [2023] introduce a nonlinear least squares method called flow matching
to directly estimate the velocity field of probability flow ODEs. All of these models

are encompassed within the framework of simulation-free CNFs, which have been the
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focus of numerous ongoing research efforts [Neklyudov et al., 2023, Tong et al., 2023,
Chen and Lipman, 2023, Albergo et al., 2023b, Shaul et al., 2023, Pooladian et al., 2023,
Albergo et al., 2023a,c]. Furthermore, Marzouk et al. [2023] provide the first statistical
convergence rate for the simulation-based method by placing neural ODEs within the

nonparametric estimation framework.

Score-based diffusion models integrate the time reversal of stochastic differential
equations with the score matching technique [Sohl-Dickstein et al., 2015, Song and Er-
mon, 2019, Ho et al.,, 2020, Song and Ermon, 2020, Song et al., 2021b,a, De Bortoli et al.,
2021]. These models are capable of modeling highly complex probability distributions
and have achieved state-of-the-art performance in image synthesis tasks [Dhariwal and
Nichol, 2021, Rombach et al., 2022]. The probability flow ODEs of diffusion models can
be considered as CNFs, whose velocity field incorporates the nonlinear score function
[Song et al., 2021b, Karras et al., 2022, Lu et al., 2022b,a, Zheng et al., 2023]. In addition
to the score matching method, Lu et al. [2022a] and Zheng et al. [2023] explore maxi-
mum likelihood estimation for probability flow ODEs. However, the regularity of these
probability flow ODEs has not been studied and their well-posedness properties remain

to be established.

A key concept in defining measure transport is Lipschitz mass transport, where the
transport maps are required to be Lipschitz continuous. This ensures the smoothness
and stability of the measure transport. There is a substantial body of research on the
Lipschitz properties of transport maps. The celebrated Caffarelli’s contraction theorem
[Caffarelli, 2000, Theorem 2] establishes the Lipschitz continuity of optimal transport
maps that push the standard Gaussian measure onto a log-concave measure. Colombo
et al. [2017] study a Lipschitz transport map between perturbations of log-concave mea-

sures using optimal transport theory.

Mikulincer and Shenfeld [2024] demonstrate that the Brownian transport map, de-
fined by the Follmer process, is Lipschitz continuous when it pushes forward the Wiener
measure on the Wiener space to the target measure on the Euclidean space. Addition-
ally, Neeman [2022] and Mikulincer and Shenfeld [2023] prove that the transport map

along the reverse heat flow of certain target measures is Lipschitz continuous.

Beyond studying Lipschitz transport maps, significant effort has been devoted to ap-
plying optimal transport theory in generative modeling. Zhang et al. [2018] propose the
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Monge-Ampe re flow for generative modeling by solving the linearized Monge-Ampete
equation. Optimal transport theory has been utilized as a general principle to regular-
ize the training of continuous normalizing flows or generators for generative model-
ing [Finlay et al., 2020, Yang and Karniadakis, 2020, Onken et al., 2021, Makkuva et al.,
2020]. Liang [2021] leverage the regularity theory of optimal transport to formalize the

generator-discriminator-pair regularization of GANs under a minimax rate framework.

In our work, we study the Lipschitz transport maps defined by GIFs, which differ
from the optimal transport map. GIFs naturally fit within the framework of continu-
ous normalizing flows, and their flow mappings are examined from the perspective of

Lipschitz mass transport.

Wasserstein gradient flows offer another principled approach to constructing ODE
flows for generative modeling. A Wasserstein gradient flow is derived from the gradient
descent minimization of a certain energy functional over probability measures endowed
with the quadratic Wasserstein metric [Ambrosio et al., 2008]. The Eulerian formula-
tion of Wasserstein gradient flows produces the continuity equations that govern the
evolution of marginal distributions. After transferred into a Lagrangian formulation,
Wasserstein gradient flows define ODE flows that have been widely explored for gener-
ative modeling [Johnson and Zhang, 2018, Gao et al., 2019, Liutkus et al., 2019, Johnson
and Zhang, 2019, Arbel et al,, 2019, Mroueh et al.,, 2019, Ansari et al., 2021, Mroueh and
Nguyen, 2021, Fan et al.,, 2022, Gao et al., 2022, Duncan et al., 2023, Xu et al., 2022].
Wasserstein gradient flows are shown to be connected with the forward process of dif-
fusion models. The variance preserving SDE of diffusion models is equivalent to the
Langevin dynamics towards the standard Gaussian distribution that can be interpreted
as a Wasserstein gradient flow of the Kullback-Leibler divergence for a standard Gaus-
sian distribution [Song et al., 2021b]. In the meantime, the probability flow ODE of
the variance preserving SDE conforms to the Eulerian formulation of this Wasserstein
gradient flow. However, when assigning a general distribution instead of the standard
Gaussian distribution, it remains unclear whether the ODE formulation of Wasserstein

gradient flows possesses well-posedness.

The main contribution of this chapter lies in establishing the theoretical properties of
GIFs and their associated flow maps in a unified way. Our theoretical results encompass

the Lipschitz continuity of both the flow velocity field and the flow map, addressing the

38



existence, uniqueness, and stability of the flow. We also demonstrate that both the flow

map and its inverse possess Lipschitz properties.

Our proposed framework for Gaussian interpolation flow builds upon previous re-
search on probability flow methods in diffusion models [Song et al., 2021b,a] and stochas-
tic interpolation methods for generative modeling [Liu et al., 2023, Albergo and Vanden-
Eijnden, 2023, Lipman et al., 2023]. Rather than adopting a methodological perspective,
we focus on elucidating the theoretical aspects of these flows from a unified standpoint,
thereby enhancing the understanding of various methodological approaches. Our theo-
retical results are derived from geometric considerations of the target distribution and

from analytic calculations that exploit the Gaussian denoising property.

2.8 Conclusion

Gaussian denoising as a framework for constructing continuous normalizing flows holds
great promise in generative modeling. Through a unified framework and rigorous anal-
ysis, we have established the well-posedness of these flows, shedding light on their capa-
bilities and limitations. We have examined the Lipschitz regularity of the corresponding
flow maps for several rich classes of probability measures. When applied to generative
modeling based on Gaussian denoising, we have shown that GIFs possess auto-encoding
and cycle consistency properties at the population level. Additionally, we have estab-
lished stability error bounds for the errors accumulated during the process of learning
GIFs. Although our analysis has partially established the well-posedness of the GIFs, it
remains unclear whether the well-posedness holds for learning more general distribu-
tions. Moreover, it remains interesting to investigate the advantages of the denoising

framework beyond Gaussian denoising.

2.9 Proofs and supplementary results

In this section, we provide proofs of the lemmas and theorems shown in the previous

sections of the chapter.
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2.9.1 Proofs of Theorem 2.14 and Lemma 2.20

Dynamical properties of Gaussian interpolation flow (X;):[0,1] form the cornerstone
of the measure interpolation method. Following Albergo and Vanden-Eijnden [2023],
Albergo et al. [2023b], we leverage an argument of characteristic functions to quantify

the dynamics of its marginal flow, and in result, to prove Theorem 2.14.

Proof of Theorem 2.14. Let w € R?. For the Gaussian stochastic interpolation (X;);e[o,1];

we define the characteristic function of X; by
W(t, @) = Elexp(i{w, X,)] = Elexp(i{w, a,Z+b:X1))] = Elexp(ia;(w, 2))E[exp(iby(w, X1 )],

where the last equality is due to the independence of between Z ~ y; and X; ~ v. Taking
the time derivative of W (¢, w) for t € (0, 1), we derive that

;Y (t, w) = i{w, P(t, w))

where
P(t, w) == E[exp(i{w, X;))(d:Z + byX1)].
We first define
v(t, X;) := B[d,Z + b, X1 |X,). (2.38)

Using the double expectation formula, we deduce that

P(t, w) = Elexp(i{w, X;))E[d;Z + thllxt]] = E[exp(i{w, X)) v(t, X¢)]-

Applying the inverse Fourier transform to (¢, w), it holds that

jtx) = 2 [ explica gl wido = povt, )

R4
where v(t, x) := [E[d,Z + b;X;|X; = x]. Then it further yields that
dips+Vy-j(t,x) =0,

that is,
dipi + V- (prv(t,x)) = 0.
Next, we study the property of v(t,x) at t = 0 and ¢ = 1. Notice that
x = a;[E[Z|X; = x] + D,E[X{|X; = x]. (2.39)
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Combining Eq. (2.38) and (2.39), it implies that
v(t,x) = x+ (b, - 5by ) E[X([X, =x],  t€(0,1). (2.40)
According to Tweedie’s formula in Lemma 2.51, it holds that
s(t,x) = 2—§1E[xl|xt =x] - éx, te(0,1), (2.41)

where s(t, x) is the score function of the marginal distribution of X; ~ p;.

Combining Eq. (2.40), (2.41), it holds that the velocity field is a gradient field and its

nonlinear term is the score function s(t, x), namely, for any ¢ € (0, 1),

v(t,x) = Z—ix+(g—iat2—dtat)s(t,x). (2.42)

By the regularity properties that a,, b, € C*([0,1)),a> € C'([0,1]),b; € C'([0,1]), we
have that d, by, d,a,, and by are well-defined. Then by Eq. (2.40), we define that

—1i _ 4 ] a —
v(0,x) := lgf{)lv(t,x) = ﬁx+ (bo - ibo)lE[Xllxo = x]

Using Eq. (2.42) yields that

v(1,x):= ltiﬁw(t,x) = b—ix—dlals(l,x). (2.43)

This completes the proof. O

Lemma 2.20 presents several standard properties of Gaussian channels in informa-

tion theory [Wibisono and Jog, 2018a,b, Dytso et al., 2023b] that will facilitate our proof.

Proof of Lemma 2.20. By Bayes’ rule, Law(Y[X; = x) = p(y|t, x) can be represented as

PILX) = Py 2 (P2 (9)/p1 (%)

= blP?

= (2n) 2a;" exp( ) p1(¥)/pi(x)

ay

x> bi(x,p) Bl
2t 2 2
2a; a; 2a;

bt : b2 2 2
B o

2
a; 2a; a;

= (2m) " 2a;" exp( )m(y)/pt(x)
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2 2
Let 0 = ZZ—ZX, h(y) =p1(v) exp(—%), and the logarithmic partition function
t t

A1) =1og [ H(y)exp((3, 001,

then by the definition of exponential family distributions, we conclude that
p(ylt,x) = h(y)exp((y, 6) — A(6))
is an exponential family distribution of y. By simple calculation, it follows that

b2

VZlogp(vlt, x) = —a—gng(e).
t

For an exponential family distribution, a basic equality shows that

VgA(0) = Cov(Y[X; = x),

which further yields that VZlog p(y|t, x) = —z—ﬁiCov(Y|Xt =Xx).
t

2.9.2 Auxiliary lemmas for Lipschitz flow maps

The following lemma, due to G. Peano [Hartman, 2002a, Theorem 3.1], describes several

meaningful differential equations associated with well-posed flows and supports the

derivation of Lipschitz continuity of their flow maps.

Lemma 2.42. [Ambrosio et al., 2023, Lemma 3.4] Suppose that a flow (X;)se[o,1] is well-

posed and its velocity field v(t,x) : [0,1] x R? — R? is of class C'. Then the flow map
X, : R — R? is of class C! forany 0 < s <t < 1. Fix (s5,x) € [0,1] x R? and set the

following functions defined with t € [s, 1]
V(t) = Vst,t(x)f ](t) = (va)(ths,t(x))l
w(t) := det(Vy X, (x)), b(t) := (Vi - v)(t, X5 (x)) = Tr(J (2)).

Then y(t) and w(t) are the unique C! solutions of the following IVPs

¥() =J(0)y(1), v(s) =14
w(t) =b(Hw(t), w(s)=1.

(2.44)

(2.45)



We present an upper bound of the Lipschitz constant of its flow map X;,(x) in
Lemma 2.31. The upper bound has been deduced in Mikulincer and Shenfeld [2023],
Ambrosio et al. [2023], Dai et al. [2023]. For completeness, we derive it as a direct im-
plication of Eq. (2.44) in Lemma 2.42 and an upper bound of the Jacobian matrix of the
velocity field.

Proof of Lemma 2.31. Let y(u) = V, X, ,(x), J(u) = (V,v)(u, X;,,(x)). Owing to Lemma
2.42, y(u) is of class C!, and the function u > ly(u)ll2,5 is absolutely continuous over

[s,t]. By Lemma 2.42, it follows that
Aully (35 = 2(u(u), p(u)) = 2(y(u), ] ()y(u)) < 26, lp(u)ll3 -

Applying Gronwall’s inequality yields that |[p(t)[], < exp(Lt 0,,du) which concludes
the proof. [

Another result is concerning the theorem of instantaneous change of variables that
is widely deployed in studying neural ODEs [Chen et al., 2018, Theorem 1]. We also
exploit the instantaneous change of variables to prove Proposition 2.39. To make the
proof self-contained, we show that the instantaneous change of variables directly fol-
lows Eq. (2.45) in Lemma 2.42. Compared with the original proof in [Chen et al., 2018,
Theorem 1], we illustrate that the well-posedness of a flow is sufficient to ensure the
instantaneous change of variables property, without a boundedness condition on the

flow.

Corollary 2.43 (Instantaneous change of variables). Suppose that a flow (X)e[o,1] is
well-posed with a velocity field v(t,x) : [0,1] x R* — R? of class C! in x. Let X(x) ~
10(Xo(x)) be a distribution of the initial value. Then the law of X;(x) satisfies the following

differential equation

dilog 1ty(Xy(x)) = = Tr((V,v)(t, X¢(x))).

Proof. Let 6(t) := det(V,X;(x)). Thanks to Eq. (2.45) in Lemma 2.42, it holds that

o(t) = Tr((Vxv)(t, X, (x)))o(t),  6(0) =1,

which implies 6(¢) > 0 for t € [0, 1]. Notice thatlog 7t;(X;(x)) = log 11o(X(x))—log|6(¢)|
by change of variables. Then it follows that d; log 7t; (X;(x)) = = Tr((V,v)(t, X;(x))). O
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2.9.3 Proofs of spatial Lipschitz estimates for the velocity field

The main results in Section 2.4 are proved in this section. We first present some ancillary

lemmas before proceeding to give the proofs.

Lemma 2.44 (Fathi et al., 2023). Suppose that f : R? — IR, is L-log-Lipschitz for some
L > 0. Let P, be the Ornstein-Uhlenbeck semigroup defined by Pih(x) := Bz, [h(e™ x +

V1 —e22)] for any h € C(R%) and t > 0. Then it holds that
{~5Le™(L+177)~ L2} 1, < V2log P f (x) < {5Le (L +172)}1,.

Proof. This is a restatement of known results. See Proposition 2, Proposition 6, Theorem

6, and their proofs in Fathi et al. [2023]. O

Corollary 2.45. Suppose that f : R? — R, is L-log-Lipschitz for some L > 0. Let Q, be
an operator defined by

for any h e C(R?) and t € [0,1] where 0 < a; <1,B; > 0 for any t € [0,1]. Then it holds
that

(-Ar—L?B7 )14 < V3log Q,f (x) < Ay,

1

where Ay := S5LBZ(1 —a?) (L + (-1 log(1 - a?))"2).
Proof. 1t is easy to notice that Q;f (x) = P f (p;e°x) where s = —%log(l —a?). Then it
follows that V2log Q, f (x) = (B:e°)%(V21og P, f)(B:e*x) which yields

(~Ar—L?B7)14 < V3log Q,f (x) < Ay,

1

where A, := 5L/3t2(1 - af)_f(L + (—%log(l - af))‘%). m

Lemma 2.46. The Jacobian matrix of the velocity field (2.9) has an alternative expression

over timet € (0,1), that is,

b . 5 b
Vvt x) = (b—iaf - atat)(vﬁ logQ;f(x) - sz_i—bgld) + La,

where f(x) := £ (x) and O f (x) = Bz | f(utzlj:btzx + \/;l—bzz)]'
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Proof. By direct calculations, it holds that

_b b,
Pt(x)=aZdLde1(y)<P(x ty)dy=a?d f(y)q)(z/)q)(x y)dy

a R4 az
-1
_ _1 a b
~atoplia+ ) [ || (y— )|
R \Ja? +b? 4+ o
d

- _1 a b a
:atd(p((atz+bt2) zx) S de 5 tb2x+ Lz |dy,(2)
‘/at2+bt2 R ar + 0 1/at2+bt2

= (a2 + b2 2 ((a? + b?) %) O, f (x).

Taking the logarithm and then the second-order derivative of the equation above, it
yields

V.s(t,x) = V21og O, f (x) 1.

a; +b2

Recalling that V,.v(t,x) = (gtatz atat)V s(t,x)+ %Id’ it further yields that

Voo(tx) = (g_;ag ~dya |V210g 0, f (x) + 41,

which completes the proof. [

Corollary 2.47. Suppose that f(x) := 57( x) is L-log-Lipschitz for some L > 0. Then for
€(0,1), it holds that

2 .
bt 2 . _ _ 2 bt dtat+btbt
{(b“f “f“t)( B -1 )* pava

by 2 . dra+b,b
< < 3 — i A ML g
S VxV(t,X) S {(bt ay; atat)Bt + a%+b? }Id,

1

where B := 5Lb,(a? + btz)_%(L + (log(r/ai + b} /b)) 2).

Proof. Let a; = and f8; = L. Then these bounds hold according to Corollary

\/a, +bt

2.45 and Lemma 2.46. ]

Then we are prepared to prove Proposition 2.22. The proof is mainly based on the
techniques for bounding conditional covariance matrices that are developed in a series
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of work [Wibisono and Jog, 2018a,b, Mikulincer and Shenfeld, 2024, 2023, Chewi and
Pooladian, 2022, Dai et al., 2023].

Proof of Proposition 2.22.  (a) By Jung’s theorem [Danzer et al., 1963, Theorem 2.6],
there exists a closed Euclidean ball with radius less than D := (1/v2)diam(supp(v))
that contains supp(v) in R?. Then the desired bounds hold due to 0I; < Cov(Y|X; =
x) < D?1; and Eq. (2.17).

(b) Let p; be f-semi-log-convex for some g > 0 on R?. Then for any t € [0,1), the

2
conditional distribution p(ylt, x) is ( B+ Z—‘z)-semi-log-convex because
t

b2
-V logp(ylt,x) = =V log py () - V; log p(t, xJy) < (/3 + a—é)ld-
t

By the Cramér-Rao inequality (2.4), we obtain

b2\’
Cov(Y|X; = x) > (ﬁ + a—;) I
t

Therefore, by Eq. (2.17), we obtain

i . 2 .
va(t,x)z{(&—ﬂ) th 2+ﬁ}1d,
by a;)Baj+bj a

which implies
> Bad; + biby

V,v(t,x) > ﬁatz " btz

d.
In addition, the bound above can be verified at time ¢ = 1 by the definition (2.43).

(c) Let p; be k-semi-log-concave for some k € R. Then for any ¢t € [0, 1), the condi-
2
tional distribution p(y|t, x) is (K + %)-semi-log-concave because
t

b2
~V;logp(ylt,x) = Vi logpi (y) -V log p(t, xly) > (K+ é)ld'

2
When t € {t DK+ % >0,te (0, 1)}, by the Brascamp-Lieb inequality (2.2), we ob-
t

tain

2

b2\~
Cov(Y|X; =x) < (K + —t) I
ay
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Therefore, by Eq. (2.17), we obtain

; . 2 .
V. v(t, x) < {(& - ﬁ)b—t + ﬂ}Id,

by a Ka:tz+bt2 ag

which implies

Katdt + btbt

V,v(t, x) < d-

2. 12
ka; + b;

Moreover, the bound above can be verified at time f = 1 by the definition (2.43).

Notice that

_p(txly) d(ya,e2*p)
p(ylt,x) = Pr(%) dy

where the prefactor A, ; only depends on x and ¢. Then it follows that

POl = | P e ()0l
R4 a%+(72bt2 ,at2+(72bt2
where p is a probability measure on R? whose density function is a multiple of P
by a positive function. It also indicates that p is supported on the same Euclidean

ball as p. To further illustrate p(y|t, x), let Q ~ p and Z ~ y; be independent.
Then it holds that

2 2,2 2
a; o“a; o°b;

—Q+ x ~ p(ylt, x).
a? +o2b? a?+02b? a?+02b?

Thus, it holds that

2 2 2.2

a o“a
Cov(Y[X,=x)= | —L— Cov(Q) + L1
(Y%, = 2) (atz—i-cﬂbtz) (Q a?+c72bt2 d

By Eq. (2.17), it holds that

b? (b, a a? 2 o2a? a
Vo(tx) < =% —t——t) (—t) R+ ——— |1, + -1,
(%) af(bt a; J\\ a? + o2b? 2 7
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which implies

va(t,x>é{atbt(atbt_dtbt) 2 dt“ﬁ*"zf’tbt}ld.

(a? + 02b?)? a? +o2b?
Analogously, due to Cov(Q) > 01, a lower bound would be yielded as follows

dtat + O-zbtbt

V,v(t,x) > I,.

a? + o2b?
Then the results follow by combining the upper and lower bounds.

(e) The result follows from Corollary 2.47.

We complete the proof. ]

Proof of Corollary 2.23. Let us consider that ¥ > 0 which is divided into two cases where
«D?>1 and kD? < 1. On the one hand, suppose that the first case kD? > 1 holds. By
Proposition 2.22, the k-based upper bound is tighter, that is,

i+ byb
Amax(Vav (8, ) < 0y 1= == =
Kay + b;
On the other hand, suppose that the second case xD? < 1 holds. Let t; be defined in Eq.
(2.19). Again, by Proposition 2.22, the D?-based upper bound is tighter over [0,¢;) and

the x-based upper bound is tighter over [#1, 1], which is denoted by

b (b d i
a_é'(b_i —~ %)D2 +2, telon),
/\max(vxv(tl X)) < Qt = P i
Kﬂtut+btbt t c [t 1]
ka?+b? ’ 1=k
This completes the proof. [

Proof of Corollary 2.24. Let x < 0,D < oo such that kD? < 1 is fulfilled. Then an argu-
ment similar to the proof of Corollary 2.23 yields the desired bounds. O

Proof of Corollary 2.25. The result follows from Proposition 2.22-(d). ]

Proof of Corollary 2.26. The L-based upper and lower bounds in Proposition 2.22-(e) would

blow up at time ¢ = 1 because the term (log(/a? + btz/bt))_% in B; goesto oo as t — 1.
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To ensure the spatial derivative of the velocity field v(t,x) is upper bounded at time
t = 1, we additionally require the target measure is x-semi-log-concave with x < 0.
Hence, a x-based upper bound is available for t € (t(, 1] as shown in Proposition 2.22-
(c). Next, these two upper bounds are combined by choosing any ¢, € (¢, 1) first. Then
we exploit the L-based bound over [0, t,) and x-based bound over [#(, 1]. This completes

the proof. [

2.9.4 Proofs of well-posedness and Lipschitz flow maps

The proofs of main results in Section 2.5 are offered in the following. Before proceeding,
let us introduce some definitions and notations about function spaces that are collected

in [Evans, 2010, Chapter 5]. Let L}

10C(IR"’ ;IRY) := {locally integrable function u : R —
IRY}. For integers k > 0 and 1 < p < oo, we define the Sobolev space WXP(RY) := {u €

Llloc(IRd)lD“u exists and D%u € LP(R?) for |a| < k}, where D%u is the weak derivative

of u. Then the local Sobolev space Wlléf (RY) is defined as the function space such that

for any u € Wllg'f(IRd) and any compact set QO ¢ R, u € WFP(Q). As a result, we

denote the vector-valued local Sobolev space by Wllé'f (R4 RY). Provided that v(t,x) :
[0,1] % R? > R?, we use v € Ll([O, 1]; I/Vl})’COO(IRd;IRd)) to indicate that v has a finite L'
norm over (t,x) € [0,1]xR? and v(t,-) € WllO’COO(IRd;le) for any t € [0, 1]. Similarly, we
say v € L1([0,1]; L(R%;IR?)) when v has a finite L' norm over (t,x) € [0,1] x R? and
v(t,-) € L°(R%;R?) for every t € [0,1]. We will use the definitions and notations in the

following proof.

Proof of Theorem 2.27. Under Assumptions 1 and 2, we claim that the velocity field v (¢, x)
satisfies that for any A > 0,

lIvll2
1+ [lx]l2

veL'([0,1; W2 ([-4, A]%;RY)),

loc

e L'([0,1];L=([-A, A];RY)).

where the first condition indicates the velocity field v is locally bounded and locally Lip-
schitz continuous in x, and the second condition is a growth condition on v. According
to the Cauchy-Lipschitz theorem [Ambrosio and Crippa, 2014, Remark 2.4], we have
the representation formulae for solutions of the continuity equation. As a result, there

exists a flow (X;)[o,1] uniquely solves the IVP (2.14). Furthermore, the marginal flow
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of (X;)se[o,1] satisfies the continuity equation (2.8) in the weak sense. Then it remains
to show the velocity field v is locally bounded and locally Lipschitz continuous in x,
and satisfies the growth condition. By the lower and upper bounds given in Proposition
2.22, we know that v is globally Lipschitz continuous in x under Assumptions 1 and
2. Indeed, the global Lipschitz continuity leads to local boundedness and linear growth

properties by simple arguments. More concretely, for any t € (0, 1), it holds that

. a . a
v(t,0) = (bt - a—ibt)nz[xllxt ~0)= (bt - —b)jIR Up(ylt, 0)dy

. d _ b7lIvll3
S(bt—a_tbt)J:RdyPl(y)atdeXP(_ t2522 dy,
t

t

which implies ||v(t,0)||, < co due to fast growth of the exponential function. Besides,
it holds that v(0,0) = (by — Z—gbO)IE[XﬂXO = x] < o0,v(1,0) = dya;s(1,0) < co. Then by
the boundedness of ||v(t, 0)||, and the global Lipschitz continuity in x over ¢ € [0, 1], we

bound v(t, x) as follows

lv(t, x)ll2 < [lv(t, 0)l2 + |lv (£, x) - v(t, 0)I]

SIIv(t,0)||z+{ sup ||Vy7/(t,}))||2,2}||x||2
(t,9)€[0,1]xR4

< max{||x[|,, 1}.

Hence, the local boundedness and linear growth properties of v are proved. This com-

pletes the proof. [
Proof of Theorem 2.28. The proof is similar to that of Theorem 2.27. [

Proof of Corollary 2.29. A well-posed ODE flow has the time-reversal symmetry [Lamb
and Roberts, 1998]. By Theorem 2.27, the desired results are proved. ]

Proof of Corollary 2.30. The proof is similar to that of Corollary 2.29. O

Proof of Proposition 2.32. Combining Proposition 2.22-(b), (c), and Lemma 2.31, we com-
plete the proof. O

Proof of Proposition 2.33. Combining Proposition 2.22-(d) and Lemma 2.31, we complete
the proof. O
50



Proof of Corollary 2.36. By Theorem 2.27 and Corollary 2.29, it holds that

X;0X] =X 0X;! =1,

This completes the proof. [

Proof of Corollary 2.37. By Theorem 2.27 and Corollary 2.29, it holds that

* * -1 -1 _
Xl,l (] XZ,I (o] X2’1 o Xl,l = Xl,l O X2,1 O X2,1 (] Xl,l = Id.

This completes the proof. [

Proof of Corollary 2.38. Let Assumptions 2.4 and 2.5 hold. According to Propositions
2.32 and 2.33, ||V, X;(x)||5,» is uniformly bounded for Case (i)-(iii) in Assumption 2.5.
For Case (iv), the boundedness of ||V, X; (x)|[,,» holds by combining Corollary 2.26 and
Lemma 2.31. Using Proposition 2.22, we know that ||V, v(t, x)||,,, is uniformly bounded.

]

Proof of Proposition 2.35. The proof idea is similar to those of [Ball et al., 2003, Proposi-
tion 1] and [Cattiaux and Guillin, 2014, Proposition 18]. Let f : QO — R be of class C!
and X; ~ p;. First, we consider the case of log-Sobolev inequalities. Using that Z ~

and X; ~ v both satisfy the log-Sobolev inequalities in Definition 2.49, we have

E[(f*log f?)(X:)] = El(f*log f*)(a:Z + biXy)]

< f(ff%atz + ba)dm(z))log(ff%atz + btx>dyd<z>)dv<x>
. f(chsm)fa%uwfn%)(atu btx>dyd<z>)dv<x>
< (j j fz(atz + btx)dyd(z)dv(x))log (j j fz(atz + btx)dyd(z)dv(x))

; 2cLs(v)ﬂ

+ 2a%cLs<yd>jf<||Vf||§><atz+ byx)dya(z)dv(x)

2
2dv(x)

vx(ff2<atz+btx>dyd<z>)§

< E[f*(X,)]log (E[f*(X,)]) + 2a{ CLs(ya)ELIV f (X)II3]

+ 2CLS(V)J‘

Vx( J F(ayz + btx)dyd(z)); idv(x).
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By Jensen’s inequality and the Cauchy-Schwartz inequality, it holds that

Jf (a;z+bx)dy,(z ) H dv(x

2] (JUFVFl) @z + btx>dyd<z>)2dv<x>
T [ faztbx)dya)dv(x)

< bfff(uv fl3)(a;z + byx)dy(z)dv(x)
<BIE[IVF(X)I3]

Hence, combining the equations above and the fact that C;g(y;) < 1 [Gross, 1975], it
implies that

E[(f2log f2)(X;)] - E[f*(X¢)]log (E[f>(X,)]) < 2[a7 + b7 Cus(v) | ELIIVF (X,)I13],

that is, CLS(pt) < ﬂtz + thCLs(V).

Next, we tackle the case of Poincaré inequalities by similar calculations. Using that

Z ~ y, and X ~ v both satisfy the Poincaré inequalities in Definition 2.50, we have

E[f2(X;)] = E[f*(a,Z + b;X;)]

2
< f(jf(am bpc)dyd(z)) dv(x)

. j(cpwd)ja%(nwn%xatu btx)dyd(Z))dV(x)

2
< (J f flaz+ btx)dyd(z)dv(x))

+ o) [ 9 [ £laz+ byt v

+a%cpwd)ff(nwn%)(atﬂbw)dm(z)dv(x)
< (E[f(X0)])* +[a? Cplya) + b7 Co) | ELIVF (X3,

Combining the expression above and Cp(y,) < 1, it implies that
EL£2(X,)] - (E[f (X,)))* < [af + b7 Co(v) | E[IV £ (X,II3),

that is, Cp(p;) < a? + b>Cp(v). This completes the proof. O
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2.9.5 Proofs of the stability results
We provide the proofs of the stability results in Section 2.6.

