

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

ADVANCING CLUSTERING AND EMBEDDING

FOR ATTRIBUTED NETWORK STRUCTURES

YIRAN LI

PhD

The Hong Kong Polytechnic University

2025

The Hong Kong Polytechnic University

Department of Computing

Advancing Clustering and Embedding for Attributed Network

Structures

Yiran Li

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

April 2025

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Yiran Li

Abstract

Attributed network structures, encompassing graphs, hypergraphs, and multi-view

graphs, are fundamental in modeling complex systems across domains like social net-

works, bioinformatics, and e-commerce. However, existing clustering and embedding

methods often struggle to capture complex network structures and scale for big data,

limiting their e!ectiveness. This thesis advances the analysis of attributed network

structures by proposing novel approaches that integrate structural and attribute in-

formation to achieve high-quality, e”cient, and scalable solutions for clustering and

embedding.

The first contribution introduces ANCKA, a versatile clustering framework that lever-

ages K-nearest neighbor augmentation to partition nodes across attributed graphs,

hypergraphs, and multiplex graphs. By e”ciently optimizing a novel objective based

on random walk, ANCKA delivers superior clustering performance. Building on this,

the second contribution presents SAHE, an e”cient embedding method for attributed

hypergraphs, which unifies the computation of node and hyperedge embeddings to

preserve multi-hop relationships. SAHE enhances quality and scalability through in-

novative similarity measures and approximation techniques. Finally, the third con-

tribution develops SGLA and SGLA+, spectrum-guided algorithms for clustering and

embedding multi-view attributed graphs. These algorithms cohesively integrate mul-

tiple graph and attribute views, achieving exceptional performance and e”ciency.

Through extensive experiments on diverse real-world datasets, these frameworks demon-

i

strate significant improvements over numerous baselines, often outperforming com-

petitors by orders of magnitude in e”ciency while producing high-quality results.

Collectively, this thesis bridges critical gaps in e!ectiveness, e”ciency, and scalabil-

ity, enabling potential applications in community detection, bioinformatics modeling,

and recommendation systems. By providing open-source implementations, including

GPU-accelerated variants, this work lays a foundation for future advancements in at-

tributed network analysis, fostering impactful solutions for complex network systems.

ii

Publications Arising from the

Thesis

1. Yiran Li, Renchi Yang, Jieming Shi, “E”cient and E!ective Attributed Hyper-

graph Clustering via K-Nearest Neighbor Augmentation”, in Proceedings of the

ACM on Management of Data, 1.2, 116:1–116:23 (2023).

2. Yiran Li, Gongyao Guo, Jieming Shi, Renchi Yang, Shiqi Shen, Qing Li, Jun

Luo, “A versatile framework for attributed network clustering via K-nearest

neighbor augmentation”, in The VLDB Journal , 33(6), 1913-1943 (2024).

3. Yiran Li, Gongyao Guo, Jieming Shi, Sibo Wang, “E”cient Integration of

Multi-View Attributed Graphs for Clustering and Embedding”, in 2025 IEEE

41st International Conference on Data Engineering (ICDE), 3863-3875 (2025).

4. Yiran Li, Gongyao Guo, Chen Feng, Jieming Shi, “E!ective and E”cient At-

tributed Hypergraph Embedding on Nodes and Hyperedges”, accepted to Pro-

ceedings of the VLDB Endowment, 2025.

iii

Acknowledgments

First and foremost, I want to thank my supervisor, Dr. Jieming Shi, for being an

insightful mentor and rigorous critic of my research. Your work ethic and enthusi-

asm have profoundly inspired my passion for research. I extend heartfelt thanks to

my collaborators, Renchi Yang, Gongyao Guo, and Chen Feng, whose expertise and

teamwork were invaluable. I also appreciate my co-supervisor, Prof. Qing Li, and the

sta! of the Department of Computing at The Hong Kong Polytechnic University for

their support throughout my PhD program. To my dearest friends and group mates,

your companionship and encouragement have been a constant source of strength. Fi-

nally, I am forever grateful to my parents for their love and care, which have sustained

me every step of the way.

iv

Table of Contents

Abstract i

Publications Arising from the Thesis iii

Acknowledgments iv

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Background and Significance . 1

1.2 Research Gaps and Motivation . 2

1.3 Research Problem and Scope . 4

1.4 Research Objectives and Approach 5

1.5 Thesis Structure . 7

2 Related Work 8

2.1 Attributed Network Clustering . 8

v

2.2 Attributed Hypergraph Embedding 11

2.3 Multi-view Attributed Graphs . 12

3 ANCKA: Attributed Network Clustering 14

3.1 Introduction . 15

3.2 Preliminaries . 19

3.3 Attributed Hypergraph Clustering . 21

3.3.1 KNN Augmentation . 23

3.3.2 (ω, ε, ϑ)-Random Walk . 25

3.3.3 Objective Function . 27

3.4 Theoretical Analysis for AHCKA . 28

3.5 The AHCKA Algorithm . 33

3.5.1 Main Algorithm . 33

3.5.2 Greedy Initialization of BCM 36

3.5.3 Complexity . 38

3.6 The ANCKA framework . 39

3.6.1 Generalized (ω, ε, ϑ)-Random Walk 39

3.6.2 ANCKA Algorithm . 41

3.7 GPU-Accelerated ANCKA-GPU . 44

3.8 Experiments . 48

3.8.1 Experimental Setup . 49

3.8.2 Performance Evaluation . 54

vi

3.8.3 Experimental Analysis . 64

3.8.4 Convergence Analysis . 70

3.8.5 Runtime Analysis . 73

3.8.6 Additional Experiments . 75

3.9 Summary . 82

4 SAHE: Attributed Hypergraph Embedding 84

4.1 Introduction . 84

4.2 Preliminaries . 88

4.3 Similarities and Objectives . 90

4.3.1 Attribute-Extended Hypergraph 91

4.3.2 Hypergraph Multi-Hop Node Similarity: HMS-N 93

4.3.3 Hypergraph Multi-Hop Hyperedge Similarity: HMS-E 97

4.3.4 A Base Method . 100

4.4 The SAHE Method . 103

4.4.1 Unify HMS-N and HMS-E Computations 103

4.4.2 HMS-N and HMS-E Approximations 106

4.4.3 SAHE Algorithm Details . 109

4.5 Experiments . 111

4.5.1 Experimental Setup . 111

4.5.2 Node Classification . 114

4.5.3 Hyperedge Link Prediction . 115

vii

4.5.4 Hyperedge Classification . 117

4.5.5 Embedding E”ciency . 117

4.5.6 Experimental Analysis . 119

4.6 Summary . 125

5 SGLA: Multi-view Attributed Graph Integration 127

5.1 Introduction . 127

5.2 Preliminaries and Problem Statement 131

5.2.1 Preliminaries . 131

5.2.2 Problem Statement . 132

5.3 SGLA Objective . 134

5.3.1 Eigengap Objective . 134

5.3.2 Connectivity Objective . 137

5.3.3 The Full Objective . 138

5.4 Algorithms . 140

5.4.1 SGLA Method . 140

5.4.2 SGLA+ Method . 143

5.5 Experiments . 148

5.5.1 Experimental setup . 148

5.5.2 E!ectiveness and E”ciency on Clustering 152

5.5.3 E!ectiveness and E”ciency on Embedding 154

5.5.4 Experimental Analysis . 156

viii

5.6 Summary . 161

6 Conclusion 162

6.1 Summary of Contributions . 162

6.2 Implications and Impact . 164

6.3 Future Directions . 165

6.4 Concluding Remarks . 165

ix

List of Figures

3.1 An Example Attributed Hypergraph 22

3.2 AAS and RCC on Cora-CA . 23

3.3 Overview of AHCKA . 32

3.4 Runtime of AHCKA with CPU parallelization 46

3.5 Varying K for AHC . 65

3.6 Varying ε for AHC . 66

3.7 Varying K for AGC . 66

3.8 Varying K for AMGC . 67

3.9 Varying ε for AGC . 67

3.10 Varying ε for AMGC . 67

3.11 Varying ϑ on Attributed Hypergraphs. 68

3.12 Convergence Analysis, part 1 . 71

3.13 Convergence Analysis, part 2 . 72

3.14 Runtime breakdown of CPU-based ANCKA and ANCKA-GPU 73

4.1 An example of attributed hypergraph H. 90

x

4.2 Extended hypergraph H. 91

4.3 Dual hypergraph H
→. 97

4.4 Overview of the SAHE algorithm. 102

4.5 Running time of generating node and hyperedge embeddings together 118

4.6 Scalability Test. 120

4.7 Varying K for SAHE. 121

4.8 Varying ε for SAHE. 121

4.9 Varying r for SAHE. 121

4.10 Heatmaps between K, ε, and r on Cora-CA for node classification.

Darker shades indicate higher MiF1. Underlined results are reported

in Table 4.3, while the optimal parameter combinations are in bold. . 122

4.11 Varying ω. 125

4.12 Varying ϖ . 125

4.13 Varying b. 125

5.1 Multi-view attributed graph G with two graph views 128

5.2 A running example. 136

5.3 Plot of objective functions on Yelp. 140

5.4 Overview of SGLA and SGLA+ algorithms. 142

5.5 Running time of clustering . 151

5.6 Running time of embedding . 155

5.7 Varying number of iterations t in SGLA for clustering accuracy 157

5.8 Varying ϱ for SGLA. 157

xi

5.9 Varying ϑ for SGLA+. 157

5.10 Vary the number of weight vector samples in SGLA+. 158

5.11 Clustering accuracy with alternative integrations. 160

5.12 Embedding visualization on RM and Yelp 160

xii

List of Tables

3.1 Dataset statistics (ANCKA) . 49

3.2 Attributed Hypergraph Clustering (AHC) Quality on Small Datasets. 53

3.3 Attributed Hypergraph Clustering (AHC) Quality on Medium/Large

Datasets. 54

3.4 Attributed Graph Clustering (AGC) Quality on Cora, Citeseer-UG &

Wiki. 55

3.5 Attributed Graph Clustering (AGC) Quality on Citeseer-DG, Tweibo

& Amazon2M. 55

3.6 Attributed Multiplex Graph Clustering (AMGC) Quality. 56

3.7 E”ciency of Attributed Hypergraph Clustering (AHC) 56

3.8 E”ciency of Attributed Graph Clustering (AGC) 58

3.9 E”ciency of Attributed Multiplex Graph Clustering (AMGC) 59

3.10 Evaluation between ANCKA and ANCKA-GPU. 61

3.11 Additional GPU baselines for AHC. 63

3.12 Additional GPU baselines for AGC. 63

3.13 Additional GPU baselines for AMGC. 63

xiii

3.14 Ablation Analysis on AHC . 68

3.15 Ablation Analysis on AGC . 69

3.16 Ablation Analysis on AMGC . 69

3.17 Varying similarity measures in KNN construction for ANCKA on AHC. 74

3.18 Varying similarity measures in KNN construction for ANCKA on AGC. 74

3.19 Varying similarity measures in KNN construction for ANCKA on AMGC. 75

3.20 Objective values f(C) achieved by a method and f(C↑) of ground truth

for AHC . 76

3.21 Objective values f(C) achieved by a method and f(C↑) of ground truth

for AGC . 76

3.22 Objective values f(C) achieved by a method and f(C↑) of ground truth

for AMGC . 77

3.23 Evaluation between CPU-based ANCKA and ANCKA-GPU 78

3.24 Impact of exerting absolute or relative similarity thresholds (ϱs or ϱp)

on the KNN graph on AHC. 79

3.25 Impact of exerting absolute or relative similarity thresholds (ϱs or ϱp)

on the KNN graph on AGC. 79

3.26 Impact of exerting absolute or relative similarity thresholds (ϱs or ϱp)

on the KNN graph on AMGC. 79

3.27 Impact of conflicting attribute and network information on AHC per-

formance of ANCKA. 80

3.28 Impact of conflicting attribute and network information on AGC per-

formance of ANCKA. 80

xiv

3.29 Impact of conflicting attribute and network information on AMGC

performance of ANCKA. 80

3.30 Clustering performance comparison between FSSC and ANCKA on AHC 81

3.31 Clustering performance comparison between FSSC and ANCKA on AGC 81

3.32 Clustering performance comparison between FSSC and ANCKA on AMGC 81

4.1 Frequently used notations (SAHE) . 88

4.2 Dataset statistics. 112

4.3 Node classification performance . 112

4.4 Hyperedge link prediction performance 114

4.5 Hyperedge classification performance 116

4.6 Approximation Error (MAE). 120

4.7 Ablation analysis of HMS-N on node classification performance. . . . 123

4.8 Ablation analysis of HMS-E on hyperedge classification performance. 123

4.9 Node classification performance for extended baselines. 123

4.10 Hyperedge link prediction performance for extended baselines. 123

4.11 Hyperedge classification performance for extended baselines. 123

5.1 Frequently used notations (SGLA) . 133

5.2 Statistics of multi-view attributed graph datasets. 148

5.3 Clustering quality . 149

5.4 Embedding performance for node classification 152

xv

Chapter 1

Introduction

1.1 Background and Significance

Attributed networks have emerged as a powerful paradigm for modeling complex sys-

tems across diverse domains, from social interactions [115] to biological processes [129].

Unlike traditional networks that capture only the structure of relationships, an at-

tributed network enriches its topology—whether pairwise edges or higher-order hy-

peredges—with attributes associated with nodes, o!ering a multi-dimensional rep-

resentation of entities and their interactions. This thesis focuses on three represen-

tative types of attributed networks: attributed graphs, attributed hypergraphs, and

multi-view attributed graphs, each presenting unique characteristics and analytical

challenges. Attributed graphs feature pairwise edges connecting exactly two nodes,

as seen in social networks or citation networks, where nodes carry attributes like user

profiles or publication metadata. Attributed hypergraphs extend this model by intro-

ducing hyperedges, which connect an arbitrary number of nodes to capture multiway

relationships—such as paper co-authorships or group purchases—while associating

nodes with attributes like academic profiles or product descriptions. Multi-view at-

tributed graphs (MVAGs) further generalize this concept, describing entities through

1

Chapter 1. Introduction

multiple graph views (e.g., personal versus professional connections) and attribute

views (e.g., numerical or categorical features), with attributed multiplex graphs rep-

resenting a special case where a single attribute view accompanies multiple graph

layers. These structures collectively enable a richer depiction of real-world systems,

where relationships and attributes vary across perspectives and dimensions.

Clustering and embedding stand out as two pivotal tasks in network analysis, each

holding significant value across a wide range of applications. Clustering aims to

partition the nodes of an attributed network into disjoint groups based on struc-

tural connectedness and attribute similarity, a task explored in this thesis through

novel frameworks for attributed hypergraphs [73] and extended to graphs and mul-

tiplex graphs [72]. Its significance lies in its ability to uncover hidden structures,

such as communities in social networks, functional modules in biological networks,

or cohesive groups in academic hypergraphs, supporting applications like community

detection [139], image classification [11], and Web query analysis [123]. On the other

hand, embedding maps nodes—and in some cases hyperedges—to points in a low-

dimensional space that preserves their structural and attribute information, a chal-

lenge addressed here through an innovative approach for attributed hypergraphs and

an integration scheme for multi-view attributed graphs. This task is crucial for en-

abling downstream tasks like recommendation systems [155], spam detection [68], and

genomic expression modeling [5], where latent representations enhance predictive ac-

curacy and interpretability. Together, these tasks—clustering and embedding—drive

advancements in fields such as social network analysis [109], bioinformatics [149], and

e-commerce [120] by providing systemic insights and informative representations.

1.2 Research Gaps and Motivation

Clustering and embedding are cornerstone tasks in attributed network analysis, crit-

ical for uncovering patterns and deriving representations in complex systems. How-

2

1.2. Research Gaps and Motivation

ever, despite their significance, existing methods exhibit substantial shortcomings

that limit their performance in practical applications. A primary expectation is that

clustering and embedding outcomes achieve high quality: clusters should reflect both

the network’s topology and attribute distributions, while embeddings should pre-

serve structural and attribute characteristics in low-dimensional spaces. Yet, current

approaches often fail to e!ectively integrate these dual aspects—structure and at-

tributes—particularly for the intricate forms of attributed networks central to this

thesis: graphs, hypergraphs, and multi-view attributed graphs. This thesis is moti-

vated by the urgent need to address these gaps, developing innovative methods that

deliver e!ective, e”cient, and scalable solutions for clustering and embedding in such

networks.

One major gap lies in the lack of tailored algorithms that capture the unique complex-

ities of attributed networks. Traditional methods designed for simple graphs, such as

METIS for graph clustering [55], or for numerical data, like k-means, are ill-suited

for attributed networks, where structural relationships and attribute values represent

fundamentally distinct data types. Applying these methods often yields suboptimal

results, as they fail to model the interplay between topology and attributes. This

challenge is amplified in more complex structures like attributed hypergraphs and

multi-view attributed graphs. In hypergraphs, hyperedges encode higher-order rela-

tionships—such as co-authorships or co-purchases—that cannot be reduced to simple

graphs without losing essential information [43]. Similarly, multi-view attributed

graphs comprise multiple graph and attribute views, each with distinct semantics

(e.g., social versus professional connections, or text versus visual features), which

are compromised when treated as a single attributed graph [153, 119]. Despite the

growing prevalence of these networks in domains like social analysis, bioinformatics,

and Web query analysis, research on clustering and embedding methods specifically

designed for their complexity remains limited.

Equally pressing is the issue of e”ciency and scalability, as real-world attributed net-

3

Chapter 1. Introduction

works are often vast in scale. For instance, social networks like Meta’s platforms host

over 3.35 billion daily active users across Facebook, Instagram, and WhatsApp [85],

while bioinformatics databases like STRING catalog over 20 billion protein-protein

interactions among 59 million proteins. E!ective analysis of such networks demands

algorithms that operate with low computational overhead. However, many existing

methods, particularly those leveraging graph neural networks (GNNs) for clustering

and embedding [78, 59], require long training time and extensive GPU resources, ren-

dering them impractical for large-scale applications [143]. This is particularly true

for hypergraph embedding, where few e”cient solutions exist to handle higher-order

interactions [157], and for multi-view graph analysis, where integrating diverse views

adds computational burdens [32].

These gaps—insu”cient e!ectiveness in capturing network complexity and inade-

quate e”ciency for large-scale settings—underscore the need for novel approaches.

This thesis aims to bridge these deficiencies by proposing solutions that leverage

both structural and attribute information across attributed graphs, hypergraphs, and

multi-view graphs. By addressing the challenges of quality, e”ciency, and scalability,

our work seeks to advance the analysis of complex network systems, enabling robust

applications in fields such as community detection, genomic expression modeling, and

recommendation systems.

1.3 Research Problem and Scope

The analysis of attributed networks—spanning graphs, hypergraphs, and multi-view

structures—represents a critical frontier in understanding complex systems, where en-

tities are defined by both various relationships and rich attribute information. At the

core of this domain lie two fundamental tasks: clustering and embedding. Clustering

aims to group nodes into cohesive clusters that reflect both topological proximity and

attribute similarity, revealing underlying patterns such as communities or functional

4

1.4. Research Objectives and Approach

modules. Embedding seeks to map nodes, and potentially higher-order structures

like hyperedges, into low-dimensional spaces that preserve structural and attribute

characteristics, enabling applications like recommendation systems and predictive

modeling. However, achieving high-quality outcomes that incorporate the dual as-

pects of attributed networks remains a formidable challenge, particularly for those

with higher-order interactions or multi-view data. This thesis addresses the long-term

research mission of developing comprehensive, computationally viable frameworks for

clustering and embedding in attributed networks, aiming to deliver solutions that

are e!ective in capturing network complexity and scalable to meet the demands of

real-world applications.

The scope of this problem is broad, encompassing the diverse forms of attributed

networks and their analytical challenges. Attributed graphs require methods that

integrate pairwise connections with attribute values, while hypergraphs demand ap-

proaches that preserve multiway relationships encoded by hyperedges. Multi-view at-

tributed graphs introduce additional complexity, necessitating the synthesis of multi-

ple graph and attribute views with distinct semantics. This thesis positions clustering

and embedding as a unified research agenda, with the long-term vision of establishing

generalizable methodologies that advance network analysis across domains like social

network analysis, bioinformatics, and e-commerce, addressing both current limita-

tions and future scalability needs.

1.4 Research Objectives and Approach

To advance the long-term goal of developing clustering and embedding frameworks,

this thesis pursues three specific objectives, each addressing a distinct challenge within

the scope of attributed network analysis. These objectives correspond to three in-

terconnected contributions, each targeting a specific problem while collectively con-

tributing to the broader research agenda:

5

Chapter 1. Introduction

1. Clustering for Diverse Attributed Networks: We aim to develop a cluster-

ing framework that e!ectively partitions nodes across attributed graphs, hyper-

graphs, and multiplex graphs, addressing the challenge of integrating structural

and attribute information in diverse network types [72]. Building upon a pre-

liminary work on attributed hypergraph clustering [73], this framework tackles

the problem of capturing higher-order interactions and homogeneous attributes,

ensuring clusters align with both topology and attribute distributions.

2. Attributed Hypergraph Node and Hyperedge Embedding: We seek to

create an embedding method for attributed hypergraphs that generates low-

dimensional representations of nodes and hyperedges, preserving multiway re-

lationships and attribute characteristics. This objective addresses the scarcity

of e”cient embedding techniques for higher-order networks, a critical gap in

representation learning for applications like genomic expression modeling.

3. Unified Clustering and Embedding for Multi-View Attributed Graphs:

We propose an integration scheme that unifies clustering and embedding tasks

for multi-view attributed graphs, synthesizing multiple graph and attribute

views to produce cohesive outcomes. This work confronts the complexity of

multi-view data, enabling high-quality analysis for applications such as recom-

mendation systems and image processing.

Our research approach is centered on designing innovative algorithms that prioritize

both e!ectiveness and e”ciency. We leverage techniques such as attribute-based

graph augmentation to enable the representation of node attributes in networks,

whether homogeneous or multi-view, and structural similarity measures to capture

topological relationships, from pairwise edges to hyperedges. In addition to devel-

oping solutions that address specific network types, we also work on adaptability to

varying complexities, such as extending from higher-order interactions in hypergraphs

to simple pairwise edges in graphs or semantically diverse multi-view graphs. E”-

6

1.5. Thesis Structure

ciency is a key focus, with methods designed to minimize computational overhead,

making them viable for large-scale networks like those in social media or bioinformat-

ics. This thesis integrates these contributions into a cohesive narrative, demonstrating

how each work advances the goal of attributed network clustering and embedding,

paving the way for scalable, impactful network analysis.

1.5 Thesis Structure

The thesis is organized as follows to present a coherent narrative of our research.

Chapter 2 provides a comprehensive review of related work, establishing the the-

oretical and methodological context for our contributions. Chapter 3 introduces

our extended clustering framework, including the attributed hypergraph clustering

method, detailing its design and performance. Chapter 4 explores our attributed

hypergraph embedding approach, focusing on its ability to capture higher-order rela-

tionships. Chapter 5 presents the integration scheme for clustering and embedding in

multi-view attributed graphs, highlighting its unified methodology. Finally, Chapter

6 synthesizes the findings, discusses their implications, and outlines future research

directions.

7

Chapter 2

Related Work

This chapter reviews prior research relevant to the clustering and embedding of at-

tributed network structures, providing the foundation for the contributions presented

in this thesis. Section 2.1 surveys clustering methods for simple hypergraphs, at-

tributed hypergraphs, attributed graphs, and multiplex graphs, highlighting the need

for a unified framework to address their diverse requirements. Section 2.2 examines

embedding techniques applicable to attributed hypergraphs, identifying limitations

in their quality and scalability. Section 2.3 focuses on multi-view attributed graphs

(MVAGs), reviewing the state of clustering and embedding methods for these struc-

tures. Together, these sections establish the context for our novel approaches devel-

oped in Chapter 3 (ANCKA), Chapter 4 (SAHE), and Chapter 5 (SGLA and SGLA+),

respectively.

2.1 Attributed Network Clustering

Hypergraph Clustering. Motivated by the applications in circuit manufactur-

ing, partitioning algorithms have been developed to divide hypergraphs into parti-

tions/clusters, such as hMetis [54] and KaHyPar [105]. These methods typically adopt

8

2.1. Attributed Network Clustering

a three-stage framework consisting of coarsening, initial clustering, and refinement

stages. These algorithms directly perform clustering on a coarsened hypergraph with

a relatively small size. In addition, they run a portfolio of clustering algorithms and

select the best outcome. These algorithms rely on a set of clustering heuristics and

lack the extensibility for exploiting node attribute information. Hypergraph Normal-

ized Cut (HNCut) [156] is a conductance measure for hypergraph clusters from which

the normalized hypergraph Laplacian # = I → $ is derived for spectral clustering,

where $ = D↓1/2
V

HTD↓1
E
HD↓1/2

V
. Alternatively, hGraclus [123] optimizes the HNCut

objective using a multi-level kernel K-means algorithm. Non-negative matrix factor-

ization has also been applied to hypergraph clustering [41]. Despite the theoretical

soundness, these algorithms are less e”cient than the aforementioned partitioning

algorithms and they do not utilize node attributes either. For the problem of hyper-

graph local clustering, which is to find a high-quality cluster containing a specified

node, a sweep cut method is proposed [113] to find the cluster based on hypergraph

Personalized PageRank (PPR) values. In this thesis, we focus on global clustering, a

di!erent problem from local clustering.

Attributed Hypergraph Clustering. There exist studies designing dedicated clus-

tering algorithms on attributed hypergraphs. JNMF [23] is an AHC algorithm based

on non-negative matrix factorization (NMF). With normalized hypergraph Lapla-

cian [156] matrix # = I → $ and attribute matrix X, JNMF optimizes the following

joint objective that includes a basic NMF part as well as a symmetric NMF part:

min
W,M,M̃↔0 ||X → WM||

2
F

+ ω||$ → M̃TM||
2
F

+ ε||M̃ → M||
2
F
. With optimization

using block coordinate descent (BCD) scheme, the matrix M is expected to encode

cluster memberships. MEGA [123] extends the formulation of JNMF clustering objec-

tive for semi-supervised clustering of multi-view data containing hypergraph, node

attributes as well as pair-wise similarity graph. MEGA’s clustering performance is

further enhanced by initialization with hGraclus algorithm. GNMF [10] algorithm is

originally proposed for high dimensional data clustering, while the authors of [27] ex-

9

Chapter 2. Related Work

tend its objective with the hypergraph normalized Laplacian [156] so that it spawns

baseline methods for AHC. Although NMF-based algorithms sometimes produce clus-

ters of good quality, their scalability is underwhelming, as shown in our experiments

in Section 3.8. As the state-of-the-art algorithm for attributed hypergraph clustering,

GRAC [27] performs hypergraph convolution [136] on node attributes, which resem-

bles the hypergraph di!usion process with mediators [12]. Then clusters are predicted

from the propagated features via a spectral algorithm.

Attributed Graph Clustering. There exists a collection of studies on attributed

graph clustering. Some studies perform attributed graph clustering by adopting prob-

abilistic models to combine graph structure with attributes, including discriminative

models such as PCL-DC [145] and generative models such as BAGC [134]. Nevertheless,

these methods are typically limited to handling categorical attributes. Moreover,

inference over the probability distribution of O(2n) hyperedges poses a significant

challenge against their generalization to hypergraph. GNMF [10] is an NMF-based al-

gorithm that enhances performance by modifying the Laplacian regularizer used in

traditional NMF to utilize the Laplacian matrix constructed from the graph struc-

ture. Within the random walk framework, SA-Cluster [159] algorithm augments the

original graph with virtual nodes representing each possible attribute-value pair and

performs k-Medroids clustering using a random walk distance measure. ACMin [144]

defines attributed random walk by adding virtual attribute nodes as bridges and com-

bines it with graph random walk into a joint transition matrix. In a fashion similar

to GCN [61], AGCGCN [154] performs graph convolution on node attributes to produce

smooth feature representations that incorporate network structure information and

subsequently applies spectral clustering. For their spectral algorithm, the authors

also design heuristics to prevent propagated features from over-smoothing that un-

dermines cluster quality. GRACE [52] adopts graph convolution on node attributes to

fuse all available information and perform a spectral algorithm based on GRAC [27].

FGC [53] exploits both node features and structure information via graph convolu-

10

2.2. Attributed Hypergraph Embedding

tion and applies spectral clustering on a fine-grained graph that encodes higher-order

relations.

Attributed Multiplex Graph Clustering. Via unsupervised learning on at-

tributed multiplex graphs, neural network models can learn node embeddings for

clustering, e.g., O2MAC [24] and HDMI [49]. GRACE [52] constructs a multiplex graph

Laplacian and uses this matrix for graph convolution. Other methods find a single

graph that encodes the node proximity relations in all graph layers and attributes.

MCGC [91] performs graph filtering on attributes and learns a consensus graph lever-

aging contrastive regularization, while MAGC [77] exploits higher-order proximity to

learn consensus graphs without deep neural networks.

2.2 Attributed Hypergraph Embedding

Existing embedding methods struggle to support attributed hypergraphs natively

while scaling e”ciently for massive data, particularly in the context of attributed hy-

pergraph node and hyperedge embedding (AHNEE), where embeddings are demanded

for both nodes and hyperedges. Early hypergraph embedding e!orts, like [156], use

the Laplacian matrix spectrum for node embeddings, focusing on clustering but ne-

glecting attributes and long-range connectivity essential for AHNEE ’s relational

closeness. Methods extending node2vec [36] to hypergraphs, such as Hyper2vec [45]

and its dual-enhanced version [44], capture long-ranged relations via random walks,

yet omit attribute information and hyperedge embeddings, limiting their applicability

for AHNEE. Another approach, [147], models hyperedges as multi-linear products of

node embeddings, but lacks attribute consideration and scalability.

The emergence of hypergraph neural networks also enabled a multitude of recent ap-

proaches. TriCL [64] uses contrastive learning with augmentations to embed nodes,

HypeBoy [60] masks attributes and designs a hyperedge-filling task for self-supervised

11

Chapter 2. Related Work

node embeddings, and [22] applies GNNs on an expanded graph with cluster-based

loss. Nevertheless, these methods focus solely on nodes, incur high training costs (e.g.,

O(n2) or worse), and lack hyperedge embedding support, rendering them unsuitable

for scalable AHNEE. VilLain [65] formulates the self-supervision as a label propaga-

tion process while ignoring node attributes and incurring high training costs. There

are a few specialized methods that learn node representations for certain hypergraphs,

like [138] for location-based networks, [130] for user-item recommendations, [133] for

trust relations, and [74] for spatio-temporal crime data, but their targeted design

for domain-specific data and limited scalability hinder the applicability for general

attributed hypergraphs.

Alternatively, embedding techniques designed for graphs or bipartite graphs can be

adapted for attributed hypergraphs by reducing the hyperedge structures into pair-

wise edges. With each hyperedge converted to a fully connected subgraph via clique-

expansion, hypergraphs can be processed by graph embedding methods (NetMF [99],

STRAP [146], LightNE [98]) or attributed graph embedding method [143] based on

matrix factorization. On the other hand, star-expansion of hypergraphs results in

dense edges between two sets of nodes, enabling bipartite graph embedding methods

(BiANE [47], AnchorGNN [128]). However, these transformations weaken higher-order

connections critical to AHNEE while producing dense graphs with high complexity,

resulting in compromised embedding quality and e”ciency, as our experiments show.

2.3 Multi-view Attributed Graphs

For basic attributed graphs with one graph and one attribute view, attributed net-

work embedding and clustering have been extensively studied in the literature [158,

134, 87, 143, 79, 142]. For instance, Bayesian probabilistic model [134] and graph

auto-encoder [87] have been adopted for clustering. An attributed graph embedding

algorithm [143] captures the multi-hop a”nity between nodes and attributes [142].

12

2.3. Multi-view Attributed Graphs

GNN-based embedding method AnECI [79] strengthens the robustness by preserving

communities, while CONN [114] adopts selective graph di!usion with attribute augmen-

tation. In [75], the authors propose using diverse pretext tasks to capture di!erent

signals in graphs with heterophily into embeddings. These approaches do not consider

the unique characteristics of MVAGs and tend to yield suboptimal performance.

On MVAGs, MCGC [91] and MAGC [77] construct a consensus graph matrix for MVAG

clustering in O(n2) time where n is the number of nodes, by optimizing a dense n↑n

adjacency matrix that minimizes reconstruction loss on each view. MvAGC [76] im-

proves their complexity to linear time with node sampling while compromising result

quality and stability. Their problem formulations neglect the overall structure of G

and su!er from the di”culty of optimizing at least O(n) variables. Besides, various

GNNs have been adopted for MVAGs, including O2MAC [24], MAGCN [14] and DMG [86].

For instance, the clustering model MAGCN uses graph auto-encoders to map each view

to latent representations for reconstruction. [58] combines graph views by fusing

Laplacian matrices and trains a semi-supervised GNN. Other studies [92, 49, 152]

adopt mutual information models to learn view-specific node embeddings and aggre-

gate them with attention mechanism. These methods incur high costs of training and

exhibit inferior performance on MVAGs. MEGA [123] tackles semi-supervised MVAG

clustering by joint nonnegative matrix factorization. 2CMV [82] learns the consen-

sus and complementary components from each view via matrix factorization with

O(n2) complexity. LMGEC [30] addresses clustering and embedding within a unified

formulation, while the embedding quality is inferior to its clustering performance.

There are also algorithms that only handle attribute views for clustering, as surveyed

in [25]. For instance, a work [160] adopts a weighting objective to minimize the

subspace distances between its integration result and each view. A recent study [135]

learns a robust fused representation of noisy attributes via meta-learning. However,

these methods [160, 57, 135] do not consider graph topological properties of MVAGs.

13

Chapter 3

ANCKA: Attributed Network

Clustering

This chapter presents ANCKA [72], a versatile framework for clustering attributed

networks, marking the first main technical contribution to the thesis’s goal of ad-

vancing clustering and embedding for attributed network structures. Addressing the

challenge of partitioning nodes across diverse types of attributed network—graphs,

hypergraphs, and multiplex graphs—ANCKA integrates structural and attribute in-

formation to deliver e!ective and scalable solutions, as motivated by the gaps in

existing methods outlined in Chapter 2. Through its novel clustering framework for

attributed hypergraphs, extended to graphs and multiplex graphs, ANCKA introduces

KNN augmentation as a key contribution, providing a critical methodological ba-

sis for the embedding and multi-view integration approaches in Chapters 4 and 5,

thereby advancing the analysis of complex network structures.

14

3.1. Introduction

3.1 Introduction

An attributed network contains a network topology with attributes associated with

nodes. Representative types of attributed networks include attributed graphs, at-

tributed hypergraphs, and attributed multiplex graphs. Given an attributed network

N , node clustering is an important task in graph mining, which aims to divide the

n nodes of N into k disjoint clusters, such that nodes within the same cluster are

close to each other in the network topology and similar to each other in terms of

attribute values. Clustering on attributed networks finds important applications in

biological analysis [23], online marketing [134], social network analysis [139, 107], Web

analysis [123], image processing [11], etc.

In this work, we present ANCKA [72], an e!ective and e”cient attributed network clus-

tering method that is versatile to support attributed hypergraph clustering (AHC), at-

tributed graph clustering (AGC), and attributed multiplex graph clustering (AMGC).

ANCKA builds upon the AHCKA [73] algorithm, which we originally developed for AHC

and is also covered in this chapter. In what follows, we first elaborate on AHC and

then generalize to AGC and AMGC.

In a hypergraph, each edge can join an arbitrary number of nodes, referred to as a

hyperedge. The hyperedge allows a precise description of multilateral relationships

between nodes, such as collaboration relationships of multiple authors of a paper,

interactions among proteins [34], products purchased together in one shopping cart,

transactions involving multiple accounts [126]. In practice, nodes in hypergraphs are

often associated with many attributes, e.g., the academic profile of authors and the

descriptive data of products. The AHC problem is to divide the n nodes in such an

attributed hypergraph into k disjoint clusters such that nodes within the same cluster

are close to each other with high connectedness and homogeneous attribute character-

istics. AHC finds numerous real-life applications in community discovery [46], orga-

nization structure detection [23], Web query analysis [123], image classification [11],

15

Chapter 3. ANCKA: Attributed Network Clustering

biological analysis [127], etc. As another example, AHC can cluster together aca-

demic publications with high relevance by considering co-authorship hyperedges and

keyword attributes in academic hypergraphs [27].

E!ective AHC computation is a highly challenging task, especially for large attributed

hypergraphs with millions of nodes. First, nodes, hyperedge connections, and at-

tributes are heterogeneous objects with inherently di!erent traits, whose information

cannot be seamlessly integrated in a simple and straightforward way. Second, as

observed in previous works on simple graphs [159, 144], higher-order relationships

between nodes and node-attribute associations are crucial for clustering. However,

computing such multi-hop relationships and associations via hyperedges usually with

more than two nodes in attributed hypergraphs is rather di”cult due to the complex

hypergraph structures and prohibitive computational overheads (up to O(n2) in the

worst case).

In the literature, a plethora of clustering solutions [105, 41, 62] are developed for plain

hypergraphs. These methods overlook attribute information, leading to severely com-

promised AHC result quality. Besides, a large body of research on attributed graph

clustering is conducted, resulting in a cornucopia of e”cacious techniques [134, 144].

However, most of these works cannot be directly applied to handle large attributed

hypergraphs with more complex and unique structures. Inspired by the technical

advances in the above fields, a number of e!orts have been made towards AHC com-

putation in the past years. The majority of AHC methods rely on non-negative matrix

factorization [23, 123], which requires numerous iterations of expensive matrix opera-

tions and even colossal space costs of materializing n↑n dense matrices. Particularly,

none of them take into account the higher-order relationships between nodes, thereby

limiting their result utility. The state-of-the-art approach GRAC [27] extends graph

convolution [61] to hypergraphs, indirectly incorporating higher-order relationships

of nodes and attributes for clustering. Notwithstanding its enhanced clustering qual-

ity, GRAC runs in O(n2) time as an aftermath from costly graph convolution and SVD

16

3.1. Introduction

operations, which is prohibitive for large hypergraphs. To recapitulate, existing AHC

approaches either yield sub-optimal clustering results or incur tremendous computa-

tional costs, rendering them impractical to cope with large attributed hypergraphs

with millions of nodes.

Given the above, can we combine and orchestrate hypergraph topology and attribute

information in an optimized way for improved clustering quality while achieving high

scalability over large attributed hypergraphs? We o!er a positive answer by present-

ing AHCKA (Attributed Hypergraph Clustering via K-nearest neighbor Augmentation),

a novel AHC approach that significantly advances the state of the art in AHC com-

putation. AHCKA surpasses existing solutions through several key techniques. The

first one is a K-nearest neighbor (KNN) augmentation scheme, which augments the

original hypergraph structure with a KNN graph containing additional connections

constructed by adjacent nodes with K highest attribute similarities. This is inspired

by a case study on a real dataset manifesting that incorporating all-pairwise node

connections via attributes or none of them jeopardizes the empirical clustering qual-

ity. Second, AHCKA formulates the AHC task as a novel optimization problem based

on a joint random walk model that allows for the seamless combination of high-order

relationships from both the hypergraph and KNN graph. Further, AHCKA converts the

original NP-hard problem into an approximate matrix trace optimization and har-

nesses e”cient matrix operations to iteratively and greedily search for high-quality

solutions. Lastly, AHCKA includes an e!ective initialization method that consider-

ably facilitates the convergence of the optimization process using merely a handful

of iterations. We conduct extensive experiments on attributed hypergraph data in

di!erent domains. Compared with baselines, AHCKA exhibits superior performance in

both clustering quality and e”ciency. For instance, on the Amazon dataset with 2.27

million nodes, AHCKA gains over 10-fold speedup and a significant improvement of

4.8% in clustering accuracy compared to state-of-the-art. Our work AHCKA has been

published in [73].

17

Chapter 3. ANCKA: Attributed Network Clustering

In addition to attributed hypergraphs, attributed graphs and attributed multiplex

graphs are prevalent in real-world scenarios, such as social networks [95] and citation

networks [96]. Di!erent from hypergraphs that allow more than two nodes to form an

edge, in a graph, an edge connects exactly two nodes. A multiplex graph consists of

multiple layers of graphs with a shared set of nodes, and di!erent graph layers repre-

sent node connections from di!erent perspectives or domains, e.g., di!erent types of

relationships or relations formed in di!erent time frames or spaces [95, 96]. Attributed

graph clustering (AGC) is one of the most significant graph mining problems, exten-

sively studied in the literature [134, 144], with many applications, e.g., community

detection in social networks [31] and functional cartography of metabolic networks

[37]. Furthermore, a rich collection of studies on attributed multiplex graph cluster-

ing (AMGC) also exists in [91, 77, 24, 49], to support important applications, e.g.,

biological analysis [96], community detection [95] and social analysis [20]. A previ-

ous general framework [52] relies on expensive graph convolutions to support various

clustering tasks.

In this work, we extend AHCKA for AHC to a versatile framework ANCKA that can

e”ciently handle attributed Network clustering tasks (AHC, AGC, and AMGC) to

produce high-quality clusters on large data. ANCKA inherits the powerful KNN aug-

mentation scheme and the formulation of clustering objective in AHCKA. We further

develop a generalized joint random walk model in ANCKA with proper transition matri-

ces to support random walks on KNN augmented hypergraphs, graphs, and multiplex

graphs simultaneously. E”cient optimization techniques are applied in ANCKA to re-

tain the advantage of high e”ciency for clustering. Despite the superior e”ciency,

clustering million-scale datasets with ANCKA can still take dozens of minutes. More-

over, after observing the limited speedup ratio by increasing the number of CPU

threads used, we pinpoint the e”ciency bottlenecks and design the GPU-accelerated

ANCKA-GPU, to boost the e”ciency to another level, especially on large-scale datasets.

ANCKA-GPU consists of GPU-based optimization techniques and KNN construction

18

3.2. Preliminaries

procedures to speed up. We have conducted extensive experiments to compare ANCKA

with 16 competitors on various attributed graphs and 16 competitors on attributed

multiplex graphs. In all three tasks, ANCKA obtains superior performance regarding

both clustering quality and e”ciency. The GPU implementation ANCKA-GPU further

reduces time costs significantly, often by an order of magnitude on large datasets.

We summarize the contributions of this work as follows:

• We devise a KNN augmentation scheme that exploits attributes to augment the

original hypergraph structure in a cost-e!ective manner.

• We formulate the AHC task as an optimization with the objective of optimizing

a quality measure based on a joint random walk model over the KNN augmented

hypergraph.

• We propose a number of techniques for e”cient optimization of the objective, in-

cluding a theoretically-grounded problem transformation, a greedy iterative frame-

work, and an e!ective initialization approach that drastically reduces the number

of iterations till convergence.

• We justify the application of KNN augmentation to various types of networks,

generalize the techniques, and design a versatile method ANCKA to e”ciently perform

AHC, AGC, and AMGC and produce high-quality clusters.

• We develop ANCKA-GPU with customized GPU kernels to improve the e”ciency fur-

ther with a series of GPU-based optimizations while maintaining clustering quality.

• The excellent performance of ANCKA is validated by comprehensive experiments

against 19 AHC competitors, 16 AGC competitors, and 16 AMGC competitors,

over real-world datasets.

3.2 Preliminaries

19

Chapter 3. ANCKA: Attributed Network Clustering

Attributed Network. Let N = (V , E ,X) be an attributed network, where V is the

node set with cardinality |V| = n, E is the edge (or hyperedge) set with cardinality

|E| = m, and X ↓ Rn↗d represents a node attribute matrix. A node vj ↓ V has degree

ς(vj), which is the number of edges (or hyperedges) incident to vj. Each node vj in V

is associated with a d-dimensional attribute vector, denoted as X[j], i.e., the j-th row

of the node attribute matrix X. We consider three types of attributed networks N ,

including attributed hypergraphs H, attributed graphs G, and attributed multiplex

graphs GM , characterized by di!erent nature of E .

Attributed Hypergraph is denoted by H = (V , E ,X). E is the set of m hyperedges

where each ei ↓ E is a subset of V containing at least two nodes. A hyperedge ei

is said to be incident with a node vj if vj ↓ ei. We denote by H ↓ Rm↗n the

incidence matrix of hypergraph H, where each entry H[i, j] = 1 if vj ↓ ei, otherwise

H[i, j] = 0. Let diagonal matrices DV ↓ Rn↗n and DE ↓ Rm↗m represent the degree

matrix and hyperedge-size matrix of H, where the diagonal entry DV [j, j] = ς(vj) for

vj ↓ V and DE[i, i] = |ei| for ei ↓ E , respectively. Figure 3.1 shows an attributed

hypergraph H with 8 nodes and 5 hyperedges, where each node has an attribute

vector and hyperedges e1, e2 contain 4 and 3 nodes, i.e., {v1, v2, v4, v5} and {v1, v3, v4},

respectively.

Attributed Graph is denoted by G = (V , E ,X), where every edge in E connects

exactly two nodes. A graph G can be undirected or directed. An undirected edge can

be viewed as two directed edges of the same node pair in reversed directions. Di!erent

from a hypergraph incident matrix between nodes and hyperedges, graph adjacency

matrix A ↓ Rn↗n encodes the structure of G, where entry A[i, j] is 1 if there is an

edge from node vi to node vj, i.e., (vi, vj) ↓ EG, or 0 if otherwise. Let D ↓ Rn↗n be

the diagonal node degree matrix of G.

Attributed Multiplex Graph is GM = (V , E1, ..., EL,X), consisting of L graph

layers. Every l-th layer has its own edge set El, and can be viewed as an attributed

20

3.3. Attributed Hypergraph Clustering

graph Gl with El, adjacency matrix Al, and diagonal node degree matrix Dl.

The Clustering Problem. Given an attributed network N that can be H, G, or GM ,

we study the clustering problem that encompasses attributed hypergraph clustering

(AHC), attributed graph clustering (AGC), and attributed multiplex graph clustering

(AMGC). Given a specified number k of clusters and an attributed network N , the

clustering task is to divide the node set V into k disjoint subsets {C1, . . . , Ck} such

that
⋃

k

i=1 Ci = V and the following properties are satisfied:

1. Nodes within the same cluster are closely connected to each other in the network

structure, while nodes in di!erent clusters are far apart (structure closeness);

2. Nodes in the same cluster have similar attribute values, while nodes in di!erent

clusters vary significantly in attribute values (attribute homogeneity).

For instance, when the input network N is the attributed hypergraph H in Figure

3.1, H is partitioned into two clusters C1 and C2. We can observe that nodes v1-v5

in C1 share similar attributes and are closely connected to each other, whereas nodes

v6, v7 and v8 form a cluster C2 that is separated from C1 with a paucity of connections

and distinct attributes.

3.3 Attributed Hypergraph Clustering

As mentioned, we first focus on attributed hypergraph clustering (AHC) and present

our method AHCKA [73] in Sections 3.3, 3.4, and 3.5. Specifically, we will devise a

random walk scheme on a K-nearest neighbor augmented hypergraph and present the

AHC objective in Section 3.3, conduct theoretical analysis to support the design of

AHCKA in Section 3.4, and develop the algorithmic details of AHCKA in Section 3.5.

For the problem of AHC, a central challenge is how to simultaneously exploit both

hypergraph structure and attribute information for improved clustering quality. In

21

Chapter 3. ANCKA: Attributed Network Clustering

𝑣1

𝑣2

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝒞1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}
𝒞2 = {𝑣6, 𝑣7, 𝑣8}

𝑒1

𝑒2

𝑒3

𝑒5

𝑒4

𝑣3

𝑓(𝑣2, 𝑣3) = 0
𝑓(𝑣2, 𝑣7) = 0.41
𝑓(𝑣2, 𝑣1) = 𝑓(𝑣2, 𝑣4) = 0.5
𝑓(𝑣2, 𝑣5) = 0.5

Figure 3.1: An Example Attributed Hypergraph

literature, it is a natural and e!ective approach to augment network structure with

attribute similarity strengths [144, 13]. However, since a hypergraph yields di!er-

ent topological characteristics as illustrated in Figure 3.1, we argue that attribute

augmentation should be conducted in a controlable way; otherwise, attributes may

hamper, instead of improving, clustering quality, as shown in experiments (Section

3.8.3).

