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Abstract

Attributed network structures, encompassing graphs, hypergraphs, and multi-view
graphs, are fundamental in modeling complex systems across domains like social net-
works, bioinformatics, and e-commerce. However, existing clustering and embedding
methods often struggle to capture complex network structures and scale for big data,
limiting their effectiveness. This thesis advances the analysis of attributed network
structures by proposing novel approaches that integrate structural and attribute in-
formation to achieve high-quality, efficient, and scalable solutions for clustering and

embedding.

The first contribution introduces ANCKA, a versatile clustering framework that lever-
ages K-nearest neighbor augmentation to partition nodes across attributed graphs,
hypergraphs, and multiplex graphs. By efficiently optimizing a novel objective based
on random walk, ANCKA delivers superior clustering performance. Building on this,
the second contribution presents SAHE, an efficient embedding method for attributed
hypergraphs, which unifies the computation of node and hyperedge embeddings to
preserve multi-hop relationships. SAHE enhances quality and scalability through in-
novative similarity measures and approximation techniques. Finally, the third con-
tribution develops SGLA and SGLA+, spectrum-guided algorithms for clustering and
embedding multi-view attributed graphs. These algorithms cohesively integrate mul-

tiple graph and attribute views, achieving exceptional performance and efficiency.

Through extensive experiments on diverse real-world datasets, these frameworks demon-



strate significant improvements over numerous baselines, often outperforming com-
petitors by orders of magnitude in efficiency while producing high-quality results.
Collectively, this thesis bridges critical gaps in effectiveness, efficiency, and scalabil-
ity, enabling potential applications in community detection, bioinformatics modeling,
and recommendation systems. By providing open-source implementations, including
GPU-accelerated variants, this work lays a foundation for future advancements in at-

tributed network analysis, fostering impactful solutions for complex network systems.
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Chapter 1

Introduction

1.1 Background and Significance

Attributed networks have emerged as a powerful paradigm for modeling complex sys-
tems across diverse domains, from social interactions [115] to biological processes [129].
Unlike traditional networks that capture only the structure of relationships, an at-
tributed network enriches its topology—whether pairwise edges or higher-order hy-
peredges—with attributes associated with nodes, offering a multi-dimensional rep-
resentation of entities and their interactions. This thesis focuses on three represen-
tative types of attributed networks: attributed graphs, attributed hypergraphs, and
multi-view attributed graphs, each presenting unique characteristics and analytical
challenges. Attributed graphs feature pairwise edges connecting exactly two nodes,
as seen in social networks or citation networks, where nodes carry attributes like user
profiles or publication metadata. Attributed hypergraphs extend this model by intro-
ducing hyperedges, which connect an arbitrary number of nodes to capture multiway
relationships—such as paper co-authorships or group purchases—while associating
nodes with attributes like academic profiles or product descriptions. Multi-view at-

tributed graphs (MVAGs) further generalize this concept, describing entities through
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multiple graph views (e.g., personal versus professional connections) and attribute
views (e.g., numerical or categorical features), with attributed multiplex graphs rep-
resenting a special case where a single attribute view accompanies multiple graph
layers. These structures collectively enable a richer depiction of real-world systems,

where relationships and attributes vary across perspectives and dimensions.

Clustering and embedding stand out as two pivotal tasks in network analysis, each
holding significant value across a wide range of applications. Clustering aims to
partition the nodes of an attributed network into disjoint groups based on struc-
tural connectedness and attribute similarity, a task explored in this thesis through
novel frameworks for attributed hypergraphs [73] and extended to graphs and mul-
tiplex graphs [72]. Its significance lies in its ability to uncover hidden structures,
such as communities in social networks, functional modules in biological networks,
or cohesive groups in academic hypergraphs, supporting applications like community
detection [139], image classification [11], and Web query analysis [123]. On the other
hand, embedding maps nodes—and in some cases hyperedges—to points in a low-
dimensional space that preserves their structural and attribute information, a chal-
lenge addressed here through an innovative approach for attributed hypergraphs and
an integration scheme for multi-view attributed graphs. This task is crucial for en-
abling downstream tasks like recommendation systems [155], spam detection [68], and
genomic expression modeling [5], where latent representations enhance predictive ac-
curacy and interpretability. Together, these tasks—clustering and embedding—drive
advancements in fields such as social network analysis [109], bioinformatics [149], and

e-commerce [120] by providing systemic insights and informative representations.

1.2 Research Gaps and Motivation

Clustering and embedding are cornerstone tasks in attributed network analysis, crit-

ical for uncovering patterns and deriving representations in complex systems. How-
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ever, despite their significance, existing methods exhibit substantial shortcomings
that limit their performance in practical applications. A primary expectation is that
clustering and embedding outcomes achieve high quality: clusters should reflect both
the network’s topology and attribute distributions, while embeddings should pre-
serve structural and attribute characteristics in low-dimensional spaces. Yet, current
approaches often fail to effectively integrate these dual aspects—structure and at-
tributes—particularly for the intricate forms of attributed networks central to this
thesis: graphs, hypergraphs, and multi-view attributed graphs. This thesis is moti-
vated by the urgent need to address these gaps, developing innovative methods that
deliver effective, efficient, and scalable solutions for clustering and embedding in such

networks.

One major gap lies in the lack of tailored algorithms that capture the unique complex-
ities of attributed networks. Traditional methods designed for simple graphs, such as
METIS for graph clustering [55], or for numerical data, like k-means, are ill-suited
for attributed networks, where structural relationships and attribute values represent
fundamentally distinct data types. Applying these methods often yields suboptimal
results, as they fail to model the interplay between topology and attributes. This
challenge is amplified in more complex structures like attributed hypergraphs and
multi-view attributed graphs. In hypergraphs, hyperedges encode higher-order rela-
tionships—such as co-authorships or co-purchases—that cannot be reduced to simple
graphs without losing essential information [43]. Similarly, multi-view attributed
graphs comprise multiple graph and attribute views, each with distinct semantics
(e.g., social versus professional connections, or text versus visual features), which
are compromised when treated as a single attributed graph [153, 119]. Despite the
growing prevalence of these networks in domains like social analysis, bioinformatics,
and Web query analysis, research on clustering and embedding methods specifically

designed for their complexity remains limited.

Equally pressing is the issue of efficiency and scalability, as real-world attributed net-
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works are often vast in scale. For instance, social networks like Meta’s platforms host
over 3.35 billion daily active users across Facebook, Instagram, and WhatsApp [85],
while bioinformatics databases like STRING catalog over 20 billion protein-protein
interactions among 59 million proteins. Effective analysis of such networks demands
algorithms that operate with low computational overhead. However, many existing
methods, particularly those leveraging graph neural networks (GNNs) for clustering
and embedding [78] [59], require long training time and extensive GPU resources, ren-
dering them impractical for large-scale applications [143]. This is particularly true
for hypergraph embedding, where few efficient solutions exist to handle higher-order
interactions [157], and for multi-view graph analysis, where integrating diverse views

adds computational burdens [32].

These gaps—insufficient effectiveness in capturing network complexity and inade-
quate efficiency for large-scale settings—underscore the need for novel approaches.
This thesis aims to bridge these deficiencies by proposing solutions that leverage
both structural and attribute information across attributed graphs, hypergraphs, and
multi-view graphs. By addressing the challenges of quality, efficiency, and scalability,
our work seeks to advance the analysis of complex network systems, enabling robust
applications in fields such as community detection, genomic expression modeling, and

recommendation systems.

1.3 Research Problem and Scope

The analysis of attributed networks—spanning graphs, hypergraphs, and multi-view
structures—represents a critical frontier in understanding complex systems, where en-
tities are defined by both various relationships and rich attribute information. At the
core of this domain lie two fundamental tasks: clustering and embedding. Clustering
aims to group nodes into cohesive clusters that reflect both topological proximity and

attribute similarity, revealing underlying patterns such as communities or functional
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modules. Embedding seeks to map nodes, and potentially higher-order structures
like hyperedges, into low-dimensional spaces that preserve structural and attribute
characteristics, enabling applications like recommendation systems and predictive
modeling. However, achieving high-quality outcomes that incorporate the dual as-
pects of attributed networks remains a formidable challenge, particularly for those
with higher-order interactions or multi-view data. This thesis addresses the long-term
research mission of developing comprehensive, computationally viable frameworks for
clustering and embedding in attributed networks, aiming to deliver solutions that
are effective in capturing network complexity and scalable to meet the demands of

real-world applications.

The scope of this problem is broad, encompassing the diverse forms of attributed
networks and their analytical challenges. Attributed graphs require methods that
integrate pairwise connections with attribute values, while hypergraphs demand ap-
proaches that preserve multiway relationships encoded by hyperedges. Multi-view at-
tributed graphs introduce additional complexity, necessitating the synthesis of multi-
ple graph and attribute views with distinct semantics. This thesis positions clustering
and embedding as a unified research agenda, with the long-term vision of establishing
generalizable methodologies that advance network analysis across domains like social
network analysis, bioinformatics, and e-commerce, addressing both current limita-

tions and future scalability needs.

1.4 Research Objectives and Approach

To advance the long-term goal of developing clustering and embedding frameworks,
this thesis pursues three specific objectives, each addressing a distinct challenge within
the scope of attributed network analysis. These objectives correspond to three in-
terconnected contributions, each targeting a specific problem while collectively con-

tributing to the broader research agenda:
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1. Clustering for Diverse Attributed Networks: We aim to develop a cluster-
ing framework that effectively partitions nodes across attributed graphs, hyper-
graphs, and multiplex graphs, addressing the challenge of integrating structural
and attribute information in diverse network types [72]. Building upon a pre-
liminary work on attributed hypergraph clustering [73], this framework tackles
the problem of capturing higher-order interactions and homogeneous attributes,

ensuring clusters align with both topology and attribute distributions.

2. Attributed Hypergraph Node and Hyperedge Embedding: We seek to
create an embedding method for attributed hypergraphs that generates low-
dimensional representations of nodes and hyperedges, preserving multiway re-
lationships and attribute characteristics. This objective addresses the scarcity
of efficient embedding techniques for higher-order networks, a critical gap in

representation learning for applications like genomic expression modeling.

3. Unified Clustering and Embedding for Multi-View Attributed Graphs:
We propose an integration scheme that unifies clustering and embedding tasks
for multi-view attributed graphs, synthesizing multiple graph and attribute
views to produce cohesive outcomes. This work confronts the complexity of
multi-view data, enabling high-quality analysis for applications such as recom-

mendation systems and image processing.

Our research approach is centered on designing innovative algorithms that prioritize
both effectiveness and efficiency. We leverage techniques such as attribute-based
graph augmentation to enable the representation of node attributes in networks,
whether homogeneous or multi-view, and structural similarity measures to capture
topological relationships, from pairwise edges to hyperedges. In addition to devel-
oping solutions that address specific network types, we also work on adaptability to
varying complexities, such as extending from higher-order interactions in hypergraphs

to simple pairwise edges in graphs or semantically diverse multi-view graphs. Effi-
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ciency is a key focus, with methods designed to minimize computational overhead,
making them viable for large-scale networks like those in social media or bioinformat-
ics. This thesis integrates these contributions into a cohesive narrative, demonstrating
how each work advances the goal of attributed network clustering and embedding,

paving the way for scalable, impactful network analysis.

1.5 Thesis Structure

The thesis is organized as follows to present a coherent narrative of our research.
Chapter 2| provides a comprehensive review of related work, establishing the the-
oretical and methodological context for our contributions. Chapter [3| introduces
our extended clustering framework, including the attributed hypergraph clustering
method, detailing its design and performance. Chapter |4 explores our attributed
hypergraph embedding approach, focusing on its ability to capture higher-order rela-
tionships. Chapter 5| presents the integration scheme for clustering and embedding in
multi-view attributed graphs, highlighting its unified methodology. Finally, Chapter
[6] synthesizes the findings, discusses their implications, and outlines future research

directions.



Chapter 2

Related Work

This chapter reviews prior research relevant to the clustering and embedding of at-
tributed network structures, providing the foundation for the contributions presented
in this thesis. Section surveys clustering methods for simple hypergraphs, at-
tributed hypergraphs, attributed graphs, and multiplex graphs, highlighting the need
for a unified framework to address their diverse requirements. Section examines
embedding techniques applicable to attributed hypergraphs, identifying limitations
in their quality and scalability. Section focuses on multi-view attributed graphs
(MVAGs), reviewing the state of clustering and embedding methods for these struc-
tures. Together, these sections establish the context for our novel approaches devel-
oped in Chapter |3| (ANCKA), Chapter (4| (SAHE), and Chapter |5 (SGLA and SGLA+),

respectively.

2.1 Attributed Network Clustering

Hypergraph Clustering. Motivated by the applications in circuit manufactur-
ing, partitioning algorithms have been developed to divide hypergraphs into parti-
tions/clusters, such as hMetis [54] and KaHyPar [105]. These methods typically adopt
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a three-stage framework consisting of coarsening, initial clustering, and refinement
stages. These algorithms directly perform clustering on a coarsened hypergraph with
a relatively small size. In addition, they run a portfolio of clustering algorithms and
select the best outcome. These algorithms rely on a set of clustering heuristics and
lack the extensibility for exploiting node attribute information. Hypergraph Normal-
ized Cut (HNCut) [156] is a conductance measure for hypergraph clusters from which
the normalized hypergraph Laplacian A = I — O is derived for spectral clustering,
where © = D‘_/l/QHTDfElHD;l/Q. Alternatively, hGraclus [123] optimizes the HNCut
objective using a multi-level kernel K-means algorithm. Non-negative matrix factor-
ization has also been applied to hypergraph clustering [41]. Despite the theoretical
soundness, these algorithms are less efficient than the aforementioned partitioning
algorithms and they do not utilize node attributes either. For the problem of hyper-
graph local clustering, which is to find a high-quality cluster containing a specified
node, a sweep cut method is proposed [I13] to find the cluster based on hypergraph
Personalized PageRank (PPR) values. In this thesis, we focus on global clustering, a

different problem from local clustering.

Attributed Hypergraph Clustering. There exist studies designing dedicated clus-
tering algorithms on attributed hypergraphs. JNMF [23] is an AHC algorithm based
on non-negative matrix factorization (NMF). With normalized hypergraph Lapla-
cian [156] matrix A = I — © and attribute matrix X, JNMF optimizes the following
joint objective that includes a basic NMF part as well as a symmetric NMF part:
ming v g0 [ X — WM|[3 + o]0 — M™% + B||M — MJ|%2. With optimization
using block coordinate descent (BCD) scheme, the matrix M is expected to encode
cluster memberships. MEGA [123] extends the formulation of JNMF clustering objec-
tive for semi-supervised clustering of multi-view data containing hypergraph, node
attributes as well as pair-wise similarity graph. MEGA’s clustering performance is
further enhanced by initialization with hGraclus algorithm. GNMF [I0] algorithm is

originally proposed for high dimensional data clustering, while the authors of [27] ex-
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tend its objective with the hypergraph normalized Laplacian [156] so that it spawns
baseline methods for AHC. Although NMF-based algorithms sometimes produce clus-
ters of good quality, their scalability is underwhelming, as shown in our experiments
in Section As the state-of-the-art algorithm for attributed hypergraph clustering,
GRAC [27] performs hypergraph convolution [136] on node attributes, which resem-
bles the hypergraph diffusion process with mediators [12]. Then clusters are predicted

from the propagated features via a spectral algorithm.

Attributed Graph Clustering. There exists a collection of studies on attributed
graph clustering. Some studies perform attributed graph clustering by adopting prob-
abilistic models to combine graph structure with attributes, including discriminative
models such as PCL-DC [145] and generative models such as BAGC [134]. Nevertheless,
these methods are typically limited to handling categorical attributes. Moreover,
inference over the probability distribution of O(2") hyperedges poses a significant
challenge against their generalization to hypergraph. GNMF [10] is an NMF-based al-
gorithm that enhances performance by modifying the Laplacian regularizer used in
traditional NMF to utilize the Laplacian matrix constructed from the graph struc-
ture. Within the random walk framework, SA-Cluster [159] algorithm augments the
original graph with virtual nodes representing each possible attribute-value pair and
performs k-Medroids clustering using a random walk distance measure. ACMin [144]
defines attributed random walk by adding virtual attribute nodes as bridges and com-
bines it with graph random walk into a joint transition matrix. In a fashion similar
to GCN [61], AGCGCN [154] performs graph convolution on node attributes to produce
smooth feature representations that incorporate network structure information and
subsequently applies spectral clustering. For their spectral algorithm, the authors
also design heuristics to prevent propagated features from over-smoothing that un-
dermines cluster quality. GRACE [52] adopts graph convolution on node attributes to
fuse all available information and perform a spectral algorithm based on GRAC [27].

FGC [53] exploits both node features and structure information via graph convolu-

10
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tion and applies spectral clustering on a fine-grained graph that encodes higher-order

relations.

Attributed Multiplex Graph Clustering. Via unsupervised learning on at-
tributed multiplex graphs, neural network models can learn node embeddings for
clustering, e.g., 02MAC [24] and HDMI [49]. GRACE [52] constructs a multiplex graph
Laplacian and uses this matrix for graph convolution. Other methods find a single
graph that encodes the node proximity relations in all graph layers and attributes.
MCGC [91] performs graph filtering on attributes and learns a consensus graph lever-
aging contrastive regularization, while MAGC [77] exploits higher-order proximity to

learn consensus graphs without deep neural networks.

2.2 Attributed Hypergraph Embedding

Existing embedding methods struggle to support attributed hypergraphs natively
while scaling efficiently for massive data, particularly in the context of attributed hy-
pergraph node and hyperedge embedding (AHNEE), where embeddings are demanded
for both nodes and hyperedges. Early hypergraph embedding efforts, like [156], use
the Laplacian matrix spectrum for node embeddings, focusing on clustering but ne-
glecting attributes and long-range connectivity essential for AHNEE ’s relational
closeness. Methods extending node2vec [36] to hypergraphs, such as Hyper2vec [45]
and its dual-enhanced version [44], capture long-ranged relations via random walks,
yet omit attribute information and hyperedge embeddings, limiting their applicability
for AHNEE. Another approach, [147], models hyperedges as multi-linear products of

node embeddings, but lacks attribute consideration and scalability.

The emergence of hypergraph neural networks also enabled a multitude of recent ap-
proaches. TriCL [64] uses contrastive learning with augmentations to embed nodes,

HypeBoy [60] masks attributes and designs a hyperedge-filling task for self-supervised

11
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node embeddings, and [22] applies GNNs on an expanded graph with cluster-based
loss. Nevertheless, these methods focus solely on nodes, incur high training costs (e.g.,
O(n?) or worse), and lack hyperedge embedding support, rendering them unsuitable
for scalable AHNEE. VilLain [65] formulates the self-supervision as a label propaga-
tion process while ignoring node attributes and incurring high training costs. There
are a few specialized methods that learn node representations for certain hypergraphs,
like [138] for location-based networks, [130] for user-item recommendations, [133] for
trust relations, and [74] for spatio-temporal crime data, but their targeted design
for domain-specific data and limited scalability hinder the applicability for general

attributed hypergraphs.

Alternatively, embedding techniques designed for graphs or bipartite graphs can be
adapted for attributed hypergraphs by reducing the hyperedge structures into pair-
wise edges. With each hyperedge converted to a fully connected subgraph via clique-
expansion, hypergraphs can be processed by graph embedding methods (NetMF [99],
STRAP [146], LightNE [98]) or attributed graph embedding method [143] based on
matrix factorization. On the other hand, star-expansion of hypergraphs results in
dense edges between two sets of nodes, enabling bipartite graph embedding methods
(BiANE [47], AnchorGNN [128]). However, these transformations weaken higher-order
connections critical to AHNEE while producing dense graphs with high complexity,

resulting in compromised embedding quality and efficiency, as our experiments show.

2.3 Multi-view Attributed Graphs

For basic attributed graphs with one graph and one attribute view, attributed net-
work embedding and clustering have been extensively studied in the literature [158,
134 87, 143, [79, [142]. For instance, Bayesian probabilistic model [134] and graph
auto-encoder [87] have been adopted for clustering. An attributed graph embedding
algorithm [143] captures the multi-hop affinity between nodes and attributes [142].

12
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GNN-based embedding method AnECI [79] strengthens the robustness by preserving
communities, while CONN [114] adopts selective graph diffusion with attribute augmen-
tation. In [75], the authors propose using diverse pretext tasks to capture different
signals in graphs with heterophily into embeddings. These approaches do not consider

the unique characteristics of MVAGs and tend to yield suboptimal performance.

On MVAGs, MCGC [91] and MAGC [77] construct a consensus graph matrix for MVAG
clustering in O(n?) time where n is the number of nodes, by optimizing a dense n x n
adjacency matrix that minimizes reconstruction loss on each view. MvAGC [76] im-
proves their complexity to linear time with node sampling while compromising result
quality and stability. Their problem formulations neglect the overall structure of G
and suffer from the difficulty of optimizing at least O(n) variables. Besides, various
GNNs have been adopted for MVAGs, including 02MAC [24], MAGCN [14] and DMG [86].
For instance, the clustering model MAGCN uses graph auto-encoders to map each view
to latent representations for reconstruction. [58] combines graph views by fusing
Laplacian matrices and trains a semi-supervised GNN. Other studies [92] 49| [152]
adopt mutual information models to learn view-specific node embeddings and aggre-
gate them with attention mechanism. These methods incur high costs of training and
exhibit inferior performance on MVAGs. MEGA [123] tackles semi-supervised MVAG
clustering by joint nonnegative matrix factorization. 2CMV [82] learns the consen-
sus and complementary components from each view via matrix factorization with
O(n?) complexity. LMGEC [30] addresses clustering and embedding within a unified

formulation, while the embedding quality is inferior to its clustering performance.

There are also algorithms that only handle attribute views for clustering, as surveyed
in [25]. For instance, a work [160] adopts a weighting objective to minimize the
subspace distances between its integration result and each view. A recent study [135]
learns a robust fused representation of noisy attributes via meta-learning. However,

these methods [160], [57, [135] do not consider graph topological properties of MVAGs.

13



Chapter 3

ANCKA: Attributed Network
Clustering

This chapter presents ANCKA [72], a versatile framework for clustering attributed
networks, marking the first main technical contribution to the thesis’s goal of ad-
vancing clustering and embedding for attributed network structures. Addressing the
challenge of partitioning nodes across diverse types of attributed network—graphs,
hypergraphs, and multiplex graphs—ANCKA integrates structural and attribute in-
formation to deliver effective and scalable solutions, as motivated by the gaps in
existing methods outlined in Chapter [2l Through its novel clustering framework for
attributed hypergraphs, extended to graphs and multiplex graphs, ANCKA introduces
KNN augmentation as a key contribution, providing a critical methodological ba-
sis for the embedding and multi-view integration approaches in Chapters [4] and [3]

thereby advancing the analysis of complex network structures.
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3.1 Introduction

An attributed network contains a network topology with attributes associated with
nodes. Representative types of attributed networks include attributed graphs, at-
tributed hypergraphs, and attributed multiplex graphs. Given an attributed network
N, node clustering is an important task in graph mining, which aims to divide the
n nodes of N into k disjoint clusters, such that nodes within the same cluster are
close to each other in the network topology and similar to each other in terms of
attribute values. Clustering on attributed networks finds important applications in
biological analysis [23], online marketing [134], social network analysis [139] [107], Web

analysis [123], image processing [11], etc.

In this work, we present ANCKA [72], an effective and efficient attributed network clus-
tering method that is versatile to support attributed hypergraph clustering (AHC), at-
tributed graph clustering (AGC), and attributed multiplex graph clustering (AMGC).
ANCKA builds upon the AHCKA [73] algorithm, which we originally developed for AHC
and is also covered in this chapter. In what follows, we first elaborate on AHC and

then generalize to AGC and AMGC.

In a hypergraph, each edge can join an arbitrary number of nodes, referred to as a
hyperedge. The hyperedge allows a precise description of multilateral relationships
between nodes, such as collaboration relationships of multiple authors of a paper,
interactions among proteins [34], products purchased together in one shopping cart,
transactions involving multiple accounts [126]. In practice, nodes in hypergraphs are
often associated with many attributes, e.g., the academic profile of authors and the
descriptive data of products. The AHC problem is to divide the n nodes in such an
attributed hypergraph into k disjoint clusters such that nodes within the same cluster
are close to each other with high connectedness and homogeneous attribute character-
istics. AHC finds numerous real-life applications in community discovery [46], orga-

nization structure detection [23], Web query analysis [123], image classification [11],
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biological analysis [127], etc. As another example, AHC can cluster together aca-
demic publications with high relevance by considering co-authorship hyperedges and

keyword attributes in academic hypergraphs [27].

Effective AHC computation is a highly challenging task, especially for large attributed
hypergraphs with millions of nodes. First, nodes, hyperedge connections, and at-
tributes are heterogeneous objects with inherently different traits, whose information
cannot be seamlessly integrated in a simple and straightforward way. Second, as
observed in previous works on simple graphs [159, [144], higher-order relationships
between nodes and node-attribute associations are crucial for clustering. However,
computing such multi-hop relationships and associations via hyperedges usually with
more than two nodes in attributed hypergraphs is rather difficult due to the complex
hypergraph structures and prohibitive computational overheads (up to O(n?) in the

worst case).

In the literature, a plethora of clustering solutions [105, [41], [62] are developed for plain
hypergraphs. These methods overlook attribute information, leading to severely com-
promised AHC result quality. Besides, a large body of research on attributed graph
clustering is conducted, resulting in a cornucopia of efficacious techniques [134] [144].
However, most of these works cannot be directly applied to handle large attributed
hypergraphs with more complex and unique structures. Inspired by the technical
advances in the above fields, a number of efforts have been made towards AHC com-
putation in the past years. The majority of AHC methods rely on non-negative matrix
factorization [23] [123], which requires numerous iterations of expensive matrix opera-
tions and even colossal space costs of materializing n x n dense matrices. Particularly,
none of them take into account the higher-order relationships between nodes, thereby
limiting their result utility. The state-of-the-art approach GRAC [27] extends graph
convolution [61] to hypergraphs, indirectly incorporating higher-order relationships
of nodes and attributes for clustering. Notwithstanding its enhanced clustering qual-

ity, GRAC runs in O(n?) time as an aftermath from costly graph convolution and SVD

16



3.1. Introduction

operations, which is prohibitive for large hypergraphs. To recapitulate, existing AHC
approaches either yield sub-optimal clustering results or incur tremendous computa-
tional costs, rendering them impractical to cope with large attributed hypergraphs

with millions of nodes.

Given the above, can we combine and orchestrate hypergraph topology and attribute
information in an optimized way for improved clustering quality while achieving high
scalability over large attributed hypergraphs? We offer a positive answer by present-
ing AHCKA (Attributed Hypergraph Clustering via K-nearest neighbor Augmentation),
a novel AHC approach that significantly advances the state of the art in AHC com-
putation. AHCKA surpasses existing solutions through several key techniques. The
first one is a K-nearest neighbor (KNN) augmentation scheme, which augments the
original hypergraph structure with a KNN graph containing additional connections
constructed by adjacent nodes with K highest attribute similarities. This is inspired
by a case study on a real dataset manifesting that incorporating all-pairwise node
connections via attributes or none of them jeopardizes the empirical clustering qual-
ity. Second, AHCKA formulates the AHC task as a novel optimization problem based
on a joint random walk model that allows for the seamless combination of high-order
relationships from both the hypergraph and KNN graph. Further, AHCKA converts the
original NP-hard problem into an approximate matrix trace optimization and har-
nesses efficient matrix operations to iteratively and greedily search for high-quality
solutions. Lastly, AHCKA includes an effective initialization method that consider-
ably facilitates the convergence of the optimization process using merely a handful
of iterations. We conduct extensive experiments on attributed hypergraph data in
different domains. Compared with baselines, AHCKA exhibits superior performance in
both clustering quality and efficiency. For instance, on the Amazon dataset with 2.27
million nodes, AHCKA gains over 10-fold speedup and a significant improvement of
4.8% in clustering accuracy compared to state-of-the-art. Our work AHCKA has been

published in [73].
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In addition to attributed hypergraphs, attributed graphs and attributed multiplex
graphs are prevalent in real-world scenarios, such as social networks [95] and citation
networks [96]. Different from hypergraphs that allow more than two nodes to form an
edge, in a graph, an edge connects exactly two nodes. A multiplex graph consists of
multiple layers of graphs with a shared set of nodes, and different graph layers repre-
sent node connections from different perspectives or domains, e.g., different types of
relationships or relations formed in different time frames or spaces [05][06]. Attributed
graph clustering (AGC) is one of the most significant graph mining problems, exten-
sively studied in the literature [134] [144], with many applications, e.g., community
detection in social networks [31] and functional cartography of metabolic networks
[37]. Furthermore, a rich collection of studies on attributed multiplex graph cluster-
ing (AMGC) also exists in [91] [77] 24} 49], to support important applications, e.g.,
biological analysis [96], community detection [95] and social analysis [20]. A previ-
ous general framework [52] relies on expensive graph convolutions to support various

clustering tasks.

In this work, we extend AHCKA for AHC to a versatile framework ANCKA that can
efficiently handle attributed Network clustering tasks (AHC, AGC, and AMGC) to
produce high-quality clusters on large data. ANCKA inherits the powerful KNN aug-
mentation scheme and the formulation of clustering objective in AHCKA. We further
develop a generalized joint random walk model in ANCKA with proper transition matri-
ces to support random walks on KNN augmented hypergraphs, graphs, and multiplex
graphs simultaneously. Efficient optimization techniques are applied in ANCKA to re-
tain the advantage of high efficiency for clustering. Despite the superior efficiency,
clustering million-scale datasets with ANCKA can still take dozens of minutes. More-
over, after observing the limited speedup ratio by increasing the number of CPU
threads used, we pinpoint the efficiency bottlenecks and design the GPU-accelerated
ANCKA-GPU, to boost the efficiency to another level, especially on large-scale datasets.
ANCKA-GPU consists of GPU-based optimization techniques and KNN construction
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procedures to speed up. We have conducted extensive experiments to compare ANCKA
with 16 competitors on various attributed graphs and 16 competitors on attributed
multiplex graphs. In all three tasks, ANCKA obtains superior performance regarding
both clustering quality and efficiency. The GPU implementation ANCKA-GPU further

reduces time costs significantly, often by an order of magnitude on large datasets.
We summarize the contributions of this work as follows:

o We devise a KNN augmentation scheme that exploits attributes to augment the

original hypergraph structure in a cost-effective manner.

e We formulate the AHC task as an optimization with the objective of optimizing
a quality measure based on a joint random walk model over the KNN augmented

hypergraph.

e We propose a number of techniques for efficient optimization of the objective, in-
cluding a theoretically-grounded problem transformation, a greedy iterative frame-
work, and an effective initialization approach that drastically reduces the number

of iterations till convergence.

e We justify the application of KNN augmentation to various types of networks,
generalize the techniques, and design a versatile method ANCKA to efficiently perform

AHC, AGC, and AMGC and produce high-quality clusters.

e We develop ANCKA-GPU with customized GPU kernels to improve the efficiency fur-

ther with a series of GPU-based optimizations while maintaining clustering quality.

e The excellent performance of ANCKA is validated by comprehensive experiments
against 19 AHC competitors, 16 AGC competitors, and 16 AMGC competitors,

over real-world datasets.

3.2 Preliminaries
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Attributed Network. Let NV = (V,&,X) be an attributed network, where V is the
node set with cardinality |V| = n, £ is the edge (or hyperedge) set with cardinality
|E] = m, and X € R™* represents a node attribute matrix. A node v; € V has degree
d(v;), which is the number of edges (or hyperedges) incident to v;. Each node v; in V
is associated with a d-dimensional attribute vector, denoted as X[j], i.e., the j-th row
of the node attribute matrix X. We consider three types of attributed networks N/,
including attributed hypergraphs H, attributed graphs G, and attributed multiplex
graphs Gy, characterized by different nature of £.

Attributed Hypergraph is denoted by H = (V, £, X). £ is the set of m hyperedges
where each e; € £ is a subset of V containing at least two nodes. A hyperedge e;
is said to be incident with a node v; if v; € e;. We denote by H € R™*" the
incidence matrix of hypergraph H, where each entry HJi, j] = 1 if v; € e;, otherwise
HJi, j] = 0. Let diagonal matrices Dy € R™™ and Dg € R™*™ represent the degree
matrix and hyperedge-size matrix of #, where the diagonal entry Dy [, j] = d(v;) for
v; € V and Dgli,i] = |e;| for e; € &, respectively. Figure shows an attributed
hypergraph H with 8 nodes and 5 hyperedges, where each node has an attribute
vector and hyperedges e1, es contain 4 and 3 nodes, i.e., {vy, v, v4, v5} and {vy, v3, v4},

respectively.

Attributed Graph is denoted by G = (V, £, X), where every edge in £ connects
exactly two nodes. A graph G can be undirected or directed. An undirected edge can
be viewed as two directed edges of the same node pair in reversed directions. Different
from a hypergraph incident matrix between nodes and hyperedges, graph adjacency
matrix A € R™" encodes the structure of G, where entry A[i, j] is 1 if there is an
edge from node v; to node v;, i.e., (v;,v;) € &, or 0 if otherwise. Let D € R™*" be

the diagonal node degree matrix of G.

Attributed Multiplex Graph is Gy, = (V,&,...,EL, X), consisting of L graph

layers. Every [-th layer has its own edge set &, and can be viewed as an attributed
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graph G; with &, adjacency matrix A;, and diagonal node degree matrix D;.

The Clustering Problem. Given an attributed network N that can be H, G, or Gy,
we study the clustering problem that encompasses attributed hypergraph clustering
(AHC), attributed graph clustering (AGC), and attributed multiplex graph clustering
(AMGC). Given a specified number £ of clusters and an attributed network N, the
clustering task is to divide the node set V into k disjoint subsets {Cy,...,Cx} such
that Ule C; =V and the following properties are satisfied:

1. Nodes within the same cluster are closely connected to each other in the network

structure, while nodes in different clusters are far apart (structure closeness);

2. Nodes in the same cluster have similar attribute values, while nodes in different

clusters vary significantly in attribute values (attribute homogeneity).

For instance, when the input network N is the attributed hypergraph H in Figure
, ‘H is partitioned into two clusters C; and C,. We can observe that nodes v;-vs
in C; share similar attributes and are closely connected to each other, whereas nodes
vg, v7 and vg form a cluster Cy that is separated from C; with a paucity of connections

and distinct attributes.

3.3 Attributed Hypergraph Clustering

As mentioned, we first focus on attributed hypergraph clustering (AHC) and present
our method AHCKA [73] in Sections and [3.5] Specifically, we will devise a
random walk scheme on a K-nearest neighbor augmented hypergraph and present the
AHC objective in Section [3.3] conduct theoretical analysis to support the design of
AHCKA in Section [3.4] and develop the algorithmic details of AHCKA in Section [3.5]

For the problem of AHC, a central challenge is how to simultaneously exploit both

hypergraph structure and attribute information for improved clustering quality. In
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C1 = {v1,V2, V3,4, Vs}

C; = {ve, V7, vg}

f(va,v3) =0

f(wy,v7) =041

f(va,v1) = f(vy,v4) =05
f(va,v5) = 0.5

Figure 3.1: An Example Attributed Hypergraph

literature, it is a natural and effective approach to augment network structure with
attribute similarity strengths [144] [13]. However, since a hypergraph yields differ-
ent topological characteristics as illustrated in Figure |3.1, we argue that attribute
augmentation should be conducted in a controlable way; otherwise, attributes may
hamper, instead of improving, clustering quality, as shown in experiments (Section

3.8.3).

Therefore, in this section, we first develop a carefully-crafted augmentation strategy
to augment attributes of nodes with hypergraph topology, which will benefit the
clustering quality shown later on. As this augmentation strategy is orthogonal to
the topological nature of hypergraph, its application to other types of networks, such
as attributed graphs and attributed multiplex graphs, will be explained shortly in
Section [3.60 Then we formulate Attributed Hypergraph Clustering as Augmented
Hypergraph Clustering, with the same abbreviation AHC. The augmented hypergraph
involves both hypergraph connections as well as augmented attribute connections. It
is challenging to define a unified way to preserve the high-order information of both
sides. To tackle this, we design the («, 3, 7)-random walk to uniformly model the
node relationships (in terms of both the structural closeness and attribute similarity)
in the augmented hypergraphs. Based thereon, we define a multi-hop conductance

(MHC), and formulate the objective of AHC as optimizing the conductance.
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Figure 3.2: AAS and RCC on Cora-CA (best viewed in color)

3.3.1 KNN Augmentation

Although the vanilla augmentation strategy improves the clustering quality in at-
tributed graphs [144, 13], to our knowledge, its effectiveness over attributed hyper-
graphs is as of yet under-explored. Moreover, it requires constructing a densely
connected graph, causing severe efficiency issues on large graphs. To this end, we
first demystify the attribute homogeneity of nodes within the same cluster through
an empirical study on a real-world attributed hypergraph, i.e., the Cora-CA datasetﬂ
containing 2.7k academic papers in 7 research fields (i.e., 7 clusters). Every node has
an attribute vector indicating the presence of words in the corresponding publica-
tion. First, we use f(v;,v;) = cosine(X][i], X[j]) to denote the attribute similarity of
nodes v;, v;. We refer to v; as the K-th nearest neighbor of v; if f(v;,v;) is the K-th
largest Vv; € V \ v;. Figure[3.2]plots the averaged attribute similarity (AAS for short)
f(vi,v;) of any randomly picked node v; and its K-th nearest neighbor v;, and their
ratio of co-occurring in the same cluster (RCC for short), when varying K from 1 to
1000. The AAS and RCC results from this real-world example demonstrate that two

nodes with higher attribute similarity are also more likely to appear in the same clus-

'https://people.cs.umass.edu/~mccallum/data.html
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ter. Intuitively, applying the attribute-based augmentation strategy to hypergraphs

can enhance the clustering results.

However, excessively augmenting the hypergraph with attribute information, namely,
building too many connections between nodes according to attributes, will intro-
duce distortion and adversely impact the clustering performance. To illustrate this,
consider the example in Figure [3.1] where nodes vq, v3 are in the same cluster as
they share multiple common neighbors while vy, v7 are not. If we were to assign
a cluster to node vy as per the additional connections created by attribute simi-
larities, it is more likely to be wvg, v7; rather than vy, v3 in the same cluster given

f(va,v7) = 0.41 > f(ve,v3) = 0, which is counter-intuitive.