Proof of Proposition 2.39. Let xy = agz + box; and suppose Xy(xg) ~ p, Xo(a9z) ~ Yd,a2-
According to Corollary 2.38, the Lipschitz property of X;(x) implies that || X;(xy) —

X1(apz)|| £ Cqllxg — agz||. We consider an integral defined by

i fnxo — ag2lPdrey (X, (x0), X, (a02)),

where 7t; is a coupling made of the joint distribution of (X;(x(), X;(a¢z)). In particular,

the initial value I is computed by
I = f o — a0l po(xo)p(2)dxodz = fnboxlnzpl(xl)dxl = B, X, ).

Since (X;);e[0,1] is well-posed with Xo(xg) ~ p or Xo(apz) ~ Yd,a2> according to Corol-
lary 2.43, the coupling 7t; satisfies the following differential equation
dilogmy(Xi(xo), Xe(agz)) = = Tr((Vyv)(£, Xe(x0))) = Tr((Vxv)(t, Xi(a02))).  (2.47)
Taking the derivative of I; and using Eq. (2.47), it implies that
dI
—1<2 sup || Tr(Vyv(s, x))| |1

dt (s,x)€[0,1]xR4

Thanks to || Tr(V,v(s, x))l| < d||[V,v(s, x)||5,2, it follows that

dI
d_tt < ZCZdIt; Iy = bglEv[||x1||2]

By Gronwall’s inequality, it holds that I; < b(z)]Ev[||X1||2]exp(2C2dt). Therefore, we

obtain the following W, bound

Wo X1V, V) = Wa(Xi4Vg,02 X1ap) < CiVL < CiboyJE, [lIX1]12]exp(Cyd),

which completes the proof. O

Proof of Proposition 2.41. (i) On the one hand, by Corollary 2.38, v(t, x) is Lipschitz
continuous in x uniformly over (t,x) € [0, 1]x IR? with Lipschitz constant C,. By

the variational equation (2.32) and Lemma 2.31, it follows that

t
||Vst,t(x)||%,2 <exp (ZJ Qudu).
S
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Due to the equality (2.31), we deduce that
[1X1(x0) = Y1 (x0)II?

2

1
s(jo 1V Xe ) (Ve oI5, Vs ) — 91, Ys(xo))”dS)

(j IV X,1)(Ys(x0)l5 2d5)(J [[v(s, Ys(x0)) = 9 (s, Ys(xO))IIZdS)
SJ; exp( L ) du)dsj lv(s, Ys(x0)) — (s, Ys(x0))l|*ds.

Take expectation and it follows that

W3 (Yt v) < By |11 (x0) = X1 (x0) I

1 1 1
SJ exp(ZJ Oudu)dsj j llv(t, x) — 9(t, x)||* G, (x)dxdt
0 s 0 JRY
1 1
SEJ exp(ZJ Gudu)ds
0 s

where §; denotes the density function of Y;,p, and we use the assumption that

1
J v (t, x) = o(t, x)||* G, (x)dxdt <
0 JRd
in the last inequality.

(ii) On the other hand, suppose that 7(t, x) is Lipschitz continuous in x uniformly over
(t,x) €[0,1] x R? with Lipschitz constant C5. Applying Gronwall’s inequality to
the variational equation (2.34), it follows that

”Vst,t(x)”iz < exp(2C3(t — S))

By the equality (2.33), it holds that
111 (x0) = X1 (x0)II*

1 2
< (J; 1V Y5,1)(Xs(x0))ll2,2llv (s, Xs(x0)) = 9(s, Xs(xo))HdS)

1 1
< (J II(Vst,l)(Xs(xo))H%,zdS) (J l[v(s, Xs(x0)) = ﬁ(SJXs(xO))HZdS)
0 0

_ 1
s% fo (s, Xs(xo)) = (s, X (xo) .
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Taking expectations, it further yields that

W3 (Yigmv) < By [||Y1(x0) —Xl(xo)”z]

< &XP2G5) 71 2C3 ff lo(t, %) - 5(t,)|Ppe(x)dxdt
IRd

where X;(xq) ~ p;.

2.9.6 Time derivative of the velocity field

In this section, we are interested in representing the time derivative of the velocity field
via moments of Y|X; = x. The result is efficacious for controlling the time derivative

with moment estimates, though the computation is somehow tedious.

Proposition 2.48. The time derivative of the velocity field v(t, x) has an expression with

moments of X{|X; for any t € (0,1) as follows

) > .. .
b b b
at]}(t’x):(%—%)X'F(ﬂ?b—t—a‘tatb—t—dtat+a't2)a—;M1
t t t t t
btz(bt at)(bt at) 3(b i\’
LE - E -2 | MSx - L[ L -] (M3 -MM,),
2\b, o )\b, "4 2 2\b, " a (M; 2My)

where Ml = IE[X1|Xt = X],M2 = IE[X1TX1|Xt = X],MC = COV(Xllxt = X),M3 =
IE[X1X1TX1|Xt = X].

Proof. By direct differentiation, it implies that

dv(t,x) = at( )x 8( atat) (t,x)—i—(%atz—dtat)ats(t,x)
by t

i Etbt—bfx+(?5tbt—l'af b,

b
. .2 t 2 .
b2 b2 a; thatat atat—at)s(t,x)+(b—tat—atat)(?ts(t,x)_
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We first focus on d;s(t, x). Since p; satisfies the continuity equation (2.8), it holds that

d45(t,x) = V,(d;1log p(x))

o (Ve (et )

=V ( pi(x) )

v (‘Vx”f”))T”‘t,x)+pt<x><vx-v<t,x>>)
. pi(x)

=-V, (s(t,x)Tv(t,X) +Vy- V(t,x))
(Vs (6,2) T0(t,0) + (Vo 0))Ts(8,2) + V4V, v(8,2)))
—(Vys(t,x)v(t, x) + Vyv(t, x)s(t, x) + V. Tr(V,v(t, x))).

By direct computation, it holds that

V,s(t, x)v(t,x)+ V,v(t, x)s(t, x)

=V, (tx)(ii (Zi dtat)( ))+v(§ (Zt dtat)s(t,x))s(t,x)

= vas(t,x)x+ Ea?—dtat sz(t,x)s(t,x)+ﬁs(t,x)+ Eaf—dtat V,s(t, x)s(t, x)
by by by by

= b—s(t X)+ — by LV,s(t, x)x+2(lg

b, b, a; - dtat)vxs(t,X)s(t,x).

t

Then we focus on the trace term

V. Tr(V,v(t, x))
bt bt dt
v r((bt at)atc oV =)+ at d)
. . 2
(b _ 4 ti Tr(Cov(Y|X; = x))
by ai)a}
Bt dt 2
(b @ t,
n (fnyn (31t x)dy - )

t
b a;\bf
= b—t—Z—t —2(Jllyll2 P (It x)dy - 2Upr(y|t,x)®ydy)(jyp(ylt,X)dy));
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where we notice that

3 p(t,xly)pl(y))
Vip(ylt,x) =V, (—pt(X)
Vaplalyp) ple e ()
R ) )
b _
= p(st0) | ste0)
a;

For ease of presentation, we introduce the following notations to denote several mo-

ments of Y|X; = x
M, = E[YX, = x], M, == E[YTY[X, = x],
M5 := Cov(Y|X; = x), Ms :=EB[YYTY|X; = x].

By Tweedie’s formula in Lemma 2.51, it yields s(¢,x) = %Ml - al—zx. By this expression
t t
of s(t, x), it yields

V.s(t, x)v(t,x)+ V,v(t, x)s(t, x)

= b—s(t X)+ by LV s(tx)x+2[ = b —aza; |Vys(t, x)s(t, x)
2
bt(thl 12 )+bt(thC 1Id)
bi\a ay bi\af ay

) 2
+2(b_ atat)(bt M~ —I )(thl 12 )
b af ay ay ay

i, b b, b2 ( 4 b b3 (b,
= 2%y ;(2— ——)M1 = (2ﬂ——f)M§x+2—f(—t —Q)Mng
a; a;\ a; b ag \ ar by
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and V,p(y|t,x) = s—té(y — M) p(y|t, x). Therefore, we obtain

Jllyllzvxp(ylt,x)dy - 2(_[ V.p(¥lt, x) ®ydy)(fyp(ylt,x)dy)

b b
= JII;}IPQ—Q (y=Mi)p(ylt,x)dy - 2(J a—; (v —M1)®yp(y|t,X)dy) (fyp(ylt,x)dy)

t

. z—t;Unynzyp(ylt,x)dy —(f||y||2p<y|t,x)dy)M1

—ZU;»@yp(ylt,x)dy M fyp(ylt,x>dy)(Jyp(yw,x)dy)]

by

2
ax

(M3 — MM, — 2MSM;).

Combining the equations above, we obtain

bby—b7  (bby—b7 5 by 2\ ( be 1
8tv(t’x):b—t2x+ th at+b_tzatat agay — dy a%Ml—Ex
by , . ar b (. d b
—(Za2 - R S R )V
(btat atat)[ at3x+at2 o 1
b2 b 3 b .
—Z(zﬂ b—f)ng 2—i(b—f ﬁ)Mngl
ag \ 4ar Ot agp \br a4z

by 5 . by
(btat atat)(bt

.. .2 o

da; ad b, . b, o\ b
= —t——tz X+ atz—t—atat—t—atat+at2 —

ar  ay by by

bf(bt at)(bt at) b3(b
+ LA -2 -2 | Msx - L2
af by a;J\b; az 2 atz by

Then we complete the proof.

2.9.7 Functional inequalities and Tweedie’s formula

This section is devoted to an exposition of functional inequalities and Tweedie’s formula

that would assist in our proof.

For a probability measure y on a compact set () C R?, we define the variance of a
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function f € L?(Q, ) as

= o[ 0]

Moreover, for a probability measure y on a compact set () C R? and any positive inte-

grable function f : QO — R such that IQ flllog flldv < oo, we define the entropy of f

Ent,(f):= L flog fdpu- JQ fdﬂlog(fgfdﬂ)-

Definition 2.49 (Log-Sobolev inequality). A probability measure p € P(Q) is said to

as

satisfy a log-Sobolev inequality with constant C > 0, if for all functions f : QO — R, it
holds that

Ent,(f°) < ZCJ ||Vf||%dy

The best constant C > 0 for which such an inequality holds is referred to as the log-

Sobolev constant Cyg(p).

Definition 2.50 (Poincaré inequality). A probability measure p € P(Q) is said to satisfy
a Poincaré inequality with constant C > 0, if for all functions f : (3 — R, it holds that

Var,(f)<C J;) IVFI3dp

The best constant C > 0 for which such an inequality holds is referred to as the Poincaré

constant Cp(p).

Finally, for ease of reference, we present Tweedie’s formula that was first reported in
Robbins [1956], and then was used as a simple empirical Bayes approach for correcting
selection bias [Efron, 2011]. Here, we use Tweedie’s formula to link the score function

with the expectation conditioned on an observation with Gaussian noise.

Lemma 2.51 (Tweedie’s formula). Suppose that X ~ p and € ~ y; ;2. LetY = X+ € and
p(v) be the marginal density of Y. Then E[X|Y =p] =y + GZVy logp(v).
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Chapter 3

Convergence of Continuous Normalizing Flows

Continuous normalizing flows are a generative method for learning probability distri-
butions, which is based on ODEs. This method has shown remarkable empirical success
across various applications, including large-scale image synthesis, protein structure pre-
diction, and molecule generation. In this chapter, we study the theoretical properties of
CNFs with linear interpolation in learning probability distributions from a finite random
sample, using a flow matching objective function. We establish non-asymptotic error
bounds for the distribution estimator based on CNFs, in terms of the Wasserstein-2 dis-
tance. We present a convergence analysis framework that encompasses the error due to
velocity estimation, the discretization error, and the early stopping error. A key step in
our analysis involves establishing the regularity properties of the velocity field and its
estimator for CNFs constructed with linear interpolation. This necessitates the develop-
ment of uniform error bounds with Lipschitz regularity control of deep ReLU networks
that approximate the Lipschitz function class, which could be of independent interest.
Our nonparametric convergence analysis offers theoretical guarantees for using CNFs

to learn probability distributions from a finite random sample.

3.1 Introduction

In this chapter, we study the theoretical properties of simulation-free CNFs. We develop
a general framework for error analyses of CNFs with flow matching for learning prob-
ability distributions based on a random sample. Central to simulation-free CNFs, deep
ReLU networks are employed for function approximation and nonparametric estimation
of the velocity field. We establish the approximation properties of deep ReLU networks
with Lipschitz regularity control, which is essential for analyzing the impact of the es-
timated velocity field on the distribution of the data generated through the flow. In
particular, it is crucial to control the Lipschitz regularity of the estimated velocity field

to ensure that the associated IVP is well-posed.
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3.1.1 Preview of main results

The following informal descriptions provide a preview of our main results.

Our first main result concerns the regularity of the velocity fields of the CNFs con-
structed with linear interpolation. For a detailed definition of such CNFs, see Lemma

3.12 and equation (3.3).

Theorem 3.1 (Informal). Assume that the target distribution either has a bounded support,
is strongly log-concave, or is a mixture of Gaussians. Let 0 < t < 1. The velocity fields of

the CNFs with linear interpolation have the following regularity properties:

(i) The velocity field v* is Lipschitz continuous in the space variable x for (t,x) € [0,1]x

IR?, where the Lipschitz constant is uniformly bounded:

(ii) The velocity field v* is Lipschitz continuous in the time variable t for (t,x) € [0,1 —
t] x IR?, where the Lipschitz constant grows at the order of O(t™2) ast | 0;

(iii) The velocity field v* spatially has a linear growth on IR for each t € [0, 1].

Remark 3.2. The regularity properties of the velocity fields stated in Theorem 3.1 are
derived from the assumptions made about the underlying target distribution. These
properties are essential for studying the distributions generated by the corresponding

CNFs.

Theorem 3.3 (Informal). Suppose that the target distribution is strongly log-concave or is
a mixture of Gaussians. Let n be the sample size and 0 < t < 1 satisfying t < n~1/(@+5),
By properly setting the deep ReLU network structure and the forward Euler discretization
step sizes, the distribution estimation error of the CNFs learned with linear interpolation

and flow matching is evaluated by

—~ 1

EW,(91_,v) = O(n"5), (3.1)

where the expectation is taken with respect to all random samples, V,_; is the law of gen-
erated data, v is the law of target data, W,(-,) is the Wasserstein-2 distance, and a poly-

logarithmic prefactor in n is omitted.

Remark 3.4. Ascanbe seen from Theorem 3.1 or Theorem 3.26 below, the velocity fields

associated with the CNFs based on linear interpolation may be singular in the time vari-

able at t = 1 due to the exploding Lipschitz constant bound. This singularity affects the
61



convergence rate in (3.1). Without the time singularity of the velocity field, the distribu-
-1/ (d+3))

tion estimation error would be bounded by O(n . The time singularity leads to
a necessary trade-off regarding t between the error due to velocity estimation and the
early stopping error. The trade-off reduces the nonparametric convergence rate of the
distribution estimator to 5(11_1/ (d+5)). However, this rate 5(11_1/ (@+5)y js slower than

4+4)) for nonparametric density estimation. In our analysis,

the minimax rate O(n= %!
we first consider the convergence rate of the velocity estimator, when the smoothness
index of the velocity function is 1 and an additional time variable is included. Due to the
relation between the velocity function and the score function, we know that the smooth-
ness index of the density function differs from that of the velocity function. Therefore,
the gap between our derived rate and the optimal rate may be due to the additional time

dimension, the loss of smoothness, and the time singularity. See also Remark 3.24 for

additional comments and explanation.

3.1.2 Our contributions

We present a comprehensive error analysis of simulation-free CNFs with linear inter-
polation, trained using flow matching. To the best of our knowledge, this is the first
analysis of its kind in the context of simulation-free CNFs. Our results are based solely
on assumptions about the target distribution, and all regularity conditions are rigorously
derived from these assumptions. Our analysis accurately reflects the practical compu-
tational implementation of flow matching for learning simulation-free CNFs. Although
our focus is on CNFs based on linear interpolation due to their widespread use and for
the sake of simplicity, our analytical framework can be applied to CNFs based on other

types of interpolation as well.

We summarize our main contributions into four points:

(1) We establish non-asymptotic error bounds for distribution estimators based on
simulation-free CNFs with linear interpolation and flow matching. We present
a convergence analysis framework that encompasses the error due to velocity

estimation, the discretization error, and the early stopping error. We show that

the nonparametric convergence rate of the distribution estimator is 5(11_1/ (d+5))

up to a polylogarithmic prefactor in the sample size n.
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(2)

We derive regularity properties for the velocity field of the CNF with linear inter-
polation. We demonstrate the Lipschitz regularity properties of the velocity field
in both the space and time variables and establish bounds for the Lipschitz con-
stants. We also show that the velocity field grows at most linearly with respect

to the space variable.

We establish error bounds for deep ReLU network approximation within the Lip-
schitz function class, demonstrating that the constructed approximation function
maintains Lipschitz regularity. We also derive time-space approximation bounds
for approximating the velocity field in both the time and space variables. These
time-space approximation bounds are novel in three respects. Firstly, the approx-
imation bounds are derived in terms of the L® norm. Secondly, we demonstrate
that the constructed time-space approximation function is Lipschitz in both the
time and space variables, with Lipschitz constants of the same order as those of
the target function. Lastly, the time-space approximation function can exhibit dif-
ferent Lipschitz regularity in the time and space variables. These neural network
approximation results, which maintain Lipschitz regularity, could be of indepen-

dent interest.

We establish the statistical consistency of the flow matching estimator for the
velocity field. By rigorously bounding the stochastic and approximation errors,
we show that the convergence rate of the flow matching estimator coincides with
the minimax optimal rate of nonparametric estimation of regression functions

belonging to the Sobolev space W1*([0,1]4).

The remainder of this chapter is organized as follows. In Section 3.2, we present

the preliminary materials required for subsequent sections. In Section 3.3, we describe

simulation-free CNFs and outline the steps for using these CNFs for generative learning.

In Section 3.4, we derive our main result concerning the error bounds for the distribu-

tion estimator based on CNFs with linear interpolation. In Section 3.5, we first present

some useful regularity properties of the velocity field and establish error bounds for the

estimated velocity fields through flow matching. Section 3.6 contains discussions on

related works in the existing literature.
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3.2 Preliminaries

In this section, we summarize several useful definitions, assumptions, the background

of CNFs and deep ReLU networks.

3.2.1 Definitions

We list a few useful definitions in this subsection.

The rectified linear unit (ReLU) activation function is defined as p(x) := max(0, x)
for x € R, which also operates coordinate-wise on elements of x € RY. For k > 2, the

ReLUF activation function is given by oy (x) := (max(0, x))¥.

Definition 3.5 (Deep ReLU networks). Deep ReLU networks stand for a class of feed-
forward artificial neural networks defined with ReLU activation functions. The function
fo(x) : R — RY implemented by a deep ReLU network with parameter 6 is expressed
as composition of a sequence of functions
fo(x):=lhopoly 1 0po-+-ol0pol(x)

for any x € IR¥, where p(x) is the ReLU activation function and the depth D is the number
of hidden layers. For i = 0,1,---,D, the i-th layer is represented by /;(x) := A;x + b;,
where A; € R%+1%% is the weight matrix, b; € R%+1 is the bias vector, and d; is the width
of the i-th layer. The network fy contains D+ 1 layers in all. We use a (D+ 1)-dimension
vector (dgy,dq,+--,dp)" to describe the width of each layer. In particular, dy = k is the
dimension of the domain and dp = d is the dimension of the codomain. The width W is
defined as the maximum width of hidden layers, that is, W = max{d,d,,---,dp}. The
size S denotes the total number of nonzero parameters in the network fy. The bound
B denotes the L® bound of fy, that is, sup, g« [l fo(¥)llec <B. We denote the function
class {fp : R* — IRY} implemented by deep ReLU networks with size S, width W, depth
D, and bound B as NN/ (S,W,D,B, k, d).

Definition 3.6 (Wasserstein-2 distance). The Wasserstein-2 distance between two prob-
ability distributions on R is the L? optimal transportation cost defined by
1/2
Wopv) = inf (Exy)lX=YI3)
2w v)i=nf  (BpoyexlX-YiD)

e

where I1(y, v) denotes the set of all joint probability distributions 7t whose marginals
are respectively y and v. A distribution 7v € II(y, v) is called a coupling of p and v.
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3.2.2 Assumptions

We state the assumptions on the target distribution v on IR? to support the main results.
Below we use supp(v) to denote the support of a probability distribution v. We also

use diam(Q) to represent the diameter of a set Q c R?.

Assumption 3.7. The probability distribution v is absolutely continuous with respect

to the Lebesgue measure and has a zero mean.

Assumption 3.8. The probability distribution v satisfies any one of the following con-

ditions:

(i) v is p-semi-log-convex for some f > 0 and k-semi-log-concave for some x > 0

with supp(v) = RY;

(ii) v = Y442 *p where p is a probability distribution supported on a Euclidean ball

of radius R on R?.

Remark 3.9 (Distribution classes). Assumption 3.8 covers two classes of distributions
that are of great interest in the literature on generative learning and sampling. Let us

briefly remark on the properties of the distributions:

(1) Strongly log-concave distributions are considered in Assumption 3.8-(i). For dis-
tributions in this class, the Hessian matrix of the potential function is both posi-

tively lower bounded and positively upper bounded.

(2) Mixtures of Gaussians are considered in Assumption 3.8-(ii). A mixture of Gaus-
sians is notably a multimodal probability distribution, which is neither strongly

log-concave nor bounded.

Remark 3.10 (Score Lipschitzness). For any f > 0,x € R, and «¥ < f, the f-semi-
log-convexity and x-semi-log-concavity measure the Lipschitzness of the smooth score
function S(x) := V, log g—;(x) in the sense that kI; < V,S(x) < BI;. The Lipschitzness
of the score function for a probability distribution is a common assumption in the liter-
ature studying convergence properties of Langevin Monte Carlo algorithms and score-
based diffusion models (cf. Dalalyan [2017], Durmus and Moulines [2017], Chen et al.
[2023d,a]).
65



Remark 3.11 (Sub-Gaussianity). The probability distribution v considered in Assump-
tion 3.8 satisfies the log-Sobolev inequality with a finite constant Cyg; depending on
x > 0 or (0,R) [Mikulincer and Shenfeld, 2024, Dai et al., 2023]. Let V ~ v and V =
[Vi,Va,+-,V4]T. Then a standard Herbst’s argument shows that V; is sub-Gaussian,
and its sub-Gaussian norm ||V;[|,, < V/Ci g1 for 1 <i <d owing to Ledoux [2001, Theo-

rem 5.3]. In addition, a sub-Gaussian random variable has a finite fourth moment.

3.3 Simulation-free continuous normalizing flows

The basic idea of simulation-free CNFs is to construct an ODE-based IVP with a tractable
velocity field. The flow map of the IVP pushes forward a simple source distribution onto
the underlying target distribution. It is essential to be able to efficiently estimate the
velocity field with a random sample from the target distribution. Since CNFs use ODEs
to model a target distribution, the corresponding velocity fields depend on the target
distribution and may have a complex, unknown structure. Therefore, it is natural to

employ nonparametric methods with deep neural networks to estimate velocity fields.

In Table 3.1, we summarize the four steps of using simulation-free CNFs for gener-

ative learning, and we discuss each step in detail below.

3.3.1 Construction of simulation-free CNFs

Based on the concept of stochastic interpolation, Liu et al. [2023] and Albergo and
Vanden-Eijnden [2023] proposed a new class of simulation-free CNFs. Gao et al. [2024a]
analyzed probability flows of diffusion models and denoising diffusion implicit models
in the framework of stochastic interpolation. Let a; : [0,1] — R,,b; : [0,1] — R,

satisfy the following conditions:
i;<0, b, >0, ap>0, by>0, a; =0, by =1,
a; >0 forany te€(0,1), b;>0 foranyte(0,1),

a, by € C*([0,1)), a?>eCY([0,1]), b;eC([0,1]).

Then a general class of simulation-free CNFs is constructed in Lemma 3.12 and satisfies
the requirements of Step 1 in Table 3.1. For simplicity, we use Law(X) to denote the

distribution of a random variable X.
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Task: Generating samples from a distribution approximating the target
distribution v.

Step 1. Construct a simulation-free CNF defined by the IVP such that v =
Xrypp:

dx,

T (x) =v(t,Xs(x)), Xo(x)=x~p (t,x)e[r,T] x R,

where T > 0,v : [, T]xIR? — R is the velocity field, and y is a simple
source distribution.

Step 2. Estimate the velocity field v(t, x) with a deep neural network ?(t, x).

Step 3. Use a proper numerical solver to solve the IVP associated with
¥(t,x), and return the numerical solution Yr(x) at time t = T

dy,

= W =06 Y(x), Yol =x~p, (t,x) € [t, T]x R%.

Step 4. Generate samples from Y7, U, which approximates v = X, pu.

Table 3.1. Four steps to conduct generative learning via simulation-free CNFs.

Lemma 3.12 (Theorem 5.1 in Gao et al. [2024a]). Suppose that a probability distribution
v satisfies Assumptions 3.7 and 3.8. Let yp = Law(agZ + boXy) withZ ~ y4, X1 ~ v, X; :=
a;Z+b;Xy foranyt € (0,1). Let the velocity field v(t, x) be defined by

v(t,x) = E[d,Z+b,X|X; =x], (t,x)€(0,1)xRY,

v(0,x):=limv(t,x), v(1,x):=limv(tx), xR
tl0 11

Then there exists a unique solution (X;)se[0,1] to the IVP

ax,

5 () =v(EX(x), Xo(x)=x~p (Lx)€ [0,1] x R¥. (3.2)

Moreover, the push-forward distribution satisfies X; sy = Law(a;Z+b;X;) withZ ~ y 4, X1 ~

V.

Lemma 3.12 shows that the velocity field v(¢,x) of the simulation-free CNF (3.2)
takes the form of conditional expectations. As a result, the least squares method, also
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known as the flow matching method for simulation-free CNFs [Lipman et al., 2023], is

an effective approach to estimating the velocity field v(t, x).

Among various choices of the coefficients a; and b;, the linear interpolation scenario,

where

at = 1 - t, bt = t, (33)

has been shown to have excellent properties for generative learning tasks [Liu et al.,
2023, Albergo et al,, 2023b]. A CNF model with linear interpolation has been used in
the implementation of a large image generative model [Esser et al., 2024]. The coeffi-
cients of the linear interpolation are the same as those of the displacement interpolation
in optimal transport [McCann, 1997, Villani, 2009]. In this chapter, we focus on the reg-

ularity and convergence properties of the CNF with linear interpolation (3.3).

Corollary 3.13. Suppose that a probability distribution v satisfies Assumptions 3.7 and
3.8. Let Xg = Z ~ y4, X1 ~ v. Consider the linear interpolation X; := (1 —t)Z+tX; for any
t € (0,1) and the velocity field v*(t,x) defined by

vi(tx):=E[X; - ZX, =x], (t,x)€[0,1]xR%. (3.4)
Then there exists a unique solution (X;)c[o,1] to the IVP

ax,

5 () =vEX (), Xo(x)=x~ys (£x)€[0,1]xRY, (3.5)

and the push-forward distribution satisfies X;4y; = Law(X;).

Corollary 3.13 implies that the push-forward distributions (X;4)4)¢e[0,1] coincide
with the marginal distributions of the Gaussian channel X; = (1 —#)Z+tX;. The connec-
tions between the velocity fields and Gaussian channels have inspired moment expres-
sions for the derivatives of the velocity field. We show these expressions in Lemmas

3.15 and 3.17 for the purpose of examining the regularity properties of velocity fields.

Remark 3.14. Since x = [E[(1 — t)Z + tX;|X; = x] for (t,x) € [0,1] x R?, an alternative
expression of the velocity field is given by
. 1 1 d
vi(t,x) = T *t 1—_tIE[X1|Xt =x], (t,x)e€[0,1)xR". (3.6)
Expression (3.6) shows that the velocity field v*(¢,x) only depends on the conditional
expectation [E[X{|X; = x].
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Lemma 3.15 (Lemma 4.1 in Gao et al. [2024a]). The Jacobian matrix V,v*(t,x) has a

covariance expression as follows

Vv (t,x) =

t 1 d
Cov(X{|X; =x)——1,, (t,x)e]0,1)xIR". 3.7
FoECov ik =) - ke (x)€[0.) 67)
Remark 3.16. The covariance expression (3.7) has been used to derive regularity prop-
erties of the velocity field v*(t, x) in the space variable x. For example, see Proposition

4.1 in Gao et al. [2024a].

Lemma 3.17 (Proposition F.1 in Gao et al. [2024a]). The time derivative of the velocity

field v*(t,x) has a moment expression for any t € [0,1) as follows

1 1 t+1

X+ + S d
(1-12" (1-¢2"

(-0 2 (1-0)f

I (t,x) = — (M3 —M,M;), (38)
where My := E[X;|X; = x], M, := E[X]{ X{|X; = x], M§ := Cov(X{|X; = x), and M3 :=
E[X; X{ X1 |X; = x] with omitted dependence on (t,x).

Remark 3.18. To quantify the regularity of the velocity field v*(¢, x) in the time variable
t, one can try to bound the moments in Eq. (3.8) defined in Lemma 3.17. Following this
idea, we conduct regularity analyses on the velocity field in Section 3.8.1 and summarize

the results in Theorem 3.26.

3.3.2 Flow matching

This subsection concerns Step 2 in Table 3.1, which estimates the velocity field of a CNF
with linear interpolation. As shown in (3.4), the velocity field v*(¢, x) = [E[X; —=Z|X; = x]
for each t € [0, 1]. For notational simplicity, let Y := X; —Z, and note that X; = (1 —#)Z+
tX;. Given 7 € (0, 1], we consider the time interval [0, T]. For t € [0, T], we denote X; ~
p:. When the time is a random variable distributed as a uniform distribution on [0, 7],
that is, t ~ U(0, ), we denote X |t = t ~ p;. Then the flow matching method [Lipman
et al., 2023, Liu et al,, 2023] solves a nonlinear least squares problem for estimating

v*(t,x) = E[Y|X; = x] on the domain [0, 7] x R%:

v* € argmin {L(v) 1= Eeeu(0,0) X, ~v, 2~y IV (6 X¢) = Y||%}- (3.9)

v
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In practice, 7 is often taken as 1. Here, we leave 7 as a quantity adaptive to the time
regularity of the velocity field v*. We will analyze the time regularity of v* in Subsection

3.5.1.

