THE HONG KONG
Q POLYTECHNIC UNIVERSITY
& Fenian

Pao Yue-kong Library
BEREEE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

ADVANCED OPTIMIZATION ALGORITHMS
FOR SPLIT DELIVERY VEHICLE ROUTING
PROBLEM WITH THREE-DIMENSIONAL
LOADING CONSTRAINTS

ZHANG HAN

PhD

The Hong Kong Polytechnic University
2025

The Hong Kong Polytechnic University
Department of Computing

Advanced Optimization Algorithms for Split Delivery Vehicle
Routing Problem with Three-Dimensional Loading

Constraints

ZHANG Han

A thesis submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy
February 2025

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of
my knowledge and belief, it reproduces no material previously published
or written, nor material that has been accepted for the award of any
other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: ZHANG Han

Abstract

The Split Delivery Vehicle Routing Problem with Three-Dimensional Loading Con-
straints (3L-SDVRP) is a combination of the Split Delivery Vehicle Routing Problem
(SDVRP) and the Three-Dimensional Packing Problem (3DPP), presenting signif-
icantly more challenges than the original two problems. There are two objectives:
minimizing the number of vehicles used (or maximizing the average loading rate),
and minimizing total travel distance. Solving the 3L-SDVRP is crucial for enhancing
logistics and transportation efficiency across various industries, impacting both oper-
ational efficiency and cost-effectiveness. This thesis advances the state-of-the-art in

solving the 3L-SDVRP through several key contributions.

First, we introduce novel and efficient search operators, specifically the Hierarchi-
cal Neighborhood Filtering (HNF) and Adaptive Knowledge-guided Search (AKS)
operators. These operators enhance solution diversity and search efficiency in our

evolutionary algorithm, significantly improving overall algorithm performance.

Second, we propose innovative methods to balance exploration and exploitation in
meta-heuristic algorithms, achieving this balance in both global and local search-

based algorithms.

Third, we develop a new multi-objective algorithm, the Pareto-based Evolutionary
Algorithm with Concurrent Crossover and Hierarchical Neighborhood Filtering Muta-
tion (PEAC-HNF). This algorithm effectively addresses the 3L-SDVRP under limited

computational resources by optimizing multiple objectives simultaneously, providing

decision-makers with a diverse set of optimal solutions.

Fourth, we propose new local search-based algorithms that enhance the state-of-the-
art SDVRLH2 algorithm, significantly reducing computational resource consumption
while maintaining a high solution quality. These improvements are achieved through
the integration of adaptive strategies and heuristic adjustments tailored to the specific

characteristics of the 3L-SDVRP.

Fifth, we introduce an adaptive interactive routing-packing strategy, which combines
the strengths of existing approaches to improve solution quality. This strategy adap-
tively adjusts packing patterns based on the vehicle’s remaining space and the space
requirements of different packing pattern at each node, ensuring efficient space uti-

lization and reducing the number of vehicles required.

Sixth, comprehensive experimental studies demonstrate the superior performance of
our proposed algorithms across various benchmark datasets. The results indicate that
our methods provide higher quality solutions and, in many cases, outperform existing

methods in terms of computational efficiency, especially for large-scale problems.

This thesis presents a suite of methodologies for addressing the 3L-SDVRP, each with
its distinct advantages and applicability to specific industrial scenarios. For smaller-
scale problems that necessitate a multi-objective approach to generate a diverse set
of solutions with varying degrees of balance between the two objectives, the PEAC-
HNF algorithm proposed in Chapter E is recommended. In contrast, for larger-scale
problems where computational resources are scarce, the efficient local search algo-
rithm presented in Chapter @ is a more suitable choice. For larger-scale problems
that require high-quality solutions, the AKS algorithm proposed in Chapter H is the
preferred option. Furthermore, given the importance of the interaction between the
packing and routing processes in solving the 3L-SDVRP, the adaptive routing-packing
strategy proposed in Chapter B offers a flexible approach that can be broadly applied

across various search algorithms, enhancing their overall effectiveness.

i

Overall, the methods proposed in this thesis, including the HNF and AKS opera-
tors and the balance of exploration and exploitation, are flexible and applicable to
other combinatorial optimization problems. This thesis contributes to the field of
combinatorial optimization by providing robust, efficient, and adaptive solutions to
the complex 3L-SDVRP, with significant implications for industrial applications and

future research directions.

iii

Publications Arising from the

Thesis

1. Han Zhang, Qing Li, and Xin Yao. (2024). “PEAC-HNF: A Novel Multi-
Objective Evolutionary Algorithm for Split Delivery Vehicle Routing Prob-
lems with Three-Dimentional Loading Constraints”, In IEFEE Transaction on
Emerging Topics on Computational Intelligence (TETCI). Early Access. DOLI:
10.1109/TETCI.2024.3499992
Supports Chapter E

2. Han Zhang, Qing Li, and Xin Yao. (2024). “PEACH: A Multi-Objective Evolu-
tionary Algorithm for Complex Vehicle Routing with Three-Dimensional Load-
ing Constraints”. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion (GECCO’24). pp.231-234. DOI:10.1145/3638530.3654333
Supports Chapter B

3. Han Zhang, Qing Li, and Xin Yao. (2025). “An Efficient Local Search Al-
gorithm for Split Delivery Vehicle Routing Problem with Three-Dimensional
Loading”. In Memetic Computing. DOI: 10.1007/s12293-025-00451-9
Supports Chapter @

4. Han Zhang, Qing Li, and Xin Yao. (2024). “An Adaptive Interactive Routing-
Packing Strategy for Split Delivery Vehicle Routing Problem with 3D Loading

v

Constraints”. In Proceeding of the Genetic and Evolutionary Computation Con-

ference (GECCO’24). pp. 249-257. DOI: 10.1145/3638529.3653991
Supports Chapter B

. Han Zhang, Qing Li, and Xin Yao. (2024). “Knowledge-Guided Optimization
for Complex Vehicle Routing with Three-Dimentional Loading Constraints”.
In the 18th International Conference on Parallel Problem Solving from Nature
(PPSN’24). DOI: 10.1007/978-3-031-70055-2_9

Supports Chapter B

Acknowledgments

When I started my PhD, I envisioned the day I would graduate, and now, that
moment is near, marking the end of my doctoral journey. In ancient China, scholars
pursued rigorous studies with the hope of excelling in imperial examinations (F}5&%
&), seeking to earn official positions, bring honor to their families, or achieve great
ambitions. This arduous journey was known as “ten years of hard study” (-F4-F€H).
Today, while the imperial examination system is long gone, diligent study remains the
primary way for many to achieve their aspirations. Counting from primary school, I

have been studying for over twenty years; from university, it has been a decade.

First and foremost, I express my heartfelt gratitude to my supervisors, Professor Xin
Yao and Professor Qing Li. There is an old Chinese saying, “A day as a teacher,
a lifetime as a father”, signifying the immense gratitude owed to one’s teacher. In
modern times, as we encounter many teachers from primary school to university,
the bond may not seem as profound. However, Professor Xin Yao stands as my
lifelong mentor. He has always shown me immense understanding and respect. He
guided my research with patience, imparting a high standard of scientific rigor and
deep academic insights. His mentorship in reading literature, conducting research,
designing algorithms, and writing papers has shaped my academic skills. Additionally,
his remarkable personal qualities have profoundly influenced me, teaching me how to
conduct myself and navigate life’s challenges. He has always been my guiding light

and role model. Without his guidance, I would not be who I am today. Professor

vi

Qing Li provided significant support and guidance, with insightful and constructive
advice crucial to my academic progress. His unfailing support at critical moments
and constant encouragement were invaluable, serving as a great source of inspiration

throughout my academic journey. I am forever grateful for their support.

Furthermore, the unwavering support from my family has been a driving force be-
hind my perseverance. Coming from a rural background, my parents’ hard work and
sacrifices created a nurturing environment that supported my education from univer-
sity to a doctorate. Their care and confidence in me have always been my source of
strength. I am also deeply grateful to my extended family members, including my

aunts, uncles, cousins, and grandparents, for their constant support and warmth.

I also extend my gratitude to the teachers, classmates, and friends who have accompa-
nied and helped me throughout this journey. Special thanks to Dr. Changwu Huang
and Dr. Liyan Song for their guidance and support during challenging times, and to
Prof. Ke Tang and Dr. Wenqi Fan for their kind and insightful advice. I appreciate
the career support from Dr. Bo Yuan, Dr. Shuyi Zhang, and Xialiang Tong, and the
help from Chenran Zhang, Zhi Yang, Yijing Liu, Dr. Weijie Zheng, Dr. Zilu Wang,
Yuannan Ji, Ruihang Hu, Yunfan Zhou, Qi Wang, Junhua Huang, Dr. Yufei Kuang,
Xiaoyan Zhao, Yunce Zhao, Dr. Gan Ruan, Dr. Xinming Shi, Dr.Da Ren, Jiahao
Wu, Zeyu Dai, and Dr. Borui Gong.

I would also like to acknowledge the support from several research funding programs,
including the National Key R&D Program of China (Grant No. 2023YFE0106300),
the National Natural Science Foundation of China (Grant No. 62250710682), the
Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Guangdong
Major Project of Basic and Applied Basic Research (Grant No. 2023B0303000010),
and the Program for Guangdong Introducing Innovative and Entrepreneurial Teams
(Grant No. 2017ZT07X386). Their support has been essential to the completion of

my research.

vii

In ancient Chinese philosophy, the I Ching (Book of Changes, 5 #8) uses the principles
of Yin (F&) and Yang ([%) and sixty-four hexagrams (7N PUE4S) to describe the
universe. The last hexagram is called “Fire Water Not Yet Complete” (k7K R
P #}). Fire, characterized by its upward movement, over water, characterized by
its downward movement, signifies a state where the two elements do not cross and
interact. This symbolizes incompletion and difficulty in achieving goals, hence ‘Not
Yet Complete’. This hexagram suggests that things are not yet finished but are full
of potential for development, as implied by the dynamic interaction of Yin and Yang.
The philosophy within this final hexagram reflects profound wisdom, indicating that

even at the end, there is boundless potential for growth and transformation.

“Life, you see, never is as good or as bad as one thinks. People are stronger or weaker
than one believes. Sometimes a simple phrase can make us cry, and other times
we discover that we have gone through incredible ordeals with courage.” — Guy de

Maupassant, A Life

viil

Table of Contents

i

Publications Arising from the Thesis iv
|Acknowledgments vi
List of Figures xiv
List of Tables xvi
h Introduction 1

|1.1 The Split Delivery Vehicle Routing Problem with Three—Dimensiona]|

ILoading Constra,ints‘ 1

|1.2 Challenges and Motivationé 3

|1.2.1 Global Search-Based Multi-Objective Optimization for 3L—SDVRP‘ 4

|1.2.2 Local Search-Based Single-Objective Optimization for 3L—SDVRP(6

h.2.3 Interactive Routing-Packing Strategy for 3L—SDVRP(..... 7

|1.2.4 Knowledge-Guided Optimization for 3L—SDVRP| 8

ix

|1.3 Contributions 10

|1.4 Thesis Organizationl 12
Background and Literature Review{ 16
I2.1 Mathematical Formulation of 3L-SDVRP 16
|2.1.1 Notations 17
|2.1.2 Mathematical Formulation 20
I2.2 Solution Approaches to 3L—SDVRP| 25
|2.2.1 Local vs. Global Search Approachesi 25
|2.2.2 Multi-Objective vs. Single-objective Approacheé 26
I2.3 Interactive Routing-Packing Strategiesl 27
|2.3.1 Routing-First-Packing-Second (R1P2)| 27
|2.3.2 Packing-First-Routing-Second (P1R2)| 28
D.3.3 PIR2 with 2C-SP. o o 29
I2.4 Search Operators and Step Sizes 30
|2.4.1 Commonly Used Search Operators for 3L—SDVRP| 30
|2.4.2 Search Step Sizes‘ 34
I2.5 Discussion| 35
A Multi-Objective Approach to 3L-SDVRP* 39
b.l Introduction| 40
B.2 The PEAC-HNF Aleorithm| oo 43
I3.2.1 Representation and Giant Tour Decodingj 43

B.2.2 HNF Mutationo 44

I3.2.3 Framework of PEAC-HNF Algorithm‘ 45
B.2.4 Other Details of PEAC-HNF Algorithm 49

B.?) Computational Studies‘ 55
B.S.l Experimental Settingi 55
l3.3.2 Comparative Analysié 58
l3.3.3 Further AnalysisI 68
I3.3.4 Discussion| 76

b.4 Conclusion‘ 78
|4 An Efficient Local Search Algorithm for 3L-SDVRP* 79
|4.1 Introduction| 80
|4.2 Algorithm Descriptionl 83
|4.2.1 Overview of Our Algorithml 83
|4.2.2 Improved Packing Method 85
|4.2.3 New Search Operatorﬁ 90
|4.2.4 Adaptive Splitting Strategyl 95
|4.2.5 New Post-Optimization Approachl 96
U.2.6 Other Detaild o oo 99

|4.3 Computational Studiesl 106
|4.3.1 Experimental Settingj 107
|4.3.2 Comparative Analysisl 108

X1

|4.3.3 Further Analysisi 109

|4.4 Conclusion‘ 127

An Adaptive Interactive Routing-Packing Strategy for 3L—SDVRP*1129

I5.1 Introduction| 130
I5.2Adaptive Interactive Routing-Packing Strategy‘ 132
b.2.1 The Proposed Routing-Packing Strategyl 132
b.2.2 The Overall Search Algorithm 134
|5.3 Computational Studies‘ 138
b.3.1 Experimental Setting 138
b.3.2 Analysis of Current Strategieé 139
b.3.3 Comparison to State—of—the—Ard 147
b.3.4 Parameter Sensitivity Analysis of Our Algorithm| 152
b.3.5 Further Analysisl 153
|5.4 Conclusion‘ 165
Knowledge-Guided Optimization for 3L-SDVRP*‘ 166
'6.1 Introduction| 167
6.2 Knowledge-Guided Optimization Algorithm for 3L-SDVRP 170
b.2.1 Extracting Heuristics from Domain Knowledgé 170
b.2.2 Adaptive Knowledge-guided Insertion (AKI) Operatoﬂ ..., 173
b.2.3 Adaptive Knowledge-guided Search (AKS) Algorithm| 179
b.S Computational Studies‘ 181

Xii

b.3. 1 Experimental Settinpf 181

5.3.2 Comparing to State—of—the—Artl 182

b.3.3 Further Analysisj 186

'6.4 Conclusion‘ 200

}7 Conclusion and Future Direction4 201
F1 Conclusion o oo 202
|7.2 Future Directions‘ 205

207

xiii

List of Figures

D.1

[llustration of vehicle container coordinate Systeml

D.2

Vertical 1ayers.‘

B.1

[lustration of Our Proposed PEAC-HNF Algorithml

B.2

Illustration of serial and concurrent sequence of the crossover and mu—l

abtion s,

B.3

The (u + A) survival strategyl

B.4

The flow chart of the packing process of a giant tourj

B.5

Evolutionary curves of PEAC-HNF and baselines.|

B.6

Comparison of PEAC-HNF with baseline methods under different ﬁt-l

Iness evaluations (FEs) on EMO instances.‘

B.7

The final nondominated population of PEAC-HNF and f;-first- f2-|

Isecond single-objective method.|

B.8

The final nondominated population of PEAC-HNF and fs>-first- f1-|

Isecond single-objective method.|

B.9

HV curves of PEAC-HNF and its Variants.|

b.l() Comparison of PEAC-HNF with its variants under different ﬁtnesé

levaluations on EMO problem instancesl

Xiv

61

68

69

70

U1

Packing plan with three basic layers (top-down VieW).‘ 85

Ilustration of two customers segment pattern (2C-SP). The mixed|

|layer contains boxes of both nodes.| 87
|4.3 Compatible and incompatible swapsl 94
|4.4 Illustration of cuboid space and box.| 104

Comparison of the space occupied by loading any two nodes togethex{

|versus loading them separately. 159
'6.1 Mlustration of giant tours and routes, 172
b.2 Two node insertion rules) 172
ki.3 Node distribution of different problem instances.‘ 193

6.4

Comparing LSP and LSC on modified instances with new node 1ay0uts.‘194

XV

List of Tables

D.1

3L-SDVRP problem properties considered in different research.‘ ... 18

D.2

Notations used in the mathematical formulation‘ 19

D.3

Commonly used search operators for VRPs with 3D loading constraints| 32

B.1

Description of problem instancesi 56

B.2

Hypervolume (HV) values (avg+std) of baseline 1, baseline 2, and|

IPEAC-HNF on EMO problem instances.| 60

B.3

Hypervolume (HV) values of MOEA /D-OM and our PEAC-HNF 0n|

IEMO problem instances.| 64

B.4

Total hypervolume of MOEA /D-OM and our PEAC—HNP1 66

B.5

Total hypervolume of MOEA/D-OM and our PEAC-HNF on HW]|

broblem Instances. 67

B.6

Hypervolume (HV) values of PEAC-HNF with different parent selec—l

kion methods (2000 FEs, 10runs) on EMO problem instances. CT :‘
browded Tournament. RRW = Rank-based Roulette Wheel. BT :‘

IBinary Tournament.‘ 74

XVvi

B.7

Hypervolume (HV) values of PEAC-HNF with different parent selec-l

Lion methods (8000 FEs, 10runs) on EMO problem instances. CT :‘
browded Tournament. RRW = Rank-based Roulette Wheel. BT :‘

IBinary T ournament.‘

B.8

CPU time analysis for the 3D packing component of the PEAC—HNP1

algorithm|

U1

Comparison results between SD and Ov on small-scale instances (#I

...............................

Comparison results between SD and Ov on large-scale instances (1003#node§200)1111

h.3

Comparison results between Ov and Ot on small-scale instances (#I

...............................

W4

Comparison results between Ov and Ot on large-scale instances (1003#n0de§200).‘115

W5

Notions for algorithms with different components in ablation experi-l

U6

Ablation experimental results (A1 VS SD) on small-scale instances (#I

...............................

W7

Ablation experimental results (A1 VS SD) on large-scale instanceé

klOOS#nodeSQOO).‘

1.8

Ablation experimental results (A2 VS A1) on small-scale instances (#I

...............................

1.9

Ablation experimental results (A2 VS Al) on large-scale instanceé

klOOS#nodeSQOO).‘

h.10

Ablation experiment results (A3 VS A2) on small-scale instances (#I

................................

xXvii

118

120

122

|4.11 Ablation experiment results (A3 VS A2) on large-scale instances (100§#n0de§200)1123

|4.12 Ablation experiment results (A4 VS A3) on small-scale instances (#I

|4.13 Ablation experiment results (A4 VS A3) on large-scale instances (100§#n0de§200)1125

|4.14 CPU time analysis (in seconds) of our proposed algorithms.| 127

|5.1 Comparisons between P1R2 and R1P2 (30 runs) on small-scale in—l
Istances (# node <100).‘ 141

I5.2 Comparisons between P1R2 and R1P2 on large-scale instances (100 S‘

B onode <200)) . . . 143
I5.3 The impacts of 2C-SP on small-scale instances.| 146
I5.4 The impacts of 2C-SP on large-scale instances.‘ 148

I5.5 Comparison results between our method (Ours) and SDVRLH2 (S) on|
Ismall—scale instances (# nodes < 100).‘ 150

I5.6 Comparison results between our method (Ours) and SDVRLH2 (S) 0n|
harge—scale instances (100$#node$200).‘ 151

I5.7 Comparative analysis for our algorithm with different parameter con—l

hgurations (A1, A2, and A3) on small-scale instances (# nodes < 100).‘ 154

|5.8 Comparative analysis for our algorithm with different parameter con—l

hgurations (A1, A2, and A3) on large-scale instances (100S#n0de£200).‘155

|5.9 Comparative analysis for our algorithm with different parameter con—l

hgurations (A3, A4, and A5) on small-scale instances (# nodes < 100).‘ 156

I5.10 Comparative analysis for our algorithm with different parameter con~|

hgurations (A3, A4, and A5) on large-scale instances (100S#node§200).‘157

xviil

I5.11 Comparison results between our method (Ours) and P1R2 (P) 0n|

lsmall—scale instances (# nodes < 100).‘ 161
I5.12 Comparison results between our method (Ours) and P1R2 (P) on|

harge—scale instances (100S#n0de§200).‘ 162
|5.13 Comparison results between our method (Ours) and R1P2 (R) 0n|

Ismall-scale instances (# nodes < 100).‘ 163
I5.14 Comparison results between our method (Ours) and R1P2 (R) 0n|

harge—scale instances (100S#n0de§200).‘ 164
'6.1 Comparison of step size of Swap, Shift, and AKI operator.‘ 175
'6.2 Comparison results of our AKS algorithm and SDVRLH2 (SD) 0n|

Ismall-scale instances (# node < 100).‘ 184
b.?) Comparison results of our AKS algorithm and SDVRLH2 on large-l

Iscale instances (100$#node$200))| 185
ki.4 Comparison results of LSP and LS algorithm on small-scale instanceé

(# node < 100). . .« o oo 187
b.5 Comparison results of LSP and LS algorithms on large-scale insta,nceé

(100<#n0de<200)) 188
b.6 Comparison results of LSC and LS algorithm on small-scale instanced

(# node < 100). . .« o oo 189
b.? Comparison results of LSC and LS algorithms on large-scale instance4

(100<#n0de<200). 190
ki.8 Comparison results of LSP and LSC algorithm on small-scale instanceé

(# node < 100). . . o o o 191

Xix

6.9

Comparison results of LSP and LSC algorithm on large-scale instancesi

(100<#n0de<200)) 192

6.10

Description of new instanceé 195

6.11

Comparison results between LSP and LSC algorithms on new instances.|196

6.12

Comparison results between AKS and LSP algorithms on new instances.|197

6.13

Comparison results between AKS and LSC algorithms on new instances.|198

6.14

Comparison results between AKS and LSrdm (rdm) algorithms on newl

................................. 199

Chapter 1

Introduction

In this chapter, we begin with a basic introduction to the Split Delivery Vehicle
Routing Problem with Three-Dimensional Loading Constraints (3L-SDVRP) in Sec-
tion . Subsequently, in Section , we discuss the challenges faced in researching
the 3L-SDVRP and the motivations behind our study. In Section , we summarize
the contributions made by this thesis. Finally, Section outlines the organization
of the thesis.

1.1 The Split Delivery Vehicle Routing Problem

with Three-Dimensional Loading Constraints

Vehicle Routing Problems (VRPs) constitute a critical category of combinatorial op-
timization problems (COPs), boasting a broad spectrum of practical applications,
notably in logistics and supply chain management [3] [98]. These problems have
attracted considerable attention in both academic and industrial circles over several
decades. Although numerous efficient and effective optimization algorithms for VRP

variants with simple constraints have been developed [29] [97], the varied and in-

Chapter 1. Introduction

tricate nature of constraints encountered in diverse real-world scenarios means that
existing research does not entirely satisfy the complex demands of industrial applica-
tions. Encouraged by advancements in hardware and the expansion of computational
capabilities, researchers are increasingly focusing on more complex VRPs, marked by
more elaborate constraints and larger scales, thus moving closer to addressing the
complexities of real-world industrial settings. As a result, the study of these complex

VRPs continues to be a key area of focus in the field.

This thesis investigates the Split Delivery Vehicle Routing Problem with Three-
dimensional Loading Constraints (3L-SDVRP), a complex combinatorial optimiza-
tion challenge that integrates two NP-hard problems: the split delivery vehicle rout-
ing problem (SDVRP) and the three-dimensional packing/loading problem (3DPP).
This integration not only amplifies the complexity but also broadens the practical
relevance of 3L-SDVRP, making it significant for both theoretical exploration and
real-world application [26] [[72].

The 3L-SDVRP requires strategic vehicle routing and 3D box packing, with each
vehicle starting at a starting point (depot), traveling to various customer nodes to
load designated boxes, and then proceeding to an endpoint. Depending on different
scenarios, the starting and ending points may or may not be the same. Vehicles
and boxes are treated as 3D rectangles [13]. The boxes at each node vary in 3D
size (length, width, and height) and must be packed into vehicles in a manner that
optimizes space usage while adhering to 3D loading constraints. Distinct from sim-
ple VRP variants ([52] [54] [71]), the 3L-SDVRP is characterized by three principal

features that increase its complexity and applicability to real scenarios:

o Limited capacity: Each vehicle has a finite capacity, and its 3D loading space

is considered as a large 3D rectangular space.

o Split Delivery: In typical VRP settings, each node is serviced by only one

vehicle, with all deliveries from that node loaded onto that vehicle. In real-world

1.2. Challenges and Motivations

applications, vehicles have finite capacities, and the quantity and 3D sizes of
boxes at each node may vary greatly. Such differences can result in situations
where the total load from a node exceeds a vehicle’s maximum capacity, or
when visiting a node, a vehicle’s remaining capacity is insufficient for all boxes.
Therefore, the 3L-SDVRP allows for split deliveries where multiple vehicles can

service a single node.

e 3D Loading Constraints: Unlike traditional VRPs that consider only the vol-
ume and/or weight of boxes, 3L-SDVRP requires careful planning of the loading
sequence and placement of cuboid-shaped boxes within each vehicle. This re-
quires advanced approaches to optimize both the vehicle routing and the 3D
packing of boxes, ensuring that each vehicle’s load does not exceed its capacity

while maximizing the use of available space.

The dual objectives of 3L-SDVRP are to minimize the number of vehicles used (or
maximize the average vehicle loading rate) and the total travel distance, thereby
reducing operational costs and enhancing delivery efficiency. This is particularly
challenging due to the need to balance two conflicting objectives and ensure the
load feasibility of multiple vehicles. The mathematical formulation of 3L-SDVRP is

provided in Chapter 2.

1.2 Challenges and Motivations

Exact algorithms, such as linear and integer programming, have played a central
role in the solution of many combinatorial optimization problems. However, the 3L-
SDVRP problem combines two well-known NP-hard subproblems: the vehicle routing
problem (VRP) and the three-dimensional loading problem (3DLP). As a result, it is
characterized by highly nonlinear and nonconvex constraints, as well as an extremely

large and complex solution space. While exact methods, such as linear programming,

Chapter 1. Introduction

integer programming, and branch-and-bound, are theoretically capable of finding the
optimal solution, they are infeasible for such complex problems. It should be empha-
sized that the 3L-SDVRP features highly nonlinear and strongly coupled constraints
between routing and three-dimensional loading. This intrinsic nonlinearity makes the
problem intractable for exact optimization approaches, regardless of instance size. In
most cases, it is not even possible to construct an exact mathematical model that
faithfully represents all the practical constraints, let alone solve it optimally using
standard methods such as linear or integer programming. Consequently, metaheuris-
tic and other intelligent optimization algorithms are not merely preferred, but are

essentially the only feasible approach for tackling such problems.

Attempting to relax 3L-SDVRP to be solvable by exact methods proves impractical
for two main reasons: (1) reducing it to simpler VRP or TSP variants still remains
NP-hard, where exact algorithms struggle with large-scale problems; (2) reducing its
complexity by relaxing crucial constraints would lose essential features of the problem,
differing significantly from the real-world scenario and potentially making solutions
inapplicable or even infeasible. Consequently, intelligent optimization algorithms
(e.g., meta-heuristic algorithms) stand out as effective and prevalent approaches for
solving such complex problems. These methods are based on a generate-and-test it-
erative strategy [106], where each iteration involves the generation of a new set of
potential solutions from the existing ones using various search operators, with the
hope of finding improved solutions. This process is iteratively repeated to ultimately

find an approximate optimal solution.

1.2.1 Global Search-Based Multi-Objective Optimization for
3L-SDVRP

In some studies, global search-based methods have been employed to solve the 3L-

SDVRP, including MOEA/D [51], estimation of distribution algorithms [50], and

1.2. Challenges and Motivations

genetic algorithms [65], [70]. Global search-based algorithms offer the advantage of
exploring the solution space more comprehensively, which increases the likelihood of
finding near-optimal or optimal solutions. They are particularly effective in avoiding
local optima, a common issue in complex optimization problems. However, these al-
gorithms typically require significant computational resources and time due to their
extensive search processes, especially when applied to large-scale problems. For com-
plex combinatorial optimization problems like the 3L-SDVRP, global search-based
algorithms are often inefficient and need improvement in solution quality. Moreover,
their convergence rates can be slower compared to local search-based algorithms, mak-

ing them less practical for problems requiring real-time or near real-time solutions.

Furthermore, the 3L-SDVRP has two objectives. Some studies attempt to solve it
using multi-objective evolutionary algorithms to balance vehicle loading ratios (or the
number of vehicles required) and travel cost. Moura [65] tackled the 3L-SDVRP using
the Multi-Objective Genetic Algorithm (MOGA) but relaxed some vital constraints,
potentially limiting the solution’s relevance to real world scenarios. Recently, Liu et
al. [b1] introduced a Multi-objective Evolutionary Algorithm based on Decomposition
by Offline Machine learning (MOEA /D-OM) to address the 3L-SDVRP. They utilized
a machine learning model to predict the feasibility of packing arrangements for given
routes, thus bypassing packing computations for solutions without feasible packing
arrangements and reducing the algorithm’ s runtime. However, the success of this
strategy relies on the algorithm generating a substantial number of packing infeasi-
ble routes during its search process. Moreover, the offline-trained machine learning
model encounters generalization challenges. Therefore, the use of multi-objective ap-
proaches in addressing the 3L-SDVRP is still relatively unexplored. Furthermore, the
time-intensive 3D packing process in 3L-SDVRP demands substantial computational

resources which are often limited in real-world scenarios [47].

At present, addressing the 3L-SDVRP as a multi-objective problem and improve the

performance of global search-based algorithms within limited computational resources

Chapter 1. Introduction

remains a significant research challenge. We explore this topic in detail in Chapter a,

developing a novel multi-objective algorithm for 3L-SDVRP [119].

1.2.2 Local Search-Based Single-Objective Optimization for
3L-SDVRP

Local search-based algorithms are commonly employed to solve 3L-SDVRP, including
conventional local search [[10] [66], tabu search [14] [107], and simulated annealing [[13].
These algorithms are highly effective due to their speed and ability to find high-quality
solutions within a localized region of the solution space. They excel in fine-tuning
solutions and are particularly efficient for problems with smaller search spaces or
well-defined neighborhoods. However, their primary disadvantage is the tendency to
get trapped in local optima, which limits their ability to comprehensively explore
the global solution space. This limitation makes them less effective for problems
with complex landscapes or multiple optimal solutions, where a broader perspective

is necessary to avoid suboptimal results.

Additionally, in real-world scenarios, minimizing the number of vehicles is often more
critical than reducing travel distances due to the significant higher costs associated
with acquiring and maintaining more vehicles and hiring additional drivers compared
to the expenses incurred from increased travel distance. Consequently, most research

treats 3L-SDVRP as a single-objective problem [10] [13] [14] [50] [66] [76] [107].

Given these insights, we explored the local search-based approach to solve 3L-SDVRP.
In alignment with existing research, we addressed 3L-SDVRP as a single-objective
problem, prioritizing vehicle reduction as the primary objective and total travel dis-
tance as a secondary objective. We also employed widely used datasets to ensure our
results are comparable with existing studies. In Chapter @, we develop an effective

local search-based method to solve 3L-SDVRP efficiently.

1.2. Challenges and Motivations

1.2.3 Interactive Routing-Packing Strategy for 3L-SDVRP

Fundamentally, any 3L-SDVRP solution must address both routing decisions (deter-
mining which nodes each vehicle should visit) and packing decisions (designing the
3D packing plan for each vehicle). These decisions substantially influence the final
solution quality, making the interactions between routing and packing during the
solution process crucial for algorithm performance. In our study, we refer to these in-
teractions as “interactive routing-packing strategies”. The term “interactive” denotes
the mutual influence of routing and packing decisions: routing decisions dictate which
nodes’ boxes a vehicle will load, while packing decisions directly affect the number of

boxes that can be loaded within the vehicle’s limited capacity.

Prevailing interactive routing-packing strategies are mainly divided into two paradigms:
routing first packing second (R1P2), and packing first routing second (P1R2). The
R1P2 strategy [14] adapts packing decisions during the route search procedure, al-
lowing them to change in response to routing decisions. On the contrary, the P1R2
strategy [10] implies making packing decisions before routing, thereby reducing the
complexity of the routing phase to a direct SDVRP. Moreover, [10] introduced a two-
customer segment pattern (2C-SP) into P1R2 strategy to further reduce the number
of vehicles. The 2C-SP method involves combining two nodes after the packing de-
cisions of each node have been made, and then repacking them. If creating a 2C-SP

saves more loading space than packing each node individually, it is maintained.

In the R1P2 strategy, packing decisions are made dynamically during the route plan-
ning process. This approach offers considerable flexibility, as packing can be adjusted
in response to routing changes. However, this flexibility comes at the cost of in-
creased computational complexity, as each routing adjustment necessitates re-solving
the packing problem. On the other hand, the P1R2 strategy determines packing de-
cisions prior to route planning. This sequence requires solving the packing problem

only once, which significantly speeds up the solution process. Nonetheless, the draw-

Chapter 1. Introduction

back of P1R2 is its rigidity: once packing decisions are made, they cannot adapt to
subsequent routing changes. This lack of adaptability can hinder efforts to minimize

the number of vehicles used.

Motivated by the analysis provided, we introduce an adaptive interactive routing-

packing strategy [115] in Chapter H

1.2.4 Knowledge-Guided Optimization for 3L-SDVRP

As problems from real-world scenarios become increasingly complex and scale larger,
enhancing the efficiency and performance of meta-heuristic algorithms becomes crit-
ically important. Traditional meta-heuristic methods solve problems without relying
on domain-specific knowledge. These methods assume zero prior knowledge about
the problem, necessitating a search from scratch [87]. However, as we delve deeper
into solving a problem, our understanding improves, and we gather useful informa-
tion. This accumulated knowledge can assist in solving related problems more effec-
tively and efficiently, rather than starting the search anew each time. By integrating
domain-specific knowledge into the optimization process, known as knowledge-guided
optimization, the efficiency and effectiveness of search algorithms can be significantly
enhanced. This concept leverages insights, patterns, and heuristics derived from
expert knowledge, historical data, and problem-specific characteristics to guide the
search process more intelligently. For instance, in dynamic and uncertain environ-
ments, knowledge extracted from previously solved problems can be transferred to

solving newly emerged problems, aiding in obtaining better solutions [80] [81] [82].

Search operators are crucial in meta-heuristic algorithms as they determine the search
direction and step size in the solution space. Many general search operators have
been designed for solving vehicle routing problems (VRPs) and other combinatorial
optimization problems (COPs), such as swap operators, shift operators, k-opt opera-

tors [35], etc. Traditional search operators, while commonly used, often lack specific

1.2. Challenges and Motivations

domain knowledge crucial for complex or large-scale problems, leading to poor ef-
ficiency and solution quality. Some research addresses this by integrating domain
knowledge into search operators to enhance efficiency and solution quality. Exam-
ples include the merge-split (MS) operator for the capacitated arc routing problem
(CARP) [89], and the region-focused operator for the multidepot multidisposal-facility
multitrip capacitated vehicle routing problem (M3CVRP) [49]. Such domain-specific
operators require a tailored approach, designing unique operators for different prob-

lems based on their specific characteristics.

Additionally, search step size, defining the extent of solution change by search oper-
ator per iteration, is crucial for algorithm performance. Methods for 3L-SDVRP can
be categorized into local search-based methods [10] [13] [14] [66] [107] with smaller
step sizes and global search-based methods [50] [51] [65] [70] with larger ones. Al-
though local search is efficient, it risks falling into local optima, whereas global search
tends to converge more slowly. Given the crucial role of search step size, researchers
have proposed various methods to combine or balance both large and small step sizes.
Yao [104] initially employed a large search step size in simulated annealing (SA) and
theoretically demonstrated that SA with a large neighborhood size is more effective
than with a small neighborhood size. He further extended this idea by developing
the adaptive large neighborhood search method, validating its effectiveness on the
Traveling Salesman Problem (TSP) [105]. Building on this foundation, further re-
search has been conducted [63] [79] [86]. Additionally, the Memetic Algorithm [64]
combines global and local search, effectively balancing step sizes and applying them
across various combinatorial optimization problems (COPs) [17] [89]. However, these
methods cannot be directly applied to 3L-SDVRP due to the problem’s intricate con-
straints. Moreover, they lack the domain knowledge guidance which is important for
effectively tackling such a complex problem. Thus, achieving a balanced trade-off

between large and small step sizes in this context remains a significant challenge.

In Chapter B, we apply domain knowledge to design an Adaptive Knowledge-guided

Chapter 1. Introduction

Insertion (AKI) operator, which we integrate into a local search framework to develop
an Adaptive Knowledge-guided Search (AKS) algorithm [117]. The AKS algorithm
leverages this domain knowledge to navigate the search process and balances large

and small step sizes, thereby enhancing the quality of solutions.

1.3 Contributions

The main contributions of this thesis are as follows:

o More Efficient Search Operators: We introduced new, efficient search op-
erators. Specifically, the Hierarchical Neighborhood Filtering (HNF) operator
increases offspring diversity and enhances search efficiency. Additionally, we
developed the Adaptive Knowledge-guided Search (AKS) operator, which in-
tegrates domain knowledge and features larger search step sizes. These new
operators, when combined with search algorithms, significantly improve algo-

rithm performance.

« New Methods for Balancing Exploration and Exploitation: We ex-
plored methods to balance exploration and exploitation in meta-heuristic al-
gorithms, proposing new solutions for achieving this balance in both global
and local search-based algorithms. In global search-based algorithms, we uti-
lized crossover for exploration and the HNF operator for exploitation. In local
search-based algorithms, traditional neighborhood operators were used for fine-
grained local search (exploitation), and the AKI operator was employed for
larger step size exploration. Our approach achieves a well-balanced exploration

and exploitation, thereby enhancing the algorithms’ search capabilities.

e Novel Multi-Objective Algorithm: We proposed a new multi-objective al-

gorithm, the Pareto-based Evolutionary Algorithm with Concurrent crossover

10

1.3. Contributions

and Hierarchical Neighborhood Filtering mutation (PEAC-HNF). This algo-
rithm effectively solves the 3L-SDVRP under limited computational resources,

demonstrating its ability to balance multi-objective optimization efficiently.

o« More Efficient Local Search Algorithms: Building on the state-of-the-
art algorithm SDVRLH2 [10], we developed new local search algorithms that
significantly reduce computational resource consumption. Furthermore, the
Adaptive Knowledge-guided Search (AKS) algorithm, which integrates the AKI
operator within a local search framework, enables more efficient discovery of

high-quality solutions.

« New Interactive Routing-Packing Strategy: We proposed a new inter-
active routing-packing strategy that builds upon existing strategies. This new
approach combines the strengths of current strategies, significantly improving

solution quality.

« Extensive Experimental Studies: Through extensive experimental valida-
tion and comparative analysis, we demonstrated the superior performance of our
proposed algorithms across various widely used benchmark datasets, showing

significant improvements in solution quality and/or computational efficiency.

Uniqueness and Significance of This Thesis What distinguishes this thesis
from prior works is its comprehensive and integrated approach to the 3L-SDVRP—a
problem that tightly couples the complexities of vehicle routing and three-dimensional
packing. Rather than decoupling these aspects or addressing them in isolation, the
proposed algorithms are specifically designed to capture and exploit their interaction,
introducing adaptive routing-packing interactive strategy and knowledge-guided op-

erators that leverage the structural properties of the problem.

A key feature of the proposed methods is the explicit balance between exploration

and exploitation. The AKI operator and concurrent crossover—mutation schemes

11

Chapter 1. Introduction

are developed to broaden the search space (exploration), while the HNF mutation
and multi-neighborhood operators intensify the search around promising solutions

(exploitation). This balance results in both high-quality and robust solutions.

Experimental results (see Chapters @—B) demonstrate that our methods consistently
outperform state-of-the-art algorithms in both solution quality and computational ef-
ficiency across multiple standard benchmarks. For instance, the proposed PEAC-HNF
algorithm achieves better results than state-of-the-art multi-objective algorithms on
all EMO competition instances. On datasets B-Y, Sha, and SD, the AKS algorithm
reduces the number of vehicles by over 58 and the total travel distance by 12.78%
(7.74%) on small (large)-scale problem instances compared to SDVRLH2 [10]. These

results exemplify the practical impact and superiority of the proposed innovations.

It is noteworthy that the methods proposed in this thesis, such as the HNF opera-
tor, the AKI operator, and the approach for balancing exploration and exploitation,
are not limited to solving the 3L-SDVRP. They can be applied to other complex

combinatorial optimization problems as well.

Overall, these advancements not only address fundamental challenges in combina-
torial optimization, but also provide practical tools for real-world applications in

logistics and supply chain optimization.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

o In Chapter E, we introduce the notations and mathematical formulation of the
3L-SDVRP in detail. We also review the literature, focusing on methodological
classifications for solving 3L-SDVRP, interactive routing-packing strategies, and

the diverse search operators and step size balancing techniques.

12

1.4. Thesis Organization

o In Chapter , we develop a Hierarchical Neighborhood Filtering (HNF) mu-
tation operator, characterized by: (1) Using diverse neighborhood structures
like swap, 2-opt, and 3-opt to create a wide range of offspring from a single
parent, thus improving solution diversity and algorithm exploitation capabil-
ity. (2) It adopts a hierarchical approach to mutation, prioritizing individuals
with higher nondomination ranks for more focused search on promising can-
didates. (3) The offspring undergo a filtering process, where some individuals
are removed if they meet specific criteria, enhancing search efficiency and re-
ducing unnecessary fitness evaluations. By incorporating the HNF mutation
into the Evolutionary Algorithm (EA) framework, we have developed a novel
Pareto-based Evolutionary Algorithm with Concurrent crossover and Hierarchi-
cal Neighborhood Filtering mutation (PEAC-HNF) for 3L-SDVRP. The HNF
mutation enhances PEAC-HNF’s exploitation capabilities, complementing the
EA’s inherent exploration strength, thereby achieving a better balance between
exploration and exploitation. Additionally, PEAC-HNF executes crossover and
mutation processes concurrently, allowing an individual to undergo either or
both processes in parallel, but not in a sequential manner. Our PEAC-HNF
optimizes the algorithm’s efficiency and effectiveness in navigating the problem
space. PEAC-HNF was evaluated against baselines and state-of-the-art algo-
rithm for multi-objective 3L-SDVRP, e.g., MOGA [65] and MOEA /D-OM [51],
demonstrating its efficiency. Further experimental studies validated the crucial

role of the HNF mutation on improving algorithmic performance.

o In Chapter @, we introduce a new algorithm based on the state-of-the-art SD-
VRH2 algorithm [10] for solving 3L-SDVRP, which significantly enhances search
efficiency and solution quality. In our proposed algorithm: (1) We improve
the box loading, subspace generation, and 2C-SP construction methods in the
loading procedure to enhance the loading performance and reduce the num-

ber of vehicles used. (2) We design three new search operators that leverage

13

Chapter 1. Introduction

the problem’s characteristics as the heuristic information to improve search
efficiency. (3) We propose an adaptive splitting strategy that dynamically de-
termines whether to split a node’s boxes based on the status of the vehicle and
node, thereby further reducing computational resource consumption. (4) We
develop a new post-optimization method that can further reduce the number

of vehicles.

e In Chapter H, we propose an adaptive interactive routing-packing strategy that
combines the advanced features of existing interactive strategies. Our strategy
introduces adaptability into the routing process, allowing for a choice between
independent loading of a node (aligned with the P1R2 strategy) and joint load-
ing of consecutive nodes (utilizing the idea of 2C-SP). This flexible approach,
which permits loading adjustments in response to route modifications, effec-
tively reflects the core principle of the R1P2 strategy. The effectiveness of
our strategy has been rigorously validated through computational experiments.
Empirical evidence indicates that our strategy yields solutions that are com-
parable to or significantly superior to existing strategies, particularly in terms
of the number of vehicle used. Moreover, despite the crucial role of interactive
routing-packing strategies in addressing complex 3L-SDVRP, there has been
a lack of comprehensive investigation or comparison of these strategies. Our
research addresses this gap by offering a detailed comparative analysis and
evaluation of existing interactive routing-packing strategies, substantiated by

extensive experimental validation.

e In Chapter H, we incorporate domain knowledge into the optimization algo-
rithm to direct the search process effectively. First, heuristics are extracted
from domain knowledge. Specifically, based on the “giant tour” representation,
we develop a hypothesis about “what constitutes a good giant tour” through
observation. We use a node insertion approach to change the order of nodes

in the current giant tour to improve its quality and propose two node inser-

14

1.4. Thesis Organization

tion rules. Then, an Adaptive Knowledge-guided Insertion (AKI) operator is
developed which can adaptively select suitable node insertion rules based on
node distribution. The proposed AKI operator utilizes domain knowledge and
has a large search step size. The AKI operator is integrated into a local search
framework to form the Adaptive Knowledge-guided Search (AKS) algorithm.
In the AKS algorithm, traditional search operators conduct searches with small
step size (exploitation), while our proposed AKI operator performs searches
with larger step size (exploration), thereby enhancing the search capability of
the algorithm. Comprehensive experimental results also demonstrate the effec-

tiveness of the AKS algorithm.

In Chapter H, we conclude this thesis and discuss potential directions for future

research.

15

Chapter 2

Background and Literature Review

In this chapter, we begin by detailing the notations and mathematical formulation
of 3L-SDVRP. We then present a comprehensive literature review, investigating dif-
ferent search paradigms, interactive routing-packing strategies, and search operators.
This thorough review has allowed us to grasp the current state of research, pinpoint

shortcomings in existing studies, and clearly establish the motivation for our research.

2.1 Mathematical Formulation of 3L-SDVRP

The 3L-SDVRP includes starting and ending points, along with multiple customer
nodes. Each node contains boxes of different weight, 3D sizes (length, width, height)
and quantities. Vehicles, originating from the starting point and available in multiple
types with different 3D capacities, visit these nodes to load boxes and then transport
them to the endpoint. This requires decisions on the number of vehicles and the route
for each vehicle. Additionally, a packing scheme must detail which boxes are assigned
to which vehicles, their spatial arrangement, and the order of loading. Notably, the
starting and ending points can be either the same [10] [13] [14] [50] [65] [66] [76] [107]

or different [51] [70], depending on the specific industrial scenarios, and there is no

16

2.1. Mathematical Formulation of 3L-SDVRP

limit to the number of vehicles available.

The 3L-SDVRP has two objectives: minimizing the number of vehicles used or max-
imizing the average vehicle loading rate, and minimizing the total travel distance
(1td). Some studies treat 3L-SDVRP as a multi-objective problem, considering the
practical need to balance both objectives in industrial applications [51], [65]. How-
ever, extensive research indicates a general preference for minimizing the number of
vehicles over reducing travel distances [10] [13] [14] [66] [76] [107]. This preference is
primarily due to the significantly higher costs associated with acquiring, maintaining,
and staffing additional vehicles, which far exceed the expenses from extended travel
distances. In such research, when evaluating two solutions, s; and s9, 51 is considered
superior if it involves fewer vehicles than ss, or, if the number of vehicles is the same,

s1 has a lower ttd than ss.

For problem formulation, different studies may consider varying specific problem char-
acteristics and constraints. Tab. El] summarizes the problem properties considered
in our study and other research on the 3L-SDVRP. It is evident that the problem ex-
hibits varying characteristics in different scenarios, which must be taken into account

when designing algorithms.

2.1.1 Notations

Assuming that there are N customer nodes/sites, a starting point (with index 0),
and an ending point (with index N + 1). The distances between all pairs of nodes
are known a priori. Additionally, N sets of boxes are provided, with all boxes at
each node belonging to a single set. Each box is characterized by its weight and 3D
dimensions (i.e., length, width, and height). The objective is to allocate vehicles to
transport all boxes from the nodes to the ending point, with all vehicles departing

from the starting point.

The notations used in the mathematical formulation are shown in Tab. @ In 3L-

17

Chapter 2. Background and Literature Review

Table 2.1: 3L-SDVRP problem properties considered in different research.

Literature BD HV TW WL LIFO Re Or VS FS VN
Liu et al. [p1] X v X V v X v v X X
Rajaei et al. [76] o7 X v v v X VX
Pei et al. [[70] X v X / X v v X X
Bortfeldt and Yi [10] v v X/ X v v X X
Chen et al. [14] v X v / X X X X X V
Li et al. [50] v v X v v X VvV vV X X
Yiand Bortfeldt 107 v X X X X X v v X X
Ceschia et al. [13] v v X/ v v X X/
Moura and oliveira [66] v/ X v X X X v X v V
Moura [65] - X v X X X X X v -

Ours v X X / v X v X v X

Note: BD = back to depot; HV = heterogeneous vehicles; TW = time window;
WL = weight limit; LIFO = last-in-first-out; Re = reachability; Or = orientation;
VS = vertical stability; RS = robust stability; F'S = full support stability; SS =
surrounded stability; LBS = load bearing strength; VN = vehicle number limit;

The symbol “-” means the relative entry is not mentioned in the literature.

SDVRP, both the vehicle containers and the boxes are treated as rectangular solids.
We use one vertex of the vehicle container as the coordinate origin for convenience,
aligning the x-, y-, and z-axes with the container’s length, width, and height, respec-
tively. This configuration is depicted in Fig. , allowing the placement of each box
within the vehicle to be uniquely determined by coordinates in this system. Decision
variables include the number and type of vehicles utilized (n), each vehicle’s route,
and the packing arrangement, detailing which boxes are assigned to which vehicles,

their 3D coordinates, and the sequence in which the boxes are loaded into each vehicle.

18

2.1. Mathematical Formulation of 3L-SDVRP

Table 2.2: Notations used in the mathematical formulation

Notations Description

G=(V,E) road network, a complete directed graph

the set of vertices; 0 is the starting point;
V={0,1,...,N,N+1}
N +1 is the ending point; 1 ~ N are customer nodes

E={(,))|i,jeV,i#j} thesetof edges

d;j non-negative travel distance

O={K;|li=1,....,.M} one delivery order/instance; 1 < M < N

the set of boxes that need to be transported in the node i;
Ki = {1,...,1”1[}
m;: # boxes in the node i

Al CK; the set of boxes that are loaded in vehicle ¢ in the node i
Ly, Wi, h the length, width, and height of the box &

k> Vi the weight and volume of the box k

Xks Vi» 2k the coordinate of the center of the box k

the length, width, height of container vehicle ¢;
Lt,Wt,Ht, t=].,...,n
n: total # vehicles used to transport boxes

O t=1,...,n the weight capacity of container vehicle ¢

= 1 if vehicle ¢ travels from node i to j;

X'
Y = 0 otherwise; (i,j =0,1,--- ,N+1; t=1,-- ,n)
Xk1> Vi1, Zk1 the smallest x, y, and z coordinates of the box k in the vehicle.
X2 V2 Zk2 the largest x, y, and z coordinates of the box k in the vehicle
the smallest x, y, and z coordinates of the container of
Xt15 Vi1, 2rl
the vehicle ¢ (the origin of the coordinate system)
X125 Y12, 242 the largest x, y, and z coordinates of the container of the vehicle ¢

19

Chapter 2. Background and Literature Review

:

Figure 2.1: Hlustration of vehicle container coordinate system.

2.1.2 Mathematical Formulation
The following mathematical formulation is constructed based on [] and [@] There
are two objectives relevant to both routing and packing aspects of the problem.

The first objective:

Y-y loading rate,

min fi =1- or min fi =n (2.1)
n
In Eq. (R.1):
loading rate, = max (v_rate;,,w_rate;) (2.1a)
SN ket Vi
v_rate; = i B (2.1b)
V;
SN Thear qx
w_rate; = % (2.1c)
t

20

2.1. Mathematical Formulation of 3L-SDVRP

n : the number of vehicles used.