Therefore, unlike the vanilla augmentation strategy employed in prior works, we pro-
pose a KNN augmentation strategy. That is, given the input attributed hypergraph
H = (V,€,X) and an integer K, we augment H with an undirected KNN graph
Gk = (V,Ek). More specifically, for each node v; € V, we identify K nodes in V (ex-
cluding v; itself) that are most similar to v; in terms of attribute similarity computed
based on a similarity function f(-,-) as v;’s neighbors in G, denoted by Nk (v;). In
other words, for every two nodes v;, v; (v; € Ng(v;)), we construct an edge (v;, v;)
with weight f(X][i], X[j]) in €x. Accordingly, the adjacency matrix Ag of Gk is
defined as follows:

;

0, if v; ¢ Nk (v;) and v; ¢ Ng(v;),

AK[Zaj] = 2. f(X[Z],X[]]), if V; € NK(Uj) and (% € NK(’UZ'), (3'1)

f(XTd], X[4]), otherwise.

\

Thus, we obtain an augmented hypergraph H,4 containing the hypergraph Ho =
(V,€) and the KNN graph Gx = (V,Ek). The reasons that we only consider K

nearest neighbors for augmented hypergraph construction are three-fold. In the first
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place, the case study in Figure (3.2 suggests that there is no significant difference
between the RCC of two random nodes (depicted by the gray dashed line) and that
of two nodes v;,v; such that v; € Ng(v;), when K is beyond a number (roughly
500 in Figure . Therefore, such connections can be overlooked without impeding
the clustering quality. Secondly, if we revisit the example in Figure [3.1] and apply
the KNN strategy (K = 3) here, we can exclude the connection between v, and
vr from Gg since f(vg,v1) = f(ve,v4) = f(va,v5) = 0.5 > f(ve,v7) = 0.41. The
distortion issue mentioned previously is therefore resolved. In comparison with the
densely connected graph that encodes all attribute similarities (with up to O(n?)
edges in the worst case), G can be efficiently constructed by utilizing well-established

approximate nearest neighbor techniques with O(nlogn) complexity [38, [50].

The range of the KNN neighborhood is determined by parameter K. While a larger
K allows the KNN graph to include more attribute similarity relations, this also leads
to a higher proportion of unwanted inter-cluster edges in the KNN graph as evidenced
by the lower RCC in Figure Meanwhile, K cannot be too small (e.g., 5), or it
will fail to utilize highly similar nodes that usually have high RCC. The trade-off of
choosing K is evaluated in Section [3.8.3.

Now, the question lies in how to model the relationships of nodes in V of the aug-
mented graph H 4, which is a linchpin to AHC. In the following section, we present
a joint random walk model that enables us to capture the multi-hop proximities of

nodes over Hp and Gx jointly.

3.3.2 (a,f3,v)-Random Walk

Random walk with restart [I116] (RWR) is one of the most common and effective ran-
dom walk models for capturing the multi-hop relationships between nodes in a graph
[51], and is widely used in many tasks such as ranking [116, [108], recommendation

[93], and clustering [1]. Given a graph G, a source node u and a stopping probability
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a (typically a = 0.2), at each step, an RWR originating from u either stops at the
current node with probability «, or randomly picks an out-neighbor v of the current
node according to the weight of edge (u,v) and navigates to v with the remaining
1 — « probability. It follows that RWR score (a.k.a. personalized PageRank [48]) of
any node pair (u,v) represents the probability that an RWR from w ends at node v.
Intuitively, two nodes with dense (one-hop or multi-hop) connections should have a

high RWR score.

Nevertheless, RWR is designed for general graphs, and thus cannot be directly applied
to our augmented hypergraph H 4 as it consists of a hypergraph Ho and a general
graph Gx. We devise a joint random walk scheme, named (o, 3,7)-random walk,
which conducts the RWR process over Hp and Gg jointly to seamlessly integrate
topological proximity over both networks. Definition [1{states the formal definition of

the (o, §,7)-random walk process.

Definition 1. Given an augmented hypergraph Ha = (Ho,Gk) and a source node
u, an (o, B,7)-random walk W starting from w conducts vy steps and at each step

proceeds as follows.

o With probability oo, W terminates at the current node v;;

o with the other 1 — o probability, W navigates to a node v; picked by the following

rules:

— with probability 5;, W draws an out-neighbor v; of the current node v; in G

Ak [i,5] )
1) AK[Zzl] 7

according to probability >

v ENg (v
— or with probability 1 — B3;, W first draws an hyperedge e; incident to v; in Ho,

and then draws node v; from e; uniformly at random.

Each node v; is associated with a parameter §; (see Eq. (3.2)) used to control the

joint navigation between hypergraph Ho and KNN Gg. The larger (; is, the more
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likely that the random walk jumps to the neighbors of v; in KNN G.

)
0, if X[i] is a zero vector;

Bi=191, elseif 6(v;) = 0; (3.2)

B, otherwise.

\

In general, we set f3; to 5 € [0, 1], which is a user-specified parameter. In particular
cases, when node v;’s attribute vector X[i] is a zero vector, i.e., v; has no useful
information in the KNN Gg, we set 3; to 0. Conversely, §; is configured as 1 if
v; is connected to none of the hyperedges, i.e., §(v;) = 0. Let s(v;,v;) denote the
probability of an (a, /3, v)-random walk from v; stopping at v; in the end. Based on

Definition , we can derive the following formula for s(v;, v;):

s(v1,0,) = S5 = 0 X7y (1 - )P ], (33)
where P is a transition matrix defined by

P=(I-B)-D,/H'D;'H + BD}'A, (3.4)

B = diag(B1, ..., B,) is a diagonal matrix containing (3; parameters, and D is the
diagonal degree matrix of Gx. P*[i,j] is the probability that a ¢-hop walk from v

terminates at v;.

3.3.3 Objective Function

In what follows, we formally define the objective function of AHC. Intuitively, a high-
quality cluster C in the augmented hypergraph H 4 should be both internally cohesive
and well disconnected from the remainder of the graph with the consideration of

multi-hop connections. Hence, if we simulate an (a, 3, 7)-random walk W from any
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node in C, W should have a low probability of escaping from C, i.e., ending at any node
outside C. We refer to this escaping probability ¢(C) as the multi-hop conductance
(MHC) of C, defined in Eq. (3.5).

¢(C) = \Fl| D viec Zv]-¢c s(vi, v;) (3.5)

Since a low MHC ¢(C) reflects a high coherence of cluster C, we then formulate AHC

as an optimization problem of finding k clusters {Ci,...,Ck} such that their MHC
®({Cy,...,C}) (Eq. (3.6)) is minimized.

GG EED'S %ZZS(%,W) (3.6)

ce{C1,....Cx} v; €Cv;¢C

Directly minimizing Eq. requires computing s(v;,v;) (Eq. (3.3)) of every two
nodes v; € C, v; € V\C, VC € {C,Cs,- - - ,Ci}, which is prohibitively expensive due to
intractable computation time (i.e., O(n*)) and storage space (i.e., O(n?)). In addition,
the minimization of ®({Cy,...,Cx}) is an NP-complete combinatorial optimization

problem [106], rendering the exact solution unattainable on large graphs.

3.4 Theoretical Analysis for AHCKA

This section presents the top-level idea of our proposed solution, AHCKA, to AHC
computation, and explains the intuitions behind it. At a high level, AHCKA first
transforms the objective of AHC in Eq. to a matrix trace maximization problem,
and then derives an approximate solution via a top-k eigendecomposition. Note that
for any k non-overlapping clusters {Cy,Cs, - ,Cx} on H satisfying Ule C; =V, they

can be represented by a binary matrix Y € {0,1}"** where for each node v; and
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cluster C;

o 1, v € Cj
Y[i,j] = (3.7)
0, v; € V \ Cj.

We refer to Y as a binary cluster membership (BCM) matrix of H and we use
MY)=(YTY)?Y =Y (3.8)

to stand for the Ly normalization of Y. Particularly, Y has orthonormal columns,
ie., Y'Y = I, where I, is a k x k identity matrix. Given k non-overlapping clusters

{C1,Cy, -+ ,Cr} and their corresponding BCM matrix Y, it is trivial to show
D({Cy,...,Ch}) =1 - V(Y), (3.9)
where ¥(Y) is defined as follows:
W(Y) = %tmce(?TS?). (3.10)

Eq. (3.9) suggests that the minimization of MHC ®({Cy,...,Cx}) is equivalent to
finding a BCM matrix Y such that the trace of matrix YTSY is maximized. Due to
its NP-completeness, instead of computing the exact solution, we utilize a two-phase

strategy to derive an approximate solution as follows.

If we relax the binary constraint on Y, the following lemma establishes an upper

bound v, for W(Y).

Lemma 3.4.1. Let o1 > 09 > - -+ > 0y be the k largest singular values of matrix S in
Eq. (33). Given any matrizc W € R™* such that h(W) satisfies (W) -h(W) = I,
then W(W) < 3% 0 = 4p,.
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Proof. Let W denote h(W), i.e., (WTW)~V2W (Eq. (3.8)) , and we have
1 TS 1 =
V(W) = Etmce(WTSW) = Etmce(S(WWT)) (3.11)

Since WTW = I, W is an n x k orthogonal matrix with rank equal to k. Based on
basic matrix rank properties, the following inequalities regarding the rank of WWT
can be derived.

k= rankz(\/ﬂ\/') + rankz(wT) —k

Y - R (3.12)
< rank(WWT) < min(rank(W),rank(WT)) = k

It follows that WWT is a symmetric matrix with rank &£ and the eigenvalue 0 of
WWT has multiplicity n — k. From the associativity of matrix multiplication, we
have (\/7\\7\/7\\7-'—)\/7\\7 = \/7\\7(\/7\7-'—\/7\\7) — W. Thus, these column vectors of W correspond
to k unit eigenvectors of WWT associated with eigenvalue 1. Since WWT is a
symmetric matrix, its k£ largest eigenvalues, and singular values are 1 while the other
n — k eigenvalues and singular values are 0. Because the row-stochastic matrix S is
not necessarily Hermitian, we use Von Neumann’s trace inequality to derive an upper

bound of ¥(W) associated with the singular values of S and WWT.

Zl oi + Zo i) = Zl 0 = 1y (3.13)

i=k+1

=N |

Aside from the k largest singular values, all the other singular values of WWT are 0.

Therefore, the resulting upper bound ), is the arithmetic mean of k largest singular

values of S. 0

Lemma [3.4.1 implies that if we can first find a fractional matrix W such that W(W)
is close to ¥, a high-quality BCM matrix Y can be converted from W by leveraging
algorithms such as k-Means [80]. Although we can obtain such a fractional matrix

W by applying trace maximization techniques [124] to Eq. (3.10)), it still remains
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tenaciously challenging to compute S.

Lemma 3.4.2. Let the columns of Q € R™* be the second to (k + 1)-th leading
eigenvectors of P (Eq. (3.4)). Then, we have ¥(Q) = %Zf;l Ai = 1y, where
Ao > - > A\ > Ay are the second to (k + 1)-th leading eigenvalues of S, sorted by

algebraic value in descending order.

Proof. Denote the eigenvector associated with the i-th largest eigenvalue X, of P
by e;. Then Q is the matrix containing column vectors es, ..., ex1. For e; where
1<j<k

Se; = (0 Y7 o(1 — ) P)e; = (a T (1 — ) X, (3.14)

Hence, e; is also an eigenvector of matrix S associated with eigenvalue f(\,) =
ay ) o(1 — )M Because function f(\;) monotonously increases for 0 < X, < 1,
we have f(A;) < f(\) if A} < A (under the assumption that A; < 0). Therefore,
€g, ..., ey are also the second to (k + 1)-th leading eigenvectors of S and we ob-
tain U(Q) = Ltrace(QTSQ) = L3 M elSe; = LY\ = ¢, completing the

proof. O

We exclude the first eigenvector \/iﬁ -1 of P as it is useless for clustering. By virtue of
our analysis in Lemma [3.4.2, the second to (k4 1)-th leading eigenvectors Q of P (see
Eq. (3.4)) can be regarded as a rough W since ¥(Q) = ¢\ < 9, and the gap between
1y and 1), is insignificant in practice. For instance, on the Cora-CA dataset, we can
obtain ¢, = 0.668 and ¥, = 0.596 (i.e., P, =1 — 1), = 0.332, &) =1 — 1), = 0.404),
both of which are better than W(Y*) = 0.533 (i.e., ®* =1 — U(Y*) = 0.467) of the
ground-truth BCM matrix Y*. Consequently, using the second to (k + 1)-th leading
eigenvectors Q of P as the fractional solution W is sufficient to derive a favorable
BCM matrix. Moreover, in doing so, we can avoid the tremendous overhead incurred

by the materialization of S.

To summarize, AHCKA adopts a two-phase strategy to obtain an approximate solution
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Figure 3.3: Overview of AHCKA

to the AHC problem. First, AHCKA computes the second to (k 4 1)-th leading eigen-
vectors Q of P. After that, AHCKA transforms Q into a BCM matrix Y through a
discretization approach [148] that minimizes the difference between Q and Y. The ra-
tionale is that ¥(Q) = U(QR) if R is a k x k orthogonal matrix, ensuring R'R, = I,,.
Accordingly, we can derive a BCM matrix Y = QR by minimizing the Frobenius
norm ||Q — QR||F with a binary constraint exerted on QR. Note that we do not
adopt k-Means over QQ to get the BCM matrix Y as it deviates from the objective
in Eq. , and thus, produces sub-par result quality, as revealed by experiments

(Table [3.14)).

Nevertheless, to realize the above idea, there still remain two crucial technical issues

to be addressed:

1. The brute-force computation of Q is time-consuming as it requires numerous iter-

ations and the construction of P.

2. In practice, directly utilizing the exact or near-exact Q might incur overfitting
towards the objective instead of ground-truth clusters, and hence, lead to sub-
optimal clustering quality. It is challenging to derive a practically effective and

robust BCM matrix Y from Q.
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3.5 The AHCKA Algorithm

To circumvent the above challenges, AHCKA integrates the aforementioned two-phase
scheme into an iterative framework, which enables us to approximate the second to
(k+1)-th leading eigenvectors Q without constructing P explicitly, and greedily search
the BCM matrix Y with the best MHC. Figure sketches the main ingredients
and algorithmic procedure of AHCKA. More specifically, AHCKA employs orthogonal
iterations [104] to approximate the second to (k + 1)-th leading eigenvectors Q of
P. During the course, AHCKA starts with an initial BCM matrix, followed by an
orthogonal iteration to compute an approximate Q and an updated BCM matrix
Y from the Q through Discretize algorithm [148]. Afterward, AHCKA inspects if
Q reaches convergence and computes the MHC with the current BCM matrix Y
via CalMHC algorithm (Algorithm . If Q converges (i.e., the BCM remains nearly
stationary ) or the early termination condition is satisfied (i.e., the MHC of current
Y is satisfying), AHCKA terminates. Otherwise, AHCKA enters into the next orthogonal
iteration with the updated Q and Y.

In what follows, a detailed description of AHCKA is given in Section [3.5.1. Section
3.5.2 introduces an effective approach InitBCM for initializing the BCM matrix Y,
which drastically curtails the number of iterations needed and significantly boosts
the computation efficiency of AHCKA. The complexity of the complete algorithm is
analyzed in Section [3.5.3!

3.5.1 Main Algorithm

The pseudo-code of AHCKA is presented in Algorithm [I) which takes as input an
attributed hypergraph H, transition matrix of attribute KNN graph P, the number
k of clusters, a diagonal matrix B containing n parameters defined in Eq. ,
the random walk stopping probability «, an error threshold eg, the numbers v, Tj, of
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Chapter 3. ANCKA: Attributed Network Clustering

Algorithm 1: AHCKA

Input: Hypergraph H, KNN transition matrix P g, the number of clusters k,
diagonal matrix B, constant «, error threshold g, the numbers of
iterations T, 7, an integer 7, and an initial BCM matrix Y(©),

Output: BCM matrix Y

Y « YO YO  p(Y©®),

QO « \/Aﬁ 1Y ©

fort <« 1,2,---,7T, do
Compute Z® according to Eq. (3.16));
QW R® « QR(Z(”) :
if t mod 7 =0 then
Y® « Discretize(Q®) ;
O(Y®) < CalMHC(Y D, Py, Py, P, B, v, a);
if (Y®) < ®(Y) then Y «+ Y,
if Fq. or Eq. holds then break;
return Y,

iterations, an integer 7, and an initial BCM matrix Y(®). AHCKA starts by computing
the normalized BCM matrix Y(© = h(Y©) (Eq. (B:8)) and setting the initial k + 1
leading eigenvectors Q® as \/Lﬁ : 1|?(0) (Lines 1-2), where | represents the horizontal
concatenation and \/iﬁ -1 is the first leading eigenvector of P since it is a stochastic
matrix. After that, AHCKA enters into at most T, orthogonal iterations for computing
the k + 1 leading eigenvectors Q and the BCM matrix Y (Lines 3-10). At step ¢,

orthogonal iteration updates the approximate k + 1 leading eigenvectors of P as Q)

by the formula below (Lines 4-5):
QYR =z — pQU-Y. (3.15)

where Q® is obtained by a QR decomposition over Z®). If ¢ is sufficiently large, Q®
will converge to the exact k + 1 leading eigenvectors of P [104]. Note that the direct
computation of Z® = PQ!~! requires constructing P explicitly as per Eq. (3.4),

which incurs an exorbitant amount of time and space (up to O(n?) in the worst case).
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Algorithm 2: CalMHC

Input: YO Py Py, Pk, B, v, a
Output: MHC ¢, R

1 YO p(Y®);, FO oY,

for /< 1,2,...vdo

L Compute F according to Eq. (3.18);
4 ¢y 1— %trace(?(t)TF(V));

5 return ¢; ;

To mitigate this, we decouple and reorder the matrix multiplication as in Eq. (3.16]).

Z" = (I-B) Py (PrQ"")+BPx - Q" (3.16)

where Py = D'H', P =D.'H (3.17)

Py and Py are two sparse matrices of H and Py = D;(lAK is the sparse transition
matrix of the KNN graph Gx defined in Section [3.3.1. Note that all of them can be
efficiently constructed in the preprocessing stage. As such, we eliminate the need to

materialize P and reduce the time complexity of computing Z® to O(nk - (0 + K)).

After obtaining Q(*), AHCKA converts Q) into a new BCM matrix Y® (Lines 6-7)
using the Discretize algorithm [148]. Notice that we conduct this conversion every
other 7 iterations in order to avert unnecessary operations as the difference between

Y® and Y=Y is often insignificant.

Next, at Line 8, AHCKA invokes CalMHC (i.e., Algorithm [2)) with a BCM matrix Y®),
other parameters including Py, Pg, P, B, a, and the number of iterations ~ as input

to calculate the MHC ¢, of the current BCM matrix Y®. To avoid the materialization

of S required in Eq. (3.9) and Eq. (3.10)), Algorithm [2| computes ¢; in an iterative
manner by reordering the matrix multiplications (Lines 2-3 in Algorithm . More

precisely, at the ¢-th iteration, it obtains the intermediate result F via the following
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equation:
FO = (1—a)(I-B) Py (PgF¢D) + BPg - FD) + FO. (3.18)

F© is initialized as Line 1 in Algorithm It can be verified that ¢, = 1 —
%tmce(?(“TF(”)) (Line 4 in Algorithm .

Once the convergence criterion of Q® (Eq. (3.19)) is satisfied, or the early termina-
tion condition (Eq. (3.20)) holds, AHCKA ceases the iterative process and returns the
BCM matrix Y with the lowest MHC (Lines 9-11 in Algorithm [1]).

1QY = QY| < eq (3.19)
Pt—or < Pr—7 < P (3.20)

Otherwise, AHCKA proceeds to the next orthogonal iteration. The rationale for the
early termination condition in Eq. (3.20) is that, in practice, successive increases in

¢; indicate that clusters with desirable MHC objective have been attained.

3.5.2 Greedy Initialization of BCM

Akin to many optimization problems, AHCKA requires many iterations to achieve con-
vergence when Y(© is randomly initialized. To tackle this issue, we propose a greedy
initialization technique, InitBCM, whereby we can immediately gain a passable BCM

matrix Y@ and expedite the convergence, as demonstrated by our experiments in

Section [3.8.4.

The rationale of InitBCM is that most nodes tend to cluster together around a number
of center nodes [101]. Therefore, we can first pick a set V. of top influential nodes w.r.t.
the whole hypergraph, and calculate the multi-hop proximities (i.e., RWR scores) of

each node to the influential nodes V. (i.e., centers). Then, the cluster center of each
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Algorithm 3: InitBCM

Input: Hypergraph H, matrices Py, Pg, integer k, constant «, the number of
iterations 7.

Output: An initial BCM matrix Y©.

V. <— The sorted indices of nodes with £ largest degrees;

Initialize Zy < 0**";

for j < 1 to k do Zy[j,V.[j]] < 1;

Initialize H((:O) — aZy;

fort <+ 1,2,...7; do

L Compute I according to Eq. (3.21);
for v; € V do

L Calculate g(v;) according to Eq. (3.22));

YO, g(v;)] - 1;

return Y© :

node can be determined by its proximity to nodes in V. accordingly.

Algorithm (3] displays the pseudo-code of InitBCM. Given hypergraph H, and transi-
tion matrices Py, Pg defined in Eq. , the number £ of clusters, random walk
stopping probability «, and the number of iterations 7}, as input, InitBCM begins by
initializing an ordered set V, consisting of the k& nodes with %k largest degrees in H
(sorted by their indices), which later serves as the cluster centers (Line 1). Then, a
k x n matrix Zg is created, where for each integer j € [1, k], Zo[j, V.[j]] is set to 1
and 0 otherwise and V,[j] denotes the node index of the j-th node in V, (Lines 2-3).
Next, InitBCM launches 7; iterations to calculate the RWR scores of all nodes w.r.t
the k nodes in V. (Lines 5-6). Specifically, at ¢-th iteration, we compute approximate
RWR II" (Line 6):

MY = (1 - a) (TP ) - Py + T, (3.21)

C

where ITy = aZy (Line 4). Note that we reorder the matrix multiplications as in Eq.
(3.21) so as to bypass the materialization of the n x n matrix PyPg. After obtaining

1), InitBCM assigns the node V.[g(v,)] as the cluster center to each node v; in H
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as per Eq. (3.22) (Lines 7-9).

) — (T
g(vj) = arg max IT. (L, 4], (3.22)

meaning that we pick a cluster center from V, such that its RWR score TI{F[1, 4]
w.r.t v; is the highest. Finally, an n x k binary matrix Y © is constructed by setting

Y O[5, g(v;)] to 1 for v; € V and returned as the initial BCM matrix.

3.5.3 Complexity

One of the main computational costs of AHCKA stems from the sparse matrix multi-
plications, i.e., Line 4 in Algorithm [i] Line 3 in Algorithm [2] and Line 6 in Algorithm
. We first consider Line 4 in Algorithm (1} i.e., Eq. . Since QY is an
n X (k + 1) matrix and the numbers of non-zero entries in sparse matrices Py, Pg,
and Py are nd, nd, and nkK, respectively, its complexity is O((nd + nK) - k) [150].
Analogously, according to Eq. , and Eq. , both the time costs of Line
3 in Algorithm [2/ and Line 6 in Algorithm [3| are bounded by O(ndk). Recall that
these three operations are conducted up to Ty, v, and T; times in Algorithms [1] [2]
and [3| respectively. Therefore, the total time cost of sparse matrix multiplications is
O(kné - (T, + T; +~) + knKT,). Moreover, in Algorithm [1, the QR decomposition at
Line 5 takes O(k?n) time and Discretize [148] runs in O(k*n + k%) time. Overall,
the time complexity of AHCKA is O(knd - (T, + T; + ) + knK T, + k*n), which equals
O(nd) when T,,T;, v, k, and K are regarded as constants. The space complexity of
AHCKA is O(n - (6 + K + k)) as all matrices are in sparse form.

38



3.6. The ANCKA framework

3.6 The ANCKA framework

In this section, we generalize AHCKA that is for AHC to a versatile framework ANCKA
to process all of AHC, AGC, and AMGC, formulated in Section [3.2 ANCKA aims to
efficiently find high-quality clusters on various types of network N .

As mentioned, the proposed KNN augmentation in Section [3.3.1 is orthogonal to the
high-order nature of hypergraph, and therefore, we can apply the KNN augmentation
to input attributed network A that can be an attributed hypergraph H, graph G,
and multiplex graph G,.

Recall that, in Figure we have empirically shown that nodes with higher attribute
similarity are more likely to appear in the same cluster of a hypergraph H. This
also holds for attributed graphs and attributed multiplex graphs. Figures 3.4b
illustrate the AAS and RCC on the attributed graph Citeseer-DG and the attributed
multiplex graph ACM, with binary keyword vectors as node attributes. On both
datasets, nodes with higher attribute similarity (i.e., higher AAS with smaller K) are
more likely to be in the same cluster (i.e., higher RCC). Moreover, above a certain K
value, there is no significant difference between the RCC of two random nodes and
that of two nodes v; and v; such that v; is the K-nearest neighbor of v;. Based on
these observations, it is viable to extend KNN augmentation in Section [3.3.1 to an
attributed network N with n nodes and attribute matrix X € R™*¢, by building a
KNN augmentation graph Gx via Eq. (3.1).

Then we obtain an augmented network N4 with topology Np and KNN graph G,
where Np is (V,€) when N is an attributed hypergraph H or (V,&g) for graph G,
and Np is (V,&1,...,&L) when N is an attributed multiplex graph Gy,.

3.6.1 Generalized (o, 5,7)-Random Walk
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For the augmented network Ny = (Np, k), define Py and Pg as the random walk
transition matrices of Np and G respectively. The generalized (o, 3, v)-random walk
on N, is an RWR process over the augmented network N4, similar to the case of
attributed hypergraphs in AHCKA. The difference from Definition (1| is that when the
random walk navigates to another node, with probability 1 — 3;, an out-neighbor is
drawn from the distribution of P instead of incident hyperedges. This generalized
random walk can also be characterized by the probability in Eq. (3.3), with transition

matrix P given as follows.

P=(I-B)-Py+B-Pg. (3.23)

We now formulate Py for different types of networks, including attributed hyper-

graphs as one special case.

Attributed Hypergraph H. When Ny is a hypergraph with hyperedge incidence
matrix H, based on Eq. , Py is shown below. Py considers the transition
probability Py from a node to its incident hyperedges and the transition probability
Pg from each hyperedge to nodes connected by the hyperedge.

Py = PyPpg, where Py = D'H' and Py = D;'H. (3.24)
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Attributed Graph G. When N is an undirected graph, we can acquire the tran-
sition matrix Py in Eq. . If N is directed, we introduce a reversed edge for
each edge and consider bidirectional connections between nodes to get A, D, and
subsequently P .

Py =D A, (3.25)

where A is the adjacency matrix and D is the degree matrix.

Attributed Multiplex Graph G,;. When Ny is a multiplex graph comprising L
layers with the same node set V, the [-th layer has its own edge set & representing a
unique type of connections. The overall goal of the clustering task is to make cluster
assignments that capture the collective structure of the multiplex graph, transcending
the differences across layers. To achieve this, intuitively, we treat every layer equally
and compute Py as in Eq. , while layer weighting is left as future work [52].
Given the degree matrix D; and adjacency matrix A; of every [-th layer, we get the
layer’s random walk transition matrix Dl’lAl, and then compute Py of the multiplex
graph by averaging the layer-specific transition matrices. Consequently, from the
current node v, a random walk has 1/L probability of selecting each layer G;, and
then within this chosen layer, the next node to visit is picked uniformly at random

from the out-neighbors of v in G;.

L
1 _
Py=— EH: D 'A,, (3.26)

where D; and A; are the degree matrix and adjacency matrix of the [-th layer.

3.6.2 ANCKA Algorithm

With the random walk transition matrix P formulated above for various types of
attributed networks N, Eq. (3.3) can be reused to calculate S[i, j], the probability of

a generalized (a, §, y)-random walk from v; stopping at v; in the end. The objective
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function in Section (3.3.3 is naturally extended to ANCKA. Consequently, our theoretical
analysis in Section remains valid for ANCKA over attributed networks that can be

hypergraphs, graphs, and multiplex graphs.

The pseudo-code of ANCKA is outlined in Algorithm 4l At Line 1, it obtains transi-
tion matrix Py for attribute KNN augmentation. Then as a framework supporting
various attributed networks, ANCKA is a generalization of Algorithms with tran-
sition matrix Py computed depending on the network type at Line 2. Py is then
used throughout the algorithm as a part of the generalized («, f,~)-random walk.
The greedy initialization of clusters in Lines 3-11 resembles the procedure in InitBCM
with the corresponding Py for RWR simulation. Since ANCKA needs to pick k£ nodes
in N with the largest degrees as tentative cluster centers at Line 3 when A is an
attributed multiplex graph, we rank the nodes by their summed degrees across all

layers.

Lines 12-24 describe the main clustering process of ANCKA, which extends the hypergraph-
specific Algorithms[1] and 2] with modifications to support attributed graphs and mul-
tiplex graphs. First, in orthogonal iterations, calculating Z® is dependent on the
type of N. Second, the MHC objective for general networks stems from the analysis
in Section [3.4] while the formulation with Py is slightly different. In particular, to
get MHC ¢, without materializing the dense matrix S in Eq. that is expensive
to compute, we iteratively obtain ¢; via the intermediate matrix F) in Eq. at
Line 21.

F = (1 - a)((I-B)PyF“ ) 4+ BPLFY) 4 FO (3.27)

where Py is Eq. (3.24)), (3.25)), or (3.26)), depending on the type of A/. Finally, ANCKA

adopts the early stopping criteria in Line 24 and returns the clusters with the lowest

MHC obtained.

Complexity. When N is an attributed graph, constructing transition matrix Py

takes O(nd) time, where ¢ is the average node degree. For a multiplex network N
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3.6. The ANCKA framework

Algorithm 4: ANCKA
Input: Attributed network N with KNN augmented graph Gx, the number of

clusters k, diagonal matrix B, constant «, error threshold €, the

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

numbers of iterations Ty, v, T;, an integer 7.
Output: BCM matrix Y
PK < D;(lAK,

Get Py by Eq. (3.24)), (3.25)), or (3.26)), depending on the type of N;

V. « sorted indices of k nodes in N with k largest degrees;

Initialize Zy < 0¥*™;

for j < 1 to k do Zy[j,V.[j]] « 1;
Initialize I « aZj;

fort+ 1,2,...7T; do

Y « (1 - ) YPy + 10,

for v; € V do
g(v;) + arg max; <, IIYV[L, 5]
Y O[5, g(v))] + 1;

Y YO, YO  p(YO),
QO + \/Lﬁ 1Y O
fort <« 1,2,---,7T, do
ZO + I-B)Py- QY 4+ BPg - QY
QW RO « gr(Z®) :
if t mod 7 = 0 then
Y® < Discretize(Q®) ;
YO  p(Y®); FO oY ®),
for / <+ 1,2,...vdo
t Compute F® according to Eq.
P(YV) 1 - %tmce(\?(t)TF(V));
if ®(Y®) < &(Y) then'Y « Y,
if Fq. or Eq. holds then break;

return Y,

43



Chapter 3. ANCKA: Attributed Network Clustering

with L layers, the previous results are still valid when L is regarded as constant, as
Py is aggregated from the transition matrices of all simple graph layers. Given that
the number of nonzero entries in Py is subject to O(nd), ANCKA (Algorithm 4)) has the
same complexity as Algorithm [I} According to our analysis in Section [3.5.3, the time
complexity of ANCKA is O(kn(5+ K 4k)) while its space complexity is O(n(d+K +k)).
Since k and K can be viewed as constants, ANCKA has space and time complexity of

O(nd).

3.7 GPU-Accelerated ANCKA-GPU

On large attributed networks, e.g., Amazon and MAG-PM hypergraphs, each with
more than 2 million nodes, as reported in Table AHCKA with 16 CPU threads
still needs 1286s and 1372s respectively for clustering, despite its superior efficiency
compared with baselines. Moreover, AHCKA does not exhibit acceleration proportional
to increased CPU threads. As shown in Figure when the number of CPU threads
is raised from 1 to 32, the time drops from around 3000s to 1200s, with a speedup
of merely 2.5 (Amazon) or 2.7 (MAG-PM). In particular, increasing the number of

threads from 16 to 32 provides rather limited acceleration (less than 10%).

To overcome the limitation of CPU parallelization, we resort to the massive parallel
processing power of GPUs (graphical processing unit) and develop ANCKA-GPU to boost
efficiency, with about one order of magnitude speedup on large networks with millions
of nodes in experiments. For example, ANCKA-GPU only needs 120s on an MAG-
PM dataset, over 10 times faster than the 1372s of ANCKA. Compared to CPUs, the
design of GPUs enables them to leverage numerous threads to handle data processing
simultaneously, which is beneficial for vector and matrix operations at scale. Please

see [19] for details on GPU computing.

As shown in Figure of Section [3.8.5 for runtime analysis, the major time-
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3.7. GPU-Accelerated ANCKA-GPU

consuming components of ANCKA include invoking Discretize (Line 18 in Algorithm
, the construction of KNN graph Gg, and expensive matrix operations in orthog-
onal iterations, greedy initialization and MHC evaluation. With the CuPy library,
matrix operations throughout Algorithm [4| can be done on GPUs more efficiently.
In the following, we elaborate on the GPU-based discretization and Gx construction

techniques adopted in ANCKA-GPU.

GPU-based Discretization Discretize-GPU. ANCKA uses the off-the-shelf Discretize
approach [148] to compute discrete cluster labels Y from real-valued eigenvectors Q,
which could cost substantial time on large datasets. Here, we develop a CUDA kernel
Discretize-GPU for efficiency. In what follows, we first explain how the discretiza-
tion algorithm improves the optimization objective in Definition [2, and then present

the design of Discretize-GPU in Algorithm [5]

Given an eigenvector matrix Q with its row-normalized matrix Q, discretization is

aimed to find a discrete solution Y, that minimizes the objective in Definition .

Definition 2. (Discretization [148]) The solution to the following optimization prob-

lem is the optimal discrete Y ,p.

Y, = argminy [[Y — QRH%

s.t. Y e{0,1}"* Y1, =1, ReR"* RTR =1,

where Q is the row-normalized matrix of an eigenvector matrix Q, R is a rotation

matriz, and ||M||r denotes the Frobenius norm of matriz M.

The Discretize approach finds a nearly global optimal solution by alternately up-
dating one of Y and R while keeping the other fixed. With R fixed, Y|z, (] is updated

to

1, if g =argmax;<;<x(QR)[:, j
il = 1<j<k(QR)[, J] (3.28)

0, otherwise.
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Time (s)
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Figure 3.4: Runtime of AHCKA with CPU parallelization

With Y fixed, Y is the column-normalized matrix of Y, and R can be updated as

follows with SVD decomposition.

R = VU, where UQVT is an SVD of YTQ. (3.29)

The iterative process can terminate early when an objective value obj based on €2
converges, i.e., its change over the last iteration is within machine precision. This

objective is calculated as obj = n — 2 X trace(2) [148].

We implement the CUDA kernel Discretize-GPU in Algorithm [5| to perform the
process above to obtain Y. In details, Discretize-GPU leverages the grid-block-
thread hierarchy of GPU to assign threads to handle n x k& matrices, including Q
and Y. Each row in such a matrix is processed by a block of threads, identified by
a block id bid; each of the k elements in the row is handled by a thread tid in the
block. Consequently, given a matrix Q, we can use Q[bid, tid] to represent that the
corresponding element in Q is handled by the tid-th thread in block bid on a GPU.
Parallel row normalization is performed at Lines 1-2 to get Q. After initializing R
as a k x k identity matrix (Line 3), we alternately update Y and R for at most
mazx _iter iterations (Lines 4-12) and terminate early when the objective value obj

does not change over the current iteration at Line 12. Within an iteration, we first
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Algorithm 5: Discretize-GPU
Input: eigenvector matrix Q

Output: Intermediate BCM matrix Y

Parallel for i + 1,2,--- ,n do
Qi)+ Q-
R+ 1, ;
while iter < 1,2, --- ,maz_ter do
Update Y by Eq. via argmax kernel on GPU;
Parallel for j <+ 1,2,--- |k do
| colsumlj] 3L, i
Parallel for each tid < k in blocks do
| Ybid, tid] « Xt

col_sum/|tid]’
U,Q, VT « SW_GPU(YTQ) ;
R «~ VUT on GPU;

if Objective value obj does not change then break;

return Y,

update Y at Line 5, then perform column normalization to get Y (Lines 6-9), and
then perform SVD on GPU over YTQ to get U and V at Line 10, which helps to
update R at Line 11. Finally, Y is returned at Line 13.

KNN construction. An n x d attributed matrix X requires KNN search on its
rows to construct the augmented graph Gx and thus the transition matrix Pg. For
this purpose, we adopt Faiss [50], a GPU-compatible similarity search library. In
Algorithm @] for Gx construction, we first normalize all rows in X at Lines 1-2 to
facilitate the computation of cosine similarity between row vectors. Faiss supports
various indexes for KNN computation, and the index type suitable for ANCKA is de-
termined based on the input data volume. For small or medium datasets where the
number of nodes |V| is below 100,000, since the time cost for exact similarity search

is affordable, we choose the flat index with a plain encoding of each row vector in X,
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Algorithm 6: GPU-based Gx construction

Input: Network A, attribute matrix X, parameter K.
Output: KNN transition matrix Py
Parallel for i < 1,2,--- ,n do

, X[
- X[ s

=

if |V| < 100,000 then
index < FlatIndex (X) ;

else

index + IVFPQIndex (X) ;

Invoke Faiss on GPU to get the KNN of each row in X ;
Get Ak by Eq. on GPU ;

Dy < Diag(Akl,) on GPU ;

Py Df}lAK on GPU;

return Pg;

to achieve exact KNN computation (Lines 3-4). Otherwise, we turn to approximate
nearest neighbor search on large datasets with the IVFPQ index that combines the
inverted file index (IVF) with the product quantization (PQ) technique at Line 6. In
particular, IVF index narrows down the search to closely relevant partitions that con-
tain the nearest neighbors at a high probability, while PQ produces memory-efficient
encoding of attribute vectors. Faiss on GPU is invoked to get the KNN of each row
in X, and Ag is obtained by Eq. at Lines 7-8. Then, the degree matrix Dy
and transition matrix P are computed on GPU (Lines 9-10) and returned at Line

11.