Let {Z;}!"_,, {Xy,i}_;, and {t;};_, be ii.d. random samples from y;,, v, and U(0, 1),

respectively. For i = 1,2,---,n, we denote X;, := (1 —t;)Z; + t;X; ; and Y; := X; ; = Z;.
The population risk £(v) defined in (3.9) leads to the empirical risk

1 n
Law):= =) [l X,) = Yill3: (3.10)
i=1

We approximate the velocity field v* using deep neural networks. We consider a
deep ReLU network class with the input dimension k = d + 1 and the output dimension
d=d. Let %, := NN (S,W,D,B,L,,L,,d+1,d) denote a function class {fy(t,x) : R¥*! —
R?)} implemented by deep ReLU networks with size S, width W, depth D, bound B, and
Lipschitz constants at most L, in x and L; in t over (f,x) € [0, T] X R?. The network
parameters can depend on the sample size 1, and we show the fact by making F,, depend
on n. For any f € F,, the Lipschitz continuity of f implies that ||f (¢, x) — f(s,%)||lec <
L.t —s| and ||f(t,x) = f(£,9)llo < Lyllx = |l for any s,t € [0,7] and x,y € R?. Tt is
easy to see that 7, C NN (S,W,D,B,d +1,d), that is a deep ReLU network class without
Lipschitz regularity control. To estimate the velocity field within the hypothesis class

F,, we consider the empirical risk minimization problem

v, €argminL,(v), (3.11)
veF,
where 7, is a deep ReLU network estimator for the velocity field v*. We call 9,, the flow

matching estimator because it is a minimizer of the empirical flow matching objective.

3.3.3 Forward Euler discretization

In this subsection, we proceed to Step 3 in Table 3.1, where a numerical solver is used
to solve the IVP:

dX; s (1§ . d

F(x) =0,(t, X¢(x)), Xo(x)~y4 (t,x)€[0,7]xR" (3.12)
The forward Euler method is a first-order numerical procedure for solving ODE-based
IVPs, which is commonly used in algorithms for sampling and generative learning. First,
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we set a time grid of [0, 7] as tg =0 < t; <:-- < tg = T < 1. The forward Euler method
for solving the IVP (3.12) yields the numerical iterations:
dx,

(%) = (i, Ry, (), Ro(®)~yar teltontid k=12 K. (3.13)

Finally, Step 4 in Table 3.1 is accomplished by drawing samples from y; and running

the numerical iterations given in (3.13).

3.4 Main result: Error bounds for distribution estima-
tion

In this section, we derive our main result, Theorem 3.23, on the error bounds for the

distribution estimator based on CNFs with linear interpolation.

3.4.1 Error decomposition

We begin with three IVPs (3.5), (3.12), and (3.13) in Section 3.3. The IVP (3.5) defines the
true process without approximation of the velocity field v* and discretization in time.
The IVP (3.12) defines the neural process resulting from replacing the velocity field v*
with the flow matching estimator ¥,,. The IVP (3.13) is the forward Euler discretization

counterpart of the IVP (3.12).

Let 0 <t < 1. As shown in Theorem 3.1 or Theorem 3.26 below, the Lipschitz
constant bound of the velocity field in the time variable is of the order O(t~2) on the
time interval [0, 1 — ¢]. This order shows that the bound explodes at the time ¢ = 1. To
maintain the Lipschitz regularity in the time variable for flow matching, we need to

consider an early stopping time by letting the end time 7 =1 — t.

Solving the IVPs (3.5), (3.12), and (3.13), we obtain the flow maps (X;):e[0,1), (Xt)te[o,l—g],
and (Xt)te[o,l—;} To simplify the notations, we denote the push-forward distributions
Xt#Vd:Xt#Vd:Xt#Vd by p:, pt, Pt respectively. We summarize the three processes (3.5),
(3.12), and (3.13), their corresponding flow maps and push-forward distributions defined
by the three IVPs, their corresponding velocity fields and density functions, and sources
of errors in Table 3.2. In the first column, we present three processes defined by the

three IVPs referred in the second column. The corresponding notations are given in the
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following columns. Particularly, we show the error source for each process in the last

column.
Process Ivp Flow Velocity Push-forward Density Error source
map field distribution

True process (3.5) Xi(x)  v(t, Xi(x)) X8V p: Early
stopping

Neural process  (3.12)  X,(x)  9,(t, X;(x)) Xiuya p: Velocity

estimation
Discrete process  (3.13)  X;(x) ﬁn(tk_l,)ztkfl (x)) Xt#?d Py Discretization

Table 3.2. A list of three IVPs and related notations defining the generative learning
process.

There are three sources of errors introduced in the generative learning process (3.5),
(3.12), and (3.13). The discretization error comes from the forward Euler discretization.
The error due to velocity estimation results from flow matching with deep ReLU net-
works. The early stopping error is due to the time singularity of the velocity field at
time f = 1. We use the Wasserstein-2 distance V, to measure the difference between
the estimated generative distribution p;_; and the target distribution p;. We derive an

upper bound for W,(p1_, p1), which takes into account all the three sources of error.

It is important to consider the trade-off between the different sources of errors. The
early stopping error is reduced when the parameter ¢ gets smaller. However, a smaller
value of t increases the time singularity of the velocity field on the time interval [0, 1 -],

thus leads to a larger error due to velocity estimation.

Keeping the error trade-off in mind, we consider a basic decomposition of the total

error in terms of the Wasserstein-2 distance as follows:

Wh(P1-t,P1) S Wa(P1-p P1-t) t Wa(P1-t P1-t) + Wa(P1-1, P1)- (3.14)

discretization velocity estimation  early stopping

In (3.14), the first term W,(p;_, p1-;) measures the discretization error, the second
term W, (p1_¢, p1—¢) measures the error due to velocity estimation, and the third term
Ws(p1-t, p1) measures the early stopping error. We evaluate each error term in Lemmas

3.19, 3.21, and 3.22 below, respectively.
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Lemma 3.19 (Discretization error). Suppose that Assumptions 3.7 and 3.8 hold. Let Y =

ty —ty_1 fork =1,2,---,K. Then the discretization error is evaluated by

Wa(p1-pP1-g) = O(Vde (LB +L,)Y).

Lemma 3.19 shows that the error due to the forward Euler discretization is well con-
trolled when the discretization step size Y is sufficiently small. We use the perturbation
analysis of ODE flows to derive the error bound in Lemma 3.19, and the proof can be

found in Section 3.8.4.

Remark 3.20. Lemma 3.19 considers a uniform step size for the forward Euler dis-

cretization. For more general choices of the step size, we need the general condition
K
=) (=) (3.15)

to ensure that the error bound in Lemma 3.19 holds. This can be shown following the

proof of Lemma 3.19.

In the sequel, we frequently take expectations over (t, X;) whose joint distribution
is specified by t ~ U(0,1 —t) and X/t = t ~ p;. For ease of notation, we may omit the

notation of the joint distribution when taking expectations over (t, X;).

Lemma 3.21 (Error due to velocity estimation). Suppose that Assumptions 3.7 and 3.8
hold, and let v,, € F,, satisfy ||0,,(t,x) — 0, (£, ¥)lloo < Lyllx — 9|l for any t € (0,1 —t] and

X,y € R?. Then the error due to velocity estimation is bounded by

W3 (P11, p1-1) < exp(2Ly + DB x)l10,(6,X0) = v (6 X0II3- (3.16)

Lemma 3.21 states that the error due to velocity estimation is controlled by the excess
risk of the flow matching estimator ¥, when the Lipschitz constant L, is bounded. We

will analyze the excess risk of the flow matching estimator in Section 3.5.

By combining the excess risk bound for v, and the W, distance bound (3.16), we can
deduce the error bound attributable to the estimated velocity field. Generally, bounding
the error due to velocity estimation involves establishing a perturbation error bound
for the ODE flow associated with the velocity field ¥,, or v*, as well as an estimation
error bound for the velocity field v*. We will use the Gronwall’s inequality to establish
the perturbation error bound (3.16) based on the W, distance. Similar perturbation
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error bounds have been obtained in Albergo and Vanden-Eijnden [2023, Proposition 3],
Benton et al. [2024b, Theorem 1], and Gao et al. [2024a, Proposition 54]. The proof of

Lemma 3.21 is given in Section 3.8.4.

Lemma 3.22 (Early stopping error). Suppose that Assumptions 3.7 and 3.8 hold. The early

stopping error is evaluated by

Wh(p1-p1) St

where we omit a polynomial prefactor in d and E[||[X;|3].

The W, distance bound in Lemma 3.22 formalizes the intuition that the early stop-
ping error scales with the early stopping parameter f. The proof of Lemma 3.22 uses a

coupling argument, and is given in Section 3.8.4.

3.4.2 Error bounds for the estimated distribution

We now apply the error bounds in the preceding subsection to derive error bounds for

the distribution estimator ¥;_;(dx) = p;_¢(x)dx.

By Lemma 3.19, it is clear that the discretization error can be controlled by choosing
the step size Y properly. Lemma 3.21 shows that the error due to velocity estimation
is upper bounded by the excess risk of the flow matching estimator v,,. Furthermore,
we will provide a detailed nonparametric analysis of the flow matching estimator ?,, in

Section 3.5.

Before presenting our main result, we first describe the trade-off between the differ-
ent sources of errors. By Theorem 3.40, the excess risk of the flow matching estimator

v, satisfies
Ep, Epx)lI2.(t Xe) = v*(t, Xo)I3 < (n£2)"> 3 polylog(n)log(1/1),

where polylog(n) stands for a polylogarithmic prefactor in n. Consequently, the error

due to velocity estimation satisfies
Ep, Wa(p1-o, p1-o) < (n%) /" Fpolylog(n)log(1/1),
where we use Lemma 3.21 and the bound L, =< log(log#n). According to Lemma 3.22,

the early stopping error is upper bounded by W, (p;_4, p1) < t. By substituting the error
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bounds into the error decomposition (3.14), it follows that

Ep Wh(P1-t:P1) EWaP1-p P1-t) + Ep Wa(P1-t, P1-t) + Wa(p1-t,P1)

S {eLx(LxB + L)Y+ (n?) ) z}polylog(n)log(l/z)

controlled by Y trade-off on t
< {7270+ ()7 1 tpolylog(n)log(1/), (3.17)

where we use the following bounds in deriving (3.17)

L, < log(logn), e“x=<logn, Bx=log(logn), L,=log(logn)t>.

Our main result stated below is obtained by balancing the error terms on the right-hand

side of (3.17).

Theorem 3.23 (Distribution estimation error). Suppose that Assumptions 3.7 and 3.8 hold.
Let us set A < log(logn), NL < nd/(2d+10) t= n (@45 and Y < n=3/(4+5) We consider
the deep ReLU network class F,, = N N (S,W,D,B,L,,L;,d +1,d) whose parameters satisfy
the following bounds

S=<t2(NL)?¥%(NlogN)*LlogL, Wx=t2(NL¥¥NlogN,

DxLlogl, Bx<A, Lyx<A, L;<At>

For any random sample ID,, := {(Z;, X ;,t;)}}"_, satisfying n > Pdim(F,), the distribution
estimation error of the CNF learned with linear interpolation and flow matching is upper
bounded as

—~ 1

Ep Wh(p1-t,p1) = O(n™#3),

where we omit a polylogarithmic prefactor in n.

The proof of Theorem 3.23 is given in Section 3.8.4.

Remark 3.24. As shown in (3.17), we need to consider a trade-off on the early stopping
parameter t as well as an appropriate order of the step size Y. By setting t < n~1/(4+5)
and Y < n~3/(d+5) e attain a concrete convergence rate 5(11_1/ (d+5)) of the distribution

estimator pq_;.

Remark 3.25. We consider the uniform step size Y in deriving the distribution estima-
tion error bound in Theorem 3.23. The uniform step size is common in implementing
numerical solvers for ODE flows. Additionally, the condition (3.15) in Remark 3.20 pro-
vides a guideline on general settings of the discretization step size.
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3.5 Error analysis of flow matching

In this section, we first present some useful regularity properties of the velocity field
v*, which are essential to the convergence analysis of the flow matching estimator 9,
defined in (3.11). The error from the flow matching estimation constitutes a main source

of the total error for the distribution estimation given in Theorem 3.23.

3.5.1 Regularity of velocity fields

The regularity properties of the velocity field are needed in studying the nonparametric
estimation error of flow matching. We summarize the regularity results of the velocity

field in Theorem 3.26.

Theorem 3.26. Suppose that Assumptions 3.7 and 3.8 are satisfied, and let 0 < t < 1.
Then the velocity field v*(t,x) : [0,1] x RY — R? has the following regularity properties:

(1) Foranys,t €[0,1—t] andx € Qn, ||[v*(t,x) = v*(s,%)||oo < L¢|t —s| with L, < At™2;
(2) Foranyx,y € R? and t € [0,1], |[v* (¢, x) — V(5 9)loo < Lillx = llo with L, < 1;

(3) SUP (1 x)e[0,1]x0, [[v*(t,x)|lco < B with B<S A,

where we omit constants ind, «x, 3,0, R and denote () 4 := [—A,A]d.

Theorem 3.26 states that the Lipschitz regularity of the velocity field v* holds in
the time variable ¢ and the space variable x. Moreover, the Lipschiz constant in x is
uniformly bounded for any (#,x) € [0, 1]xR?, and the Lipschitz constant in ¢ is bounded
for any (t,x) € [0,1 — t] x Q4 but depends on t. Due to the uniform Lipschitzness in x,

the velocity field v* further satisfies the linear growth property (3).

Remark 3.27. We note that the velocity field may be singular at time t = 1, since the
Lipschitz constant bound of L; explodes at time t = 1. We quantify the time singularity
through the upper bound L; <t~ where 0 < t < 1. Taking the time singularity into

account, we set the end time 7 = 1 —f in Subsection 3.4.1.

Remark 3.28. The global Lipschitz continuity of the velocity field in x ensures that
the associated IVP has a unique solution, according to the Cauchy-Lipschitz theorem
[Hartman, 2002b].
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Proof idea of Theorem 3.26. The proof of Theorem 3.26 can be found in Section 3.8.1.
As shown in Lemmas 3.15 and 3.17, the derivatives of the velocity field v* can be ex-
pressed in terms of the moments of X;|X;. The key idea of the proof is to bound these
moments. Under Assumptions 3.7 and 3.8, Gao et al. [2024a] have shown that the co-
variance matrix Cov(X;|X;) is both lower and upper bounded uniformly in ¢ € [0, 1] (cf.
Lemma 3.42 in Section 3.8.1). As a result, we can prove that the Lipschitz property (1)
holds. The linear growth property (3) follows from the Lipschitz property (1). To prove
the Lipschitz property (2), we derive bounds for the moments M; = [E[X{|X;],M; =
E[X{ X1|X;], and M3 = E[X;X{ X{|X;] by transforming the bounds of the covariance
matrix M5 = Cov(X;|X;). In particular, the bound transformations can be derived based
on the Hatsell-Nolte identity [Dytso et al., 2023b, Proposition 1], the Brascamp-Lieb in-
equality [Brascamp and Lieb, 1976], and a basic inequality on M3 — M, M;. Moreover,

we validate the sharpness of moment bounds using a Gaussian example.

3.5.2 Error decomposition of flow matching

The starting point of our analysis is the decomposition of the excess risk of ¥,, below.

Lemma 3.29. Let t ~ U(0,1 —t). For any random sample D,, := {(Z;, X, ;,t;)}i_,, the

excess risk of the flow matching estimator v,, satisfies
Ep, B x)l[0,(t Xe) = v* (6, XI5 = Ep [£(9,) - L(v")]

< Evoe + 26, (3.18)

ppr’

where the stochastic error Eg := Bp [L(v") - 2L,(9,) + L(D,,)] and the approximation

error Eappr 1= inf ez B xllv(t, Xe) —v*(t, Xt)||§.

The proof of Lemma 3.29 is given in Section 3.8.3. The decomposition (3.18) of the
excess risk can be considered a bias-variance decomposition. The stochastic error ;o
bounds the variance term of the flow matching estimator, and the approximation error
Eappr represents the bias term of the flow matching estimator. We derive bounds for
Estoc and &, pp;. Then the best bound for the excess risk under the decomposition (3.18)

is obtained by balancing these two error bounds.
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3.5.3 Approximation error

We derive the error bounds for approximating Lipschitz functions using deep ReLU
networks with Lipschitz regularity. The results are presented in Theorem 3.31, which
is crucial for bounding the approximation error of the flow matching estimator v,. To
address the challenge posed by the unbounded support of the velocity field v* in the
space variable x, we use the standard technique of truncated approximation. This allows
us to divide the approximation error into the truncated approximation error and the

truncation error.

Lemma 3.30. Forv € F,, and any A > 0, the approximation error satisfies a basic inequal-

ity as follows:

. * 2
Sappr = ;272 ]E(t,Xt)”v(tJ xt) —-v (t, Xt)”z < E;II;I;)I}C + Strunc: (3‘19)

where the truncated approximation error

Eappr. = Eexll[T(t X)) = v (6, Xo) ] 1d g, (XI5,

and the truncation error

Etrunc = IE(t,Xt)”[ﬁ(tl Xt) - v*(t’ xt)] Id QZ(Xt)”%

Lemma 3.30 follows from the triangle inequality and the inequality 2ab < a®+b? for

trunc
gappr

ReLU network approximation of the velocity field on the (d + 1)-dimensional hypercube.

any a,b € IR. We bound the truncated approximation error by considering deep
The truncation error &y, measures how fast the approximation error decays according

to the tail property of the probability distribution p; with t € [0,1 —£].

Approximation with Lipschitz regularity control. We study the capacity of an approx-
imation function 7(t, x) implemented by a deep ReLU network with Lipschitz regularity
for approximating the velocity field v*(¢, x). For balancing the approximation error with
the stochastic and discretization errors to obtain an overall error bound for the distribu-
tion estimation error, we construct the approximation function 7(t, x) so that it satisfies

the following three requirements:

(a) Good approximation power under the sup norm over the hypercube (), 4 :=
[0,1-t]x[-A,A)Y,
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(b) Lipschitz continuity with respect to both the time variable ¢ and the space variable

X,

(c) Independent regularity in the time variable t and the space variable x.

Let us briefly comment on each of these requirements. Requirement (a) is needed for
bounding the approximation error of the flow matching estimator 7,. The time-space
Lipschitz regularity of the approximation function ¥(f, x) required in (b) is essential to
bounding the discretization error and the error due to velocity estimation. Requirement
(c) stems from the time singularity of the velocity field at t = 1 and the different roles

of the time regularity and the space regularity in the error analysis.

Theorem 3.31. For any N, L € N, there exists a function v(t,x) implemented by a deep
ReLU network with widthO(t"*>(NL)?¢N logN), depthO(LlogL), and size Ot ?(NL)¥4
(NlogN)?LlogL) such that the following properties hold simultaneously:

(i) Boundedness and Lipschitz regularity: for anys,t € [0,1 —t] and any x,y € R,

sup  |[o(t,%)lle S A,
(t,x)e[0,1—t]xIR4

sup [[7(t,x) = 9(s, %)lloo S At 2|t —s],
xeR4

sup |[o(t,x) = 9(t, 9)lleo S Allx = Yllco-
t€[0,1-1]

(ii)) Approximation error bound:

sup [[o(t,x) —v*(t,¥)le S A*(NL) >4,

(t,x)€Qp 4 -
Note that we omit some prefactors in d,«, 8,0, R and denote QO 4 :=[0,1 — ] x [-A, A7

The proof of Theorem 3.31 is given in Section 3.8.2. Let | € N and Q C R! denote a
subset of R?. We denote by LP(Q)) the standard Lebesgue space on Q with the Lebesgue
norm || [[zp(q) for p € [1,00]. Let k € IN. We show the definitions of the Sobolev space

Wk (Q), the Sobolev norm ||-llwkes (2 and the Sobolev semi-norm |- |k« () in Section

3.8.5.
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Proof idea of Theorem 3.31. To fulfill Requirement (c), we use different approaches
to approximation in the time variable and the space variable. Our approximation ap-
proaches can ensure the constructed approximation function to be global Lipschitz for
fulfilling Requirement (b). We take four steps to construct the time-space approximation

function v with Lipschitz regularity control.

The first step is to derive an L*([0, 1]%) error bound of using deep ReLU networks for
approximating a Lipschitz function in the space variable. We show that the constructed
deep neural approximation function is globally Lipschitz in the space variable. The ap-
proximation results are presented in Section 3.8.2, and we summarize them here. Lemma
3.49 and Corollary 3.50 show that for any N,L € N and any f € W"*((0,1)%), there ex-
ists a function ¢ implemented by a deep ReLU network with width O(2¢dN log N) and
depth O(d?LlogL) such that |plwres(0,1)4) S |f lwieo(0,1)2) and that [[¢p — fl|peo(0,172) <

(NL)~?4, omitting the prefactors depending only on d.

The second step is to derive an L*°([0, 1]) approximation error bound of deep ReLU
networks for approximating a Lipschitz function in the time variable. We establish
an L*([0,1]) approximation bound with Lipschitz regularity control in Section 3.8.2.
Lemma 3.57 states the main results for approximation in time in such a way: for any
M € N and any f € W((0,1)), there exists a function & implemented by a deep
ReLU network with width O(M), depth O(1), and size O(M) such that [&|y1.e0((0,1)) S

|flwie((0,1)) and that [|€ = fllzeojo,17) < [f lwieo((o,1))/M.

In the third step, we combine the constructed approximation in Lemmas 3.49 and
3.57 to establish an L™((); 4) approximation bound for the time-space approximation

of the velocity field v*. This guarantees that Requirement (a) is fulfilled.

The last step is to show that the constructed time-space approximation satisfies the
remaining Requirements (b) and (c). We summarize these discussions in Theorem 3.31

and present detailed construction and derivations in the proof of Theorem 3.31.

Remark 3.32 (Optimality). Under the assumption of continuous parameter selection,
DeVore et al. [1989, Theorem 4.2] and Yarotsky [2017, Theorem 3] provided a lower
bound Q(e~%*) on the number of parameters for parametric approximations in the
Sobolev space W5([0,1]4), using the approach of continuous nonlinear widths, when

the L™ approximation error is no more than €. Our approximation rate for the time

80



variable in the Sobolev space W1*°([0, 1]) matches this lower bound in the sense that
a deep ReLU network with size O(S) can yield an L* approximation error no more
than O(1/S). Suppose that the deep ReLU network has width O(N), depth O(L), and
size O(S) with S < N2L. The approximation rate O(S~%?) in W5*([0,1]%) can be
improved to the nearly optimal rate O((N L)~/ dpolylog(N L)) with the bit-extraction
technique [Bartlett et al., 1998, 2019, Lu et al., 2021]. Our approximation rate for the
space variable in the Sobolev space W1*([0,1]%) is nearly optimal in the sense that a
deep ReLU network with width O(N) and depth O(L) can yield an L™ approximation
error no more than O((NL)_z/d(log(NL))z/d).

The L*(Q); 4) approximation error bound of Theorem 3.31 implies the following L?
bound of the truncated approximation error for analyzing the flow matching estimator

A

V.

Corollary 3.33. The truncated approximation error satisfies

S;;%r;c = IE(t,><t)||[77(t; Xt) - V*(tl Xt)] Id QA(Xt)”% < A4(NL)_4/d,

where we omit a constant in d, x, [5, o,R.

As elaborated in the proof of Theorem 3.31 given in Section 3.8.2, the deep ReLU

network implementing ¥ consists of O(t"(N L))

parallel subnetworks which have
width O(Nlog N) and depth O(LlogL). We take advantage of the parallel structure
and the construction of each subnetwork to estimate the complexity of the deep ReLU
network class F, implementing v. We derive the complexity of the deep ReLU network

class F, in Lemma 3.34.
Lemma 3.34. Suppose that Assumptions 3.7 and 3.8 hold. The complexity of the deep ReLU
network class F,, implementing v is quantified by

S=<t2(NL)?¥%(NlogN)*LlogL, Wx=t2(NL)¥¥NlogN,

DxLlogl, BxA, Ly=<A, L,<At?

where we omit some prefactors ind, x, 3,0, R.

Lemma 3.34 follows from the bounds for the number of parameters in the deep ReLU
network implementing v in Theorem 3.31.
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Through Theorem 3.31 and Corollary 3.33, we have established bounds for the trun-

trunc
Eappr )

Eirunc- We show the sub-Gaussian property of X; ~ p; in Lemma 3.35 under Assump-

cated approximation error In what follows, we focus on the truncation error

tions 3.7 and 3.8. In Lemma 3.36, we prove that the truncation error &, decays very
fast in the parameter A, as a result of the sub-Gaussian property of p;.

Lemma 3.35 (Tail probability). Let X; = (1—t)Z+tX; withZ ~ y4,X; ~ v, andt € [0,1].
Suppose that Assumptions 3.7 and 3.8 are satisfied. For any A > 0, it holds that

c C2A2
sup P(X; € Qf) < 2dexp|- , (3.20)
te[0,1] Crsi

where C, is a universal constant, and Cy g > 0 depends on x, 3,0, D, and R.

Lemma 3.36 (Truncation error). Suppose that Assumptions 3.7 and 3.8 are satisfied. For

any A > 0, the truncation error satisfies

Errunc = Box l[7(t, X) = v (1, Xe) [ 1d o (X)ll5 5 A% exp(~C3A%/Crsy),

where Cs is a universal constant, and we omit a constant in d,x, p,0,R, and the fourth

moment of the target X .

The proofs of Lemmas 3.35 and 3.36 are given in Section 3.8.3. We are now ready to

provide an upper bound for the approximation error E;pp;.

Corollary 3.37. Suppose that Assumptions 3.7 and 3.8 hold. Forany N,L € N and A > 0,
the approximation error is evaluated by

Eappr SAHINL) ™7 + A2 exp(~C3A%/Cyg)).

Corollary 3.37 holds by combining (3.19) in Lemma 3.30, Lemma 3.36, and Corollary
3.33.

3.5.4 Stochastic error

We now establish upper bounds for the stochastic error of the estimated velocity field

based on a class of deep ReLU networks.

Lemma 3.38. Consider the flow matching model and the hypothesis class F;, C N N (S, W,
D,B,d +1,d). For any n € IN satisfying n > Pdim(F,,), the stochastic error satisfies
1
Estoc = B, [L(v") = 2Ly (0y) + L(7,)] < —(log n)*dA*SDlog(5) log(An?).
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The proof of Lemma 3.38 is given in Section 3.8.3.

Corollary 3.39. Suppose that Assumptions 3.7 and 3.8 hold. The stochastic error satisfies

1
Estoc S t2(NL)**¥?(log N log L)>A*log(A)log(t (N L)¥¥(N log N)*LlogL),
where we omit a polylogarithmic prefactor in n and a prefactor ind, x, p, 0, R.

Corollary 3.39 follows from Lemmas 3.34 and 3.38.

3.5.5 Overall error bound for the estimated velocity field

By Lemma 3.29, the overall error for the estimated velocity field is bounded by the sum of
the approximation error &,pp,; and the stochastic error .. The approximation error is
analyzed in Subsection 3.5.3 and an upper bound is given in Corollary 3.37. It decreases
at a fast rate as the depth and width of the deep ReLU networks grow. The stochastic
error & is analyzed in Subsection 3.5.4 and its upper bound is provided in Corollary
3.39. The stochastic error increases when the size and depth of the deep ReLU networks
grow, as a result of the increasing complexity of the hypothesis class F,. By balancing
the bounds for &;pp; and o, We obtain the best error bound for the flow matching

estimator 7,, under the error decomposition in Lemma 3.29.

Theorem 3.40 (Flow matching error). Suppose that Assumptions 3.7 and 3.8 are satisfied.
Let NL < (nt?)¥(24+6) gnd A < log(log n). Then the excess risk of flow matching satisfies

Ep, Eox)l0,(t Xe) = v (6, Xo)lI3 < (nt?)~%@+3),

where we omit a polylogarithmic prefactor in n, a prefactor inlog(1/t), and a prefactor in

d,x,B,0,D, and R.

The proof of Theorem 3.40 is given in Section 3.8.3.

Remark 3.41. In Theorem 3.40, the polynomial prefactor in 1/t is due to the singularity
of v* in the time variable t. Without the singularity at time ¢+ = 1, the convergence

~2/d+3)polylog(n), which

rate of the flow matching error in Theorem 3.40 becomes n
is nearly minimax optimal for nonparametric least squares regression in the Sobolev

space W1([0,1]%*1) according to Stone [1982].
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3.6 Related work

Process-based generative models aim to construct a stochastic process that transports
an easy-to-sample source probability distribution to the target distribution. This goal
is achieved by estimating a nonlinear transport map implemented through deep neural
networks based on a random sample from the target distribution. CNFs and diffusion
models are two prominent approaches that have been developed for deep generative
learning. Many researchers have considered the theoretical properties of various gen-
erative learning methods. In this section, we discuss the connections and differences
between this chapter and the existing studies. We focus on the studies concerning CNFs
and diffusion models that are most relevant to this chapter. We also discuss the dif-
ferences between the neural network approximation theory developed In this chapter
and those in the existing literature, focusing on the regularity properties of the neural
network functions. In particular, we highlight the fact that our approximation results
concern velocity field functions that have different regularities in the space and time
variables, while the existing results are only applicable to functions with the same reg-

ularity in all the variables.

3.6.1 Continuous normalizing flows

CNFs are an ODE-based generative learning approach which estimates a stochastic
process for sampling from the target distribution. Marzouk et al. [2023] conducted a
nonparametric statistical convergence analysis for simulation-based CNF distribution
estimators trained through likelihood maximization. However, this analysis does not
extend to simulation-free CNFs. Probability flow ODEs [Song et al., 2021b], denoising
diffusion implicit models (DDIMs) [Song et al., 2021a], and flow matching methods [Liu
et al., 2023, Albergo and Vanden-Eijnden, 2023, Lipman et al., 2023] all fall under the
category of simulation-free CNFs. In these models, either the score function or the ve-
locity field is estimated. The overall error analysis needs to address both the estimation

error of the velocity field (or score function) and the discretization error.

In existing literature, it is typical to assume strong regularity conditions directly on
the velocity field (or score function) and its estimator. Furthermore, current studies of-

ten only consider certain sources of errors, neglecting either the discretization error or
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the estimation error of the velocity field (or score function). In contrast, our results are
derived based on assumptions about the target distribution. Additionally, our analysis
encompasses the error due to velocity estimation, the discretization error of the forward
Euler solver, and the early stopping error. These errors are included in the overall error
bound. We provide a summary of the comparison between this chapter and relevant ex-
isting studies in Table 3.3. We use W,, KL, TV to represent the Wasserstein-2 distance,
the Kullback-Leibler divergence, and the total variation distance. We say a numerical
sampler is “mixed” if it is a combination of deterministic and stochastic samplers. For
assumptions on velocity fields or velocity field estimators, we mark “Yes” if the assump-
tions are required and “No” if not. Since the unknown nonlinear part of the velocity
field is a score function, assumptions and estimation error bounds on score functions or
assumptions on score estimators can be regarded as those on velocity fields or velocity

field estimators.

Metric Sampler Estimation Perturbation DiscretizationAssumptions Assumptions on

error bound of error error on velocity estimated
velocity fields bound bound fields velocity fields
Albergo and Vanden-Eijnden [2023] W,  Deterministic X v X No Yes
Chen et al. [2023e] KL Deterministic =X X v Yes Yes
Albergo et al. [2023b] KL  Deterministic = X v X No No
Chen et al. [2023c] TV Mixed X v v Yes Yes
Benton et al. [2024b] W,  Deterministic X v X Yes Yes
Li et al. [2024] TV  Deterministic X v v No Yes
Gao et al. [2024b] W,  Deterministic X v v Yes Yes
This chapter W,  Deterministic v v v No No

Table 3.3. Comparison of convergence analyses of simulation-free CNFs.

