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Abstract

With the shift towards personalized manufacturing and the growing demand
for high customization following the introduction of the Industry 5.0 concept,
traditional predefined programming approaches have become inadequate for
meeting the increasingly complex demands of modern product manufactur-
ing processes. Preprogrammed robots, which rely on rigid and fixed action
sequences, face significant challenges in complex and dynamic production
environments. While these robots are designed to perform repetitive tasks
with precision, they lack the flexibility to adapt to changing conditions or
unexpected variations in the production process. Consequently, any deviation
from the programmed task necessitates manual reprogramming, resulting in
limited effectiveness and increased operational costs. To address these limi-
tations, human-centric manufacturing has emerged as a solution, enabling
seamless integration of human intelligence with the precision and efficiency
of robots. Unlike traditional preprogrammed robots, human-centric manufac-
turing systems are highly adaptable, responding dynamically to the variability

and unpredictability inherent in customized manufacturing environments.
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In recent years, significant research has focused on human-centric manufac-
turing, with an emphasis on enhancing interaction efficiency and integrating
artificial intelligence (AI) for decision-making. These studies have inves-
tigated how collaborative robots can serve as more efficient interaction
platforms and adapt to dynamic environments. However, despite these ad-
vancements, several notable research gaps persist. For example, while Al
has been incorporated into certain planning processes, the potential of large
language models (LLMs) for comprehensive robot task planning remains
underexplored. Furthermore, existing research often falls short in developing
intuitive robot control systems, leading to high learning cost and dimin-
ished user experience and precision for human operators. To address these
challenges, this thesis aims to propose solutions focusing on three critical
aspects of human-centric manufacturing scenarios: perception, planning, and

execution.

In the investigation of robot task planning, a multi-modal pre-trained LLM is
leveraged to seamlessly translate high-level human instructions into action-
able robot commands, enhancing the interaction between human operators
and robotic systems (Chapter 3). This approach is structured across three
integral layers: task decomposer, motion descriptor, and robot code genera-
tor. Each layer is meticulously designed with structured prompts, including
detailed templates and specific rules to ensure the generation of precise and

effective outputs by the LLM agent.



In addition, a VR-based robotic control system is developed to enhance in-
tuitive control and immersive visual feedback in robotic manipulation for
teleoperation tasks (Chapter 4). The system leverages immersive VR inter-
faces to provide operators with real-time feedback and control mechanisms
over robot actions, enabling seamless interaction in complex environments.
By integrating intuitive VR input methods, immersive visual perception ap-
proaches, as well as seamless data exchange between human operator and
onsite robot manipulator, the teleoperation system allows for manipulation
of objects in complex manufacturing scenarios, facilitating efficient task

execution.

Keywords: Human-centric smart manufacturing; cyber-physical system,;

virtual reality; large language model.
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Introduction

The future of manufacturing is shifting towards a human-centric paradigm,
where humans and intelligent systems collaborate seamlessly to achieve high
levels of flexibility and efficiency [1]. As the demand for large-scale per-
sonalized products grows and customization becomes a central requirement
in today’s manufacturing industry, traditional rigid automation approaches
are becoming inadequate [2]. This shift towards mass personalization has
catalyzed the emergence of human-centric manufacturing as a critical enabler,
integrating the adaptability and decision-making capabilities of humans with
the precision and high efficiency of robots. In this context, intuitive robotic
control systems, enhanced by advanced technologies such as virtual-reality
(VR) and large language model (LLM), are critical to overcoming challenges
in perception, planning, and execution processes during human-centric man-
ufacturing [3]. In this chapter, we begin by exploring the background and
motivation of this research, emphasizing the role of human-centric manu-
facturing in the modern smart manufacturing industry. Then, the scope and
objectives of this research are given. Finally, the structure of the thesis is

shown at the end of this chapter.
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1.1 Background

In the context of Industry 5.0, the manufacturing industry is shifting from tra-
ditional mass production to mass customization to meet the growing demand
for personalized product requirements [4]. This transition offers significant
benefits, including increased flexibility, enhanced customer satisfaction, and
a competitive edge in rapidly changing markets. Meanwhile, industrial robots
are widely utilized across various stages of production to enhance efficiency
[5]. However, this shift presents considerable challenges for preprogrammed
robots designed for traditional automated manufacturing. Traditional prepro-
grammed robots, which excel in repetitive and precision-required tasks, fall
short in dynamic and complex production environments due to their reliance
on static programming. They lack the adaptability to respond to changing
processes or product variations, often requiring costly and time-consuming
reprogramming. To address these limitations, human-centric manufacturing
has emerged as a promising solution. New industrial robot and collabo-
rative robot programming approaches are required. The first generation
of collaborative robot programming methods, initially marketed as flexible
and intuitive, often failed to support the dynamic requirements of human-
centric manufacturing. As a result, the industry is moving toward more
advanced programming solutions that leverage technologies such as large
language models and artificial intelligence code assistants. This paradigm

places humans at an essential factor during the production process, fostering

Chapter 1 Introduction



combination and collaboration between human creativity and robotic preci-
sion [1]. Humans contribute to adaptability and decision-making capabilities,
while robots handle precision-dependent tasks. By integrating their strengths,
human-centric manufacturing enhances flexibility, improves efficiency, and
provides the adaptability needed for modern personalized manufacturing

systems [6].

In human-centric manufacturing systems, improving the efficiency of tasks
collaboratively performed by humans and robots requires careful considera-
tion of several key factors, including planning, perception, and execution [7].
In previous production systems, industrial robots typically lack the ability
to perceive and plan, relying heavily on predefined instructions and static
programming. At the same time, humans are unable to effectively assist
robots in execution, as robotic systems are designed to operate independently
and repetitively. This disconnect often led to inefficiencies, particularly in
complex or dynamic production scenarios. Many research studies have been
conducted in addressing these challenges, exploring ways to enhance robot
perception, integrate advanced task planning methods, and enable more
seamless human-robot interaction during execution [8]. Nevertheless, no-
table problems remain, such as the lack of intuitive control mechanisms and
insufficient integration of task planning technologies into manufacturing

workflows.

1.1 Background

3
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In recent years, LLMs have been introduced into task planning within the
field of manufacturing, offering new possibilities to improve the flexibility
and efficiency of robotic systems [9]. Existing studies have been focused on
using LLMs for high-level planning tasks, such as breaking down complex
goals into subtasks or generating structured task descriptions. These studies
highlight the ability of LLMs to process vast amounts of textual data and
provide logical task sequences, contributing to better decision-making in
manufacturing systems. However, these studies have significant limitations
when it comes to enable robots to directly execute actions, as they struggle
to generate low-level robot commands, particularly in scenarios where both
natural language instructions and visual inputs, such as images, need to be
processed simultaneously. Many existing research studies do not focus on
how LLMs can bridge the gap between human-provided instructions and
the direct execution of robotic actions. This limits the practical applications
of current LLM-based task planning in manufacturing environments where

efficiency and precision are in demand.

On the other hand, VR has been increasingly introduced recently to enhance
perception and execution capabilities within current human-centric manu-
facturing systems [10]. VR offers an immersive and interactive interface,
allowing operators to visualize and control robotic systems onsite. This im-
mersive experience provides significant advantages, such as improving spatial
awareness, enabling intuitive manipulation in complex environments, and

facilitating more dynamic interactions between humans and robots. Despite

Chapter 1 Introduction



its potential, existing VR-related research in manufacturing has notable lim-
itations. Many current systems lack sufficiently intuitive control methods,
relying on complex input mechanisms that significantly increase the learning
cost for operators. Furthermore, current VR implementations often fail to
incorporate reliable visual environmental perception capabilities, limiting the

system’s ability to provide real-time feedback for human operators.

To address the challenges mentioned above, this study aims at fully harness-
ing the potential of LLMs and VR technologies to enable a more seamless
integration of human and robotic capabilities. Therefore, in this thesis, we
propose a systematic approach for human-centric manufacturing scenarios,
leveraging capabilities of humans and robots based on LLM and VR. Specif-
ically, the LLM will handle task planning and generate executable code for
robots, while VR will serve as the foundation of the robot control system,
providing a more intuitive human-robot interaction interface for human

operators.

1.2 Research Scope

This research focuses on addressing key challenges in human-centric man-
ufacturing: making human-robot working environment more flexible and
intuitive for human operators, by leveraging the capabilities of LLMs and VR
technologies. The primary goal is to enhance the integration of human and

robotic systems in dynamic and complex production environments, improving

1.2 Research Scope
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efficiency and adaptability. Specifically, this research explores three critical
aspects: (1)planning, where robot task are planned in details before action
execution;(2)perception, where human operators are aware of the working
environment on the robot side; and (3)execution, where robot manipulator

executes human commands.
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Fig. 1.1: Research scope and content organization of this thesis.

In the area of planning, this research explores the application of LLMs in
robotic task planning. This includes developing a systematic framework that
translates high-level human instructions, expressed in natural language and
supported by visual inputs, into low-level executable robot commands. This
work focuses on multi-modal inputs and structured task decomposition to

improve task clarity and reduce reliance on manual programming.

For perception and execution, this study integrates VR technology to create

an intuitive and immersive control interface for robotic systems. A com-

Chapter 1 Introduction



prehensive framework is discovered for VR-based robot control to ensure
smooth information flow and data exchange. This framework enables real-
time interaction and seamless communication between humans and robots.
Within the robot control framework, the scope also includes designing and
developing a VR interaction interface that reduces the learning cost for op-
erators by providing user-friendly interaction methods. Additionally, the VR
system incorporates real-time environmental perception leveraged by 3D
visual feedback mechanisms . The research scope and content organization

are illustrated in Fig. 1.1.

1.3 Research Objectives

The primary objective of this research is to propose an LLM-assisted VR-
enabled intuitive robotic control systematic approach to address critical chal-
lenges in human-centric smart manufacturing. This approach is introduced
to overcome limitations in planning, perception, and execution. Specifically,

detailed research objectives of this thesis are stated as follows.

Objective 1: To develop a multi-layer LLM-based robot task planning method
that converts human natural language instructions into executable robot

commands.

The first objective is to design a robot task planning framework that uses LLMs

to translate high-level human instructions into low-level executable robot

1.3 Research Objectives
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codes. This task planner incorporates natural language and visual inputs,
enabling seamless communication between humans and robotic systems. By
introducing multi-layer structured prompts, including a task decomposer,
a motion descriptor, and a robot code generator, this framework ensures
accurate and efficient task decomposition planning, as well as enables direct

robot action execution.

Objective 2: To propose a VR-based robotic control system that enables

intuitive and seamless robotic control and comprehensive visual awareness.

The second objective is to create a VR-enabled robotic control system that
improves operator interaction and enhances user experience. This system
leverages a module-based data exchange mechanism developed integrated
with a virtual environment to ensure real-time communication between hu-
man operators and robots, enabling seamless robot control and perception.
The VR interface reduces the learning cost by offering an intuitive and immer-
sive robot control environment, while also incorporating real-time 3D visual

feedback to provide comprehensive scene perception and understanding.

1.4 Thesis Structure

The remainder of the content in this thesis is organized as follows.

Chapter 1 Introduction



Chapter 2 reviews previous works related to the implementation of LLM and
VR technologies modern manufacturing systems. While highlighting their
advancements and contributions, limitations and challenges will be discussed

to determine the existing research gaps.

Chapter 3 presents the development of the LLM-based task planning method.
It details the proposed multi-modal approach for translating high-level hu-
man instructions into low-level executable robot codes, including the use
of structured prompts, task decomposition, motion description, and code
generation. Experimental results are discussed to validate the method’s

effectiveness.

Chapter 4 introduces our proposed VR-based robotic control system. This
chapter provides a detailed explanation of the system’s framework and modu-
lar components, including the virtual environment interaction, robot planning
module, and data exchange mechanisms. It also discusses how these methods
are employed to enable bidirectional information exchange between humans
and robots, ultimately delivering a robot control and monitoring interface
based on a virtual environment. A user study has been conducted to evalu-
ate the system’s feasibility and efficiency, and potential future development

directions are discussed.

Lastly, Chapter 5 summarizes the main research contributions and limitations

of this research study, as well as discussing future directions of this project.

1.4 Thesis Structure
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Literature Review

In this chapter, a comprehensive literature review is presented to provide
an exploration of the foundational elements relevant to LLM robot task
planning, as well as VR-enabled robotic control in the context of human-
centric smart manufacturing. It examines existing research on LLM-based
robotic task planning, focusing on methodologies for task reasoning, adaptive
decision making, and interaction design to enhance robotic autonomy and
efficiency. Additionally, this chapter delves into VR-based robotic control,
analyzing approaches for immersive interaction, real-time feedback, and
intuitive operation within complex industrial manufacturing scenarios. This
review also identifies critical gaps and emerging opportunities, offering a
cohesive understanding of the current state of the field. This analysis not
only highlights the challenges but also lays the groundwork for advancing

human-centric and intelligent robotic control systems.