The second one:

=
=

n N+1 N+

. t
min fo = d,-le-j

(2.2)

=1 i

I
o
~.
I
o

Objective f; focuses on maximizing the average vehicle loading rate or minimizing
the number of vehicle used, while objective f5 aims to reduce the total travel distance

(1td) across all vehicles.

The constraints are as follows.

N
DX =1t=1,..,n (2.3)
j=1
N
D Xy =L t=1...,n (2.4)
i=1
N N+1
DXy =) Xi k=1 Nit=1...n (2.5)
i=0 j=1
N
Z X <1, j=1...Nit=1,....n (2.6)
i=0si#j
61 (xk2 —xp1) (xi2 —x41) <0, k,l e Aly i=1,...,N; t=1,...,n (2.7)

82 (ye2 —yi) vz —yk1) <0, k,le Al i=1,...,N; t=1,...,n (2.8)

03 (zk2 —zi1) (zi2 —zxk1) <0, k,le Al i=1,...,N; t=1,...,n (2.9)

21

Chapter 2. Background and Literature Review

Z [min {xp2 — Xk1, Xk2 — Xp1} - Min {yp2 — Y1, Yk2 — Yp1}] = p - wilk

bEBk

01,09,03 € {0,1}, 01+02+03>1

keAf., t=1,...,n;i=1,...,N;

By : the set of boxes under and touching the box k in vehicle ¢

D k<0 i=1...Nit=1. .n
keA!
Xkl = X1, kEAf;izl,...,N;tzl,...
Vi1 = Vi1, keAlt-;izl,...,N;t:L...
2kl = Zsl, kEAl’-;izl,...,N;t:L...

Xr2 < X9, keA;;iZL...,N;t:l,...

Yi2 < Y2, kEAll-;izl,...,N;tZL...

22

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

2.1. Mathematical Formulation of 3L-SDVRP

Zk2 < 7492, kEAlt-;i=1,...,N;t=1,...,n

Ik > Il,

if Eq. (b.ﬂ, 1‘2.214, tZQS‘) or (b.ﬁ, b.24], I‘Z2d) hold simultaneously.

In Eq. (R.21):

k € Al leA;; i,j=1,...,N; t=1,...,n

I, I; : loading order of box k and [in vehicle R,

(xk2 —x71) (X12 = x%1) > 0

(Y2 = yi1) (yiz = yk1) >0

(zk2 —zn1) (zi2 — zk1) > 0

k1 2 22

Xkl 2 X2

The constraints of 3L-SDVRP primarily focus on two aspects:

o Vehicle Routing Constraints

23

(2.20)

(2.21)

(2.21a)

(2.21b)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

Chapter 2. Background and Literature Review

— Validity and Flow Conservation: Equations ()f(@) define valid route
formation. Each route initiates at the starting node and terminates at the
ending node. Additionally, flow conservation must be maintained, meaning

that the number of vehicles entering and exiting a node must be equal.

— Single-Visiting: Equation (@) enforces a single-visit requirement, ensur-

ing that each customer is visited by the same vehicle only once.
» 3D Loading Constraints

— Non-Qverlapping: Equations (@)—() specify that boxes within the

same vehicle must not overlap in any dimension.

— Non-Splitting: Equations ()f() dictate that each box can be loaded

into only one vehicle.

— Supporting Stability: Equation () is the full supporting stability con-
straint in which By represents the set of all boxes that are under box k£ and
in contact with the bottom surface of k. Thus, constraint () requires
that the supporting area must be greater than or equal to the percentage

p of the bottom area of the box (p = 1.0 in our research).

— Weight Capacity: Equation () restricts the total weight of loaded boxes
to the vehicle’s weight capacity.

— Size Constraint: Equations ()7() ensure that boxes must be con-
tained within the vehicle’s container without exceeding the container walls

or doors.

— Last-In-First-Out (LIFO): Equations (P .21)—() specify that boxes loaded

later must be unloaded first, once a vehicle departs from a node.

24

2.2. Solution Approaches to 3L-SDVRP

2.2 Solution Approaches to 3L-SDVRP

Given the high complexity of 3L-SDVRP, exact algorithms are ineffective, thus intel-
ligent optimization methods, particularly meta-heuristic algorithms, emerge as more
appropriate and effective methods for such intricate challenges. In studies of 3L-
SDVRP, the emphasis is on route searching with a feasible 3D loading plan for each

route as a fundamental constraint.

2.2.1 Local vs. Global Search Approaches

Based on the range and strategy of their exploration within the solution space, algo-
rithms for the 3L-SDVRP can be categorized into global search-based methods and

local search-based methods.

Local search approaches for solving 3L-SDVRP encompass classic local search ([[L0]
[66]), tabu search ([14] [107]), and simulated annealing ([13]). For global search,
MOEA/D ([51]), estimation of distribution algorithms ([60]), and genetic algorithms
([65] [70]) are employed. Memetic algorithms [52] [89], although not yet applied
to solving the 3L-SDVRP, represent another class of meta-heuristic algorithms that

incorporate local search strategies into global search algorithms.

Local search-based algorithms perform well in exploitation by intensively searching
around known good solutions. However, they risk entrapment in local optima, par-
ticularly in complex solution spaces. Global search-based algorithms are adept at
exploration, covering a wide area of the solution space and potentially avoiding local
optima. However, they usually encounter challenges such as higher computational
costs and slower convergence rates, especially in the context of complex and large-
scale problems. Memetic algorithms are known for their effective balance between
exploration and exploitation, which is effective for addressing a wide range of com-

binatorial optimization problems (COPs). However, these algorithms often demand

25

Chapter 2. Background and Literature Review

more computational resources than global search-based algorithms and require the

design of tailored local search strategies.

2.2.2 Multi-Objective vs. Single-objective Approaches

Additionally, since 3L-SDVRP inherently involves two objectives, some research treats
it as a multi-objective problem. Moural [65] tackled 3L-SDVRP from a multi-objective
perspective using the Multi-Objective Genetic Algorihtm (MOGA) but relaxed some
vital constraints, potentially limiting the solution’s relevance to real world scenarios.
Recently, Liu et al. [51] proposed the Multi-objective Evolutionary Algorithm based
on Decomposition by Offline Machine learning (MOEA /D-OM), which is the latest
method for solving the multi-objective 3L-SDVRP. It leverages a pre-trained machine
learning model to assess packing feasibility for routes, discarding infeasible ones. This
approach improve runtime efficiency by avoiding unnecessary 3D packing calculations
on infeasible solutions. However, its success largely depends on generating many
packing infeasible solutions during the search. The use of a pre-trained model for
packing evaluation could also limit the algorithm’s adaptability and performance
across diverse problem instances. Moreover, the authors recognize that the method

is limited in its ability to handle larger-scale problems effectively.

Although the 3L-SDVRP has two objectives, in practice, minimizing the number
of vehicles is considered more crucial than reducing the total travel distance (z¢d)
[10]. This prioritization is due to the substantially greater expenses associated with
obtaining and maintaining additional vehicles, as well as hiring more drivers, com-
pared to the additional travel costs. Consequently, it is conventionally treated as
a single-objective problem in most literature [[10] [13] [14] [50] [66] [76] [107], where
the primary objective is the optimization of the number of vehicles used, with the
minimization of the t¢d as a secondary objective. SDVRLH2 is the state-of-the-art

single-objective method for 3L-SDVRP. It consists two stages: the determination of

26

2.3. Interactive Routing-Packing Strategies

the packing arrangement for each node and the implementation of local search for
the routing process. SDVRLH2 is renowned for its exceptional performance across
diverse problem instances, underscoring its leadership in the field. However, it has
limitations. The packing algorithm, which packs two boxes at a time, generates only
two sub-spaces, potentially wasting space and increasing vehicle usage. The routing
component relies on traditional search operators without leveraging problem-specific
heuristics, thus reducing search efficiency. Additionally, the outer loop, which varies
the maximal admissible splitting costs, incurs significant computational cost. Finally,

the post-optimization phase, which implements 3-opt, is computationally expensive.

2.3 Interactive Routing-Packing Strategies

Fundamentally, any 3L-SDVRP solution must address both routing decisions (de-
termining which nodes each vehicle should visit) and packing decisions (designing
the 3D packing plan for each vehicle). These decisions substantially influence the
final solution quality, making the interactions between routing and packing during
the solution process crucial for algorithm performance. We refer to these interac-
tions as “interactive routing-packing strategy”. The term “interactive” denotes the
mutual influence of routing and packing decisions: routing decisions dictate which
nodes’ boxes a vehicle will load, while packing decisions directly affect the number
of boxes that can be loaded within the vehicle’s limited capacity. Prevailing interac-
tive routing-packing strategies are mainly divided into two paradigms: routing-first-

packing-second (R1P2), and packing-first-routing-second (P1R2).

2.3.1 Routing-First-Packing-Second (R1P2)

The R1P2 strategy is widely used to tackle VRPs with 3D loading constraints [21] [46]

[47] [b7] [p9] [60]. The R1P2 strategy seamlessly incorporates the packing process into

27

Chapter 2. Background and Literature Review

the routing process. For each route, it generates a unique loading plan. The algorithm
then iteratively optimizes these routes to enhance solution quality. Importantly, any
changes made to a route will naturally modify the set of boxes to be loaded, demand-
ing immediate adjustments in the corresponding loading plan. In brief, the R1P2
strategy solves multiple 3D packing problems as it optimizes routes. When obtaining
loading arrangements, meta-heuristic algorithms [14] [21] [46] [47] [60] [77] [120], local
search techniques [14] [65] [66], or a bundle of heuristic algorithms [8] [13] [42] [50]
[67) [p9] [69] [76] [91] are generally utilized.

2.3.2 Packing-First-Routing-Second (P1R2)

The P1R2 strategy, first introduced by [9], tackles packing and routing as two inde-
pendent phases. During the packing stage, each node is evaluated as an isolated 3D
packing problem (3DPP), with all packing decisions being made before the routing
process. The loading plan remains transparent to the routing stage, which means the
algorithm does not delve into the specifics of loading. Instead, it utilizes essential
information such as the total space occupied by boxes at each node, which affects
the routing decisions. This strategy effectively simplifies the problem, essentially

transforming it into a VRP without the complexities of 3D loading.

A vertical layer approach are commonly adopted in P1R2. Introduced by [27] and
later extended in the context of the 3DPP [7] [12] [25] [56], a vertical layer is a
rectangular space occupied by multiple boxes. As illustrated in Fig. @, each layer’s
width and height dimensions correspond to the vehicle’s y and z axes, respectively.
The depth of the layer, measured along the x-axis, is established by the first box
loaded into the layer. In the P1R2 strategy, each node is treated as a separate 3DPP.
Solving this problem results in boxes at a given node forming one or multiple layers
with varying depths. During the routing phase, a layer is considered the smallest

loading unit; its internal configuration of boxes remains invariant. Consequently,

28

2.3. Interactive Routing-Packing Strategies

‘]

N af
layer-defining | N ’

box y\ \ /,

layer depth

Figure 2.2: Vertical layers.

distinct layers from the same node can be loaded onto different vehicles.

2.3.3 P1R2 with 2C-SP

The SDVRLH2 algorithm, as proposed by [], is currently the most advanced method
for tackling 3L-SDVRP. Utilizing the P1R2 strategy, this algorithm introduces an
inventive packing pattern termed the two-customer segment pattern (2C-SP) based

on vertical layers.

In the SDVRLH2, each node, represented as np, seeks to form 2C-SPs with the closest
30% of its neighboring nodes in terms of physical distance. For any neighbouring node
ns, a “mixed layer” is formed by choosing one vertical layer from each node according
to a set rule. Combined with the remaining vertical layers from n; and ns, this mixed

layer results in a unique 2C-SP for the node pair (n1, ns).

To quantify the efficiency of this pattern, a “saving value”, represented as 4, is cal-

culated. This value measures the space saved by a 2C-SP. Each node n; will attempt

29

Chapter 2. Background and Literature Review

to establish 2C-SPs with its neighbours through two different procedures and deter-
mine the corresponding ¢ values. The 2C-SP that results in the highest 6 value—
meaning it saves the most space—is selected as the preferred option. For a detailed

introduction on 2C-SP, please refer to [10].

In the SDVRLH2 algorithm, vertical layers and 2C-SPs are established prior to rout-
ing, aligning with the P1R2 strategy. The goal of combining two nodes into a 2C-SP
is to minimize the space taken up by boxes, which in turn reduces the number of

vehicles needed.

2.4 Search Operators and Step Sizes

Meta-heuristic algorithms are a class of iterative search algorithms based on a generate-
and-test strategy, typically involving a repetitive process of continuously generating,
evaluating, and improving solutions until certain stopping criteria are met [106].
Search operators are one of the core components in these algorithms, determining
how the algorithm explores the solution space and improves the current solution. In
each iteration, search operators are used to generate new solutions, thereby exploring
the solution space. Search operators determine the search direction and the search
step size during the search process. Their selection and design process are not only
related to the problem being solved but also to the representation, and they directly

impact the performance of the optimization algorithm, thus playing a crucial role.

2.4.1 Commonly Used Search Operators for 3L-SDVRP

Tab. @ shows the search operators commonly used in the existing literature for solv-
ing VRPs with 3D loading constraints. These operators can be divided into two types:
intra-sequence and inter-sequence operators. Intra-sequence operators act on a single

sequence of nodes, affecting changes within the same sequence, such as reordering,

30

2.4. Search Operators and Step Sizes

inverting, or swapping nodes. Inter-sequence operators, on the other hand, act on
two different sequences of nodes, typically involving operations such as transferring

nodes from one sequence to another or swapping nodes between sequences.
o Swap Operator: Exchange the positions of two nodes.

o Shift Operator: Move a node to another position.

o 2-opt Operator: Breaks two edges and reconnects two new edges to alter the

node order.

o 3-opt Operator: Breaks three edges in a node sequence and reconnects three

new edges.

o Mowve & Rotate Block: This operator groups identical boxes into blocks for a

block sequence representation. It selects and inserts blocks between sequences.
o Split Operator: Divides a node sequence into two non-empty sequences.

o Best Cost Route Crossover: Selects two node sequences, inserts two consecutive

nodes from each into the other.

o I-point Crossover: Randomly divides two node sequences at a selected position

and recombines them.

e 2-point Crossover: Randomly selects two points in two node sequences and

exchanges the segments.

There are also other search operators, such as the Partially Mapped Crossover (PMX)
B8] [93] [99], Order Crossover (OX) [4] [[74], Sequence Based Crossover (SBX) [[73]
[89], and Route Based Crossover (RBX) [73], etc. Although these operators have
not been used in existing research to solve VRPs with 3D loading constraints, they
serve as general search operators and can be used to solve various Combinatorial

Optimization Problems (COPs).

31

Chapter 2. Background and Literature Review

Table 2.3: Commonly used search operators for VRPs with 3D loading constraints.

Type
Search operators Literature

Intra- Inter-

sequence sequence

[10] Bortfeldt & Yi (2020), [14] Chen et al. (2020),
[107] Yi & Bortfeldt (2018), [13] Ceschia et al. (2013),
[47) Koch et al. (2020), [77] Reil et al. (2018),
[120] Zhang et al. (2015), [103] Wei et al. (2014),
Swap v v
48] Lacomme et al. (2013), [110] Zachariadis et al. (2013),
[6] Bortfeldt (2012), [121] Zhu et al. (2012),
[23] Fuellerer et al. (2010), [L02] Wang et al. (2010),
[

92] Tarantilis et al. (2009), [26] Gendreau et al. (2006)

10] Bortfeldt & Yi (2020), [14] Chen et al. (2020),

107] Yi & Bortfeldt (2018), [L00] Turky et al. (2017),

13] Ceschia et al. (2013), [42] Junqueira & Morabito (2015),
69] Pace et al. (2015), [L20] Zhang et al. (2015),

103] Wei et al. (2014), [6] Bortfeldt (2012),

109] Zachariadis et al. (2012), [121] Zhu et al. (2012),

102] Wang et al. (2010), [92] Tarantilis et al. (2009),

20] Gendreau et al. (2006), [23] Fuellerer et al. (2010)

Shift v v

[14] Chen et al. (2020), [66] Moura & Oliveira (2009),
[77] Reil et al. (2018), [69] Pace et al. (2015),

2-opt v v [120] Zhang et al. (2015), [103] Wei et al. (2014),
[48] Lacomme et al. (2013), [121] Zhu et al. (2012),
[102] Wang et al. (2010), [92] Tarantilis et al. (2009)

3-opt v [77] Reil et al. (2018), [9] Bortfeldt & Homberger (2013)
Move & rotate block v [13] Ceschia et al. (2013)
[65] Moura (2008), [34] Hanshar & Ombuki (2007),
Best cost route crossover v
[67] Ombuki et al. (2002), [68] Ombuki et al. (2006)
[14] Chen et al. (2020), [120] Zhang et al. (2015),
[103] Wei et al. (2014), 48] Lacomme et al. (2013),
1-point crossover v
[109] Zachariadis et al. (2012), [L02] Wang et al (2010),
[92] Tarantilis et al. (2009)
2-point crossover v [B4] Ruan et al. (2013), [62] Miao et al. (2012)

Note: Intra-sequence refers to an operator acting on a single sequence of nodes; inter-sequence refers to an

operator acting on two sequences of nodes.

32

2.4. Search Operators and Step Sizes

Although general operators are straightforward to comprehend, easy to implement,
and applicable across various COPs, their lack of specialized domain knowledge guid-
ance significantly limits their effectiveness in the search process. This limitation
becomes especially evident in problems with complex constraints and large scales.
Therefore, in the context of complex VRPs such as 3L-SDVRP discussed in this the-
sis, general operators are inadequate for addressing these challenges efficiently and

effectively.

Some research has placed an emphasis on the integration of domain knowledge into
search operators, aiming to enhance search efficiency and yield solutions of superior
quality. An example of this advancement is the Merge-Split (MS) operator, developed
by Tang et al. [89] for the Capacitated Arc Routing Problem (CARP). This operator
comprises two key components: Merge and Split. The Merge component operates
by randomly selecting a specified number of routes, denoted as p, and combining
their tasks into an unordered list. Subsequently, the Split component employs a
Path Scanning (PS) heuristic [28] along with five distinct rules to generate a series of
ordered lists. These lists are then segmented into routes utilizing Ulusoy’ s splitting
procedure [101]. This operator effectively integrates domain knowledge via the PS
heuristic and Ulusoy’s method and embodies the concept of a large step size [104] in
route optimization, through its innovative approach of merging and dividing routes.
Lan et al. [49] introduced two distinct region-focused operators for the Multidepot
Multidisposal-facility Multitrip Capacitated Vehicle Routing Problem (M3CVRP).
These operators begin by randomly selecting a route, denoted as R, and a node in
Ry, referred to as k. Within a defined radius p around node k, a node ¢ not part
of Ry is identified. The subsequent operation can occur in one of two ways: either a
Region-Focused Single-Point Swap (RFSPS), which involves exchanging node k& with
node ¢, or a Region-Focused Segment Swap (RFSS), which requires the substitution

of the entire segment following nodes k and c.

Search operators that integrate domain knowledge, like these, are generally tailored to

33

Chapter 2. Background and Literature Review

specific problems or their unique characteristics. This specificity demands a case-by-
case analysis, leading to the design of distinct search operators based on the domain

knowledge relevant to each problem.

2.4.2 Search Step Sizes

In meta-heuristic algorithms, the search step size denotes the magnitude of changes
applied to solutions in each iteration, influencing the algorithm’s capacity for effective
exploration and exploitation of the solution space. Larger step sizes enable more
extensive exploration of the solution space, but risk missing the optimal solution,
whereas smaller step sizes concentrate on thoroughly exploiting the best solution
found within a specific region. Additionally, the search step size directly impacts the

convergence speed of the algorithm.

When tackling 3L-SDVRP, search methods like classic local search [[10] [66], tabu
search[14] [107], and simulated annealing [13] offer efficiency with smaller step sizes,
but may get stuck in local optimal solutions. In contrast, evolutionary algorithms
[b1] [65] [70] and estimation of distribution algorithms [50], using larger step sizes,

explore more broadly but with higher computational costs and slower convergence.

Researchers have actively explored methods to combine or balance small and large
search step sizes. For example, Yao employed a larger search step size in a local
search-based algorithm—Simulated Annealing (SA), and theoretically showed that
the SA with a larger neighborhood size are more effective than SA with a smaller one
[104]. Shaw developed the Large Neighborhood Search (LNS) algorithm for simple
VRPs, known for its substantial solution modifications (i.e., large search step size)
[86]. This algorithm has been applied to various VRP variants [19] [85]. Subsequent
advancements in local search-based methods have seen the introduction of dynamic
adjustments in neighborhood sizes [63] [105], proving beneficial in a range of VRPs
[11] [108]. Building upon the principles of LNS, Ropke and Pisinger developed an

34

2.5. Discussion

adaptive large neighborhood search algorithm, initially for addressing the Pickup and
Delivery Problem with Time Windows (PDPTW) [[79]. This methodology has been
further extended to apply to other VRP variations, such as VRP with Transshipment
Facilities (VRPTF) [22], VRP with Multiple routes and Time Windows (VRPMTW)
2], and VRP with Cross-Docking (VRPCD) [32], illustrating its effectiveness in di-
verse routing challenges. The Memetic Algorithm (MA) [64], which effectively merges
local and global search methods and incorporates both small and large step sizes, is
recognized for its high time complexity and requires the design of tailored local search
strategies. Nevertheless, the MA has been extensively applied to a diverse array of
COPs, including the Capacitated Arc Routing Problem (CARP) [89], a variety of
VRP variants [31] [b8], the Job Scheduling Problem (JSP) [24] [30] [61], and the
Graph Coloring Problem (GCP) [17] [b5], among others. However, directly apply-
ing these methods to 3L-SDVRP is ineffective as they do not incorporate domain
knowledge which is crucial for addressing such a complex problem. Thus, achieving a

balanced trade-off between large and small step sizes remains a significant challenge.

2.5 Discussion

The high complexity of 3L-SDVRP presents significant challenges for solving it us-
ing exact algorithms. Consequently, intelligent optimization algorithms, particularly
meta-heuristic algorithms, are recognized as effective and widely-used approaches for
addressing complex problems like 3L-SDVRP. These methods operate on a generate-
and-test iterative strategy [106], where each iteration generates a new set of potential
solutions from the existing ones using various search operators, aiming to find im-
proved solutions. This process is repeated iteratively to approximate an optimal

solution. Several key factors influence the performance of these algorithms:

o A critical factor is the choice of search operators, such as crossover operators,

35

Chapter 2. Background and Literature Review

mutation operators, and neighborhood operators. These operators are core
components of meta-heuristic algorithms, determining how the algorithm nav-
igates the search space. Their importance lies in maintaining solution diver-
sity, effectively balancing exploration and exploitation, and adapting to specific
problem characteristics. By designing and utilizing effective search operators,

meta-heuristic algorithms can more efficiently find high-quality solutions.

o The balance between exploration and exploitation is crucial to the success of
these algorithms. Exploration requires conducting a broad search within the
solution space to discover new potential solutions, thereby supporting innova-
tion and diversity. Conversely, exploitation focuses on intensifying the search
around already identified effective solutions, aiming to refine them further. The
performance of different algorithms depends significantly on their emphasis on

either exploration or exploitation.

o In meta-heuristic algorithms, the search step size refers to the extent of change
in solutions during each search step. The selection and adjustment of search
step size are crucial to the algorithm’ s performance and efficiency. It di-
rectly impacts the algorithm’ s ability to explore and exploit, its convergence
speed, adaptability to different problem characteristics, and robustness. Effec-
tive step size selection and adjustment strategies can significantly enhance the
performance of meta-heuristic algorithms, enabling them to more effectively

find high-quality solutions.

In Section @, we summarize the different solution approaches for solving 3L-SDVRP,
focusing on local/global search-based algorithms and single/multi-objective algorithms.
Current research indicates that the exploration of global search-based multi-objective
optimization algorithms for solving 3L-SDVRP remains insufficient. Additionally,
combining routing and packing—both NP-hard problems—3L-SDVRP’s solution pro-
cess is notably time-consuming [6] [23] [26] [46] [47] [50] [78]. In real-world scenarios,

36

2.5. Discussion

computational resources are often limited, posing a significant challenge in designing
effective optimization algorithms that improve solution quality under these strict lim-
itations. In Chapter @, we tackled 3L-SDVRP as a multi-objective problem, focusing
on improving algorithmic performance through effective balance between exploration
and exploitation, especially under tight computational resource limitations (i.e., the

number of fitness evaluations).

Moreover, in real-world scenarios, the number of vehicles is often more critical than
the travel distance. This is because the costs associated with maintaining additional
vehicles and hiring extra drivers are typically higher than those incurred from an
increase in travel distance. Given these insights, we explored the local search-based
approach to solve 3L-SDVRP. In alignment with existing research [10] [76], we ad-
dressed 3L-SDVRP as a single-objective problem, prioritizing vehicle reduction as the
primary objective and total travel distance as a secondary objective. Our research in
Chapter @ aimed at proposing a more efficient method to solve 3L-SDVRP based on
the state-of-the-art algorithm SDVRLH2 [10].

In Section , we review the existing interactive routing-packing strategies. Each
strategy has its pros and cons. R1P2 integrates packing into routing, allowing for
adjustments of the packing plan as the route changes. While this offers more flexibility
and may require fewer vehicles, it also makes computation more complex and time-
consuming. On the other hand, the P1R2 approach treats each node as a separate
packing problem and establishes the packing plan before the routing process, which
avoids having to solve the packing problem during routing repeatedly. This speeds
up the process but may limit flexibility in minimizing vehicle use. In contrast to the
P1R2 strategy where each node is independently loaded, the 2C-SP involves loading
two nodes together, potentially saving vehicle space. However, as noted in [10], in
creating 2C-SP, a node only considers its closest 30% neighboring nodes. Furthermore,
these 2C-SPs are fixed prior to routing and do not update during the routing process.

Therefore, there may exist opportunities for more effective interactive routing-packing

37

Chapter 2. Background and Literature Review

strategies. Despite the importance of interactive routing-packing strategies in solving
3L-SDVRP, there’s a lack of in-depth comparison and assessment of these various
approaches. In Chapter 5, our research provides a detailed experimental analysis
that compares the effectiveness of the P1R2 and R1P2 strategies and investigates the
impact of using the 2C-SP pattern. Based on the insights gained from this analysis, we
introduce an adaptive interactive routing-packing strategy which dynamically adjusts

loading decisions during the routing process.

In Section @, we review the search operators used for solving 3L-SDVRP and dis-
cuss the efforts made to adjust search step size within the algorithms. Our literature
review reveals that existing operators are becoming increasingly inadequate for ef-
fectively and efficiently solving complex VRPs. In response to this, incorporating
domain knowledge into optimization algorithms through search operators can signif-
icantly improve algorithm performance and applicability. This approach is particu-
larly effective when it focuses on the specific characteristics of the problem at hand.
Besides, these search operators play a pivotal role in determining the algorithm’s
search step size. In optimization search algorithms, this step size is a vital factor
that influences the balance between exploration and exploitation. It also significantly
affects the algorithm’s convergence speed. This, in turn, influences both the com-
putational resources required and the quality of the solutions produced. Therefore,
the selection of an appropriate search step size is a matter of utmost importance.
Chapter 6 describes our proposed Adaptive Knowledge-guided Insertion (AKI) op-
erator and Adaptive Knowledge-guided Search (AKS) algorithm. Our AKI operator
not only introduces domain knowledge but also has a larger search step size compared
to general operators. In AKS, traditional operators conduct detailed searches with
small step sizes, while the AKI operator explores new areas with a larger step size.
This approach balances exploration and exploitation without increasing the number

of fitness evaluations (FEs), thereby improving efficiency and solution quality.

38

Chapter 3

A Multi-Objective Approach to
3L-SDVRP*

This chapter addresses the 3L-SDVRP as a multi-objective problem and introduces a
Hierarchical Neighborhood Filtering (HNF) mutation operator, along with a Pareto-
based Evolutionary Algorithm with Concurrent crossover and Hierarchical Neighbor-

hood Filtering mutation (PEAC-HNF).

We propose the HNF operator with three key features: leveraging multiple neighbor-
hood structures to generate offspring, thereby enhancing solution diversity during the
search process; operating hierarchically by prioritizing individuals with high nondom-
ination ranks, ensuring that the search focuses on superior solutions; and employing a
filtering process to eliminate unnecessary individuals, thus reducing redundant fitness
evaluations. Our PEAC-HNF algorithm combines the local search capabilities of the
HNF operator with the global search capabilities of the Evolutionary Algorithm (EA)

framework, effectively balancing exploitation and exploration. The organization of

*This chapter is partially based on a paper published at the 2024 Genetic and Evolutionary Com-
putation Conference (GECCO’ 24) [119] and a paper published at IEEE Transaction on Emerging
Topics on Computational Intelligence (TETCI) [118§].

39

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

this chapter is as follows. Section Ell discusses the current research challenges and
our motivations. Section @ details our proposed HNF mutation and PEAC-HNF
algorithm. Section @ compares our algorithm with state-of-the-art methods and

offers further analysis. Section @ concludes the chapter.

3.1 Introduction

In Chapter , we identified that 3L-SDVRP has two primary objectives: maximizing
the average vehicle loading rate (or minimizing the number of vehicles used) and min-
imizing the total travel distance. The two objectives are inherently in conflict with
each other. On one hand, due to the varying 3D sizes of boxes both between and
within nodes, a vehicle may not be able to load all the boxes at a particular node, yet
it might still have enough capacity to load boxes from other nodes. In this situation,
strictly pursuing a high load rate for each vehicle requires loading as many boxes as
possible. This approach may lead to a vehicle visiting more nodes to fully utilize its
capacity, thereby increasing the total travel distance. On the other hand, if the aim
is to minimize the total travel distance, vehicles might refrain from loading additional
boxes to avoid visiting more nodes, resulting in unused capacities and a lower load
rate. In Section B.3.2, we compare our proposed PEAC-HNF algorithm with two
single-objective methods, each focusing on one of the two objectives. The experi-
mental results in Figs. 8 and 9 indicate that solutions obtained by single-objective
methods are highly imbalanced in terms of quality across the two objectives; they
perform well in the objective they prioritize but poorly in the other, illustrating the
conflicting nature of these objectives. This complex relationship presents a significant
challenge for multi-objective optimization, as it requires achieving solutions that are

well-balanced across both objectives.

Current research on utilizing multi-objective optimization algorithms to solve 3L-

SDVRP remains insufficient. Liu et al. [51] introduced a Multi-objective Evolutionary

40

3.1. Introduction

Algorithm based on Decomposition by Offline Machine learning (MOEA /D-OM) to
address the multi-objective 3L-SDVRP. This state-of-the-art multi-objective method
employs pre-trained machine learning models to predict the packing feasibility of each
route, discarding those predicted as infeasible. Consequently, this approach reduces
the algorithm’s runtime by avoiding the 3D packing process for infeasible solutions,
achieving computational savings. However, this comes at the cost of generating a large
number of infeasible solutions during the search process, specifically packing infeasi-
ble routes. Moreover, the reliance on pre-trained machine learning models presents a
generalization challenge when solving different problem instances. Additionally, their
proposed method struggles with larger problem scales, and the solution quality re-
mains inferior to that obtained by the SDVRLH2 algorithm proposed in [10]. Moura
[65] developed a Multi-Objective Genetic Algorithm (MOGA) to solve 3L-SDVRP.
However, their study relaxed some critical constraints of the problem, thereby re-
ducing the problem-solving difficulty and its relevance to real-world scenarios, which

diminishes the applicability of the obtained solutions in practical problems.

The current research faces the following challenges:

e The inherent complexity of 3L-SDVRP, which involves both routing and load-
ing constraints, makes efficient searching more difficult and computationally
expensive. This complexity poses a challenge to the real-world demand for
high-quality solutions with minimal computational resources, especially in time-

sensitive logistics and supply chain applications.

o The conflicting relationship between the two objectives of 3L-SDVRP makes
it hard to achieve high-quality solutions for both objectives simultaneously.
Overemphasizing one objective may lead to poor performance on the other
(see experimental results of single-objective methods on Section @), which

is undesirable in real-world scenarios where both objectives are important.

41

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

To address these challenges, we develop a Hierarchical Neighborhood Filtering (HNF')

mutation operator, characterized by:

o Using diverse neighborhood structures like swap, 2-opt, and 3-opt to create a
wide range of offspring from a single parent, thus improving solution diversity

and algorithm exploitation capability.

o It adopts a hierarchical approach to mutation, prioritizing individuals with

higher nondomination ranks for more focused search on promising candidates.

o The offspring undergo a filtering process, where some individuals are removed if
they meet specific criteria, enhancing search efficiency and reducing unnecessary

fitness evaluations.

By incorporating the HNF mutation into the EA framework, we have developed a
novel Pareto-based Evolutionary Algorithm with Concurrent crossover and Hierarchi-
cal Neighborhood Filtering mutation (PEAC-HNF) for 3L-SDVRP. The HNF muta-
tion enhances PEAC-HNF'’s exploitation capabilities, complementing the EA’s inher-
ent exploration strength, thereby achieving a better balance between exploration and
exploitation. Additionally, PEAC-HNF executes crossover and mutation processes
concurrently, allowing an individual to undergo either or both processes in parallel,
but not in a sequential manner. The proposed PEAC-HNF algorithm demonstrates
a better balance between exploration and exploitation under constrained computa-
tional resources, significantly enhancing overall performance. Furthermore, it pro-
vides a robust framework for multi-objective optimization in the context of the 3L-
SDVRP. PEAC-HNF has been evaluated against baselines and the state-of-the-art
multi-objective algorithm for 3L-SDVRP, e.g., MOEA/D-OM [51] and MOGA [65],
demonstrating its effectiveness. Further experimental studies have validated the cru-

cial role of the HNF mutation on improving algorithmic performance.

42

3.2. The PEAC-HNF Algorithm

3.2 The PEAC-HNF Algorithm

To provide a clearer description of our proposed method, this section first presents
the solution representation in Section @ Next, we provide a detailed description
of the Hierarchical Neighborhood Filtering (HNF) mutation in @ Following this,
Section @ delve into the framework of the Pareto-based Evolutionary Algorithm
with Concurrent crossover and Hierarchical Neighborhood Filtering mutation (PEAC-

HNF). Finally, additional details of PEAC-HNF are provided in Section 5.2.4.

3.2.1 Representation and Giant Tour Decoding

This thesis employs the giant tour representation, a concept first introduced by
Beasley [4]. This representation has been utilized in numerous variants of the VRPs
(L] [10] [18] [20] [38] [44] [48] [65] [66] [74] [88] [L03]. For a comprehensive survey on
the giant-tour representation of VRP, interested readers can refer to [75]. In essence,
a giant tour is a permutation of all nodes, representing a sequence rather than a
feasible solution. In the context of 3L-SDVRP, a feasible solution includes both a
set of feasible routes and a feasible packing plan for each vehicle. Therefore, a gi-
ant tour decoding procedure is needed to decode the giant tour into several feasible
routes. The complexity of developing feasible solutions lies in the need to create not
only routes but also detailed loading plans for multiple vehicles, such as the loading

sequence and spatial arrangement of each box.

Decoding a giant tour means converting it into a feasible solution. The giant tour
decoding process follows the method outlined in [10]. In this process, for a given
giant tour, a new empty vehicle departs from the starting point and visits each node
in the order specified by the giant tour, packing boxes at each node. Specifically,
if a vehicle cannot load all boxes at a node, it will load as many as it can without

violating any constraints, then proceed directly to the destination instead of visiting

43

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

other nodes. Subsequently, another new empty vehicle starts from the starting point,
first visiting the last node served by the previous vehicle (if any boxes remain at that
node), and then visits the remaining nodes in the giant tour. Split delivery occurs
when the boxes from a node are distributed among multiple vehicles. Thus, through
the decoding, we derive a feasible solution comprising a set of routes and a feasible

packing arrangement for each vehicle from a giant tour.

3.2.2 HNF Mutation

To augment the algorithm’s exploitation potential, we designed a novel Hierarchical
Neighborhood Filtering (HNF) mutation operator that performs fine-grained local

searches around high-quality solutions.

As shown in Algorithm m, before performing the Hierarchical Neighborhood Filtering
(HNF) mutation, nondominated sorting [[16] is conducted to assign a nondomination
rank to individuals in the parent population POP. The algorithm then performs
mutation on individuals with the first nondomination rank, followed by the second,
and so on (Algorithm m Steps 3-8). This hierarchical approach continues until the
number of final offspring obtained by HNF mutation (denoted as Ognr) reaches
P - pm (Steps 2), where P is the population size and p,, is the proportion of fitness

evaluations dedicated to OgnF.

For each individual, the HNF mutation utilizes different neighborhood structures,
including swap, 2-opt, and 3-opt operators, to generate multiple offspring from a
single parent s. Specifically, the swap operator exchanges the positions of two nodes
[10] [26]; the 2-opt operator breaks two edges and reconnects them to alter the node
order [14] [B5]; and the 3-opt operator breaks three edges and reconnects them to
create a new sequence of nodes [35] [77]. Thus, for a given parent s, all possible
individuals generated by these three neighborhood structures constitute its offspring,

denoted as Oy (Step 10).

44

3.2. The PEAC-HNF Algorithm

After obtaining Oy, the individuals within it undergo an immediate filtering process
(Step 11). This means not all individuals from Oy will be added to the final mutation
offspring Ognr. Individuals in O that meet the following criteria will be sampled and
added to Ognp: (1) they are different from individuals in the parent population, (2)
they are different from individuals sampled from the crossover offspring population,
and (3) they are different from individuals already added to Ognp in the current
generation. If the number of qualified individuals in Oy exceeds the required amount,
individuals will be randomly sampled (Step 15). This procedure repeats until the

number of individuals in OgyF reaches P - p,,.

Compared to traditional mutations or applying a single mutation operator multiple
times on an individual, our HNF mutation (1) creates a broader range of offspring for
selection, increasing diversity, (2) focuses the search on superior individuals, thereby
improving the algorithm’s ability to exploit solutions, and (3) enhances search effi-

ciency by reducing unnecessary fitness evaluations through its filtering process.

3.2.3 Framework of PEAC-HNF Algorithm

Incorporating the HNF mutation into the EA framework, this chapter proposed a
new Pareto-based Evolutionary Algorithm with Concurrent execution for crossover

and Hierarchical Neighborhood Filtering mutation (PEAC-HNF).

Algorithm P details the PEAC-HNF algorithm, and Fig. El] illustrates its workflow,
beginning with the creation of an initial population of size P (Step 1). The fitness
values of each individual, defined by their total travel distance and average vehicle
loading rate, are evaluated. Individuals are then ranked using nondominated sorting
[16], assigning each a nondomination rank (Step 2). Considering the computational
resource limits, the FEs per generation equals P. The algorithm allocates p,, - P
(where 0 < p,, < 1) FEs for mutations and the remaining FEs, (1 — p,,) - P, are

used for crossovers. Both crossovers and mutations in PEACH occur concurrently. If

45

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

Algorithm 1 HNF Mutation (Key innovations in red boxes.)

Input: POP: population with nondomination rank; p,,: proportion of fitness evalu-
ations dedicated to the HNF mutation
Output: Ogyp: final offspring obtained by the HNF mutation

1: Ognr < O;rank « 1; P «— |POP)|

2: while |Ognrp| # P - pyy do

3: Srank < all individuals whose nondomination rank equals rank in POP

4: if S,qnk is 0 then

5: rank «— rank +1

6: continue

7 end if

8: s « random select an individual from ;4.

9: O; < 0; POP « delete s from POP

10: O, « ‘ get all neighborhood individuals of s by swap, 2-opt, and 3-opt operators

and add them to Oy

11: O «— ‘ﬁltering O, and retaining only qualified individuals

12: if |05| < (P *Pm — |0HNF|) then

13: OunNF < Opunr U Oy

14: else

15: Opunr <« select (P - p,, — |Opgynr|) individuals from Oy randomly and add
to OunF

16: end if
17: end while

18: return OynF

46

3.2. The PEAC-HNF Algorithm

the offspring exceed the FEs allocated to any process, random sampling is utilized to
select the offspring for further evaluation. These offspring are then assessed and sorted
by nondomination ranks (Step 9). Using a (u+4) survival strategy (u = P,A = P), the
top-performing individuals form the new parent population for the next generation,

and the cycle repeats until the termination conditions are met.

Algorithm 2 PEAC-HNF Algorithm (Key innovation in red box.)
Input: P: population size; p,,: proportion of fitness evaluations dedicated to the

HNF mutation; G: maximal # of generations

Output: S: final nodominated solutions
1: g < 1; POP, « initialize population randomly
2: POP, « evaluate POP, and perform nondominated sorting
3: while g < G do

4: O « perform crossover on POP, and get offspring

5: Opnr < perform | HNF mutation (Algorithm iﬂ) on POP, and get offspring

6: Oy < O, U OpnF

7: O, « evaluate O,

8: POPgy1 +— Og U POP,

9: POP,,1 < perform nondominated sorting and survival selection on POPg41

10: g—g+1

11: end while

12: § « the nondominated solutions (i.e., individuals with first nondominition rank)
in POP,

13: return S

By integrating the HNF mutation within the EA framework, PEAC-HNF enhances
its exploitation capabilities while preserving the natural exploration advantages of
evolutionary algorithms, thereby establishing an effective balance between exploration
and exploitation. Furthermore, the PEAC-HNF algorithm demonstrates efficacy in

identifying Pareto-optimal solutions that effectively balance the trade-offs between

47

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

S
4
Binary _—
tournament 4 T PRY
selection /.. o, :
Crossover 19 @/ =1 Nondominated @ ‘ ('Y
& Sample ~ ’_ - sorting .b [)
Population after é 'Y ...‘.
®
SampleP - (1 - ®
pm) individuals
<y e Nondominated =~ Survival
\ \ 7 :
/.: @ Evaluate /.: @ sorting /.: .\‘ Evaluate selection (P + P)
I é _) .
\.. @/ l\...l Combine 3| @ .I+
~= <~ =7 ~ ’ > P i\ N
Initial Parent = = .
population population Offspring Population /.. .‘
Sample P - p,, l.. Y
individuals ~N_
4 _.\ Survivable
/.. () \ population
19 J
~ \.__.,

Population
after mutation

Until meeting termination conditions

Figure 3.1: Pareto-based Evolutionary Algorithm with Concurrent execution for
crossover and Hierarchical Neighborhood Filtering mutation (PEAC-HNF). P is pop-

ulation size. p,, is proportion of FEs allocated to offspring obtained by mutation.

conflicting objectives. This approach yields a diverse set of high-quality alternatives,
thereby providing decision-makers with a comprehensive range of options for informed

decision-making.

Concurrent Execution of Crossover and Mutation

The term “concurrent” refers to the parallel execution of crossover and mutation
processes. This setup allows an individual to undergo either the crossover or mutation

processes on their own, or both simultaneously, instead of one after the other.

In this study, executing crossover and mutation processes concurrently is found to
be more effective than the traditional sequential method, where crossover is followed
by mutation. Considering the constraint of limited FEs, our HNF mutation prefers
individuals with higher nondomination ranks. To do this, it is necessary to first
perform fitness evaluations and nondominated sorting to assign nondomination ranks.

Fig. @ contrasts the concurrent and serial sequence to crossover and mutation.

48

3.2. The PEAC-HNF Algorithm

In our implementation, the # FEs per generation is strictly limited to P. We allo-
cate a proportion p,, of these evaluations to mutation offspring, and the remaining

proportion 1 — p,, to crossover offspring. Specifically, in each generation:

e P X (1-p,) FEs are used to evaluate offspring generated by crossover.
e P X p, FEs are used to evaluate offspring generated by mutation.

e Both crossover and mutation are independently applied to the same parent
population. If either operator generates more offspring than its allocated quota,
random sampling is performed to ensure the correct ratio between the two types

of offspring.

This design is fundamentally different from the conventional serial approach, where
mutation is only performed on the offspring generated by crossover (P x (1 — p,,)
individuals). In our concurrent approach, crossover and mutation are executed in
parallel on the parent population (P individuals), so that the scope of mutation is
extended and solution diversity is enhanced, without increasing the total # FEs per
generation. Our experimental results in Section @ validate the effectiveness of

concurrent sequemnce.

3.2.4 Other Details of PEAC-HNF Algorithm

Fitness Evaluation

The evaluation method is illustrated in Algorithm B We have already known an
individual is a giant tour. Through the giant tour decoding procedure, a feasible
solution, which contains a set of routes and a feasible packing arrangement of each
vehicle, will be obtained from an individual (Algorithm E Step 1). Then two objectives
can be calculated (Algorithm B Step 2). After all individuals’ f; and f> are obtained,

the population is sorted based on the nondomination, and each individual is assigned

49

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

5 r r
/.. .“ Crossover /.. \ Mutation /‘: \

L) |

T) [@ ® 9
A Yo LA
Parent population #FEs: Px(1 —p.) H#FES: PXpn,

(population size: P)

(a) Serial Sequence: perform mutation on Px(1 — p,,) individuals

’ i\ \
X
G(OE‘E’O\je = 9_.11
65\ N #FEs: PX(1 — pm)
/Oa @,
(. .. /
~0°
- Mutal‘/ =
Parent population On Ve .\ \
(population size: P) /.. . \
l‘ .]
o€
#FEs: PXp,

(b) Concurrent Sequence: perform mutation on P individuals

Figure 3.2: The difference between the serial and concurrent sequence of the crossover
and mutation. P is #FEs allocated to each generation (also the population size). py

is the proportion of FEs allocated to offspring obtained by mutation.

20

3.2. The PEAC-HNF Algorithm

a nondomination rank [[16]. The first nondomination rank is the best rank, the second

nondomination rank is the next-best rank, and so on.

Algorithm 3 Fitness Evaluation

Input: g: a individual, i.e., a giant tour.

Output: fi: the first objective value; f5: the second objective value.
1: s « perform the giant tour decoding procedure to g and get the feasible solution;
2: f1, fo « calculating fitness values based on s;

3: return fi, fo

Binary Tournament Selection

The binary tournament selection is to select two parents to do the crossover. Two
individuals are picked randomly from the parent population. The better one will
be the first parent by comparing their nondomination rank (if the two individuals
have the same nondomination rank, continue to compare their first objective function
value, i.e., f1, then the second objective function value, i.e., f2). To select the second

parent, repeat the above procedure.

Crossover Procedure

Having the global search ability, crossover operators operate on two different individ-
uals and exchange genetic information fragments of them. The crossover operators
employed in our research include: Partially Mapped Crossover (PMX), previously
utilized in studies such as [38] [93] [99]. Order Crossover (OX), used in works like
4] [74]. Best Cost Route Crossover (BCRC), which has been applied in research
including [34] [65] [67] [68].

All these crossover operators are adopted to perform the crossover. For two parents,

six individuals will be generated (two for each crossover operator). The individuals

o1

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

in the offspring population are not allowed to be the same as the ones in the parent
population. Therefore, only the individuals that meet the above criteria will be
sampled and added to the offspring population. The crossover will terminate when

the number of individuals generated by crossover is equal to (or large than) Px(1-p,,).

Survival Selection

The PEAC-HNF algorithm employs a (¢ + A) survival strategy, where u and A each
equal the population size P. This strategy involves merging the parent and offspring
populations and conducting a survival competition to select the next generation’s
parent population, as illustrated in Fig. @ The combined population undergoes
nondominated sorting, incorporating elitism by considering all individuals from both

the parent and offspring populations.

Priority is given to individuals in the highest nondominated solution set (first rank),
ensuring their survival. If the number of individuals in the first rank is less than u,
all these individuals are selected, and the remainder of the parent population for the
next generation is filled by progressively selecting from the next highest nondominated
solution sets (second rank, third rank, etc.). If the number of eligible individuals in

any rank exceeds the available slots, selection from that rank is made randomly.

Termination Conditions

The algorithm terminates when all the allocated FEs have been utilized.

Packing Process

The flow chart in Fig. @ outlines the packing process within the PEAC-HNF al-
gorithm. The process begins by using a new vehicle to traverse nodes in the giant

tour g sequentially. At each node, the vehicle attempts to pack as many boxes as

52

3.2. The PEAC-HNF Algorithm

Non-dominated Random selection
sorting
15t rank
Parent 2" rank Parent population

population (next generation)

3rd k AR

.]
Offspring —
population e Y
Rejected

Figure 3.3: The (u+A1) survival strategy, which aligns with the procedure in NSGA-II
[16], except that the crowding distance sorting selection in NSGA-II is replaced by

random selection to reduce computational cost.

possible. Once filled, a new vehicle is used to continue the tour. If a node’s boxes
cannot be completely loaded into the current vehicle, the remaining boxes are carried
over to a new vehicle, a process termed as “splitting delivery”. In the packing process,
a “packing space” is defined as any unoccupied 3D rectangular area within a vehicle,
with the coordinate system established using the vehicle’s left-bottom-back corner
as the origin. These spaces are sorted by the ascending order of their x-, y-, and
z-coordinates. Simultaneously, boxes at each node are organized in descending order

by their bottom area, volume, width, and length to optimize space utilization.

Besides, in our scenario, the vehicles are heterogeneous, meaning different vehicle
type has distinct 3D dimensions, volumes, and weight capacities. Thus, selecting the
appropriate type of vehicle—and the number of each type—is crucial for minimizing
travel costs and enhancing the loading rate. In our approach, the vehicle type with
the largest volume is initially used. Once all nodes have been serviced and all boxes
packed, a replacement strategy is employed where smaller vehicles may substitute

the larger ones used initially. This strategy aims to enhance the packing ratio by

23

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

Get related data
(a giant tour g, boxes at
each node)

|
i<0

}

Use a new vehicle v to visit
nodes and pack boxes

/\ N
™ > i <len(g)?
‘Y/

visit node g[i];
load boxes at g[i] one by one;
update available spaces in v

Are all boxes in
gli] loaded?

i<i+1
v
Replacement process

End

Figure 3.4: The flow chart of the packing process of a giant tour.

potentially replacing some larger vehicles with smaller ones, without discarding any

boxes in the route.

o4

3.3. Computational Studies

3.3 Computational Studies

Our computational studies include comparisons of PEAC-HNF with baselines and
state-of-the-art algorithms for solving multi-objective 3L-SDVRP on three datasets.
To ascertain PEAC-HNF’ s efficacy across objectives, it is also contrasted with single-
objective algorithms. Further experimental studies underscore the benefits of HNF
mutation and concurrent execution sequence of crossover and mutation. To ensure
clarity, some key results are presented in the main text; more detailed results are

available online in [113].

3.3.1 Experimental Setting
Problem Instances

This study uses three datasets (242 problem instances in total), as detailed in Tab.
@. The first dataset is from the 2021 Evolutionary Multi-Criterion Optimization
Conference (EM0O2021) logistics competition (referred to as EMO problem instances)
[B9], comprising 42 diverse problem instances. The second dataset, from [51], includes
100 problem instances. Additionally, we utilized 100 problem instances from Huawei
Technologies Ltd. (referred to as HW problem instances), which are derived from

real industrial scenarios. All problem instances are available online in [112].

Evaluation Metric

For algorithm performance evaluation, we use the hypervolume (HV) metric [122],
which is a pivotal metric in multi-objective optimization for assessing both diversity
and convergence. It is actually the area of the shaded polygon formulated by the
reference point and non-dominated solutions. For f; and fo, the smaller, the better.