Albergo and Vanden-Eijnden [2023] derived a perturbation error bound similar to
that in Lemma 3.16 for the CNF distribution estimator, under a Lipschitz assumption
for the estimated velocity field. Chen et al. [2023e] conducted convergence analyses of
DDIM-type samplers with the Kullback-Leibler (KL) divergence, assuming second-order
smoothness in the space variable and Holder-type regularity in the time variable for the
score function, while ignoring the score estimation error. Albergo et al. [2023b] also
derived a new perturbation error bound on the CNF distribution estimator using the KL

divergence.

Chen et al. [2023c] provided polynomial-time convergence guarantees for distribu-
tion estimation using the probability flow ODE trained with denoising score matching
and simulated with additional randomness. To derive these convergence rates, Chen
et al. [2023c] assumed that the score function and the score estimator both have Lips-
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chitz regularity in the space variable, and that the score estimation error is sufficiently

small in the L? distance.

Benton et al. [2024Db] studied the distribution estimation error of the flow matching
method, but their results rely on the small L2 estimation error assumption, the existence
and uniqueness of smooth flows assumption, and the spatial Lipschitzness of estimated
velocity field assumption. Li et al. [2024] derived convergence rates of probability flow
ODEs in the total variation distance, and their results depend on a small L2 score esti-

mation error assumption and a small L? Jacobian estimation error assumption.

Cui et al. [2023] studied the problem of learning a high-dimensional mixture of two
Gaussians with the flow matching method, in which the velocity field is parametrized
by a two-layer auto-encoder. Furthermore, Cui et al. [2023] conducted convergence

analyses of the Gaussian mixture distribution estimator in the asymptotic limit d — co.

Cheng et al. [2023b] presented a theoretical analysis of the distribution estimator
defined by Jordan-Kinderleherer-Otto (JKO) flow models, which implements the JKO
scheme in a normalizing flow network. Gao et al. [2024b] assumed a small L? score
estimation error, Lipschitz-type time regularity of the score function, and a smooth
log-concave data distribution, and then studied the distribution estimation error for a

general class of probability flow distribution estimators in the Wasserstein-2 distance.

Finally, Chang et al. [2024] considered a conditional generative learning model, in
which the predictor X and the response Y are both random variables with bounded
support. They provided an error analysis for learning the conditional distribution of

Y|X via the Follmer flow.

In this study, we derive non-asymptotic error bounds for the estimated velocity
fields and discretization error bounds for the forward Euler sampler. These error bounds
are incorporated into the end-to-end convergence analysis of the CNF distribution esti-
mator with flow matching. Furthermore, we only stipulate general assumptions on the
target distribution, rather than making assumptions on the velocity field (or score func-
tion) and its estimator. We believe that these theoretical contributions set this chapter

apart from previous studies.
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3.6.2 Diffusion models

Diffusion models [Sohl-Dickstein et al., 2015, Song and Ermon, 2019, Ho et al., 2020,
Song et al., 2021b,a] have emerged as a powerful SDE-based framework for deep gener-
ative learning. The diffusion model estimators share a deep connection with the CNF
distribution estimators due to the correspondence between an Ité6 SDE and its probabil-
ity flow ODE. There has been a growing interest in the statistical analyses of diffusion
model estimators, as evidenced by the works of Lee et al. [2022], Bortoli [2022], Chen
et al. [2023d], Lee et al. [2023], Chen et al. [2023a], Oko et al. [2023], Li et al. [2024],

among others.

Unlike the deterministic sampler of CNF distribution estimators, diffusion model
estimators employ a stochastic sampler (such as the Euler-Maruyama method) to simu-
late the time-reversed Itd6 SDEs. This stochasticity plays a crucial role in the discretiza-
tion error analysis of diffusion model estimators and leads to the development of useful
techniques such as Girsanov’s theorem [Chen et al,, 2023d], a chain rule-based vari-
ant [Chen et al.,, 2023a] of the interpolation technique [Vempala and Wibisono, 2019],
and the stochastic interpolation formula [Bortoli, 2022]. However, it remains uncer-
tain whether these techniques can be generalized for analyzing the CNF distribution

estimators.

Compared to the CNF distribution estimators, the diffusion model estimators have
been extensively investigated from a statistical perspective. For instance, the estimation
error bounds of the score function have been established by Oko et al. [2023], Chen
et al. [2023b], Huang et al. [2023], Cole and Lu [2024]. There is also a vast body of
literature on analyzing the discretization error of diffusion model estimators, including
works by Wibisono and Yang [2022], Benton et al. [2024a], Pedrotti et al. [2023], Gao
et al. [2023], Bruno et al. [2023], Shah et al. [2023] and others. However, the absence of
stochasticity presents significant challenges when attempting to analyze the ODE-based

CNF distribution estimators using techniques developed for diffusion model estimators.
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3.6.3 Neural network approximation with Lipschitz regularity con-
trol

The approximation theory of deep ReLU networks has developed rapidly since the semi-
nal work of Yarotsky [2017]. Previous studies have shown that deep ReLU networks can
efficiently approximate functions in a smooth function class, such as the Holder class,
the Sobolev class, and the Besov class, under the L™ norm [Yarotsky, 2017, Petersen
and Voigtlaender, 2018, Suzuki, 2019, Yarotsky, 2018, Giihring et al., 2020, DeVore et al.,
2021, Daubechies et al., 2022, Lu et al., 2021, Jiao et al., 2023a, Siegel, 2023]. Recent
works have also considered nonparametric or semiparametric estimation using deep
ReLU networks, including least squares regression [Bauer and Kohler, 2019, Schmidt-
Hieber, 2020, Nakada and Imaizumi, 2020, Kohler and Langer, 2021, Suzuki and Nitanda,
2021, Chen et al., 2022, Jiao et al., 2023a], quantile regression [Shen et al., 2022a, Padilla
et al., 2022] semiparametric inference [Farrell et al., 2021], factor augmented sparse
throughput models [Fan and Gu, 2024], among others. In the convergence analysis
of these models, it is sufficient to know the error bounds of using deep neural networks

for approximating smooth functions.

Analyzing deep generative distribution estimators becomes more challenging as it
requires not only approximation error bounds but also additional regularity properties
of the constructed neural network approximation functions. For instance, the error anal-
ysis of Wasserstein GANs necessitates an upper bound of the Lipschitz constant of the
discriminator network [Chen et al., 2020, Huang et al., 2022]. Chen et al. [2020] demon-
strated that the wide and shallow ReLU network constructed by Yarotsky [2017], for
which the depth grows logarithmically but the width grows polynomially, can approx-
imate 1-Lipschitz functions with a uniformly bounded Lipschitz constant. Huang et al.
[2022] provided a Lipschitz constant bound for the deep ReLU network approximation
function proposed by Lu et al. [2021]. However, this bound increases with the width
and depth of the network. Furthermore, Jiao et al. [2023b] succeeded in controlling the
Lipschitz constant of deep ReLU networks by enforcing a norm constraint on the neu-
ral network weights, and applied the approximation bound to analyze the distribution
estimation error of GANs. In addition to the error analyses of GANSs, the convergence
analysis of simulation-based CNFs by Marzouk et al. [2023], also requires a Lipschitz

regularity control of the constructed approximation function to ensure the CNFs are
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well-posed.

In the current context, the Lipschitz regularity of the neural network approximation
functions is crucial for analyzing the behavior of the estimated velocity field. Indeed, a
key step in our error analysis involves constructing deep ReLU networks to approximate
the Lipschitz velocity field v*(t, x) for (t,x) € [0,1 — t] x R?. To achieve this target, we
need to derive an L® bound of the approximation error and demonstrate that the Lips-
chitz constant of the constructed deep ReLU network is uniformly bounded, regardless
of the varying width and depth of the neural network. Establishing the Lipschitz regu-
larity of the neural network approximation functions, in addition to the approximation
error bounds, is a more challenging task that requires different techniques. Specifically,
our uniform bounds of the Lipschitz constants are sharper than those obtained by Huang
et al. [2022] for varying width and depth of the deep ReLU network. Compared to the
approximation bound of Chen et al. [2020], our approximation bound is valid for any
network width and depth specified by the parameters N and L. Marzouk et al. [2023]
considered the Lipschitz regularity of deep neural networks activated by the smooth
function ReLUX with k > 2, which is based on spline approximation and technically

differs from this chapter.

3.7 Conclusion

We have established non-asymptotic error bounds for the CNF distribution estimator
trained via flow matching, using the Wasserstein-2 distance. Assuming that the tar-
get distribution belongs to several rich classes of probability distributions, we have es-
tablished Lipschitz regularity properties of the velocity field for simulation-free CNFs
defined with linear interpolation. To meet the regularity requirements of flow match-
ing estimators, we have developed L* approximation bounds of deep ReLU networks
for Lipschitz functions, along with Lipschitz regularity control of the constructed deep
ReLU networks. By integrating the regularity results, the deep approximation bounds,
and perturbation analyses of ODE flows, we have shown that the convergence rate of
the CNF distribution estimator is 5(11_1/ (d+5)) up to a polylogarithmic prefactor of .
Our error analysis framework can be extended to study more general CNFs based on

interpolation, beyond the CNFs constructed with linear interpolation.
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3.8 Proofs and supplementary results

In this section, we present proofs of the main results given in this chapter.

3.8.1 Regularity of the velocity field

In this section, we study the regularity properties of the velocity field and present nec-

essary lemmas, theorems, propositions, and their proofs.

We first introduce several auxiliary conditions to assist studying the regularity prop-
erties of the velocity field. These conditions are covered in the two cases of Assumption

3.8.

Condition 1 (Semi-log-concavity). Let v(dx) = exp(—U(x))dx. The potential function

U(x) is of class C? and satisfies V2U (x) > xI; for some « € IR.

Condition 2 (Gaussian smoothing). The target distribution v = y; ;2 * p where p is a

probability distribution supported on a Euclidean ball of radius R on IR?.

Lemma 3.42 (Proposition 4.1 in Gao et al. [2024a]). Let v(dy) = p(y)dy be a probability
distribution on R? with D := (1/v/2)diam(supp(v)).

(1) Foranyte(0,1),

1 " t 2 1 _ 2
_1__tId < va (t,X) < {(1 — t)3D — 1_—t}1d, COV(X1|Xt = X) < D Id

(2) Suppose that p is f-semi-log-convex with f > 0 and supp(p) = R¥. Then for any
te(0,1),

(1-1)

(B+1)t—P A |
B —t)2+12 %

va*(t,x) > W

I;, Cov(X{X;=x)>

(3) Suppose that p is k-semi-log-concave with k¥ € R. Then for any t € (ty, 1),

(1-1)°

. (k+1)t—x
V,v'(t x) < 1,
(%) k(l—t)2+12 ¢

gy CovPal=x=

where t is the root of the equation x + t*/(1 —t)?> = 0 overt € (0,1) ifk < 0 and
to =0 l.fK > 0.
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(4) Fix a probability distribution p on R? supported on a Euclidean ball of radius R, and
let v := 7y, ,2%p witho > 0. Then foranyt € (0,1),

(02 +1)t-1 . t(1—t) , (o2 +1)t-1
ST L <V () < R?+ I,
(=t rorpd = Ve 0N =\ e Rt o2 [

2
COV(X1|Xt:x)§{(i) R2+M}Id,

(1-1t)2+02t2 (1-1t)2+02t2

(1-1t)2+ 022 (1-1t)2+02t? +(1—t)2+02t2x

(X1|Xt:x)i&Q+\/ 02(1-1t)? - o?t?

where Q ~ p is supported on the same ball as p, Z ~ y,, and Q, Z are independent.

In Lemma 3.43 below, we show that the velocity field and its spatial derivative is
(locally) bounded under mild regularity conditions. The boundedness of the spatial
derivative directly follows from Lemma 3.42. Since a Lipschitz property results in a

linear growth property, we obtain the the velocity field is locally bounded. For ease of

presentation, let us define two parameter sets by

S . {{K,ﬁ} if Assumption 3.8-(i) holds,
1:=

{R,0} if Assumption 3.8-(ii) holds,

S {d,x,p} if Assumption 3.8-(i) holds,
2 {d,R,0} if Assumption 3.8-(ii) holds.

We say a prefactor scales polynomially with Sy if it scales polynomially with parameters

in 81 .
Lemma 3.43. Suppose that Assumptions 3.7 and 3.8 hold. Then it holds that

sup ||U*(t, x)”Z < A’ sup ||va*(t,x)||2,2 < 11
(£,%)€[0,1]xQ4 (t,x)€[0,1]xR4

where we omit prefactors scaling polynomially with S,.

Proof. Under Assumptions 3.7 and 3.8, Lemma 3.42 shows that

C1(S)1z 2V, (L x) < Cyo(S))ly,
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where C;(S7) and C,(8)) are constants scaling polynomially with S;. It further yields
that

sup Vv (t,x)ll2 S 1 (3.21)
(t,x)€[0,1]xIR4

when we omit a prefactor scaling polynomially with §;. Notice that for any ¢ € (0, 1),
it holds that

) 1 1
V(4,0) = B = 0)= 1 [ atvl 0y

1

S_
1-1¢ R4

2 2
vp(y)(1— 1) exp (—%)d%

which implies |[v*(t, 0)||], < oo due to fast growth of the exponential function. Besides,
v*(0,0) = [E[X;],v*(1,0) = 0. Then by the boundedness of ||v*(t,0)||, over [0,1] and

(3.21), we bound v*(t, x) as follows
0" (£, x)ll2 < [[v* (£, 0)ll2 + [[v* (2, x) = v*(2, 0)ll2
<[lv(£, 0)ll +{ sup ||Vyv*(t,y)||z,z}||x||2
(t,9)€[0,1]xR4

slixllz v,
where we omit a prefactor scaling polynomially with S;. It further yields that

sup V(L x)l <A
(t,x)€[0,1]xQ 4

by omitting a prefactor scaling polynomially with S,. This completes the proof. []

Control with semi-log-concavity

We derive moment bounds under Condition 1. The moment bounds are useful to esti-

mate the time regularity of the velocity field.

Lemma 3.44 (Moment bounds). Suppose that Condition 1 holds. Let 11 € (0,1) be a
constant. Let t; be the root of the equation k(1 —t)> +1> =1 overt € (0,1) ifx < 0 or
t; =0 ifk > 0. Then for any t € [t,1 —t], it holds that

sup [Mill, <A, sup IMSllos < (1- 1) sup [Ms — MyM Il < A1 - )

XEQA xelR4 XEQA

where we omit polynomial prefactors ind, «, 1.
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Proof. First, we bound M35. According to Lemma 3.42, the following covariance bound

holds for any t € [t1,1)

1-1)?
( ) tzld with k(1 — )% + 2 >

C ifx>0
0; <Cov(X{[X;=x)x ————— © ’

1, ifx <0,

where C, := «/(x + 1). Then it implies that for any t € [t1,1 — ], sup,cga IM5ll2,2 <
(1 —t)? with omitting a polynomial prefactor in , 7.
Then, we bound M; and M,. By the Hatsell-Nolte identity [Dytso et al., 2023b,

Proposition 1], we obtain V, M (t,x) = (t/(1 — t)?)MS5 which implies that

t
sup  |IVeMi(£x)llo= sup = [IM3llp <1 (3.22)

(t,x)€[t;,1-t]xR4 (t,x)€[t;,1-t]xIR4 (1- t)2

with a polynomial prefactor in x, 7 hidden. Notice that for any ¢ € (0, 1), it holds that

t2 2
M;(t,0) = JN yq(ylt, 0)dy < fw yp()(1-1) ew(—%)d g

which implies ||[M; (t,0)||, < oo due to fast growth of the exponential function. Besides,
M;(0,0) = E,[X;] and M(1,0) = 0. By the boundedness of ||M;(t,0)|, for any ¢ €

[0,1] and (3.22), we further bound M; (t, x) for any (t,x) € [t;,1 —t] x R? as follows

IM (t, )2 < ||My(, 0)llo + [IM; (¢, x) — My (t, 0)]]

<|[IM;(t,0)ll2 + { sup IIVyMl(t,y)llz,z} IIx]2
(ty)e[tr,1-t]xRY

S lixll2 v 1,
where a polynomial prefactor in «, 77 is hidden. It further yields that

sup IM;]l, <A
(t,x)e[ty, 1-t]xQ 4

when omitting a polynomial prefactor in d, «, 1. Moreover, notice that M, = Tr(M3) +

||M; ||§, which further yields that

sup |M,| < A?
(tfx)e[tlll_E]XQA

with an omitted polynomial prefactor in d, «, .
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Lastly, we bound M3 — M,M;. For any i € {1,2,---,d}, let X; ; denote the i-th
element of X;. Then it holds that

IM3 — MaM, |13

d 2
= ) (EDXXTX X, = x] = BIXT XX, = xJE[Xy,i1X, = x])

d 2
::Ezhﬂ(cwafxprAxt:x»
d
<) Var(X[Xy[X, = x)Var(X X, = x)
(By the Cauchy-Schwarz inequality)
d
= Var(X[ XX, = x) Zizl Var (X, ;|X; = x)

= Var(X{ X1 |X; = x) Tr(M5)
<d Var(XlTX1|Xt = X)HM§”22

Let X; ~ p(y) be k-semi-log-concave for some « € R. Then for any t € [0,1), X{[X; ~

q(y|t, x) is (x + t2/(1 — t)?)-semi-log-concave because
t2
-V, logq(ylt,x) =~V logp(y) - Vylogg(t,xly) = (K + W)Id'

When t € {t cxk+12/(1-1)2>0,t€(0, 1)}, by the Brascamp-Lieb inequality [Brascamp
and Lieb, 1976], it yields that

-1
t2 (1-1)?
Var(X{ X |X; = x) < 4M +— =4M)— =
ar( 1 ll t x)— 2(K (1—t)2) ZK(l—t)2+t2

Analogous to the control of || MS]|, ,, we further obtain that for any (¢, x) € [t;, 1-£]xQ 4,

A%(1-1)?/C,, ifx>0,

Var(X] X [X; = x) <
(X XafX; =) {AZ(l—t)Z/q, if € < 0.

Hence, we deduce that for any € [¢t;,1 —¢],

sup ||[M3 - MoMll, S A(1-t)?,

XEQA
where we omit a polynomial prefactor in d, k, 7. This completes the proof. [
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Lemma 3.45. Suppose that Condition 1 holds. Then it holds that

sup  [|9,v"(t,x)ll, S A/t
(t,x)e[tl,l—ﬂxQA

where we omit a polynomial prefactor ind, x, 1.

Proof. By Lemma 3.17, it holds that

. 1 1 1
12 v*(t, x)|I, swllxllz + WHMlnz + WIIMEIIM lx[l2

1
+ ———||M3 — My M||,.
(1—t)4” 3= MMyl

Applying Lemma 3.44, we obtain

. A
sup [0 (LX)l <
(tx)elt1,1-1]xQa 13

where we omit a polynomial prefactor in d, «, . O

Control with Gaussian smoothing

We derive moment bounds under Condition 2. The moment bounds are useful to esti-

mate the time regularity of the velocity field.

Lemma 3.46 (Moment bounds). Suppose that Condition 2 holds. Then foranyt € [0,1-t],
it holds that

sup M|l SA, sup M5l < (1-1)%  sup [[M3z—MM;ll, s A(1-t)?,

XEQA xelR4 XEQA
where we omit polynomial prefactors ind,R, 0.

Proof. The proof idea is partially similar to that of Lemma 3.44.

First, we bound Mj5. According to Lemma 3.42, the following covariance bound

holds for any t € [0, 1),

R2(1 - 1) &2
— 2
0I; < Cov(X;|X; =x) < (1-1) {((1 Sy O‘2t2)2 + (i t)2 22 I.
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Notice that

R%(1-1t)? o? ( 1\,
+ < 1+—) R +0°+1.
(112 +0202)2  (1-1)2+ 0242 o2 ?

It implies that for any t € [0,1 —¢],

sup ||M5]l2 2 < (1-t)? (3.23)
xeR4

with omitting a polynomial prefactor in R, 0.

Then, we bound M; and M,. Again, by the Hatsell-Nolte identity [Dytso et al.,
2023b, Proposition 1], we obtain that

t
sup  [[ViMy(t,x)llo2=  sup  —=[IMjl, <1 (3.24)

(t,x)€[0,1-t]xR4 (t,x)€[0,1-t]xR4 (1- t)z

with a polynomial prefactor in R, o hidden. Identical to how we proceed in the proof of
Lemma 3.44, we have

sup Myl sA

(t,x)eQLA
when omitting a polynomial prefactor in d,R, 0.

Finally, we bound M3—M, M. Recall that we have deduced the following inequality
in the proof of Lemma 3.44

M3 — MyMy|[5 < d Var(X{ XX, = x)[M5]l5,2. (3.25)
We next focus on bounding Var(X{ X;|X; = x). By Lemma 3.42-(4), it is shown that

d (1-1t)? +\/ 02(1-1t)? o’t?
(

Xy X =x) £pyi= L + x
( ll t ) X (1—t)2+02t2 1—t)2+02t2 (1—t)2+(72t2

where Q ~ p is supported on the same ball as p, Z ~ 4, and Q,Z are independent. In
the expression above, we note that the denominator (1 —t)? + o>t? is lower bounded by
0%/(6%+1)overt €[0,1]. Let R,y := Py P,|Q =y. Then by the law of total variance, it
yields that

Var (X[ X;|X; = x) = Var(P{ P,) = E[Var(R, ;)] + Var(E[Ry]). (3.26)
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We claim that R, /7] is distributed as a noncentral chi-squared distribution with degrees

of freedom d and the noncentrality parameter &, , where

o oH(1-1)? £o- 1 (1-1t)? s o’t? .
T= 0o 0 -n2+o22? T (112 + 0212

2

By properties of the noncentral chi-squared distribution, it holds that
ERyy) =n(d+&yy), Var(Ryy) = 2172(d +28xy)-
Then we bound the first term in the variance decomposition (3.26) as follows
E[Var(Ry,y)] = 27 E[nd + 2&,,,)] < (1 - H2(Ixl3 v 1)

where we omit a polynomial prefactor in d, R, 0. To bound the second term, we do the

following calculations

(1-1)? Q+ o?t? .
(1-t)2+02t2 (1-1t)2+02t?

Var(E[Ry,]|) = Var(nd + n& ) = Var|nd +

(1-1)°

=Var|||————
(1-1)2+02t?

Q

2+ (1-1t)? o?t?
B X
5 (1-t)2+02t2 7 (1-t)2+02%t?

S(1=-*(Ixl3 v 1),

where we omit a polynomial prefactor in d,R, 0. Combining the control of the two

terms, we obtain that

Var(X] XX, = x) < (1 -1)(|Ix[3 v 1) (3.27)

by omitting a polynomial prefactor in d, R, 0. Therefore, using (3.23), (3.25), and (3.27),
the bound of M3 — M, M; is deduced for any ¢ € [0,1 — t] by

sup [|[M3 - MoM, ||, s A(1—t)?

XEQA
with a polynomial prefactor in d, R, 0 hidden. This completes the proof. ]

Lemma 3.47. Suppose that Condition 2 holds. Then it holds that

sup (190 (t,x)lla S A/t2,
(t,x)€[0,1-¢]xQ 4

where we omit a polynomial prefactor ind, «, 1.

Proof. Based on Lemma 3.46, the proof is almost identical to that of Lemma 3.45.  [J
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Sharpness of moment bounds

The moment bounds in Lemmas 3.44 and 3.46 are sharp in (f,x) because of a Gaussian

example.

Proposition 3.48. Let X; ~ ;. The conditional distribution of X{|X; has the following
explicit expression
t (1-1)2

XX, =x~N X, 1]
X (1—t)2+827 (1-t)2+2 ¢

Moreover, for any t € (0,1], the moment bounds are given by
sup [IMi|l, < A, sup [[M5]l,» < (1-¢)?, sup [[M5 - MM, < A(1-t)?,

XEQA xeclR4 X€QA

where we omit polynomial prefactors in d.

Proof. By Bayes’ rule, for X; ~ y,, it implies that
t (1-1t)?

XXy =x~N X, .
X (1—t2+12 (1—t)2+2 ¢

By properties of the Gaussian distribution, the desired moment bounds hold. []

Proof of Theorem 3.26

Proof of Theorem 3.26. By Lemma 3.43, it holds that for any x,9 € R? and t € [0,1],
(£, %) = v*(£, 9)lloo S IIX = Ylloo, and that sup; ye10.17xq, IV (5 X)lleo S A, Where we

omit constants in 4, «, 8,0, R.

Then we show that the Lipschitz continuity of v*(f,x) in t. Concretely, for any
s,t €[0,1—t]and x € Qy, [|[v*(t, x) = v*(5, %)|loo < L¢|t —s| with L, < At~2 by omitting a

constant in d, x, §, 0, R. We analyze the cases in Assumption 3.8 one by one as follows:

e Suppose that Assumptions 3.7 and 3.8-(i) holds. Condition 1 holds as well. We use
controls with semi-log-concavity in Lemma 3.45 and derive the desired Lipschitz

continuity in £.

e Suppose that Assumptions 3.7 and 3.8-(ii) holds. Condition 2 holds as well. We
use controls with with Gaussian smoothing in Lemma 3.47, and the Lipschitz con-

tinuity in ¢ follows.

We complete the proof. O
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3.8.2 Approximation error of the velocity field

In this section, we analyze the approximation error of the velocity field by a constructive

approach.

Before proceeding, we present a few useful notations for the Sobolev function class.
A d-dimensional multi-index is a d-tuple a = (a1, a5, ,a4) " € INg. We define ||a||; =
Zle a; and 9% := 97" 95° ---ajd to represent the partial derivative of a d-dimensional
function. We also use D to denote the weak derivative of a single variable function and

D? to denote the partial derivative Df ! Dg 2...DY? of a d-dimensional function with a;

as the order of derivative D; in the i-th variable.

Approximation in space with Lipschitz regularity

In this subsection, we study the approximation capacity of deep ReLU networks joint
with an estimate of the Lipschitz regularity. The strong expressive power of deep ReLU
networks has been studied with the localized or averaged Taylor polynomials. We fol-
low the localized approximation approach, and establish the global Lipschitz continuity

and non-asymptotic approximation estimate of deep ReLU networks.

Lemma 3.49. Given any f € WV*((0,1)%) with fllwieo((o,1y4y < 1, for any N,L € N,

there exists a function ¢ implemented by a deep ReLU network with width O(2%dN1ogN)
and depth O(d?LlogL) such that lpllwreo(0,1y¢y S 1 and

lp = fllzso,10) S (NL)™/7,
where we omit some prefactors depending only on d.

Corollary 3.50. Given any f € W'*((0,1)%) with | llwreo(o,1)d) < o0, for any N, L €

IN, there exists a function ¢ implemented by a deep ReLU network with width O(24dN log N)
and depth O(d*LlogL) such that lpllwreo0,1y¢y S I1f llwreo((o,1)¢) and

19 = Flloo(go,174) < I llwreo(o,1y0) (N L),
where we omit some prefactors depending only on d.

Remark 3.51. The approximation rate is nearly optimal for the unit ball of functions
in W1*((0,1)%) according to Shen et al. [2020, 2022b] and Lu et al. [2021].
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Proof sketch of Lemma 3.49. The proof idea is similar to that of Yang et al. [2023, Theorem
3], and we divide the proof into three steps.

Step 1. Discretization. We use a partition of unity to discretize the set (0,1)%. As in
Definitions 3.52 and 3.53, we construct a partition of unity {g,},,¢(1,2)¢ on (0, 1)? with

supp(g,) N (0,1)% ¢ Q,, for any m € {1,2}%. Then we approximate the partition of

unity {g,},ne(1,2)¢ by a collection of deep ReLU networks {¢,,},,c(1,2)2 as in Lemma 3.54.

Step 2. Approximation on Q),,. Given any m € {1, 2}%, for each subset Q,, € [0,1]¢,

we find a piecewise constant function fx ,, satisfying
Ifxm—fllwieo,) S L fem—flli=q,) S /K,

where we omit constants in d. Piecewise constant functions can be approximated by
deep ReLU networks. Then, following Lu et al. [2021] and Yang et al. [2023], we con-
struct a deep ReLU network 1, with width O(2¢dN logN) and depth O(d*LlogL)
such that

[bm = fllwre@,) S m = fliie@,) S (NL)4,
where we omit constants in d.

Step 3. Approximation on [0,1]?. Combining the approximations on each subset
Q2,,, properly, we construct an approximation of the target function f on the domain
[0,1]?. That is, for any N, L € NN, there exists a function ¢ implemented by a deep
ReLU network with width O(N log N)) and depth O(Llog L) such that

I _f”LOO([o,l]d) S (NL)_Z/d with ||(P||w1,oo((o,1)d) <1,
where we omit constants in d.

Definition 3.52. Given K,d € IN, and for any m = [my,m,,---,my|" € {1,2}d, we de-
fineQ),, := ]_[fl:1 Qm]. where () := UZK:_ll %,% + %] and (), := UzK:O [% — % + ﬁ]ﬂ

2K’
[0,1].

Definition 3.53. Given K, d € N, for any integer i € Z, we define

[ 1 i 1
]., XE-K'FR,K‘FR],

0, xe|t+ 42 i+l] 1

o KAk’ T K) o
g1(x) = 4K i [ 1 gZ(x)-—gl(x"'ﬁ)-
(x—%). XE€lwxtix)

i 3 i 1 i 3
_4K(X_F_4_K)’ xe.?+2—K,f+4—K],



g1(z)

Figure 3.1. Functions g and g, for defining a partition of unity.

For any m = [my,m,,---,my]|T € {1,2}¢, we further define g,,,(x) := l—[}i:1 &m; (xj) where

x=[x1,x0,,x4]".

Lemma 3.54 (Proposition 1 in Yang et al. [2023]). Given any N,L € IN and any m €
{1,2}4, for K = [NY4 2| L¥?|, there exists a function ¢, implemented by a deep ReLU
network with width O(dN) and depth O(d*L) such that

1§ — Gllwreo(0,1y0) < 5047 (N + 1)L,

Lemma 3.55. Let K € IN. For any f € Wh*((0,1)%) with 1 w0,y < 1 and m €

{1,2}9, there exists a piecewise constant function fx ,, on Q,, satisfying
Ifxm = fllwieo@,) S L Nfkm—flli=@,) $1/K

with prefactors in d omitted.

Proof. We leverage approximation properties of averaged Taylor polynomials [Brenner
and Scott, 2008, Definition 4.1.3] and the Bramble-Hilbert Lemma [Brenner and Scott,
2008, Lemma 4.3.8] to deduce local estimates and then combine them through a partition
of unity to obtain a global estimate. The key observation is that the L® approximation
bound can be established while uniformly controlling the Lipschitz constant of the piece-

wise constant function with a mild regularity assumption on the target function such

as f € Whe((0,1)%).