3.8 Experiments

We experimentally evaluate the proposed ANCKA and competitors in terms of both

clustering quality and efficiency. We also evaluate the performance of ANCKA-GPU
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Table 3.1: Dataset statistics.

Task  Dataset Type |V]| I€] d k
Query HG 481 15,762 426 6
Cora-CA HG 2,708 1,072 1,433 7
Cora-CC HG 2,708 1,579 1,433 7

AHC Citeseer HG 3,312 1,079 3,703 6
20News HG 16,242 100 100 4
DBLP HG 41,302 22,363 1,425 6
Amazon HG 2,268,083 4,285,295 1,000 15
MAG-PM  HG 2,353,996 1,082,711 1,000 22
Cora UG 2,708 5,429 1,433 7
Citeseer-UG UG 3,327 4,732 3,703 6

AGC Wiki UG 2,405 17,981 4,973 17
Citeseer-DG DG 3,312 4,715 3,703 6
TWeibo DG 2,320,895 50,655,143 1,657 8
Amazon2M UG 2,449,029 61,859,140 100 47

29,281
ACM MG 3,025 2,210,761 1,870 3
13,788
AMGC IMDB MG 3,550 66,428 2,000 3
11,113
DBLP-MG MG 4,057 5,000,495 334 4
7,043,571

on all clustering tasks. In experiments, we uniformly refer to our method as ANCKA
while making it clear in the context whether ANCKA is for AHC (i.e., AHCKA), AGC,
or AMGC. All the experiments are conducted on a Linux machine powered by Intel
Xeon(R) Gold 6226R CPUs, 384GB RAM, and NVIDIA RTX 3090 GPU. A maximum
of 16 CPU threads are available if not otherwise stated. The code is at https:
//github.com/gongyguo/ANCKA.

3.8.1 Experimental Setup
Datasets

Table provides the statistics of 17 real-world attributed networks used in exper-
iments, including attributed hypergraphs (HG), undirected graphs (UG), directed
graphs (DG), and multiplex graphs (MG). |V| and |€| are the number of nodes and

edges (or hyperedges), respectively, d is the attribute dimension and k is the number
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of ground-truth clusters.

We gather 8 attributed hypergraph datasets. Query dataset [123] is a Web query
hypergraph, where nodes represent queries and are connected by hyperedges repre-
senting query sessions, and nodes are associated with attributes of keyword embed-
dings and associated webpages. Cora-CA, Cora-CC, Citeseer, and DBLP are four
benchmark datasets used in prior work [136]. All of them are originally collected
from academic databases, where each node represents a publication, node attributes
are binary word vectors of abstract, and research topics are regarded as ground-truth
clusters. Hyperedges correspond to co-authorship in Cora-CA and DBLP datasets
or co-citation relationship in Cora-CC and Citeseer datasets. 20News dataset [43]
consists of messages taken from Usenet newsgroups. Messages are nodes, and the
messages containing the same keyword are connected by a corresponding hyperedge,
and the TF-IDF vector for each message is used as the node attribute. Amazon
dataset is constructed based on the 5-core subset of Amazon reviews dataset [90],
where each node represents a product and a hyperedge contains the products re-
viewed by a user. For each product, we use the associated textual metadata as the
node attributes and the product category as its cluster label. MAG-PM dataset is
extracted from the Microsoft Academic Graph [110], where nodes, co-authorship hy-
peredges, attributes, and cluster labels are obtained as in other academic datasets

(i.e., Cora-CA, Cora-CC, Citeseer, and DBLP).

In Table[3.1] we also consider 6 attributed graphs, which are commonly used for AGC
[154] 52 144 15]. Cora, Citeseer-UG, Wiki, and Amazon2M are undirected, while
Citeseer-DG and TWeibo are directed. TWeibo [144] and Amazon2M [15] are two
large-scale attributed graphs. TWeibo is a social network where each node represents
a user, and the directed edges represent relationships between users. Amazon2M
is constructed based on the co-purchasing networks of products on Amazon. Cora,
Citeseer-UG, and Citeseer-DG are citation networks where nodes represent publica-

tions, a pair of nodes are connected if one cites the other, and nodes are associated
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with binary word vectors as features. Wiki is a webpage network where each edge in
the graph indicates that one webpage is linked to the other, while the node attributes
are TF-IDF feature vectors. Moreover, three attributed multiplex graphs, namely
ACM, IMDB, and DBLP-MG, are considered for AMGC [49, 0T, [77]. ACM is an
academic publication network comprising co-author and co-subject graph layers, as
well as bag-of-words attributes of keywords. IMDB is a movie network with plot text
embeddings as attributes and two graph layers representing the co-director (directed
by the same director) and co-actor (starring the same actor) relations, respectively.
DBLP-MG is a researcher network including publication keyword vectors as attributes
and three graph layers: co-author, co-conference (publishing at the same conference),
and co-term (sharing common key terms). ACM and DBLP-MG have research areas
labeled as ground truth clusters, while IMDB is labeled by movie genres.

Competitors and Parameter Settings

The 19 competitors for AHC are summarized as follows:

e 3 plain hypergraph clustering methods including HNCut [156], HyperAdj [102], and
KaHyPar [35];

e the extended AHC versions of the 3 methods above (dubbed as ATHNCut, ATHyperAdj,
and ATKaHyPar), which work on an augmented hypergraph with attribute-KNN hy-
peredges of all nodes merged into the input hypergraph;

e ATMetis that applies the traditional graph clustering algorithm Metis [55] over a
graph constructed by clique expansion of the input hypergraph and attribute KNN
graph augmentation; Infomap [103], Louvain [8], k-MQI and k-Nibble (extended
from MQI [63] and PageRank-Nibble [4] for k-way clustering via k — 1 consecutive
bisections as described in technical report [71]) on the same KNN-augmented clique-

expansion graph;
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e 3 AHC algorithms including the recent GRAC [27] and NMF-based approaches
(GNMF [10} 27] and JNMF [23]);

e ACMin-C and ACMin-S, obtained by applying an attributed graph clustering method
ACMin [144] over the graphs reduced from hypergraphs by clique expansion and star

expansion, respectively; probabilistic model CESNA [139] with clique-expansion;

e k-means and HAC (hierarchical agglomerative clustering [121]) algorithms applied

to the node attribute matrix.

To evaluate the ANCKA framework, we compare 16 competitors for AGC, including

k-means, HAC and the following:

e 6 AGC approaches including NMF-based algorithm GNMF [10], graph convolution
algorithm AGCGCN [154] , probabilistic model CESNA [139], spectral clustering on
fine-grained graphs method FGC [53], attributed random walk approach ACMin
[144], and the clustering framework GRACE [52] generalized from GRAC.

e NCut [I06] and Metis [55] that are conventional graph clustering methods ap-

plied to the input graph;

e ATNCut and ATMetis that are NCut and Metis applied to the augmented graph
with attribute KNN; Infomap [103], Louvain [8], k-MQI [63] and k-Nibble [4]

on the augmented graph with attribute KNN.

We compare ANCKA with 16 competitors for AMGC task, including k-means, HAC and

the following:

e 5 AMGC methods: a multi-view graph auto-encoder model 02MAC [24], HDMI
[49] that learns node embeddings via higher-order mutual information loss, MCGC
[91] and MAGC [77] which perform graph filtering and find a consensus graph for
spectral clustering, and GRACE [52] that is a general graph convolution clustering

method;
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Table 3.2: Attributed Hypergraph Clustering (AHC) Quality on Small Datasets.

Query Cora-CA Cora-CC Citeseer
Algorithm Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI
HyperAdj | 0.212 0.198 0.013 -0.004 | 0.233 0.216 0.038 0.022 | 0.255 0.191 0.039 0.015 | 0.226 0.182 0.008 0.002
HNCut 0.239 0.218 0.016 0.002 | 0.238 0.127 0.023 -0.002 | 0.213 0.125 0.021 -0.005| 0.222 0.167 0.010 0.004
KaHyPar | 0.220 0.205 0.016 0.003 | 0.275 0.265 0.084 0.050 | 0.309 0.289 0.135 0.089 | 0.275 0.265 0.045 0.036
k-means 0.586 0.581 0.461 0.230 | 0.349 0.297 0.158 0.086 | 0.351 0.312 0.176 0.097 | 0.460 0.424 0.219 0.185
HAC 0.541 0.575 0.453 0.173 | 0.374 0.336 0.234 0.096 | 0.374 0.336 0.234 0.096 | 0.376 0.352 0.188 0.083
ATHyperAdj | 0.281 0.259 0.036 0.019 | 0.255 0.232 0.061 0.032 | 0.262 0.238 0.061 0.035 | 0.218 0.198 0.010 0.005
ATHNCut 0.241 0.220 0.017 0.003 | 0.438 0.297 0.263 0.183 | 0.556 0.456 0.317 0.288 | 0.563 0.483 0.325 0.286
ATMetis | 0.520 0.507 0.349 0.264 | 0.575 0.550 0.403 0.346 | 0.552 0.529 0.379 0.310 | 0.612 0.590 0.357 0.348
ATKaHyPar | 0.243 0.225 0.025 0.009 | 0.528 0.477 0.316 0.260 | 0.529 0.480 0.299 0.246 | 0.551 0.532 0.304 0.276
k-MQI 0.222 0.071 0.019 -0.001| 0.304 0.070 0.005 0.001 | 0.302 0.069 0.005 0.000 | 0.212 0.059 0.003 0.000
k-Nibble | 0.252 0.121 0.025 0.008 | 0.321 0.119 0.070 0.060 | 0.391 0.165 0.155 0.098 | 0.345 0.170 0.139 0.102
Infomap 0.235 0.215 0.017 0.002 | 0.514 0.464 0.343 0.266 | 0.541 0.479 0.393 0.347| 0.491 0.463 0.263 0.221
Louvain 0.239 0.218 0.017 0.003 | 0.501 0.430 0.332 0.217 | 0.569 0.546 0.373 0.269 | 0.570 0.486 0.319 0.308
CESNA 0.222 0.191 0.024 0.002 | 0.305 0.092 0.030 0.000 | 0.378 0.240 0.140 0.053 | 0.206 0.060 0.012 0.000
ACMin-C | 0.233 0.219 0.017 0.003 | 0.526 0.493 0.319 0.237 | 0.556 0.473 0.349 0.259 | 0.643 0.587 0.355 0.376
ACMin-S | 0.241 0.140 0.008 -0.002| 0.523 0.477 0.318 0.239 | 0.526 0.462 0.340 0.249 | 0.636 0.597 0.351 0.365
GNMF 0.451 0.413 0.345 0.247 | 0.460 0.412 0.240 0.165 | 0.436 0.355 0.194 0.132 | 0.500 0.462 0.271 0.257
JNMF 0.216 0.211 0.014 -0.001| 0.494 0.443 0.286 0.216 | 0.453 0.426 0.230 0.178 | 0.543 0.518 0.246 0.242
GRAC 0.410 0.389 0.196 0.087 | 0.601 0.593 0.376 0.308 | 0.556 0.507 0.349 0.262 | 0.612 0.575 0.329 0.332
ANCKA 0.715 0.662 0.645 0.571|0.651 0.608 0.462 0.406 |0.592 0.520 0.412 0.338 | 0.662 0.615 0.392 0.397

e NCut [106] and Metis [55] that apply traditional graph clustering methods over

the aggregation of the adjacency matrices of all graph layers in the input mul-

tiplex graph;

e ATNCut and ATMetis that apply NCut and Metis to the aggregated matrix of

all layers’ adjacency matrices and the attribute KNN graph; Infomap [103],

Louvain [8], k-MQI [63] and k-Nibble [4] in the same way;

e CESNA [139] that treats the aggregated adjacency matrix of all layers as an

attributed graph;

For all competitors, we adopt the default parameter settings as suggested in their

respective papers. Hyperparameters for AMGC algorithms MCGC and MAGC are tuned

as instructed in the corresponding papers, and we report the best results acquired.

As for ANCKA on attributed hypergraphs, i.e., AHCKA [73], unless otherwise specified,

we set parameters on all datasets: a = 0.2, § = 0.5, and 7 = 3, parameter K = 10

for KNN construction, the convergence threshold e = 0.005, and the numbers of

iterations T, = 1000, T; = 25. The interval parameter 7 is set to 5 on all datasets
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Table 3.3: Attributed Hypergraph Clustering (AHC) Quality on Medium/Large
Datasets.

20News DBLP Amazon MAG-PM Quality
Algorithm | Acc F1  NMI ARI | Acc F1 NMI ARI | Acc F1  NMI ARI | Acc F1 NMI ARI | Rank

HyperAdj | 0.338 0.274 0.010 0.010 | 0.234 0.158 0.019 0.007 | 0.292 0.105 0.043 0.070 | 0.138 0.078 0.051 0.028 15.5
HNCut 0.683 0.561 0.373 0.387 | 0.279 0.113 0.020 0.009 | 0.310 0.032 0.001 0.000 | 0.253 0.022 0.005 0.001 13.8
KaHyPar | 0.479 0.468 0.169 0.172]0.559 0.534 0.390 0.338 | 0.494 0.442 0.694 0.385 | 0.367 0.306 0.483 0.247 | 10.9
k-means | 0.404 0.373 0.147 0.045 | 0.529 0.513 0.362 0.283 | 0.380 0.257 0.362 0.175 | 0.272 0.196 0.229 0.071 10.1
HAC 0.430 0.382 0.237 0.058 | 0.571 0.532 0.372 0.310 OOM OOM 11.1

ATHyperAdj | 0.317 0.261 0.016 0.006 | 0.296 0.220 0.068 0.035 | 0.273 0.103 0.050 0.057 | 0.189 0.048 0.043 -0.006| 13.8
ATHNCut | 0.338 0.133 0.002 0.001 | 0.458 0.245 0.386 0.173 | 0.310 0.033 0.003 0.000 | 0.269 0.035 0.035 -0.001| 10.8

ATMetis | 0.612 0.596 0.264 0.281 | 0.671 0.670 0.567 0.496 OOM 0.304 0.254 0.401 0.196 4.9
ATKaHyPar | 0.632 0.610 0.295 0.328 | 0.650 0.658 0.522 0.457 | 0.527 0.504 0.680 0.386 | 0.352 0.295 0.411 0.205 5.7
k-MQI 0.336  0.126 0.000 0.000 | 0.271 0.071 0.000 0.000 OOM 0.252  0.018 0.000 0.000 17.1
k-Nibble | 0.338 0.129 0.002 0.000 | 0.254 0.086 0.028 0.006 OOM 0.252  0.019 0.000 0.000 14.3
Infomap | 0.338 0.129 0.004 0.000 | 0.595 0.573 0.488 0.404 OOM 0.398 0.172 0.380 0.248 9.5
Louvain | 0.633 0.522 0.304 0.323 | 0.643 0.580 0.554 0.470 OOM OOM 8.3
CESNA 0.379 0.350 0.086 0.047 | 0.272 0.072 0.001 0.000 >12h >12h 15.5

ACMin-C | 0.558 0.524 0.219 0.239 | 0.607 0.563 0.503 0.445 | 0.458 0.113 0.354 0.244 | 0.519 0.293 0.499 0.430 6.3
ACMin-S | 0.7116 0.669 0.365 0.416 | 0.547 0.474 0.472 0.359 | 0.473 0.056 0.393 0.263 | 0.550 0.341 0.550 0.499 6.8

GNMF 0.436 0.271 0.070 0.061 | 0.613 0.506 0.417 0.407 OOM OOM 10.6
JINMF 0.582 0.423 0.247 0.241 | 0.618 0.588 0.447 0.396 OOM OOM 11.0
GRAC 0.391 0.306 0.068 0.056 | 0.648 0.657 0.563 0.487 | 0.612 0.488 0.625 0.486 | 0.398 0.315 0.386 0.197 5.3

ANCKA 0.7118 0.658 0.409 0.469 |0.797 0.774 0.632 0.632|0.660 0.492 0.630 0.524|0.566 0.405 0.561 0.471 1.3

except the large and dense hypergraph Amazon, where we set 7 = 1 to expedite early
termination in light of the immense per-iteration overhead when processing Amazon.
On large datasets (i.e., Amazon and MAG-PM), T; is set to 1 and § = 04. In
ANCKA, for attributed graphs and multiplex graphs, we fix K = 50, except for large
datasets TWeibo and Amazon2M with K = 10. In particular, we find it necessary
to adjust the § parameter for certain instances following the practice in recent works
[52, 01 [77]. $ is set to 0.5 for Cora and Wiki and 0.4 on Citeseer-UG, Citeseer-DG,
TWeibo, and Amazon2M. We tune /5 in [0.1,0.9] by step size 0.1 for multiplex graphs.
All the remaining hyperparameters in ANCKA follow the default setting of AHCKA. The
parameter settings in GPU-based ANCKA-GPU are identical to ANCKA.

3.8.2 Performance Evaluation

In this section, we report clustering quality and efficiency of all methods on all

datasets. For each method, we repeat 10 times and report the average performance.
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Table 3.4: Attributed Graph Clustering (AGC) Quality on Cora, Citeseer-UG &
Wiki.

Cora Citeseer-UG Wiki
Algorithm | Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

Metis 0.448 0436 0330 0.238 | 0391 0.380 0.155 0.131 | 0.408 0.364 0.351  0.206

NCut 0.298  0.072  0.012 -0.003 | 0.218 0.087 0.009 0.004 | 0.172 0.025 0.016  0.000
k-means 0.318 0.295 0.151  0.072 | 0.454 0429 0.223 0.173 | 0.275 0.176  0.272  0.081
HAC 0.372 0328 0.219 0.095 | 0.422 0.383 0.190 0.139 | 0449 0.375 0.437 0.185

ATMetis 0.471 0.448 0317 0.241 | 0.586 0.566  0.337  0.318 | 0.506  0.440 0.505 0.336
ATNCut 0.417  0.403 0.271  0.112 | 0409 0374 0.212 0.090 | 0.424 0.381  0.471  0.150
k-MQI 0.302  0.068 0.004 0.000 | 0.211  0.059 0.003 0.000 | 0.169 0.021 0.013  0.000

k-Nibble | 0.378 0.167 0.138 0.041 | 0.281  0.151 0.097 0.018 | 0.217 0.105 0.114  0.021

Infomap 0.569  0.503 0.455 0.301 | 0.590 0.546  0.312  0.317 | 0.467 0.417 0.468  0.290
Louvain 0.671  0.640 0474 0397 | 0.680 0.621 0426 0413 | 0.611 0.513 0.572 0.427

CESNA 0.320 0.251 0.198 0.053 | 0.212 0.074 0.022 0.001 | 0.450 0.332 0.371  0.251

GNMF 0.554 0450 0413 0.283 | 0.562 0.478 0.296 0.301 | 0.48  0.353 0.504  0.352
AGCGCN 0.689  0.655 0.531 0.446 | 0.675 0.630 0.418 0.424 | 0.446 0.384 0.422 0.108

FGC 0.693  0.590 0.541 0470 | 0.682 0.635 0.431 0.439 | 0.513 0420 0.484 0.239
ACMin 0.655  0.558 0.492 0417 | 0.674 0.636 0.416 0.429 | 0450 0.281 0.391 0.255
GRACE 0.720 0.723 0.533 0.456 | 0.678 0.634 0.416 0431 | 0.603 0.453 0.526  0.302
ANCKA 0.723 0.686 0.556 0.484 | 0.691 0.651 0.438 0.450 | 0.551 0.467 0.543 0.353

Table 3.5: Attributed Graph Clustering (AGC) Quality on Citeseer-DG, Tweibo &
Amazon2M.

Citeseer-DG Tweibo Amazon2M Quality
Algorithm | Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

Metis 0.410 0.397 0.175 0.155 | 0.141 0.093 0.007 0.004 | 0.223 0.163 0.277  0.080 10.0
NCut 0.278 0.069 0.009 -0.004 | 0.427 0.067 0.000 0.000 | 0.136 0.016 0.004 -0.005 13.8
k-means | 0.440 0.419 0.209 0.158 | 0.277 0.108 0.013 -0.011 | 0.178 0.055 0.100  0.008 10.9
HAC 0.461 0.444 0.208 0.153 OOM OOM 11.7

ATMetis | 0.594 0.575 0.366 0.340 | 0.131 0.086 0.005 0.003 | 0.267 0.197 0.411 0.127 6.8
ATNCut 0.465 0378 0.277 0.120 | 0.420 0.078 0.003 0.008 | 0.272 0.010 0.003 -0.001 10.2
k-MQI 0.212 0.059 0.003 0.000 | 0.411 0.048 0.001 0.000 | 0.273 0.009 0.000 0.000 14.3

k-Nibble | 0.283 0.151 0.098 0.019 | 0.428 0.067 0.000 0.000 | 0.375 0.042 0.015 0.004 12.0
Infomap | 0.621 0.565 0.357 0.368 | 0.417 0.084 0.000 0.001 | 0.357 0.191 0.424 0.214 6.6

Louvain | 0.682 0.617 0.419 0408 | 0.271 0.113 0.015 0.007 | 0.463 0.154 0.429 0.520 4.0

CESNA 0.213 0.074 0.022 0.001 >12h 0.273  0.009  0.000 0.000 12.8
GNMF 0.570  0.526  0.347  0.353 OOM OOM 9.6
AGCGCN 0.672 0.624 0.416 0.420 OOM OOM 8.3
FGC 0.684 0.635 0.436 0.444 >12h >12h 6.5

ACMin 0.677 0.633 0.420 0.433 | 0.399 0.109 0.004 0.012 | 0.318 0.182 0.342 0.126 5.6
GRACE 0.684 0.638 0.424 0.440 | 0.292 0.119 0.026 -0.009 | 0.271 0.154 0.340 0.118 4.0
ANCKA 0.696 0.651 0.444 0.460 | 0.433 0.129 0.023 0.019 | 0.494 0.191 0.441 0.545 1.3

Quality Evaluation

The clustering quality is measured by 4 classic metrics including overall accuracy
(Acc), average per-class F1 score (F1), normalized mutual information (NMI), and

adjusted Rand index (ARI). The former three metrics are in the range [0, 1], whereas
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Table 3.6: Attributed Multiplex Graph Clustering (AMGC) Quality.

ACM IMDB DBLP-MG Quality
Algorithm Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

Metis 0.648 0.651 0.389 0.369 | 0.376 0.374 0.004 0.004 | 0.864 0.860 0.660  0.688 11.6

NCut 0.350  0.174  0.003  0.000 | 0.378 0.18  0.002 0.000 | 0.299 0.125 0.012 -0.001 15.3
k-means 0.679 0.681 0.320 0.312 | 0.525 0.531 0.146 0.139 | 0.368 0.285 0.083  0.060 10.1
HAC 0.576  0.557 0.234 0.222 | 0.483 0.462 0.100 0.101 | 0.381 0.304 0.131  0.070 11.4

ATMetis 0.755  0.757  0.510  0.490 | 0.546  0.551 0.161 0.152 | 0.868 0.864 0.669  0.697 6.5
ATNCut 0.778 0775 0.462 0.465 | 0.499 0.466 0.154 0.165 | 0.360 0.285 0.104  0.023 8.8
k-MQI 0.351  0.174 0.001  0.000 | 0.377 0.183 0.001 0.000 | 0.295 0.115 0.002  0.000 15.8

k-Nibble | 0.343 0.221  0.018 0.001 | 0.370 0.251  0.022 0.005 | 0.295 0.115 0.002  0.000 15.2
Infomap 0.653  0.665 0.418 0.353 | 0.412 0362 0.027 0.025 | 0.296 0.116 0.002  0.000 12.6

Louvain 0.659  0.670 0.422 0364 | 0.452 0.392 0.057 0.065 | 0.909 0900 0.731  0.788 8.1
CESNA 0.624  0.593  0.405 0.330 | 0.377 0.329 0.006 0.007 | 0.827 0.820 0.583  0.603 12.0
02MAC 0.895 0.897 0.667 0.716 | 0.547 0.550 0.135 0.139 | 0.873 0.865 0.669  0.705 5.5
HDMI 0.900 0.899 0.695 0.732 | 0.541 0.547 0.162 0.142 | 0.895 0.885 0.706  0.761 4.7
MCGC 0915 0916 0.709 0.763 | 0.567  0.545 0.164 0.186 | 0.902 0.895 0.716  0.771 3.5
MAGC 0.872  0.872 0.597 0.659 | 0.484 0.424 0.057 0.062 | 0.928 0.923 0.771  0.827 6.0
GRACE 0.889 0.891 0.651 0.698 | 0.629 0.629 0.185 0.205 | 0.923 0918 0.767 0.817 3.0

ANCKA 0.928 0.928 0.739 0.796 | 0.576 0.544 0.176 0.195 | 0.933 0.929 0.785 0.839 1.7

Table 3.7: Efficiency of Attributed Hypergraph Clustering (AHC) (Time in Seconds,
RAM in GBs). The Quality Rank column is from Table . Among all native AHC
methods in the last 4 rows, the best is in bold, and the runner-up is underlined.

Query Cora-CA Cora-CC Citeseer 20News DBLP Amazon MAG-PM | Quality
Algorithm | Time RAM | Time RAM | Time RAM | Time RAM | Time RAM | Time RAM | Time RAM | Time RAM | Rank

HNCut 0.057 0.139 | 0.582 0.141 | 0.654 0.158 | 0.528 0.172 | 0.116 0.134 | 4.282 0.625 | 477.1 3.291 | 666.8 4.256 | 13.8
KaHyPar | 1.556 0.105|0.375 0.132|0.285 0.129 | 0.292 0.159 | 1.516 0.119 | 3.795 0.606 | 3707 37.14 | 556.9 9.487 | 10.9
ATHNCut | 0.393 0.178 | 0.650 0.428 | 0.657 0.429 | 0.835 1.031|4.935 2.164 | 35.68 3.589 | 685.9 54.24 | 789.3 57.36 | 10.8
ATMetis | 0.081 0.125|0.238 0.282|0.239 0.283 | 0.389 0.307 | 13.55 2.966 | 26.85 3.308 OOM 557.9 64.20| 4.9
ATKaHyPar | 1.668 0.128 | 1.610 0.225 | 1.543 0.225 | 1.733 0.304 | 11.47 2.400 | 50.32 3.256 | 5529 54.28 | 1509 57.41 5.7
k-MQI 0.104 0.243 ] 0.361 0.352 | 0.376 0.363 | 0.418 0.427 | 11.23 3.866 | 28.98 3.397 OOM 1567 60.54 | 17.1
k-Nibble | 0.151 0.224 | 5.827 0.655 | 5.888 0.667 | 21.83 0.885 | 44.55 8.975| 1338 51.77 OOM 3858 281.6 | 14.3
Infomap |0.221 0.191 [ 0.742 0.291 | 0.611 0.293 | 0.719 0.363 | 556.1 21.43 | 43.50 3.263 OOM 11756 200.9 | 9.5

Louvain | 0.732 0.195|1.915 0.232|0.735 0.242 | 1.911 0.313 | 1567 21.77 | 70.15 3.313 OOM OOM 8.3
CESNA 0.620 0.119 | 2.400 0.134 | 9.816 0.137 | 3.251 0.164 | 7643 0.157 | 92.04 0.617 >12h >12h 15.5
GNMF 2.851 0.494 | 15.92 0.369 | 20.55 0.316 | 72.96 0.562 | 36.76 4.273 | 612.3 33.27 OOM OOM 10.6
JNMF 3.366 0.494 | 7.754 0.369 | 22.66 0.317 | 61.32 0.549 | 253.3 4.273 | 3247 33.27 OOM OOM 11.0

GRAC 1.701 0.142|7.661 0.288 | 3.696 0.287 | 13.15 0.454 |3.368 0.275| 91.21 1.700 | 14662 175.1 | 3504 92.69 | 5.3
ANCKA |0.342 0.161 |0.402 0.231|0.416 0.232|0.635 0.317|8.176 0.383 |41.50 0.998| 1286 56.71|1371 59.25| 1.3

ARI ranges from -0.5 to 1. We also sort all methods by each metric and calculate

their average Quality Rank for AHC, AGC, and AMGC, provided in the last column
of Tables [3.3] [3.5] and

AHC. Tables[3.2]and [3.3| present the Acc, F1, NMI, and ARI scores of each method on
small and medium/large attributed hypergraph datasets, respectively. The first ob-
servation from Tables and is that ANCKA on attributed hyergraphs (i.e., AHCKA)

consistently achieves outstanding performance over all competitors on all datasets
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under almost all metrics, often by a significant margin. ANCKA has a quality rank of
1.3, much higher than the runner-up ATMetis (4.9) and GRAC (5.2). On all the four
small datasets (i.e., Query, Cora-CA, Cora-CC, and Citeseer), ANCKA outperforms the
best competitors (underlined in Table by at least 1.9% in terms of Acc and NMI.
On all the four medium/large attributed hypergraphs (i.e., 20News, DBLP, Amazon,
and MAG-PM), ANCKA also yields remarkable improvements upon the competitors,
with percentages up to 12.6%, 10.4%, 6.5%, 13.6% in Acc, F1, NMI, and ARI respec-
tively. Few exceptions exist, where ANCKA still leads in three out of the four metrics,
demonstrating the best overall performance. The results in Tables and also
confirm the effectiveness of ANCKA over various attributed hypergraphs from different
application domains, e.g., web queries, news messages, and review data. The per-
formance of ANCKA is ascribed to our optimizations based on KNN augmentation and
MHC in Section and Section [3.4], and the framework for generating high-quality
BCM matrices in Section [3.5]

AGC. Tables and present the Acc, F1, NMI, and ARI scores of each method
on all attributed graphs for AGC task. ANCKA consistently outperforms existing com-
petitors under most metrics, though few exceptions exist where ANCKA is comparable
to the best. ANCKA has a quality rank of 1.3, much higher than the runner-up with
quality rank 4.0. For example, on Citeseer-UG in Table [3.4] ANCKA achieves higher
Acc, F1, NMI and ARI than the runner-up performance underlined. On the two large
datasets, TWeibo and Amazon2M in Table[3.5], ANCKA also produces clusters with high
quality, while GNMF, AGCGCN, and FGC run out of memory or cannot finish within 12
hours. Notably, on Amazon2M, ANCKA surpasses all methods on all metrics except
F1 (0.006 behind ATMetis) while achieving 0.494 accuracy (runner-up is Louvain at
0.463) and 0.545 ARI (runner-up is Louvain at 0.520). The effectiveness of ANCKA
validates the versatility of the proposed techniques for different clustering tasks, e.g.,
AGC. Besides, ATMetis and ATNCut generally outperform Metis and NCut in AGC

performance, respectively, exhibiting the efficacy of the proposed KNN augmentation.
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Table 3.8: Efficiency of Attributed Graph Clustering (AGC) Algorithms (Time in
Seconds, RAM in GBs).The Quality Rank column is from Table . Among all
native AGC methods in the last 7 rows, the best is in bold, and the runner-up is
underlined.

Cora Citeseer-UG Wiki Citeseer-DG Tweibo Amazon2M | Quality
Algorithm | Time RAM | Time RAM | Time RAM | Time RAM | Time RAM | Time RAM | Rank

Metis 0.006  0.203 | 0.009 0.347 | 0.242 0.489 | 0.006 0.316 | 121.6 4.688 | 46.40 8.150 10.0
NCut 0.072  0.198 | 0.350 0.326 | 0.087 0.475 | 0.321  0.347 | 409.3 4.662 | 874.8 8.132 13.8
ATMetis | 0.688 0.352 | 0.571 0.533 | 0.807 0.591 | 0.398 0.275 | 360.0 13.58 | 130.4 16.63 6.8
ATNCut 0.469 0.351 | 0.589 0.501 | 0.902 0.560 | 0.548 0.258 | 334.6 13.66 | 502.5 16.58 10.2
k-MQI 0.382  0.438 | 0.488 0.585 | 0.721 0.502 | 0.348 0.447 | 2442 29.90 | 1453 19.65 14.3
k-Nibble | 4.656 0.495 | 19.21 0.626 | 13.86 0.550 | 18.99 0.685 | 3826  102.3 | 3587  89.14 12.0
Infomap | 1.266 0.398 | 1.668 0.544 | 1.499 0.739 | 1.556 0.310 | 6701 97.48 | 4155 45.75 6.6
Louvain | 6.773 0.371 | 7.319 0.503 | 4.527 0.669 | 6.584 0.572 | 10010 84.50 | 21696 72.80 4.0

CESNA 12.81 0.144 | 35.21 0.167 | 3549 0.162 | 28.12 0.178 >12h 1931 7.701 12.8
GNMF 13.18 0.269 | 37.01 0.397 | 22.38 0.579 | 42.81 0.438 OOM OOM 9.6
AGCGCN 5.842  0.960 | 33.34 2.120 | 5.965 1.003 | 34.18 2.326 OOM OOM 8.3
FGC 29.68 1.998 | 225.7 3.273 | 50.93 3.080 | 44.93 3.571 >12h >12h 6.5

ACMin 0.368 0.164 | 0.400 0.177 | 3.646 0.380 | 0.556 0.234 | 1098 18.61 | 5300 20.21 5.6
GRACE 5.589 0.651 | 21.82 1.793 | 16.78 1.740 | 15.23 1.960 | 2317 60.44 | 3162 39.71 4.0
ANCKA 1.251 0.369 | 1.587 0.517 | 0.907 0.706 | 0.838 0.280 | 1318 19.89 | 1708 17.01 1.3

AMGC. Table reports the Acc, F1, NMI, and ARI scores of all methods on
all attributed multiplex graphs. ANCKA has the best quality rank. As shown, on
ACM and DBLP-MG, ANCKA achieves the best clustering quality among all methods
under all metrics, with NMI and ARI leading by at least 3% on ACM, while being the
second best in three metrics on IMDB. As shown later in Table 3.9} on these datasets,
ANCKA is faster than existing native AMGC methods by at least an order of magnitude.
With the intuitive design of random walk transition matrix Py on multiplex graphs in
Section[3.6.1, ANCKA can utilize the proposed KNN augmentation, clustering objective,

and optimization techniques to maintain its excellent performance on the AMGC task.

Efficiency Evaluation

Tables , and report the runtime (in seconds, with KNN construction in-
cluded) and memory overhead (in Gigabytes), for AHC, AGC, and AMGC, respec-
tively. For ease of comparing the trade-off between quality and efficiency, the last
column of Tables and contains the corresponding quality ranks from Ta-
bles [3.3] and respectively. In each table, the methods are separated into two
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Table 3.9: Efficiency of Attributed Multiplex Graph Clustering (AMGC) Algorithms
(Time in Seconds, RAM in GBs). The Quality Rank column is from Table [3.6]
Among all native AMGC methods in the last 6 rows, the best is in bold, and the
runner-up is underlined.

ACM IMDB DBLP-MG | Quality
Algorithm | Time RAM | Time RAM | Time RAM | Rank

Metis 0.477 0.382 | 0.037 0.375 | 1.798 0.602 | 11.6
NCut 0.761 0.392 | 0.123 0.384 | 2.218 0.611 15.3
ATMetis | 1.418 1.034 | 1.181 1.134 | 2.441 0.672 6.5
ATNCut | 1.324 1.037 | 1.236 1.141 | 2.587 0.675 8.8
k-MQI 1.033 1.143 | 1.064 1.319 | 1.048 0.957 | 15.8
k-Nibble | 7.230 0.696 | 10.32 0.766 | 3.999 1.109 | 15.2
Infomap | 17.78 1.547 | 3.624 1.260 | 48.45 3.883 | 12.6
Louvain | 43.91 1.300 | 9.537 1.151 | 158.0 3.948 8.1
CESNA 68.85 0.309 | 32.28 0.372 | 819.2 0.534 | 12.0

02MAC 115.0 1.691 | 679.1 2.109 | 684.1 2.638 5.5
HDMI 161.2 2.902 | 245.9 2.980 | 537.8 3.162 4.7
MCGC 748.2 1.697 | 15562 2.414 | 2245 3.283 3.5
MAGC 26.10 1.301 | 33.69 1.908 | 35.98 2.665 6.0
GRACE 110.1 1.173 | 21.81 1.341| 49.33 0.672| 3.0
ANCKA |1.738 1.062|1.574 1.485 |3.766 0.691 1.7

categories: non-native methods extended from other clustering problems and native
methods for the corresponding task. For instance, in Table there are 4 native

AHC methods in the last 4 rows, while the non-native methods are in the rows above.

In Tables 3.8 and although certain non-native methods are efficient, their
quality ranks in terms of clustering quality are typically low. Hence, in the following,
we mainly compare the efficiency of ANCKA against the native methods for each task.

A method is terminated early if it runs out of memory (OOM) or cannot finish within

12 hours.

AHC. In Table compared with native AHC methods, we can observe that ANCKA
is significantly faster on most datasets, often by orders of magnitude. For example, on
a small graph Citeseer, ANCKA takes 0.635 seconds, while the fastest AHC competitor
GRAC needs 13.15 seconds, meaning that ANCKA is 20.7x faster. On large attributed
hypergraphs including Amazon and MAG-PM, most existing AHC solutions fail to
finish due to the OOM errors, whereas ANCKA achieves 11.4x and 2.6x speedup over
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the only viable native AHC competitor GRAC on Amazon and MAG-PM, respectively.
An exception is 20News, which contains a paucity of hyperedges (100 hyperedges),
where ANCKA is slower than GRAC. Recall that in Table [3.3] compared to ANCKA, GRAC
yields far inferior accuracy in terms of clustering on 20News, which highlights the
advantages of ANCKA over GRAC. Additionally, while ATMetis is fast, it achieves an
average quality rank of 4.9, which falls short of the 1.7 quality rank attained by
ANCKA. As shown in Tables [3.2] and [3.3] ANCKA surpasses ATMetis in all metrics but
one. Moreover, ATMetis encounters OOM on Amazon. As for the memory consump-
tion (including the space to store hypergraphs), observe that ANCKA has comparable
memory overheads with the native AHC competitors on small graphs and up to 3.1x

memory reduction on medium/large graphs.

AGC. In Table for AGC, ANCKA has comparable running time to ACMin, a recent
AGC method that is optimized for efficiency, while being faster than the other native
AGC methods. However, the quality rank of ANCKA is 1.3, much higher than 5.6 of
ACMin. Specifically, in Tables[3.4]and [3.5] ANCKA consistently achieves better clustering
quality than ACMin on all six attributed graphs under all metrics. Moreover, ANCKA
remains to be the runner-up in terms of running time on the first five datasets, and is
the fastest on the largest Amazon2M for clustering. Memory-wise, ANCKA consumes a
moderate amount of memory that stays below 1GB over the first four small datasets

and achieves decent performance on two large datasets, TWeibo and Amazon2M.