For HV | the larger, the better. Calculated by Eq. (), HYV; refers to the HV of the

25

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

Table 3.1: Description of problem instances

42 problem instances from EMO2021 logistics competition (EMO problem instances)

Entry # nodes # boxes # boxes types # vehicle types
Max 12 1011 297 3
Min 8 98 22 1

Avg (£SD) 9.21 (£1.37) 332.93 (+199.92) 101.74 (£53.58) 2.80 (x 0.44)

100 problem instances from [51]

Entry # nodes # boxes # box types # vehicle types
Max 16 2275 392 11
Min 8 51 16 1

Avg (£SD) 9.60 (+1.66) 378.47 (+279.76) 118.38 (+£59.58) 2.71 (+1.20)

100 problem instances from Huawei (HW problem instances)

Entry # nodes # boxes # box types # vehicle types
Max 16 2275 392 11
Min 8 83 25 1

Avg (£SD) 9.70 (£1.7) 452.58 (£334.73) 129.2 (£63.04) 2.74 (+0.99)

solutions to the problem instance i [41] [51]:

HV; (P;, %) = vol (Uxep, [fi(x), 27| X [f2(x), 25]) (3.1)
where .
Fin = LN (3.1a)
1 - fl
Fatw) = O (3.1)
2 - f2
7 =(1.2,1.2)7 (3.1¢)

o6

3.3. Computational Studies

The function vol(-) refers to the Lebesgue measure. P; refers to the non-dominated
solution set of the instance i obtained by the algorithm. f; and f» represent two
objectives values. z* is the reference point, reflecting decision-makers’ tolerance for
the worst solution. If a solution is deemed acceptable, it must meet specific conditions:
f1(x), which is the ratio of the gap between its f; value and flmi” to the gap between

1 and f{”i”, must be less than z* (i.e., 1.2). The same condition applies to its fo
value. For 42 EMO problem instances, the parameters flmin, S, 2min,, 5%, and z*
are officially provided by competition organizer [40] [41] and make up the boundary.

flmin,flmax, Qmin’ 2max, and Z*

For 100 problem instances from [51], we use the same
as [pl]. Different instances have different boundaries. The statistical test method

used here is Mann-Whitney U test (@ = 0.05).

The hypervolume metric is widely recognized in the multi-objective optimization lit-
erature due to its ability to simultaneously assess both the convergence and diversity
of a set of solutions. In the context of the 3L-SDVRP, these two aspects are cru-
cial, as practical applications often require not only high-quality solutions but also
a diverse set of trade-offs between the objectives, reflecting real-world operational
needs. The use of hypervolume, along with the reference points adopted in this study,
aligns with established practices in industrial applications and well-known competi-
tions (e.g., EMO2021 [39]), making it highly suitable and relevant for evaluating

algorithm performance on this problem.

However, it should be noted that while hypervolume provides a comprehensive as-
sessment, it also has certain limitations. For example, it can be computationally
expensive for higher-dimensional problems, and the choice of the reference point can
influence the results. Additionally, hypervolume may not capture all aspects of solu-
tion set quality, such as the spread along the Pareto front in very specific regions of

interest.

Apart from hypervolume, several other quality indicators are commonly used in multi-

objective optimization, including inverted generational distance (IGD), generational

27

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

distance (GD), spacing, and coverage metrics (e.g., C-metric). Each of these indica-
tors has its own advantages and can provide complementary insights into algorithm

performance.

Therefore, it is meaningful to consider a broader set of evaluation criteria in future
work. Combining multiple indicators can offer a more comprehensive and nuanced
assessment of algorithm performance, ensuring that different facets of solution quality

are thoroughly evaluated.

Parameters

PEAC-HNF’ s parameters in Algorihtm @ are configured as follows: G set to 20, p,,
set to 0.5, with fitness evaluations (FEs) ranging from 1,000 to 12,000. The population
size is derived from #FEs/#generations, and each experiment is replicated 30 times.
It is worth noting that we intentionally avoided a detailed parameter tuning process
to demonstrate that the strong performance of our algorithm is due to its innovative

design rather than finely-tuned parameters.

Experimental Environments

The algorithms are implemented in Python 3.7, and experiments are run on Dell R370
server with 2x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz CPU, 128G RAM, and
CentOS 7.6 operating system.

3.3.2 Comparative Analysis

Comparison to Baselines

To validate the effectiveness of PEAC-HNF, it is compared against two baselines on

42 EMO problem instances (see Tab. @) Baseline 1, inspired by SDVRLH2 [10], an

o8

3.3. Computational Studies

effective method for 3L-SDVRP, and Baseline 2, MOGA [65], a pioneering study in
applying multi-objective algorithms to 3L-SDVRP. Experiments are conducted under
varying FEs (1,000 to 12,000). Although problem constraints in the literature may
vary slightly, such as the relaxation of the last-in-first-out constraint in [65], these
methods still provide excellent baselines for comparison with our algorithm. Necessary
adjustments and modifications to the algorithms ensure that these comparisons are

meaningful and valid.

Tab. @ displays HV values across multiple runs for each instance. PEAC-HNF
matches or exceeds Baseline 1 on 39 out of 42 instances, significantly outperforming
on 27. Against Baseline 2, PEAC-HNF is superior on 27 instances and comparable on
14. Fig. @ illustrates the HV curves during search process, highlighting PEAC-HNF’
s strengths in solution quality. Fig. @ details performance variances at different FEs.
Compared to Baseline 1 at 1,000 FEs, PEAC-HNF outperforms on only 5 instances.
The advantage of PEAC-HNF becomes significant as the number of FEs increases,
notably outperforming on 27 instances at 12,000 FEs. Against Baseline 2, PEAC-
HNF consistently shows superior performance, more evident as FEs increase. Notably,
PEAC-HNF’s advantage over both baselines enhances with higher FEs, showcasing

its scalability and effectiveness.

Comparison to MOEA /D-OM on EMO Problem Instances

PEAC-HNF is also compared against MOEA/D-OM [51], which is the state-of-the-
art multi-objective algorithm for solving 3L.-SDVRP and also the EMO2021 Logistics
Competition’s champion algorithm [40]. In our experiments, the default parameters
of MOEA /D-OM are used. For a fair comparison, the number of fitness evaluations

(FEs) for our PEAC-HNF is set to match MOEA /D-OM, i.e., 2000.

Tab. @ demonstrates that PEAC-HNF significantly outperforms MOEA /D-OM on

all 42 problem instances, with HV values at least doubling on these instances. As

29

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

problem instances.

Table 3.2: Hypervolume (HV) values (avg+tstd) of baseline 1, baseline 2, and PEAC-HNF (12000 FEs, 30 runs) on EMO

Instances Baseline 1 Baseline 2 PEAC-HNF Instances Baseline 1 Baseline 2 PEAC-HNF
E1594609968101 0.9017+0.0159 (-) 0.8936+0.019 (-) 0.9151+0.012 ECO02008190025 0.7122+0.0029 (-) 0.7177+0.0021 0.717240.0026
E1595638696418 0.7903+0.023 (-) 0.7967+0.0245 (-) 0.7992+0.0284 ECO02008220028 0.5466+0.0032 (+) 0.5104:0.0237 (-) 0.5452:+0.0075
E1596676780873 1.4053+0.0178 (-) 1.4105+0.0063 (-) 1.4156+£0.0052 EC02008250134 1.1921+0.0085 1.1877+0.0265 1.19024+0.0116
E1596943422130 0.5198+0.0359 (-) 0.5364-+0.0025 0.5377+0.0009 ECO02008250157 1.2746+0.0157 1.2268+0.0244 (-) 1.2674+0.0204
E1597112047246 1.012840.0291 (+) 0.9022+0.0586 (-) 0.9942+0.0347 ECO02008260084 0.3022+0.0013 (-) 0.29124+0.0242 (-) 0.3036=0.0
E1597284418604 1.0865+0.0272 (-) 1.11154+0.022 (4) 1.102+0.0186 ECO02008260104 1.0461+0.0113 1.0237+0.0176 (-) 1.048140.0079
E1597802825734 1.88240.0342 (+) 1.8154+0.0388 (-) 1.8607+0.0339 EF1594632252863 0.7207+0.024 0.7034+0.0246 (-) 0.7277+0.0231
E1597809878442 0.5942+0.034 (-) 0.6046=+0.029 0.6195+0.0102 EF1594805700879 0.7646+0.0105 (-) 0.7678+0.0017 (-) 0.7691+0.0012
ECO02007210113 0.84244-0.0013 (-) 0.8441+0.0013 0.8445+0.0005 EF1594955642012 0.245540.0065 (-) 0.2466+0.0057 (-) 0.2518+0.0067
ECO02007240027 0.8746+0.0103 (-) 0.8969+0.0392 0.8877+0.0213 EF1595231952604 1.3721+0.0105 (-) 1.3788+0.0064 1.379740.0035
ECO02007250011 0.9053+0.0461 (-) 0.9266+0.0229 (-) 0.9338+0.0198 EF1595295309474 0.64240.0125 (-) 0.667£0.0059 0.6669-+0.0064
ECO02007270107 1.0917+0.0388 (-) 1.235940.002 1.230940.028 EF1595295895624 0.4501+0.3842 (-) 0.6694+0.3767 (-) 0.8765+0.3483
EC02007290014 1.1147+0.0152 (-) 1.1221+0.011 (-) 1.12734+0.0087 EF1595381687057 0.8853+0.0015 (-) 0.8801+0.0104 (-) 0.887+0.0022
ECO02007300009 0.332240.1926 (-) 0.6153+0.1786 (-) 0.8243+0.0625 EF1595474862428 1.2907+0.0494 1.15534+0.0411 (-) 1.2769+0.0517
ECO02008110020 0.6736+0.0304 0.6116+0.044 (-) 0.6703+0.0393 EF1595650233198 0.238240.0 0.2183+0.0508 (-) 0.2382+0.0
ECO02008110027 0.910940.0211 0.848+0.0243 (-) 0.917+0.0284 EF1595817642706 1.045240.0013 1.035+£0.0099 (-) 1.0431+0.0086
ECO02008120023 0.513+0.0321 (-) 0.5438+0.0 0.5438+0.0 EF1596011846243 1.1537+0.0031 (-) 1.1589+0.0068 1.1583+0.0059
ECO02008120038 0.8118+0.1441 0.7654+0.104 (-) 0.8609-+0.0858 EF1596102693660 0.2308+0.1528 (-) 0.682+0.0027 0.6815+0.0036
ECO02008130066 1.0502+0.0256 1.0309+0.019 (-) 1.045940.0176 EF1596466497583 0.8605+0.0153 (-) 0.8791+0.019 (-) 0.88940.0156
EC02008130135 0.6234+0.2677 (-) 0.6734+0.203 (-) 0.7385+0.2353 EF1596525590000 0.234140.0042 (-) 0.2392+0.0022 0.2392+0.0025
ECO02008160002 0.7874+0.076 0.7516+0.0487 (-) 0.7678+0.0451 EF1596590704042 1.4513+0.5333 (-) 1.593240.5284 1.4566+0.5355

Baseline 1 VS PEAC-HNF (+/-/=)

Baseline 2 VS PEAC-HNF (+/-/=)

3/27/12

1/27/14

Note: The symbol “+” /“-” indicates the related algorithm is significantly better/worse than PEAC-HNF according to the statistical test. For HV, the larger,

the better.

60

3.3. Computational Studies

0.7 1 —+- Baseline 1
— =~ Baseline 2
0.6 1 —@— PEAC-HNF
0.5
0.4 1
0.3 A
0.2 A1 $
L7
0.1 <*

8 10 12 14 16 18 20

0.8 1

—-+- Baseline 1
— = Baseline 2
—@— PEAC-HNF

0.7 1

T T T

8 10 12

14 16 18 20

Jrr e o b e b e b

0.20 A
—
/
—_——
R
0.15 A —— -
~
0.10 A
0.05 1 —+- Baseline 1
— - Baseline 2
—— |
0.00 - PEAC-HNF
0 2 4 6 8 10 12 14 16 18 20
0.71 _4+- Baseline 1
— =~ Baseline 2
0.6 —e— PEAC-HNF
— =t =t =+t
0.5 1
f’-'r
0.4 1 7
0.3 1
0.2 4
s
014 #
/
£
0 2 4 6 8 10 12 14 16 18 20

Figure 3.5: Evolutionary curves of PEAC-HNF and baselines on some instances (8000

FEs, 30 runs).

The x-coordinate represents the number of generations.

The y-

coordinate represents the average HV of 30 independent runs.

61

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

PEAC-HNF vs Baseline 1

RS

BRSNS
vw".u&v&
BRI K SRR
(0009 9.9.9.9.9.9.9.9.9.9.

PEAC-HNF vs Baseline 2

R R R,
SRR g KRRRIRL]
:000000000000

R RIS
PL920.920.9.020,920:920,920.928,

S9JUBISU| 4O JqUINN

SadUe3sU| JO JaquinN

Fitness Evaluations (x1E3)

Comparison of PEAC-HNF with baseline methods under different fit-

Figure 3.6

respectively in-

7

ness evaluations (FEs) on EMO instances. The symbols "+ /-/

ificantly outper-

ign

forms/underperforms/has no significant difference compared to the corresponding

HNF s

dicate the number of problem instances where PEAC-

baseline method.

62

3.3. Computational Studies

shown in the table, MOEA/D-OM achieves a hypervolume (HV) of zero for some
problem instances, indicating that its solutions are worse than the acceptable worst
solution and are therefore discarded. Moreover, our empirical findings suggest that
the PEAC-HNF algorithm is computationally intensive, requiring substantial CPU
time. To further investigate this observation, we performed an in-depth analysis of
the PEAC-HNF algorithm, as detailed in Section @ (Time Analysis part). The
experimental results reveal that the process of determining the packing plan consti-
tutes approximately 98% of the total computational runtime. This can be attributed
to the fact that each individual (i.e., the giant tour) requires a complete recalculation
of the packing arrangement from the ground up. Consequently, this process is com-
putationally demanding and contributes significantly to the overall runtime of the

algorithm.

Additionally, our results show that MOEA /D-OM’s performance significantly declines
with previously unseen problems or new scenarios, underscoring challenges in its

generalization capability [b3].

Comparison to MOEA /D-OM on Problem Instances from [51]

The study by [51] examined 100 problem instances, detailed in Tab. . Our
proposed PEAC-HNF was compared against MOEA /D-OM across these instances,
with results summarized in Tab. @ In terms of total hypervolume, which rep-
resents the sum of average HVs across all instances, PEAC-HNF significantly out-
performed MOEA /D-OM for minimum, maximum, and average total hypervolume
values. Specifically, PEAC-HNF achieved superior results on 92 out of 100 instances
and matched MOEA /D-OM on 5 instances, underscoring its enhanced performance.
While our algorithm yields superior solutions, it also incurs increased computational
overhead. As demonstrated in our experimental analysis in Section @ (Time Anal-

ysis part), this is primarily due to the requirement for a complete recalculation of the

63

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

Table 3.3: Hypervolume (HV) values of MOEA/D-OM and our PEAC-HNF (2000

FEs, 10 runs) on EMO problem instances. The symbol “+/-" indicates the related

algorithm is significantly better/worse than the other one according to the statistical

test. For HV, the larger, the better

MOEA/D-OM PEAC-HNF MOEA/D-OM PEAC-HNF
Instances Instances
HV (avgtstd) HV (avg+std) HV (avg+tstd) HV (avg+tstd)
E1594609968101 0.3277+0.0352 (-) 0.8452-0.0336 (+) EC02008190025 0.0+0.0 (-) 0.70920.0035 (+)
E1595638696418 0.0£0.0 (-) 0.715240.0863 (+) EC02008220028 0.0586+0.0688 (-) 0.4789+0.0357 (+)
E1596676780873 0.0£0.0 (-) 1.3807£0.0233 (+) ECO2008250134 0.0£0.0 () 1.13930.0311 (+)
E1596943422130 0.012240.0365 (-) 0.521340.0308 (+) EC02008250157 0.0+£0.0 (-) 1.1579+0.0424 (+)
E1597112047246 0.00.0 (-) 0.8095:0.1153 (+) ECO2008260084 0.0+0.0 (-) 0.2284+0.0794 (+)
E1597284418604 0.3033+0.0202 (-) 1.054940.0206 (+) ECO2008260104 0.2247-£0.0184 (-) 0.9773+0.0413 (+)
E1597802825734 0.040.0 (-) 1.622240.1726 (+) EF1594632252863 0.0+0.0 (-) 0.6114+0.0619 (+)
E1597809878442 0.0+0.0 (-) 0.5178£0.0638 (+) EF1594805700879 0.0+0.0 (-) 0.7458+0.0146 (+)
ECO2007210113 0.32140.0612 (-) 0.83960.0067 (+) EF1594955642012 0.0+0.0 (-) 0.2317+0.0087 (+)
EC02007240027 0.1873::0.2533 (-) 0.8052:0.1057 EF1595231952604 0.040.0 (-) 1.35740.0376 (+)
ECO02007250011 0.0+0.0 (-) 0.828540.0878 EF1595295309474 0.0£0.0 (-) 0.648240.0089 (+)
ECO02007270107 0.4775+0.1462 (-) 1.1482+0.0903 (+) EF1595295895624 0.0+0.0 (-) 0.4006+0.466 (+)
ECO02007290014 0.2789+0.3957 (-) 1.0714+0.0206 (+) EF1595381687057 0.4416+0.098 (-) 0.8706+0.0212 (+)
EC02007300009 0.040.0 (-) 0.3868:0.2756 (+) EF1595474862428 0.0:0.0 (-) 1.0830.0896 (+)
ECO02008110020 0.0+0.0 (-) 0.5229+0.0461 (+) EF1595650233198 0.0+0.0 (-) 0.228340.0373 (+)
ECO02008110027 0.0+0.0 (-) 0.7943+0.0409 (+) EF1595817642706 0.08134+0.058 (-) 0.9858+0.0339 (+)
EC02008120023 0.040.0 (-) 0.523+0.0263 (+) EF1596011846243 0.0:£0.0 (-) 1.13540.0181 (+)
ECO02008120038 0.0+0.0 (-) 0.5564+0.1498 (+) EF1596102693660 0.0+0.0 (-) 0.3053+0.21 (+)
EC02008130066 0.3639+0.0193 (-) 0.9894+0.032 (+) EF1596466497583 0.0+0.0 (-) 0.814140.0377 (+)
ECO02008130135 0.17424+0.0192 (-) 0.3371+£0.2177 (4) EF1596525590000 0.215140.0206 (-) 0.2358+0.0045 (+)
EC02008160002 0.377+0.0693 (-) 0.702+0.0196 (+) EF1596590704042 0.0+0.0 (-) 1.3416+0.4699 (+)
Avg CPU Time (s)
PEAC-HNF VS MOEA/D-OM (+/-/=)
Summary MOEA/D-OM PEAC-HNF
42/0/0 60 1170

64

3.3. Computational Studies

packing arrangement from scratch of the giant tour. The resulting computational

effort required for these packing calculations substantially contributes to the elevated

CPU time.

In [p1], the runtime of MOEA/D-OM was limited to 60 seconds. To investigate if
extended runtime would enhance MOEA /D-OM'’s performance, we increased its run-
time to approximately 600 seconds (MOEA/D-OM with extended time), aligning it
with our proposed PEAC-HNF. The results, detailed in Tab. @, reveal that even
with a tenfold increase in runtime, MOEA /D-OM’s performance improvement was not
significant. The total hypervolume increased by only 1.21 compared to the original
60-second setting. In contrast, PEAC-HNF significantly outperformed MOEA /D-
OM with extended time, achieving superior minimum, maximum, and average hy-
pervolume values. Specifically, PEAC-HNF obtained better results on 89 out of 100
instances and matched MOEA /D-OM on 8 instances.

Comparison to MOEA /D-OM on HW Problem Instances

To further validate our algorithm’s performance, we conducted experiments on the
HW problem instances. The results, as shown in Tab. @, demonstrate that PEAC-
HNF significantly outperforms MOEA/D-OM in terms of total hypervolume (i.e.,
the sum of the average hypervolume across 100 instances). Specifically, PEAC-HNF
achieves superior minimum, maximum, and average values. On a per-instance basis,
PEAC-HNF produces significantly better results than MOEA /D-OM in 97 out of the

100 problem instances.

Comparison to Single-Objective Methods

This problem has two objectives, which leads to an important consideration: can
single-objective methods effectively address both objectives? If single-objective ap-

proaches are sufficient, then the design of multi-objective algorithms might not be

65

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

Table 3.4: Total hypervolume (i.e., the sum of hypervolume values across all 100 problem instances from [51]) of MOEA /D-
OM and our PEAC-HNF (2000 FEs, 10 runs). T is the CPU time. For MOEA /D-OM with extended time, the maximum
running time is extended to approximately 600 seconds. The statistical test method used here is the Mann-Whitney U
test (@ = 0.05). The symbol “+/-” indicates our PEAC-HNF is significantly better/worse than MOEA /D-OM according
to the statistical test. For HV, the larger, the better

MOEA/D-OM MOEA /D-OM with extended time PEAC-HNF
Total hypervolume - Total hypervolume - Total hypervolume -
Min Max Avg+std Min Max Avg+std Min Max Avg+std

107.22 108.66 108.17+£0.35 60 108.58 110.00 109.38+0.38 608 139.75 140.70 140.39£0.37 606

PEAC-HNF VS MOEA/D-OM (+/-/=) PEAC-HNF VS MOEA/D-OM with extended time (+/-/=)

92/3/5 89/3/8

66

3.3. Computational Studies

Table 3.5: Total hypervolume (i.e., the sum of hypervolume values across all 100 HW
problem instances) of MOEA/D-OM and our PEAC-HNF (2000 FEs, 10 runs) on
HW problem instances. T is the CPU time. The statistical test method used here is
Mann-Whitney U test (@ = 0.05). The symbol “+4/-” indicates our PEAC-HNF is
significantly better/worse than MOEA /D-OM according to the statistical test. For
HV, the larger, the better

MOEA /D-OM PEAC-HNF
Total hypervolume Total hypervolume
T T
Min Max Avg+std Min Max Avg+std

107.21 109.04 107.91£0.53 60 142.01 14296 142.324+0.19 781

PEAC-HNF VS MOEA /D-OM (+/-/=)

97/3/0

necessary. To explore this, PEAC-HNF is compared against single-objective meth-
ods. These methods evaluate individuals based solely on two objectives, fi and f5.
The first method prioritizes minimizing fi, then fo (fi-first-fao-second), while the

second method reverses this priority (fo-first-fi-second).

Figs. @ and @ display the distribution of solutions in the objective space for mul-
tiple problem instances, comparing the results obtained by the PEAC-HNF method
and single-objective methods. Each figure shows the final nondominated population
(obtained by PEAC-HNF) and the final best solution (obtained by the single-objective
method) for 30 independent runs. Fig. @ focuses on the comparison between PEAC-
HNF and the fl-first-f2-second method, while Fig. @ compares PEAC-HNF with
the f2-first-fl-second method. Evidently, PEAC-HNF not only outperforms these
methods in solution quality by performing well in both objectives but also showcases

a significantly greater diversity in its solutions. This implies that PEAC-HNF is

67

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

capable of offering a range of trade-offs for decision-makers.

¢) multi-objective multi-objective
12.54 J¢ single objective 8.5 J¢ single objective
®
12.0 * 8.01

@bl 8t

n a5
S 11.5 4
< <
o o
11.04
o a@ 6.5 e o)
10.54 .‘ ® 0:9¢® 09 i
A . ‘ ® 02 & "'
“.‘. ®0p ¢ W 6.0
021 022 023 024 025 026 027 028 0.29 0.16 0.18 0.20 0.22 0.24 0.26 0.28
f1 fl
11.50q %@) multi-objective * © multi-objective
* Y single objective 15 ® Y single objective
11.25 Re
K
11.001 14 4 o
o)
10.75 A
g 8131
$ 10,50 s
o o
10.251 124
10.00 [
11 q T
9.75 4 -, o %) 2
'M. ©%2 . 101 .5 $ 8 ® o
0.50 |) I ¥ o I3
0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.28 030 032 034 036 038 040 042 044
fl fl

Figure 3.7: The final nondominated population of some instances for 30 independent
runs.Use f1 to refer to vehicle loading rate, f2 to represent total travel distance. In
the figure, “single-objective” refers to the fi-first- fo-second single-objective method.

“multi-objective” refers to the PEAC-HNF.

3.3.3 Further Analysis

Further experimental studies were conducted to validate the impact of our proposed
HNF mutation and the concurrent execution of crossover and mutation. Our PEAC-
HNF was compared to its variants (PEA-C-E, PEA-S-HNF, and PEA-S-E) on 42

EMO problem instances. Here, "C” stands for concurrent execution of crossover

68

3.3. Computational Studies

154 12.5

e® multi-objective ®) multi-objective
‘ Jc single objective P J¢ single objective
144 4
) 12.0
13 o
o ‘ 5 1151
o =3
: + K
L]
o 124 q N z
Xe 11.0 A ‘
114 (4 '
$ oo
58 -9 10.5 Qo
i "W ° ae ¢ ® xeo % 'Mp~ J0.9 00
10 C .‘ g L @ ®g¥0o ¢ W
0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 021 022 023 0.24 0.25 0.26 027 0.28 0.29
fl fl
8) multi-objective 11.50q O © multi-objective
Jr single objective J¢ single objective
6.0 11.251
@ 11.00
5.54
10.75 A
g 5
g h<
o o 10.50 A
N 5.04 o
10.25 4
‘ 10.00 A
451 © ‘ ¥ N
OTx®p 9.75 ‘ e)
Y e oo At ¢ T
* 9.50 ® O%
0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
fl fl

Figure 3.8: The final nondominated population of some instances for 30 independent
runs. Use fi to refer to vehicle loading rate, f2 to represent total travel distance. In
the figure, “single-objective” refers to the fo-first- fi-second single-objective method.

“multi-objective” refers to the PEAC-HNF.

and mutation, ”S” for serial execution, "THNF” for hierarchical neighborhood filtering
mutation, and "E” for equal mutation probability across individuals. Fig. @ shows
the HV curves of PEAC-HNF and its variants. Fig. provides detailed comparative
results between PEAC-HNF and its variants across different number of FEs. More

detailed experimental results are available online in []

69

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

0.8 A 0.9 1
0.7 1
0.8 1
0.6
o
P el
0.5 1 0.7 1 ’&‘—‘X‘
e
”.
0.4 &
03 0.6 %
' } —@— PEAC-HNF —@— PEAC-HNF
024 /’;‘-’(—-e- PEASE ! —-e- PEASE
X % PEA-C-E 0.5 1 i % PEA-C-E
014 PEA-S-HNF N PEA-S-HNF
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
—@— PEAC-HNF
0.84 —*- PEA-S-E 0.6
X%+ PEA-C-E
PEA-S-HNF et
0.7 1 ’_," __x..x--x”x 0.5 A
;";.X--X'x
0.6 . 0.4 -
0.5 A 0.3 A
fx —8— PEAC-HNF
0.4 1 0.2 1 ,,.4 -e- PEASE
,X' -%- PEAGE
0.3 0.1 4 PEA-S-HNF
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Figure 3.9: HV curves of PEAC-HNF and its variants on some instances (12000 FEs,
30 runs). The x-axis represents the number of generations. The y-axis represents the

average HV of 30 independent runs.

Impact of HNF Mutation

PEAC-HNF consistently outperformed PEA-C-E across different numbers of fitness
evaluations (FEs). For instance, at 1000 FEs, PEAC-HNF outperformed PEA-C-E
on 24 instances and matched its performance on 18; at 8000 FEs, it was significantly
better on 35 instances and equal on six. These results demonstrates that our HNF

mutation indeed enhances algorithmic performance.

70

3.3. Computational Studies

‘poyrewr Surpuodsariod o) 03 pareduiod SOULISHIP JURIYIUSIS
ou sey]/suriojreodiepun /suriojrodino Apjueoyrudis JNH-DVHJ 2I0ym seour)sul wo[qold Jo Iaquunu o) o)edrpul A[oa13oads
o1 ,=/-/+,, s[oquis oy], ‘s[enplarpur ssome Aiiqeqord uoryeinur renbo 10y 5, puR ‘UojRINW SULIDI[Y POOYIOqUSOU
[eoTyDIRISIY 10} , ANH,, UOIIIOXO [RLISS I0] G, ‘UOIPRINUW PUR IDAOSSOID JO UOIINIOXD JUOLINOUOD I0J SPURIS 1), “SOOUR)SUL

wa[qoxd OJNH U0 (SH.) SUOIIen[esd SSeujy JUaIofIp Iepun sjueliea st yym JNH-DVHJ Jo uositredwo)) :01'¢ oISl

XX -= + A

(£3TX) suopen|en3 ssauyy (£31X) suonen|ens ssauid (£3TX) suopen|ea3 ssauild

[4s 0T 8 9 14 4 T 49 0T 8 9 14 4 T [49 0T 8 9 14 4 T

S9DUB)SU] JO JBQUINN

S
%%
%0
odeled

=1
2hi

S
e%e%

R
%

Q>

e
O

XX
)

o

#
]
0300,
oo
e%
XX
o,
2%
X
2
R
X5
2
33
2029,

R

X
XXX

0%

7
o’
oot
—
o¥e

o%s
XX

22

%

X

o
X
QD

e
Q>

X
X

oS
=
R
LE:
&
XTI
X
o
ﬁﬁo
s
3

X3
%o

%

o,

%S
%
%
X5
—
%
X

zS

XS

o2
2

X
0%

9.
in %5

%
X0

%

29!

et

X

o0,
dete%:
X

X3
X
XX
3
Yeteteled
35
X
XS

i
K
%
K
&

1%

3-S-Vad SA INH-OV3d dNH-S-V3d SA ANH-OV3ad 3-0-V3d SA ANH-OV3d

71

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

Impact of Concurrent Crossover and Mutation

Compared to PEA-S-HNF, PEAC-HNF also demonstrated superior performance. At
2000 FEs, it was significantly better on 27 instances and equal on five; at 8000 FEs,
it outperformed PEA-S-HNF on 28 instances and was equal on 13. This highlights

the advantages of concurrently executing crossover and mutation.

Synergistic Impact of HNF Mutation and Concurrent Crossover and Mu-

tation

Against PEA-S-E, PEAC-HNF showed significant improvements at various FE counts.
At 1000 FEs, it surpassed PEA-S-E on 31 instances and matched on ten; at 8000 FEs,
it outperformed on 37 instances and was equivalent on three. These findings further
confirm the enhanced solution quality achieved through the synergistic effects of the

HNF mutation and the concurrent execution of crossover and mutation.

Impact of the Number of FEs

Moreover, experimental results suggest that the optimal performance was at around
8000 FEs. Increases beyond this threshold do not always improve outcomes, un-
derscoring the importance of efficiently utilizing limited computational resource for

effective search.

Impact of Different Parent Selection Methods

In this chapter, we adopt the binary tournament (BT) selection as the parent selection
strategy (see Section @), owing to its simplicity and effectiveness. To investigate
the impact of different parent selection methods, we further implemented more so-
phisticated approaches, including crowded tournament (CT') selection and rank-based

roulette wheel (RRW) selection. These selection methods were integrated into our

72

3.3. Computational Studies

algorithm, and a series of experiments were conducted on the EMO problem instances

to compare their performance.

The results are summarized in Tables @ and @ When the number of function
evaluations (# FE) was set to 2000 (see Table @), BT performed comparably to CT
and RRW. Specifically, BT and CT exhibited no significant difference on 40 out of
42 instances, while BT was not inferior to RRW on 41 out of 42 instances. Similarly,
when # FE was set to 8000 (Table @), the performance of BT remained statistically
indistinguishable from CT and RRW.

These findings can be attributed to the inherent complexity of the 3L.-SDVRP, which
integrates both the vehicle routing problem (VRP) and the three-dimensional load-
ing problem (3DLP)—both of which are NP-hard. The resulting search space is
extremely complex, and thus, existing parent selection methods do not yield signifi-
cant differences in performance for this problem. To further improve solution quality,
it is necessary to gain deeper insights into the problem characteristics and leverage
domain knowledge to design more powerful parent selection mechanisms and search

operators. Such directions have been explored in Chapter H

Time Analysis

From the aforementioned experimental results, we observed that the proposed PEAC-
HNF algorithm requires more CPU time compared to MOEA /D-OM. Although the
two algorithms were implemented in different programming languages (PEAC-HNF
in Python and MOEA/D-OM in Java), we still sought to investigate the factors
contributing to PEAC-HNF’ s higher time consumption. As theoretical analysis of
computational time complexity is only feasible for simple metaheuristic algorithms on

artificial problems, we conducted experiments to perform an empirical time analysis.

Table @ presents the CPU time statistics for solving the 3D packing component
within the PEAC-HNF algorithm. The metrics include the total packing time (Total

73

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

Table 3.6: Hypervolume (HV) values of PEAC-HNF with different parent selection methods (2000 FEs, 10runs) on EMO

problem instances. CT = Crowded Tournament. RRW = Rank-based Roulette Wheel. BT = Binary Tournament.

Instances

CT

RRW

BT (Ours)

Instances

CT

RRW

BT (Ours)

E1594609968101
E1595638696418
E1596676780873
E1596943422130
E1597112047246
E1597284418604
E1597802825734
ECO02007210113
E1597809878442
ECO02007240027
ECO02007250011
EC0O2007270107
ECO02007290014
ECO02007300009
EC0O2008110027
ECO02008120038
EC02008250134
EC0O2008250157
ECO02008110020
ECO02008160002
EC0O2008120023

0.8389+0.0336
0.7£0.1112
1.3843£0.013
0.5342+0.0022
0.729£0.1264
1.0387+0.0306
1.6187+0.1713
0.8359+0.0099
0.4986+0.037
0.7377£0.1576
0.8603+0.0644
1.1365+0.0964
1.0718+0.0132
0.5637+0.2632
0.8014+0.0389
0.5214+0.1167
1.1548+0.023
1.1519£0.0241
0.5315£0.0514
0.7132+0.0194
0.5124+0.0255

0.8484+0.0282
0.7341+0.0383
1.3893£0.0092
0.532+0.0026

0.767+0.1391

1.0475£0.0115
1.723340.0673
0.4952+0.0616
0.8416+0.0017
0.788+0.0535

0.7741+0.0921
1.18484+0.0703
1.068+0.0118

0.5086+0.2585
0.5473+0.081

0.7807+0.0391
0.5281+0.0238
0.4785+0.0905
0.9804+0.0267
0.4776+0.2682
0.6895+0.0193

—~

0.8275+0.044

0.6426+0.1115
1.3713£0.018

0.5327£0.0037
0.69740.1542

1.0561£0.0285
1.70174+0.1091
0.4954+0.0707
0.8418+0.0013
0.8034£0.0889
0.7529+0.1706
1.1305£0.1002
1.0664+0.0248
0.4429+0.2677
0.2092+0.0836
0.4932+0.0694
0.5176+0.026

0.3174+0.2294
1.1537+0.0318
0.7097+0.0031
0.6311+0.1489

ECO02008130135

EC02008130066

EC0O2008260084

ECO02008220028

EC02008190025

EC0O2008260104

EF1594632252863
EF1594805700879
EF1594955642012
EF1595231952604
EF1595295309474
EF1595295895624
EF1595381687057
EF1595817642706
EF1595474862428
EF1595650233198
EF1596011846243
EF1596102693660
EF1596466497583
EF1596525590000
EF1596590704042

0.3377£0.2555

0.9754+0.0204(-)

0.2273+0.0725
0.4638+0.0482
0.7102+0.0036
0.961£0.0312 (-)
0.6037£0.0679
0.7576+£0.0075
0.2377+0.0082
1.367+0.0122
0.6473+0.0092
0.21840.2893
0.8616£0.0387
0.98940.0331
1.0978+0.0709
0.2382£0.0
1.1361£0.0181
0.2832+0.197
0.7883+0.0497
0.2357+0.0036
1.172940.3485

0.7087+0.0033
0.4513+0.037
1.148+0.0324
1.143940.0331
0.2604+0.0699
0.9574+0.0444
0.6322+0.0858
0.7475+0.0189
0.2338+0.007
1.35524+0.0255
0.6513+0.0088
0.3617+0.3865
0.8778+0.0076
1.0575£0.0731
0.2382+0.0
0.9964£0.0265
1.1295+0.0219
0.1799+0.0554
0.7967+0.0292
0.2345+0.0045
1.057+0.008

1.1488+0.0423
0.459+0.0424
0.7907+£0.0516
0.7314+0.0801
1.0104£0.0239
0.9846+0.024
0.6204+0.0583
0.7451+0.0176
0.2321+£0.0047
1.3564+0.0135
0.3141+0.3923
0.6464+0.0072
0.8638+0.0207
0.2382+0.0
1.0853£0.0792
1.138+0.0148
1.0018+0.0277
0.3287+0.2256
0.8156+0.0343
0.2334+0.0045
1.171140.3456

CT VS BT (+/-/=)

RRW VS BT (+/-/=)

0/2/40

1/1/40

Note: The symbol “+/-” indicates the related method is significantly better/worse than the binary tournament method according to the statistical

test. For HV, the larger, the better.

74

3.3. Computational Studies

'19330q oY) ‘108Ie] o) ‘AH

10 1597 [ed13SI9BIS 9} 0} SUIPIOOOR POYISU JUSTRUINOY AIRUI(Y} URY) 9SI0M /19919 A[JUROYIUSIS ST POYIOUT PIIR[SI o[} S9)BITPUT -/+,, [OQUIAS Y], 910N

ov/1/1

6¢/1/¢

(=/-/+) 1Ld SA maY

(=/-/+) 1Ld SA LD

EITS OFRITH T 6£00°0F2IEE 0 TOSFOFIT0ET GHOFOLO6SIGSTAT G900 0F8ISE 0 PI20'0FLSE0 T (-) SPO0'0FTSHE0 €2003T800800
9£00°0F9LET 0 9ZTC 0FFISR'T 6£00°0FPLEC0 0000695TG96STAH T9T0'0FEESS 0 T00°0F989L°0 8T£0°0F9T8R'0 Z0009T800Z0DH
6L10°0F9GL8 0 6ST0°0F6TL80 PSTI0'0FCOLE0 €8GLE6VIIVI6STAT 8200°0F8LILO (+) E¥60°0F6LFR 0 L000'0FS89L0 0Z00TT800Z0DH
9V6T 0FESSS 0 L900°0FZ8GT T L960°0FFTr9'0 09966920TI6STAH 8Z00'0FISTL O 9£0°0F19£9°0 ZT00'0FECLIL'0 LETOSZR000DH
$900°0F8LST'T 9L8T0F688S 0 PE00'0FFST'T €FCIPSIT096GTAT 8LE6T'0FSIIR0 €L10°0F8TV0'T 61°0FS09L°0 PET0SZR00E00H
T#10°0F89€0°T 0°0FC8ET 0 Z600°0F86E0° T 86TEETOSIS6STAH 0'0F8EFS0 £620°0F1988°0 0°0F8EFS'0 8E0021800¢0DH
0'0FT8ET 0 E110°0FFLEO'T 0'0FT8ET'0 8TFTIVVLYSESTAH TTF00FGLEY'0 GLZ 0FE909°0 G910°0F627¥9°0 LZ00TT800200H
I7€0°0F L6921 L100°0F9988°0 8290°0F209¢'T 90LTVILISS6CTAH 99T 0F6TLI0 1960°0FGL6L0 LITZ'0FESR9'0 60000£L0020DH
T100°0FL988°0 LTSH 0FG9LG 0 €100°0FC988°0 LS0L89TSES6STAH ¥€90'0FE0E T 200 0F9€T T 6870°0F881Z’T ¥10062L00500
611F 0F8VLY 0 CIP0'0FI198 T 62TF 0FEI69°0 129968562S6STAd TET10°0FISITT 620°0F L9260 STO'0FLEIT'T L0OTOLELOOZOOH
LEOO 0FF08E'T £800°0F9599°0 €600°0FE6LE T PLV60SS6CS6STA LI0'0FSESS 0 1010°0F€ETT T €920°0FV68°0 T100SGL00CODH
LV00°0F299°0 ££00°0F98LE'T 7800°0F199°0 $09TS6TEGS6STAT 8610°0FVE6'0 20'0F LIRS0 Tve0'0FeET6'0 LZ00VEL00ZODH
Z8I0°0F10GE'T L900°0F88FZ 0 88T0°0FSHFE' T GIOTPISSOV6STA 6000°0F6EFS 0 L0T0°0FET09°0 P100°0FLEVR'0 CFFSLIG08LESTH
LOTO'0F90€S°0 G1S0°0FV98E 0 ¥800°0FT8ES0 6L800LS08F6STAH 1920°0FG9S8'T £0£0°0F8FS'T ¢680°0FS608'T £1T01EL0020DH
¥820°0FLS20'T 6120°0F892S 0 CO0FFO'T £980STTEIVESTAM ¢Z0"0F665°0 9000°0FFF#8°0 G9L0'0FEIRG'0 FELGTRTOSLESTH
€0T T 0FEVTL 0 PEIO'0FELRT'T () TOTOFSHFR0 FOT09880060DH 8620 0FER60'T 70£0°0F6980°T P120°0FLI6OT VO9STFFSTLESCTH
G£S0°0FRIRE 0 8200°0FLIL0 €100°0F9Z06°0 ST006TR00E0DH 9950 0F 16560 9100°0F29¢5°0 (+) LETO'OFSFLE'0 9PTLYOGTTLESTA
990°0FG59L°0 (-) 6288 0F9S59°0 LTL0°0FS86LL'0 8Z008Z800CODH 9100°0FILES O 7£L0°0F9686°0 T300°0FG9ES0 0£TTTHEVE96STH
GZT0'0F8I'T 1620 0FILYE T €CT0°0FE6LT T F80096800C0DH €800 0F6ITH T 7S00°0F8ETY'T I800°0F990F T £L808L9L996STH
7800 0F9EF0'T LTZ0"0FT60L°0 80TO'0F60F0'T 9900£T800800H €£0T0'0FEE08'0 LOTO'0FES08°0 620°0FT196L°0 8TPI69REIS6STH
T0£0°0F960L°0 0'0F8EVS 0 I820'0FIPIL'0 SETOET800Z0DH THI0'0FILO6 0 9£T0°0FEL6S 0 TPT0°0FLG68°0 TOT8IB609V6STH
(smQ) g MU 1D soouejsuy (smQ) 1.4 MU IO seoue)su]

JuewrewIno], Areurq = I, TOOYA 9110[NO0Y Poaseq-Nury = AMY ~JUSWRUINQ], POPMOI)) = I,0) 'seour)sul wajqoid

ONH uo (sunigyr ‘sgq 0008) Spoyjewr uoroaes jualed JuaIoPip yum JNH-DVHJ JO sonfea (AH) swmoAaladAH :) ¢ o[qe],

75

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

PT) spent solving the packing component across all instances, the average packing
time (Avg PT) per instance, and the standard deviation of the packing time (Std
PT). Additionally, the table shows the average total CPU time (Avg RT) for running
the entire PEAC-HNF algorithm and the proportion of time dedicated to solving the
packing component relative to the total runtime (Proportion = Avg PT / Avg RT).
The experimental results reveal that the time consumed in solving the 3D packing
component accounts for nearly 98% of the algorithm’ s total runtime. This can be
attributed to the requirement for recalculating the packing arrangement from scratch
for each individual (i.e., giant tour). This process is computationally intensive and

significantly contributes to the overall runtime.

Table 3.8: CPU time (in seconds) analysis for the 3D packing component of the
PEAC-HNF algorithm (2000 FEs, 10 runs). Total PT is the total packing time
across all instances; Avg PT is the average packing time across all instances; Std
PT is the standard deviation of the packing time; Avg RT is the average total CPU
time required for the PEAC-HNF algorithm; Proportion is the ratio of the average
CPU time for solving the packing component to the average total CPU time for the
PEAC-HNF algorithm (Avg PT / Avg RT).

Datasets Total PT Avg PT Std PT Avg RT Proportion
EMO problem instances 169446.728 760.691 496.850 771.371 0.986
Problem instances from [b1] 328207.837 631.629 388.435 645.032 0.979
HW problem instances 533484.962 1175.943 707.583 1198.698 0.981

3.3.4 Discussion

In Section B.3.2, we conducted a comprehensive comparison of our proposed PEAC-
HNF method with various state-of-the-art approaches from the literature across mul-

tiple datasets, including a total of 242 problem instances. The results reveal the

76

3.3. Computational Studies

following key insights:

o PEAC-HNF demonstrates a robust search capability, effectively identifying so-
lutions that optimize both objectives. Additionally, its effectiveness becomes
increasingly pronounced as the number of fitness evaluations (FEs) increases,

underscoring the method’s ability to navigate complex search spaces.

o Compared to the state-of-the-art multi-objective method for solving 3L-SDVRP,
MOEA/D-OM [51], our PEAC-HNF yields higher-quality solutions for the ma-

jority of problem instances, showcasing its competitive performance.

 Unlike MOEA /D-OM [51], which relies on offline-trained machine learning mod-
els that can degrade in performance when faced with instances differing from the
training data, our PEAC-HNF exhibits consistently strong performance across

diverse problem instances, highlighting its adaptability and robustness.

Section @ presents an in-depth examination to investigate the underlying reasons
for the superior performance of our proposed PEAC-HNF method compared to other
algorithms. To gain deeper insights, we conduct a comparative analysis of PEAC-
HNF with its variants, including PEA-C-E, PEA-S-HNF, and PEA-S-E. The results
reveal that the incorporation of the novel HNF mutation operator and the concur-
rent crossover and mutation design in the PEAC-HNF algorithm both contribute
significantly to the enhancement of solution quality. Moreover, when these elements
are combined, they synergistically improve the overall performance of the algorithm,

leading to even better results.

Our experimental results provide the evidences for the effectiveness of PEAC-HNF.
However, a limitation of this method is its high computational resource consump-
tion, arising from the need to recalculate the 3D packing arrangement from scratch
for each individual (i.e., a giant tour), significantly increasing the overall runtime.

This highlights an important direction for future research: developing more efficient

7

Chapter 3. A Multi-Objective Approach to 3L-SDVRP*

algorithms or heuristics to mitigate this computational overhead.

3.4 Conclusion

This chapter addresses the multi-objective 3L-SDVRP problem and introduces a Hier-
archical Neighborhood Filtering (HNF) mutation, characterized by several innovative
features: (1) Diverse Offspring Production: It uses multiple neighborhood structures
to generate a variety of offspring from a single parent, enhancing solution diversity and
exploitation capabiltiy. (2) Hierarchical Mechanism: Unlike traditional random mu-
tations, the HNF mutation prioritizes individuals with higher nondomination ranks,
supporting more focused search around higher-performing individuals. (3) Offspring
Filtering: This process filters out less promising offspring early, thereby increasing

search efficiency and reducing unnecessary fitness evaluations.

We integrated the HNF mutation into the evolutionary algorithm framework to de-
velop the PEAC-HNF algorithm. This algorithm employs various crossover operators
for global search and the HNF mutation for intensive exploitation of high-performing
individuals, achieving an effective balance between exploration and exploitation. Con-
current execution of crossover and mutation in PEAC-HNF further enhances perfor-

mance, as confirmed by our extensive experimental evaluations.

Our proposed algorithm has been evaluated and compared to existing algorithms on
242 different problem instances, including real-world instances. While the experi-
mental results confirmed the superiority of our algorithm over others, we note that
these 242 commonly used problem instances are relatively small or medium sized. It
would be interesting in the future to evaluate our algorithm’s performance on large
scale problem instances. We also note that our algorithm consumed more CPU time
given the same number of FEs, implying some expensive operations (e.g., the packing

process) in our algorithm, which needs to be improved in the future.

78

Chapter 4

An Efficient Local Search
Algorithm for 3L-SDVRP*

In the previous chapter, we introduced a global search-based multi-objective evolu-
tionary algorithm for solving the 3L-SDVRP. However, the problem scales addressed
were relatively small. Compared to local search-based algorithms, global search-based
algorithms typically require more computational resources, particularly when dealing
with highly complex combinatorial optimization problems like the 3L-SDVRP on a
larger scale. These methods often face challenges in convergence speed and solution

quality.

In this chapter, we propose an efficient local search algorithm, building on the state-
of-the-art SDVRLH2 [10], to solve large 3L-SDVRPs, and validate its effectiveness
through experiments. Section [1! presents the relevant background and our research
motivations. In Section @, we introduce our algorithm, comprehensively describing
its overall framework and key features. In Section @, we present experimental stud-
ies, including comparisons with the state-of-the-art algorithm and in-depth analysis

of our method. Finally, we conclude this chapter in Section @

*This chapter is partially based on a paper published at Memetic Computing [116].

79

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

4.1 Introduction

In Chapter E, we proposed the PEAC-HNF algorithm and demonstrated through

experiments that it outperforms state-of-the-art multi-objective algorithms for solving

the 3L-SDVRP. However, our research also revealed several key insights:

High Computational Resources: Due to the high complexity of the 3L-SDVRP,
multi-objective optimization methods relying on global search still consume
considerable computational resources, making them unsuitable for large-scale

problems.

Vehicle Count vs. Travel Distance: In real-world scenarios, the number of
vehicles is often prioritized over travel distance due to the significantly higher
costs associated with maintaining additional vehicles and hiring extra drivers
compared to the costs incurred from increased travel distance. As a result,
many studies treat the 3L-SDVRP as a single-objective problem, focusing on
minimizing the number of vehicles used as the primary objective, with the
minimization of total travel distance (7¢d) as a secondary objective [[10] [13] [14]

50] [66] [76] [107].

Datasets and Comparability: Although the problem instances used in Chapter
are derived from real industrial scenarios, they are relatively small in scale,
averaging approximately 9 nodes and 401 boxes. In contrast, several widely
used 3L-SDVRP datasets in the literature include the B-Y instances (average
of 114 nodes and 5985 boxes) [[10], Shanghai instances (average of 40 nodes and
955 boxes) [10], and SD instances (average of 57 nodes and 2371 boxes) [13].

Therefore, our subsequent research focuses on local search-based methods, which can

solve large scale problem instances. To ensure better comparability with existing

literature, we treat the 3L-SDVRP problem as a single-objective problem and use

datasets with large scale instances. SDVRLH2 [10] (depicted in Algorithm @) is a local

80

4.1. Introduction

search-based algorithm that maintains the best records for most problem instances
in terms of solution quality, establishing it as the state-of-the-art local search-based
method for solving the 3L-SDVRP. It consists of two stages: the determination of the
packing arrangement for each node and the implementation of local search for the

routing component.

However, it has the following weakness:

o The packing algorithm employs a strategy of packing two boxes at a time,
which generates only two sub-spaces, potentially leading to wasted space and

an increased number of utilized vehicles.

e The routing component of the algorithm utilizes traditional search operators,
such as swap, 2-opt, and 3-opt, but fails to exploit problem properties as heuris-

tic information, thus reducing the search efficiency.

o The outer loop, designed to vary the maximal admissible splitting costs, incurs

a substantial computational overhead.

e Our analysis indicates that the post-optimization phase, which implements 3-

opt, is computationally expensive and not very effective.

Therefore, our research aimed at refining and enhancing the method to solve 3L-
SDVRP. Based on SDVRLH2 [[10], this chapter proposes a more efficient local search

algorithm that incorporates several innovations:

o We improve the box loading and sub-space generation process by two distinct
approaches: (a) packing two boxes at once, generating five sub-spaces, and
(b) sorting boxes and packing one box at a time, generating three sub-spaces.
Both methods generate packing solutions, and a heuristic rule is employed to
determine the optimal packing solution. Additionally, the 2C-SP construction

method is also adjusted.