Therefore, in this section, we first develop a carefully-crafted augmentation strategy

to augment attributes of nodes with hypergraph topology, which will benefit the

clustering quality shown later on. As this augmentation strategy is orthogonal to

the topological nature of hypergraph, its application to other types of networks, such

as attributed graphs and attributed multiplex graphs, will be explained shortly in

Section 3.6. Then we formulate Attributed Hypergraph Clustering as Augmented

Hypergraph Clustering, with the same abbreviation AHC. The augmented hypergraph

involves both hypergraph connections as well as augmented attribute connections. It

is challenging to define a unified way to preserve the high-order information of both

sides. To tackle this, we design the (ω, ε, ϑ)-random walk to uniformly model the

node relationships (in terms of both the structural closeness and attribute similarity)

in the augmented hypergraphs. Based thereon, we define a multi-hop conductance

(MHC), and formulate the objective of AHC as optimizing the conductance.

22

3.3. Attributed Hypergraph Clustering

1 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

K

AAS
RCC

Figure 3.2: AAS and RCC on Cora-CA (best viewed in color)

3.3.1 KNN Augmentation

Although the vanilla augmentation strategy improves the clustering quality in at-

tributed graphs [144, 13], to our knowledge, its e!ectiveness over attributed hyper-

graphs is as of yet under-explored. Moreover, it requires constructing a densely

connected graph, causing severe e”ciency issues on large graphs. To this end, we

first demystify the attribute homogeneity of nodes within the same cluster through

an empirical study on a real-world attributed hypergraph, i.e., the Cora-CA dataset1

containing 2.7k academic papers in 7 research fields (i.e., 7 clusters). Every node has

an attribute vector indicating the presence of words in the corresponding publica-

tion. First, we use f(vi, vj) = cosine(X[i],X[j]) to denote the attribute similarity of

nodes vi, vj. We refer to vj as the K-th nearest neighbor of vi if f(vi, vj) is the K-th

largest ↔vj ↓ V \ vi. Figure 3.2 plots the averaged attribute similarity (AAS for short)

f(vi, vj) of any randomly picked node vi and its K-th nearest neighbor vj, and their

ratio of co-occurring in the same cluster (RCC for short), when varying K from 1 to

1000. The AAS and RCC results from this real-world example demonstrate that two

nodes with higher attribute similarity are also more likely to appear in the same clus-

1https://people.cs.umass.edu/~mccallum/data.html

23

https://people.cs.umass.edu/~mccallum/data.html

Chapter 3. ANCKA: Attributed Network Clustering

ter. Intuitively, applying the attribute-based augmentation strategy to hypergraphs

can enhance the clustering results.

However, excessively augmenting the hypergraph with attribute information, namely,

building too many connections between nodes according to attributes, will intro-

duce distortion and adversely impact the clustering performance. To illustrate this,

consider the example in Figure 3.1, where nodes v2, v3 are in the same cluster as

they share multiple common neighbors while v2, v7 are not. If we were to assign

a cluster to node v2 as per the additional connections created by attribute simi-

larities, it is more likely to be v2, v7 rather than v2, v3 in the same cluster given

f(v2, v7) = 0.41 > f(v2, v3) = 0, which is counter-intuitive.

Therefore, unlike the vanilla augmentation strategy employed in prior works, we pro-

pose a KNN augmentation strategy. That is, given the input attributed hypergraph

H = (V , E ,X) and an integer K, we augment H with an undirected KNN graph

GK = (V , EK). More specifically, for each node vi ↓ V , we identify K nodes in V (ex-

cluding vi itself) that are most similar to vi in terms of attribute similarity computed

based on a similarity function f(·, ·) as vi’s neighbors in GK , denoted by NK(vi). In

other words, for every two nodes vi, vj (vj ↓ NK(vi)), we construct an edge (vi, vj)

with weight f(X[i],X[j]) in EK . Accordingly, the adjacency matrix AK of GK is

defined as follows:

AK [i, j] =






0, if vi /↓ NK(vj) and vj /↓ NK(vi),

2 · f(X[i],X[j]), if vi ↓ NK(vj) and vj ↓ NK(vi),

f(X[i],X[j]), otherwise.

(3.1)

Thus, we obtain an augmented hypergraph HA containing the hypergraph HO =

(V , E) and the KNN graph GK = (V , EK). The reasons that we only consider K

nearest neighbors for augmented hypergraph construction are three-fold. In the first

24

3.3. Attributed Hypergraph Clustering

place, the case study in Figure 3.2 suggests that there is no significant di!erence

between the RCC of two random nodes (depicted by the gray dashed line) and that

of two nodes vi, vj such that vj ↓ NK(vi), when K is beyond a number (roughly

500 in Figure 3.2). Therefore, such connections can be overlooked without impeding

the clustering quality. Secondly, if we revisit the example in Figure 3.1 and apply

the KNN strategy (K = 3) here, we can exclude the connection between v2 and

v7 from GK since f(v2, v1) = f(v2, v4) = f(v2, v5) = 0.5 > f(v2, v7) = 0.41. The

distortion issue mentioned previously is therefore resolved. In comparison with the

densely connected graph that encodes all attribute similarities (with up to O(n2)

edges in the worst case), GK can be e”ciently constructed by utilizing well-established

approximate nearest neighbor techniques with O(n log n) complexity [38, 50].

The range of the KNN neighborhood is determined by parameter K. While a larger

K allows the KNN graph to include more attribute similarity relations, this also leads

to a higher proportion of unwanted inter-cluster edges in the KNN graph as evidenced

by the lower RCC in Figure 3.2. Meanwhile, K cannot be too small (e.g., 5), or it

will fail to utilize highly similar nodes that usually have high RCC. The trade-o! of

choosing K is evaluated in Section 3.8.3.

Now, the question lies in how to model the relationships of nodes in V of the aug-

mented graph HA, which is a linchpin to AHC. In the following section, we present

a joint random walk model that enables us to capture the multi-hop proximities of

nodes over HO and GK jointly.

3.3.2 (ω, ε, ϑ)-Random Walk

Random walk with restart [116] (RWR) is one of the most common and e!ective ran-

dom walk models for capturing the multi-hop relationships between nodes in a graph

[51], and is widely used in many tasks such as ranking [116, 108], recommendation

[93], and clustering [1]. Given a graph G, a source node u and a stopping probability

25

Chapter 3. ANCKA: Attributed Network Clustering

ω (typically ω = 0.2), at each step, an RWR originating from u either stops at the

current node with probability ω, or randomly picks an out-neighbor v of the current

node according to the weight of edge (u, v) and navigates to v with the remaining

1 → ω probability. It follows that RWR score (a.k.a. personalized PageRank [48]) of

any node pair (u, v) represents the probability that an RWR from u ends at node v.

Intuitively, two nodes with dense (one-hop or multi-hop) connections should have a

high RWR score.

Nevertheless, RWR is designed for general graphs, and thus cannot be directly applied

to our augmented hypergraph HA as it consists of a hypergraph HO and a general

graph GK . We devise a joint random walk scheme, named (ω, ε, ϑ)-random walk,

which conducts the RWR process over HO and GK jointly to seamlessly integrate

topological proximity over both networks. Definition 1 states the formal definition of

the (ω, ε, ϑ)-random walk process.

Definition 1. Given an augmented hypergraph HA = (HO, GK) and a source node

u, an (ω, ε, ϑ)-random walk W starting from u conducts ϑ steps and at each step

proceeds as follows.

• With probability ω, W terminates at the current node vi;

• with the other 1 → ω probability, W navigates to a node vj picked by the following

rules:

– with probability εi, W draws an out-neighbor vj of the current node vi in GK

according to probability AK [i,j]∑
vl→NK (vi)

AK [i,l] ;

– or with probability 1 → εi, W first draws an hyperedge ei incident to vi in HO,

and then draws node vj from ei uniformly at random.

Each node vi is associated with a parameter εi (see Eq. (3.2)) used to control the

joint navigation between hypergraph HO and KNN GK . The larger εi is, the more

26

3.3. Attributed Hypergraph Clustering

likely that the random walk jumps to the neighbors of vi in KNN GK .

εi =






0, if X[i] is a zero vector;

1, else if ς(vi) = 0;

ε, otherwise.

(3.2)

In general, we set εi to ε ↓ [0, 1], which is a user-specified parameter. In particular

cases, when node vi’s attribute vector X[i] is a zero vector, i.e., vi has no useful

information in the KNN GK , we set εi to 0. Conversely, εi is configured as 1 if

vi is connected to none of the hyperedges, i.e., ς(vi) = 0. Let s(vi, vj) denote the

probability of an (ω, ε, ϑ)-random walk from vi stopping at vj in the end. Based on

Definition 1, we can derive the following formula for s(vi, vj):

s(vi, vj) = S[i, j] = ω
∑

ω

ε=0(1 → ω)εPε[i, j], (3.3)

where P is a transition matrix defined by

P = (I → B) · D↓1
V
HTD↓1

E
H + BD↓1

K
AK , (3.4)

B = diag(ε1, . . . , εn) is a diagonal matrix containing εi parameters, and DK is the

diagonal degree matrix of GK . Pε[i, j] is the probability that a φ-hop walk from vi

terminates at vj.

3.3.3 Objective Function

In what follows, we formally define the objective function of AHC. Intuitively, a high-

quality cluster C in the augmented hypergraph HA should be both internally cohesive

and well disconnected from the remainder of the graph with the consideration of

multi-hop connections. Hence, if we simulate an (ω, ε, ϑ)-random walk W from any

27

Chapter 3. ANCKA: Attributed Network Clustering

node in C, W should have a low probability of escaping from C, i.e., ending at any node

outside C. We refer to this escaping probability ↼(C) as the multi-hop conductance

(MHC) of C, defined in Eq. (3.5).

↼(C) = 1
|C|

∑
vi↘C

∑
vj /↘C s(vi, vj) (3.5)

Since a low MHC ↼(C) reflects a high coherence of cluster C, we then formulate AHC

as an optimization problem of finding k clusters {C1, . . . , Ck} such that their MHC

%({C1, . . . , Ck}) (Eq. (3.6)) is minimized.

%({C1, . . . , Ck}) =
1

k

∑

C↘{C1,...,Ck}

1

|C|

∑

vi↘C

∑

vj /↘C

s(vi, vj) (3.6)

Directly minimizing Eq. (3.6) requires computing s(vi, vj) (Eq. (3.3)) of every two

nodes vi ↓ C, vj ↓ V\C, ↔C ↓ {C1, C2, · · · , Ck}, which is prohibitively expensive due to

intractable computation time (i.e., O(n3)) and storage space (i.e., O(n2)). In addition,

the minimization of %({C1, . . . , Ck}) is an NP-complete combinatorial optimization

problem [106], rendering the exact solution unattainable on large graphs.

3.4 Theoretical Analysis for AHCKA

This section presents the top-level idea of our proposed solution, AHCKA, to AHC

computation, and explains the intuitions behind it. At a high level, AHCKA first

transforms the objective of AHC in Eq. (3.6) to a matrix trace maximization problem,

and then derives an approximate solution via a top-k eigendecomposition. Note that

for any k non-overlapping clusters {C1, C2, · · · , Ck} on H satisfying
⋃

k

i=1 Ci = V , they

can be represented by a binary matrix Y ↓ {0, 1}n↗k, where for each node vi and

28

3.4. Theoretical Analysis for AHCKA

cluster Cj

Y[i, j] =






1, vi ↓ Cj

0, vi ↓ V \ Cj.
(3.7)

We refer to Y as a binary cluster membership (BCM) matrix of H and we use

h(Y) = (YTY)↓1/2Y = Ŷ (3.8)

to stand for the L2 normalization of Y. Particularly, Ŷ has orthonormal columns,

i.e., ŶTŶ = Ik where Ik is a k ↑ k identity matrix. Given k non-overlapping clusters

{C1, C2, · · · , Ck} and their corresponding BCM matrix Y, it is trivial to show

%({C1, . . . , Ck}) = 1 → &(Y), (3.9)

where &(Y) is defined as follows:

&(Y) =
1

k
trace(ŶTSŶ). (3.10)

Eq. (3.9) suggests that the minimization of MHC %({C1, . . . , Ck}) is equivalent to

finding a BCM matrix Y such that the trace of matrix ŶTSŶ is maximized. Due to

its NP-completeness, instead of computing the exact solution, we utilize a two-phase

strategy to derive an approximate solution as follows.

If we relax the binary constraint on Y, the following lemma establishes an upper

bound ↽ϑ for &(Y).

Lemma 3.4.1. Let ⇀1 ↗ ⇀2 ↗ · · · ↗ ⇀k be the k largest singular values of matrix S in

Eq. (3.3). Given any matrix W ↓ Rn↗k such that h(W) satisfies h(W)≃ ·h(W) = IK,

then &(W) ↘
1
k

∑
k

i=1 ⇀i = ↽ϑ.

29

Chapter 3. ANCKA: Attributed Network Clustering

Proof. Let Ŵ denote h(W), i.e., (WTW)↓1/2W (Eq. (3.8)) , and we have

&(W) =
1

k
trace(ŴTSŴ) =

1

k
trace(S(ŴŴT)) (3.11)

Since ŴTŴ = I, Ŵ is an n ↑ k orthogonal matrix with rank equal to k. Based on

basic matrix rank properties, the following inequalities regarding the rank of ŴŴT

can be derived.

k = rank(Ŵ) + rank(ŴT) → k

↘ rank(ŴŴT) ↘ min(rank(Ŵ), rank(ŴT)) = k
(3.12)

It follows that ŴŴT is a symmetric matrix with rank k and the eigenvalue 0 of

ŴŴT has multiplicity n → k. From the associativity of matrix multiplication, we

have (ŴŴT)Ŵ = Ŵ(ŴTŴ) = Ŵ. Thus, these column vectors of Ŵ correspond

to k unit eigenvectors of ŴŴT associated with eigenvalue 1. Since ŴŴT is a

symmetric matrix, its k largest eigenvalues, and singular values are 1 while the other

n → k eigenvalues and singular values are 0. Because the row-stochastic matrix S is

not necessarily Hermitian, we use Von Neumann’s trace inequality to derive an upper

bound of &(W) associated with the singular values of S and ŴŴT.

&(W) ↘
1

k
(

k∑

i=1

1 · ⇀i +
n∑

i=k+1

0 · ⇀i) =
1

k

k∑

i=1

1 · ⇀i = ↽ϑ (3.13)

Aside from the k largest singular values, all the other singular values of ŴŴT are 0.

Therefore, the resulting upper bound ↽ϑ is the arithmetic mean of k largest singular

values of S.

Lemma 3.4.1 implies that if we can first find a fractional matrix W such that &(W)

is close to ↽ϑ, a high-quality BCM matrix Y can be converted from W by leveraging

algorithms such as k-Means [80]. Although we can obtain such a fractional matrix

W by applying trace maximization techniques [124] to Eq. (3.10), it still remains

30

3.4. Theoretical Analysis for AHCKA

tenaciously challenging to compute S.

Lemma 3.4.2. Let the columns of Q ↓ Rn↗k be the second to (k + 1)-th leading

eigenvectors of P (Eq. (3.4)). Then, we have &(Q) = 1
k

∑
k+1
i=2 ⇁i = ↽ϖ, where

⇁2 ↗ · · · ↗ ⇁k ↗ ⇁k+1 are the second to (k + 1)-th leading eigenvalues of S, sorted by

algebraic value in descending order.

Proof. Denote the eigenvector associated with the i-th largest eigenvalue ⇁→
i

of P

by ei. Then Q is the matrix containing column vectors e2, . . . , ek+1. For ei where

1 ↘ j ↘ k:

Sei = (ω
∑

ω

l=0(1 → ω)lPl)ei = (ω
∑

ω

l=0(1 → ω)l⇁→l
i
)ei (3.14)

Hence, ei is also an eigenvector of matrix S associated with eigenvalue f(⇁→
i
) =

ω
∑

ω

l=0(1 → ω)l⇁→l
i
. Because function f(⇁→

j
) monotonously increases for 0 ↘ ⇁→

i
↘ 1,

we have f(⇁→
i
) ↘ f(⇁→

j
) if ⇁→

i
↘ ⇁→

j
(under the assumption that ⇁→

i
↘ 0). Therefore,

e2, . . . , ek+1 are also the second to (k + 1)-th leading eigenvectors of S and we ob-

tain &(Q) = 1
k
trace(QTSQ) = 1

k

∑
k+1
i=2 eT

i
Sei = 1

k

∑
k+1
i=2 ⇁i = ↽ϖ, completing the

proof.

We exclude the first eigenvector 1⇐
n

·1 of P as it is useless for clustering. By virtue of

our analysis in Lemma 3.4.2, the second to (k+1)-th leading eigenvectors Q of P (see

Eq. (3.4)) can be regarded as a rough W since &(Q) = ↽ϖ ↘ ↽ϑ and the gap between

↽ϖ and ↽ϑ is insignificant in practice. For instance, on the Cora-CA dataset, we can

obtain ↽ϑ = 0.668 and ↽ϖ = 0.596 (i.e., %ϑ = 1 → ↽ϑ = 0.332, %ϖ = 1 → ↽ϖ = 0.404),

both of which are better than &(Y↑) = 0.533 (i.e., %↑ = 1 → &(Y↑) = 0.467) of the

ground-truth BCM matrix Y↑. Consequently, using the second to (k + 1)-th leading

eigenvectors Q of P as the fractional solution W is su”cient to derive a favorable

BCM matrix. Moreover, in doing so, we can avoid the tremendous overhead incurred

by the materialization of S.

To summarize, AHCKA adopts a two-phase strategy to obtain an approximate solution

31

Chapter 3. ANCKA: Attributed Network Clustering

Initial

Clusters

Orthogonal

Iteration

Eigenvectors
Q(t)

Discretize

BCM
Y(0)

Evaluate MHC

BCM
Y(t)

Converged

Termination

Early-stop

Refine eigenvectors

Figure 3.3: Overview of AHCKA

to the AHC problem. First, AHCKA computes the second to (k + 1)-th leading eigen-

vectors Q of P. After that, AHCKA transforms Q into a BCM matrix Y through a

discretization approach [148] that minimizes the di!erence between Q and Y. The ra-

tionale is that &(Q) = &(QR) if R is a k↑k orthogonal matrix, ensuring RTR = Ik.

Accordingly, we can derive a BCM matrix Y = QR by minimizing the Frobenius

norm ||Q → QR||F with a binary constraint exerted on QR. Note that we do not

adopt k-Means over Q to get the BCM matrix Y as it deviates from the objective

in Eq. (3.10), and thus, produces sub-par result quality, as revealed by experiments

(Table 3.14).

Nevertheless, to realize the above idea, there still remain two crucial technical issues

to be addressed:

1. The brute-force computation of Q is time-consuming as it requires numerous iter-

ations and the construction of P.

2. In practice, directly utilizing the exact or near-exact Q might incur overfitting

towards the objective instead of ground-truth clusters, and hence, lead to sub-

optimal clustering quality. It is challenging to derive a practically e!ective and

robust BCM matrix Y from Q.

32

3.5. The AHCKA Algorithm

3.5 The AHCKA Algorithm

To circumvent the above challenges, AHCKA integrates the aforementioned two-phase

scheme into an iterative framework, which enables us to approximate the second to

(k+1)-th leading eigenvectors Q without constructing P explicitly, and greedily search

the BCM matrix Y with the best MHC. Figure 3.3 sketches the main ingredients

and algorithmic procedure of AHCKA. More specifically, AHCKA employs orthogonal

iterations [104] to approximate the second to (k + 1)-th leading eigenvectors Q of

P. During the course, AHCKA starts with an initial BCM matrix, followed by an

orthogonal iteration to compute an approximate Q and an updated BCM matrix

Y from the Q through Discretize algorithm [148]. Afterward, AHCKA inspects if

Q reaches convergence and computes the MHC with the current BCM matrix Y

via CalMHC algorithm (Algorithm 2). If Q converges (i.e., the BCM remains nearly

stationary) or the early termination condition is satisfied (i.e., the MHC of current

Y is satisfying), AHCKA terminates. Otherwise, AHCKA enters into the next orthogonal

iteration with the updated Q and Y.

In what follows, a detailed description of AHCKA is given in Section 3.5.1. Section

3.5.2 introduces an e!ective approach InitBCM for initializing the BCM matrix Y,

which drastically curtails the number of iterations needed and significantly boosts

the computation e”ciency of AHCKA. The complexity of the complete algorithm is

analyzed in Section 3.5.3.

3.5.1 Main Algorithm

The pseudo-code of AHCKA is presented in Algorithm 1, which takes as input an

attributed hypergraph H, transition matrix of attribute KNN graph PK , the number

k of clusters, a diagonal matrix B containing n parameters defined in Eq. (3.2),

the random walk stopping probability ω, an error threshold ϱQ, the numbers ϑ, Ta of

33

Chapter 3. ANCKA: Attributed Network Clustering

Algorithm 1: AHCKA
Input: Hypergraph H, KNN transition matrix PK , the number of clusters k,

diagonal matrix B, constant ω, error threshold ϱQ, the numbers of
iterations Ta, ϑ, an integer ϖ , and an initial BCM matrix Y(0).

Output: BCM matrix Y
1 Y ≃ Y(0), Ŷ(0)

≃ h(Y(0));

2 Q(0)
≃

1⇐
n

· 1|Ŷ(0) ;

3 for t ≃ 1, 2, · · · , Ta do
4 Compute Z(t) according to Eq. (3.16);
5 Q(t),R(t)

≃ QR(Z(t)) ;
6 if t mod ϖ = 0 then
7 Y(t)

≃ Discretize(Q(t)) ;
8 %(Y(t)) ≃ CalMHC(Y(t),PV ,PE,PK ,B, ϑ, ω);
9 if %(Y(t)) < %(Y) then Y ≃ Y(t);

10 if Eq. (3.19) or Eq. (3.20) holds then break;

11 return Y;

iterations, an integer ϖ , and an initial BCM matrix Y(0). AHCKA starts by computing

the normalized BCM matrix Ŷ(0) = h(Y(0)) (Eq. (3.8)) and setting the initial k + 1

leading eigenvectors Q(0) as 1⇐
n

· 1|Ŷ(0) (Lines 1-2), where | represents the horizontal

concatenation and 1⇐
n

· 1 is the first leading eigenvector of P since it is a stochastic

matrix. After that, AHCKA enters into at most Ta orthogonal iterations for computing

the k + 1 leading eigenvectors Q and the BCM matrix Y (Lines 3-10). At step t,

orthogonal iteration updates the approximate k + 1 leading eigenvectors of P as Q(t)

by the formula below (Lines 4-5):

Q(t)R(t) = Z(t) = PQ(t↓1), (3.15)

where Q(t) is obtained by a QR decomposition over Z(t). If t is su”ciently large, Q(t)

will converge to the exact k + 1 leading eigenvectors of P [104]. Note that the direct

computation of Z(t) = PQt↓1 requires constructing P explicitly as per Eq. (3.4),

which incurs an exorbitant amount of time and space (up to O(n2) in the worst case).

34

3.5. The AHCKA Algorithm

Algorithm 2: CalMHC

Input: Y(t),PV ,PE,PK ,B, ϑ, ω
Output: MHC ↼t

1 Ŷ(t)
≃ h(Y(t)); F(0)

≃ ωŶ(t);
2 for φ ≃ 1, 2, . . . ϑ do
3 Compute F(ε) according to Eq. (3.18);

4 ↼t ≃ 1 →
1
k
trace(Ŷ(t)≃F(ω));

5 return ↼t ;

To mitigate this, we decouple and reorder the matrix multiplication as in Eq. (3.16).

Z(t) = (I → B) · PV ·
(
PEQ

(t↓1)
)

+ BPK · Q(t↓1), (3.16)

where PV = D↓1
V
HT, PE = D↓1

E
H (3.17)

PV and PE are two sparse matrices of H and PK = D↓1
K
AK is the sparse transition

matrix of the KNN graph GK defined in Section 3.3.1. Note that all of them can be

e”ciently constructed in the preprocessing stage. As such, we eliminate the need to

materialize P and reduce the time complexity of computing Z(t) to O(nk · (ς + K)).

After obtaining Q(t), AHCKA converts Q(t) into a new BCM matrix Y(t) (Lines 6-7)

using the Discretize algorithm [148]. Notice that we conduct this conversion every

other ϖ iterations in order to avert unnecessary operations as the di!erence between

Y(t) and Y(t↓1) is often insignificant.

Next, at Line 8, AHCKA invokes CalMHC (i.e., Algorithm 2) with a BCM matrix Y(t),

other parameters including PV , PE, PK , B, ω, and the number of iterations ϑ as input

to calculate the MHC ↼t of the current BCM matrix Y(t). To avoid the materialization

of S required in Eq. (3.9) and Eq. (3.10), Algorithm 2 computes ↼t in an iterative

manner by reordering the matrix multiplications (Lines 2-3 in Algorithm 2). More

precisely, at the φ-th iteration, it obtains the intermediate result F(ε) via the following

35

Chapter 3. ANCKA: Attributed Network Clustering

equation:

F(ε) = (1 → ω)
(
(I → B) · PV ·

(
PEF(ε↓1)

)
+ BPK · F(ε↓1)

)
+ F(0). (3.18)

F(0) is initialized as Line 1 in Algorithm 2. It can be verified that ↼t = 1 →

1
k
trace(Ŷ(t)≃F(ω)) (Line 4 in Algorithm 2).

Once the convergence criterion of Q(t) (Eq. (3.19)) is satisfied, or the early termina-

tion condition (Eq. (3.20)) holds, AHCKA ceases the iterative process and returns the

BCM matrix Y with the lowest MHC (Lines 9-11 in Algorithm 1).

||Q(t)
→ Q(t↓1)

|| < ϱQ (3.19)

↼t↓2ϱ < ↼t↓ϱ < ↼t (3.20)

Otherwise, AHCKA proceeds to the next orthogonal iteration. The rationale for the

early termination condition in Eq. (3.20) is that, in practice, successive increases in

↼t indicate that clusters with desirable MHC objective have been attained.

3.5.2 Greedy Initialization of BCM

Akin to many optimization problems, AHCKA requires many iterations to achieve con-

vergence when Y(0) is randomly initialized. To tackle this issue, we propose a greedy

initialization technique, InitBCM, whereby we can immediately gain a passable BCM

matrix Y(0) and expedite the convergence, as demonstrated by our experiments in

Section 3.8.4.

The rationale of InitBCM is that most nodes tend to cluster together around a number

of center nodes [101]. Therefore, we can first pick a set Vc of top influential nodes w.r.t.

the whole hypergraph, and calculate the multi-hop proximities (i.e., RWR scores) of

each node to the influential nodes Vc (i.e., centers). Then, the cluster center of each

36

3.5. The AHCKA Algorithm

Algorithm 3: InitBCM
Input: Hypergraph H, matrices PV ,PE, integer k, constant ω, the number of

iterations Ti.
Output: An initial BCM matrix Y(0).

1 Vc ≃ The sorted indices of nodes with k largest degrees;
2 Initialize Z0 ≃ 0k↗n;
3 for j ≃ 1 to k do Z0[j, Vc[j]] ≃ 1 ;

4 Initialize !(0)
c

≃ ωZ0;
5 for t ≃ 1, 2, . . . Ti do
6 Compute !(t)

c
according to Eq. (3.21);

7 for vj ↓ V do
8 Calculate g(vj) according to Eq. (3.22);
9 Y(0)[j, g(vj)] ≃ 1;

10 return Y(0) ;

node can be determined by its proximity to nodes in Vc accordingly.

Algorithm 3 displays the pseudo-code of InitBCM. Given hypergraph H, and transi-

tion matrices PV ,PE defined in Eq. (3.17), the number k of clusters, random walk

stopping probability ω, and the number of iterations Ti, as input, InitBCM begins by

initializing an ordered set Vc consisting of the k nodes with k largest degrees in H

(sorted by their indices), which later serves as the cluster centers (Line 1). Then, a

k ↑ n matrix Z0 is created, where for each integer j ↓ [1, k], Z0[j, Vc[j]] is set to 1

and 0 otherwise and Vc[j] denotes the node index of the j-th node in Vc (Lines 2-3).

Next, InitBCM launches Ti iterations to calculate the RWR scores of all nodes w.r.t

the k nodes in Vc (Lines 5-6). Specifically, at t-th iteration, we compute approximate

RWR !(t)
c

(Line 6):

!(t)
c

= (1 → ω)
(
!(t↓1)

c
PV

)
· PE + !0, (3.21)

where !0 = ωZ0 (Line 4). Note that we reorder the matrix multiplications as in Eq.

(3.21) so as to bypass the materialization of the n↑n matrix PVPE. After obtaining

!(Ti)
c

, InitBCM assigns the node Vc[g(vj)] as the cluster center to each node vj in H

37

Chapter 3. ANCKA: Attributed Network Clustering

as per Eq. (3.22) (Lines 7-9).

g(vj) = arg max
1⇒l⇒k

!(Ti)
c

[l, j], (3.22)

meaning that we pick a cluster center from Vc such that its RWR score !(Ti)
c

[l, j]

w.r.t vj is the highest. Finally, an n ↑ k binary matrix Y(0) is constructed by setting

Y(0)[j, g(vj)] to 1 for vj ↓ V and returned as the initial BCM matrix.

3.5.3 Complexity

One of the main computational costs of AHCKA stems from the sparse matrix multi-

plications, i.e., Line 4 in Algorithm 1, Line 3 in Algorithm 2, and Line 6 in Algorithm

3. We first consider Line 4 in Algorithm 1, i.e., Eq. (3.16). Since Q(t↓1) is an

n ↑ (k + 1) matrix and the numbers of non-zero entries in sparse matrices PV , PE,

and PK are nς, nς, and nK, respectively, its complexity is O((nς + nK) · k) [150].

Analogously, according to Eq. (3.18), and Eq. (3.21), both the time costs of Line

3 in Algorithm 2 and Line 6 in Algorithm 3 are bounded by O(nςk). Recall that

these three operations are conducted up to Ta, ϑ, and Ti times in Algorithms 1, 2,

and 3, respectively. Therefore, the total time cost of sparse matrix multiplications is

O(knς · (Ta + Ti + ϑ) + knKTa). Moreover, in Algorithm 1, the QR decomposition at

Line 5 takes O(k2n) time and Discretize [148] runs in O(k2n + k3) time. Overall,

the time complexity of AHCKA is O(knς · (Ta + Ti + ϑ) + knKTa + k2n), which equals

O(nς) when Ta, Ti, ϑ, k, and K are regarded as constants. The space complexity of

AHCKA is O(n · (ς + K + k)) as all matrices are in sparse form.

38

3.6. The ANCKA framework

3.6 The ANCKA framework

In this section, we generalize AHCKA that is for AHC to a versatile framework ANCKA

to process all of AHC, AGC, and AMGC, formulated in Section 3.2. ANCKA aims to

e”ciently find high-quality clusters on various types of network N .

As mentioned, the proposed KNN augmentation in Section 3.3.1 is orthogonal to the

high-order nature of hypergraph, and therefore, we can apply the KNN augmentation

to input attributed network N that can be an attributed hypergraph H, graph G,

and multiplex graph GM .

Recall that, in Figure 3.2, we have empirically shown that nodes with higher attribute

similarity are more likely to appear in the same cluster of a hypergraph H. This

also holds for attributed graphs and attributed multiplex graphs. Figures 3.4a-3.4b

illustrate the AAS and RCC on the attributed graph Citeseer-DG and the attributed

multiplex graph ACM, with binary keyword vectors as node attributes. On both

datasets, nodes with higher attribute similarity (i.e., higher AAS with smaller K) are

more likely to be in the same cluster (i.e., higher RCC). Moreover, above a certain K

value, there is no significant di!erence between the RCC of two random nodes and

that of two nodes vi and vj such that vj is the K-nearest neighbor of vi. Based on

these observations, it is viable to extend KNN augmentation in Section 3.3.1 to an

attributed network N with n nodes and attribute matrix X ↓ Rn↗d, by building a

KNN augmentation graph GK via Eq. (3.1).

Then we obtain an augmented network NA with topology NO and KNN graph GK ,

where NO is (V , E) when N is an attributed hypergraph H or (V , EG) for graph G,

and NO is (V , E1, . . . , EL) when N is an attributed multiplex graph GM .

3.6.1 Generalized (ω, ε, ϑ)-Random Walk

39

Chapter 3. ANCKA: Attributed Network Clustering

1 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

K

AAS
RCC

(a) AAS and RCC on Citeseer-DG

1 200 400 600 800 1,000

0.3

0.5

0.7

0.9

K

AAS
RCC

(b) AAS and RCC on ACM

For the augmented network NA = (NO, GK), define PN and PK as the random walk

transition matrices of NO and GK respectively. The generalized (ω, ε, ϑ)-random walk

on NA is an RWR process over the augmented network NA, similar to the case of

attributed hypergraphs in AHCKA. The di!erence from Definition 1 is that when the

random walk navigates to another node, with probability 1 → εi, an out-neighbor is

drawn from the distribution of PN instead of incident hyperedges. This generalized

random walk can also be characterized by the probability in Eq. (3.3), with transition

matrix P given as follows.

P = (I → B) · PN + B · PK . (3.23)

We now formulate PN for di!erent types of networks, including attributed hyper-

graphs as one special case.

Attributed Hypergraph H. When NO is a hypergraph with hyperedge incidence

matrix H, based on Eq. (3.4), PN is shown below. PN considers the transition

probability PV from a node to its incident hyperedges and the transition probability

PE from each hyperedge to nodes connected by the hyperedge.

PN = PVPE, where PV = D↓1
V
HT and PE = D↓1

E
H. (3.24)

40

3.6. The ANCKA framework

Attributed Graph G. When NO is an undirected graph, we can acquire the tran-

sition matrix PN in Eq. (3.25). If NO is directed, we introduce a reversed edge for

each edge and consider bidirectional connections between nodes to get A, D, and

subsequently PN .

PN = D↓1A, (3.25)

where A is the adjacency matrix and D is the degree matrix.

Attributed Multiplex Graph GM . When NO is a multiplex graph comprising L

layers with the same node set V , the l-th layer has its own edge set El representing a

unique type of connections. The overall goal of the clustering task is to make cluster

assignments that capture the collective structure of the multiplex graph, transcending

the di!erences across layers. To achieve this, intuitively, we treat every layer equally

and compute PN as in Eq. (3.26), while layer weighting is left as future work [52].

Given the degree matrix Dl and adjacency matrix Al of every l-th layer, we get the

layer’s random walk transition matrix D↓1
l
Al, and then compute PN of the multiplex

graph by averaging the layer-specific transition matrices. Consequently, from the

current node v, a random walk has 1/L probability of selecting each layer Gl, and

then within this chosen layer, the next node to visit is picked uniformly at random

from the out-neighbors of v in Gl.

PN =
1

L

L∑

l=1

D↓1
l
Al, (3.26)

where Dl and Al are the degree matrix and adjacency matrix of the l-th layer.

3.6.2 ANCKA Algorithm

With the random walk transition matrix P formulated above for various types of

attributed networks N , Eq. (3.3) can be reused to calculate S[i, j], the probability of

a generalized (ω, ε, ϑ)-random walk from vi stopping at vj in the end. The objective

41

Chapter 3. ANCKA: Attributed Network Clustering

function in Section 3.3.3 is naturally extended to ANCKA. Consequently, our theoretical

analysis in Section 3.4 remains valid for ANCKA over attributed networks that can be

hypergraphs, graphs, and multiplex graphs.

The pseudo-code of ANCKA is outlined in Algorithm 4. At Line 1, it obtains transi-

tion matrix PK for attribute KNN augmentation. Then as a framework supporting

various attributed networks, ANCKA is a generalization of Algorithms 1-3 with tran-

sition matrix PN computed depending on the network type at Line 2. PN is then

used throughout the algorithm as a part of the generalized (ω, ε, ϑ)-random walk.

The greedy initialization of clusters in Lines 3-11 resembles the procedure in InitBCM

with the corresponding PN for RWR simulation. Since ANCKA needs to pick k nodes

in N with the largest degrees as tentative cluster centers at Line 3 when N is an

attributed multiplex graph, we rank the nodes by their summed degrees across all

layers.

Lines 12-24 describe the main clustering process of ANCKA, which extends the hypergraph-

specific Algorithms 1 and 2 with modifications to support attributed graphs and mul-

tiplex graphs. First, in orthogonal iterations, calculating Z(t) is dependent on the

type of N . Second, the MHC objective for general networks stems from the analysis

in Section 3.4, while the formulation with PN is slightly di!erent. In particular, to

get MHC ↼t without materializing the dense matrix S in Eq. (3.10) that is expensive

to compute, we iteratively obtain ↼t via the intermediate matrix F(ε) in Eq. (3.27) at

Line 21.

F(ε) = (1 → ω)((I → B)PNF
(ε↓1) + BPKF

(ε↓1)) + F(0), (3.27)

where PN is Eq. (3.24), (3.25), or (3.26), depending on the type of N . Finally, ANCKA

adopts the early stopping criteria in Line 24 and returns the clusters with the lowest

MHC obtained.

Complexity. When N is an attributed graph, constructing transition matrix PN

takes O(nς) time, where ς is the average node degree. For a multiplex network N

42

3.6. The ANCKA framework

Algorithm 4: ANCKA
Input: Attributed network N with KNN augmented graph GK , the number of

clusters k, diagonal matrix B, constant ω, error threshold ϱQ, the

numbers of iterations Ta, ϑ, Ti, an integer ϖ .

Output: BCM matrix Y

1 PK ≃ D↓1
K
AK ;

2 Get PN by Eq. (3.24), (3.25), or (3.26), depending on the type of N ;

3 Vc ≃ sorted indices of k nodes in N with k largest degrees;

4 Initialize Z0 ≃ 0k↗n;

5 for j ≃ 1 to k do Z0[j, Vc[j]] ≃ 1 ;

6 Initialize !(0)
c

≃ ωZ0;

7 for t ≃ 1, 2, . . . Ti do

8 !(t)
c

≃ (1 → ω)!(t↓1)
c

PN + !(0)
c

;

9 for vj ↓ V do

10 g(vj) ≃ arg max1⇒l⇒k !
(Ti)
c

[l, j] ;

11 Y(0)[j, g(vj)] ≃ 1;

12 Y ≃ Y(0), Ŷ(0)
≃ h(Y(0));

13 Q(0)
≃

1⇐
n

· 1|Ŷ(0) ;

14 for t ≃ 1, 2, · · · , Ta do

15 Z(t)
≃ (I → B)PN · Q(t↓1) + BPK · Q(t↓1);

16 Q(t),R(t)
≃ QR(Z(t)) ;

17 if t mod ϖ = 0 then

18 Y(t)
≃ Discretize(Q(t)) ;

19 Ŷ(t)
≃ h(Y(t)); F(0)

≃ ωŶ(t);

20 for φ ≃ 1, 2, . . . ϑ do

21 Compute F(ε) according to Eq. (3.27)

22 %(Y(t)) ≃ 1 →
1
k
trace(Ŷ(t)≃F(ω));

23 if %(Y(t)) < %(Y) then Y ≃ Y(t);

24 if Eq. (3.19) or Eq. (3.20) holds then break;

25 return Y;

43

Chapter 3. ANCKA: Attributed Network Clustering

with L layers, the previous results are still valid when L is regarded as constant, as

PN is aggregated from the transition matrices of all simple graph layers. Given that

the number of nonzero entries in PN is subject to O(nς), ANCKA (Algorithm 4) has the

same complexity as Algorithm 1. According to our analysis in Section 3.5.3, the time

complexity of ANCKA is O(kn(ς+K+k)) while its space complexity is O(n(ς+K+k)).

Since k and K can be viewed as constants, ANCKA has space and time complexity of

O(nς).

3.7 GPU-Accelerated ANCKA-GPU

On large attributed networks, e.g., Amazon and MAG-PM hypergraphs, each with

more than 2 million nodes, as reported in Table 3.7, AHCKA with 16 CPU threads

still needs 1286s and 1372s respectively for clustering, despite its superior e”ciency

compared with baselines. Moreover, AHCKA does not exhibit acceleration proportional

to increased CPU threads. As shown in Figure 3.4, when the number of CPU threads

is raised from 1 to 32, the time drops from around 3000s to 1200s, with a speedup

of merely 2.5 (Amazon) or 2.7 (MAG-PM). In particular, increasing the number of

threads from 16 to 32 provides rather limited acceleration (less than 10%).

To overcome the limitation of CPU parallelization, we resort to the massive parallel

processing power of GPUs (graphical processing unit) and develop ANCKA-GPU to boost

e”ciency, with about one order of magnitude speedup on large networks with millions

of nodes in experiments. For example, ANCKA-GPU only needs 120s on an MAG-

PM dataset, over 10 times faster than the 1372s of ANCKA. Compared to CPUs, the

design of GPUs enables them to leverage numerous threads to handle data processing

simultaneously, which is beneficial for vector and matrix operations at scale. Please

see [19] for details on GPU computing.

As shown in Figure 3.14 of Section 3.8.5 for runtime analysis, the major time-

44

3.7. GPU-Accelerated ANCKA-GPU

consuming components of ANCKA include invoking Discretize (Line 18 in Algorithm

4), the construction of KNN graph GK , and expensive matrix operations in orthog-

onal iterations, greedy initialization and MHC evaluation. With the CuPy library,

matrix operations throughout Algorithm 4 can be done on GPUs more e”ciently.

In the following, we elaborate on the GPU-based discretization and GK construction

techniques adopted in ANCKA-GPU.

GPU-based Discretization Discretize-GPU. ANCKA uses the o!-the-shelf Discretize

approach [148] to compute discrete cluster labels Y from real-valued eigenvectors Q,

which could cost substantial time on large datasets. Here, we develop a CUDA kernel

Discretize-GPU for e”ciency. In what follows, we first explain how the discretiza-

tion algorithm improves the optimization objective in Definition 2, and then present

the design of Discretize-GPU in Algorithm 5.

Given an eigenvector matrix Q with its row-normalized matrix Q̃, discretization is

aimed to find a discrete solution Yopt that minimizes the objective in Definition 2.

Definition 2. (Discretization [148]) The solution to the following optimization prob-

lem is the optimal discrete Yopt.

Yopt = argmin
Y

||Y → Q̃R||
2
F

s.t. Y ↓ {0, 1}n↗k, Y1k = 1n, R ↓ Rk↗k, RTR = Ik,

where Q̃ is the row-normalized matrix of an eigenvector matrix Q, R is a rotation

matrix, and ||M||F denotes the Frobenius norm of matrix M.

The Discretize approach finds a nearly global optimal solution by alternately up-

dating one of Y and R while keeping the other fixed. With R fixed, Y[i, l] is updated

to

Y[i, g] =






1, if g = arg max1⇒j⇒k(Q̃R)[i, j]

0, otherwise.
(3.28)

45

Chapter 3. ANCKA: Attributed Network Clustering

1 2 4 8 16 32

1,200

2,000

2,800

3,600

CPU Threads

Time (s)

Amazon
MAG-PM

Figure 3.4: Runtime of AHCKA with CPU parallelization

With Y fixed, Ỹ is the column-normalized matrix of Y, and R can be updated as

follows with SVD decomposition.

R = VUT, where U”VT is an SVD of ỸTQ̃. (3.29)

The iterative process can terminate early when an objective value obj based on ”

converges, i.e., its change over the last iteration is within machine precision. This

objective is calculated as obj = n → 2 ↑ trace(”) [148].

We implement the CUDA kernel Discretize-GPU in Algorithm 5 to perform the

process above to obtain Y. In details, Discretize-GPU leverages the grid-block-

thread hierarchy of GPU to assign threads to handle n ↑ k matrices, including Q

and Y. Each row in such a matrix is processed by a block of threads, identified by

a block id bid; each of the k elements in the row is handled by a thread tid in the

block. Consequently, given a matrix Q, we can use Q[bid, tid] to represent that the

corresponding element in Q is handled by the tid-th thread in block bid on a GPU.

Parallel row normalization is performed at Lines 1-2 to get Q̃. After initializing R

as a k ↑ k identity matrix (Line 3), we alternately update Ỹ and R for at most

max iter iterations (Lines 4-12) and terminate early when the objective value obj

does not change over the current iteration at Line 12. Within an iteration, we first

46

3.7. GPU-Accelerated ANCKA-GPU

Algorithm 5: Discretize-GPU
Input: eigenvector matrix Q

Output: Intermediate BCM matrix Y

1 Parallel for i ≃ 1, 2, · · · , n do

2 Q̃[i] ≃
Q[i]

⇑Q[i]⇑2 ;

3 R ≃ Ik ;

4 while iter ≃ 1, 2, · · · , max iter do

5 Update Y by Eq. (3.28) via argmax kernel on GPU;

6 Parallel for j ≃ 1, 2, · · · , k do

7 col sum[j] ≃
∑

n

i=1 Y[i, j]

8 Parallel for each tid < k in blocks do

9 Ỹ[bid, tid] ≃
Y[bid,tid]

col sum[tid] ;

10 U,”,VT
≃ SVD GPU(ỸTQ̃) ;

11 R ≃ VUT on GPU;

12 if Objective value obj does not change then break;

13 return Y;

update Y at Line 5, then perform column normalization to get Ỹ (Lines 6-9), and

then perform SVD on GPU over ỸTQ̃ to get U and V at Line 10, which helps to

update R at Line 11. Finally, Y is returned at Line 13.

KNN construction. An n ↑ d attributed matrix X requires KNN search on its

rows to construct the augmented graph GK and thus the transition matrix PK . For

this purpose, we adopt Faiss [50], a GPU-compatible similarity search library. In

Algorithm 6 for GK construction, we first normalize all rows in X at Lines 1-2 to

facilitate the computation of cosine similarity between row vectors. Faiss supports

various indexes for KNN computation, and the index type suitable for ANCKA is de-

termined based on the input data volume. For small or medium datasets where the

number of nodes |V| is below 100,000, since the time cost for exact similarity search

is a!ordable, we choose the flat index with a plain encoding of each row vector in X,

47

Chapter 3. ANCKA: Attributed Network Clustering

Algorithm 6: GPU-based GK construction
Input: Network N , attribute matrix X, parameter K.

Output: KNN transition matrix PK

1 Parallel for i ≃ 1, 2, · · · , n do

2 X[i] ≃
X[i]

||X[i]||2 ;

3 if |V| < 100, 000 then

4 index ≃ FlatIndex (X) ;

5 else

6 index ≃ IVFPQIndex (X) ;

7 Invoke Faiss on GPU to get the KNN of each row in X ;

8 Get AK by Eq. (3.1) on GPU ;

9 DK ≃ Diag(AK1n) on GPU ;

10 PK ≃ D↓1
K
AK on GPU;

11 return PK ;

to achieve exact KNN computation (Lines 3-4). Otherwise, we turn to approximate

nearest neighbor search on large datasets with the IVFPQ index that combines the

inverted file index (IVF) with the product quantization (PQ) technique at Line 6. In

particular, IVF index narrows down the search to closely relevant partitions that con-

tain the nearest neighbors at a high probability, while PQ produces memory-e”cient

encoding of attribute vectors. Faiss on GPU is invoked to get the KNN of each row

in X, and AK is obtained by Eq. (3.1) at Lines 7-8. Then, the degree matrix DK

and transition matrix PK are computed on GPU (Lines 9-10) and returned at Line

11.

3.8 Experiments

We experimentally evaluate the proposed ANCKA and competitors in terms of both

clustering quality and e”ciency. We also evaluate the performance of ANCKA-GPU

48

3.8. Experiments

Table 3.1: Dataset statistics.