AMGC. In Table ANCKA achieves a significant speedup ratio over the native
AMGC baselines, often by an order of magnitude, while being memory efficient.
Specifically, ANCKA achieves a speedup of 15.0x, 13.9x, and 9.5x, compared to the
runner-up native AMGC methods MAGC and GRACE. The memory consumption of
ANCKA is also less than the majority of existing native AMGC methods.
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Table 3.10: Evaluation between ANCKA and ANCKA-GPU.

Task Dataset Acc F1 NMI ARI Mem Time
CPU GPU |CPU GPU|CPU GPU |CPU GPU |CPU GPU |CPU GPU (Speedup)
Query 0.715 0.719|0.662 0.664 | 0.645 0.666 | 0.571 0.578 | 0.161 1.083 [ 0.342 0.230 (1.49x%)
Cora-CA 0.651 0.653 | 0.608 0.610 | 0.462 0.469 | 0.406 0.411|0.231 1.096 | 0.402 0.265 (1.52x)
Cora-CC 0.592 0.580 | 0.520 0.535|0.412 0.395 | 0.338 0.311|0.232 1.098 | 0.416 0.296 (1.41x)
AFC Citeseer 0.662 0.668 | 0.615 0.620 | 0.392 0.387 | 0.397 0.410 | 0.317 1.128 | 0.635 0.575 (1.10x%)
20News 0.712 0.712 | 0.658 0.666 | 0.409 0.407 | 0.469 0.465 | 0.383 1.094 | 8.176 0.268 (30.5%)
DBLP 0.797 0.808 | 0.774 0.787|0.632 0.643 | 0.632 0.646 | 0.998 1.321 | 41.50 0.591 (70.2x)
Amazon 0.660 0.648 | 0.492 0.487 | 0.630 0.636 | 0.524 0.509 | 56.71 11.16 | 1286 152.3 (8.44 %)
MAG-PM 0.566 0.559 | 0.405 0.393 | 0.561 0.545 | 0.471 0.454 | 59.25 11.35 | 1371 120.2 (11.4x%)
Cora 0.723 0.683|0.686 0.621|0.556 0.533 | 0.484 0.470 | 0.369 1.120 | 1.251 0.213 (5.87x%)
Citeseer-UG | 0.691 0.690 | 0.651 0.649 | 0.438 0.437 | 0.450 0.451 | 0.517 1.153 | 1.587 0.507 (3.13x%)
AGC Wiki 0.551 0.560 | 0.467 0.487|0.543 0.547 | 0.353 0.368 | 0.706 1.151 | 0.907 0.357 (2.57x%)
Citeseer-DG | 0.696 0.694 | 0.651 0.652 | 0.444 0.441 | 0.460 0.454 | 0.280 1.159 | 0.838 0.508 (1.65x%)
TWeibo 0.433 0.434|0.129 0.126 | 0.023 0.022 | 0.019 0.016 | 19.89 16.73 | 1318 105.0 (12.6x%)
Amazon2M | 0.494 0.496 | 0.191 0.194 | 0.441 0.437 | 0.545 0.544 | 17.01 18.08 | 1708 158.9 (10.8x%)
ACM 0.928 0.924 |0.928 0.924|0.739 0.730 | 0.796 0.786 | 1.062 1.267 | 1.738 0.190 (9.15%)
AMGC | IMDB 0.576 0.553|0.544 0.510 | 0.176 0.166 | 0.195 0.184 | 1.485 1.136 | 1.574 0.236 (6.67x)
DBLP-MG |0.933 0.935|0.929 0.931|0.785 0.791 | 0.839 0.842 | 0.691 1.787 | 3.766 0.587 (6.42x%)

Evaluation on ANCKA-GPU

We compare the cluster quality and efficiency of the CPU-based ANCKA against ANCKA-GPU
in Section , with results reported in Table for the three tasks (AHC, AGC,
and AMGC) over all datasets. First, observe that ANCKA-GPU achieves similarly high-
quality cluster results as the CPU-based ANCKA across all datasets for all three tasks,
and the quality difference between ANCKA-GPU and ANCKA are often negligible, in terms

of Acc, F1, NMI, and ARI.

The last column of Table provides the running time of ANCKA-GPU and ANCKA
with 16 CPU threads. For the AHC task, the speedup of ANCKA-GPU is less sig-
nificant on the small attributed hypergraphs (Query, Cora-CA, Cora-CC, and Cite-
seer). We ascribe this to the numerous SVD operations on small k£ x k matrices in
Discretize-GPU, as it has been known that small dimensions of input matrices may
hurt the efficiency of GPU-based SVD [3]. On medium/large attributed hypergraphs
(20News, DBLP, Amazon, and MAG-PM), the GPU-accelerated version, ANCKA-GPU,
achieves speedup ratios of 30.5, 70.2, 8.44, and 11.4, respectively, over the CPU version
ANCKA. The high speedup ratios of ANCKA-GPU, often exceeding an order of magnitude,
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validate the efficiency of the technical designs elaborated in Section especially on
large-scale hypergraphs. For the AGC task, similarly, on small attributed graphs,
Cora, Citeseer-UG, Wiki, and Citeseer-DG, ANCKA-GPU is faster than ANCKA while
the speedup ratio is usually below 10, due to the same reason explained above. On
large attributed graphs (TWeibo and Amazon2M), ANCKA-GPU is more efficient than
ANCKA by an order of magnitude. For the AMGC task, ANCKA-GPU is also consistently
faster than ANCKA on all attributed multiplex graphs. The memory consumption of
ANCKA-GPU is measured by GPU video memory (VRAM), while that of ANCKA is by
RAM, and the consumption is reported in the second last column of Table in
GBs. The memory usage of ANCKA-GPU and ANCKA is not directly comparable, due
to the different computational architectures and libraries used on GPUs and CPUs.
Note that the major memory consumption of our implementations is in the KNN
augmentation step. On small or medium-sized datasets, e.g., Query and Cora-CA,
VRAM usage by ANCKA-GPU is higher than the RAM usage by ANCKA. The reason is
that ANCKA-GPU uses GPU-based Faiss for nearest-neighbor search and Faiss allocates
about 700MB of VRAM for temporary storage. On large datasets, ANCKA requires a
substantial RAM space due to the implementation of the ScaNN algorithm for KNN,
while GPU-based Faiss in ANCKA-GPU requires less VRAM space.

Then we enhance GRACE [52] with GPU acceleration using CuPy and cuML libraries,
resulting in GRACE-GPU for comparison. We also compare with the GPU-based imple-
mentation of the Spectral Modularity Maximization [89] clustering method dubbed as
SMM-GPU, which operates on the graph adjacency matrix for AGC (or clique expansion
of the hypergraph for AHC, or the sum of multiplex adjacency matrices for AMGC)
with the attribute KNN augmentation. The results for AHC, AGC, and AMGC are
presented in Tables [3.11H3.13] respectively. On the first six smaller datasets in Ta-
ble for AHC, SMM-GPU exhibits lower quality in terms of Acc, F1, NMI, and
ARI, despite comparable efficiency to ANCKA-GPU, which delivers significantly better
clustering quality. ANCKA-GPU outperforms GRACE-GPU in both quality and efficiency
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Table 3.11: Additional GPU baselines for AHC.

Query Cora-CA
Algorithm Acc F1  NMI ARI Mem Time| Acc F1 NMI ARI Mem Time
cuGraph 0.237 0.191 0.012 0.004 1.073 0.381|0.155 0.039 0.022 0.012 1.089 0.220
GRACE-GPU | 0.420 0.435 0.204 0.076 1.823 1.326 | 0.589 0.583 0.368 0.296 1.956 4.870
ExtendGPU |0.719 0.664 0.666 0.578 1.083 0.230|0.653 0.610 0.469 0.411 1.096 0.265
Cora-CC Citeseer
Algorithm Acc F1  NMI ARI Mem Time| Acc F1 NMI ARI Mem Time
cuGraph 0.155 0.039 0.085 0.016 1.088 0.251| 0.212 0.059 0.055 0.002 1.329 0.265
GRACE-GPU| 0.550 0.503 0.346 0.253 1.904 2.466 | 0.512 0.465 0.280 0.271 2.064 5.356
ExtendGPU [0.580 0.535 0.395 0.311 1.098 0.296 |0.668 0.620 0.387 0.410 1.128 0.575
20News DBLP
Algorithm Acc  F1 NMI ARI Mem Time| Acc F1 NMI ARI Mem Time
cuGraph 0.440 0.430 0.192 0.155 3.120 1.816 | 0.160 0.046 0.013 0.000 2.543 0.703
GRACE-GPU| 0.361 0.316 0.079 0.022 1.920 2.408 | 0.681 0.695 0.543 0.443 3.170 47.90
ExtendGPU [0.712 0.666 0.407 0.465 1.094 0.268|0.808 0.787 0.643 0.646 1.321 0.591
Amazon MAGPM
Algorithm Acc F1 NMI ARI Mem Time| Acc F1 NMI ARI Mem Time
cuGraph OOM OOM
GRACE-GPU OOM OOM
ExtendGPU |0.648 0.487 0.636 0.510 11.16 152.3|0.559 0.393 0.545 0.454 11.35 120.2
Table 3.12: Additional GPU baselines for AGC.
Cora Citeseer-UG Wiki
Algorithm | Acc  F1  NMI ARI Mem Time| Acc F1 NMI ARI Mem Time| Acc F1 NMI ARI Mem Time
SMM-GPU | 0.408 0.325 0.227 0.161 2.585 0.293 | 0.437 0.373 0.223 0.204 2.752 0.405|0.533 0.433 0.503 0.345 2.773 0.360
GRACE-GPU|0.698 0.694 0.498 0.429 1.973 3.235|0.681 0.636 0.421 0.435 2.189 6.614|0.527 0.329 0.500 0.286 1.976 8.494

ANCKA-GPU

0.683 0.621 0.533 0.470 1.120 0.213

0.690 0.649 0.437 0.451 1.153 0.503

0.560 0.487 0.547 0.368 1.151 0.357

Algorithm

Citeseer-DG

Acc F1 NMI ARI Mem Time

Tweibo
Acc F1 NMI ARI Mem Time

Amazon2M

Acc F1 NMI ARI Mem Time

SMM-GPU
GRACE-GPU
ANCKA-GPU

0.438 0.375 0.226 0.206 2.774 0.382
0.685 0.636 0.427 0.441 2.162 3.745
0.694 0.652 0.441 0.454 1.159 0.508

0.389 0.098 0.012 -0.013 23.58 32.88
OOM
0.434 0.126 0.022 0.016 16.73 105.0

0.206 0.052 0.092 0.023 9.287 62.55
0.282 0.171 0.352 0.120 22.08 529.3
0.496 0.194 0.437 0.544 18.08 158.9

Table 3.

13: Additional GPU baselines for

AMGC.

Algorithm

ACM

Acc F1 NMI ARI Mem Time

IMDB

Acc F1 NMI ARI Mem Time

DBLP-MG

Acc F1 NMI ARI Mem Time

SMM-GPU | 0.615 0.580 0.337 0.331
GRACE-GPU| 0.888 0.890 0.648 0.694

2.903 0.293]0.544 0.440 0.194 0.197 2.797 0.354
2.157 7.802]0.532 0.532 0.115 0.112 2.352 12.37

0.557 0.356 0.427 0.383 3.251
0.922 0.917 0.765 0.815 2.641

0.633
3.569

ANCKA-GPU|0.924 0.924 0.730 0.786 1.267 0.190/0.553 0.510 0.166 0.184 1.136 0.236|0.935 0.931 0.791 0.842 1.787 0.587

across all AHC datasets. Notably, on large datasets Amazon and MAG-PM in Table

ANCKA-GPU efficiently produces satisfactory clusters, whereas GRACE-GPU and

SMM-GPU encounter out-of-memory due to their requirement to expand hypergraphs

into graphs. Similar observations are made for AGC and AMGC in Tables [3.12| and
Similar patterns are observed for AGC and AMGC in Tables [3.12| and [3.13]

In these tasks, ANCKA-GPU delivers superior clustering quality and efficiency on most

63



Chapter 3. ANCKA: Attributed Network Clustering

datasets, except IMDB where ANCKA-GPU is the second best, while SMM-GPU yields
lower-quality outcomes and GRACE-GPU falls behind our method in speed. We con-
clude that ANCKA-GPU offers high clustering quality with remarkable efficiency.

3.8.3 Experimental Analysis

Varying K. Figure depicts the Acc, F1, NMI scores, and the KNN computation
time of ANCKA on 8 attributed hypergraphs (AHC) when varying K from 2 to 1000.
We can make the following observations. First, on most hypergraphs, the clustering
accuracies of ANCKA first grow when K is increased from 2 to 10 and then decline,
especially when K is beyond 50. The reasons are as follows. When K is small, the
KNN graph Gx in ANCKA fails to capture the key information in the attribute matrix
X, leading to limited result quality. On the other hand, when K is large, more noisy
or distorted information will be introduced in Gy, and hence, causes accuracy loss.
This coincides with our observation in the preliminary study in Figure[3.2] Moreover,
as K goes up, the time of KNN construction increases on all datasets. Figures
and show the Acc, F1, NMI scores and KNN computation time of ANCKA on
the 6 attributed graphs and 3 attributed multiplex graphs for AGC and AMGC,
respectively, when varying K from 2 to 1000. On small graphs in Figure
and Figure[3.8] the cluster quality increases from 2 to 50, and then declines on datasets
such as Citeseer-UG, Wiki, and ACM. On large datasets TWeibo and Amazon2M in
Figure [3.7¢ and a turning point appears around K = 10. Therefore, we set K

to be 50 and 10 on these small and large datasets, respectively.

Varying (. Recall that in the generalized (a,3,7)-random walk model, the pa-
rameter [ is used to balance the combination of topological proximities from graph
topology No and the attribute similarities from KNN graph G. Figure displays
the AHC performance of ANCKA on 8 attributed hypergraph datasets when 3 varies
from 0 to 1. When 3 = 0, ANCKA degrades to a hypergraph clustering method without
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Figure 3.7: Varying K for AGC (best viewed in color).

the consideration of any attribute information, whereas ANCKA only clusters the KNN
graph Gg regardless of the topology structure in H if 5 = 1. From Figure|3.6] we can
see a large B (e.g., 0.7-0.8) on small/medium datasets (Query, Cora-CA, Cora-CC,

Citeseer, 20News, and DBLP) bring more performance enhancements, meaning that
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Table 3.14: Ablation Analysis on AHC (Time in Seconds).

Cora-CA
Acce F1 NMI Time

Query Cora-CC Citeseer
Algorithm Acc F1 NMI Time Acc F1 NMI Time| Acc F1 NMI Time

ANCKA-random-init | 0.678 0.662 0.599 0.393 | 0.611 0.529 0.438 0.445|0.539 0.493 0.377 0.495 | 0.567 0.485 0.320 0.694
ANCKA-k-means 0.358 0.353 0.148 0.994 | 0.572 0.478 0.418 0.782 | 0.571 0.461 0.400 0.933 | 0.570 0.469 0.338 1.164

ANCKA 0.715 0.662 0.645 0.342|0.651 0.608 0.462 0.402|0.592 0.520 0.412 0.416 |0.662 0.615 0.392 0.635
20News DBLP Amazon MAG-PM
Algorithm Acc F1 NMI Time | Acc F1 NMI Time| Acc F1 NMI Time| Acc F1 NMI Time

ANCKA-random-init | 0.625 0.609 0.361 10.543| 0.637 0.603 0.585 41.00|0.623 0.297 0.562 1310 | 0.512 0.396 0.518 881.7
ANCKA-k-means 0.398 0.360 0.101 9.828 | 0.652 0.617 0.605 43.11 | 0.567 0.227 0.558 1492 | 0.536 0.276 0.504 4437
ANCKA 0.7118 0.658 0.409 8.176 |0.797 0.774 0.632 41.50 |0.660 0.492 0.630 1286 |0.566 0.405 0.561 1371

attribute information plays more important roles on those datasets. This is because
they have limited amounts of connections (or are too dense to be informative, e.g.,
on Query) in the original hypergraph structure as listed in Table and rely on
attribute similarities from the augmented KNN graph G for improved clustering.
By contrast, on Amazon and MAG-PM, ANCKA achieves the best clustering quality
with small £ in [0.1,0.4], indicating graph topology has higher weights on Amazon
and MAG-PM. Figures and report the Acc, F1, and NMI scores on AGC
and AMGC tasks respectively. Similarly, when [ increases from 0, the cluster quality
generally improves, then becomes stable around 0.4 and 0.5, and decreases when [ is
large and close to 1. On DBLP-MG in Figure the highest clustering quality can
be acquired with a small g around 0.1. We infer that node attributes in this dataset
are of limited significance for clustering, while on ACM and IMDB, the best quality
is achieved when S appropriately balances graph topology and attributes.
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Figure 3.11: Varying v on Attributed Hypergraphs.

Varying ~. We evaluate ANCKA in terms of AHC quality and running time when
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Table 3.15: Ablation Analysis on AGC (Time in Seconds).

Cora Citeseer-UG Wiki
Algorithm Acc F1 NMI Time Acc F1 NMI  Time | Acc F1 NMI Time

ANCKA-random-init | 0.676 0.619 0.544 0.869 | 0.681 0.681 0.435 1.436 | 0.507 0.436 0.529 1.082
ANCKA-k-means 0.597 0.456 0.511 1.254 | 0.684 0.631 0.440 1915 | 0.459 0.385 0.506 3.030

ANCKA 0.723 0.686 0.556 1.251 | 0.691 0.651 0.438 1.587 | 0.551 0.467 0.543 0.907
Citeseer-DG Tweibo Amazon2M
Algorithm Acc F1 NMI Time Acc F1 NMI  Time | Acc F1 NMI Time

ANCKA-random-init | 0.689 0.649 0.443 0.685| 0.364 0.094 0.005 1068 | 0.452 0.188 0.405 1269
ANCKA-k-means 0.689 0.636 0.445 2.005 | 0.428 0.067 0.000 1837 | 0.429 0.107 0.406 3420
ANCKA 0.696 0.651 0.444 0.838 | 0.433 0.129 0.023 1318 | 0.494 0.191 0.441 1708

Table 3.16: Ablation Analysis on AMGC (Time in Seconds).

ACM IMDB DBLP-MG
Algorithm Acc F1 NMI Time | Acc F1 NMI Time | Acc F1 NMI  Time

ANCKA-random-init | 0.923 0.924 0.728 1.546 | 0.536 0.482 0.165 1.131| 0.932 0.928 0.783 4.391
ANCKA-k-means 0.926 0927 0.738 1.818 | 0.383 0.203 0.005 1.703 | 0.926 0.920 0.774 4.719
ANCKA 0.928 0.928 0.739 1.738 | 0.576 0.544 0.176 1.574 | 0.933 0.929 0.785 3.766

varying . Figure displays the Acc, F1, NMI, and time on two representative
datasets when ~ varies from 1 to 5. The results on other datasets are similar and
thus are omitted for space. Observe that in practice the Acc, F1, and NMI scores
obtained by ANCKA first increase and then remain stable when 7 is beyond 3 and 2
on Cora-CC and Citeseer, respectively. By contrast, the running time goes up as

increases. Therefore, we set v = 3 in experiments.

Effectiveness Evaluation of InitBCM and Discretize. On attributed hyper-
graphs, to verify the effectiveness of InitBCM for the BCM initialization, we compare
ANCKA with the ablated version ANCKA-random-init, where the BCM matrix Y© is
initialized at random. In Table ANCKA obtains remarkable improvements over
ANCKA-random-init in Acc, F1, and NMI in comparable processing time. For instance,
on Amazon, ANCKA outperforms ANCKA-random-init by a large margin of 3.7% Acc,
19.5% F1, and 6.8% NMI with 24 seconds less to process. On MAG-PM, ANCKA
needs additional time compared to ANCKA-random-init. The reason is that ANCKA-
random-init starts with a low-quality BCM and converges to local optimum solutions
with suboptimal MHC, whereas ANCKA can bypass such pitfalls with a good initial

BCM from InitBCM and continue searching for the optimal solution with more iter-
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ations, which in turn results in a considerable gap in clustering quality. In addition,
we validate the effectiveness of Discretize used in ANCKA to transform k leading
eigenvectors Q to BCM matrix Y. Table reports the accuracy of ANCKA and
a variant ANCKA-k-means obtained by replacing Discretize in ANCKA with k-means
on all datasets. It can be observed that compared with ANCKA-k-means, ANCKA is
able to output high-quality BCM matrices Y with substantially higher clustering
accuracy scores while being up to 3.2x faster. The ablation results on AGC and
AMGC are in Tables and , respectively. Regarding clustering quality (Acc,
F1, NMI), Table shows that for AGC, ANCKA surpasses its ablated counterparts
on all datasets across most effectiveness metrics, except for the Citeseer datasets.
For example, ANCKA with InitBCM achieves an Acc that is 4.2% higher than ANCKA-
random-init on Amazon2M. In Table for AMGC, ANCKA performs the best on all
the three datasets. For efficiency in Tables and ANCKA is similar to ANCKA-
random-init, while ANCKA-k-means is slower. These results confirm the effectiveness

of the proposed techniques for AGC and AMGC.

3.8.4 Convergence Analysis

We provide an empirical analysis pertinent to the convergence of ANCKA for attributed
hypergraph clustering. To do so, we first disable the early termination strategies at
Line 10 in Algorithm (Il We also set 7 = 1 so as to evaluate the MHC (denoted as
¢¢) of the BCM matrix Y® generated in each t-th iteration of ANCKA and ANCKA-
random-init, where ¢ starts from 0 till convergence. Furthermore, we calculate the
Acc, F1, and NMI scores with the ground truth for each BCM matrix Y® generated
throughout the iterative procedures of ANCKA. Figures |3.12 show the MHC ¢y,
Acc, F1, and NMI scores based on the BCM matrix of each iteration in ANCKA, as well
as the MHC of ANCKA-random-init over all datasets. Notably, MHC ¢; experiences
a sharp decline when ¢ increases from 0 to 50 on most hypergraphs, while the Acc,

F1, and NMI results have significant growth. Moreover, compared to MHC with
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Figure 3.12: Convergence Analysis, part 1 (best viewed in color).
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Figure 3.13: Convergence Analysis, part 2 (best viewed in color).

random init, MHC curves of ANCKA are mostly lower (better) on all datasets under

the same t-th iteration. These phenomena demonstrate the effectiveness of InitBCM
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Figure 3.14: Runtime breakdown of CPU-based ANCKA and ANCKA-GPU in seconds.

in facilitating fast convergence of ANCKA. However, when we keep increasing ¢, these
scores either remain stable or deteriorate. For instance, MHC scores grow significantly
after 10 iterations on Amazon, while there is a big drop in Acc and F1 scores when
t > 45 on DBLP. This indicates that adding more iterations does not necessarily
ensure better solutions. Hence, the early termination proposed in ANCKA can serve as

an effective approach to remedy this issue.

3.8.5 Runtime Analysis

Figure [3.14] reports time breakdown of ANCKA and ANCKA-GPU into four parts: KNN
construction, orthogonal iterations, discretization, and greedy initialization and MHC
evaluation on all attributed hypergraphs. We first explain the results of ANCKA on
CPUs. On all datasets, the four parts in ANCKA all take considerable time to process,
except 20News and DBLP, where KNN construction dominates, since 20News and
DBLP contain many nodes but relatively few edges. Then, we compare the time

breakdown of ANCKA-GPU with ANCKA. On small attributed hypergraphs (Query, Cora-
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Table 3.17: Varying similarity measures in KNN construction for ANCKA on AHC.

Query Cora-CA Cora-CC
Measure Acc F1 NMI ARI | Acc F1 NMI ARI | Acc F1 NMI ARI
Manhattan | 0.595 0.558 0.537 0.386 | 0.491 0.432 0.304 0.247 | 0.470 0.384 0.243 0.185
Euclidean | 0.669 0.631 0.619 0.484 | 0.469 0.411 0.277 0.212 | 0.471 0.384 0.244 0.186
Sigmoid 0.316 0.323 0.084 0.041 | 0.572 0.497 0.415 0.341 | 0.687 0.648 0.460 0.424
Angular |0.721 0.667 0.659 0.576 | 0.504 0.463 0.397 0.302 | 0.576 0.508 0.391 0.323
Cosine 0.715 0.662 0.645 0.571 |0.651 0.608 0.462 0.406 | 0.592 0.520 0.412 0.338
Citeseer 20News DBLP Quality
Measure Acc F1 NMI ARI | Acc F1 NMI ARI | Acc F1 NMI ARI | Rank
Manhattan | 0.286 0.192 0.109 0.022 | 0.596 0.571 0.337 0.330 | 0.522 0.453 0.351 0.284 4.5
Euclidean | 0.303 0.286 0.109 0.060 | 0.658 0.568 0.396 0.427 | 0.525 0.489 0.350 0.285 4.0
Sigmoid | 0.653 0.606 0.387 0.393 [0.712 0.661 0.394 0.456 | 0.703 0.714 0.563 0.486 2.5
Angular | 0.650 0.599 0.377 0.387 |0.712 0.658 0.410 0.470| 0.662 0.602 0.617 0.556 2.3
Cosine 0.662 0.615 0.392 0.397 [0.712 0.658 0.409 0.469 |0.797 0.774 0.632 0.632 1.5
Table 3.18: Varying similarity measures in KNN construction for ANCKA on AGC.
Cora Citeseer-UG Wiki Citeseer-DG Quality
Measure Acc F1 NMI ARI | Acc F1 NMI ARI | Acc F1 NMI ARI | Acc F1 NMI ARI Rank
Manhattan | 0.545 0.473 0.446 0.321 | 0.472 0.432 0.234 0.233 | 0.416 0.318 0.312 0.199 | 0.583 0.540 0.306 0.304 4.5
Euclidean | 0.569 0.486 0.453 0.353 | 0.408 0.380 0.182 0.161 | 0.440 0.361 0.370 0.228 | 0.665 0.591 0.395 0.410 4.0
Sigmoid 0.659 0.562 0.518 0.443 | 0.684 0.648 0.431 0.441 | 0.537 0.459 0.510 0.343 | 0.691 0.649 0.437 0.450 2.1
Angular | 0.651 0.557 0.528 0.447 | 0.674 0.636 0.424 0.434 | 0.367 0.296 0.308 0.185 | 0.687 0.645 0.434 0.447 3.4
Cosine | 0.723 0.686 0.556 0.484|0.691 0.651 0.438 0.450 |0.551 0.467 0.543 0.353|0.696 0.651 0.444 0.460| 1.0

CA, Cora-CC, and Citeseer) in Figures [3.14a] [3.14b} |3.14c, and |3.14d| observe that

ANCKA-GPU significantly reduces the time for KNN, while the other time costs are

on par with that of ANCKA, which is consistent with the results in Section |3.8.2.

On medium-sized/large attributed hypergraphs in Figures [3.14e, [3.14f] [3.14g, and

3.14h, ANCKA-GPU significantly improves the efficiency on all of KNN construction,

orthogonal iterations, discretization, greedy initialization and MHC evaluation. From

the results on Amazon and MAG-PM, we observe that the scalability of ANCKA-GPU

is primarily constrained by KNN construction, while the overhead of the CPU-based

ANCKA is more evenly distributed across the four parts.
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Table 3.19: Varying similarity measures in KNN construction for ANCKA on AMGC.

ACM IMDB DBLP-MG Quality
Measure Acc F1  NMI ARI | Acc F1  NMI ARI | Acc F1 NMI ARI | Rank

Manhattan| 0.748 0.754 0.459 0.446 | 0.375 0.372 0.006 0.006 |0.933 0.929 0.785 0.838 3.4
Euclidean | 0.749 0.755 0.460 0.448 | 0.361 0.356 0.003 0.002 {0.933 0.929 0.785 0.838 3.4
Sigmoid | 0.922 0.923 0.717 0.781 | 0.559 0.528 0.164 0.187|0.932 0.928 0.783 0.837 3.0
Angular | 0.927 0.927 0.736 0.793 | 0.530 0.495 0.161 0.177|0.927 0.922 0.770 0.825 3.3
Cosine |0.928 0.928 0.739 0.796 |0.576 0.544 0.176 0.195|0.933 0.929 0.785 0.839 1.0

3.8.6 Additional Experiments

Effect of Various Attribute Similarity Measures

We conduct additional experiments on various similarity measures for KNN construc-
tion. For two d-dimensional attribute vectors x and y, in addition to Cosine similarity
Cosine(z,y) utilized in ANCKA, we assess normalized Manhattan and Euclidean dis-
tances transformed by a Laplacian kernel into the range [0, 1] as similarity scores,
Sigmoid similarity represented by a hyperbolic tangent kernel function, and Angular
similarity normalized to [0, 1] from angular distance. The formulas for these measures
are provided in Eq. . Laplacian kernels are commonly employed to normalize
Manhattan and Fuclidean distances for affinity matrix construction, with v set to
d~! by default [I5I]. The performance of ANCKA using each similarity measure for
attributed KNN construction in AHC, AGC, and AMGC is detailed in Tables [3.17]
and respectively. Similarity measures are sorted by each metric, and we
list their average Quality Rank for each task in the last column. Notably, across the
three attributed network clustering tasks—AHC, AGC, and AMGC—ANCKA equipped
with Cosine similarity secures the best quality rank (1.5, 1.0, and 1.0, respectively)

across all evaluation metrics and datasets. Meanwhile, ANCKA with either Sigmoid or
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Table 3.20: Objective values f(C) achieved by a method and f(C*) of ground truth
for AHC. The better value of each objective is highlighted.

Query Cora-CC Cora-CA Citeseer
Algorithm| Acc  F1 NMI f(C) f(C*)| Acc F1 NMI f(C) f(C*)| Acc F1 NMI f(C) f(C*)| Acc F1 NMI f(C) f(C*)
Infomap |0.235 0.215 0.017 6.704 8.976|0.514 0.464 0.343 8.121 10.36|0.541 0.479 0.393 9.298 10.26|0.491 0.463 0.263 8.890 10.58
Louvain |0.239 0.218 0.017 0.825 0.501|0.501 0.430 0.332 0.817 0.680|0.569 0.546 0.373 0.735 0.667|0.570 0.486 0.319 0.787 0.641
ANCKA |0.715 0.662 0.645 0.583 0.585]0.651 0.608 0.462 0.555 0.583(0.592 0.520 0.412 0.558 0.594|0.662 0.615 0.392 0.539 0.595
20News DBLP Amazon MAG-PM
Algorithm| Acc  F1  NMI f(C) f(C*)| Acc F1 NMI f(C) f(C*)| Acc F1 NMI f(C) f(C*)| Acc F1 NMI f(C) f(C*)
Infomap | 0.338 0.129 0.004 13.56 14.18|0.595 0.573 0.448 10.50 13.47 OOM 0.398 0.172 0.380 12.03 14.39
Louvain |0.633 0.522 0.304 0.260 0.198|0.643 0.580 0.554 0.856 0.788 OOM OOM
ANCKA |0.712 0.658 0.409 0.546 0.594]0.797 0.774 0.632 0.516 0.524|0.660 0.492 0.630 0.640 0.641]0.566 0.405 0.561 0.549 0.595

Table 3.21: Objective values f(C) achieved by a method and f(C*) of ground truth
for AGC. The better value of each objective is highlighted.

Wiki
NMI

Citeseer-UG
Acc NMI  £(C)

0.590 0.546 0.312 9.232
0.680 0.621 0.426 0.488
0.696 0.651 0.444 0.539

Tweibo
NMI

Cora

NMI Acc

0.467 0.417 0.468
0.611 0.513 0.572
0.551 0.467 0.543

Amazon2M
NMI  f(C)

15.26
0.790
0.612

Acc F1 F1

0.503 0.455
0.640 0.474 0.472
0.686 0.556 0.555

Citeseer-DG
F1  NMI f(C)

9.206
0.475
0.539

F1 1)

7.669

0.668
0.590

fc)
9.175

0.530
0.643

fen)
11.30

0.374
0.581

f(c)
11.04

0.369
0.593

Algorithm f(O)

10.87

0.569
0.671
0.723

Infomap
Louvain
ANCKA

Acc

0.357 0.191 0.424
0.463 0.154 0.429
0.494 0.191 0.441

Acc F1 F1

fic)
18.60

0.669
0.689

fc)
11.04

0.359
0.593

Acc (9]

0.417 0.084 0.000 16.89
0.271 0.113 0.015 0.383
0.433 0.129 0.023 0.723

fc)
18.90

0.252
0.758

Algorithm

0.621
0.682
0.696

0.565 0.357
0.617 0.419
0.651 0.444

Infomap
Louvain
ANCKA

Angular similarities exhibits the second-best performance.

'

IR

Manhattan(z,y) = e~ le=vlh

Cosine(z,y)

Euclidean(z,y) = e eyl (3.30)

cos~! Cosine(z,y)

Angular(z,y) =1 —
T

Sigmoid(z,y) = tanh(yzy' + 1)

Comparing Clustering Objectives

In ANCKA, we formulate the multi-hop conductance (MHC) objective as ®(Y) =1 —
U(Y), where Y is a cluster membership matrix returned by a method. Our goal is to

minimize ®, which is equivalent to maximizing W(Y). For ground truth clusters Y*,
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Table 3.22: Objective values f(C) achieved by a method and f(C*) of ground truth
for AMGC. The better value of each objective is highlighted.

DBLP-MG
Acc  F1  NMI f(C) f(C¥

0.296 0.116 0.002 11.91 12.60
0.909 0.900 0.731 0.172 0.161
0.933 0.929 0.785 0.590 0.595

ACM
Algorithm| Acc  F1 NMI f(C) f(C*)
0.653 0.665 0.418 10.01 11.05

0.659 0.670 0.422 0.555 0.356
0.928 0.928 0.739 0.563 0.567

IMDB
Acc  F1  NMI f(C) f(C*

0.412 0.362 0.027 11.32 12.03
0.452 0.392 0.057 0.460 0.348
0.576 0.544 0.176 0.584 0.599

Infomap
Louvain
ANCKA

the fact that U(Y*) < U(Y), i.e., P(Y*) > ®(Y), indicates that ANCKA can identify
a clustering with lower MHC than the ground truth clusters.

This phenomenon is not unique to our method but is also common in other clustering
methods with objectives, such as the map equation and modularity. To compare
these objective functions, we use KNN augmented graphs to test Infomap, which
minimizes the map equation objective, and Louvain, which maximizes modularity.
We then calculate the objective values of the clusters returned by these methods and
compare them to the objective values of the ground truth. The results are presented
in Tables where f(C) denotes the objective value of the clustering result
returned by a method, and f represents the multi-hop conductance, modularity, and
map equation objectives for ANCKA, Louvain, and Infomap, respectively. The value
f(C*) corresponds to the objective value of the ground truth. In Tables [3.2013.22] all
three algorithms yield clusters with a more favorable objective value f(C) than that
of the ground truth clusters f(C*). Nevertheless, the fact that ANCKA consistently

achieves the best clustering quality showcases the effectiveness of the MHC objective.

Comparing the Clusters of ANCKA and ANCKA-GPU

We evaluate the NMI and ARI metrics between the clusters obtained by ANCKA (C*)
and the clusters obtained by ANCKA-GPU (G*). The results are shown in Table [3.23)]
where the columns labeled C*-G* display the NMI and ARI scores between C* and G*,
whereas the remaining columns show the NMI and ARI scores between the ground

truth GT and either C* or G*. It is noteworthy that the NMI and ARI scores for

7



Chapter 3. ANCKA: Attributed Network Clustering

Table 3.23: Evaluation between CPU-based ANCKA (C*) and ANCKA-GPU (G*). GT
stands for ground truth clusters.

NMI ARI
C*-GT G*-GT C*-G*|C*-GT G*-GT C*-G*

Query 0.645 0.666 0.780|0.571 0.578 0.732
Cora-CA | 0.462 0.469 0.852]0.406 0.411 0.878
Cora-CC ]0.412 0.395 0.675]0.338 0.311 0.623
Citeseer ]0.392 0.387 0.750]0.397 0.410 0.767
20News | 0.409 0.407 0.835|0.469 0.465 0.876
DBLP 0.632 0.643 0.920|0.632 0.646 0.943
Amazon |0.630 0.636 0.750|0.524 0.509 0.763
MAG-PM |0.561 0.545 0.743|0.471 0.454 0.757

Cora 0.556 0.533 0.765|0.484 0.470 0.773
Citeseer-UG | 0.438 0.437 0.922|0.450 0.451 0.940
Wiki 0.543 0.547 0.847{0.353 0.368 0.724
Citeseer-DG | 0.444 0.441 0.863|0.460 0.454 0.892
TWeibo ]0.023 0.022 0.115]0.019 0.016 0.176
Amazon2M | 0.441 0.437 0.609|0.545 0.544 0.698

ACM 0.739 0.730 0.953{0.796 0.786 0.974
AMGC IMDB 0.176 0.166 0.444|0.195 0.184 0.525
DBLP-MG |0.785 0.791 0.977|0.839 0.842 0.988

Task Dataset

AHC

AGC

C*-G* are consistently higher than those relative to the ground truth. This indicates

a strong agreement between the clustering results of ANCKA and ANCKA-GPU.

Effect of similarity threshold in KNN construction

Previous research [84] suggests that KNN edges with low similarity should be avoided.
We explore two ways for applying a similarity threshold to prune edges in the con-
structed KNN graph. After constructing the KNN graph, we can either use an abso-
lute similarity threshold €, to remove edges with similarity scores below €,, or employ
a relative similarity threshold e,, expressed as a percentage, to eliminate the bot-
tom €,% of edges. A limitation of €, is that similarity score distributions can vary
across datasets, and as a result, a threshold ¢, that is effective for one dataset might
be insufficient for another. Therefore, we also test setting ¢, as an alternative to
€s. We vary €, from 0.1 to 0.3 and ¢, from 10% to 30%, and report the results for
AHC in Table [3.24] All tested settings are sorted by each metric, and we list their
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Table 3.24: Impact of exerting absolute or relative similarity thresholds (e or €,) on
the KNN graph on AHC.