81

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Algorithm 4 SDVRLH2 [10]

Input: problem data, parameters;

Output: best solution speg
// N refers to the number of nodes
1: generate packing solution (1C-FLP, 1C-SP, 2C-SP) for each node
2: generate initial solution s;,; and set Spesr < Sinis
3: for ips < 1 to nps do
4: for inbh < 1 to 2 do

5: max__split_costs < Max__split_costs[ips]

6: if inbh =1 then

7: nbh_size = MAX(N/4,3)

8: else

9: nbu__size = MAX(N, 3)

10: end if

11: Scurr €= Sbest

12: for iter < 1 to niter do

13: Siter best < determine best neighbour of s.,, by swap operators with

range nbh__size

14: post-optimize Sjier pest DY 2-opt

15: if ips =1 and N <100 then

16: post-optimize siter best by 3-opt

17: end if

18: update best solution Spess DY Siter pest Where necessary
19: Scurr <= Siter_best

20: end for

21: end for

22: end for

23: post-optimize sp5 by 3-opt

24: return speg

82

4.2. Algorithm Description

« For routing, we design three novel search operators that exploit problem proper-

ties as heuristic information, resulting in improved efficiency and effectiveness.

» Instead of utilizing an outer loop to control splitting deliveries in SDVRLH2, we
propose an adaptive splitting strategy that evaluates the feasibility of splitting
at each node based on the packing situation of the vehicle and node, reducing

computational overhead.

o Our new post-optimization approach includes two stages: reassigning vehicle
loads to minimize the number of utilized vehicles, and independently optimizing
the travel distance of each vehicle. This further enhances the quality of the final

solution.

4.2 Algorithm Description

In Section El], we introduce the SDVRLH2 algorithm [10] and analyze its weak-
nesses. In this chapter, building on SDVRLH2 ;| we propose a new algorithm that
incorporates several innovations to address these limitations. This section first gives
an overview of our algorithm’s framework, and then provides an in-depth discussion

of each innovation introduced.

4.2.1 Overview of Our Algorithm

Following SDVRLH2 [10], our algorithm employs a “packing first routing second”
strategy. As illustrated in Algorithm a, this approach first utilizes packing heuristics
to generate feasible packing arrangements (Steps 1-2), followed by a local search-
based approach for routing optimization. In the routing process, a “giant tour” (also
termed as an “individual” in Algorithm H) acts as the solution’s representation. It

is a sequence of all nodes but, by itself, does not constitute a feasible solution due

83

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

to the impracticality of traversing all nodes in a single route by one vehicle without
violating constraints. Therefore, a decoding process is essential to transform a giant
tour into a viable routing and packing plan for evaluation. Detailed insights into the

giant tour decoding are provided in Section E.Z.G.

Referencing Algorithm H, initially, we generate a random initial individual as the best
individual discovered so far (Step 3). We then conduct iterative exploration based on
the current best individual, spes (Steps 4-20), involving multiple iterative searches
(Steps 6-19) that are each centered on the current individual, s¢,. In each itera-
tion, we employ three proposed search operators: LKH mutation, route-pair swap,
and multi-pair elitist recombination, which are described in detail in Section @
Specificly, for sq,», we first employ the LKH mutation operator to identify an im-
proved individual, Siter pess (Step 7). Next, we utilize the route-pair swap operator
to obtain the neighborhood, Nyywap, of Siter pes: (Step 8). After merging Nyyqp with
Siter best (Step 9), we decode individuals in N and select the best individual among
them as the new Sjer pesr (Step 10). We then apply the multi-pair elitist recombi-
nation operator to acquire the corresponding neighborhood, Nypgr (Step 11), for
superior individuals in Ngyqp (i.e., individuals that outperform Sje; pess prior to the
route-pair swap operation). We choose the best individual from Nypgr and Sirer pest
as the new Sirer pesr (Steps 12-13). Following the update of sp.5 and seur (Step 14),
we terminate the current loop if s¢,- has not been updated for n,, in, consecutive
iterations (Step 15). Once the search is completed, the algorithm implements the
new post-optimization method on the best individual, sy, for further optimization

(Steps 18-20).

Overall, Algorithm H extends the hill-climbing approach by conducting exhaustive
local searches with various moves from the current best solution, sp.s;. Despite its
effectiveness, the algorithm may prematurely converge to local optima. To address
this issue, a possible strategy is to accept worsening solutions under certain conditions

—akin to those used in simulated annealing [45]. This modification has the potential

84

4.2. Algorithm Description

Truck Cockpit

door —m|

layer defining
layer defining box
box

layer defining box loading space

| B3

Y

Y
Ist layer 2nd layer |~t— layer depth—m—

Figure 4.1: Packing plan with three basic layers (top-down view).

not only to diversify the search landscape but also to significantly improve the algo-
rithm’ s capability to escape local optima, marking a promising avenue for future
research. In the following subsections, we will describe our innovative contributions

in detail.

4.2.2 Improved Packing Method

Our layer-based packing strategy, inspired by methods from [[7] and [10], organizes
boxes at each node into cuboid basic layers as shown in Fig. . By checking the
layer depth against the vehicle’s x-axis length, this approach simplifies the solving
process. It eliminates the need for frequent 3D packing problem resolutions during

routing, thus reducing computational requirements.

Building on the basic layer concept, [10] introduced three packing patterns: One
Customer Full Load Pattern (1C-FLP), One Customer Segment Pattern (1C-SP),
and Two Customer Segment Pattern (2C-SP). 1C-FLP groups basic layers from a

85

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Algorithm 5 Overview of our method (Key innovations in red boxes.)

Input: problem data, parameters

Output: best solution spes:

11:

12:
13:

14:
15:
16:
17:

18:
19:

20:

21:

// Get packing arrangement

: p1,p2 <« generate basic layer, then formulate 1C-FLP and 1C-SP packing pattern and

‘construct 2C-SP ‘ (Algorithm H) by using | PM1 and PM2 | respectively

p — ‘ select packing solution from p; and po for routing‘ (Algorithm B)

// Perform routing process with p
generate initial individual s;,,;; and set Spess < Sinir
for t < 1 to n,,; do

Scurr < Sbest

for iter < 1 to nj;er do

Siter_best < perform | LKH mutation | on s, and get updated solution

Ngwap < get neighborhood of Siser pest by ‘ route-pair swap ‘ (Algorithm E)

N « Nswap U {Siteribest}

Siter_best < decoding and evaluate individuals in N (including determining each vehi-

cle’s packing schedule, | splitting arrangement ‘ (Algorithm @), and route), then determine best

individual

Nuyper < get neighbourhood based on good individuals in Ngwap by

multi-pair elitist recombination‘ (Algorithm H)

N < Npper Y {Siter_best}

Siter best — decoding and evaluate individuals in N (including determining each vehi-

cle’s packing schedule, | splitting arrangement ‘ (Algorithm @), and route), then determine best

individual
update spes: by Siter__best where necessary; Scurr < Siter__best
if 5. has not been improved for n,, imp consecutive iterations then break endif
end for
end for

// Post-optimization

if # node > 100 then
Spest «— perform reassignment (Algorithm @) and single route optimization to spess
else spe5r < perform single route optimization to Spes;

end if

return spes;

86

4.2. Algorithm Description

/

door —m={

| loading space

1
1
1
1
1
1
1
1
1
1

Truck Cockpit [
1
1
1
1
1
1
1
1
1
1

|

Y Y Y
layers of node i mixed layer layers of node j

layer of node i layer of node j I:I box of node i I:I box of node j

Figure 4.2: Illustration of two customers segment pattern (2C-SP). The mixed layer

contains boxes of both nodes.

single node into a complete vehicle load for direct delivery. When a node’s layers
surpass vehicle capacity, indicating not all layers fit, one or more 1C-FLPs are formed.
The remaining basic layers of the node, which do not constitute any 1C-FLP, form a
1C-SP. The 2C-SP integrates 1C-SPs from two distinct nodes to formulate a mixed
layer containing boxes from both nodes (as illustrated in Fig. @) This approach
strategically selects combinations that maximize space utilization, thereby minimizing
the overall volume occupied by the boxes. By merging layers from different nodes, the
2C-SP not only optimizes packing efficiency but also potentially reduces the number
of vehicles required for transportation, leading to improved operational efficiency
and cost-effectiveness in logistics operations. For comprehensive definitions of these

patterns, readers are referred to Section E.Q.G and []

Our enhancements to the packing method focus on two main aspects: refining the

87

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

box-packing and space-generation strategy, and advancing the construction technique

of the 2C-SP.

Improved Box-Placement and Space-Generation Strategy

As previously mentioned, the basic layer is the smallest vehicle loading unit in our
method. Comprehensive details on constructing a basic layer are provided in the
Section #.2.6. In the packing phase, the term “space” denotes a vacant cuboidal area
available for box placement. Loading a box into a space means aligning the box’s
rear-bottom-left vertex with the corresponding corner of the space, fundamentally
altering the original space to create new sub-spaces for further loading. This operation

is crucial to the packing algorithm, significantly influencing its performance.

In [[10], the approach involves loading two boxes (i.e., a box pair) at a time: first, load
one box into current space s, generate three subspaces, then load the second box
into one of the three subspaces, and add the remaining two subspaces to the set of
available spaces Syyqi1 (note that the second box does not generate new subspaces). If
no suitable box pair is found in the set of boxes B .., only one box that can be loaded
into s¢,» will be selected. Through analysis, we believe that the method of loading
box pairs has two disadvantages: it generates fewer subspaces, as the second box does
not generate subspaces, potentially leading to space wastage; and the selected box

pair may not maximize space utilization.

Consequently, we improved the box-packing and space-generation strategy in two
directions, resulting in two modified strategies. One enhanced method (denoted as
PM1) increases the number of subspaces generated based on [L0]. In the original
method, two boxes are loaded at a time, with the second box not generating sub-
spaces. Our improved strategy generates subspaces along the axes after loading both
boxes, resulting in five subspaces, which enhances space utilization. Another im-

proved method (denoted as PM2) abandons the strategy of loading two boxes at

88

4.2. Algorithm Description

once, opting instead to load only one box at a time and generating three subspaces

along the x, y, and z axes.

The two directions of improvement produce two modified packing methods, each
employed to obtain a packing solution (p; and p2). When entering the routing stage,
a packing solution is selected based on the criteria we developed and introduced. As
shown in Algorithm B, for each packing solution, first calculate the sum of the depths
of all packing patterns (including 1C-FLP, 1C-SP, and 2C-SP) as I; and Il (Step

1), then divide I; and Is by the vehicle length [, to obtain v and vy (Step 2). Let

e 2)

5C—SP sc_sp represent the number of 2C-SPs in p; and pa, respectively (Step

(2) (1)
oc—sp ~ Moc—sp

and n
3). When vo —v; < @y orn < a9, po is selected as the final packing

solution; otherwise, pp is chosen (Steps 4-8).

This approach tries to select the most suitable packing solution, taking into account
both space utilization and the number of 2C-SPs in each solution. By implement-
ing the two modified strategies, our method effectively improves the overall packing

performance while addressing the limitations of the box-pair loading method used in

[10].

Multi-stage 2C-SP Construction

As shown in Fig. @, 2C-SPs include box layers from two different nodes and a mixed
layer that contains boxes from both nodes. We extend the method for constructing
2C-SPs in SDVRLH2. The original approach allows a node to attempt 2C-SP con-
struction with only some adjacent nodes. After construction, many nodes that could
form 2C-SPs may remain. To address this issue, we propose a multi-stage method for
2C-SP construction, as delineated in Algorithm B This method considers N as a set
of all nodes that have not yet constructed a 2C-SP. It applies the method from [10]
to construct 2C-SP for all nodes in N (Step 4). Following a construction cycle, N is
updated to only include nodes that have not yet constructed a 2C-SP (Step 7), and

89

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

the procedure is reiterated until no further 2C-SPs can be established (Steps 3-7).
Compared to a single construction cycle, this method promises a more exhaustive

formation of 2C-SPs, thereby further facilitating the reduction in the vehicle count.

Algorithm 6 Select a packing solution (Key innovation in red box.)

Input: pi, pa: two packing solutions obtained by the two improved methods PM1
and PM2; [,: length of vehicle
Output: pyine: selected packing solution
1: 11,1y « the sum of depth of all packing patterns (1C-FLP, 1C-SP, 2C-SP) in

P1, D2
2: v <—ll/lv;V2<—lg/lV

(1) (2))
3: Nyl gpsNye_gp < the number of 2C-SP in p1, p2

@ 0

sc_sp ~ Noc_sp S @2 then

4: if vo—vi <ayorn
5: P final <= P2
6: lelse

T P final <~ D1

8: lend if

9: return p fia

4.2.3 New Search Operators

This study highlights the importance of employing superior neighbourhood operators
capable of leveraging domain knowledge in local search processes. Commonly used
operators in current research, such as the swap operator ([120]), shift operator ([100]),
2-opt ([[77]), and 3-opt ([77]), are generally applicable to all VRPs without exploit-
ing the specific characteristics of the problem being studied. Specifically, the swap
operator exchanges the positions of two nodes; the shift operator moves a node to

another position; the 2-opt operator breaks two edges and reconnects them to alter

90

4.2. Algorithm Description

Algorithm 7 Multi-stage 2C-SP construction (Key innovation in red box.)

Input: N: the set of all nodes that have not constructed any 2C-SPs
Output: Ppjpe: all constructed 2C-SPs

1: Pfinal —0

2: (while True do

3: n1 — | P final|

4: P’ « get 2C-SPs from N by the method in [10]
5: P final < Pfinat U P’

6: ny — |P final|

7 if no == n; then break else update N end if

8: lend while

9: return P,q

the node order; and the 3-opt operator breaks three edges and reconnects them to
create a new sequence of nodes. While these general operators are applicable to a
variety of combinatorial optimization problems, they lack the ability to effectively
leverage problem-specific characteristics, leading to suboptimal search performance

when tackling problems with complex constraints or large-scale instances.

In this thesis, we use the giant tour as the solution representation, which is then
decoded into multiple routes and feasible 3D packing plans for each route (i.e., each
vehicle). The aforementioned general operators operate on the entire giant tour but
typically have small search step sizes and overlook that a giant tour inherently con-
sists of multiple distinct routes. To conduct more effective searches, we leveraged this
characteristic and designed three novel search operators: the Lin-Kernighan-Helsgaun
(LKH) mutation, the route-pair swap (RPS), and the multi-pair elitist recombination
(MPER). The LKH mutation operator optimizes each route obtained after decoding
the giant tour. The RPS operator selects two routes from the decoded giant tour

and performs node swaps between them. The MPER operator aggregates the effec-

91

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

tive swap operations identified during the route-pair swap process to further improve
solution quality. The synergistic use of these three operators enables a more effi-
cient search, enhancing both algorithm performance and solution quality. Detailed

descriptions of these three operators are as follows.

Lin-Kernighan-Helsgaun (LKH) mutation: Following the decoding and eval-
uation of the parent giant tour (i.e., parent individual), a set of vehicle routes are
obtained, with each route that can be regarded as an independent TSP problem.
The TSP is a classical combinatorial optimization problem, and numerous research
advancements have led to increasingly mature TSP-solving algorithms. The Lin-
Kernighan-Helsgaun (LKH) algorithm ([94]) is among the most effective and cutting-
edge heuristic algorithms for solving TSP. The LKH mutation process independently
optimizes each route derived from a giant tour using LKH algorithm and subsequently

generates an optimized route set.

Route-pair swap (RPS): Algorithm E demonstrates the route-pair swap process,
which applies a swap operation to nodes of each route in R (Steps 2-10). Specifically,
for each route r; in R, a random route ry is chosen from the remaining routes (Step
3). Then, for each node in rj, a random node ny is selected from ry to swap, yielding
two new routes, r{ and rj (Steps 5-6). A giant tour g is created as a neighbor based
on ry, ry, and the remaining routes (Steps 7-8). Finally, a neighbourhood Ny is

obtained.

Multi-pair elitist recombination (MPER): This operator is designed to be used
in conjunction with RPS operator and is applied after it. As shown in Algorithm
E, after evaluating individuals in Nj,ap, those that outperform the parent individual
(i.e., the individual before RPS operator) are selected to form a set Sgooa (Step 2).
Subsequently, the algorithm selects as many mutually “compatible” individuals from
Sgooa as possible to create Scompar (Step 4). The swaps in the Scompar individuals
are then combined to form a new giant tour, g, as an individual in Nypgr (Steps

8-9), and the individuals in Scompar are removed from Sgp0q (Step 10). The resulting

92

4.2. Algorithm Description

Algorithm 8 Route-pair swap

Input: a set of routes R
Output: neighbourhood Nyyap
1: Nswap —0

2: for r1 in R do

3: ro < random select one route from the remaining routes

4: for node ny in r1 do

5: ny < random select a node from r9

6: ri,ry < swap np and ng and get two new routes

7: g < get a giant tour based on r{,r} and remaining routes in R
8: Nswap < Nswap U {g}

9: end for

10: end for

11: return Ny,q)p

neighbourhood for this operator is Nypgr.

It is important to define the concept of “compatible” individuals. In essence, compat-
ibility between individuals is based on whether their swaps do not interfere with each
other, i.e., the nodes involved in different swaps are not adjacent. This is because it
is undesirable for the new edges created after a swap to be disrupted by another swap
operation. As illustrated in Fig. @, the two swaps in (a) and (b) are compatible,
whereas those in (c¢) are incompatible. This is because when the swaps in (c¢) are
combined, nodes 3 and 1 become adjacent, indicating that one new edge has been

disrupted.

Additionally, while RPS and MPER operators alter node positions across routes,
there’s no need to assess the impact on each route’s packing feasibility. This is because
the adjusted routes are ultimately merged back into a giant tour, with a feasible

solution obtained through giant tour decoding in the subsequent search process.

93

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Route A @/f@ ® @

Route D

Route A .@Q @ Route A e @ @ @ @
2 — compatible
Route D @ @ Route D e @ G

(a) the two swaps are compatible

roue s (D) Q) @) @® G)
Route D @ @

+

Route A
Route B @ 6 @ @ @ @ Route B .
1] 2 — compatible
Route C ga@@®a6 Route C

Route D

(b) the two swaps are compatible

Route A @//@ ©J6)

Route D

+

Route A @@\\@@ N OIOI0IDIO.

]2
Route D
Route D . @ oute Q e G

~ incompatible

(c) the two swaps are incompatible

Figure 4.3: Compatible and incompatible swaps.

94

4.2. Algorithm Description

Algorithm 9 Multi-pair elitist recombination

Input: neighbourhood obtained by route-swap operator Ngyqp
Output: neighbourhood Ny prr
1: Nyper < 0
2: Sgooa < select individuals better than the parent individual from Nyyqp
3: while S;p04 # 0 do
4: Scompar < select individuals that are compatible with each other from S,404

5: if Scompar = 0 then

6: break

7: end if

8: g < obtain a giant tour by combining the swap of each individual in Scompar
9: Nmper < Nuper U {8}

100 Sgood < Sgood \ Scompat

11: end while

12: return Nypgr

4.2.4 Adaptive Splitting Strategy

The 3L-SDVRP incorporates split delivery, a crucial feature that allows boxes from a
single node to be loaded onto multiple vehicles. This flexibility significantly influences
solution quality, as split decisions directly impact vehicle routing and box loading

arrangements.

In [[10], the authors used a method where split delivery decisions are integrated into
the giant tour decoding process. In this approach, vehicles sequentially visit nodes
in the giant tour from front to back. Let n.,, represent the current visiting node,
Nuex: the subsequent node, and 0 denote the depot. The distance between nodes i
and j is given by d; ;. When a vehicle cannot accommodate all box layers at nyex,
it will still visit n,.,; and load as many layers as possible if the following condition

is met: (d, +d,,,..0)/dn,.,,0 < max_split_costs. Here, max__split_costs is

NcurrsNnext

95

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

a predefined hyperparameter. This method sets multiple max__split_ costs values as
the outer loop and performs local searches for each value. However, this approach

has two significant limitations:

o It fails to consider the remaining capacity of the vehicle and the box layer
configuration at n,.,,. For instance, if the vehicle remaining capacity can only
accommodate a minimal number of box layers, visiting n,.,; may be inefficient,

as the incurred costs could outweigh the potential benefits.

o Using multiple max__split_costs values requires separate local searches for each

value, increasing computational time and complexity.

To address these shortcomings, we propose an adaptive splitting strategy. As il-
lustrated in Algorithm @, splitting delivery at node i is executed only when the
ratio of [! to [; exceeds a specific threshold p (Steps 5-7). This strategy adaptively
determines whether to perform splitting delivery based on the information of the ve-
hicle and node. Additionally, it eliminates the need to traverse Max_split_costs,
thereby conserving computational resources and enhancing efficiency. Therefore, our

proposed approach:

e Dynamically determines whether to visit the next node based on the vehicle

remaining capacity and the box layer configuration at that node.

o Eliminates the need for multiple local searches, thereby reducing computational

overhead.

4.2.5 New Post-Optimization Approach

In SDVRLH2, a 3-opt operator is employed for post-optimization. As a commonly

used search operator in VRPs, the number of neighbourhood solutions generated by

96

4.2. Algorithm Description

Algorithm 10 Adaptive splitting strategy

Input: vehicle v, node i
Output: bypiining (True: splitting; False: not splitting)
1: I, « the residual length of v
2: [; « the sum of depths of all layers in i
3: L} « select as many layers loaded into v as possible from i based on [,
4: I « the sum of depths of layers in L}
5. if I [I; < p then bypjiying < False
6: else bypiitiing < True
7: end if

8: return bpiising

the 3-opt increases exponentially with the problem size, resulting in high computa-
tional complexity. Moreover, due to the lack of heuristic information utilization, the
effectiveness of employing 3-opt for post-optimization in this problem is not ideal.
Therefore, this chapter designs a new post-optimization method to further improve

solution quality:.

The proposed post-optimization method consists of two main components: reassign-
ment and routing optimization. The former aims to reassign all layers loaded on a
specific vehicle to other vehicles to reduce the vehicle count, while the latter employs
our LKH mutation operator to independently optimize each route to minimize the

total travel distance.

Reassignment. The overall process of reassignment is demonstrated in Algorithm
. All routes in the set R are sorted in ascending order based on the sum of their
loaded layers’ depths (Step 1). The reassignment is prioritized for routes with smaller
loadings (Steps 2-12) since they have a higher likelihood of successful reassignment.
Specifically, after determining the route r; that requires reassignment, the remaining

routes in R are sorted in descending order according to the residual length of the

97

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

vehicles (Steps 3-4). Then, all layers in r; are attempted to be reassigned to the
routes in R (Step 5), with the detailed reassignment method explained in Algorithm
@. If all layers in ry are successfully reassigned, R is updated and its routes are
re-sorted based on the sum of their loaded layers’ depths (Steps 7-8), followed by
the next iteration; otherwise, the reassignment process stops, and the algorithm ends

(Step 10).

Algorithm 11 Framework of Reassignment

Input: a set of routes R with loaded layers
Output: R after reassign
1: R « sort R in ascending order based on the sum of the depths of the layers each
route carries
2: for route r1 € R do
3: R «— R\ {ri}
4: R « sort R in descending order based on the residual length of each vehicle
5: bsuces Rreassign <— reassign layers in r1 to routes in R by Algorithm
6: if by, is True then
7 R — Ryeassign
8: R « sort R in ascending order based on the sum of the depths of the

layers each route carries

9: else

10: break
11: end if
12: end for

13: return R

After identifying route r, for reassignment, the algorithm reallocates its layers to other
vehicles in R. This process involves calculating the maximum available space (rlqx)
for each route (Algorithm [12 Step 1) and sorting r,’s layers by depth in L,, (Step 2).

The algorithm tries to reassign L,,’s layers to suitable vehicles in R, marking success

98

4.2. Algorithm Description

if all layers are reassigned (Steps 3-25). For each layer # in L, , it seeks a new route r,
assessing the needed additional space (Ieeq, Step 7). If lyeeq < 0, the layer fits without
adjustments. If lyeeq > rlyax, € cannot be reassigned to r. For 0 < leeq < rlpax, the
algorithm might transfer layers from r to accommodate Z, selecting the option that
minimizes additional required space I, (Steps 17-18). Failure to reassign any layer
from L,, indicates a reassignment failure, and the original R is retained; otherwise,

the successful reassignment potentially reduces the number of needed vehicles.

Single route optimization. After the reassignment process, some layers on certain
routes are redistributed to other routes, making it necessary to optimize the routes
post-reassignment. In 3L-SDVRP, each customer node can only be visited once by
the same vehicle. Consequently, each vehicle departs from the depot, visits a subset
of nodes, and returns to the depot. Given this, at the post-optimization phase, where
the set of nodes visited by each vehicle is fixed, every vehicle route can be considered
an independent TSP problem. Therefore, in this step, we employ our proposed LKH
mutation operator to optimize the routes after reassignment, aiming to reduce the

overall travel distance.

4.2.6 Other Details
Giant Tour Decoding and Evaluation

In this thesis, we utilize the concept of giant tour to represent a solution for the 3L-
SDVRP. A giant tour comprises a permutation of all nodes, but it is not a feasible
solution since it is not possible to visit all nodes with a single vehicle without violating
any constraints. Therefore, a decoding process is needed to decode a giant tour into

a feasible solution. The detailed decoding approach is described in Section 5.2.1.

The 3L-SDVRP has two objectives: minimizing the number of vehicles and the tzd.

After decoding, we can calculate the number of vehicles used and the total travel

99

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Algorithm 12 Reassign layers in a route to other routes

Input: r,: route to be reassigned; R: routes receiving layers from r,
Output: bg,..: a Boolean variable used to indicate the success of the reassignment; R:

other routes after reassignment

—_

: Flimax < the maximal residual length of vehicles corresponding to R

2: L,, < sort layers of r, in descending order based on layer depths; bgyc. < True

3: for each layer £ € L,, do
4: ly « the depth of 7
5: lyw min < a big positive number; s < 0
6: for route r € R do
7 [, « residual length of the vehicle for route r; lyeeq <« lp — 1,
8: if lieeq < 0 then
9: lw1 & =lneea; lwz < 0
10: else if [,,c0q > rlmax then break
11: else
12: Zremove < layers to be removed from r; I, < the depth sum of Zemove
13: if [, < rlax then
14: w1 < lre — lneed; Lwo «— move Zyemove t0 the most suitable route r’ and
update its vehicle residual length
15: end if
16: end if
17: Ly « L1 + Lo
18: if I,, <l min then [, ,in < 1,,; s < reassignment arrangement of ¢ end if

19: end for
20: if s =0 then

21: bsuce < False; return by, original R

22: else

23: rq, R « perform reassignment according to s and update r, and R
24: end if

25: end for

26: return by, R

100

4.2. Algorithm Description

distance (rtd) of a solution. In line with [10], we prioritize the number of vehicles as
the primary objective, while total travel distance serves as a secondary consideration.
Therefore, when evaluating the quality of two solutions, we first examine the number
of vehicles, with fewer vehicles indicating a superior solution. When the number of
vehicles is the same, we then compare the total travel distances, with shorter distances

representing better solutions.

Basic Layer and Packing Patterns

The packing algorithm presented in this chapter is inspired by the work of [10], and
its overall structure is delineated in Algorithm . We adopt a layer-based packing
strategy, which has been widely used in various studies [[7] [12] [13] [26] [66] [107].
As illustrated in Fig. El!, the layer-defining box is the first loaded box of the layer
and thus determines the layer’s depth. For each node, all boxes form several cuboid
layers with varying depths. During the routing search, the cuboid layers serve as the
smallest packing units. Consequently, we only need to consider whether the depth of
the layers can be accommodated in the vehicle, rather than considering the packing
details (i.e., the 3D position and loading sequence) of each box within the cuboid
layer. This approach obviates the need to repeatedly address the packing problem
during the routing step, focusing instead on the SDVRP, thus reducing computational

complexity.

Within this context, there are several key concepts: basic layer, 1C-FLP, 1C-SP, and
2C-SP. A basic layer, as illustrated in Fig. , is a cuboid layer composed of boxes
originating from the same node. Multiple distinct basic layers arise from the boxes

of a single node.

Algorithm [14 outlines the packing heuristic method for obtaining all basic layers for
a single node. In this method, each layer definition list comprises all unloaded boxes,

sorted by their volumes. Initially, the layer defining list of the first layer, LDL,

101

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Algorithm 13 Overview of our packing approach

Input: problem data, parameters
Output: packing solution
1: generate basic layers for each node by Algorithm
2: construct 1C-FLP and 1C-SP for each node based on its basic layers
3: construct 2C-SP pattern based on 1C-SP of each node
4: prepare final packing solution with 1C-FLP, 1C-SP, and 2C-SP

5. return packing solution

is generated. Then, for each layer defining box in LDL;, a packing arrangement is
produced after completing each outer loop (Algorithm @ Steps 3-17). To elaborate,
for each layer defining box in LD L, a cuboid layer is created as the first layer (Step
4). Subsequently, numerous candidate layers (stored in Ly,y) are generated, and the
most suitable one, .y, is selected as the next layer (Steps 6-15). This process involves
generating the layer defining list of the next layer, LDL, (Step 7), followed by the
construction of a candidate layer for each layer defining box in LDL, (Steps 9-12).
The best layer from L,y is then chosen as the next layer (Step 13). By repeating
these steps, various packing arrangements stored in P are obtained. Ultimately, the
best packing arrangement is selected as the node’s final packing solution. Throughout

this process, the packing of different nodes remains independent.

As previously mentioned, the basic layer serves as the smallest unit of vehicle loading
in our method. Thus, constructing basic layers from the boxes of each node signifi-
cantly impacts algorithm performance. To avoid confusion, we introduce the concept
of space: as illustrated in Fig. @, a space in this thesis refers to a vacant cuboidal
region available for loading boxes. Loading a box into a space entails placing the box

such that its rear-bottom-left vertex coincides with that of the space.

Algorithm [15 delineates the process of constructing a basic layer. Initially, an empty
layer is determined by the layer defining box b as the first space of the layer (Step

102

4.2. Algorithm Description

Algorithm 14 Construct basic layers

Input: problem data of one node, parameters
Output: basic layers of the node p
1: P—0;5s 0
2: LDL; < generate the layer defining list of the first layer
3: for i «— 1 to |LDL4| do
4: [« generate a layer with layer defining box LDLq[i] via Algorithm

5: s — sU{l}

6: while existing unloaded boxes do

7: LDL, < generate the layer defining list of the next layer

8: Lyext < 0

9: for j < 1to |[LDL,| do

10: [« generate a layer with layer defining box LDL,[j] via Algorithm
11: Lyext < Lyext U {1}

12: end for

13: Lpext < select the layer with the best loading rate from L.y,

14: s — sU{lyext}

15: end while

16: P— PU{s}s<0

17: end for

18: p « select best packing arrangement

19: return p

103

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

| y
——f—— 1 ———— L
7 box
/
/
/
4 space

Figure 4.4: Illustration of cuboid space and box.

2). The layer’s depth equals the length of by in the x-axis direction, while its width
and height correspond to the respective dimensions of the vehicle. After loading by,
new subspaces are generated along the x, y, and z axes for subsequent loading (Steps
3-4). The following process is repeated until no available spaces remain or all boxes
of the node have been loaded: extract spaces sequentially from the space stack S,yqi
(Steps 6-7), then select a box from the set of unloaded boxes By, that can be loaded
into the space, load it, and generate new subspaces along the x, y, and z axes (Steps

8-10).

Building upon the basic layer concept, [10] proposed three distinct packing patterns:
1C-FLP, 1C-SP, and 2C-SP. The 1C-FLP, or one Customer Full Load Pattern, is
created by combining multiple basic layers from the same node. This pattern requires
an empty vehicle to load and directly transport the cargo to the final destination
without visiting other nodes. If the sum of the depths of all basic layers of a node
exceeds the vehicle capacity, it indicates that a single vehicle cannot accommodate all
layers of the node; thus, at least one 1C-FLP can be constructed. After constructing
a 1C-FLP for a node, the remaining layers that cannot fill a vehicle (and therefore

cannot form a 1C-FLP) constitute a 1C-SP, which stands for one Customer Segment

104

4.2. Algorithm Description

Algorithm 15 Generate a basic layer

Input: bo: layer defining box; B..: set of unloaded boxes
Output: a basic layer
L Savait < 0
2: 59 < initialize an empty layer as the first space based on bg (the length of by in
the x-direction corresponds to the depth of the layer)
3: Suew < load bg into sp and subsequently generate multiple subspaces
4 Savail <= Savail Y Snew
5: while S4y4i # 0 and By # 0 do

6: Scurr < Select the uppermost space from Sgy4

7 Savail < Savail \ {Scurr}

8: b « select a box that can be loaded in s¢yr from By,

9: Bfree < Byree \ {b}

10: Syew < load b into sq, and subsequently generate multiple subspaces
11: Savail < Savail Y Snew

12: end while

13: return the constructed basic layer

105

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Pattern. As a result, each node will always have one 1C-SP and potentially zero, one,

or multiple 1C-FLPs.

Following the construction of 1C-FLP and 1C-SP, the two Customer Segment Pattern
(2C-SP) is developed based on the 1C-SP. Initially, a customer pair (c1, c2) is selected,
and a basic layer is chosen from each of the two customers’ 1C-SPs to form a mixed
layer. A customer pair may have various mixed layer construction schemes; for each
scheme, a saving § = depth(1C—SP(c1))+depth(1C-SP(c2))—depth(2C—-SP(c1,c2))
is calculated. The construction scheme with the maximum saving ¢ is selected as the
final 2C-SP solution for the customer pair. For additional information on 1C-FLP,

1C-SP, and 2C-SP, please refer to [10].

4.3 Computational Studies

In this study, we have evaluated our algorithm against SDVRLH2 [10], the current
state-of-the-art method for the 3L-SDVRP, across three widely-used datasets: B-Y
[10], Shanghai [10], and SD instances [13]. These datasets are chosen for two main
reasons: (1) Scale of Problem Instances: The problem instances used in Chapter
are relatively small, averaging approximately 9 nodes and 401 boxes. In contrast,
the datasets used in the literature are larger: the B-Y instances average 114 nodes
and 5985 boxes, the Shanghai instances average 40 nodes and 955 boxes, and the SD
instances average 57 nodes and 2371 boxes. (2) Facilitation of Comparisons: Using
these widely-used datasets facilitates comparisons with existing work. For clarity, we
categorize instances based on the nunmber of nodes: those with fewer than 100 nodes
are considered small-scale, while those with 100 to 200 nodes are considered large-
scale. The comparative analysis is explained in Section @ Additionally, Section
@ delves into further analyses. This includes examining how different objectives
influence outcomes and conducting ablation studies to assess the contribution of our

algorithm’s novel features.

106

4.3. Computational Studies

4.3.1 Experimental Setting

In line with the SDVRLH2 [[10] to facilitate comparisons, we prioritize the number of
vehicles as the primary objective and total travel distance (tzd) as the secondary ob-
jective (with lower priority). Therefore, when evaluating the quality of two solutions,
we first examine the number of vehicles, with fewer vehicles indicating a superior so-
lution. When the number of vehicles is equal, we then compare the ttd, with shorter
distances representing better solutions. The parameter settings are as follows: in Al-
gorithm H, Nour = 2, Njrer = 100, and 1,5 imp = 2; in Algorithm B, a1 = 0.5 and ap = 0.
It is worth noting that we did not perform a rigorous parameter tuning process be-
cause we want to show that the good performance of our algorithm originates from
novel algorithm designs, not from finely-tuned parameters. The experiments were
conducted 30 times using Python 3.7 on a Dell R370 server with 2x Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz, 128G RAM, and CentOS 7.6 operating system.

Additionally, this chapter provides both CPU time and the number of fitness evalu-
ations (FEs) for SDVRLH2 and our algorithm. While CPU time directly measures
computational cost, its reliability is affected by variations in hardware, software, and
code efficiency (e.g., differences in coding languages and programming skills). In
contrast, the number of FEs, indicating the number of fitness evaluations during the
search for an optimal or satisfactory solution, relates directly to the algorithm’s time
cost and provides a platform-independent metric. Therefore, the FE count provides

a more appropriate comparison of algorithm efficiency.

Number of Fitness Evaluations for SDVRLH?2

In [10], detailed information on the number of FEs used by SDVRLH2 is absent.
Hence, we estimated a lower bound for the FEs based on the algorithm’s description
and its parameters. To maintain clarity, we adopted the symbols and notation from

[10] in our explanation. Symbols nps, nbh, and niter_wimpr denote the number

107

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

of outer iterations, the number of inner iterations, and the iteration threshold for
improvement termination (i.e., the iteration terminates if the algorithm does not
produce a better solution after niter_wimpr consecutive iterations.), respectively.
Ngwap> N20pt, and nz,p; correspond to the neighborhood sizes of different operators.

Thus, the minimal FEs for SDVRLH2 are calculated as: nps X nbh X niter _wimpr X

(nswap + N2opt + n30pt)-

4.3.2 Comparative Analysis

The experimental results of our proposed algorithm and SDVRLH2 ([10]) are pre-
sented in Tables El! and @ The experimental data for SDVRLH2 originates from
[10].

Small-scale instances. Tab. [1! shows that our algorithm outperforms SDVRLH2 in
the average number of vehicles used, achieving better outcomes on 21 instances and
similar results on 9 instances. Our proposed algorithm outperforms SDVRLH2 in
both average number of vehicles and average ttd on one instance (Shab), establish-
ing new records for the lowest number of vehicles on 17 instances and the smallest
ttd on 2 instances. Notably, our proposed algorithm achieves a maximum reduction
of 11 vehicles (SD11) and an 6.36% reduction in tzd (Shab), contributing to a total
reduction of 40.6 vehicles across all instances. Over multiple runs, our algorithm
achieved new best-known solutions for the number of vehicles on 17 instances and
for both the number of vehicles and ttd on 2 instances. Furthermore, our proposed
algorithm requires significantly less CPU time and fewer fitness evaluations (FEs).
Across 32 small-scale instances, our algorithm requires, on average, merely 0.18% of
the FEs per instance compared to SDVRLH2. Although our algorithm is developed
in Python, contrasting with the C-based implementation of SDVRLH2, it still man-
ages to significantly reduce the average CPU time per instance when compared to

SDVRLH2.

108

4.3. Computational Studies

Large-scale instances. As shown in Tab. @, when applied to 16 larger-scale problem
instances, our algorithm significantly reduces the average number of vehicles on 13
instances, with a maximum reduction of 15 vehicles compared to SDVRLH2 (B-Y19).
There is a total reduction of 72.6 vehicles across all instances, with an average of 4.5
vehicles per instance. Based on the best results across multiple runs, the proposed
algorithm identified new best-known solutions on 12 problem instances in terms of
the number of vehicles utilized. The total number of vehicles saved across all large-
scale problem instances reached 73, equivalent to an average reduction of 4.6 vehicles
per instance. The algorithm also establishes new records by achieving the lowest
number of vehicles on 12 instances. Compared to SDVRLH2, our algorithm requires
significantly fewer FEs, i.e., computationally more efficient. On all 16 instances, the

FEs required by our algorithm never exceed 0.2% of those used by SDVRLH2.

However, our proposed algorithm does increase the ttd, particularly in larger-scale
problems, where the substantial reduction in vehicles leads to higher tzd. On small-
scale instances, the average ttd increases by 37.79% compared to SDVRLH2. On
large-scale instances, the ttd rises by 56.45%. This can be attributed to three factors:
(1) The number of vehicles and ttd represent conflicting objectives: an improve-
ment in one leads to a decline in the other. (2) Our method of constructing 2C-SP
constructs more 2C-SPs, thereby saving vehicle spaces and reducing the number of
vehicles. However, the 2C-SP may be maintained during the route search process if
it contributes to reducing the number of vehicles used, potentially increasing the ttd.
(3) The algorithm employs a small number of FEs in the route search process. The
ttd could be further reduced by allocating additional computing resources to routing.

These are the areas for our future studies.

4.3.3 Further Analysis

This section explores three aspects of our algorithm: (1) the effects of changing the

109

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Table 4.1: Comparison results between SD and Ov on

small-scale instances (# nodes <100).

Instances Avg # v Avg ttd Best # v Best ttd CPU Time # FE Instances Avg # v Avg ttd Best # v Best ttd CPU Time # FE
(smal) y9p (Ov-SD)/SD Ov-SD (Ov-SD)/SD Ov/SD Ov/sD Gmal) 6isp (0v-SD)/SD Ov-SD (Ov-SD)/SD Ov/SD Ov/SD
B-Y1 -1.1 0.2780 -2 0.2141 0.1264 0.0018 Sha9 0 0.2128 0 0.1463 0.1394 0.0027
B-Y2 -0.5 0.4953 0 0.4354 0.0882 0.0019 Shal0 0 0.1544 0 0.0993 0.1331 0.0034
B-Y3 -1.0 0.2007 -1 0.1249 0.1720 0.0027 Shall -0.2 0.2208 0 0.1735 0.0376 0.0013
B-Y4 1.3 0.5466 1 0.4916 0.1345 0.0019 Shal2 -2 0.2075 -2 0.1535 0.0641 0.0020
B-Y5 -2 0.3155 -2 0.2752 0.0627 0.0017 Shal3 -0.7 0.2785 0 0.2510 0.0182 0.0015
B-Y6 -0.3 0.5965 -1 0.5636 0.0443 0.0018 SD1 0 0.1749 0 0.1563 1.1004 0.0079
B-Y7 -2 0.2363 -2 0.1897 0.0710 0.0016 SD2 -1 0.2033 -1 0.1360 0.3453 0.0036
B-Y8 1.0 0.7038 1 0.6638 0.0514 0.0016 SD3 0 0.1501 0 0.1409 0.0888 0.0034
Shal 0 0.0238 0 0.0135 2.0054 0.0210 SD4 -1 0.4285 -1 0.3341 0.1273 0.0026
Sha2 0.2 0.0456 0 0.0239 0.0472 0.0126 SD5 2 0.5586 2 0.5486 0.0618 0.0014
Sha3 0 0.0534 0 0.0132 0.4951 0.0050 SD6 -2 0.4721 -2 0.4322 0.5147 0.0021
Sha4 0 0.1938 0 0.0718 0.2729 0.0051 SD7 -2.5 0.4053 -3 0.3213 0.0558 0.0023
Shab -1 -0.0636 -1 -0.0817 0.1035 0.0083 SD8 -3 0.2882 -3 0.2431 0.2041 0.0019
Sha6 -1 0.3199 -1 0.2425 0.0867 0.0035 SD9 -3 0.5665 -3 0.4841 0.0568 0.0019
Sha7 -0.7 0.0600 -1 -0.0071 0.0967 0.0038 SD10 -9 0.3239 -9 0.2461 0.0397 0.0019
Sha8 0 0.0494 0 0.0238 0.2648 0.0070 SD11 -11.1 0.6625 -11 0.5747 0.0238 0.0010

Overall Avg # v Avg ttd Best # v Best ttd CPU Time # FE

Avg -1.3 0.3779 -1.3 0.3224 0.0599 0.0018

Total -40.6 0.3779 -42.0 0.3224 0.0599 0.0018

Note: SD refers to the SDVRLH2 algorithm; Ov refers to our algorithm with # v as the first objective

. # v = the number of vehicles used; ttd=total travel distance;

FE= the number of fitness evaluations. The data in bold signifies that our strategy produces better results than the contrasted strategies numerically. The Mann-

Whitney U test was employed, and the data with underlined values indicate a significant difference at the significance level a = 0.05.

110

4.3. Computational Studies

Table 4.2: Comparison results between SD and Ov on large-scale instances

(100<#n0de<200).

Instances Avg # v Avg ttd Best # v Best ttd CPU Time +# FE
(large) Ov-SD (Ov-SD)/SD Ov-SD (Ov-SD)/SD Ov/SD Ov/SD

B-Y9 4 0.4413 -4 0.3581 0.2627 0.0015
B-YI0 -3 0.6334 -3 0.5385 0.1325 0.0016
B-YIl -4.1 0.3295 -5 0.2523 0.3184 0.0013
B-YI2 1.0 0.8921 1 0.8323 0.1066 0.0014
B-YI3 -7.1 0.4152 -8 0.3443 0.5825 0.0012
B-Yl4 -2 0.6790 -2 0.6287 0.1389 0.0013
B-Y15 -10.5 0.3515 -10 0.2958 0.4684 0.0011
B-Y16 L1 0.8698 2 0.7213 0.4735 0.0011
B-Y17 -12.4 0.3098 -13 0.2400 0.7362 0.0008
B-YI8 -6.6 0.8257 -6 0.7099 0.4009 0.0009
B-Y19 -14.1 0.2064 -15 0.1631 1.3106 0.0008
B-Y20 -0.9 0.8021 0 0.6925 0.5849 0.0009
Shald -2.2 0.6836 -2 0.6144 0.0922 0.0007
Shal5 -5.0 0.9501 -5 0.8700 0.3990 0.0005
SD12 0 0.3429 0 0.2946 0.1662 0.0015
SD13 -3 1.0800 -3 1.0135 0.8826 0.0011
Avg -4.5 0.5645 -4.6 0.4989 0.4391 0.0009
Total -72.6 0.5645 -73.0 0.4989 0.4391 0.0009

Note: SD refers to the SDVRLH2 algorithm; Ov refers to our algorithm with # v
as the first objective. # v = the number of vehicles used; ttd=total travel distance;
FE= the number of fitness evaluations. The data in bold signifies that our
strategy produces better results than the contrasted strategies numerically. The
Mann-Whitney U test was employed, and the data with underlined values indicate

a significant difference at the significance level @ = 0.05.

111

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

primary objective on performance, (2) the contributions of each novel component
through ablation studies, and (3) the efficiency of our algorithm through time analy-
sis. Our experiments use a fixed iteration count, setting a consistent limit on fitness
evaluations (FEs). However, Algorithm H can terminate early if no improvement is
observed after n,, ;up consecutive iterations, suggesting a local optimum has been
reached. Hence, the actual FEs used may vary across different algorithm configura-

tions, reflecting the distinct search effectiveness of each setting.

Comparative Study of Primary Objectives

In real-world scenarios, reducing the number of vehicles holds greater importance than
minimizing total travel distance ([10]), due to the significantly higher costs associated
with acquiring, maintaining, and employing drivers for additional vehicles compared
to the costs incurred from increased travel distances. Our algorithm, aligned with
SDVRLH2, aims to minimize the number of vehicles as the primary objective, with
the total travel distance (ttd) as the secondary objective. To assess how the objec-
tive prioritizations affect algorithmic performance, we have performed experiments
comparing the algorithms with the vehicle number (Ov) and ttd (Ot) as the pri-
mary objective respectively. Tables @ and @ present these results. Note that in
algorithm process, solution evaluations are initially based on the primary objective.
When solutions have the same primary objective value, the secondary objective then

distinguishes their quality.

Small-scale instances. As shown in Tab. @, on 32 small-scale problem instances,
in terms of average vehicle counts, Ot underperformed Ov on 10 cases but matched
Ov’s performance on the remaining instances. Ot utilized 6.5 more vehicles in total
compared to Ov. Concerning average ttd, Ot exceeded Ov’s performance on 11 in-
stances, achieving reductions in ttd of up to 5.2%, with an average decrease of 2.2%

per instance. Upon analyzing the best results from multiple runs, Ot resulted in a

112

4.3. Computational Studies

higher number of vehicles than Ov on 5 instances but equaled Ov’s performance in

ttd across all instances.

Large-scale instance. According to Tab. @, on the 16 large-scale instances, the gap
between Ot and Ov widened considerably. Ot needed more vehicles than Ov across
the board, with a notable increase on 14 instances, leading to 32.7 more vehicles in
total. However, Ot significantly reduced the ttd, outperforming Ov by more than
7% on 14 instances and averaging a 6.1% ttd reduction. When looking at the best
outcomes from multiple runs, Ot underperformed Ov in terms of vehicle count, but

matched Ov’s ttd achievements.

Between Ov and Ot, there is a clear conflict between vehicle count and ttd, with vehi-
cle prioritization generally resulting in fewer vehicles and ttd prioritization achieving
shorter total distances, particularly in larger-scale problems. Whether focusing on
minimizing vehicle count (Ov) or reducing rtd (Ot), it’s challenging to perform well
in both objectives simultaneously. From a Pareto dominance aspect, the results em-
phasizes the inherent difficulty of achieving a balanced optimization between these
objectives within a single-objective optimization framework. Thus, our work high-
lights the ongoing exploration to simultaneously optimize vehicle number and ftd,

presenting a complex challenge in search of improved overall solutions.

Ablation Study

To evaluate the effectiveness of each innovation in our approach, a comprehensive
series of ablation experiments were conducted. Tab. @ presents the algorithm
notations employed in these experiments. To assess the impact of each innovation,
one innovation was sequentially added to the previous algorithm, followed by 10
repeated runs to obtain experimental results, determining whether the innovation
indeed enhanced the algorithm’s performance. Tables @ - demonstrate the

comparative results.

113

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Table 4.3: Comparison results between Ov and Ot on small-scale instances (# nodes <100).

Instances Avg # v Avg ttd Best # v Best ttd CPU Time # FE Instances Avg # v Avg ttd Best # v Best ttd CPU Time # FE
(smal) 60y (01-0v)/Ov 0t-Ov (0t-0v)/Ov Ot/Ov Ot/ov Ml 6i 00 (0rov)/Ov 0t-Ov (0t-Ov)/Ov Ot/Ov Ot/Ov
B-Y1 0.1 -0.0197 1 0 1.353 1.363 Sha9 0.0 -0.0265 0 0 1.492 1.582
B-Y2 0.0 -0.0215 0 0 1.524 1.417 Shal0 0.0 -0.0150 0 0 1.151 1.472
B-Y3 1.0 -0.0151 1 0 1.138 1.167 Shall 0.0 -0.0153 0 0 1.222 1.517
B-Y4 0.7 -0.0400 1 0 1.535 1.374 Shal2 0.1 -0.0063 0 0 1.280 1.382
B-Y5 0.8 -0.0068 0 0 1.268 1.338 Shal3 0.6 -0.0098 0 0 0.940 1.306
B-Y6 0.3 -0.0266 1 0 1.392 1.263 SD1 0.0 -0.0061 0 0 1.756 1.403
B-Y7 0.2 -0.0095 0 0 1.320 1.488 SD2 0.0 -0.0319 0 0 1.837 1.589
B-Y8 0.9 -0.0198 0 0 1.325 1.240 SD3 0.0 -0.0220 0 0 1.507 1.327
Shal 0.0 -0.0066 0 0 1.594 1.730 SD4 0.2 -0.0041 0 0 1.616 1.433
Sha2 -0.1 -0.0084 0 0 1.846 1.611 SD5 0.0 -0.0021 0 0 1.857 1.628
Sha3 0.0 -0.0126 0 0 1.304 1.460 SD6 0.0 -0.0254 0 0 1.370 1.452
Shad 0.0 0.0036 0 0 1.846 1.646 SD7 0.5 -0.0520 1 0 1.449 1.362
Shab 0.0 -0.0012 0 0 1.778 1.583 SD8 0.0 -0.0108 0 0 1.246 1.316
Shab 0.0 -0.0134 0 0 1.618 1.601 SD9 0.3 -0.0263 0 0 1.388 1.496
Sha7 0.3 -0.0114 0 0 1.341 1.556 SD10 0.6 -0.0473 0 0 1.447 1.430
Sha8 0.0 -0.0105 0 0 1.475 1.508 SD11 0.0 -0.0249 0 0 1.251 1.373

Overall Avg # v Avg ttd Best # v Best ttd CPU Time # FE

Avg 0.2 -0.0220 0.16 0 1.322 1.379

Total 6.5 -0.0220 5 0 1.322 1.379

Note: Ov (Ot) refers to our algorithm with # v (ttd) as the first objective. # v = the number of vehicles used; ttd=total travel distance; # FE= the number of

fitness evaluations. The data in bold signifies that our strategy produces better results than the contrasted strategies numerically. The Mann-Whitney U test was

employed, and the data with underlined values indicate a significant difference at the significance level @ = 0.05.

114

4.3. Computational Studies

Table 4.4: Comparison results between Ov and Ot on large-scale instances

(100<#node<200).