Task Dataset Type |V| |E| d k

AHC

Query HG 481 15,762 426 6
Cora-CA HG 2,708 1,072 1,433 7
Cora-CC HG 2,708 1,579 1,433 7
Citeseer HG 3,312 1,079 3,703 6
20News HG 16,242 100 100 4
DBLP HG 41,302 22,363 1,425 6
Amazon HG 2,268,083 4,285,295 1,000 15
MAG-PM HG 2,353,996 1,082,711 1,000 22

AGC

Cora UG 2,708 5,429 1,433 7
Citeseer-UG UG 3,327 4,732 3,703 6
Wiki UG 2,405 17,981 4,973 17
Citeseer-DG DG 3,312 4,715 3,703 6
TWeibo DG 2,320,895 50,655,143 1,657 8
Amazon2M UG 2,449,029 61,859,140 100 47

AMGC

ACM MG 3,025
29,281

1,870 32,210,761

IMDB MG 3,550
13,788

2,000 366,428

DBLP-MG MG 4,057
11,113

334 45,000,495
7,043,571

on all clustering tasks. In experiments, we uniformly refer to our method as ANCKA

while making it clear in the context whether ANCKA is for AHC (i.e., AHCKA), AGC,

or AMGC. All the experiments are conducted on a Linux machine powered by Intel

Xeon(R) Gold 6226R CPUs, 384GB RAM, and NVIDIA RTX 3090 GPU. A maximum

of 16 CPU threads are available if not otherwise stated. The code is at https:

//github.com/gongyguo/ANCKA.

3.8.1 Experimental Setup

Datasets

Table 3.1 provides the statistics of 17 real-world attributed networks used in exper-

iments, including attributed hypergraphs (HG), undirected graphs (UG), directed

graphs (DG), and multiplex graphs (MG). |V| and |E| are the number of nodes and

edges (or hyperedges), respectively, d is the attribute dimension and k is the number

49

https://github.com/gongyguo/ANCKA
https://github.com/gongyguo/ANCKA

Chapter 3. ANCKA: Attributed Network Clustering

of ground-truth clusters.

We gather 8 attributed hypergraph datasets. Query dataset [123] is a Web query

hypergraph, where nodes represent queries and are connected by hyperedges repre-

senting query sessions, and nodes are associated with attributes of keyword embed-

dings and associated webpages. Cora-CA, Cora-CC, Citeseer, and DBLP are four

benchmark datasets used in prior work [136]. All of them are originally collected

from academic databases, where each node represents a publication, node attributes

are binary word vectors of abstract, and research topics are regarded as ground-truth

clusters. Hyperedges correspond to co-authorship in Cora-CA and DBLP datasets

or co-citation relationship in Cora-CC and Citeseer datasets. 20News dataset [43]

consists of messages taken from Usenet newsgroups. Messages are nodes, and the

messages containing the same keyword are connected by a corresponding hyperedge,

and the TF-IDF vector for each message is used as the node attribute. Amazon

dataset is constructed based on the 5-core subset of Amazon reviews dataset [90],

where each node represents a product and a hyperedge contains the products re-

viewed by a user. For each product, we use the associated textual metadata as the

node attributes and the product category as its cluster label. MAG-PM dataset is

extracted from the Microsoft Academic Graph [110], where nodes, co-authorship hy-

peredges, attributes, and cluster labels are obtained as in other academic datasets

(i.e., Cora-CA, Cora-CC, Citeseer, and DBLP).

In Table 3.1, we also consider 6 attributed graphs, which are commonly used for AGC

[154, 52, 144, 15]. Cora, Citeseer-UG, Wiki, and Amazon2M are undirected, while

Citeseer-DG and TWeibo are directed. TWeibo [144] and Amazon2M [15] are two

large-scale attributed graphs. TWeibo is a social network where each node represents

a user, and the directed edges represent relationships between users. Amazon2M

is constructed based on the co-purchasing networks of products on Amazon. Cora,

Citeseer-UG, and Citeseer-DG are citation networks where nodes represent publica-

tions, a pair of nodes are connected if one cites the other, and nodes are associated

50

3.8. Experiments

with binary word vectors as features. Wiki is a webpage network where each edge in

the graph indicates that one webpage is linked to the other, while the node attributes

are TF-IDF feature vectors. Moreover, three attributed multiplex graphs, namely

ACM, IMDB, and DBLP-MG, are considered for AMGC [49, 91, 77]. ACM is an

academic publication network comprising co-author and co-subject graph layers, as

well as bag-of-words attributes of keywords. IMDB is a movie network with plot text

embeddings as attributes and two graph layers representing the co-director (directed

by the same director) and co-actor (starring the same actor) relations, respectively.

DBLP-MG is a researcher network including publication keyword vectors as attributes

and three graph layers: co-author, co-conference (publishing at the same conference),

and co-term (sharing common key terms). ACM and DBLP-MG have research areas

labeled as ground truth clusters, while IMDB is labeled by movie genres.

Competitors and Parameter Settings

The 19 competitors for AHC are summarized as follows:

• 3 plain hypergraph clustering methods including HNCut [156], HyperAdj [102], and

KaHyPar [35];

• the extended AHC versions of the 3 methods above (dubbed as ATHNCut, ATHyperAdj,

and ATKaHyPar), which work on an augmented hypergraph with attribute-KNN hy-

peredges of all nodes merged into the input hypergraph;

• ATMetis that applies the traditional graph clustering algorithm Metis [55] over a

graph constructed by clique expansion of the input hypergraph and attribute KNN

graph augmentation; Infomap [103], Louvain [8], k-MQI and k-Nibble (extended

from MQI [63] and PageRank-Nibble [4] for k-way clustering via k → 1 consecutive

bisections as described in technical report [71]) on the same KNN-augmented clique-

expansion graph;

51

Chapter 3. ANCKA: Attributed Network Clustering

• 3 AHC algorithms including the recent GRAC [27] and NMF-based approaches

(GNMF [10, 27] and JNMF [23]);

• ACMin-C and ACMin-S, obtained by applying an attributed graph clustering method

ACMin [144] over the graphs reduced from hypergraphs by clique expansion and star

expansion, respectively; probabilistic model CESNA [139] with clique-expansion;

• k-means and HAC (hierarchical agglomerative clustering [121]) algorithms applied

to the node attribute matrix.

To evaluate the ANCKA framework, we compare 16 competitors for AGC, including

k-means, HAC and the following:

• 6 AGC approaches including NMF-based algorithm GNMF [10], graph convolution

algorithm AGCGCN [154] , probabilistic model CESNA [139], spectral clustering on

fine-grained graphs method FGC [53], attributed random walk approach ACMin

[144], and the clustering framework GRACE [52] generalized from GRAC.

• NCut [106] and Metis [55] that are conventional graph clustering methods ap-

plied to the input graph;

• ATNCut and ATMetis that are NCut and Metis applied to the augmented graph

with attribute KNN; Infomap [103], Louvain [8], k-MQI [63] and k-Nibble [4]

on the augmented graph with attribute KNN.

We compare ANCKA with 16 competitors for AMGC task, including k-means, HAC and

the following:

• 5 AMGC methods: a multi-view graph auto-encoder model O2MAC [24], HDMI

[49] that learns node embeddings via higher-order mutual information loss, MCGC

[91] and MAGC [77] which perform graph filtering and find a consensus graph for

spectral clustering, and GRACE [52] that is a general graph convolution clustering

method;

52

3.8. Experiments

Table 3.2: Attributed Hypergraph Clustering (AHC) Quality on Small Datasets.

Query Cora-CA Cora-CC Citeseer
Algorithm Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

HyperAdj 0.212 0.198 0.013 -0.004 0.233 0.216 0.038 0.022 0.255 0.191 0.039 0.015 0.226 0.182 0.008 0.002
HNCut 0.239 0.218 0.016 0.002 0.238 0.127 0.023 -0.002 0.213 0.125 0.021 -0.005 0.222 0.167 0.010 0.004
KaHyPar 0.220 0.205 0.016 0.003 0.275 0.265 0.084 0.050 0.309 0.289 0.135 0.089 0.275 0.265 0.045 0.036
k-means 0.586 0.581 0.461 0.230 0.349 0.297 0.158 0.086 0.351 0.312 0.176 0.097 0.460 0.424 0.219 0.185
HAC 0.541 0.575 0.453 0.173 0.374 0.336 0.234 0.096 0.374 0.336 0.234 0.096 0.376 0.352 0.188 0.083

ATHyperAdj 0.281 0.259 0.036 0.019 0.255 0.232 0.061 0.032 0.262 0.238 0.061 0.035 0.218 0.198 0.010 0.005
ATHNCut 0.241 0.220 0.017 0.003 0.438 0.297 0.263 0.183 0.556 0.456 0.317 0.288 0.563 0.483 0.325 0.286
ATMetis 0.520 0.507 0.349 0.264 0.575 0.550 0.403 0.346 0.552 0.529 0.379 0.310 0.612 0.590 0.357 0.348

ATKaHyPar 0.243 0.225 0.025 0.009 0.528 0.477 0.316 0.260 0.529 0.480 0.299 0.246 0.551 0.532 0.304 0.276
k-MQI 0.222 0.071 0.019 -0.001 0.304 0.070 0.005 0.001 0.302 0.069 0.005 0.000 0.212 0.059 0.003 0.000

k-Nibble 0.252 0.121 0.025 0.008 0.321 0.119 0.070 0.060 0.391 0.165 0.155 0.098 0.345 0.170 0.139 0.102
Infomap 0.235 0.215 0.017 0.002 0.514 0.464 0.343 0.266 0.541 0.479 0.393 0.347 0.491 0.463 0.263 0.221
Louvain 0.239 0.218 0.017 0.003 0.501 0.430 0.332 0.217 0.569 0.546 0.373 0.269 0.570 0.486 0.319 0.308

CESNA 0.222 0.191 0.024 0.002 0.305 0.092 0.030 0.000 0.378 0.240 0.140 0.053 0.206 0.060 0.012 0.000
ACMin-C 0.233 0.219 0.017 0.003 0.526 0.493 0.319 0.237 0.556 0.473 0.349 0.259 0.643 0.587 0.355 0.376
ACMin-S 0.241 0.140 0.008 -0.002 0.523 0.477 0.318 0.239 0.526 0.462 0.340 0.249 0.636 0.597 0.351 0.365

GNMF 0.451 0.413 0.345 0.247 0.460 0.412 0.240 0.165 0.436 0.355 0.194 0.132 0.500 0.462 0.271 0.257
JNMF 0.216 0.211 0.014 -0.001 0.494 0.443 0.286 0.216 0.453 0.426 0.230 0.178 0.543 0.518 0.246 0.242
GRAC 0.410 0.389 0.196 0.087 0.601 0.593 0.376 0.308 0.556 0.507 0.349 0.262 0.612 0.575 0.329 0.332
ANCKA 0.715 0.662 0.645 0.571 0.651 0.608 0.462 0.406 0.592 0.520 0.412 0.338 0.662 0.615 0.392 0.397

• NCut [106] and Metis [55] that apply traditional graph clustering methods over

the aggregation of the adjacency matrices of all graph layers in the input mul-

tiplex graph;

• ATNCut and ATMetis that apply NCut and Metis to the aggregated matrix of

all layers’ adjacency matrices and the attribute KNN graph; Infomap [103],

Louvain [8], k-MQI [63] and k-Nibble [4] in the same way;

• CESNA [139] that treats the aggregated adjacency matrix of all layers as an

attributed graph;

For all competitors, we adopt the default parameter settings as suggested in their

respective papers. Hyperparameters for AMGC algorithms MCGC and MAGC are tuned

as instructed in the corresponding papers, and we report the best results acquired.

As for ANCKA on attributed hypergraphs, i.e., AHCKA [73], unless otherwise specified,

we set parameters on all datasets: ω = 0.2, ε = 0.5, and ϑ = 3, parameter K = 10

for KNN construction, the convergence threshold ϱQ = 0.005, and the numbers of

iterations Ta = 1000, Ti = 25. The interval parameter ϖ is set to 5 on all datasets

53

Chapter 3. ANCKA: Attributed Network Clustering

Table 3.3: Attributed Hypergraph Clustering (AHC) Quality on Medium/Large
Datasets.

20News DBLP Amazon MAG-PM Quality
Algorithm Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

HyperAdj 0.338 0.274 0.010 0.010 0.234 0.158 0.019 0.007 0.292 0.105 0.043 0.070 0.138 0.078 0.051 0.028 15.5
HNCut 0.683 0.561 0.373 0.387 0.279 0.113 0.020 0.009 0.310 0.032 0.001 0.000 0.253 0.022 0.005 0.001 13.8
KaHyPar 0.479 0.468 0.169 0.172 0.559 0.534 0.390 0.338 0.494 0.442 0.694 0.385 0.367 0.306 0.483 0.247 10.9
k-means 0.404 0.373 0.147 0.045 0.529 0.513 0.362 0.283 0.380 0.257 0.362 0.175 0.272 0.196 0.229 0.071 10.1
HAC 0.430 0.382 0.237 0.058 0.571 0.532 0.372 0.310 OOM OOM 11.1

ATHyperAdj 0.317 0.261 0.016 0.006 0.296 0.220 0.068 0.035 0.273 0.103 0.050 0.057 0.189 0.048 0.043 -0.006 13.8
ATHNCut 0.338 0.133 0.002 0.001 0.458 0.245 0.386 0.173 0.310 0.033 0.003 0.000 0.269 0.035 0.035 -0.001 10.8
ATMetis 0.612 0.596 0.264 0.281 0.671 0.670 0.567 0.496 OOM 0.304 0.254 0.401 0.196 4.9

ATKaHyPar 0.632 0.610 0.295 0.328 0.650 0.658 0.522 0.457 0.527 0.504 0.680 0.386 0.352 0.295 0.411 0.205 5.7
k-MQI 0.336 0.126 0.000 0.000 0.271 0.071 0.000 0.000 OOM 0.252 0.018 0.000 0.000 17.1

k-Nibble 0.338 0.129 0.002 0.000 0.254 0.086 0.028 0.006 OOM 0.252 0.019 0.000 0.000 14.3
Infomap 0.338 0.129 0.004 0.000 0.595 0.573 0.488 0.404 OOM 0.398 0.172 0.380 0.248 9.5
Louvain 0.633 0.522 0.304 0.323 0.643 0.580 0.554 0.470 OOM OOM 8.3

CESNA 0.379 0.350 0.086 0.047 0.272 0.072 0.001 0.000 >12h >12h 15.5
ACMin-C 0.558 0.524 0.219 0.239 0.607 0.563 0.503 0.445 0.458 0.113 0.354 0.244 0.519 0.293 0.499 0.430 6.3
ACMin-S 0.7116 0.669 0.365 0.416 0.547 0.474 0.472 0.359 0.473 0.056 0.393 0.263 0.550 0.341 0.550 0.499 6.8

GNMF 0.436 0.271 0.070 0.061 0.613 0.506 0.417 0.407 OOM OOM 10.6
JNMF 0.582 0.423 0.247 0.241 0.618 0.588 0.447 0.396 OOM OOM 11.0
GRAC 0.391 0.306 0.068 0.056 0.648 0.657 0.563 0.487 0.612 0.488 0.625 0.486 0.398 0.315 0.386 0.197 5.3
ANCKA 0.7118 0.658 0.409 0.469 0.797 0.774 0.632 0.632 0.660 0.492 0.630 0.524 0.566 0.405 0.561 0.471 1.3

except the large and dense hypergraph Amazon, where we set ϖ = 1 to expedite early

termination in light of the immense per-iteration overhead when processing Amazon.

On large datasets (i.e., Amazon and MAG-PM), Ti is set to 1 and ε = 0.4. In

ANCKA, for attributed graphs and multiplex graphs, we fix K = 50, except for large

datasets TWeibo and Amazon2M with K = 10. In particular, we find it necessary

to adjust the ε parameter for certain instances following the practice in recent works

[52, 91, 77]. ε is set to 0.5 for Cora and Wiki and 0.4 on Citeseer-UG, Citeseer-DG,

TWeibo, and Amazon2M. We tune ε in [0.1, 0.9] by step size 0.1 for multiplex graphs.

All the remaining hyperparameters in ANCKA follow the default setting of AHCKA. The

parameter settings in GPU-based ANCKA-GPU are identical to ANCKA.

3.8.2 Performance Evaluation

In this section, we report clustering quality and e”ciency of all methods on all

datasets. For each method, we repeat 10 times and report the average performance.

54

3.8. Experiments

Table 3.4: Attributed Graph Clustering (AGC) Quality on Cora, Citeseer-UG &
Wiki.

Cora Citeseer-UG Wiki
Algorithm Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

Metis 0.448 0.436 0.330 0.238 0.391 0.380 0.155 0.131 0.408 0.364 0.351 0.206
NCut 0.298 0.072 0.012 -0.003 0.218 0.087 0.009 0.004 0.172 0.025 0.016 0.000

k-means 0.318 0.295 0.151 0.072 0.454 0.429 0.223 0.173 0.275 0.176 0.272 0.081
HAC 0.372 0.328 0.219 0.095 0.422 0.383 0.190 0.139 0.449 0.375 0.437 0.185

ATMetis 0.471 0.448 0.317 0.241 0.586 0.566 0.337 0.318 0.506 0.440 0.505 0.336
ATNCut 0.417 0.403 0.271 0.112 0.409 0.374 0.212 0.090 0.424 0.381 0.471 0.150
k-MQI 0.302 0.068 0.004 0.000 0.211 0.059 0.003 0.000 0.169 0.021 0.013 0.000

k-Nibble 0.378 0.167 0.138 0.041 0.281 0.151 0.097 0.018 0.217 0.105 0.114 0.021
Infomap 0.569 0.503 0.455 0.301 0.590 0.546 0.312 0.317 0.467 0.417 0.468 0.290
Louvain 0.671 0.640 0.474 0.397 0.680 0.621 0.426 0.413 0.611 0.513 0.572 0.427

CESNA 0.320 0.251 0.198 0.053 0.212 0.074 0.022 0.001 0.450 0.332 0.371 0.251
GNMF 0.554 0.450 0.413 0.283 0.562 0.478 0.296 0.301 0.486 0.353 0.504 0.352

AGCGCN 0.689 0.655 0.531 0.446 0.675 0.630 0.418 0.424 0.446 0.384 0.422 0.108
FGC 0.693 0.590 0.541 0.470 0.682 0.635 0.431 0.439 0.513 0.420 0.484 0.239
ACMin 0.655 0.558 0.492 0.417 0.674 0.636 0.416 0.429 0.450 0.281 0.391 0.255
GRACE 0.720 0.723 0.533 0.456 0.678 0.634 0.416 0.431 0.603 0.453 0.526 0.302
ANCKA 0.723 0.686 0.556 0.484 0.691 0.651 0.438 0.450 0.551 0.467 0.543 0.353

Table 3.5: Attributed Graph Clustering (AGC) Quality on Citeseer-DG, Tweibo &
Amazon2M.

Citeseer-DG Tweibo Amazon2M Quality
Algorithm Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

Metis 0.410 0.397 0.175 0.155 0.141 0.093 0.007 0.004 0.223 0.163 0.277 0.080 10.0
NCut 0.278 0.069 0.009 -0.004 0.427 0.067 0.000 0.000 0.136 0.016 0.004 -0.005 13.8

k-means 0.440 0.419 0.209 0.158 0.277 0.108 0.013 -0.011 0.178 0.055 0.100 0.008 10.9
HAC 0.461 0.444 0.208 0.153 OOM OOM 11.7

ATMetis 0.594 0.575 0.366 0.340 0.131 0.086 0.005 0.003 0.267 0.197 0.411 0.127 6.8
ATNCut 0.465 0.378 0.277 0.120 0.420 0.078 0.003 0.008 0.272 0.010 0.003 -0.001 10.2
k-MQI 0.212 0.059 0.003 0.000 0.411 0.048 0.001 0.000 0.273 0.009 0.000 0.000 14.3

k-Nibble 0.283 0.151 0.098 0.019 0.428 0.067 0.000 0.000 0.375 0.042 0.015 0.004 12.0
Infomap 0.621 0.565 0.357 0.368 0.417 0.084 0.000 0.001 0.357 0.191 0.424 0.214 6.6
Louvain 0.682 0.617 0.419 0.408 0.271 0.113 0.015 0.007 0.463 0.154 0.429 0.520 4.0

CESNA 0.213 0.074 0.022 0.001 >12h 0.273 0.009 0.000 0.000 12.8
GNMF 0.570 0.526 0.347 0.353 OOM OOM 9.6
AGCGCN 0.672 0.624 0.416 0.420 OOM OOM 8.3
FGC 0.684 0.635 0.436 0.444 >12h >12h 6.5
ACMin 0.677 0.633 0.420 0.433 0.399 0.109 0.004 0.012 0.318 0.182 0.342 0.126 5.6
GRACE 0.684 0.638 0.424 0.440 0.292 0.119 0.026 -0.009 0.271 0.154 0.340 0.118 4.0
ANCKA 0.696 0.651 0.444 0.460 0.433 0.129 0.023 0.019 0.494 0.191 0.441 0.545 1.3

Quality Evaluation

The clustering quality is measured by 4 classic metrics including overall accuracy

(Acc), average per-class F1 score (F1), normalized mutual information (NMI), and

adjusted Rand index (ARI). The former three metrics are in the range [0, 1], whereas

55

Chapter 3. ANCKA: Attributed Network Clustering

Table 3.6: Attributed Multiplex Graph Clustering (AMGC) Quality.

ACM IMDB DBLP-MG Quality
Algorithm Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

Metis 0.648 0.651 0.389 0.369 0.376 0.374 0.004 0.004 0.864 0.860 0.660 0.688 11.6
NCut 0.350 0.174 0.003 0.000 0.378 0.185 0.002 0.000 0.299 0.125 0.012 -0.001 15.3

k-means 0.679 0.681 0.320 0.312 0.525 0.531 0.146 0.139 0.368 0.285 0.083 0.060 10.1
HAC 0.576 0.557 0.234 0.222 0.483 0.462 0.100 0.101 0.381 0.304 0.131 0.070 11.4

ATMetis 0.755 0.757 0.510 0.490 0.546 0.551 0.161 0.152 0.868 0.864 0.669 0.697 6.5
ATNCut 0.778 0.775 0.462 0.465 0.499 0.466 0.154 0.165 0.360 0.285 0.104 0.023 8.8
k-MQI 0.351 0.174 0.001 0.000 0.377 0.183 0.001 0.000 0.295 0.115 0.002 0.000 15.8

k-Nibble 0.343 0.221 0.018 0.001 0.370 0.251 0.022 0.005 0.295 0.115 0.002 0.000 15.2
Infomap 0.653 0.665 0.418 0.353 0.412 0.362 0.027 0.025 0.296 0.116 0.002 0.000 12.6
Louvain 0.659 0.670 0.422 0.364 0.452 0.392 0.057 0.065 0.909 0.900 0.731 0.788 8.1
CESNA 0.624 0.593 0.405 0.330 0.377 0.329 0.006 0.007 0.827 0.820 0.583 0.603 12.0

O2MAC 0.895 0.897 0.667 0.716 0.547 0.550 0.135 0.139 0.873 0.865 0.669 0.705 5.5
HDMI 0.900 0.899 0.695 0.732 0.541 0.547 0.162 0.142 0.895 0.885 0.706 0.761 4.7
MCGC 0.915 0.916 0.709 0.763 0.567 0.545 0.164 0.186 0.902 0.895 0.716 0.771 3.5
MAGC 0.872 0.872 0.597 0.659 0.484 0.424 0.057 0.062 0.928 0.923 0.771 0.827 6.0
GRACE 0.889 0.891 0.651 0.698 0.629 0.629 0.185 0.205 0.923 0.918 0.767 0.817 3.0
ANCKA 0.928 0.928 0.739 0.796 0.576 0.544 0.176 0.195 0.933 0.929 0.785 0.839 1.7

Table 3.7: E”ciency of Attributed Hypergraph Clustering (AHC) (Time in Seconds,
RAM in GBs). The Quality Rank column is from Table 3.3. Among all native AHC
methods in the last 4 rows, the best is in bold, and the runner-up is underlined.

Query Cora-CA Cora-CC Citeseer 20News DBLP Amazon MAG-PM Quality
Algorithm Time RAM Time RAM Time RAM Time RAM Time RAM Time RAM Time RAM Time RAM Rank

HNCut 0.057 0.139 0.582 0.141 0.654 0.158 0.528 0.172 0.116 0.134 4.282 0.625 477.1 3.291 666.8 4.256 13.8
KaHyPar 1.556 0.105 0.375 0.132 0.285 0.129 0.292 0.159 1.516 0.119 3.795 0.606 3707 37.14 556.9 9.487 10.9
ATHNCut 0.393 0.178 0.650 0.428 0.657 0.429 0.835 1.031 4.935 2.164 35.68 3.589 685.9 54.24 789.3 57.36 10.8
ATMetis 0.081 0.125 0.238 0.282 0.239 0.283 0.389 0.307 13.55 2.966 26.85 3.308 OOM 557.9 64.20 4.9
ATKaHyPar 1.668 0.128 1.610 0.225 1.543 0.225 1.733 0.304 11.47 2.400 50.32 3.256 5529 54.28 1509 57.41 5.7
k-MQI 0.104 0.243 0.361 0.352 0.376 0.363 0.418 0.427 11.23 3.866 28.98 3.397 OOM 1567 60.54 17.1

k-Nibble 0.151 0.224 5.827 0.655 5.888 0.667 21.83 0.885 44.55 8.975 1338 51.77 OOM 3858 281.6 14.3
Infomap 0.221 0.191 0.742 0.291 0.611 0.293 0.719 0.363 556.1 21.43 43.50 3.263 OOM 11756 200.9 9.5
Louvain 0.732 0.195 1.915 0.232 0.735 0.242 1.911 0.313 1567 21.77 70.15 3.313 OOM OOM 8.3
CESNA 0.620 0.119 2.400 0.134 9.816 0.137 3.251 0.164 7643 0.157 92.04 0.617 >12h >12h 15.5

GNMF 2.851 0.494 15.92 0.369 20.55 0.316 72.96 0.562 36.76 4.273 612.3 33.27 OOM OOM 10.6
JNMF 3.366 0.494 7.754 0.369 22.66 0.317 61.32 0.549 253.3 4.273 3247 33.27 OOM OOM 11.0
GRAC 1.701 0.142 7.661 0.288 3.696 0.287 13.15 0.454 3.368 0.275 91.21 1.700 14662 175.1 3504 92.69 5.3
ANCKA 0.342 0.161 0.402 0.231 0.416 0.232 0.635 0.317 8.176 0.383 41.50 0.998 1286 56.71 1371 59.25 1.3

ARI ranges from -0.5 to 1. We also sort all methods by each metric and calculate

their average Quality Rank for AHC, AGC, and AMGC, provided in the last column

of Tables 3.3, 3.5 and 3.6.

AHC. Tables 3.2 and 3.3 present the Acc, F1, NMI, and ARI scores of each method on

small and medium/large attributed hypergraph datasets, respectively. The first ob-

servation from Tables 3.2 and 3.3 is that ANCKA on attributed hyergraphs (i.e., AHCKA)

consistently achieves outstanding performance over all competitors on all datasets

56

3.8. Experiments

under almost all metrics, often by a significant margin. ANCKA has a quality rank of

1.3, much higher than the runner-up ATMetis (4.9) and GRAC (5.2). On all the four

small datasets (i.e., Query, Cora-CA, Cora-CC, and Citeseer), ANCKA outperforms the

best competitors (underlined in Table 3.2) by at least 1.9% in terms of Acc and NMI.

On all the four medium/large attributed hypergraphs (i.e., 20News, DBLP, Amazon,

and MAG-PM), ANCKA also yields remarkable improvements upon the competitors,

with percentages up to 12.6%, 10.4%, 6.5%, 13.6% in Acc, F1, NMI, and ARI respec-

tively. Few exceptions exist, where ANCKA still leads in three out of the four metrics,

demonstrating the best overall performance. The results in Tables 3.2 and 3.3 also

confirm the e!ectiveness of ANCKA over various attributed hypergraphs from di!erent

application domains, e.g., web queries, news messages, and review data. The per-

formance of ANCKA is ascribed to our optimizations based on KNN augmentation and

MHC in Section 3.3 and Section 3.4, and the framework for generating high-quality

BCM matrices in Section 3.5.

AGC. Tables 3.4 and 3.5 present the Acc, F1, NMI, and ARI scores of each method

on all attributed graphs for AGC task. ANCKA consistently outperforms existing com-

petitors under most metrics, though few exceptions exist where ANCKA is comparable

to the best. ANCKA has a quality rank of 1.3, much higher than the runner-up with

quality rank 4.0. For example, on Citeseer-UG in Table 3.4, ANCKA achieves higher

Acc, F1, NMI and ARI than the runner-up performance underlined. On the two large

datasets, TWeibo and Amazon2M in Table 3.5, ANCKA also produces clusters with high

quality, while GNMF, AGCGCN, and FGC run out of memory or cannot finish within 12

hours. Notably, on Amazon2M, ANCKA surpasses all methods on all metrics except

F1 (0.006 behind ATMetis) while achieving 0.494 accuracy (runner-up is Louvain at

0.463) and 0.545 ARI (runner-up is Louvain at 0.520). The e!ectiveness of ANCKA

validates the versatility of the proposed techniques for di!erent clustering tasks, e.g.,

AGC. Besides, ATMetis and ATNCut generally outperform Metis and NCut in AGC

performance, respectively, exhibiting the e”cacy of the proposed KNN augmentation.

57

Chapter 3. ANCKA: Attributed Network Clustering

Table 3.8: E”ciency of Attributed Graph Clustering (AGC) Algorithms (Time in
Seconds, RAM in GBs).The Quality Rank column is from Table 3.5. Among all
native AGC methods in the last 7 rows, the best is in bold, and the runner-up is
underlined.

Cora Citeseer-UG Wiki Citeseer-DG Tweibo Amazon2M Quality
Algorithm Time RAM Time RAM Time RAM Time RAM Time RAM Time RAM Rank

Metis 0.006 0.203 0.009 0.347 0.242 0.489 0.006 0.316 121.6 4.688 46.40 8.150 10.0
NCut 0.072 0.198 0.350 0.326 0.087 0.475 0.321 0.347 409.3 4.662 874.8 8.132 13.8

ATMetis 0.688 0.352 0.571 0.533 0.807 0.591 0.398 0.275 360.0 13.58 130.4 16.63 6.8
ATNCut 0.469 0.351 0.589 0.501 0.902 0.560 0.548 0.258 334.6 13.66 502.5 16.58 10.2
k-MQI 0.382 0.438 0.488 0.585 0.721 0.502 0.348 0.447 2442 29.90 1453 19.65 14.3

k-Nibble 4.656 0.495 19.21 0.626 13.86 0.550 18.99 0.685 3826 102.3 3587 89.14 12.0
Infomap 1.265 0.398 1.668 0.544 1.499 0.739 1.556 0.310 6701 97.48 4155 45.75 6.6
Louvain 6.773 0.371 7.319 0.503 4.527 0.669 6.584 0.572 10010 84.50 21696 72.80 4.0

CESNA 12.81 0.144 35.21 0.167 354.9 0.162 28.12 0.178 >12h 1931 7.701 12.8
GNMF 13.18 0.269 37.01 0.397 22.38 0.579 42.81 0.438 OOM OOM 9.6
AGCGCN 5.842 0.960 33.34 2.120 5.965 1.003 34.18 2.326 OOM OOM 8.3
FGC 29.68 1.998 225.7 3.273 50.93 3.080 44.93 3.571 >12h >12h 6.5
ACMin 0.368 0.164 0.400 0.177 3.646 0.380 0.556 0.234 1098 18.61 5300 20.21 5.6
GRACE 5.589 0.651 21.82 1.793 16.78 1.740 15.23 1.960 2317 60.44 3162 39.71 4.0
ANCKA 1.251 0.369 1.587 0.517 0.907 0.706 0.838 0.280 1318 19.89 1708 17.01 1.3

AMGC. Table 3.6 reports the Acc, F1, NMI, and ARI scores of all methods on

all attributed multiplex graphs. ANCKA has the best quality rank. As shown, on

ACM and DBLP-MG, ANCKA achieves the best clustering quality among all methods

under all metrics, with NMI and ARI leading by at least 3% on ACM, while being the

second best in three metrics on IMDB. As shown later in Table 3.9, on these datasets,

ANCKA is faster than existing native AMGC methods by at least an order of magnitude.

With the intuitive design of random walk transition matrix PN on multiplex graphs in

Section 3.6.1, ANCKA can utilize the proposed KNN augmentation, clustering objective,

and optimization techniques to maintain its excellent performance on the AMGC task.

E#ciency Evaluation

Tables 3.7, 3.8 and 3.9 report the runtime (in seconds, with KNN construction in-

cluded) and memory overhead (in Gigabytes), for AHC, AGC, and AMGC, respec-

tively. For ease of comparing the trade-o! between quality and e”ciency, the last

column of Tables 3.7, 3.8 and 3.9 contains the corresponding quality ranks from Ta-

bles 3.3, 3.5 and 3.6, respectively. In each table, the methods are separated into two

58

3.8. Experiments

Table 3.9: E”ciency of Attributed Multiplex Graph Clustering (AMGC) Algorithms
(Time in Seconds, RAM in GBs). The Quality Rank column is from Table 3.6.
Among all native AMGC methods in the last 6 rows, the best is in bold, and the
runner-up is underlined.

ACM IMDB DBLP-MG Quality
Algorithm Time RAM Time RAM Time RAM Rank

Metis 0.477 0.382 0.037 0.375 1.798 0.602 11.6
NCut 0.761 0.392 0.123 0.384 2.218 0.611 15.3

ATMetis 1.418 1.034 1.181 1.134 2.441 0.672 6.5
ATNCut 1.324 1.037 1.236 1.141 2.587 0.675 8.8
k-MQI 1.033 1.143 1.064 1.319 1.048 0.957 15.8

k-Nibble 7.230 0.696 10.32 0.766 3.999 1.109 15.2
Infomap 17.78 1.547 3.624 1.260 48.45 3.883 12.6
Louvain 43.91 1.300 9.537 1.151 158.0 3.948 8.1
CESNA 68.85 0.309 32.28 0.372 819.2 0.534 12.0

O2MAC 115.0 1.691 679.1 2.109 684.1 2.638 5.5
HDMI 161.2 2.902 245.9 2.980 537.8 3.162 4.7
MCGC 748.2 1.697 1552 2.414 2245 3.283 3.5
MAGC 26.10 1.301 33.69 1.908 35.98 2.665 6.0
GRACE 110.1 1.173 21.81 1.341 49.33 0.672 3.0
ANCKA 1.738 1.062 1.574 1.485 3.766 0.691 1.7

categories: non-native methods extended from other clustering problems and native

methods for the corresponding task. For instance, in Table 3.7, there are 4 native

AHC methods in the last 4 rows, while the non-native methods are in the rows above.

In Tables 3.7, 3.8, and 3.9, although certain non-native methods are e”cient, their

quality ranks in terms of clustering quality are typically low. Hence, in the following,

we mainly compare the e”ciency of ANCKA against the native methods for each task.

A method is terminated early if it runs out of memory (OOM) or cannot finish within

12 hours.

AHC. In Table 3.7, compared with native AHC methods, we can observe that ANCKA

is significantly faster on most datasets, often by orders of magnitude. For example, on

a small graph Citeseer, ANCKA takes 0.635 seconds, while the fastest AHC competitor

GRAC needs 13.15 seconds, meaning that ANCKA is 20.7↑ faster. On large attributed

hypergraphs including Amazon and MAG-PM, most existing AHC solutions fail to

finish due to the OOM errors, whereas ANCKA achieves 11.4↑ and 2.6↑ speedup over

59

Chapter 3. ANCKA: Attributed Network Clustering

the only viable native AHC competitor GRAC on Amazon and MAG-PM, respectively.

An exception is 20News, which contains a paucity of hyperedges (100 hyperedges),

where ANCKA is slower than GRAC. Recall that in Table 3.3, compared to ANCKA, GRAC

yields far inferior accuracy in terms of clustering on 20News, which highlights the

advantages of ANCKA over GRAC. Additionally, while ATMetis is fast, it achieves an

average quality rank of 4.9, which falls short of the 1.7 quality rank attained by

ANCKA. As shown in Tables 3.2 and 3.3, ANCKA surpasses ATMetis in all metrics but

one. Moreover, ATMetis encounters OOM on Amazon. As for the memory consump-

tion (including the space to store hypergraphs), observe that ANCKA has comparable

memory overheads with the native AHC competitors on small graphs and up to 3.1↑

memory reduction on medium/large graphs.

AGC. In Table 3.8 for AGC, ANCKA has comparable running time to ACMin, a recent

AGC method that is optimized for e”ciency, while being faster than the other native

AGC methods. However, the quality rank of ANCKA is 1.3, much higher than 5.6 of

ACMin. Specifically, in Tables 3.4 and 3.5, ANCKA consistently achieves better clustering

quality than ACMin on all six attributed graphs under all metrics. Moreover, ANCKA

remains to be the runner-up in terms of running time on the first five datasets, and is

the fastest on the largest Amazon2M for clustering. Memory-wise, ANCKA consumes a

moderate amount of memory that stays below 1GB over the first four small datasets

and achieves decent performance on two large datasets, TWeibo and Amazon2M.

AMGC. In Table 3.9, ANCKA achieves a significant speedup ratio over the native

AMGC baselines, often by an order of magnitude, while being memory e”cient.

Specifically, ANCKA achieves a speedup of 15.0↑, 13.9↑, and 9.5↑, compared to the

runner-up native AMGC methods MAGC and GRACE. The memory consumption of

ANCKA is also less than the majority of existing native AMGC methods.

60

3.8. Experiments

Table 3.10: Evaluation between ANCKA and ANCKA-GPU.

Task Dataset
Acc F1 NMI ARI Mem Time

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU (Speedup)

AHC

Query 0.715 0.719 0.662 0.664 0.645 0.666 0.571 0.578 0.161 1.083 0.342 0.230 (1.49↑)
Cora-CA 0.651 0.653 0.608 0.610 0.462 0.469 0.406 0.411 0.231 1.096 0.402 0.265 (1.52↑)
Cora-CC 0.592 0.580 0.520 0.535 0.412 0.395 0.338 0.311 0.232 1.098 0.416 0.296 (1.41↑)
Citeseer 0.662 0.668 0.615 0.620 0.392 0.387 0.397 0.410 0.317 1.128 0.635 0.575 (1.10↑)
20News 0.712 0.712 0.658 0.666 0.409 0.407 0.469 0.465 0.383 1.094 8.176 0.268 (30.5↑)
DBLP 0.797 0.808 0.774 0.787 0.632 0.643 0.632 0.646 0.998 1.321 41.50 0.591 (70.2↑)
Amazon 0.660 0.648 0.492 0.487 0.630 0.636 0.524 0.509 56.71 11.16 1286 152.3 (8.44↑)
MAG-PM 0.566 0.559 0.405 0.393 0.561 0.545 0.471 0.454 59.25 11.35 1371 120.2 (11.4↑)

AGC

Cora 0.723 0.683 0.686 0.621 0.556 0.533 0.484 0.470 0.369 1.120 1.251 0.213 (5.87↑)
Citeseer-UG 0.691 0.690 0.651 0.649 0.438 0.437 0.450 0.451 0.517 1.153 1.587 0.507 (3.13↑)
Wiki 0.551 0.560 0.467 0.487 0.543 0.547 0.353 0.368 0.706 1.151 0.907 0.357 (2.57↑)
Citeseer-DG 0.696 0.694 0.651 0.652 0.444 0.441 0.460 0.454 0.280 1.159 0.838 0.508 (1.65↑)
TWeibo 0.433 0.434 0.129 0.126 0.023 0.022 0.019 0.016 19.89 16.73 1318 105.0 (12.6↑)
Amazon2M 0.494 0.496 0.191 0.194 0.441 0.437 0.545 0.544 17.01 18.08 1708 158.9 (10.8↑)

AMGC
ACM 0.928 0.924 0.928 0.924 0.739 0.730 0.796 0.786 1.062 1.267 1.738 0.190 (9.15↑)
IMDB 0.576 0.553 0.544 0.510 0.176 0.166 0.195 0.184 1.485 1.136 1.574 0.236 (6.67↑)
DBLP-MG 0.933 0.935 0.929 0.931 0.785 0.791 0.839 0.842 0.691 1.787 3.766 0.587 (6.42↑)

Evaluation on ANCKA-GPU

We compare the cluster quality and e”ciency of the CPU-based ANCKA against ANCKA-GPU

in Section 3.7, with results reported in Table 3.10 for the three tasks (AHC, AGC,

and AMGC) over all datasets. First, observe that ANCKA-GPU achieves similarly high-

quality cluster results as the CPU-based ANCKA across all datasets for all three tasks,

and the quality di!erence between ANCKA-GPU and ANCKA are often negligible, in terms

of Acc, F1, NMI, and ARI.

The last column of Table 3.10 provides the running time of ANCKA-GPU and ANCKA

with 16 CPU threads. For the AHC task, the speedup of ANCKA-GPU is less sig-

nificant on the small attributed hypergraphs (Query, Cora-CA, Cora-CC, and Cite-

seer). We ascribe this to the numerous SVD operations on small k ↑ k matrices in

Discretize-GPU, as it has been known that small dimensions of input matrices may

hurt the e”ciency of GPU-based SVD [3]. On medium/large attributed hypergraphs

(20News, DBLP, Amazon, and MAG-PM), the GPU-accelerated version, ANCKA-GPU,

achieves speedup ratios of 30.5, 70.2, 8.44, and 11.4, respectively, over the CPU version

ANCKA. The high speedup ratios of ANCKA-GPU, often exceeding an order of magnitude,

61

Chapter 3. ANCKA: Attributed Network Clustering

validate the e”ciency of the technical designs elaborated in Section 3.7, especially on

large-scale hypergraphs. For the AGC task, similarly, on small attributed graphs,

Cora, Citeseer-UG, Wiki, and Citeseer-DG, ANCKA-GPU is faster than ANCKA while

the speedup ratio is usually below 10, due to the same reason explained above. On

large attributed graphs (TWeibo and Amazon2M), ANCKA-GPU is more e”cient than

ANCKA by an order of magnitude. For the AMGC task, ANCKA-GPU is also consistently

faster than ANCKA on all attributed multiplex graphs. The memory consumption of

ANCKA-GPU is measured by GPU video memory (VRAM), while that of ANCKA is by

RAM, and the consumption is reported in the second last column of Table 3.10 in

GBs. The memory usage of ANCKA-GPU and ANCKA is not directly comparable, due

to the di!erent computational architectures and libraries used on GPUs and CPUs.

Note that the major memory consumption of our implementations is in the KNN

augmentation step. On small or medium-sized datasets, e.g., Query and Cora-CA,

VRAM usage by ANCKA-GPU is higher than the RAM usage by ANCKA. The reason is

that ANCKA-GPU uses GPU-based Faiss for nearest-neighbor search and Faiss allocates

about 700MB of VRAM for temporary storage. On large datasets, ANCKA requires a

substantial RAM space due to the implementation of the ScaNN algorithm for KNN,

while GPU-based Faiss in ANCKA-GPU requires less VRAM space.

Then we enhance GRACE [52] with GPU acceleration using CuPy and cuML libraries,

resulting in GRACE-GPU for comparison. We also compare with the GPU-based imple-

mentation of the Spectral Modularity Maximization [89] clustering method dubbed as

SMM-GPU, which operates on the graph adjacency matrix for AGC (or clique expansion

of the hypergraph for AHC, or the sum of multiplex adjacency matrices for AMGC)

with the attribute KNN augmentation. The results for AHC, AGC, and AMGC are

presented in Tables 3.11-3.13, respectively. On the first six smaller datasets in Ta-

ble 3.11 for AHC, SMM-GPU exhibits lower quality in terms of Acc, F1, NMI, and

ARI, despite comparable e”ciency to ANCKA-GPU, which delivers significantly better

clustering quality. ANCKA-GPU outperforms GRACE-GPU in both quality and e”ciency

62

3.8. Experiments

Table 3.11: Additional GPU baselines for AHC.
Query Cora-CA

Algorithm Acc F1 NMI ARI Mem Time Acc F1 NMI ARI Mem Time

cuGraph 0.237 0.191 0.012 0.004 1.073 0.381 0.155 0.039 0.022 0.012 1.089 0.220
GRACE-GPU 0.420 0.435 0.204 0.076 1.823 1.326 0.589 0.583 0.368 0.296 1.956 4.870
ExtendGPU 0.719 0.664 0.666 0.578 1.083 0.230 0.653 0.610 0.469 0.411 1.096 0.265

Cora-CC Citeseer
Algorithm Acc F1 NMI ARI Mem Time Acc F1 NMI ARI Mem Time

cuGraph 0.155 0.039 0.085 0.016 1.088 0.251 0.212 0.059 0.055 0.002 1.329 0.265
GRACE-GPU 0.550 0.503 0.346 0.253 1.904 2.466 0.512 0.465 0.280 0.271 2.064 5.356
ExtendGPU 0.580 0.535 0.395 0.311 1.098 0.296 0.668 0.620 0.387 0.410 1.128 0.575

20News DBLP
Algorithm Acc F1 NMI ARI Mem Time Acc F1 NMI ARI Mem Time

cuGraph 0.440 0.430 0.192 0.155 3.120 1.816 0.160 0.046 0.013 0.000 2.543 0.703
GRACE-GPU 0.361 0.316 0.079 0.022 1.920 2.408 0.681 0.695 0.543 0.443 3.170 47.90
ExtendGPU 0.712 0.666 0.407 0.465 1.094 0.268 0.808 0.787 0.643 0.646 1.321 0.591

Amazon MAGPM
Algorithm Acc F1 NMI ARI Mem Time Acc F1 NMI ARI Mem Time

cuGraph OOM OOM
GRACE-GPU OOM OOM
ExtendGPU 0.648 0.487 0.636 0.510 11.16 152.3 0.559 0.393 0.545 0.454 11.35 120.2

Table 3.12: Additional GPU baselines for AGC.

Cora Citeseer-UG Wiki
Algorithm Acc F1 NMI ARI Mem Time Acc F1 NMI ARI Mem Time Acc F1 NMI ARI Mem Time

SMM-GPU 0.408 0.325 0.227 0.161 2.585 0.293 0.437 0.373 0.223 0.204 2.752 0.405 0.533 0.433 0.503 0.345 2.773 0.360
GRACE-GPU 0.698 0.694 0.498 0.429 1.973 3.235 0.681 0.636 0.421 0.435 2.189 6.614 0.527 0.329 0.500 0.286 1.976 8.494
ANCKA-GPU 0.683 0.621 0.533 0.470 1.120 0.213 0.690 0.649 0.437 0.451 1.153 0.503 0.560 0.487 0.547 0.368 1.151 0.357

Citeseer-DG Tweibo Amazon2M
Algorithm Acc F1 NMI ARI Mem Time Acc F1 NMI ARI Mem Time Acc F1 NMI ARI Mem Time

SMM-GPU 0.438 0.375 0.226 0.206 2.774 0.382 0.389 0.098 0.012 -0.013 23.58 32.88 0.206 0.052 0.092 0.023 9.287 62.55
GRACE-GPU 0.685 0.636 0.427 0.441 2.162 3.745 OOM 0.282 0.171 0.352 0.120 22.08 529.3
ANCKA-GPU 0.694 0.652 0.441 0.454 1.159 0.508 0.434 0.126 0.022 0.016 16.73 105.0 0.496 0.194 0.437 0.544 18.08 158.9

Table 3.13: Additional GPU baselines for AMGC.