2.1 LLMs and Robot Task Planning

In the era of smart manufacturing, robotic systems in industrial manufac-
turing environments have been transitioning from traditional structured
frameworks into unstructured human-centric paradigms [11]. These systems

are expected to become indispensable for enhancing productivity, precision,



and flexibility in dynamic and complex production environments. Unlike tra-
ditional manufacturing systems that rely on rigid automation, human-centric
manufacturing emphasizes the seamless integration of human expertise and
robotic capabilities to handle diverse and customized tasks [10]. This shift
has driven the development of more adaptive and intelligent robotic systems

capable of understanding and executing high-level human instructions.

Central to this capability is robot task planning, which serves as the bridge
between human operators and robotic execution. Task planning involves
translating abstract, high-level instructions into structured, executable ac-
tions, enabling robots to act autonomously in real-world scenarios [12, 13].
As manufacturing processes become increasingly complex and dynamic, task
planning has emerged as a critical component for ensuring the adaptability

and scalability of robotic systems.

Traditional approaches to task planning can be broadly categorized into
rule-based methods and learning-based methods, both of which have been
extensively studied and applied in robotic systems [13]. Rule-based meth-
ods, such as STRIPS and PDDL, rely on predefined logical representations
of the task environment and the use of symbolic reasoning to generate ac-
tion sequences [14, 15, 16, 17]. These approaches excel in structured and
predictable environments where the rules and constraints are explicitly de-
fined. However, their reliance on manually crafted rules and domain models

makes them inflexible and unsuitable for dynamic or unstructured environ-

2.1 LLMs and Robot Task Planning
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ments, where task requirements or environmental conditions may change
unpredictably. In contrast, learning-based methods leverage data-driven
implementation, such as deep learning and reinforcement learning (RL), to
train robots to perform tasks by learning from large datasets or through trial-
and-error interactions with the environment [18, 19, 20]. These methods
have demonstrated significant potential in handling complex tasks, such as
robotic manipulation and motion planning, especially in scenarios where
explicit domain knowledge is difficult to encode. Despite their adaptabil-
ity, learning-based approaches face challenges such as high training costs,
the need for large-scale labeled datasets, and difficulties in generalizing to

unseen tasks or environments.

Recently, the emergence of LLMs, such as GPT-3 [[21], GPT-4 [22], and
BERT [23], has revolutionized natural language processing (NLP) through
their powerful capabilities in understanding, generating, and reasoning with
human language. These models have demonstrated exceptional performance
across various domains, including text processing [24], translation [25], and
code generation [26]. In the context of robotics, LLMs introduce a paradigm
shift by enabling robots to process unstructured natural language instructions
and generate logical task plans without extensive manual programming
[9]. This capability bridges the gap between human operators and robots,

fostering more intuitive communication and task execution.

Chapter 2 Literature Review



Despite their promise, research studies delved into LLM robot task planning
are still limited. In this section, we review the state-of-the-art in robot task
planning, highlighting the advancements, limitations, and potential research

directions in this emerging field.

2.1.1 Traditional Approaches to Robot Task

Planning

Robot task planning has long been a cornerstone of robotics research, en-
abling robots to autonomously generate and execute action sequences that
achieve the goals. In recent decades, many research studies have been con-
ducted on this topic. Typically, traditional approaches to task planning can
be broadly categorized as classical task planning methods and learning-based

methods, each offering distinct strengths and limitations [13].

Classical task planning focuses on deterministic and fully observable envi-
ronments. Tasks are often modeled as state-transition problems, where the
objective is to determine a sequence of actions that transition the system
from an initial state to an expected goal state [27]. These methods rely on
predefined models of the environment and logical reasoning, which makes
them particularly effective in structured and predictable domains. State-
space search is one of the foundational methods in this category [28, 29].
It relies on heuristics to guide the exploration of the state space, improving

the efficiency of the search. For instance, relaxed planning graphs [30, 31],

2.1 LLMs and Robot Task Planning
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which ignore the negative effects of actions, often serve as a basis for heuris-
tic computation. These graphs simplify the planning problem, allowing for
computationally efficient estimation of the minimum number of steps needed
to reach the goal state. Despite their effectiveness in structured environments,
state-space search methods typically struggle with scalability and adaptability

in dynamic settings.

Another classical approach, hierarchical task network (HTN) planning, de-
composes high-level tasks into smaller, more manageable sub-tasks [32, 33].
This hierarchical decomposition leverages domain-specific knowledge, al-
lowing planners to focus on abstract task representations before refining
them into concrete action sequences. While HTN planning is particularly
effective in domains where tasks can be naturally structured into hierarchies,
it faces significant challenges when applied to robotics. Specifically, its re-
liance on predefined task structures makes it difficult to adapt to dynamic
or unpredictable scenarios, and its integration with low-level motion plan-
ning remains a complex issue. Temporal logic-based planning represents
yet another classical approach, extending traditional methods to handle
time-dependent tasks through formal frameworks like linear temporal logic
(LTL) [34]. These methods often employ automata-based techniques to syn-
thesize controllers that guarantee task completion under specified temporal
constraints. While theoretically robust, their computational complexity lim-
its their practical application in robotics, especially in environments with

significant uncertainty.

Chapter 2 Literature Review



In contrast to classical approaches, learning-based methods aim to address
their limitations by leveraging data-driven techniques to improve scalability
and adaptability [13]. By learning task representations, action effects, and
planning strategies directly from data, these methods reduce reliance on
manually crafted models and enable robots to operate in more dynamic and
uncertain environments. One early direction in this area involved learning
symbolic representations for planning. For example, in [35],probabilistic
relational models were developed to represent action effects in uncertain
environments. Similarly, in [36], deterministic models were applied to

partially observable domains.

Recent advancements in deep learning have further expanded the capabili-
ties of learning-based task planning [37]. Neural networks have been used
to learn task representations from large-scale datasets, allowing planners
to generalize across a wide variety of tasks. For instance, neural task pro-
gramming decomposes task demonstrations into executable primitives, while
neural task graphs represent tasks as compositional structures with nodes
corresponding to actions and edges capturing dependencies [38, 39]. These
approaches are particularly effective in handling long-horizon tasks, where
sequential dependencies play a significant role. RL has also been widely
applied to task planning, enabling robots to learn policies through trial-and-
error interactions with their environment [40]. Deep RL models, for example,
have been used to predict intermediate sub-goals or discrete actions, aiding

in the efficient exploration of the action space [41]. Moreover, techniques

2.1 LLMs and Robot Task Planning
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such as affordance-based learning allow robots to anticipate the long-term
effects of their actions, improving their ability to achieve complex objectives

in dynamic settings [42].

Despite their progress, these paradigms face limitations that motivate the
development of novel approaches, such as LLMs, which aim to combine
the strengths of classical reasoning with the adaptability of data-driven

techniques.

2.1.2 LLMs in Robot Task Planning

In recent years, the emergence of LLMs, such as ChatGPT [43], PaLM [44],
and Gemini [45], has revolutionized artificial intelligence by achieving re-
markable performance across diverse tasks. These transformer-based models,
trained on massive datasets, excel in NLP, demonstrating capabilities like
contextual understanding, reasoning, and instruction following [46, 47, 48].
Their versatility extends to other fields, with multimodal models incorporat-
ing both language and vision pushing boundaries further [49, 50]. This rapid
progress has reshaped Al research paradigms and highlighted the potential

of LLMs in achieving general intelligence.

Due to its capabilities, LLMs have begun to play a transformative role in
robotics by bridging the gap between natural language and scene understand-

ing and robotic control. LLMs excel at interpreting ambiguous commands,
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extracting implicit information, and resolving contextual uncertainties, en-
abling robots to better navigate and interact in dynamic environments [51].
Besides, vision-language models have further expanded robotic capabilities,
allowing systems to combine visual understanding with linguistic input for
tasks like command execution [52, 53]. Additionally, LLMs play a vital role
in human-robot interaction by facilitating adaptive learning and personalized
responses, improving robots’ capacity to align with user preferences and

behaviors [54].

Among these applications, LLMs are particularly well-suited for robot task
planning due to their ability to interpret high-level natural language instruc-
tions, reason over complex contexts, and generate structured outputs. They
can parse ambiguous or incomplete commands, infer implicit goals, and
decompose tasks into actionable steps. Their vast pre-trained knowledge
enables robots to adapt to diverse scenarios without requiring extensive task-
specific programming. In recent years, significant efforts have been devoted
to exploring this field. For example, in [55], the authors proposed leverag-
ing LLMs for zero-shot task planning, where natural language instructions
are transformed into high-level action plans. Similarly, [56] demonstrated
how LLMs can infer context-based action sequences, such as deducing clean-
ing steps and tool usage in a "tidy the desk" task. In [57], they integrated
language understanding with visual perception, enabling robots to identify
target objects and plan actions in complex settings, such as locating and

moving specific items. Furthermore, approaches like [58] utilize LLMs to au-
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tomatically generate hierarchical task plans, progressively refining high-level

goals into actionable sub-tasks.

These studies highlight the potential of LLMs to enhance robot task planning,
offering significant advancements toward more adaptable and intelligent
robotic systems. Nevertheless, several limitations persist. Most existing meth-
ods struggle to effectively generate low-level robot-executable commands,
often producing generalized plans or abstract descriptions that require ad-
ditional processing or manual intervention. In addition, many approaches
lack a structured framework to handle the hierarchical nature of task plan-
ning, resulting in fragmented or inconsistent outputs. Furthermore, while
LLM-based methods have shown potential in general robotics tasks, their
application in specific domains like manufacturing, production assembly, and
other industrial contexts remains limited, which demand tailored solutions

that can handle domain-specific constraints.

2.2 VR and Robotic Control

Ever since first introduced in addressing nuclear waste management issues in
1954 [59], robot control systems have undergone decades of development.
Numerous robot control systems have been proposed and designed to perform
specific operational tasks [60]. Due to the challenges in achieving fully
autonomous task completion, robot systems that involve human intervention

for operation are a more practical choice [61]. In recent years, with the
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introduction of the Industry 5.0 concept and the continuous development
of human-robot collaboration technologies, the human-centered industrial
production paradigm has gained significant attention. This has led to a surge
in research related to robot control [5]. Current research on control systems
primarily focuses on several aspects, including the development of user-
friendly human-robot interaction interfaces, robotics learning algorithms,

and the design of control architectures and learning strategies [60].

Meanwhile, Virtual Reality (VR) has brought significant promotions to in-
dustry development as it provides a natural and intuitive human-robot in-
teraction interface. VR technology aims to provide users with an immersive
virtual space and create interactive experiences that closely resemble real
environments through various sensors and feedback devices. With the con-
tinuous enhancement of 3D engines such as Unity and Unreal, as well as the
introduction of machine learning, computer vision, and other state-of-the-art
technologies, VR has evolved beyond simply providing a virtual environment
and has extended to the realm of replicating real environments and recon-
structing them within the virtual realm [62]. Furthermore, in recent years,
with the continuous maturation of hardware technology, the entry barriers
for VR devices are gradually decreasing. This has led to an increasing number
of researchers exploring the integration of VR technology into specific fields,

such as remote control of robotic systems [63].
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One of the goals of robot control is to create an intuitive interaction interface
for human operators and provide them with as much environmental informa-
tion around the robot as possible, and thus to enable operators to control the
robot more naturally and seamlessly. Since VR can provide environmental
information via 3D reconstruction, it is natural that VR is integrated into a
robot control system as an interaction interface. Especially, under the wave
of human-centric concepts such as Industry 5.0 and Society 5.0 [64, 65],
VR and robot control can bring significant promotion to the human-robot
relationship as enabling technologies. VR has the potential to bring about

possibilities for HRC-based robotic control.

2.2.1 Robotic Control Definition

Robotic control typically refers to remote operation or remote manipulation,
often involving vehicles or mechanical systems [66]. In this study, robot
control is exclusively limited to robots as the subject. Robot robot control is a
means to operate or collaborate with a robot utilizing human intelligence,
which necessitates a human-machine interaction interface capable of provid-
ing adequate and comprehensive information [67]. To clarify this concept,

the applications of robot control are often classified into three classes [68]:

* Closed loop control. The human operator controls the actuators of the

robot via direct signals.
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* Coordinated teleoperation. Similar to closed loop control, but this time

some internal control loops are involved within the robot system.

* Supervisory control. The robot can perform part of the tasks more or
less autonomously. The human operator mainly monitors and provides

high-level control commands.

Another related concept is robot control. This introduces the possibility of
providing a person with the feeling of actually being present at a remote
location. In the field of robot control, telepresence typically refers to remotely
controlled robot system that involves comprehensive information such as
visual and haptic feedback, enabled by state-of-the-art technologies including
computer graphics and VR [69]. Different from the Master-Slave teleopera-
tion mode which involves a local robot (master) and a remote robot (slave),
telepresence systems often combine a capture system, a network transmission
system and a display system which establishes an interaction interface for
the human operator to obtain comprehensive perception of the remote scene

[67].