Instance Avg # v Avg ttd Best # v Best ttd CPU Time # FE
(large) Ot-Ov ~ (Ot-Ov)/Ov Ot-Ov (Ot-Ov)/Ov Ot/Ov Ot/Ov
B-Y9 2.0 -0.1048 2 0 0.180 1.232
B-Y10 1.3 -0.0744 2 0 0.188 1.077
B-Y11 1.7 -0.0809 2 0 0.199 1.381
B-Y12 1.9 -0.0726 1 0 0.322 1.176
B-Y13 29 -0.1026 3 0 0.203 1.132
B-Y14 2.0 -0.0829 2 0 0.555 1.212
B-Y15 3.1 -0.0996 3 0 0.364 1.419
B-Y16 2.5 -0.1043 2 0 0.186 1.334
B-Y17 3.6 -0.0978 4 0 0.371 1.330
B-Y18 24 -0.1051 2 0 0.390 1.247
B-Y19 42 -0.1067 5 0 0.227 1.279
B-Y20 32 -0.1059 3 0 0.347 1.225
Shal4 1.0 -0.0857 1 0 0.128 1.481
Shalb 1.1 -0.0776 2 0 0.078 1.269
SD12 0.0 -0.0286 0 0 0.186 1.301
SD13 0.0 -0.0242 0 0 0.051 1.325
Avg 2.0 -0.0610 2.13 0 0.229 1.271
Total 32.7 -0.0610 34 0 0.229 1.271

Note: Ov (Ot) refers to our algorithm with # v (ttd) as the first objective. # v
= the number of vehicles used; ttd=total travel distance; # FE= the number of
fitness evaluations. The data in bold signifies that our strategy produces better
results than the contrasted strategies numerically. The Mann-Whitney U test was
employed, and the data with underlined values indicate a significant difference at

the significance level @ = 0.05.

115

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Table 4.5: Notions for algorithms with different components in ablation experiments.

Notation Algorithm with X Notation Algorithm with X
Al X=Improved packing method A3 X=A2+Adaptive splitting strategy
A2 X=A1+New search operators A4 X=A3+New post-optimization

Improved Packing Methods (A1 VS SDVRLH2). As shown in Tables @ and
@, on average, on the 32 small-scale instances, Al reduced the number of vehicles
on 20 instances, with a maximum reduction of 11.1 vehicles (SD11) and a cumulative
reduction of 43.2 vehicles across all instances. On the 16 large-scale instances, Al
reduced the number of vehicles on 12 instances, with a maximum reduction of 11.2
vehicles (B-Y19) and a cumulative reduction of 51.2 vehicles across all instances. The
experimental results indicate that the improved packing methods effectively reduce

the number of vehicles, especially on larger-scale problems.

New Search Operators (A2 VS Al). Building upon Al, the old search opera-
tors were replaced with our proposed new search operators to obtain Algorithm A2.
According to Tables @ and @, for the 32 small-scale instances and the 16 large-
scale instances, A2 significantly reduced the total travel distance (fzd) on 9 and 16
instances, respectively, compared to A1, with maximum reductions of 6.99% (B-Y8)
and 11.09% (SD13). Notably, the new operators exhibited more significant effects
on larger-scale instances, reducing the average rtd per instance by 6.15%. On an
additional 20 small instances, the ttd of A2 was found to be as good as that of Al.
Importantly, the use of new operators significantly reduced the number of fitness
evaluations (FEs) consumed by the algorithm. For the small-scale instances, A2 used
only less than 10% of Al’s FEs on 28 instances, with a maximum of 35.58% (Shal)
and a minimum of 1.44% (SD11) of A1’s usage. For the 16 large-scale instances, A2
used only 20-40% of Al’s FEs. This demonstrates that the new operators can greatly

improve the search efficiency of the algorithm and help find better solutions.

116

4.3. Computational Studies

"G00 = © [OAD] 9OURIYIUSIS oY} J& dOUIIIPIP JUedyIuSIs © 9JeIIPUI SON[eA PIUI[IOPUN [IIM eIep 91} pue ‘pasorduro
sem 1599) AOUPYAN-UURIN O], "A[[ROLIDWINU SOIS0)RI)s PISLIJUO0D oY) URY) SHNSAI 10139q soonpoid £894eI)s o jer) soytudis p[oq Uur eyep o], @ ‘e, Ul uMoys st Ty

JO Surueew AT, ‘WILIOF[® ZHTYACS OUI 0} SI8JAI (S "SUOIJRNRAD SSOUIY JO IDUINU S} = # 90URISIP [9ARI) [RI0}=DP)) PISIL SIOIYA JO IDUINU S} = A # 90N

00£T°GT zeer 16750 Th- 779270 zer- [e0,

00£T°CT zeer 6£6T°0 e1- 9L12°0 V- 8ay

qd # owiy, NdD P11 989 A #f 159 P Say A # 3ay (121940
61€0°LT 0°02 TLEED 11- s¥Pe0 T'II- I1as €S81°¢ 97°81 Y0100 0 9610°0 0 geyg
20Tl €1 70°8T 6801°0 6- €zeT0 6- 0TaS 8€087%C 08°2T 95100 1- 8870°0 1- LeUS
8965 11 8¢°02 09g7°0 ¢- T6a7°0 €- 6dS 99,57 6871 ZIve 0 1- $992°0 1- 9eys
890'8 96°0% SeTT 0 g- 75960 €- 8dS €661°¢ z€'8 L880°0- 1- 80L0°0- 1- geyg
€LEC6 €0 689T°0 - 8062°0 €- 1dS L6£GT Tove 812070 0 €260°0 0 veus
£008'8 L67T 1007°0 - [z aa) z- 9ds L1081 L8766 £e70°0 0 8E70°0 0 geyg
G68¢°9 JANES 08FS°0 e 96750 z ¢ds 9600 Al 6£20°0 0 8220°0 0 geus
a4 69°8¢ 679270 1- 90L2°0 1- vas o geLe 9L 18T GET00 0 Se10°0 0 Teys
g) 8L'LT 76100 0 05300 0 €ds SIegel 15LL 97L9°0 T 6L0L°0 T 8A-d
7909F 20°Le 1280°0 1- SIIT°0 1- ¢ds Lsclel 6£°€9 P8F10 - 0GLT°0 z- LA-9
T687C 9891 €LL0°0 0 F780°0 0 Ids €L6L°¢T 65°¢6 80€¥°0 1- 70880 1- 9A-€
STT 01 L0°ST 90120 0 67120 L0- €TeUS 88L6°GT Ze 0L 6¥1G°0 - 96€2°0 z- SAd
6705°G 98°81 z€e10 - €eero z- ZIeUS $C18 80°99 9FFY 0 I $905°0 TT vA-d
01629 68T PE0T°0 0 60510 z'0- T84S €hLS'S 91°L¥ £€60°0 1- STLT0 1- ex-d
i) Y1°€e 162070 0 0LL0°0 0 0T®US L8968 70729 LT2E0 0 T80 g'0- A-d
GIST'S 651 €6¥1°0 0 FOPT°0 0 6eUS 9892°6 s 61020 - 1692°0 81~ TA-d

as/mv as/tv as/(asty) - dstv as/(asty) dsTv ems) AS/1V as/tv as/(asty) dsv as/(dsty) - dsTv (qeus)

dd # oWl NdD P13 ¥sog A # 1s0g P1 8AY A # 8ay seouejsu] HJg # WL NdD P11 Isog A # 1sog P11 8Ay A # 8ay seouejsuy

(00T> sopou #) seouejsur oeos-[[ews U0 (IS SA TV) SHNSal [eyuowlodxo UOIRIQY :9°F OS[qe],

117

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Table 4.7: Ablation experimental results (A1 VS SD) on large-scale instances
(100<#node<200).

Instances Avg # v Avg ttd Best # v Best ttd CPU time # FE
(large) A1-SD (A1-SD)/SD A1-SD (A1-SD)/SD A1/SD A1/SD

B-Y9 -3 0.3164 -3 0.2479 2.68 1.1103
B-Y10 -2.7 0.4860 -2 0.4524 1.89 1.1227
B-Y11 -3 0.2225 -3 0.1956 2.81 1.0722
B-Y12 2 0.7164 2 0.6958 2.03 1.0945
B-Y13 -5.1 0.2838 -6 0.2689 24.04 1.1049
B-Y14 -1 0.5245 -1 0.5180 16.70 1.1463
B-Y15 -8.5 0.2511 -8 0.2115 13.35 1.1068
B-Y16 2.6 0.7161 3 0.5765 10.09 1.1247
B-Y17 -9.5 0.2392 -10 0.1901 41.11 1.1234
B-Y18 -4.9 0.6911 -5 0.5789 28.47 1.1510
B-Y19 -11.2 0.1048 -12 0.0726 74.49 1.1147
B-Y20 1.2 0.6532 2 0.5925 58.18 1.1310
Shal4 -1.2 0.4816 -1 0.4923 4.55 1.0575
Shalb -3.9 0.8108 -3 0.7939 38.58 1.0750
SD12 0 0.0534 0 0.0435 18.05 1.3288
SD13 -3 1.0577 -3 0.9710 23.50 1.0858
Avg -3.2 0.4755 -3.1 0.4313 23.52 1.1198
Total -51.2 0.4098 -50.0 0.3693 23.52 1.1198

Note: # v = the number of vehicles used; ttd=total travel distance; # FE=
the number of fitness evaluations. SD refers to the SDVRLH2 algorithm; The
meaning of Al is shown in Tab. . The data in bold signifies that our strategy
produces better results than the contrasted strategies numerically. The Mann-
Whitney U test was employed, and the data with underlined values indicate a

significant difference at the significance level @ = 0.05.

118

4.3. Computational Studies

‘GO0 = D [oA9] @UE@UM_QME o[} je 90U IoIP ugduwﬁHw_w © 9)BIIPUI Sall[RA paUllIopuIl jIm

'yEp O pue ‘posorduro sem 950} () AQUIYAA-UURTN O], "A[[ROLIDWINU SOIS0)eIls POISLIPU0D I} ULY) SHMSAI 10339q seonpoid £803eI1)s MO Jer) Soyrusis pjoq ut eyep

YT, E ‘qeJ, ur umoys st gyy pue 1y Jo mﬂwﬂﬁoﬂﬂ 9 J, ‘suorjenyeAs ssoujly JO Joquinu o4} =H % moogﬁpmﬂu [oARI) [€103=DPI} Juomz SO[OIYOA JO Iaquunu o9yl = A &m 9JON

1610°0 €0°0 £600°0 0 000 L0 [e0T,

1610°0 €0°0 9200°0 0 1900°0- z0'0 Say

HA # awiy, NdD P 1s9g A 4 9s9g P11 Say A # S8y (8120
PPT0°0 500 S670°0 0 6690°0 0 11as 9e%0°0 10 L100°0~ 0 £V10°0- 0 gelg
€610°0 L0°0 8L£0°0 0 z120°0 0 01ds 61900 g1°0 9€20°0- 0 £€620°0- 0 Leqs
€020°0 80°0 100°0 0 2900°0- 0 6dS L890°0 91°0 67000~ 0 g100°0- 0 geyg
68200 €20 ZS10°0- 0 1020°0- 0 8AS 0¥L0°0 720 £€00°0 0 6€10°0- 0 geus
L1200 L0°0 6670°0 0 57000~ 0 LdS Sr60°0 €20 0000°0 0 15%0°0- 0 peus
0920°0 €v 0 82100~ 0 0820°0- 0 9ds 29210 61°0 88%0°0- 0 €00~ 0 geys
12200 80°0 0000°0 0 8000°0- 0 ¢ds 08SI0 €20 0000°0 0 0£00°0- 0 Zeus
75200 01°0 L0200~ 0 9200°0- 0 Pas 8¢Ge0 6z°0 0000°0 0 00000 0 Teys
6920°0 €10 76100 0 €610°0 0 €ds L0z00 10°0 S9%0°0- 0 6690°0- 0 8A-4
L2€0°0 €0 68T0°0 0 8200°0- 0 ¢ds 9.10°0 c0°0 9L10°0- 0 L0T0°0- 0 LA
800T°0 291 17070 0 0800°0- 0 1ds GL10°0 10°0 2200 0 gL10°0 10 9A-d
66100 z0'0 0v10°0 0 L£900°0 0 €TeYS €LT0°0 10°0 6110°0- 0 v110°0- 0 GA-d
122070 L0°0 gv000 0 6910°0 0 ¢reuS 86200 L0°0 6710°0- 0 £8€0°0- 1°0- VA4
3200 500 88100 0 20€0°0 0 IT8YS 2€20°0 80°0 $110°0- 0 8590°0- 0 eA-d
6,200 L0°0 LT00°0 0 £620°0 0 0T®US 8TG00 90°0 71200 0 70100 0 cA-d
02£0°0 €10 8200°0 0 L2100 0 6eUS 91200 L0°0 ge10'0- 0 9€€0°0- L0 TA-d
v/ev v/ev 1v/(vey) 1vev 1v/(Ivey) 1V-eV (rews) 1v/ev v/ev 1v/(vey) 1vev 1v/(Ivey) 1V-eV (rews)
qAd # ewLl, NdD P11 9seg A # 1s9g P11 SAy A # 8Ay seouwejsul H # QWL NdD P11 9seg A # 1s9g P11 SAy A # 8Ay seouejsuy

(00T> Sopou #) seour)sUI o[RIS-[[RWS UO (T SA gV) SHNSeI [ejuewiliodxe UOIIR[QY :'F S[qR],

119

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Table 4.9: Ablation experimental results (A2 VS Al) on large-scale instances
(100<#node<200).

Instances Avg # v Avg ttd Best # v Best ttd CPU time # FE
(large) A2-A1 (A2-A1)/Al A2Al (A2A1)/A1 A2/A1 A2/Al

B-Y9 0 -0.0302 0 -0.0316 0.38 0.2963
B-Y10 0 -0.0304 0 -0.0322 0.35 0.2933
B-Y11 0 -0.0496 0 -0.0462 0.41 0.3089
B-Y12 0 -0.0453 0 -0.0393 0.38 0.2996
B-Y13 0.1 -0.0603 1 -0.0585 0.45 0.3816
B-Y14 0 -0.0745 0 -0.0692 0.44 0.3679
B-Y15 -0.1 -0.0784 0 -0.0568 0.85 0.3807
B-Y16 0.4 -0.0887 0 -0.0587 0.84 0.3741
B-Y17 -0.5 -0.1028 0 -0.0751 0.60 0.4082
B-Y18 -0.2 -0.0896 0 -0.0801 0.48 0.3978
B-Y19 0.2 -0.0810 1 -0.0603 0.48 0.4103
B-Y20 0.2 -0.0896 1 -0.0769 0.48 0.4038
Shal4 0 -0.0574 0 -0.0591 0.24 0.2037
Shalb 0 -0.0912 0 -0.0866 0.30 0.2895
SD12 0 0.0952 0 0.1003 0.09 0.2898
SD13 0 -0.1109 0 -0.0694 0.08 0.3547
Avg 0.01 -0.0615 0.2 -0.0500 0.43 0.3595
Total 0.1 -0.0458 3.0 -0.0273 0.43 0.3595

Note: # v = the number of vehicles used; ttd=total travel distance; # FE=
the number of fitness evaluations. The meaning of A1 and A2 is shown in Tab.
@. The data in bold signifies that our strategy prodsuces better results than the
contrasted strategies numerically. The Mann-Whitney U test was employed, and
the data with underlined values indicate a significant difference at the significance

level @ = 0.05.

120

4.3. Computational Studies

Adaptive Splitting Strategy (A3 VS A2). Algorithm A3 is obtained by incor-
porating our proposed adaptive splitting strategy into A2. As shown in Tables
and , compared to A2, A3 increased the ttd while maintaining almost the same

number of vehicles, and further significantly reduced the number of FEs. The number

of FEs used by A3 accounted for only 0.2-4.09% of those used by A2.

Post-Optimization (A4 VS A3). Algorithm A4 has been developed by integrat-
ing an innovative post-optimization technique into Algorithm A3. As demonstrated
in Tables and , the results obtained by A4 on most small-scale problem in-
stances show no significant difference from A3. For the 16 large-scale instances, A4
considerably reduce the number of vehicles on 14 instances and the ftd on a single
instance, resulting in an aggregate reduction of 23.6 vehicles. Further, considering
the best results from multiple runs, A4 outperforms A3 on 14 instances for reducing
the number of vehicles and on 2 instances for reducing the ttd. The experimental
results substantiate that the post-optimization method introduced in this study ef-
fectively lessens the number of vehicles on larger-scale problems. However, it’s crucial
to note that reducing the number of vehicles often results in an increase in ttd. More-
over, post-optimization for large-scale problems demands considerable time, posing

additional challenges.

In summary, the ablation experiments demonstrate the effectiveness and validity of
each proposed innovation. The improved packing methods (A1) demonstrated their
ability to effectively reduce the number of vehicles, particularly on larger-scale in-
stances. The new search operators (A2) not only further reduced ttd on various
instances but also significantly improved search efficiency by substantially reducing
the number of FEs consumed. The adaptive splitting strategy (A3) managed to main-
tain a similar number of vehicles while achieving a further reduction in the number
of FEs. Lastly, the new post-optimization method (A4) contributed to reducing the

number of vehicles on large-scale instances.

121

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Table 4.10: Ablation experiment results (A3 VS A2) on small-scale instances (# node <100).

Instances Avg # v Avg ttd Best # v Best ttd # FE Instances Avg # v Avg ttd Best # v Best ttd # FE
(small) A3 A9 (A3-A2)/A2 A3-A2 (A3-A2)/A2 A3/A2 OmAl) a3 Ao (A3A2)/A2 A3A2 (A3-A2)/A2 A3/A2
B-Y1 0 0.0479 0 0.0292 0.0085 Sha9 0 0.0626 0 0.0209 0.0164
B-Y2 0 0.0983 0 0.0791 0.0102 Shal0 0 0.0487 0 0.0292 0.0166
B-Y3 0.1 0.1074 0 0.0763 0.0130 Shall 0 0.0623 0 0.0447 0.0090
B-Y4 0.2 0.0797 0 0.0675 0.0095 Shal2 0 0.0714 0 0.0555 0.0119
B-Y5 0 0.0755 0 0.0698 0.0065 Shal3 0 0.0567 0 0.0513 0.0070
B-Y6 0.6 0.0419 0 0.0894 0.0062 SD1 0 0.1004 0 0.0484 0.0281
B-Y7 0 0.0680 0 0.0545 0.0065 SD2 0 0.1045 0 0.0735 0.0207
B-Y8 0.1 0.0805 0 0.0668 0.0059 SD3 0 0.0953 0 0.0982 0.0162
Shal 0 0.0117 0 0 0.0409 SD4 0 0.1290 0 0.0930 0.0131
Sha2 0.2 0.0259 0 0.0083 0.0411 SD5 0 0.0069 0 0.0004 0.0084
Sha3 0 0.0437 0 0.0103 0.0194 SDG6 0 0.0713 0 0.0422 0.0090
Shad 0 0.1285 0 0 0.0267 SD7 0.6 0.1230 0 0.0766 0.0127
Shab 0 0.0285 0 0.0044 0.0354 SD8 0 0.0484 0 0.0553 0.0082
Sha6 0 0.0416 0 0.0311 0.0206 SD9 0 0.0978 0 0.0580 0.0096
Sha7 0.2 0.0808 0 0.0603 0.0231 SD10 0 0.1248 0 0.0828 0.0077
Sha8 0 0.0394 0 0.0245 0.0338 SD11 0 0.1559 0 0.1453 0.0041

Overall Avg # v Avg ttd Best # v Best ttd # FE

Avg 0.06 0.0737 0 0.0515 0.0158

Total 2.0 0.0891 0 0.0679 0.0078

Note: # v = the number of vehicle used; ttd=total travel distance; # FE= the number of fitness evaluations. The meaning of A2 and A3

is shown in Tab. @ The Mann-Whitney U test was employed, and the data with underlined values indicate a significant difference at the

significance level @ = 0.05.

122

4.3. Computational Studies

Table 4.11: Ablation experiment results (A3 VS A2) on large-scale instances
(100<#node<200).

Instances Avg # v Avg ttd Best # v Best ttd # FE
(large) A3-A2 (A3-A2)/A2 A3-A2 (A3-A2)/A2 A3/A2

B-Y9 0.5 0.0272 0 0.0592 0.0048
B-YI0 0.2 0.1133 0 0.1119 0.0040
B-YIl 0 0.0745 0 0.0649 0.0040
B-Y12 0 0.0912 0 0.0735 0.0044
B-Y13 0.1 0.0693 0 0.0558 0.0026
B-Y14 0 0.1281 0 0.1141 0.0029
B-Y15 06 0.0751 0 0.0579 0.0026
B-Y16 0.1 0.0922 1 0.0752 0.0025
B-Y17 03 0.0935 0 0.0785 0.0018
B-YI8 05 0.0987 1 0.1525 0.0018
B-Y19 0.2 0.0880 -1 0.0625 0.0016
B-Y20 -0.1 0.1056 -1 0.0803 0.0019
Shald 0 0.1477 0 0.1235 0.0031
Shal5 0 0.1112 0 0.1101 0.0017
SD12 0 0.2068 0 0.1718 0.0035
SD13 0 0.1333 0 0.1124 0.0029
Avg 0.15 0.1035 0.0 0.0940 0.0029
Total 2.4 0.1312 0.0 0.1130 0.0022

Notes: # v = the number of vehicles used; ttd=total travel distance;
FE= the number of fitness evaluations. The meaning of A2 and
A3 is shown in Tab. @ The Mann-Whitney U test was employed,
and the data with underlined values indicate a significant difference

at the significance level a = 0.05.

123

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Table 4.12: Ablation experiment results (A4 VS A3) on small-scale instances (# node <100).

Instances Avg # v Avg ttd Best # v Best ttd Instances Avg # v Avg ttd Best # v Best ttd
(small) A4 A3 (A4-A3)/A3 A4A3 (A4-A3)/A3 Gma) a4 a3 (A4A3)/A3 A4A3 (A4-A3)/A3
B-Y1 -0.9 0.0942 0 0.0211 Sha9 0 -0.0122 0 -0.0258
B-Y2 0 -0.0098 0 -0.0020 Shal0 -1 0.0636 -1 0.0120
B-Y3 -0.1 -0.0045 0 -0.0040 Shall 0 -0.0036 0 -0.0007
B-Y4 -0.2 0.0065 0 0 Shal2 0 -0.0121 0 -0.0152
B-Y5 -1 0.0832 -1 0.0836 Shal3 -0.8 0.0284 -1 -0.0057
B-Y6 -0.7 0.0312 0 -0.0076 SD1 0 -0.0077 0 0
B-Y7 -1 0.0533 -1 0.0303 SD2 0 -0.0091 0 0
B-Y8 -0.1 -0.0128 0 -0.0232 SD3 0 -0.0053 0 -0.0003
Shal 0 0.0000 0 0 SD4 0 -0.0098 0 0
Sha2 -0.2 -0.0116 0 -0.0056 SD5 0 -0.0002 0 0
Sha3 0 0.0000 0 0 SD6 0 -0.0168 0 -0.0057
Sha4 0 -0.0014 0 0 SD7 -0.6 0.0166 0 0.0005
Shab 0 0.0000 0 0 SD8 0 -0.0136 0 -0.0165
Sha6 0 -0.0010 0 0 SD9 0 -0.0123 0 -0.0175
Sha7 -0.2 -0.0364 0 -0.0557 SD10 0 -0.0034 0 0
Sha8 0 -0.0012 0 -0.0003 SD11 0 -0.0032 0 0
Overall Avg # v Avg ttd Best # v Best ttd

Avg -0.2 0.0059 -0.1 -0.0012

Total -6.8 -0.0020 -4 -0.0030

Note: # v = the number of vehicle used; ttd=total travel distance; # FE= the number of fitness evaluations. The

meaning of A3 and A4 is shown in Tab. E The Mann-Whitney U test was employed, and the data with underlined

values indicate a significant difference at the significance level @ = 0.05.

124

4.3. Computational Studies

Table 4.13: Ablation experiment results (A4 VS A3) on large-scale instances

(100<#node<200). # v = the number of vehicles used; ttd=total travel distance; #

FE= the number of fitness evaluations. The meaning of A3 and A4 is shown in Tab.

@. The Mann-Whitney U test was employed, and the data with underlined values

indicate a significant difference at the significance level @ = 0.05.

Instance Avg # v Avg ttd Best # v Best ttd
(large) A4-A3 (A4-A3)/A3 A4-A3 (A4-A3)/A3
B-Y9 -1.5 0.1017 -1 0.0888
B-Y10 -0.3 0.0064 -1 -0.0156
B-Y1l -1.1 0.0705 -2 0.0311
B-Y12 -1 0.0708 -1 0.0634
B-Y13 -2.1 0.0840 -2 0.0658
B-Y14 -1 0.0529 -1 0.0356
B-Y15 -2.5 0.0968 -2 0.0883
B-Y16 -2 0.0898 -2 0.0787
B-Y17 -2.5 0.0594 -3 0.0446
B-Y18 -2 0.0884 -2 0.0661
B-Y19 -3.4 0.1091 -3 0.0860
B-Y20 -2.1 0.0735 -2 0.0723
Shal4 -1 0.0628 -1 0.0234
Shalb -1.1 0.0748 -2 0.0450
SD12 0 -0.0274 0 -0.0280
SD13 0 -0.0071 0 -0.0096
Avg -1.5 0.0629 -1.6 0.0460
Total -23.6 0.0281 -25.0 0.0191

125

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

Time Analysis

In real-world industrial scenarios, computational resource consumption is critical,
placing higher demands on algorithm efficiency. Since theoretical analysis of com-
putational time complexity is only practical for simple metaheuristic algorithms on
artificial problems, we conducted experiments to perform an empirical time analysis.
To comprehensively evaluate the efficiency of our proposed algorithm, we compared
its CPU runtime with that of the state-of-the-art SDVRLH2 algorithm for the 3L-
SDVRP, using results reported in [[10].

As shown in Table , for all small-scale instances, SDVRLH2 required a total
of 6627.5 seconds, averaging 207.1 seconds per instance. In contrast, our proposed
algorithm, when minimizing the number of vehicles (Ov), took only 397.0 seconds
in total, averaging 12.4 seconds per instance—just 6% of the time required by SD-
VRLH2. When total travel distance was set as the primary objective (Ot), our algo-
rithm took 524.7 seconds in total, averaging 19.8 seconds per instance, which is only
8% of the running time required by SDVRLH2. For all large-scale instances, SD-
VRLH2 required a total of 30673.1 seconds, averaging 1917.1 seconds per instance.
In comparison, our algorithm needed 13468.4 seconds in total, averaging 597.2 sec-
onds per instance when minimizing the number of vehicles (Ov)—only 44% of the
time required by SDVRLH2. When total travel distance was the primary objective
(Ot), our algorithm required just 3078.0 seconds in total, averaging 192.4 seconds per
instance, or only 10% of the CPU time of SDVRLH2. Overall, the runtime of our
algorithm was just 37% of SDVRLH2 when optimizing for the number of vehicles
(Ov), and only 9% when optimizing for total travel distance (Ot).

Moreover, our algorithm was implemented in Python, whereas SDVRLH2 was im-
plemented in C++. Considering that programs implemented in C++ generally run
faster than those in Python, the efficiency advantage of our proposed algorithm is

likely even greater than these results suggest. This underscores the high efficiency of

126

4.4. Conclusion

Table 4.14: CPU time analysis (in seconds). Ov (Ot) refers to our algorithm with
number of v (ttd) as the first objective. Total = the sum of CPU time across all prob-
lem instances; Avg = average CPU time; Std = standard deviation. Small = small
problem instances whose number of nodes <100. Large = large problem instances

whose number of nodes > 100.

SDVRLH2 (SD) Ov Ot
Statistics
small large small large small large
Total 6627.5 30673.1 397.0 13468.4 524.7 3078.0
Avg 207.1 1917.1 124 841.8 16.4 192.4
Std 365.9 441.4 15.4 597.2 19.8 156.1
Ov/SD Ot/SD
Overall small large all small large all
0.06 0.44 0.37 0.08 0.10 0.09

our method.

4.4 Conclusion

In this chapter, we present an efficient local search algorithm for solving the 3L-
SDVRP. Our proposed algorithm encompasses several innovations that contribute to
its effectiveness and efficiency. In the packing aspect, we introduce improvements
to the box-packing, space-generation, and 2C-SP construction methods, enhancing
space utilization and reducing the number of vehicles required. In terms of routing, we
propose three novel search operators: LKH mutation, route-pair swap, and multi-pair
elitist recombination. These operators leverage the characteristics of the 3L-SDVRP,

improving search efficiency. Moreover, we introduce an adaptive splitting strategy

127

Chapter 4. An Efficient Local Search Algorithm for 3L-SDVRP*

that dynamically determines whether to split nodes based on the loading conditions
of vehicles and nodes, thereby further reducing the consumption of computational
resources. Finally, we design a new post-optimization method to further improve the
solution quality. Comprehensive experimental results and further analysis confirm
the efficiency and effectiveness of our proposed method. In particular, compared
to the current state-of-the-art algorithm, SDVRLH2 ([10]), our proposed algorithm
achieved a considerable decrease in the number of vehicles on most examined problem
instances. Furthermore, it achieved a significant reduction in the quantity of fitness

evaluations required, decreasing by two orders of magnitude compared to SDVRLH2.

In Chapter , our proposed algorithm was tested on problem instances with an aver-
age of 9 nodes and 401 boxes per instance. However, it is computationally inefficient
for larger problems. For example, solving an instance with 10 nodes and 844 boxes
required approximately 1487.5 seconds of CPU time. In contrast, the algorithm pre-
sented in this chapter can handle significantly larger problem instances, averaging 76
nodes and 3435 boxes per instance, with a maximum of 200 nodes and 14230 boxes.
Our new algorithm significantly reduces computational resource requirements. For
instance, solving an instance with 150 nodes and 4508 boxes required only approx-
imately 250.4 seconds of CPU time. This demonstrates that our new method can

efficiently tackle larger problems compared to the algorithm presented in Chapter .

While our algorithm efficiently reduce the number of vehicles within a much shorter
time, it does so at the expense of an increased total travel distance (tzd). By contin-
uing to explore and develop more efficient and effective methods, it may be possible
to achieve a better balance between these conflicting objectives, ultimately leading to

enhanced solutions for the 3L-SDVRP and similar optimization tasks.

128

Chapter 5

An Adaptive Interactive
Routing-Packing Strategy for

3L-SDVRP*

In Chapters B and @, we introduced the PEAC-HNF algorithm and an efficient local
search algorithm to solve the 3L-SDVRP, respectively. The PEAC-HNF algorithm
effectively balances two objectives and provides diverse solutions for decision-makers,
but it requires significant computational resources for large-scale problems. Con-
versely, the new local search algorithm proposed in Chapter @ is more efficient and ca-
pable of solving larger-scale problems. Additionally, solving the 3L-SDVRP involves
both routing and packing, making the interaction between these components crucial
for algorithm performance and solution quality. Current interactive routing-packing

strategies have weaknesses, highlighting the need for more effective approaches.

This chapter investigates this interaction and proposes an adaptive interactive routing-

packing strategy. The proposed routing-packing strategy can adaptively choose be-

*This chapter is partially based on a paper published at the 2024 Genetic and Evolutionary
Computation Conference (GECCO’ 24) [115].

129

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

tween different packing patterns, providing the flexibility to adjust packing decisions
as the individual (i.e., giant tour) changes. Section lB:l! introduces current interactive
routing-packing strategies, highlights their weaknesses, and provides our motivation.
In Section @, we discuss our proposed adaptive interactive routing-packing strategy,
along with other algorithmic details. Section @ details the experimental setup and
offers a comprehensive comparison of our method with existing approaches. It also
includes further analysis that explains the reasons for the effectiveness of our strategy.

Finally, Section @ concludes the chapter.

5.1 Introduction

Fundamentally, the 3L-SDVRP combines two NP-hard problems: the split delivery
vehicle routing problem (SDVRP) and the 3D packing/loading problem (3DPP). This
combination means that any solution to the 3L-SDVRP must address both routing
decisions (determining which nodes each vehicle should visit) and packing decisions
(designing the 3D packing plan for each vehicle). These decisions significantly impact
the final solution quality, making the interactions between routing and packing dur-
ing the solution process crucial for algorithm performance. In this chapter, we refer to

these interactions as the ¢

‘interactive routing-packing strategy”. The term “interac-
tive” denotes the mutual influence of routing and packing decisions: routing decisions
dictate which nodes’ boxes a vehicle will load, while packing decisions directly affect

the number of boxes that can be loaded within the vehicle’s limited capacity.

Prevailing interactive routing-packing strategies are mainly divided into two paradigms:
routing first, packing second (R1P2), and packing first, routing second (P1R2). The
R1P2 strategy [14] adapts packing decisions during the route search procedure, allow-
ing them to change in response to routing decisions. Conversely, the P1R2 strategy
[10] makes packing decisions before routing, thereby reducing the complexity of the

routing phase to a direct SDVRP. Additionally, [10] introduced a two-customer seg-

130

5.1. Introduction

ment pattern (2C-SP) into the P1R2 strategy to further reduce the number of vehicles.
The 2C-SP method involves combining two nodes after their packing decisions have
been made, and then repacking them. If creating a 2C-SP saves more loading space

than packing each node individually, it is maintained.

In the R1P2 strategy, packing decisions are made dynamically during the route plan-
ning process. This approach offers considerable flexibility, allowing packing adjust-
ments in response to routing changes. However, this flexibility comes at the cost of in-
creased computational complexity, as each routing adjustment necessitates re-solving
the packing problem. Conversely, the P1R2 strategy determines packing decisions
prior to route planning, requiring the packing problem to be solved only once, thus
significantly speeding up the solution process. The drawback of P1R2 is its rigidity:
once packing decisions are made, they cannot adapt to subsequent routing changes.

This lack of adaptability can hinder efforts to minimize the number of vehicles used.

Despite the critical role of interactive routing-packing strategies in solving the 3L-
SDVRP, there has been no thorough investigation, comparison, or analysis of these
strategies. This chapter fills that gap by providing a detailed comparison and analysis
of existing interactive routing-packing strategies, supported by extensive experimental
validation. Building on insights from the analysis, this chapter introduces an adaptive
interactive routing-packing strategy that combines the advanced features of existing
approaches. Our strategy introduces adaptability into the routing process, allowing
for a choice between independent loading of a node (aligned with the P1R2 strategy)
and joint loading of consecutive nodes, utilizing the concept of 2C-SP. This flexible
approach permits loading adjustments in response to route modifications, effectively
reflecting the core principle of the R1P2 strategy. The effectiveness of our strategy has
been rigorously validated through computational experiments. Empirical evidence
indicates that our strategy yields solutions that are comparable to or significantly

superior to existing strategies, particularly in terms of vehicle count.

131

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

5.2 Adaptive Interactive Routing-Packing Strategy

This section begins with a detailed introduction to the proposed adaptive interactive
routing-packing strategy, explaining its key features. We then delve into the overall
framework of the search algorithm, including how the strategy fits into it. Our pro-

posed routing-packing strategy can be applied to various algorithms for solving the

3L-SDVRP, including those introduced in Chapters B and @

5.2.1 The Proposed Routing-Packing Strategy

As mentioned in Section B.2.1, we use the concept of “giant tour” as the representa-
tion. Our proposed interactive strategy is designed to operate within the framework
of giant tour decoding. In Sections and Ell, we present and analyze the strengths
and weaknesses of existing routing-packing strategies. Additionally, in Section !5.33,
we compare the effectiveness of different packing patterns (i.e., packing two nodes
together versus packing a single node alone) across different problem instances. The
results indicate that neither pattern is universally superior; their effectiveness depends
on the specific instances and nodes. Overall, existing strategies lack the flexibility to

adapt to varying situations, such as a vehicle’ s remaining space and packing patterns.

Workflow of Our Strategy

The key innovation of our strategy is its ability to make adaptive decisions on differ-
ent packing patterns (i.e., loading a single node alone or loading two nodes together)
based on specific situations, effectively integrating the best features from existing in-
teractive strategies. We have identified criteria that consider various remaining space
scenarios of vehicles and the space requirements of different packing patterns at each
node. Using these criteria, our strategy adaptively and intelligently chooses between

loading a single node independently (following the P1R2 strategy) or loading two

132

5.2Adaptive Interactive Routing-Packing Strategy

nodes together (using the 2C-SP concept). This decision-making process is tailored
to different giant tours. Such flexibility in making loading decisions during the rout-
ing process is a fundamental aspect of the R1P2 strategy, allowing for more efficient

and adaptable solutions.

The process of our interactive strategy is outlined in Algorithm @ (red and blue
boxes in Algorithm [16 indicate that our strategy can adaptively make decisions be-
tween different packing patterns). This strategy employs vertical layers, which is
the smallest units of load (Section @) The loading feasibility of these layers is
assessed by comparing each layer’s depth with the vehicle’s remaining length. Within
our strategy framework, we introduce three key variables: g as the giant tour, [, as
the vehicle’s length, and V; as the set of vehicles generated by decoding g. V includes

both the routing and loading plans for vehicles.

The algorithm proceeds sequentially through the nodes in g. For each pair of adjacent
nodes i and j, we form three sets of layers: L;, L;, and L;;. These sets are created by
loading i alone, j alone, and both i and j together, respectively (Step 4). We then
calculate the total depth for each set, denoted as [;, I;, and I;; (Step 5).

The loading process follows some specific criteria identified by us:

(A) If l;; <1, and [;; < l; +1;, both i and j are loaded together, maximizing space

utilization (Steps 6-7).

(B) Special cases arise when either l;; > [, or l;; > I; + ;. These cases lead to

different scenarios:

(B.1) If all layers in L; can fit in v, only i is loaded and v, is updated (Steps
9-10).

(B.2) If L; cannot fit into v, a new vehicle is introduced (Steps 13-14).

(B.2.a) If [;; < I; +1; and can fit in the new vehicle, both nodes are loaded

(Steps 15-17).

133

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

(B.2.b) If I;; < I; +1; but falls between [, and 2 x [,, the load is split between
two new vehicles (Steps 19-23).

(B.2.c) Otherwise, i is loaded into the new vehicle alone (Steps 24-27).

(B.3) If I;; will not fit in v, but some layers in L; will, a multi-vehicle approach

is considered.

(B.3.a) If [;; < I;+1; and could potentially fit into v, and a new vehicle, we

proceed only if two or fewer vehicles are required (Step 32).

(B.3.b) If none of the previous conditions are met, i is loaded individually into

veur and new vehicle(s) (Step 34).

By applying these steps to each node in g, we produce a feasible solution V; that

includes both the routing and loading plans for each vehicle.

Following [[L0] [76], our research minimizes the vehicle count first, then trd (with
lower priority). Thus, our strategy prioritizes minimizing space occupancy to reduce
vehicle usage, which doesn’t necessarily reduce ttd. This disconnect arises for two
reasons: (1) the relationship between the vehicle count and #¢d is complex—Tlessening
one doesn’t imply a automatically decrease/increase the other; (2) our approach may
favor solutions that load two distant nodes together to save space, beneficial for vehicle
reduction but potentially harmful to tzd optimization. Thus, achieving a good balance

between two objectives presents a compelling direction for future work.

5.2.2 The Overall Search Algorithm

To facilitate comparisons with existing work, our overall search algorithm employs
a local search procedure based on the state-of-the-art SDVRLH2 [10], as detailed in
Algorithm @ The key innovation of Algorithm ll:?l lies in its use of our proposed
adaptive routing-packing strategy, which significantly enhances its performance com-

pared to SDVRLH2. First, the initial random giant tour, s, serves as the starting

134

5.2Adaptive Interactive Routing-Packing Strategy

Algorithm 16 Adaptive routing—packing strategy (Colored boxes indicate flexible packing.)
Input: g: a giant tour; [,: the length of an empty vehicle

Output: Vy: final packed vehicles
¢ Nyisitea < 0; Vg — 0; veyr < an empty vehicle
: for node i in g do
if i in Nyjsireq then continue endif

J < i+1; I, < the residual length of vey,; Li, Lj, L;j < get packing layers of node 7, j, and node pair (i, j)

if lij < l,, and lij <l +lj then

Veur < pack 7 and j by L;j and update Veur; | Nyisited < Nvisited Y {i, j} > pack i and j together

1

2

3

4

5: li,1j,1;j « the sum of length of layers in L;, Lj, and L;;
6

7

8 else // ljj > lyy or lijj 2L +1;

9

if ; <1, then // L; can be packed in v.,, completely.

10: Veur < pack i along by L; and update veyr; | Nyisired < Nyisited Y {i} > pack node i alone
11: else

12: li min < the minimal length of the layer in L;

13: if l; nuin > Iy, then // None layers in L; fit in v¢,,r. Use a new vehicle.

14: Vi — ViU {Veur}; Veur < an empty vehicle; 1y, « I,

15: if ;; < I, and [;; <l; +1j then // L;j can be fully packed in new vehicle.

16: Veur < Pack i and j by L;; and update veyr; > pack i and j together
17: Nyisited < Nvisitea Y {i, j}

18: else

19: if [;; <l +1j and l;; < 2%, then // use two new vehicles to pack.

20: Vp < pack i and j by L;j and get packed vehicles ‘ > pack i and j together
21: if len(Vp) < 2 then

22: Vi« ViU Vp; veur < update Veur; Nyisited < Nvisited Y {i J}

23: end if

24: else // only pack node i.

25: Veur < pack i along by L; and update veyr; > pack node i alone
26: Nyisited < Nvisitea Y {i}

27: end if

28: end if

29: else // Part of layers in L; can be packed in vy .

30: if [;; <l; +1; and [;; < l,, +1, then // use vy, and a new vehicle to pack.

31: Vp < pack i and j by L;;j and get packed vehicles ‘ > pack i and j together
32: if len(Vp) < 2 then Vi « Vy U Vy; veyr < update vewr; Nyisited < Nvisitea Y {1, j} end if
33: else // only pack node i.

34: ’ Vp < pack i along by L; and get packed vehicles ‘ > pack node i alone
35: Vi« ViU Vs veur < update veur; Nyisirea < {i}

36: end if

37: end if

38: end if

39: end if

40: end for

41: return V¢

135

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

point, while spest holds the current best solution (Step 1). The swap operator is ap-
plied to the current solution, Scurr, creating a neighborhood set Ngwap (Step 5). Each
individual of Ngwap is then decoded using our proposed interactive routing-packing
strategy, detailed in Algorithm . The most effective solution, Siter best, is selected
(Step 6). Next, a second neighborhood set, Naopt, is generated by applying the 2-opt
operator to Siter best (Step 7). Both Siter pest and the individuals of Nogpt are decoded,
and the most effective solution replaces Siter best (Steps 8-9). If Siter best oOutperforms
Sbest, then spest is updated (Step 10). Scupr 1S set tO Siter best for the next iteration
(Step 11). The search terminates if scyy does not improve after np, imp iterations
(Steps 12-14). Upon termination, spest becomes the new scyy, initiating a new round

of local search (Steps 3-13).

In relation to packing methodologies, this study adopts heuristic approaches as de-
tailed in [[7] [10] [15]. One method is to construct vertical layers, as described in [[7]
[10]. In this method, a “space” denotes an available cuboidal area for box placement.
When a box is put into a space, its back-left-bottom corner matches the same corner
of the space. This action consumes the original space and generates new, smaller
spaces for future loading. It’s evident that the formation of these new spaces after
a box insertion significantly impacts the algorithm’s efficiency. Let s, represent
the current space under consideration for loading, and S, represent the set of all
available spaces. As noted in [[7] [L0], two boxes are typically loaded simultaneously.
The first box is placed into s.,,, creating three new subspaces. A second box is then
placed into one of these newly-created subspaces, while the remaining two are added
to Savair. Importantly, the second box does not produce additional subspaces. If a

suitable pair of boxes cannot be found, a single box that fits within s, is loaded.

Another prevalent method for box loading relies on Extreme Points (EPs), a notion
initially introduced by [15] and subsequently adopted across various studies [6] [13]
[26] [92] [103]. EPs are specific points formed by projecting a loaded box along its

axes, serving as indicators for available loading space. Each EP indicates the rear-

136

5.2Adaptive Interactive Routing-Packing Strategy

Algorithm 17 Overall algorithm (Key innovation in red boxes.)

Input: problem instance data
Output: best solution spesr
1: generate initial solution s;,;; and set Spesr <— Sinir

2: for t « 1 to n,,; do

3: Scurr <= Sbest

4: for iter < 1 to nj,., do

5: Ngwap < get neighborhood of s¢, by swap operator

6: Siter best <— decode individuals by | Algorithm @‘ and pick best one (with

fewest vehicles or lowest ttd for equal vehicles) in Nyyqp

7 Noopi < get neighborhood of Sizer pes: by 2-opt operator
8: N « N20pt U {Siteribest}
9: Siter best < decode individuals by ‘Algorithm |1_6H and pick best one (with

fewest vehicles or lowest rtd for equal vehicles) in N

10: update Spest DY Siter best Where necessary

11: Scurr < Siter _best

12: if scurr has not been improved for n,, ;mp consecutive iterations then
13: break

14: end if

15: end for

16: end for

17: return sp.5

137

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

left-bottom vertex of an available space. In EP-based methodologies, the placement
of each box generates new EPs, thereby creating new subspaces for future loading.

This cycle continues until all boxes are successfully loaded.

5.3 Computational Studies

The experiments were conducted on three benchmark datasets in the field of 3L-
SDVRP: the B-Y instances [[10], Shanghai instances [10], and SD instances [13]. In-
stances were divided into two categories: those with fewer than 100 nodes were labeled
as small-scale, while those containing 100 to 200 nodes were classified as large-scale
datasets. Notably, the SDVRLH2 algorithm [[10] has demonstrated exceptional per-
formance across all three datasets, surpassing other methodologies and establishing
itself as the state-of-the-art approach. Therefore, to better facilitate comparison with
published results, we compared our algorithm to SDVRLH2. This section begins
with a comparative evaluation and analysis of current interactive routing-packing
strategies (Section !532) These investigations aid us in discerning the strengths and
weaknesses of existing methods, providing both inspiration and insights for the devel-
opment of new strategies. Following this, we conduct a parameter sensitivity analysis
(Section @) and compare our proposed method with this leading approach, SD-
VRLH2, to validate its efficacy (Section !533) To comprehensively understand our
approach’s effectiveness, we present an instance-level analysis and interactive strategy

comparison highlighting our strategy’s significance (Section 5.3.5).

5.3.1 Experimental Setting

The hyperparameters for Algorithm ll:?l are set as follows: ny,u, = 4, njyer = 100,
Nno imp = 2. Each instance is subjected to 30 runs to ensure a rigorous evaluation.

In accordance with cutting-edge research [10], the primary optimization objective is

138

5.3. Computational Studies

to minimize the number of vehicles, while the secondary objective aims at reducing
the total travel distance (7td). In other words, when comparing two solutions s; and
s9, if the number of vehicles in s is less than in so, or if s; has the same number of

vehicles as so but a lower ttd than so, then sy is considered better than so.

Experiments of our algorithm employ an identical number of iterations, resulting in
an equivalent upper limit for the number of fitness evaluations (FEs). However, Algo-
rithm [I7 may terminate early if it encounters n,, ;u, consecutive iterations without
improvement (Algorithm @ Step 12), which suggests entrapment in a local optimum.
Thus, different methods may expend varying numbers of FEs within the same upper
limit.

Furthermore, it should be noted that the R1P2 strategy demands substantial compu-
tational time due to its ongoing resolution of packing problem during routing. There-
fore, the number of FEs is not an appropriate metric to reflect its computational
demands. In comparisons involving R1P2, CPU time serves as a more accurate in-
dicator. For all other strategies, the number of FEs continues to be the primary

measure for assessing time complexity.

For clarity, this chapter presents only the comparative evaluation data among different
approaches. Detailed experimental results for each approach are provided in [111].

Experiments were carried out in Python 3.7 on a server equipped with 4x Intel Xeon

Platinum 9242 @ 2.30GHz CPU, 256G RAM, and the Ubuntu 20.04 operating system.

5.3.2 Analysis of Current Strategies

P1R2 VS R1P2

Despite the considerable influence of interactive routing packing strategies on problem-
solving, a comprehensive comparison and analysis of different strategies are still evi-

dently lacking. This study attempts to fill that gap by providing an extensive exper-

139

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

imental examination, focusing on the widely employed P1R2 and R1P2 approaches.

Small Instances: As shown in Tab. @, from the average outcomes over 30 runs,
R1P2 exceeded P1R2 regarding vehicle utilization for 23 out of the 32 small-scale
instances (instances with a node count less than 100). For the remaining seven in-
stances, no significant difference was observed between the two strategies. Notably,
R1P2 reduced vehicle requirements by at least three in three instances and by two
or more in six instances when compared to P1R2. Overall, R1P2 employed 67.1
fewer vehicles than P1R2 in the small-scale problem instances, resulting in an av-
erage reduction of 2.1 vehicles per instance. Concerning the total travel distance
(1td), P1R2 outperformed R1P2 in 22 instances, while no significant difference was
detected in four instances. Impressively, P1R2 successfully reduced t¢d by more than
10% in 12 instances when compared to R1P2, achieving a maximum reduction of up
to 35.00%. Considering both optimization objectives—vehicle usage and ttd—R1P2
outperformed P1R2 in five instances, while PIR2 demonstrated superior performance
in two instances. Looking at the best results from 30 runs, R1P2 achieved a decrease
of at least two vehicles compared to P1R2 in 14 instances, and a decrease of three
or more vehicles in five instances. In six problem instances, applying both strategies,
R1P2 and P1R2, resulted in an identical count of vehicles used. On the other hand,
considering ttd, P1R2 outperformed by reducing ttd by over 10% in 11 instances rel-
ative to R1P2, achieving a maximum reduction of up to 21.41%. Moreover, R1P2
demanded significantly higher computational resources than P1R2, using at least four
times more resources for all 32 small-scale instances, and exceeding 20 times in 21

instances.