ACM IMDB DBLP-MG
Algorithm Acc F1 NMI ARI Mem Time Acc F1 NMI ARI Mem Time Acc F1 NMI ARI Mem Time

SMM-GPU 0.615 0.580 0.337 0.331 2.903 0.293 0.544 0.440 0.194 0.197 2.797 0.354 0.557 0.356 0.427 0.383 3.251 0.633
GRACE-GPU 0.888 0.890 0.648 0.694 2.157 7.802 0.532 0.532 0.115 0.112 2.352 12.37 0.922 0.917 0.765 0.815 2.641 3.569
ANCKA-GPU 0.924 0.924 0.730 0.786 1.267 0.190 0.553 0.510 0.166 0.184 1.136 0.236 0.935 0.931 0.791 0.842 1.787 0.587

across all AHC datasets. Notably, on large datasets Amazon and MAG-PM in Table

3.11, ANCKA-GPU e”ciently produces satisfactory clusters, whereas GRACE-GPU and

SMM-GPU encounter out-of-memory due to their requirement to expand hypergraphs

into graphs. Similar observations are made for AGC and AMGC in Tables 3.12 and

3.13. Similar patterns are observed for AGC and AMGC in Tables 3.12 and 3.13.

In these tasks, ANCKA-GPU delivers superior clustering quality and e”ciency on most

63

Chapter 3. ANCKA: Attributed Network Clustering

datasets, except IMDB where ANCKA-GPU is the second best, while SMM-GPU yields

lower-quality outcomes and GRACE-GPU falls behind our method in speed. We con-

clude that ANCKA-GPU o!ers high clustering quality with remarkable e”ciency.

3.8.3 Experimental Analysis

Varying K. Figure 3.5 depicts the Acc, F1, NMI scores, and the KNN computation

time of ANCKA on 8 attributed hypergraphs (AHC) when varying K from 2 to 1000.

We can make the following observations. First, on most hypergraphs, the clustering

accuracies of ANCKA first grow when K is increased from 2 to 10 and then decline,

especially when K is beyond 50. The reasons are as follows. When K is small, the

KNN graph GK in ANCKA fails to capture the key information in the attribute matrix

X, leading to limited result quality. On the other hand, when K is large, more noisy

or distorted information will be introduced in GK , and hence, causes accuracy loss.

This coincides with our observation in the preliminary study in Figure 3.2. Moreover,

as K goes up, the time of KNN construction increases on all datasets. Figures 3.7

and 3.8 show the Acc, F1, NMI scores and KNN computation time of ANCKA on

the 6 attributed graphs and 3 attributed multiplex graphs for AGC and AMGC,

respectively, when varying K from 2 to 1000. On small graphs in Figure 3.7a-3.7d

and Figure 3.8, the cluster quality increases from 2 to 50, and then declines on datasets

such as Citeseer-UG, Wiki, and ACM. On large datasets TWeibo and Amazon2M in

Figure 3.7e and 3.7f, a turning point appears around K = 10. Therefore, we set K

to be 50 and 10 on these small and large datasets, respectively.

Varying ε. Recall that in the generalized (ω, ε, ϑ)-random walk model, the pa-

rameter ε is used to balance the combination of topological proximities from graph

topology NO and the attribute similarities from KNN graph GK . Figure 3.6 displays

the AHC performance of ANCKA on 8 attributed hypergraph datasets when ε varies

from 0 to 1. When ε = 0, ANCKA degrades to a hypergraph clustering method without

64

3.8. Experiments

Acc F1 NMI time

2 5 10 20 50 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 5 10 20 50 100 200
0

0.02

0.04

0.06

0.08

0.1

time (s)

(a) Query

2 5 10 20 50 100 200 500 1000
0

0.2

0.4

0.6

0.8

1

2 5 10 20 50 100 200 500 1000
0

0.1

0.2

0.3

0.4

0.5

time (s)

(b) Cora-CA

2 5 10 20 50 100 200 500 1000
0.2

0.3

0.4

0.5

0.6

0.7

2 5 10 20 50 100 200 500 1000
0

0.1

0.2

0.3

0.4

0.5

time (s)

(c) Cora-CC

2 5 10 20 50 100 200 500 1000
0.2

0.3

0.4

0.5

0.6

0.7

2 5 10 20 50 100 200 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

time (s)

(d) Citeseer

2 5 10 20 50 100 200 500 1000
0.3

0.4

0.5

0.6

0.7

0.8

2 5 10 20 50 100 200 500 1000
0

2

4

6

8

10

12

14

time (s)

(e) 20News

2 5 10 20 50 100 200 500 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

2 5 10 20 50 100 200 500 1000
0

5

10

15

20

25

30

35

40

time (s)

(f) DBLP

2 5 10 20 50 100 200 500 1000
0.3

0.4

0.5

0.6

0.7

2 5 10 20 50 100 200 500 1000
0

200

400

600

800

1k

1.2k

time (s)

(g) Amazon

2 5 10 20 50 100 200 500 1000
0.3

0.35

0.4

0.45

0.5

0.55

0.6

2 5 10 20 50 100 200 500 1000
0

200

400

600

800

1k

1.2k

time (s)

(h) MAG-PM

Figure 3.5: Varying K for AHC (best viewed in color).

65

Chapter 3. ANCKA: Attributed Network Clustering

Acc F1 NMI

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

(a) Query
0 0.2 0.4 0.6 0.8 1

0.1

0.3

0.5

0.7

(b) Cora-CA
0 0.2 0.4 0.6 0.8 1

0.1

0.3

0.5

0.7

(c) Cora-CC
0 0.2 0.4 0.6 0.8 1

0.1

0.3

0.5

0.7

(d) Citeseer

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

(e) 20News
0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

(f) DBLP
0 0.2 0.4 0.6 0.8 10.1

0.3

0.5

0.7

(g) Amazon
0 0.2 0.4 0.6 0.8 1

0.1

0.3

0.5

0.7

(h) MAG-PM

Figure 3.6: Varying ε for AHC (best viewed in color).

Acc F1 NMI time

2 5 10 20 50 100 200 500 1k
0.2

0.4

0.6

0.8

2 5 10 20 50 100 200 500 1k
0

0.5

1

1.5

2

2.5
time (s)

(a) Cora
2 5 10 20 50 100 200 500 1k

0.2

0.4

0.6

0.8

2 5 10 20 50 100 200 500 1k
0

1

2

3

4

time (s)

(b) Citeseer-UG
2 5 10 20 50 100 200 500 1k

0.2

0.4

0.6

2 5 10 20 50 100 200 500 1k
0

0.5

1

1.5

2

2.5

3

3.5
time (s)

(c) Wiki

2 5 10 20 50 100 200 500 1k
0.2

0.4

0.6

0.8

2 5 10 20 50 100 200 500 1k
0

0.5

1

1.5

2

2.5

3

3.5

4

time (s)

(d) Citeseer-DG
2 5 10 20 50 100 200 500 1k

0.1

0.3

0.5

2 5 10 20 50 100 200 500 1k
0

400

800

1.2k
time (s)

(e) Tweibo
2 5 10 20 50 100 200 500 1k

0

0.2

0.4

0.6

2 5 10 20 50 100 200 500 1k
0

400

800

1.2k

1.6k

2k

time (s)

(f) Amazon2M

Figure 3.7: Varying K for AGC (best viewed in color).

the consideration of any attribute information, whereas ANCKA only clusters the KNN

graph GK regardless of the topology structure in H if ε = 1. From Figure 3.6, we can

see a large ε (e.g., 0.7-0.8) on small/medium datasets (Query, Cora-CA, Cora-CC,

Citeseer, 20News, and DBLP) bring more performance enhancements, meaning that

66

3.8. Experiments

2 5 10 20 50 100 200 500 1k
0.4

0.5

0.6

0.7

0.8

0.9

1

2 5 10 20 50 100 200 500 1k
0

0.5

1

1.5

2

2.5

3

time (s)

(a) ACM
2 5 10 20 50 100 200 500 1k

0

0.1

0.2

0.3

0.4

0.5

0.6

2 5 10 20 50 100 200 500 1k
0

0.5

1

1.5

2

2.5

3

3.5
time (s)

(b) IMDB
2 5 10 20 50 100 200 500 1k

0.6

0.7

0.8

0.9

1

2 5 10 20 50 100 200 500 1k
0

1

2

3

4

5

6

7

8
time (s)

(c) DBLP-MG

Figure 3.8: Varying K for AMGC (best viewed in color).

Acc F1 NMI

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Cora
0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Citeseer-UG
0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Wiki

0 0.2 0.4 0.6 0.8 1
0.1

0.3

0.5

0.7

(d) Citeseer-DG
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

(e) Tweibo
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

(f) Amazon2M

Figure 3.9: Varying ε for AGC (best viewed in color).

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

(a) ACM
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) IMDB
0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) DBLP-MG

Figure 3.10: Varying ε for AMGC (best viewed in color).

67

Chapter 3. ANCKA: Attributed Network Clustering

Table 3.14: Ablation Analysis on AHC (Time in Seconds).

Query Cora-CA Cora-CC Citeseer
Algorithm Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time

ANCKA-random-init 0.678 0.662 0.599 0.393 0.611 0.529 0.438 0.445 0.539 0.493 0.377 0.495 0.567 0.485 0.320 0.694
ANCKA-k-means 0.358 0.353 0.148 0.994 0.572 0.478 0.418 0.782 0.571 0.461 0.400 0.933 0.570 0.469 0.338 1.164

ANCKA 0.715 0.662 0.645 0.342 0.651 0.608 0.462 0.402 0.592 0.520 0.412 0.416 0.662 0.615 0.392 0.635

20News DBLP Amazon MAG-PM
Algorithm Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time

ANCKA-random-init 0.625 0.609 0.361 10.543 0.637 0.603 0.585 41.00 0.623 0.297 0.562 1310 0.512 0.396 0.518 881.7
ANCKA-k-means 0.398 0.360 0.101 9.828 0.652 0.617 0.605 43.11 0.567 0.227 0.558 1492 0.536 0.276 0.504 4437

ANCKA 0.7118 0.658 0.409 8.176 0.797 0.774 0.632 41.50 0.660 0.492 0.630 1286 0.566 0.405 0.561 1371

attribute information plays more important roles on those datasets. This is because

they have limited amounts of connections (or are too dense to be informative, e.g.,

on Query) in the original hypergraph structure as listed in Table 3.1 and rely on

attribute similarities from the augmented KNN graph GK for improved clustering.

By contrast, on Amazon and MAG-PM, ANCKA achieves the best clustering quality

with small ε in [0.1, 0.4], indicating graph topology has higher weights on Amazon

and MAG-PM. Figures 3.9 and 3.10 report the Acc, F1, and NMI scores on AGC

and AMGC tasks respectively. Similarly, when ε increases from 0, the cluster quality

generally improves, then becomes stable around 0.4 and 0.5, and decreases when ε is

large and close to 1. On DBLP-MG in Figure 3.10, the highest clustering quality can

be acquired with a small ε around 0.1. We infer that node attributes in this dataset

are of limited significance for clustering, while on ACM and IMDB, the best quality

is achieved when ε appropriately balances graph topology and attributes.

Acc F1 NMI time

1 2 3 4 5
0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5

0.38

0.4

0.42

0.44

0.46

0.48

time (s)

(a) Cora-CC
1 2 3 4 5

0.38

0.4

0.61

0.62

0.66

0.67

1 2 3 4 5
0.56

0.58

0.6

0.62

0.64

0.66
time (s)

(b) Citeseer

Figure 3.11: Varying ϑ on Attributed Hypergraphs.

Varying ϑ. We evaluate ANCKA in terms of AHC quality and running time when

68

3.8. Experiments

Table 3.15: Ablation Analysis on AGC (Time in Seconds).

Cora Citeseer-UG Wiki
Algorithm Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time

ANCKA-random-init 0.676 0.619 0.544 0.869 0.681 0.681 0.435 1.436 0.507 0.436 0.529 1.082
ANCKA-k-means 0.597 0.456 0.511 1.254 0.684 0.631 0.440 1.915 0.459 0.385 0.506 3.030

ANCKA 0.723 0.686 0.556 1.251 0.691 0.651 0.438 1.587 0.551 0.467 0.543 0.907

Citeseer-DG Tweibo Amazon2M
Algorithm Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time

ANCKA-random-init 0.689 0.649 0.443 0.685 0.364 0.094 0.005 1068 0.452 0.188 0.405 1269
ANCKA-k-means 0.689 0.636 0.445 2.005 0.428 0.067 0.000 1837 0.429 0.107 0.406 3420

ANCKA 0.696 0.651 0.444 0.838 0.433 0.129 0.023 1318 0.494 0.191 0.441 1708

Table 3.16: Ablation Analysis on AMGC (Time in Seconds).

ACM IMDB DBLP-MG
Algorithm Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time

ANCKA-random-init 0.923 0.924 0.728 1.546 0.536 0.482 0.165 1.131 0.932 0.928 0.783 4.391
ANCKA-k-means 0.926 0.927 0.738 1.818 0.383 0.203 0.005 1.703 0.926 0.920 0.774 4.719

ANCKA 0.928 0.928 0.739 1.738 0.576 0.544 0.176 1.574 0.933 0.929 0.785 3.766

varying ϑ. Figure 3.11 displays the Acc, F1, NMI, and time on two representative

datasets when ϑ varies from 1 to 5. The results on other datasets are similar and

thus are omitted for space. Observe that in practice the Acc, F1, and NMI scores

obtained by ANCKA first increase and then remain stable when ϑ is beyond 3 and 2

on Cora-CC and Citeseer, respectively. By contrast, the running time goes up as ϑ

increases. Therefore, we set ϑ = 3 in experiments.

E$ectiveness Evaluation of InitBCM and Discretize. On attributed hyper-

graphs, to verify the e!ectiveness of InitBCM for the BCM initialization, we compare

ANCKA with the ablated version ANCKA-random-init, where the BCM matrix Y(0) is

initialized at random. In Table 3.14, ANCKA obtains remarkable improvements over

ANCKA-random-init in Acc, F1, and NMI in comparable processing time. For instance,

on Amazon, ANCKA outperforms ANCKA-random-init by a large margin of 3.7% Acc,

19.5% F1, and 6.8% NMI with 24 seconds less to process. On MAG-PM, ANCKA

needs additional time compared to ANCKA-random-init. The reason is that ANCKA-

random-init starts with a low-quality BCM and converges to local optimum solutions

with suboptimal MHC, whereas ANCKA can bypass such pitfalls with a good initial

BCM from InitBCM and continue searching for the optimal solution with more iter-

69

Chapter 3. ANCKA: Attributed Network Clustering

ations, which in turn results in a considerable gap in clustering quality. In addition,

we validate the e!ectiveness of Discretize used in ANCKA to transform k leading

eigenvectors Q to BCM matrix Y. Table 3.14 reports the accuracy of ANCKA and

a variant ANCKA-k-means obtained by replacing Discretize in ANCKA with k-means

on all datasets. It can be observed that compared with ANCKA-k-means, ANCKA is

able to output high-quality BCM matrices Y with substantially higher clustering

accuracy scores while being up to 3.2↑ faster. The ablation results on AGC and

AMGC are in Tables 3.15 and 3.16, respectively. Regarding clustering quality (Acc,

F1, NMI), Table 3.15 shows that for AGC, ANCKA surpasses its ablated counterparts

on all datasets across most e!ectiveness metrics, except for the Citeseer datasets.

For example, ANCKA with InitBCM achieves an Acc that is 4.2% higher than ANCKA-

random-init on Amazon2M. In Table 3.16 for AMGC, ANCKA performs the best on all

the three datasets. For e”ciency in Tables 3.15 and 3.16, ANCKA is similar to ANCKA-

random-init, while ANCKA-k-means is slower. These results confirm the e!ectiveness

of the proposed techniques for AGC and AMGC.

3.8.4 Convergence Analysis

We provide an empirical analysis pertinent to the convergence of ANCKA for attributed

hypergraph clustering. To do so, we first disable the early termination strategies at

Line 10 in Algorithm 1. We also set ϖ = 1 so as to evaluate the MHC (denoted as

↼t) of the BCM matrix Y(t) generated in each t-th iteration of ANCKA and ANCKA-

random-init, where t starts from 0 till convergence. Furthermore, we calculate the

Acc, F1, and NMI scores with the ground truth for each BCM matrix Y(t) generated

throughout the iterative procedures of ANCKA. Figures 3.12-3.13 show the MHC ↼t,

Acc, F1, and NMI scores based on the BCM matrix of each iteration in ANCKA, as well

as the MHC of ANCKA-random-init over all datasets. Notably, MHC ↼t experiences

a sharp decline when t increases from 0 to 50 on most hypergraphs, while the Acc,

F1, and NMI results have significant growth. Moreover, compared to MHC with

70

3.8. Experiments

0 50 100 150 200 250 300 350 400 450

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7
MHC ↼t

MHC with random init

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

Acc
F1
NMI

(a) Query

0 10 20 30 40 50 60 70 80 90 100 110 120

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7
MHC ↼t

MHC with random init

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.2

0.4

0.6

0.8

Acc
F1
NMI

(b) Cora-CA

0 20 40 60 80 100 120 140 160

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7
MHC ↼t

MHC with random init

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

Acc
F1
NMI

(c) Cora-CC

0 20 40 60 80 100 120 140 160
0.5

0.55

0.6

0.65

0.7
MHC ↼t

MHC with random init

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

Acc
F1
NMI

(d) Citeseer

Figure 3.12: Convergence Analysis, part 1 (best viewed in color).

71

Chapter 3. ANCKA: Attributed Network Clustering

0 10 20 30 40 50 60 70

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7
MHC ↼t

MHC with random init

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

Acc
F1
NMI

(a) 20News

0 10 20 30 40 50 60

0.5

0.55

0.6

0.65

0.7
MHC ↼t

MHC with random init

0 10 20 30 40 50 60
0.2

0.4

0.6

0.8

Acc
F1
NMI

(b) DBLP

0 20 40 60 80 100 120 140 160 180 200 220

0.64

0.66

0.68

0.7

0.72

0.74

0.76 MHC ↼t

MHC with random init

0 20 40 60 80 100 120 140 160 180 200 220
0

0.2

0.4

0.6

0.8

Acc
F1
NMI

(c) Amazon

0 50 100 150 200 250 300 350

0.55

0.6

0.65

0.7

0.75 MHC ↼t

MHC with random init

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

Acc
F1
NMI

(d) MAG-PM

Figure 3.13: Convergence Analysis, part 2 (best viewed in color).

random init, MHC curves of ANCKA are mostly lower (better) on all datasets under

the same t-th iteration. These phenomena demonstrate the e!ectiveness of InitBCM

72

3.8. Experiments

KNN Construction Orthogonal Iterations
Discretization Greedy Init and MHC evaluation

CPU GPU
0

0.1

(a) Query
CPU GPU

0

0.1

0.2

(b) Cora-CA
CPU GPU

0

0.1

0.2

(c) Cora-CC
CPU GPU

0

0.1

0.2

0.3

(d) Citeseer

CPU GPU
0

3

6

(e) 20News
CPU GPU

0

10

20

(f) DBLP
CPU GPU

0

200

400

(g) Amazon
CPU GPU

0

200

400

(h) MAG-PM

Figure 3.14: Runtime breakdown of CPU-based ANCKA and ANCKA-GPU in seconds.

in facilitating fast convergence of ANCKA. However, when we keep increasing t, these

scores either remain stable or deteriorate. For instance, MHC scores grow significantly

after 10 iterations on Amazon, while there is a big drop in Acc and F1 scores when

t ↗ 45 on DBLP. This indicates that adding more iterations does not necessarily

ensure better solutions. Hence, the early termination proposed in ANCKA can serve as

an e!ective approach to remedy this issue.

3.8.5 Runtime Analysis

Figure 3.14 reports time breakdown of ANCKA and ANCKA-GPU into four parts: KNN

construction, orthogonal iterations, discretization, and greedy initialization and MHC

evaluation on all attributed hypergraphs. We first explain the results of ANCKA on

CPUs. On all datasets, the four parts in ANCKA all take considerable time to process,

except 20News and DBLP, where KNN construction dominates, since 20News and

DBLP contain many nodes but relatively few edges. Then, we compare the time

breakdown of ANCKA-GPU with ANCKA. On small attributed hypergraphs (Query, Cora-

73

Chapter 3. ANCKA: Attributed Network Clustering

Table 3.17: Varying similarity measures in KNN construction for ANCKA on AHC.

Query Cora-CA Cora-CC
Measure Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

Manhattan 0.595 0.558 0.537 0.386 0.491 0.432 0.304 0.247 0.470 0.384 0.243 0.185
Euclidean 0.669 0.631 0.619 0.484 0.469 0.411 0.277 0.212 0.471 0.384 0.244 0.186
Sigmoid 0.316 0.323 0.084 0.041 0.572 0.497 0.415 0.341 0.687 0.648 0.460 0.424
Angular 0.721 0.667 0.659 0.576 0.504 0.463 0.397 0.302 0.576 0.508 0.391 0.323
Cosine 0.715 0.662 0.645 0.571 0.651 0.608 0.462 0.406 0.592 0.520 0.412 0.338

Citeseer 20News DBLP Quality
Measure Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

Manhattan 0.286 0.192 0.109 0.022 0.596 0.571 0.337 0.330 0.522 0.453 0.351 0.284 4.5
Euclidean 0.303 0.286 0.109 0.060 0.658 0.568 0.396 0.427 0.525 0.489 0.350 0.285 4.0
Sigmoid 0.653 0.606 0.387 0.393 0.712 0.661 0.394 0.456 0.703 0.714 0.563 0.486 2.5
Angular 0.650 0.599 0.377 0.387 0.712 0.658 0.410 0.470 0.662 0.602 0.617 0.556 2.3
Cosine 0.662 0.615 0.392 0.397 0.712 0.658 0.409 0.469 0.797 0.774 0.632 0.632 1.5

Table 3.18: Varying similarity measures in KNN construction for ANCKA on AGC.

Cora Citeseer-UG Wiki Citeseer-DG Quality
Measure Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

Manhattan 0.545 0.473 0.446 0.321 0.472 0.432 0.234 0.233 0.416 0.318 0.312 0.199 0.583 0.540 0.306 0.304 4.5
Euclidean 0.569 0.486 0.453 0.353 0.408 0.380 0.182 0.161 0.440 0.361 0.370 0.228 0.665 0.591 0.395 0.410 4.0
Sigmoid 0.659 0.562 0.518 0.443 0.684 0.648 0.431 0.441 0.537 0.459 0.510 0.343 0.691 0.649 0.437 0.450 2.1
Angular 0.651 0.557 0.528 0.447 0.674 0.636 0.424 0.434 0.367 0.296 0.308 0.185 0.687 0.645 0.434 0.447 3.4
Cosine 0.723 0.686 0.556 0.484 0.691 0.651 0.438 0.450 0.551 0.467 0.543 0.353 0.696 0.651 0.444 0.460 1.0

CA, Cora-CC, and Citeseer) in Figures 3.14a, 3.14b, 3.14c, and 3.14d, observe that

ANCKA-GPU significantly reduces the time for KNN, while the other time costs are

on par with that of ANCKA, which is consistent with the results in Section 3.8.2.

On medium-sized/large attributed hypergraphs in Figures 3.14e, 3.14f, 3.14g, and

3.14h, ANCKA-GPU significantly improves the e”ciency on all of KNN construction,

orthogonal iterations, discretization, greedy initialization and MHC evaluation. From

the results on Amazon and MAG-PM, we observe that the scalability of ANCKA-GPU

is primarily constrained by KNN construction, while the overhead of the CPU-based

ANCKA is more evenly distributed across the four parts.

74

3.8. Experiments

Table 3.19: Varying similarity measures in KNN construction for ANCKA on AMGC.

ACM IMDB DBLP-MG Quality
Measure Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

Manhattan 0.748 0.754 0.459 0.446 0.375 0.372 0.006 0.006 0.933 0.929 0.785 0.838 3.4
Euclidean 0.749 0.755 0.460 0.448 0.361 0.356 0.003 0.002 0.933 0.929 0.785 0.838 3.4
Sigmoid 0.922 0.923 0.717 0.781 0.559 0.528 0.164 0.187 0.932 0.928 0.783 0.837 3.0
Angular 0.927 0.927 0.736 0.793 0.530 0.495 0.161 0.177 0.927 0.922 0.770 0.825 3.3
Cosine 0.928 0.928 0.739 0.796 0.576 0.544 0.176 0.195 0.933 0.929 0.785 0.839 1.0

3.8.6 Additional Experiments

E$ect of Various Attribute Similarity Measures

We conduct additional experiments on various similarity measures for KNN construc-

tion. For two d-dimensional attribute vectors x and y, in addition to Cosine similarity

Cosine(x, y) utilized in ANCKA, we assess normalized Manhattan and Euclidean dis-

tances transformed by a Laplacian kernel into the range [0, 1] as similarity scores,

Sigmoid similarity represented by a hyperbolic tangent kernel function, and Angular

similarity normalized to [0, 1] from angular distance. The formulas for these measures

are provided in Eq. (3.30). Laplacian kernels are commonly employed to normalize

Manhattan and Euclidean distances for a”nity matrix construction, with ϑ set to

d↓1 by default [151]. The performance of ANCKA using each similarity measure for

attributed KNN construction in AHC, AGC, and AMGC is detailed in Tables 3.17,

3.18, and 3.19, respectively. Similarity measures are sorted by each metric, and we

list their average Quality Rank for each task in the last column. Notably, across the

three attributed network clustering tasks—AHC, AGC, and AMGC—ANCKA equipped

with Cosine similarity secures the best quality rank (1.5, 1.0, and 1.0, respectively)

across all evaluation metrics and datasets. Meanwhile, ANCKA with either Sigmoid or

75

Chapter 3. ANCKA: Attributed Network Clustering

Table 3.20: Objective values f(C) achieved by a method and f(C↑) of ground truth
for AHC. The better value of each objective is highlighted.

Query Cora-CC Cora-CA Citeseer
Algorithm Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑)

Infomap 0.235 0.215 0.017 6.704 8.976 0.514 0.464 0.343 8.121 10.36 0.541 0.479 0.393 9.298 10.26 0.491 0.463 0.263 8.890 10.58
Louvain 0.239 0.218 0.017 0.825 0.501 0.501 0.430 0.332 0.817 0.680 0.569 0.546 0.373 0.735 0.667 0.570 0.486 0.319 0.787 0.641
ANCKA 0.715 0.662 0.645 0.583 0.585 0.651 0.608 0.462 0.555 0.583 0.592 0.520 0.412 0.558 0.594 0.662 0.615 0.392 0.539 0.595

20News DBLP Amazon MAG-PM
Algorithm Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑)

Infomap 0.338 0.129 0.004 13.56 14.18 0.595 0.573 0.448 10.50 13.47 OOM 0.398 0.172 0.380 12.03 14.39
Louvain 0.633 0.522 0.304 0.260 0.198 0.643 0.580 0.554 0.856 0.788 OOM OOM
ANCKA 0.712 0.658 0.409 0.546 0.594 0.797 0.774 0.632 0.516 0.524 0.660 0.492 0.630 0.640 0.641 0.566 0.405 0.561 0.549 0.595

Table 3.21: Objective values f(C) achieved by a method and f(C↑) of ground truth
for AGC. The better value of each objective is highlighted.

Cora Citeseer-UG Wiki
Algorithm Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑)

Infomap 0.569 0.503 0.455 10.87 11.30 0.590 0.546 0.312 9.232 11.04 0.467 0.417 0.468 7.669 9.175
Louvain 0.671 0.640 0.474 0.472 0.374 0.680 0.621 0.426 0.488 0.369 0.611 0.513 0.572 0.668 0.530
ANCKA 0.723 0.686 0.556 0.555 0.581 0.696 0.651 0.444 0.539 0.593 0.551 0.467 0.543 0.590 0.643

Citeseer-DG Tweibo Amazon2M
Algorithm Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑)

Infomap 0.621 0.565 0.357 9.206 11.04 0.417 0.084 0.000 16.89 18.90 0.357 0.191 0.424 15.26 18.60
Louvain 0.682 0.617 0.419 0.475 0.359 0.271 0.113 0.015 0.383 0.252 0.463 0.154 0.429 0.790 0.669
ANCKA 0.696 0.651 0.444 0.539 0.593 0.433 0.129 0.023 0.723 0.758 0.494 0.191 0.441 0.612 0.689

Angular similarities exhibits the second-best performance.

Cosine(x, y) =
xyT

⇐x⇐⇐y⇐

Manhattan(x, y) = e↓ω⇑x↓y⇑1

Euclidean(x, y) = e↓ω⇑x↓y⇑2

Angular(x, y) = 1 →
cos↓1 Cosine(x, y)

π

Sigmoid(x, y) = tanh(ϑxyT + 1)

(3.30)

Comparing Clustering Objectives

In ANCKA, we formulate the multi-hop conductance (MHC) objective as %(Y) = 1 →

&(Y), where Y is a cluster membership matrix returned by a method. Our goal is to

minimize %, which is equivalent to maximizing &(Y). For ground truth clusters Y↑,

76

3.8. Experiments

Table 3.22: Objective values f(C) achieved by a method and f(C↑) of ground truth
for AMGC. The better value of each objective is highlighted.

ACM IMDB DBLP-MG
Algorithm Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑) Acc F1 NMI f(C) f(C↑)

Infomap 0.653 0.665 0.418 10.01 11.05 0.412 0.362 0.027 11.32 12.03 0.296 0.116 0.002 11.91 12.60
Louvain 0.659 0.670 0.422 0.555 0.356 0.452 0.392 0.057 0.460 0.348 0.909 0.900 0.731 0.172 0.161
ANCKA 0.928 0.928 0.739 0.563 0.567 0.576 0.544 0.176 0.584 0.599 0.933 0.929 0.785 0.590 0.595

the fact that &(Y↑) < &(Y), i.e., %(Y↑) > %(Y), indicates that ANCKA can identify

a clustering with lower MHC than the ground truth clusters.

This phenomenon is not unique to our method but is also common in other clustering

methods with objectives, such as the map equation and modularity. To compare

these objective functions, we use KNN augmented graphs to test Infomap, which

minimizes the map equation objective, and Louvain, which maximizes modularity.

We then calculate the objective values of the clusters returned by these methods and

compare them to the objective values of the ground truth. The results are presented

in Tables 3.20-3.22, where f(C) denotes the objective value of the clustering result

returned by a method, and f represents the multi-hop conductance, modularity, and

map equation objectives for ANCKA, Louvain, and Infomap, respectively. The value

f(C↑) corresponds to the objective value of the ground truth. In Tables 3.20-3.22, all

three algorithms yield clusters with a more favorable objective value f(C) than that

of the ground truth clusters f(C↑). Nevertheless, the fact that ANCKA consistently

achieves the best clustering quality showcases the e!ectiveness of the MHC objective.

Comparing the Clusters of ANCKA and ANCKA-GPU

We evaluate the NMI and ARI metrics between the clusters obtained by ANCKA (C↑)

and the clusters obtained by ANCKA-GPU (G↑). The results are shown in Table 3.23,

where the columns labeled C↑-G↑ display the NMI and ARI scores between C↑ and G↑,

whereas the remaining columns show the NMI and ARI scores between the ground

truth GT and either C↑ or G↑. It is noteworthy that the NMI and ARI scores for

77

Chapter 3. ANCKA: Attributed Network Clustering

Table 3.23: Evaluation between CPU-based ANCKA (C↑) and ANCKA-GPU (G↑). GT
stands for ground truth clusters.

Task Dataset
NMI ARI

C↑- GT G↑- GT C↑- G↑ C↑- GT G↑- GT C↑- G↑

AHC

Query 0.645 0.666 0.780 0.571 0.578 0.732
Cora-CA 0.462 0.469 0.852 0.406 0.411 0.878
Cora-CC 0.412 0.395 0.675 0.338 0.311 0.623
Citeseer 0.392 0.387 0.750 0.397 0.410 0.767
20News 0.409 0.407 0.835 0.469 0.465 0.876
DBLP 0.632 0.643 0.920 0.632 0.646 0.943

Amazon 0.630 0.636 0.750 0.524 0.509 0.763
MAG-PM 0.561 0.545 0.743 0.471 0.454 0.757

AGC

Cora 0.556 0.533 0.765 0.484 0.470 0.773
Citeseer-UG 0.438 0.437 0.922 0.450 0.451 0.940

Wiki 0.543 0.547 0.847 0.353 0.368 0.724
Citeseer-DG 0.444 0.441 0.863 0.460 0.454 0.892

TWeibo 0.023 0.022 0.115 0.019 0.016 0.176
Amazon2M 0.441 0.437 0.609 0.545 0.544 0.698

AMGC
ACM 0.739 0.730 0.953 0.796 0.786 0.974
IMDB 0.176 0.166 0.444 0.195 0.184 0.525

DBLP-MG 0.785 0.791 0.977 0.839 0.842 0.988

C↑-G↑ are consistently higher than those relative to the ground truth. This indicates

a strong agreement between the clustering results of ANCKA and ANCKA-GPU.

E$ect of similarity threshold in KNN construction

Previous research [84] suggests that KNN edges with low similarity should be avoided.

We explore two ways for applying a similarity threshold to prune edges in the con-

structed KNN graph. After constructing the KNN graph, we can either use an abso-

lute similarity threshold ϱs to remove edges with similarity scores below ϱs, or employ

a relative similarity threshold ϱp, expressed as a percentage, to eliminate the bot-

tom ϱp% of edges. A limitation of ϱs is that similarity score distributions can vary

across datasets, and as a result, a threshold ϱs that is e!ective for one dataset might

be insu”cient for another. Therefore, we also test setting ϱp as an alternative to

ϱs. We vary ϱs from 0.1 to 0.3 and ϱp from 10% to 30%, and report the results for

AHC in Table 3.24. All tested settings are sorted by each metric, and we list their

78

3.8. Experiments

Table 3.24: Impact of exerting absolute or relative similarity thresholds (ϱs or ϱp) on
the KNN graph on AHC.

Query Cora-CA Cora-CC
Setting Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

ωs = 0.1 0.715 0.662 0.645 0.571 0.661 0.616 0.473 0.422 0.590 0.518 0.417 0.339
ωs = 0.2 0.715 0.662 0.645 0.571 0.655 0.612 0.472 0.417 0.572 0.495 0.370 0.321
ωs = 0.3 0.715 0.662 0.645 0.571 0.530 0.498 0.324 0.246 0.438 0.378 0.303 0.233
ωp = 10 0.709 0.637 0.611 0.549 0.594 0.524 0.431 0.364 0.553 0.465 0.377 0.329
ωp = 20 0.511 0.509 0.346 0.256 0.631 0.586 0.434 0.385 0.511 0.483 0.363 0.270
ωp = 30 0.422 0.395 0.237 0.182 0.615 0.563 0.409 0.371 0.532 0.450 0.353 0.285
ANCKA 0.715 0.662 0.645 0.571 0.651 0.608 0.462 0.406 0.592 0.520 0.412 0.338

Citeseer 20News DBLP Quality
Setting Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

ωs = 0.1 0.654 0.606 0.382 0.390 0.712 0.658 0.409 0.469 0.797 0.774 0.632 0.632 1.7
ωs = 0.2 0.537 0.463 0.287 0.287 0.712 0.658 0.409 0.469 0.804 0.784 0.641 0.639 2.7
ωs = 0.3 0.332 0.291 0.121 0.076 0.712 0.658 0.409 0.469 0.552 0.456 0.468 0.361 5.2
ωp = 10 0.606 0.563 0.334 0.326 0.710 0.660 0.368 0.417 0.650 0.591 0.603 0.548 4.8
ωp = 20 0.655 0.568 0.369 0.365 0.711 0.656 0.407 0.467 0.816 0.800 0.640 0.645 4.0
ωp = 30 0.586 0.538 0.295 0.299 0.662 0.566 0.404 0.433 0.642 0.609 0.574 0.507 5.8
ANCKA 0.662 0.615 0.392 0.397 0.712 0.658 0.409 0.469 0.797 0.774 0.632 0.632 1.8

Table 3.25: Impact of exerting absolute or relative similarity thresholds (ϱs or ϱp) on
the KNN graph on AGC.

Cora Citeseer-UG Wiki Citeseer-DG Quality
Setting Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

ωs = 0.1 0.644 0.549 0.526 0.454 0.684 0.646 0.434 0.446 0.539 0.460 0.527 0.339 0.670 0.637 0.446 0.453 3.9
ωs = 0.2 0.517 0.421 0.477 0.349 0.685 0.604 0.409 0.427 0.563 0.448 0.524 0.377 0.687 0.592 0.413 0.423 5.0
ωs = 0.3 0.494 0.410 0.402 0.289 0.427 0.362 0.178 0.155 0.459 0.384 0.411 0.257 0.469 0.391 0.206 0.188 7.0
ωp = 10 0.686 0.582 0.537 0.469 0.700 0.653 0.448 0.464 0.522 0.423 0.528 0.327 0.659 0.628 0.437 0.443 3.4
ωp = 20 0.676 0.576 0.530 0.465 0.653 0.616 0.431 0.437 0.558 0.451 0.527 0.365 0.704 0.646 0.445 0.460 3.3
ωp = 30 0.674 0.565 0.522 0.480 0.714 0.619 0.451 0.464 0.563 0.433 0.527 0.376 0.703 0.635 0.429 0.452 3.0
ANCKA 0.723 0.686 0.556 0.484 0.691 0.651 0.438 0.450 0.551 0.467 0.543 0.353 0.696 0.651 0.444 0.460 2.1

Table 3.26: Impact of exerting absolute or relative similarity thresholds (ϱs or ϱp) on
the KNN graph on AMGC.

ACM IMDB DBLP-MG Quality
Setting Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

ωs = 0.1 0.927 0.927 0.737 0.794 0.575 0.552 0.169 0.188 0.933 0.928 0.786 0.838 2.2
ωs = 0.2 0.927 0.927 0.737 0.793 0.388 0.230 0.005 0.003 0.933 0.929 0.786 0.838 3.4
ωs = 0.3 0.921 0.921 0.720 0.779 0.386 0.253 0.002 0.001 0.933 0.929 0.787 0.839 3.9
ωp = 10 0.920 0.920 0.716 0.776 0.569 0.557 0.155 0.175 0.932 0.928 0.785 0.837 4.1
ωp = 20 0.919 0.919 0.713 0.774 0.532 0.518 0.153 0.165 0.933 0.928 0.785 0.837 4.7
ωp = 30 0.917 0.917 0.708 0.768 0.556 0.536 0.145 0.162 0.932 0.928 0.784 0.836 5.8
ANCKA 0.928 0.928 0.739 0.796 0.576 0.544 0.176 0.195 0.933 0.929 0.785 0.839 1.4

average Quality Rank in the last column. From these experiment results, three ob-

servations emerge. First, ANCKA delivers the best results on four out of six datasets

and is the second-best on the remaining two. Second, as ϱs increases, the cluster-

ing quality deteriorates on Cora-CA, Cora-CC, and Citeseer; remains unchanged on

79

Chapter 3. ANCKA: Attributed Network Clustering

Table 3.27: Impact of conflicting attribute and network information on AHC perfor-
mance of ANCKA.

Query Cora-CA Cora-CC
Setting Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

Shuffled-X 0.214 0.207 0.011 0.002 0.191 0.172 0.018 0.003 0.182 0.165 0.011 0.003
Original 0.715 0.662 0.645 0.571 0.651 0.608 0.462 0.406 0.592 0.520 0.412 0.338

Citeseer 20News DBLP
Setting Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

Shuffled-X 0.187 0.183 0.005 0.001 0.302 0.290 0.008 0.006 0.198 0.178 0.002 0.001
Original 0.662 0.615 0.392 0.397 0.712 0.658 0.409 0.469 0.797 0.774 0.632 0.632

Table 3.28: Impact of conflicting attribute and network information on AGC perfor-
mance of ANCKA.

Cora Citeseer-UG Wiki Citeseer-DG
Setting Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

Shuffled-X 0.395 0.343 0.271 0.183 0.418 0.360 0.181 0.141 0.188 0.179 0.119 0042 0.316 0.290 0.074 0.073
Original 0.723 0.686 0.556 0.484 0.691 0.651 0.438 0.450 0.551 0.467 0.543 0.353 0.696 0.651 0.444 0.460

Table 3.29: Impact of conflicting attribute and network information on AMGC per-
formance of ANCKA.

ACM IMDB DBLP-MG
Setting Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

Shuffled-X 0.349 0.347 0.001 0.001 0.374 0.370 0.006 0.006 0.928 0.923 0.770 0.825
Original 0.928 0.928 0.739 0.796 0.576 0.544 0.176 0.195 0.933 0.929 0.785 0.839

Query and 20News, suggesting that the ϱs values are insu”cient for edge filtering;

and improves before declining on DBLP. These results do not reveal a consistent rela-

tionship between quality and varied ϱs across the datasets. Third, with an increasing

ϱp, performance drops on Query and Cora-CC; improves then declines on Cora-CA,

Citeseer, 20News, and DBLP, also indicating inconsistent patterns between quality

and varied ϱp. Similar trends are observed for AGC and AMGC in Tables 3.25 and

3.26, where ANCKA attains the best or second-best performance under most metrics.

However, adjusting ϱs and ϱp does not consistently enhance performance across all

datasets.

80

3.8. Experiments

Table 3.30: Clustering performance comparison between FSSC and ANCKA on AHC
(Time in Seconds).

Query Cora-CA Cora-CC Citeseer
Algorithm Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time

FSSC 0.601 0.584 0.518 0.183 0.376 0.244 0.272 0.352 0.381 0.248 0.232 0.403 0.386 0.330 0.264 0.500
ANCKA 0.715 0.662 0.645 0.342 0.651 0.608 0.462 0.402 0.592 0.520 0.412 0.416 0.662 0.615 0.392 0.635

20News DBLP Amazon MAG-PM
Algorithm Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time

FSSC 0.286 0.267 0.002 6.702 0.419 0.304 0.410 28.49 0.311 0.032 0.000 888.1 0.304 0.050 0.095 601.9
ANCKA 0.712 0.658 0.409 8.176 0.797 0.774 0.632 41.50 0.660 0.492 0.630 1286 0.566 0.405 0.561 1371

Table 3.31: Clustering performance comparison between FSSC and ANCKA on AGC
(Time in Seconds).

Cora Citeseer-UG Wiki
Algorithm Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time

FSSC 0.494 0.391 0.358 0.763 0.301 0.207 0.104 1.151 0.229 0.182 0.198 0.716
ANCKA 0.723 0.686 0.556 1.251 0.691 0.651 0.438 1.587 0.551 0.467 0.543 0.907

Citeseer-DG Tweibo Amazon2M
Algorithm Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time

FSSC 0.294 0.233 0.099 0.493 0.196 0.103 0.004 761.3 0.185 0.044 0.146 551.9
ANCKA 0.696 0.651 0.444 0.838 0.433 0.129 0.023 1318 0.494 0.191 0.441 1708

Table 3.32: Clustering performance comparison between FSSC and ANCKA on AMGC
(Time in Seconds).

ACM IMDB DBLP-MG
Algorithm Acc F1 NMI Time Acc F1 NMI Time Acc F1 NMI Time

FSSC 0.754 0.750 0.537 1.566 0.396 0.362 0.010 1.156 0.297 0.124 0.003 3.008
ANCKA 0.928 0.928 0.739 1.738 0.576 0.544 0.176 1.574 0.933 0.929 0.785 3.766

Impact of Conflicting Attributes and Networks

We investigate the e!ect of conflicting network and attribute information. In real-

world network data, attribute and network information typically exhibit correlation,

aligning with the notion that entities with similar attributes, such as individuals, are

more likely to be connected. To artificially induce a conflicting relationship between

attributes and network information, we take a given dataset and randomly permute

the attribute vectors in the attribute matrix X ↓ Rn↗d, re-assigning them to the

n nodes. This process disrupts the natural correlation, thereby creating conflicts

81

Chapter 3. ANCKA: Attributed Network Clustering

between attributes and network information, dubbed as Shu’ed-X. We then com-

pare the performance of ANCKA on both the original data and the Shu’ed-X data,

with results presented in Tables 3.27, 3.28, and 3.29 for the AHC, AGC, and AMGC

tasks, respectively. The Shu’ed-X data consistently yield significantly lower clus-

tering quality compared to ANCKA on the original data, confirming that conflicting

network and attribute information detrimentally a!ects clustering quality. This also

rea”rms that real datasets typically feature correlated attributes and networks. In

the future, we will explore the robustness of clustering against attacks that introduce

such conflicts.

E$ect of using fewer eigenvectors

The spectral clustering algorithm proposed in [83] leverages the linear space spanned

by O(log k) leading eigenvectors. We adapt this method, denoted by FSSC, for the

attributed network clustering tasks. Specifically, FSSC gets the log2 k leading vectors

over the transition matrix of the proposed random walk model in the paper, and

perform clustering. The results are reported in Table 3.30, 3.31, and 3.32 for AHC,

AGC, and AMGC, respectively. FSSC yields lower clustering quality on all datasets,

making its speedup less significant.

3.9 Summary

This chapter introduces ANCKA, a versatile and e”cient method for attributed network

clustering that supports AHC, AGC, and AMGC tasks. Its superior performance

over existing approaches stems from three key innovations: (i) a KNN augmentation

strategy that selectively exploits attribute information, (ii) a novel random walk-

based problem formulation, and (iii) an iterative optimization framework enhanced

with speedup techniques.

82

3.9. Summary

To further accelerate computation on large datasets, we develop ANCKA-GPU, a GPU-

based variant that outperforms its CPU-parallel counterpart while maintaining high

clustering quality. Extensive experiments on real-world datasets demonstrate the

e!ectiveness and e”ciency of our methods.

83

Chapter 4

SAHE: Attributed Hypergraph

Embedding

This chapter presents SAHE, an e”cient approach to attributed hypergraph embed-

ding, advancing the thesis’s goal of developing scalable solutions for clustering and

embedding in attributed network structures. Complementing the attributed hyper-

graph clustering method in Chapter 3, SAHE addresses the challenge of generating

high-quality node and hyperedge embeddings for attributed hypergraphs, while also

leveraging the KNN augmentation approach to incorporate attribute information.

These works, alongside the multi-view integration method in Chapter 5, contribute

to advancing clustering and embedding of diverse attributed network structures.

4.1 Introduction

An attributed hypergraph captures higher-order relationships among a variable num-

ber of nodes through hyperedges, and the nodes are often associated with attribute

information. A hyperedge is a generalized edge that connects more than two nodes.

The unique characteristics of attributed hypergraphs have played important roles in

84

4.1. Introduction

various domains by describing the multiway relationships among entities. e.g., social

networks [7], genomic expression [28], and online shopping sessions [40]. For exam-

ple, a group-purchase activity of an item links a group of users together, naturally

captured via a hyperedge, and the users carry their own profile attributes.

Network embedding is a fundamental problem in graph analytics, garnering attention

from both academia [157] and industry [132], and has been studied on various types

of simple graphs with pairwise edge connections, such as homogeneous graphs [141,

98, 117] and attributed graphs [143, 125]. However, network embedding on attributed

hypergraphs is still in its early stages, with few native solutions that are e”cient and

e!ective in the literature.

Hence, in this work, we focus on the problem of Attributed Hypergraph Node and hy-

perEdge Embedding (AHNEE). Given an attributed hypergraph with n nodes and m

hyperedges, AHNEE aims to generate compact embedding vectors for each node and

hyperedge. Intuitively, node embeddings capture the hyperedge-featured topological

and attribute information surrounding nodes, while hyperedge embeddings inher-

ently captures the connections and attribute semantics of groups of nodes around

hyperedges. The embeddings are valuable for downstream tasks: node embeddings

facilitate node classification [45] and hyperedge link prediction [147], while hyperedge

embeddings support hyperedge classification [137].

It is highly challenging to design native AHNEE solutions, due to the complexity of

attributed hypergraphs beyond simple graphs, and the need to simultaneously embed

nodes and hyperedges, particularly for large attributed hypergraphs. E!ective node

and hyperedge embeddings should capture both local and long-ranged information

via multi-hop paths formed by hyperedges and nodes. Besides, simply aggregating

all node embeddings within a hyperedge to get its hyperedge embedding often results

in suboptimal performance. Incorporating these considerations into AHNEE compu-

tation requires careful designs to ensure e!ectiveness and targeted optimizations for

e”ciency in large attributed hypergraphs.