In this research, the definition of robotic control will incorporate elements
of telepresence. Unlike traditional Master-Slave teleoperation, the concept
discussed here primarily focuses on the interaction interface between human
operators and controlled robots. operators rely on the perceptional informa-

tion provided by the interface to understand the environmental conditions.
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The robots are not fully autonomously controlled, while human operators

require a certain level of control over the robots.

2.2.2 VR Definition

VR is an immersive technology that simulates a computer-generated envi-
ronment, which can be experienced through specialized devices such as
head-mounted devices (HMDs) [70]. By creating a sense of presence and
interaction, VR transports users to artificial worlds that can mimic real-life
environments. Furthermore, users are not mere observers but active par-
ticipants within the virtual environment enabled via various input devices.
They can explore and interact with objects and elements in the digital realm
through gestures, motion tracking or handheld controllers. The immersive
nature of VR enables users to perceive depth, scale and spatial relationships,

enhancing the sense of interaction and engagement.

Command VR devices consist of VR HMDs, joysticks, data gloves, motion
trackers and base stations. These devices are responsible for gathering input
commands or motion information from users, while also displaying virtual
scenes to provide an immersive interactive environment. Virtual scenes are
typically provided by 3D engines and rely on hardware computation for
real-time rendering. VR HMDs are typically divided into two categories:
standalone VR and PCVR. Standalone VR relies on onboard computational

power and is generally limited to running pre-packaged applications, while
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PCVR depends on an external PC and enables real-time communication with
the PC. In telerobotic systems, PCVR is predominantly utilized in research as

it provides better performance and real-time capabilities [71].

2.2.3 Robotic Control Systems

Establishing a connection between human operators and robots forms the
foundation of our VR-based robot control system. In this section, related
research studies focused on information exchange between human oper-
ators and robots are reviewed. The main content can be divided into 2
aspects: traditional robot control methods, and visualization for telepresence

awareness.
1) Robot Control Interface

The remote control of robots by human operators has been studied for years
[72]. Different from plain robotic systems, where the robot executes a motion
or other predefined program without further consultation or human users,
robot control systems provide information to and require control commands
from the human operator. In this section, we discuss the user command input

methods proposed in existing research on robot control systems.

Many existing research studies implemented traditional desktop interface for
remote robot control. Desktop interface typically involves 2D graphical user

interface (GUI) and button-based command input devices, such as keyboards
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and mouses and other similar devices which are familiar to most users. For
example, [73] proposed a server-client-based teleoperation interface for
continuum robot control. The server loads the user interface on a webpage-
based GUI, and the operator clicks the mouse buttons and drags the 3D
model displayed on the GUI to change the shape parameters of the robot.
Meanwhile, a feedback segment integrated within the GUI allows the user to
see the length, curvature and orientation for a given section. [74] presented
a design for a high-level robot control interface that includes error handling
and supports control over the failure recovery action. The user interface
(UD) was developed based on a 2D desktop monitor interface for high-level
control where the multiple views captured from RGB cameras, as well as
some semantic information feedback and action suggestion are displayed, and
a gamepad interface for low-level robot control. In [75], authors proposed a
cable-driven parallel robot control system based on a master-slave framework.
The operator controls the remote robot using a joystick and a trackball
together and the 3D model of the remote robot is visualized and displayed
on a desktop monitor. [76] designed an infrared-matrix-based robot control
platform where the user controls a multi-DoF robot’s joint pose via a touch
screen integrated with infrared sensors. User’s touch points are detected
by the sensory system, and the visualization of the robot is achieved via 3D

models.

Although 2D desktop interfaces are easy to use, they may not be able to

reflect the natural way that humans observe, perceive and interact with the
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real environment [71]. In recent years, growing efforts have been made to
explore more intuitive methods to control robots. These research studies
typically consider focusing attention on the ergonomic factors of input meth-
ods. For example, [77] introduced a robot control method based on depth
image data, which interprets human hand gestures captured by a camera,
removing the reliance on specialized controllers. This approach enables users
to guide robots through natural hand movements, replicating the simplicity
of manipulating objects in daily life. In [78], authors utilize a gamepad to
set waypoints for the virtual surrogate of the drone based on an augmented
reality (AR) interface. [79] developed an intuitive robot control system for
controlling a 6-DoF industrial robotic manipulator using a Geomagic Touch
haptic interface. The system integrates both virtual and physical sensor-
based haptic feedback, enhancing the operator’s environmental awareness
and ensuring safer robot operation. [80] provided a cost-effective robot
control system that utilizes Leap Motion interface to enable users to control
the robot manipulator using their hand gestures. In [61], authors proposed
a bilateral teleoperation system for wheeled mobile robots’ control. They
implemented a master-slave strategy, where the operator uses a local master
haptic robot to control a remote mobile robot. A similar master-slave-based
teleoperation method was implemented in [81] where researchers introduced
a robot control concept for ergonomic bilateral robot control. [82] conducted
a quantitative physical ergonomics assessment on two different robot con-
trol Ul, including a standing interface with a whole-body motion capture

system and a seated interface with a 3D mouse. In [83], authors applied
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machine learning methods on a robot control framework that is capable of
autonomously generating a user-adapted body-machine mapping function

for drone operation.

In recent years, with the continuous advancement of VR technology, the
performance and affordability of VR devices have significantly improved [84].
VR technology creates a virtual environment that allows users to engage in
immersive interactions even in non-realistic settings. This characteristic aligns
closely with the need for user-friendly human-robot interaction interfaces
in robot control [85]. Consequently, there have been many research studies
focused on integrating VR technologies with robotic control systems. Most of
the consumer-grade VR devices contain their own input strategy for intuitive
interaction in the virtual environment. Therefore, combining these input
methods with robot control modules is a common practice. For example,
[86] combined VR HMD with Touch X-based haptic interfaces to teleoperate
a collaborative robot. The human interaction interface generates the desired
pose of the robot end-effector in the virtual environment and transmits the
control command to the real robot side. [87] proposed a task-centric VR
robotic control system that focuses on the task itself rather than the direct
manipulation of robotic hardware. [88] proposed a control method for Toyota
Human Support Robot. The robot head motion and the robot arm motion
are aligned with the motion of VR HMD and VR controller, respectively. The
head motion control suffers from huge latency, though, which may cause

uncomfortable situations such as feeling sick. In [89], researchers use a
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haptic glove to control a multi-DoF robot arm while also obtaining haptic

feedback.

2) Robotic Control Awareness

In robotic control systems, it is important to enable the robot to provide
some significant information for the operator to perceive the remote space
and make better decisions. The term situation awareness was first emerged
from aviation psychology, but it is applicable broadly to any cognitive activity
and information processing, including robot control [90]. In robotic control
systems, awareness refers to the human operator’s capability to perceive
and understand the environment around the remote robot [91], which re-
quires the operator to process a large amount of robot sensor data from
the manipulation scene in real-time. However, many existing robot control
systems do not provide significant feedback for human operators, resulting in
less intuitive control and less comprehensive perception of the manipulation

scenarios [73, 76, 92].

In recent years, researchers have proven that robot control awareness, such as
reconstruction and visualization of robot’s surrounding environment, haptic
feedback, and force feedback is important for human-robot interaction in
robot control systems [93]. Many research studies have been conducted to
address the issue of awareness feedback provision in robot control systems.
Among these research studies, the majority of them focus on scene visual-

ization, which refers to displaying environmental context to the operator
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through the interaction interface. Many 2D GUI-based interfaces rely on 2D
image stream collected via RGB cameras (including those discussed in Section
2.2.1). For example, in [74], a GUI monitor is implemented to display the 2D
view of the robot manipulation scene while also achieving object detection.
Similarly, in [94], researchers performed object segmentation based on the
image stream captured from an RGB camera deployed on the dual-armed
robot. [80] proposed an orthographic vision-based teleoperation system by
visualizing the remote environment and providing depth perception infor-
mation via a single webcam. In [95], the first-person view and third-person
view of the dual-armed robot are displayed on the monitor, as well as the
robot pose state via visualization of the robot’s real-time 3D model. In [82],
researchers proposed a robot interface that provides raw image-based visual

feedback from the remote robot for operators via 2D GUI interface.

Recently, many efforts have been made to explore and identify the best way
to represent the physical world in virtual environments. [96] presented a
telepresence approach to merge visual information from multiple cameras
based on a VR interface. In this system, researchers utilized a static global
stereo camera, and a local RGB-D camera mounted on the end-effector of
the robot, and they only rendered the local scene with point cloud to provide
the essential information for manipulation. By having both the scene and
the geometric objects in the same space they determine which object is
occluded and present the corresponding effect to the user in the virtual scene.

[97] utilized a Kinect RGB-D camera to obtain the depth information of the
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surrounding environment and rendered the whole scene in the virtual space
through real-time mesh reconstruction in large-scale indoor and outdoor
environments. In [98], researchers implemented a remote RGB-D camera
as a wrist camera of the UR5 robot manipulator and provide video and
depth feedback in real-time. This visualization feedback is rendered in the
virtual world based on Unreal engine, including the point cloud information
of the manipulation scene and raw image stream displayed in front of the
user view. [99] adopted a similar strategy by rendering 3D point cloud
information as well as 2D raw image from multiple views, including a first-
person view, captured from a webcam installed on the robot gripper, and
several third-person views. [100] established a virtual room where several
virtual video displays are deployed at certain locations, where the VR user’s
brain infers the 3D representations directly, rather than having a GPU or
CPU interpret the data to 3D and then back into images for each eye. In
[88], the motion of the head of implemented humanoid robot is horizontally
aligned with the VR HMD. A stereo camera is installed on the robot head,
so when the human operator tries to move the head around to view the
scene, the robot head will also move around to enable the 3D camera to
capture the corresponding scene. Nevertheless, although the researchers
attempted to utilize the capability and the functionality of the robot as
much as possible to achieve natural human-like movement of the robot in
robot control, there is still latency between human and robot movement.
Considering the visualization method, it is possible to cause uncomfortable

situations for the user. [101] proposed a category-agnostic scene-completion
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algorithm that segments and completes individual objects from depth images.
Although they did not implement any VR-related devices, their work can be
easily integrated with VR since their virtual scene was developed based on
Unity game engine. In [102], each manipulated object was applied with a
tag. When one of the cameras in the workspace detects a tag, the ID is looked
up, and the corresponding virtual representation of the object is displayed in
the scene. [103] introduced a robot control interface that collects, processes,
transfers, and reconstructs the immersive scene model of the workspace from

point cloud in VR based on a deep neural networks (DNN) method.

Additionally, many efforts have been made to evaluate the effectiveness
of different visualization strategies. For example, in [104], researchers
evaluated how using virtual features, such as a 3D robot model, object target
poses, or displaying distance to a target, affects operator performance in
completing teleoperation pick-and-place tasks. [105] compared an immersive
3D visualization to a standard 2D video-based visualization and found that
by displaying real-time 3D scene information, the ability to self-localize in
the scene, avoid obstacles and control the visualization view is improved. In
[106], researchers investigated the influence displaying different levels of
environmental information has on task performance and operator situation
awareness in VR robotic control interfaces. They found that the time to
complete the task is reduced when displaying full information compared to

the representative model, while accuracy remains the same between both.
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Nevertheless, cognitive load demand is much higher during full information

visualization.

2.3 Research Gaps

In previous sections, we have reviewed existing literature and provided
an overview of the current advancements in LLM task planning and VR
robotic control in the human-centric manufacturing scenarios. While notable
progress has been made, several limitations have emerged during the review
process. These gaps are summarized and discussed in this section to highlight

the challenges that remain and to motivate further research.

2.3.1 LLMs for Robot Task Planning

Recent advancements in LLMs have demonstrated their significant potential
in transforming robot task planning by bridging the gap between natural
language instructions and robotic control. Unlike traditional rule-based and
learning-based approaches, LLMs excel at interpreting high-level human in-
structions, reasoning over complex contexts, and generating structured task
plans. Studies have explored their application in zero-shot task planning,
hierarchical decomposition of goals, and integrating multimodal inputs, such
as combining language and vision for enhanced contextual understanding.

These efforts highlight the ability of LLMs to adapt to diverse scenarios and

2.3 Research Gaps
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simplify human-robot interaction, offering promising solutions for dynamic
and unstructured environments. However, several challenges persist, limiting
their practical application in real-world scenarios. Most existing approaches
struggle to directly generate low-level robot-executable commands, often
requiring additional manual processing or intermediate layers to refine ab-
stract plans. Furthermore, many methods lack a structured and hierarchical
framework to systematically handle the complexity of task planning, leading
to fragmented outputs. Additionally, while LLMs have shown promise in
general robotics, their application in specific industrial contexts, such as
manufacturing and production assembly, remains underexplored. These
domains demand domain-specific solutions capable of addressing intricate
workflows and ensuring precision, adaptability, and scalability. Address-
ing these gaps is essential for advancing LLM-based robot task planning in

practical applications.

To address these challenges, this thesis develops a multi-layer LLM-based
robot task planning method that converts human natural language instruc-
tions into executable robot commands, which will be discussed in Chapter

3.