Without loss of generality, let us assume m = m, := [1,1,---,1]". Following the
proofs of Giihring et al. [2020, Lemma C.4] and Yang et al. [2023, Theorem 6], we first
define an extension operator E : W1((0,1)%) — WL *(IR%) to handle the boundary.
Accordingly, let f := Ef and Cg be the norm of the extension operator. Then for any
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Q c IR?, it holds that

[Flwieo@) < I fllwieoi) < Cellfllwres(o,1y) < Ce-

Next, we define an average Taylor polynomial of order 1 over B;  := BY( 8§£3 , ﬁ, I-12)
by

prii= [ Tk

where ¢ is a cut-off function supported on B; x as given in Example 3.67. By Definition

3.66, T f(x) = f (). Then, it implies that p £,i(x) is a constant function as

sz J‘le )P (v

Step 1. Get local estimates. For any i = [i},ip,---,i4]T €{0,1,---,K}%, we would

like to employ the Bramble-Hilbert lemma 3.72 on the subset

8i+3 3 3 +4i;
Q,, ;=
i = B (F 2 o) ]_[[K -
It is easy to check the conditions of the Bramble-Hilbert lemma are fulfilled as

1 1 3 1 do,, ;
L L Q) Q) = ——2mi oG
4K - 2 X 8K Zrmax( m,,,z) )/( m*,z) rmax(Qm*,i) \/_

Hence, by the Bramble-Hilbert Lemma 3.72, it yields that
If = prilli=,. ) < Cr@)|flwres,, /K

|f pf1W1°° mz <C1 |f|w1°o mt
Combining |f lwie(q,, ;) < Cg and the inequalities above, it implies that
If = psilleo@,, ) < Ci(d)CE/K, (3.28)

If —pf,z-nwl,w(%) < C(d)Cg. (3.29)

Step 2. Define a partition of unity. We construct a partition of unity in order to

combine the local estimates. Let K € IN. For any 0 <i < K, we define ; : R — R by

. 1 x| < 3/2,
8i1+3
hi(x) = h(4K (x— X )) where h(x) =40, x| > 2,
4-2|x|, 3/2<|x|<2.
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K

One can verify that {h;};_, is a partition of unity of [0,1] and h;(x) = 1 for any x €

Il<, 3+4l] Considering the multidimensional case, for any x = [x,x5,--,x4]" € R4

and any i = [iy,ip,---,14]" €{0,1,---,K }d,letusdeﬁne

hi(x) := ]_[;11 hi;(x;)-

Then a partition of unity of [O,l]d is defined by {h; : i € {O,l,---,K}d}. Moreover,

3+4i ]

hi(x)=1foranyx€Q,, ;= ]_[ [2, and i = [i},ip,---,i4]7 €{0,1,---,K}%. By

the definition of h;(x) on (), ; and equation 3.28, equation 3.29 , it yields that
1hi(f = prilllis@,. ) < If = prillie@,, ) < C1(d)Cg/K,

Ihi(f = prillwieq,, ) < ”f_pf,i”erw(thi) < Ci(d)Cg.

Step 3. Get global estimates. To deduce the global estimates, we start with defining
fx,m, over Q,,, by

from, = Zie{O,l,---,K}d hips,i-

The error bounds follow that

”fK,m*_f”L‘X’(Qm*)S_e{nllax Ihi(f = psi)llio© Q1) < C1(d)Cp/K,
1

Ifm, — fllwieo, ) < max  |Ihi(f —psillwieq,, ) < C1(d)Cg.
7 7 g0, 1K) "

This completes the proof. O

Lemma 3.56. Given any f € W1((0,1)%) with |fllwieo((o,1y¢y < 1, for any N,L € N

and any m € {1,2}9, there exists a deep ReLU network 1, with width O(NlogN) and
depth O(Llog L) such that

1 = fllwio@,) S L 19m = flli=(q,) S (NL)™?4,

where we omit constants in d.

Proof. The idea of proof is similar to those of Hon and Yang [2022, Theorem 3.1] and

Yang et al. [2023, Theorem 7]. For completeness, we provide a concrete proof in the
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following. Without loss of generality, we consider m = m, := [1,1,---,1]7. Given

K =|NY42|L%4| by Lemma 3.55, we have
I fm. = fllwie@,, ) S L

fxm, = fllz=,,) S /K S (NL)™,

i . i; 3+4i; . .. .
where fg ,, is a constant function for x € ]_[;7121 [%,WJ] and i = [iy,ip,---,14]" €

{0,1,---,K —1}%. The insight is to approximate fx,m, with deep ReLU networks. Let
0 = 1/(4K) < 1/(3K) in Lemma 3.81. Then by Lemma 3.81, there exists a deep ReLU
network ¢ (x) with width 4N + 5 and depth 4L + 4 such that

k k+1 1
¢1(x) =k, XG[E;T—R,

We further define

x):[qbl(xl) ¢1(X2) (Pl(xd)r—
K ' K ' 7 K '

For each p =0, 1,---,K% -1, there exists a bijection
p) = [771,172,"';7711]1— S {0,1,,K—1}d

satisfying Z?:l 17]-Kj ~1 = p. We also define

Sm (n(p)/K) + Cy(d)

&= 2C,(d)

€[0,1],

where |fx .| < Cy(d) :== 1+ C1(d)Cg. Then, due to Lemma 3.82, there exists a deep
ReLU network ¢ with width 16(N + 1)log,(8N) and depth (5L +2)log,(4L) such that
|(j) £p|< (NL)~ forp:O,l,---,Kd—l.Letusdeﬁne

Bx)i= 205 @)p( ) 1K)~ Cold)
Then it is clear that

6 (1(p)/N) = fi . (1(p)/N)| = 2Co(d)|p(x) — £,| < 2Co(d)(N L)

Furthermore, let 1, (x) := ¢po¢p,(x) forany x € (3, . Since 1, — fx . is a step function

whose first-order weak derivative is 0 over (), , then it implies that

1m, = frmllwis,,) = 1¥m. = femllis@,,) < 2Co(d)(NL)
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By the triangle inequalities for || - || ~(q,, ) and || - [[w1.~(q,, ), it is easy to derive that

My
1Y, = fllwie@,, ) < ¥m, = femllwrie@,, ) + 1 fkm, = fllwie@, ) S 1

¥, = fllzo@,,) < NPm, = feom =@, ) + 1 fkm, = fllz=@,,) S (NL)™/.

Lastly, we calculate the width and depth of the deep ReLU network to implement ¢, =
¢ o ¢,. Because that ¢ has width O(Nlog N) and depth O(LlogL) and ¢, has width
O(N) and depth O(L), the deep ReLU network of ¢,,, is constructed with width O(N log N)
and depth O(LlogL). This completes the proof. [

Proof of Lemma 3.49. We proceed in a similar way as the proof of Yang et al. [2023, The-

orem 3]. By Lemma 3.54, there exists a sequence of deep ReLU networks {¢,},,,c(1,2)4

such that for any m € {1,2}4,

”cll)m _gm”Wl,oo (0,1)4) < 50d5/2(N + 1)—4dL'
(

Each ¢,, is implemented by a deep ReLU network with width O(dN ) and depth O(d>L).
By Lemma 3.56, there exists a collection of deep ReLU networks {1, },,e(1,2)¢ such that

for any m € {1,2}4,
1w = fliwre@,) S 1 lm—fliis@,) S (NL)4,

where we omit constants in d. Each 1,, is implemented by a deep ReLU network with

width O(NlogN) and depth O(LlogL). Before proceeding, it is useful to estimate

lpmlli=(@,)> lPmllwre@,) IPmlli=@,,)> and [[Ppllwreq, ) as follows

P mllLo(@,,) < lPmllreso,112) < €mllzeo(0,112) + 1Pm = GmllLeo(0,174)

<1 +50d5/2 SdS/z,

P mllwre@,,) < Pmllwreo,112) < 1gmllwresqo,114) + 1Pm = mllwresgo,174)

< 4:|_N1/dJ2|_L2/dJ + 50d5/2’
lPmllie@,,) < flle=@,,) + 1Pm = flli=@,) $ 1,

IPmllwie@,,) < Ifllwieo,1dy + 1Pm = fllwrego,4) S 1-

Let By := maX,,e(1 g {lPmlli=(@,,) [¥mllr=(q,,)} then it yields that By < d>/? by the es-

timates of [|,,[|1~(q,,) and [[Pmllwie(q,,)- Let By := maX,,eq oy {llPmllwieoq,,) [Pmllwie@,)}-
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Similarly, it yields that B, < (NL)¥4 + 452, By Lemma 3.75, for any N,L € N, there
exists a deep ReLU network ¢, p with width 15(N + 1) and depth 16L such that

||¢><,B1||W1r°°((—31,31)2) < 123% and

x5, (%,9) = xpllwico(_p, B, 2) < 6BF(N +1)7%.

To obtain a global estimate on [0, 1]¢, we combine the local estimate {1),,,},,,c 1,24 and the
approximate partition of unity {¢,,},,c(1,2)¢- Let us construct the global approximation

function ¢ by

PO)i= ) bup, (Pulx) Pru)) (3:30)

mef1,2)4

Next, we bound the error of the global approximation estimate by

If = Pllmonsny = ) iy pya8f = Pllwies(oy
<UDt apal8nf = Pubnllli=goaye

:ZR]

+ ” Zme{l,z}d [(P’””bm - 4)><,B1 ((f)m(X), ¢m(x))]||Lw([o,1]d)

=R,

and

If = @lhwrsqoany = )y 0 8f = Bllwiesqoy
SllZme{m}d[gmf—¢m’!)m]||w1»°°((o,1)d)

::R3

+] Zmem}d [Pt — D, (D), PN Mlos 0,04

=:R4
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It remains to bound R, R;, R3, and R4, respectively. For the term R, it holds

Rqi < Z “gmf_(l)mlpm”L‘”([Orl]d)

me{1,2)4

< ) 1@ = S llioo ey + I f = mdllzso,e]
me{1,2}4

= ) [ =bm ooy +1m(f =¥l |
me(1,2}4

™1

g = Pullrqo il llzqoy + @ mllz=@llf = Pullz=ic,]

IA

118 = Pmllwreo (o, 17 1S llwreo(o,179) + [Pl llf = 'Pm”Loo(Qm)]
< 29504 (N + 1) + (1 + 504> 2)(N L) /]
S (NL)7/,

where we use (NL)¥? < (N +1)*L to derive the last inequality and omit a prefactor in
d. For the term R 3, it holds

Rs < Z g f = PrmWmllwre(o,1))

me{1,2)4

< ) [Mgm = bun) fllwreso ) + bl f = Pullwros o, |
me{1,2)4

= ) [Mem=bum)flwregon + I$mlf = Pmllwie,]
me{1,2}4

< 18m = Pmllwr.eo(0,1)4) | f llwreo((0,1)4)
me{1,2)4

+[pmllwre@)lf = ¥mllis@,,) + lPmllr=@,)lf = leHwLoo(Qm)]

< 2915042 (N + 1) 4 (4 N4 2| L% | + 504> ) (N L) + (1 + 50d>2)]

N

1,

where we use (NL)¥? < (N +1)*L to derive the last inequality and omit a prefactor in
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d. For the terms R, and Ry, it holds

R, <Ry

< ) Mmoo, (Do), YD llwren o,

me{1,2}4

< ) Mbntn— P, (Sn) YD llwimiar,

me{1,2}4

< Z ZVEmaX{Hd)X,Bl (%, 9) = xY|lreo((-B,,B,)2)

me{1,2}4
P8, (%, 9) = XY|wieo((—B,,B,)2) X Max{|Plwie@q,,) |l1bm|WL°°(Qm)}}

< Z 2Vdllpy, 5, (% %) = X9 llwroo(By 5,)2)

me{1,2}4
x max{||Ppmllwie@,) [¥mllwies@q,)}

< ) 12VdBAN+1)B,

me(1,2}4
< 27Vdd (N + 1) (NL) + 4°7)
< 2Vdd> (d¥*(NL)¥4)(N + 1)~
< (NL)z/d(N+ 1)-8L
< (NL)_Z/d,

where we use (NL)¥? < (N + 1)*! in the last inequality and omit constants depending

only on d. Combining the estimates of R{,R,,R3, and R4, we have

If = Plieqo,j) < R1 +Ra S (NL)™*

and

If = Pllwreoqo,) SR3+Ra S 1+(NL¥¥ < 1.

It is easy to see

lpllwreo o174y < 1f llwreo(qo,172) + lf = Pllwreo(go,1) S 1-

Lastly, we calculate the complexity of the constructed deep ReLU network ¢ in (3.30).
By the definition of ¢ in (3.30), we know that ¢ consists of O(2%) parallel subnetworks
listed as follows:
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SEl o

T M t

Figure 3.2. Functions ¢,,(t) and ¢,,,1(t) for defining a partition of unity.
o ¢, p, with width O(N) and depth O(L);
o ¢,, with width O(dN) and depth O(d°L);
e 1, with width O(N log N) and depth O(LlogL).

Hence, the deep ReLU network implementing the function ¢ has width O(2¢dN log N)
and depth O(d’LlogL). Il

Proof of Corollary 3.50. The proof is completed by employing Lemma 3.49 on

f = f/”f”Wl"X’((O,l)d)'

Approximation in time with Lipschitz regularity

To handle the singularity of the velocity field in time, we develop a new approximation

result to approximate the velocity field in time.

Lemma 3.57. Givenany f € W*((0, 1)) with lf llwreo((0,1)) < o0, forany M € IN, there
exists a function & implemented by a deep ReLU network with width O(M) and depth O(1)

such that |Elwie((0,1)) S |f lwieo,1)) and

1E = fllzeoo,17) S 1f lwree(o,1)/ M.

Proof. The proof consists of two steps. We start with the construction of a continuous
piecewise linear function for approximating 1-Lipschitz functions, which shall be imple-
mented by a deep ReLU network. After that, we establish the global Lipschitz continuity
of the constructed deep ReLU network, in addition to the approximation bounds in the
L*([0,1]) norm.
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Step 1. We construct a partition of unity following Yarotsky [2017, Proof of Theorem
1]. Let M € N and m € {0,1,---,M}. We collect a set of functions {¢m} _o that are
defined as follows: for any t € [0, 1], let

1, |z| <1,
bt = ¢(3M(t— %)) with ®(z)=40,  |2>2, (331)

- |Z|, 1 < |Z| < 2’

that satisfies Z%I:o ¢u(t) = 1. It implies that { (l)m o forms a partition of unity on
the domain [0,1]. We plot ¢, and ¢,,,,1 in Figure 3.2. As in Chen et al. [2020, Proof
of Lemma 10], for each m € {0,1,---, M}, we consider a piecewise constant function
fm = f(m/M). Actually, the piecewise constant approximation is specially the zero-
degree Taylor polynomial for the function f at x = m/M in Yarotsky [2017, Proof of
Theorem 1]. We claim that

F(6):=) bult)f (3:32)

provides an approximation of f, and the approximation error is evaluated by

IF = Fllesgory = sup | Y gl £

t€[0,1]

L GwOf /M) = (1)

where the Lipschitz continuity of f is used in the inequality. It is clear that f can be
implemented with a deep ReLU network.

Step 2. We establish the global Lipschitz continuity of f. Notice that for any t,s €
[0,1],

F O =FI<If ) = @I+ @)= fs)+1f(s)— f(s)
<2lIf = fllzso(o,1) + If lwreo(o, )t = sl
< sl Flwisony * ot =l
)If|t—s| > 3M’ it is clear that |f(t) — f(s)| < 5|f lweo((o,1))lt = sl-
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) If|t—s|< 3LM, we try to directly bound the difference

FO-F6N=| Y [t~ buls)fi
- ' Zf:o [ (3Mt — 3m) —  (3Ms — 3m)] f,n] =: €

Next, we focus on bounding £. Without loss of generality, we assume s > . Considering
|t —s| < 3LM, we deduce that s € (¢, + 3LM) From Figure 3.2, we can observe that there
exist at most two numbers m =11 € {0,1,---, M} or m = 11 := #i1+ 1 such that P(3Mt -

3m) z 0 or 1/)(3Ms —3m) 2 0. It follows that
€ = [ (3Mt = 31i) — 1 (3Ms — 31i1)] £,z
+ [ (3Mt = 317) — 1 (3Ms — 317)] f,3|
= |[w (3Mt — 317) —  (3Ms — 31)] £y
+ [(1 = (3Mt = 311)) = (1 - (3Ms — 311))]
= |[ (3Mt = 31it) — ¢ (3Ms = 3170)] (s ~ fin)|

<fn = finl - [ (3Mt = 317) = ¢ (3Ms — 31|
< - f oo | (3ME — 3m) — p (3Ms — 310)
= 3|flwreoo,1)lt = sl-

Hence, if |t — 5| < 3]1\4, it holds that |f f () < 3Iflwreo((o,1))lt = sl

To sum up, for any t,s € [0, 1], it holds that |f(t) — f(s s)| < 5lf lwre(o,1y)lt = sl Tt is

easy to see from (3.32) that the deep ReLU network implementing f has width O(M)
and depth O(1). Then we complete the proof. O

Time-space approximation

In the subsection, we construct a time-space approximation while keeping the Lipschitz

regularity both in the space variable and in the time variable.

Lemma 3.58 (Clipping functions). Given A > 0, we define B4 : R — [-A,A] by

—-A, z€(—00,—A),
ze[-AA]

Ba(z) =1z
A, z€e(A ).
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Ba(z)

R 4

Figure 3.3. The clipping function 4.

There exists a clipping functionC, : R? — [-A, A]? at level A implemented by a deep ReLU
network with width O(d) and depth O(1) such that for any x = [x1,%,,---,x4]T € R%,

Ca(x) =[Ba(x1), Ba(x2),--+, Balxq)] "

Proof. It is clear that C4(x) = p(x + Aly) — p(x — Al;) — Al,; where p : R? — R is
the ReLU function. This expression implies that the clipping function C4 can be imple-

mented by a deep ReLU network with width O(d) and depth O(1). ]

The main idea of the time-space approximation on [0, 1—t]xR? is based on Lemmas

3.49, 3.57, and 3.58.

Proof of Theorem 3.31. We derive a time-space approximation v of the velocity field v*

on the domain (3, 4 = [0,1—¢]x [-A, A]? and bound the Lipschitz constants of 7 on the
domain [0,1 —¢] x R?.

First of all, we use the clipping function C defined in Lemma 3.58 to clip the support
of the space variable, that is, for each x € RY, we have C (x) € [—A,A]d. We only need
to consider approximation in x on the domain [-A, A]%.

Then we can employ the mappings f = 7;(t) := /(1 — t) and ¥ = To(x) := (x +
Al,)/(2A) to transform the domain (), 4 into the domain [0, 1]%*1. When the domain
[0,1 — ] x R? is considered, the transformed domain is [0,1] x R?. Notice that both
mappings are invertible and can be implemented by deep ReLU networks. We denote
their inverse functions as t = Tl_l (f) and x = 7-2—1 (%X). We further define a new velocity
field v° by v°(£,%) := v*(I;71(F), 7, ' (%)) for any (£,%) € [0,1] x R?. Tt is clear that
v*(t,x) = v°(T;(t), To(x)) for any (t,x) € [0,1 — t] x R?. According to Theorem 3.26, the

new velocity field v° satisfies
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(1) For any §,7 € [0,1] and % € R, |[v°(£, %) — v° (5, ¥)|loo < t2|F - $l;
(2) Forany %,5 € R and £ € [0,1], [v°(5,2) ~ v° (5, 9o < All% ~ o

(3) ”vO”Lw([O,l]dﬂ) < A,

where we omit constants in d, x, 8,0, R.

In the following, we construct a time-space approximation of the new velocity field

v° on the transformed domain [0, 1]9*! using deep ReLU networks. Let v°® = [v{,v5, -+, vi]T.
Given M € IN, we uniformly partition the unit interval [0, 1] into M non-overlapping
sub-intervals with length 1/M. Let {¢ ](f)}]zvi o form a partition of unity on [0, 1] with
the same definition as (3.31) in the proof of Lemma 3.57. For each i € {1,2,---,d}, we

define a time approximation of v;’ by
~ (T ~ M O /. ~ ~
v; (£, %) := ijo v (j/M, %) (t).

Let 7 := [0, 7,,++,74] . Due to Lemma 3.57, for any % € [0, 1]d, it holds that
[9(-, )l wieo(0,1);re) S [0 B)lweo(0,1);r7) S 2

Fori=1,2,---,dand j=0,1,---,M, let Ci]-(f) be a space approximation ofv;> (j/M, %)
implemented by a deep ReLU network constructed in Lemma 3.49. Then it holds that
max; ; [|Cijllwie(o,1)9) S A. By Lemma 3.76, we can construct a deep ReLU network

¢x,(Bs,B,) With width 15(N +1) and depth 8L to approximate the product function such

that || (B,,By)llW1eo((=Bs,Bs)x(~By,By)) < 12B3B4,
P (B3, B) (X D) = XYl wtoo((_Bs,By)x(—By,By) < 6B3Ba(N +1)74, (3.33)

and

Py (B,,B,) (X, 0)
55,8 (%, 0) = — Bx” = 0 for x € (—Bs, B3). (3.34)

Using the same partition of unity {¢ ](f)}ﬁvi o on [0,1], we define a time-space approxi-

mation of v} for each i € {1,2,---,d} by
hir = M . -
v;(t, %) := ijo ¢><,(B3,B4)(Cij(x)r bj (f)); (3.35)

which can be implemented with a deep ReLU network. We choose the parameters B3, B,
such that B3 < max; ; [|Cijllpe(jo,1)4) S A and By < max;|¢;llre(jo,1)) < 1.
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Claim 3.59. There are at most two nonzero terms in the summation (3.35) defining the

:

time-space approximation function v;.

This claim holds because for any f € [0, 1], there are at most two indexes j’s from
{0,1,2,---, M} such that ¢;(f) is nonzero according to the definition of the partition of
unity {¢ ](f)}]]\i o- Then our claim follows from the property (3.34) of the approximation

product function ¢, (g, ,)-

b

Before we study the properties of v;,

by

we introduce a surrogate function v; defined

The function ¥; will be useful to study the approximation capacity and the regularity of

:

v;. We derive the approximation rate and the regularity properties of 7; in the following.

Due to Lemma 3.49, for any x € [0, 1]d, i=1,2,---,d,and j=0,1,---, M, we have
1Cij(%) — v (i/M, %) S ANL)™>/.
We evaluate the approximation error of ¥; by the following error decomposition:

||1‘}’1 - UfllLoo([Oll]dﬂ—l) < ”7\){1 - 171'||Loo([0,1]d+1) + ||171 - U;”Loo([o,l]d+l) . (3.36)

=&l =:&2

1 1

By Lemma 3.49, we bound £ 1-1 by

M
1 A (3 - -
el < || )Ll —v i@ Lo
< maxo<j<m [1Ci(%) = v (j/M, %)l e (0,11¢)

< maxoejam 105 /M, D)llwres o1y (N L)

< A(NL)y™4, (3.37)

By Lemma 3.57, we bound Siz by

Sl-zs sup [v; (-, X)lwieo((0,1)/M <t *MmL (3.38)
%e[0,1]4

Combining (3.36), (3.37), and (3.38), we have
||’l}l - vf”L‘x’([O,l]d“) < A(NL)_Z/d + £—2M—1'
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Suppose that (NL)z/d = £2M, and it yields that fori = 1,2,---,d,
19 = v7 o 0,111y S ANL)™%,
Let ¥ := [U1,7,,-++, V4] 7. We have the approximation power of ¥ evaluated by

|19 = v°[l oo, 13041y S ANNL) /4. (3.39)

Moreover, the Lipschitz continuity of ¥ in f and % can be verified. Concretely, we

have the Lipschitz estimate in the space variable %: for any %,9 € [0,1]¢ and f € [0,1],

) G-z )]

< maxi<i<d, 0<j<M lICij(X) = Cij(P)lloo

||ﬁ(f, f) - ﬁ(f, }7)”00 < maXi<i<d

< maxi<i<g, o<j<M lICijllwreo(0,1)d)  [1X = Dlloo
<lv® ||wloo (0,1)4;R4) * 1% = Voo
S Al|% = 9lloos

It is somewhat tedious to derive the Lipschitz estimate in the time variable . For any

§5,fe[0,1]and % € [0,1]%,

< 2) = 9(E Dlloo + [19(F %) = 7(8, X)llo + [19(5, %) = (5, D)l

<2 sup [[¥(9,%) = 9(8,%)|lo + [7(+, %) wreo(0,1);r4) |f -3

< 2max;<icg & + 170, D)oo, 1)me) | = §1
<SANL) ¥4 4 72|f - 3.

Considering (NL)¥% < M, we deduce that
I9(E, %) = 9(5, %)l S AF2M L+ 172|F = 3.

~

Then we consider two cases for bounding ||7(f, X) — ¥(S, X)||oo-
Case 1. If |f— 8] > 3M’ it is clear that ||[v(f, %) — ¥(3, %)l < At72|F 3.
Case 2. If|[f - 3| < 3_M’ for any i € {1,2,---,d}, we try to bound the difference

|9;(£, %) = 9;(5, %)|

- |y e aMT-3)) -y ams 3| = &
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Then, we focus on bounding £3. Without loss of generality, we assume f < §. The
remaining calculation is similar to the proof of Lemma 3.57. Let m =11 € {0,1,---, M} or
m = 11 := 1ii+ 1 be two possible numbers satisfying (3Mf—3m) z 0 or (3M35—3m)
0. Then it holds that

&3 = [y (BMF - 3171) — 1 (BMS — 3171)] (%)
+ [ (BMF = 317) — 1 (BM$ — 311)] Cj5(%)|
= | (3MF = 31i1) — i (3MS — 3171) | L (%)
+[(1 = (3MF=31i1)) = (1 =  (3M5 — 3171))] Cja(9)|
= |[9 (3MF —34i1) = 9 (3M5 = 311)] [Ciy(F) = i (9]
< [Cia(®) = Cin( D) [ (BMT = 3172) — ¢ (3M5 = 3171
< BMCi(%) = Cia(%)] - £ = 31.
We bound the term |C;,;(X) — C;,7(%)| by
|Cin(%) = Cin(%)]
<|Cii(®) = vf (i/M, %) | + [vf (/M %) = v (/M )|
+[v7 (1/M, %) = Cjpn(%)|
<SANNL ¥4 2M71
Recall that (NL)¥? < t2M. It implies that |C;,;(%) — Cja(%)] < At"2M ™. Therefore, if
|F - 5| < 517, it holds that
[0:(F, %) = 0;(3, %)| < 3M |Cin(%) = Cira( DN IF = 3] < AL2|F 3]
We summarize the Lipschitz properties of # as follows:

|15(-,JZ)|W1,00((0’1);W) < A£—2, |1}(t~, ')|W1,oo((0’1)d;IRd) < A.

Let v := [v?,vg, fee ,vZ]T. We use the approximation rate of ¥ to derive that of v¥.
By the triangle inequality, it holds that
|V = vl oo 0,17641)
<||v¥ - Ullpeo(go,170+1) + 10 = vl oo 0,110+
<AN +1)™* + A(NL)™ 4  (By Claim 3.59, Eq. (3.33), and Eq. (3.39))
<SANL)™ 4 By (NL)¥? <(N +1)* for any N,L € N).
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Thus, the approximation rate of v¥ is given by
0% = vl oo (go,170+1) S AN L) ™4, (3.40)
Then we study the Lipschitz properties of i, By Lemma 3.73 and Claim 3.59, it holds
that
WA(, %) = 9 D)oo (0,189

= miaX |7/E(', ?‘Cv) - vvi('l f)lWL‘x’((O,l))

:miax| Z]Ai o Py (i), 950)) - Z]Aio GO 1m0,

Smax |5, (B3,B4) (% ¥) — XYl wioo (=B, Bs)x(=By,By)) * 1P lwies((0,1)
<SAM(N + 1) < Ar3A(NL)Y4N +1)™*F By (NL)¥? < > M)
<At™? By (NL)¥? <(N +1)* forany N,L € N).
By the triangle inequality, the Lipschitz property of v% in the time variable 7 is evaluated
by
A, 2)lweo((0,1);R4)
<[B(-, %) = V(- B)lynes(o,1me) + [P E)lwroo (0,14
SAET?+ A2 S AL
By Lemma 3.73 and Claim 3.59, we derive the Lipschitz property of v in the space
variable X as follows
WA(E N wres(0,1)4)

=max |v?(f~; Nwieo(o,1)0)

= ml_aX' Zjlvio P, (B3,B4) (Cif(')’ (Pj(f)) ‘

WL((0,1)1)
Smiax{|¢x,(B3,B4)("y)lwl""’((—33,33)) 'mﬁX|Cij|w1»°°<<0,1>d)}

<A
We claim that 7(t,x) := v8(T;(t), 7> o C4(x)) provides a good approximation of the
velocity field v* on the domain (); 4, and ¥ can be implemented by a deep ReLU network.
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According to the error bound (3.40), the approximation rate of 7 is given by

[9(t,x) = v* (£, %)l (2, ) S A*(NL) 24,

where we omit constants in d, «, 8, 0, R. Furthermore, we need to estimate the Lipschitz
constants of ¥. Here, we use Lemma 3.73 to calculate the Sobolev semi-norms of the
composite functions:

_ -2
170, %) wren 0,1ty S 1035 T2 0 Ca () wron(o, 1m0 T lwieo((0,1-11500,1)) S AL
|77(tr')|er°°(IRd;1Rd) 5 |Vh(7-1(t): ')|W1»°°((0,1)d;IRd)|T2|W1f°°((—A,A)d;]Rd)|CA|W1'°°(1Rd;[—A,A]d) S A

In addition, we have the L* bound ||17||Loo([1_ﬂx]Rd) < A.

In the end, it remains to calculate the complexity of the deep ReLU network imple-
menting 7. By the definition of v% in (3.35), we know that v consists of O(t~2d(N L)*?)

parallel subnetworks listed as follows:
® ¢y (B, B, With width O(N) and depth O(L);
o (;j with width O(2¢dN log N) and depth O(d*Llog L);

e ¢; with width O(1) and depth O(1).

Hence, the deep ReLU network implementing v% has width O(t~224d2(NL)¥4N logN)
and depth O(d%LlogL). By omitting polynomial prefactors in d, we obtain that the
deep ReLU network implementing the function # has width O(t224(NL)¥¥Nlog N),
depth O(Llog L), and size O(t24% (NL)*?(Nlog N)*LlogL). O

3.8.3 Error analysis of flow matching

In the section, we present proofs for error analyses of flow matching.

Basic error decomposition
We present the proof of Lemma 3.29.

Proof of Lemma 3.29. We follow the proof of Jiao et al. [2023a, Lemma 3.1]. Due to that

v” is the minimizer of £, direct calculation implies
Ep, Eex,)19:(t,X) = v* (6, XI5 = Ep, [L£(D,) — L(v7)].
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Since ¥,, is the minimizer of the empirical risk, for any v’ € arginf, ¢ 7 Bxllv(t Xe) -

v*(t,X)|[3, it holds that
L,(0,) = L,(v") < L,(07) = L, (7).