85

Chapter 4. SAHE: Attributed Hypergraph Embedding

Existing methods either do not natively support attributed hypergraphs or fail to per-

form e”ciently on massive data. An early study [156] uses the hypergraph Laplacian

spectrum for node embeddings, while [45, 44] extend graph-based node embedding to

hypergraphs. However, these approaches typically do not consider attribute informa-

tion or hyperedge embedding generation, with some, like [156], overlooking long-range

connectivity. A recent class of studies [122, 64, 60] has developed hypergraph neu-

ral networks, which often incur significant computational overhead when applied to

large-scale hypergraph data. Another way is converting attributed hypergraphs into

bipartite or attributed graphs using star-expansion or clique-expansion, followed by

applying graph embedding methods [143, 128]. However, the expansions dilute the

representation of higher-order connections in hyperedges and result in dense graphs

with high computational costs.

To tackle the challenges, we propose SAHE, a Scalable Attributed Hypergraph node

and hyperedge Embedding method that unifies the generation of node embeddings

and hypergraph embeddings with high result quality and e”ciency, advancing the

state of the art for the problem of AHNEE. We accomplish this via comprehensive

problem formulations and innovative algorithm designs.

We begin by considering an attribute-extended hypergraph H, which integrates node

attributes by constructing attribute-based hyperedges with appropriate weights, along-

side the original hyperedges from the input attributed hypergraph. Importantly, on

H, we propose two measures: hypergraph multi-hop node similarity (HMS-N) and

hypergraph multi-hop hyperedge similarity (HMS-E). HMS-N captures higher-order

connections and global topology between nodes by considering both original and

attribute-based hyperedges in H. HMS-E quantifies hyperedge similarities, but on

a dual hypergraph of H, where hyperedges are treated as nodes to preserve their

multi-hop connections and global features. We then formulate the AHNEE task as

an optimization problem with the objective to approximate all-node-pair HMS-N and

all-hyperedge-pair HMS-E matrices simultaneously. Directly achieving this objective

86

4.1. Introduction

can be e!ective but computationally expensive, with time quadratic in the number

of nodes and hyperedges. To boost e”ciency, SAHE unifies the approximations of

HMS-N and HMS-E matrices by identifying their shared core computations via the-

oretical analysis. Despite this unification, the process remains costly for calculation

and materialization. To further reduce computational overhead, we develop several

optimization techniques that eliminate the need to iteratively materialize large dense

matrices, enabling e”cient approximation of high-quality node and hyperedge em-

beddings with guarantees. We conduct extensive experiments on 8 real datasets,

comparing SAHE against 11 competitors over 3 tasks. The results show that SAHE

e”ciently generates high-utility node and hyperedge embeddings, achieving superior

predictive performance in node classification, hyperedge link prediction, and hyper-

edge classification tasks, while being up to orders of magnitude faster.

In summary, we make the following contributions in the paper.

• We build an attribute-extended hypergraph to incorporate attribute information

into hypergraph structures seamlessly, with a careful design to balance both aspects.

• We design two similarity measures HMS-N and HMS-E capturing higher-order con-

nections and global topology of node and hyperedge pairs, respectively. The AH-

NEE objective is formulated to preserve all-pair HMS-N and HMS-E matrices.

• We develop several techniques to e”ciently optimize the objective, including unify-

ing the shared computations of node and hyperedge embeddings, accurate approx-

imation of the similarity matrices, and avoiding iterative dense matrix materializa-

tion.

• Extensive experiments on 8 real datasets and 3 downstream tasks demonstrate the

e!ectiveness and e”ciency of our method.

87

Chapter 4. SAHE: Attributed Hypergraph Embedding

Table 4.1: Frequently used notations.

H = {V , E ,X} An attributed hypergraph H with node set V , hyperedge set
E , and node attribute matrix X ↓ Rn↗q.

n, m The cardinality of |V| = n, and the cardinality of |E| = m.

d(v) The generalized degree of a node v.

ς(e) The generalized degree of a hyperedge e.

H = {V , EX} The extended hypergraph H with hyperedge set EX that in-
corporates E and attribute-based hyperedges EK .

vol(H) The volume of the hypergraph H.

H The weighted incidence matrix of H.

Dv, De, W The diagonal node degree matrix, hyperedge degree matrix,
and hyperedge weight matrix of H, respectively.

H
→ = {V

→
X

, E →
} The dual hypergraph of H, where nodes in V

→
X

represent hy-
peredges in EX , and hyperedges in E

→ represent nodes in V .

p(vi, vj) The random walk transition probability from vi to vj.

ps(v) The random walk stationary probability of node v.

P, P→ The transition probability matrices of hypergraphs H and H
→.

π(vi, vj) The probability from vi to vj over infinite steps.

!(t),!→(t) The t-step RWR matrix for H and H
→, respectively.

tlog(·), tlog⇓(·). tlog(x) = log(max{x, 1}), tlog⇓(·) is element-wise tlog(·).

↽(vi, vj) HMS-N similarity between nodes vi and vj of H.

↽→(ei, ej) HMS-E similarity between hyperedges ei and ej of H.

%, %→ Similarity matrices for HMS-N and HMS-E, respectively.

ZV , ZE The n ↑ k node embedding matrix and m ↑ k hyperedge em-
bedding matrix, respectively.

4.2 Preliminaries

An attributed hypergraph is denoted as H = {V , E ,X}, where V is a set of n nodes,

E is a set of m hyperedges, and X ↓ Rn↗q is the node attribute matrix. Each node

v in V has a q-dimensional attribute vector given by the i-th row of X. A hyperedge

e ↓ E is a subset of V containing at least two nodes, and a node v is incident to

e if v ↓ e. Figure 4.1 gives an example of attributed hypergraph H with six nodes

and three hyperedges (e.g., e2 = {v3, v4, v5}), where each node is associated with

88

4.2. Preliminaries

an attribute vector. Let ϑ(v, e) be the hyperedge-dependent weight of node v in

hyperedge e, defaulting to 1 if v ↓ e and unweighted, or 0 if v /↓ e. Each hyperedge

e ↓ E carries a weight w(e), defaulting to 1. The generalized degree of a node v ↓ V

is d(v) =
∑

e↘E w(e)ϑ(v, e), summing the weighted contributions of v across incident

hyperedges. The generalized degree of a hyperedge e ↓ E is ς(e) =
∑

v↘e ϑ(v, e),

aggregating the weight of nodes within e. The volume of the hypergraph, denoted

as vol(H) =
∑

v↘V d(v), measures its total weighted connectivity by summing the

generalized degrees. Let H0 ↓ Rm↗n be the incidence matrix of H, where each entry

H0[i, j] = ϑ(vj, ei) if vj ↓ ei, otherwise H0[i, j] = 0.

Node and Hyperedge Embeddings. For the input H, AHNEE aims to compute

an n↑k embedding matrix ZV where each row ZV [i] is the embedding vector for node

vi ↓ V (node embedding), and also an m ↑ k embedding matrix ZE where each row

ZE [j] is the embedding vector for hyperedge ej ↓ E (hyperedge embedding).

Tasks. In the attributed hypergraph H, we focus on three significant tasks: perform-

ing node classification and hyperedge link prediction with node embeddings; perform-

ing hyperedge classificaiton with hyperedge embeddings.

• Node Classification. For node vi, the goal is to predict its class label by feeding its

node embedding ZV [i] into a trained classifier.

• Hyperedge Link Prediction. Given nodes {vi, vj, ..., vk} ⇒ V , the task is to use their

node embeddings {ZV [i],ZV [j], ...,ZV [k]} to predict whether these nodes form a

hyperedge or not.

• Hyperedge Classification. For a hyperedge ei, the goal is to use the hyperedge

embedding ZE [i] to predict its class label.

Table 4.1 lists the frequently used notations in our paper.

89

Chapter 4. SAHE: Attributed Hypergraph Embedding

ଵ

ଵ ଷ

ଶ

ଶ

ଷ

ସ

ହ

଺

ଵ

ଶ

ଷ

ସ

ହ

଺

Figure 4.1: An example of attributed hypergraph H.

4.3 Similarities and Objectives

As explained in Section 4.1, e!ective node and hyperedge embeddings in AHNEE

should capture the closeness among nodes and collective a”nities among hyperedges,

highlighting higher-order structures and attribute influences. To this end, we first ex-

tend the attributed hypergraph H by adding attribute-based hyperedges, forming an

attribute-extended hypergraph H, in which, appropriate hyperedge-dependent node

weights and hyperedge weights are assigned to balance structural and attribute infor-

mation in Section 4.3.1. Then in Section 4.3.2, we introduce hypergraph multi-hop

node similarity (HMS-N) on H to quantify node similarity. This considers multi-

hop node and hyperedge connections and node significance in H, measured by a

random walk model over its topology. Section 4.3.3 designs hypergraph multi-hop

hyperedge similarity (HMS-E), formulated similarly but on the dual hypergraph of

H. Both HMS-N and HMS-E are symmetric for evaluating pairwise relationships.

Our AHNEE objective is to approximate all n ↑ n node-pair HMS-N and all m ↑ m

hyperedge-pair HMS-E similarities. Section 4.3.4 presents a preliminary method to

directly solve this problem.

90

4.3. Similarities and Objectives

ଵ

ଵ ଷ

ଶ

ଶ

ଷ

ସ

ହ

଺

ସ

଼

௄ ସ ହ ଺ ଻ ଼

ସ ଵ ଵ ,
ସ , ଵ ସ
ଶ ସ ସ ସ .

଼ ହ ହ ,
଼ , ହ ଼
ସ ଼ ଺ ଼ .

Figure 4.2: Extended hypergraph H.

4.3.1 Attribute-Extended Hypergraph

The literature on attributed data [73, 29] shows that it is e!ective for downstream

task performance to combine attribute information with network topology, by consid-

ering each node’s K-nearest neighbors defined on attribute similarity. We adopt this

approach to construct an extended hypergraph H from the input H, with dedicated

designs tailored for hypergraph structures and balancing topological and attribute

information. Specifically, for a node vi, we first get its local neighbor set KNN(vi),

comprising the top-K most similar nodes vj ranked by cosine similarity cosSim(vi, vj)

of their attributes. Then we define an attribute-based hyperedge as KNN(vi)⇑{vi} with

K + 1 nodes. Intuitively, it connects nodes with similar attributes into a hyperedge.

Example. Given the hypergraph H in Figure 4.1, we construct five attribute-based

hyperedges {e4, . . . , e8} for nodes v1, . . . , v5, respectively. With K = 2, Figure 4.2

illustrates two examples: e4, formed by v1 and its two most similar nodes, and e8,

formed by v5 and its two most similar nodes. Each hyperedge represents a local

neighborhood of nodes with high attribute similarity.

For all n nodes in H, we create a set EK of n attribute-based hyperedges, leading to

the extended hypergraph H = {V , EX} with hyperedge set EX = E ⇑EK of size m+n.

Unlike nodes in an original hyperedge, the nodes in an attribute-based hyperedge e

91

Chapter 4. SAHE: Attributed Hypergraph Embedding

built from KNN(vi) require varying weights based on their attribute similarities to

vi. Therefore, we assign hyperedge-dependent node weights ϑ(vj, e) to node vj in the

hyperedge e, using its attribute similarity to vi: ϑ(vj, e) = cosSim(vi, vj), for vj ↓

e and e = KNN(vi) ⇑ {vi}.

H includes m hyperedges in E and n attribute-based hyperedges in EK , representing

structural and attribute information, respectively. The values of n and m can vary

significantly across datasets. For example, the Amazon dataset has about n = 2.27

million nodes and m = 4.28 million hyperedges, while MAG-PM has n = 2.35 mil-

lion nodes and m = 1.08 million hyperedges. A large n may cause attribute-based

hyperedges to overshadow the original topology, and vice versa. This disparity ex-

tends to their volumes vol(E) =
∑

e↘E w(e)ς(e). This can influence similarity mea-

sures by skewing transitions to E or EK , a!ecting embedding priorities. Thus, we

balance structural and attribute insights in H. We achieve this by adjusting hy-

peredge weights in EK , balancing the volumes of E and EK . For E , the volume is

vol (E) =
∑

e↘E |e|, when ϑ(v, e) and w(e) are with unit weights. For EK , the vol-

ume is vol(EK) = w(e)
∑

e↘EK

∑
v↘e ϑ(v, e), where hyperedge-dependent node weight

ϑ(v, e) is assigned ahead. We enforce:

ε vol (E) = vol (EK) , (4.1)

where parameter ε controls the balance on structure versus attributes, and the default

value is 1. Then we get a uniform weight w(e) of each attribute-based hyperedge

e ↓ EK by

w(e) = ε vol(E)
/ ∑

e↘EK

∑

v↘e
ϑ(v, e), ↔e ↓ EK . (4.2)

The extended hypergraph H = {V , EX} has an (m+n)↑n weighted incidence matrix

H, where H[i, j] = ϑ(vj, ei). The first m rows of H are from the incidence matrix H0,

and the last n rows are from the attribute-based hyperedges, forming a submatrix

HK . Then, the matrix H can be written as H =
[

H0
HK


, where columns corresponding

92

4.3. Similarities and Objectives

to the nodes in V . For H, let W ↓ R(m+n)↗(m+n) be the diagonal matrix of hyperedge

weights. In addition, Dv ↓ Rn↗n is the node degree matrix, with Dv[i, i] = d(vi)

representing the generalized degree of node vi in H, and De ↓ R(m+n)↗(m+n) is the

hyperedge degree matrix with De[i, i] = ς(ei) representing the generalized degree of

hyperedge ei in H.

The above idea of constructing H from H = {V , E ,X} is summarized in Algorithm 7.

Lines 1-4 generate n attribute-based hyperedges ei = KNN(vi)⇑ {vi}, each capturing

a node’s K-nearest neighbors based on attribute similarity from X (Line 2). Lines

3-4 assign hyperedge-dependent node weights ϑ(vj, ei) in HK . Line 5 constructs the

hyperedge weight matrix W as a diagonal matrix from concatenated weight vectors

(denoted by ⇐). The m hyperedges in E have weights of 1 via 1m, a length-m vector

of ones, while the n attribute-based hyperedges receive a weight per Eq. (4.2), with

1mH01n representing vol(E). Line 6 builds the (m+n)↑n weighted incidence matrix

H by stacking H0 and HK , and computes the diagonal degree matrices Dv and De

of H. The algorithm returns H, Dv, De, and W, representing H. Lines 1-4 require

O(n log n + nqK) time, leveraging e”cient KNN queries (e.g., [21]), where q is the

attribute dimension. Lines 5-6 operate in O(nK + nd̄) time and space, proportional

to H’s nonzero entries, with d̄ as the average hyperedge incidences per node in H.

Thus, Algorithm 7 achieves log-linear time complexity and linear space complexity

for generating H.

4.3.2 Hypergraph Multi-Hop Node Similarity: HMS-N

Intuitively, the resultant node embeddings should capture the complex relationships

between nodes, preserving both structural and attribute similarities across the ex-

tended hypergraph H. This is challenging due to the need to model higher-order

connections in hyperedges while integrating the hypergraph’s global topology. Com-

mon similarity measures like Personalized PageRank [140] e!ectively capture node

93

Chapter 4. SAHE: Attributed Hypergraph Embedding

Algorithm 7: ExtendHG

Input: Attributed hypergraph H = {V , E ,X}, parameter K

1 for each vi ↓ E do

2 Attribute-based hyperedge ei ≃ KNN(vi) ⇑ {vi};

3 for each vj ↓ ei do

4 HK [i, j] ≃ ϑ(vj, ei);

5 W ≃ diag
(
1m⇐

1
T
mH01n

1T
nHK1n

1n

)
;

6 H ≃
[

H0
HK


, Dv ≃ diag

(
HTW1m+n

)
, De ≃ diag (H1n);

7 return Extended hypergraph H (i.e., H, Dv, De, W);

significance but are limited to pairwise interactions, not applicable to hypergraphs.

Other hypergraph definitions [2, 113] consider submodular hyperedges, which are

unnecessary for embeddings and incur expensive all-pair computations.

To address these challenges, we propose a hypergraph multi-hop similarity measure for

nodes (HMS-N) over H. The key insights include (i) capturing multi-hop connectivity

between nodes and (ii) leveraging the global significance of nodes in H, both relying

on random walks adapted to the hypergraph structure.

HMS-N Formulation. We begin by defining the transition probability p(u, v) for

random walks on H, considering hyperedge sizes, weights w(e), generalized node

degrees d(u), and, crucially, hyperedge-dependent node weights ϑ(u, e), reflecting

attribute similarities. p(u, v) involves two hops: from node u to a hyperedge and from

the hyperedge to node v. First, unlike prior definitions [17], an incident hyperedge e is

selected with probability proportional to w(e)ϑ(u, e)/d(u), where ϑ(u, e) emphasizes

attribute a”nity, and w(e) balances structural and attribute significance. Second,

within the chosen hyperedge e, the node v is selected with probability proportional to

ϑ(v, e)/ς(e), prioritizing nodes with stronger attribute ties. Therefore, the transition

probability is

p(u, v) =
∑

e↘EX

w(e)ϑ(u, e)

d(u)

ϑ(v, e)

ς(e)
, (4.3)

94

4.3. Similarities and Objectives

and accordingly the n ↑ n transition matrix P with each entry P[i, j] = p(vi, vj) can

be written as

P = D↓1
v
HTWD↓1

e
H. (4.4)

The HMS-N measure ↽(·) combines the multi-hop connectivity derived from random

walks, and the global significance of nodes featured by the stationary probability.

First, to capture the connectivity between nodes, we carry out a number of random

walks, each of which may restart from its beginning node to balance the local and

global structural insights. Specifically, in the extended hypergraph H, at each step,

the walk either teleports back to u with probability ω ↓ [0, 1) or transitions to a

node with probability 1→ω, following the transition matrix P in Equation (4.4). Let

π(vi, vj) denote the limiting probability that a random walk starting from node vi

reaches node vj after infinitely many iterations, reflecting vj’s significance to vi across

local and global levels. The probability π(t)(vi, vj) of reaching any node vj from any

node vi after t steps is represented by the stochastic matrix !(t)
↓ Rn↗n in Equation

(4.5), where !(t)[i, j] is π(t)(vi, vj).

!(0) = In, !(t+1) = ωIn + (1 → ω)P!(t), (4.5)

with In as the n ↑ n identity matrix. The non-recursive formula is

!(t) =
t↓1∑

i=0

ω(1 → ω)iPi + (1 → ω)tPt. (4.6)

Let ! represent !(t=⇔) with infinite steps to converge. As one may note, Equations

(4.5) and (4.6) have similar forms to those in simple graphs. However, our formulation

is based on the dedicatedly derived from the extended hypergraph H. Accordingly,

the transition includes the selection of a hyperedge and a node therein. Moreover, we

do not employ ! as the similarity matrix, but instead take account of the significance

95

Chapter 4. SAHE: Attributed Hypergraph Embedding

of each specific node as below.

Second, note that in a connected and nontrivial H, the transition matrix P is ir-

reducible and aperiodic, ensuring a unique stationary distribution ps = psP [156].

Let ps(v) be the element in ps w.r.t. node v. Then, ps(v) is the probability that

an arbitrary random walk ends at v, indicating the significance of v. Moreover, the

significance ps(v) can be calculated by ps(v) = d(v)/ vol(H).

Finally, combining the multi-hop connectivity and node significance, we define the

HMS-N similarity measure as

↽(u, v) = tlog
π(u, v)

ps(v)
, (4.7)

where π(u, v) is divided by ps(v) to o!set the inherent global significance of v (i.e., its

degree centrality), and thus isolate the specific relational strength between u and v

for a balanced and embedding-friendly measure. Moreover, the truncated logarithm,

tlog x = log(max(x, 1)), is applied to stabilize the ratio against small ps(v) in large

hypergraphs.

By Lemma 4.3.1 proved below, we establish the symmetry of HMS-N, ensuring the

mutual similarity between two nodes. This is critical for embedding, as the dot

product of corresponding embedding vectors should preserve their mutual HMS-N

similarity.

Lemma 4.3.1. For any nodes vi, vj ↓ V, we have ς(vi,vj)
ps(vj)

= ς(vj ,vi)
ps(vi)

.

Proof. The random walk on H has stationary probability ps(vi) = d(vi)/ vol(H) [156].

Thus, the matrix with ps as diagonal is Dv/ vol(H). Two sides of the lemma are

written in matrix form as vol(H)!D↓1
v

and (vol(H)!D↓1
v

)T. Then we get D↓1
v
!T =

D↓1
v

∑⇔
i=0 ω(1 → ω)i(Pi)T =

∑⇔
i=0 ω(1 → ω)iD↓1

v

(
HTWD↓1

e
HD↓1

v

)i
=

∑⇔
i=0 ω(1 →

ω)iPiD↓1
v

= !D↓1
v

= (D↓1
v
!T)T.

96

4.3. Similarities and Objectives

𝑣1
′

𝑣2
′

𝑣3
′

𝑣4
′

𝑣8
′

𝑒3
′

{𝑒1
′ , 𝑒2

′ }
𝑒4

′

𝑒6
′

𝑒5
′ 𝑣′ ∈ 𝒱𝑋

′ ← 𝑒 ∈ ℰ𝑋

𝑣1
′ ← 𝑒1 = 𝑣1, 𝑣2, 𝑣3

𝑣2
′ ← 𝑒2 = {𝑣3, 𝑣4, 𝑣5}

𝑣3
′ ← 𝑒3 = {𝑣3, 𝑣5, 𝑣6}

𝑣4
′ ← 𝑒4 = {𝑣1, 𝑣2, 𝑣4}

𝑣8
′ ← 𝑒8 = {𝑣4, 𝑣5, 𝑣6}

Figure 4.3: Dual hypergraph H
→.

With Eq. (4.7), we can express the HMS-N similarity matrix for all n ↑ n node pairs

in H as

% = tlog⇓ (vol(H)!D↓1
v

)
, (4.8)

where %[i, j] = ↽(vi, vj) and tlog⇓(·) means the element-wise truncated logarithm.

Also, % is a symmetric matrix, as the element-wise tlog⇓(·) function preserves the

symmetry established in Lemma 4.3.1.

Node Embedding Objective. We aim to use the dot product of two node em-

beddings to preserve the HMS-N between nodes. Specifically, Let ZV denote the

n↑k embedding matrix where each row is a node embedding vector. Then, the node

embedding problem of solving ZV can be formulated as follows, where ⇐ · ⇐F is the

Frobenius norm.

ZV = argmin
Z↘Rn↑k ⇐% → ZZT

⇐
2
F
. (4.9)

4.3.3 Hypergraph Multi-Hop Hyperedge Similarity: HMS-E

The definition of HMS-E aligns with the principles of HMS-N, but it is derived using

the dual hypergraph H
→ of H, where nodes and hyperedges swap their roles. H

→

can be obtained by transposing the incidence matrix H. In the dual hypergraph

H
→ = {V

→
X

, E →
}, the new node set V

→
X

includes m+n nodes and the new hyperedge set

97

Chapter 4. SAHE: Attributed Hypergraph Embedding

E
→ contains n hyperedges. Specifically, each node v→

i
↓ V

→
X

represents the hyperedge

ei ↓ EX of H. Each hyperedge e→
j
↓ E

→ contains nodes in V
→
X

which correspond to the

hyperedges in H incident to vj ↓ V .

Example. Figure 4.3 illustrates the dual hypergraph H
→ derived from the original H

in Figure 4.2. In H
→, hyperedge e1 of H is represented by node v→

1 and is connected to

v→
2 and v→

3 through e→3, which corresponds to node v3 in H. This representation enables

the analysis of similarity between e1 and e2 in H based on the relationships between

v→
1 and v→

2 in H
→.

The dual hypergraph H
→ has a weighted incidence matrix H→ = HTW, hyperedge

weight w(e→) = 1 (e→ ↓ E
→), and W→ = In. Hyperedge-dependent node weights are

ϑ→(v→
i
, e→

j
) = w(ei)ϑ(vj, ei), retaining the influence of hyperedge weights in H. The

generalized node degree, hyperedge degree, and hypergraph volume of H
→ are:

d(v→
i
) = ς(ei)w(ei), ς(e

→
j
) = d(vj), vol(H→) = vol(H),

with matrix forms D→
v

= WDe and D→
e
= Dv.

HMS-E Formulation. In the dual hypergraph H
→, a random walk transitions from

node v→
i
(hyperedge ei in H) to node v→

j
(hyperedge ej in H) via a hyperedge e→ (node

v shared by ei and ej), with probability proportional to ϑ→(v→
i
, e→)ϑ→(v→

j
, e→)/d(v→

i
), which

is ϑ(v, ei)ϑ(v, ej)/[ς(ei)w(ei)] in H. Aggregating over all shared nodes, the transition

probability between ei and ej e!ectively captures the strength of their overlap. The

transition probability between hyperedges ei, ej in the original hypergraph H is

p→(ei, ej) = p(v→
i
, v→

j
) =

∑

v↘V

ϑ(v, ei)

ς(ei)w(ei)

ϑ(v, ej)

d(v)
, (4.10)

where the function p→(·, ·) with a prime indicates the transition between hyperedges

in the original hypergraph H. Moreover, the (m + n) ↑ (m + n) transition matrix P→

98

4.3. Similarities and Objectives

can be expressed as

P→ = (DeW)↓1(HTW)TD↓1
v
HTW = D↓1

e
HD↓1

v
HTW. (4.11)

Similar to HMS-N, HMS-E between hyperedges ei and ej (i.e., nodes v→
i
and v→

j
in H

→

) also considers their multi-hop connectivity and global significance within H
→. Let

!→(t) be the probability of transitioning between hyperedges (represented as nodes

in H
→) over t steps. In the limit, !→(⇔) reflects the long-term likelihood of reaching

one hyperedge from another. The matrix !→(t) for the dual hypergraph is computed

iteratively by substituting P→ into Eq. (4.5). Let !→ denote !→(t=⇔) with infinite steps

to converge. Then, the probability that a random walk from hyperedge ei reaching

hyperedge ej in H is π→(ei, ej) = π(v→
i
, v→

j
) = !→[i, j].

The global significance of hyperedge ej is the significance of its corresponding node

v→
j

in H
→, ps(v→

i
), calculated as :

p→
s
(ei) = ps(v

→
i
) = d(v→

i
)/ vol(H→) = ς(ei)w(ei)/ vol(H). (4.12)

Finally, the HMS-E of hyperedges ei and ej, ↽→(ei, ej), is

↽→(ei, ej) = tlog
π→(ei, ej)

p→
s
(ej)

. (4.13)

The corresponding HMS-E matrix for all hyperedge pairs is

%→ = tlog⇓ (vol(H)!→D↓1
e
W↓1

)
. (4.14)

Hyperedge Embedding Objective. We aim to use the dot product of two hyper-

edge embeddings to preserve the HMS-E between the hyperedges. Let ZE denote the

m ↑ k embedding matrix where each row is the embedding vector for a hyperedge

e ↓ E , and %→
E denote the m ↑ m submatrix of %→ that represents the HMS-E simi-

99

Chapter 4. SAHE: Attributed Hypergraph Embedding

larity between hyperedges in E . Then, the hyperedge embedding problem of solving

ZE can be formulated as

ZE = argmin
Z↘Rm↑k ⇐%→

E → ZZT
⇐
2
F
. (4.15)

4.3.4 A Base Method

In this section, we introduce a basic method to directly address the node and hyper-

edge embedding objectives in Equations (4.9) and (4.15). The purpose of this base

method is two-fold. First, it verifies the e!ectiveness of the proposed measures HMS-

N and HMS-E, by demonstrating superior quality over existing methods. Second, it

establishes a foundation for our final method SAHE, described in Section 4.4, which

achieves the same high embedding quality with significantly improved e”ciency.

For node embeddings, the main idea is factorizing the HMS-N matrix %. Recall that

% in Eq. (4.8) relies on !(t=⇔) in Eq. (4.5), which is an infinite sum of powers

of the transition matrix P. To be tractable, we approximate ! by at most t = T

steps, resulting in !(T) by Eq. (4.6). Accordingly, we can derive the approximate

HMS-N matrix %T by replacing ! with !(T) in Eq. (4.8). Now, the focus is to

factorize the symmetric matrix %T to get node embeddings ZV ↓ Rn↗k. Specifically,

we utilize the eigendecomposition %T = Q&QT, where & is the diagonal matrix of

n eigenvalues, and Q contains the corresponding eigenvectors in its columns. Then,

the embedding matrix ZV would be Q&1/2, so that ZVZT
V approximates % in Eq.

(4.9). Note that, ZV has only k columns. To satisfy this, we only take the k leading

eigenvalues (forming &!), and let Qk contain the corresponding eigenvectors. Then,

we get the node embeddings

ZV = Qk&
1/2
! , where Qk ↓ Rn↗k, &! ↓ Rk↗k. (4.16)

100

4.3. Similarities and Objectives

Algorithm 8: Base
Input: Hypergraph incidence matrix H0 ↓ Rm↗n and attribute matrix X ↓ Rn↗q,

embedding dimension k, algorithm parameters K,ε, T .

1 H,Dv,De,W ≃ ExtendHG(H0,X,K);

2 P ≃ D↓1
v HTWD↓1

e H, !(0)
≃ In ; // Eq. (4.4)

3 for t ≃ 1, . . . , T do

4 !(t)
≃ εIn + (1 → ε)P!(t↓1) ; // Eq. (4.5)

5 ”T ≃ tlog⇓
(
vol(H)!(T)D↓1

v

)
;

6 #!,Qk ≃ eigen(”T , k);

7 ZV ≃ Qk#
1/2
! ; // Eq. (4.16)

8 P→
≃ D↓1

e HD↓1
v HTW, !→(0)

≃ Im+n;

9 for t ≃ 1, . . . , T do

10 !→(t)
≃ εIm+n + (1 → ε)P→!→(t↓1);

11 ”→
T

≃ tlog⇓
(
vol(H)!→(T)D↓1

e W↓1
)
;

12 ”→
E ≃ ”→

T
[1 : m+ 1, 1 : m+ 1];

13 #→
!,Q

→
k

≃ eigen(”→
E , k);

14 ZE ≃ Q→
k
#→1/2

! ;

15 return ZV , ZE ;

Similarly, to derive the hyperedge embeddings ZE in Eq. (4.15), the base method

first gets !→(T) with at most T steps, then computes the approximate HMS-E matrix

%→
T
. A note is that we are only interested in deriving embeddings for hyperedges in

E , while the attribute-based hyperedges in EK are constructed just to incorporate the

attributes. Thus, we only focus on factorizing the m↑m part of %→ (denoted as %→
E).

Although these attribute-based hyperedges are excluded from %→
E , the attribute in-

formation is actually taken into account in %→
E via the multi-hop random walk. Then,

after factorizing %→
E = Q→&→Q→T , we take the first k leading eigenvalues (forming &→

!)

and the corresponding eigenvectors (forming Q→
k
) to fit the dimension of embeddings

k. Finally, we can derive the hyperedge embeddings ZE = Q→
k
&→1/2

! .

The pseudocode of this method is presented in Algorithm 8. After constructing the

101

Chapter 4. SAHE: Attributed Hypergraph Embedding

Extended Hypergraph ℋ

Attributed Hypergraph

Linear-time
Factorization

of 𝚿

Linear-time
Factorization

of 𝚿ℰ
ᇱ

Unified
Decomposition
of Normalized

𝐇෩

HMS-N:
Node

Similarity 𝚿

HMS-E:
Hyperedge

Similarity 𝚿′

𝐙𝒱

𝐙ℰ

Figure 4.4: Overview of the SAHE algorithm.

extended hypergraph H by Line 1, Base first simulates the random walk processes on

H for T iterations in Lines 2-4, leading to !(T). The approximate HMS-N matrix %T

is computed in Line 5, and the node embedding matrix ZV is derived by factorizing

%T in Lines 6-7. For the eigendecomposition in Line 6, we adopt an implementation

based on Lanczos iterations, which solves the leading eigenpairs via a limited number

of matrix-vector multiplications. Then, Lines 8-14 basically repeat the embedding

procedures on the dual hypergraph H
→ to acquire the hyperedge embeddings ZE ,

except that Line 12 removes the last n columns and rows to exclude the attribute-

based hyperedges from H.

In the experiments, Base demonstrates strong e!ectiveness over existing methods,

but falls short in scalability. To analyze, Lines 3-4 and Lines 9-10 dominate its time

complexity, with running time O(n2d̄2) and O((m + n)2d̄2), respectively. Lines 5-6

and Lines 11-13 also incur quadratic time while handling %T and %E . Thus, Base has

an overall time complexity of O((m+n)2d̄2), and the space complexity is O((m+n)2),

due to the materialization of the (m+n)↑(m+n) matrix !→ and the n↑n matrix !.

The high complexity stems from the element-wise tlog⇓(·) function, which prevents

separate factorization of ! and D↓1, forcing materialization of !(t) for t ↓ [1, T].

Moreover, !(t) and !→(t) grow dense after iterations, exacerbating scalability issues.

To overcome these limitations, we design SAHE in Section 4.4.

102

4.4. The SAHE Method

4.4 The SAHE Method

As explained, materializing the dense HMS-N and HMS-E matrices !(T) and !→(T) is

computationally expensive. The non-linearity in the definitions of HMS-N and HMS-

E complicates straightforward matrix factorization of the transition and incidence

matrices used to construct the similarity matrices.

To solve these di”culties, we develop SAHE, an e”cient method to produce high-

quality AHNEE results, with a complete pipeline outlined by Figure 4.4. The key

ideas are two-fold. First, we analyze the shared core computations of HMS-N and

HMS-E matrices, enabling a unified matrix decomposition procedure for node and

hyperedge embedding objectives (Section 4.4.1). Second, we introduce approximation

techniques to e”ciently generate node and hyperedge embeddings in linear time,

avoiding the materialization of dense HMS-N and HMS-E similarity matrices, with

theoretical guarantees for the approximations (Section 4.4.2). In Section 4.4.3, we

present the algorithmic details.

4.4.1 Unify HMS-N and HMS-E Computations

The key strategy is to identify the shared core computations of the HMS-N and HMS-

E matrices, and perform early matrix decomposition to avoid materializing !(T) and

!→(T), thereby improving e”ciency. For node embedding, to derive the HMS-N matrix

%T , according to Eq. (4.6) and Eq. (4.8), we need to obtain !(T)D↓1
v

first, as follows.

!(T)D↓1
v

=
T↓1∑

i=0

ω(1 → ω)iPiD↓1
v

+ (1 → ω)TPTD↓1
v

.

The main computation here is to get the term PiD↓1
v

(i ↓ [T]). We reformulate

PiD↓1
v

by plugging in the definition of P in Eq. (4.4) as follows, and obviously

103

Chapter 4. SAHE: Attributed Hypergraph Embedding

PiD↓1
v

is symmetric.

PiD↓1
v

= D↓1/2
v

(
HT H

)i

D↓1/2
v

, (4.17)

where H = W1/2D↓1/2
e HD↓1/2

v and H ↓ R(m+n)↗n.

For hyperedge embedding, similarly, to derive the HMS-E matrix %→
T
, according to the

formulation in Section 4.3.3, we need to obtain !
↓(T)D↓1

e
, which relies on a recurring

symmetric matrix P→iD↓1
e
W↓1 that can be decomposed as

P→iD↓1
e
W↓1 = D↓1/2

e
W↓1/2

(
HHT

)i

D↓1/2
e

W↓1/2. (4.18)

Importantly, observe that in Eq. (4.17) and Eq. (4.18), they both rely on matrix

H ↓ R(m+n)↗n, which is essentially a normalized version of the incidence matrix H.

Specifically, both HMS-N and HMS-E matrices rely on H to get either
(
HT H

)i

or
(
HHT

)i

for i up to T .

Note that H is sparse since H is typically sparse. Therefore, it is fast to decompose

H = U’VT by reduced singular value decomposition (RSVD), where ’ is an n ↑ n

diagonal matrix containing the first n singular values of H, while U ↓ R(m+n)↗n

and V ↓ Rn↗n contain the associated left and right singular vectors as their rows,

respectively. Then, PiD↓1
v

in Eq. (4.17) is formulated as

PiD↓1
v

= D↓1/2
v

(
V’UTU’VT

)i
D↓1/2

v

= D↓1/2
v

(
V’2VT

)i
D↓1/2

v

= D↓1/2
v

V’2iVTD↓1/2
v

,

where the second and third equalities hold since the singular vectors are orthonormal

(i.e., UUT = Im+n and VVT = In).

104

4.4. The SAHE Method

Accordingly, the HMS-N matrix %T can be written as

%T = tlog⇓ (vol(H)!TD↓1
v

)

= tlog⇓


vol(H)


T↓1∑

i=0

ω(1 → ω)iPiD↓1
v

+ (1 → ω)TPTD↓1
v



= tlog⇓


vol(H)D

↓ 1
2

v V


T↓1∑

i=0

ω(1→ω)i’2i+(1→ω)T’2T


VTD

↓ 1
2

v


.

Denote ’̂ =
∑

T↓1
i=0 ω(1 → ω)i’2i + (1 → ω)T’2T , and note that ’̂ is an n ↑ n diagonal

matrix. Simplify the above equation, we get

%T = tlog⇓

vol(H)D

↓ 1
2

v V’̂VTD
↓ 1

2
v


.

This can be reformulated as

%T = tlog⇓ (FTF
)
, where F =


vol(H)D↓1/2

v
V’̂1/2. (4.19)

To acquire the HMS-E matrix %→
T

for hyperedge embedding, we can reformulate it

as follows, via a similar process:

%→
T

= tlog⇓ (F→TF→) , where F→ =


vol(H)D↓1/2
e

W↓1/2U’̂1/2.

In this way, both similarity matrices %T and %→
T

can be easily constructed from the

RSVD results of H via F and F→, without the need to compute ! and !→, both of

which require expensive and repeated multiplication of transition matrices P and P→.

Thus, we avoid directly materializing %T or %→
T
.

105

Chapter 4. SAHE: Attributed Hypergraph Embedding

4.4.2 HMS-N and HMS-E Approximations

Despite the reformulation, two e”ciency issues still remain. First, the reduced SVD

on H still has a prohibitive O (n(m + n)) time complexity. To ensure scalability, we

opt for the truncated SVD H ⇓ Ur’rVT
r
, which only keeps the r largest singular

values and the corresponding singular vectors. In this SVD, ’r = diag(⇀1, . . . , ⇀r)

is a diagonal matrix where ⇀i is the i-th largest singular value, while Ur ↓ R(m+n)↗r

and Vr ↓ Rn↗r are the left and right singular vectors. By replacing ’, U and

V with the truncated SVD results, we can derive ’̂r, Fr and F→
r
, providing rank-r

approximations for the node and hyperedge similarity matrices, where the error is

bounded in Theorem 4.4.1 proved as follows.

Theorem 4.4.1. With rank-r matrices Fr =


vol(H)D↓1/2
v Vr’̂

1/2
r ↓ Rn↗r and

F→
r

=


vol(H)D↓1/2
e W↓1/2Ur’̂

1/2
r ↓ R(m+n)↗r, we have the following approximation

guarantee for %T and %→
T
.

tlog⇓ (FrF
T
r

)
→ %T

2

F
↘


D1/2

v

2

F

D↓1/2
v

2

F

n∑

i=r+1

’̂[i, i]

2

,

tlog⇓ (F→
r
F→T

r

)
→ %→

T

2

F
↘


D1/2

v

2

F

D↓1/2
e

W↓1/2
2

F

n∑

i=r+1

’̂[i, i]

2

.

Proof. First, we prove the inequality w.r.t. the approximate HMS-N matrix %T .

Let F̃ denote FFT, and F̃r denote FrFT
r
. Then, by the definition of %T , the l.h.s. of

the first inequality can be write as tlog⇓ (FrFT
r

)
→tlog⇓ (FTF

)
. For ease of exposition,

we denote the result of this formula by A. Then the absolute value of an arbitrary

element of the matrix A is

|A[i, j]| =
tlog

(
F̃r[i, j]

)
→ tlog

(
F̃[i, j]

)

=
log

(
max


F̃r[i, j], 1

)
→ log

(
max


F̃[i, j], 1

)

↘

max

F̃r[i, j], 1


→ max


F̃[i, j], 1

 ↘

F̃r[i, j] → F̃[i, j]
 .

(4.20)

106

4.4. The SAHE Method

The second equality is due to tlog⇓(·). The first inequality is because of |log x → log y| ↘

|x → y| for any x, y ↗ 1. The second inequality is due to | max{x, 1} → max{y, 1}| ↘

|x → y| for any x, y ↓ R.

Let ’r+ denote the diagonal matrix of the (r + 1)-th to n-th largest singular values

of H, and the corresponding singular vectors are Ur+ ↓ R(m+n)↗(n↓r) and Vr+ ↓

Rn↗(n↓r). Then we have

tlog⇓ (FrF
T
r

)
→ %T

2

F
↘ ⇐F̃r → F̃⇐

2
F

= ⇐FrF
T
r

→ FFT
⇐
2
F

= vol2(H)
D↓1/2

v
Vr’̂rV

T
r

(
D↓1/2

v

)T
→ D↓1/2

v
V’̂VT

(
D↓1/2

v

)T
2

F

= vol2(H)
D↓1/2

v
Vr+’̂r+V

T
r+D

↓1/2
v


2

F

↘ vol2(H)
D↓1/2

v

2

F

2 Vr+’̂r+V
T
r+


2

F

↘


D1/2

v

2

F

D↓1/2
v

2

F

n∑

i=r+1

’̂[i, i]

2

,

where the first inequality is due to Ineq. (4.20). The second inequality is due to

the property of Frobenius norm. The third inequality follows by rewriting vol(H)

as a Frobenius norm. Vr+ and VT
r+ are orthogonal and ’̂r+ is diagonal. Thus,

Vr+’̂r+VT
r+ must be the SVD decomposition of some matrix, and the Frobenius

norm of that matrix is the sum of the squared singular values. Then, we apply
∑

i
a2
i

↘ (
∑

i
ai)2 where ai ↗ 0. Deriving the upper bound in the second inequality

of Theorem 4.4.1 is similar and thus omitted.

The second challenge arises from the quadratic time and space costs of computing the

matrix multiplication FrFT
r

and applying the subsequent element-wise tlog⇓(·) func-

tion. To solve this issue, we employ the polynomial tensor sketch (PTS) technique [39]

to approximate tlog⇓(FrFT
r
) with (= Y(YT, where Y ↓ Rn↗(ϱb+1) contains the ten-

sor sketches and the diagonal (encodes polynomial coe”cients. With PTS, we can

e”ciently bypass direct matrix materialization. Specifically, we first generate tensor

sketches based on polynomial degree ϖ and sketch dimension b. Then, we derive

the approximation through a process involving count-sketch matrices, recursive ten-

107

Chapter 4. SAHE: Attributed Hypergraph Embedding

sor computations based on fast Fourier transform, and regression-based coe”cient

estimation with sample size c. To analyze, the PTS method takes only linear time

O(n) in total, including O(ϖnr) for count-sketch generation, O(ϖnb) for fast Fourier

transform and its inverse, and O(ncr) for fitting tlog⇓(·) via regression. Moreover,

the approximation error of PTS is bounded by Lemma 4.4.2 for our approximation

based on the theory in [39].

Lemma 4.4.2. If |tlog(x) →
∑

ϱ

i=0 xi
| ↘ ϱ for some ϱ > 0 in a closed interval con-

taining all entries of FrFT
r
, the PTS) = Y(YT satisfies E

f ⇓(FrFT
r
)→)

2

F
↘

2n2ϱ2 +
∑

ϱ

i=1
2ϱ(2+3i)(![i,i])2

b

∑
n

j=1⇐Fr[j,:]⇐
2i
F

2
.

Although) = Y(YT resembles the eigendecomposition of), we cannot directly use

Y and (to derive embeddings, since the dimension of Y, n↑(ϖb+1), does not agree

with the k-dimensional embedding space. To obtain a k-dimensional decomposition

e”ciently, avoiding the quadratic complexity of standard factorization, we apply the

Lanczos method for eigendecomposition. This method computes the k leading eigen-

pairs of) by iteratively applying the linear operator L(v) =)v = Y
(
(

(
YTv

))
,

which multiplies a vector v by) with complexity linear to n. Consequently, the

matrix &” contains the k largest-magnitude eigenvalues of), and Q” comprises their

corresponding eigenvectors as columns, yielding a factorization: Q”&”QT
”
. Finally,

we get the node embeddings as

ZV = Q”&
1/2
”

. (4.21)

Following similar processes with details omitted, we can approximate the hyperedge

similarity matrix tlog⇓(F→
r
F→

r

T) with)→, decomposed as Q→
”
&→

”
Q→

”

T, and derive the

hyperedge embeddings

ZE = Q→
”
&→1/2

”
. (4.22)

108

4.4. The SAHE Method

Algorithm 9: SAHE

Input: Hyperedge incidence matrix H0 ↓ Rm↗n, node attribute matrix

X ↓ Rn↗q, embedding dimension k, algorithm parameters

K, r, T, ω, ϖ, b, c.

1 H,Dv,De,W ≃ ExtendHG(H0,X, K);

2
H ≃ W1/2D↓1/2

e HD↓1/2
v ; // Eq. (4.17)

3 Ur,’r,Vr ≃ TruncatedSVD
(
H, r

)
;

4 ’̂r ≃ Ir;

5 for i ≃ 1, . . . , T do

6 ’̂r ≃ ωIr + (1 → ω)’2
r
’̂r;

7 Fr ≃


vol(H)D↓1/2

v Vr’̂
1/2
r ; // Theorem 4.4.1

8 Y,(≃ PTS(Fr, tlog, ϖ, b, c);

9 Linear operator L(v) = Y
(
(

(
YTv

))
;

10 &”,Q” ≃ Lanczos(L, k); // eigen
(
Y(YT, k

)

11 ZV ≃ Q”&
1/2
”

; // Eq. (4.21)

12 F→
r
≃


vol(H)D↓1/2

e W↓1/2Ur’̂
1/2
r ;

13 Y→,(→
≃ PTS (F→

r
[1 : m + 1, :], tlog, ϖ, b, c);

14 Linear operator L
→(v) = Y→ ((→ (Y→Tv));

15 &→
”
,Q→

”
≃ Lanczos (L→, k); // eigen (Y→(→Y→T, k)

16 ZE ≃ Q→
”
&→1/2

”
; // Eq. (4.22)

17 return ZV ,ZE ;

4.4.3 SAHE Algorithm Details

With the aforementioned techniques, we can derive node and hyperedge embeddings

e”ciently without materializing dense similarity matrices. The pseudocode of SAHE,

our proposed method for attributed hypergraph embedding, is presented in Algorithm

9.

Algorithm. After constructing the attribute-extended hypergraph H at Line 1 by

calling Algorithm 7 (Line 1), we get the incidence matrix H, the degree matrices

109

Chapter 4. SAHE: Attributed Hypergraph Embedding

Dv,De and the weight matrix W. Then, we can obtain the normalized hypergraph

incidence matrix H and decompose it into Ur,’r, and Vr via the rank-r Truncat-

edSVD method (Lines 2-3). We calculate ’̂r from the r largest singular values of H

in Lines 4-6. Then we derive the embeddings for node and hyperedges.

For node embeddings (Lines 9-11), we first derive Fr by its definition in Theorem 4.4.1,

and the node similarity matrix becomes tlog⇓
(
FrF

T

r

)
. To compute this tlog⇓

(
FrF

T

r

)

function e”ciently, we derive its polynomial tensor sketches Y and (. Finally,

the node embeddings ZV = Q”&
1/2
”

are obtained by factorizing) = Y(YT into

Q”&”QT via the Lanczos technique [67].

Following a similar process, we can derive the hyperedge embeddings ZV = Q→
”
&→1/2

”

(Lines 12-16), except that in Line 13 we only generate sketches for the first m rows

of Fr, since we are only interested in the embeddings of the original hyperedges.