2.3.2 VR-based Intuitive Robotic Control

Research on robot control has made significant progress in recent years. Robot

control systems aim to establish intuitive interfaces for human operators to
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control robots while providing comprehensive environmental information.
Traditional approaches often rely on 2D graphical interfaces and button-based
input devices, such as keyboards, joysticks, or touchscreens. While these
methods are user-friendly, they are not intuitive enough for robot control,
especially in complex and dynamic scenarios. Recent efforts have explored
more natural control methods, such as gesture recognition, motion capture,
and haptic feedback, to enhance user experience. Additionally, the integra-
tion of VR technology has provided immersive environments and improved
visualization through 3D reconstruction, depth information, and real-time
point cloud rendering, enabling better spatial awareness and task perfor-
mance. Nevertheless, traditional robot control approaches still lack intuitive
interaction and feedback methods, while some VR-based systems, despite
their advancements, are still not sufficiently intuitive for seamless human-
robot interaction. These limitations hinder the operator’s ability to effectively
control the robot and perceive its environment, emphasizing the need for

further improvements in control interfaces and feedback mechanisms.

To address these challenges, this thesis proposes a VR-based robotic control
system that enables intuitive and seamless robot control and comprehensive

visual awareness, which will be discussed in Chapter 4.
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LLM-based Robot Task Planning

The integration of LLMs into robotic task planning has gained significant
attention due to their ability to process natural language instructions and
generate logical task plans [51, 52, 53, 54]. While existing research has
shown promise in understanding high-level human language instructions
and commands, several challenges persist. Notably, most current approaches
struggle to effectively translate high-level human instructions into low-level,
executable robot commands that align with the requirements of dynamic and
complex manufacturing environments. This limits the practical application
of LLMs in real-world robotic systems, where precision and adaptability
are critical. In this chapter, an LLM-based robot task planning approach is
presented, which enables efficient and effective translation from high-level
tasks into low-level robot commands, ensuring seamless integration of human

guidance and robot execution.

3.1 Introduction

In the era of smart manufacturing, robots have become indispensable for
improving productivity, precision, and flexibility in dynamic production envi-
ronments. As human-centric manufacturing becomes increasingly common,

the ability for industrial robots to understand and execute tasks efficiently is



critical to achieving seamless integration into complex workflows. Central to
this capability is robot task planning, which involves translating high-level
instructions into robot actions that robots can perform in real-world scenarios.
Normally, traditional task planning methods often rely on predefined rules
or manual programming, which require significant time and expertise to
implement. While these approaches are effective in static and predictable
environments, they struggle to adapt to the complex and uncertain nature of
highly unstructured manufacturing environments. Such inability has limited
their scalability and flexibility, creating a pressing need for more advanced

and adaptive task planning solutions.

Recent advancements in LLMs have unlocked new possibilities for improving
robot task planning. LLMs are advanced systems trained on vast amounts
of textual data to understand, generate, and interact with human language.
LLMs excel at tasks involving natural language processing (NLP), including
text generation, translation, summarization, and question answering. Models
like ChatGPT have demonstrated remarkable performance across various

domains.

With their exceptional natural language understanding and reasoning capa-
bilities, LLMs can process high-level human instructions expressed in natural
language and generate meaningful responses. This makes them particularly
suitable for bridging the gap between human operators and robots, enabling

intuitive communication and task delegation. In the context of task planning,

3.1 Introduction
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LLMs offer the potential to decompose complex instructions into structured
steps and generate robot-executable commands. Early research studies have
shown promise in applying LLMs to translate textual instructions into task
plans, demonstrating their ability to handle diverse and unstructured inputs.
These efforts aim to simplify human-robot interaction by reducing the re-
liance on manual programming and rigid rule-based systems [55, 56, 57, 58].
Nevertheless, current approaches often face significant limitations when it
comes to the ability to seamlessly translate high-level instructions into precise,
low-level robot commands. These methods typically produce generalized
plans or abstract task descriptions, requiring additional layers of processing

or manual intervention to convert them into executable actions.

To address this issue which significantly limits the practical application of
LLMs in real-worlds robotic systems, in this chapter, we present a multi-layer
LLM-based robot task planning method that converts human natural language
instructions into executable robot commands. A multi-layer structure is
implemented to improve the performance of robot commands generation.
This method is presented aimed at bridging the gap between high-level tasks

and low-level robot codes.
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3.2 LLM-based Multi-Layer Robot Task

Decomposition Planning

In this section, the proposed LLM-based multi-layer robot task decomposition
planning framework is designed to bridge the gap between high-level natural
language instructions and low-level executable robot control code. To better
demonstrate the role of LLMs in understanding complex environments, we
specifically select industrial component assembly/disassembly process as the
research scenario. To achieve this, the framework employs a three-layer
hierarchical structure that incrementally processes inputs and generates

outputs, transforming human intent into precise robotic actions.

The framework begins with the Task Decomposition layer, where a high-level

natural language instruction, supplemented by an image input, is processed.

This layer allows the LLM to understand the overall task context by combining
linguistic information with visual cues. The result is a series of decomposed
sub-steps in natural language, each detailing a specific action required to

complete the task.

Next, the Motion Description layer takes the decomposed sub-steps and
generates precise positional relationships between objects involved in each

specific task. This layer ensures that the task is not only broken down but
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also contextualized in terms of spatial relationships, which are critical for

robotic manipulation.

Finally, the Robot Command Coding layer translates these positional de-
scriptions into executable robot control code. By leveraging robot primitive
knowledge and external libraries, this layer converts abstract spatial relation-

ships into concrete Python scripts that robots can execute.

The overview of the proposed solution is demonstrated in Fig. 3.1. The
framework provides a seamless pipeline that integrates multi-modal inputs
and systematically transforms them into robotic actions. In this work, we
implement a multi-modal pre-trained LLM GPT-4o0 as the interface to convert
human instructions into robot actions. This approach is aimed at enhancing
the adaptability, efficiency, and precision of robot task planning in complex
manufacturing scenarios. The following sections will provide a detailed

discussion of each layer in the proposed framework.
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Fig. 3.1: LLM-based and human-prompt guided task planning and robot code gen-
eration.
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3.2.1 Task Decomposition

The task decomposition layer is the first step of the proposed framework,
aimed at breaking down a high-level task into a sequential list of specific
sub-tasks. In this layer, the LLM is guided through carefully designed prompts
to ensure it generates actionable and logically ordered task steps. To achieve
this, both textual and visual inputs are utilized to provide comprehensive
contextual information about the task, the environment, and the objects
involved. The output is a sequence of sub-tasks, where each step specifies
a discrete action involving two objects. The reason for involving only two
objects is to ensure that each step includes a specific target point coordinate

when generating executable code.

The prompt provided to the LLM is designed to include key details about the
task environment and objects. This includes information such as object types,
identifiers, their spatial coordinates, and their attachment relationships, such
as “The gear shaft with the bearings installed should be placed inside the
pump body, with gear shaft 1 positioned on the left side and gear shaft 2
on the right side inside the pump body”. Additionally, visual input enhances
the LLM’s ability to contextualize the task by offering a clear depiction of the
components and their spatial arrangement, as shown in Fig. 3.2. The prompt
also contains sample tasks and corresponding answers to help the LLM learn

the desired decomposition logic.
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Fig. 3.2: Gear pump components used in the assembly task.

To ensure clarity and consistency, specific rules are embedded in the prompt
to limit the output format. Specifically, each output line is restricted to
describing actions involving a maximum of two objects. This restriction
ensures that the subsequent layer, which focuses on motion description, can
effectively process the output and describe spatial relationships for each step

independently.

3.2.2 Motion Description

The motion description layer is designed to translate each sub-task output
from the task decomposition layer into detailed descriptions of the target
spatial relationships between objects within the task environment. This layer
is designed aimed at bridging the gap between task-level instructions and
robot-level operations by reformulating human-intuitive instructions into

precise positional descriptions that robots can interpret and act upon. These
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spatial descriptions form the basis for generating executable robot commands

in the next layer.

The input to this layer consists of the decomposed sub-steps generated by the
task decomposition layer. Each sub-step typically involves the robot gripper
and two objects, focusing on their spatial relationships and interactions. The
output is a natural language description of these relationships, specifying

precise object alignments, placements, or relative positions.

To ensure consistency and precision, carefully designed prompts are em-
ployed to guide the LLM in generating the expected outputs. The prompts
include task-related information, such as the objects’ identifiers, their proper-
ties, and the overall task context. A template is provided to standardize the
formulation of spatial relationships, along with several examples to demon-
strate the expected output format. This approach ensures the LLM can infer
spatial relationships from the task context while maintaining logical and
structured outputs. Additionally, specific rules are integrated into the prompt

to constrain the layer’s output.

3.2.3 Robot Code Generation

This section provides the final stage of the proposed framework, tasked
with converting the spatial relationship descriptions generated in the motion

description layer into low-level robot executable code. This step is critical
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for bridging the gap between abstract task planning and concrete robotic
actions by leveraging given information including predefined robot primitive
skills, third-party libraries, and a structured prompt design. The primary goal
of this layer is to translate high-level instructions into precise, executable

commands that align with the robot’s capabilities and hardware.

The input to this layer consists of natural language descriptions of spatial
relationships between manipulated components, while the corresponding
output is Python code that directly interacts with the robot’s control system.
To achieve accurate and actionable code generation, the prompt for this layer
incorporates several key components. First, it provides a comprehensive list
of robot’s primitive skills, which define the available control APIs of the robot,
such as robot motion and gripper action control. Second, the prompt specifies
the third-party Python libraries (e.g., NumPy) that can be used to extend
functionality. These APIs and libraries serve as the building blocks for gener-
ating executable robot code. Third, the prompt includes a structured output
template to ensure consistency and readability. This template organizes the
code into clear, step-by-step instructions with appropriate function calls, mak-
ing the code both executable and interpretable. Then, the prompt provides
several example inputs and outputs, demonstrating and helping guide the
LLM toward producing outputs that adhere to the expected format and logic.
Finally, to ensure reliability and functionality of the generated code, specific

rules are provided in the prompt. These rules constrain the output to include
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only necessary commands, avoid redundancies, and maintain compatibility

with the robot’s control system.

Table 3.1: Robot primitive skills and corresponding APIs.

Primitive Robotic Skills | Python APIs

move to a coordinate rob_movep((coord), wait)
open the gripper gripper_open()

close the gripper gripper_close()

Table 3.1 provides an overview of the primitive APIs utilized in this layer,
which are implemented through the Python interface provided by the robot’s
driver. These APIs support the execution of fundamental robotic actions and
serve as the foundation for constructing complex behaviors. They focus on
motion and manipulation commands, while abstracting away the trajectory
planning and hardware-specific details. One of the key advantages of using
these APIs is the modularity they offer, which means more complex actions
such as pick-and-place can be constructed. This allows the LLM to focus on
generating logical action sequences rather than dealing with the intricacies
of motion control or hardware constraints. Furthermore, while the current
set of APIs are designed for basic pick-and-place tasks, additional functions
can be integrated to extend the robot’s capabilities, enabling the LLM to
generate action plans for more complex assembly/disassembly scenarios. An
example of generated codes is illustrated in Fig. 3.3, where the instruction
from previous layer is to pick the gear shaft 2 and place it into the pump

body.
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import numpy as np

def main():
# Coordinates (assumed based on the image and task):
# - gear _shaft_2 is at (e.1, 6.2, 6.1, e, 8, 8)
# - pump_body is at (8.3, 8.2, 8.1, 8, 8, 8)
# - Above gear shaft 2 = 8.2
# - Above pump_body: z

# Move gripper above gear_shaft 2
rob_movep((2.1,

# Descend to

rob_movep((8.1,

# Close gripper to

gripper_close()

# Lift gear_shaft 2

rob_movep((e.1, ©.2, 8.2, 8, 8, 8), wait=True)

# Move above pump_body

rob_movep((©.3, 0.2, 6.2, 8, 8, 0), wait=True)

# Descend to pump_body

rob_movep((©.3, 0.2, 8.1, 8, 8, @), wait=True)

# Open gripper to place gear_shaft 2 inside pump_body
gripper_open()

# Lift the gripper away from pump_body
rob_movep((®.3, ©.2, 8.2, 8, 8, 8), wait=True)

if _ name_ == "__main_ ":

main()

Fig. 3.3: Example executable code generated by code generator.

3.3 Experimental Results

To quantitively evaluate the effectiveness of the proposed three-layer robot
task planning approach, in this section, we conduct a series of experiments
designed to compare its performance against alternative methods. We pre-
defined a manipulation task, “assemble a gear pump”, as the original input
for the task planner. To evaluate the performance of our proposed method,
two baseline methods are chosen comparably, including: i) a single-layer
robot code generator (that directly translate the original task into robot code)
without image input; ii) a three-layer robot code generator without image
input. Additionally, we also adopted three different pretrained LLM agents,

including GPT-40, GPT-4, and GPT-3.5 for comparative study. Each configura-
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tion is evaluated using the same predefined assembly task, and the generated
robot action codes will be evaluated by human experts, and the criterion
for determining the success of an experiment is whether the plan correctly
calls functions in a logical and feasible sequence. For each configuration, the
evaluation metric is the success rate, which is calculated as the percentage
of 20 trials where the generated results met the criteria of human expert

evaluation.