Query Cora-CA Cora-CC
Setting Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

e, =0.11]0.715 0.662 0.645 0.571 | 0.661 0.616 0.473 0.422 | 0.590 0.518 0.417 0.339
e, =021]0.715 0.662 0.645 0.571 | 0.655 0.612 0.472 0.417 | 0.572 0.495 0.370 0.321
€,=03]0.715 0.662 0.645 0.571 | 0.530 0.498 0.324 0.246 | 0.438 0378 0.303 0.233
e =10 | 0.709 0.637 0.611 0.549 | 0.594 0.524 0.431 0.364 | 0.553 0.465 0.377 0.329
e =20 | 0511 0.509 0.346 0.256 | 0.631 0.586 0.434 0.385 | 0.511 0.483 0.363 0.270
e =30 | 0422 0395 0.237 0.182 | 0.615 0.563 0.409 0.371 | 0.532 0.450 0.353 0.285
ANCKA | 0.715 0.662 0.645 0.571 | 0.651 0.608 0.462 0.406 | 0.592 0.520 0.412 0.338

Citeseer 20News DBLP Quality
Setting | Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI Rank

e, =011 0654 0.606 0.382 0.390 | 0.712 0.658 0.409 0.469 | 0.797 0.774 0.632 0.632 1.7
€, =021 0537 0463 0.287 0.287 | 0.712 0.658 0.409 0.469 | 0.804 0.784 0.641 0.639 2.7
e=03 ] 0332 0291 0.121 0.076 | 0.712 0.658 0.409 0.469 | 0.552 0.456 0.468 0.361 5.2
e =10 | 0.606 0.563 0.334 0.326 | 0.710 0.660 0.368 0.417 | 0.650 0.591  0.603  0.548 4.8
e =20 | 0.655 0.568 0.369 0.365 | 0.711 0.656 0.407 0.467 | 0.816 0.800 0.640 0.645 4.0
e =30 | 0586 0.538 0.295 0.299 | 0.662 0.566 0.404 0.433 | 0.642 0.609 0.574 0.507 5.8
ANCKA | 0.662 0.615 0.392 0.397 | 0.712 0.658 0.409 0.469 | 0.797 0.774 0.632 0.632 1.8

Table 3.25: Impact of exerting absolute or relative similarity thresholds (e or €,) on
the KNN graph on AGC.

Cora Citeseer-UG Wiki Citeseer-DG Quality
Setting | Acc F1 NMI  ARI | Acc F1 NMI  ARI | Acc F1 NMI  ARI | Acc F1 ~ NMI ARI | Rank

€s=0.1]0.644 0549 0.526 0.454 | 0.684 0.646 0.434 0.446 | 0.539 0.460 0.527 0.339 | 0.670 0.637 0.446 0.453 3.9
€, =021 0517 0421 0477 0.349 | 0.685 0.604 0.409 0.427 | 0.563 0.448 0.524 0.377 | 0.687 0.592 0.413 0.423 5.0
€, =031]0494 0.410 0.402 0.289 | 0.427 0.362 0.178 0.155 | 0.459 0.384 0.411 0.257 | 0.469 0.391 0.206 0.188 7.0
e =10 | 0.686 0.582 0.537 0.469 | 0.700 0.653 0.448 0.464 | 0.522 0.423 0.528 0.327 | 0.659 0.628 0.437 0.443 3.4
e =20 | 0.676 0.576 0.530 0.465 | 0.653 0.616 0.431 0.437 | 0.558 0.451 0.527 0.365 | 0.704 0.646 0.445 0.460 3.3
e =230 | 0.674 0.565 0.522 0.480 | 0.714 0.619 0.451 0.464 | 0.563 0.433 0.527 0.376 | 0.703 0.635 0.429 0.452 3.0
ANCKA | 0.723 0.686 0.556 0.484 | 0.691 0.651 0.438 0.450 | 0.551 0.467 0.543 0.353 | 0.696 0.651 0.444 0.460 2.1

Table 3.26: Impact of exerting absolute or relative similarity thresholds (e, or ¢,) on
the KNN graph on AMGC.

ACM IMDB DBLP-MG Quality
Setting | Acc F1 NMI  ARI Acc F1 NMI  ARI Acc F1 NMI  ARI Rank

e, =011 0927 0927 0.737 0.794 | 0.575 0.552 0.169 0.188 | 0.933 0.928 0.786 0.838 2.2
e, =021 0927 0927 0.737 0.793 | 0.388 0.230 0.005 0.003 | 0.933 0.929 0.786 0.838 3.4
e=031] 0921 0921 0.720 0.779 | 0.38 0.253 0.002 0.001 | 0.933 0.929 0.787 0.839 3.9
e =101 0920 0.920 0.716 0.776 | 0.569 0.557 0.155 0.175 | 0.932 0.928 0.785 0.837 4.1
e =201 0919 0919 0713 0774 | 0532 0.518 0.153 0.165 | 0.933 0.928 0.785  0.837 4.7
e =230 | 0917 0917 0.708 0.768 | 0.556 0.536 0.145 0.162 | 0.932 0.928 0.784 0.836 5.8
ANCKA | 0.928 0.928 0.739 0.796 | 0.576 0.544 0.176 0.195 | 0.933 0.929 0.785 0.839 1.4

average Quality Rank in the last column. From these experiment results, three ob-
servations emerge. First, ANCKA delivers the best results on four out of six datasets
and is the second-best on the remaining two. Second, as €, increases, the cluster-

ing quality deteriorates on Cora-CA, Cora-CC, and Citeseer; remains unchanged on
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Table 3.27: Impact of conflicting attribute and network information on AHC perfor-
mance of ANCKA.

Query Cora-CA Cora-CC
Setting Acc F1 NMI  ARI Acc F1 NMI  ARI Acc F1 NMI ARI

Shuffled-X | 0.214 0.207 0.011 0.002 | 0.191 0.172 0.018 0.003 | 0.182 0.165 0.011 0.003
Original 0.715 0.662 0.645 0.571 | 0.651 0.608 0.462 0.406 | 0.592 0.520 0.412 0.338

Citeseer 20News DBLP
Setting Acc F1 NMI ARI Acc F1 NMI ARI Acc F1 NMI ARI

Shuffled-X | 0.187 0.183 0.005 0.001 | 0.302 0.290 0.008 0.006 | 0.198 0.178  0.002 0.001
Original 0.662 0.615 0.392 0.397 | 0.712 0.658 0.409 0.469 | 0.797 0.774 0.632 0.632

Table 3.28: Impact of conflicting attribute and network information on AGC perfor-
mance of ANCKA.

Cora Citeseer-UG Wiki Citeseer-DG
Setting Acc F1 NMI  ARI Acc F1 NMI  ARI Acc F1 NMI  ARI Acc F1 NMI  ARI

Shuffled-X | 0.395 0.343 0.271 0.183 | 0.418 0.360 0.181 0.141 | 0.188 0.179 0.119 0042 | 0.316 0.290 0.074 0.073
Original | 0.723 0.686 0.556 0.484 | 0.691 0.651 0.438 0.450 | 0.551 0.467 0.543 0.353 | 0.696 0.651 0.444 0.460

Table 3.29: Impact of conflicting attribute and network information on AMGC per-
formance of ANCKA.

ACM IMDB DBLP-MG
Setting Acc F1 NMI  ARI Acc F1 NMI  ARI Acc F1 NMI  ARI

Shuffled-X | 0.349 0.347 0.001 0.001 | 0.374 0.370 0.006 0.006 | 0.928 0.923 0.770 0.825
Original 0.928 0.928 0.739 0.796 | 0.576 0.544 0.176 0.195 | 0.933 0.929 0.785 0.839

Query and 20News, suggesting that the e, values are insufficient for edge filtering;
and improves before declining on DBLP. These results do not reveal a consistent rela-
tionship between quality and varied €, across the datasets. Third, with an increasing
€p, performance drops on Query and Cora-CC; improves then declines on Cora-CA,
Citeseer, 20News, and DBLP, also indicating inconsistent patterns between quality
and varied €,. Similar trends are observed for AGC and AMGC in Tables and
where ANCKA attains the best or second-best performance under most metrics.
However, adjusting €5 and ¢, does not consistently enhance performance across all

datasets.
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Table 3.30: Clustering performance comparison between FSSC and ANCKA on AHC
(Time in Seconds).

Query Cora-CA Cora-CC Citeseer
Algorithm| Acc F1 NMI Time| Acc F1 NMI Time| Acc F1 NMI Time| Acc F1 NMI Time

FSSC 0.601 0.584 0.518 0.183]0.376 0.244 0.272 0.352] 0.381 0.248 0.232 0.403| 0.386 0.330 0.264 0.500
ANCKA |0.715 0.662 0.645 0.342|0.651 0.608 0.462 0.402)0.592 0.520 0.412 0.416|0.662 0.615 0.392 0.635

20News DBLP Amazon MAG-PM
Algorithm| Acc F1 NMI Time| Acc F1 NMI Time| Acc F1 NMI Time| Acc F1 NMI Time

FSSC 0.286 0.267 0.002 6.702| 0.419 0.304 0.410 28.49|0.311 0.032 0.000 888.1{0.304 0.050 0.095 601.9
ANCKA |0.712 0.658 0.409 8.176|0.797 0.774 0.632 41.50|0.660 0.492 0.630 1286 |0.566 0.405 0.561 1371

Table 3.31: Clustering performance comparison between FSSC and ANCKA on AGC
(Time in Seconds).

Cora Citeseer-UG Wiki
Algorithm | Acc F1 NMI Time | Acc F1 NMI Time | Acc F1 NMI Time

FSsC 0.494 0391 0.358 0.763| 0.301 0.207 0.104 1.151 | 0.229 0.182 0.198 0.716
ANCKA 0.723 0.686 0.556 1.251 | 0.691 0.651 0.438 1.587 | 0.551 0.467 0.543 0.907

Citeseer-DG Tweibo Amazon2M
Algorithm | Acc F1 NMI Time | Acc F1 NMI Time | Acc F1 NMI  Time

FSSC 0.294 0.233 0.099 0.493| 0.196 0.103 0.004 761.3| 0.185 0.044 0.146 551.9
ANCKA 0.696 0.651 0.444 0.838 | 0.433 0.129 0.023 1318 | 0.494 0.191 0.441 1708

Table 3.32: Clustering performance comparison between FSSC and ANCKA on AMGC
(Time in Seconds).

ACM IMDB DBLP-MG
Algorithm | Acc F1 NMI Time | Acc F1 NMI Time | Acc F1 NMI  Time

FSsC ‘0.754 0.750  0.537 1.566‘0.396 0.362  0.010 1.156‘0.297 0.124  0.003 3.008

ANCKA 0.928 0.928 0.739 1.738 | 0.576 0.544 0.176 1.574 | 0.933 0.929 0.785 3.766

Impact of Conflicting Attributes and Networks

We investigate the effect of conflicting network and attribute information. In real-
world network data, attribute and network information typically exhibit correlation,
aligning with the notion that entities with similar attributes, such as individuals, are
more likely to be connected. To artificially induce a conflicting relationship between
attributes and network information, we take a given dataset and randomly permute
the attribute vectors in the attribute matrix X € R™*9, re-assigning them to the

n nodes. This process disrupts the natural correlation, thereby creating conflicts
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between attributes and network information, dubbed as Shuffied-X. We then com-
pare the performance of ANCKA on both the original data and the Shuffled-X data,
with results presented in Tables [3.28] and for the AHC, AGC, and AMGC
tasks, respectively. The Shuffled-X data consistently yield significantly lower clus-
tering quality compared to ANCKA on the original data, confirming that conflicting
network and attribute information detrimentally affects clustering quality. This also
reaffirms that real datasets typically feature correlated attributes and networks. In
the future, we will explore the robustness of clustering against attacks that introduce

such conflicts.

Effect of using fewer eigenvectors

The spectral clustering algorithm proposed in [83] leverages the linear space spanned
by O(log k) leading eigenvectors. We adapt this method, denoted by FSSC, for the
attributed network clustering tasks. Specifically, FSSC gets the log, k leading vectors

over the transition matrix of the proposed random walk model in the paper, and

perform clustering. The results are reported in Table [3.30] [3.31] and [3.32] for AHC,

AGC, and AMGC, respectively. FSSC yields lower clustering quality on all datasets,

making its speedup less significant.

3.9 Summary

This chapter introduces ANCKA, a versatile and efficient method for attributed network
clustering that supports AHC, AGC, and AMGC tasks. Its superior performance
over existing approaches stems from three key innovations: (i) a KNN augmentation
strategy that selectively exploits attribute information, (ii) a novel random walk-
based problem formulation, and (iii) an iterative optimization framework enhanced

with speedup techniques.
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3.9. Summary

To further accelerate computation on large datasets, we develop ANCKA-GPU, a GPU-
based variant that outperforms its CPU-parallel counterpart while maintaining high
clustering quality. Extensive experiments on real-world datasets demonstrate the

effectiveness and efficiency of our methods.
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Chapter 4

SAHE: Attributed Hypergraph
Embedding

This chapter presents SAHE, an efficient approach to attributed hypergraph embed-
ding, advancing the thesis’s goal of developing scalable solutions for clustering and
embedding in attributed network structures. Complementing the attributed hyper-
graph clustering method in Chapter |3] SAHE addresses the challenge of generating
high-quality node and hyperedge embeddings for attributed hypergraphs, while also
leveraging the KNN augmentation approach to incorporate attribute information.
These works, alongside the multi-view integration method in Chapter [5] contribute

to advancing clustering and embedding of diverse attributed network structures.

4.1 Introduction

An attributed hypergraph captures higher-order relationships among a variable num-
ber of nodes through hyperedges, and the nodes are often associated with attribute
information. A hyperedge is a generalized edge that connects more than two nodes.

The unique characteristics of attributed hypergraphs have played important roles in
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various domains by describing the multiway relationships among entities. e.g., social
networks [7], genomic expression [28], and online shopping sessions [40]. For exam-
ple, a group-purchase activity of an item links a group of users together, naturally

captured via a hyperedge, and the users carry their own profile attributes.

Network embedding is a fundamental problem in graph analytics, garnering attention
from both academia [157] and industry [132], and has been studied on various types
of simple graphs with pairwise edge connections, such as homogeneous graphs [141]
98, [117] and attributed graphs [143] [125]. However, network embedding on attributed
hypergraphs is still in its early stages, with few native solutions that are efficient and

effective in the literature.

Hence, in this work, we focus on the problem of Attributed Hypergraph Node and hy-
perEdge Embedding (AHNEE). Given an attributed hypergraph with n nodes and m
hyperedges, AHNEE aims to generate compact embedding vectors for each node and
hyperedge. Intuitively, node embeddings capture the hyperedge-featured topological
and attribute information surrounding nodes, while hyperedge embeddings inher-
ently captures the connections and attribute semantics of groups of nodes around
hyperedges. The embeddings are valuable for downstream tasks: node embeddings
facilitate node classification [45] and hyperedge link prediction [147], while hyperedge
embeddings support hyperedge classification [137].

It is highly challenging to design native AHNEE solutions, due to the complexity of
attributed hypergraphs beyond simple graphs, and the need to simultaneously embed
nodes and hyperedges, particularly for large attributed hypergraphs. Effective node
and hyperedge embeddings should capture both local and long-ranged information
via multi-hop paths formed by hyperedges and nodes. Besides, simply aggregating
all node embeddings within a hyperedge to get its hyperedge embedding often results
in suboptimal performance. Incorporating these considerations into AHNEE compu-
tation requires careful designs to ensure effectiveness and targeted optimizations for

efficiency in large attributed hypergraphs.
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Existing methods either do not natively support attributed hypergraphs or fail to per-
form efficiently on massive data. An early study [156] uses the hypergraph Laplacian
spectrum for node embeddings, while [45] [44] extend graph-based node embedding to
hypergraphs. However, these approaches typically do not consider attribute informa-
tion or hyperedge embedding generation, with some, like [156], overlooking long-range
connectivity. A recent class of studies [122] [64] [60] has developed hypergraph neu-
ral networks, which often incur significant computational overhead when applied to
large-scale hypergraph data. Another way is converting attributed hypergraphs into
bipartite or attributed graphs using star-expansion or clique-expansion, followed by
applying graph embedding methods [143] [128]. However, the expansions dilute the
representation of higher-order connections in hyperedges and result in dense graphs

with high computational costs.

To tackle the challenges, we propose SAHE, a Scalable Attributed Hypergraph node
and hyperedge Embedding method that unifies the generation of node embeddings
and hypergraph embeddings with high result quality and efficiency, advancing the
state of the art for the problem of AHNEE. We accomplish this via comprehensive

problem formulations and innovative algorithm designs.

We begin by considering an attribute-extended hypergraph H, which integrates node
attributes by constructing attribute-based hyperedges with appropriate weights, along-
side the original hyperedges from the input attributed hypergraph. Importantly, on
H, we propose two measures: hypergraph multi-hop node similarity (HMS-N) and
hypergraph multi-hop hyperedge similarity (HMS-E). HMS-N captures higher-order
connections and global topology between nodes by considering both original and
attribute-based hyperedges in ‘H. HMS-E quantifies hyperedge similarities, but on
a dual hypergraph of H, where hyperedges are treated as nodes to preserve their
multi-hop connections and global features. We then formulate the AHNEE task as
an optimization problem with the objective to approximate all-node-pair HMS-N and

all-hyperedge-pair HMS-E matrices simultaneously. Directly achieving this objective
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can be effective but computationally expensive, with time quadratic in the number
of nodes and hyperedges. To boost efficiency, SAHE unifies the approximations of
HMS-N and HMS-E matrices by identifying their shared core computations via the-
oretical analysis. Despite this unification, the process remains costly for calculation
and materialization. To further reduce computational overhead, we develop several
optimization techniques that eliminate the need to iteratively materialize large dense
matrices, enabling efficient approximation of high-quality node and hyperedge em-
beddings with guarantees. We conduct extensive experiments on 8 real datasets,
comparing SAHE against 11 competitors over 3 tasks. The results show that SAHE
efficiently generates high-utility node and hyperedge embeddings, achieving superior
predictive performance in node classification, hyperedge link prediction, and hyper-

edge classification tasks, while being up to orders of magnitude faster.
In summary, we make the following contributions in the paper.

e We build an attribute-extended hypergraph to incorporate attribute information

into hypergraph structures seamlessly, with a careful design to balance both aspects.

e We design two similarity measures HMS-N and HMS-E capturing higher-order con-
nections and global topology of node and hyperedge pairs, respectively. The AH-
NEE objective is formulated to preserve all-pair HMS-N and HMS-E matrices.

e We develop several techniques to efficiently optimize the objective, including unify-
ing the shared computations of node and hyperedge embeddings, accurate approx-
imation of the similarity matrices, and avoiding iterative dense matrix materializa-

tion.

e Extensive experiments on 8 real datasets and 3 downstream tasks demonstrate the

effectiveness and efficiency of our method.
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Table 4.1: Frequently used notations.

H={V & X} An attributed hypergraph H with node set V), hyperedge set
£, and node attribute matrix X € R"*9.

n, m The cardinality of |V| = n, and the cardinality of |€] = m.

d(v) The generalized degree of a node v.

i(e) The generalized degree of a hyperedge e.

H={V,Ex} The extended hypergraph H with hyperedge set £x that in-
corporates £ and attribute-based hyperedges k.

vol(H) The volume of the hypergraph H.

H The weighted incidence matrix of H.

D,, D., W The diagonal node degree matrix, hyperedge degree matrix,
and hyperedge weight matrix of H, respectively.

H ={V, &'} The dual hypergraph of #H, where nodes in VY represent hy-
peredges in Ex, and hyperedges in £’ represent nodes in V.

p(vi, vj) The random walk transition probability from v; to v;.

ps(v) The random walk stationary probability of node v.

P, P The transition probability matrices of hypergraphs H and H'.

7(vi, v5) The probability from v; to v; over infinite steps.

n® o The t-step RWR matrix for H and H’, respectively.

tlog(+), tlog”(-). | tlog(x) = log(max{x, 1}), tlog®(-) is element-wise tlog(-).

P(v;, v5) HMS-N similarity between nodes v; and v; of H.

V' (e, €5) HMS-E similarity between hyperedges e; and e; of H.

v, v Similarity matrices for HMS-N and HMS-E, respectively.

7y, Z¢ The n x k node embedding matrix and m X k hyperedge em-
bedding matrix, respectively.

4.2 Preliminaries

An attributed hypergraph is denoted as H = {V, &, X}, where V is a set of n nodes,

£ is a set of m hyperedges, and X € R"*9 is the node attribute matrix. FEach node

v in V has a ¢-dimensional attribute vector given by the i-th row of X. A hyperedge

e € &£ is a subset of V containing at least two nodes, and a node v is incident to

e if v € e. Figure gives an example of attributed hypergraph H with six nodes

and three hyperedges (e.g., ea = {wvs,vy4,v5}), where each node is associated with
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an attribute vector. Let ~y(v,e) be the hyperedge-dependent weight of node v in
hyperedge e, defaulting to 1 if v € e and unweighted, or 0 if v ¢ e. Each hyperedge
e € & carries a weight w(e), defaulting to 1. The generalized degree of a node v € V
is d(v) = Y ce w(e)y(v,e), summing the weighted contributions of v across incident
hyperedges. The generalized degree of a hyperedge e € £ is d(e) = >, .. 7(v,e),
aggregating the weight of nodes within e. The volume of the hypergraph, denoted
as vol(H) = ) ., d(v), measures its total weighted connectivity by summing the

generalized degrees. Let Hy € R™*" be the incidence matrix of H, where each entry

Hyi, j] = v(v;, e;) if v; € e;, otherwise Hyl, j] = 0.

Node and Hyperedge Embeddings. For the input H, AHNEE aims to compute
an n X k embedding matrix Z,, where each row Zy[i] is the embedding vector for node
v; € V (node embedding), and also an m X k embedding matrix Zg where each row

Z¢[j] is the embedding vector for hyperedge e; € £ (hyperedge embedding).

Tasks. In the attributed hypergraph H, we focus on three significant tasks: perform-
ing node classification and hyperedge link prediction with node embeddings; perform-

ing hyperedge classificaiton with hyperedge embeddings.

e Node Classification. For node v;, the goal is to predict its class label by feeding its

node embedding Zy[i] into a trained classifier.

e Hyperedge Link Prediction. Given nodes {v;,v;, ..., v} C V, the task is to use their
node embeddings {Zy|i], Zy[j], ..., Zy[k]} to predict whether these nodes form a

hyperedge or not.

e Hyperedge Classification. For a hyperedge e;, the goal is to use the hyperedge
embedding Zg[i] to predict its class label.

Table lists the frequently used notations in our paper.
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Figure 4.1: An example of attributed hypergraph H.

4.3 Similarities and Objectives

As explained in Section effective node and hyperedge embeddings in AHNEE
should capture the closeness among nodes and collective affinities among hyperedges,
highlighting higher-order structures and attribute influences. To this end, we first ex-
tend the attributed hypergraph H by adding attribute-based hyperedges, forming an
attribute-extended hypergraph H, in which, appropriate hyperedge-dependent node
weights and hyperedge weights are assigned to balance structural and attribute infor-
mation in Section [4.3.1. Then in Section [4.3.2, we introduce hypergraph multi-hop
node similarity (HMS-N) on H to quantify node similarity. This considers multi-
hop node and hyperedge connections and node significance in H, measured by a
random walk model over its topology. Section [4.3.3 designs hypergraph multi-hop
hyperedge similarity (HMS-E), formulated similarly but on the dual hypergraph of
‘H. Both HMS-N and HMS-E are symmetric for evaluating pairwise relationships.
Our AHNEE objective is to approximate all n x n node-pair HMS-N and all m x m
hyperedge-pair HMS-E similarities. Section [4.3.4 presents a preliminary method to
directly solve this problem.
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Ex = {ea, €5, €6, €7, €5}.

34 - KNN(Ul) U {171},
w(es) = 0.38,y(vy,e,) = 1.0,
Y (v, e4) = 1.0,y (vy,e4) = 0.5.

eg = KNN(vg) U {vs},
w(eg) = 0.38, y(vs, eg) = 1.0,
y(vy,eg) = 0.7, y(ve,eg) = 0.7.

Figure 4.2: Extended hypergraph H.

4.3.1 Attribute-Extended Hypergraph

The literature on attributed data [73] 29] shows that it is effective for downstream
task performance to combine attribute information with network topology, by consid-
ering each node’s K-nearest neighbors defined on attribute similarity. We adopt this
approach to construct an extended hypergraph H from the input H, with dedicated
designs tailored for hypergraph structures and balancing topological and attribute
information. Specifically, for a node v;, we first get its local neighbor set KNN(v;),
comprising the top-K most similar nodes v; ranked by cosine similarity cosSim(v;, v;)
of their attributes. Then we define an attribute-based hyperedge as KNN(v;)U{v;} with

K + 1 nodes. Intuitively, it connects nodes with similar attributes into a hyperedge.

Example. Given the hypergraph H in Figure 4.1 we construct five attribute-based
hyperedges {e4,...,es} for nodes vy,...,vs, respectively. With K = 2, Figure
illustrates two examples: ey, formed by v; and its two most similar nodes, and eg,
formed by wvs; and its two most similar nodes. Each hyperedge represents a local

neighborhood of nodes with high attribute similarity.

For all n nodes in H, we create a set £ of n attribute-based hyperedges, leading to
the extended hypergraph H = {V, Ex} with hyperedge set Ex = EUEK of size m+n.

Unlike nodes in an original hyperedge, the nodes in an attribute-based hyperedge e
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built from KNN(v;) require varying weights based on their attribute similarities to
v;. Therefore, we assign hyperedge-dependent node weights y(v;, e) to node v; in the
hyperedge e, using its attribute similarity to v;: v(v;,e) = cosSim(v;, v;), for v; €

e and e = KNN(v;) U {v;}.

‘H includes m hyperedges in £ and n attribute-based hyperedges in £k, representing
structural and attribute information, respectively. The values of n and m can vary
significantly across datasets. For example, the Amazon dataset has about n = 2.27
million nodes and m = 4.28 million hyperedges, while MAG-PM has n = 2.35 mil-
lion nodes and m = 1.08 million hyperedges. A large n may cause attribute-based
hyperedges to overshadow the original topology, and vice versa. This disparity ex-
tends to their volumes vol(£) = > .- w(e)d(e). This can influence similarity mea-
sures by skewing transitions to £ or £k, affecting embedding priorities. Thus, we
balance structural and attribute insights in H. We achieve this by adjusting hy-
peredge weights in £k, balancing the volumes of £ and £x. For &, the volume is
vol (£) = > ¢ le], when (v, e) and w(e) are with unit weights. For £k, the vol-
ume is vol(Ex) = w(e) D e, D vee V(V, €), Where hyperedge-dependent node weight

v(v, e) is assigned ahead. We enforce:
Bvol (£) =vol (€k), (4.1)

where parameter 3 controls the balance on structure versus attributes, and the default
value is 1. Then we get a uniform weight w(e) of each attribute-based hyperedge
e € &k by

w(e) = BVOI(S)/ Z Zv(v, e),Ve € Ek. (4.2)

e vEe

The extended hypergraph H = {V,Ex} has an (m+n) x n weighted incidence matrix
H, where HJi, j] = 7(v;, e;). The first m rows of H are from the incidence matrix Hy,
and the last n rows are from the attribute-based hyperedges, forming a submatrix

Hy. Then, the matrix H can be written as H = [}I;IIO{ } , where columns corresponding
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to the nodes in V. For H, let W € R(m+m)x(m4n) e the diagonal matrix of hyperedge
weights. In addition, D, € R™" is the node degree matrix, with D,[i,i] = d(v;)
representing the generalized degree of node v; in H, and D, € Rm+x(m+n) ig the
hyperedge degree matrix with D.[i,i] = d(e;) representing the generalized degree of
hyperedge e; in H.

The above idea of constructing H from H = {V, €, X} is summarized in Algorithm [7]
Lines 1-4 generate n attribute-based hyperedges e, = KNN(v;) U {v;}, each capturing
a node’s K-nearest neighbors based on attribute similarity from X (Line 2). Lines
3-4 assign hyperedge-dependent node weights y(v;, e;) in Hg. Line 5 constructs the
hyperedge weight matrix W as a diagonal matrix from concatenated weight vectors
(denoted by ||). The m hyperedges in £ have weights of 1 via 1,,, a length-m vector
of ones, while the n attribute-based hyperedges receive a weight per Eq. , with
1,,Hy1,, representing vol(€). Line 6 builds the (m+n) x n weighted incidence matrix
H by stacking Hy and Hg, and computes the diagonal degree matrices D, and D,
of H. The algorithm returns H, D,, D., and W, representing H. Lines 1-4 require
O(nlogn + ngK) time, leveraging efficient KNN queries (e.g., [21]), where ¢ is the
attribute dimension. Lines 5-6 operate in O(nK + nd) time and space, proportional
to H’s nonzero entries, with d as the average hyperedge incidences per node in H.
Thus, Algorithm 7] achieves log-linear time complexity and linear space complexity

for generating H.

4.3.2 Hypergraph Multi-Hop Node Similarity: HMS-N

Intuitively, the resultant node embeddings should capture the complex relationships
between nodes, preserving both structural and attribute similarities across the ex-
tended hypergraph 4. This is challenging due to the need to model higher-order
connections in hyperedges while integrating the hypergraph’s global topology. Com-

mon similarity measures like Personalized PageRank [140] effectively capture node
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Algorithm 7: ExtendHG
Input: Attributed hypergraph H = {V, &, X}, parameter K

for each v; € € do
Attribute-based hyperedge e; < KNN(v;) U {v;};

for each v; € e; do

W  diag <1mH L Hol, 1n>;

1 Hx1,
H« [{°]. D, « diag(H'W1,,,,), D,  diag (HL,);
return Extended hypergraph H (i.e., H, D,, D., W);

significance but are limited to pairwise interactions, not applicable to hypergraphs.
Other hypergraph definitions [2, [113] consider submodular hyperedges, which are

unnecessary for embeddings and incur expensive all-pair computations.

To address these challenges, we propose a hypergraph multi-hop similarity measure for
nodes (HMS-N) over H. The key insights include (i) capturing multi-hop connectivity
between nodes and (ii) leveraging the global significance of nodes in H, both relying

on random walks adapted to the hypergraph structure.

HMS-N Formulation. We begin by defining the transition probability p(u,v) for
random walks on H, considering hyperedge sizes, weights w(e), generalized node
degrees d(u), and, crucially, hyperedge-dependent node weights ~(u,e), reflecting
attribute similarities. p(u,v) involves two hops: from node u to a hyperedge and from
the hyperedge to node v. First, unlike prior definitions [17], an incident hyperedge e is
selected with probability proportional to w(e)y(u,e)/d(u), where v(u,e) emphasizes
attribute affinity, and w(e) balances structural and attribute significance. Second,
within the chosen hyperedge e, the node v is selected with probability proportional to
v(v, e)/d(e), prioritizing nodes with stronger attribute ties. Therefore, the transition

probability is
_ o wie)y(u,e) y(v,e)
BP D T (43)
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and accordingly the n x n transition matrix P with each entry P[i, j| = p(v;, v;) can
be written as

P=D,'H'"WD_'H. (4.4)

The HMS-N measure #(-) combines the multi-hop connectivity derived from random

walks, and the global significance of nodes featured by the stationary probability.

First, to capture the connectivity between nodes, we carry out a number of random
walks, each of which may restart from its beginning node to balance the local and
global structural insights. Specifically, in the extended hypergraph H, at each step,
the walk either teleports back to w with probability a € [0,1) or transitions to a
node with probability 1 — «, following the transition matrix P in Equation . Let
7(vi, vj) denote the limiting probability that a random walk starting from node v;
reaches node v; after infinitely many iterations, reflecting v;’s significance to v; across
local and global levels. The probability 7 (v;, v;) of reaching any node v; from any
node v; after t steps is represented by the stochastic matrix 1" e R™" in Equation

([&3), where TIO[i, 5] is 7 (v;, v;).
% =1, MY =al, + (1 — a)PTIY, (4.5)
with I, as the n x n identity matrix. The non-recursive formula is

1Y =Y a(l —a)P' + (1 — a)'P. (4.6)

Let II represent 1= with infinite steps to converge. As one may note, Equations
and have similar forms to those in simple graphs. However, our formulation
is based on the dedicatedly derived from the extended hypergraph H. Accordingly,
the transition includes the selection of a hyperedge and a node therein. Moreover, we

do not employ IT as the similarity matrix, but instead take account of the significance
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of each specific node as below.

Second, note that in a connected and nontrivial H, the transition matrix P is ir-
reducible and aperiodic, ensuring a unique stationary distribution p, = psP [150].
Let ps(v) be the element in ps; w.r.t. node v. Then, ps(v) is the probability that
an arbitrary random walk ends at v, indicating the significance of v. Moreover, the

significance p4(v) can be calculated by ps(v) = d(v)/ vol(H).

Finally, combining the multi-hop connectivity and node significance, we define the

HMS-N similarity measure as

m(u,v)
ps(v)

¥(u,v) = tlog : (4.7)

where 7(u,v) is divided by ps(v) to offset the inherent global significance of v (i.e., its
degree centrality), and thus isolate the specific relational strength between u and v
for a balanced and embedding-friendly measure. Moreover, the truncated logarithm,
tlogz = log(max(z, 1)), is applied to stabilize the ratio against small pg(v) in large

hypergraphs.

By Lemma [4.3.1 proved below, we establish the symmetry of HMS-N, ensuring the
mutual similarity between two nodes. This is critical for embedding, as the dot
product of corresponding embedding vectors should preserve their mutual HMS-N
similarity.

m(ivg) _ 7(v),)
ps(vj) ps(vi)

Lemma 4.3.1. For any nodes v;,v; € V, we have

Proof. The random walk on H has stationary probability ps(v;) = d(v;)/ vol(H) [156].
Thus, the matrix with ps as diagonal is D,/ vol(H). Two sides of the lemma are
written in matrix form as vol(H)IID;! and (vol(H)IID;')". Then we get D 'TI" =
D13 a(l —a)(P)T = 3% a(l — a)’D,! (HTWDngDgl)i = 2ol -
a)P'D;! =IID;! = (D, 'II")T. O
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vV EVy « e €&y
v1 < e ={vy,v;,v3}
vy < ey = {V3, V4, Vs}
vy « e3 = {3, Vs, Vg}

Uy ey = {v1,v2, 04}

Vg < eg = {Vy, Vs, Vg}

Figure 4.3: Dual hypergraph H'.

With Eq. (4.7), we can express the HMS-N similarity matrix for all n x n node pairs
in H as

U = tlog® (vol(X)IID, '), (4.8)

where W[i, j] = 1¥(v;,v;) and tlog®(-) means the element-wise truncated logarithm.
Also, W is a symmetric matrix, as the element-wise tlog®(:) function preserves the

symmetry established in Lemma [4.3.1.

Node Embedding Objective. We aim to use the dot product of two node em-
beddings to preserve the HMS-N between nodes. Specifically, Let Z, denote the
n X k embedding matrix where each row is a node embedding vector. Then, the node
embedding problem of solving Z,, can be formulated as follows, where || - || is the
Frobenius norm.

Zy = argming g | ¥ — ZZ"||%. (4.9)

4.3.3 Hypergraph Multi-Hop Hyperedge Similarity: HMS-E

The definition of HMS-E aligns with the principles of HMS-N, but it is derived using
the dual hypergraph H’' of H, where nodes and hyperedges swap their roles. H’
can be obtained by transposing the incidence matrix H. In the dual hypergraph
H = {V, '}, the new node set VY includes m +n nodes and the new hyperedge set
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&' contains n hyperedges. Specifically, each node v] € VY represents the hyperedge
e; € Ex of H. Each hyperedge €} € £ contains nodes in Vy which correspond to the

hyperedges in ‘H incident to v; € V.

Example. Figure illustrates the dual hypergraph H' derived from the original H
in Figure In H', hyperedge e; of H is represented by node v} and is connected to
vy and vj through e}, which corresponds to node vs in H. This representation enables
the analysis of similarity between e; and ey in H based on the relationships between

v} and v} in H'.

The dual hypergraph H’ has a weighted incidence matrix H' = H'TW, hyperedge
weight w(e’) = 1 (¢/ € &), and W’ = I,,. Hyperedge-dependent node weights are
v'(vj, €j) = w(ei)y(vj,e;), retaining the influence of hyperedge weights in H. The

generalized node degree, hyperedge degree, and hypergraph volume of H’ are:

d(v;) = d(e;)w(e;), d(€)) = d(v;), vol(H') = vol(H),

4 J

with matrix forms D! = WD, and D, = D,,.

HMS-E Formulation. In the dual hypergraph H’, a random walk transitions from
node v; (hyperedge e; in H) to node v; (hyperedge e; in H) via a hyperedge €' (node
v shared by e; and ¢;), with probability proportional to (v}, ¢')y' (v}, €’) /d(v;), which
is (v, e;)v(v,e;)/[0(e;)w(e;)] in H. Aggregating over all shared nodes, the transition
probability between e; and e; effectively captures the strength of their overlap. The
transition probability between hyperedges e;, e; in the original hypergraph H is

p'(eirej) = p(vj, v;) = ; 526(;[]6(6)) V(Clv(’;;j ), (4.10)

where the function p/(-,) with a prime indicates the transition between hyperedges

in the original hypergraph H. Moreover, the (m + n) x (m -+ n) transition matrix P’
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can be expressed as

P = (DW)'H'W)'D,'"H'W = D_,'HD,'H'W. (4.11)

Similar to HMS-N, HMS-E between hyperedges e; and e; (i.e., nodes v; and v} in H’
) also considers their multi-hop connectivity and global significance within H’. Let
I be the probability of transitioning between hyperedges (represented as nodes
in ‘H') over t steps. In the limit, T reflects the long-term likelihood of reaching
one hyperedge from another. The matrix IT'® for the dual hypergraph is computed
iteratively by substituting P’ into Eq. ({.5). Let II' denote IT'"=>°) with infinite steps
to converge. Then, the probability that a random walk from hyperedge e; reaching
hyperedge e; in H is 7'(e;, e5) = m(vj, v}) = IT'[3, ].

The global significance of hyperedge e; is the significance of its corresponding node

vy in H', ps(v;), calculated as :
pi(e;) = ps(v)) = d(v))/ vol(H') = d(e;)w(e;)/ vol(H). (4.12)

Finally, the HMS-E of hyperedges e; and e;, ¢'(e;, e;), is

7T,(€i, ej)

' (e, e;) = tlog 4.13
(e65) = hog ™25 (113
The corresponding HMS-E matrix for all hyperedge pairs is

U’ = tlog® (vol(H)II'D, "W). (4.14)

Hyperedge Embedding Objective. We aim to use the dot product of two hyper-
edge embeddings to preserve the HMS-E between the hyperedges. Let Zg denote the
m X k embedding matrix where each row is the embedding vector for a hyperedge

e € £, and W, denote the m x m submatrix of ¥’ that represents the HMS-E simi-
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larity between hyperedges in £. Then, the hyperedge embedding problem of solving

Z¢ can be formulated as

Ze = argmingcpmx | ¥y — ZZ"||%. (4.15)

4.3.4 A Base Method

In this section, we introduce a basic method to directly address the node and hyper-
edge embedding objectives in Equations and . The purpose of this base
method is two-fold. First, it verifies the effectiveness of the proposed measures HMS-
N and HMS-E, by demonstrating superior quality over existing methods. Second, it
establishes a foundation for our final method SAHE, described in Section [4.4] which

achieves the same high embedding quality with significantly improved efficiency.