Complexity. With the above approximation techniques, our proposed SAHE algo-

rithm has a much lower complexity than the base method. To analyze, we first con-

sider the basic steps. Specifically, the invocation of ExtendHG to derive the matrices

in Line 1 takes O(n log n+nqK) time. The multiplication of matrices in Line 2 costs

only linear time, since W, Dv, and De are diagonal and H is a sparse matrix with

nd̄ + nK nonzero entries. The TruncatedSVD technique in Line 3 involves a bounded

number of matrix-vector multiplications on H, and hence incurs O(nd̄ + nK) time

complexity. Then, the calculation of ’̂r in Lines 4-6 takes a negligible O(Tr) time.

As can be seen, the common steps for node and hyperedge embedding only take linear

time in total.

To derive the node embeddings, we compute Fr in Line 7, which takes O(nr) time.

Next, recall from Section 4.4.2 that the approximation via the PTS method in Line

8 finishes in linear time O(n). As for the Lanczos method in Lines 9-10, the linear

operator L(·) only takes linear time and the L(·) operator will only be carried out

for constant times. Thus, the Lanczos method also only takes linear time. Finally,

110

4.5. Experiments

the time to obtain node embeddings is O(n). By similar arguments, we can conclude

that the time to obtain hyperedge embeddings is O(m + n).

To summarize, the overall time complexity of SAHE is O(n log n + nd̄ + nq + m), or

simply O(n log n) as q and d̄ can be considered constant. Moreover, the memory

overhead of SAHE is O(nd̄ + nq + m), which is linear in the size of the input H, since

all involved matrices are either sparse or low-dimensional.

Discussion. SAHE achieves substantial speedup at the cost of approximation errors,

compared to Base, which directly computes and factorizes the similarity matrices.

Experiments show that on small datasets, the performance of SAHE and Base is simi-

lar, though Base is often slightly better. However, Base cannot scale to large datasets,

while SAHE consistently outperforms existing methods in e”ciency and e!ectiveness.

Hence, the e”ciency gain of SAHE is well worth the approximation trade-o!s.

4.5 Experiments

After providing the experimental settings in Section 4.5.1, we report the performance

of node embedding on node classification task in Section 4.5.2 and on hyperedge link

prediction task in Section 4.5.3, and the performance of hyperedge embedding on

hyperedge classification task in Section 4.5.4. The e”ciency results and experimental

analysis are reported in Section 4.5.5 and Section 4.5.6. The implementation of our

methods is available at https://github.com/CyanideCentral/AHNEE.

4.5.1 Experimental Setup

Datasets. Table 5.2 summarizes the statistics of attributed hypergraphs used in

our experiments, including the number of nodes (n) and hyperedges (m), the average

node degree (d̄), the average hyperedge size (ς), the dimension of node attributes

111

https://github.com/CyanideCentral/AHNEE

Chapter 4. SAHE: Attributed Hypergraph Embedding

Table 4.2: Dataset statistics.

Dataset n m d̄ ς q φ

DBLP-CA 2,591 2,690 2.39 2.31 334 4
Cora-CA 2,708 1,072 1.69 4.28 1,433 7
Cora-CC 2,708 1,579 1.77 3.03 1,433 7
Citeseer 3,312 1,079 1.04 3.20 3,703 6
Mushroom 8,124 298 5.0 136.3 126 2
20News 16,242 100 4.03 654.5 100 4
DBLP 41,302 22,263 2.41 4.45 1,425 6
Recipe 101,585 12,387 25.2 206.9 2,254 8
Amazon 2,268,083 4,285,295 32.2 17.1 1,000 15
MAG-PM 2,353,996 1,082,711 7.34 16.0 1,000 22

Table 4.3: Node classification performance. The best three are in gray with darker
shades indicating better performance.

Method
DBLP-CA Cora-CA Cora-CC Citeseer Mushroom 20News DBLP Recipe Amazon MAG-PM

Rank
MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1

Hyper2vec 0.446 0.410 0.412 0.365 0.493 0.460 0.311 0.258 - - - - 0.702 0.672 - - - - - - 8.9
PANE 0.671 0.651 0.516 0.456 0.508 0.491 0.443 0.399 0.910 0.909 0.566 0.464 0.750 0.734 - - - - 0.378 0.230 6.9
AnECI 0.683 0.661 0.625 0.582 0.453 0.367 0.454 0.399 0.914 0.913 0.694 0.589 - - - - - - - - 7.3
CONN 0.756 0.744 0.684 0.640 0.637 0.577 0.626 0.563 - - - - 0.828 0.814 - - - - - - 6.0

VilLain 0.462 0.439 0.457 0.412 0.484 0.490 0.301 0.272 0.984 0.984 0.730 0.645 0.692 0.657 - - - - - - 7.6
AnchorGNN 0.275 0.196 0.239 0.096 0.254 0.095 0.195 0.114 0.854 0.853 0.545 0.429 0.271 0.071 0.379 0.069 0.310 0.032 0.252 0.018 9.2

BiANE 0.705 0.682 0.716 0.683 0.652 0.625 0.644 0.579 0.969 0.969 - - 0.853 0.843 - - - - - - 5.0
TriCL 0.787 0.778 0.702 0.677 0.668 0.646 0.540 0.487 0.978 0.978 0.761 0.722 - - - - - - - - 5.0

HypeBoy 0.812 0.789 0.725 0.688 0.627 0.584 0.476 0.420 0.970 0.970 - - - - - - - - - - 5.8
NetMF 0.536 0.514 0.518 0.458 0.527 0.513 0.324 0.281 0.987 0.987 0.766 0.733 0.744 0.721 - - - - - - 6.2

LightNE 0.545 0.519 0.520 0.469 0.533 0.514 0.342 0.295 0.959 0.959 0.700 0.646 0.733 0.712 0.382 0.099 0.443 0.210 0.603 0.353 6.0
Base 0.836 0.828 0.777 0.754 0.753 0.732 0.693 0.628 0.997 0.997 0.801 0.775 0.898 0.894 - - - - - - 2.1
SAHE 0.824 0.816 0.753 0.732 0.742 0.720 0.690 0.622 0.999 0.999 0.786 0.748 0.867 0.859 0.630 0.236 0.718 0.396 0.698 0.451 1.6

(q), and the number of ground-truth class labels (φ). DBLP-CA, Cora-CA, Cora-

CC, Citeseer, and DBLP are benchmark datasets in [136]. Mushroom and 20News

are from [16], and Recipe is from [69]. Amazon and MAG-PM are million-scale

from [73]. In DBLP-CA, Cora-CA, and MAG-PM, nodes represent publications, and

hyperedges link publications by the same author. In DBLP, nodes are authors, and

hyperedges connect co-authors of a publication. Cora-CC and Citeseer are co-citation

datasets where hyperedges group publications cited together. Nodes in these datasets

have textual attributes from abstracts, with class labels indicating research areas.

The Mushroom dataset forms hyperedges by connecting mushrooms (nodes) with

the same traits. A mushroom has a one-hot binary attribute vector from categorical

features and is labeled as edible or poisonous. The 20News dataset forms hyperedges

112

4.5. Experiments

by shared keywords, using TF-IDF vectors as node attributes and topics as labels.

Recipe is a recipe-ingredient hypergraph with bag-of-words attributes from instruction

texts and dense hyperedge connections. In Amazon, nodes are products, hyperedges

connect products reviewed by the same user, and attributes come from metadata,

with categories as labels. Hyperedges lack labels, so we assign each the most frequent

node label. For example, an author hyperedge in Cora-CA takes the predominant

research area among its publications, while in Amazon, a user hyperedge adopts the

most common product category.

Baselines. For node embedding evaluation, we compare SAHE against 11 baselines in

total, including the hypergraph embedding approach Hyper2vec [45], and three at-

tributed graph embedding approaches (i.e., PANE [142], AnECI [79], and CONN [114]),

which are applied to reduced graphs derived from the clique expansion of the hyper-

graph. Also, we consider two bipartite graph embedding techniques AnchorGNN [128]

and BiANE [47] that are applied to a bipartite graph where hyperedges are treated

as a distinct set of nodes separate from the original nodes. Finally, we further in-

clude three self-supervised learning baselines (VilLain [65], TriCL [64], and HypeBoy

[60]), with TriCL and HypeBoy targeted for attributed hypergraph embedding, as

well as matrix factorization based approaches on the general graph, NetMF [99] and

LightNE [98]. For hyperedge embedding evaluation, we also compare these baselines,

among which bipartite graph embedding methods (AnchorGNN and BiANE) can pro-

duce embeddings for two parts as node and hyperedge embeddings, respectively. The

remaining methods compute a hyperedge embedding by averaging the node embed-

dings in the hyperedge. In addition, we also compare SAHE with the base method in

Section 4.3.4 for e!ectiveness.

Implementation. On all datasets, SAHE and Base have the identical parameter

settings: K = 10, ε = 1.0, ω = 0.1, T = 10. For all datasets, SAHE performs

approximation with r = 32, ϖ = 3, b = 128, and c = 10, except Mushroom with

r = 16. We fix the output node and hyperedge embedding dimension k to 32 for all

113

Chapter 4. SAHE: Attributed Hypergraph Embedding

Table 4.4: Hyperedge link prediction performance. The best three are in gray with
darker shades indicating better performance.

Method
DBLP-CA Cora-CA Cora-CC Citeseer Mushroom 20News DBLP Recipe Amazon MAG-PM

Rank
Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

Hyper2vec 0.631 0.712 0.667 0.751 0.715 0.751 0.669 0.684 - - - - 0.704 0.741 - - - - - - 8.1
PANE 0.687 0.774 0.685 0.765 0.747 0.755 0.685 0.680 0.930 0.974 0.513 0.638 0.723 0.831 - - - - 0.622 0.697 6.1
AnECI 0.704 0.797 0.695 0.778 0.753 0.836 0.793 0.890 0.947 0.976 0.615 0.617 - - - - - - - - 5.4
CONN 0.797 0.880 0.655 0.710 0.737 0.835 0.751 0.856 - - - - 0.727 0.814 - - - - - - 6.3

VilLain 0.638 0.721 0.682 0.729 0.729 0.833 0.659 0.717 0.905 0.971 0.500 0.396 0.698 0.676 - - - - - - 7.4
AnchorGNN 0.530 0.553 0.512 0.525 0.628 0.688 0.565 0.603 0.693 0.822 0.515 0.403 0.516 0.522 0.506 0.553 0.694 0.773 0.484 0.476 9.1

BiANE 0.638 0.599 0.648 0.597 0.751 0.721 0.690 0.647 0.941 0.981 - - 0.681 0.631 - - - - - - 7.9
TriCL 0.719 0.808 0.682 0.738 0.727 0.837 0.720 0.824 0.942 0.988 0.615 0.858 - - - - - - - - 5.7

HypeBoy 0.718 0.836 0.740 0.843 0.835 0.924 0.741 0.805 0.937 0.982 - - - - - - - - - - 5.4
NetMF 0.659 0.715 0.740 0.793 0.722 0.736 0.643 0.617 0.943 0.988 0.755 0.873 0.755 0.817 - - - - - - 5.9

LightNE 0.632 0.676 0.675 0.672 0.725 0.839 0.671 0.756 0.954 0.988 0.535 0.658 0.696 0.703 0.642 0.689 0.732 0.820 0.746 0.793 5.8
Base 0.785 0.893 0.744 0.815 0.790 0.899 0.783 0.905 0.968 0.996 0.825 0.969 0.811 0.896 - - - - - - 2.8
SAHE 0.776 0.890 0.766 0.828 0.807 0.902 0.801 0.916 0.989 0.999 0.870 0.956 0.824 0.911 0.763 0.830 0.909 0.965 0.761 0.798 1.4

approaches. The parameters for all tested baselines are configured according to their

respective papers. Our method SAHE, along with most baselines, is implemented in

Python, except for the C++ competitor LightNE.

Evaluation. We conduct experimental evaluations on a Linux computer with an

Intel Xeon Platinum 8338C CPU, an NVIDIA RTX 3090 GPU, and 384 GB of RAM,

where a maximum of 16 CPU threads are available. The methods AnECI, CONN,

VilLain, AnchorGNN, TriCL, and HypeBoy benefit from GPU acceleration, while the

other methods, including Base and SAHE, are executed on the CPU. We report average

results over 10 repeated runs. If an approach fails to complete within 24 hours or

runs out of memory, it is considered to rank last and we record the result as ‘ - ’ in

Tables 4.3-4.5.

4.5.2 Node Classification

For attributed hypergraphs, node classification seeks to predict class labels using

node embeddings. We split datasets into training and test sets, using a 20%/80%

ratio for most, except Amazon and MAG-PM, where 2% is allocated for training due

to their size. Ten random splits are generated per dataset, and we report average

results. Embeddings, derived without accessing label information, are used to train

a simple linear classifier on the training set, with performance evaluated on the test

114

4.5. Experiments

set. Classification e!ectiveness is assessed via Micro-F1 (MiF1) and Macro-F1 (MaF1)

scores, where higher values indicate better performance.

Table 4.3 shows the results, with the top three performances for each dataset high-

lighted in gray, using darker shades for better performance. The Rank column in-

dicates the average ranking of each method across all metrics. SAHE achieves the

best overall rank of 1.6, significantly outperforming the next best competitors, BiANE

and TriCL, which rank at 5.0. On large datasets like Amazon and MAG-PM, most

competitors fail to return results within time and memory limits. Compared to Base

from Section 4.3.4, SAHE, developed in Section 4.4, is outperformed slightly on small

datasets but excels on large ones where Base is ine”cient. This highlights the strength

of SAHE’s approximation techniques in maintaining result quality while improving ef-

ficiency. For instance, on Cora-CC, Base and SAHE secure the first and second po-

sitions, respectively, outperforming the third-ranked TriCL by up to 8.5% in both

MiF1 and MaF1. On the DBLP-CA, Cora-CA, Citeseer, Mushroom, 20News, and

DBLP datasets, SAHE improves over the best competitors by 1.2%, 2.8%, 4.6%, 1.2%,

2.0%, and 1.4% in MiF1, and 2.7%, 4.4%, 4.3%, 1.2%, 1.5%, and 1.6% in MaF1, re-

spectively. On the densely connected Recipe, SAHE significantly outperforms the best

competitor by 24.8% in MiF1 and 13.7% in MaF1. On the large Amazon and MAG-

PM, SAHE also surpasses the runner-up with margins up to 27.5% in MiF1 and 18.6%

in MaF1 on Amazon. Table 4.3 demonstrates SAHE’s excellent performance in node

classification, indicating the high quality of node embeddings and the e!ectiveness of

the HMS-N objective from Section 4.3 and algorithm designs in Section 4.4.2.

4.5.3 Hyperedge Link Prediction

Hyperedge link prediction in attributed hypergraphs seeks to identify whether a group

of nodes forms a real hyperedge using node embeddings [94, 65]. For each dataset,

we divide hyperedges into training and test sets, using an 80%/20% split for smaller

115

Chapter 4. SAHE: Attributed Hypergraph Embedding

Table 4.5: Hyperedge classification performance. The best three are in gray with
darker shades indicating better performance. (20News is excluded for lack of suitable
labels.)

Method
DBLP-CA Cora-CA Cora-CC Citeseer Mushroom DBLP Recipe Amazon MAG-PM

Rank
MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1

Hyper2vec 0.569 0.518 0.439 0.370 0.794 0.786 0.589 0.511 - - 0.599 0.553 - - - - - - 7.7
PANE 0.704 0.673 0.515 0.426 0.737 0.725 0.567 0.495 0.769 0.765 0.751 0.731 - - - - 0.303 0.111 6.4
AnECI 0.685 0.664 0.599 0.529 0.542 0.484 0.534 0.398 0.821 0.813 - - - - - - - - 7.6
CONN 0.809 0.786 0.641 0.587 0.781 0.760 0.689 0.612 - - 0.837 0.815 - - - - - - 5.6

VilLain 0.567 0.515 0.459 0.382 0.799 0.790 0.619 0.538 0.838 0.835 0.550 0.486 - - - - - - 6.4
AnchorGNN 0.307 0.251 0.185 0.142 0.194 0.146 0.201 0.170 0.622 0.602 0.267 0.087 0.454 0.078 0.372 0.036 0.334 0.044 9.1

BiANE 0.479 0.408 0.241 0.179 0.577 0.506 0.462 0.377 0.767 0.762 0.462 0.342 - - - - - - 8.8
TriCL 0.804 0.778 0.646 0.590 0.820 0.808 0.659 0.579 0.838 0.834 - - - - - - - - 5.2

HypeBoy 0.820 0.799 0.719 0.662 0.794 0.775 0.728 0.630 0.835 0.830 - - - - - - - - 5.3
NetMF 0.650 0.607 0.452 0.399 0.797 0.792 0.596 0.530 0.879 0.877 0.730 0.699 - - - - - - 5.8

LightNE 0.654 0.610 0.458 0.399 0.800 0.791 0.617 0.534 0.847 0.844 0.702 0.673 0.199 0.051 0.774 0.485 0.502 0.179 4.9
Base 0.858 0.838 0.775 0.740 0.852 0.846 0.770 0.684 0.926 0.925 0.908 0.898 - - - - - - 2.1
SAHE 0.854 0.836 0.764 0.711 0.850 0.839 0.756 0.669 0.908 0.907 0.863 0.843 0.668 0.236 0.823 0.429 0.755 0.470 1.7

datasets and 98%/2% for larger ones like Amazon and MAG-PM. For each real hy-

peredge, we create a negative counterpart by randomly selecting nodes to match its

size. Node embeddings are derived from the training set’s real hyperedges and full

attribute data, excluding test hyperedges and labels. A linear binary classifier is

trained to di!erentiate real from negative hyperedges, using max-min aggregation of

node embeddings as input. This model is tested on the test set, predicting real and

negative hyperedges. We repeat this process over 10 random splits, averaging the

results. Performance is assessed by accuracy (Acc) and area under the ROC curve

(AUC), with higher scores indicating better performance.

Table 4.4 shows that SAHE ranks highest overall with a score of 1.4, significantly out-

performing the strongest baseline, HypeBoy, which has a rank of 5.4. While Base

performs well on smaller datasets, it struggles with larger ones. In contrast, SAHE

maintains top performance on large datasets like Amazon and MAG-PM, where other

methods falter. For instance, on Recipe, SAHE exceeds LightNE by 12.1% in accuracy

and 14.1% in AUC. On the large Amazon dataset, SAHE achieves 90.9% accuracy

and 96.5% AUC, improving by 17.7% and 14.5% over the runner-up, LightNE, which

scores 73.2% accuracy and 82.0% AUC. These results confirm that SAHE generates

high-quality node embeddings, validating the e!ectiveness of our proposed node sim-

ilarity measure and embedding objective.

116

4.5. Experiments

4.5.4 Hyperedge Classification

We evaluate hyperedge embeddings using a classification task that predicts a hyper-

edge’s label from its embedding vector. Hyperedges are split into training and test

sets with a 20%/80% ratio, except for Amazon and MAG-PM, which use a 2%/98%

split due to their size. Embeddings are computed from the attributed hypergraph

without label information. A linear classifier is trained on the training set, using

hyperedge embeddings as input and their labels as targets. Performance is assessed

on the test set, averaged over 10 random splits, and measured by MiF1 and MaF1.

Table 4.5 shows that SAHE ranks first overall with a score of 1.7, significantly outper-

forming the closest competitor, LightNE, which ranks at 4.9. On large datasets like

Amazon and MAG-PM, most competitors fail due to time or memory constraints.

Unlike Base, which struggles with larger datasets, SAHE excels on both small and

large datasets, thanks to its e”cient approximation techniques in Section 4.4. Com-

pared to the runner-up baseline, SAHE improves MiF1 by 4.5% and MaF1 by 4.9% on

Cora-CA, and by large margins of 21.4% in MiF1 and 15.8% in MaF1 on the Recipe

dataset. On the large MAG-PM dataset, SAHE outperforms LightNE by 25.3% in

MiF1 and 29.1% in MaF1. This suggests that simply averaging node embeddings,

as in baseline methods, is insu”cient for hyperedge embedding. The performance of

SAHE shows the e!ectiveness of the HMS-E similarity objective and approximation

techniques in Sections 4.3.3 and 4.4.

4.5.5 Embedding E#ciency

Figure 4.5 reports the time of all methods to generate node and hyperedge embeddings

across the 8 datasets, with each chart’s y-axis showing running time in seconds on a

logarithmic scale and stars marking the top-performing competitors in all three tasks.

Observe that (i) SAHE consistently outperforms all competitors in terms of e”ciency

117

Chapter 4. SAHE: Attributed Hypergraph Embedding

SAHE Base Hyper2vec PANE AnECI
CONN VilLain AnchorGNN BiANE TriCL

HypeBoy NetMF LightNE

10↓1

100

101

102

ω

ω

time (s)

(a) DBLP-CA
10↓1

100

101

102

ω

ω

time (s)

(b) Cora-CA

10↓1

100

101

102

ω
ω

time (s)

(c) Cora-CC
10↓1

100

101

102

103
ω

ω

ω

time (s)

(d) Citeseer

10↓1

100

101

102

103

104

ω ω

ω

time (s)

(e) Mushroom
10↓1

100
101
102
103
104

ω

time (s)

(f) 20News

100

101

102

103

104
ω

ω

ω

ω

time (s)

(g) DBLP
101

102

103 ω ω

time (s)

(h) Recipe

102

103

104

ω

time (s)

(i) Amazon
102

103

104

ω

time (s)

(j) MAG-PM

Figure 4.5: Running time of generating node and hyperedge embeddings together in
seconds (ω marks the best competitors in Tables 4.3, 4.4, 4.5).

118

4.5. Experiments

across all datasets, regardless of the competitors’ quality; more importantly, (ii)

SAHE demonstrates a significant speed advantage over the most e!ective competitors

marked by stars in Figure 4.5, often being faster by orders of magnitude. Taking the

Citeseer dataset as example, Figure 4.5d shows that SAHE is 422.5↑ faster than BiANE

(3rd place in node classification), 15.3↑ faster than AnECI (3rd place in hyperedge

link prediction), and 70.2↑ faster than HypeBoy (3rd place in hyperedge classifica-

tion), while SAHE outperforms all baselines in these tasks. In Figure 4.5f, SAHE takes

just 0.951 seconds compared to 13,536 seconds for NetMF, the runner-up in embedding

quality. This is because NetMF operates on a dense clique-expansion graph reduced

from the hyperedges, which incurs a quadratic complexity for the factorization-based

algorithm. On the million-scale Amazon dataset, SAHE is much faster than the com-

petitors, such as LightNE, with an average rank of 6.0, compared to the 1.4 average

rank of SAHE in Table 4.3. These results underscore the combination of high-quality

embeddings and excellent e”ciency achieved by SAHE.

4.5.6 Experimental Analysis

Scalability test. We assess scalability on synthetic attributed hypergraphs with the

number of nodes n ranging from 2 to 10 million. Each hypergraph is generated as

a 3-uniform hypergraph with n hyperedges of size 3 [33], and each node is assigned

100 random binary attributes. Figure 4.6 shows the time and memory usage of SAHE

against the scalable baseline LightNE on CPU. SAHE exhibits near-linear scalability

and outperforms LightNE in both metrics, confirming the complexity analysis in

Section 4.4.3 and demonstrating the e”ciency of SAHE for large datasets in practice.

Approximation error. SAHE improves e”ciency by introducing acceptable approx-

imation errors compared to Base, which directly computes and factorizes similarity

matrices. Table 4.6 quantifies this loss by reporting the mean absolute error (MAE)

119

Chapter 4. SAHE: Attributed Hypergraph Embedding

SAHE LightNE

0 2 4 6 8 10
0

2,000

4,000

n/106

time (s)

0 2 4 6 8 10
0

100

200

300

n/106

RAM (GB)

Figure 4.6: Scalability Test.

Table 4.6: Approximation Error (MAE).

HMS-N HMS-E
Dataset Base SAHE Base SAHE

DBLP-CA 0.0887 0.1281 0.0795 0.2141
Cora-CA 0.0965 0.1384 0.0770 0.2761
Cora-CC 0.0970 0.1546 0.0551 0.1714
Citeseer 0.0927 0.1446 0.0629 0.2096

between normalized HMS-N and HMS-E matrices and their embedding dot product

matrices. Specifically, similarity matrices are normalized by their diagonal mean to

align self-similarity scales, and MAE is computed as the di!erence between the em-

bedding dot product and the similarity matrices. Results show low errors for both

methods, with Base achieving slightly lower MAE. This confirms SAHE e!ectively ap-

proximates similarity measures with small errors, enabling comparable e!ectiveness

while ensuring e”ciency.

Varying K. Figure 4.7 shows the MiF1 for node classification, Acc for hyperedge link

prediction, and the time to construct attribute-based hyperedges in EK for the Cora-

CA and Amazon datasets. As K varies from 2 to 100, time costs rise significantly,

especially for K > 20. Embedding quality improves notably as K increases from

2 to 10, highlighting the importance of incorporating attribute similarity. However,

beyond K = 10, the metrics stabilize and then decline, likely due to the inclusion of

nodes with dissimilar attributes, which introduces noise. Thus, we set parameter K

to 10 over all datasets.

120

4.5. Experiments

MiF1 Acc time

2 5 10 20 50 100

0.6

0.7

0.8

K

0.02

0.04

0.06

0.08

time (s)

(a) Cora-CA

2 5 10 20 50 100

0.5

0.7

0.9

K

48

53

58

63

time (s)

(b) Amazon

Figure 4.7: Varying K for SAHE.

DBLP-CA Cora-CA Cora-CC Citeseer Mushroom
20News DBLP Recipe Amazon MAG-PM

0.1 0.5 1.0 2.0 10.0

0.6

0.7

0.8

0.9

1

ε

MiF1

0.1 0.5 1.0 2.0 10.0

0.6

0.7

0.8

0.9

1

ε

Acc

Figure 4.8: Varying ε for SAHE.

16 24 32 64 128
0.5

0.6

0.7

0.8

0.9

r

MiF1

16 24 32 64 128
0.6

0.7

0.8

0.9

r

Acc

Figure 4.9: Varying r for SAHE.

Varying ε. Parameter ε balances between attribute-based hyperedges EK and origi-

nal hyperedges E in H in Section 4.3.1. Figure 4.8 shows that as ε increases from 0.1

to 1, micro-F1 for node embedding generally increase. Beyond 1.0, scores stabilize

121

Chapter 4. SAHE: Attributed Hypergraph Embedding

�
 �� ��
� �

���

��

���

���

����

�
���	 ���� ���� ���� ����

���	 ��		 ��
� ��
� ����

���
 ��
� ��
� ��	
 ����

���� ��
� ���� ��	� ���

���� ���� ���� ��
� ����

�
 �� ��
� �

��

�	

��

�	

��

�
���� ���� ���� ���
 ����

��
� ���� ��
� ���� ���

���
 ��
� ��
� ��	
 ����

���� ���� ���� ��	� ����

���� �
�� �
�� ��	� ��
�

��� ��
 ��� ��� �����

��

�	

��

�	

��

�
���� ���� ���� ��
� ��
�

���	 ��	� ��
� ��	� ����

���� ��
� ��
� ���� ����

���� ���
 ���� ���� ��
�

��	� �

� �
�� �

� ����

Figure 4.10: Heatmaps between K, ε, and r on Cora-CA for node classification.
Darker shades indicate higher MiF1. Underlined results are reported in Table 4.3,
while the optimal parameter combinations are in bold.

on most datasets, but decline for Cora-CC and MAG-PM when ε reaches 10.0. The

accuracy of hyperedge link prediction (Acc) increases on 20News and Amazon when

ε varies from 0.1 to 1.0, then remains stable. Therefore, we set ε = 1 by default.

Varying r. The parameter r represents the dimension of truncated SVD used for

approximating HMS-N and HMS-E in Section 4.4.2. We vary r for node classification

(MiF1) and hyperedge link prediction (Acc), with results in Figure 4.9. Increasing

r from 16 to 32 generally improves or stabilizes both metrics, except for Mushroom,

where Acc drops after 24. Beyond 32, scores typically decline. Thus, we set r = 32

by default and r = 16 for the Mushroom dataset.

Parameter interaction. We analyze the interaction between parameters K, ε,

and r using node classification on Cora-CA, shown in Figure 4.10. The heatmaps

display Micro-F1 scores across parameter combinations. SAHE consistently delivers

high-quality embeddings, indicated by darker gray levels, confirming robustness to

parameter variations. Underlined results are those reported in Table 4.3, while bold

values represent optimal performance with fine-tuned parameters, surpassing defaults.

This shows SAHE delivers strong performance with default settings, without extensive

tuning, and provides guidance for adjusting parameters in practice.

Ablation study. To validate our proposed similarity measure formulation, we eval-

122

4.5. Experiments

Table 4.7: Ablation analysis of HMS-N on node classification performance.

Method
DBLP-CA Cora-CA Cora-CC Citeseer Mushroom 20News DBLP

MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1
HMS-N-no-EK 0.527 0.492 0.507 0.462 0.559 0.530 0.329 0.278 0.990 0.990 0.796 0.769 0.755 0.733
HMS-N-1-hop 0.811 0.803 0.741 0.720 0.716 0.696 0.680 0.618 0.988 0.988 0.783 0.755 0.852 0.843

HMS-N 0.836 0.828 0.777 0.754 0.753 0.732 0.693 0.628 0.997 0.997 0.801 0.775 0.898 0.894

Table 4.8: Ablation analysis of HMS-E on hyperedge classification performance.

Method
DBLP-CA Cora-CA Cora-CC Citeseer Mushroom DBLP

MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1
HMS-E-1-hop 0.648 0.605 0.489 0.423 0.765 0.749 0.610 0.521 0.899 0.897 0.650 0.552
HMS-E-no-EK 0.658 0.615 0.487 0.418 0.821 0.810 0.623 0.549 0.921 0.920 0.747 0.716

HMS-E 0.858 0.838 0.775 0.740 0.852 0.846 0.770 0.684 0.926 0.925 0.908 0.898

Table 4.9: Node classification performance for extended baselines.

Method
DBLP-CA Cora-CA Cora-CC Citeseer Mushroom 20News DBLP Recipe Amazon MAG-PM

Rank
MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1

Hyper2vec+ 0.772 0.763 0.696 0.663 0.643 0.615 0.629 0.574 0.935 0.935 0.776 0.734 0.863 0.858 - - - - - - 2.8
Hyper2vec 0.446 0.410 0.412 0.365 0.493 0.460 0.311 0.258 - - - - 0.702 0.672 - - - - - - 3.8
TriCL+ 0.797 0.788 0.709 0.678 0.648 0.629 0.616 0.559 0.983 0.983 0.622 0.567 - - - - - - - - 2.6
TriCL 0.787 0.778 0.702 0.677 0.668 0.646 0.540 0.487 0.978 0.978 0.761 0.722 - - - - - - - - 2.8
SAHE 0.824 0.816 0.753 0.732 0.742 0.720 0.690 0.622 0.999 0.999 0.786 0.748 0.867 0.859 0.630 0.236 0.718 0.396 0.698 0.451 1.0

Table 4.10: Hyperedge link prediction performance for extended baselines.

Method
DBLP-CA Cora-CA Cora-CC Citeseer Mushroom 20News DBLP Recipe Amazon MAG-PM

Rank
Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC Acc AUC

Hyper2vec+ 0.735 0.821 0.613 0.668 0.699 0.795 0.712 0.803 0.932 0.980 0.622 0.749 0.672 0.747 - - - - - - 3.1
Hyper2vec 0.631 0.712 0.667 0.751 0.715 0.751 0.669 0.684 - - - - 0.704 0.741 - - - - - - 3.6
TriCL+ 0.747 0.881 0.721 0.812 0.767 0.912 0.776 0.900 0.933 0.962 0.523 0.525 - - - - - - - - 2.5
TriCL 0.719 0.808 0.682 0.738 0.727 0.837 0.720 0.824 0.942 0.988 0.615 0.858 - - - - - - - - 2.8
SAHE 0.776 0.890 0.766 0.828 0.807 0.902 0.801 0.916 0.989 0.999 0.870 0.956 0.824 0.911 0.763 0.830 0.909 0.965 0.761 0.798 1.1

Table 4.11: Hyperedge classification performance for extended baselines.

Method
DBLP-CA Cora-CA Cora-CC Citeseer Mushroom DBLP Recipe Amazon MAG-PM

Rank
MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1

Hyper2vec+ 0.822 0.798 0.702 0.654 0.804 0.799 0.717 0.637 0.901 0.900 0.851 0.833 - - - - - - 2.2
Hyper2vec 0.569 0.518 0.439 0.370 0.794 0.786 0.589 0.511 - - 0.599 0.553 - - - - - - 3.8
TriCL+ 0.803 0.775 0.646 0.593 0.824 0.809 0.670 0.596 0.831 0.828 - - - - - - - - 2.9
TriCL 0.804 0.778 0.646 0.590 0.820 0.808 0.659 0.579 0.838 0.834 - - - - - - - - 2.9
SAHE 0.854 0.836 0.764 0.711 0.850 0.839 0.756 0.669 0.908 0.907 0.863 0.843 0.668 0.236 0.823 0.429 0.755 0.470 1.0

uate two ablated versions: HMS-N/HMS-E-no-EK , which excludes attribute-based

hyperedges, and HMS-N/HMS-E-1-hop, which restricts random walks to a single hop.

Node and hyperedge embeddings derived from these similarity matrices are assessed

via the classification task, with results in Tables 4.7-4.8. The full HMS-N and HMS-E

measures generally outperform both ablated versions, confirming the e!ectiveness of

our approach.

Adapting HMS-N and HMS-E to existing methods. We explore two strategies

to integrate the key intuitions of HMS-N and HMS-E into existing methods, evaluat-

123

Chapter 4. SAHE: Attributed Hypergraph Embedding

ing their impact on embedding quality alongside SAHE. First, we adapt our multi-hop

random walk process into the Hyper2vec framework, yielding Hyper2vec+ for node

and hyperedge embeddings. Second, for graph neural network models that do not

use random walks, such as TriCL, we enhance it by concatenating the HMS-N matrix

with node features, resulting in TriCL+, where hyperedge embeddings are derived by

averaging node embeddings. Tables 4.9-4.11 summarize the results for node classifica-

tion, hyperedge link prediction, and hyperedge classification tasks, respectively. The

last column shows the average rank of each method across all datasets, with lower

ranks indicating better overall performance. The extended baselines benefit from

incorporating our similarity measures to varying extents. For instance, Hyper2vec+

outperforms Hyper2vec, while TriCL+ shows occasional improvements over TriCL.

Besides, Hyper2vec+ integrates our random walk scheme, making it more e”cient

than Hyper2vec’s second-order random walks, enabling it to process datasets like

20News and Mushroom within the 24-hour limit. These results highlight that the

impact of our ideas depends on the baseline design. Overall, SAHE achieves the best

overall rank, consistently delivering superior performance across diverse settings and

scaling to large datasets that other methods cannot handle.

Varying ω. Figure 4.11 shows MiF1 for node classification in (a) and Acc for hyper-

edge link prediction in (b) as ω varies from 0.001 to 0.3. SAHE demonstrates consistent

performance across most values, except for the very small ω = 0.001. This confirms

SAHE’s robustness to di!erent ω values, with ω = 0.1 chosen as the default setting.

Varying ϖ and b. Parameters ϖ and b balance approximation accuracy and e”ciency,

with larger values improving accuracy at higher computational cost. Figure 4.12(a)

and (b) show MiF1 for node classification and running time as ϖ varies from 1 to 9,

while Figure 4.13 depicts results for b ranging from 16 to 256. MiF1 initially improves

and then stabilizes as these parameters increase, while running time continues to rise.

The default settings of ϖ = 3 and b = 128 e!ectively balance quality and e”ciency,

and performance remains robust across a range of values.

124

4.6. Summary

DBLP-CA Cora-CA Cora-CC Citeseer Mushroom

20News DBLP Recipe Amazon MAG-PM

0.001 0.01 0.1 0.2 0.3
0.1

0.3

0.5

0.7

0.9

ω

MiF1

(a)
0.001 0.01 0.1 0.2 0.3

0.5

0.7

0.9

ω

Acc

(b)

Figure 4.11: Varying ω.

1 3 5 7 9

0.6

0.7

0.8

0.9

1

ϖ

MiF1

(a)
1 3 5 7 9

0%

50%

100%

150%

ϖ

time

(b)

Figure 4.12: Varying ϖ .

16 32 64 128 256

0.6

0.7

0.8

0.9

1

b

MiF1

(a)
16 32 64 128 256

0%

50%

100%

150%

b

time

(b)

Figure 4.13: Varying b.

4.6 Summary

This chapter presents SAHE, an e”cient algorithm for the Attributed Hypergraph

Embedding (AHE) problem. SAHE generates node and hyperedge embeddings that

preserve both higher-order connectivity among nodes and collective attribute-based

similarities among hyperedges. By introducing multi-hop similarity measures and

125

Chapter 4. SAHE: Attributed Hypergraph Embedding

leveraging optimized decomposition techniques, SAHE achieves log-linear time com-

plexity. Extensive evaluation across 10 real-world datasets shows that SAHE consis-

tently outperforms 11 baseline methods in both scalability and embedding quality,

demonstrating its practical e!ectiveness for attributed hypergraph representation.

126

Chapter 5

SGLA: Multi-view Attributed

Graph Integration

This chapter presents SGLA and SGLA+ [70], spectrum-guided methods for cluster-

ing and embedding in multi-view attributed graphs, advancing the thesis’s goal of

developing e!ective and scalable solutions for attributed network structures. Unlike

Chapters 3 and 4, which focus on networks with a single attribute view and primar-

ily one network view, this work tackles the challenge of integrating multiple graph

and attribute views. Together, these contributions enhance the analysis of diverse

attributed network structures.

5.1 Introduction

A multi-view attributed graph (MVAG) describes a set of entities with multiple graph

views and attribute views, illustrating their relationships and properties from various

perspectives or data sources. For example, regarding a group of people, one graph

view may focus on their social relations on Facebook, whereas another graph view

may represent their business connections on LinkedIn. Moreover, attribute views

127

Chapter 5. SGLA: Multi-view Attributed Graph Integration

Figure 5.1: Multi-view attributed graph G with two graph views G1 and G2, and two
attribute views X3 and X4 of categorical and numerical attributes respectively.

may comprise diverse numerical, categorical, or visual features. Graph analytics for

MVAGs, especially clustering and embedding, are of particular interest as they find

important applications. For instance, clustering on MVAGs constructed from visual

descriptors is e!ective for neuroimaging analysis of diseases [153]. MVAG embeddings

are useful in recommendation systems in e-commerce [119], spam detection on social

networks [68], and predicting drug-disease associations in bioinformatics [32]. Figure

5.1 presents a minimal example of an MVAG of 8 entities, described by 2 graph views

and 2 attribute views.

It is crucial but challenging to manage complex MVAGs to holistically utilize the

graph views and attribute views for the clustering and embedding tasks, particularly

with large MVAGs. In an MVAG G, di!erent graph views can display varying topo-

logical structures, and the graph and attribute views represent distinct data models

that cannot be directly integrated. Moreover, the considerable data volumes typical in

real-world applications pose a significant challenge to e”ciency and scalability. These

challenges hinder the e!ective management of MVAG data in an e”cient manner.

As reviewed in Section 2.3, an array of approaches [24, 79, 152, 142, 134] are only

designed for attributed graphs with one graph view or one attribute view. Other

128

5.1. Introduction

methods [160, 25] handle attribute views without considering graphs, and thus they

often yield suboptimal results for MVAGs in the experiments. Existing methods

specialized for MVAG clustering or embedding are often built upon sophisticated

graph neural network operations [14, 86], and consequently struggle with e”ciency

and scalability. Several clustering methods [91, 77] attempt to learn a graph structure

that aligns with all views in G, requiring a huge number of variables to be solved.

Summing up, existing methods either produce subpar results or require excessive

computational resources to manage large-scale MVAGs.

In this chapter, we focus on the important problem of how to utilize the rich semantics

of all views in an MVAG G, and develop an e!ective and e”cient Spectrum-Guided

Laplacian Aggregation approach [70], exploiting the intrinsic spectral properties to

cohesively integrate all views of G into an MVAG Laplacian matrix L for clustering

and embedding.

Our main designs include a carefully formulated objective for the integration (Sec-

tion 5.3), an e”cient method SGLA producing high-quality results (Section 5.4.1),

and SGLA+ that boosts e”ciency further while maintaining the e!ectiveness (Section

5.4.2). Specifically, our strategy is to perform a weighted aggregation of normalized

Laplacian matrices from all views in G to produce the integrated Laplacian L. How-

ever, a critical challenge is choosing appropriate view weights to produce an e!ective

L that preserves the fundamental characteristics of G, i.e., community structure and

node connectivity, which are important for clustering and embedding. With this in

mind, we design an objective function on the basis of spectral graph theory. In par-

ticular, we align the spectrum of L with a normalized-cut community measure and

a graph conductance measure, and propose eigengap and connectivity objectives ac-

cordingly. The overall objective combines the eigengap and connectivity objectives,

assisted with a regularization term, to determine the appropriate weights of each

view in G to get L. It is challenging to optimize the overall objective in search of

appropriate view weights, since it is infeasible to exhaust all weight combinations, and

129

Chapter 5. SGLA: Multi-view Attributed Graph Integration

the objective evaluation is computationally expensive. To mitigate the challenges, in

Section 5.4, we develop the SGLA algorithm to find a desirable solution, which already

achieves excellent performance compared with existing methods. Nevertheless, SGLA

needs to evaluate the objective at every iteration, causing significant overhead. To

boost e”ciency with fewer objective evaluations, we develop the SGLA+ algorithm,

which employs sampling and interpolation approximation to quickly find an e!ective

solution. In our experiments, we couple SGLA and SGLA+ with spectral clustering

and embedding methods, to compare them against 12 clustering baselines and 8 em-

bedding baselines over 8 real-world MVAG datasets. SGLA and SGLA+ achieve better

performance in terms of both e!ectiveness and e”ciency. For instance, on large-

scale datasets, such as MAG-phy with 4 views and 2.35 million nodes, our methods

e”ciently produce high-quality results, while most baselines fail to scale.

The contributions of this work are summarized as follows:

• We propose an e”cient and e!ective spectrum-guided aggregation scheme for MVAG

clustering and embedding.

• We derive a novel objective formulation, consisting of the eigengap and connectivity

objectives, to find appropriate view weights that preserve the community structure

and node connectivity in MVAGs.

• We develop two e”cient algorithms, SGLA and SGLA+, with several speedup tech-

niques to optimize the objective.

• Extensive experiments on 8 real-world MVAGs validate the superior performance

of SGLA and SGLA+.

130

5.2. Preliminaries and Problem Statement

5.2 Preliminaries and Problem Statement

5.2.1 Preliminaries

Multi-view Attributed Graph. Figure 5.1 shows an MVAG of 8 nodes with

4 views, including 2 graph views and 2 attribute views. Graph views G1 and G2

are two simple graphs, while attribute views X3 and X4 are binary and numerical

attributes, respectively. Formally, we denote an MVAG G with p graph views and q

attribute views by G = {V , E1, . . . , Ep,Xp+1, . . . ,Xp+q}, where V is the set of n nodes,

Ei is the set of edges in the i-th graph view Gi = {V , Ei} that is a simple graph, and

matrix Xp+j contains the values in the j-th attribute view. We focus on MVAGs with

a total of r = p+ q > 2 views. Denote the number of edges in Gi by mi, and the total

number of edges in G as m =
∑

p

i=1 mi. Gi has an adjacency matrix Ai ↓ Rn↗n, and

a node va in Gi has a generalized degree ςi(va) equal to the total weight of incident

edges.

Normalized Laplacian. The normalized Laplacian of a simple graph G is L(G) =

In →D↓ 1
2AD↓ 1

2 , where D is the diagonal degree matrix and In is the identity matrix

[18, 112].

MVAG Clustering and Embedding. The two analytic tasks for MVAGs are

stated as follows:

• Clustering is to divide the nodes in G into k disjoint non-empty subsets {C1, . . . , Ck},

i.e., k clusters, such that nodes within each cluster tend to form dense connections

in graph views and share similar values in attribute views.

• Embedding is to map each node G to a low-dimensional embedding vector that

captures its features inherent to the graph views and attribute views in G.

Table 5.1 lists the frequently used notations.

131

Chapter 5. SGLA: Multi-view Attributed Graph Integration

5.2.2 Problem Statement

Given an MVAG G, our goal is to generate an MVAG Laplacian matrix L as the multi-

view integration, which empowers classic methods to handle clustering and embedding

tasks on G. Previous approaches that construct a new graph from scratch typically

require at least O(n) variables to be determined [91, 77], which is computationally

expensive. Contrarily, we adopt an intuitive yet e!ective weighted aggregation from

the Laplacian matrices of all views into the MVAG Laplacian L, where only r variables

need to be optimized. In what follows, we describe the problem statement of multi-

view attributed graph integration, while the objective function to solve the problem

is formally developed in Section 5.3.

View Laplacians. Let Li denote the Laplacian of the i-th view of G, called the

i-th view Laplacian. If this view is a graph view Gi, Li is its normalized Laplacian

L(Gi). If it is an attributed view Xi, we adopt a prevalent way [82] to construct a

K-nearest neighbor (KNN) graph GK(Xi), consequently deriving its Laplacian Li =

L(GK(Xi)). In this KNN graph, every node is connected to K neighbors with the

highest attribute similarity measured by cosine similarity, and each edge is weighted

by attribute similarity.

MVAG Laplacian. Intuitively, each view in G can complement each other with

its own information, and thus e!ective integration is vital to MVAG clustering and

embedding. We define the MVAG Laplacian L as a weighted aggregation of all view

Laplacians, where wi is the i-th view weight.

L =
r∑

i=1

wiLi, where
r∑

i=1

wi = 1 and any wi ↗ 0. (5.1)

As a weighted combination of graph structures and attribute similarities across all

views, this L can be interpreted as one integrated view of the MVAG and used for

downstream tasks. For MVAG clustering, we employ the spectral clustering method

132

5.2. Preliminaries and Problem Statement

Table 5.1: Frequently used notations.

G = {V , E1, . . . ,
Ep,Xp+1, . . . ,Xr}

G is an MVAG with node set V and r = p + q views, including
p graph views with edge sets E1, . . . , Ep, and q attribute views
Xp+1, . . . ,Xr.

n The number of nodes in G.

mi, m The number of edges in the i-th graph view, and the total
number of edges in all graph views.

k The number of clusters or classes in G.

GK(Xj) The K-nearest neighbor graph constructed from the attribute
view Xj.

L(G) The normalized Laplacian of a simple graph G.

Li The i-th view Laplacian of G.

L The MVAG Laplacian of G, defined in (5.1).

w = [w1, . . . , wr] A weight vector for r view Laplacians.

⇁i The i-th smallest eigenvalue of L.

gk(L) The eigengap objective.

⇁2(L) The connectivity objective.

h(w) The spectrum-guided objective function.

w↑ The weights minimizing h found by SGLA.

h!(w), h!↔(w) An interpolation of h with coe”cients (, or the optimal coef-
ficients (↑.

w0, . . . ,wr r + 1 weight vectors sampled for interpolation.

w† The weights minimizing h!↔ found by SGLA+.

in [148] using the bottom eigenvectors of L to assign clusters. We utilize L as the

input for graph embedding methods based on matrix factorization [99, 131] to enable

them for MVAG embedding.

Problem Statement. The quality of L is crucial for empowering classic spectral

clustering and network embedding methods to outperform state-of-the-art dedicated

methods, while L solely depends on the r view weights in (5.1). Thus, our main

research problem is to decide on proper view weights to produce an MVAG Laplacian

for e!ective clustering and embedding quality.