Taking expectations over ID,, on both sides, it yields that
Ep, [£4(9,) - L") < L") - L(v") = Inf g x,llv(t X - v"(t, Xl (3.41)

Using the inequality equation 3.41, we deduce that
IEIDMIE(t,Xt)||ﬁn(tz Xt) - V*(t; Xt)”% = IEIDn [[:(7}”) - ﬁ(v*)]

<Ep [L(?,) - L(v")]-2Ep, [L,(3,) - L(v")]+2 Jg}f E o x)l[v(t, Xe) = v* (6 XI5

< B, [£(0%) = 2£,(0) + £(3,)]+ 2 inf Eex, (6. X) - " (X
This completes the proof. [

Truncation error

The truncation error is well controlled by the fast-decaying tail probability of X; ~ p;.
We bound the tail probability in Lemma 3.35 and the truncation error in Lemma 3.36.

For a sub-Gaussian random variable X, we use [X||,, to denote its sub-Gaussian norm.

Proof of Lemma 3.35. Let X, = [X},X2,---,X4]7. Similarly, let Z = [Z!,Z?,---,Z%]" and
Xy =[X{, X3, ,X‘f]T. By the general Hoeffding inequality [Vershynin, 2018, Theorem
2.6.3], for any 1 < i < d, we bound the tail probability of X’t' by

i : i C A?
P(X]| > A) = P11 =)'+ 1X] > 4) < 2exp (=25 |,
i

where C; is a universal constant and K; := ||le|¢2 V maxj<j<g ||Xil||l/)2 with Z! ~ y,.
According to Remark 3.11, Ky < /Cygj is finite with dependence on parameters in S;.
By the union bound, it further yields

P(X, € Q) =PA1<i<d:[Xi|>A)<

. 2
P(IXi| > A) < 2d exp (—CZA )
Crsi

-

=1

where C, is a universal constant and Cyg; depends on parameters in S;. This tail prob-
ability bound holds uniformly for t € [0, 1]. O
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Proof of Lemma 3.36. We decompose the truncation error by
Eirune = Bloxylllo(t, Xe) = v" (6, X0 d o (XI5

S B x 1t Xe) Id g (Xl + B x [l (6 X) Id g (XI5 (3.42)

=£2

trunc

=&

trunc

: 1
First, we bound &, -

Ex, 17(£, X)) Id o, (Xe)II5 = Ex, [117(£, X,)I31d o, (X,)]

For any A > 0 and t € [0,1 —¢], it holds that

_ 1/2
< (Bx, [(£, X)l13]- P(X; € QF))
< A’P(X, € Q)2 (3.43)

where the first inequality follows from the Cauchy-Schwarz inequality, and the second
inequality is due to [[7(#, x)||ze(j0,1-¢]xr?) S A given in Theorem 3.31. Combining (3.20)

in Lemma 3.35 and (3.43) above, it follows

(3.44)

) C;A?
é‘&mnc:1E<t,xt>||v<t,xt>Idggxt)nzsx/EAzexp(— > )

LSI
where Cj is a universal constant.

Then, we bound &2 Due to v*(t,x) = E[X; —Z|X; = x], it holds

trunc-

Ex, Iv"(t, X)ll3 = Ex, IE[X; = ZIX, = x]ll3
< By, E[lIX; = ZI31X; = x]
<E[lIX, - ZII3]
< 8IE[l|zII3] + 8E[IX4 3],
where the fourth moments in the last expression are finite by the property of the Gaus-

sian distribution and the sub-Gaussian property of X;. For any A > 0 and t € [0, 1 — ],
we further bound Ex |[v*(t, X;)Id Q4 (Xt)”% by

Ex[lv* (£, X)) 1d g (XI5 = Ex, [llv*(£, X;)lI51d o (X)]

. 1/2
< (Ex, lI[v* (£, XII3] - P(X, € Q)
SE[IIX 113172 P(X, € Q)2 (3.45)

Combining (3.20) in Lemma 3.35 and (3.45) above, it follows

¢ Az), (3.46)

gtzrunc = IE(t:Xt)”v*(t’ Xt)IdeL\(xt)“% s \/Eexp(_ C?)LSI
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where we omit the dependence on the fourth moment of the target Xj.

Finally, combining (3.42), (3.44), and (3.46), we get

2
Eirune S VdA? exp (— G4 ),
CLsi

where we omit the dependence on the fourth moment of the target X;. This completes

the proof. [

Stochastic error

The stochastic error is known as generalization error in statistical machine learning. In
this part, we study the stochastic error of flow matching with techniques in empirical
processes and present the proof of Lemma 3.38. Before that, we show necessary defini-
tions from the content of empirical processes for establishing bounds of the stochastic

€rror.

Definition 3.60 (Uniform and empirical covering numbers). Given the samples X, :=

{Xi}i_,, we define the empirical L pseudometric || - || ~(x,) on the samples X, by

0 = X .
IfllLe(x,) {ngsﬁlf( i)l

<

A set F; is called an empirical L* o-cover of the function class F on the samples X, if

for each f € F, there exists f’ € F5 such that [|f — f'||;~(x,) < 6. Furthermore,
No(6, F,X,,) := inf{l]%l : Fs is an empirical L™ d-cover of F on Xn}

is called the empirical L> o-covering number of F on X,,. Given n, the largest L™ o-
covering number over samples X, is referred to as the uniform L™ 6-covering number

Noo(6, F,n) = supx N (0, F,X,).

Definition 3.61. Let F be a class of functions from a set Z to R. A set {Z,---,Z,,} CX
is said to be shattered by F if there exist t{,t,--,t,, € R such that, for each b € {0, 1}"",
there exist a function f;, € F satisfying sgn (f;, (Z;) —t;) = b; for 1 <i < m. We say that

the threshold values t{,t,,---, t,, witness the shattering.

Definition 3.62 (Pseudo-dimension). Let F be a class of functions from a set Q) to
IR. The pseudo-dimension of F, denoted by Pdim(F ), is the maximum cardinality of a
subset of () shattered by F.
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Proof of Lemma 3.38. Let D, = {S; := (Z;, Xy ;,t;)};_, be a random sample from the dis-
tribution of Z,X;,t and ID;, := (S} := (Z},X] ,,t})}"_; be another ghost sample indepen-
dent of ID,,. We denote that X;, := (1—t;)Z;+t;Xy ;, X, := (1-t))Z;+X] ,, Y; 1= Xy ;=Z;,
and Y} := X| ;= Z}. Define D(v,S;) := ||v(ti,Xti)—Yi||§ - ||v*(ti,Xti)—Yi||% forany v € F,
and S;. Notice that

1
n

Ep, [£00°) = 2L,(8,) + L) = Ep, |- )" (B D(0,,S) - 2D(3,,S))) | (347)

It is clear that the right-hand side of (3.47) defines an asymmetric empirical process. Let

G(v,S;) := Ep, D(v,S]) - 2D(v,S;) for any v € F,,. Then we have

n i=1

B, [£(0") = 2£4(0,) + £00,) =B, [+ )" 6(0,,5)]

Let B, > B > B > 1 be a positive number that may depend on the sample size n. We
construct a clipping function Cp at level B,, following the definition of clipping func-
tions in Lemma 3.58. Let vg (t,x) := [E[Cp (Y)|X; = x] be the regression function of the
truncated Y. Similar to the definitions of D(v,S;) and G(v,S;), we define Dg (v,S;) :=
lv(t;, X¢,)—Cg, (Yi)lI3-llvg, (ti, X¢,)—Cp, (Y:)lI3 and Gp (v,S;) := Ep, Dp, (v,S!)-2Dp (v,S;).
Then for any v € F,, we have
|D(v,S;) - Dg, (v,S;)]
=[20v(t;, X)) = v (65, X,,), C, (Y1) = Vi)
+llvs, (ti, Xe,) = Ci, (YDII3 = [0 (6, Xe,) = C, (Y3
32|<v(tirxti) - v'(t;, X,),Cg,, (Yi) = Yi>|
+ (v, (£, Xe) = v (85, X, ), v, (8, X4,) + (85, X, ) = 2C5, (Y))].

By considering coordinate-wise scalar expressions of the risks, we get

|D(v1 Sl) - DBH (7}, Sz)l

d
<) {2l X - vt X1 @, (Y0 - (Y]

+ (@B, )j (1, Xe,) = v3 (83, Xe)] - [(v8,)j (8 Xe, ) + 07 (83, X,) = 2<cBn<Y1~>>]~J|}

<3 {aelien, (v - (v + 4B (w6 %) - v 6 X, )

<Y {4BlCa, (Y0 - (Y0 + 4B, BIC, i) - (%, =X 1}
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Note that |(Cp, (Y;)); = (Yi);I < I(Yi);11d v,),125,} and B, > B. Then it follows that

Ep,|D(v,S;) - Dg, (v,S;)|

d
<Ep,| ), {48001y, om, + BT v, o, X = X}

<Y 8B, (1011 o o
<Y 8B, 1Y) Y > By

By Assumption 3.8 and Remark 3.11, the law of Y = X —Z is sub-Gaussian. Then there
exist two constants K; and K, such that foreachi=1,2,---,nand j=1,2,---,d,

P{I(Y;)jl = B} < ZeXp(——) [I 2] < 2K3.

The bounds above further imply that
d
Ep,D(v,S;) <Ep,Dp,(v,S)+ ) . 8B,Ep [I(Yi);*]P((Yi);l = B,)
j=1
2 B,
SIED,lan(V’ Sl) + 32dBnK2 exp (—K—g) .
1

Therefore, we conclude that

1 n A 1 n . B2
IE]Dn[; Zizl Q(vn,Si)] < IEIDn[; Zi:l G, (U, Si)] +K3B, exp(_K_;;)’ (3.48)

where the constant K5 does not depend on # and B,,.

Next, we consider bounding a tail probability of the empirical process. Before pro-
ceeding, we define (Dj,);(v,S;) := [vj(t;, X;,)—(Cp, (Y:));1*~[(vg, ) (ti, X¢,)—(Cp, (Yi);]?
for any j € {1,2,---,d}. It is clear that Dy (v,S;) = Z 1(Dg,)(v,S;), and we have the
following tail probability bounds

1 n .
IP{— o1 gB,,(vn: Sl) > t}

n

1 n
<Plaves: Y " G5 (©S)> t}

2
:IP{E]UEEZIED;DBn(U,S;)—E ;?IDB 'U S >t}
1

2 ‘
<P{3ve 7, and 31 < j<d By (Dy,);(v,S) - > ) " (Dy, )>E}'
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Note that |(Cp, (Y));| < By, l(vB, )il < By, and B, > B > 1. By Theorem 11.4 of Gyorfi
et al. [2002] and letting € = 1/2,a = = t/(2d) in Gyorfi et al. [2002, Theorem 11.4], it
yields that for each n > 1,

IP{% Zj:l an(ﬁn’Si) > t}

<PlAve F,andI1 <j<d:Ep (D - 25" p Syt
<P(3ve 7 and 31 < j <d: By (D3, )i, S) == ) " (Dy,)j(0,5)> =]
in
<14N_(t/(80dB,),F,, n)e ——). 3.49
(t/( n) Fa )Xp( 5136dB% ( )

Then we use the tail probability bound (3.49) to bound the stochastic error. For any
a, >0,

1 n .
Ep, [E Zi:l s, (Vn, Si)]
(OO 1 n
<apt | P{Y T On 0080 > tfde
Ja,
(" tn
<a,+ 14N (t/(80dB,), F,, n)exp|———— | dt
n Ja, ( ( Tl) n ) p( 5136dB%)
(" tn
<a,+ 14N (a,,/(80dB,), F,, n)exp| ———— |dt
n Ja, ( n ( 7’1) n ) p( 5136dBr41)

136dB*
San+14Noo(an/(80dBn),.7:n,n)exp(— Ful? )5 3648,

5136dB% n

By choosing a,, = log(14N(1/n, F,, 1)) - 5136dB2/n and noticing that a,,/(80dB,,) >
1/n and N (1/n, F,,n) > No(«a,/(80dB,,), F,, n), we obtain that

1 vn X 5136dB}(log(14N(1/n, F,, 1
IEDn[_Zizlan(”"'Si)]é (Log( n( 1, F 1)) ). (3.50)

Setting B,, < Blog n and combining (3.48) and (3.50), the stochastic error is upper bounded
by the covering number of the hypothesis class F, C NN (S,W,D,B,d + 1,d) as

Estoc S 108”)43410‘5/\[00(1/”,}71, n) (3.51)

—(
n
where we omit a constant not depending on n or B. By the relationship between the

uniform covering number and the pseudo-dimension of the deep ReLU network class
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F,, [Anthony and Bartlett, 1999, Theorem 12.2], it yields that for n > Pdim(F,),

2eBn?

Pdim(Z,)

Pdim(F,)
) , (3.52)

No(1/n, Fy,n) S(

where Pdim(F;,) denotes the pseudo-dimension of F,,. By Theorems 3 and 7 of Bartlett
etal. [2019], the pseudo-dimension of the deep ReLU network class 5, € N N (S,W,D,B, d+
1,d) satisfies

SDlog(S/D) < Pdim(F,) < SDlog(S). (3.53)
Combining (3.51), (3.52), (3.53), and B < A, we complete the proof by showing

d log n)*A*SD1og(S)log(An?).

gstoc < E (

Balancing errors

We present the proof of Theorem 3.40 for balancing the approximation error and the

stochastic error of flow matching.
Proof of Theorem 3.40. According to Corollary 3.37 and Corollary 3.39, it holds that

1 _ -
gstoc < EA4£ 2(NL)2+2/d1 gappr < AZ(NL) i + A2 exp(_C3A2/CLSI)

by omitting a polylogarithmic prefactor in N, L, A, n, a prefactor in log(1/t), and a pref-
actorind,«x,,0,R. Let NL =< (nt?)#(2d+6) and A = log(logn). Then by Lemma 3.29,
it holds that

IE]DnlE(t,Xt)lwn(t’ xt) - V*(tJ xt)”% < gstoc + 2gappr < (nEZ)—Z/(d+3)

by omitting a polylogarithmic prefactor in 7, a prefactor in log(1/t), and a prefactor in

d,x,p,0,R. O

3.8.4 Distribution estimation errors

In the section, we provide proofs for bounding distribution estimation errors. The dis-
cretization error is bounded in Lemma 3.19.
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Proof of Lemma 3.19. By the definition of Wasserstein-2 distance, it holds

W3 (B, Pr) SJ

iy 1X1(x) = X (0)l3po(x)dx =: Ey.

It suffices to consider the propagation of error E; in time ¢ € [0,1 — ¢]. Recall that
(Xt)te[o,l—;] is the linear interpolation of (th)OSksK, thus it is piecewise linear over
[0,1 —¢]. To ease the arguments, we consider the dynamics of E; over each time subin-

terval [t;_q,t;] for 1 <k < K. For t € [t;_1, ], it holds that
= | 20t R )= 9400 K0, )= Ko
= [ 20 R D =0 R () R - ol (359
+ J;Rd 2(v,(t, th_l (x)) = Dy (2, X4 (x)), X4 (x) = X (x))po(x)dx (3.55)
+ J;Rd 2(0,,(t, X (x)) = Dy(t, X, (), Xy (x) = X, (x))po(x)dx (3.56)

For term (3.54), the basic inequality 2({a,b) < ||a||% + ||b||% and the fact that 9, is L;-

Lipschitz continuous in f imply that

JW 2b(trs R (1) = Dt Ry, (1)), Ke(6) = Ko (x))po(x)dx
sf Wt Key () = Bt R, ()IEpo(x)dx
]Rd

+j 1%,(x) — X, (0)|Bpo(x)dx
]Rd

<dL?(t—ty_y)? +E;. (3.57)

Note that X,(x) = th_l (x)+(t- tk—1)79n(fk—1:th_1 (x)). For term (3.55), we use 2(a,b) <
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||a||% + ||b||§ and the fact that v, is L-Lipschitz continuous in x to deduce that

A

| 20000 R 0= 0000, 00, )= S o1
< [ 12,0 000, X3 Bpold
R4

+ j 1%,(x) — X, (x)|Bpo(x)dx
]Rd

2 21A 112
Sde(t_tk—l) ||v1’l||ch) +Et

([0,1-t]xR9)

<dL2B%(t-t,_;)* +E,.

(3.58)

For term (3.56), by the Cauchy-Schwartz inequality and the fact that v,, is L ,-Lipschitz

continuous in x, we obtain
J;Rd 20, (8, X4(x)) = D, (8, X (x)), X3 (x) = Xp(x))po (x)dx < 2L, E;.

Combining (3.57), (3.58), and (3.59), we obtain

dE
d—tf <2(Ly+1)E +d(L2B> +L2)(t —t;_1)*> fort € [ty ty]-

By Gronwall’s inequality, it further yields

_ B 1
et likp, — e 2Dl < gd(LﬁBz +L2) (e — teq)>.

Taking sum over k = 1,2,---,K and letting tx = 1 — £, we obtain

1 _ K
Eyy < 5de? D008 1 L) Y =),
Let Y =ty —tp_y fork=1,2,---,K. It implies that
WPy pr—y) = O (Ve (LB +L,)Y).

This completes the proof.

The error due to velocity estimation is bounded in Lemma 3.21.
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Proof of Lemma 3.21. The proof idea is similar to that of Albergo and Vanden-Eijnden
[2023, Proposition 3]. By the definition of the Wasserstein-2 distance, it holds

W2(B1p) < f

iy 1X:(x) = X, (0)l3po(x)dx =: Ry,

for any t € [0,1 — t]. By (3.5) and (3.12), it follows that

% = J 2(0y(t, Xy(x)) =07 (t, X4(x)), Xy (x) = X (x))po (x)dx
R4

= J;Rd 200, (1, X4 (x)) = (1, X (x)), X1 (x) = X, (x))po (x)dx (3.60)

+ J L 20n(8,X,(x)) = V(8 Xy (x)), X;(x) = Xi(x))po(x)dx. (3.61)
R
For term (3.60), the fact that v,, is L ,-Lipschitz continuous in x imply that

J]Rd 2(0,,(t, X (x)) = D,,(t, X4(x)), X, (x) — X (x))po(x)dx < 2L R,.
For term (3.61), the basic inequality 2(a, b) < ||a||% + ||b||% imply that
| 20000 3,00 0708 X0, Rt~ Xt
< Ry + By, 19, (8, Xp) = " (, %) 13-
Therefore, we have
dR,

—— < (2L + )R, + Ex,

= 9t X0) =" (8, X1

~Pt
By Gronwall’s inequality, it further yields

Ry < exp(2L, + 1)IE(t,Xt)”?}n(tr Xo) = v (t, Xt)”%

We complete the proof by noting that W3 (P1-t:P1-t) S Ryt ]
The early stopping error is bounded in Lemma 3.22.

Proof of Lemma 3.22. The proof is a basic calculation.

Wi (1o p1) < E[IX - = Xull5] = B[I1EZ = X))
= £ (E[lI2I3] + E[IX,13]) < 2,
where we omit a polynomial prefactor in d, E[|[X,]|3]. We complete the proof by taking

square roots of both sides. O
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Proof of Theorem 3.23. Combining Eq. (3.14), Lemmas 3.19, 3.21, 3.22, and Theorem 3.40,
it yields
Ep, Wa(p1-pp1) S (nt?) ™) 4 e (LB + L)Y +1,

Let t < n~ /443 A < log(logn), and Y = O(n~3/(4*5))_ Then it implies

IEH)”WZ(ﬁl—ypl) <tV (nt2)—1/(d+3) < n—l/(d+5),

where we omit a prefactor scaling polynomially in log#n and a prefactor with depen-

dence on parameters in S,. This completes the proof. []

3.8.5 Supporting definitions and lemmas

Sobolev spaces are widely studied in the context of functional analysis and partial differ-
ential equations. For ease of reference, we collect several definitions and existing results
on Sobolev spaces that assist our proof. For a thorough treatment of Sobolev spaces, the
interested reader is referred to Adams and Fournier [2003], Evans [2010]. Moreover, we
present some results on polynomial approximation theory in Sobolev spaces that are de-
veloped in the classical monograph on the finite element methods [Brenner and Scott,
2008]. In the sequel, let d € IN, ) C R? denote an open subset of R?. We denote by
L*(Q)) the standard Lebesgue space on () with L* norm.

Sobolev spaces

We list some definitions for defining Sobolev spaces.
Definition 3.63 (Sobolev space). Let n € INy. Then the Sobolev space W™*(Q)) is
defined by

Wne(Q):={f € L®(Q): D*f € L®(Q) for all & € N? with |||, < 1 }.

Moreover, for any f € W'»*(Q)), we define the Sobolev norm || - ||y () by

neo() = max ||[D%f|lie0).
If llwneo () OSIIthSn” fll=@)

Definition 3.64 (Sobolev semi-norm). Let 1,k € INy with k < n. For any f € W'»*(Q)),

we define the Sobolev semi-norm | - [yyke(q) by

|flwkes(q) := max [[D® fllr=(q)-
llall; =k
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Definition 3.65 (Vector-valued Sobolev space). Let n,k € INg with k < n, and m € IN.
Then the vector-valued Sobolev space W™*°(();IR™) is defined by

WHS(QR™) :={(fi, far- s fin) : f: € WX(Q),1 <1 <m)
Moreover, the Sobolev norm || - ||yyne(q;rm) is defined by

,00 . = Ima : ,00 y
Il f Il wmoo ;) 1Sl,;};”ﬁ”wn Q)

and the Sobolev semi-norm |- |yyne(q;rm) is defined by

k,c0 . = max / k,o0 .
|f lwkeo () 151,§m|fz|w Q)

Averaged Taylor polynomials

The following definitions and lemmas on averaged Taylor polynomials are collected

from Chapter 4 of Brenner and Scott [2008].

Definition 3.66 (Averaged Taylor polynomials). Let Q ¢ R? be a bounded, open subset
and f € W 1(Q)) for some m € N, and let x5 € Q,7 > 0,B := B%(x, 7, - ||,) with
its closure B compact in Q. The Taylor polynomial of order m of f averaged over B is

defined as

(2 X) = 1 X qb V dV,
W]lere

= ) D))

llatlly <m

and ¢ is an arbitrary cut-off function supported in B being infinitely differentiable, that

is, g € C*(R?) with supp(¢) = Band [, p(x)dx = 1.
Example 3.67. Let 1(x) be defined by

i) o [P U=l i =il <
0, if | —xoll, = 7,

and let ¢ = Jle P(x)dx with ¢ > 0, then ¢(x) = ¢(x)/c is an example of the cut-off

function on the ball B := IB%(x,,,|| - ||,). Moreover, it holds that lPpllre() < C(d)r
where C(d) > 0 is a constant in d.
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Example 3.68. Let ¢(x) be defined by

o(x) = w4 2T(d/2+1)r ™9, if|lx—xoll, <7,
O; if”x_x()”z >,

then ¢(x) is another example of the cut-off function where ¢ puts constant weight over

the ball B := B%(xq, || - ||,).

Lemma 3.69 (Lemma B.9 in Giihring et al. [2020]). Let QO C R? be a bounded, open
subset and f € W"=1°(Q) for some m € N, and let xy € Q,r > 0,B := B%(xo, 7, - ||)
with its closure B compact in Q). The Taylor polynomial of order m of f averaged over B

denoted by Q™ f (x) is a polynomial of degree less than m in x.

Definition 3.70 (Star-shaped set). Let (0, B € RY. We say (Q is star-shaped with respect
to B if for all x € ), the closed convex hull of {x} U B is a subset of Q.

Definition 3.71 (Chunkiness parameter). Suppose that QO C R? has diameter d and
is star-shaped with respect to a ball B. Let

Tmax := supf{r > 0: Q) is star-shaped with respect to a ball of radius r}.
Then the chunkiness parameter of (2 is defined by ¥ := dy/rmax-

Lemma 3.72 (Bramble-Hilbert, Lemma 4.3.8 in Brenner and Scott [2008]). Let B be a ball
in Q) ¢ R? such that Q) is star-shaped with respect to B and such that its radius r > 1,,/2,
where 1y, is defined in Definition 3.71. Moreover, let dy be the diameter of (3, y be the
chunkiness parameter of 3, and Q™ f be the Taylor polynomial of order m of f averaged
over B for any f € W™ (Q)). Then there exists a constant C(d,m,y) > 0 such that

If = Q" flwkeo) < C(d,m,1)dS | flwmesiay  k=0,1,++,m.

3.8.6 Additional lemmas on approximation

Lemma 3.73 (Corollary B.5 in Giihring et al. [2020]). Letd,m € IN and (), C R%,Q, C

R™ both be open, bounded, and convex. If f € W*(Q;R™) and g € WL (Q),) with

rad(f) C Q,, then for the composition g o f, it holds that go f € WH*(Q) and we have
g0 flwieo,) < Vdmlglyioqlflwie@, )

and

g o fllwtes,) < Ydmmax{ligllioa,), 1glwieo @l flwte@,zmm)-
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Lemma 3.74 (Corollary B.6 in Giithring et al. [2020]). Let f € W1(Q) andg € WI>(Q).
Then fg € W (Q) and we have

Ifglwieo) < Iflwreo)llgllzeo) + If lle()lglwie(q)
and
Ifgllwre) < Ifllwreo@)llgllio@) + 1 f Iz @)llglwio)-

Lemma 3.75 (Proposition 4 in Yang et al. [2023]). For any N,L € IN and a > 0, there ex-
ists a deep ReLU network ¢, , with width 15N and depth 2L such that || allw1.eo((—g,a)2) <

1242 and
I Pa(%9) = Xl eo(_aa2) < 6a°N 7L

Furthermore, it holds that

9 X,a ’
00,9 = “P282 0 fry e (-0

Lemma 3.76. For any N,L € IN and a,b > 0, there exists a deep ReLU network (PX,(u,b)
with width 15N and depth 2L such that ||y (ap)|lwieo((-a,a)x(-b,b)) < 12ab and

P a,) (% 9) = XVl wioo((—aa)x(-b by < 6abN L.

Furthermore, it holds that

a(nbx, a,b (X, 0)
P (ab)(x,0) = + =0 for x € (—a,a).

Proof. The proof idea is similar to that of Proposition 4 in Yang et al. [2023]. O

Lemma 3.77 (Proposition 5 in Yang et al. [2023]). For any N,L,s € IN with s > 2, there
exists a deep ReLU network ¢, with width O(s V N) and depth O(s*L) such that

llp(x) = 122 Xgllwioo 0,19 S S(N + 1)L,

Furthermore, foranyi=1,2,---,s, ifx; = 0, then we have

a (xl x2 x._l O X 1, x)
Ou(x1, %0, , %121, 0, X4 1,7+, X5) = Pul 2, ’alx —

=0,1#].
j
Lemma 3.78 (Lemma 6 in Yang et al. [2023]). Let {g,},e(1,2)¢ be the partition of unity
given in Definition 3.53. Then it satisfies:
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(1) Line(r,2)4 §m(x) =1 for every x € [0,1]¢;
(2) supp(g,,) N[0,1]* € Q,, where Q,, is given in Definition 3.52;

(3) For any m = [my,my,---,my]" € {1,2)% and x = [x1,%5,---,x4]7 €[0,1]\ Q,y,,
dgm( i)

Y

there exists an index j € {1,2,---,d} such that §mj = 0 and =0.

Lemma 3.79 (Lemma 7 in Yang et al. [2023]). For any x(x) € W1((0,1)%), let

Bs —max{”)(”wloo (0,1)4 ||(Pm||wloo ((0,1)4 )}

Then for any m € {1,2)9, it holds that

pm(x) - X (XM wreo(0,1)¢) = 1P (%) - X (X)lwreo(a,)y
p (%) - X (%) = P, B (P (), X (XDl 1.00((0,1))
= |lpm(x) - x (%) = s,y (%), X (X)lWreo(,,)-

Lemma 3.80. For any x(x) € L®((0,1)%), let B¢ := max{||xllzeo((0,1)7) 1P mllLeo(0,1)1)}-
Then for any m € {1, Z}d, it holds that

P (%) - x () Loo(0,1)1) = 1P m (%) - X (X)L, )0
I m(x) - X (x) = P, B (P (%), X (X)) 1o((0,1)4)
= pm(x) - X (x) = P, B, (P (), X (X))ILo(, )

Proof. The proofis similar to that of [Yang et al., 2023, Lemma 7]. To prove the equalities,

we need to show that
1P (x) - X (X)L (0,1)10\0,) =0 and  [|Ps (P (), X (X)lzeo((0,1)1\02,,) = O-
In Lemma 3.54, it is shown that
Pn(X) := DGy (X1), 8y (X2), -+ 5 &y (X)) = O

where g,,,(X) = [gm, (X1) §m, (%2), - §m,(x4)]" is defined in Definition 3.53. Then by
Lemma 3.78, for any x = [x1,xp,-++,x4]" € (O,l)d \ Q,,, there exists mj such that

gm; (X (x;) = 0. By the definition of ¢,,(x) and Lemma 3.77, it yields that

Pm(x)=0, Vxe(0,1)9\Q,,
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Therefore, for any x € (0,1)% \ Q,,,, it holds that |¢,,(x) - x(x)| = 0.

Similarly, for any x € (0, 1)d \ Q,,, it holds that
(PX,Bé ((Pm(x)f X(x)) = ¢><,B6(O' )((X)) =0.

This completes the proof. O

Lemma 3.81 (Proposition 4.3 in Lu et al. [2021]). GivenanyN,L € N and 6 € (0,1/(3K)]
forK = N4 2| L¥4 |, there exists a deep ReLU network ¢ with width 4N + 5 and depth
4L + 4 such that

1
(lb(x):k, X € %;k%—é-ld{k<l<_l} R k:O,l,"',K—l,

Lemma 3.82 (Proposition 4.4 in Lu et al. [2021]). Given any N,L,s € IN and &; €
[0,1] fori =0,1,---,N2L? — 1, there exists a deep ReLU network ¢ with width 16s(N +
1)log,(8N) and depth (5L + 2)log,(4L) such that

|p(i) - &| < (NL)™ fori=0,1,--- ,N*L* -1

and that

¢(x)€[0,1], xe R

3.8.7 Hatsell-Nolte identity

Here, we exhibit Hatsell-Nolte identity [Hatsell and Nolte, 1971, Dytso et al., 2023b].

Lemma 3.83. Suppose that X ~ p and € ~ y; ;2. Let Y = X+ € and p(y) be the marginal
density of Y. Then it holds that

Cov(X|Y =) = 0V, E[X|]Y = ] = 6”1+ 0V, log p(y).
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Chapter 4

Statistical Analysis of a Bayesian Fine-tuning
Approach

Diffusion models are a class of continuous generative models built with SDEs whose gen-
eration ability has been largely reinforced by various fine-tuning procedures. However,
the mystery of fine-tuning has seldom been uncovered from a statistical perspective. In
this chapter, we address the gap in the systematic understanding of the advantages of
fine-tuning mechanisms from a statistical perspective. We prove that a pre-trained large
diffusion model can gain a faster convergence rate from the Bayesian fine-tuning proce-
dure when adapted to perform conditional generation tasks. This improvement in the
convergence rate justifies that a pre-trained large diffusion model would perform bet-
ter on a downstream conditional generation task than a standard conditional diffusion

model, whenever an appropriate fine-tuning procedure is implemented.