Larger Instances: As demonstrated in Tab. @, when considering the 16 larger
problem instances (with the number of nodes ranging between 100 and 200), R1P2
outperformed P1R2 regarding vehicle requirements based on the average results.
R1P2 utilized at least three fewer vehicles in 12 instances, with a maximum vehi-

cle savings of up to 6.6. In total, R1P2 required 65.1 fewer vehicles than P1R2, which

140

5.3. Computational Studies

‘GO’ = D [9AS] 9OURDYIUSIS O[] I®

QOUSISYIP JURIYIUSTS © 9)RIIPUL SON[RA POUI[ISPUN [[3IM RIRD 9} pur ‘pasojdure sem 1591) ASUIYAA-UURIA 9 [, A[[ROLISWINU SOI30IRI}S

Po3seIuod oY) 03 paredwiod symsal I0330q seonpoid £3o3erls mo jey) soyrusis ploq Ul ejep O], 'SUOIJLN[LAd SSOUJY JO IOqUUINU O3}

=] # -90URISIP [9ARI) [RI0)=P3) :POSTL SIOIYSA JO IDqUINU Y} = A F# "A399RI)S T J 0F SIBJI J "AS01RI)S JTY 0F SI9JRI Y 90N

CE66'GTT 8020°0- oL- 7500°0- 1°L9- [e10L,

€796'€1C 19€0°0 €c- 1050°0 12 3ay

ad # P13 3s0g A 7 1sog P Sy A # Ay [[B10A0
1892°€6C 8CIT'0 g- 5900 z- 11as T1€7°9T LL00°0- 0 0%00°0- 01°0- 8®US
9z8LTCT 9590°0 - L1910 1- 01as 1669817 ¥S¥T°0- €- €9€T°0- €- LeYs
€866'GZT 12500 g- €750°0 €0'1- 6dS 8G9G'GT 98G0°0- Z- 0800°0- L2°1- 9®us
€670'89 69L0°0 - 6000 1- 8ds 926¢°¢1 ¥SIT'0- I- ¥1I0T°0- 1- gerg
0FPS¥e 18810 I- %810 01°0- Lds L976°0T LEVO'0- 0 ¥690°0- 0 PRUS
82€0°€TC STIV00 - 19%0°0 1- 9as 9827 €¥00°0- 0 18200 0 ¢rys
LETGLTTS 889L°0- ve- VLVLO- ve- ¢as ¥G62'8 L9ET0 I T8ET0 T zeus
08L7°0¢ TLTT0 I- #8600 1- vas Gv6L9 8FE0°0 0 L¥50°0 0 Teqs
LE6TVT GT190°0 0 02900 0 €das erioLe 1VIE0 € 00¢€0 €8°C- 8A-€
8LIF'OT €600 I €2I10 1 ¢as 1267°¢c 1981°0 - TLTZ0 0€°0- LA-d
896¢F¥T TIOT'0 0 2Igro 0 1ds 9e5e Ty L9020 g- 0.81°0 €0°c- 9A-d
9VET9IT QE€S0°0- €- 0€€0°0- €- €Teqs L066'6 9000 € ¥601°0 0S°2- GA-d
L690°9¢ 00000 g- 88100 L9°T- creus eeTLeT VIS8T g- €L81°0 L0°2- vA-d
G8F0'86 19€0°0 g- 10900 0T’ 1- TT®US 6906°¢¢ 61910 I- €981°0 1- eA-d
180LF7 TST0°0- I- 9%00°0- €0°T- 0T®US 9.86'GE €908°0 g- 68910 z- cA-d
0L9¢°L7 G€90°0- - 9%%0°0- L2°1- 6®US Ve9°9C LLLOO Z- 8.80°0 08°T- TA-d
au 4@ au ddW A" (e did d/ldd) dd 4/ I ()
oW, NdD P Is9g A #3s0g P BAY A # SAy seoumisu] W], NJD P IO A # 1s0g P BAY A # SAy seoum)suy

(00T> opou #) seour)SUI S[RIS-[[RWS UO (SUNI ()¢) gJTH PUR ZYTd Ueemjaq suostredwo)) :1°G o[qR],

141

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

averages to 4.1 fewer vehicles per instance. However, R1P2 underperformed in ttd,
with P1R2 decreasing ttd by over 10% in 14 instances and achieving a maximum re-
duction of up to 39.77%. Analyzing the best results, R1P2 demonstrated consistently
lower vehicle usage than P1R2 across all problem instances, achieving reductions of
at least three vehicles in 13 cases. In three instances, R1P2 reduced vehicle usage
by five, and in another three, R1P2 managed a maximum saving of seven vehicles.
Cumulatively, R1P2 utilized 70 fewer vehicles than P1R2. Considering ttd, P1R2
outperformed R1P2, achieving a ftd reduction of over 10% in 12 instances and a
maximum reduction of up to 32.01% compared to R1P2. Consistent with the ob-
servations from the small-scale problems, R1P2 demonstrated a significantly higher
demand for computational resources. Across the 16 larger problem instances, the
computational resources demanded by R1P2 were at least 20 times those of P1R2,

averaging an increase of approximately 67 times per instance.

From the observations, it is clear that the R1P2 strategy, due to its adaptability in
addressing the loading sub-problem, significantly reduces the number of vehicles re-
quired in comparison to the P1R2 strategy. However, when considering the ttd, R1P2
consistently underperforms compared to P1R2. This reveals the intricate features of
two objectives that are simultaneously influential and contradictorily conflicting with
each other. Furthermore, considering that R1P2 repetitively solves the 3DPP during
the routing process, its time complexity is significantly higher than that of P1R2.
Empirical evidence demonstrated that, in most problem instances, R1P2 consumed

CPU time ranging from dozens to hundreds of times more than P1R2.

Disscussion of The Two Strategies: The order in which routing and packing
decisions are made has a fundamental impact on the solution process for the 3L-
SDVRP. This ordering determines not only the flexibility of the algorithm in adapting
to problem constraints, but also the overall computational burden and the achievable

solution quality on different objectives.

In the R1P2 strategy, routing is performed first, and packing is dynamically adapted

142

5.3. Computational Studies

Table 5.2: Comparisons between P1R2 (P) and R1P2 (R) on large-scale instances

(100 < # node < 200). # v = the number of vehicles used; ttd=total travel distance;

FE= the number of fitness evaluations. Our results were obtained from 30 runs.

The data in bold signifies that numerically, our strategy produces better results com-

pared to the contrasted strategies. The Mann-Whitney U test was employed, and the

data with underlined values indicate a significant difference at the significance level

a = 0.05.
Instances Avg # v Avg ttd Best # v Best ttd CPU Time
(large scale) R-P (R-P)/P R-P (R-P)/P R/P
B-Y9 -3.33 0.1269 -4 0.0999 32.6154
B-Y10 -3.43 0.2075 -4 0.1796 35.6011
B-Y11 -0.83 0.2812 -1 0.2216 23.7695
B-Y12 -3.97 0.3439 -4 0.2542 27.0341
B-Y13 -4.87 0.1237 -5 0.1245 38.2818
B-Y14 -5.57 0.1882 -5 0.1092 47.7296
B-Y15 -1.50 0.3048 -2 0.2438 37.1976
B-Y16 -5.13 0.3977 -5 0.3201 33.0741
B-Y17 -6.30 0.1365 -7 0.1180 53.0304
B-Y18 -6.60 0.2153 -7 0.2109 57.3177
B-Y19 -1.83 0.3181 -3 0.2705 29.2639
B-Y20 -6.50 0.3632 -7 0.3381 40.4118
Shal4 -3.27 0.0638 -4 0.0461 181.0332
Shalb -7.60 0.0031 -7 -0.0327 239.8252
SD12 -0.40 0.1349 -1 0.0849 45.6402
SD13 -4 0.1002 -4 0.1005 149.7439
Avg -4.1 0.2068 -4.4 0.1681 66.9731
Total -65.1 0.1654 -70 0.1327 50.3070

143

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

to each route. This approach maximizes adaptability: as routes change, the packing
plan can also be adjusted, which allows the algorithm to better exploit opportunities
for split deliveries and improve vehicle utilization. However, the flexibility comes at
the expense of increased computational complexity, since every change in routing re-
quires solving new packing subproblems, often making the approach computationally

intensive—especially for large instances or strict time budgets.

In contrast, the P1R2 strategy fixes the packing plan before routing begins, effectively
reducing the routing problem to a general SDVRP with adjusted loaded layers. While
this greatly improves computational efficiency and simplifies the solution process, it
also introduces rigidity: once packing decisions are set, the inner packing details of
layers cannot adapt to different routes, which may result in suboptimal vehicle usage.
In particular, opportunities for effective split delivery can be missed, limiting the

flexibility of the solution.

Our experimental results directly reflect these theoretical trade-offs. R1P2 typically
achieves better results in minimizing # vehicles, as it can flexibly adjust packing to
routing, but often at the cost of higher total travel distance and significantly higher
computation time. P1R2 tends to achieve better total travel distances and is much
faster, but may require more vehicles due to its inflexibility in adapting packing to

routing changes.

In summary, the choice of order between routing and packing is not merely an algo-
rithmic detail but a strategic decision that impacts both the quality and feasibility
of solutions for the 3L-SDVRP. In practical applications, the best approach may
depend on which objectives are most important (e.g., minimizing vehicles vs. min-
imizing distance), and the available computational resources. Exploring hybrid or
adaptive strategies that dynamically balance these trade-offs could be a promising

direction.

144

5.3. Computational Studies

Effect of 2C-SP

Bortfeldt and Yi [[10] introduced 2C-SP pattern based on the P1R2 strategy, which
constructs vertical layers by loading two nodes simultaneously. This research con-
trasts the integration of P1R2 with 2C-SP, designated as P2, with the conventional
application of P1R2 without 2C-SP, labelled as P.

Small Instances: From the average results over 30 runs (Tab. @), P2 required
significantly fewer vehicles than P on 20 out of 32 small-scale problem instances.
Regarding total travel distance (ttd), P2 performed markedly worse than P on 23
instances, with over 10% ftd increase on 17 problems. In a cumulative sense, P2
decreased the total number of vehicles utilized across all small-scale problems by
37.67, averaging 1.2 fewer vehicles per instance. However, P2 led to an increase in ttd
by 11.36% on average per instance. From the best results among the 30 experimental
runs, P2 achieved lower vehicle counts than P on 21 instances, cumulatively saving
41 vehicles. In terms of 7td, P2 exceeded P by a minimum of 10% on 18 instances,

with over 20% increase on ten problems, up to 63.74% maximum.

Larger Instances: As shown in Tab. @, on the 16 larger-scale problem instances,
the vehicle reduction achieved by P2 was more substantial. Based on average results
across 30 runs, P2 required significantly fewer vehicles than P on 15 instances, with
reductions of more than two vehicles observed in 13 problems, up to a maximum
decrease of 5.27 vehicles. Compared to P, P2 saved 43.7 vehicles cumulatively on
larger instances, averaging a reduction of 2.7 vehicles per instance. Regarding average
ttd, P2 incurred substantially higher 7zd than P on 15 cases, with over 10% increase
on all problems, peaking at a 34.54% increment. On average, P2 presented a 21.26%
higher rtd per instance in comparison to P. From the best-of-30 runs, P2 obtained
better results than P on 15 instances, with at least two vehicles reduced, up to five
maximum. Across all large-scale instances, P2 conserved 46 vehicles in total compared

to P, averaging a reduction of 2.9 vehicles per instance. Regarding ttd, P2 significantly

145

Table 5.3: The impacts of 2C-SP on small-scale instances.
A,
o Instances Avg # v Avg ttd Best # v Best ttd CPU Time Instances Avg # v Avg ttd Best # v Best ttd ~ CPU Time
=
5 (smal) pop (pop)/p P2-P (P2-P)/P P2/P (smal) pop (pop)/p P2-P (P2P)/P P2/P
%_ B-Y1 -1 0.1251 -1 0.1475 0.7683 Sha9 -0.27 0.0457 0 0.0732 0.7681
5 B-Y2 -1 0.1955 -1 0.2841 0.8160 Shal0 -0.87 -0.0168 0 -0.0074 0.7030
rmd B-Y3 -0.17 0.0706 -1 0.0837 0.9085 Shall -1 0.0709 -1 0.0751 0.6754
Wvo B-Y4 -0.97 0.1857 0 0.2107 0.7322 Shal2 -1.23 0.0797 -1 0.1386 0.8020
m B-Y5 -1.37 0.1528 -2 0.1475 0.7018 Shal3 -1.37 0.0825 -2 0.0920 0.8255
w2 B-Y6 -1.03 0.2318 -1 0.2851 0.7483 SD1 0 0.1254 0 0.1355 0.9815
mo B-Y7 -1.13 0.1413 -1 0.1450 0.6586 SD2 0 0.1055 0 0.1029 0.9117
lm B-YS8 -1.17 0.3343 -2 0.3293 0.6467 SD3 0 -0.0126 0 0.0073 0.8875
A Shal 0 0.0177 0 0.0135 1.0668 SD4 -0.67 0.1401 -1 0.1757 0.7558
mo Sha2 0.1 0.0299 0 0.0498 0.7737 SD5 -17 -0.1231 -17 -0.1259 0.7757
m Shad 0 0.0156 0 0.0132 0.9368 SD6 -1 0.2380 -1 0.2923 0.7200
o' Sha4 0 -0.0023 0 0.0119 0.9944 SD7 -0.07 0.1437 -1 0.2078 0.9219
.m Shab -1 -0.0584 -1 -0.0475 0.8646 SD8 -0.87 0.1660 -1 0.1934 0.7164
Lw Sha6 -1 0.1047 -1 0.2110 0.8025 SD9 -0.93 0.2807 -1 0.2977 0.8104
W Sha7 -0.23 -0.0090 -1 0.0014 0.6810 SD10 -1.33 0.2976 -2 0.3127 0.7071
s Sha& -0.1 -0.0066 0 -0.0105 0.9452 SD11 -1 0.4841 -1 0.6374 0.9735
)
.,m Overall Avg # v Avg ttd Best # v Best ttd # FE
= Avg -1.2 0.1136 -1.3 0.1401 0.8119
M Total -37.67 0.1548 -41.0 0.1821 0.7713
=
<< Note: P refers to P1R2 strategy. P2 refers to P1R2 with 2C-SP. # v = the number of vehicle used; ttd=total travel distance; # FE=
rm the number of fitness evaluations.The data in bold signifies that numerically, the P1R2 without 2C-SP produces better results compared
o
7, to P1R242C-SP. The Mann-Whitney U test was employed, and the data with underlined values indicate a significant difference at the
<
% significance level @ = 0.05.

146

5.3. Computational Studies

underperformed in comparison to P, resulting in a 21.26% higher td per instance on

average.

Experimental results show that the 2C-SP pattern enhances box space utilization by
co-loading two nodes, consequently leading to a significant reduction in the required
number of vehicles. Despite this advantage, the rigid coupling of nodes in 2C-SP

presents a drawback: it compromises the minimization of the ttd.

Discussion of Current Strategies

From the experimental analysis, we observe that the P1R2 strategy consumes fewer
computational resources because it only requires solving the 3D packing problem once
per node. However, its packing plan cannot adapt to changes in the giant tour, result-
ing in lower vehicle loading space utilization and requiring more vehicles compared
to the R1P2 strategy. Conversely, the R1P2 strategy adjusts the packing plan as the
giant tour changes, thus requiring fewer vehicles. This flexibility, however, reduces
computational efficiency, as the 3D packing problem must be resolved for all nodes
whenever the giant tour changes, consuming significant computational resources. The
2C-SP pattern (i.e., packing two nodes together) can enhance P1R2’s space utiliza-
tion, but the current approach remains rigid and cannot adapt to giant tour changes.
Overall, existing strategies lack the ability to adaptively decide between packing a

single node or two nodes together based on varying conditions.

5.3.3 Comparison to State-of-the-Art

To validate the effectiveness of our proposed approach, comparative evaluations are
conducted against SDVRLH2 [[L0] that represents the current state-of-the-art in solv-

ing 3L-SDVRP. The comparative outcomes between the two methods are presented

in Tables @ and @

147

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

Table 5.4: The impacts of 2C-SP on large-scale instances. P refers to P1R2 strategy.
P2 refers to P1R2 with 2C-SP. # v = the number of vehicle used; ttd=total travel
distance; # FE= the number of fitness evaluations. The results were obtained from 30
runs. The data in bold signifies that numerically, the P1R2 without 2C-SP produces
better results compared to P1R24+2C-SP. The Mann-Whitney U test was employed,
and the data with underlined values indicate a significant difference at the significance

level @ = 0.05.

Instances Avg # v Avg ttd Best # v Best ttd # FE

(large-scale) P2-P (P2-P)/P P2-P (P2-P)/P P2/P
B-Y9 247 01419 -2 0.1408 0.6761
B-Y10 -2.00 02085 -3 0.2513 0.6776
B-Y11 -1.33 0.1600 -2 0.1636 0.5762
B-Y12 2.03 03433 -3 0.3472 0.6435
B-Y13 -4.00 0.1636 -4 0.1850 0.5961
B-Y14 2,70 01784 -3 0.1953 0.8164
B-Y15 -1.63 0.1629 -2 0.1597 0.6786
B-Y16 2,57 03293 -2 0.3550 0.6684
B-Y17 -5.27 01754 -5 0.1833 0.6314
B-Y18 -3.97 02441 4 0.2840 0.8077
B-Y19 2,57 01749 -3 0.1789 0.5537
B-Y20 -3.43 03120 4 0.3252 0.6524
Shal4 2.00 0.1840 -2 0.1841 0.7098
Shalb -4.80 02759 -4 0.3056 0.7928
SD12 0.03 0.0020 0 0.0094 1.0554
SD13 -3.00 03454 -3 0.3832 0.7803
Avg 2.7 02126 -2.9 0.2282 0.7073
Total -43.7 01733 -46.0 0.1893 0.6933

148

5.3. Computational Studies

Small Instances: As shown in Tab. @, over 30 average runs, our methodology
significantly outperformed SDVRLH2 [10] on 22 small instances, achieving superior
performance on both vehicles and ttd for one problem instance. No significant dif-
ference was discerned on two cases. A remarkable reduction of over two vehicles
on ten instances, up to 12.1 fewer, was achieved. Vehicle counts were equivalent to
SDVRLH2 on eight cases. In total, we decreased vehicles by 57.93 across all small
instances compared to SDVRLH2, averaging 1.8 fewer per instance. However, the
improvement in ttd was notable in only one instance, with no significant difference
observed in four others. The best-of-30 runs further illustrated our method’s superi-
ority in vehicle counts, achieving better vehicle counts than SDVRLH2 on 22 small
instances, tying on one other case. We obtained at least three fewer vehicles on nine
problems, with total vehicles reduced by 63 versus SDVRLH2, averaging two fewer

per instance. Our best solutions surpassed SDVRLH2 in ftd on ten instances.

Larger Instances: Shifting focus to the 16 larger instances (Tab. @), our method
consistently reduced vehicles versus SDVRLH2 [10] across all cases. Average runs
show a conservation of over three vehicles on nine problems, above five on six, and
exceeding eight on three, with a maximum saving of 17.63 vehicles. In total, 86
vehicles were conserved, averaging 5.4 fewer per instance. From the best results, our
vehicle counts beat SDVRLH2 on all 16 larger instances. The savings reached five
vehicles on eight instances, up to a maximum of 18, with a total reduction of 93

vehicles across the instances, averaging 5.8 fewer per problem.

Evidently, our strategy excels in reducing the number of vehicles, particularly for
larger instances, and operates with minimal computational resources. It’s important
to note, however, that our approach may underperform in terms of trd. This detailed

analysis of our method’s pros and cons lays the groundwork for future improvements

in the 3L-SDVRP field.

Parameter Selection. Hyperparameters significantly impact algorithm perfor-

mance. In this experiment, we optimized our parameter settings by comparing multi-

149

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

Table 5.5: Comparison results between our method (Ours) and SDVRLH2 (S) on small-scale instances (# nodes < 100).

Instances Avg # v Avg ttd Best # v Best ttd # FE Instances Avg # v Avg ttd Best # v Best ttd # FE
(small) Ours-S (Ours-S)/S Ours-S (Ours-S)/S Ours/S (small) Ours-S (Ours-S)/S Ours-S (Ours-S)/S Ours/S

B-Y1 -1.70 0.2471 -2 0.1352 0.0877 Sha9 -0.03 0.1121 -1 0.0458 0.0651
B-Y2 -1.47 0.2750 -1 0.1435 0.0869 Shal0 0 0.1454 0 0.1002 0.1080
B-Y3 -2.97 0.2719 -3 0.1889 0.0932 Shall -0.27 0.1559 -1 0.0775 0.0528
B-Y4 -0.57 0.3568 -1 0.2650 0.0935 Shal2 -2 0.0449 -2 -0.0148 0.0648
B-Y5 -2.40 0.3160 -3 0.2422 0.1151 Shal3 -0.37 0.1366 0 0.0974 0.0796
B-Y6 -1.03 0.2953 -2 0.2168 0.1111 SD1 0 0.1595 0 0.1028 0.0825
B-Y7 -4.57 0.2700 -5 0.2075 0.1218 SD2 -1 0.1178 -1 0.0327 0.0745
B-Y8 -1.07 0.2967 -2 0.1840 0.1168 SD3 0 0.1870 0 0.0925 0.0939
Shal 0 0.0041 0 0 0.1296 SD4 -1 0.2621 -1 0.1497 0.0736
Sha2 0 0.0239 0 -0.0132 0.1002 SD5 1 0.0846 1 0.0397 0.0828
Sha3 0 0.0230 0 -0.0074 0.0493 SD6 -3 0.3358 -3 0.2082 0.1013
Sha4 0 0.0779 0 -0.0134 0.0582 SD7 -3 0.2256 -3 0.0844 0.0879
Shab -1 -0.1366 -1 -0.1706 0.0919 SD8 -4 0.2665 -4 0.1955 0.0885
Sha6 -1 0.0606 -1 -0.0774 0.0487 SD9 -3.73 0.2890 -4 0.1404 0.0993
Sha7 -1 0.0165 -1 -0.0255 0.0491 SDI10 -9.67 -0.0081 -10 -0.0997 0.0980
Sha8 0 0.0131 0 -0.0190 0.1036 SDI11 -12.10 0.0679 -12 -0.0517 0.0556

Overall Avg # v Avg ttd Best # v Best ttd # FE

Avg -1.8 0.1561 -2.0 0.0768 0.0898

Total -57.93 0.1790 -63 0.0832 0.0898

Note: # v = the number of vehicle used; ttd = total travel distance; # FE = the number of fitness evaluations. The data in bold
signifies that our strategy produces better results than the contrasted strategies numerically. The Mann-Whitney U test was employed,

and the data with underlined values indicate a significant difference at the significance level a = 0.05.

150

5.3. Computational Studies

Table 5.6: Comparison results between our method (Ours) and SDVRLH2 (S) on
large-scale instances (100<#node<200). # v = the number of vehicle used; ttd
= total travel distance; # FE = the number of fitness evaluations. The data in
bold signifies that our strategy produces better results than the contrasted strategies
numerically. The Mann-Whitney U test was employed, and the data with underlined

values indicate a significant difference at the significance level @ = 0.05.

Instances Avg # v Avg ttd Best # v Best ttd # FE
(large) Ours-S (Ours-S)/S Ours-S (Ours-S)/S Ours/S

B-Y9 -2.60 0.2809 -3 0.1997 0.1377
B-Y1I0 -2.97 0.2825 -3 0.2306 0.1318
B-Y11 -6.10 0.2522 -7 0.1770 0.1287
B-Y12 -1.03 0.2976 -2 0.2043 0.1483
B-Y13 -4.67 0.2504 -5 0.1982 0.1517
B-Y14 -2.60 0.2972 -3 0.2229 0.1612
B-Y15 -13.37 0.2225 -14 0.1546 0.1608
B-Y16 -2.13 0.2940 -2 0.1577 0.1697
B-Y17 -9.33 0.1569 -11 0.1187 0.1552
B-Y18 -6.73 0.2937 -7 0.2339 0.1655
B-Y19 -17.63 0.0943 -18 0.0425 0.1574
B-Y20 -5.50 0.2411 -5 0.1705 0.1788
Shal4 -1.60 0.3191 -2 0.2863 0.0684
Shals -3.93 0.4114 -4 0.3602 0.0864
SD12 -1.07 0.3662 -2 0.3294 0.1243
SD13 -4.73 0.5354 -5 0.4036 0.1271
Avg -5.4 0.2872 -5.8 0.2181 0.1425
Total -86.0 0.3299 -93 0.2615 0.1425

151

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

ple sets for our search algorithm (i.e., Algorithm E?l) and selecting the best-performing

set. The next section presents a comparison of the different parameter settings.

5.3.4 Parameter Sensitivity Analysis of Our Algorithm

To thoroughly evaluate the impact of varying algorithmic parameters on performance,
we experimented with different parameter values in Algorithm @ and analyzed the
outcomes. The configurations are denoted as Ax(a, b, c¢), where in Algorithm ,
Nour = Q, Njter = b, and n,, jmp = ¢. We explored five distinct configurations:

A1(2,100,2), A2(4,100,2), A3(4,100,6), A4(6,100,6), and A5(6,200,6).

Detailed comparative results are presented in Tables @, @, @, and . Our fo-
cus was on contrasting A2(4,100,2) with A1(2,100,2), A3(4,100,6) with A2(4,100,2),
A4(6,100,6) with A3(4,100,6), and A5(6,200,6) with A4(6,100,6) to discern the effects
of incremental parameter increases. A2, compared to Al, exhibited a significant re-
duction in t¢d for 17 small-scale instances, averaging a decrease of 3.66% per instance,
with 1.4 times more fitness evaluations (FEs) than Al. In 16 larger-scale instances,
A2’s ttd was notably lower than Al’s on 14 cases, with an average decrease of 3.35%
and 1.26 times the FEs. A3 further reduced ttd compared to A2 across 27 small-scale
instances, with an average reduction of 5.95% and 2.3 times the FEs. In larger-scale
scenarios, A3 consistently surpassed A2 in #td reduction, averaging 6.94% decrease
with 1.97 times the FEs of A2. A5, compared to A4, showed no significant difference

in either solution quality or FEs.

These results indicate that while increasing parameter values lead to higher FEs,
they also result in lower ¢td values. At sufficiently high parameter levels, the algo-
rithm demonstrates improved stability and convergence regarding ttd. The number
of vehicles remained remarkably stable across different parameter configurations, un-
derscoring the algorithm’s robustness and reliability for practical applications where

consistent performance is essential.

152

5.3. Computational Studies

Based on these findings, we selected configuration A2 for our comparative analysis

with SDVRLH2, achieving a balanced performance with efficient resource utilization.

5.3.5 Further Analysis

This subsection presents an in-depth analysis to explain the reasons behind the ef-
fectiveness of our proposed strategy. We conducted further investigations from two
primary angles. First, we assessed the strategy’s validity in terms of problem-specific
characteristics. Second, we conducted interactive strategy comparison to show the

benefits of our proposed interactive routing-packing strategy.

Insights from Problem-Specific Characteristics: No Free Lunch

To confirm the reasoning behind our proposed method, we first analyzed it in the
context of specific problem instances. Consider any two nodes i and j (i # j) within
a problem instance, which may be subject to either combined or independent loading.
Let [;, I;, and [;; represent the space lengths occupied by independently loading i,
independently loading j, and loading i and j together, respectively. Let [, represent
the space length of an empty vehicle. We then calculate two indicators, @ and S,
where a = l;;/l,, B = (i +1;)/l,. Based on @ and §, an intuitive judgment can be
made: if @ < B, it indicates that loading the two nodes together occupies less space;

otherwise, it is better to load i and j separately.

For each instance, we compute @ and B for node pairs to investigate their distribution
and mutual relationship. Figure lS:l] illustrates these variation. For instance, in B-
Y1, a significant proportion of node pairs exhibit @ < B, highlighting the advantage
of loading two nodes together. Conversely, numerous pairs in B-Y1 also display
B < a, suggesting the benefit of separate loading. In B-Y3, the majority of node

pairs demonstrate @ < 8, showing the spatial efficiency of paired loading. In SD1 and

153

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

Table 5.7: Comparative analysis for our algorithm with different parameter configurations (A1, A2, and A3) on small-scale

instances (# nodes < 100).

A2(4,100,2) VS A1(2,100,2) A3(4,100,6) VS A2(4,100,2) A2(4,100,2) VS A1(2,100,2) A3(4,100,6) VS A2(4,100,2)
Instances Instances
(small) Avg # v Avg ttd # FE Avg #v Avg ttd # FE (small) Avg # v Avg ttd # FE Avg # v Avg ttd # FE
A2-A1 (A2-A1)/A1 A2/A1 A3-A2 (A3-A2)/A2 A3/A2 A2-A1 (A2-A1)/A1 A2/A1 A3-A2 (A3-A2)/A2 A3/A2
B-Y1 -0.07 -0.0347 1.5053 -0.07 -0.0470 2.3255 Sha9 0 -0.0170 1.5290 -0.10 -0.0294 2.6834
B-Y2 0 -0.0438 1.3734 -0.03 -0.0886 2.2031 Shal0 0 -0.0149 1.4977 0 -0.0263 2.3820
B-Y3 0 -0.0176 1.3204 -0.03 -0.0464 2.2433 Shall 0 -0.0173 1.4205 0 -0.0360 2.6523
B-Y4 -0.10 -0.0286 1.4380 -0.17 -0.0741 2.3523 Shal2 0 -0.0165 1.4044 0 -0.0272 2.2946
B-Y5 -0.10 -0.0143 1.3314 -0.13 -0.0621 2.3216 Shal3 0 -0.0139 1.3183 -0.17 -0.0361 2.4345
B-Y6 0 -0.0467 1.4256 -0.03 -0.0720 2.1613 SD1 0 -0.0348 1.5660 -0.03 -0.0301 2.5560
B-Y7 -0.13 -0.0223 1.3803 -0.17 -0.0464 2.3488 SD2 0 -0.0325 1.5011 0 -0.0325 2.3263
B-Y8 0 -0.0347 13228 -007 -0.0666 2.1163 SD3 0 -0.0261 14714 0 -0.0476 23715
Shal 0 -0.0108 1.7061 0 -0.0040 2.6401 SD4 0 -0.0298 1.4071 0 -0.0677 2.4233
Sha2 0 -0.0042 1.5527 0 -0.0019 2.5328 SD5 0 -0.0226 1.3745 0 -0.0179 2.0366
Sha3 0 -0.0082 1.5503 0 -0.0182 2.5979 SD6 0 -0.0440 14198 0 -0.0721 2.2394
Shad 0 -0.0366 1.5660 0 -0.0300 2.6025 SD7 0.03 -0.0552 14294 0 -0.0826 2.2448
Shab 0 -0.0081 1.5703 0 -0.0145 2.6286 SDS8 0 -0.0417 1.4570 0 -0.0810 2.3610
Sha6 0 -0.0180 1.5889 0 -0.0261 2.5785 SD9 -0.07 -0.0583 14277 -0.17 -0.0714 2.0906
Sha7 0 -0.0179 1.5590 0 -0.0201 2.4934 SD10 -0.03 -0.0450 1.4875 -0.13 -0.0778 2.3593
Sha8 0 -0.0148 1.5985 0 -0.0220 2.5557 SD11 0 -0.0368 1.4889 0 -0.0730 2.4590
A2(4,100,2) VS A1(2,100,2) A3(4,100,6) VS A2(4,100,2)
Overall
Avg # v Avg ttd # FE Avg # v Avg ttd # FE
Avg -1.2 0.1136 0.8119 -1.2 0.1136 0.8119
Total -37.67 0.1548 0.7713 -37.67 0.1548 0.7713

Note: # v = the number of vehicle used; ttd = total travel distance; # FE = the number of fitness evaluations. The Mann-Whitney U test was employed,

and the data with underlined values indicate a significant difference at the significance level @ = 0.05. The results were obtained from 30 runs.

154

5.3. Computational Studies

Table 5.8: Comparative analysis for our algorithm with different parameter config-
urations (A1, A2, and A3) on large-scale instances (100<#node<200). # v = the
number of vehicle used; ttd = total travel distance; # FE = the number of fitness
evaluations. The Mann-Whitney U test was employed, and the data with underlined
values indicate a significant difference at the significance level @ = 0.05. The results

were obtained from 30 runs.

Instances A2(4,100,2) VS A1(2,100,2) A3(4,100,6) VS A2(4,100,2)
(large) Avg # v Avg ttd # FE Avg # v Avg ttd # FE
A2-A1 (A2-A1)/A1 A2/A1 A3-A2 (A3-A2)/A2 A3/A2
B-Y9 -0.07 -0.0201 1.3133 -0.10 -0.0453 2.0357
B-Y10 0 -0.0433 1.3365 -0.07 -0.0758 2.0612
B-Y11 -0.03 -0.0184 1.2888 -0.07 -0.0545 2.3372
B-Y12 -0.03 -0.0372 1.3256 0 -0.0677 2.0149
B-Y13 -0.03 -0.0308 1.3586 -0.07 -0.0524 2.0023
B-Y14 -0.03 -0.0247 1.2328 -0.10 -0.0862 2.0116
B-Y15 -0.07 -0.0229 1.2819 -0.03 -0.0506 1.9684
B-Y16 0 -0.0293 1.2170 0 -0.0730 1.9092
B-Y17 -0.03 -0.0221 1.2419 -0.13 -0.0448 1.8280
B-Y18 -0.03 -0.0423 1.2758 -0.03 -0.0749 1.8377
B-Y19 -0.03 -0.0182 1.2117 -0.30 -0.0507 2.0209
B-Y20 0 -0.0356 1.2526 -0.17 -0.0554 1.7555
Shal4 -0.03 -0.0372 1.4081 -0.07 -0.0538 2.3277
Shalb -0.03 -0.0235 1.2131 -0.17 -0.0809 2.2867
SD12 0 -0.0422 1.4030 -0.07 -0.0691 2.1231
SD13 0 -0.0359 1.3005 -0.13 -0.0944 2.2130
Avg -0.03 -0.0335 1.2610 -0.09 -0.0694 1.9731
Total -0.43 -0.0335 1.2610 -1.5 -0.0694 1.9731

155

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

Table 5.9: Comparative analysis for our algorithm with different parameter configurations (A3, A4, and A5) on small-scale

instances (# nodes < 100).

A4(6,100,6) VS A3(4,100,6) A5(6,200,6) VS A4(6,100,6) A4(6,100,6) VS A3(4,100,6) A5(6,200,6) VS A4(6,100,6)
Instances Instances
(small) Avg # v Avg ttd # FE Avg #v Avg ttd # FE (small) Avg # v Avg ttd # FE Avg # v Avg ttd # FE
A4-A3 (A4-A3)/A3 A4/A3 A5-A4 (A5-A4)/A4 A5/A4 A4-A3 (A4-A3)/A3 A4/A3 A5-Ad (A5-A4)/A4 A5/A4
B-Y1 0 -0.0139 1.2368 0 0 1 Sha9 0 -0.0062 1.2932 0 0 1
B-Y2 0 -0.0139 1.2250 0 0 1 Shal0 0 -0.0079 1.3183 0 0 1
B-Y3 0 -0.0166 1.2556 0 0 1 Shall 0 -0.0065 1.2448 0 0 1
B-Y4 -0.03 -0.0177 1.2272 0 0 1 Shal2 0 -0.0084 1.3037 0 0 1
B-Y5 -0.03 -0.0105 1.2109 0 0 1 Shal3 0 -0.0064 1.2097 0 0 1
B-Y6 0 -0.0123 1.1954 0 0 1 SD1 0 -0.0100 1.3558 0 0 1
B-Y7 -0.10 -0.0058 1.2170 0 0 1 SD2 0 -0.0244 1.3378 0 0 1
B-Y8 0 -0.0166 1.2167 0 0 1 SD3 0 -0.0076 1.2796 0 0 1
Shal 0 0.0000 14162 0 0 1 SD4 0 -0.0139 1.2742 0 0 1
Sha2 0 -0.0070 1.4305 0 0 1 SD5 0 -0.0099 1.2715 0 0 1
Sha3 0 -0.0053 1.3836 0 0 1 SD6 0 -0.0226 1.2799 0 0 1
Shad 0 -0.0102 1.3695 0 0 1 SD7 0 -0.0269 1.2479 0 0 1
Shab 0 -0.0037 1.3752 0 0 1 SD8 0 -0.0093 1.2198 0 0 1
Sha6 0 -0.0033 1.3543 0 0 1 SD9 0 -0.0196 1.2452 0 0 1
Sha7 0 -0.0017 1.3589 0 0 1 SD10 -0.07 -0.0216 1.2778 0 0 1
Sha8 0 -0.0046 1.3317 0 0 1 SD11 0 -0.0266 1.3005 0O 0 1
A4(6,100,6) VS A3(4,100,6) A5(6,200,6) VS A4(6,100,6)
Overall
Avg # v Avg ttd # FE Avg # v Avg ttd # FE
Avg -0.01 -0.0161 1.2406 0 0 1
Total -0.23 -0.0161 1.2406 0 0 1

Note: # v = the number of vehicle used; ttd = total travel distance; # FE = the number of fitness evaluations. The Mann-Whitney U test was employed,

and the data with underlined values indicate a significant difference at the significance level @ = 0.05. The results were obtained from 30 runs.

156

5.3. Computational Studies

Table 5.10: Comparative analysis for our algorithm with different parameter config-
urations (A3, A4, and A5) on large-scale instances (100<#node<200). # v = the
number of vehicle used; ttd = total travel distance; # FE = the number of fitness
evaluations. The Mann-Whitney U test was employed, and the data with underlined
values indicate a significant difference at the significance level @ = 0.05. The results

were obtained from 30 runs.

Instances A4(6,100,6) VS A3(4,100,6) A5(6,200,6) VS A4(6,100,6)
(large) Avg # v Avg ttd # FE Avg # v Avg ttd # FE
A4-A3 (A4-A3)/A3 A4/A3 A5-A4 (A5-A4)/A4 A5/A4
B-Y9 0 -0.0119 1.1999 0 -0.0001 1.0018
B-Y10 -0.07 -0.0127 1.2232 0.03 -0.0029 0.9942
B-Y11 -0.03 -0.0106 1.1886 0 -0.0002 1.0060
B-Y12 0 -0.0145 1.1774 0 0.0000 0.9995
B-Y13 -0.10 -0.0114 1.2021 -0.03 -0.0008 1.0146
B-Y14 0 -0.0140 1.1560 0O -0.0023 1.0211
B-Y15 -0.07 -0.0134 1.2253 -0.03 -0.0017 1.0357
B-Y16 -0.03 -0.0118 1.1810 0 -0.0048 1.0291
B-Y17 0 -0.0113 1.1763 0 -0.0027 1.0501
B-Y18 0 -0.0123 1.1616 0 -0.0020 1.0222
B-Y19 -0.03 -0.0135 1.2175 -0.07 -0.0024 1.0461
B-Y20 0 -0.0178 1.1829 -0.03 -0.0053 1.0632
Shal4 0 -0.0107 1.2015 0 0 1.0017
Shalb 0 -0.0169 1.1802 0 -0.0046 1.0421
SD12 -0.07 -0.0138 1.2265 0 0.0007 1.0064
SD13 0 -0.0231 1.1786 0 -0.0009 1.0085
Avg 0 -0.0153 1.1882 -0.01 -0.0011 1.0000
Total -0.07 -0.0153 1.1646 -0.13 -0.0011 1.0203

157

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

Sha8, a and B are largely similar, indicating that both loading methods are essentially

equivalent in terms of space utilization.

The observations reveal that no single loading method consistently outperforms the
other across various problem instances. Accordingly, our proposed method dynam-
ically selects between joint or individual node loading, optimizing space usage and

reducing the vehicle count.

Interactive Strategy Comparison

To further validate the effectiveness of our proposed strategy, this study conducts
two sets of experiments. In these experiments, the P1IR2 and R1P2 strategies re-
place our proposed strategy within the algorithm (specifically, in Algorithm ll:?l, we
substitute Algorithm [L§ with PIR2 and R1P2, respectively). The outcomes of these

modifications are then compared to evaluate their impact.

Our Strategy VS P1R2. Tables and present the comparative results between
our proposed strategy and the P1R2 method. Small Instances: Over 30 runs, our
method outperformed P1R2 on 26 out of 32 small-scale tests, excelling in both vehicle
count and total travel distance (z¢d) for nine instances. On 24 instances, our method
used significantly fewer vehicles, even reducing the count by more than two on ten
instances. In total, we achieved a total reduction of 61.2 vehicles, averaging 1.9 fewer
per instance. On the ftd metric, we outperformed P1R2 on 11 instances. When
considering only the best runs, our method surpassed P1R2 on 23 instances and
reduced the total vehicle count by 65, averaging two fewer per case. Larger Instances:
For the 16 larger-scale tests, our method consistently required fewer vehicles than
P1R2. On average, we saved over three vehicles on 14 cases and more than five on nine
instances, peaking at a reduction of 11.27 vehicles. This resulted in a total savings of
90 vehicles, or an average of 5.6 per instance. Considering the best runs, we surpassed

P1R2 on all 16 cases, reducing vehicle usage by up to 12 and achieving a total saving of

158

5.3. Computational Studies

1.8 1

Iy
o

B: Single Node Pack
I
B

=
N

1.0
1.0 1.2 1.4 1.6 1.8
a: Node Pair Pack
(a) B-Y1
14 . g=p N
° /9
°
1.2 o
e %
L’
-
~ /9
[°
S 1.0 ° ,/
Q ,’
=l 7’
: L 20
2 s S %
v 0.8
= ‘:’
£ e 0
& s
0.6] ’
L [1s
& &
-
r
0.4 ¥ 4
g
0.4 0.6 0.8 1.0 1.2

a: Node Pair Pack

(c) SD1

S [——

B: Single Node Pack
-
B

1.3 1

1.2

1.1

1.0

10 11 12 13 14 15 16
a: Node Pair Pack
(b) B-Y3
——- a=B . o,
2.5 R :/.
.
® © s
-

é /’,,
8 -
3 R
E 1.5), &
@
[=J
£
1.0 2% o
@ °

0.5 .‘&

”/
0.0 4
0.0 0.5 1.0 15 2.0 2.5
a: Node Pair Pack
(d) Sha8

Figure 5.1: Comparison of the space occupied by loading any two nodes together (i.e.,

a) versus loading them separately (i.e., B) across some problem instances. Both «

and B represent the sum of the spaces occupied by the two nodes. The red dashed line

represents @ = . Points above this line suggest that joint loading is more effective,

while points below it indicate that separate loading is preferable.

159

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

96 vehicles, averaging six fewer per instance. Our best t¢d outcomes also outperformed
P1R2 on five cases. The experiments show that our method outperforms P1R2 in
reducing vehicle usage, especially on larger instances. However, it underperforms

P1R2 regarding rtd.

Our Strategy VS R1P2. Tables and present the comparative results between
our proposed strategy and R1P2. Small Instances: Over 30 runs, our method outper-
formed R1P2 on 24 of 32 small-scale tests, excelling in both vehicle count and total
travel distance (ttd) for eight cases. For vehicles, we significantly surpassed R1P2 on
11 instances. On ttd, we led on 21 cases. In the best runs, we outperformed R1P2 in
vehicle count on 10 tests and tied on 16 more. Our strongest ttd performances beat
R1P2 on 25 cases, achieving over 8% reduction on 10 problem instances. Larger In-
stances: Our approach consistently outperformed R1P2 on 11 of 16 larger-scale tests.
We used fewer vehicles on eight instances, saving a total of 24.9 vehicles. In the best
runs, we saved up to seven vehicles and reduced the overall count by 26, maintaining
an average saving of 1.6 per case. Our top fttd performances outperformed R1P2
on 13 tests, with reductions exceeding 10% on six instances and peaking at 25.02%.
Computational Efficiency: Since the R1P2 strategy requires continuously solving the
3D packing problem as the giant tour changes during the routing search process,
each fitness evaluation takes more computational time compared to other strategies.
Therefore, when comparing with R1P2, we use the algorithm’s CPU time to mea-
sure computational resource consumption. Our method was more computationally
efficient, requiring less than 1% of R1P2’s CPU time on 19 of the 32 small-scale in-
stances and below 0.1% on three. For the 16 larger tests, our method required less
than 1% of the CPU time needed for R1P2 on 15 instances. These results clearly
reveal that our proposed interactive routing-packing approach plays a critical role in

the overall algorithm.

160

5.3. Computational Studies

"GO’ = © [9A9] 20URDYIUSIS YY) JB 9OUSISPIP JUROYIUSIS © 9)LIIPUI SON[eA POUI[IOPUN M BIep

o) pue ‘pofojduwo sem 9599 () ASUIYAN-UURIA O], "A[[ROLIOWNU SOIS0JRI)S POISRIJUOD 9} URY) SINSAI 19399(soonpoid AFsjeI)s mo eyl

SOYIUSIS PO UT B)eP O], "SUOIJLN[RAD SSOUYY JO IOQUINU 1) = H # 90UR)SIP [9ARI} [R]0) = DI} ‘POSN SIIYOA JO IOCUINT 91} = A # DJON

GHST0 0920°0- c9- z100°0 z'19- reer,

gvS1°0 6200°0- 0°Z- 6210°0 6'1- Say

a4 # P11 38 A f 989g P} 8ay A 3ay [[e1040
6E1T°0 LE10°0 z- 6£20°0- z- 11dS 8L0€°0 8S¥0°0- 0 8.£0°0- 0T°0- LN
6622°0 1620°0- ¢- CLT00 L9°C- 01dS 980270 10%0°0- I- GT50°0- 1- Leqs
1Z61°0 9010°0- z- 18500 eLT- 6dS 089€°0 GG60°0- I- €€01°0- 1- geys
6.80°0 12F1°0 z- erT0 z- 8IS 885€°0 86ET°0- I- 28210~ 1- Geys
LETS'0 1€00°0- I- L0€0°0 1- LAS LLSE°0 9890°0- 0 2280°0- 0 7eus
1LL0°0 6£30°0 z- LGET0 z- 9ds ¥29¢°0 ¥.00°0- 0 85000 0 geys
961L°0 1€T9°0- 8T- G88E'0- 81- ¢ds wLPEO 81100 0 PPI00 €0°0- ceus
£0%E°0 ¢ee0’0 I- ¢0T0°0 1- 7S S6LE0 0 0 $200°0 0 Tes
VITV 0 6220°0- 0 €2€0°0 0 €ds g6LT1°0 0L€0°0- G- 66100 LOP- 8A-d
998%°0 170070 0 P00 0 ¢cds ¥I0T°0 7S91°0 - T0ST0 08°¢- LA-d
vL62°0 0£80°0 0 TOTT0 0 Ias €952°0 80€0°0 ¢- 82100 L0°g- 9A-d
z1S€0 zT90°0- z- 81¥0°0- L9°'T- ¢reys ISHI0 72e1°0 ¢- ce10 0F'a- ¢A-d
8GGE°0 LL¥0°0- I- 6090°0- LT'I- gIeuS LI6T°0 09%0°0 ¢- T€L00 €9°e- vA-d
ecLT 0 29000~ z- 0L100 20°T- TT8YS SO¥T'0 752170 ¢- GLGT0 L6°C- eA-d
CITIE0 1.00°0- 0 0120°0- L8°0- 0T®US G89Z°0 07700 z- 8YE0°0 L6'T- cA-d
TEET0 6S70°0- I- 0Z€0°0- 0€°0- 6¥YS TSLT'0 1€L0°0 z- SLTT0 0OLT- TA-€
d/smo d/(dsmQ) dsmQ dJ/(dsmo) dsmo ([ews) Jg/smO d/(dsmO) gsmO d/(dsmO) d-smO o ([rews)
A # P13 1s9g A # 9sog P1 SAY A # 3ay soouejsuy A # P13 989 A # 980y P31 8Ay A # 3ay sooueysuy

(00T > sopou #) seour)sul a[eds-[[ewls Uo (J) ZYId Pu® (sIn(Q)) poyjeul 1o usomiaq symnsel uostredwo)) :T1°G o[qe],

161

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

Table 5.12: Comparison results between our method (Ours) and P1R2 (P) on large-
scale instances (100<#node<200). # v = the number of vehicle used; ttd = total
travel distance; # FE = the number of fitness evaluations. The data in bold signifies
that our strategy produces better results than the contrasted strategies numerically.
The Mann-Whitney U test was employed, and the data with underlined values indi-

cate a significant difference at the significance level @ = 0.05.

Instances Avg # v Avg ttd Best # v Best ttd # FE
(large) Ours-P (Ouwrs-P)/P Ours-P (Ours-P)/P Ours/P

B-Y9 -3.07 0.1297 -3 0.0910 0.1278
B-Y10 -3.27 0.0186 -4 0.0241 0.2766
B-Y11 -5.10 0.1820 -6 0.1385 0.0806
B-Y12 -6.03 -0.0103 -7 -0.0568 0.1826
B-Y13 -4.50 0.1360 -4 0.1408 0.1263
B-Y14 -5.27 -0.0163 -5 -0.0376 0.1968
B-Y15 -7.63 0.1691 -8 0.1336 0.1060
B-Y16 -8.17 0.0059 -8 -0.0251 0.2066
B-Y17 -5.87 0.1471 -7 0.1406 0.1570
B-Y18 -6.47 -0.0266 -7 -0.0129 0.3508
B-Y19 -10.27 0.1892 -10 0.1610 0.1106
B-Y20 -11.27 -0.0082 -12 0.0033 0.2290
Shal4 -2.40 0.0201 -3 0.0278 0.4041
Shalb -4.90 -0.0051 -5 -0.0054 0.4732
SD12 -1.07 0.0254 -2 0.0444 0.4811
SD13 -4.73 0.0106 -5 0.0029 0.1828
Avg -5.6 0.0604 -6.0 0.0481 0.1781
Total -90.0 0.0501 -96 0.0486 0.1781

162

5.3. Computational Studies

"G0"() = © [OAD] AOUWRDIYIUSIS O} }& IOUIIIITP
JIROYIUSIS © 9)RIIPUL SON[RA POUI[IOPUN [[IIM ®)ep oY) pur ‘pasojduio sem 9501) ASUIAN-UURIA O], "A[[RILIOWNU SOIF0JRI)S POISRIJUOD O1[}

e[} $3[NsalI 10939q seonpord £303e1)s MO Jery) SoyTuSIs P[oq UL eJep oY], "9oUR)SIP [9ARI} [R]0) = PJ) {PIs SIIYAA JO IOQUINT B} = A # :9JON

¥100°0 £200°0- L L900°0 6'G [eo],

$100°0 05000 zo ¢£00°0 z0 Say

L P11 3s9g A # 980 P11 Say A F# 3Ay eI
¥000°0 1680°0- 0 16L0°0- 0 I1dS 06100 ¥8€0°0- 0 0¥€0°0- 0 {eYS
6100°0 6880°0~ z- 1921°0- L9°T- 01dsS ¥010°0 zeeT0 4 286070 4 Levg
cT100°0 9650°0- 0 L8000 0L°0- 6dS 8€T0°0 €6£0°0- T 1960°0- LT0 9eys
£100°0 9090°0 I- 6290°0 1- 80S 8620°0 GLZ0°'0- 0 8620°0- 0 Geys
I1ST0°0 6091°0- 0 I82T°0- 06°0- LS 0%€0°0 0920°0- 0 8€10°0- 0 peys
£000°0 LOV0°0 I- 1680°0 1- 90S T980°0 1€00°0- 0 L120°0- 0 €S
1000°0 98¢G'T 91 FOTH T 9T ¢ds Tsv0°0 66010~ I- LS0T°0- €01~ ceys
9910°0 1€80°0- 0 0080°0- 0 ¥AS L8S0°0 L€€0°0- 0 96%0°0- 0 Ters
9620°0 €6L0°0- 0 0820°0- 0 ¢dS S900°0 890Z°0- z- SVPC'0- €TI- 8A-d
cLT0'0 LT80°0- I- €190°0- 1- zdS 6€00°0 L9T0°0- ¢- ¥8€0°0- 09°¢- LA-d
1120°0 ¢910°0- 0 6600°0- 0 IAS 2900°0 8CHT°0- I- L9¥T°0- €0°0- 9A-d
0£00°0 2600°0- T 1600°0- (S ¢TeyS 900°0 L150°0 0 €050°0 010 GA-d
€900°0 LLV0°0- I €8L0°0- 070 ZIeyS $.00°0 91T 0- I- T960°0- LV'I- vA-d
6200°0 11%0°0- 0 90700~ €0°0 T1®YS €%00°0 ¥1€0°0- z- Z¥20°0- L6°T- eA-d
0.00°0 8000 T GGT0°0- LT0 0T®YS ¥L00°0 SPET 0" 0 60TT°0- €00 cA-d
6700°0 88100 0 6£20°0 160 6®US 9900°0 £%00°0- 0 9.20°0 01°0 TA-d

q/smo g/(¥-smQ) y-smQ y/(Y-smo) yg-smo o (ews) y/smo g/(M-smQO) y-smQo o y/(Y-smo) yg-smo o ([rews)
1 P33 9s9g A F# 189g P SAY A # 8Ay seour)sul L P13 9s9g A F# 9seg P11 SAy A # SAy seouejsup

(00T > sepou #) seoue)sul a[eos-[[euws U0 (Y) gJTH PUeR (SIM()) poyjewl 1o usamiaq symsal uostredwoy) :¢1°G 9[qR],

163

Chapter 5. An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*

Table 5.14: Comparison results between our method (Ours) and R1P2 (R) on large-
scale instances (100<#node<200). # v = the number of vehicle used; ttd = total
travel distance. The data in bold signifies that our strategy produces better results
than the contrasted strategies numerically. The Mann-Whitney U test was employed,
and the data with underlined values indicate a significant difference at the significance

level @ = 0.05.