133

Chapter 5. SGLA: Multi-view Attributed Graph Integration

5.3 SGLA Objective

Objective Overview. To assign the view weights for MVAG integration, trivial so-

lutions such as utilizing a single view or allocating weights uniformly both compromise

the performance, as validated in our experiments. Intuitively, we should cohesively

leverage all views in the MVAG to produce L, recognizing that di!erent views may

contribute variably. Community structures and connectivity properties are funda-

mental characteristics in real-world network data [26, 88], which are important for

various problems, including clustering and embedding. To preserve these underlying

properties, we analyze and design two objectives–eigengap and connectivity–which

are combined in the full objective to produce the desired MVAG Laplacian L.

In Section 5.3.1, we analyze and align the spectrum of L with the community property

measured by normalized cut and propose an eigengap objective. In Section 5.3.2, we

link the connectivity property, measured by conductance, to the spectrum of L and

devise a connectivity objective. In Section 5.3.3, we combine the two objectives with an

auxiliary regularization term to get the overall objective. The objective is formulated

as a constrained nonlinear optimization, to find the desired view weights to compute

L. Figure 5.2 is a running example to intuitively explain the objectives in these

sections.

5.3.1 Eigengap Objective

In this section, we aim to build the connection between the eigenvalues of the proposed

MVAG Laplacian L and clustering quality that is measured by normalized cut in

Definition 3. The normalized cut ↼(C) of a cluster C in a simple graph G is the total

weight of all outgoing edges from nodes within C to nodes outside C divided by the

sum of degrees of all nodes in C. A small normalized cut ↼(C) indicates better cluster

quality.

134

5.3. SGLA Objective

Definition 3. In a graph G, a cluster of nodes C ⇒ V has volume vol(C) =
∑

va↘C ς(va),

and Cut(C) =
∑

va↘C,vb /↘C A[a, b] is its cut value that measures the total weight of out-

going edges from nodes within C. The normalized cut of C is defined as ↼(C) = Cut(C)
vol(C) .

The high-level intuition is that if a simple graph G is perfectly clustered into k

connected components, its normalized Laplacian forms a block diagonal matrix with

zero-valued eigenvalues of multiplicity k, i.e., 0 = ⇁1 = · · · = ⇁k < ⇁k+1. According

to matrix perturbation theory [56], a small perturbation of this Laplacian should

keep ⇁1, . . . , ⇁k close to zero. Consequently, a graph with well-formed k clusters, i.e.,

communities, should have small, near-zero eigenvalues ⇁1, ..., ⇁k, while eigenvalue ⇁k+1

is relatively larger, indicating a significant multiplicative eigenvalue gap between ⇁k+1

and ⇁k. The following higher-order Cheeger’s inequality from [66] provides an upper

limit for ↼(C). Using Theorem 5.3.1, we can establish a link between the eigenvalue

gap and high-quality clusters, as shown in Corollary 5.3.1.1, by setting ξ = 1
k
.

Theorem 5.3.1. There is a constant c > 0 such that for any weighted graph G

and k ↓ N, the following holds. Let ξ ↓ (0, 1
3) be such that ξk is an integer. If

⇁(1+φ)k > c (log k)2

φ9
⇁k, there are at least s ↗ (1 → 3ξ)k nonempty disjoint sets of nodes

C1, C2, . . . , Cs ⇒ V such that ↼(Ci) ↘ O(


ϖk
φ3

), ↔1 ↘ i ↘ s.

Corollary 5.3.1.1. There is a constant c > 0 such that for any weighted graph G

and k ↓ N, the following holds. If ⇁k < 1
ck9(log k)2⇁k+1, there are at least s ↗ k → 3

nonempty disjoint clusters C1, C2, . . . , Cs ⇒ V such that the normalized cut ↼(Ci) ↘

O(
⇔

k3⇁k), ↔1 ↘ i ↘ s.

Corollary 5.3.1.1 indicates that if the multiplicative eigenvalue gap between ⇁k and

⇁k+1 is large enough, the normalized cut ↼(Ci) is bounded by O(
⇔

k3⇁k) for some

constant. This indicates an asymptotic upper bound for the normalized cut of clusters,

associated with eigenvalues ⇁k and ⇁k+1 of L(G).

Recall that the matrix L aggregated by the weighted sum of Laplacian matrices Li

over all r views in G in (5.1) should preserve the community information of all nodes

135

Chapter 5. SGLA: Multi-view Attributed Graph Integration

𝐺1 𝐺2

𝑣4

𝑣8

𝑣6

𝑣2𝑣1

𝑣7

𝑣5

𝑣3 𝑣4

𝑣8

𝑣6

𝑣2𝑣1

𝑣7

𝑣5

𝑣3

𝒞1

𝒞2

𝒞1 = 𝑣1, 𝑣2, 𝑣3, 𝑣4 , 𝒞2 = {𝑣5, 𝑣6, 𝑣7, 𝑣8}
(a) Graph views G1 and G2 with 8
nodes in 2 clusters C1 and C2.

w1 w2 gk(L) ⇁2(L) gk → ⇁2

1.0 0.0 0.280 0.148 0.132
0.9 0.1 0.242 0.158 0.084
0.8 0.2 0.213 0.166 0.047
0.7 0.3 0.191 0.171 0.020
0.6 0.4 0.178 0.174 0.004
0.5 0.5 0.186 0.176 0.010
0.4 0.6 0.202 0.176 0.026
0.3 0.7 0.221 0.174 0.047
0.2 0.8 0.243 0.171 0.072
0.1 0.9 0.269 0.166 0.103
0.0 1.0 0.299 0.159 0.140

(b) Objective values with varied view
weights w1, w2.

(c) L1 (w1 = 1, w2 = 0). (d) L2 (w1 = 0, w2 = 1). (e) L (w1 = 0.6, w2 = 0.4).

Figure 5.2: A running example.

in V . Suppose that the nodes in G are in k clusters. To preserve the well-formed

community structures with low normalized cut bounded by Corollary 5.3.1.1, the

aggregated matrix L should have as small ϖk(L)
ϖk+1(L)

as possible.

Consequently, our eigengap objective is to find desirable view weights wi to obtain an

L that minimizes the eigengap function gk(L) in (5.2) based on the spectrum of L.

gk(L) =
⇁k(L)

⇁k+1(L)
(5.2)

Example 1. We use the two graph views G1, G2 shown in Figure 5.2a as an MVAG

example for illustrating the eigengap objective. G contains 8 nodes in two ground-

136

5.3. SGLA Objective

truth clusters C1 = {v1, v2, v3, v4} and C2 = {v5, v6, v7, v8}, illustrated by di!erent

colors. Observe that, when only considering a single graph view, either G1 or G2, C1

does not exhibit a clear cluster structure due to the sparse connections in it per graph

view, while the structure of C2 is clear in a single view. The observation is confirmed

by the visualization of Laplacian matrices L1 and L2 of G1 and G2 in Figure 5.2c-

5.2d, where values of larger magnitude are darker: the block formed by nodes v1-v4 in

C1 are not cohesive, while the values for nodes v5-v8 illustrate a clear cluster for C2.

The second column of Table 5.2b shows the eigengap values gk(L) when varying view

weights w1 and w2 for aggregating the two view Laplacians. When assigning a large

weight to a single view, the eigengap objective of the constructed L is large (e.g. 0.242

when w1 = 0.9, w2 = 0 or 0.269 when w1 = 0.1, w2 = 0.9), indicating that the clusters

are not well-preserved by L, due to the observations made above in Figure 5.2a, 5.2c

and 5.2d. The eigengap objective is reduced to 0.178 when w1 = 0.6, w2 = 0.4, and we

visualize the corresponding L in Figure 5.2e, in which, both clusters C1 and C2 can

be clearly observed. Besides, the eigengap obtained by equal weights is 0.186, larger

than 0.178. The example shows the intuition for minimizing the eigengap gk(L) to

obtain proper view weights.

5.3.2 Connectivity Objective

The inherent connectivity of graphs is fundamental to the e”cacy of graph algo-

rithms [88]. Nevertheless, some graph views contain connection bottlenecks or leave

certain nodes unconnected. Therefore, the MVAG Laplacian matrix L in (5.1) should

amalgamate the connectivity of all views in G. To this end, we formulate a connec-

tivity objective that exploits the association between conductance and the spectrum

of L.

Given a simple graph G, its conductance %(G) measures how fast a random walk on

G converges to its stationary distribution. In (5.3), %(G) is defined by the minimum

137

Chapter 5. SGLA: Multi-view Attributed Graph Integration

normalized cut of the smaller side in all possible partitions.

%(G) = min
C|vol(C)⇒vol(V)/2

Cut(C)

vol(C)
. (5.3)

Higher graph conductance indicates stronger connectivity. However, computing the

exact conductance is intractable in practice. From spectral graph theory [111], the

graph conductance is bounded with ⇁2, the second smallest eigenvalue of the normal-

ized graph Laplacian.
⇁2

2
↘ %(G) ↘


2⇁2. (5.4)

Obviously, a substantial ⇁2 guarantees a lower bound for conductance. Therefore, we

propose the connectivity objective to maximize the second smallest eigenvalue of L,

denoted by ⇁2(L), to preserve the overall connectivity in G.

Example 2. Recall that, in Figure 5.2a, cluster C1 has weak connectivity inside itself

in both graph views G1 and G2 of G. The third column in Table 5.2b shows the

connectivity objective values ⇁2(L) of the obtained L when varying view weights. When

a single view has a large weight, ⇁2(L) is smaller, indicating weak connectivity, which

matches the observation above. If ⇁2(L) is su”ciently large, e.g., 0.174 when w1 =

0.6, w2 = 0.4, the obtained L can preserve the connectivity information from both

views in G, as illustrated in the corresponding visualization in Figure 5.2e, where the

values for v1, v2, v3, v4 are clear to represent cluster C1.

5.3.3 The Full Objective

In (5.5), we combine the eigengap objective gk(L) and connectivity objective ⇁2(L)

into the full objective function h(w1, ..., wr), also denoted by h(w) where weight vector

w = [w1, . . . , wr]. Since the view weights should minimize gk(L) while maximizing

⇁2(L), in (5.5), ⇁2(L) takes a negative sign, so that h(w) is to be minimized. To

prevent L from being dominated by a single view, we introduce a regularization term

138

5.3. SGLA Objective

of all weights with parameter ϑ.

h(w) = h(w1, . . . , wr) = gk(L) → ⇁2(L) + ϑ
r∑

i=1

w2
i

(5.5)

The objective function h estimates the suitability of L for performing MVAG analytics

and guides the search for appropriate view weights. Therefore, our problem statement

in Section 5.2.2 is formulated by a constrained optimization problem, aiming to find

the optimal weights w↑
↓ Rr that minimize h(w) while satisfying the constraints.

w↑ = argmin
w

h(w) = argmin
w1,...,wr

h(w1, . . . , wr),

s.t. any wi ↗ 0 and
r∑

i=1

wi = 1.
(5.6)

Discussion. Although both eigengap and connectivity objectives have associations

with the measure of normalized cut, they each focus on di!erent aspects of MVAGs.

The eigengap objective is linked with the existence of multiple well-formed clusters,

while the connectivity objective prevents nodes from being isolated from the main

graph structure. Our combination of the two objectives aim to preserve both proper-

ties, achieving a balance between them. In the experiments, our method with the full

objective in (5.6), combining both objectives, consistently outperforms approaches

using a single objective.

Example 3. To visualize the distribution of the objective h(w) over all possible view

weights, a case study is performed on Yelp dataset with three views (see Table 5.2 for

details). Among the three view weights w1, w2, w3, we vary w1 and w2 at interval 0.01

and set w3 = 1 → w1 → w2, to exhaust all possible weight combinations, and we plot

the value of h(w1, w2, w3) in Figure 5.3a. The plot shows a generally smooth surface

that curves downward, which visually demonstrates the suitability of the proposed

formulation.

139

Chapter 5. SGLA: Multi-view Attributed Graph Integration

sampled point optimal weights

w10.2 0.4 0.6 0.8 1.0w
2

0.2
0.4

0.6
0.8

1.0

h

0.8
1.0
1.2
1.4
1.6
1.8

(a) Objective function h

w10.2 0.4 0.6 0.8 1.0w
2

0.2
0.4

0.6
0.8

1.0

h!→

0.8
1.0
1.2
1.4
1.6
1.8

(b) Quadratic interpolation h!→

Figure 5.3: Plot of objective functions on Yelp.

5.4 Algorithms

In Section 5.4.1, we develop the SGLA method, which optimizes the objective to de-

termine view weights. SGLA has demonstrated superior performance compared to

existing methods. To further enhance e”ciency while preserving result quality, we

present SGLA+ in Section 5.4.2.

5.4.1 SGLA Method

Given an MVAG with r view Laplacians, the search space for possible view weights is

exponential, rendering an exhaustive grid search intractable for solving (5.6). Opti-

mizing the non-convex objective function h(w) is further complicated by the presence

of both inequality and equality constraints. Additionally, evaluating h(w) and its

gradients is costly due to intensive eigenvalue computations. Traditional gradient-

descent methods are ine”cient, as they require many iterations to converge and incur

significant computational overhead.

140

5.4. Algorithms

To address the technical challenges, we develop the base method SGLA that produce

high-quality results in a reasonable amount of time. SGLA iteratively performs two

key computations: (i) objective evaluation and (ii) objective optimization to update

view weights. Figure 5.4a provides an illustration of SGLA. After obtaining the Lapla-

cian matrices L1, ...,Lr of the r graph views and attribute views in the input G as

explained in Section 5.2.2 and initializing w with uniform weights, During objective

evaluation, SGLA computes the latest L and the eigenvalues of L first and evaluates

the objective function h(w). Then, to update weights, SGLA optimizes and updates w

via a derivative-free optimizer. This optimizer guarantees a local optimum when the

variables in w converge. SGLA terminates either when the update of view weights is

negligible, i.e., convergence, or when the number of iterations exceeds a limit. SGLA

eventually returns L, which will be used for clustering and embedding tasks.

Algorithm. The pseudo code of SGLA is displayed in Algorithm 10. The weight

parameters w1, ..., wr of all r views are initialized to 1
r

at Line 1. Then, from Lines

2 to 9, SGLA performs objective evaluation (Lines 3-5) and optimizes the proposed

objective to update weights (Lines 6-9), in an iterative fashion for at most Tmax

iterations, and early terminates if the condition at Line 7 is met. Specifically, in

an iteration, with the current weight parameters wi, we first obtain the aggregated

matrix L by weighted sum of the Laplacian matrices of all r views at Line 3. Then

at Line 4, we compute the k + 1 smallest eigenvalues of L. Note that all matrices,

including Li and L, are organized as sparse matrices, and thus the computation at

Lines 3 and 4 can be e”ciently processed. With the eigenvalues ⇁2, ⇁k, and ⇁k+1, we

can compute the eigengap and connectivity objectives formulated in Section 5.3 to

obtain h(w1, . . . , wr) by (5.5) (Line 5).) at Line 6 represents the constraints specified

in (5.6). At Line 6, we adopt the optimizer Cobyla [97], considering the objective

function and constraints, to update the first r → 1 view weights to w→
1, . . . , w

→
r↓1 as w→

r

follows trivially. Briefly, this optimizer performs interpolation in the direction of each

variable and updates a regular-shaped simplex of variables over iterations, as the trust

141

Chapter 5. SGLA: Multi-view Attributed Graph Integration

Initial w Eigenvalues
Converged?

Updated weights w
No

Yes

ℒ

Optimize

Sampled
weight
vectors

Eigenvalues

No

Yes
ℒ0,
… ,
ℒ𝑟

Regression Optimize

Updated weights w

Converged?

(a) SGLA

(b) SGLA+

𝒢: 𝐺1, … , 𝐺𝑝,
𝐗𝑝+1, … , 𝐗𝑟
→ 𝐋1, … , 𝐋𝑟

ℎ 𝐰0 ,
… ,

ℎ(𝐰𝑟)

Quadratic
function
ℎ𝜣∗(𝐰)

ℎ(𝐰):
eigengap

connectivity

𝐰0,… ,𝐰𝑟

ℒ

Figure 5.4: Overview of SGLA and SGLA+ algorithms.

region that conforms to the constraints while minimizing the objective. The process

stops when the updated variables are close to the previous iteration. At Line 7, if the

di!erence between the updated view weights w→
1, . . . , w

→
r↓1 and the previous weight

values w1, . . . , wr↓1 measured by Euclidean distance, is below an early termination

criteria ϱ, the iterative process of SGLA terminates and returns. Otherwise, we need

to update the latest weights to w1, . . . , wr↓1 and wr (Lines 8-9), and continue with

the next iteration. Finally, the MVAG Laplacian matrix L is returned at Line 10, to

be used in downstream tasks, including embedding and clustering.

Complexity. Given an MVAG G with n nodes and r views, all view Laplacian ma-

trices are stored in sparse matrix format, and thus the costs of additions and matrix-

vector multiplication operations on L are linear to the count of nonzero elements, i.e.,

at most 2(m + qnK). The aggregation in Line 3 includes scalar multiplications and

additions on Laplacian matrices. Line 4 solves eigenvalues via a bounded number of

matrix-vector multiplications. Therefore, Lines 3-4 incur O(m+qnK) time combined.

Lines 5-6 and 8 are simple O(r) computations, while the optimizer in Line 7 takes

O(r2) time to update r → 1 variables. r is typically small and can be regarded as a

constant. When T iterations are conducted, we conclude that the overall time and

142

5.4. Algorithms

Algorithm 10: SGLA
Input: View Laplacians L1, . . . ,Lr of the input MVAG G, number of clusters k,

constraints !, algorithm parameters Tmax, ω.
1 Initialize weight parameters w1, . . . , wr ≃

1
r
;

2 for t ≃ 1, . . . , Tmax do

3 L ≃

r∑
i=1

wiLi;

4 ϑ1, . . . ,ϑk+1 ≃ Eigenvalues(L, k + 1);
5 Obtain h(w1, . . . , wr) by (5.5);
6 w→

1, . . . , w
→
r↓1 ≃ Cobyla(h(w1, . . . , wr),!);

7 if


r↓1∑
i=1

(w→
i
→ wi)2 < ω then break;

8 w1, . . . , wr↓1 ≃ w→
1, . . . , w

→
r↓1;

9 wr ≃ 1 →

r↓1∑
i=1

wi;

10 return L;

space complexity of SGLA is O(T (m + qnK)).

5.4.2 SGLA+ Method

Although SGLA outperforms existing methods, it encounters significant computational

challenges on large-scale MVAGs. The main bottleneck is the costly evaluation of the

objective function h(w1, . . . , wr) (Lines 3-5 in Algorithm 10), which involves intensive

eigenvalue computations. This evaluation must be repeated across many iterations

for SGLA to converge, resulting in substantial overhead that limits its scalability.

To further improve e”ciency, we design SGLA+ that has lower complexity than SGLA.

SGLA+ has the following key designs. (i) Instead of directly optimizing the objective

h(w), SGLA+ formulates and optimizes an approximation h! of h(w). This approx-

imation is constructed as a quadratic interpolation that is quick to evaluate while

closely resembling the original h(w). (ii) We develop a sampling strategy to obtain

(r + 1) weight vectors as samples of h(w) to find an accurate approximation h!↔ ,

requiring only (r + 1) objective evaluations, fewer than those required by SGLA. (iii)

143

Chapter 5. SGLA: Multi-view Attributed Graph Integration

Finally, SGLA+ e”ciently minimizes h!↔ to compute the desired view weights nec-

essary for constructing the MVAG Laplacian L. Figure 5.4b provides an overview

of SGLA+. Below, we first formulate the approximation of our objective, explain the

sampling strategy, and then present the algorithm details.

Objective Approximation. The objective h(w1, . . . , wr) in (5.6) has a weight vec-

tor w ↓ Rr with r elements wi, for 1 ↘ i ↘ r, as variables. On the other hand, in

optimization with a univariate objective, it is possible to find an approximate min-

imum by fitting a quadratic polynomial to three values of the objective [42]. Thus,

we generalize quadratic interpolation to multiple variables. Specifically, given a set

of weight vector samples, we aim to find a function h!(w1, . . . , wr) with a coe”cient

set (, as the interpolation of h(w1, . . . , wr). As shown in (5.7), h! comprises all

second-degree terms of wi and wj with coe”cients ▷i,j, where 1 ↘ i ↘ j ↘ r → 1,

linear terms wi with coe”cients ▷i,r for i = 1, ..., r → 1, and a constant term ▷r,r. We

leave out wr because it can be determined by the equality constraint that all weights

sum up to 1. The matrix format of h! is in (5.8), where the upper triangular matrix

(consists of non-zero entries ([i, j] = ▷i,j for i, j ↓ 1, ..., r and i ↘ j.

h!(w) =
∑

1⇒i⇒j⇒r↓1

▷i,jwiwj +
r↓1∑

i=1

▷i,rwi + ▷r,r (5.7)

h!(w) =

w1, . . . , wr↓1, 1

T
(


w1, . . . , wr↓1, 1


(5.8)

To determine the coe”cients in (, we perform regression with (r + 1) weight vector

samples wε, for 0 ↘ φ ↘ r. Sampling details will be explained shortly. Our goal

is to find a solution (↑, such that the squared error between h(wε) and h!(wε)

over the (r + 1) samples is minimized in (5.9). We address this problem with a least

Frobenius norm quadratic model [100]. Specifically, the optimization function in (5.9)

exerts regularization ⇐(⇐
2
F

with parameter ωr, to minimize the Frobenius norm of

144

5.4. Algorithms

the coe”cient matrix (, in order to find the desired solution.

(↑ = argmin
!


r∑

ε=0

(
h(wε) → h!(wε)

)2
+ ωr⇐(⇐

2
F


(5.9)

After evaluating the objective function h(wε) for each wε among the (r+1) weight vec-

tor samples, the regression in (5.9) can be solved via Cholesky decomposition. With

coe”cients (↑ found, the function h!↔ is a local approximation of h. Subsequently,

we find the minimum solution w† of h!↔ under constraints, i.e., (5.10), and w† is re-

garded as an approximate solution for the original problem in (5.6). This procedure

is much more e”cient than direct optimization of h(w) in SGLA, as the evaluation of

h!↔ does not require the construction of L or the computation of eigenvalues.

w† = argmin
w

h!↔(w) s.t. wi ↗ 0 ↔ 1 ↘ i ↘ r,
r∑

i=1

wi = 1. (5.10)

Weight Vector Sampling. The coe”cient matrix (contains r(r+1)
2 nonzero entries.

Reaching a unique solution of (requires O(r2) weight vector samples for expensive

objective evaluations. Instead, we propose a scheme to gather (r + 1) weight vector

samples only, which are su”cient in practice to find a high-quality h!↔ via (5.9)

and consequently w† in (5.10), as validated by experiments. The first sample w0 =

1
r
, 1
r
, . . . , 1

r


↓ Rr assigns the same weight 1

r
for all r views of G. Then for each φ-th

view, a weight vector wε is sampled as the midpoint between w0 and the one-hot

vector 1ε ↓ {0, 1}r that assigns a full weight to the φ-th view, where 1 ↘ φ ↘ r.

Specifically, wε = (w0 + 1ε)/2, i.e., the φ-th element in vector wε has value r+1
2r while

the other elements have value 1
2r .

Example 4. For the Yelp dataset containing three views (r = 3), the objective func-

tion h is plotted in Figure 5.3a in Example 3. Following the sampling scheme ex-

plained above, we first obtain 4 weight vector samples w0 =

1
3 ,

1
3 ,

1
3


, w1 =


2
3 ,

1
6 ,

1
6


,

145

Chapter 5. SGLA: Multi-view Attributed Graph Integration

Algorithm 11: SGLA+
Input: View Laplacians L1, . . . ,Lr of the input MVAG G, number of clusters k,

constraints !, algorithm parameters εr, Tmax, ω.
1 w0 ≃

[
1
r
, 1
r
, . . . , 1

r


↓ Rr;

2 for ϖ ≃ 0, . . . , r do
3 if ϖ > 0 then wε ≃ (w0 + 1ε)/2;
4 Obtain Lε by wε and Li via (5.1);
5 ϑ1, . . . ,ϑk+1 ≃ Eigenvalues(Lε, k + 1);
6 Obtain h(wε) by (5.5);

7 Solve $↑ in (5.9) for observations (w0, h(w0)), . . . , (wr, h(wr)) and L2 multiplier εr;
8 w1, . . . , wr ≃

1
r
;

9 for t ≃ 1, . . . , Tmax do
10 Calculate h!↔(w1, . . . , wr) by (5.8);
11 w→

1, . . . , w
→
r↓1 ≃ Cobyla(h!↔(w1, . . . , wr),!), where ! represents the constraints in

(5.10);

12 if


r↓1∑
i=1

(w→
i
→ wi)2 < ω then break;

13 w1, . . . , wr↓1 ≃ w→
1, . . . , w

→
r↓1;

14 wr ≃ 1 →

r↓1∑
i=1

wi;

15 L ≃

r∑
i=1

wiLi;

16 return L;

w2 =

1
6 ,

2
3 ,

1
6


and w3 =


1
6 ,

1
6 ,

2
3


. Each of w1,w2,w3 emphasizes a specific view in

the Yelp dataset. Figure 5.3a marks the locations of these four sampled points w.r.t.

the weights of the first two views, as the third view weight is determined by the equal-

ity constraint that all weights add up to 1. Observe that the plot of h in Figure 5.3a

resembles a partial paraboloid surface. According to (5.8), we can get h! on the Yelp

dataset. The coe”cients (↑ are determined by solving (5.9). We plot the acquired

interpolation h!↔ in Figure 5.3b, which exhibits a paraboloid surface similar to the

original objective h. In addition, we use crosses in Figure 5.3a and 5.3b to mark the

weights that minimize h and h!↔, respectively. Their close locations validate that h!↔

is an e!ective approximation for minimizing h.

Algorithm. The pseudo code of SGLA+ is provided in Algorithm 11. From Lines 1

146

5.4. Algorithms

to 7, we sample (r + 1) weight vectors, evaluate the objective h(wε) over the sam-

pled weight vectors, and solve (↑ to get the objective approximation h!↔ at Line 7.

From Lines 8 to 14, we aim to optimize h!↔ by iteratively updating the view weights

w1, . . . , wr, and then the view weights are used to obtain L at Line 15. Specifically,

the sampled weight vectors are first calculated, including the equal weights in w0

(Line 1), and then each wε for 1 ↘ φ ↘ r (Line 2-3). From each sampled vector

wε, we construct the corresponding MVAG Laplacian Lε at Line 4. After solving its

bottom k+1 eigenvalues (Line 5), the objective h(wε) is evaluated at Line 6 as the ob-

servation for sample wε. At Line 7, interpolation over these r+1 samples is solved by

regression with parameter ωr in (5.9) to obtain (↑. After initializing the target view

weights w1, ..., wr at Line 8, from Lines 9 to 14, we iteratively optimize the acquired

interpolation h!↔ to update w1, ..., wr. At each iteration (Line 9), h!↔(w1, ..., wr) is

e”ciently calculated at Line 10, without expensive construction of L or eigenvalue

computation. Updating weights (Lines 11 to 14) and convergence condition (Line 12)

are similar to SGLA, but are for the optimization of (5.10) instead of (5.6). After the

termination of iterations, the converged weight parameters are used to construct L

at Line 15.

Complexity. At Lines 1-6, SGLA+ performs exactly (r+1) objective evaluations over

all sampled weight vectors. The time and space complexity of this part is O(r(m +

qnK)). To solve the O(r2) coe”cients in (, Line 7 conducts a decomposition that

theoretically takes O(r6) time. Since the number of views r is usually less than 10

and regarded as a constant, the cost of Line 7 can be considered negligible in practice.

In Lines 9-14, Line 10 incurs O(r2) cost for evaluating h!↔ , and Lines 11-13 also have

an O(r2) complexity combined. Hence, solving the weights over T iterations incurs

negligible O(Tr2) cost. With r as constant, SGLA+ has an overall time and space

complexity O(m + qnK), as the processing on graph Laplacians is removed from the

optimization loop. Observe that the complexity O(m+qnK) of SGLA+ improves over

the complexity O(T (m + qnK)) of SGLA. Empirically, we also find SGLA+ faster than

147

Chapter 5. SGLA: Multi-view Attributed Graph Integration

Table 5.2: Statistics of multi-view attributed graph datasets.

Dataset n r mi of Gi dj of Xj k

RM 91 11
267; 404; 298; 317; 163; 1,595;
1,683; 1,910; 1,565; 1,044

32 2

Yelp 2,614 3 262,859; 1,237,554 82 3
IMDB 3,550 3 5,119; 31,439 2,000 3
DBLP 4,057 4 3,528; 2,498,219; 3,386,139 334 4
Amazon photos 7,487 3 119,043 745; 7,487 8
Amazon computers 13,381 3 245,778 767; 13,381 10
MAG-eng 1,798,717 4 43,519,012; 10,112,848 1,000; 1,000 55
MAG-phy 2,353,996 4 257,706,767; 18,055,930 1,000; 1,000 22

SGLA in experiments.

5.5 Experiments

We evaluate the e!ectiveness and e”ciency of our SGLA and SGLA+ over 12 competi-

tors for clustering and 8 competitors for embedding on 8 real-world MVAG datasets.

Section 5.5.1 describes experimental settings. Section 5.5.2 and 5.5.3 report the re-

sults of clustering and embedding, respectively. Section 5.5.4 conducts experimental

analysis.

5.5.1 Experimental setup

Datasets. Table 5.2 provides the statistics of the 8 multi-view attributed graph

datasets, including the number of nodes (n) and views (r), the number of edges

mi for each i-th graph view (separated by semicolons), dimension dj for each j-

th attribute view (separated by semicolons), and the number of ground truth node

classes k that is also considered the number of clusters. These datasets are real-world

MVAGs from diverse domains, including social activities (RM [6]), business (Yelp [81],

Amazon photos and Amazon computers [91]), movies (IMDB [92]), and academic

148

5.5. Experiments

collaborations (DBLP [24], MAG-eng and MAG-phy [9]). The MAG-eng and MAG-

phy datasets exemplify the complexity and the large scale of academic collaboration

networks. MAG-phy includes over 2.35 million nodes with four views: two graph

views with over 257.7 million and 18.05 million edges, and two high-dimensional

attribute views with 1000 dimensions each. These datasets highlight the sparsity

of graph views and the high dimensionality of attribute views, typical in real-world

applications. Also, some datasets feature dense graph views, e.g., DBLP, while others

are sparse, e.g., IMDB. The diversity, sparsity, and edge distributions of the datasets

provide a representative testbed for comprehensive evaluation. The ground-truth

clusters and class labels are obtained from the original data, e.g., movie genres in

IMDB and product categories in Amazon. In MAG-phy and MAG-eng, nodes are

labeled by the subject domain of their publication venues.

Table 5.3: Clustering quality (the top 3 are in blue; darker shades indicate better
results).

Method
RM Yelp IMDB DBLP Overall

rankAcc F1 NMI ARI Purity Acc F1 NMI ARI Purity Acc F1 NMI ARI Purity Acc F1 NMI ARI Purity
WMSC 0.626 0.474 0.001 -0.017 0.703 0.813 0.836 0.537 0.489 0.813 0.374 0.291 0.003 0.001 0.379 0.780 0.778 0.468 0.507 0.780 9.7
2CMV 0.904 0.899 0.703 0.665 0.914 0.857 0.742 0.576 0.592 0.857 0.510 0.486 0.127 0.148 0.511 0.914 0.850 0.749 0.797 0.914 6.8
MEGA 0.802 0.793 0.423 0.359 0.802 0.653 0.568 0.390 0.427 0.733 0.390 0.239 0.007 0.004 0.392 0.913 0.907 0.741 0.792 0.913 8.3
HDMI 0.613 0.459 0.010 -0.018 0.703 0.909 0.915 0.681 0.727 0.909 0.541 0.547 0.162 0.142 0.532 0.895 0.885 0.706 0.761 0.896 8.5
URAMN 0.736 0.684 0.107 0.195 0.736 0.771 0.762 0.490 0.483 0.771 0.588 0.582 0.183 0.197 0.588 0.908 0.901 0.715 0.781 0.896 6.0
O2MAC 0.659 0.397 0.040 -0.044 0.703 0.649 0.565 0.391 0.425 0.732 0.547 0.550 0.135 0.139 0.535 0.873 0.865 0.669 0.705 0.877 9.5
DMG 0.745 0.623 0.147 0.191 0.765 0.714 0.725 0.441 0.365 0.714 0.545 0.459 0.195 0.209 0.550 0.925 0.921 0.761 0.815 0.925 6.3
LMGEC 0.703 0.500 0.015 0.044 0.703 0.923 0.928 0.725 0.764 0.923 0.568 0.577 0.166 0.143 0.562 0.922 0.917 0.757 0.813 0.922 5.1
MAGCN 0.703 0.736 0.000 0.000 0.703 0.734 0.705 0.437 0.455 0.734 0.513 0.482 0.116 0.135 0.511 - - - - - 9.5
MCGC 0.967 0.959 0.799 0.867 0.967 0.860 0.874 0.596 0.597 0.860 0.567 0.545 0.164 0.186 0.553 0.902 0.895 0.716 0.771 0.902 4.6
MvAGC 0.774 0.710 0.267 0.329 0.790 0.907 0.915 0.685 0.720 0.907 0.552 0.462 0.191 0.201 0.549 0.874 0.866 0.650 0.708 0.874 5.5
MAGC 0.714 0.451 0.040 0.030 0.714 0.564 0.520 0.413 0.315 0.565 0.484 0.424 0.057 0.062 0.485 0.928 0.923 0.771 0.827 0.928 7.4
SGLA 0.978 0.974 0.830 0.911 0.978 0.927 0.930 0.727 0.779 0.927 0.559 0.455 0.211 0.223 0.558 0.934 0.930 0.789 0.841 0.933 1.7
SGLA+ 1.000 1.000 1.000 1.000 1.000 0.930 0.934 0.740 0.786 0.930 0.554 0.450 0.210 0.220 0.555 0.930 0.925 0.775 0.831 0.930 2.0

Method
Amazon photos Amazon computers MAG-eng MAG-phy Overall

rankAcc F1 NMI ARI Purity Acc F1 NMI ARI Purity Acc F1 NMI ARI Purity Acc F1 NMI ARI Purity
WMSC 0.323 0.285 0.152 0.103 0.392 0.248 0.191 0.165 0.090 0.375 - - - - - - - - - - 9.7
2CMV 0.523 0.434 0.450 0.332 0.638 0.309 0.269 0.312 0.135 0.524 - - - - - - - - - - 6.8
MEGA 0.328 0.292 0.265 0.043 0.427 0.319 0.170 0.230 0.081 0.483 - - - - - - - - - - 8.3
HDMI 0.273 0.126 0.026 0.018 0.289 0.303 0.111 0.034 0.027 0.375 - - - - - - - - - - 8.5
URAMN 0.669 0.642 0.521 0.427 0.689 0.353 0.280 0.364 0.163 0.588 - - - - - - - - - - 6.0
O2MAC 0.307 0.153 0.087 0.012 0.298 0.340 0.100 0.020 0.034 0.380 - - - - - - - - - - 9.5
DMG 0.603 0.548 0.508 0.391 0.671 0.401 0.295 0.384 0.200 0.598 - - - - - - - - - - 6.3
LMGEC 0.626 0.606 0.530 0.423 0.703 0.410 0.304 0.374 0.240 0.614 - - - - - - - - - - 5.1
MAGCN 0.528 0.454 0.456 0.314 0.587 - - - - - - - - - - - - - - - 9.5
MCGC 0.674 0.582 0.595 0.449 0.754 0.569 0.501 0.557 0.419 0.726 - - - - - - - - - - 4.6
MvAGC 0.615 0.568 0.558 0.384 0.726 0.516 0.426 0.512 0.365 0.697 0.256 0.108 0.355 0.139 0.293 0.314 0.107 0.238 0.022 0.376 5.5
MAGC 0.646 0.571 0.591 0.384 0.687 0.447 0.438 0.323 0.158 0.481 - - - - - - - - - - 7.4
SGLA 0.786 0.710 0.670 0.622 0.819 0.585 0.507 0.589 0.441 0.740 0.464 0.369 0.575 0.332 0.597 0.582 0.455 0.620 0.449 0.725 1.7
SGLA+ 0.782 0.705 0.657 0.618 0.815 0.604 0.515 0.577 0.426 0.744 0.455 0.352 0.570 0.329 0.583 0.561 0.413 0.608 0.439 0.704 2.0

Baselines. For embedding, we compare with 8 baselines, including 3 attributed

network embedding methods PANE [143], AnECI [79] and CONN [114] that are applied

149

Chapter 5. SGLA: Multi-view Attributed Graph Integration

to a multi-view attributed graph by aggregating the graph adjacency matrices and

concatenating the attribute views, 3 attributed multiplex graph embedding methods

O2MAC [24], HDMI [49] and URAMN [152] that are applied to a multi-view attributed graph

by concatenating the attribute views when necessary, and 2 multi-view attributed

graph embedding methods DMG [86] and LMGEC [30]. For clustering, we compare with

12 baselines, including 8 multi-view attributed graph clustering approaches, namely

WMSC [160], MEGA [123] adapted for unsupervised clustering, 2CMV [82], LMGEC, MAGCN

[14], MCGC [91], MvAGC [76], and MAGC [77], and 4 embedding methods HDMI, URAMN,

O2MAC, and DMG coupled with spectral clustering.

Implementation. Across all datasets, SGLA and SGLA+ adopt the same parameter

settings ϑ = 0.5, ϱ = 0.001, Tmax = 50, and ωr = 0.05. We also conduct experiments

to vary parameters. We set K = 10 for KNN graphs by default. For Yelp and IMDB,

we use K = 200 and 500, respectively, since their attribute views are more informative.

A larger K incorporates more attribute similarity connections in the KNN graphs.

Source codes of all competitors are obtained from the respective authors, each tuned

with parameters suggested in the respective paper. We fix the embedding dimension

to 64. Experiments are conducted on a Linux computer with Intel Xeon 6226R CPU,

RTX3090 GPU, and 384 GB RAM. A maximum of 16 CPU threads are available.

Note that CONN, HDMI, URAMN, DMG, and LMGEC are GPU-powered, while the other

methods, including our SGLA and SGLA+, run on CPU.

Evaluation Settings. The clustering quality is measured by accuracy (Acc), average

per-class macro-F1 score (F1), normalized mutual information (NMI), adjusted Rand

index (ARI), and Purity score with respect to ground truth. ARI ranges from →0.5

to 1, whereas the other 4 metrics are in range [0, 1]. The node embedding for

classification is evaluated by Macro-F1 (MaF1) and Micro-F1 (MiF1). For all these

metrics, a larger value indicates better performance. E”ciency is measured by the

total running time in seconds. Results are averaged over 5 repeated runs. In Tables

5.3 and 5.4, a ‘ - ’ indicates the method cannot produce results within one day or

150

5.5. Experiments

SGLA+ SGLA WMSC MAGCN 2CMV MEGA HDMI
URAMN O2MAC DMG LMGEC MCGC MvAGC MAGC

10→1

100

101

102

ω

time (s)

(a) RM
10→1

100

101

102

103

104

ω

time (s)

(b) Yelp

10→1

100

101

102

103

104

ω

time (s)

(c) IMDB
10→1

100

101

102

103

ω

time (s)

(d) DBLP

10→1

100

101

102

103

104 ω

time (s)

(e) Amazon photos
100

101

102

103

104

105
ω

time (s)

(f) Amazon computers

102

103

104
ω

time (s)

(g) MAG-eng
102

103

104 ω

time (s)

(h) MAG-phy

Figure 5.5: Running time of clustering in seconds (ω marks the competitor with the
best clustering quality in Table 5.3).

151

Chapter 5. SGLA: Multi-view Attributed Graph Integration

Table 5.4: Embedding performance for node classification (the top 3 are in blue;
darker shades indicate better results).

Method
RM Yelp IMDB DBLP Amazon photos Amazon computers MAG-eng MAG-phy Overall

rankMaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1

PANE 0.738 0.778 0.904 0.902 0.479 0.494 0.636 0.763 0.783 0.847 0.556 0.674 0.550 0.672 0.547 0.674 6.0

AnECI 0.539 0.734 0.778 0.826 0.589 0.596 0.880 0.894 0.899 0.915 0.807 0.846 - - - - 6.1

CONN 0.569 0.751 0.932 0.926 0.657 0.657 0.725 0.758 0.892 0.914 0.827 0.850 - - - - 4.6

HDMI 0.446 0.666 0.926 0.918 0.641 0.642 0.916 0.922 0.724 0.792 0.500 0.721 - - - - 5.7

URAMN 0.496 0.690 0.916 0.907 0.640 0.653 0.897 0.905 0.580 0.727 0.313 0.651 - - - - 6.7

O2MAC 0.689 0.745 0.898 0.894 0.657 0.657 0.909 0.915 0.672 0.721 0.442 0.606 - - - - 6.1

DMG 0.692 0.737 0.902 0.891 0.618 0.624 0.928 0.933 0.796 0.874 0.629 0.757 - - - - 5.2

LMGEC 0.417 0.717 0.938 0.932 0.597 0.608 0.916 0.922 0.630 0.723 0.347 0.669 - - - - 6.2

SGLA 0.835 0.904 0.941 0.936 0.688 0.687 0.934 0.938 0.918 0.933 0.893 0.907 0.574 0.736 0.702 0.830 1.5

SGLA+ 0.856 0.918 0.942 0.937 0.705 0.704 0.932 0.937 0.912 0.929 0.880 0.901 0.588 0.741 0.696 0.827 1.5

runs out of memory.

5.5.2 E$ectiveness and E#ciency on Clustering

SGLA and SGLA+ generate L which is then used as the input of spectral clustering as

described in Section 5.2.2. In Table 5.3, we report the Acc, F1, NMI, ARI, Purity

and the averaged overall rank of each method over all 8 datasets across the four

metrics. We highlight the top-3 best results on each dataset in blue with darker

shades indicating better performance.

E$ectiveness. As shown in the last column of Table 5.3, SGLA and SGLA+ achieve the

best ranks 1.7 and 2.0 respectively over all 8 datasets, significantly outperforming the

best competitor with rank 4.6. Specifically, for the 5 metrics, SGLA and SGLA+ achieve

better performance compared to existing methods on almost all datasets, except Acc,

F1 and Purity on IMDB. For the RM, Yelp, IMDB, and DBLP datasets in Table 5.3,

SGLA and SGLA+ achieve improvements in NMI over the best baseline by up to 20.1%,

1.5%, 1.6% and 1.8%, respectively. On Amazon photos, SGLA and SGLA+ outperform

the best competitor MCGC by large margins up to 11.2% in Acc, 12.8% in F1, 7.5%

in NMI, 17.3% in ARI and 6.5% in Purity. Remarkably, on the large-scale MAG-

eng and MAG-phy datasets in Table 5.3, SGLA and SGLA+ surpass the only scalable

baseline MvAGC by up to 23.8% in Acc, 30.5% in F1, 30.1% in NMI, 31.0% in ARI and

32.7% in Purity on average. The results in Table 5.3 validate the e!ectiveness of the

152

5.5. Experiments

objective formulated in Section 5.3 and the techniques in 5.4 to solve it, which aligns

the spectrum of L with the community and connectivity properties. On the other

hand, MCGC aligns a unified graph with each view but overlooks its intrinsic structure,

leading to inferior performance. The results in Table 5.3 underscore that SGLA and

SGLA+ e!ectively generate a MVAG Laplacian L that reliably reveals the underlying

clusters in real-world multi-view attributed graphs.

E#ciency. For our methods, we record the total time cost of computing view Lapla-

cians from G, running SGLA or SGLA+, and performing clustering. Figure 5.5 displays

the running time of all methods, with the competitor delivering the best clustering

quality marked by a star for each dataset. The y-axis is time in seconds on a logarith-

mic scale. Regardless of clustering quality, SGLA and SGLA+ consistently demonstrate

leading e”ciency across all datasets except RM. Compared to the marked competi-

tors, SGLA and SGLA+ are often faster by orders of magnitude. For instance, on DBLP,

the best baseline MAGC requires 35.98 seconds to finish, while SGLA and SGLA+ only

take 2.008 and 0.788 seconds, respectively, achieving a 17.9↑ and 45.7↑ speedup.

On Amazon photos, the marked baseline MCGC requires 5102 seconds, whereas our

methods SGLA and SGLA+ take only 1.465 and 1.129 seconds, attaining a significant

speedup of over 3000↑. On MAG-eng and MAG-phy, where most baselines run out

of memory or cannot finish within one day, our methods achieve the highest e”ciency

with the best quality. Our methods demonstrate a huge speedup over baselines with

quadratic complexity, e.g., MAGC, and the GNN models that are expensive to train,

e.g., HDMI. Furthermore, SGLA+ is consistently faster than SGLA on all datasets. For

example, SGLA requires 1206 and 1970 seconds for clustering MAG-eng and MAG-phy,

respectively, while SGLA+ requires only 583 and 783 seconds.

Moreover, for memory usage, SGLA and SGLA+ also exhibit high memory e”ciency

over baselines. For instance, on large-scale datasets, our methods only use 18.7 GB

for MAG-eng and 32.3 GB for MAG-phy, while MvAGC requires 137 GB and 184 GB,

respectively, and all other baselines are out of memory. These results highlight the

153

Chapter 5. SGLA: Multi-view Attributed Graph Integration

e”cacy of the algorithm designs presented in Section 5.4.

5.5.3 E$ectiveness and E#ciency on Embedding

SGLA and SGLA+ generate L which is then used as the input for classic network

embedding methods as described in Section 5.2.2. Specifically, on large datasets

MAG-eng and MAG-phy, the scalable SketchNE [131] is utilized, while NetMF [99]

is used for the remaining datasets. We evaluate the embedding quality by node

classification task. Specifically, for each method that outputs embeddings, a logistic

regression classifier is trained on 20% of the ground truth class labels (1% for the

large MAG-eng and MAG-phy datasets), with the remaining labels used for testing.

In Table 5.4, we report the embedding quality of our methods and the baselines

over all datasets, in terms of classification performance (MaF1, MiF1). Figure 5.6

compares the e”ciency of all methods, measured by total embedding time in seconds.

E$ectiveness. In Table 5.4, our methods SGLA and SGLA+ consistently claim the top

two places, with the best overall rank 1.5 over all metrics on all datasets, significantly

higher than the best competitor with overall rank 4.6. For example, on IMDB in Table

5.4, SGLA+ and SGLA take the first and second places respectively, surpassing O2MAC

and CONN, which rank third, by up to 4.8% in Macro-F1 and 4.7% in Micro-F1. On

the Amazon computers dataset, our methods outperform the runner-up CONN by up

to 6.6% in Macro-F1 and 5.7% in Micro-F1. Moreover, on the large datasets, MAG-

eng and MAG-phy, our methods SGLA+ and SGLA surpass PANE, the sole competitor

with su”cient scalability, proving that our methods are more e!ective in producing

high-quality embeddings for these large-scale datasets. Compared with sophisticated

GNN methods focused on the common and specific aspects of each view, e.g., DMG,

our methods better preserve structural properties, thus allowing classic methods to

produce high-quality node embeddings for MVAGs. The results in Table 5.4 confirm

the e!ectiveness of the objective and techniques developed in Section 5.3 and 5.4.

154

5.5. Experiments

SGLA+ SGLA PANE AnECI CONN HDMI URAMN O2MAC DMG LMGEC

10→1

100

101

102

ω

time (s)

(a) RM
10→1

100

101

102

103

104

ω

time (s)

(b) Yelp

100

101

102

103
ω
ω

time (s)

(c) IMDB
100

101

102

103

104

ω

time (s)

(d) DBLP

100

101

102

103

104

105

ω

time (s)

(e) Amazon photos
100

101

102

103

104

105 ω

time (s)

(f) Amazon computers

102

103

104

105

ω

time (s)

(g) MAG-eng
102

103

104

105 ω

time (s)

(h) MAG-phy

Figure 5.6: Running time of embedding in seconds (ω marks the competitor with the
best embedding quality in Table 5.4).