4.1 Introduction

Recently, fine-tuning of large models has been successfully applied across various do-
mains, including natural language processing, computer vision, and speech recognition.
This process involves taking a model that has already been trained on a broad dataset
and refining it using a smaller and task-specific dataset. The goal is to use the general
knowledge embedded in the large model while tailoring its capabilities to meet partic-
ular needs. Fine-tuning not only enhances performance on specialized tasks but also
reduces the computational resources and time required compared to training a model
from scratch. This approach has become increasingly important as models grow in size
and complexity, offering a practical pathway to harness their full potential across di-

verse applications.

Current work, including T2I-Adapter [Mou et al., 2024], ControlNet [Zhang et al.,
2023], and Bayesian Power Steering (BPS, Huang et al. [2024]), uses fine-tuning tech-
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niques for Stable Diffusion (SD, Rombach et al. [2022]), facilitating precise spatial con-
trol over image generation. While extensive experimental results [Huang et al., 2024,
Cheng et al., 2023a] have demonstrated that fine-tuning large-scale pre-trained mod-
els can yield exceptional generative outcomes, even with limited training datasets, the

mechanisms underlying the efficacy of using pre-trained models remain ambiguous.

In this chapter, we aim to fill the gap in the systematic understanding of the advan-
tages of pre-training mechanisms from a statistical perspective. We employ Stable Diffu-
sion, a cutting-edge open-source large image model developed on the LAION-5B dataset,
which comprises 585 billion images and effectively captures the probability space of
natural images. Based on this large model, we consider the generic setting where the
support of the fine-tuning target Z| is a subset of the support of the pre-training target
Zy. Then we adopt the Bayesian fine-tuning approach [Ho and Salimans, 2022, Huang
et al., 2024] that is widely used in diffusion models and has demonstrated effectiveness
in numerous experiments [Ho and Salimans, 2022, Mou et al., 2024, Zhang et al., 2023,
Huang et al., 2024].

We prove that, under some regularity conditions, the Bayesian fine-tuning approach

_2B 2a
achieves the convergence rate m 9+2f V n~dwk+2a, where m is the sample size of pre-

training, 7 is the labeled data size for fine-tuning, and 8, are smoothness indices.

Meanwhile, if we train a conditional diffusion model from scratch using only the labeled

26 . .
data, the convergence rate is n~ +k+25 with 6 < min(«, f). By comparing these two rates,
we can justify the benefit of pre-training when we have abundant data (m >> n) from

the prior data space.

The rest of this chapter is organized as follows. We introduce the problem setting
in Section 4.2. Then we revisit the background of diffusion models and the Bayesian
fine-tuning approach in Sections 4.3 and 4.4. The main results are presented in Section
4.5 which provides an overview of the statistical error analysis of the pre-training stage
and the fine-tuning stage in Sections 4.6 and 4.7. We defer the proofs of the theoretical

results to Section 4.9.

4.2 Problem setting
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This section formally formulates the problem and provides the background in the
context of fine-tuning generation tasks. Let the generative target of the pre-trained
model be denoted as Z; € Z C RY, where Z := (Q, F, P) is the prior probability space.
The goal of fine-tuning is to generate samples from the probability space defined on a
non-zero measurable subset A € F, termed the fine-tuning probability space, i.e., Z5 4 :=
(A,ANF,P(-|g)). Here, F is the Borel field generated by the random variable Z;, and
ANF :={ENA|E € F}. The subfield g represents an area of interest, with A e g C ANF.
Specifically,

PENA)

VEeANF,Aeg: P(EIA):= A

and P(-|g) = {P(|A)|A € g}.
Note that P(E|g) is any one of the equivalence classes of random variables belong-
ing to g. The following lemma further illustrates and instantiates this description to

facilitate its application.

Lemma 4.1 (Chung [2001]).  Fork € IN, there exists some extended-value measurable

function 1 : R? — R* such that C := P(Zy) andC: g — R is a random variable.

Lemma 4.1 states that the target probability space can be identified by conditional
sampling in applications. For convenience, we define Z)|C € Z5 g = Z7c := (A, AN
F,P(:|C)), where the target probability measure can be defined as the conditional prob-
ability measure P(E|C) := P(EN ~1(C))/P(p~1(C)) for E € AN F. In practice, the
condition C often represents the properties of interest, while elements in g are sets
that satisfy certain properties. Specifically, C often corresponds to attributes such as
sketches, poses [Mou et al., 2024, Zhang et al., 2023], layouts [Huang et al., 2024, Cheng
et al., 2023a], and class labels [Ho and Salimans, 2022] that are of particular interest in

the field of image generation.

From an empirical perspective, large models are trained using finite samples {Z ;}!" |
drawn from the prior probability distribution P during the pre-training phase, where m
is the sample size. We consider a fine-tuning architecture that incorporates a relatively
small, trainable neural network on top of a fixed large model structure and parameters.
During fine-tuning, limited labeled paired samples {(C;, Za’ )}, that follow the proba-
bility distribution 7(Z|C) to train this neural network, with n representing the sample
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size. Generally, the fine-tuning task assumes that the labeled data are significantly less
than the unlabeled data used for pre-training, that is n << m. In this chapter, we con-
sider Stable Diffusion as the pre-trained model and a Bayesian fine-tuning approach as

the fine-tuning architecture, with further details provided in the following section.

4.3 Diffusion models

Diffusion models [Ho et al., 2020] and their extensions [Rombach et al., 2022] have
demonstrated significant success in generating images, videos, and text. These mod-
els employ a pre-defined forward process to transform the target random variable into
Gaussian noise. Subsequently, a corresponding backward process is modeled to convert
Gaussian noise back into the target random variable for sampling. This section intro-
duces some preliminaries and key ingredients for Stable Diffusion, a widely recognized

extension for diffusion models.

4.3.1 Stable diffusion

The key idea of Stable Diffusion is grounded in the manifold hypothesis, which suggests
that image data is supported on a lower-dimensional substructure. It first maps the
image data into latent probability space and subsequently employs diffusion models
within this space to generate image representations. The SD model comprises three
key modules: an auto-encoder, a language encoder (e.g., contrastive language-image

pre-training [Radford et al., 2021]), and the diffusion model [Ho et al., 2020].

The auto-encoder consists of an encoder and a decoder, responsible for data com-

pression and reconstruction. The encoder maps the standardized image data X, € X’ C

d
[1.7[~1,1] to a lower-dimensional probability space Z := (Q,F,P) C R? (with d =

642 x4 < Aimg = 5122 x 3) via the transformation:

ZO :EQ”(XO)—I_EGG(XO)OGI where €~N(0,Id), (41)

where Eg = (E, ,E; )7 represents the encoder and o denotes the Hadamard product.
U o
The functions EQV, Eg, : X — R? parameterize the conditional mean and variance of the
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latent embedding Zy|X,. The decoder D : Z — X reconstructs the image as D(Zj) = X,.

The language encoder embeds the text prompt in Euclidean space Rkext, Without
loss of generality, we treat the text condition as the constant phrase ”a high-quality,
detailed, and professional image,” thereby considering Stable Diffusion as an uncondi-

tional generative model and omitting a detailed discussion of the language encoder.

Given that the target dataset is supported on a subset of X', we use the pre-trained
auto-encoder to map the target data into the latent space for fine-tuning, such that the
corresponding support A is also the subset of (), consistent with our generic setting.
Our primary interest lies in the probability space of the image representation Z resulting
from the auto-encoder’s transformation. The diffusion model is subsequently used to

create representations of the image in the latent space IR?.
We now define the forward process of the diffusion model.

Definition 4.2 (forward process). The forward process of the diffusion model is

denoted as {Zt}tT:O fort€[T]:=1{0,1,...,, T}, and follows the iterative form:

jid
Zt = \/a_tZt_l + \/1 — €41, €09y, €T g N(O,Id), (42)

where the sequence {a,};2, ¢ IR satisfy the following conditions:
(1) a;€(0,1),
(2) let @; := Hleai, then lim,_,., a@; = 0.

In Definition 4.2, the parameter «; is predefined and must satisfy two conditions.
The first condition ensures the well-defined variance of Z;, and the second guarantees
that as t approaches infinity, Z; converges to a multivariate standard Gaussian distribu-
tion. Additionally, sampling with the iterative format in Definition 4.2 at any arbitrary
time ¢ can induce high computational costs. An equivalent closed form of the forward

process addresses this issue, as presented formally in the following lemma.
Lemma 4.3. The sequence of random variables {Zt}tT:o defined in (4.2) satisfy
Zy =NaZg+1-am, 1~N(0,Iy). (4.3)

If assumption 4.2 holds, {a;};2, is a strictly decreasing sequence within the interval (0,1)
and we havelim; ,,Z; =1.
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Lemma 4.3 implies the role of the parameters &; is to show the dynamic signal-
to-noise ratio. The forward process be conceptualized as a weighted average between
the signal and noise components, progressively perturbing the target data Z; toward
Gaussian noise as time approaches infinity. In practice, T is chosen to be sufficiently
large to ensure that the data distribution is mapped to a multivariate standard Gaussian

distribution through this dynamical system with controllable bias.

The backward process, known as Denoising Diffusion Probabilistic Model (DDPM,
Ho et al. [2020]) sampler, is used for sampling, which initiates with Gaussian noise and

proceeds through the following iterations.

Definition 4.4 (DDPM sampler).  The backward process of the diffusion model, that
is the DDPM sampler, is denoted as {Zt}tT:O for t € [T], and follows the iteration rule:

1 1-ay
Zi 1 =—\Z; - “(Zy,t) |+ oy, with Z7,n ~ N(0,1y), 4.4
t—1 \/a_t t \/1——0_th( t ) t1 T:1 ( d) ( )
where 7 is independent of Z; and #, o, := 11_1)7;_;1 a;, the denoising function f~ :

RY x [T] — R? is defined as f*(t,z) := [E[y|Z; = z].

Here, the denoising function f*(t,z,c) is the target model during pre-training. Let
p(t,z) : R? x[T] — R denote the time-dependent density function of Z,, then the score
function Vlog p(t,z) : R? x [T] — R¥ takes the following form:

Vlogp(t,z) = - ! —f7(t,z2).
1-a
—ai

Given a fixed auto-encoder, the target of pre-trained modeling is to estimate the
denoising function f* from extensive observations of Z, followed by sampling through

the DDPM sampler (4.4).

4.3.2 Conditional DDPM sampler

Conditional generation is an effective method for transferring the support of the pre-
trained model () to the support of target data A, as outlined in Lemma 4.1. This process
is realized by employing the conditional score function within the backward process.
We introduce the definition of conditional DDPM sampler as follows.
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Definition 4.5 (Conditional DDPM sampler). = With a condition variable C € C, the
conditional DDPM sampler is defined as:
1 c l-o

ZtC—lz_ Zy = =
Ve V1i-a;

Here, ZtC := Z;|C, and the conditional denoising function F*(t,z,c) : Rtk x [t,T] — R4

is defined by F*(t,z,¢c) := E[y|Z; =z,C =c].

F*(Z8,t,C) | + 0y1, with Z% = Z7. (4.5)

In this context, the conditional denoising function F*(¢,z,c) serves as the target
model in the fine-tuning task. Let p(t,z|c) : R4 x [T] — R be the corresponding
conditional density function, and let Vlogp(t,z|c) : R¥* x [T] — R? represent the
conditional score function. Similarly, we have the closed form:

1

T-a,

Vlogp(t,z|c) = - F*(t,z,c).

4.4 A Bayesian fine-tuning approach

The Bayesian fine-tuning approach [Huang et al., 2024] aims to estimate the conditional
denoising function F* given a pre-trained denoising function f*. This section introduces

the principle and implementation of this method.

4.4.1 Basic principle of Bayesian fine-tuning

The core of the Bayesian fine-tuning approach is to establish the relationship between
the denoising function f* and its conditional counterpart F* using Bayes’ rule. We

revisit the idea in the following lemma.

Lemma 4.6 (Huang et al. [2024]). Let M* : R¥* x [T] — R? be defined as

M*(t,z,c):= -1 -a;Vlogp(C =c|Z; = z).

Then, it holds that
F(t,z,c) = f*(t,z) + M*(t,z,¢). (4.6)

Lemma 4.6 explores the effective integration of the denoising function f* with a
gradient of the time-dependent classifier M* to obtain the target function F*.
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4.4.2 Estimation for Bayesian fine-tuning

The Bayesian fine-tuning approach is a two-stage approach. In the pre-training stage,
we estimate the denoising function f* while we estimate the difference function M* with
the aid of an estimate of f* during the fine-tuning stage. We use deep ReLU networks
in both stages for the purpose of nonparametric estimation. Recall that we have defined
the class of deep ReLU networks in Definition 3.5. We further restrict the function
class of deep ReLU networks to be a class of Lipschitz functions. Let 0 < 7 < 1 be an
early stopping time for the estimation of denoising functions. Then, for any ¢ € [z, T|,
we consider estimating the denoising function f*(t,-) using a deep ReLU network f €

= NN(S,,W,,,D,,,B,,,d,d) N WH2(R%;RY), where W1 (IR?;IR?) stands for the
class of Lipschitz functions f : RY — R%.

In the procedure of pre-training, the DDPM methods [Ho et al., 2020, Rombach
et al., 2022] solve a nonparametric regression problem to estimate the denoising func-

tion f*(t,-) on the domain IR¥,

f* eargmin{L,(f) = Blly - £(1. 2|} (4.7)

Let D}, := {(Zo,i,1i)}7L, be empirical observations of (Zy,7) with sample size m.

Then the empirical risk £, ,, is defined by

'Ctm . Z”rlz thr ”2 (4-8)

where Z; ; := \/aTtZo,i + V1 —an;.

In practice, we approximate the denoising function f* using the class of deep ReLU
networks F,,. Therefore, the pre-trained model is an empirical risk minimizer over the

function class F,,, defined by

A

fm = arg jr[nin Lt m(f)- (4.9)
In the procedure of fine-tuning, the approach estimates the gradient of the time-
dependent classifier M* by solving the following nonparametric regression problem

over the domain IR7+k:

(F*~ fu) € argmin {7(M) = Bllp — fu(t,Z) = M(1,Z, Q)| (410)

142



Let ID£ = {(Zo,; Cjomi)lily S Z2xCx R? be the data for fine-tuning that are

j=m+1
independent of the data ID}, for pre-training. Given a pre-trained denoising model fm,
the population risk defined in (4.10) leads to the following empirical risk:

m+n

1 A
TonM) = = ) = fult Z0j) = M(£,2,, CIP, (4.11)

j=m+1

where Z; ; := \a;Zy; + 1 - an;.
Next, we introduce a deep ReLU network with Lipschitz regularity as M(t,-,-) €
G,:=NN(S,,W,D,,B,d+k,d)n W1'°°(1Rd+k;IRd) to approximate the gradient of the
time-dependent classifier M*(t,-,-). Based on a pre-trained model fm, we construct an

estimator for M* within the function class G,, as follows:

Z\’/\I,1 = argAr?eiél Ttn(M). (4.12)

Combining the two stages, we obtain an estimator of the conditional denoising function

F*, defined by

Fon(tis) = fult )+ My(t,s) € Hyp = {f + M Vf € F, YM €G,).  (4.13)
When an estimate of the conditional denoising function is available, we are ready
to generate samples from the conditional diffusion model using the conditional DDPM

sampler presented in Definition 4.5.

4.5 Main results

In this section, we first present the convergence rates for estimating denoising func-
tions, which provide a statistical guarantee for models that adopt a heavy training-from-
scratch strategy, facilitating future comparisons. It is worth emphasizing upfront that
our analysis directly quantifies the effect of imperfect score estimation, which is filling
the gaps in existing theories. We then present our error bound for the Bayesian fine-
tuning approach, which offers a rigorous theoretical understanding of why a pre-trained

large model generally helps.
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4.5.1 Assumptions

Before proceeding, we impose a few mild assumptions on the regularity properties of the
denoising function f*, the difference M*, the conditional denoising function F*(¢,z,c),

and the target data distribution.

Assumption 4.7. Let § > 1. For any A > 0 and any t € [7, T], the denoising function
f*(t,) satisfies the regularity properties:

Fr(t) € WE([=A,ATLRY),  (IF7 (8 Moo _aajtrey S A.

Assumption 4.8. Let @ > 1. For any A > 0 and any t € [t, T], the difference M*(t,-,")

satisfies the regularity properties:

M(t,,) € WO ([-A, A1 RY),  IMP(t -, lwaso(_aajiskre) S A.

Assumption 4.9. Let 0 > 1. Forany A > 0 and any t € [, T], the conditional denoising

function F*(t, -, -) satisfies the regularity properties:

F*(t’ R ) € Wé’m([—A,A]d+k}Rd), ||P*(t; *y ')”Wé"x’([—A,A]d*k;IRd) < A.

Remark 4.10. We impose regularity assumptions on the denoising functions f*, F",
and their difference M* in Assumptions 4.7, 4.8, and 4.9. These smoothness assumptions
are common in the literature on nonparametric statistics [Gyorfi et al., 2002, Tsybakov,
2009] and deep nonparametric regression [Suzuki, 2019, Schmidt-Hieber, 2020, Kohler
and Langer, 2021, Jiao et al., 2023a]. Given these smoothness properties, we can quantify
the approximation errors and the stochastic errors in the estimation of the denoising

functions which lead to an overall error bound for distribution learning.

Remark 4.11. According to Lemma 4.6, it holds F* = f*+ M". Then it can be supposed
that the smoothness indices in Assumptions 4.7, 4.8, and 4.9 satisfy 0 < min(a, ).
This inequality is motivated by the relative regularity of the denoising function and its
conditional counterpart. The low regularity of the conditional denoising function F*
may be sourced from either the unconditional denoising function f* or the derivative

of the classifier-guidance M*.

The definition of the forward process {Zt}tT:0 implies that the denoising functions
and their difference are defined over unbounded domains. We consider the sub-Gaussian
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property of the random vector (Z, C) to facilitate bounding the estimation errors on
these unbounded domains. Specifically, the property of Z; can be derived by imposing
mild constraints on the encoder function within the auto-encoder. We formalize this as

follows.

Assumption 4.12. The codomain of encoder function Egy = (EQT ,EGT )T is bounded,
U o

and the probability distribution of the random variable C is sub-Gaussian, that is, there

exists a constant K such that IE[exp(K||C||%)] < c0.

Remark 4.13. The first constraint outlined in Assumption 4.12 is readily satisfied, par-
ticularly in the context of Stable Diffusion, where the image data X, is bounded. If
the encoder function Ey is continuous, the first constraint is met, representing a mild

condition, as Ey is implemented via a neural network.

4.5.2 Error bounds of drift estimation

The analysis of estimation errors in denoising functions is notably challenging and has
been largely overlooked in existing literature. Typically, the estimation error is treated
as a constant to simplify the error analysis of the sampling distribution. This chapter
enhances the understanding of estimation errors in denoising functions, providing a

comprehensive examination presented in the following sections.

Theorem 4.14. Suppose that Assumptions 4.2-4.12 hold. Let the parameters of the deep
ReLU network classes be properly specified. For any t € [t,T], the excess risk of drift

estimation satisfies
S
]E]DfnlEZt”fm _f ”2 <Sm 442
by omitting a polylogarithmic factor in m and a prefactor ind, k, 5.

To quantitatively analyze the advantages of introducing pre-trained large models in

fine-tuning, we present an assessment of the error associated with training the condi-

tional denoising function from scratch under the premise of # training samples ]Di,( . Let

the model training from scratch F,(t,-, Ok Rtk — R? be defined as

E,(t,-) = argmin [It,n(P),

FeG,
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where the empirical risk is defined by

5 1
LonlB)=— ) M= E(62,, G,

j=m+1

We then formulate the non-asymptotic error bound for the model trained from

scratch in the following theorem.

Theorem 4.15. Suppose that Assumptions 4.2-4.12 hold. Let the parameters of the deep
ReLU network classes be properly specified. For any t € [t,T], the excess risk of drift

estimation satisfies

~ *[12 20
IE]DﬁlE(Zt»C)”P” -F ”2 <Sno dvk+2s
by omitting a polylogarithmic factor in n and a prefactor in d, k, .

We are now positioned to state our theoretical guarantees for the Bayesian fine-

tuning approach.

Theorem 4.16. Suppose that Assumptions 4.2-4.12 hold. Let the parameters of the deep
ReLU network classes be properly specified. For any t € [t,T], the excess risk of drift

estimation satisfies
A %112 _dzi __2a
Epp oot B ollFmn —Fll s m @28 v ndko
by omitting a polylogarithmic factor in n and a prefactor ind, k, a, p.

Theorem 4.15 and Theorem 4.16 demonstrate the superiority of the fine-tuning frame-
work. In practical scenarios, the sample size for pre-training is typically much larger
than that for fine-tuning, which means m > n. Given the observation 6 < min(a, f8),
the convergence rate of the fine-tuning approach is faster than that of learning the con-
ditional diffusion model without pre-training by comparing the rates in Theorem 4.16

and 4.15.

4.6 Statistical analysis for the denoising models

In this section, we prove Theorems 4.14 and 4.15 to provide theoretical guarantees for
learning the denoising models.
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The estimators of the denoising function fm and F,, exhibit similar nonparametric
convergence properties, with their excess risk upper bounds being exponential in rela-
tion to the sample size, as demonstrated in Theorem 4.14 and Theorem 4.15. This section

outlines our approach to analyzing these risks.

To begin with, we present a basic inequality for the excess risk in terms of the

stochastic and approximation errors.

Lemma 4.17. For any t € [t, T| and any random sample D}, the excess risk of the de-

noising function estimator fm satisfies
A . 5
£, 1= By Bz (6,20 - £ (L 201

< 288 pr + Eboe (4.14)

where the approximation error

Exppr = fienjf Bz lIf (t,2) = f (£ Z)II5,

and the stochastic error

gsﬁoc = IEID’,’,, [‘Ct(f*) o 2£t,m(fm) + [:t(fm)]

The decomposition (3.18) of the excess risk £, is common in the literature on non-
parametric regression. We refer the readers to Theorem 11.5 in [Gyorfi et al., 2002],

Lemma 3.1 in [Jiao et al., 2023a], and Theorem 3.29.

4.6.1 Approximation error of pre-training

The approximation capacity of deep neural networks on bounded domains has been
well studied in the literature (c.f. Yarotsky [2017, 2018], Shen et al. [2020, 2021], Lu et al.
[2021]). In our analysis, we need to bound the approximation error on an unbounded
domain IR?. To tackle the challenges posed by the unbounded support in the space
variable Z; for t € [T], we employ a truncated approximation that decomposes the ap-
proximation error into two parts: the truncation error and the truncated approximation

error, as detailed in the following lemma.

Lemma 4.18. Let )4 := [—A,A]d. Forf_ € F,, andany A> 0, t € [, T], the approxima-

tion error of the pre-training process satisfies a basic inequality as follows:

. %112 ,trunc
ggppr = flenj_f ]EZt”f -fl5 < gfrunc + éfppr , (4.15)
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where the truncation error
Efrunc = Bz I(f = f) 1 oc (Z,)I13
trunc Z; f f Q4 \&t )i
and the truncated approximation error

Ehor =z II(f - f)1d g, (Z)I3.

The proof of Lemma 4.18 is similar to that of Lemma 3.30. In what follows, we focus

on the truncation error & We prove that the truncation error Et decays very

trunc- runc

fast in the parameter A, as a result of the sub-Gaussian property of (Z, C).

Lemma4.19.  Suppose that Assumption 4.12 is satisfied. Forany A > 0andt € [t,T],

the truncation error satisfies

EP e SA%exp(—CA?),

trunc ~

where C; is a constant, and we omit a constant in d and the fourth moment of the

random variable Z,.

The proof of Lemma 4.19 is similar to that of Lemma 3.36. Moreover, the truncated
approximation error Eff,tf,lrmc can be bounded by constructing an approximation function

with deep neural networks on the hypercube [-A, A]“.

Lemma 4.20 (Truncated approximation error). Suppose that Assumption 4.7 is satisfied.
For any N,L € N and any t € [t, T], there exists a function f(z) implemented by a deep
ReLU network with width O(24p2dP~'Nlog N), depth O(d?p?LlogL) such that the fol-

lowing properties hold simultaneously:

(i) Boundedness and Lipschitz regularity:

sup [If (2)lleo S A,

zeR4

sup [If(2) = f(¥)lleo S Ally ~ 2llco-
z,y€eR?

(i) Approximation error bound:

sup ||f - (t 2)lloo sAz(NL) 2p/d
ze[-A,A]4
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Note that we omit some prefactors in d and f3.

The proof of Lemma 4.20 is given in Section 4.9.3. Combining the results of Lemmas
4.19 and 4.20, we can derive the upper bound for the approximation error based on the

inequality (4.15), with a properly selected parameter A.

4.6.2 Stochastic error of pre-training

The stochastic error Sioc can be bounded by the complexity of F,, using the empiri-
cal process theory [Anthony and Bartlett, 1999, Bartlett et al., 2019, Jiao et al., 2023a].
We present our stochastic error analysis based on recent advancements in deep non-
parametric regression [Jiao et al., 2023a]. Following Lemma 3.2 in Jiao et al. [2023a],
we show that the stochastic errors are bounded in terms of the parameters of the deep

ReLU networks classes F,,,.

Lemma 4.21. Consider the pre-training model and the hypothesis class F,, C NN (S,,,
W,,,D,,,B,,,d,d). For any m € IN satisfying m > Pdim(F,,), the stochastic error satisfies

Eboe = By [L1(F) = 2L fon) + Lo fn)]

< —(logm)*dB4,S,,D,,log(S,,)log(B,,m?).

1
m

The proof of Lemma 4.21 is given in Section 4.9.4. We evaluate each error term in
Lemmas 4.17, 4.18, 4.19, 4.20, and 4.21. Our main results in Theorems 4.14 and 4.15 are
derived by balancing the error terms on the right-hand side of (3.18) with respect to the

corresponding sample size and function class.

4.7 Statistical analysis of the fine-tuning approach

This section is devoted to establishing Theorem 4.16. Given the pre-trained denoising
function estimator f,,, we further consider the error decomposition for the fine-tuning
stage. We derive that the overall error for estimating the conditional denoising function
is upper bounded by the summation of the approximation errors and the stochastic

errors induced in both the pre-training stage and the fine-tuning stage.
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Lemma 4.22. For anyt € [T, T| and any random sample D}, U ID{;, the excess risk of the

conditional denoising function estimator F,, ,, satisfies

E B — FII3 < 4EL o0 + €

stoc

o7 on! Bz +4E,, (4.16)

where the approximation error

g;{ppr = ]\/lllgé IE(Zt,C)”]\/I_]VF”%;

and the stochastic error

Egtoc = IEID%U]DJ’;LZ‘(F* _fm) - 2~7t,n(ﬁn) + %(Mn)]

The proof of Lemma 4.22 is given in Section 4.9.2. In addition to the bias-variance
trade-off of the denoising estimator in fine-tuning, the decomposition in (4.16) of the
excess risk also encompasses errors from the pre-trained model. However, as established
in Lemma 4.22, the significant discrepancy in sample sizes between the pre-training
and fine-tuning datasets results in excess risk that is primarily dominated by errors

introduced by the fine-tuning structure.

In what follows, we focus on the analysis of the approximation error and the stochas-

tic error of the fine-tuning stage.

4.7.1 Approximation error of fine-tuning

We derive similar error bounds to quantify the approximation error of the fine-tuning

stage.

Lemma 4.23. Let Qp := [-B,B]%*k. For M € F,, t € [t, T], and any B > 0, the approxi-

mation error of the supervised part satisfies a basic inequality as follows:

(4.17)

f . ) f,trunc f
gappr = A/lfreljf__ IE(Zt,C)”M M3 < gappr + Etrunes
n

where the truncated approximation error
;t 7 %
Elppr = Eqg,0ll(M - M) 1d o, (2., Ol

and the truncation error

gtjiunc =

Ez,oll(M - M")1d g (Z,, C)ll3.
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The error decomposition (4.17) is similar to that in Lemma 3.30.

Lemma 4.24 (Truncation error).  Suppose that Assumption 4.12 is satisfied. ~ For any

B > 0, the truncation error satisfies

el

trunc

= E(z,0)ll(M = M")1d qc (Z, O3 < B>exp(-C,B),

where C, is a constant, and we omit a constant in d, k, and the fourth moment of Z,.

In Lemma 4.24, we still bound the truncation error using the sub-Gaussian property

of the random vector (Z;, C).

Lemma 4.25 (Truncated approximation error).  Suppose that Assumption 4.8 is satis-
fied. ForanyN,L €N andanyt € 1, T], there exists a function M(z, c) implemented by
a deep ReLU network with width O(24*% @ (d+k)* ' N log N), depth O((d +k)?a*Llog L)

such that the following properties hold simultaneously:

i) Boundedness and Lipschitz regularity: for any v,z € R? and any b, c € R¥,
p. 8 Yy yy y

sup [IM(z,¢)lles S B?,

(z,c)eRd+k

sup ||M(zl C) _M(}): C)”oo S B”]/ - Z”oo:

celRF

sup [IM(z,¢) = M(z,D)lleo < BlIb — clleo.

zelR4

(i) Approximation error bound:

sup  [IM M|l < BA(NL) %,
(zc)e[-A,A)d+k

Note that we omit some prefactors ind, k, and a.

The proof of Lemma 4.25 is given in Section 4.9.3. We not only consider the approx-
imation rate in Lemma 4.25 but also show that the constructed approximation function
has a few regularity properties, such as the boundedness and the Lipschitz continuity.
Then we can restrict the hypothesis space F to be a subset of the Lipschitz function class.
The Lipschitzness is useful for controlling the approximation error over the unbounded
support when combined with a sub-Gaussian tail of (Z, C).

151



4.7.2 Stochastic error of fine-tuning

Lemma 4.26. Consider the fine-tuning model and the hypothesis class G, C N N (S,,,W,,,
D,,B,,d +k,d). For any n € IN satisfying n > Pdim(G,,), the stochastic error satisfies

Ehoc =By o [TE = fu) = 2T (M) + T,

< ~(logm)*(d + K)BES, D, 10g(5, ) log(B, ).

The proof of Lemma 4.26 is given in Section 4.9.4. By balancing the error terms
in Lemmas 4.22, 4.23, 4.24, 4.25, and 4.26, and by incorporating the excess risk from

pre-training, we derive our main results in Theorem 4.16.