Table 3.2: Results of LLM-based task planning.

Method GPT-40 GPT-4 GPT-3.5
Single-layer prompt (no image) 4/20 6/20 0/20
Three-layer prompt (no image) 12/20 9/20 2/20
Three-layer (image input) (ours) 20/20 - -

The experiment results are shown in Table 3.2. From the results, we can
see that the proposed three-layer robot task planner with multi-modal in-
put achieved higher success rates than baseline methods. The hierarchical
multi-layer design outperformed the single-layer structure, which struggles to
decompose tasks and generate coherent robot code directly from high-level
instructions. In terms of LLMs, GPT-40 has higher success rates among differ-
ent methods. This may be due to its larger scale of parameters. Additionally,
the implementation of multi-modal input also improves the performance of

the planner notably.

The experimental evaluation of the LLM-based robot task planner provides
an initial demonstration of how LLMs can be applied to complex robotic

assembly tasks, showcasing their potential to enhance task planning and
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execution in human-centric manufacturing scenarios. While the current
system remains in an early stage and faces limitations such as dependency on
computational resources and challenges in real-time adaptability, the results
highlight the promising role of LLMs in bridging natural language instructions
and robotic control. With further optimization and integration into real-world
robotic platforms, LLMs are likely to enable future manufacturing systems
with greater intelligence and adaptability, paving the way for more seamless

and autonomous manufacturing workflows.

3.4 Chapter Summary

The integration of LLMs into robotic task planning has introduced a novel
framework for enhancing human-centric manufacturing by leveraging natural
language understanding and reasoning capabilities. This chapter proposes a
three-layer LLM-based planning approach for generating executable robot
code in complex assembly tasks, with a focus on structured task decomposi-
tion. The main contributions of this chapter can be summarized as follows:
1) Developed a hierarchical three-layer planning framework leveraging task
decomposition, motion description, and robot code generation to bridge
high-level human instructions and low-level robotic execution. 2) Designed a
meticulously crafted prompt structure tailored for each layer, incorporating
task-specific domain knowledge, robotic primitive skills, and multi-modal

input integration, enabling the planner to generate logical and executable
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robot actions. Experimental evaluations demonstrate favorable performance
of the proposed approach compared to alternative methods, highlighting
the importance of hierarchical reasoning and multi-modal inputs. The re-
sults validate the system’s ability to generate accurate and logical robot code
for complex tasks, showcasing its potential for real-world human-centric

manufacturing scenarios.

Despite its performance, some limitations remain, such as the computational
cost of multi-layered reasoning and response latency associated with LLMs.
To address these challenges, future research may explore the development
of more efficient, task-specific approaches tailored to industrial applications.
Additionally, enhancing the integration of other data modalities could further
improve the system’s robustness and adaptability to diverse manipulation

scenarios.
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Intuitive Robot Control for Comple
Environments

In complex and dynamic manufacturing environments, ensuring precise and
efficient robotic manipulation remains a significant challenge, particularly in
human-centric manufacturing systems. Traditional robotic control methods
often rely on pre-programmed instructions or rigid interfaces, which lack
adaptability and demand extensive expertise from human operators. These
limitations hinder the flexibility required for robots to handle diverse and
unstructured tasks in real-world scenarios. In recent years, advancements in
VR technology have opened new possibilities for intuitive robot control by
providing immersive and interactive interfaces. However, existing VR-based
teleoperation systems often face challenges such as high operator cognitive

load and inefficient integration between human input and robot execution.

To address these issues, in this chapter, we present a VR-based robot teleoper-
ation interface to enable intuitive and immersive robotic control for complex
manufacturing environments. By leveraging immersive VR interfaces and real-
time data exchanging mechanisms, the proposed system enables seamless
interaction between human operators and robotic manipulators, facilitat-
ing flexible and efficient task execution in human-centric manufacturing

scenarios.



4.1 Introduction

Robotic control systems are supposed to facilitate human-robot interaction
even when the operator is a non-professional user [69]. Interaction interfaces
that are not enough intuitive can impact the cognitive load of human oper-
ators, resulting in significantly increased learning costs. In such cases, the
efficiency of performing teleoperation tasks with robots can be compromised.
This can lead to decreased performance, longer task completion times, and
potentially higher error rates. Intuitive interfaces, on the other hand, are
designed to align with the operator’s mental model and expectations, making
it easier for them to understand and control the robot. By reducing cognitive
load, the interfaces enable operators to focus more on the task at hand,
leading to improved efficiency and effectiveness in robotic teleoperation

scenarios.

The cognitive load primarily arises from the complexity and intuitiveness of
the interaction interface [107]. Traditional robot monitoring and teleopera-
tion systems typically employ 2D graphical interfaces to display the current
status and relevant information of the robot. They rely on input devices
such as keyboards, mice, or touch-based devices to capture instructions from
operators. While 2D graphical interfaces can effectively present textual or
graphical information, they often fall short when it comes to conveying depth
information about the environment or work scene. Furthermore, traditional

input devices struggle to establish a clear mapping between the operator’s in-
p g3 pping p
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tent and the robot’s actions, especially when dealing with complex high-DoF

robots or intricate end-effector structures.

Facing these limitations, there is a need for an interactive approach that can
provide a more intuitive representation of the robot’s working environment.
This requires an interaction interface that goes beyond the capabilities of 2D
graphical interfaces and can more accurately depict the dynamic changes in
a 3D space. However, most existing research in this area has been primar-
ily developed based on 2D graphical interfaces. Obtaining dynamic spatial
information requires operators to perform redundant operations. Further-
more, there is a need for a more direct method of inputting commands.
This interaction approach should better reflect the operator’s direct intent,
rather than requiring the translation of control intentions into operations
within a graphical interface before being transmitted to the physical robot.
However, most existing robot teleoperation systems still rely on using simple
input devices to accomplish potentially complex tasks, which can increase

the operator’s cognitive load in terms of learning and adaptation.

Nowadays, with the continuous advancement of VR technology, the perfor-
mance and affordability of VR devices have significantly improved [84]. VR
technology creates a virtual environment that allows users to engage in im-
mersive interactions even in non-realistic settings. This characteristic aligns
closely with the need for user-friendly interaction interfaces [85]. In this

context, the research interest in VR-integrated human-robot teleoperation
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has been increasingly growing [108]. Compared to traditional 2D graphical
interfaces, VR environments offer users a more intuitive perception of spatial
depth, allowing for a more comprehensive environmental awareness. VR
enables users to explore and interact within virtual spaces as if they were in
physical environments. This reduces their cognitive load, as they no longer
need to spend significant time extracting crucial spatial depth information
from flat graphics. Furthermore, input devices with spatial tracking capabili-
ties in VR allow users to quickly locate target objects or positions, which is
challenging to achieve in 2D graphical interfaces. This enhances the efficiency

and accuracy of user interactions within the virtual environment.

Another important issue to be considered is the system’s compatibility with
different robot platforms. Robots from different manufacturers, such as
UR, KUKA, Franka Emika, often have different communication protocols
and interfaces. This makes it challenging to port and adapt interaction
modules designed for one certain type of robot to another. This issue becomes
particularly pronounced with multi-DoF collaborative robots, where replacing
a robot would require significant modifications to the system’s configuration,
resulting in substantial workloads. Therefore, a fundamental communication

framework that is applicable to multiple robot platforms is necessary.

In view of the above, the aim of this research is to propose a VR-based
teleoperation interface to enable intuitive and immersive human-robot tele-

operation. The proposed system mainly contains two major parts, including:

4.1 Introduction
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1) a VR interface, which is developed based on Unity engine; and 2) a robot
control interface, which is developed based on Robot Operating System (ROS)
[109]. ROS is an open-source robotics middleware with great flexibility and
feasibility, which enables a wide range of applications for robot development
[110]. Therefore, our proposed robot control framework is easy to port
to another commercial robot which is supported by ROS. In addition, we
implement more intuitive interaction methods than existing teleoperation

systems which provide better experience for human operators.

4.2 VR-based Robot Teleoperation

System

This section provides a comprehensive explanation of the proposed VR-based
robot teleoperation system, which is designed to enable intuitive and precise
control of robotic manipulators in complex environments. The system collects
two primary inputs: target robot poses commands provided by the human
operator, and real-time visual feedback provided by the RGB-D camera. These
inputs allow the operator to interact seamlessly with the robot by issuing
direct control commands while maintaining situational awareness of the
task environment. At the remote side, the generated control commands are
executed by a robotic manipulator equipped with an end-effector, ensuring

accurate manipulation of objects in real time, as shown in Fig. 4.1.
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Operator A1 operating Scene
Fig. 4.1: An operator teleoperating a robot via the proposed system. The work area

information is captured and visualized in the virtual environment, where
a virtual representation of the robot arm reflects the real robot pose.

The system is developed using the Unity 3D engine and ROS, which together
provide a robust framework for integrating software modules and hardware
components. External hardware devices are basically categorized into input
and output devices. Through this seamless integration of software and
hardware, the proposed system achieves a high degree of flexibility and
precision, bridging the gap between human intention and robotic execution
in complex manufacturing tasks. In the following sections, the components

of the proposed VR teleoperation system will be introduced individually.

4.2.1 Overall System Design and Implementation

The overall framework of the proposed VR teleoperation system is illustrated
in Fig. 4.2. The entire system consists of four major components, including

input signal collection, VR-based interaction module, motion planner module
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and execution and scene monitoring. In the input signal collection phase, the
operation commands are collected through a set of input devices, basically
including a glove-based controller and a joystick controller. The human
operator holds the input devices and provides control commands. The glove-
based controller captures the operator’s finger joint pose information, while
the joystick enables the operator to trigger robot target pose commands
by pressing buttons on the controller. These command inputs, as well as
the work area’s image stream captured by the on-site RGB-D camera, are

transmitted to the VR interaction module.
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Visual Aids

Fig. 4.2: Framework of the proposed VR teleoperation system.

The interaction module is designed to process and convert the input data
into expected format. The image stream data is processed and rendered on
a plane in the virtual environment to visualize the remote scene in the VR
interface. The finger pose information is converted to Euler angles using the
quaternion converter, while the robot target pose information is serialized
and transformed into ROS message format which can be processed by ROS.
These target poses are regarded as the robot hand target pose and robot

arm target pose, respectively, and are then forwarded to the motion planner
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module, where direct control commands for the robot hand and robot arm

are generated for execution.

4.2.2 Interaction Module

The interaction module is responsible for receiving and processing the data
collected via the input devices to enable human-machine interaction in a
virtual environment. There have been numerous research studies focused on
the interaction mode of teleoperation systems [69]. In our proposed system,

the interaction mode is designed based on VR interface.

The VR interface of the proposed teleoperation system is developed using the
Unity 3D engine, a versatile and widely adopted platform for creating inter-
active 3D environments [111]. Unity provides a comprehensive suite of tools
and features designed to support the development of VR and AR applications
across various platforms, including mobile devices, desktops, and web-based
systems. Its robust scripting API enables developers to write custom code
in C#, allowing for precise control over the behavior of virtual objects and
the implementation of complex interaction mechanisms. Furthermore, Unity
offers an extensive library of assets, scripts, and plugins, which significantly
streamline the development process and enhance system functionality. The
engine’s real-time rendering capabilities allow for realistic simulations of
object interactions, a critical feature for creating an effective and intuitive

human-machine interaction interface. These capabilities make Unity an ideal
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platform for the development of the VR teleoperation system, ensuring both

flexibility and realism in the virtual environment.

1) Input Devices Integration

A virtual interaction environment was developed within the Unity platform,
integrating VR components and real-world environment visualization. The
VR hardware utilized in this project consists of a consumer-grade VR Kkit,
including a VR headset and a pair of joysticks. Additionally, a glove-based
controller was incorporated to further enhance the teleoperation experience
by providing more intuitive and precise interaction capabilities. These de-
vices were seamlessly integrated into the Unity scene using the OpenVR
toolkit [112], which facilitates compatibility and communication between
the hardware and the virtual environment. Within the virtual scene, both
the joystick and the glove-based controller are accurately represented and
visualized, offering a realistic and immersive teleoperation interface. This
setup enables operators to interact intuitively with the virtual environment,

bridging the gap between human intention and robotic execution.

The input devices are modeled as prefabs within the Unity environment and
rendered in the 3D virtual scene to ensure accurate representation. The
position and orientation of the joystick controller and glove controller are
tracked using laser sensors from the base station, with their poses integrated
into the Unity environment via the OpenVR plugin. Hand gestures made by

the operator are captured through IMUs embedded in the glove controller,
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enabling the virtual hand model to mirror the physical movements of the
operator’s hand. This functionality provides an intuitive and immersive
experience, allowing the operator to interact naturally with virtual objects

through hand gestures.