For node embeddings, the main idea is factorizing the HMS-N matrix W. Recall that
¥ in Eq. relies on TI'=>) in Eq. (&.5), which is an infinite sum of powers
of the transition matrix P. To be tractable, we approximate II by at most ¢t = T
steps, resulting in II") by Eq. . Accordingly, we can derive the approximate
HMS-N matrix ¥; by replacing IT with II'¥) in Eq. ([4.8). Now, the focus is to
factorize the symmetric matrix W7 to get node embeddings Z, € R™**. Specifically,
we utilize the eigendecomposition ¥ = QAQT, where A is the diagonal matrix of
n eigenvalues, and Q contains the corresponding eigenvectors in its columns. Then,
the embedding matrix Zy, would be QA2 so that ZyZ), approximates ¥ in Eq.
. Note that, Zy, has only k£ columns. To satisfy this, we only take the k£ leading
eigenvalues (forming Ay ), and let Q. contain the corresponding eigenvectors. Then,

we get the node embeddings

Zy = QuAy”, where Qi € R™F Ay € RWF, (4.16)
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Algorithm 8: Base

Input: Hypergraph incidence matrix Hg € R™*™ and attribute matrix X € R"*9,
embedding dimension k, algorithm parameters K, o, T'.

H,D,,D., W « ExtendHG(Hy, X, K);

P+ D;'H'WD_'H, 1 1, ; // Eq. (@.4)
fort+1,...,7T do
t % « o, + (1 — a)PII¢D | // Eq. (@)

W + tlog® (VOI(H)H(T)Dgl) ;
Ay, Qi + eigen(Pp, k);
Zy — QA ; // Eq. (E16)
P « D;'HD;'H™W, I « 1, ,;
fort«1,...,7T do
t 'Y — ol + (1 — a)PIIED,
Wl tlog® (vol(H)H’<T>Dglw—1);
W — WLl:m+1,1:m+1];
Ay, Q)  eigen(¥y, k);
Ze — QAL

return Zy, Zg;

Similarly, to derive the hyperedge embeddings Zg in Eq. (4.15)), the base method
first gets IT'") with at most T steps, then computes the approximate HMS-E matrix
W/.. A note is that we are only interested in deriving embeddings for hyperedges in
&, while the attribute-based hyperedges in £ are constructed just to incorporate the
attributes. Thus, we only focus on factorizing the m x m part of ¥’ (denoted as W% ).
Although these attribute-based hyperedges are excluded from W, the attribute in-
formation is actually taken into account in W via the multi-hop random walk. Then,
after factorizing ¥ = Q'A’Q’", we take the first k& leading eigenvalues (forming A%,
and the corresponding eigenvectors (forming Qj,) to fit the dimension of embeddings

k. Finally, we can derive the hyperedge embeddings Zg = Q;CAI\;/ 2,

The pseudocode of this method is presented in Algorithm |8 After constructing the
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Extended Hypergraph H
HMS-N: Linear-time
Node Factorization —| Z
Similarity ¥ ~ Unified -~ of ¥ i
Decomposition
of Normalized
H Linear-time
/ \A Factorization —| 7 c
Attributed Hypergraph ( Similarity ¥’ of ¥

Figure 4.4: Overview of the SAHE algorithm.

extended hypergraph H by Line 1, Base first simulates the random walk processes on
H for T iterations in Lines 2-4, leading to II"). The approximate HMS-N matrix ¥
is computed in Line 5, and the node embedding matrix Z,, is derived by factorizing
W, in Lines 6-7. For the eigendecomposition in Line 6, we adopt an implementation
based on Lanczos iterations, which solves the leading eigenpairs via a limited number
of matrix-vector multiplications. Then, Lines 8-14 basically repeat the embedding
procedures on the dual hypergraph H' to acquire the hyperedge embeddings Zg,
except that Line 12 removes the last n columns and rows to exclude the attribute-

based hyperedges from H.

In the experiments, Base demonstrates strong effectiveness over existing methods,
but falls short in scalability. To analyze, Lines 3-4 and Lines 9-10 dominate its time
complexity, with running time O(n%d?) and O((m + n)2d?), respectively. Lines 5-6
and Lines 11-13 also incur quadratic time while handling ¥, and W¢. Thus, Base has
an overall time complexity of O((m+mn)2d?), and the space complexity is O((m+n)?),
due to the materialization of the (m+n) x (m+n) matrix IT" and the n x n matrix IT.
The high complexity stems from the element-wise tlog®(-) function, which prevents
separate factorization of IT and D™}, forcing materialization of Y for t € [1,T].
Moreover, IT® and IT'® grow dense after iterations, exacerbating scalability issues.

To overcome these limitations, we design SAHE in Section

102



4.4. The SAHE Method

4.4 The SAHE Method

As explained, materializing the dense HMS-N and HMS-E matrices II'") and IT'7) is
computationally expensive. The non-linearity in the definitions of HMS-N and HMS-
E complicates straightforward matrix factorization of the transition and incidence

matrices used to construct the similarity matrices.

To solve these difficulties, we develop SAHE, an efficient method to produce high-
quality AHNEE results, with a complete pipeline outlined by Figure 4.4, The key
ideas are two-fold. First, we analyze the shared core computations of HMS-N and
HMS-E matrices, enabling a unified matrix decomposition procedure for node and
hyperedge embedding objectives (Section @) Second, we introduce approximation
techniques to efficiently generate node and hyperedge embeddings in linear time,
avoiding the materialization of dense HMS-N and HMS-E similarity matrices, with
theoretical guarantees for the approximations (Section [£.4.2). In Section [4.4.3, we

present the algorithmic details.

4.4.1 Unify HMS-N and HMS-E Computations

The key strategy is to identify the shared core computations of the HMS-N and HMS-
E matrices, and perform early matrix decomposition to avoid materializing 17 and
IT'D) | thereby improving efficiency. For node embedding, to derive the HMS-N matrix
W, according to Eq. (4.6) and Eq. (4.8)), we need to obtain II'" D! first, as follows.

T-1

D' =) a(l-a)P'D,'+(1-a)P'D,",

i=0
The main computation here is to get the term P'D,! (i € [T]). We reformulate
P'D,! by plugging in the definition of P in Eq. (4.4) as follows, and obviously
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P'D,! is symmetric.

PZD;1 — D;l/Q (ﬁTﬁ)Z D;l/?) (417)
where H = W'/2D;'?"HD,"/? and H € Rmm)xn,

For hyperedge embedding, similarly, to derive the HMS-E matrix /., according to the
formulation in Section [4.3.3, we need to obtain HI(T)Dgl, which relies on a recurring

symmetric matrix P"D;"W ™! that can be decomposed as

P'D;'W-! = D_12W1/? (ﬁﬁT) D-2PW12, (4.18)

Importantly, observe that in Eq. (4.17) and Eq. (4.18)), they both rely on matrix
H e RO +m)x" - swhich is essentially a normalized version of the incidence matrix H.

Specifically, both HMS-N and HMS-E matrices rely on H to get either (ﬁﬁi) or
<ﬁﬁT> for ¢ up to T.
Note that H is sparse since H is typically sparse. Therefore, it is fast to decompose

H = USVT by reduced singular value decomposition (RSVD), where X is an n x n

diagonal matrix containing the first n singular values of ﬁ, while U € Rm+n)xn

and V € R™" contain the associated left and right singular vectors as their rows,

respectively. Then, P'D ! in Eq. (4.17)) is formulated as

P'D,;' = D,;'? (VSUTUETVT) D,/
_ D;l/Q (VE2VT)i D;l/Q
— D;1/2\/22’L'\/'—|—D;1/27

where the second and third equalities hold since the singular vectors are orthonormal

(ie, UUT =1,,, and VVT =1,).
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Accordingly, the HMS-N matrix W1 can be written as
U7 = tlog® (vol(H)II"D, ")

tlog® [vol(?—l) (Z_: a(l —a)P'D)t + (1 — a)TPTDU1>]

1=0

T-1
= tlog® [vol(%)D; Vv (Za(l—a)ixm—i—(l—a)TEH) VD, ] :

1=0

Denote 3 = ST a(l—a)S% 4 (1-a)"2?T, and note that 3 is an n x n diagonal

matrix. Simplify the above equation, we get
Wy = tlog® [vol(’H)D; VEVTD, } .
This can be reformulated as
W, = tlog® (FTF) , where F = /vol(H)D, /?VE1/2, (4.19)

To acquire the HMS-E matrix ¥/, for hyperedge embedding, we can reformulate it

as follows, via a similar process:

W', = tlog® (FTF’) , where F' = /vol(H)D; /W /2US!/2,

In this way, both similarity matrices W1 and W/, can be easily constructed from the
RSVD results of H via F and F’ , without the need to compute IT and IT’, both of
which require expensive and repeated multiplication of transition matrices P and P’.

Thus, we avoid directly materializing W or W/..
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4.4.2 HMS-N and HMS-E Approximations

Despite the reformulation, two efficiency issues still remain. First, the reduced SVD
on H still has a prohibitive O (n(m + n)) time complexity. To ensure scalability, we

opt for the truncated SVD H ~ U,X, VT, which only keeps the r largest singular

values and the corresponding singular vectors. In this SVD, X, = diag(oy,...,0,)
is a diagonal matrix where o; is the i-th largest singular value, while U, € R(m+m)xr
and V, € R™" are the left and right singular vectors. By replacing ¥, U and
V with the truncated SVD results, we can derive im F, and F/, providing rank-r

approximations for the node and hyperedge similarity matrices, where the error is

bounded in Theorem 4.4.1 proved as follows.

Theorem 4.4.1. With rank-r matrices F, = VOI(H)D;l/QV,f],l«/2 e R"™" and
F. = vol(’;'—[)D;l/ZW_l/QUTi%/2 e RU"XT e have the following approzimation

guarantee for W and V.

Y

2 — 2 NP ..
D2 D721 > Bl

i=r+1

Jttoz” (B, ET) — 2 <

DY D22 W2 37 i

i=r+1

Jttoz” (FLF) — w2 <

Proof. First, we prove the inequality w.r.t. the approximate HMS-N matrix .
Let F denote FFT, and F, denote F,F]. Then, by the definition of ¥y, the Lh.s. of
the first inequality can be write as tlog® (F,F]) —tlog® (FTF) . For ease of exposition,
we denote the result of this formula by A. Then the absolute value of an arbitrary

element of the matrix A is

A [M|—’tlog( o[, J])-tlog( ))
- ‘log (max{Fr[z',j], 1}) log <ma {F })) (4.20)

< ‘max{ﬁ‘r[i,j],l}—max{ }‘ ‘ F[Z,J]‘
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The second equality is due to tlog®(+). The first inequality is because of |log x — logy| <
|z — y| for any =,y > 1. The second inequality is due to | max{z, 1} — max{y, 1}| <

|z — y| for any x,y € R.

Let ¥, denote the diagonal matrix of the (r + 1)-th to n-th largest singular values
of ﬁ, and the corresponding singular vectors are U,, € RM™+t)x(=) and vV, €

R (=) Then we have

[tlog® (F,FT) — r|>. < [|F, — F|% = |F,F] — FFT|]%

(2

— vol?(H) HD;l/QVrfl,,VI (D;2)7 - D;2VEVT (D;W)TH?

v

~ 2
— vol?(H) HD;I/QVHEHVLD‘W ‘

2 _ 272 ~
r SVOIQ(/H) |:HDU 1/QHFi| HVT+2T+V7T+ P

2

Y

2 _ 2 " . .
< [HDi/ZIIFHDv”QHF 3 S

i=r+1

where the first inequality is due to Ineq. . The second inequality is due to
the property of Frobenius norm. The third inequality follows by rewriting vol(H)
as a Frobenius norm. V,, and VL are orthogonal and EAIT+ is diagonal. Thus,
V,urilHVL must be the SVD decomposition of some matrix, and the Frobenius
norm of that matrix is the sum of the squared singular values. Then, we apply

cai < (3, a;)* where a; > 0. Deriving the upper bound in the second inequality
of Theorem [4.4.1 is similar and thus omitted. O

The second challenge arises from the quadratic time and space costs of computing the
matrix multiplication F,F! and applying the subsequent element-wise tlog®(-) func-
tion. To solve this issue, we employ the polynomial tensor sketch (PTS) technique [39]
to approximate tlog®(F,F]) with ' = YOY T, where Y € R™*("+1) contains the ten-
sor sketches and the diagonal ® encodes polynomial coefficients. With PTS, we can
efficiently bypass direct matrix materialization. Specifically, we first generate tensor
sketches based on polynomial degree 7 and sketch dimension b. Then, we derive

the approximation through a process involving count-sketch matrices, recursive ten-
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sor computations based on fast Fourier transform, and regression-based coefficient
estimation with sample size ¢. To analyze, the PTS method takes only linear time
O(n) in total, including O(7nr) for count-sketch generation, O(7nb) for fast Fourier
transform and its inverse, and O(ner) for fitting tlog®(-) via regression. Moreover,
the approximation error of PTS is bounded by Lemma [4.4.2] for our approximation
based on the theory in [39].

Lemma 4.4.2. If |tlog(z) — >_7_,2'| < € for some € > 0 in a closed interval con-

taining all entries of F,F], the PTS T = YOYT' satisfies E| fO(FTF,T)—FHQF <
T T H(®]i,i])? n . % 2

2t YT HEEEE [N I

Although T' = YOYT resembles the eigendecomposition of I', we cannot directly use
Y and O to derive embeddings, since the dimension of Y, n x (7b+1), does not agree
with the k-dimensional embedding space. To obtain a k-dimensional decomposition
efficiently, avoiding the quadratic complexity of standard factorization, we apply the
Lanczos method for eigendecomposition. This method computes the k leading eigen-
pairs of I' by iteratively applying the linear operator £L(v) = T'v =Y (@ (YTV)),
which multiplies a vector v by I' with complexity linear to n. Consequently, the
matrix Ar contains the k largest-magnitude eigenvalues of I, and Qr comprises their
corresponding eigenvectors as columns, yielding a factorization: QrArQf. Finally,

we get the node embeddings as

Zy = QrAY’. (4.21)

Following similar processes with details omitted, we can approximate the hyperedge
similarity matrix tlog®(F.F.") with I, decomposed as QpALQ4", and derive the
hyperedge embeddings

Ze = QL AL (4.22)
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Algorithm 9: SAHE

Input: Hyperedge incidence matrix Hy € R™*", node attribute matrix

X € R"*? embedding dimension k, algorithm parameters

K,r,T a,7,b,c.

H,D,,D., W <« ExtendHG(H, X, K);
H « W'2D;’HD,"/? ,
U,,%,,V, < TruncatedSVD <ﬁ, 7’);
f]T +~ 1.
fori<1,...,7T do

S ol 4 (1- )28
F, < \/vol(H)D, >V, =}* ;
Y,® « PTS(F,, tlog, 7, b, ¢);
Linear operator L(v) =Y (© (YTv));
Ar, Qr < Lanczos(L, k);
Zy  QrAf” ;
F/ « /vol(H)D. /*W-12u, =2
Y', © < PTS(F.[1:m+1,:],tlog, 7, b,¢);
Linear operator £'(v) =Y’ (0 (YV));
AL, Qf < Lanczos (L', k);
Ze — QrAr’” ;

return Zy, Z¢;

// Eq. (4.17)

// Theorem |4.4.1

// eigen (YOYT k)
// Eq. (@21)

// eigen(Y'O'Y" k)
// Eq. (4.22)

4.4.3 SAHE Algorithm Details

With the aforementioned techniques, we can derive node and hyperedge embeddings

efficiently without materializing dense similarity matrices. The pseudocode of SAHE,

our proposed method for attributed hypergraph embedding, is presented in Algorithm

i)

Algorithm. After constructing the attribute-extended hypergraph H at Line 1 by

calling Algorithm (7| (Line 1), we get the incidence matrix H, the degree matrices
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D,, D, and the weight matrix W. Then, we can obtain the normalized hypergraph
incidence matrix H and decompose it into U,, X,, and V, via the rank-r Truncat-
edSVD method (Lines 2-3). We calculate 3, from the r largest singular values of H

in Lines 4-6. Then we derive the embeddings for node and hyperedges.

For node embeddings (Lines 9-11), we first derive F, by its definition in Theorem[4.4.1,
and the node similarity matrix becomes tlog® (F,F:) To compute this tlog® (FTF:>
function efficiently, we derive its polynomial tensor sketches Y and ©®. Finally,
the node embeddings Z, = QFA;/ ? are obtained by factorizing I' = YOYT into
QrArQT via the Lanczos technique [67].

. o . . 1/2
Following a similar process, we can derive the hyperedge embeddings Z, = Q’FA’F/

(Lines 12-16), except that in Line 13 we only generate sketches for the first m rows

of F,., since we are only interested in the embeddings of the original hyperedges.

Complexity. With the above approximation techniques, our proposed SAHE algo-
rithm has a much lower complexity than the base method. To analyze, we first con-
sider the basic steps. Specifically, the invocation of ExtendHG to derive the matrices
in Line 1 takes O(nlogn 4+ ngK) time. The multiplication of matrices in Line 2 costs
only linear time, since W, D,,, and D, are diagonal and H is a sparse matrix with
nd 4+ nkK nonzero entries. The TruncatedSVD technique in Line 3 involves a bounded
number of matrix-vector multiplications on H, and hence incurs O(nd 4+ nK) time
complexity. Then, the calculation of £, in Lines 4-6 takes a negligible O(T'r) time.
As can be seen, the common steps for node and hyperedge embedding only take linear

time in total.

To derive the node embeddings, we compute F, in Line 7, which takes O(nr) time.
Next, recall from Section [4.4.2 that the approximation via the PTS method in Line
8 finishes in linear time O(n). As for the Lanczos method in Lines 9-10, the linear
operator L(-) only takes linear time and the L(-) operator will only be carried out

for constant times. Thus, the Lanczos method also only takes linear time. Finally,
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the time to obtain node embeddings is O(n). By similar arguments, we can conclude

that the time to obtain hyperedge embeddings is O(m + n).

To summarize, the overall time complexity of SAHE is O(nlogn 4 nd + ng + m), or
simply O(nlogn) as ¢ and d can be considered constant. Moreover, the memory
overhead of SAHE is O(nd + ng +m), which is linear in the size of the input H, since

all involved matrices are either sparse or low-dimensional.

Discussion. SAHE achieves substantial speedup at the cost of approximation errors,
compared to Base, which directly computes and factorizes the similarity matrices.
Experiments show that on small datasets, the performance of SAHE and Base is simi-
lar, though Base is often slightly better. However, Base cannot scale to large datasets,
while SAHE consistently outperforms existing methods in efficiency and effectiveness.

Hence, the efficiency gain of SAHE is well worth the approximation trade-offs.

4.5 Experiments

After providing the experimental settings in Section [4.5.1] we report the performance
of node embedding on node classification task in Section [£.5.2 and on hyperedge link
prediction task in Section [4.5.3) and the performance of hyperedge embedding on
hyperedge classification task in Section [4.5.4. The efficiency results and experimental
analysis are reported in Section [£.5.5 and Section [£.5.6. The implementation of our
methods is available at https://github.com/CyanideCentral/AHNEE.

4.5.1 Experimental Setup

Datasets. Table summarizes the statistics of attributed hypergraphs used in
our experiments, including the number of nodes (n) and hyperedges (m), the average

node degree (d), the average hyperedge size (§), the dimension of node attributes
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Table 4.2: Dataset statistics.

Dataset n m d ) q l
DBLP-CA 2,591 2,690 239 231 334 4
Cora-CA 2,708 1,072 1.69 4.28 1,433 7
Cora-CC 2,708 1,579 1.77 3.03 1,433 7
Citeseer 3,312 1,079 1.04 3.20 3,703 6
Mushroom 8,124 298 5.0 136.3 126 2
20News 16,242 100 4.03 654.5 100 4
DBLP 41,302 22,263 241 445 1,425 6
Recipe 101,585 12,387 252 2069 2254 8
Amazon 2,268,083 4,285,295 32.2 17.1 1,000 15
MAG-PM 2353996 1,082,711 7.34 16.0 1,000 22

Table 4.3: Node classification performance. The best three are in gray with darker
shades indicating better performance.

DBLP-CA | Cora-CA | Cora-CC Citeseer |Mushroom| 20News DBLP Recipe Amazon | MAG-PM
MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1
Hyper2vec|0.446 0.410{0.412 0.365 |0.493 0.460 |0.311 0.258 | - - - - 10702 0672 - - - - - -
PANE 0.671 0.651 |0.516 0.456 | 0.508 0.491|0.443 0.399 [0.910 0.909 {0.566 0.464 |0.750 0.734| - - - - 10.378 0.230| 6.9

AnECI  [0.683 0.661 |0.625 0.582(0.453 0.367 |0.454 0.399 |0.914 0.913 |0.694 0.589 | - - - - - - - -

CONN 0.756 0.744 [0.684 0.640 | 0.637 0.577 |0.626 0.563 | - - - - 10.828 0.814| - - - - - - 6.0
Villain [0.462 0.439|0.457 0.412{0.484 0.490 |0.301 0.272|0.984 0.984 |0.730 0.645|0.692 0.657 | - - - - - -
AnchorGNN | 0.275 0.196 [0.239 0.096 |0.254 0.095|0.195 0.114|0.854 0.853 |0.545 0.429 |0.271 0.071 |0.379 0.069 | 0.310 0.032|0.252 0.018 | 9.2

Method

BiANE [0.705 0.682|0.716 0.683{0.652 0.625|0.644 0.579 |0.969 0.969 | - - 10.853 0.843 5.0
TriCL  [0.787 0.778 {0.702 0.677|0.668 0.646 |0.540 0.487|0.978 0.978 |0.761 0.722 | - - 5.0
HypeBoy |0.812 0.789 [0.725 0.688 |0.627 0.584 {0.476 0.420{0.970 0.970 5.8

NetMF |0.536 0.514 |0.518 0.458 |0.527 0.513 10.324 0.281 [0.987 0.987 |0.766 0.733 |0.744 0.721 | - - - - - - 6.2
LightNE |0.545 0.519]0.520 0.469 [0.533 0.514 |0.342 0.295 |0.959 0.959 [0.700 0.646 |0.733 0.712 |0.382 0.099 | 0.443 0.210 |0.603 0.353 | 6.0
Base 0.836 0.828 |0.777 0.754|0.753 0.732|0.693 0.628 | 0.997 0.997 |0.801 0.775|0.898 0.894 | - - - - - -
SAHE 0.824 0.816 [0.753 0.732|0.742 0.720 |0.690 0.622|0.999 0.999 |0.786 0.748 |0.867 0.859 |0.630 0.236 |0.718 0.396 |0.698 0.451| 1.6

(g), and the number of ground-truth class labels (¢). DBLP-CA, Cora-CA, Cora-
CC, Citeseer, and DBLP are benchmark datasets in [136]. Mushroom and 20News
are from [16], and Recipe is from [69]. Amazon and MAG-PM are million-scale
from [73]. In DBLP-CA, Cora-CA, and MAG-PM, nodes represent publications, and
hyperedges link publications by the same author. In DBLP, nodes are authors, and
hyperedges connect co-authors of a publication. Cora-CC and Citeseer are co-citation
datasets where hyperedges group publications cited together. Nodes in these datasets
have textual attributes from abstracts, with class labels indicating research areas.
The Mushroom dataset forms hyperedges by connecting mushrooms (nodes) with
the same traits. A mushroom has a one-hot binary attribute vector from categorical

features and is labeled as edible or poisonous. The 20News dataset forms hyperedges
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by shared keywords, using TF-IDF vectors as node attributes and topics as labels.
Recipe is a recipe-ingredient hypergraph with bag-of-words attributes from instruction
texts and dense hyperedge connections. In Amazon, nodes are products, hyperedges
connect products reviewed by the same user, and attributes come from metadata,
with categories as labels. Hyperedges lack labels, so we assign each the most frequent
node label. For example, an author hyperedge in Cora-CA takes the predominant
research area among its publications, while in Amazon, a user hyperedge adopts the

most common product category.

Baselines. For node embedding evaluation, we compare SAHE against 11 baselines in
total, including the hypergraph embedding approach Hyper2vec [45], and three at-
tributed graph embedding approaches (i.e., PANE [142], AnECI [79], and CONN [114]),
which are applied to reduced graphs derived from the clique expansion of the hyper-
graph. Also, we consider two bipartite graph embedding techniques AnchorGNN [12§]
and BiANE [47] that are applied to a bipartite graph where hyperedges are treated
as a distinct set of nodes separate from the original nodes. Finally, we further in-
clude three self-supervised learning baselines (VilLain [65], TriCL [64], and HypeBoy
[60]), with TriCL and HypeBoy targeted for attributed hypergraph embedding, as
well as matrix factorization based approaches on the general graph, NetMF [99] and
LightNE [98]. For hyperedge embedding evaluation, we also compare these baselines,
among which bipartite graph embedding methods (AnchorGNN and BiANE) can pro-
duce embeddings for two parts as node and hyperedge embeddings, respectively. The
remaining methods compute a hyperedge embedding by averaging the node embed-
dings in the hyperedge. In addition, we also compare SAHE with the base method in
Section [4.3.4 for effectiveness.

Implementation. On all datasets, SAHE and Base have the identical parameter
settings: K = 10, f = 1.0, « = 0.1, T" = 10. For all datasets, SAHE performs
approximation with » = 32, 7 = 3, b = 128, and ¢ = 10, except Mushroom with

r = 16. We fix the output node and hyperedge embedding dimension k to 32 for all

113



Chapter 4. SAHE: Attributed Hypergraph Embedding

Table 4.4: Hyperedge link prediction performance. The best three are in gray with
darker shades indicating better performance.

DBLP-CA | Cora-CA | Cora-CC | Citeseer |Mushroom| 20News DBLP Recipe Amazon |[MAG-PM

Method =4 =G Acc AUG| Acc AUC| Ace AUC| Acc AUC | Acc AUC| Acc AUC| Acc AUC| Acc AUC| Ace AUC| 0K
Hyperavec|0.631 0.712 [0.667 0.751|0.715 0.751[0.069 0684 - - | - - o4 ol - - | - - [ - - |81
PANE  |0.687 0.774 |0.685 0.765|0.747 0.755|0.685 0.680|0.930 0.974 |0.513 0.638]0.723 0.831| - - | - - |0.622 0.697| 6.1
AnECI 0.704 0.79710.695 0.778(0.753 0.836/0.793 0.890|0.947 0.976 |0.615 0.617 - - - - - - - - 5.4
CONN  0.797 0.880 |0.655 0.710|0.737 0.835|0.751 0.856| - - | - - |o72r o8| - - | - - | - - | 63
VilLain [0.638 0.721|0.682 0.729]0.729 0.833/0.659 0.717|0.905 0.971 |0.500 0.396|0.698 0.676| - - | - - | - - | 74
AnchorGNN | 0.530 0.553 |0.512 0.525|0.628 0.688]0.565 0.603|0.693 0.822 |0.515 0.403|0.516 0.522|0.506 0.553]0.694 0.773]0.484 0.476| 9.1
BiANE  |0.638 0.599 |0.648 0.507|0.751 0.721|0.690 0.647|0.941 0.981 | - - |0.681 0631 - - | - - | - - | 79
TricL  |0.719 0.808 |0.682 0.738]0.727 0.837|0.720 0.824|0.942 0.988 [0.615 0.858| - - | - - | - - | - - | 57
HypeBoy |0.718 0.836 0.740 [0.843]0:835' 0.924|0.741 0.805|0.937 0.982 | - e

NetMF |0.659 0.715 0.740 0.793]0.722 0.736]0.643 0.617|0.943 0.988 0.755 0.873|0.755 0.817| - - - - - -
LightNE |0.632 0.676 ‘[)675 0.67210.725 0.839]0.671 0.756{0.954 0.988 ‘[)535 0.65810.696 0.703]0.642 0.689|0.732 0.820|0.746 0.793| 5.8
Base 0.785 0.893 0.744 0.815|0.790 0.899{0.783 0.905[0.968 0.996 0.825 0.969|0.811 0.896| - - - - - -
SAHE  0.776 0.890 0.766 0.828|0.807 0.902]0.801 0.9160.989 0.999 0.870 0.956|0.824 0.911]0.763 0.830]0.909 0.965|0.761 0.798| 1.4

approaches. The parameters for all tested baselines are configured according to their
respective papers. Our method SAHE, along with most baselines, is implemented in

Python, except for the C++ competitor LightNE.

Evaluation. We conduct experimental evaluations on a Linux computer with an
Intel Xeon Platinum 8338C CPU, an NVIDIA RTX 3090 GPU, and 384 GB of RAM,
where a maximum of 16 CPU threads are available. The methods AnECI, CONN,
VilLain, AnchorGNN, TriCL, and HypeBoy benefit from GPU acceleration, while the
other methods, including Base and SAHE, are executed on the CPU. We report average
results over 10 repeated runs. If an approach fails to complete within 24 hours or

runs out of memory, it is considered to rank last and we record the result as ‘ - 7 in

Tables 4.3H4.5]

4.5.2 Node Classification

For attributed hypergraphs, node classification seeks to predict class labels using
node embeddings. We split datasets into training and test sets, using a 20%/80%
ratio for most, except Amazon and MAG-PM, where 2% is allocated for training due
to their size. Ten random splits are generated per dataset, and we report average
results. Embeddings, derived without accessing label information, are used to train

a simple linear classifier on the training set, with performance evaluated on the test
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set. Classification effectiveness is assessed via Micro-F1 (MiF1) and Macro-F1 (MaF1)

scores, where higher values indicate better performance.

Table shows the results, with the top three performances for each dataset high-
lighted in gray, using darker shades for better performance. The Rank column in-
dicates the average ranking of each method across all metrics. SAHE achieves the
best overall rank of 1.6, significantly outperforming the next best competitors, BiANE
and TriCL, which rank at 5.0. On large datasets like Amazon and MAG-PM, most
competitors fail to return results within time and memory limits. Compared to Base
from Section [4.3.4, SAHE, developed in Section [4.4] is outperformed slightly on small
datasets but excels on large ones where Base is inefficient. This highlights the strength
of SAHE’s approximation techniques in maintaining result quality while improving ef-
ficiency. For instance, on Cora-CC, Base and SAHE secure the first and second po-
sitions, respectively, outperforming the third-ranked TriCL by up to 8.5% in both
MiF1 and MaF1. On the DBLP-CA, Cora-CA, Citeseer, Mushroom, 20News, and
DBLP datasets, SAHE improves over the best competitors by 1.2%, 2.8%, 4.6%, 1.2%,
2.0%, and 1.4% in MiF1, and 2.7%, 4.4%, 4.3%, 1.2%, 1.5%, and 1.6% in MaF1, re-
spectively. On the densely connected Recipe, SAHE significantly outperforms the best
competitor by 24.8% in MiF1 and 13.7% in MaF1. On the large Amazon and MAG-
PM, SAHE also surpasses the runner-up with margins up to 27.5% in MiF1 and 18.6%
in MaF1 on Amazon. Table demonstrates SAHE’s excellent performance in node
classification, indicating the high quality of node embeddings and the effectiveness of

the HMS-N objective from Section [4.3] and algorithm designs in Section 4.4.2.

4.5.3 Hyperedge Link Prediction

Hyperedge link prediction in attributed hypergraphs seeks to identify whether a group
of nodes forms a real hyperedge using node embeddings [94] 65]. For each dataset,
we divide hyperedges into training and test sets, using an 80%/20% split for smaller
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Table 4.5: Hyperedge classification performance. The best three are in gray with
darker shades indicating better performance. (20News is excluded for lack of suitable
labels.)

Method DBLP-CA | Cora-CA | Cora-CC Citeseer |Mushroom| DBLP Recipe Amazon | MAG-PM Rank
MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1
Hyper2vec | 0.569 0.518 |0.439 0.370 |0.794 0.786 | 0.589 0.511 0.599 0.553 | - - - - 7

PANE 0.704 0.673 | 0.515 0.426 | 0.737 0.725 | 0.567 0.495|0.769 0.765|0.751 0.731| - - - - 10303 0.111| 6.4

AnECI | 0.685 0.664 |0.599 0.529 |0.542 0.484|0.534 0.398 |0.821 0.813 | - - - - - - - - 7.6
CONN 0.809 0.786 | 0.641 0.587{0.781 0.760 | 0.689 0.612 | - - 0837 0815 | - - - - - - 5.6
VilLain |0.567 0.515|0.459 0.382]0.799 0.790 |0.619 0.538 |0.838 0.835|0.550 0.486 6.4

AnchorGNN | 0.307 0.251 | 0.185 0.142 | 0.194 0.146 | 0.201 0.170 | 0.622 0.602 | 0.267 0.087 | 0.454 0.078 0.372 0.036 | 0.334 0.044 | 9.1

BiANE | 0.479 0.408 |0.241 0.179 |0.577 0.506 |0.462 0.377 |0.767 0.762 |0.462 0.342 | - - - - - - 8.8
TriCL | 0.804 0.778 |0.646 0.590 |0.820 0.808 |0.659 0.579 |0.838 0.834 | - - - - - - - - 5.2
HypeBoy |0.820 0.799 0.719 0.662 |0.794 0.775|0.728 0.630 |0.835 0.830 | - - - - - - - - 5.3
NetMF |0.650 0.607 |0.452 0.399 |0.797 0.792{0.596 0.530 0.879 0.877 |0.730 0.699 5.8

LightNE |0.654 0.610 |0.458 0.399 |0.800 0.791 |0.617 0.534 ‘0.847 0.844 1 0.702 0.673 | 0.199 0.051 0.774 0.485|0.502 0.179 | 4.9
Base 0.858 0.838 0.775 0.740 | 0.852 0.846 | 0.770 0.684 0.926 0.925 |0.908 0.898 | - - ‘ - - - - 2.1
SAHE 0.854 0.836 0.764 0.711]0.850 0.839]0.756 0.669 0.908 0.907 | 0.863 0.843 | 0.668 0.236 0.823 0.429 |0.755 0.470 | 1.7

datasets and 98%/2% for larger ones like Amazon and MAG-PM. For each real hy-
peredge, we create a negative counterpart by randomly selecting nodes to match its
size. Node embeddings are derived from the training set’s real hyperedges and full
attribute data, excluding test hyperedges and labels. A linear binary classifier is
trained to differentiate real from negative hyperedges, using max-min aggregation of
node embeddings as input. This model is tested on the test set, predicting real and
negative hyperedges. We repeat this process over 10 random splits, averaging the
results. Performance is assessed by accuracy (Acc) and area under the ROC curve

(AUC), with higher scores indicating better performance.

Table 4.4 shows that SAHE ranks highest overall with a score of 1.4, significantly out-
performing the strongest baseline, HypeBoy, which has a rank of 5.4. While Base
performs well on smaller datasets, it struggles with larger ones. In contrast, SAHE
maintains top performance on large datasets like Amazon and MAG-PM, where other
methods falter. For instance, on Recipe, SAHE exceeds LightNE by 12.1% in accuracy
and 14.1% in AUC. On the large Amazon dataset, SAHE achieves 90.9% accuracy
and 96.5% AUC, improving by 17.7% and 14.5% over the runner-up, LightNE, which
scores 73.2% accuracy and 82.0% AUC. These results confirm that SAHE generates
high-quality node embeddings, validating the effectiveness of our proposed node sim-

ilarity measure and embedding objective.
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4.5.4 Hyperedge Classification

We evaluate hyperedge embeddings using a classification task that predicts a hyper-
edge’s label from its embedding vector. Hyperedges are split into training and test
sets with a 20%/80% ratio, except for Amazon and MAG-PM, which use a 2% /98%
split due to their size. Embeddings are computed from the attributed hypergraph
without label information. A linear classifier is trained on the training set, using
hyperedge embeddings as input and their labels as targets. Performance is assessed

on the test set, averaged over 10 random splits, and measured by MiF1 and MaF1.

Table shows that SAHE ranks first overall with a score of 1.7, significantly outper-
forming the closest competitor, LightNE, which ranks at 4.9. On large datasets like
Amazon and MAG-PM, most competitors fail due to time or memory constraints.
Unlike Base, which struggles with larger datasets, SAHE excels on both small and
large datasets, thanks to its efficient approximation techniques in Section 4.4l Com-
pared to the runner-up baseline, SAHE improves MiF1 by 4.5% and MaF1 by 4.9% on
Cora-CA, and by large margins of 21.4% in MiF1 and 15.8% in MaF1 on the Recipe
dataset. On the large MAG-PM dataset, SAHE outperforms LightNE by 25.3% in
MiF1 and 29.1% in MaF1. This suggests that simply averaging node embeddings,
as in baseline methods, is insufficient for hyperedge embedding. The performance of
SAHE shows the effectiveness of the HMS-E similarity objective and approximation
techniques in Sections [4.3.3 and

4.5.5 Embedding Efficiency

Figure[d.5|reports the time of all methods to generate node and hyperedge embeddings
across the 8 datasets, with each chart’s y-axis showing running time in seconds on a

logarithmic scale and stars marking the top-performing competitors in all three tasks.

Observe that (i) SAHE consistently outperforms all competitors in terms of efficiency
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Figure 4.5: Running time of generating node and hyperedge embeddings together in
seconds (x marks the best competitors in Tables , , .

118



4.5. Experiments

across all datasets, regardless of the competitors’ quality; more importantly, (ii)
SAHE demonstrates a significant speed advantage over the most effective competitors
marked by stars in Figure [4.5] often being faster by orders of magnitude. Taking the
Citeseer dataset as example, Figure shows that SAHE is 422.5x faster than BiANE
(3rd place in node classification), 15.3x faster than AnECI (3rd place in hyperedge
link prediction), and 70.2x faster than HypeBoy (3rd place in hyperedge classifica-
tion), while SAHE outperforms all baselines in these tasks. In Figure , SAHE takes
just 0.951 seconds compared to 13,536 seconds for NetMF, the runner-up in embedding
quality. This is because NetMF operates on a dense clique-expansion graph reduced
from the hyperedges, which incurs a quadratic complexity for the factorization-based
algorithm. On the million-scale Amazon dataset, SAHE is much faster than the com-
petitors, such as LightNE, with an average rank of 6.0, compared to the 1.4 average
rank of SAHE in Table [4.3] These results underscore the combination of high-quality

embeddings and excellent efficiency achieved by SAHE.