4.8 Conclusion

We have conducted a systematic analysis of the pre-training and fine-tuning approach
for diffusion models. We prove that, under some regularity conditions, the Bayesian
fine-tuning approach achieves a faster convergence rate than the rate yielded by training
from scratch using only the labeled data. This result provides a theoretical justification

for the benefit of pre-training with abundant unlabelled data.

4.9 Proofs

In the section, we present proofs of the lemmas and theorems for establishing the con-

vergence rate of the Bayesian pre-tuning and fine-tuning approach.

4.9.1 Proof of Lemma 4.3

Proof. Standard induction arguments can yield the result of the lemma. [
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4.9.2 Proof of Lemma 4.22

Proof. It can be shown that the L? error of ﬁmn satisfies
Ez, )|, — FII5
= Ez,0)IM, ~ (F = fu)ll
= Ji(My) = Ti(F* = f), (4.18)

where the second equality is due to F* — fm is the minimizer of the L? risk J;. Let us

denote

gsftoc = ]EIDﬁ,UIDﬁ[‘Z(F* _fm) - 2u7t,n(Mn) + Z(Mn)]r

and

- : *_ £ 12
gappr = IEIDg, Z\/lllgén IE(ZI,C)”]VI —(F _fm)”z

Similar to the proofs of Jiao et al. [2023a, Lemma 3.1], it can be shown that
IE]DﬁlUlDﬁ [‘Z(M”) ~Ji(F - fm)] < gsf;oc + 2‘(:appr' (4.19)

Let us also denote

g;{ppr = ]\/11125 IE(Zt,C)”]\/I _M*”%;

and
&y :=Epp Bz [If* = full3-
It further holds that

gappr

< 28] pr + 26, (4.20)
Combining (4.18), (4.19), and (4.20), we complete the proof by showing that

Epp o Ez,ollFmn = Fll3 < El e+ 4E e +4E,,.

4.9.3 Proofs of approximation error bounds

In this section, we present proofs of lemmas for bounding the approximation errors of
pre-training and fine-tuning. To begin with, we show an approximation bounds that is
useful for further approximation error analysis.
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Polynomial approximation in Holder classes

The polynomial approximation theory in Holder or general Sobolev spaces plays a cen-
tral role in studying approximation rates of finite element methods and deep neural

networks.

We construct polynomial approximations of functions in Hélder classes, and gener-

alize the classical Bramble-Hilbert lemma to functions of Holder smoothness.

Building on Lemma A.8 in Petersen and Voigtlaender [2018], we construct a polyno-
mial approximation in L*°-norm for functions in Hélder classes, which extends [Dupont

and Scott, 1980, Proposition 6.1].

Lemma 4.27 (Lemma A.8 in Petersen and Voigtlaender [2018]). Let f > 0 withf =s+r
wheres € Ng and r € (0,1], and let d € IN. Then there exists a constant C(B,d) > 0 with
the following property:

For each f € WP((0,1)%) with B := 1f llws.=((0,1)2) < o0 and any xq € (0, 1)%, there is a
polynomial p(x) = } 4, <s Ca(X—%0)* withc, € [-CB,CB] foralla € INg with ||a||; <s
and such that

llp = fllzeo((0,1)1) < CBllx —x0||§-
In fact, p = py,x, is the Taylor polynomial of f of degree s.

Lemma 4.28 (Proposition 6.1 in Dupont and Scott [1980]). Suppose thatp € [1, 0], that
m = m+ 60 where m € Ny and 6 € (0,1), and that | = i1+ 1. Then there is a constant
C = C(n,¢,d, m) such that for f € W™P(D)

If = Q' flleop) < Clflwme(p)-

Lemma 4.29 (Theorem 6.1 in Dupont and Scott [1980]). Suppose that m = 1+ O where
tmeNgand 0 € (0,1). Let I = rin+ 1. Then there exists a constant C = C(n, ¢, d, m) such
that, for p € [0,00] and f € W™P(D),

f - Qlf”erP(D) < Cl|flwmr(p)-

Lemma 4.30. Let f > 1 and m := | ). Let B be a ball in Q C RY such that Q) is star-

shaped with respect to B and such that its radius rad > ry,,,/2, Where 1.y is defined in

Definition 3.71. Moreover, let dgy be the diameter of (),  be the chunkiness parameter of (),
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and Q™ f be the Taylor polynomial of degree m of f averaged over B for any f € WP*(Q).

Then there exists a constant C(d, m,y) > 0 such that

m -k
If = Q" flwkeo(y < Cd, 1, 1)db | flwseiay  k=0,1,--,m.

Auxiliary lemmas

Lemma 4.31 (Corollary B.5 in Giihring et al. [2020]). Letd,m € IN and (), C R%,Q, C
R™ both be open, bounded, and convex. If f € W*(Q;R™) and g € WL (Q),) with
rad(f) C Q,, then for the composition g o f, it holds that g o f € W1*(Q);) and we have

180 flwieoqoy) < Vdmlglyisoy)|flwieo@,mm)

and

llg o fllwre@,) < Vdm max{|g|lze(q,) [glwreo()lf lwie@,mm)-

Lemma 4.32 (Corollary B.6 in Giihring et al. [2020]). Let f € W1(Q) andg € WH>(Q).
Then fg € W(Q) and we have

Ifglwie@) < flwie@llglliie@) + If lz)lglwie )
and
If gllwreo) < Ifllwreo@)llgllio@) + 1 f Iz @)llglwie)-

Lemma 4.33 (Proposition 3.6 in Hon and Yang [2022]). ForanyN,L,s € IN and||a||; <'s,
there exists a deep ReLU network ¢ with the width 9(N + 1) +s—1 and depth 14s>L such
that ||p|lw1.e((0,1)¢) < 18 and that

1P (x) = X[l wro(0,1)¢) < 10s(N +1)77°F,

Approximation with Lipschitz regularity control

In this part, we study the approximation capacity of deep ReLU networks joint with an

estimate of the Lipschitz regularity. The strong expressive power of deep ReLU networks

has been established in the literature by a localized approximation approach [Yarotsky,

2017, Petersen and Voigtlaender, 2018, Suzuki, 2019, Giithring et al., 2020, Shen et al., 2020,

Lu et al,, 2021, Shen et al.,, 2022b]. A recent progress is that Yang et al. [2023] provide a
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nearly optimal approximation estimate for functions in the Sobolev space measured by
the Sobolev norm. We follow the localized approximation approach, and establish the
global Lipschitz continuity and nonasymptotic approximation estimate of deep ReLU

networks.

Lemma 4.34. Let f > 1 with f = s+ r wheres € Ny and r € (0,1]. Given any f €
WE((0,1)4) with Ifllws.o((0,1)2) < 1, for any N, L € IN, there exists a function ¢ imple-

mented by a deep ReLU network with width O(2¢ B2dP~'N log N) and depth O(d?p?LlogL)
such that [|ly1.e((,1)7) S 1 and

llp _f”LOO([()’l]d) < (NL)—Zﬁ/d,

where we hide constants depending only on 8 and d.

Lemma 4.34 is a direct extension of Lemma 3.49 from the class of Lipschitz functions

to the class of Sobolev functions with fractional smoothness indices.

Corollary 4.35. Let p > 1 with f = s+ r wheres € Ny and r € (0,1]. Given any
f e WE=((0,1)%) with | llwseo((0,1)d) < o0, for any N,L € IN, there exists a function

¢ implemented by a deep ReLU network with width O(2?dP~'NlogN) and depth
O(d2ﬁ2L10gL) SuCh th.at ||¢|lwl,oo((0’1)d) S ||f||W/§’,oo((0'1)d) and

lp = fllLes(o14) S ||f||wﬂ'°°((o,1)d)(NL)_2’g/d;
where we hide constants depending only on 8 and d.

Remark 4.36. The approximation rate in Lemma 4.34 and Corollary 4.35 is nearly op-
timal for the unit ball of functions in W#((0,1)%) due to the lower bounds of approx-
imation errors proved in Shen et al. [2020, 2022b] and Lu et al. [2021].

Proof sketch of Lemma 3.49 The proof idea is similar to that of [Yang et al., 2023,

Theorem 3], and we divide the proof into three steps.

Step 1. Discretization. We use a partition of unity to discretize the set (0,1)%. As in

Definitions 3.52 and 3.53, we construct a partition of unity {g,,},,e(1,2)¢ on (0, 1)? with
supp(g,) N (0,1)% ¢ Q,, for any m € {1,2}?. Then we approximate the partition of

unity {g,u}e(1,2)¢ by a collection of deep ReLU networks {¢;,},,¢(1,2)¢ as in Lemma 3.54.
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Step 2. Approximation on (),,. Given any m € {1, Z}d, for each subset Q,, C [0, 1]d,

we find a piecewise polynomial function fx ,, satisfying
Ificm = Fllwio@,y S Nfm—flie,) S K7,

where we omit constants in d. Piecewise polynomial functions can be approximated by
deep ReLU networks. Then, following Lu et al. [2021], Yang et al. [2023], we construct
a deep ReLU network 1, with width O(2¢dN log N) and depth O(d?Llog L) such that

= fllwii,y S 1 o = fllieia,y < (NL),
where we omit constants in § and d.

Step 3. Approximation on [0,1]¢. Combining the approximations on each subset

Q,, properly, we construct an approximation of the target function f on the domain
[0,1]%. That is, for any N,L € IN, there exists a function ¢ implemented by a deep
ReLU network with width O(N log N)) and depth O(Llog L) such that

lp = Fllzoooa) S (NL)F4 with  [|plly1.eo(0,1y) S 1,
where we omit constants in  and d.

Lemma 4.37. Let K € IN. For any f € WP>((0,1)%) with | llweeoo,1)0) < 1 and m €

(1,2}, there exists a piecewise polynomial functions fy ,, on Q,, satisfying
Ifcm— fllwis@,) 1 fm = flli=@,) < K.

with constants in  and d omitted.

Proof of Lemma 4.37. The proof idea follows those of [Giihring et al., 2020, Lemma C.4]
and [Yang et al., 2023, Theorem 6]. We leverage approximation properties of aver-
aged Taylor polynomials [Brenner and Scott, 2008, Definition 4.1.3] and the fractional
Bramble-Hilbert lemma 4.30 to deduce local estimates and then combine them through
a partition of unity to obtain a global estimate. The key observation is that the L®
approximation bound can be established while uniformly controlling the Lipschitz con-
stant of the piecewise constant function with a mild regularity assumption on the target

function such as f € W1*((0,1)%).

Without loss of generality, let us assume m = m, := [1,1,---,1]". Following the
proofs of [Giihring et al., 2020, Lemma C.4] and [Yang et al., 2023, Theorem 6], we first
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define an extension operator E : W1((0,1)%) — WL *(IR%) to handle the boundary.
Accordingly, let f := Ef and Cg be the norm of the extension operator. Then for any
Q c RY, it holds that

[flwieoi) < Ifllwieoi) < Cellfllwie(o,1y4) < C-

Next, we define an averaged Taylor polynomial of degree | 8 | over B; i : = B4 (8% 5 K , 4 |l
l2) by

prilx) = J T F(x) b (v)dy

Bk

where ¢ is a cut-off function supported on B; k as given in Example 3.67. By Lemma

3.69, it holds that

Pril¥)= ) criax® withlegial < Co(B,d)
lleelly <LB]

Step 1. Get local estimates. For any i = [iy,i,--,i4]T € {0,1,---,K}%, we would

like to employ the factional Bramble-Hilbert lemma 3.72 on the subset

_,(8i+3 3 3+ 4i;
Q -:le(
m el ]_[[K —

It is easy to check the conditions of the Bramble-Hilbert lemma are fulfilled as

1 1 3 1 do,, .
_ > = _— = = Q 1 ) Q i) = i = 2\/3.
4K = 2 X 8K 2 rmax( m,(.,l) 7/( m*,l) rmaX(QmMi)
Hence, by the Bramble-Hilbert Lemma 3.72, it yields that
If =psille@,. ) < CLBDIflwrs, »K P |f —prilwisq, ) < CLiB I flwieq,, )

Combining |f lwie(q,, ;) < Cg and the inequalities above, it implies that
If = prillie@,, ) < Ci(B,d)CeKF, (4.21)

If = ppillwie@,. ) < Ci(B,d)Ck. (4.22)

Step 2. Define a partition of unity. We construct a partition of unity in order to com-

bine the local estimates. Let K € IN. For any 0 < i < K, we define h; : R — R by

. 1 x| < 3/2,
8i1+3
hi(x) = h(4K (x— X )) where h(x) =40, x| > 2,
4-2|x|, 3/2<|x|<2.
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K

One can verify that {h;};_, is a partition of unity of [0,1] and h;(x) = 1 for any x €

i 3+41
K}

] Considering the multidimensional case, for any x = [x1,X,,--+,x4]T € R?

and any i = [iy,ip,---,14]" €{0,1,---,K }d,letusdeﬁne

d
=] [

j=1

Then a partition of unity of [O,I]d is defined by {h; : i € {0,1,---,K}d}. Moreover,

3+41 ]

hi(x)=1foranyx€Q,, ;= ]_[ [ij, and i = [i1,1y,---,i4]T €{0,1,---,K}%. By

the definition of h;(x) on (), ; and equation 4.21, equation 4.22 , it yields that
b (f = prillles@,, ) S If = prilli=@,, ) < C1(B,d)CEKF,

hi(f = prilllwis,, ) < If =prillwis@,, ;) < C1(B,d)Ck

Step 3. Get global estimates. To deduce the global estimates, we start with defining

fx.m, over Q,, by

= Z Z hictiax”

ie{0,1,,K}4 |lall1 <L B]

Z Z hcf,ax

llelli <LB1i€f0,1,

= Z gf,a,m* (x)xa’
llally <L 8]

where g¢ o, (x) is a step function on (3, considering that g¢ o, (X) = cf,; o forany x €
M, [ 2| and i = [iy, iz, ia] 7. Then for any x € Q.. it holds that [gf,q, . (x)] <
C 2( B,d). Furthermore, the following error bounds hold

Ifgm. = fli=@,,) <~ max Ihi(f = psillli=(@,, ) < C1(B,d)CeK P,

i€{0,1,-,K}

fxm, = fllwie@,,) < . HllaX Ih:(f = prillwie,, ) < Ci(B,d)Ck

i€{0,1,
We complete the proof. [
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Lemma 4.38. Given any f € WP>((0,1)%) with f llwse((0,1)2) < 1, for any N,L € N
and any m € {1,2)%, there exists a deep ReLU network ¢, with width O(B*dP-'NlogN)
and depth O(B*LlogL) such that

6w = Fllwreo@,) S L 1w —fliim@,) < (NL)72P4,

where we omit constants in  and d.

Proof of Lemma 4.38. The idea of proof is similar to those of [Hon and Yang, 2022, The-
orem 3.1] and [Yang et al., 2023, Theorem 7]. For completeness, we provide a concrete
proof in the following. Without loss of generality, we consider m = m, :=[1,1,---,1]T.
Given K = |[NV4 2| L¥4 |, by Lemma 4.37, we have

fkm, = fllwieq,,) S 1,

Ifim, = Fll=,,,) S K < (NL)P,

3+4i; . .o .
where fx i, = Y jal,<1p) 8f.am.(X)x* for x € ]_[ 1[K, and i = [iy,ip,--+,i4]" €

{0,1,---,K — 1}%. The insight is to approximate fx,m, with deep ReLU networks. Let
0 =1/(4K) < 1/(3K) in Lemma 3.81. Then by Lemma 3.81, there exists a deep ReLU
network ¢ (x) with width 4N + 5 and depth 4L + 4 such that

k k+1 1
p1(x)=k, xe€ [E'T_R ,

We further define

x)_[(Pl(Xl) P1(xz) <P1(Xd)lT
| K’ K ' K '

Foreachp=0,1,--- ,K?% -1, there exists a bijection
n(p) =12 mal T €{0,1,--- , K =1}4

satisfying Z}i:l 17]~Kj ~1 = p. We also define

8f,a,m. (1(p)/K) + Cy(B,d)
2C5(B,d)

Eap = €[0,1].

Then, due to Lemma 3.82, there exists a deep ReLU network (ﬁa with width 16[ (N +
1)log,(8N) and depth (5L + 2)1log,(4L) such that |§,(p) — Eapl < (NL)™2F1 for p =
0,1,---,K%—1. Let us define

Balx)i= 228, )b ) 1K)~ Calpd).
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Then it is clear that
b0 (1(PV/N) = 8., (N(PV/N)] = 2C5(B, )| (x) = £ pl < 2Co(B,d)(NL) 2P

Since ¢ g 0 P2(X) = gf,a,m,(x) is a step function whose first order weak derivative is 0 in

Q,,,,, it further implies that

lpa 0 P2(x) = &1 ,a,m, (XNlwre@,, ) = IPa © P2(x) = &7,a,m. (X)L, )
< 2C,(B,d)(NL)~2IP1,

By the triangle inequality,

[P 0 P2(X)llwreo(q,, ) < a0 P2(x) = gf.am. (Xlwie@,, ) +118f,am. (Ollwre@q,,)

According to Lemma 4.33, there exists a deep ReLU network ¢ 3 , with width 9(N +1) +
[B1—1 and depth 14[8]°L such that ll93,allwres((0,1)¢) < 18 and that

3,0 (x) = Xl wreo(0,1)¢) < 1OTBT(N + 1)~ 7TRIL,

Let C3(B,d) := max{3C,(p,4d),18}. Then it holds that

max{||l¢p, o P2 (x)lwre(q,, ) 13,6 (X)lwreq, )} < Cs(B, d).

Due to Lemma 3.75, there exists a deep ReLU network ¢, with width 15(N + 1) and
depth 4[ BT(L + 1) such that || 4llywre((—c;,cy)7) < 12C5(B,d)? and that

Pa(x,v) = XYllwreo(_cy 0yt < 6C3(B,d)* (N + 1) 21D,

Then we are ready to construct the deep ReLU network ¢, to approximate fx ,, over

Q,,, by

1= D tatsep, P4 9a 0 B2(x) B30 (x)).

We establish the approximation bounds of 1, with both the L* norm and the Wl
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norm in the following. The W1 error can be decomposed as

||71Dm me ”W1°° (Qum,)

:HZIIaII1<L/3J(P4( D 930(0) = fm (¥ HWl"”(Qm)

<D e 19(#a 0 9209 2.009) = gm0 [yy1q,
SZ”anlq,ng%(% 2),93,0(0) = B © 230Xy 1.0

::51

2 et B0 P20093.0 (0 = 810 P30y,

Z:gz

+ Z|a|l1<L/3J Hgf a,m, )(1)3,0((36) _gf,a,m*(x)xa”W“’"(Qm*)

1253

< 51 + 52 + 53.
We note that Z||a||1<|_ﬁj 1 < BdP~L. By Lemma 4.31, the term &, can be bounded by
& _Z” lh< ax{||¢4(x ) = XYl c;,05)7) P4(69) = XVl —c;,05)4) %

max{|d, 0 P2 (X)lwie(q,, ) |¢3,a(x)|W1f°°(Qm*)}}

< Z||a”1<LﬁJ 2Vd max {||¢4(x’ V) = xYllreo((—c5,c5)7) C3 (B d)la(x,y) - x}?|w1,m((_c3,c3)d)}

<12BdPC5(B,d)*(C5(B,d) + 1)(N + 1) 21PIL+1),
By Lemma 4.32, the term &, can be bounded by

£22) 1t aipy 210 © 9200 = Zpam (Dllwio0,, P30~
<72BdP~1Cy(B,d)(NL) P,
Similarly, by Lemma 4.32, the term &3 can be bounded by
E5X) ot ey 03 =X o, IgF cm. (Wi,
<208%dP1Cy(B,d)(N +1)77TPIL,

Using that
(N +1)77TAL < (N + 1) 2P+ < (NL)2P1,
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we derive the following error bound

pm, (%) = fr,m, (Olwre@,, ) SEL+E2+E5 < Ca(B,d)(NL) 2P,

where C4(B,d) := 12BdP C5(B,d)*(C5(B,d)+1)+72BdP1Cy(B,d)+2082dP~1C, (B, d).
By the triangle inequalities for ||-| 1~(Q,,,) and ||'||W1,oo(Qm), it is straightforward to show

that
1Ym, = fllwre@,,) < 1m, = femllwie@,.) + 1fxm = fllwie@

[, = fllz=,, ) < 1m, = fim o, + ficm, = fllis@,, ) < (NL) 724,

In the end, we calculate the width and depth of the deep ReLU network implementing

Y, = Ljjally<tp) P4( P © §2(x), §3,0(x)). Recall that (1) ¢, has width O(N log N) and
depth O(LlogL); (2) ¢, has width O(N) and depth O(L); (3) ¢3 , has width O(N V )
and depth O(B%L); (4) ¢4 has with width O(N) and depth O(BL). Thus, the deep ReLU
network of ¢, is constructed with width O(?df~1 N logN) and depth O(B*LlogL)
for approximating f on the domain (,, . This completes the proof. O

Proof of Lemma 3.49. We proceed in a similar way as the proof of [Yang et al., 2023,

Theorem 3]. By Lemma 3.54, there exists a sequence of ReLU networks {¢},e(1,2)4

such that for any m € {1,2}4,

1P — Gunllwren((0,1)0) < 50d¥ (N +1)~4PL,

Each ¢,, is implemented by a deep ReLU network with width O(dN ) and depth O(d?BL).
By Lemma 4.38, there exists a collection of ReLU networks {1;,},,¢(1 2)¢ such that for

any m € {1,2},
lm = Fllwreo@,) S L 1w = flii=@,) S (NL)72H

where we omit constants in d. Each ¢, is implemented by a deep ReLU network with

width O(B2dP"!NlogN) and depth O(B%LlogL). Before proceeding, it is useful to

estimate ||, |lz(q,,) |Pmllwie@,,) [Pmlli=@Q,,)> and [[Pullwieq,,) as follows

I pmllzs@,) < Npmllios 0,17y < Ngmllzeoo,114) + P — Gunll oo,y < 1 + 50472 < a2,

||¢m||w1'°o <||¢m||W1°° [0,1]¢ <||gm||W1°° [0,1]9) + | pm — gm||w1°<> ([0,1]4)
S4|_N1/dJ2|_L2/dJ+50d5/2;

163



Ymlli=@,,) < Iflle=@,,) + 1Pm = fllz=@,,) S 1

1Pmllwreo,,) < Nfllwreqo,1jy + 1m = fllwieo,174) S 1.

Let By := maX,,e(1 g {lPmllix(@,,) [¥mllr=(,,)} then it yields that By < < d°/? by the es-
timates of |||~ (q,,) and [[Pllwie(q,,)- Let By := max,eqq o) {llPmllwieoq,,) [Pmllwie@,)}-
Similarly, it yields that B, < (NL)¥% + 452, By Lemma 3.75, for any N, L € N, there
exists a deep ReLU network ¢, g, with width 15(N + 1) and depth 168L such that

”(PX,Bl”WL‘X’((—Bl,Bl)Z) < 12B% and
5, (%,9) = xyllwieo(_p, B, 2) < 6BT(N +1)78FL.
To obtain a global estimate on [0, 1]¢, we combine the local estimate {1),,,} . (1,24 and the

approximate partition of unity {¢;,},,¢(1,2)¢- Let us construct the global approximation

function ¢ by

Z (PxBl (Pm ( (4~23)

me(1,2)4
Next, we bound the error of the global approximation estimate by
1f = ¢llreo(o,170) =l Z,me{m}d &mf = Dl (jo1)e)
<UDt aal8nf = Pubnllli=qoape

:IRI

+ ” Zme{l,z}d [¢m77bm - qu,Bl (¢m(x)f lpm(x))]”LOO([o,l]d)

:IRZ

and

If = @lhwrsqoayy = )iy 0 8f = Bllwiosqoy
<UD e apalnf = Eutoullwiosqo

=Rj3
1)l Pt = D (Dn(), 9D o0,

:ZR4
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It remains to bound R, R;, R3, and R4, respectively. For the term R, it holds

Rqi < Z “gmf_(l)mlpm”L‘”([Orl]d)

me{1,2)4

< ) 1@ = S llioo ey + I f = mdllzso,e]

= ) M@= ) fllsqoys + 1 f = Pmllisa, ]

™1

g = Pullrqo il llzqoy + @ mllz=@llf = Pullz=ic,]

IA

”gm = Pmllwrego, 1)l f lwre o114y + 1P mlle,)ILf — 'Pm”L‘X’(Qm)]
< Zd[50d5/2(N + 1)_4dﬁL + (1 + 50d5/2)(NL)—2[3/d]
< (NL)=2#4

where we use (NL)?#/4 < (N +1)*PL to derive the last inequality and hide a prefactor

in d. For the term R 3, it holds

Rs3 < Z 1mf = PrmWmllwre(o,1))

me(1,2}4

< ) [gn=dm)flwiqon + Ibm(f = Pudllwroo 0]
me{1,2}4

= ) [lgw=duflwisgon + Im(f = ulllwioia,]
me{1,2)4

< Z _”gm - <Pm||wlioo((o,l)d)||f||wlroo((o,1)d)

me{1,2}4
+ [P mllwre@)lf = ulli=@,,) + ||¢m||L°°(Qm)||f_ﬂbm”WL‘X’(Qm)]
< Zd[SOdS/z(N + 1)—4d[3’L + (4|_N1/dJ2|_L2/dJ + 50d5/2)(NL)—2ﬂ/d + (1 + 50d5/2)]
1

N

where we use (NL)?#/4 < (N + 1)*¥PL to derive the last inequality and hide a prefactor
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in d. For the terms R, and R4, it holds

Ry <Ry < Z I[P mWm = P, B, (P (%), P ()l wr.e0((0,1)4)

me{1,2)4
< ) Mdmtom— b, (Sl ()i,
me{1,2)4
< Z 2‘/Emax{||¢x,31(x,y)—x}/”Lw((—Bl,Bl)Z);
me{1,2)4

|¢><,B1 (x, }?) - x})lle‘X’((—Bl,Bl)z) ’ max{lcl)mlwl"x’(()m)' |lzbm|W1’°°(Qm)}}

< Z 2\/E||¢X,B1(x:y)_Xy”WL‘X’((—Bl,Bl)Z)’max{”({)mllwlm((}m))”El’m”Wl'“’(Qm)}
me(1,2}4

< ) 12VdBYN +1)*LB,

me(1,2}4

< 2'Vdd>(N + 1) 8L (N L)/ + d°?)
< 2d\/gd5(d5/2(NL)2ﬂ/d)(N +1)786L

< (NL)”W(N +1)78RL

< (NL)™2P/

where we use (NL)*#? < (N +1)*fL in the last inequality and hide constants depending

only on d. Combining the estimates of R{,R,, R3, and R4, we have

If = Pllrs(o,14) SR1+R2 < (NL)~2h/4
and
If = Pllwrooqo,j0) <R3 +Ra 1+ (NL) 29 <1,
It is easy to see
lpllwre 0,174y < [1f llwreso,17¢) + lf = Pllwres(o,11) S 1-

Lastly, we need to calculate the complexity of the deep ReLU network. By the definition
of ¢ in (4.23), we know that ¢ consists of O(2%) parallel subnetworks listed as follows:

o ¢, p, with width O(N) and depth O(BL);

o ¢,, with width O(dN) and depth O(d?pL);
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o 1, with width O(?dP~'Nlog N) and depth O(B*LlogL).

Hence, the deep ReLU network implementing the function ¢ has width O(2¢ 2d#~! N log N
and depth O(d?B%LlogL). H

Proof of Corollary 3.50. The proof is completed by employing Lemma 3.49 on

f = f/”f”Wl’m((O,l)d)'

Proof of Lemma 4.20

This lemma is yielded by applying Corollary 4.35 to the target function f*.

Proof of Lemma 4.25

This lemma is also yielded by applying Corollary 4.35 to the target function M".

4.9.4 Proofs of stochastic error bounds

In this section, we present proofs of lemmas for bounding the stochastic errors.

Proof of Lemma 4.21

The proof is almost identical to that of Lemma 3.38.

Proof of Lemma 4.26

The proof follows from that of Lemma 3.38.
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Chapter 5

Conclusions and Discussions

In this thesis, we have investigated the theoretical properties of both ODE-based and
SDE-based generative models from the viewpoints of regularity, approximation, and

convergence analyses.

Through a unified framework and rigorous analysis, we have established the well-
posedness of the Gaussian interpolation flows, shedding light on their capabilities and
limitations. We have examined the Lipschitz regularity of the corresponding flow maps
for several rich classes of probability measures. When applied to generative modeling
based on Gaussian denoising, we have shown that GIFs possess auto-encoding and cy-
cle consistency properties at the population level. Additionally, we have established

stability error bounds for the errors accumulated during the process of learning GIFs.

We have established non-asymptotic error bounds for the CNF distribution estima-
tor trained via flow matching, using the Wasserstein-2 distance. Assuming that the
target distribution belongs to several rich classes of probability distributions, we have
established Lipschitz regularity properties of the velocity field for simulation-free CNFs
defined with linear interpolation. To meet the regularity requirements of flow match-
ing estimators, we have developed L* approximation bounds of deep ReLU networks
for Lipschitz functions, along with Lipschitz regularity control of the constructed deep
ReLU networks. By integrating the regularity results, the deep approximation bounds,
and perturbation analyses of ODE flows, we have shown that the convergence rate of
the CNF distribution estimator is 5(11_1/ (@+5)) up to a polylogarithmic prefactor of n.
Our error analysis framework can be extended to study more general CNFs based on

interpolation, beyond the CNFs constructed with linear interpolation.

We have proved that a pre-trained large diffusion model can gain a faster conver-
gence rate from the Bayesian fine-tuning procedure when adapted to perform condi-
tional generation tasks. This improvement in the convergence rate justifies that a pre-
trained large diffusion model would perform better on a downstream conditional gen-
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eration task than a standard conditional diffusion model, whenever an appropriate fine-

tuning procedure is implemented.

However, the theoretical results established in this thesis do have a few limitations
due to the assumptions and the techniques used. Several questions deserve further in-
vestigation. Firstly, it would be interesting to consider target distributions with general
regularity properties and investigate the resulting high-order smoothness properties of
the corresponding velocity fields. Accordingly, the well-posedness of the flow models
deserves further exploration if we relax the assumptions on the target distribution. Sec-
ondly, the inevitability of the time singularity of the velocity field remains unclear and
warrants further analysis, as we have not provided a lower bound on the Lipschitz con-
stant in the time variable. This is a challenging problem that requires more effort and
careful analysis. Thirdly, it would be interesting to derive general non-asymptotic error
bounds and convergence rates for CNF distribution estimators under general smooth-
ness conditions. For this purpose, we need to combine the general smoothness prop-
erties of velocity fields with the deep neural network approximation theory. Fourthly,
it remains interesting to conduct rigorous analyses of one-step flow models, a nascent
family of ODE-based generative models designed for fast generation and computational
efficiency [Song et al., 2023a, Kim et al., 2023, Song and Dhariwal, 2023]. Lastly, the anal-
ysis of fine-tuning is based on the regularity assumptions of the denoising functions. It
is worth considering a new framework for analyzing the fine-tuning in a more practical

setting.
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