In addition to the glove controller, the joystick controller features a touchpad
and several buttons, each mapped to specific functions. These functions
include controlling the robot’s end-effector movement in the horizontal plane
or adjusting its vertical position. When the operator presses a button, a new
goal position message is generated and sent to the motion planning module
implemented within the ROS framework. This communication is facilitated
through a TCP connection, enabling efficient and reliable data exchange
between the Unity environment and the robotic control system. This setup
ensures seamless integration of operator inputs and robot motion, enhancing

the intuitiveness and precision of teleoperation.

In terms of work environment visualization in the virtual interface, the
proposed system leverages an RGB-D camera to stream real-time RGB and
depth information from the workspace, enabling point cloud visualization in
the Unity virtual environment. In this work, the system processes the RGB and
depth data into a point cloud representation. These streams are subscribed to
as topics from the camera and passed as textures to the Unity virtual interface.
To achieve this, for each corresponding pixel, a colored point is generated in

the virtual scene. The point’s color is derived from the associated RGB pixel,
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while its position is calculated based on the depth value from the RGB-D
sensor, thus allowing real-time visualization of the remote workspace. To
integrate the RGB-D camera and the robot base coordinate, it is necessary
to establish a precise alignment between the two coordinate systems. The
alignment process involves determining the rigid transformation, including a

rotation matrix R and a translation vector 7.

In the left-handed coordinate system used by virtual robot in Unity VR,
the positive Z-axis points forward, whereas in the right-handed coordinate
system used by ROS, the positive Z-axis points outward from the screen in the
opposite direction. To reconcile this difference, the camera coordinates are
first transformed into a pseudo-right-handed coordinate system by inverting

the Z-axis of each point:

p/c = [xm Ye,s _ZC]T7 (41)

where p. represents a point in the original camera coordinate system and p.,

is the adjusted point in the pseudo-right-handed coordinate system.

After addressing the coordinate system discrepancy, the rigid transforma-
tion between the camera and robot coordinate systems is determined. Let
P.=p.1,p.2,...,p.n denote a set of points in the camera coordinate system

and P, = p,1,p.2,...,p.n denote the corresponding points in the robot’s
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coordinate system. The relationship between the two systems is modeled

as:

pr=R-p.+T, (4.2)

where R € R3*3 is the rotation matrix and 7' € R? is the translation vector.
Using the points collected above, the rigid transformation is estimated by
minimizing the alignment error between the two coordinate systems. The
rotation matrix R is derived from the covariance of the point sets through
singular value decomposition, while the translation vector 7' is determined

by comparing the centroids of the two sets.

The final transformation from the camera coordinate system to the robot

coordinate system is given as:

pr=R-[e,ye, —z]" +T. (4.3)

To validate the calibration, the mean alignment error is calculated:

1 n
Error = - Sl — (R-pl + 1) 4.4)
=1
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If the error exceeds a predefined threshold, recalibration is performed using
additional corresponding points or improved measurement precision. The
point cloud effects in the virtual environment before and after calibration are

shown in Fig. 4.3.

Fig. 4.3: Point cloud data collected by RGB-D camera before and after calibration:
(a) before calibration; (b) after calibration.

2) Unity-ROS Integration

To ensure seamless communication and integration between the virtual
environment and the ROS framework, the proposed teleoperation interface
incorporates a robust communication mechanism between the Unity engine,
implemented as a .Net application, and ROS. Given that ROS operates as a
node-based communication framework reliant on data exchange between
Python- or C++-based nodes, the communication protocol is designed to
bridge the gap between ROS nodes and the C#-based Unity scripts. This
integration is achieved through the utilization of an open-source software
library, Unity Robotics Hub [113]. By leveraging the capabilities of this tool,

the system establishes reliable TCP connections to facilitate real-time data
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exchange between Unity, where the VR interface is developed, and ROS,
which serves as the foundational platform for robot control. This architecture
enables efficient and synchronized communication, ensuring that commands
and feedback are transmitted seamlessly between the virtual interface and
the robotic system.

Unity Scene ROS Network

ROS Service Script [+ [HDS NNEJ ‘ ROS Nm] [HOS Node ‘
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Fig. 4.4: Overview of the framework of our Unity-ROS communication established
based on TCP connections [113].

An overview of the Unity-ROS communication framework, established using
TCP connections, is presented in Fig. 4.4. Once the connection is successfully
established, a TCP server endpoint operates as a ROS node, enabling seamless
bidirectional message exchange between Unity and ROS. For example, when
the human operator initiates a new goal position command for motion
execution, the target position is transmitted from a publisher script on the
Unity side to the ROS server endpoint. The message is then forwarded to
the designated ROS node, joint_state controller, within the robot motion
control module, where a motion trajectory is generated and executed by the
robot arm. Similarly, when the robot reaches a new position, its joint state

information is collected and published by the ROS node, joint_state publisher,
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to the server endpoint. This data is subsequently transmitted to the Unity
environment, where it is processed to update the virtual robot model to
reflect the robot’s new pose. This mechanism ensures real-time virtual-
physical mapping, enabling real-time synchronization between the physical

robot and its virtual counterpart in the teleoperation system.

To establish the communication framework, a ROS connection script compo-
nent is integrated and assigned to an empty object within the Unity scene.
Concurrently, the aforementioned TCP server endpoint is configured to enable
bidirectional message exchange between Unity and ROS, allowing efficient
and effective communication between the virtual environment and the robotic

system.

One important aspect to consider is the serialization of messages within the
Unity framework since the original messages generated by C# scripts in .Net
applications are not able to be processed directly by ROS services. To address
this, we utilize a message generation plugin that generates C# classes from
the ROS messages and serialize messages being passed to ROS framework as
ROS would internally serialize them. This generation plugin is responsible for
serialization and deserialization functions from ROS-based messages, which
are transmitted via .msg files, ensuring seamless communication between the

two systems.

In addition, a specific set of scripts serves as the Unity counterpart of ROS

nodes which function as service, subscriber and publisher. Each script is
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attached to an empty object within the Unity scene, thus the message publish-
ing or subscribing function runs once a frame when the project is working.
These components utilize the ROS connection script and TCP endpoint node
to establish communication channels with the corresponding ROS nodes.
Publishers are responsible for transmitting data generated within the virtual
environment to the ROS system, while subscribers receive and process data
from ROS nodes. Service providers facilitate the exchange of more com-
plex requests and responses between Unity and ROS, enabling advanced

functionalities within the collaborative manufacturing process.

3) Robot Arm Transform Conversion

To enable the robot arm to follow the operator’s hand movements, a transform
conversion mechanism is implemented to translate human input into the
robot’s end-effector target positions. This process begins with the capture of
the operator’s wrist position using the VR input devices and laser tracking
system within the Unity environment. The VR system provides real-time
spatial pose data, including the position of the operator’s wrist, which serves
as the primary input for controlling the robot arm’s motion. The wrist position
data is first analyzed to calculate its relative positional changes over time.
These changes, representing the operator’s hand movements, are used to

generate motion commands for the robot.

In Unity, the coordinate system is left-handed, while in ROS, the coordinate

system is right-handed. To transform coordinates between Unity and ROS,
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the axes need to be remapped due to their differences in handedness and
axis orientation. The transformed positional data is then passed to the ROS
framework as a target pose for the robot’s end-effector. Specifically, this
target position is sent to the motion planning module, where a collision-
free trajectory is computed, ensuring safe and precise motion of the robot
arm. By continuously updating the target pose based on the operator’s
hand movements in the VR environment, the robot arm is able to follow the

operator’s motion in real time.

4) IMU-based Human Hand Motion Detection

The input method utilized by the human operator to control the robot plays
a critical role in determining the intuitiveness and efficiency of the operation.
For end-effectors with complex articulated structures and a high DoF, tradi-
tional control methods—such as buttons or touch interfaces—often prove
cumbersome and unintuitive, leading to a significant increase in the opera-
tor’s cognitive load. In this work, the robot’s end-effector is a five-fingered
robotic hand, which requires precise and natural control to perform complex
tasks. To address this challenge, we employ a glove-based controller equipped
with joint-mounted IMU sensors, enabling the operator to control the robotic
hand through intuitive hand gestures. This approach provides a more natural

and user-friendly interface for high-DoF robotic manipulation.

The glove-based controller is integrated with 11 joint IMU sensors which

represent 15 joints of human hand and capture the joint poses in quater-
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nion format, three on each finger and one on the wrist. The joints that can
be detected are defined as PINKY DISTAL, PINKY INTERMEDIATE, PINKY
PROXIMAL, RING DISTAL, RING INTERMEDIATE, RING PROXIMAL, MID-
DLE DISTAL, MIDDLE INTERMEDIATE, MIDDLE PROXIMAL, INDEX DISTAL,
INDEX INTERMEDIATE, INDEX PROXIMAL, THUMB DISTAL, THUMB INTER-

MEDIATE, THUMB PROXIMAL, respectively, as shown in Fig. 4.5.
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Fig. 4.5: Joint definitions of the human hand.

The VR interface receives joint pose information from the glove-based con-
troller in the form of quaternions provided by the IMU sensors. However,
this raw quaternion data does not directly convey the human operator’s hand
gestures. To address this, a hand pose processing module was developed to
extract meaningful gesture information. This module processes joint pose
data and calculates the degree of flexion for each finger, thereby determining
the operator’s hand gesture. Specifically, a quaternion converter is employed
to compute the angle of separation between two spatial pose quaternions

representing adjacent joints.
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Given the limited DoF of the robotic hand, the system focuses only on the
distal joint of each finger and the wrist joint. Each finger, from the pinky to
the thumb, is assigned a unique index (finger 1 to finger 5, respectively). To
simplify the control process and align with the DoF constraints of the robotic
hand, the system prioritizes the distal joint of each finger as the primary input
parameter for gesture recognition. For instance, if the pose quaternion of the
wrist and the pose quaternion of the distal joint of the fingeri (i € 1,2,3,4,5)

are denoted as qq and q; respectively:

do = (qwo, qT0, @Yo, q%0), Ui = (qQWsi, 44, QYi, q%)- (4.5)

The angle 6; between the two IMUs is calculated as:

0; =2 x cos  (|qo - qil), (4.6)

and 6; will be processed as the flexion degree of finger i and forwarded to
the robot hand controller. When the human operator flexes their fingers, the
glove-based controller returns hand joint pose information and calculates
the degree of flexion for each finger. This information is then processed and
executed in the robot hand controller, causing the robotic hand’s fingers to

bend to the corresponding angles. This synchronization enables the operator’s
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hand gestures to be replicated by the robotic hand, achieving a coordinated

motion between the operator’s hand and the robotic hand.

4.2.3 Motion Planning Module

To enable the operation of the robot arm from the virtual environment, we
rely on ROS as the fundamental framework for the robot’s motion planning
module. ROS is a widely used open-source framework that offers an extensive
range of software libraries and tools specifically designed for the development

and control of robotic systems.

By leveraging ROS, we can take advantage of its node-based architecture,
which plays a crucial role in facilitating seamless communication between
different programs. This architecture enables efficient and reliable data ex-
change over the ROS TCP network, ensuring smooth interoperability between
the teleoperation interface and the physical robotic manipulator. Additionally,
ROS provides robust and user-friendly APIs that support the development
of custom nodes in widely used programming languages such as C++ and
Python. This flexibility allows for the integration of diverse software modules,

enabling ROS to serve as a versatile intermediary framework.

ROS is widely utilized across various mechanical domains, including in-
dustrial robotics, collaborative robots, and beyond, due to its exceptional

versatility and adaptability. Rather than being tailored to a specific robotic
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system, ROS functions as an integrated software platform that incorporates a
broad range of libraries. These libraries provide a foundational framework
for developing and managing diverse robot-related programs and hardware
devices. By offering a standardized low-level communication protocol and
a flexible logical architecture, ROS facilitates seamless integration and in-
teroperability between different components of robotic systems. The core
node-based communication framework of ROS, which underpins its modular
and scalable design, is illustrated in Fig. 4.6. This architecture enables

developers to construct robust and adaptable robotic applications.
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Fig. 4.6: Fundamental node-based framework of ROS communication. [114]

1) Robot Arm Control

The motion planning interface utilized in this study is developed based on
Movelt [115]. Movelt stands as the primary choice among motion planning
packages that function within the ROS framework [116]. It offers a com-
prehensive set of tools and generic interfaces that cater to a wide range of
robots, empowering them to perform motion planning tasks while ensuring

collision avoidance capabilities.
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As Movelt is integrated in ROS, it follows the node-based foundational
communication framework. Movelt provides high-level system architecture
for receiving motion planning requests and generating motion waypoint
execution solutions. Movelt works based on the URDF format of the robot
model and provides collision detection functionality through its integrated
path planning algorithms. In the case where the physical robot matches the

model, Movelt can generate path planning results.

A notable feature of Movelt is its Move Group Interface, which serves as the
primary execution node of the high-level system architecture and provides
a user-friendly functionality for executing robot operations, as shown in
FigMoveGroup. This interface allows researchers to easily access the robot
controller and the motion planning scene, streamlining their interaction with
the robotic system. The move_group node uses the ROS param server to get
three kinds of information, including URDF, SRDF and Movelt configuration,
and talks to the robot through ROS topics and actions. Also, it communicates
with the robot to get current joint state information and to talk to the

controllers on the robot.