4.5.6 Experimental Analysis

Scalability test. We assess scalability on synthetic attributed hypergraphs with the
number of nodes n ranging from 2 to 10 million. Each hypergraph is generated as
a 3-uniform hypergraph with n hyperedges of size 3 [33], and each node is assigned
100 random binary attributes. Figure shows the time and memory usage of SAHE
against the scalable baseline LightNE on CPU. SAHE exhibits near-linear scalability
and outperforms LightNE in both metrics, confirming the complexity analysis in

Section [4.4.3 and demonstrating the efficiency of SAHE for large datasets in practice.

Approximation error. SAHE improves efficiency by introducing acceptable approx-
imation errors compared to Base, which directly computes and factorizes similarity

matrices. Table quantifies this loss by reporting the mean absolute error (MAE)
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Figure 4.6: Scalability Test.

Table 4.6: Approximation Error (MAE).

HMS-N HMS-E

Dataset Base SAHE Base SAHE
DBLP-CA | 0.0887 | 0.1281 | 0.0795 | 0.2141
Cora-CA 0.0965 | 0.1384 | 0.0770 | 0.2761
Cora-CC 0.0970 | 0.1546 | 0.0551 | 0.1714
Citeseer 0.0927 | 0.1446 | 0.0629 | 0.2096

between normalized HMS-N and HMS-E matrices and their embedding dot product
matrices. Specifically, similarity matrices are normalized by their diagonal mean to
align self-similarity scales, and MAE is computed as the difference between the em-
bedding dot product and the similarity matrices. Results show low errors for both
methods, with Base achieving slightly lower MAE. This confirms SAHE effectively ap-
proximates similarity measures with small errors, enabling comparable effectiveness

while ensuring efficiency.

Varying K. Figure[4.7shows the MiF1 for node classification, Acc for hyperedge link
prediction, and the time to construct attribute-based hyperedges in i for the Cora-
CA and Amazon datasets. As K varies from 2 to 100, time costs rise significantly,
especially for K > 20. Embedding quality improves notably as K increases from
2 to 10, highlighting the importance of incorporating attribute similarity. However,
beyond K = 10, the metrics stabilize and then decline, likely due to the inclusion of
nodes with dissimilar attributes, which introduces noise. Thus, we set parameter K

to 10 over all datasets.
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Figure 4.7: Varying K for SAHE.
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Figure 4.9: Varying r for SAHE.

Varying . Parameter [ balances between attribute-based hyperedges £k and origi-
nal hyperedges £ in H in Section Figure [4.8 shows that as 8 increases from 0.1

to 1, micro-F1 for node embedding generally increase. Beyond 1.0, scores stabilize
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Figure 4.10: Heatmaps between K, 3, and r on Cora-CA for node classification.
Darker shades indicate higher MiF1. Underlined results are reported in Table [4.3]
while the optimal parameter combinations are in bold.

on most datasets, but decline for Cora-CC and MAG-PM when  reaches 10.0. The
accuracy of hyperedge link prediction (Acc) increases on 20News and Amazon when

S varies from 0.1 to 1.0, then remains stable. Therefore, we set § = 1 by default.

Varying r. The parameter r represents the dimension of truncated SVD used for
approximating HMS-N and HMS-E in Section [4.4.2. We vary r for node classification
(MiF1) and hyperedge link prediction (Acc), with results in Figure Increasing
r from 16 to 32 generally improves or stabilizes both metrics, except for Mushroom,
where Acc drops after 24. Beyond 32, scores typically decline. Thus, we set r = 32
by default and r = 16 for the Mushroom dataset.

Parameter interaction. We analyze the interaction between parameters K, (3,
and r using node classification on Cora-CA, shown in Figure [4.10] The heatmaps
display Micro-F1 scores across parameter combinations. SAHE consistently delivers
high-quality embeddings, indicated by darker gray levels, confirming robustness to
parameter variations. Underlined results are those reported in Table while bold
values represent optimal performance with fine-tuned parameters, surpassing defaults.
This shows SAHE delivers strong performance with default settings, without extensive

tuning, and provides guidance for adjusting parameters in practice.

Ablation study. To validate our proposed similarity measure formulation, we eval-
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Table 4.7: Ablation analysis

of HMS-N on node classification performance.

Method DBLP-CA Cora-CA Cora-CC Citeseer Mushroom 20News DBLP
MiF1 MaF1 | MiF1 MaF1 | MiF1 MaF1 | MiF1 MaF1 | MiF1 MaF1 | MiF1 MaF1 | MiF1 MaF1
HMS-N-no-Ex | 0.527 0.492 | 0.507 0.462 | 0.559 0.530 | 0.329 0.278 | 0.990 0.990 | 0.796 0.769 | 0.755 0.733
HMS-N-1-hop | 0.811 0.803 | 0.741 0.720 | 0.716 0.696 | 0.680 0.618 | 0.988 0.988 | 0.783 0.755 | 0.852 0.843
HMS-N 0.836 0.828 | 0.777 0.754 | 0.753 0.732 | 0.693 0.628 | 0.997 0.997 | 0.801 0.775 | 0.898 0.894
Table 4.8: Ablation analysis of HMS-E on hyperedge classification performance.
Method DBLP-CA Cora-CA Cora-CC Citeseer Mushroom DBLP
MiF1 MaF1 | MiF1 MaF1 | MiF1 MaF1 | MiF1 MaF1 | MiF1 MaF1 | MiF1 MaF1
HMS-E-1-hop | 0.648 0.605 | 0.489 0.423 | 0.765 0.749 | 0.610 0.521 | 0.899 0.897 | 0.650 0.552
HMS-E-no-& | 0.658 0.615 | 0.487 0.418 | 0.821 0.810 | 0.623 0.549 | 0.921 0.920 | 0.747 0.716
HMS-E 0.858 0.838 | 0.775 0.740 | 0.852 0.846 | 0.770 0.684 | 0.926 0.925 | 0.908 0.898

Table 4.9: Node classification performance for extended baselines.

Method DBLP-CA | Cora-CA | Cora-CC Citeseer |Mushroom| 20News DBLP Recipe Amazon | MAG-PM Rank
MiF1l MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1
Hyper2vec+|0.772 0.763 |0.696 0.663 [0.643 0.615 |0.629 0.574 [0.935 0.935|0.776 0.734 |0.863 0.858 | - - - - - 2.8
Hyper2vec |0.446 0.410 [0.412 0.365|0.493 0.460 |0.311 0.258 - - - - 0.702 0.672 - - - - - 3.8
TriCL+ [0.797 0.788{0.709 0.678 |0.648 0.629 |0.616 0.559 |0.983 0.983|0.622 0.567 | - - - - - - - 2.6
TriCL 0.787 0.778 |0.702 0.677 |0.668 0.646 |0.540 0.487 |0.978 0.978 |0.761 0.722 | - - - - - - - - 2.8
SAHE 0.824 0.816 |0.753 0.7320.742 0.720 |0.690 0.622 |0.999 0.999 |0.786 0.748 [0.867 0.859 |0.630 0.236 |0.718 0.396 |0.698 0.451 | 1.0
Table 4.10: Hyperedge link prediction performance for extended baselines.
Method DBLP-CA| Cora-CA Cora-Cp Citeseer |Mushroom| 20News DBLP Recipe | Amazon |[MAG-PM Rank
Acc AUC| Acc AUC| Acc AUC| Acc AUC| Acc AUC | Acc AUC| Acc AUC| Acc AUC| Acc AUC| Acc AUC
Hyper2vec+|0.735 0.821]0.613 0.668|0.699 0.795/0.712 0.803|0.932 0.980 [0.622 0.749|0.672 0.747| - - - - - 3.1
Hyper2vec |0.631 0.712|0.667 0.751|0.715 0.751]0.669 0.684| - - - - 10.704 0.741| - - - - - 3.6
TriCL+ [0.747 0.881]0.721 0.812]0.767 0.912|0.776 0.900|0.933 0.962 |0.523 0.525| - - - - - - - 2.5
TriCL 0.719 0.808 |0.682 0.738|0.727 0.837]0.720 0.824]0.942 0.988 |0.615 0.858| - - - - - - - - 2.8
SAHE 0.776 0.890 |0.766 0.8280.807 0.902]0.801 0.916]0.989 0.999 |0.870 0.956|0.824 0.911]0.763 0.830/0.909 0.965|0.761 0.798| 1.1
Table 4.11: Hyperedge classification performance for extended baselines.
Method DBLP-CA | Cora-CA | Cora-CC | Citeseer |Mushroom| DBLP Recipe Amazon | MAG-PM ‘Rank
MiF1 MaF1|MiF1 MaF1|MiF1 MaF1[MiF1 MaF1|MiF1 MaF1[MiF1 MaF1|MiF1 MaF1|MiF1 MaF1|MiF1 MaF1 |
Hyper2vec+|0.822 0.798 |0.702 0.654 |0.804 0.799 |0.717 0.637 |0.901 0.900 |0.851 0.833 | - - - - - - 2.2
Hyper2vec |0.569 0.518 |0.439 0.370 |0.794 0.786 |0.589 0.511| - - 10599 0.553| - - - - - - | 38
TriCL+ |0.803 0.775|0.646 0.593|0.824 0.809 |0.670 0.596 | 0.831 0.828| - - - - - - - - 2.9
TriCL  |0.804 0.778 |0.646 0.590 |0.820 0.808 |0.659 0.579|0.838 0.834| - - - - - - - - 2.9
SAHE 0.854 0.836 |0.764 0.711|0.850 0.839 |0.756 0.669 |0.908 0.907 |0.863 0.843 |0.668 0.236 |0.823 0.429 |0.755 0.470 = 1.0

uate two ablated versions: HMS-N/HMS-E-no-Ef, which excludes attribute-based

hyperedges, and HMS-N/HMS-E-1-hop, which restricts random walks to a single hop.

Node and hyperedge embeddings derived from these similarity matrices are assessed

via the classification task, with results in Tables 4.8 The full HMS-N and HMS-E

measures generally outperform both ablated versions, confirming the effectiveness of

our approach.

Adapting HMS-N and HMS-E to existing methods. We explore two strategies

to integrate the key intuitions of HMS-N and HMS-E into existing methods, evaluat-
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Chapter 4. SAHE: Attributed Hypergraph Embedding

ing their impact on embedding quality alongside SAHE. First, we adapt our multi-hop
random walk process into the Hyper2vec framework, yielding Hyper2vec+ for node
and hyperedge embeddings. Second, for graph neural network models that do not
use random walks, such as TriCL, we enhance it by concatenating the HMS-N matrix
with node features, resulting in TriCL+, where hyperedge embeddings are derived by
averaging node embeddings. Tables summarize the results for node classifica-
tion, hyperedge link prediction, and hyperedge classification tasks, respectively. The
last column shows the average rank of each method across all datasets, with lower
ranks indicating better overall performance. The extended baselines benefit from
incorporating our similarity measures to varying extents. For instance, Hyper2vec+
outperforms Hyper2vec, while TriCL+ shows occasional improvements over TriCL.
Besides, Hyper2vec+ integrates our random walk scheme, making it more efficient
than Hyper2vec’s second-order random walks, enabling it to process datasets like
20News and Mushroom within the 24-hour limit. These results highlight that the
impact of our ideas depends on the baseline design. Overall, SAHE achieves the best
overall rank, consistently delivering superior performance across diverse settings and

scaling to large datasets that other methods cannot handle.

Varying a. Figure [4.11]shows MiF1 for node classification in (a) and Acc for hyper-
edge link prediction in (b) as a varies from 0.001 to 0.3. SAHE demonstrates consistent
performance across most values, except for the very small o = 0.001. This confirms

SAHE’s robustness to different a values, with o = 0.1 chosen as the default setting.

Varying 7 and b. Parameters 7 and b balance approximation accuracy and efficiency,
with larger values improving accuracy at higher computational cost. Figure a)
and (b) show MiF1 for node classification and running time as 7 varies from 1 to 9,
while Figure depicts results for b ranging from 16 to 256. MiF'1 initially improves
and then stabilizes as these parameters increase, while running time continues to rise.
The default settings of 7 = 3 and b = 128 effectively balance quality and efficiency,

and performance remains robust across a range of values.
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Figure 4.11: Varying a.
MilFl A time
0.9 150%
0.8 'i/” & — 100%
0.7+ +— : 50%
0.6 0%
1 3 5 79 T 1 3 5 7 9 7
(a) (b)
Figure 4.12: Varying 7.
MilFl A time
0.9 150%
0.8 E/E—"E—E_E 100%
0.7 ::::3;28 50%
0.6 0%
16 32 64 128 256 b 16 32 64 128 256 b
(a) (b)
Figure 4.13: Varying b.

4.6 Summary

This chapter presents SAHE, an efficient algorithm for the Attributed Hypergraph

Embedding (AHE) problem. SAHE generates node and hyperedge embeddings that

preserve both higher-order connectivity among nodes and collective attribute-based

similarities among hyperedges.

By introducing multi-hop similarity measures and
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Chapter 4. SAHE: Attributed Hypergraph Embedding

leveraging optimized decomposition techniques, SAHE achieves log-linear time com-
plexity. Extensive evaluation across 10 real-world datasets shows that SAHE consis-
tently outperforms 11 baseline methods in both scalability and embedding quality,

demonstrating its practical effectiveness for attributed hypergraph representation.
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Chapter 5

SGLA: Multi-view Attributed
Graph Integration

This chapter presents SGLA and SGLA+ [70], spectrum-guided methods for cluster-
ing and embedding in multi-view attributed graphs, advancing the thesis’s goal of
developing effective and scalable solutions for attributed network structures. Unlike
Chapters [3] and [4 which focus on networks with a single attribute view and primar-
ily one network view, this work tackles the challenge of integrating multiple graph
and attribute views. Together, these contributions enhance the analysis of diverse

attributed network structures.

5.1 Introduction

A multi-view attributed graph (MVAG) describes a set of entities with multiple graph
views and attribute views, illustrating their relationships and properties from various
perspectives or data sources. For example, regarding a group of people, one graph
view may focus on their social relations on Facebook, whereas another graph view

may represent their business connections on LinkedIn. Moreover, attribute views
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Figure 5.1: Multi-view attributed graph G with two graph views GG; and G5, and two
attribute views X3 and X, of categorical and numerical attributes respectively.

may comprise diverse numerical, categorical, or visual features. Graph analytics for
MVAGs, especially clustering and embedding, are of particular interest as they find
important applications. For instance, clustering on MVAGs constructed from visual
descriptors is effective for neuroimaging analysis of diseases [153]. MVAG embeddings
are useful in recommendation systems in e-commerce [119], spam detection on social
networks [68], and predicting drug-disease associations in bioinformatics [32]. Figure
5.1| presents a minimal example of an MVAG of 8 entities, described by 2 graph views

and 2 attribute views.

It is crucial but challenging to manage complex MVAGs to holistically utilize the
graph views and attribute views for the clustering and embedding tasks, particularly
with large MVAGs. In an MVAG G, different graph views can display varying topo-
logical structures, and the graph and attribute views represent distinct data models
that cannot be directly integrated. Moreover, the considerable data volumes typical in
real-world applications pose a significant challenge to efficiency and scalability. These

challenges hinder the effective management of MVAG data in an efficient manner.

As reviewed in Section an array of approaches [24] [79] [152] [142] [134] are only

designed for attributed graphs with one graph view or one attribute view. Other
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5.1. Introduction

methods [160] 25] handle attribute views without considering graphs, and thus they
often yield suboptimal results for MVAGs in the experiments. Existing methods
specialized for MVAG clustering or embedding are often built upon sophisticated
graph neural network operations [14] 86], and consequently struggle with efficiency
and scalability. Several clustering methods [91][77] attempt to learn a graph structure
that aligns with all views in G, requiring a huge number of variables to be solved.
Summing up, existing methods either produce subpar results or require excessive

computational resources to manage large-scale MVAGs.

In this chapter, we focus on the important problem of how to utilize the rich semantics
of all views in an MVAG G, and develop an effective and efficient Spectrum-Guided
Laplacian Aggregation approach [70], exploiting the intrinsic spectral properties to
cohesively integrate all views of G into an MVAG Laplacian matrix £ for clustering

and embedding.

Our main designs include a carefully formulated objective for the integration (Sec-
tion [5.3)), an efficient method SGLA producing high-quality results (Section [5.4.1),
and SGLA+ that boosts efficiency further while maintaining the effectiveness (Section
. Specifically, our strategy is to perform a weighted aggregation of normalized
Laplacian matrices from all views in G to produce the integrated Laplacian £. How-
ever, a critical challenge is choosing appropriate view weights to produce an effective
L that preserves the fundamental characteristics of G, i.e., community structure and
node connectivity, which are important for clustering and embedding. With this in
mind, we design an objective function on the basis of spectral graph theory. In par-
ticular, we align the spectrum of £ with a normalized-cut community measure and
a graph conductance measure, and propose eigengap and connectivity objectives ac-
cordingly. The overall objective combines the eigengap and connectivity objectives,
assisted with a regularization term, to determine the appropriate weights of each
view in G to get L. It is challenging to optimize the overall objective in search of

appropriate view weights, since it is infeasible to exhaust all weight combinations, and

129



Chapter 5. SGLA: Multi-view Attributed Graph Integration

the objective evaluation is computationally expensive. To mitigate the challenges, in
Section 5.4} we develop the SGLA algorithm to find a desirable solution, which already
achieves excellent performance compared with existing methods. Nevertheless, SGLA
needs to evaluate the objective at every iteration, causing significant overhead. To
boost efficiency with fewer objective evaluations, we develop the SGLA+ algorithm,
which employs sampling and interpolation approximation to quickly find an effective
solution. In our experiments, we couple SGLA and SGLA+ with spectral clustering
and embedding methods, to compare them against 12 clustering baselines and 8 em-
bedding baselines over 8 real-world MVAG datasets. SGLA and SGLA+ achieve better
performance in terms of both effectiveness and efficiency. For instance, on large-
scale datasets, such as MAG-phy with 4 views and 2.35 million nodes, our methods

efficiently produce high-quality results, while most baselines fail to scale.

The contributions of this work are summarized as follows:

e We propose an efficient and effective spectrum-guided aggregation scheme for MVAG

clustering and embedding.

e We derive a novel objective formulation, consisting of the eigengap and connectivity
objectives, to find appropriate view weights that preserve the community structure

and node connectivity in MVAGs.

e We develop two efficient algorithms, SGLA and SGLA+, with several speedup tech-

niques to optimize the objective.

e Extensive experiments on 8 real-world MVAGs validate the superior performance

of SGLA and SGLA-.
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5.2 Preliminaries and Problem Statement

5.2.1 Preliminaries

Multi-view Attributed Graph. Figure shows an MVAG of 8 nodes with
4 views, including 2 graph views and 2 attribute views. Graph views G; and G,
are two simple graphs, while attribute views X3 and X4 are binary and numerical
attributes, respectively. Formally, we denote an MVAG G with p graph views and ¢
attribute views by G = {V, &1,..., &, Xpi1, - . Xpiq ), Where V is the set of n nodes,
& is the set of edges in the i-th graph view G; = {V, &;} that is a simple graph, and
matrix X,,;; contains the values in the j-th attribute view. We focus on MVAGs with
a total of r = p+¢q > 2 views. Denote the number of edges in G; by m;, and the total
number of edges in G as m = >_7_ ' m;. G; has an adjacency matrix A; € R™*", and
a node v, in G; has a generalized degree 9;(v,) equal to the total weight of incident

edges.

Normalized Laplacian. The normalized Laplacian of a simple graph G is L(G) =
L, — D*%AD*%, where D is the diagonal degree matrix and I, is the identity matrix
18, [112].

MVAG Clustering and Embedding. The two analytic tasks for MVAGs are

stated as follows:

e Clustering is to divide the nodes in G into k disjoint non-empty subsets {C1, ...,Cx},
i.e., k clusters, such that nodes within each cluster tend to form dense connections

in graph views and share similar values in attribute views.

e FEmbedding is to map each node G to a low-dimensional embedding vector that

captures its features inherent to the graph views and attribute views in G.

Table [5.1] lists the frequently used notations.

131



Chapter 5. SGLA: Multi-view Attributed Graph Integration

5.2.2 Problem Statement

Given an MVAG G, our goal is to generate an MVAG Laplacian matrix £ as the multi-
view integration, which empowers classic methods to handle clustering and embedding
tasks on G. Previous approaches that construct a new graph from scratch typically
require at least O(n) variables to be determined [91] [77], which is computationally
expensive. Contrarily, we adopt an intuitive yet effective weighted aggregation from
the Laplacian matrices of all views into the MVAG Laplacian £, where only r variables
need to be optimized. In what follows, we describe the problem statement of multi-
view attributed graph integration, while the objective function to solve the problem

is formally developed in Section [5.3]

View Laplacians. Let L; denote the Laplacian of the i-th view of G, called the
i-th view Laplacian. If this view is a graph view G;, L; is its normalized Laplacian
L(G;). If it is an attributed view X;, we adopt a prevalent way [82] to construct a
K-nearest neighbor (KNN) graph Gx(X;), consequently deriving its Laplacian L; =
L(Gk(X;)). In this KNN graph, every node is connected to K neighbors with the
highest attribute similarity measured by cosine similarity, and each edge is weighted

by attribute similarity.

MVAG Laplacian. Intuitively, each view in G can complement each other with
its own information, and thus effective integration is vital to MVAG clustering and
embedding. We define the MVAG Laplacian £ as a weighted aggregation of all view

Laplacians, where w; is the i-th view weight.

L= ZwiLi, where Zwi =1 and any w; > 0. (5.1)

i=1 i=1

As a weighted combination of graph structures and attribute similarities across all
views, this £ can be interpreted as one integrated view of the MVAG and used for

downstream tasks. For MVAG clustering, we employ the spectral clustering method
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Table 5.1: Frequently used notations.

G = {V,&,..., | Gisan MVAG with node set V and r = p+ ¢ views, including

Eps Xpi1,s -, X, }| p graph views with edge sets &, ..., &, and ¢ attribute views
X1,y Xy

n The number of nodes in G.

m;, m The number of edges in the i-th graph view, and the total
number of edges in all graph views.

k The number of clusters or classes in G.

Gk (X;) The K-nearest neighbor graph constructed from the attribute
view X;.

L(G) The normalized Laplacian of a simple graph G.

L, The i-th view Laplacian of G.

L The MVAG Laplacian of G, defined in (5.1)).

w = [wy,...,w,] | A weight vector for r view Laplacians.

by The i-th smallest eigenvalue of L.

gr(L) The eigengap objective.

Ao (L) The connectivity objective.

h(w) The spectrum-guided objective function.

w* The weights minimizing h found by SGLA.

he(w), he«(w) | An interpolation of h with coefficients ©, or the optimal coef-
ficients ©*.

Wo, ..., W, r 4+ 1 weight vectors sampled for interpolation.

wi The weights minimizing he+ found by SGLA+.

in [148] using the bottom eigenvectors of £ to assign clusters. We utilize £ as the
input for graph embedding methods based on matrix factorization |99 to enable
them for MVAG embedding.

Problem Statement. The quality of £ is crucial for empowering classic spectral
clustering and network embedding methods to outperform state-of-the-art dedicated
methods, while £ solely depends on the r view weights in . Thus, our main
research problem is to decide on proper view weights to produce an MVAG Laplacian

for effective clustering and embedding quality.
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5.3 SGLA Objective

Objective Overview. To assign the view weights for MVAG integration, trivial so-
lutions such as utilizing a single view or allocating weights uniformly both compromise
the performance, as validated in our experiments. Intuitively, we should cohesively
leverage all views in the MVAG to produce L, recognizing that different views may
contribute variably. Community structures and connectivity properties are funda-
mental characteristics in real-world network data [26] [88], which are important for
various problems, including clustering and embedding. To preserve these underlying
properties, we analyze and design two objectives—eigengap and connectivity—which

are combined in the full objective to produce the desired MVAG Laplacian L.

In Section[5.3.1, we analyze and align the spectrum of £ with the community property
measured by normalized cut and propose an eigengap objective. In Section [5.3.2, we
link the connectivity property, measured by conductance, to the spectrum of £ and
devise a connectivity objective. In Section[5.3.3, we combine the two objectives with an
auxiliary regularization term to get the overall objective. The objective is formulated
as a constrained nonlinear optimization, to find the desired view weights to compute
L. Figure is a running example to intuitively explain the objectives in these

sections.

5.3.1 Eigengap Objective

In this section, we aim to build the connection between the eigenvalues of the proposed
MVAG Laplacian £ and clustering quality that is measured by normalized cut in
Definition |3| The normalized cut ¢(C) of a cluster C in a simple graph G is the total
weight of all outgoing edges from nodes within C to nodes outside C divided by the
sum of degrees of all nodes in C. A small normalized cut ¢(C) indicates better cluster

quality.
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5.3. SGLA Objective

Definition 3. In a graph G, a cluster of nodes C C V has volume vol(C) = > - 6(va),
and Cut(C) = >°, cczc Ala,b] is its cut value that measures the total weight of out-
Cut(C)

going edges from nodes within C. The normalized cut of C is defined as ¢(C) = TolC) -

The high-level intuition is that if a simple graph G is perfectly clustered into k
connected components, its normalized Laplacian forms a block diagonal matrix with
zero-valued eigenvalues of multiplicity k&, i.e., 0 = Ay = -+ = Ay < Apy1. According
to matrix perturbation theory [56], a small perturbation of this Laplacian should
keep A1, ..., A\ close to zero. Consequently, a graph with well-formed k clusters, i.e.,
communities, should have small, near-zero eigenvalues A, ..., \x, while eigenvalue Ay
is relatively larger, indicating a significant multiplicative eigenvalue gap between Agyq
and A\. The following higher-order Cheeger’s inequality from [66] provides an upper
limit for ¢(C). Using Theorem @, we can establish a link between the eigenvalue
gap and high-quality clusters, as shown in Corollary @, by setting £ = %

Theorem 5.3.1. There is a constant ¢ > 0 such that for any weighted graph G

and k € N, the following holds. Let & € (0,%) be such that £k is an integer. If

13
A(+e)k > c(lofgk)z A, there are at least s > (1 — 3§)k nonempty disjoint sets of nodes

C1,Ca,...,Cs CV such that ¢(C;) < O( 2_]5)7 Vl<i<s.

Corollary 5.3.1.1. There is a constant ¢ > 0 such that for any weighted graph G
and k € N, the following holds. If Ay < m)\k.;rl, there are at least s > k — 3

nonempty disjoint clusters Ci,Ca,...,Cs C V such that the normalized cut ¢(C;) <

O(VEN ), V1 <i < s.

Corollary [5.3.1.1 indicates that if the multiplicative eigenvalue gap between A\ and
Ak+1 is large enough, the normalized cut ¢(C;) is bounded by O(v/k3\x) for some

constant. This indicates an asymptotic upper bound for the normalized cut of clusters,

associated with eigenvalues A, and \g;; of L(G).

Recall that the matrix £ aggregated by the weighted sum of Laplacian matrices L;

over all 7 views in G in (j5.1]) should preserve the community information of all nodes
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Figure 5.2: A running example.

in V. Suppose that the nodes in G are in k clusters. To preserve the well-formed

community structures with low normalized cut bounded by Corollary [5.3.1.1, the

Ak(£)
Ap+1(L)

aggregated matrix £ should have as small as possible.

Consequently, our eigengap objective is to find desirable view weights w; to obtain an

L that minimizes the eigengap function gi(£) in (5.2)) based on the spectrum of L.

(L)

(5.2)

Example 1. We use the two graph views Gy, Gy shown in Figure|5.2a| as an MVAG

example for illustrating the eigengap objective. G contains 8 nodes in two ground-
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truth clusters C; = {v1,v9,v3,v4} and Cy = {vs,vs, 07,08}, illustrated by different
colors. Observe that, when only considering a single graph view, either G or G, C;
does not exhibit a clear cluster structure due to the sparse connections in it per graph
view, while the structure of Cy s clear in a single view. The observation is confirmed
by the visualization of Laplacian matrices Ly and Lo of G1 and Gy in Figure |5.2¢
5.2d, where values of larger magnitude are darker: the block formed by nodes vy-v4 in
C1 are not cohesive, while the values for nodes vs-vs illustrate a clear cluster for Cs.
The second column of Table shows the eigengap values gr(L) when varying view
weights wy and wy for aggregating the two view Laplacians. When assigning a large
weight to a single view, the eigengap objective of the constructed L is large (e.g. 0.242
when wy = 0.9,ws = 0 or 0.269 when wy = 0.1,wy = 0.9), indicating that the clusters
are not well-preserved by L, due to the observations made above in Figure [5.2d,
and[5.2d. The eigengap objective is reduced to 0.178 when wy = 0.6, wy = 0.4, and we
wvisualize the corresponding L in Figure in which, both clusters C1 and Cy can
be clearly observed. Besides, the eigengap obtained by equal weights is 0.186, larger
than 0.178. The example shows the intuition for minimizing the eigengap gi(L) to

obtain proper view weights.

5.3.2 Connectivity Objective

The inherent connectivity of graphs is fundamental to the efficacy of graph algo-
rithms [88]. Nevertheless, some graph views contain connection bottlenecks or leave
certain nodes unconnected. Therefore, the MVAG Laplacian matrix £ in should
amalgamate the connectivity of all views in G. To this end, we formulate a connec-
tivity objective that exploits the association between conductance and the spectrum

of L.

Given a simple graph G, its conductance ®(G) measures how fast a random walk on

G converges to its stationary distribution. In (5.3)), ®(G) is defined by the minimum
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normalized cut of the smaller side in all possible partitions.

, Cut(C)
@ pr—
(@) C\vol(cr)rg&l(v) /2 vol(C)

. (5.3)

Higher graph conductance indicates stronger connectivity. However, computing the
exact conductance is intractable in practice. From spectral graph theory [111], the
graph conductance is bounded with Ay, the second smallest eigenvalue of the normal-
ized graph Laplacian.

% < B(@) < V/h. (5.4)

Obviously, a substantial Ay guarantees a lower bound for conductance. Therefore, we
propose the connectivity objective to maximize the second smallest eigenvalue of L,

denoted by A2(L), to preserve the overall connectivity in G.

Example 2. Recall that, in Figure[5.2d, cluster Ci has weak connectivity inside itself
in both graph views Gy and Gy of G. The third column in Table [5.20 shows the
connectivity objective values \o(L) of the obtained L when varying view weights. When
a single view has a large weight, \o(L) is smaller, indicating weak connectivity, which
matches the observation above. If \o(L) is sufficiently large, e.g., 0.174 when w, =
0.6,wy = 0.4, the obtained L can preserve the connectivity information from both
views 1n G, as illustrated in the corresponding visualization in Figure where the

values for vy, vq, v3,v4 are clear to represent cluster Cy.

5.3.3 The Full Objective

In (5.5)), we combine the eigengap objective gi(L) and connectivity objective \y(L)
into the full objective function h(wy, ..., w, ), also denoted by h(w) where weight vector
w = [wy,...,w,]. Since the view weights should minimize g;(£) while maximizing
(L), in (B.F)), Aa(L) takes a negative sign, so that h(w) is to be minimized. To

prevent £ from being dominated by a single view, we introduce a regularization term
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of all weights with parameter 7.

T

h(w) = h(wy, ..., w,) = ge(£) = Xa(L) +7 Y w} (5.5)

=1

The objective function h estimates the suitability of £ for performing MVAG analytics
and guides the search for appropriate view weights. Therefore, our problem statement
in Section [5.2.2 is formulated by a constrained optimization problem, aiming to find

the optimal weights w* € R” that minimize h(w) while satisfying the constraints.

w* = argmin,, h(w) = argmin,,, ., h(wy,...,w,),

r (5.6)
s.t. any w; > 0 and Zwi =1.
i=1

Discussion. Although both eigengap and connectivity objectives have associations
with the measure of normalized cut, they each focus on different aspects of MVAGs.
The eigengap objective is linked with the existence of multiple well-formed clusters,
while the connectivity objective prevents nodes from being isolated from the main
graph structure. Our combination of the two objectives aim to preserve both proper-
ties, achieving a balance between them. In the experiments, our method with the full
objective in , combining both objectives, consistently outperforms approaches

using a single objective.

Example 3. To visualize the distribution of the objective h(w) over all possible view
weights, a case study is performed on Yelp dataset with three views (see Table for
details). Among the three view weights wy, wq, w3, we vary wy and wy at interval 0.01
and set ws = 1 —wy — way, to erhaust all possible weight combinations, and we plot
the value of h(wy,ws,ws) in Figure m. The plot shows a generally smooth surface
that curves downward, which visually demonstrates the suitability of the proposed

formulation.
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Figure 5.3: Plot of objective functions on Yelp.

5.4 Algorithms

In Section [5.4.1, we develop the SGLA method, which optimizes the objective to de-
termine view weights. SGLA has demonstrated superior performance compared to
existing methods. To further enhance efficiency while preserving result quality, we

present SGLA+ in Section [5.4.2.

5.4.1 SGLA Method

Given an MVAG with r view Laplacians, the search space for possible view weights is
exponential, rendering an exhaustive grid search intractable for solving . Opti-
mizing the non-convex objective function h(w) is further complicated by the presence
of both inequality and equality constraints. Additionally, evaluating h(w) and its
gradients is costly due to intensive eigenvalue computations. Traditional gradient-
descent methods are inefficient, as they require many iterations to converge and incur

significant computational overhead.
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To address the technical challenges, we develop the base method SGLA that produce
high-quality results in a reasonable amount of time. SGLA iteratively performs two
key computations: (i) objective evaluation and (ii) objective optimization to update
view weights. Figure provides an illustration of SGLA. After obtaining the Lapla-
cian matrices Ly, ..., L, of the r graph views and attribute views in the input G as
explained in Section [5.2.2 and initializing w with uniform weights, During objective
evaluation, SGLA computes the latest £ and the eigenvalues of £ first and evaluates
the objective function h(w). Then, to update weights, SGLA optimizes and updates w
via a derivative-free optimizer. This optimizer guarantees a local optimum when the
variables in w converge. SGLA terminates either when the update of view weights is
negligible, 7.e., convergence, or when the number of iterations exceeds a limit. SGLA

eventually returns £, which will be used for clustering and embedding tasks.

Algorithm. The pseudo code of SGLA is displayed in Algorithm The weight
parameters wi, ..., w, of all r views are initialized to % at Line 1. Then, from Lines
2 to 9, SGLA performs objective evaluation (Lines 3-5) and optimizes the proposed
objective to update weights (Lines 6-9), in an iterative fashion for at most T,u.
iterations, and early terminates if the condition at Line 7 is met. Specifically, in
an iteration, with the current weight parameters w;, we first obtain the aggregated
matrix £ by weighted sum of the Laplacian matrices of all r views at Line 3. Then
at Line 4, we compute the k£ + 1 smallest eigenvalues of £. Note that all matrices,
including L; and L, are organized as sparse matrices, and thus the computation at
Lines 3 and 4 can be efficiently processed. With the eigenvalues Ao, A\g, and Agyq1, we
can compute the eigengap and connectivity objectives formulated in Section to
obtain h(wy,...,w,) by (Line 5). € at Line 6 represents the constraints specified
in (5.6). At Line 6, we adopt the optimizer Cobyla [97], considering the objective
function and constraints, to update the first » — 1 view weights to w}, ..., w._; as w!.
follows trivially. Briefly, this optimizer performs interpolation in the direction of each

variable and updates a regular-shaped simplex of variables over iterations, as the trust
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Figure 5.4: Overview of SGLA and SGLA+ algorithms.

region that conforms to the constraints while minimizing the objective. The process
stops when the updated variables are close to the previous iteration. At Line 7, if the

difference between the updated view weights w},...,w._; and the previous weight

» Hr—1
values wq, ..., w,_1 measured by Euclidean distance, is below an early termination
criteria €, the iterative process of SGLA terminates and returns. Otherwise, we need
to update the latest weights to wy,...,w,_; and w, (Lines 8-9), and continue with

the next iteration. Finally, the MVAG Laplacian matrix £ is returned at Line 10, to

be used in downstream tasks, including embedding and clustering.

Complexity. Given an MVAG G with n nodes and r views, all view Laplacian ma-
trices are stored in sparse matrix format, and thus the costs of additions and matrix-
vector multiplication operations on L are linear to the count of nonzero elements, i.e.,
at most 2(m + gnK). The aggregation in Line 3 includes scalar multiplications and
additions on Laplacian matrices. Line 4 solves eigenvalues via a bounded number of
matrix-vector multiplications. Therefore, Lines 3-4 incur O(m+¢gnK) time combined.
Lines 5-6 and 8 are simple O(r) computations, while the optimizer in Line 7 takes
O(r?) time to update r — 1 variables. r is typically small and can be regarded as a

constant. When T iterations are conducted, we conclude that the overall time and
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Algorithm 10: SGLA

Input: View Laplacians L1, ..., L, of the input MVAG G, number of clusters k,
constraints §2, algorithm parameters T ax, €.

1 Initialize weight parameters wi,...,w, % ;
2 fort <« 1,..., T do
3 L+ Z wiLi;
=1
4 ALy ..oy Agt1 < Eigenvalues(L, k + 1);
5 Obtain h(wi,...,w,) by (5.5);

10

wh, ..., wl_q < Cobyla(h(ws,...,w,),R);

r—1
if /> (w} —w;)? < € then break;
i=1
/ r.
wl,.. . 7wr_1 < w17...’w,’,_1,
r—1
wp 1= > w;
L i=1
return L;

space complexity of SGLA is O(T'(m + ¢nkK)).

5.4.2 SGLA+ Method

Although SGLA outperforms existing methods, it encounters significant computational
challenges on large-scale MVAGs. The main bottleneck is the costly evaluation of the
objective function hA(wy, ..., w,) (Lines 3-5 in Algorithm [10)), which involves intensive
eigenvalue computations. This evaluation must be repeated across many iterations

for SGLA to converge, resulting in substantial overhead that limits its scalability.