Instances Avg # v Avg ttd Best # v Best ttd T
(large) Ours-R (Ours-R)/R Ours-R (Ours-R)/R Ours/R

B-Y9 0.27 0.0026 1 -0.0081 0.0039
B-Y10 0.17 -0.1565 0 -0.1319 0.0078
B-Y11 -4.27 -0.0774 -5 -0.0680 0.0034
B-Y12 -2.07 -0.2636 -3 -0.2479 0.0067
B-Y13 0.37 0.0110 1 0.0145 0.0033
B-Y14 0.30 -0.1721 0 -0.1324 0.0041
B-Y15 -6.13 -0.1040 -6 -0.0886 0.0028
B-Y16 -3.03 -0.2803 -3 -0.2615 0.0062
B-Y17 0.43 0.0093 0 0.0201 0.0029
B-Y18 0.13 -0.1990 0 -0.1848 0.0061
B-Y19 -8.43 -0.0978 -7 -0.0862 0.0038
B-Y20 -4.77 -0.2724 -5 -0.2502 0.0056
Shal4 0.87 -0.0411 1 -0.0175 0.0022
Shalb 2.70 -0.0082 2 0.0282 0.0020
SD12 -0.67 -0.0965 -1 -0.0373 0.0105
SD13 -0.73 -0.0815 -1 -0.0887 0.0012
Avg -1.6 -0.1142 -1.6 -0.0963 0.0035
Total -24.9 -0.0990 -26 -0.0742 0.0035

164

5.4. Conclusion

5.4 Conclusion

In this chapter, we introduce an adaptive interactive routing-packing strategy that
can be applied to various algorithms for solving the 3L-SDVRP, including those pre-
sented in Chapters B and @ The key innovation of our approach lies in its ability to
adaptively select the appropriate packing pattern based on various conditions, such
as the vehicle’s remaining space and the space requirements of different packing pat-
terns at each node. Our strategy leverages the P1R2 idea of loading a single node
independently and the 2C-SP concept of loading two nodes together. Additionally,
our strategy provides flexibility and adaptability in adjusting packing decisions as
the giant tour changes, resulting in improved performance. Our experimental results
demonstrate the effectiveness of this approach, especially in enhancing solution qual-
ity in terms of vehicle count across most problem instances, with significant benefits
observed in larger-scale cases. To explore the underlying reasons for our method’s
success, we further analyze problem instances and conduct comprehensive interactive

strategy evaluation and parameter sensitivity studies.

While our approach efficiently finds high-quality solutions, especially in terms of
the number of vehicles used, it does not outperform the state-of-the-art 3L-SDVRP
algorithm, SDVRLH2 [10], in terms of total travel distance (tfd) in some cases. The
reduction in the vehicle number inadvertently led to an increase in ttd. In the next
chapter, we aim to leverage domain knowledge to develop approaches that reduce the

ttd while maintaining a minimal number of vehicles.

165

Chapter 6

Knowledge-Guided Optimization
for 3L-SDVRP*

In Chapter @, we introduced the PEAC-HNF, a multi-objective evolutionary algo-
rithm designed to solve the 3L-SDVRP. While this method effectively balances the
two conflicting objectives and provides diverse solutions for decision-makers, it is less
suitable for large-scale problems due to its substantial computational demands. Build-
ing on this foundation, Chapter @ presented an enhanced local search method, derived
from the state-of-the-art 3L-SDVRP algorithm SDVRLH?2 [[10], specifically tailored to
address large-scale instances of the problem more efficiently. Given that 3L-SDVRP
encompasses both routing and packing—each an NP-hard problem—the interaction
between these two components is crucial for achieving high-quality solutions. Chapter
H delves into this critical aspect, proposing an adaptive routing-packing strategy that
significantly reduces the number of vehicles required. Although our proposed meth-
ods outperforms the state-of-the-art SDVRLH?2 [10] in terms of vehicle reduction, it

still falls short in optimizing the total travel distance (rtd).

*This chapter is partially based on a paper published at the 18th International Conference on
Parallel Problem Solving From Nature (PPSN’ 24) [117].

166

6.1. Introduction

To address this limitation and improve ttd, this chapter introduces a novel approach
by incorporating domain knowledge into the search algorithm, guiding the search
process more effectively and enhancing the overall solution quality. Specifically, we
propose an Adaptive Knowledge-Guided Insertion (AKI) operator, which integrates
domain expertise and allows for larger step sizes in the search process. Building
on this, we develop the Adaptive Knowledge-Guided Search (AKS) algorithm, which
offers two primary advantages: first, it utilizes the domain knowledge embedded in the
AKT operator to provide a more informed and well-directed search; second, it strikes a
better balance between exploration and exploitation by employing the AKI operator
for broader, large-step searches while utilizing traditional neighborhood operators for
more precise, small-step refinements. This balanced approach significantly enhances

the algorithm’ s overall search capabilities.

This chapter is organized as follows. Section El! provides an introduction to the
background and outlines our motivation for this chapter. Section delves into the
extraction of heuristics from domain knowledge, introducing the proposed AKI oper-
ator and the AKS algorithm. Section @ presents our computational studies, where
we compare our proposed method with the state-of-the-art algorithms and analyze
its effectiveness. Finally, Section @ summarizes the key findings and contributions

of this chapter.

6.1 Introduction

Due to the high complexity of 3L-SDVRP, exact methods have proven ineffective
for solving it. Consequently, intelligent optimization algorithms, particularly meta-
heuristic algorithms, have become the common and effective approach for tackling
such complex problems [13] [14] [50] [b1] [107]. These methods are based on a
generate-and-test iterative strategy [106], where each iteration involves the gener-

ation of a new set of potential solutions from the existing ones using various search

167

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

operators, with the hope of finding improved solutions. This process is iteratively

repeated to ultimately find an approximate optimal solution.

Search operators are crucial in these algorithms as they determine the search direction
and step size in the solution space. Many general search operators used for solving
vehicle routing problems (VRPs) with 3D loading constraints are as follows. Swap:
Exchange the positions of two nodes [10]. Shift: Move a node to another position [[14].
2-opt: Breaks two edges in a node sequence and reconnects two new edges to alter
the node order [10]. 3-opt: Breaks three edges in a node sequence and reconnects
three new edges [10]. Move & Rotate Block: Groups identical boxes into blocks for a
block sequence representation, then selects and inserts blocks between sequences [[13].
Split: Divides a node sequence into two non-empty sequences [121]. Best Cost Route
Crossover: Selects two node sequences, inserts two consecutive nodes from each into
the other [65]. 1-point Crossover: Randomly divides two node sequences at a selected
position and recombines them [14]. 2-point Crossover: Randomly selects two points

in two node sequences and exchanges the segments [84].

Additionally, search step size, defining the extent of solution change by search oper-
ator per iteration, is crucial for algorithm performance. Methods for 3L-SDVRP can
be categorized into local search-based methods [10] [13] [14] [66] [107] with smaller
step sizes and global search-based methods [50] [51] [65] [70] with larger ones. Al-
though local search is efficient, it risks falling into local optima, whereas global search
tends to converge more slowly. Researchers have explored balancing small and large
search step sizes in optimization. [104] showed larger neighborhood sizes in simulated
annealing improve effectiveness. Large neighborhood search (LNS) [86] and adaptive
large neighborhood search (ALNS) [79] algorithms are effective and adaptable to dif-
ferent VRPs. The memetic algorithm (MA) [64], blending local and global searches,
has been applied to diverse problems but needs more computational resources. How-
ever, directly applying these methods to 3L-SDVRP is ineffective as they do not

incorporate domain knowledge which is crucial for addressing such a complex prob-

168

6.1. Introduction

lem. Thus, achieving a balanced trade-off between large and small step sizes in this

context remains a significant challenge.

In this chapter, we introduce a knowledge-guided approach that leverages domain-
specific heuristics and balances small-large search step sizes to enhance the search
for high-quality solutions to the 3L-SDVRP. It is important to clarify the distinc-
tion between the knowledge utilized in our approach and the concept of knowledge
transfer commonly discussed in evolutionary computation. In classical evolutionary
algorithms, “knowledge transfer” typically refers to the process where useful informa-
tion, patterns, or learned models are passed from one generation to the next, either
explicitly (e.g., via learned parameters) or implicitly (through the genetic makeup of
the population). In contrast, our method does not involve such inter-generational

transfer.

Instead, the knowledge embedded in our algorithms is derived from human under-
standing of the problem’ s structure, constraints, and search space. These domain
insights are incorporated into the algorithm in the form of carefully designed heuris-
tics, rules, and search operators, which remain fixed during the search process. The
aim is to enhance search efficiency and solution quality by directing the exploration
towards more promising regions of the search space, rather than by adapting or evolv-

ing knowledge through population dynamics.

As a result, the effectiveness of our approach relies on the depth and quality of the
incorporated domain knowledge, rather than on learning or adapting from the search
history across generations. This static integration of knowledge is well suited for
highly complex and constrained combinatorial problems like the 3L-SDVRP, where
online adaptation or automated knowledge discovery may be computationally infea-

sible.

Motivated by the above analysis, the contributions of this chapter are as follows:

o Heuristics are extracted from domain knowledge. Specifically, based on the

169

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

“giant tour” representation, we develop a hypothesis about “what constitutes
a good giant tour” through observation. We use a node insertion approach to
change the order of nodes in the current giant tour to improve its quality and

propose two node insertion rules.

o An Adaptive Knowledge-guided Insertion (AKI) operator is developed which
can adaptively select suitable node insertion rules based on node distribution
characteristics. The proposed AKI operator utilizes domain knowledge and has

a large search step size.

o The AKI operator is integrated into a local search framework to form an Adap-
tive Knowledge-guided Search (AKS) algorithm. This algorithm combines small
step search (exploitation) of traditional neighborhood operators with the AKI

operator’s larger step (exploration), improving search capabilities.

6.2 Knowledge-Guided Optimization Algorithm for
3L-SDVRP

This section starts with heuristics extracted from domain knowledge, discusses the
features of an effective giant tour, and introduces two node insertion rules. It then
details the proposed AKI operator and AKS algorithm. Our approach incorporates

domain knowledge and balances search step size to improve solution quality.

6.2.1 Extracting Heuristics from Domain Knowledge

This study employs the “giant tour” representation, which encodes the solution as
a sequence of all nodes (for a detailed description, refer to Section 521) A key

question is what defines an effective giant tour. Our aim is to identify high-quality

170

6.2. Knowledge-Guided Optimization Algorithm for 3L-SDVRP

giant tour characteristics, leveraging domain knowledge for targeted heuristic search

in the algorithm to enhance solution quality.

Our study hypothesizes that in an effective giant tour, adjacent or nearby nodes
in the sequence should be physically close on the actual map, as illustrated in Fig.
@. For example, routes derived from giant tour 1 are less efficient intuitively due
to vehicles traveling between distant nodes, bypassing nearer ones, whereas routes
from giant tour 2 avoid such inefficiencies, indicating higher quality solutions. This
underscores the importance of logical node sequencing in route planning to improve

solution quality.

Transitioning from a general to an optimized giant tour, like giant tour 1 to giant
tour 2 in Fig. Ell, is inefficient with traditional operators due to their small step
sizes and lack of domain knowledge. For instance, evolving from route 2 to route 2’
needs multiple steps even under ideal conditions (e.g., four/five consecutive steps by
Swap/Shift operator). This highlights the need for search operators that have large
step sizes for efficiency and leverage domain knowledge for strategic direction in giant

tour optimization.

To align with our hypothesis, we employ a node insertion strategy, inserting a node
between each pair of consecutive nodes i and j in a giant tour to optimize node
sequence. We propose two insertion rules, as shown in Fig. @: the Proximity
rule, ensuring inserted nodes are near node i, and the Connectivity rule, making the
inserted node a ‘bridge’ for a better route. These rules aim to reorganize the giant

tour into a sequence that better matches our hypothesis for an optimal layout.

Experiments evaluating two node insertion rules, detailed in Section @, demon-
strated their effectiveness. However, significant performance differences were observed
between the two rules. This raised questions about what affect rule performance and
the possibility of developing a flexible search operator. Analysis in Section @
highlighted the importance of node distribution, leading to the development of an

171

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

© : depot

Giant tour 1: (4, 7, 11, 23,17, 24, 14, 19, ...)
Route 1: % -24-5>7->11->%

Route 2: *-223-217-224->14->19-> %
Route 2': %-224-523-519->17->14->%

(a)

Giant tour 2: (1, 3,2,4,6,5,7,8,9,12, 11, 10, ...)
Route 3: *-21-22-23-24->5-26->7->8->%

Route 4: %-+8-59-210->11->12->%

Route 5: *¥-217-216->15->14->13->%

Route 6: *-224-523-522-521-520->18->19->%

(b)

Figure 6.1: Illustration of giant tours and routes. In (a), routes 1-2 are obtained from

giant tour 1. In (b), routes 3-6 are obtained from giant tour 2.

Proximity rule

Connectivity rule

Figure 6.2: Two node insertion rules. Proximity rule: The inserted node k is as close

as possible to node i. Connectivity rule: The inserted node k acts as a bridge between

nodes i and j.

172

6.2. Knowledge-Guided Optimization Algorithm for 3L-SDVRP

adaptive knowledge-guided insertion (AKI) operator based on these findings.

6.2.2 Adaptive Knowledge-guided Insertion (AKI) Operator

Algorithm [1§ illustrates our proposed AKI operator. It traverses giant tour g, insert-
ing nodes between consecutive nodes i and j based on node densities p; and p;. If
the ratio of max(p;, pj) to min(p;, p;) exceeds threshold 04,5 (Step 7), the Proximity
rule (Steps 8-9) or Connectivity rule (Steps 10-11) is applied, depending on density.
If densities are similar (Step 13), rules are chosen based on nodes’ positions relative
to the depot o and node density p;; between i and j (Steps 15-16 or 19-23). The g

updates after each node insertion.

To demonstrate its larger step size, the AKI operator was empirically tested on 100
random giant tours. We applied AKI once per giant tour and compared its effect
to traditional Swap (exchanges the positions of two nodes in the giant tour) and
Shift (moves a node to another position) operators, calculating the average opera-
tions needed for similar results. Specifically, given a giant tour denoted as a, the
AKI operator produces a new tour b. We then apply Swap and Shift operators mul-
tiple times to transform a into b, calculating the minimum number of operations
required for both Swap and Shift operators. The calculation methods are detailed in
Algorithms [19 and @ Results in Table El] show Swap needed 30.2 operations and
Shift 15.84 for 50-node instances, increasing to 125.32 and 70.82 for 200 nodes. This

demonstrates AKI’s significantly larger step size, especially for larger problems.

Calculating Node Density in AKI Operator

Our proposed AKI operator adaptively selects the most suitable node insertion rule by
analyzing node distribution characteristics. We quantify these characteristics using

‘node distribution density’. Algorithm R1| details how we calculate this density around

173

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

Algorithm 18 Adaptive Knowledge-guided Insertion (AKI) Operator

Input: g: a giant tour; 6 .,s: density ratio threshold

Output: g: the giant tour after node insertion

1: n « the number of node in g; k «— 0 //«: Current node index

2: while k <n-2 do

3 i «— g[k];j < g[k+1] 7/ Inserting node between i and j
4: d;j « distance between i and j;
5: p; < get node density around i by Algorithm @ (with parameters © =k, ® =k +1)
6: pj < get node density around j by Algorithm @ (with parameters # =k +1, 9% =k +2)
7: if max(p;, pj)/min(p;,p;) > 0gens then // A large gap in node density around i and ;.
&: if p; > p; then // Node density around i is larger.
9: g < use Proximity rule to insert a node between i and j, then update g
10: else // Node density around j is larger.
11: g « use Connectivity rule to insert a node between i and j, then update g
12: end if
13: else // Node density around i and j is similar.
14: djo,dj, « distance between i (or j) and depot o
15: if d;j > d;, and d;j > dj, then // i and j are roughly on opposite sides of the depot.
16: g <« use Prozimity rule to insert a node between i and j, then update g
17: else // i and j are on the same side of the depot.
18: pij < get average node density between i and j by Algorithm @ (with 7 =«k)
19: if pij/min(p;, pj) > Ogens then // Node density between i and j are larger.
20: g « use Connectivity rule to insert a node between i and j, and update g
21: else // Node density between i and j are not significantly larger.
22: g « use Proximity rule to insert a node between i and j, then update g
23: end if
24: end if
25: end if
26: Ke—k+1

27: end while

28: return g

174

6.2. Knowledge-Guided Optimization Algorithm for 3L-SDVRP

Table 6.1: Average number of continuous steps required by Swap and Shift operators
to achieve equivalent change as one step by the AKI operator in giant tours. n is

#nodes of giant tour.

Operator n=31 n=50 n=75 n=100 n=200

Swap 18.38 30.2 464 61.82 125.32
Shift 9.06 15.84 2492 34.04 70.82

Algorithm 19 Calculate the Minimum Number of Swaps
Input: a: the original giant tour; b: the giant tour generated from a after applying

the AKI operator

Output: swaps: the minimum number of swaps to convert a into b

1: if len(a) is not equal to len(b) or set of a is not equal to set of b then

2: raise ValueError(“Giant tours ‘a’ and ‘b’ must have the same elements and
length.”)

3: end if

4: index _map « {value: index for index, value in enumerate(b)}

5. swaps «— 0

6: for i « 0 to length of a do

7: correct_value < b|i]

8: if a[i] # correct _value then

9: swap__index < index_map|ali]]
10: Swap a[i] and a[swap__index]
11: Update index map after the swap

12: index_map|a[swap_index]|| « swap__index
13: swaps «— swaps + 1

14: end if
15: end for

16: return swaps

175

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

Algorithm 20 Calculate the Minimum Number of Insertions

Input: a: the original giant tour; b: the giant tour generated from a after applying

the AKI operator

Output: inversions: the minimum number of insertions to convert a into b

1:

2:

10:

11:

12:

if len(a) is not equal to len(b) or set of a is not equal to set of b then
raise ValueError(“Giant tours ‘a’ and ‘b’ must have the same elements and
length.”)
end if
// Create a map index__map to store the index of each element in list b
for each index,value in enumerate(b) do
index map|value| <« index
end for
// Convert a to a list of indices indexed a according to the order of elements in b
for each value in a do
Append index map|value] to indexed a
end for
lis_length <« calculate the length of the longest increasing subsequence in
indexed a
insertions « len(a) — lis_length

return insertions

176

6.2. Knowledge-Guided Optimization Algorithm for 3L-SDVRP

a given node i. ¥ represents the index of node i in the giant tour g (Step 2), and
D; is used to store the distances between node i and other nodes (node g[¢#’'] and
subsequent nodes in the giant tour) (Steps 3-5). D; is sorted in ascending order,
and the average of the first L%J distances is computed to represent the node

distribution density around node i.

Algorithm 21 Calculate node density around node i
Input: g: a giant tour; ¢,9: node indexes in g

Output: p: the node density around g[¢]
1: n < the number of node in g
2: [« g[¥];D; < 0 // g indexing starts from 0
3: for k «— g[¥'] to g[n—1] do
4: dy; « distance between nodes k and i; D; < D; U {d;}
5. end for
6: D; « sort D; in increasing order
7: p « get the average of the first L"‘Qﬁj elements in D;

8: return p

Algorithm P2 demonstrates the process for calculating the node distribution density
between two nodes i and j, which are adjacent in a giant tour. During the calculation,
for each node k in the giant tour g that is positioned after node j (Step 4), the
algorithm determines the relative position of node k in relation to nodes i and j
based on the distances between each pair of nodes i, j, and k. If djx < d;; and
djr < dij (Step 6), it is considered that node k is approximately between i and j.
The node distribution density p; around node k is then calculated using Algorithm
and stored in P (Steps 7-8). Finally, the average value of all elements in P is used

to represent the node distribution density between nodes i and j (Steps 11-13).

177

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

Algorithm 22 Calculate node density between nodes i and j

Input: g: a giant tour; n: index of node i in g
Output: p: the node density between i and j
1: n « the number of node in g; P < 0;p <« 0
2: i «— g[nl;j < gln+1] 7/ ¢ indexing starts from 0
3: forn’ «—n+2ton-1do
4 k—=gln]
5: d;j, dix, d;ji < distances between each pair of nodes 7, j, and k

6: if dy < dl'j and djk < dij then

7: ok < get node density around k by Algorithm R1] with 9=y, 9" = n+2)
8: P < PU{pi}

9: end if

10: end for

11: if P # 0 then
12: p « get the mean of all elements in P
13: end if

14: return p

178

6.2. Knowledge-Guided Optimization Algorithm for 3L-SDVRP

6.2.3 Adaptive Knowledge-guided Search (AKS) Algorithm

The AKS algorithm (Algorithm @) combines the AKI operator with local search
framework, starting with a random giant tour. It employs both Swap and 2-opt op-
erators to generate neighborhoods (Steps 6-12), applying AKI based on probability
p for potential improvements. The best solution of each iteration, Sjer,es:, is utilized
to update both spes and seur. (Steps 13-14). Iterations stop after n,, jmp non-
improvements, followed by a restart (Steps 15-17). In the AKS algorithm, traditional
operators conduct detailed searches with small step sizes, while the AKI operator en-
ables expansive exploration through its larger step size. Furthermore, incorporating
domain knowledge into the AKI operator significantly enhances the overall perfor-

mance of the AKS algorithm.

Other Details of AKS Algorithm

Our packing method and routing-packing interactive strategy are based on the ap-
proach proposed in Section H, which enables adaptive packing decision adjustments
during route planning process. Additionally, in real-world scenarios, the reduction
of vehicle numbers is more important than decreasing total travel distance, due to
the substantially greater expenses involved in purchasing, maintaining more vehicles,
and employing additional drivers compared to the costs associated with longer travel
distances. Thus, following the SDVRLH2 method [10], we prioritized vehicle number
as the primary objective, with tfd as the secondary objective. To clarify, when com-
paring two solutions s; and so within the AKS algorithm, s; is considered superior
to s9 if it uses fewer vehicles, or if both have the same number of vehicles but s; has

a shorter total travel distance (fzd) than ss.

179

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

Algorithm 23 AKS Algorithm (Key innovation in red boxes.)

Input: problem instance data

Output: best solution spe;

1: P « get packing solution for each node

2: Sinit < generate initial giant tour; Spes < Sinis

3

4:

5:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

: for t « 1 to n,y,; do

Scurr € Sbest

Ngwap < apply the

Nswap

Noops < apply the
N20pl

Scurr < Siter _best

break
end if
end for
end for

return sp.g;

for iter < 1 to nj;., do

Ngwap < get neighborhood of s¢, by Swap

AKI operator (Algorithm llj)

Noop: < get neighborhood of sirer pest by 2-opt

AKI operator (Algorithm l@])

N «— Noopr U {Siter_best}

Spest <— update Spesr DY Sirer bess Where necessary

with probability p to

Siter_best < decode individuals and pick best individual in Ny

with probability p to

Siter best < decode individuals and pick best individual in N

if scurr has not been improved for n,, mp consecutive iterations then

180

6.3. Computational Studies

6.3 Computational Studies

This section assesses the performance of our AKS algorithm against the state-of-the-
art method for 3L-SDVRP. We also evaluate two node insertion rules we proposed,
observing notable performance differences and pinpointing node distribution as a key
factor. Additional experiments on newly created problem instances with varied node
distributions validate the effectiveness of our AKI operator. For clarity, the chapter’s
main text includes only comparative data between methods. Detailed experimental

results are available online in [114].

6.3.1 Experimental Setting

In this chapter, experiments were conducted using three widely used datasets for
3L-SDVRP: the B-Y instances [[10], Shanghai instances [10], and SD instances [[L3].
A total of 48 problem instances were tested, with 32 small-scale instances involving
fewer than 100 nodes and 16 larger-scale instances containing between 100 and 200

nodes.

In our experiments, we adjusted 64, in Algorithm @ according to the node count:
1.2 for under 75 nodes, and 1.5 for 75 or more. Hyperparameters in Algorithm @
were set as Ny, = 4, Njter = 100, nyo imp = 2, and p = 0.1. It is worth noting that we
did not fine-tune the parameters to demonstrate that the strong performance of our
algorithm arise from its innovative design rather than from careful parameter tuning.
Experiments were run 30 times on a server with 4x Intel Xeon Platinum 9242 CPUs,

256G RAM, Python 3.7, and Ubuntu 20.04.

181

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

6.3.2 Comparing to State-of-the-Art

In this study, we evaluated our AKS algorithm against the state-of-the-art SDVRLH2
method [10] for 3L-SDVRP. The detailed comparative results are included in Tables

@ and @

Small-Scale Problem Instances (# node<100)

QOwverall Average Results: As shown in Tab. @, in the majority of cases (25 out of 32),
the AKS algorithm demonstrated superior performance compared to SDVRLH2 [[10].
It achieved significantly better results in both vehicle count and ttd on 19 instances,

while on four instances, there was no significant difference.

Average Vehicle Count: The AKS algorithm was significantly better on 21 instances,
reducing two or more vehicles on seven instances, and up to 12.1 vehicles. No signifi-
cant difference in vehicle count was observed on ten instances. In total, AKS reduced

52.23 vehicles across all instances, averaging a reduction of 1.63 vehicles per instance.

Average ttd: AKS was significantly better on 23 instances, with no significant differ-
ence on six instances. ftd reduction exceeded 5% on 12 instances and 10% on seven
instances, with the highest reduction being 40.34%, averaging a decrease of 12.78%

per instance.

Best Vehicle Count: In terms of the best results from multiple runs, our method
achieved better vehicle count on 21 instances, with six instances showing a reduction
of three or more vehicles compared to SDVRLH2’s best. Overall, our method reduced

53 vehicles in total, averaging 1.66 per instance.

Best ttd: Our method’s best solutions were significantly better on 22 instances, with
reductions exceeding 5% on 16 instances and 10% on eight instances. The highest

reduction was 41.31%, averaging 13.23% per instance.

182

6.3. Computational Studies

Large-Scale Problem Instances (100 < #node < 200)

Overall Average Results: As shown in Tab. @, the AKS algorithm was significantly
better on 15 out of 16 larger-scale instances, with both vehicle count and #td being

significantly better than SDVRLH2 on 14 instances.

Average Vehicle Count: Our method had significantly fewer vehicles on 15 instances.
Compared to SDVRLH2 [10], the reduction in vehicles exceeded three on seven in-
stances and five on five instances, with a maximum reduction of about ten vehicles.
Overall, our method reduced a total of 58.53 vehicles, averaging a reduction of 3.66

vehicles per instance.

Average ttd: AKS was significantly better on 14 instances, with no significant dif-
ference on two instances. trd reduction exceeded 5% on eight instances and 10% on
three instances, with the highest reduction being 12.53%, averaging a decrease of

7.74% per instance.

Best Vehicle Count: Our method achieved better results in vehicle count on all 16
instances, with a reduction of five or more vehicles on five instances, reaching up
to 11 vehicles. Overall, our method reduced 61 vehicles in total, averaging 3.81 per

instance.

Best ttd: AKS’s best results were significantly better than SDVRLH2, with reductions
exceeding 5% on 11 instances, 10% on three instances, and a maximum reduction of

19.5%, averaging 8.07% per instance.

These findings demonstrate the AKS algorithm’s superior performance over SD-
VRLH2 in reducing both the number of vehicles required and t¢d, across both small-

scale and larger-scale problem instances.

183

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

Table 6.2: Comparison results of our AKS algorithm and SDVRLH2 (SD) on small-scale instances (# node < 100).

Instances Avg # v Avg ttd Best # v Best ttd # FE Instances Avg # v Avg ttd Best # v Best ttd # FE
(small) AKS-SD (AKS-SD)/SD AKS-SD (AKS-SD)/SD AKS/SD (small) AKS-SD (AKS-SD)/SD AKS-SD (AKS-SD)/SD AKS/SD
B-Y1 -1 -0.0263 -1 -0.0448 0.0533 Sha9 -0.6 -0.0337 -1 -0.0351 0.0644
B-Y2 -1.5 -0.0220 -1 -0.0686 0.0666 Shal0 0 0.0083 0 -0.0046 0.0738
B-Y3 -1 -0.0309 -1 -0.0521 0.0479 Shall -0.2 -0.0082 0 -0.0270 0.0461
B-Y4 -0.1 -0.0233 -1 -0.0141 0.0575 Shal2 -2 -0.0820 -2 -0.1030 0.0557
B-Y5 -1 -0.0148 -1 -0.0352 0.0602 Shal3 -0.7 0.0045 0 0.0019 0.0614
B-Y6 -1.2 -0.0243 -2 -0.0191 0.0592 SD1 0 -0.0127 0 0.0243 0.0588
B-Y7 -1.87 -0.0383 -2 -0.0567 0.0873 SD2 -1 -0.0968 -1 -0.0819 0.0546
B-Y8 -1 -0.0352 -1 -0.0306 0.0595 SD3 0 -0.0258 0 -0.0167 0.0616
Shal 0 0 0 0 0.1145 SD4 -1 -0.0529 -1 -0.0581 0.0523
Sha2 0 0.0213 0 0.0136 0.0948 SD5 1 0.0267 1 0.0176 0.0510
Sha3 0 -0.0223 0 -0.0303 0.0412 SD6 -3 -0.1275 -3 -0.1134 0.0715
Sha4 0 0.0191 0 0.0011 0.0445 SD7 -3 -0.1294 -3 -0.1463 0.0701
Shab -1 -0.1657 -1 -0.1706 0.0725 SD8 -4 -0.1305 -4 -0.1424 0.0644
Sha6 -1 -0.0601 -1 -0.0990 0.0401 SD9 -3.97 -0.1105 -4 -0.1270 0.0643
Sha7 -1 -0.0607 -1 -0.0674 0.0486 SD10 -10 -0.3754 -10 -0.3862 0.0694
Sha8 0 -0.0373 0 -0.0424 0.0899 SD11 -12.1 -0.4034 -12 -0.4131 0.0426

Overall Avg # v Avg ttd Best # v Best ttd # FE

Avg -1.63 -0.1278 -1.66 -0.1323 0.0591

Total -52.23 -0.1278 -53.00 -0.1323 0.0591

Note: # v = the number of vehicles used; ttd = total travel distance; # FE = the number of fitness evaluations. The data in bold signifies that our

strategy produces better results than the contrasted strategies numerically. The Mann-Whitney U test was employed, and the data with underlined

values indicate a significant difference at the significance level @ = 0.05.

184

6.3. Computational Studies

Table 6.3: Comparison results of our AKS algorithm and SDVRLH2 (SD) on large-
scale instances (100<#node<200)). # v = the number of vehicles used; ttd = total

travel distance; # FE = the number of fitness evaluations. The data in bold signifies

that our strategy produces better results than the contrasted strategies numerically.

The Mann-Whitney U test was employed, and the data with underlined values indi-

cate a significant difference at the significance level @ = 0.05.

Instances Avg # v Avg ttd Best # v Best ttd # FE
(large) AKS-SD (AKS-SD)/SD AKS-SD (AKS-SD)/SD AKS/SD
B-Y9 -1 -0.0128 -1 -0.0294 0.0745
B-Y10 -2.8 -0.0389 -3 -0.0355 0.0686
B-Y11 -2.3 -0.0555 -3 -0.0598 0.0714
B-Y12 -0.5 -0.0039 -1 -0.0151 0.0739
B-Y13 -24 -0.0517 -3 -0.0547 0.0783
B-Y14 -2.27 -0.0369 -3 -0.0447 0.0757
B-Y15 -7.6 -0.0818 -7 -0.0865 0.0846
B-Y16 -1.3 -0.0207 -1 -0.0635 0.0761
B-Y17 -6.33 -0.1224 -8 -0.1280 0.0776
B-Y18 -6.23 -0.0438 -6 -0.0555 0.0795
B-Y19 -10.07 -0.1875 -11 -0.1950 0.0708
B-Y20 -4.63 -0.0540 -4 -0.0831 0.0839
Shal4 -1.2 -0.0291 -1 -0.0539 0.0425
Shalb -3.9 -0.0536 -3 -0.0788 0.0496
SD12 -1 -0.0499 -1 -0.0395 0.0748
SD13 -5 -0.1253 -5 -0.1258 0.0775
Avg -3.66 -0.0774 -3.81 -0.0807 0.0716
Total -58.53 -0.0774 -61 -0.0807 0.0716

185

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

6.3.3 Further Analysis
Validating Effectiveness of Our Node Insertion Rules

We tested each rule’s effectiveness, comparing LSP and LSC against LS in Tabs.
@ - @ The key differences among LS, LSP, LSC, and AKS are as follows. LS
does not use any node insertion rules or the AKI operator. In contrast, LSP and
LSC employ node insertion rules, specifically using the Proximity and Connectivity
rules, respectively. AKS further incorporates the AKI operator. Results show similar
vehicle counts but significant ftd improvements with node insertion rules. For small-
scale instances (Tabs. @ and @), LSP and LSC reduced ttd by an average of 6.95%
and 7.34%, respectively. In large-scale instances (Tabs. @ and @), they achieved
10.57% and 8.88% average reductions, with maximum improvements of 18.94% and

16.02%.

Applying node insertion rules significantly reduced the number of fitness evaluations
(FEs), particularly in large-scale problems. In small-scale instances (Tabs. @ and
@), LSP and LSC used, on average, 57.41% and 64.67% of LS’s FEs, respectively.
For larger-scale problems (Tabs. @ and @), both LSP and LSC required less than
half of LS’s FEs, highlighting the improved computational efficiency of the proposed

rules.

The results convincingly show the node insertion rules in this study significantly

lowered ftd in most instances and enhanced computational efficiency.

Node Distribution Impacts Rule Performance

The performance of our node insertion rules, as seen in Tabs. @ and @, differs across
instances. For example, LSP performs better on instances like SD11 and Shalb, while
LSC outperforms on SD6 and SD7. This reveals that the effectiveness of the two rules

varies by instance.

186

6.3. Computational Studies

"GO’ = O [PAS] 99UBDOYIUSIS A} J€ 0IUSISHIP JUBOYIUSIS © 9)RIIPUI
SONTeA PIUI[ISPUL [JIM BYep o) pue ‘pafojdure sem 80} () ASUIYAN-UURN S], A[[ROLISWINU SOIF0)eI}S PIISBIJUO0D S} U} SHNSAI 19339¢ seonpord
£397e198 IO YeY) SeYIuSIS PO Ul BYep S, SUOIJEN[RAd SSOUIY JO IOQUINU oY} = 5[# ‘90URISID [9ARI} [R10) = PI} (PIsn SOIIYEA JO IoqUINU S}

= A F "UOI}ISSUI 9POU I0J SO[NI AJWIXOIJ O} SosT WILIo8[e JST oY, "Iojerodo [y oY) osn joU So0p G 9sneddq PP SV pue S :9I10N

LGS0 69%0°0- T 2690°0- 0 [eo],
172570 69700~ €00 2690°0- 0 Say
dd # P 1s9g A 7 9s9g P Say A # 8Say 181020
63870 82600~ 0 1291°0- 0 11ds 10160 60000~ 0 9800°0- 0 geys
07870 SGL0°0- 0 6660°0- z0- 01as L0z6°0 €%00°0- 0 L0T0°0- 0 Leqs
a6¥9°0 0TO0T 0~ 0 ¥60°0- 1°0- 6dS 16060 0 0 92€0°0- 0 geys
L1590 20L0°0- 0 8660°0- 0 8AS €£I60°T 0000°0 0 ST110°0- 0 Geys
1096°0 L€20°0~ 0 88€0°0- 0 LdS 8L 61€0°0 0 87000 0 veus
PIEL0 1L%0°0- 0 00€0°0- 0 9ds #8060 €810°0 0 £900°0- 0 geys
9589°0 1€00°0- 0 ¥810°0- 0 ¢ds S606°0 0 0 €000 0 geys
£865°0 0£20°0- 0 L880°0~ 0 PAS 16901 0 0 0 0 Teys
0,990 9.50°0- 0 $8L0°0- 0 eds 6570 2690°0- 0 9€60°0- 0 8A-d
18€L°0 9€50°0- 0 61L0°0- 0 cds €cr90 1L10°0- 0 £2%0°0- €0 LA
19L2°0 €L30°0 0 00%0°0- 0 as 0zl¥o GzS0°0- 1- 6960°0- 1°0- 9A-d
€90L°0 1820°0- 0 £820°0- 0 ¢IeyS 8ELV0 LE€0°0- T €L70°0- 10 GA-d
0698°0 1010°0- 0 GSY0°0- 0 CIeUS €097°0 €130°0- I 8950°0- z0 vA-d
T8L90 3600°0 0 000°0 0 TTeUS 6750 80€0°0- 0 z2€¥0°0- 0 eAd
81£9°0 £€£20°0- 0 <S0%0°0- 0 0T®US LOTLO 1#90°0- 0 0890°0- 0 cAd
7989°0 6200°0- 0 0620°0- z0- 6BUS 86190 €L30°0- 0 Z870°0- 0 TA€

§1/dsT $1/(STdST) STdST ST/(ST-dST) STdST ~ (¥Ws) §T/dST ST/(ST-dST) STdST ST/(STdST) STdST - (1ews)
ad # P13 19 A # 1s0g P11 SAY A # SAy seoue)sul aqd # P11 1sog A # 1sog P11 SAY A # SAy seoue)sul

(00T > 9pou #) seouw)SUI S[RIS-[[RIWS UO WIILIOS[R S Pue JST JO symsal uostreduwro)) :j°9 o[qr],

187

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

Table 6.5: Comparison results of LSP and LS algorithms on large-scale instances

(100<#node<200). LS and AKS differ because LS does not use the AKI operator.

The LSP algorithm uses the Proximity rules for node insertion. # v = the number of

vehicles used; ttd = total travel distance; # FE = the number of fitness evaluations.

The data in bold signifies that our strategy produces better results than the contrasted

strategies numerically. The Mann-Whitney U test was employed, and the data with

underlined values indicate a significant difference at the significance level a = 0.05.

Instances Avg # v Avg ttd Best # v Best ttd # FE
(large) LSP-LS (LSP-LS)/LS LSP-LS (LSP-LS)/LS LSP/LS
B-Y9 0 -0.0487 0 -0.0404 0.5440
B-Y10 0.4 -0.1001 1 -0.0543 0.4203
B-Y11 0.2 -0.0354 0 -0.0286 0.4717
B-Y12 0.6 -0.0728 0 -0.0439 0.4685
B-Y13 0.4 -0.0554 0 -0.0419 0.4065
B-Y14 0.4 -0.1151 0 -0.0835 0.4005
B-Y15 0 -0.0479 0 -0.0410 0.4494
B-Y16 0.1 -0.1098 0 -0.0874 0.4654
B-Y17 0.3 -0.0407 -1 -0.0255 0.4831
B-Y18 0.4 -0.1062 1 -0.1182 0.4134
B-Y19 0.5 -0.0440 1 -0.0387 0.3177
B-Y20 0.2 -0.0770 1 -0.0934 0.4458
Shal4 0.3 -0.0892 0 -0.0684 0.5648
Shalb 0 -0.1183 1 -0.1144 0.5238
SD12 0.2 -0.1139 1 -0.0719 0.3707
SD13 0 -0.1894 0 -0.1551 0.3804
Avg 0.25 -0.1057 0.31 -0.0804 0.4333
Total 4 -0.1057 D -0.0804 0.4333

188

6.3. Computational Studies

"G00 = © [PA9] P2URDIYIUSIS YY))€ 9OUSIIYIP JURIYIUSIS ® 9JRIIPUL
SONJeA POUT[IOPUN THIM Jep o1[) pue ‘pafojduro sem 1591 () ASUIYAN-TURIN T, A[[ROLIOWINT SOI30)RI}S PAJSLIJU0D dT[) URT[) SHMNSI 10339q seonpord
£8oye13s o ety soyrudIs p[oq Ul Bjep 9], 'SUOTIBN[RAD SSOUJY JO IOQUINU I} =] # ‘9OURISIP [0ARI} [€J0} = PJ} ‘PIsN SO[OITPA JO IOCUUINU oY}

= A #f "UOI}IOSUI 9POU 0] SO[NLI A}TATIDAUUO)) O SIST WYJLIOS e)G Y, “10je1sdo [oY)} Sl JOU S0P] 9sneds(IBPIP SV Pue ST 930N

L979°0 ¥870°0- T ¥€L0°0- ¥'0- [eI0T,
L979°0 ¥870°0- €00 $£L0°0- 10°0- Say
a4 # P13 1s9g A # 180 P1) 8ay A # 8ay 1181080
TP0S 0 80700~ 0 8IT°0- 0 11as See6°0 6500°0- 0 9810°0~ 0 geqs
9PFL0 90.0°0- 0 0960°0- z0- 01as 01011 $200°0- 0 gI10°0- 0 Leqs
6€29°0 TL60°0- 0 ¥801°0- 1°0- 6dS 96960 0 0 1€10°0- 0 9eqs
76920 0560°0- 0 $.80°0- 0 8dS 8LE0°T 0 0 9600°0- 0 ceyg
90820 S220°0- 0 IWIT0- 0 LdS @¥sL0 6£10°0 0 9110°0~ 0 peus
TG1L°0 19.L0°0- 0 $0T1°0- 0 9ds 99001 €810°0 0 0ST0°0- 0 geys
T159°0 £000°0 0 1$00°0- 0 cdas 60670 0 0 000 0 S
L8V9°0 LS%0°0~ 0 8680°0- 0 vas 99¢0°1 0 0 0 0 Teqs
8668°0 £1%0°0~ 0 8690°0- 0 €ds TllS0 S8%0°0- 0 20L0°0- 0 8A-d
8L 0 97200~ 0 2990°0- 0 zds sv09°0 5920°0- 0 6£20°0- z0 LAd
ZEPR0 €rT0°0 0 8000°0- 0 1as 9eve0 18%0°0- 0 G080°0- 0 9A-d
¢128°0 2120°0- 0 €£10°0- 0 e1eqS 06290 2920°0- 0 LL€0°0- 0 cA-d
9188°0 GTT0°0 0 07€0°0- 0 ZIeyS 13690 9100°0 0 09%0°0- 10 7A-4
1099°0 07€0°0 0 1810°0 0 ITeUS 63070 1620°0- 0 12%0°0- 0 eA-d
99T9°0 9000°0 T 12€0°0- 10 0T®YS 16080 19%0°0- 0 0590°0- 0 cA-d
6£08°0 88T0°0- 0 820°0- g0~ 6eUS 66TL0 €£20°0- 0 €9%0°0- 0 TA-d

S1/08T ST/(STOST STOST ST/(STO8T) STO8T (vws) §1/08T §T/(STOST STOST ST/(STD8T) STOST - (1wws)
qd # P13 Iseg A # 1seg P1) SAY A # SAy seour)su] ad # P11 9seg A # 9sog P11 SAY A # SAy seoue)su]

(00T > 9pou #) seour)sUI S[RIS-[[RUWS UO WIILIOS[R § pue HGT Jo symsal uostredwoy) 99 o[qe],

189

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

Table 6.7: Comparison results of LSC and LS algorithms on large-scale instances
(100<#node<200). LS and AKS differ because LS does not use the AKI operator.
The LSC algorithm uses the Connectivity rules for node insertion. # v = the number
of vehicles used; ttd = total travel distance; # FE = the number of fitness evaluations.
The data in bold signifies that our strategy produces better results than the contrasted
strategies numerically. The Mann-Whitney U test was employed, and the data with

underlined values indicate a significant difference at the significance level a = 0.05.

Instances Avg # v Avg ttd Best # v Best ttd # FE
(large) LSC-LS (LSC-LS)/LS LSC-LS (LSC-LS)/LS LSC/LS

B-Y9 0 -0.0431 0 -0.0249 0.5578
B-Y10 -0.2 -0.0851 0 -0.0347 0.5271
B-Y11 0.2 -0.0321 0 -0.0240 0.4814
B-Y12 0.3 -0.0517 0 -0.0359 0.4434
B-Y13 0.1 -0.0449 0 -0.0296 0.4257
B-Y14 0 -0.1076 0 -0.0826 0.4970
B-Y15 0 -0.0415 0 -0.0338 0.4564
B-Y16 0.2 -0.0940 0 -0.0769 0.5195
B-Y17 0.4 -0.0376 -1 -0.0234 0.4133
B-Y18 0.4 -0.1121 1 -0.1072 0.4003
B-Y19 0.3 -0.0369 0 -0.0341 0.4150
B-Y20 0.1 -0.0915 1 -0.0824 0.5260
Shal4 0 -0.0331 0 -0.0518 0.7226
Shalb 0 -0.0577 1 -0.0575 0.5978
SD12 0.2 -0.0953 1 -0.0630 0.4179
SD13 -0.1 -0.1602 0 -0.1295 0.4894
Avg 0.12 -0.0888 0.19 -0.0667 0.4715
Total 1.9 -0.0888 3 -0.0667 0.4715

190

6.3. Computational Studies

"GO’ = [9A9] 9OURDYIUSIS O JB SOUSIAPIP JURIYIUSIS B 9)LIIPUL SAN[RA PAUI[IOPUN IIM BIRD 1) pue ‘pokojduio sem 150 () AoUIIYAN-UURTN 1T,

“A[[ROLIOWINT SOI30)RI)S POISRIJIOD 1) URY] SHMSI 199309 seonpold A£3o)eI)s IO Jer) SoYIUSIS P[Oq Ul R)ep O], 'SUOIJRN[BAD SSOUY JO IO(UINU oY) =] # 9oue)sIp

[PA®RI) [R)J0) = PJ) ‘PAST SOIIYLA JO I9UUINU Y} = A #'A[oA1309dSeI UOIILSUI SPOU I0] SO[ILI AJIAI}OLUUO.) 10 AYWIXOI] 9] oS SWILIOS[e HGT 10 JST oY, :PION

81880 $100°0 0 Zv00°0 70 [e30L,

81880 $100°0 0 Zv00°0 10°0 Say

A # P13 180y A # 9seg P1 Say A # Bay eILAQ
£696°0 1950°0- 0 96¥%0°0- 0 11das 2860 05000 0 z010°0 0 geyg
00¢9°0 2S00°0- 0 £700°0- 0 01ds £968°0 8100°0- 0 0000 0 Leqs
$£96°0 Z¥v00°0- 0 0910°0 0 6dS 98670 0 0 8610°0- 0 9eys
11680 7L20°0 0 ZE10°0- 0 84S GIS0'T 00000 0 6100°0- 0 geyg
86551 S0£0°0 0 16300 0 Las 86£0°T L210°0 0 99100 0 veus
82201 1620°0 0 £060°0 0 9ds $L68°0 0 0 68000 0 geys
16S0°T ££00°0- 0 €710°0- 0 ¢ds 1 0 0 0 0 geus
LL16°0 8€¢0°0 0 g¥00°0 0 ¥As G101 0 0 0 0 Ters
CIvL0 0L10°0- 0 2600°0- 0 €ds §S6L°0 L120°0- 0 9%20°0- 0 8A-d
€186°0 1100°0 0 8500°0- 0 ¢ds 0290°T 96000 0 91000 T°0 LA
$056°0 L210°0 0 T6£0°0- 0 1as £898°0 8L00°0- 1- 8L10°0- T°0- 9X-d
1668°0 0%00°0- 0 €810°0- 0 £TeyS €63L°0 L200°0- I 0010°0- 0 GA-d
158670 £220°0- 0 6110°0- 0 AL L08L°0 6220°0- 1 $110°0- 0 vA-d
86101 0%20°0- 0 9L10°0- 0 11%YS 682L°0 L100°0- 0 1100°0- 0 eA-d
eren'T 6£20°0- 1- 9800°0- 1°0- 0T®US €818°0 6810°0- 0 z€00°0- 0 cAd
€680 29100 0 8000°0- €0 6eUs 9780 1$00°0- 0 6100°0- 0 TAd
DST/dST OST/(DST-dST) DST1-dST OST/(DST-dST) DST-dST (rews) DST/dST OST/(DST-dST) DST-dST DST/(DS1-dST) OST-dsT ([rews)
qd # Py asog A # 1sog P11 8Ay A # 3ay seoueisuy A # P11 asog A # 3s0g P11 8Ay A # 3ay soouejsuy

(00T > opou #) seouR)SUI S[RIS-[[RUS UO WILIOF[® HGT pue JST JO simsol uosiredwo)) :g°9 o[qe],

191

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

Table 6.9: Comparison results of LSP and LSC algorithm on large-scale instances
(100<#n0de<200). The LSP or LSC algorithms use the Proximity or Connectivity
rules for node insertion, respectively. # v = the number of vehicles used; ttd = total
travel distance; # FE = the number of fitness evaluations. The data in bold signifies
that our strategy produces better results than the contrasted strategies numerically.
The Mann-Whitney U test was employed, and the data with underlined values indi-

cate a significant difference at the significance level @ = 0.05.

Instances Avg # v Avg ttd Best # v Best ttd # FE
(large) LSP-LSC (LSP-LSC)/LSC LSP-LSC (LSP-LSC)/LSC LSP/LSC

B-Y9 0 -0.0059 0 -0.0158 0.9752
B-Y10 0.6 -0.0164 1 -0.0203 0.7975
B-Y11 0 -0.0034 0 -0.0047 0.9798
B-Y12 0.3 -0.0223 0 -0.0082 1.0567
B-Y13 0.3 -0.0110 0 -0.0127 0.9550
B-Y14 0.4 -0.0083 0 -0.0010 0.8058
B-Y15 0 -0.0067 0 -0.0074 0.9845
B-Y16 -0.1 -0.0174 0 -0.0114 0.8959
B-Y17 -0.1 -0.0032 0 -0.0022 1.1690
B-Y18 0 0.0066 0 -0.0124 1.0326
B-Y19 0.2 -0.0073 1 -0.0048 0.7655
B-Y20 0.1 0.0160 0 -0.0120 0.8475
Shal4 0.3 -0.0580 0 -0.0176 0.7816
Shalb 0 -0.0643 0 -0.0605 0.8762
SD12 0 -0.0206 0 -0.0095 0.8870
SD13 0.1 -0.0348 0 -0.0294 0.7772
Avg 0.13 -0.0185 0.13 -0.0146 0.9189
Total 2.1 -0.0185 2 -0.0146 0.9189

192

6.3. Computational Studies

® ° [¢ ° °
. . wo¥ 1 ° e
O . o ® % SEC . °
® . o e PG XIS 3 o ..
L ° ° *. *. s o« ° '.
® . H o4 0 :. * o ¢ °° o o
. o ° ° e LS ° e ® o
.. M . . ° .
SD6 Shal4 B-Y1
‘e’ ° o . ® o’ .o
B e R I
° oo o ° . 0 0 R S e %% e
¢ . ° 970 ° L] ... o.:"....." ..
L[] ° L] (]
[] () . ?. : O ° .. ° o ©
Y :O Ce o o | . 2 . o A
SD7 Shals B-Y7
(a) LSC has significantly better ttd. (b) LSP has significantly better ttd. (c) No significant difference.

Figure 6.3: Node distribution of different problem instances. (a) The ttd of LSP is
significantly worse than LSC on SD6 and SD7. (b) The #td of LSP is significantly
better than LSC on Shal4 and Shalb. (c) There is no significant difference between
LSP and LSC. For comparative ttd data of LSP and LSC, please refer to Tabs @

and @

We analyzed LSP and LSC’s performance regarding node distribution, shown in Fig.
@. LSP’s ttd is worse than LSC’s on some instances (like SD6 and SD7), but better
in others (e.g., Shal4, Shalb). In some cases, such as B-Y1 and B-Y7, both algorithms
show similar performance. The node distributions in these instances are significantly

different intuitively.