Movelt works with motion planners through a plugin interface. This allows
Movelt to communicate with and use different motion planner from multiple
libraries. The interface to the motion planners is through a ROS action or
service. In our proposed planning framework, the Open Motion Planning

Library (OMPL) is seamlessly integrated within the Movelt interface [117].
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Fig. 4.7: Overview of Movelt’s Move Group interface. [115]

This integration enables OMPL to generate motion planning solutions, which
can then be executed by Movelt to guide the robot towards the desired
goal position. The Movelt environment acts as the backend, providing the
necessary support for abstract planners within OMPL to address various robot
motion planning problems effectively. The library is designed so it can be
easily integrated into systems that provide the additional needed components,

such as ROS.

Additionally, OMPL offers a wide array of state-of-the-art sampling-based
planning algorithms to cater to different scenarios and requirements. In
this study, we employ the Rapidly-exploring Random Tress Connect (RRT-
Connect) algorithm as the robot motion planner [118]. RRT-Connect is an
extension of the concept of Rapidly-exploring Random Trees (RRT), which
is a random sampling-based algorithm that employs a tree structure for

exploring the configuration space. While traditional RRT algorithms can
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suffer from slow convergence, RRT-Connect addresses this issue through
the introduction of a greedy expansion approach. As shown in Fig. 4.8,
the depicted random tree 7'1 is situated on the left side, while the random
tree T2 is positioned on the right side. Here, x;nit denotes the starting
point of the path planning procedure, x,.and represents a randomly sampled
point, x,car signifies the node in the search tree that exhibits the closest
distance to z,.and, and x,ew indicates a newly expanded node along a fixed
search step length steplen, where x,ear serves as the parent node. A search
expansion encompasses two significant steps: random expansion and greedy
expansion. The random tree 7'1 performs the random expansion, adhering to
the conventional RRT algorithm. Conversely, the random tree 72 engages
in the greedy expansion. For the greedy expansion, a heuristic function is
employed as the greedy function. Specifically, 72 generates a novel node,
zpew’, in the direction defined by the angle between the target point z,0al
and the newly generated node x,ew from 7'1, while maintaining the same
fixed step length steplen as T'1. Subsequently, 72 adopts x,cw’ as the parent
node, progressively creating additional nodes towards the node x,ew of T'1,
with the information of each new node being overwritten into z,ew’. This
process continues until an obstacle is encountered or until the successful
connection of the two random trees is achieved. If the greedy expansion
fails to establish a connection between the two random trees, subsequent
search expansions necessitate the modification of their respective expansion
approaches. These modifications introduce potential alterations to their

strategies for future search expansions.
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Fig. 4.8: RRT-Connect planning algorithm [119].

By leveraging the capabilities of Movelt and integrating OMPL’s planning
algorithms, our framework enables effective motion planning for the robot
arm. The Move Group Interface within Movelt provides an intuitive interface
for researchers to specify high-level goals and constraints, while OMPL’s
planning algorithms, particularly the RRT-Connect, efficiently explore the

configuration space to generate feasible motion plans.

The overall framework of the proposed motion planning interface is depicted
in Fig. 4.9. The process begins with Movelt acquiring the robot’s current
joint pose information, which is used to compute both the current pose of
the robot and the position of the end-effector, serving as the starting pose.
When the operator issues a new motion command, the corresponding target
pose is passed into the Movelt environment. The starting and target poses
are then processed within the motion planning interface, where a collision-
free trajectory is computed using the RRT-Connect algorithm. If a feasible
solution cannot be found within the specified time limit, an error is returned,
prompting either a replanning attempt or a request for a new target pose
from the operator. Once a valid motion trajectory is successfully generated, it

is transmitted to the robot joint controller via ROS action communication.
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The controller then executes the motion plan, driving the physical robot to
the specified position. Upon reaching the target pose, the motion command is

considered completed, and the system awaits the operator’s next command.
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Fig. 4.9: Proposed robot motion planning module in the teleoperation system.

As depicted in Fig. 4.2, our robot arm motion planning interface receives
motion requests (operator commands) from the ROS endpoint, which is
connected to the VR interaction interface. However, it does not mean that
our robot can only perform replicating the human operator’s instructions.
Due to the features of ROS and ROS-based software like Movelt and other
motion planning methods, we can easily publish external command messages
that are aligned with the format predefined in our system. In other words, this
interface serves as a middleware for connection between the operator and the
physical robot manipulator while the command source can be easily changed.
Therefore, future research can be easily built upon this robot manipulator
motion planning module to explore more advanced topics, such as multi-

modal human-robot interaction and robot learning from demonstration.

2) Robot Hand Control

To achieve more intuitive robot control, a 6-DoF five-finger robotic hand was

implemented and attached to the robot manipulator as the end-effector. The
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robotic hand is equipped with six linear servo drivers, which utilize RS485
communication interfaces to enable precise and reliable control. These servo
drivers provide high torque output, allowing the robotic hand to generate
sufficient force for performing a variety of grasping tasks. In addition, the
robotic hand is integrated with built-in pressure sensors that enable it to
detect resistance applied to the fingers by measuring the current passing
through the motors. This functionality allows the hand to measure and
respond to the force exerted during grasping. By configuring adjustable
thresholds, the grip strength can be tailored to match the hardness or fragility
of the objects being manipulated. This feature significantly enhances the
robot hand’s versatility and adaptability, enabling it to handle a wide range

of objects with varying physical properties.

The main control unit interacts with the robot hand by reading from and
writing to its internal registers for status retrieval and control. Reading from
registers refers to the upper-level system retrieving the values of the internal
registers in the robot hand. The upper-level system sends a read command
to the robot hand, including the starting address and length of the register
group to be read where a group refers to a set of adjacent registers. Upon
receiving and successfully verifying the data, the robot hand sends back the
corresponding register data to the upper-level system. Similarly, writing to
registers involves the upper-level system writing corresponding data to the
internal registers of the robot hand which can be done in groups. The upper-

level system sends a write command to the robot hand, containing the starting
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Table 4.1: Command frame format for writing to the robot hand’s registers.

Value Description
byte[0] OxEB Header
byte[1] 0x90 Header
byte[2] Hands ID Robot hand ID
. Length of the
byte[3] Register Length+3 data frame
Write register
byte[4] 0x12 command flag
Lower byte of
byte[5] Address_L starting address
Higher byte of
byte[6] Address_H starting address
byte[7] Data[0]

Data to be written
to the registers

byte[7+Register Length-1] | Data[Register Length-1]

byte[7+Register Length] cheksum Checksum

address of the register group and the data to be written. After receiving and
successfully verifying the data, the robot hand sends a confirmation signal
back to the upper-level system. The command frame format for writing to

the robot hand’s registers is shown in Table 4.1.

To facilitate data transmission from the operator to the robot hand, a Python-
based upper-level interface is implemented. We take the angle value angle of
each degree of freedom as the input to the function, which corresponds to the
bending degree of the fingers. Through a series of transformations, the input
angles of each degree of freedom are adjusted to satisfy the input range of the
function. The input angles of each degree of freedom are then packaged and
processed to convert them into the required bytes, as we talked about earlier

in this section. These bytes are subsequently transmitted to the lower-level
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controller through the established serial communication. Similarly, we can
also retrieve current motor status, current magnitude for force sensing, and
other information from the robot hand’s lower-level controller using a similar

approach through our upper-level program.

Due to the inherent limitations of IMUs used in glove-based controllers,
such as their accuracy shortcomings and susceptibility to magnetic field
interference, the original angle 6; often exhibits noticeable instability. This
instability can adversely affect the teleoperation of the robot hand, leading to
imprecise and jerky movements. To address this challenge, a dedicated robot
hand controller is implemented to process the angle 6; obtained from the
quaternion converter. This controller generates direct control commands for

the robot hand, thereby ensuring smoother and more precise teleoperation.

To achieve stable and reliable control, a moving average filtering algorithm is
introduced into the controller [120]. This algorithm effectively mitigates the
impact of instability on the control signals. By applying the moving average
filter, fluctuations and noise in the angle measurements are smoothed out,
resulting in more reliable and consistent control commands. However, it is
important to consider the specific characteristics of each finger’s joint motion
when applying the filter. The thumb, for instance, typically has a relatively
smaller range of motion compared to the other fingers. To ensure that the
thumb of the robot hand does not move too slowly during operation, the

filter window size is adjusted specifically for the thumb. By reducing the
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window size, the filter becomes more responsive to changes in the thumb’s
angle, allowing for more dynamic and agile movements. On the other hand,
the filter window size for the other fingers remains larger, as their range of
motion is typically greater. Mathematically, if we denote the window size
of the filter for finger i as n;, the actual output angle value at time ¢ for
finger i, denoted as 6,i;), can be calculated using the moving average filtering

algorithm as follows:

0, 0, R eit,,
it — t—1 + t—2 + + n ) (4.7)

n;

7

The resulting filtered angle values are then transmitted to the upper computer
interface of the robot hand. At this interface, the filtered angles are further
processed and translated into target position parameters for each finger. This
ensures that the motion of the robot hand corresponds accurately to the
motion of the operator’s hand, enabling intuitive and synchronized control.
Consequently, the operator’s hand movements can correspondingly control
the motions of the robot hand, as shown in Fig. 4.10, achieving more smooth

and intuitive remote control.

Similar to the previously discussed robot arm, our robot hand also features
an open upper computer interface. This implies that, in addition to direct
control by human operators, we have the flexibility to input operational

commands through alternative means to accomplish the control of the robot
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Fig. 4.10: Human and robot hand motion mapping.

hand’s movements. Consequently, our robot hand control interface exhibits
scalability, allowing for future research in areas such as robot learning from

demonstration to be conducted based on our teleoperation system.

Thus far, we have discussed the control methods for both the robot arm and
the robot hand. Our system enables the operation devices to be intuitively
operated by human operators while also providing expandability for further

research and the addition of modules, among other possibilities.

4.3 User Study

This section is aimed at further validating the effectiveness and feasibility
of our proposed VR-based robot teleoperation system. To achieve this, we
conducted an empirical user study to test our system. We assumed that our

VR teleoperation system could facilitate intuitive robot control and could
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enhance operation efficiency and experience. Therefore, several participants
were invited to use the system and conduct certain tasks, after which they
were asked to fill in a questionnaire to express their feelings about this

approach.

4.3.1 Experimental Setup

To conduct the experiment, the UR5e collaborative robot was utilized, chosen
for its versatility and reliability [121]. The UR5e features a 6-DoF robotic
manipulator, a teach pendant, and a control box, making it well-suited
for a wide range of robotic applications. To enable object manipulation,
a 6-DoF five-finger robotic hand was mounted as the end-effector of the
manipulator. The experimental system operated on a Linux PC running the
ROS environment, which was connected to the UR5e’s control box via an
Ethernet connection. Additionally, the robotic hand was interfaced directly

with the Linux PC through the RS485 communication protocol.

For the VR component, the HTC VIVE Pro system was employed, comprising
a VR head mounted display (HMD) and a tracked joystick controller [122].
In addition, a five-finger glove-based controller equipped with multiple IMU
sensors was utilized, with a VR laser tracker installed on the wrist part to
capture its spatial position. These VR devices were modeled and rendered
within the Unity 3D environment, running on a Windows PC. To enhance

scene visualization, an RGB-D camera, Kinect Azure [123], was deployed
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to capture the assembly workspace from the side angle, providing real-time

point cloud feeds that were integrated into the virtual environment.

To compare the proposed VR-based teleoperation system with traditional
robotic control methods, a baseline approach, robot teach pendant, was
selected for the experiment. Teach pendant is a standard interface for collab-
orative robots that allows operators to program and control the robot through
a handheld device with buttons and a touch screen. Since this method does
not utilize an intuitive input mechanism similar to the glove-based con-
troller proposed in our system, the robot’s end-effector was replaced with a

conventional two-finger gripper during this approach.

In terms of participants, 9 participants were invited to act as human expert
operators to complete a gear pump assembly task using both two control
methods. We first introduced our method to each participant, including the
use of VR HMD and input devices, robot control mechanisms, and the system
workflow. Then, each participant took part in the gear pump assembly task
and completed the task 3 times per method. After completing the task, they

filled in a 5-point Likert scale evaluation questionnaire with 8 questions.