To further improve efficiency, we design SGLA+ that has lower complexity than SGLA.
SGLA+ has the following key designs. (i) Instead of directly optimizing the objective
h(w), SGLA+ formulates and optimizes an approximation hg of h(w). This approx-
imation is constructed as a quadratic interpolation that is quick to evaluate while
closely resembling the original h(w). (ii) We develop a sampling strategy to obtain
(r + 1) weight vectors as samples of h(w) to find an accurate approximation hegs,

requiring only (r + 1) objective evaluations, fewer than those required by SGLA. (iii)
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Finally, SGLA+ efficiently minimizes hg+ to compute the desired view weights nec-
essary for constructing the MVAG Laplacian £. Figure provides an overview
of SGLA+. Below, we first formulate the approximation of our objective, explain the

sampling strategy, and then present the algorithm details.

Objective Approximation. The objective h(wy,...,w,) in has a weight vec-
tor w € R” with r elements w;, for 1 < ¢ < r, as variables. On the other hand, in
optimization with a univariate objective, it is possible to find an approximate min-
imum by fitting a quadratic polynomial to three values of the objective [42]. Thus,
we generalize quadratic interpolation to multiple variables. Specifically, given a set
of weight vector samples, we aim to find a function hg(ws, ..., w,) with a coefficient
set ©, as the interpolation of h(wy,...,w,). As shown in , he comprises all
second-degree terms of w; and w; with coefficients 6; ;, where 1 < ¢ < j < r —1,
linear terms w; with coefficients 0;, for ¢ = 1,...,r — 1, and a constant term 6,,. We
leave out w, because it can be determined by the equality constraint that all weights
sum up to 1. The matrix format of hg is in , where the upper triangular matrix

© consists of non-zero entries O[i, j| = 6;; fori,j € 1,...,r and i < j.

r—1

h@ (W) = Z «9i7jwiwj + Z 91‘7741}1' + erm (57)
1<i<j<r—1 i=1
T
h(')(W): [wla-"awrflal] © |:w17"'7w1”7171 (58)

To determine the coefficients in ©, we perform regression with (r + 1) weight vector
samples wy, for 0 < ¢ < r. Sampling details will be explained shortly. Our goal
is to find a solution ®*, such that the squared error between h(w,) and he(wy)
over the (r 4 1) samples is minimized in (5.9). We address this problem with a least
Frobenius norm quadratic model [100]. Specifically, the optimization function in ([5.9)

exerts regularization ||®]|% with parameter «,, to minimize the Frobenius norm of
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the coefficient matrix @, in order to find the desired solution.

O = argming <Z (h(Wg) — h@(wz))Q + ogr||@||?;> (5.9)

=0

After evaluating the objective function h(wy) for each w, among the (r+1) weight vec-
tor samples, the regression in (5.9) can be solved via Cholesky decomposition. With
coefficients ®* found, the function he- is a local approximation of h. Subsequently,
we find the minimum solution w' of hg- under constraints, i.e., (5.10]), and w' is re-
garded as an approximate solution for the original problem in (5.6). This procedure
is much more efficient than direct optimization of h(w) in SGLA, as the evaluation of

he~ does not require the construction of £ or the computation of eigenvalues.

wl = argmin,, he-(W) s.t. w; >0V 1<i<r, Zwi = 1. (5.10)
i=1

Weight Vector Sampling. The coefficient matrix ©® contains w nonzero entries.

Reaching a unique solution of @ requires O(r?) weight vector samples for expensive
objective evaluations. Instead, we propose a scheme to gather (r + 1) weight vector
samples only, which are sufficient in practice to find a high-quality heg« via
and consequently w' in , as validated by experiments. The first sample wy =
[%, LA %] € R assigns the same weight I for all 7 views of G. Then for each (-th
view, a weight vector wy is sampled as the midpoint between wy and the one-hot
vector 1, € {0,1}" that assigns a full weight to the ¢-th view, where 1 < ¢ < r.
r41

Specifically, w, = (wo +1;)/2, i.e., the -th element in vector w, has value 5= while

the other elements have value 2—17«

Example 4. For the Yelp dataset containing three views (r = 3), the objective func-
tion h is plotted in Figure [5.3d in Example [3  Following the sampling scheme ea-

plained above, we first obtain 4 weight vector samples wy = [ }, Wi = [é, %, %] ,

W=

11
3737
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Algorithm 11: SGLA+

Input: View Laplacians L1, ..., L, of the input MVAG G, number of clusters k,
constraints §2, algorithm parameters ., Tiax, €.

1 Wo [%,%,,ﬂ e R";
2 for /< 0,...,7 do
3 if £ > 0 then wy < (wo + 1¢)/2;
4 Obtain £, by wy and L; via (5.1));
5 A,y Akr1 ¢ Eigenvalues(Ly, k + 1);
6 Obtain h(wy) by (5.5);
7 Solve ©* in (j5.9) for observations (wq, h(wg)), ..., (W,, h(w,)) and L2 multiplier «,;
8 wi,..., Wy + =
9 fort <« 1,..., T do
10 Calculate hg+ (w1, ...,w,) by (5.8);
11 wh,...,w._; < Cobyla(he+(wi,...,w,), ), where § represents the constraints in
(5.10);
r—1
12 if /> (w} —w;)? < € then break;
i=1
13 Wy ey Wp—1 4— W,y oo, Wh_qs
r—1
14 wy — 1= > w;;
B i=1
T
15 L + Z wiLi;
i=1
16 return L;

Wy = [é7 g, %} and w3 = [%, é, %} Each of wi,wsy, w3 emphasizes a specific view in
the Yelp dataset. Figure marks the locations of these four sampled points w.r.t.
the weights of the first two views, as the third view weight is determined by the equal-
ity constraint that all weights add up to 1. Observe that the plot of h in Figure
resembles a partial paraboloid surface. According to , we can get hg on the Yelp
dataset. The coefficients ©* are determined by solving . We plot the acquired
interpolation he+ in Figure which exhibits a paraboloid surface similar to the
original objective h. In addition, we use crosses in Figure and[5.5Y to mark the

weights that minimize h and he«, respectively. Their close locations validate that he«

15 an effective approrimation for minimizing h.
Algorithm. The pseudo code of SGLA+ is provided in Algorithm From Lines 1

146



5.4. Algorithms

to 7, we sample (r + 1) weight vectors, evaluate the objective h(wy) over the sam-
pled weight vectors, and solve ®* to get the objective approximation hg+ at Line 7.
From Lines 8 to 14, we aim to optimize hg- by iteratively updating the view weights
wi, ..., w,, and then the view weights are used to obtain £ at Line 15. Specifically,
the sampled weight vectors are first calculated, including the equal weights in wy
(Line 1), and then each w; for 1 < ¢ < r (Line 2-3). From each sampled vector
wy, we construct the corresponding MVAG Laplacian £, at Line 4. After solving its
bottom k-+1 eigenvalues (Line 5), the objective h(wy) is evaluated at Line 6 as the ob-
servation for sample wy,. At Line 7, interpolation over these r+ 1 samples is solved by
regression with parameter o, in to obtain ©®*. After initializing the target view
weights wy, ..., w, at Line 8, from Lines 9 to 14, we iteratively optimize the acquired
interpolation he« to update wy,...,w,. At each iteration (Line 9), hg: (w1, ..., w,) is
efficiently calculated at Line 10, without expensive construction of £ or eigenvalue
computation. Updating weights (Lines 11 to 14) and convergence condition (Line 12)
are similar to SGLA, but are for the optimization of instead of (5.6)). After the
termination of iterations, the converged weight parameters are used to construct £

at Line 15.

Complexity. At Lines 1-6, SGLA+ performs exactly (r+1) objective evaluations over
all sampled weight vectors. The time and space complexity of this part is O(r(m +
qnK)). To solve the O(r?) coefficients in ©, Line 7 conducts a decomposition that
theoretically takes O(r%) time. Since the number of views r is usually less than 10
and regarded as a constant, the cost of Line 7 can be considered negligible in practice.
In Lines 9-14, Line 10 incurs O(r?) cost for evaluating he-«, and Lines 11-13 also have
an O(r?) complexity combined. Hence, solving the weights over T iterations incurs
negligible O(Tr?) cost. With r as constant, SGLA+ has an overall time and space
complexity O(m + gnK), as the processing on graph Laplacians is removed from the
optimization loop. Observe that the complexity O(m+ gnK) of SGLA+4 improves over
the complexity O(T(m + gnK)) of SGLA. Empirically, we also find SGLA+ faster than
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Table 5.2: Statistics of multi-view attributed graph datasets.

Dataset n r m; of G; d; of X k
267; 404; 298; 317; 163; 1,595;
RM o1 1 1,683; 1,910; 1,565; 1,044 32 2
Yelp 2,614 3 262,859; 1,237,554 82 3
IMDB 3,550 3 5,119; 31,439 2,000 3
DBLP 4,057 4 3,528; 2,498,219; 3,386,139 334 4
Amazon photos 7,487 3 119,043 745; 7487 8
Amazon computers 13,381 3 245,778 767; 13,381 10
MAG-eng 1,798,717 4 43,519,012; 10,112,848 1,000; 1,000 55
MAG-phy 2,353,996 4 257,706,767; 18,055,930 1,000; 1,000 22

SGLA in experiments.

5.5 Experiments

We evaluate the effectiveness and efficiency of our SGLA and SGLA+ over 12 competi-

tors for clustering and 8 competitors for embedding on 8 real-world MVAG datasets.

Section [5.5.1 describes experimental settings. Section [5.5.2 and [5.5.3 report the re-

sults of clustering and embedding, respectively. Section [5.5.4 conducts experimental

analysis.

5.5.1 Experimental setup

Datasets. Table [5.2| provides the statistics of the 8 multi-view attributed graph
datasets, including the number of nodes (n) and views (r), the number of edges
m; for each i-th graph view (separated by semicolons), dimension d; for each j-
th attribute view (separated by semicolons), and the number of ground truth node
classes k that is also considered the number of clusters. These datasets are real-world
MVAGs from diverse domains, including social activities (RM [6]), business (Yelp [&1],

Amazon photos and Amazon computers [91]), movies (IMDB [92]), and academic
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collaborations (DBLP [24], MAG-eng and MAG-phy [9]). The MAG-eng and MAG-
phy datasets exemplify the complexity and the large scale of academic collaboration
networks. MAG-phy includes over 2.35 million nodes with four views: two graph
views with over 257.7 million and 18.05 million edges, and two high-dimensional
attribute views with 1000 dimensions each. These datasets highlight the sparsity
of graph views and the high dimensionality of attribute views, typical in real-world
applications. Also, some datasets feature dense graph views, e.g., DBLP, while others
are sparse, e.g., IMDB. The diversity, sparsity, and edge distributions of the datasets
provide a representative testbed for comprehensive evaluation. The ground-truth
clusters and class labels are obtained from the original data, e.g., movie genres in
IMDB and product categories in Amazon. In MAG-phy and MAG-eng, nodes are
labeled by the subject domain of their publication venues.

Table 5.3: Clustering quality (the top 3 are in blue; darker shades indicate better
results).

Method RM Yelp IMDB DBLP Overall
Acc F1 NMI ARI Purity| Acc F1 NMI ARI Purity| Acc F1 NMI ARI Purity| Acc FI NMI ARI Purity| rank
WMSC  |0.626 0.474 0.001 -0.017 0.703 |0.813 0.836 0.537 0.489 0.813 |0.374 0.291 0.003 0.001 0.379 |0.780 0.778 0.468 0.507 0.780 9.7
2CMV  [0.904 0.899 0.703 0.665 0.914 |0.857 0.742 0.576 0.592 0.857 |0.510 0.486 0.127 0.148 0.511 [0.914 0.850 0.749 0.797 0.914 6.8
MEGA |0.802 0.793 0.423 0.359 0.802 |0.653 0.568 0.390 0.427 0.733 [0.390 0.239 0.007 0.004 0.392 {0.913 0.907 0.741 0.792 0.913 8.3
HDMI |0.613 0.459 0.010 -0.018 0.703 [0.909 0.915 0.681 0.727 0.909 |0.541 0.547 0.162 0.142 0.532 |0.895 0.885 0.706 0.761 0.896 8.5
URAMN |0.736 0.684 0.107 0.195 0.736 |0.771 0.762 0.490 0.483 0.771 |0.588 0.582 0.183 0.197 0.588 |0.908 0.901 0.715 0.781 0.896 6.0
02MAC |0.659 0.397 0.040 -0.044 0.703 |0.649 0.565 0.391 0.425 0.732 |0.547 0.550 0.135 0.139 0.535 |0.873 0.865 0.669 0.705 0.877 9.5
DMG 0.745 0.623 0.147 0.191 0.765 |0.714 0.725 0.441 0.365 0.714 |0.545 0.459 0.195 0.209 0.550 |0.925 0.921 0.761 0.815 0.925 6.3
LMGEC |0.703 0.500 0.015 0.044 0.703 |0.923 0.928 0.725 0.764 0.923 |0.568 0.577 0.166 0.143 0.562 |0.922 0.917 0.757 0.813 0.922 5.1
MAGCN |0.703 0.736 0.000 0.000 0.703 |0.734 0.705 0.437 0.455 0.734 |0.513 0.482 0.116 0.135 0.511 - - - - - 9.5
MCGC  |0.967 0.959 0.799 0.867 0.967 |0.860 0.874 0.596 0.597 0.860 |0.567 0.545 0.164 0.186 0.553 [0.902 0.895 0.716 0.771 0.902 4.6
MvAGC |0.774 0.710 0.267 0.329 0.790 |0.907 0.915 0.685 0.720 0.907 |0.552 0.462 0.191 0.201 0.549 |0.874 0.866 0.650 0.708 0.874 5.5
MAGC |0.714 0.451 0.040 0.030 0.714 [0.564 0.520 0.413 0.315 0.565 |0.484 0.424 0.057 0.062 0.485 {0.928 0.923 0.771 0.827 0.928 74
SGLA  |0.978 0.974 0.830 0.911 0.978 [0.927 0.930 0.727 0.779 0.927 |0.559 0.455 0.211 0.223 0.558 [0.934 0.930 0.789 0.841 0.933 1.7
SGLA+ |1.000 1.000 1.000 1.000 1.000 |0.930 0.934 0.740 0.786 0.930 |0.554 0.450 0.210 0.220 0.555 |0.930 0.925 0.775 0.831 0.930 2.0
Method Amazon photos Amazon computers MAG-eng MAG-phy Overall
Acc F1 NMI ARI Purity| Acc F1 NMI ARI Purity| Acc F1 NMI ARI Purity| Acc F1 NMI ARI Purity| rank
wMSC  0.323 0.285 0.152 0.103 0.392 [0.248 0.191 0.165 0.090 0.375 | - - - - - - - - - - 9.7
2CMV  |0.523 0.434 0.450 0.332 0.638 [0.309 0.269 0.312 0.135 0.524 | - - - - - - - - - - 6.8
MEGA |0.328 0.292 0.265 0.043 0.427 [0.319 0.170 0.230 0.081 0.483 - - - - - - - - - - 8.3
HDMI |0.273 0.126 0.026 0.018 0.289 |0.303 0.111 0.034 0.027 0.375 | - - - - - - - - - - 8.5
URAMN |0.669 0.642 0.521 0.427 0.689 |0.353 0.280 0.364 0.163 0.588 | - - - - - - - - - - 6.0
02MAC |0.307 0.153 0.087 0.012 0.298 |0.340 0.100 0.020 0.034 0.380 - - - - - - - - - - 9.5
DMG 0.603 0.548 0.508 0.391 0.671 |0.401 0.295 0.384 0.200 0.598 | - - - - - - - - - - 6.3
LMGEC |0.626 0.606 0.530 0.423 0.703 {0.410 0.304 0.374 0.240 0.614 | - - - - - - - - - - 5.1
MAGCN |0.528 0.454 0.456 0.314 0.587 - - - - - - - - - - - - - - - 9.5
MCGC  |0.674 0.582 0.595 0.449 0.754 |0.569 0.501 0.557 0.419 0.726 | - - - - - - - - - - 4.6
MvAGC |0.615 0.568 0.558 0.384 0.726 |0.516 0.426 0.512 0.365 0.697 |0.256 0.108 0.355 0.139 0.293 |0.314 0.107 0.238 0.022 0.376 5.5
MAGC |0.646 0.571 0.591 0.384 0.687 |0.447 0.438 0.323 0.158 0.481 - - - - - - - - - - 74
SGLA  |0.786 0.710 0.670 0.622 0.819 [0.585 0.507 0.589 0.441 0.740 |0.464 0.369 0.575 0.332 0.597 |0.582 0.455 0.620 0.449 0.725 1.7
SGLA+ |0.782 0.705 0.657 0.618 0.815 |0.604 0.515 0.577 0.426 0.744 |0.455 0.352 0.570 0.329 0.583 |0.561 0.413 0.608 0.439 0.704 2.0
Baselines. For embedding, we compare with 8 baselines, including 3 attributed

network embedding methods PANE [143], AnECI [79] and CONN [114] that are applied
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to a multi-view attributed graph by aggregating the graph adjacency matrices and
concatenating the attribute views, 3 attributed multiplex graph embedding methods
02MAC [24], HDMI [49] and URAMN [152] that are applied to a multi-view attributed graph
by concatenating the attribute views when necessary, and 2 multi-view attributed
graph embedding methods DMG [86] and LMGEC [30]. For clustering, we compare with
12 baselines, including 8 multi-view attributed graph clustering approaches, namely
WMSC [160], MEGA [123] adapted for unsupervised clustering, 2CMV [82], LMGEC, MAGCN
[14], MCGC [91], MvAGC [76], and MAGC [77], and 4 embedding methods HDMI, URAMN,

02MAC, and DMG coupled with spectral clustering.

Implementation. Across all datasets, SGLA and SGLA+ adopt the same parameter
settings v = 0.5, € = 0.001, Ty,ax = 50, and a,. = 0.05. We also conduct experiments
to vary parameters. We set K = 10 for KNN graphs by default. For Yelp and IMDB,
we use K = 200 and 500, respectively, since their attribute views are more informative.
A larger K incorporates more attribute similarity connections in the KNN graphs.
Source codes of all competitors are obtained from the respective authors, each tuned
with parameters suggested in the respective paper. We fix the embedding dimension
to 64. Experiments are conducted on a Linux computer with Intel Xeon 6226R CPU,
RTX3090 GPU, and 384 GB RAM. A maximum of 16 CPU threads are available.
Note that CONN, HDMI, URAMN, DMG, and LMGEC are GPU-powered, while the other
methods, including our SGLA and SGLA+, run on CPU.

Evaluation Settings. The clustering quality is measured by accuracy (Acc), average
per-class macro-F1 score (F1), normalized mutual information (NMI), adjusted Rand
index (ARI), and Purity score with respect to ground truth. ARI ranges from —0.5
to 1, whereas the other 4 metrics are in range [0,1].  The node embedding for
classification is evaluated by Macro-F1 (MaF1) and Micro-F1 (MiF1). For all these
metrics, a larger value indicates better performance. Efficiency is measured by the
total running time in seconds. Results are averaged over 5 repeated runs. In Tables

and a ‘ -’ indicates the method cannot produce results within one day or
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Figure 5.5: Running time of clustering in seconds (x marks the competitor with the
best clustering quality in Table .
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Table 5.4: Embedding performance for node classification (the top 3 are in blue;
darker shades indicate better results).

Meothod RM Yelp IMDB DBLP Amazon photos | Amazon computers| MAG-eng | MAG-phy | Overall
MaF1 MiF1|MaF1 MiF1|MaF1 MiF1|MaF1 MiF1 | MaF1 MiF1 MaF1 MiF1 MaF1 MiF1|MaF1 MiF1| rank

PANE 0.738 0.778 | 0.904 0.902 | 0.479 0.494 | 0.636 0.763 | 0.783 0.847 0.556 0.674 0.550 0.672| 0.547 0.674 6.0
AnECI | 0.539 0.734| 0.778 0.826 | 0.589 0.596 | 0.880 0.894 | 0.899 0.915 0.807 0.846 - - - - 6.1
CONN 0.569 0.751( 0.932 0.926 | 0.657 0.657 | 0.725 0.758 | 0.892 0.914 0.827 0.850 - - - - 4.6
HDMI | 0.446 0.666 | 0.926 0.918| 0.641 0.642| 0.916 0.922| 0.724 0.792 0.500 0.721 - - - - 5.7
URAMN | 0.496 0.690 | 0.916 0.907 | 0.640 0.653 | 0.897 0.905 | 0.580 0.727 0.313 0.651 - - - - 6.7
02MAC | 0.689 0.745| 0.898 0.894 | 0.657 0.657 | 0.909 0.915 | 0.672 0.721 0.442 0.606 - - - - 6.1
DMG 0.692 0.737]0.902 0.891| 0.618 0.624 | 0.928 0.933 | 0.796 0.874 0.629 0.757 - - - - 5.2
LMGEC | 0.417 0.717] 0.938 0.932| 0.597 0.608 | 0.916 0.922 0.630 0.723 0.347 0.669 - - - - 6.2
SGLA | 0.835 0.904 | 0.941 0.936 | 0.688 0.687 | 0.934 0.938 | 0.918 0.933 0.893 0.907 0.574 0.736 | 0.702 0.830 1.5
SGLA+ | 0.856 0.918 | 0.942 0.937 | 0.705 0.704 | 0.932 0.937 | 0.912 0.929 0.880 0.901 0.588 0.741| 0.696 0.827 1.5

runs out of memory.

5.5.2 Effectiveness and Efficiency on Clustering

SGLA and SGLA+ generate £ which is then used as the input of spectral clustering as
described in Section [5.2.2. In Table we report the Acc, F1, NMI, ARI, Purity
and the averaged overall rank of each method over all 8 datasets across the four
metrics. We highlight the top-3 best results on each dataset in blue with darker

shades indicating better performance.

Effectiveness. Asshown in the last column of Table[5.3] SGLA and SGLA+ achieve the
best ranks 1.7 and 2.0 respectively over all 8 datasets, significantly outperforming the
best competitor with rank 4.6. Specifically, for the 5 metrics, SGLA and SGLA+ achieve
better performance compared to existing methods on almost all datasets, except Acc,
F1 and Purity on IMDB. For the RM, Yelp, IMDB, and DBLP datasets in Table [5.3]
SGLA and SGLA+ achieve improvements in NMI over the best baseline by up to 20.1%,
1.5%, 1.6% and 1.8%, respectively. On Amazon photos, SGLA and SGLA+ outperform
the best competitor MCGC by large margins up to 11.2% in Acc, 12.8% in F1, 7.5%
in NMI, 17.3% in ARI and 6.5% in Purity. Remarkably, on the large-scale MAG-
eng and MAG-phy datasets in Table [5.3], SGLA and SGLA+ surpass the only scalable
baseline MvAGC by up to 23.8% in Acc, 30.5% in F1, 30.1% in NMI, 31.0% in ARI and
32.7% in Purity on average. The results in Table validate the effectiveness of the
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objective formulated in Section and the techniques in to solve it, which aligns
the spectrum of £ with the community and connectivity properties. On the other
hand, MCGC aligns a unified graph with each view but overlooks its intrinsic structure,
leading to inferior performance. The results in Table underscore that SGLA and
SGLA-+ effectively generate a MVAG Laplacian £ that reliably reveals the underlying

clusters in real-world multi-view attributed graphs.

Efficiency. For our methods, we record the total time cost of computing view Lapla-
cians from G, running SGLA or SGLA+, and performing clustering. Figure displays
the running time of all methods, with the competitor delivering the best clustering
quality marked by a star for each dataset. The y-axis is time in seconds on a logarith-
mic scale. Regardless of clustering quality, SGLA and SGLA+ consistently demonstrate
leading efficiency across all datasets except RM. Compared to the marked competi-
tors, SGLA and SGLA+ are often faster by orders of magnitude. For instance, on DBLP,
the best baseline MAGC requires 35.98 seconds to finish, while SGLA and SGLA+ only
take 2.008 and 0.788 seconds, respectively, achieving a 17.9x and 45.7x speedup.
On Amazon photos, the marked baseline MCGC requires 5102 seconds, whereas our
methods SGLA and SGLA+ take only 1.465 and 1.129 seconds, attaining a significant
speedup of over 3000x. On MAG-eng and MAG-phy, where most baselines run out
of memory or cannot finish within one day, our methods achieve the highest efficiency
with the best quality. Our methods demonstrate a huge speedup over baselines with
quadratic complexity, e.g., MAGC, and the GNN models that are expensive to train,
e.g., HDMI. Furthermore, SGLA+ is consistently faster than SGLA on all datasets. For
example, SGLA requires 1206 and 1970 seconds for clustering MAG-eng and MAG-phy,

respectively, while SGLA+ requires only 583 and 783 seconds.

Moreover, for memory usage, SGLA and SGLA+ also exhibit high memory efficiency
over baselines. For instance, on large-scale datasets, our methods only use 18.7 GB
for MAG-eng and 32.3 GB for MAG-phy, while MvAGC requires 137 GB and 184 GB,

respectively, and all other baselines are out of memory. These results highlight the
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efficacy of the algorithm designs presented in Section [5.4

5.5.3 Effectiveness and Efficiency on Embedding

SGLA and SGLA+ generate £ which is then used as the input for classic network
embedding methods as described in Section [5.2.2. Specifically, on large datasets
MAG-eng and MAG-phy, the scalable SketchNE [131] is utilized, while NetMF [99]
is used for the remaining datasets. We evaluate the embedding quality by node
classification task. Specifically, for each method that outputs embeddings, a logistic
regression classifier is trained on 20% of the ground truth class labels (1% for the
large MAG-eng and MAG-phy datasets), with the remaining labels used for testing.
In Table [5.4] we report the embedding quality of our methods and the baselines
over all datasets, in terms of classification performance (MaF1, MiF1). Figure

compares the efficiency of all methods, measured by total embedding time in seconds.

Effectiveness. In Table[5.4] our methods SGLA and SGLA+ consistently claim the top
two places, with the best overall rank 1.5 over all metrics on all datasets, significantly
higher than the best competitor with overall rank 4.6. For example, on IMDB in Table
[b.4] SGLA+ and SGLA take the first and second places respectively, surpassing 02MAC
and CONN, which rank third, by up to 4.8% in Macro-F1 and 4.7% in Micro-F1. On
the Amazon computers dataset, our methods outperform the runner-up CONN by up
to 6.6% in Macro-F1 and 5.7% in Micro-F1. Moreover, on the large datasets, MAG-
eng and MAG-phy, our methods SGLA+ and SGLA surpass PANE, the sole competitor
with sufficient scalability, proving that our methods are more effective in producing
high-quality embeddings for these large-scale datasets. Compared with sophisticated
GNN methods focused on the common and specific aspects of each view, e.g., DMG,
our methods better preserve structural properties, thus allowing classic methods to
produce high-quality node embeddings for MVAGs. The results in Table confirm
the effectiveness of the objective and techniques developed in Section and
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Figure 5.6: Running time of embedding in seconds (x marks the competitor with the
best embedding quality in Table [5.4)).
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Efficiency. Figure displays the total time cost for MVAG embedding on 8
datasets, with the competitors delivering the best embedding quality marked for
each dataset. The y-axis represents running time in seconds on a logarithmic scale.
SGLA-+ achieves the best efficiency on all datasets, often outperforming the compared
methods by orders of magnitude; SGLA is also faster than all baselines except on the
smallest dataset, RM. For instance, in Figure [5.6¢, while CONN and 02MAC are the
runner-ups after SGLA and SGLA+ in quality, our methods are up to 222x and 489 x
faster, respectively. On the million-scale datasets MAG-eng and MAG-phy, SGLA+
requires 555 and 939 seconds each, achieving 32.1x and 71.6x speedup over the only
scalable baseline PANE. Moreover, SGLA+ is faster than SGLA on all datasets. For mem-
ory usage, our methods also achieve high space efficiency. For example, to produce
embeddings for large-scale datasets MAG-eng and MAG-phy, both SGLA and SGLA+
leave a memory footprint of 61.6 GB and 95.4 GB, respectively. However, the only
scalable baseline PANE requires 221 GB and 299 GB, while all other methods run out
of memory. These results highlight the efficacy of the algorithm designs presented in
Section 5.4l

5.5.4 Experimental Analysis

Convergence evaluation and Ti,,x. When varying the number of iterations ¢ in
SGLA, Figure shows the convergence of the objective h(w) that decreases and
then becomes stable, while the corresponding clustering accuracy (Acc) improves.
The black dots mark the iteration when the termination condition by e at Line 7 of
Algorithm [10|is met. Observe that h(w) usually converges before termination. Thus,
we set Thax = 50 by default at Line 2 of Algorithm

Varying e. We vary parameter € in the termination condition from 10~* to 10~}
(from tight to loose) and report the results of SGLA in Figure . Compared to the

default setting of e = 1073, Atime denotes the ratio of change in running time. As
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Figure 5.7: Varying number of iterations ¢ in SGLA for clustering accuracy; e marks
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Figure 5.9: Varying v for SGLA+.

¢ becomes loose from 107* to 107!, the clustering quality (Acc) is stable first and

then decreases. On the other hand, as € becomes tight, e.g., from 1073 to 107, the
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Figure 5.10: Vary the number of weight vector samples in SGLA+.

running time increases significantly (Atime) but the quality (Acc) maintains. Thus,

we set € = 0.001 by default.

Varying . Parameter « is the coefficient of the regularization term in . A
negative v promotes weight allocation to focus on a single view, while a positive
mitigates such situations and tends to assign similar weights across views. We vary
from —2 to 2 and report the accuracy and NMI scores in Figure [5.9] As ~ increases
from —2 to 0.5, the accuracy and NMI of SGLA+ remain relatively stable on Yelp and
show noticeable improvement on other datasets. However, when ~ varies from 0.5 to
2, the accuracy and NMI degrade on IMDB and RM, while remaining stable on other

datasets. Based on these observations, we set v = 0.5 by default.
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Varying the number of weight vector samples in SGLA+. In Section [5.4.2,
SGLA+ uses (r+1) sampled weight vectors by default. We vary the number of samples
and change (r 4+ 1) by As € {—2,—1,0,+2,+5,+10,+20}, and report the results of
SGLA+ in Figure [5.10, where the left y-axis is for clustering Acc and NMI, and the
right y-axis is for running time. The removed (resp. added) samples are randomly
selected (resp. generated). Observe that when the number of samples changes by As
from -2 to 0, Acc and NMI scores increase and then become stable afterward with
larger delta values. Meanwhile, the time increases significantly due to more expensive
objective evaluations to be performed. The results in Figure indicate that (r+1)

samples are sufficient in practice.

Alternative integrations. For the proposed spectrum-guided integration in SGLA+
that optimizes the full objective, we compare baselines optimizing the connectivity
or eigengap objective alone, setting equal weights for all view Laplacians (Equal-w),
and directly aggregating adjacency matrices from graph views and KNN graphs of
attribute views (Graph-Agg). Figure reports the clustering accuracy on each
dataset and the average accuracy over all datasets. SGLA+ is the best in average
accuracy performance and achieves the highest accuracy on almost all datasets. Op-
timizing connectivity or eigengap alone can achieve relatively good accuracy on some
datasets but performs poorly on others, validating the design choice to combine both
objectives. Despite occasional successes, assigning equal view weights often leads to
poor performance, as evidenced by the low clustering quality on datasets such as
RM, Yelp, and IMDB. Graph-Agg is outperformed by SGLA+ that adopts normal-
ized Laplacians and preserves intrinsic spectrum properties of MVAGs. These results

highlight the advantage of our spectrum-guided multi-view integration.

Embedding visualization. We visualize the node embeddings using t-SNE [I1§] to
qualitatively assess the embedding quality. Due to space constraints, we present the
visualizations of our method SGLA+ and the strong baselines identified in Table
on the RM and Yelp datasets in Figure On RM, shown in the 1st row of Figure
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Figure 5.11: Clustering accuracy with alternative integrations.

(e) LMGEC (f) SGLA+

Figure 5.12: Embedding visualization on RM (a,b,c) and Yelp (d,e,f). Ground-truth
classes are in color.

SGLA-+ effectively separates nodes into different classes, while DMG and PANE mix

more nodes from different classes. A similar observation can be made on Yelp, shown

in the 2nd row of Figure|5.12| The visualization demonstrates the effectiveness of our

methods in generating £ for high-quality embedding.
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5.6 Summary

This chapter introduces a spectrum-guided integration scheme for multi-view at-
tributed graphs (MVAGs), enabling the direct application of classic graph algorithms
for clustering and embedding tasks. The proposed approach emphasizes preserv-
ing community structure and node connectivity by leveraging the spectral properties
of Laplacian matrices. To address computational challenges, we developed SGLA, an
algorithm that delivers superior performance, followed by SGLA+, an accelerated vari-
ant that approximates the objective for improved efficiency. Extensive experiments
demonstrate that both SGLA and SGLA+ consistently produce high-quality results

across diverse MVAG scenarios.

161



Chapter 6

Conclusion

6.1 Summary of Contributions

This thesis has advanced the field of attributed network analysis by developing innova-
tive approaches to clustering and embedding that enhance the effectiveness, efficiency,
and scalability of analyzing complex network structures. Through three interrelated
contributions, we have addressed the challenges of attributed graphs, hypergraphs,
and multi-view attributed graphs, delivering tailored solutions that integrate struc-
tural and attribute information. These advancements, validated through extensive
experiments on real-world datasets, provide robust tools for applications in bioinfor-
matics, social network analysis, and e-commerce, aligning with the thesis’s goal of

advancing clustering and embedding for attributed network structures.

The first contribution, the ANCKA framework [73], [72], offers a versatile and effi-
cient solution for clustering attributed networks, encompassing attributed hyper-
graph clustering (AHC), attributed graph clustering (AGC), and attributed multiplex
graph clustering (AMGC). By leveraging a KNN augmentation strategy, a novel ran-
dom walk-based problem formulation, and an optimized iterative framework, ANCKA

achieves superior cluster quality while maintaining high efficiency. To further enhance
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scalability, we developed ANCKA-GPU, a GPU-accelerated variant that outperforms its
CPU-parallel counterpart on large datasets while preserving effectiveness. Extensive
evaluations across real-world datasets demonstrate ANCKA ’s outstanding performance,

setting a new benchmark for clustering diverse attributed networks.

The second contribution introduced SAHE, an efficient algorithm for attributed hyper-
graph node and hyperedge embedding (AHNEE). SAHE generates node and hyperedge
embeddings that preserve higher-order connectivities and attribute similarities in at-
tributed hypergraphs, utilizing multi-hop similarity measures (HMS-N and HMS-E)
and optimized decomposition techniques. With log-linear time complexity, SAHE out-
performs 11 baselines across 8 real-world datasets, demonstrating both scalability
and effectiveness. Its design makes it well-suited for applications such as genomic ex-
pression modeling and online shopping behavior prediction, advancing representation

learning for higher-order network structures.

The third contribution developed a spectrum-guided integration scheme for cluster-
ing and embedding in multi-view attributed graphs (MVAGs), implemented through
two efficient algorithms, SGLA and SGLA+. By formulating a constrained optimization
problem over a joint objective function that preserves community structure and node
connectivity via the Laplacian matrix spectrum, this scheme enables existing graph
algorithms to be applied to MVAGs. SGLA delivers superior performance compared
to baselines, while SGLA+ further reduces computational demands through approx-
imation, maintaining high-quality results. Extensive experiments confirm their ef-
fectiveness and efficiency, supporting applications like recommendation systems and

neuroimaging analysis.

Collectively, these contributions, namely ANCKA, SAHE, and SGLA/SGLA+, form a co-
hesive set of frameworks that advance clustering and embedding by addressing the
unique complexities of attributed network structures. Their validated performance
across diverse datasets underscores their potential to transform network analysis in

real-world settings.
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6.2 Implications and Impact

The methods presented in this thesis have significant implications for both theoretical
and applied network analysis. Theoretically, our work advances the approach to at-
tributed network clustering by demonstrating that a unified framework can effectively
handle the diversity of attributed networks. ANCKA ’s random walk-based formula-
tion and KNN augmentation depart from traditional clustering paradigms, offering
a generalizable model for graphs, hypergraphs, and multiplex graphs [144]. SAHE ’s
log-linear time embedding approach expands the range of factorization-based embed-
ding methods to hypergraphs, addressing a gap in hypergraph modeling [157]. The
spectrum-guided integration of SGLA and SGLA+ provides a novel framework for multi-
view attributed graph analysis, unifying clustering and embedding tasks through the
spectral properties of the Laplacian matrix [I53]. These advancements enrich the
theoretical foundations of network analysis, paving the way for future methodological

innovations.

Practically, our contributions have solid potential for applications to real-world net-
work data. The scalability of the proposed approaches, exemplified by ANCKA-GPU ’s
GPU acceleration and SAHE ’s log-linear complexity, ensures their utility for large-scale
networks, addressing computational bottlenecks noted in prior works. The interdis-
ciplinary outreach of our frameworks further amplifies their impact across multiple
domains, including bioinformatics, social network analysis, and recommendation sys-
tems. For instance, clustering academic hypergraphs by co-authorship and keywords
[27] supports research collaboration analysis, while multi-view clustering aids neu-
roimaging for disease diagnosis [153]. These diverse applications highlight the signifi-
cance of the research topic and the versatility of our approaches, meeting the growing

demand for advanced, scalable network analysis tools in data-driven areas.
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6.3 Future Directions

This thesis opens several promising avenues for future research. For ANCKA, we may ex-
tend the framework to handle evolving attributed networks and implement distributed
computations to enhance scalability. Developing robust augmentation strategies for
highly noisy or sparse datasets would further improve its versatility. For SAHE, en-
hancing the algorithm with incremental decomposition methods for dynamic hyper-
graphs could support applications where incorporating the latest updates is essential.
This embedding approach may also be extended to other attributed networks, and a
GPU implementation could further boost its computational efficiency. For SGLA and
SGLA+, future work could focus on handling dynamic MVAGs through lazy update
schemes and incremental objective evaluation to minimize update costs. Designing
techniques for robustness against noisy MVAGs and exploring GPU computation for

multi-view analysis would enhance their practical utility.

6.4 Concluding Remarks

This thesis has made substantial contributions to the analysis of attributed network
structures, delivering frameworks—ANCKA, SAHE, and SGLA/SGLA+ —that advance
clustering and embedding for graphs, hypergraphs, and multi-view graphs. Through
innovative techniques like KNN augmentation, efficient approximation, and spectrum-
guided integration, our work achieves high-quality outcomes with computational effi-
ciency, as validated across diverse real-world datasets. The theoretical and practical
implications span a wide range of areas, demonstrating the power of tailored and
unified approaches. Looking forward, they inspire exciting future directions, from
dynamic network analysis to interdisciplinary applications. Ultimately, this thesis
advances the field of network analysis, providing tools and insights that empower

researchers and practitioners to interpret and exploit attributed networks.
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