Further analysis involved altering node distributions in some instances to observe
performance changes. We used A = (ttdjs, — ttdjs.)/ttd;se to compare LSP’s and
LSC’s ttd. A negative A means LSP performed better, while a positive one indicates
the opposite. Changes in SD6 and SD7 reduced the rtd gap between LSP and LSC,
as Fig. @ shows. Meanwhile, SD1, SD8, and SD9, initially with minimal differences,

showed significant changes after modification.

Moreover, we modified the node distribution of existing instances to generate 19

new instances. Tab. shows features of new problem instances created based on

193

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

. ‘e’ : ‘ ¢ . U o o' oo °
[} ° $ © ° o ° °6 & ° . A o° .®
° ° e . * e o . -o.. °
°° o o- s o, ° e o ©® 5 14 . o s d o . . ° . J . o .
° ° o ° . ° o
u ° L L L *. i ° . ¢ S L 5 & ¢ -. te . °.’
° ¢] ’ °. H o ° .o < (] e .. ° 1 < : ® ‘ °° ‘e ‘ .
’ () 0- . Ce O .o ’ : T ¢ . ° “ ‘ ‘ " -“0 o ° .- o.. N
. o ° = o
A(SD7) = 8.5% A(SD6) = 9.2% A(SD1) = 0.19% A(SD8) = 1.3% A(SD9) = 1.5%
\ \ \ \ \
° ° . o o O oy LS .
° ° on& o- . ® o, o t ’ . ¢ . o . SEIR ¢
..” eoau-. ‘0.-.... oo. “ 3-0.-. .—..o ﬁo °) -o.o . . ° .. s . o2 .n«Mt . —
o .. ° ..-.. oo ., e ° o . >
O % ° ° . ‘e Ino © o . —
. L] & . . ° C- . = . % . ° .
A(SD7*) = 0.18% A(SD6*) = 0.21% A(SD1*) = -3.2% A(SD8*) = 9.1% A(SD9*) = —=7.5%
(a) (®) (© (d) (e

Figure 6.4: Comparing LSP and LSC on modified instances with new node layouts. E.g., SD7 was altered to SD7*. We
tracked each algorithm’s rtd and used A to see which performed better: negative A indicates LSP was more effective, while

positive A favours LSC.

6.3. Computational Studies

Table 6.10: Description of new instances

Entry # nodes # box types # boxes

Min 43 14 284
Max 200 634 8060
Avg 85.3 146.1 4473.8

existing ones by changing the node distribution. Results in Tab. show node
distribution’s significant effect on rule effectiveness. LSP performed well on eight

instances but was less effective on another ten instances compared to LSC.

This emphasizes the significant influence of node distribution on the suitability and
performance of our insertion rules, indicating that the selection of a rule should cor-

respond to the specific characteristics of each instance’s node distribution.

Further Validating Our AKI Operator

To further validate our AKI operator, we generated 19 new problem instances with
varied node distributions by modifying existing instances (characteristics of these
new instances are presented in Tab.) We then compared the performance of
the AKS algorithm (incorporating the AKI operator) against LSP, LSC, and LSrdm
(which alternates randomly between two rules) on these newly created instances.
As shown in Tabs. - , AKS consistently reduced ttd more than LSP (nine
instances), LSC (18 instances), and LSrdm (ten instances). This shows AKI’s ability
to adaptively select the best rule for node insertion, efficiently handling diverse node

distributions by blending the strengths of both rules.

195

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

Table 6.11: Comparison results between LSP and LSC algorithms on new instances.
The LSP or LSC algorithms use the Proximity or Connectivity rules for node insertion,
respectively. # v = the number of vehicles used; ttd=total travel distance; # FE=
the number of fitness evaluations. The data in bold signifies that our strategy produces
better results than the contrasted strategies numerically. The Mann-Whitney U test
was employed, and the data with underlined values indicate a significant difference

at the significance level a = 0.05.

Avg #v Avg ttd Best #v Best ttd #FE
Instance

LSP-LSC (LSP-LSC)/LSC LSP-LSC (LSP-LSC)/LSC LSP/LSC

Ins1 0 0.0630 0 -0.0038 1.2593
Ins2 0.1 0.0728 0 0.0169 1.1064
Ins3 0 0.0518 0 0.0036 1.1660
Ins4 0 0.0685 0 0.0311 1.0359
Insb 0 0.0070 0 -0.0037 1.1053
Ins6 0 0.0352 0 0.0474 1.0659
Ins7 0 -0.0030 0 0.0075 0.8502
Ins8 0 0.0567 0 -0.0126 1.2233
Ins9 0 0.0328 0 0.0031 1.1607
Ins10 0 -0.0842 0 -0.0468 0.8297
Ins11 0 -0.0726 0 -0.0641 0.7540
Ins12 0 -0.0612 0 -0.0467 0.9289
Ins13 0 -0.0617 0 -0.0584 1.0223
Ins14 0 -0.0288 0 -0.0049 0.9382
Ins15 0 -0.0301 0 -0.0232 0.8478
Ins16 0.4 -0.0723 1 -0.0483 0.7220
Ins17 0.1 -0.0556 1 -0.0353 0.8045
Ins18 0.1 -0.0360 0 -0.0248 0.9742
Ins19 0 -0.0489 0 -0.0249 0.7892
Avg 0.04 0.0001 0.11 -0.0114 0.8851
Total 0.7 0.0001 2 -0.0114 0.8851

196

6.3. Computational Studies

Table 6.12: Comparison results between AKS and LSP algorithms on new instances.
AKS employs the AKI operator for node insertion, while LSP utilizes the Proximity
rule. # v = the number of vehicles used; ttd=total travel distance; # FE= the
number of fitness evaluations.The data in bold signifies that our strategy produces
better results than the contrasted strategies numerically. The Mann-Whitney U test
was employed, and the data with underlined values indicate a significant difference

at the significance level a = 0.05.

Avg #v Avg ttd Best #v Best ttd #FE
nstance AKS-LSP (AKS-LSP)/LSP AKS-LSP (AKS-LSP)/LSP AKS/LSP
Insl 0 -0.0797 0 -0.0197 0.8067
Ins2 -0.1 -0.0880 0 -0.0137 0.8470
Ins3 0 -0.0703 0 0.0137 0.7887
Insd 0 -0.0844 0 -0.0347 0.7499
Insh 0 -0.0307 0 -0.0133 0.8268
Ins6 0 -0.0654 0 -0.0172 0.7612
Ins7 0 -0.0263 0 -0.0416 1.0159
Ins8 0 -0.0742 0 0.0107 0.7262
Ins9 0 -0.0469 0 -0.0141 0.7359
Ins10 0 -0.0019 0 0.0050 1.0684
Ins11 0 0.0041 0 -0.0199 1.1614
Ins12 0 0.0071 0 -0.0009 0.9805
Ins13 0 0.0037 0 0.0302 0.8865
Ins14 0 0.0026 0 0.0101 0.9940
Ins15 0 -0.0131 0 -0.0030 0.9679
Ins16 -0.03 0.0015 -1 -0.0187 1.1115
Insl7 -0.07 0.0178 -1 0.0029 0.9862
Ins18 0 -0.0157 1 -0.0085 0.8551
Ins19 0 0.0095 0 0.0170 1.0586
Avg -0.01 -0.0365 -0.05 -0.0061 0.9559
Total -0.2 -0.0365 -1 -0.0061 0.9559

197

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

Table 6.13: Comparison results between AKS and LSC algorithms on new instances.
AKS employs the AKI operator for node insertion, while LSC utilizes the Connectivity
rule. # v = the number of vehicles used; ttd=total travel distance; # FE = the
number of fitness evaluations.The data in bold signifies that our strategy produces
better results than the contrasted strategies numerically. The Mann-Whitney U test
was employed, and the data with underlined values indicate a significant difference

at the significance level @ = 0.05.

Avg #v Avg ttd Best #v Best ttd #FE
nstance AKS-LSC (AKS-LSC)/LSC AKS-LSC (AKS-LSC)/LSC AKS/LSC
Insl 0 -0.0218 0 -0.0235 1.0159
Ins2 0 -0.0216 0 0.0030 0.9372
Ins3 0 -0.0221 0 0.0173 0.9196
Ins4 0 -0.0217 0 -0.0047 0.7768
Insh 0 -0.0239 0 -0.0169 0.9139
Ins6 0 -0.0325 0 0.0295 0.8114
Ins7 0 -0.0292 0 -0.0344 0.8637
Ins8 0 -0.0218 0 -0.0021 0.8884
Ins9 0 -0.0157 0 -0.0111 0.8541
Ins10 0 -0.0859 0 -0.0421 0.8865
Ins11 0 -0.0688 0 -0.0827 0.8757
Ins12 0 -0.0546 0 -0.0476 0.9107
Ins13 0 -0.0582 0 -0.0300 0.9062
Ins14 0 -0.0263 0 0.0051 0.9326
Ins15 0 -0.0429 0 -0.0261 0.8207
Ins16 0.37 -0.0709 0 -0.0661 0.8025
Insl7 0.03 -0.0387 0 -0.0325 0.7933
Ins18 0.1 -0.0511 1 -0.0331 0.8330
Ins19 0 -0.0398 0 -0.0083 0.8354
Avg 0.03 -0.0364 0.05 -0.0175 0.8461
Total 0.5 -0.0364 1 -0.0175 0.8461

198

6.3. Computational Studies

Table 6.14: Comparison results between AKS and LSrdm (rdm) algorithms on new
instances. AKS employs the AKI operator for node insertion, while LSrdm randomly
selects between Proximity and Connectivity rules for node insertion. # v = the
number of vehicles used; ttd = total travel distance; # FE = the number of fitness
evaluations. The data in bold signifies that our strategy produces better results than
the contrasted strategies numerically. The Mann-Whitney U test was employed, and
the data with underlined values indicate a significant difference at the significance

level @ = 0.05.

Avg #v Avg ttd Best #v Best ttd #FE
Instance

AKS-rdm (AKS-rdm)/rdm AKS-rdm (AKS-rdm)/rdm AKS/rdm

Insl 0 -0.0066 0 -0.0127 1.0910
Ins2 0 -0.0019 0 -0.0114 1.0487
Ins3 0 0.0058 0 0.0235 1.0224
Ins4 0 -0.0139 0 0.0123 0.9831
Insh 0 -0.0092 0 -0.0022 1.0438
Ins6 0 -0.0071 0 0.0132 1.0313
Ins7 0 -0.0022 0 -0.0283 1.0997
Ins8 0 -0.0047 0 0.0038 0.9949
Ins9 0 0.0073 0 -0.0204 0.9846
Ins10 0 -0.0408 0 -0.0023 0.7547
Ins11 0 -0.0322 0 -0.0531 1.0764
Ins12 0 -0.0431 0 -0.0637 1.1278
Ins13 0 -0.0233 0 -0.0130 0.9760
Ins14 0 -0.0236 0 -0.0272 0.9679
Ins15 0 -0.0288 0 -0.0373 1.0100
Ins16 0.37 -0.0288 0 -0.0287 0.8527
Ins17 0.33 -0.0419 0 -0.0450 0.8633
Ins18 0 -0.0337 0 -0.0398 0.9857
Ins19 0 -0.0214 0 -0.0141 1.0112
Avg 0.04 -0.0163 0 -0.0160 0.9797
Total 0.7 -0.0163 0 -0.0160 0.9797

199

Chapter 6. Knowledge-Guided Optimization for 3L-SDVRP*

6.4 Conclusion

This chapter presents a knowledge-guided approach for solving complex 3L-SDVRP.
We hypothesize that in an effective giant tour, physically proximate nodes should be
adjacent or close in a node sequence. To realize this, we employ node insertion to
modify a giant tour and develop two node insertion rules: Proximity and Connectivity.
Further, we develop the AKI operator, which adaptively selects the most appropriate
node insertion rules based on node distribution characteristics and offers a larger
search step size than traditional methods. The integration of the AKI operator within

a local search framework leads to the development of the AKS algorithm.

Extensive experimental analyses validate the effectiveness of our proposed AKI oper-
ator and AKS algorithm in improving search efficiency and solution quality, particu-
larly in reducing the total travel distance (ttd). This highlights the importance of a
deep understanding of problem characteristics, the strategic use of domain knowledge
to guide the search process, and the appropriate balance of small and large search step
sizes in intelligent optimization algorithms. Although this chapter concentrates on
the 3L-SDVRP, our proposed AKI operator and AKS algorithm could be adapted to
solve other VRP variants. Future research in this field should focus on further explor-
ing the integration of domain knowledge with optimization algorithms. This could
involve investigating additional problem characteristics, refining the AKI operator,

or applying the AKS algorithm to other complex optimization scenarios.

200

Chapter 7

Conclusion and Future Directions

The Split Delivery Vehicle Routing Problem with Three-Dimensional Loading Con-
straints (3L-SDVRP) is a complex combinatorial optimization problem, which com-
bines two NP-hard problems: vehicle routing and three-dimensional packing. In
3L-SDVRP, a fleet of vehicles depart from the starting point (depot), visit various
nodes to load boxes, and ultimately return to the ending point (the starting and
ending points may differ depending on the scenario). The objective is to minimize
the number of vehicles required and the total travel distance (zzd) while ensuring
all boxes from each node are fully loaded. Fundamentally, any 3L-SDVRP solution
must address both routing decisions (determining which nodes each vehicle should
visit) and packing decisions (designing the 3D packing plan for each vehicle). Effec-
tively and efficiently solving the 3L-SDVRP remains a significant challenge in both

academic and industrial contexts.

This chapter concludes the thesis by summarizing our comprehensive research on the
3L-SDVRP problem. In Section El!, we provide a chapter-wise recap of our work,
highlighting the key innovations and insights gained throughout the study. Building
upon this summary, we emphasize the significant contributions made by this thesis.

Furthermore, Section E explores potential directions for future research, identifying

201

Chapter 7. Conclusion and Future Directions

promising opportunities for further investigation and development on 3L-SDVRP.

7.1 Conclusion

This thesis presents a comprehensive study on 3L-SDVRP, focusing on various aspects
of combinatorial optimization and algorithmic design. In Chapter , we developed
a Hierarchical Neighborhood Filtering (HNF) mutation operator characterized by its
use of diverse neighborhood structures, such as swap, 2-opt, and 3-opt, to generate a
wide range of offspring from a single parent, thereby improving solution diversity and
algorithm exploitation capability. This operator employs a hierarchical approach to
mutation, prioritizing individuals with higher nondomination ranks to concentrate the
search on promising candidates. Integrating the HNF mutation into the Evolution-
ary Algorithm (EA) framework resulted in the development of a novel Pareto-based
Evolutionary Algorithm with Concurrent crossover and Hierarchical Neighborhood
Filtering mutation (PEAC-HNF) for 3L-SDVRP. This approach enhances the bal-
ance between exploration and exploitation, demonstrating significant improvements
in effectiveness. Experimental studies validated the crucial role of the HNF mutation

in enhancing algorithmic performance.

In Chapter @, we introduced a more efficient algorithm based on the state-of-the-art
SDVRLH2 algorithm for solving 3L.-SDVRP, significantly enhancing search efficiency
and solution quality. The proposed algorithm improves the box loading, subspace
generation, and 2C-SP construction methods in the loading procedure, thereby en-
hancing loading performance and reducing the number of vehicles used. Additionally,
three new search operators were designed, leveraging the problem’s characteristics as
heuristic information to improve search efficiency. An adaptive splitting strategy
was proposed, dynamically determining whether to split a node’s boxes based on the
status of the vehicle and node, thereby further reducing computational resource con-

sumption. Furthermore, a new post-optimization method was developed to further

202

7.1. Conclusion

reduce the number of vehicles required.

Chapter H proposed an adaptive interactive routing-packing strategy that integrates
the advanced features of existing interactive strategies. Our strategy introduces
adaptability in the loading process during routing, allowing for a choice between
independent loading of a node (aligned with the P1R2 strategy) and joint loading
of consecutive nodes (utilizing the idea of 2C-SP). This flexible approach permits
loading adjustments in response to route modifications, effectively reflecting the core
principle of the R1P2 strategy. The effectiveness of our strategy was rigorously vali-
dated through computational experiments, yielding solutions that are comparable to
or significantly superior to existing strategies, particularly in terms of the number
of vehicles used. Additionally, despite the crucial role of interactive routing-packing
strategies in addressing the complex 3L-SDVRP, there has been a lack of compre-
hensive investigation or comparison of these strategies. Our research fills this gap
by providing a detailed comparative analysis and evaluation of existing interactive

routing-packing strategies, substantiated by extensive experimental validation.

In Chapter B, we integrated domain knowledge into the optimization algorithm to
effectively guide the search process. Heuristics were extracted from domain knowl-
edge, particularly using the “giant tour” representation. Through observation, we
developed a hypothesis about “what constitutes a good giant tour” and employed
a node insertion approach to rearrange the order of nodes in the current giant tour,
aiming to enhance its quality. Two node insertion rules were proposed: the Proximity
rule and the Connectivity rule. An Adaptive Knowledge-guided Insertion (AKI) op-
erator was developed, which adaptively selects suitable node insertion rules based on
node distribution. This AKI operator, leveraging domain knowledge and featuring a
large search step size, was integrated into a local search framework to form the Adap-
tive Knowledge-guided Search (AKS) algorithm. In the AKS algorithm, traditional
neighborhood search operators conduct searches with small step sizes (exploitation),

while our AKI operator performs searches with larger step sizes (exploration), thereby

203

Chapter 7. Conclusion and Future Directions

improving the algorithm’s search capability. Comprehensive experimental results val-

idated the effectiveness of the AKS algorithm.

In summary, the contributions of this thesis include:

o More Efficient Search Operators: We introduced new efficient search operators,
e.g., the Hierarchical Neighborhood Filtering (HNF) and Adaptive Knowledge-
guided Insertion (AKI) operators, which significantly enhance algorithm per-

formance.

o New Methods for Balancing Exploration and Exploitation: We explored meth-
ods to balance exploration and exploitation in meta-heuristic algorithms, propos-

ing new approaches for both global and local search-based algorithms.

o Novel Multi-Objective Algorithm: We developed a novel multi-objective algo-
rithm, PEAC-HNF, to effectively solve the 3L-SDVRP under limited computa-

tional resources.

o More Effective Local Search Algorithms: We proposed new local search algo-
rithms that significantly improve solution quality and reduce computational

resource consumption.

» Adaptive Interactive Routing-Packing Strategy: We introduced an adaptive in-
teractive routing-packing strategy capable of making adaptive decisions on dif-
ferent packing patterns based on specific situations. By combining the strengths

of existing strategies, this approach improves solution quality.

o Extensive Experimental Studies: Through extensive experimental validation
and comparative analysis, we demonstrated the superior performance of our
proposed algorithms across various widely used benchmark datasets, showing

significant improvements in solution quality and computational efficiency.

204

7.2. Future Directions

It is noteworthy that the methods proposed in this thesis, such as the HNF operator,
the AKI operator, and the approach for balancing exploration and exploitation, are
not limited to solving the 3L-SDVRP. These methods can also be applied to other

complex combinatorial optimization problems.

7.2 Future Directions

As human society advances, the challenges encountered in real industrial scenarios
are becoming increasingly complex and large-scale. With advancements in computer
algorithms and the rapid improvement in hardware computing power, researchers
are continually exploring solutions for these more complex and large-scale problems,
which are closer to real-world scenarios. Consequently, it is becoming increasingly
feasible to provide better solutions for complex combinatorial optimization problems.

Future research directions for the 3L-SDVRP include the following aspects:

« Balancing Dual Objectives: The 3L-SDVRP encompasses two primary objec-
tives. Investigating the interplay between these objectives and developing more
efficient multi-objective optimization algorithms to achieve high-quality solu-

tions for both is a challenging and critical area of research.

e Dynamic Nature and Uncertainty of Problems: Real-world scenarios are often
dynamic and uncertain. Factors such as the number of boxes required to load
at each customer node can change, new delivery demands may arise, and de-
cision variables and objectives can evolve over time [36], [37], [54], [83], [97],
[06]. Effectively addressing these dynamic and uncertain conditions remains a

significant challenge.

o Scalability of Algorithms: In the era of globalization and industrial expansion,
the increasing scale of real-world optimization problems has led to an exponen-

tial growth in solution space complexity, compounded by complex constraints,

205

Chapter 7. Conclusion and Future Directions

making it increasingly difficult to conduct effective searches within this vast so-
lution landscape. Consequently, the scalability of algorithms has become crit-
ical. Enhancing algorithm performance to ensure efficient and effective search
capabilities in tackling these large-scale problems is a critical and significant

research direction.

e Domain Knowledge-Guided Search: Meta-heuristic algorithms inherently pos-
sess global search capabilities due to their ability to explore the solution space
stochastically. This characteristic allows them to potentially escape local op-
tima and move towards finding optimal or near-optimal solutions. However,
when dealing with highly constrained and large-scale problems, these methods
become inefficient and demand substantial computational resources. By ex-
tracting domain knowledge through a deep understanding of the problem and
integrating this knowledge into the algorithm to guide the search process, we

can significantly enhance search efficiency and overall algorithm performance.

o Utilizing Machine Learning Methods: Machine learning, particularly deep learn-
ing, is rapidly advancing and achieving remarkable results in various recognition
tasks. Integrating meta-heuristic algorithms with machine learning techniques
to solve decision optimization problems more swiftly and effectively is an emerg-
ing field. This approach has garnered significant interest from researchers and

has been explored in various contexts [5] [B3] [43] [63] [87] [90].

By addressing these research directions, future studies can further advance the field
of combinatorial optimization and develop more robust and efficient solutions for the

3L-SDVRP and other similarly complex problems.

206

References

1]

[5]

Rafael E Aleman, Xinhui Zhang, and Raymond R Hill. An adaptive memory
algorithm for the split delivery vehicle routing problem. Journal of Heuristics,

16(3):441-473, 2010.

Nabila Azi, Michel Gendreau, and Jean-Yves Potvin. An adaptive large neigh-
borhood search for a vehicle routing problem with multiple routes. Computers

& Operations Research, 41:167-173, 2014.

Cynthia Barnhart and Gilbert Laporte. Handbooks in Operations Research and

Management Science: Transportation. Elsevier, 2006.

John E Beasley. Route first—cluster second methods for vehicle routing. Omega,

11(4):403-408, 1983.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for com-

binatorial optimization: A methodological tour d’ horizon. Furopean Journal

of Operational Research, 290(2):405-421, 2021.
Andreas Bortfeldt. A hybrid algorithm for the capacitated vehicle routing prob-
lem with three-dimensional loading constraints. Computers & Operations Re-

search, 39(9):2248-2257, 2012.

207

References

[7]

[10]

[11]

[12]

[13]

Andreas Bortfeldt and Hermann Gehring. A hybrid genetic algorithm for
the container loading problem. Furopean Journal of Operational Research,

131(1):143-161, 2001.

Andreas Bortfeldt, Thomas Hahn, Dirk Ménnel, and Lars Moénch. Hybrid algo-
rithms for the vehicle routing problem with clustered backhauls and 3d loading
constraints. European Journal of Operational Research, 243(1):82-96, 2015.

Andreas Bortfeldt and Jorg Homberger. Packing first, routing second—a heuris-
tic for the vehicle routing and loading problem. Computers € Operations Re-

search, 40(3):873-885, 2013.

Andreas Bortfeldt and Junmin Yi. The split delivery vehicle routing problem
with three-dimensional loading constraints. Furopean Journal of Operational

Research, 282(2):545-558, 2020.

Lei Cao, Chun-ming Ye, Ran Cheng, and Zhen-kun Wang. Memory-based
variable neighborhood search for green vehicle routing problem with passing-

by drivers: A comprehensive perspective. Complex € Intelligent Systems,

8(3):2507-2525, 2022.

Sara Ceschia and Andrea Schaerf. Local search for a multi-drop multi-container

loading problem. Journal of Heuristics, 19(2):275-294, 2013.

Sara Ceschia, Andrea Schaerf, and Thomas Stiitzle. Local search techniques for
a routing-packing problem. Computers €& Industrial Engineering, 66(4):1138-
1149, 2013.

Zongyi Chen, Mingkang Yang, Yijun Guo, Yu Liang, Yifan Ding, and Li Wang.
The split delivery vehicle routing problem with three-dimensional loading and

time windows constraints. Sustainability, 12(17):6987, 2020.

208

References

[15]

[16]

[17]

[18]

[20]

Teodor Gabriel Crainic, Guido Perboli, and Roberto Tadei. Extreme point-
based heuristics for three-dimensional bin packing. Informs Journal on com-

puting, 20(3):368-384, 2008.

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A
fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEFE transactions on

evolutionary computation, 6(2):182-197, 2002.

Tansel Dokeroglu and Ender Sevinc. Memetic teaching-learning-based opti-
mization algorithms for large graph coloring problems. Engineering Applications

of Artificial Intelligence, 102:104282, 2021.

Christophe Duhamel, Philippe Lacomme, and Caroline Prodhon. Efficient
frameworks for greedy split and new depth first search split procedures for

routing problems. Computers € Operations Research, 38(4):723-739, 2011.

Dorian Dumez, Fabien Lehuédé, and Olivier Péton. A large neighborhood search
approach to the vehicle routing problem with delivery options. Transportation

Research Part B: Methodological, 144:103-132, 2021.

Racha El-Hajj, Rym Nesrine Guibadj, Aziz Moukrim, and Mehdi Serairi. A PSO
based algorithm with an efficient optimal split procedure for the multiperiod

vehicle routing problem with profit. Annals of Operations Research, 291(1):281—
316, 2020.

Luis Miguel Escobar-Falcén, David Alvarez-Martinez, Mauricio Granada-
Echeverri, John Willmer Escobar, and Rubén Augusto Romero-Lazaro. A
matheuristic algorithm for the three-dimensional loading capacitated vehicle
routing problem (3l-cvrp). Revista Facultad de Ingenieria Universidad de An-
tioquia, (78):09-20, 2016.

209

References

22]

23]

[26]

[29]

Christian Friedrich and Ralf Elbert. Adaptive large neighborhood search for
vehicle routing problems with transshipment facilities arising in city logistics.

Computers € Operations Research, 137:105491, 2022.

Guenther Fuellerer, Karl F Doerner, Richard F Hartl, and Manuel Tori. Meta-
heuristics for vehicle routing problems with three-dimensional loading con-

straints. European Journal of Operational Research, 201(3):751-759, 2010.

Liang Gao, Guohui Zhang, Liping Zhang, and Xinyu Li. An efficient memetic
algorithm for solving the job shop scheduling problem. Computers € Industrial
Engineering, 60(4):699-705, 2011.

H. Gehring, K. Menschner, and M. Meyer. A computer-based heuristic for
packing pooled shipment containers. European Journal of Operational Research,

44(2):277-288, 1990.

Michel Gendreau, Manuel lori, Gilbert Laporte, and Silvano Martello. A tabu
search algorithm for a routing and container loading problem. Transportation

Science, 40(3):342-350, 2006.

John A George and David F Robinson. A heuristic for packing boxes into a
container. Computers € Operations Research, 7(3):147-156, 1980.

Bruce L Golden, James S DeArmon, and Edward K Baker. Computational
experiments with algorithms for a class of routing problems. Computers €&

Operations Research, 10(1):47-59, 1983.

Bruce L Golden, Subramanian Raghavan, and Edward A Wasil. The Vehicle
Routing Problem: Latest Advances and New Challenges, volume 43. Springer
Science & Business Media, 2008.

Guiliang Gong, Qianwang Deng, Raymond Chiong, Xuran Gong, and
Hezhiyuan Huang. An effective memetic algorithm for multi-objective job-shop

scheduling. Knowledge-Based Systems, 182:104840, 2019.

210

References

[31]

[35]

[36]

Oscar M Gonzalez, Carlos Segura, S Ivvan Valdez Pena, and Coromoto Ledn.
A memetic algorithm for the capacitated vehicle routing problem with time
windows. In 2017 IEEE Congress on Evolutionary Computation (CEC), pages
2582-2589. IEEE, 2017.

Aldy Gunawan, Audrey Tedja Widjaja, Pieter Vansteenwegen, and F Yu Vin-
cent. Adaptive large neighborhood search for vehicle routing problem with
cross-docking. In 2020 IEEE Congress on Evolutionary Computation (CEC),
pages 1-8. IEEE, 2020.

Abhishek Gupta, Yew-Soon Ong, and Liang Feng. Insights on transfer optimiza-
tion: Because experience is the best teacher. IFEE Transactions on Emerging

Topics in Computational Intelligence, 2(1):51-64, 2018.

Franklin T Hanshar and Beatrice M Ombuki-Berman. Dynamic vehicle routing

using genetic algorithms. Applied Intelligence, 27(1):89-99, 2007.

Keld Helsgaun. General k-opt submoves for the Lin-Kernighan TSP heuristic.
Mathematical Programming Computation, 1:119-163, 2009.

Daniel Herring, Michael Kirley, and Xin Yao. Responsive multi-population
models for the dynamic travelling thief problem. In 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 297-304, 2020.

Daniel Herring, Michael Kirley, and Xin Yao. A comparative study of evolu-
tionary approaches to the bi-objective dynamic travelling thief problem. Swarm

and FEvolutionary Computation, 84:101433, 2024.

Zhi-Hua Hu, Yingxue Zhao, Sha Tao, and Zhao-Han Sheng. Finished-vehicle
transporter routing problem solved by loading pattern discovery. Amnnals of

Operations Research, 234(1):37-56, 2015.

211

References

[39]

[40]

[41]

[42]

[43]

[44]

Huawei. EMO2021 Huwawei logistics competion, 2021. Retrieved January
26, 2024 from https://www.noahlab.com.hk/logistics-ranking/# /home/the-

competition.

Huawei. EMO2021 Huwawei logistics competion award announcement,
2021. Retrieved January 28, 2024 from https://www.noahlab.com.hk/logistics-
ranking/# /result.

Huawei. EMO2021 Huwawei logistics competion details, 2021. Re-
trieved January 28, 2024 from https://www.noahlab.com.hk/logistics-
ranking/# /competition_details.

Leonardo Junqueira and Reinaldo Morabito. Heuristic algorithms for a three-
dimensional loading capacitated vehicle routing problem in a carrier. Computers

& Industrial Engineering, 88:110-130, 2015.

Maryam Karimi-Mamaghan, Mehrdad Mohammadi, Patrick Meyer, Amir Mo-
hammad Karimi-Mamaghan, and El-Ghazali Talbi. Machine learning at the
service of meta-heuristics for solving combinatorial optimization problems: A
state-of-the-art. Furopean Journal of Operational Research, 296(2):393-422,
2022.

Selma Khebbache-Hadji, Christian Prins, Alice Yalaoui, and Mohamed
Reghioui. Heuristics and memetic algorithm for the two-dimensional loading ca-
pacitated vehicle routing problem with time windows. Central European Journal

of Operations Research, 21(2):307-336, 2013.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671-680, 1983.

Henriette Koch, Andreas Bortfeldt, and Gerhard Wéscher. A hybrid algo-
rithm for the vehicle routing problem with backhauls, time windows and three-

dimensional loading constraints. OR Spectrum, 40(4):1029-1075, 2018.

212

References

[47]

[48]

[49]

[50]

[51]

[52]

Henriette Koch, Maximilian Schlogell, and Andreas Bortfeldt. A hybrid algo-
rithm for the vehicle routing problem with three-dimensional loading constraints

and mixed backhauls. Journal of Scheduling, 23(1):71-93, 2020.

Philippe Lacomme, Hélene Toussaint, and Christophe Duhamel. A
GRASPXELS for the vehicle routing problem with basic three-dimensional load-
ing constraints. Engineering Applications of Artificial Intelligence, 26(8):1795—
1810, 2013.

Wenxing Lan, Ziyuan Ye, Peijun Ruan, Jialin Liu, Peng Yang, and Xin Yao.
Region-focused memetic algorithms with smart initialization for real-world
large-scale waste collection problems. IEEE Transactions on Evolutionary Com-

putation, 26(4):704-718, 2022.

Xijun Li, Mingxuan Yuan, Di Chen, Jianguo Yao, and Jia Zeng. A data-
driven three-layer algorithm for split delivery vehicle routing problem with 3D
container loading constraint. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, pages 528-536,
2018.

Fei Liu, Qingfu Zhang, Qingling Zhu, Xialiang Tong, and Mingxuan Yuan.
Machine learning assisted multiobjective evolutionary algorithm for routing and
packing. IEEE Transactions on Evolutionary Computation, early access, 2024.

https://ieeexplore.ieee.org/abstract /document /10423590.

Shengcai Liu, Ke Tang, and Xin Yao. Memetic search for vehicle routing with
simultaneous pickup-delivery and time windows. Swarm and Evolutionary Com-

putation, page 100927, 2021.

Shengcai Liu, Yu Zhang, Ke Tang, and Xin Yao. How good is neural combina-

torial optimization? a systematic evaluation on the traveling salesman problem.

IEEE Computational Intelligence Magazine, 18(3):14-28, 2023.

213

References

[54]

[55]

[56]

[58]

[59]

[60]

Xiaofen Lu, Ke Tang, Stefan Menzel, and Xin Yao. A competitive co-
evolutionary optimization method for the dynamic vehicle routing problem.
In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pages
305312, 2020.

Zhipeng Lii and Jin-Kao Hao. A memetic algorithm for graph coloring. Euro-

pean Journal of Operational Research, 203(1):241-250, 2010.

Wissam F. Maarouf, Aziz M. Barbar, and Michel J. Owayjan. A new heuristic
algorithm for the 3d bin packing problem. In Khaled Elleithy, editor, Innova-
tions and Advanced Techniques in Systems, Computing Sciences and Software

Engineering, pages 342-345, Dordrecht, 2008. Springer Netherlands.

Batoul Mahvash, Anjali Awasthi, and Satyaveer Chauhan. A column gener-
ation based heuristic for the capacitated vehicle routing problem with three-
dimensional loading constraints. International Journal of Production Research,

55(6):1730-1747, 2017.

Jacek Mandziuk and Adam Zychowski. A memetic approach to vehicle routing

problem with dynamic requests. Applied Soft Computing, 48:522-534, 2016.

Dirk Ménnel and Andreas Bortfeldt. A hybrid algorithm for the vehicle routing
problem with pickup and delivery and three-dimensional loading constraints.

European Journal of Operational Research, 254(3):840-858, 2016.

Youssef Meliani, Yasmina Hani, Sdad Lissane Elhaq, and Abderrahman El
Mhamedi. A tabu search based approach for the heterogeneous fleet vehicle
routing problem with three-dimensional loading constraints. Applied Soft Com-

puting, 126:109239, 2022.

Raul Mencia, Maria R Sierra, Carlos Mencia, and Ramiro Varela. Memetic
algorithms for the job shop scheduling problem with operators. Applied Soft
Computing, 34:94-105, 2015.

214

References

[62]

[63]

[64]

[65]

[68]

Lixin Miao, Qingfang Ruan, Kevin Woghiren, and Qi Ruo. A hybrid genetic
algorithm for the vehicle routing problem with three-dimensional loading con-
straints. RAIRO-Operations Research-Recherche Opérationnelle, 46(1):63-82,
2012.

Nenad Mladenovi¢ and Pierre Hansen. Variable neighborhood search. Comput-

ers & Operations Research, 24(11):1097-1100, 1997.

Pablo Moscato et al. On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Caltech Concurrent Computation

Program, C3P Report, 826:1989, 1989.

Ana Moura. A multi-objective genetic algorithm for the vehicle routing with
time windows and loading problem. In Intelligent Decision Support, pages 187—

201. Springer, 2008.

Ana Moura and José Fernando Oliveira. An integrated approach to the vehicle

routing and container loading problems. OR Spectrum, 31(4):775-800, 20009.

B Ombuki, Morikazu Nakamura, and O Maeda. A hybrid search based on
genetic algorithms and tabu search for vehicle routing. In 6th TASTED Intl.
Conf. On Artificial Intelligence and Soft Computing (ASC 2002), pages 176
181, 2002.

Beatrice Ombuki, Brian J Ross, and Franklin Hanshar. Multi-objective genetic

algorithms for vehicle routing problem with time windows. Applied Intelligence,

24(1):17-30, 2006.

Shannon Pace, Ayad Turky, Irene Moser, and Aldeida Aleti. Distributing fibre
boards: a practical application of the heterogeneous fleet vehicle routing prob-
lem with time windows and three-dimensional loading constraints. Procedia

Computer Science, 51:2257-2266, 2015.

215

References

[70]

[71]

[72]

[73]

[76]

Jiyuan Pei, Chengpeng Hu, Jialin Liu, Yi Mei, and Xin Yao. Bi-objective
splitting delivery VRP with loading constraints and restricted access. In 2021
IEEE Symposium Series on Computational Intelligence (SSCI), pages 01-09.
IEEE, 2021.

Jiyuan Pei, Yi Mei, Jialin Liu, and Xin Yao. An investigation of adaptive oper-
ator selection in solving complex vehicle routing problem. In Sankalp Khanna,
Jian Cao, Quan Bai, and Guandong Xu, editors, PRICAI 2022: Trends in Ar-
tificial Intelligence, pages 562-573, Cham, 2022. Springer Nature Switzerland.

Hanne Pollaris, Kris Braekers, An Caris, Gerrit K Janssens, and Sabine Lim-
bourg. Vehicle routing problems with loading constraints: state-of-the-art and

future directions. OR Spectrum, 37:297-330, 2015.

Jean-Yves Potvin and Samy Bengio. The vehicle routing problem with time
windows part ii: genetic search. INFORMS journal on Computing, 8(2):165—
172, 1996.

Christian Prins. A simple and effective evolutionary algorithm for the vehicle

routing problem. Computers & Operations Research, 31(12):1985-2002, 2004.

Christian Prins, Philippe Lacomme, and Caroline Prodhon. Order-first split-
second methods for vehicle routing problems: A review. Transportation Re-

search Part C: Emerging Technologies, 40:179-200, 2014.

Maryam Rajaei, Ghasem Moslehi, and Mohammad Reisi-Nafchi. The split het-
erogeneous vehicle routing problem with three-dimensional loading constraints
on a large scale. Furopean Journal of Operational Research, 299(2):706-721,
2022.

Sebastian Reil, Andreas Bortfeldt, and Lars Monch. Heuristics for vehicle rout-
ing problems with backhauls, time windows, and 3D loading constraints. Fu-

ropean Journal of Operational Research, 266(3):877-894, 2018.

216

References

[78]

[79]

[81]

[82]

[83]

Jidong Ren, Yajie Tian, and Tetsuo Sawaragi. A relaxation method for
the three-dimensional loading capacitated vehicle routing problem. In 2011
IEEE/SICE International Symposium on System Integration (SII), pages 750
755. IEEE, 2011.

Stefan Ropke and David Pisinger. An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows. Transporta-

tion science, 40(4):455-472, 2006.

Gan Ruan, Leandro L. Minku, Stefan Menzel, Bernhard Sendhoff, and Xin Yao.
When and how to transfer knowledge in dynamic multi-objective optimization.
In 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pages
2034-2041. IEEE, 2019.

Gan Ruan, Leandro L Minku, Stefan Menzel, Bernhard Sendhoff, and Xin Yao.
Computational study on effectiveness of knowledge transfer in dynamic multi-

objective optimization. In 2020 IEEE Congress on Evolutionary Computation
(CEC), pages 1-8. IEEE, 2020.

Gan Ruan, Leandro L Minku, Stefan Menzel, Bernhard Sendhoff, and Xin Yao.
Knowledge transfer for dynamic multi-objective optimization with a changing
number of objectives. IEEFE Transactions on Emerging Topics in Computational

Intelligence, 2024.

Gan Ruan, Leandro L. Minku, Stefan Menzel, Bernhard Sendhoff, and Xin Yao.
Learning to expand/contract pareto sets in dynamic multi-objective optimiza-
tion with a changing number of objectives. IEEE Transactions on Evolutionary

Computation, pages 1-1, 2024.

Qingfang Ruan, Zhengqgian Zhang, Lixin Miao, and Haitao Shen. A hybrid
approach for the vehicle routing problem with three-dimensional loading con-

straints. Computers & Operations Research, 40(6):1579-1589, 2013.

217

References

[85]

[86]

[87]

[89]

[90]

[91]

[92]

Hendrik Schaap, Maximilian Schiffer, Michael Schneider, and Grit Walther. A
large neighborhood search for the vehicle routing problem with multiple time

windows. Transportation Science, 56(5):1369-1392, 2022.

Paul Shaw. Using constraint programming and local search methods to solve ve-
hicle routing problems. In International Conference on Principles and Practice

of Constraint Programming, pages 417-431. Springer, 1998.

Kay Chen Tan, Liang Feng, and Min Jiang. Evolutionary transfer optimization-
a new frontier in evolutionary computation research. IEEE Computational In-

telligence Magazine, 16(1):22-33, 2021.

Kay Chen Tan, Loo Hay Lee, QL Zhu, and Ke Ou. Heuristic methods for vehi-
cle routing problem with time windows. Artificial Intelligence in Engineering,

15(3):281-295, 2001.

Ke Tang, Yi Mei, and Xin Yao. Memetic algorithm with extended neighborhood
search for capacitated arc routing problems. IEEFE Transactions on Evolution-

ary Computation, 13(5):1151-1166, 2009.

Ke Tang and Xin Yao. Learn to optimize—a brief overview. National Science

Review, page nwael32, 04 2024.

Yi Tao and Fan Wang. An effective tabu search approach with improved loading

algorithms for the 3l-cvrp. Computers & Operations Research, 55:127-140, 2015.

Christos D Tarantilis, Emmanouil E Zachariadis, and Chris T Kiranoudis. A
hybrid metaheuristic algorithm for the integrated vehicle routing and three-

dimensional container-loading problem. [FEE Transactions on Intelligent

Transportation Systems, 10(2):255-271, 2009.

Chuan-Kang Ting, Chien-Hao Su, and Chung-Nan Lee. Multi-parent extension
of partially mapped crossover for combinatorial optimization problems. Fxpert

Systems with Applications, 37(3):1879-1886, 2010.

218

References

[94]

[95]

[96]

[97]

98]

[99]

[100]

Renato Tinds, Keld Helsgaun, and Darrell Whitley. Efficient recombination
in the Lin-Kernighan-Helsgaun traveling salesman heuristic. In Anne Auger,
Carlos M. Fonseca, Nuno Lourenco, Penousal Machado, Luis Paquete, and
Darrell Whitley, editors, Parallel Problem Solving from Nature — PPSN XV,
pages 95-107, Cham, 2018. Springer International Publishing.

Hao Tong, Leandro Minku, Stefan Menzel, Bernhard Sendhoff, and Xin Yao. A
novel generalized metaheuristic framework for dynamic capacitated arc routing
problems. In Proceedings of the Companion Conference on Genetic and Evo-
lutionary Computation, GECCO 23 Companion, page 45—46, New York, NY,

USA, 2023. Association for Computing Machinery.

Hao Tong, Leandro L. Minku, Stefan Menzel, Bernhard Sendhoff, and Xin
Yao. Benchmarking dynamic capacitated arc routing algorithms using real-

world traffic simulation. In 2022 IEEE Congress on Evolutionary Computation
(CEC), pages 1-8, 2022.

Paolo Toth and Daniele Vigo. The Vehicle Routing Problem. STAM, 2002.

Paolo Toth and Daniele Vigo. Vehicle Routing: Problems, Methods, and
Applications. STAM, 2014.

Shigeyoshi Tsutsui and Ashish Ghosh. A study on the effect of multi-parent
recombination in real coded genetic algorithms. In 1998 IEEE international

conference on evolutionary computation proceedings. IEEE World Congress on

Computational Intelligence (Cat. No. 98TH8360), pages 828-833. IEEE, 1998.

Ayad Turky, Irene Moser, and Aldeida Aleti. An iterated local search with
guided perturbation for the heterogeneous fleet vehicle routing problem with
time windows and three-dimensional loading constraints. In Australasian
Conference on Artificial Life and Computational Intelligence, pages 279-290.
Springer, 2017.

219

References

[101]

102]

[103)]

[104]

[105]

[106]

107]

[108]

Giindiiz Ulusoy. The fleet size and mix problem for capacitated arc routing.

European Journal of Operational Research, 22(3):329-337, 1985.

Lei Wang, Songshan Guo, Shi Chen, Wenbin Zhu, and Andrew Lim. Two natu-
ral heuristics for 3D packing with practical loading constraints. In Pacific Rim

International Conference on Artificial Intelligence, pages 256-267. Springer,
2010.

Lijun Wei, Zhenzhen Zhang, and Andrew Lim. An adaptive variable neigh-
borhood search for a heterogeneous fleet vehicle routing problem with three-

dimensional loading constraints. IEEE Computational Intelligence Magazine,

9(4):18-30, 2014.

Xin Yao. Simulated annealing with extended neighbourhood. International

journal of computer mathematics, 40(3-4):169-189, 1991.

Xin Yao. Dynamic neighbourhood size in simulated annealing. In Proc. of Int’l

Joint Conf. on Neural Networks (IJCNN’92), volume 1, pages 411-416, 1992.

Xin Yao. An overview of evolutionary computation. Chinese Journal of Ad-

vanced Software Research, 3:12-29, 1996.

Junmin Yi and Andreas Bortfeldt. The capacitated vehicle routing problem
with three-dimensional loading constraints and split delivery—a case study. In
Andreas Fink, Armin Figenschuh, and Martin Josef Geiger, editors, Operations
Research Proceedings 2016, pages 351-356, Cham, 2018. Springer International
Publishing.

Yusuf Yilmaz and Can B Kalayci. Variable neighborhood search algorithms to
solve the electric vehicle routing problem with simultaneous pickup and delivery.

Mathematics, 10(17):3108, 2022.

220

References

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Emmanouil E Zachariadis, Christos D Tarantilis, and Chris T Kiranoudis. The
pallet-packing vehicle routing problem. Transportation Science, 46(3):341-358,
2012.

Emmanouil E Zachariadis, Christos D Tarantilis, and Chris T Kiranoudis. De-
signing vehicle routes for a mix of different request types, under time windows

and loading constraints. European Journal of Operational Research, 229(2):303—
317, 2013.

Han Zhang, Qing Li, and Xin Yao. An Adaptive Interactive
Routing-Packing Strategy for Split Delivery Vehicle Routing Problem
with 3D Constraints: Supplementary Material. Zenodo. June 2024.
https://doi.org/10.5281/zenodo.12049152.

Han Zhang, Qing Li, and Xin Yao. Dataset of PEAC-HNF algorithm. Zenodo.
May 2024. https://doi.org/10.5281/zenodo.11232377.

Han Zhang, Qing Li, and Xin Yao. Detailed experimental results of PEAC-HNF
algorithm. Zenodo. May 2024. https://doi.org/10.5281 /zenodo.11231220.

Han Zhang, Qing Li, and Xin Yao. Knowledge-Guided Optimization for Com-
plex Vehicle Routing with 3D Loading Constraints: Supplementary Material.
Zenodo. April 2024. https://doi.org/10.5281/zenodo.10988571.

Han Zhang, Qing Li, and Xin Yao. An adaptive interactive routing-packing
strategy for split delivery vehicle routing problem with 3d loading constraints.
In Proceedings of the Genetic and Fvolutionary Computation Conference,
GECCO 24, New York, NY, USA, 2024. Association for Computing Machinery.
https://doi.org/10.1145/3638529.3653991. In press.

Han Zhang, Qing Li, and Xin Yao. An efficient algorithm for split delivery
vehicle routing problem with three-dimensional loading. Memetic Computing,

2024. Submitted and under review.

221

References

[117]

[118]

[119]

[120]

121]

[122]

Han Zhang, Qing Li, and Xin Yao. Knowledge-guided optimization for complex
vehicle routing with 3d loading constraints. In International Conference on

Parallel Problem Solving from Nature — PPSN XVIII. Springer, 2024. In press.

Han Zhang, Qing Li, and Xin Yao. PEAC-HNF:a novel multi-objective
evolutionary algorithm for split delivery vehicle routing problem with three-
dimensional loading constraints. [EEFE Transaction on FEmerging Topics on

Computational Intelligence, 2024. Submitted and under review.

Han Zhang, Qing Li, and Xin Yao. Peach: A multi-objective evolutionary algo-
rithm for complex vehicle routing with three-dimensional loading constraints. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
’24 Companion, New York, NY, USA, 2024. Association for Computing Machin-
ery. https://doi.org/10.1145/3638530.3654333. In press.

Zhenzhen Zhang, Lijun Wei, and Andrew Lim. An evolutionary local search
for the capacitated vehicle routing problem minimizing fuel consumption un-
der three-dimensional loading constraints. Transportation Research Part B:

Methodological, 82:20-35, 2015.

Wenbin Zhu, Hu Qin, Andrew Lim, and Lei Wang. A two-stage tabu search
algorithm with enhanced packing heuristics for the 3L-CVRP and M3L-CVRP.
Computers & Operations Research, 39(9):2178-2195, 2012.

Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach. [EEFE transactions

on Evolutionary Computation, 3(4):257-271, 1999.

222

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	The Split Delivery Vehicle Routing Problem with Three-Dimensional Loading Constraints
	Challenges and Motivations
	Global Search-Based Multi-Objective Optimization for 3L-SDVRP
	Local Search-Based Single-Objective Optimization for 3L-SDVRP
	Interactive Routing-Packing Strategy for 3L-SDVRP
	Knowledge-Guided Optimization for 3L-SDVRP

	Contributions
	Thesis Organization

	Background and Literature Review
	Mathematical Formulation of 3L-SDVRP
	Notations
	Mathematical Formulation

	Solution Approaches to 3L-SDVRP
	Local vs. Global Search Approaches
	Multi-Objective vs. Single-objective Approaches

	Interactive Routing-Packing Strategies
	Routing-First-Packing-Second (R1P2)
	Packing-First-Routing-Second (P1R2)
	P1R2 with 2C-SP

	Search Operators and Step Sizes
	Commonly Used Search Operators for 3L-SDVRP
	Search Step Sizes

	Discussion

	A Multi-Objective Approach to 3L-SDVRP*
	Introduction
	The PEAC-HNF Algorithm
	Representation and Giant Tour Decoding
	HNF Mutation
	Framework of PEAC-HNF Algorithm
	Other Details of PEAC-HNF Algorithm

	Computational Studies
	Experimental Setting
	Comparative Analysis
	Further Analysis
	Discussion

	Conclusion

	An Efficient Local Search Algorithm for 3L-SDVRP*
	Introduction
	Algorithm Description
	Overview of Our Algorithm
	Improved Packing Method
	New Search Operators
	Adaptive Splitting Strategy
	New Post-Optimization Approach
	Other Details

	Computational Studies
	Experimental Setting
	Comparative Analysis
	Further Analysis

	Conclusion

	An Adaptive Interactive Routing-Packing Strategy for 3L-SDVRP*
	Introduction
	Adaptive Interactive Routing-Packing Strategy
	The Proposed Routing-Packing Strategy
	The Overall Search Algorithm

	Computational Studies
	Experimental Setting
	Analysis of Current Strategies
	Comparison to State-of-the-Art
	Parameter Sensitivity Analysis of Our Algorithm
	Further Analysis

	Conclusion

	Knowledge-Guided Optimization for 3L-SDVRP*
	Introduction
	Knowledge-Guided Optimization Algorithm for 3L-SDVRP
	Extracting Heuristics from Domain Knowledge
	Adaptive Knowledge-guided Insertion (AKI) Operator
	Adaptive Knowledge-guided Search (AKS) Algorithm

	Computational Studies
	Experimental Setting
	Comparing to State-of-the-Art
	Further Analysis

	Conclusion

	Conclusion and Future Directions
	Conclusion
	Future Directions

	References