4.3.2 Results and Analysis

Some representative operation processes are presented in Fig. 4.11, and

the questions and questionnaire results are shown in Fig. 4.12. Overall, the
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Fig. 4.11: Representative sample results of the user study. (a) A participant is oper-
ating using VR equipment. (b) The Unity virtual environment interface
during the operation process, with the bottom section showing the opera-
tor’s perspective in VR. (¢) Grasping components during the gear pump
assembly operation.
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Fig. 4.12: Questionaire results (5-point Likert scale, average in parentheses).

results of the questionnaire reflect the general effectiveness of the proposed
method, with participants expressing predominantly positive attitudes toward
the system. Specifically, participants generally found the VR input scheme to
be intuitive, which may be attributed to the strategy of mapping the robotic
arm’s end-effector movements to hand motions, and the use of a more
intuitive glove-based input method with the mapping to a five-finger robotic
hand. Additionally, the use of a VR headset, combined with depth cameras for
point cloud data collection, provided visual feedback that was relatively easy

to comprehend. The overall experience of robot control and task completion
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using the system was reported as satisfactory, with efficiency significantly
exceeding that of traditional teach pendant-based control schemes, which
rely on 2D screens and physical buttons. Most participants agreed that VR
noticeably enhanced the user experience of robot teleoperation and expressed

interest in adopting further optimized versions of the system in the future.

However, the feedback from participants also highlighted several issues. First,
while the depth camera provided immersive 3D visual feedback, the relatively
low density of the point cloud caused difficulties when the operator’s virtual
camera in the Unity environment moved too close to the point cloud, making
fine details difficult to discern. This issue could be mitigated by adjusting the
size of the point cloud. In addition, since only a single depth camera was
placed on the side of the robot, operators could achieve relatively complete
visual perception of the point cloud only from certain specific angles. In
the future, multiple depth cameras may be placed around the robot and
calibrated to achieve more comprehensive point cloud rendering and visual
feedback. Furthermore, the robotic hand used in this experiment had lim-
ited degrees of freedom, making it challenging to execute precise grasping
motions aligned with the operator’s intentions and hand movements, thus
constraining efficiency. Employing a more dexterous and higher-precision
robotic hand could address this limitation, though it would come at the cost

of increased expense.
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The most significant challenge, however, was the discomfort caused by wear-
ing VR equipment. Many participants reported experiencing dizziness when
frequently changing view directions while operating in the virtual environ-
ment. Additionally, prolonged use of relatively heavy HMDs led to fatigue,
exacerbating dizziness and discomfort. Future research could explore the
use of more lightweight, all-in-one VR devices to alleviate these issues and
design more user-friendly virtual environments to reduce the frequency of

motion sickness occurrences.

4.3.3 Discussion

In the previous sections, we demonstrated that our proposed VR teleoper-
ation approach can perform manufacturing assembly tasks effectively and
efficiently. The interaction between human operators and robot manipulators
is achieved via the VR interaction interface, robot motion planning interface,

and the TCP connection between them.

Industrial manufacturing involves diverse equipment and robots. There-
fore, the adaptability and scalability of a teleoperation system determines
its ability to seamlessly transition from one manipulation environment to
another, accommodating different tasks under varying equipment conditions.
The VR interaction module of our proposed system is developed based on
Unity, a versatile platform that makes it adaptable to various VR devices.

Moreover, Unity possesses powerful rendering capabilities, enabling future
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enhancements such as reconstructing the environment through the capture
of 3D point clouds using depth cameras and rendering them within the Unity

environment.

Besides, our robot motion planning module also demonstrates adaptabil-
ity and extensibility, primarily due to its foundation on the open-source
framework ROS. ROS provides standardized interfaces and communication
protocols, making it compatible with numerous collaborative robots, indus-
trial robots, and other devices that offer corresponding ROS interfaces. The
node-based communication mechanism in ROS facilitates the easy addition
of new modules to the system. Additionally, our system utilizes the Movelt
motion planning module, which is integrated with ROS. Movelt offers open
interfaces and the flexibility to customize the choice of path planning algo-
rithms, even allowing for the use of proprietary or custom algorithms. This
flexibility ensures the scalability of the robot motion planning module to ac-

commodate different robot types and diverse path planning requirements.

Despite the promising prospects offered by the proposed teleoperation sys-
tem, there are still some limitations. One notable issue is the potential for
VR-induced motion sickness, which can affect some users due to the mis-
match between visual and vestibular cues in the immersive environment.
Additionally, prolonged use of the VR headset can lead to physical discom-
fort and fatigue, particularly due to the weight of the device and the strain

it places on the operator’s neck and eyes. These factors may impact the
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operator’s performance and reduce the overall usability of the system over
extended periods, highlighting the need for further ergonomic and hardware

improvements.

Furthermore, although the open-source nature of ROS and ROS-based soft-
ware packages offers convenience for development and enhances system
adaptability, it can also introduce challenges related to instability, ineffi-
ciency, and versioning issues. For instance, Movelt provides control and joint
information reading interfaces that are applicable to most robots, making
it an integral component of the motion planning module in our proposed
teleoperation system. However, the instability of Movelt path planning often
leads to planning failures in practical operations, resulting in the inability
to execute action commands provided by operators. Additionally, different
robot manufacturers may support different versions of ROS-based software,

which can pose challenges during the integration of different devices.

4.4 Chapter Summary

In this research, we propose an intuitive VR-based robotic control approach
for human-centric manufacturing tasks that enables human operators to
teleoperate robots in real-time. A key feature of the approach is the devel-
opment of a teleoperation interface that seamlessly integrates with the ROS
framework, facilitating efficient communication and data exchange between

the virtual environment and ROS-enabled robotic manipulators. The sys-
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tem integrates input devices designed to provide operators with an intuitive
control experience, combined with immersive visual feedback. This allows
operators to naturally perceive the workspace environment and effectively

control the robot, achieving higher efficiency in manipulation tasks.

Building on the work presented in this chapter, several potential research di-
rections can be explored in the future to further enhance the proposed system.
First, efforts can be made to optimize the operator’s experience and com-
fort, such as by incorporating ergonomic improvements and adopting more
advanced VR hardware with higher resolution and reduced weight. These
enhancements could mitigate user fatigue and improve long-term usability.
Second, refining the control algorithms to improve the precision and effi-
ciency of robot operations, particularly for tasks requiring fine manipulation,
offers another promising avenue for development. Additionally, the system
can serve as a foundation for research into learning from demonstration
(LfD), where data collected during teleoperation could be utilized to train
robots to autonomously perform similar tasks. These advancements would
not only improve the overall performance of the system but also expand its

applicability to a wider range of complex industrial tasks.
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Conclusions

As manufacturing evolves towards a human-centric paradigm, the integration
of human adaptability with robotic capabilities has become essential to meet
the growing demand for flexible and personalized production. This paradigm
emphasizes seamless interaction and harmonious coexistence between hu-
mans and robots, thus recognizing the critical role of perception, planning,
and execution as interconnected processes in enabling robots to operate ef-
fectively in shared environments. In this thesis, through an extensive review
of existing literature, key challenges have been identified in both robotic task
planning and control methods, which often fall short of meeting the flexibility
and adaptability required in dynamic manufacturing scenarios. Current task
planning approaches struggle to bridge the gap between high-level human
instructions and low-level robot action execution, while traditional robot
control and teleoperation systems are limited by unintuitive interfaces and
high operator cognitive loads. To address these issues, this thesis proposes
two solutions, respectively: an LLM-based robot task planning approach
that enhances the translation of human instructions into executable robot
commands, addressing challenges in planning, and a VR-based intuitive robot
control method that improves human-robot interaction in robotic control

tasks, addressing challenges in perception and execution. In this chapter,
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we summarize the key contributions and discuss the limitations and future

directions of this research in the following sections.

5.1 Contributions

Contribution 1: A multi-layer LLM-based robotic task planning approach has
been presented to bridge the gap between high-level human natural language

instructions and low-level executable robot commands.

To address the challenges in the planning process of human-centric manufac-
turing scenarios, we explore robot task planning guided by humans in the
context of human-robot interaction. Building on the limitations identified
in existing research and drawing inspiration from advancing pre-trained
LLMs, we proposed a three-layer LLM-based robot task planning framework.
This approach takes natural language instructions as input, supplemented
by visual assistance, and generates executable robot control code as the final
output. We provided a detailed explanation of the framework’s structure,
including the specific prompt design methods employed in each layer. An
experiment has been conducted to validate the feasibility and reliability of

the proposed method.

Contribution 2: A VR-based robotic control system has been proposed to
explore intuitive and seamless robot teleoperation and comprehensive visual

awareness.
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To tackle the issues of the perception and execution process in human-
centric manufacturing, we focus on exploring a solution for enhancing user
experience of robot control systems. Traditional robot control methods often
struggle with unintuitive interfaces and limited visual feedback, leading
to high operator cognitive loads. Therefore, in this work, VR technology
has been introduced to develop an intuitive and immersive robot control
interface. We design a VR-based teleoperation framework that combines
virtual environments and real robot workspace. This integration enables
operators to naturally control the robot by using intuitive input method,
while also receiving comprehensive visual feedback in a virtual environment.
Our framework also incorporates an efficient robot motion planning method
to enable seamless robotic control. Experimental validation demonstrates the

system’s potential to enhance task performance and operator experience.

5.2 Limitations

Despite the contributions made in this study, several limitations remain to be
addressed. Regarding the proposed LLM-based robot task planning method,
our reliance on pre-trained LLMs introduces challenges such as dependency
on a stable network connection and computational latency, which may hinder
deployment in certain environments. Training models locally could mit-
igate these issues but would require additional computational resources.

Although we implemented a vision-assisted multimodal input approach, the

5.2 Limitations
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current input method still has shortcomings, such as the lack of more com-
prehensive prior knowledge and environmental information. As a result,
generating highly accurate robot codes often requires substantial human
guidance. Therefore, the proposed method primarily focuses on task plan-
ning and bridging the gap between high-level and low-level commands,
without fully addressing the challenge of obtaining precise environmental
data. In the future, we plan to integrate computer vision-based modules to
provide more accurate environmental information, such as precise object co-
ordinates, which could enable the generation of more reliable and executable

robot commands.

For the proposed VR-based robot control system, as discussed in Chapter 4,
the existing limitations primarily stem from hardware constraints. Prolonged
use of VR devices may cause discomfort, which could potentially be mitigated
by adopting lighter and more ergonomic equipment. Although depth cam-
eras were employed to provide point cloud information, the current visual
feedback remains insufficiently detailed to offer precise operational feedback
for fine-grained tasks. In the future, a multi-camera setup may be adopted
to enhance visual perception; however, this approach could increase the
complexity of on-site deployment and impose additional constraints. Fur-
thermore, the experiments in this study were conducted over a local wired
network, ensuring low-latency operation. However, the system has yet to

be tested in internet-based or more complex wireless network environments.
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Future work will include testing in such scenarios to evaluate the system’s

real-time performance and stability for remote control applications.

5.3 Future Research Directions

Human-centric manufacturing emphasizes harmonious and efficient collabo-
ration and coexistence between humans and robots within shared workspaces.
This study proposed an LLM-based robot task planning method and a VR-
based robot control system, offering feasible solutions at the levels of per-
ception, planning, and execution. However, the current approach still has
several areas that require refinement and further development. In the final
section of this thesis, we outline potential future research directions building

upon the work presented in previous chapters.

(1) Integration of VR-Based Robot Teleoperation and Monitoring with LLM-

Enhanced Task Planning and Execution Framework.

The next research direction of this study is to integrate the LLM-based robot
task planning method discussed in Chapter 3 with the VR-based robot control
system presented in Chapter 4. This integration aims to enable operators
to leverage the assistance of pre-trained LLMs within a VR-based remote
immersive workspace. Operators would have the flexibility to guide or
control robots directly through intuitive VR inputs, facilitating natural and

seamless robot operations. Alternatively, they could utilize the LLM-based
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task planning method by providing natural language instructions to guide
robots in autonomous task execution. Furthermore, real-time monitoring

could be achieved through visual feedback within the virtual environment.

To enhance the VR interactive interface, additional elements could be intro-
duced, such as incorporating quantified information from the operational
site into the VR interface. This information could be presented through
floating UI components to provide operators with feedback, enabling a more
comprehensive perception and understanding of the overall scene. Achieving
these functionalities would require a more robust and integrated multimodal
system, making this integration the primary focus of our future research and

development efforts.

(2) To propose a robot learning from demonstration system based on our VR

teleoperation framework.

The VR-based robot interaction interface proposed in this study currently
supports only direct control and perception. In future research, we plan to
collect spatial motion data from operators using input devices for demonstra-
tion purposes, enabling robots to complete tasks through guided teaching.
Additionally, machine learning methods, such as DRL, could be employed to
allow robots to learn and imitate human behavior patterns, facilitating the

evolution from passive control to autonomous task execution.

Chapter 5 Conclusions



Moreover, the multi-layer framework adopted in our LLM-based task planning
approach offers potential to support the learning-from-demonstration process
at each layer. For instance, the task decomposition layer could provide task
guidance to human operators, reducing the time and effort required during
the demonstration process. Similarly, the code generation layer could offer
initial execution plans for the robot, accelerating the training process of

imitation learning.

Building on the research directions described above, along with other poten-
tial avenues of exploration, our overarching goal is to integrate the strengths
of humans, robots, and Al-based methods to develop a more comprehensive
human-centric manufacturing solution for the evolving landscape of smart

manufacturing.

5.3 Future Research Directions
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