155

Chapter 5. SGLA: Multi-view Attributed Graph Integration

E#ciency. Figure 5.6 displays the total time cost for MVAG embedding on 8

datasets, with the competitors delivering the best embedding quality marked for

each dataset. The y-axis represents running time in seconds on a logarithmic scale.

SGLA+ achieves the best e”ciency on all datasets, often outperforming the compared

methods by orders of magnitude; SGLA is also faster than all baselines except on the

smallest dataset, RM. For instance, in Figure 5.6c, while CONN and O2MAC are the

runner-ups after SGLA and SGLA+ in quality, our methods are up to 222↑ and 489↑

faster, respectively. On the million-scale datasets MAG-eng and MAG-phy, SGLA+

requires 555 and 939 seconds each, achieving 32.1↑ and 71.6↑ speedup over the only

scalable baseline PANE. Moreover, SGLA+ is faster than SGLA on all datasets. For mem-

ory usage, our methods also achieve high space e”ciency. For example, to produce

embeddings for large-scale datasets MAG-eng and MAG-phy, both SGLA and SGLA+

leave a memory footprint of 61.6 GB and 95.4 GB, respectively. However, the only

scalable baseline PANE requires 221 GB and 299 GB, while all other methods run out

of memory. These results highlight the e”cacy of the algorithm designs presented in

Section 5.4.

5.5.4 Experimental Analysis

Convergence evaluation and Tmax. When varying the number of iterations t in

SGLA, Figure 5.7 shows the convergence of the objective h(w) that decreases and

then becomes stable, while the corresponding clustering accuracy (Acc) improves.

The black dots mark the iteration when the termination condition by ϱ at Line 7 of

Algorithm 10 is met. Observe that h(w) usually converges before termination. Thus,

we set Tmax = 50 by default at Line 2 of Algorithm 10.

Varying ϱ. We vary parameter ϱ in the termination condition from 10↓4 to 10↓1

(from tight to loose) and report the results of SGLA in Figure 5.8. Compared to the

default setting of ϱ = 10↓3, #time denotes the ratio of change in running time. As

156

5.5. Experiments

0 10 20 30 40 50

0.6

0.8

1

t

h(w)
Acc

(a) Yelp

0 20 40

0.4

0.6

0.8

1

t

h(w)
Acc

(b) IMDB

Figure 5.7: Varying number of iterations t in SGLA for clustering accuracy; • marks
when termination condition is met).

RM Yelp IMDB DBLP
Am.pho. Am.com. MAG-eng MAG-phy

10→4 10→3 10→2 10→1

0.4

0.6

0.8

1

ω

Acc

10→4 10→3 10→2 10→1

-40%

-20%

0%

+20%

+40%

ω

”time

Figure 5.8: Varying ϱ for SGLA.

-2 -1 -0.5 0 0.5 1 2
0

0.2

0.4

0.6

0.8

1

ϱ

Acc

-2 -1 -0.5 0 0.5 1 2
0

0.2

0.4

0.6

0.8

1

ϱ

NMI

Figure 5.9: Varying ϑ for SGLA+.

ϱ becomes loose from 10↓4 to 10↓1, the clustering quality (Acc) is stable first and

then decreases. On the other hand, as ϱ becomes tight, e.g., from 10↓3 to 10↓4, the

157

Chapter 5. SGLA: Multi-view Attributed Graph Integration

Acc NMI time

-2 -1 0 +2 +5 +10 +20
0.2

0.4

0.6

0.8

1

”s

0.3

0.6

0.9

1.2

time (s)

(a) Yelp

-2 -1 0 +2 +5 +10 +20
0

0.2

0.4

0.6

”s

0.7

1

1.3

1.6

1.9

time (s)

(b) IMDB

-2 -1 0 +2 +5 +10 +20
0.6

0.7

0.8

0.9

1

”s

0.5

1.5

2.5

3.5

time (s)

(c) DBLP

-2 -1 0 +2 +5 +10 +20
0.4

0.5

0.6

0.7

”s

3.5

4.3

5.1

5.9

time (s)

(d) Amazon computers

Figure 5.10: Vary the number of weight vector samples in SGLA+.

running time increases significantly (#time) but the quality (Acc) maintains. Thus,

we set ϱ = 0.001 by default.

Varying ϑ. Parameter ϑ is the coe”cient of the regularization term in (5.5). A

negative ϑ promotes weight allocation to focus on a single view, while a positive ϑ

mitigates such situations and tends to assign similar weights across views. We vary ϑ

from →2 to 2 and report the accuracy and NMI scores in Figure 5.9. As ϑ increases

from →2 to 0.5, the accuracy and NMI of SGLA+ remain relatively stable on Yelp and

show noticeable improvement on other datasets. However, when ϑ varies from 0.5 to

2, the accuracy and NMI degrade on IMDB and RM, while remaining stable on other

datasets. Based on these observations, we set ϑ = 0.5 by default.

158

5.5. Experiments

Varying the number of weight vector samples in SGLA+. In Section 5.4.2,

SGLA+ uses (r+1) sampled weight vectors by default. We vary the number of samples

and change (r + 1) by #s ↓ {→2, →1, 0, +2, +5, +10, +20}, and report the results of

SGLA+ in Figure 5.10, where the left y-axis is for clustering Acc and NMI, and the

right y-axis is for running time. The removed (resp. added) samples are randomly

selected (resp. generated). Observe that when the number of samples changes by #s

from -2 to 0, Acc and NMI scores increase and then become stable afterward with

larger delta values. Meanwhile, the time increases significantly due to more expensive

objective evaluations to be performed. The results in Figure 5.10 indicate that (r+1)

samples are su”cient in practice.

Alternative integrations. For the proposed spectrum-guided integration in SGLA+

that optimizes the full objective, we compare baselines optimizing the connectivity

or eigengap objective alone, setting equal weights for all view Laplacians (Equal-w),

and directly aggregating adjacency matrices from graph views and KNN graphs of

attribute views (Graph-Agg). Figure 5.11 reports the clustering accuracy on each

dataset and the average accuracy over all datasets. SGLA+ is the best in average

accuracy performance and achieves the highest accuracy on almost all datasets. Op-

timizing connectivity or eigengap alone can achieve relatively good accuracy on some

datasets but performs poorly on others, validating the design choice to combine both

objectives. Despite occasional successes, assigning equal view weights often leads to

poor performance, as evidenced by the low clustering quality on datasets such as

RM, Yelp, and IMDB. Graph-Agg is outperformed by SGLA+ that adopts normal-

ized Laplacians and preserves intrinsic spectrum properties of MVAGs. These results

highlight the advantage of our spectrum-guided multi-view integration.

Embedding visualization. We visualize the node embeddings using t-SNE [118] to

qualitatively assess the embedding quality. Due to space constraints, we present the

visualizations of our method SGLA+ and the strong baselines identified in Table 5.4

on the RM and Yelp datasets in Figure 5.12. On RM, shown in the 1st row of Figure

159

Chapter 5. SGLA: Multi-view Attributed Graph Integration

Average RM Yelp IMDB DBLP Am-p Am-c M-eng M-phy

0.2
0.4
0.6
0.8

1

SGLA+ Connectivity Eigengap Equal-w Graph-Agg

Figure 5.11: Clustering accuracy with alternative integrations.

(a) DMG (b) PANE (c) SGLA+

(d) CONN (e) LMGEC (f) SGLA+

Figure 5.12: Embedding visualization on RM (a,b,c) and Yelp (d,e,f). Ground-truth
classes are in color.

5.12, SGLA+ e!ectively separates nodes into di!erent classes, while DMG and PANE mix

more nodes from di!erent classes. A similar observation can be made on Yelp, shown

in the 2nd row of Figure 5.12. The visualization demonstrates the e!ectiveness of our

methods in generating L for high-quality embedding.

160

5.6. Summary

5.6 Summary

This chapter introduces a spectrum-guided integration scheme for multi-view at-

tributed graphs (MVAGs), enabling the direct application of classic graph algorithms

for clustering and embedding tasks. The proposed approach emphasizes preserv-

ing community structure and node connectivity by leveraging the spectral properties

of Laplacian matrices. To address computational challenges, we developed SGLA, an

algorithm that delivers superior performance, followed by SGLA+, an accelerated vari-

ant that approximates the objective for improved e”ciency. Extensive experiments

demonstrate that both SGLA and SGLA+ consistently produce high-quality results

across diverse MVAG scenarios.

161

Chapter 6

Conclusion

6.1 Summary of Contributions

This thesis has advanced the field of attributed network analysis by developing innova-

tive approaches to clustering and embedding that enhance the e!ectiveness, e”ciency,

and scalability of analyzing complex network structures. Through three interrelated

contributions, we have addressed the challenges of attributed graphs, hypergraphs,

and multi-view attributed graphs, delivering tailored solutions that integrate struc-

tural and attribute information. These advancements, validated through extensive

experiments on real-world datasets, provide robust tools for applications in bioinfor-

matics, social network analysis, and e-commerce, aligning with the thesis’s goal of

advancing clustering and embedding for attributed network structures.

The first contribution, the ANCKA framework [73, 72], o!ers a versatile and e”-

cient solution for clustering attributed networks, encompassing attributed hyper-

graph clustering (AHC), attributed graph clustering (AGC), and attributed multiplex

graph clustering (AMGC). By leveraging a KNN augmentation strategy, a novel ran-

dom walk-based problem formulation, and an optimized iterative framework, ANCKA

achieves superior cluster quality while maintaining high e”ciency. To further enhance

162

6.1. Summary of Contributions

scalability, we developed ANCKA-GPU, a GPU-accelerated variant that outperforms its

CPU-parallel counterpart on large datasets while preserving e!ectiveness. Extensive

evaluations across real-world datasets demonstrate ANCKA ’s outstanding performance,

setting a new benchmark for clustering diverse attributed networks.

The second contribution introduced SAHE, an e”cient algorithm for attributed hyper-

graph node and hyperedge embedding (AHNEE). SAHE generates node and hyperedge

embeddings that preserve higher-order connectivities and attribute similarities in at-

tributed hypergraphs, utilizing multi-hop similarity measures (HMS-N and HMS-E)

and optimized decomposition techniques. With log-linear time complexity, SAHE out-

performs 11 baselines across 8 real-world datasets, demonstrating both scalability

and e!ectiveness. Its design makes it well-suited for applications such as genomic ex-

pression modeling and online shopping behavior prediction, advancing representation

learning for higher-order network structures.

The third contribution developed a spectrum-guided integration scheme for cluster-

ing and embedding in multi-view attributed graphs (MVAGs), implemented through

two e”cient algorithms, SGLA and SGLA+. By formulating a constrained optimization

problem over a joint objective function that preserves community structure and node

connectivity via the Laplacian matrix spectrum, this scheme enables existing graph

algorithms to be applied to MVAGs. SGLA delivers superior performance compared

to baselines, while SGLA+ further reduces computational demands through approx-

imation, maintaining high-quality results. Extensive experiments confirm their ef-

fectiveness and e”ciency, supporting applications like recommendation systems and

neuroimaging analysis.

Collectively, these contributions, namely ANCKA, SAHE, and SGLA/SGLA+, form a co-

hesive set of frameworks that advance clustering and embedding by addressing the

unique complexities of attributed network structures. Their validated performance

across diverse datasets underscores their potential to transform network analysis in

real-world settings.

163

Chapter 6. Conclusion

6.2 Implications and Impact

The methods presented in this thesis have significant implications for both theoretical

and applied network analysis. Theoretically, our work advances the approach to at-

tributed network clustering by demonstrating that a unified framework can e!ectively

handle the diversity of attributed networks. ANCKA ’s random walk-based formula-

tion and KNN augmentation depart from traditional clustering paradigms, o!ering

a generalizable model for graphs, hypergraphs, and multiplex graphs [144]. SAHE ’s

log-linear time embedding approach expands the range of factorization-based embed-

ding methods to hypergraphs, addressing a gap in hypergraph modeling [157]. The

spectrum-guided integration of SGLA and SGLA+ provides a novel framework for multi-

view attributed graph analysis, unifying clustering and embedding tasks through the

spectral properties of the Laplacian matrix [153]. These advancements enrich the

theoretical foundations of network analysis, paving the way for future methodological

innovations.

Practically, our contributions have solid potential for applications to real-world net-

work data. The scalability of the proposed approaches, exemplified by ANCKA-GPU ’s

GPU acceleration and SAHE ’s log-linear complexity, ensures their utility for large-scale

networks, addressing computational bottlenecks noted in prior works. The interdis-

ciplinary outreach of our frameworks further amplifies their impact across multiple

domains, including bioinformatics, social network analysis, and recommendation sys-

tems. For instance, clustering academic hypergraphs by co-authorship and keywords

[27] supports research collaboration analysis, while multi-view clustering aids neu-

roimaging for disease diagnosis [153]. These diverse applications highlight the signifi-

cance of the research topic and the versatility of our approaches, meeting the growing

demand for advanced, scalable network analysis tools in data-driven areas.

164

6.3. Future Directions

6.3 Future Directions

This thesis opens several promising avenues for future research. For ANCKA, we may ex-

tend the framework to handle evolving attributed networks and implement distributed

computations to enhance scalability. Developing robust augmentation strategies for

highly noisy or sparse datasets would further improve its versatility. For SAHE, en-

hancing the algorithm with incremental decomposition methods for dynamic hyper-

graphs could support applications where incorporating the latest updates is essential.

This embedding approach may also be extended to other attributed networks, and a

GPU implementation could further boost its computational e”ciency. For SGLA and

SGLA+, future work could focus on handling dynamic MVAGs through lazy update

schemes and incremental objective evaluation to minimize update costs. Designing

techniques for robustness against noisy MVAGs and exploring GPU computation for

multi-view analysis would enhance their practical utility.

6.4 Concluding Remarks

This thesis has made substantial contributions to the analysis of attributed network

structures, delivering frameworks—ANCKA, SAHE, and SGLA/SGLA+ —that advance

clustering and embedding for graphs, hypergraphs, and multi-view graphs. Through

innovative techniques like KNN augmentation, e”cient approximation, and spectrum-

guided integration, our work achieves high-quality outcomes with computational e”-

ciency, as validated across diverse real-world datasets. The theoretical and practical

implications span a wide range of areas, demonstrating the power of tailored and

unified approaches. Looking forward, they inspire exciting future directions, from

dynamic network analysis to interdisciplinary applications. Ultimately, this thesis

advances the field of network analysis, providing tools and insights that empower

researchers and practitioners to interpret and exploit attributed networks.

165

References

[1] Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab Mirrokni. A local algorithm for

finding well-connected clusters. In ICML, 2013.

[2] Konstantinos Ameranis, Adela Frances DePavia, Lorenzo Orecchia, and Erasmo

Tani. Fast Algorithms for Hypergraph PageRank with Applications to Semi-

Supervised Learning. In ICML, June 2024.

[3] Jianjing An and Dong Wang. E”cient one-sided jacobi svd computation on

amd gpu using opencl. In ICSP, 2016.

[4] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using

pagerank vectors. In FOCS, pages 475–486, 2006.

[5] Haitham Ashoor, Xiaowen Chen, Wojciech Rosikiewicz, Jiahui Wang, Albert

Cheng, Ping Wang, Yijun Ruan, and Sheng Li. Graph embedding and un-

supervised learning predict genomic sub-compartments from HiC chromatin

interaction data. Nature Communications, 11(1):1173, March 2020.

[6] Ali Behrouz, Farnoosh Hashemi, and Laks V. S. Lakshmanan. Firmtruss com-

munity search in multilayer networks. Proc. VLDB Endow., 16(3):505–518,

2022.

[7] Austin R. Benson, Rediet Abebe, Michael T. Schaub, Ali Jadbabaie, and

Jon Kleinberg. Simplicial closure and higher-order link prediction. PNAS,

115(48):E11221–E11230, 2018.

166

References

[8] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne

Lefebvre. Fast unfolding of communities in large networks. Journal of sta-

tistical mechanics: theory and experiment, 2008.

[9] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Mar-

tin Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann.

Scaling graph neural networks with approximate pagerank. In KDD, pages

2464–2473. ACM, 2020.

[10] Deng Cai, Xiaofei He, Jiawei Han, and Thomas S Huang. Graph regularized

nonnegative matrix factorization for data representation. TPAMI, 33(8):1548–

1560, 2010.

[11] Yaoming Cai, Zijia Zhang, Zhihua Cai, Xiaobo Liu, and Xinwei Jiang.

Hypergraph-structured autoencoder for unsupervised and semisupervised clas-

sification of hyperspectral image. IEEE GRSL, 19:1–5, 2022.

[12] T.-H. Hubert Chan and Zhibin Liang. Generalizing the Hypergraph Laplacian

via a Di!usion Process with Mediators. ArXiv, abs/1804.11128, 2018.

[13] Hong Cheng, Yang Zhou, and Je!rey Xu Yu. Clustering large attributed graphs:

A balance between structural and attribute similarities. ACM TKDD, 5(2):1–

33, 2011.

[14] Jiafeng Cheng, Qianqian Wang, Zhiqiang Tao, De-Yan Xie, and Quanxue Gao.

Multi-View Attribute Graph Convolution Networks for Clustering. In IJCAI,

pages 2973–2979, 2020.

[15] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui

Hsieh. Cluster-gcn: An e”cient algorithm for training deep and large graph

convolutional networks. In KDD, 2019.

167

References

[16] Eli Chien, Chao Pan, Jianhao Peng, and Olgica Milenkovic. You are AllSet:

A Multiset Function Framework for Hypergraph Neural Networks. In ICLR,

2021.

[17] Uthsav Chitra and Benjamin Raphael. Random Walks on Hypergraphs with

Edge-Dependent Vertex Weights. In ICML, pages 1172–1181, 2019.

[18] Fan RK Chung. Spectral Graph Theory, volume 92. American Mathematical

Soc., 1997.

[19] Shane Cook. CUDA programming: a developer’s guide to parallel computing

with GPUs. Newnes, 2012.

[20] Daryl R. DeFord and Scott D. Pauls. Spectral clustering methods for multiplex

networks. ArXiv, abs/1703.05355, 2017.

[21] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Je! Johnson, Gergely Szil-

vasy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé

Jégou. The faiss library, 2024.

[22] Boxin Du, Changhe Yuan, Robert Barton, Tal Neiman, and Hanghang Tong.

Self-supervised Hypergraph Representation Learning. In IEEE Big Data, pages

505–514, December 2022.

[23] Rundong Du, Barry Drake, and Haesun Park. Hybrid clustering based on

content and connection structure using joint nonnegative matrix factorization.

J. Glob. Optim., 74(4):861–877, 2019.

[24] Shaohua Fan, Xiao Wang, Chuan Shi, Emiao Lu, Ken Lin, and Bai Wang.

One2multi graph autoencoder for multi-view graph clustering. In WWW, pages

3070–3076, 2020.

168

References

[25] Uno Fang, Man Li, Jianxin Li, Longxiang Gao, Tao Jia, and Yanchun Zhang.

A comprehensive survey on multi-view clustering. IEEE TKDE., 35(12):12350–

12368, 2023.

[26] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. E!ective commu-

nity search for large attributed graphs. Proc. VLDB Endow., 9(12):1233–1244,

2016.

[27] Barakeel Fanseu Kamhoua, Lin Zhang, Kaili Ma, James Cheng, Bo Li, and

Bo Han. HyperGraph Convolution Based Attributed HyperGraph Clustering.

In CIKM, pages 453–463, 2021.

[28] Song Feng, Emily Heath, Brett Je!erson, Cli! Joslyn, Henry Kvinge, Hugh D.

Mitchell, Brenda Praggastis, Amie J. Eisfeld, Amy C. Sims, Larissa B. Thack-

ray, Shufang Fan, Kevin B. Walters, Peter J. Halfmann, Danielle Westho!-

Smith, Qing Tan, Vineet D. Menachery, Timothy P. Sheahan, Adam S. Cock-

rell, Jacob F. Kocher, Kelly G. Stratton, Natalie C. Heller, Lisa M. Bramer,

Michael S. Diamond, Ralph S. Baric, Katrina M. Waters, Yoshihiro Kawaoka,

Jason E. McDermott, and Emilie Purvine. Hypergraph models of biological

networks to identify genes critical to pathogenic viral response. BMC Bioinfor-

matics, 22(1):287, May 2021.

[29] Zijin Feng, Miao Qiao, Chengzhi Piao, and Hong Cheng. On Graph Repre-

sentation for Attributed Hypergraph Clustering. Proc. ACM Manag. Data,

3(1):59:1–59:26, February 2025.

[30] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. Simultaneous linear multi-

view attributed graph representation learning and clustering. In WSDM, pages

303–311. ACM, 2023.

[31] Santo Fortunato. Community detection in graphs. ArXiv, abs/0906.0612, 2009.

169

References

[32] Haitao Fu, Feng Huang, Xuan Liu, Yang Qiu, and Wen Zhang. MVGCN: data

integration through multi-view graph convolutional network for predicting links

in biomedical bipartite networks. Bioinform., 38(2):426–434, 2022.

[33] Yue Gao, Yifan Feng, Shuyi Ji, and Rongrong Ji. HGNN+: General Hypergraph

Neural Networks. TPAMI, 45(3):3181–3199, March 2023.

[34] Thomas Gaudelet, Noël Malod-Dognin, and Natasa Przulj. Higher-order molec-

ular organization as a source of biological function. Bioinformatics, 34(17):i944–

i953, 2018.

[35] Lars Gottesbüren, Tobias Heuer, and Peter Sanders. Parallel flow-based hyper-

graph partitioning. In SEA, volume 233, 2022.

[36] Aditya Grover and Jure Leskovec. Node2vec: Scalable Feature Learning for

Networks. In KDD, pages 855–864, August 2016.

[37] Roger Guimerà and Luis A. Nunes Amaral. Functional cartography of complex

metabolic networks. Nature, 433:895–900, 2005.

[38] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,

and Sanjiv Kumar. Accelerating large-scale inference with anisotropic vector

quantization. In ICML, 2020.

[39] Insu Han, Haim Avron, and Jinwoo Shin. Polynomial Tensor Sketch for

Element-wise Function of Low-Rank Matrix. In ICML, pages 3984–3993, 2020.

[40] Yan Han, Edward W. Huang, Wenqing Zheng, Nikhil Rao, Zhangyang Wang,

and Karthik Subbian. Search Behavior Prediction: A Hypergraph Perspective.

In WSDM, WSDM ’23, pages 697–705, February 2023.

[41] Koby Hayashi, Sinan G. Aksoy, Cheong Hee Park, and Haesun Park. Hyper-

graph random walks, laplacians, and clustering. In CIKM, pages 495–504, 2020.

170

References

[42] Michael T. Heath. Scientific Computing: An Introductory Survey, Revised Sec-

ond Edition. Society for Industrial and Applied Mathematics, 2018.

[43] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram.

The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited. In

NeurIPS, volume 26, 2013.

[44] Jie Huang, Chuan Chen, Fanghua Ye, Weibo Hu, and Zibin Zheng. Nonuniform

Hyper-Network Embedding with Dual Mechanism. ACM Trans. Inf. Syst.,

38(3):28:1–28:18, May 2020.

[45] Jie Huang, Chuan Chen, Fanghua Ye, Jiajing Wu, Zibin Zheng, and Guohui

Ling. Hyper2vec: Biased Random Walk for Hyper-network Embedding. In

DASFAA, pages 273–277, 2019.

[46] Ling Huang, Chang-Dong Wang, and Philip S. Yu. Higher Order Connection

Enhanced Community Detection in Adversarial Multiview Networks. IEEE

Trans. Cybern., pages 1–15, 2021.

[47] Wentao Huang, Yuchen Li, Yuan Fang, Ju Fan, and Hongxia Yang. BiANE:

Bipartite Attributed Network Embedding. In SIGIR, SIGIR ’20, pages 149–158,

July 2020.

[48] Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW,

pages 271–279, 2003.

[49] Baoyu Jing, Chanyoung Park, and Hanghang Tong. HDMI: high-order deep

multiplex infomax. In WWW, pages 2414–2424, 2021.

[50] Je! Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search

with GPUs. IEEE TBD, 7(3):535–547, 2019.

171

References

[51] Jinhong Jung, Namyong Park, Sael Lee, and U Kang. Bepi: Fast and memory-

e”cient method for billion-scale random walk with restart. In SIGMOD, page

789–804, 2017.

[52] Barakeel Fanseu Kamhoua, Lin Zhang, Kaili Ma, James Cheng, Boyang Li, and

Bo Han. Grace: A general graph convolution framework for attributed graph

clustering. ACM TKDD, 17:1 – 31, 2022.

[53] Zhao Kang, Zhanyu Liu, Shirui Pan, and Ling Tian. Fine-grained attributed

graph clustering. In SDM, 2022.

[54] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph

partitioning: Applications in VLSI domain. IEEE TVLSI, 7(1):69–79, 1999.

[55] George Karypis and Vipin Kumar. Multilevel k-way Partitioning Scheme for

Irregular Graphs. J. Parallel Distributed Comput., 48(1):96–129, 1998.

[56] Tosio Kato. Perturbation Theory for Linear Operators, volume 132. Springer

Science & Business Media, 2013.

[57] Aparajita Khan and Pradipta Maji. Approximate graph laplacians for multi-

modal data clustering. IEEE TPAMI., 43(3):798–813, 2021.

[58] Muhammad Raza Khan and Joshua E. Blumenstock. Multi-gcn: Graph convo-

lutional networks for multi-view networks, with applications to global poverty.

In AAAI, pages 606–613, 2019.

[59] Shima Khoshraftar and Aijun An. A Survey on Graph Representation Learning

Methods. ACM Trans. Intell. Syst. Technol., 15(1):19:1–19:55, January 2024.

[60] Sunwoo Kim, Shinhwan Kang, Fanchen Bu, Soo Yong Lee, Jaemin Yoo, and

Kijung Shin. HypeBoy: Generative Self-Supervised Representation Learning

on Hypergraphs. In ICLR, October 2023.

172

References

[61] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In ICLR, 2017.

[62] Tarun Kumar, Sankaran Vaidyanathan, Harini Ananthapadmanabhan, Srini-

vasan Parthasarathy, and Balaraman Ravindran. Hypergraph Clustering: A

Modularity Maximization Approach. ArXiv, abs/1812.10869, 2018.

[63] Kevin Lang and Satish Rao. A flow-based method for improving the expansion

or conductance of graph cuts. In International Conference on Integer Program-

ming and Combinatorial Optimization, pages 325–337, 2004.

[64] Dongjin Lee and Kijung Shin. I’m Me, We’re Us, and I’m Us: Tri-directional

Contrastive Learning on Hypergraphs. AAAI, 37(7):8456–8464, June 2023.

[65] Geon Lee, Soo Yong Lee, and Kijung Shin. VilLain: Self-Supervised Learning

on Homogeneous Hypergraphs without Features via Virtual Label Propagation.

In WWW, pages 594–605, May 2024.

[66] James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral

partitioning and higher-order cheeger inequalities. J. ACM, 61(6):37:1–37:30,

2014.

[67] R. B. Lehoucq and D. C. Sorensen. Deflation Techniques for an Implicitly

Restarted Arnoldi Iteration. SIAM Journal on Matrix Analysis and Applica-

tions, 17(4):789–821, 1996.

[68] Chaozhuo Li, Senzhang Wang, Lifang He, Philip S. Yu, Yanbo Liang, and

Zhoujun Li. SSDMV: semi-supervised deep social spammer detection by multi-

view data fusion. In ICDM, pages 247–256, 2018.

[69] Shuyang Li, Yufei Li, Jianmo Ni, and Julian McAuley. SHARE: A System for

Hierarchical Assistive Recipe Editing. In EMNLP, pages 11077–11090, 2022.

173

References

[70] Yiran Li, Gongyao Guo, Jieming Shi, Sibo Wang, and Qing Li. E”cient

Integration of Multi-View Attributed Graphs for Clustering and Embedding .

In ICDE, pages 3863–3875, 2025.

[71] Yiran Li, Gongyao Guo, Jieming Shi, Renchi Yang, Shiqi Shen, Qing Li,

and Jun Luo. Technical report, 2024. https://sites.google.com/view/

ancka-technical-report/.

[72] Yiran Li, Gongyao Guo, Jieming Shi, Renchi Yang, Shiqi Shen, Qing Li, and

Jun Luo. A versatile framework for attributed network clustering via K-nearest

neighbor augmentation. VLDB J., 33(6):1913–1943, 2024.

[73] Yiran Li, Renchi Yang, and Jieming Shi. E”cient and E!ective Attributed

Hypergraph Clustering via K-Nearest Neighbor Augmentation. Proc. ACM

Manag. Data, 1(2):116:1–116:23, June 2023.

[74] Zhonghang Li, Chao Huang, Lianghao Xia, Yong Xu, and Jian Pei. Spatial-

Temporal Hypergraph Self-Supervised Learning for Crime Prediction. In ICDE,

pages 2984–2996, 2022.

[75] Bei Lin, You Li, Ning Gui, Zhuopeng Xu, and Zhiwu Yu. Multi-view graph

representation learning beyond homophily. ACM TKDD, 17(8):114:1–114:21,

2023.

[76] Zhiping Lin and Zhao Kang. Graph filter-based multi-view attributed graph

clustering. In IJCAI, pages 2723–2729, 2021.

[77] Zhiping Lin, Zhao Kang, Lizong Zhang, and Ling Tian. Multi-view attributed

graph clustering. IEEE TKDE., 35(2):1872–1880, 2023.

[78] Yue Liu, Jun Xia, Sihang Zhou, Xihong Yang, Ke Liang, Chenchen Fan, Yan

Zhuang, Stan Z. Li, Xinwang Liu, and Kunlun He. A Survey of Deep Graph

Clustering: Taxonomy, Challenge, Application, and Open Resource, September

2023.

174

https://sites.google.com/view/ancka-technical-report/
https://sites.google.com/view/ancka-technical-report/

References

[79] Yunfei Liu, Zhen Liu, Xiaodong Feng, and Zhongyi Li. Robust attributed

network embedding preserving community information. In ICDE, pages 1874–

1886. IEEE, 2022.

[80] S. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory,

28(2):129–137, 1982.

[81] Yuanfu Lu, Chuan Shi, Linmei Hu, and Zhiyuan Liu. Relation structure-aware

heterogeneous information network embedding. In AAAI, pages 4456–4463,

2019.

[82] Khanh Luong and Richi Nayak. A novel approach to learning consensus and

complementary information for multi-view data clustering. In IEEE ICDE,

pages 865–876, 2020.

[83] Peter Macgregor. Fast and simple spectral clustering in theory and practice.

Advances in Neural Information Processing Systems, 36, 2024.

[84] Federico Magliani and Andrea Prati. LSH kNN graph for di!usion on image

retrieval. Information Retrieval Journal, 24(2):114–136, 2021.

[85] Meta. Meta Reports Fourth Quarter and Full Year 2024 Results.

https://investor.atmeta.com/investor-news/press-release-details/

2025/Meta-Reports-Fourth-Quarter-and-Full-Year-2024-Results/,

2025. [Online; accessed 12-April-2025].

[86] Yujie Mo, Yajie Lei, Jialie Shen, Xiaoshuang Shi, Heng Tao Shen, and Xiaofeng

Zhu. Disentangled multiplex graph representation learning. In ICML, volume

202, pages 24983–25005, 2023.

[87] Nairouz Mrabah, Mohamed Bouguessa, Mohamed Fawzi Touati, and Riadh

Ksantini. Rethinking graph auto-encoder models for attributed graph clustering

(extended abstract). In IEEE ICDE, pages 3891–3892, 2023.

175

https://investor.atmeta.com/investor-news/press-release-details/2025/Meta-Reports-Fourth-Quarter-and-Full-Year-2024-Results/
https://investor.atmeta.com/investor-news/press-release-details/2025/Meta-Reports-Fourth-Quarter-and-Full-Year-2024-Results/

References

[88] Hiroshi Nagamochi and Toshihide Ibaraki. Algorithmic Aspects of Graph Con-

nectivity, volume 123 of Encyclopedia of Mathematics and its Applications.

Cambridge University Press, 2008.

[89] M. E. J. Newman. Spectral methods for community detection and graph par-

titioning. Physical Review E, 88(4):042822, October 2013.

[90] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using

distantly-labeled reviews and fine-grained aspects. In EMNLP-IJCNLP, pages

188–197, 2019.

[91] Erlin Pan and Zhao Kang. Multi-view contrastive graph clustering. In NeurIPS,

pages 2148–2159, 2021.

[92] Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. Unsupervised

Attributed Multiplex Network Embedding. AAAI, 2020.

[93] Haekyu Park, Jinhong Jung, and U. Kang. A comparative study of matrix

factorization and random walk with restart in recommender systems. In IEEE

BigData, pages 756–765, 2017.

[94] Prasanna Patil, Govind Sharma, and M Narasimha Murty. Negative sampling

for hyperlink prediction in networks. In PAKDD, pages 607–619. Springer, 2020.

[95] Liang Peng, Xin Wang, and Xiaofeng Zhu. Unsupervised multiplex graph learn-

ing with complementary and consistent information. In ACM MM, pages 454–

462, 2023.

[96] Marianna Pensky and Yaxuan Wang. Clustering of diverse multiplex networks.

ArXiv, abs/2110.05308, 2021.

[97] MJD Powell. A direct search optimization method that models the objective

and constraint functions by linear interpolation. Advances in Optimization and

Numerical Analysis, pages 51–67, 1994.

176

References

[98] Jiezhong Qiu, Laxman Dhulipala, Jie Tang, Richard Peng, and Chi Wang.

LightNE: A Lightweight Graph Processing System for Network Embedding. In

SIGMOD, pages 2281–2289, June 2021.

[99] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang.

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE,

and node2vec. In WSDM, pages 459–467, 2018.

[100] Tom M. Ragonneau and Zaikun Zhang. An optimal interpolation set for model-

based derivative-free optimization methods. Optimization Methods and Soft-

ware, pages 1–13, 2024.

[101] Matthew J. Rattigan, Marc Maier, and David Jensen. Graph clustering with

network structure indices. In ICML, page 783–790, 2007.

[102] J.A. Rodri´guez. On the Laplacian Eigenvalues and Metric Parameters of Hy-

pergraphs. Linear Multilinear Algebra, 50(1):1–14, 2002.

[103] M. Rosvall, D. Axelsson, and C. T. Bergstrom. The map equation. The Euro-

pean Physical Journal Special Topics, 178(1):13–23, 2009.

[104] Yousef Saad. Numerical methods for large eigenvalue problems: revised edition.

SIAM, 2011.

[105] Sebastian Schlag, Tobias Heuer, Lars Gottesbüren, Yaroslav Akhremtsev, Chris-

tian Schulz, and Peter Sanders. High-quality hypergraph partitioning. J. Exp.

Algorithmics, 2022.

[106] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.

TPAMI, 22(8):888–905, 2000.

[107] Jieming Shi, Nikos Mamoulis, Dingming Wu, and David W. Cheung. Density-

based place clustering in geo-social networks. In SIGMOD Conference, pages

99–110. ACM, 2014.

177

References

[108] Jieming Shi, Renchi Yang, Tianyuan Jin, Xiaokui Xiao, and Yin Yang. Realtime

top-k personalized pagerank over large graphs on gpus. VLDB, 13(1):15–28,

2019.

[109] Shashank Sheshar Singh, Samya Muhuri, Shivansh Mishra, Divya Srivastava,

Harish Kumar Shakya, and Neeraj Kumar. Social Network Analysis: A Survey

on Process, Tools, and Application. ACM Comput. Surv., 56(8):192:1–192:39,

April 2024.

[110] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Paul

Hsu, and Kuansan Wang. An overview of microsoft academic service (MAS)

and applications. In WWW, pages 243–246, 2015.

[111] Daniel Spielman. Spectral graph theory. Combinatorial scientific computing,

18:18, 2012.

[112] Daniel A. Spielman. Spectral graph theory and its applications. In IEEE

FOCS., pages 29–38, 2007.

[113] Yuuki Takai, Atsushi Miyauchi, Masahiro Ikeda, and Yuichi Yoshida. Hyper-

graph clustering based on pagerank. In KDD, 2020.

[114] Qiaoyu Tan, Xin Zhang, Xiao Huang, Hao Chen, Jundong Li, and Xia Hu. Col-

laborative Graph Neural Networks for Attributed Network Embedding. IEEE

TKDE., 36(3):972–986, 2024.

[115] Riitta Toivonen, Lauri Kovanen, Mikko Kivelä, Jukka-Pekka Onnela, Jari

Saramäki, and Kimmo Kaski. A comparative study of social network mod-

els: Network evolution models and nodal attribute models. Social Networks,

31(4):240–254, 2009.

[116] Hanghang Tong, Christos Faloutsos, and Jia-yu Pan. Fast random walk with

restart and its applications. In ICDM, pages 613–622, 2006.

178

References

[117] Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan

Oseledets, and Emmanuel Müller. FREDE: Anytime graph embeddings. VLDB,

14(6):1102–1110, February 2021.

[118] Laurens Van der Maaten and Geo!rey Hinton. Visualizing data using t-SNE.

JMLR, 9(11), 2008.

[119] Menghan Wang, Yujie Lin, Guli Lin, Keping Yang, and Xiao-Ming Wu.

M2GRL: A multi-task multi-view graph representation learning framework for

web-scale recommender systems. In KDD, pages 2349–2358. ACM, 2020.

[120] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and Philip S.

Yu. A Survey on Heterogeneous Graph Embedding: Methods, Techniques,

Applications and Sources. IEEE Transactions on Big Data, 9(2):415–436, April

2023.

[121] Joe H. Ward Jr. Hierarchical Grouping to Optimize an Objective Function.

Journal of the American Statistical Association, 58(301):236–244, 1963.

[122] Tianxin Wei, Yuning You, Tianlong Chen, Yang Shen, Jingrui He, and

Zhangyang Wang. Augmentations in Hypergraph Contrastive Learning: Fabri-

cated and Generative. NeurIPS, 35:1909–1922, December 2022.

[123] Joyce Jiyoung Whang, Rundong Du, Sangwon Jung, Geon Lee, Barry L. Drake,

Qingqing Liu, Seonggoo Kang, and Haesun Park. MEGA: multi-view semi-

supervised clustering of hypergraphs. Proc. VLDB Endow., 13(5):698–711,

2020.

[124] Joong-Ho Won, Hua Zhou, and Kenneth Lange. Orthogonal trace-sum maxi-

mization: Applications, local algorithms, and global optimality. SIAM J. Matrix

Anal. Appl., 42(2):859–882, 2021.

[125] Anbiao Wu, Ye Yuan, Changsheng Li, Yuliang Ma, and Hao Zhang. Attributed

Network Embedding in Streaming Style. In ICDE, pages 3138–3150, May 2024.

179

References

[126] Lei Wu, Yufeng Hu, Yajin Zhou, Haoyu Wang, Xiapu Luo, Zhi Wang, Fan

Zhang, and Kui Ren. Towards understanding and demystifying bitcoin mixing

services. In WWW, pages 33–44, 2021.

[127] Ming-Juan Wu, Ying-Lian Gao, Jin-Xing Liu, Chun-Hou Zheng, and Juan

Wang. Integrative hypergraph regularization principal component analysis for

sample clustering and co-expression genes network analysis on multi-omics data.

IEEE JBHI, 24(6), 2020.

[128] Xueyi Wu, Yuanyuan Xu, Wenjie Zhang, and Ying Zhang. Billion-Scale Bipar-

tite Graph Embedding: A Global-Local Induced Approach. VLDB, 17(2):175–

183, October 2023.

[129] Zhourun Wu, Mingyue Guo, Xiaopeng Jin, Junjie Chen, and Bin Liu. CFAGO:

Cross-fusion of network and attributes based on attention mechanism for protein

function prediction. Bioinformatics, 39(3):btad123, March 2023.

[130] Lianghao Xia, Chao Huang, and Chuxu Zhang. Self-Supervised Hypergraph

Transformer for Recommender Systems. In KDD, pages 2100–2109, August

2022.

[131] Yuyang Xie, Yuxiao Dong, Jiezhong Qiu, Wenjian Yu, Xu Feng, and Jie Tang.

SketchNE: Embedding Billion-Scale Networks Accurately in One Hour. TKDE,

pages 1–14, 2023.

[132] Mengjia Xu. Understanding Graph Embedding Methods and Their Applica-

tions. SIAM Review, 63(4):825–853, January 2021.

[133] Rongwei Xu, Guanfeng Liu, Yan Wang, Xuyun Zhang, Kai Zheng, and Xiaofang

Zhou. Adaptive Hypergraph Network for Trust Prediction. In ICDE, pages

2986–2999, 2024.

180

References

[134] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. A model-

based approach to attributed graph clustering. In SIGMOD, pages 505–516,

2012.

[135] Amitai Yacobi, Ofir Lindenbaum, and Uri Shaham. Generalizable and robust

spectral method for multi-view representation learning, 2025.

[136] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand

Louis, and Partha Talukdar. HyperGCN: a new method of training graph

convolutional networks on hypergraphs. In NeurIPS, pages 1511–1522, 2019.

[137] Yuguang Yan, Yuanlin Chen, Shibo Wang, Hanrui Wu, and Ruichu Cai. Hy-

pergraph Joint Representation Learning for Hypervertices and Hyperedges via

Cross Expansion. AAAI, 38(8):9232–9240, March 2024.

[138] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudré-Mauroux.

LBSN2Vec++: Heterogeneous Hypergraph Embedding for Location-Based So-

cial Networks. TKDE, 34(4):1843–1855, April 2022.

[139] Jaewon Yang, Julian McAuley, and Jure Leskovec. Community detection in

networks with node attributes. In ICDM, pages 1151–1156, 2013.

[140] Mingji Yang, Hanzhi Wang, Zhewei Wei, Sibo Wang, and Ji-Rong Wen. E”-

cient Algorithms for Personalized PageRank Computation: A Survey. TKDE,

36(9):4582–4602, September 2024.

[141] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, and Sourav S. Bhowmick.

Homogeneous network embedding for massive graphs via reweighted personal-

ized PageRank. VLDB, 13(5):670–683, January 2020.

[142] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Sourav S. Bhowmick, and

Juncheng Liu. PANE: Scalable and e!ective attributed network embedding.

VLDBJ, 32(6):1237–1262, November 2023.

181

References

[143] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Juncheng Liu, and

Sourav S. Bhowmick. Scaling attributed network embedding to massive graphs.

VLDB, 14(1):37–49, September 2020.

[144] Renchi Yang, Jieming Shi, Yin Yang, Keke Huang, Shiqi Zhang, and Xiaokui

Xiao. E!ective and Scalable Clustering on Massive Attributed Graphs. In

WWW, pages 3675–3687, 2021.

[145] Tianbao Yang, Rong Jin, Yun Chi, and Shenghuo Zhu. Combining link and

content for community detection: A discriminative approach. In KDD, pages

927–936, 2009.

[146] Yuan Yin and Zhewei Wei. Scalable Graph Embeddings via Sparse Transpose

Proximities. In KDD, KDD ’19, pages 1429–1437, July 2019.

[147] Chia-An Yu, Ching-Lun Tai, Tak-Shing Chan, and Yi-Hsuan Yang. Modeling

Multi-way Relations with Hypergraph Embedding. In CIKM, CIKM ’18, pages

1707–1710, October 2018.

[148] Stella X. Yu and Jianbo Shi. Multiclass Spectral Clustering. In ICCV, page

313, 2003.

[149] Xiang Yue, Zhen Wang, Jingong Huang, Srinivasan Parthasarathy, Soheil

Moosavinasab, Yungui Huang, Simon M Lin, Wen Zhang, Ping Zhang, and

Huan Sun. Graph embedding on biomedical networks: Methods, applications

and evaluations. Bioinformatics, 36(4):1241–1251, February 2020.

[150] Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM TALG,

1(1):2–13, 2005.

[151] J. Zhang, M. Marsza*lek, S. Lazebnik, and C. Schmid. Local Features and

Kernels for Classification of Texture and Object Categories: A Comprehensive

Study. International Journal of Computer Vision, 73(2):213–238, 2007.

182

References

[152] Rui Zhang, Arthur Zimek, and Peter Schneider-Kamp. Unsupervised represen-

tation learning on attributed multiplex network. In CIKM, pages 2610–2619,

2022.

[153] Xi Zhang, Lifang He, Kun Chen, Yuan Luo, Jiayu Zhou, and Fei Wang. Multi-

View Graph Convolutional Network and Its Applications on Neuroimage Anal-

ysis for Parkinson’s Disease. AMIA Annual Symposium Proceedings, 2018:1147–

1156, December 2018.

[154] Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed graph

clustering via adaptive graph convolution. In IJCAI, 2019.

[155] Xiangyu Zhao, Maolin Wang, Xinjian Zhao, Jiansheng Li, Shucheng Zhou,

Dawei Yin, Qing Li, Jiliang Tang, and Ruocheng Guo. Embedding in rec-

ommender systems: A survey, 2023.

[156] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with Hy-

pergraphs: Clustering, Classification, and Embedding. In NeurIPS, volume 19,

2007.

[157] Jingya Zhou, Ling Liu, Wenqi Wei, and Jianxi Fan. Network Representation

Learning: From Preprocessing, Feature Extraction to Node Embedding. ACM

Comput. Surv., 55(2):38:1–38:35, January 2022.

[158] Yang Zhou, Hong Cheng, and Je!rey Xu Yu. Graph clustering based on struc-

tural/attribute similarities. Proceedings of the VLDB Endowment, 2(1):718–

729, 2009.

[159] Yang Zhou, Hong Cheng, and Je!rey Xu Yu. Clustering Large Attributed

Graphs: An E”cient Incremental Approach. In ICDM, pages 689–698, 2010.

[160] Linlin Zong, Xianchao Zhang, Xinyue Liu, and Hong Yu. Weighted multi-view

spectral clustering based on spectral perturbation. In AAAI, pages 4621–4629,

2018.

183

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Background and Significance
	Research Gaps and Motivation
	Research Problem and Scope
	Research Objectives and Approach
	Thesis Structure

	Related Work
	Attributed Network Clustering
	Attributed Hypergraph Embedding
	Multi-view Attributed Graphs

	ANCKA: Attributed Network Clustering
	Introduction
	Preliminaries
	Attributed Hypergraph Clustering
	KNN Augmentation
	(alpha,beta,gamma)-Random Walk
	Objective Function

	Theoretical Analysis for AHCKA
	The AHCKA Algorithm
	Main Algorithm
	Greedy Initialization of BCM
	Complexity

	The ANCKA framework
	Generalized (alpha,beta,gamma)-Random Walk
	ANCKA Algorithm

	GPU-Accelerated ANCKA-GPU
	Experiments
	Experimental Setup
	Performance Evaluation
	Experimental Analysis
	Convergence Analysis
	Runtime Analysis
	Additional Experiments

	Summary

	SAHE: Attributed Hypergraph Embedding
	Introduction
	Preliminaries
	Similarities and Objectives
	Attribute-Extended Hypergraph
	Hypergraph Multi-Hop Node Similarity: HMS-N
	Hypergraph Multi-Hop Hyperedge Similarity: HMS-E
	A Base Method

	The SAHE Method
	Unify HMS-N and HMS-E Computations
	HMS-N and HMS-E Approximations
	SAHE Algorithm Details

	Experiments
	Experimental Setup
	Node Classification
	Hyperedge Link Prediction
	Hyperedge Classification
	Embedding Efficiency
	Experimental Analysis

	Summary

	SGLA: Multi-view Attributed Graph Integration
	Introduction
	Preliminaries and Problem Statement
	Preliminaries
	Problem Statement

	SGLA Objective
	Eigengap Objective
	Connectivity Objective
	The Full Objective

	Algorithms
	SGLA Method
	SGLA+ Method

	Experiments
	Experimental setup
	Effectiveness and Efficiency on Clustering
	Effectiveness and Efficiency on Embedding
	Experimental Analysis

	Summary

	Conclusion
	Summary of Contributions
	Implications and Impact
	Future Directions
	Concluding Remarks

