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Abstract

This thesis focuses on the development of CholeskyQR-type algorithms, which are very popular in
recent years due to their efficiency and accuracy. Compared to the traditional algorithms for QR
factorization, such as HouseholderQR and MGS, CholeskyQR-type algorithms have special advantages
and have raised much attention from both academia and industry. In this thesis, We present some
progress we have made in CholeskyQR-type algorithms in the past several years.

Though with good efficiency and accuracy, CholeskyQR is seldom used alone due to its lack of or-
thogonality. In order to receive numerical stability in orthogonality, CholeskyQR2 has been developed
by repeating CholeskyQR twice. In recent years, researchers has proposed Shifted CholeskyQR3 to deal
with QR factorization of ill-conditioned matrices, with a shifted item s in the step of Cholesky factor-
ization to avoid numerical breakdown in ill-conditioned cases. Moreover, some other CholeskyQR-type
algorithms have occurred, such as LU-CholeskyQR2 and some randomized algorithms. The develop-
ment of CholeskyQR-type algorithms aims for improving the applicability of the algorithms. In this
thesis, we show our improvements on the applicability of CholeskyQR-type algorithms, especially for
Shifted CholeskyQR3. Some cases based on real-world problems are also considered.

Shifted CholeskyQR3 avoids the problem of encountering numerical breakdown in ill-conditioned
cases which belongs to CholeskyQR2. With the structure of CholeskyQR2 after Shifted CholeskyQR,
Shifted CholeskyQR3 can keep numerical stability and replace CholeskyQR2. However, the original
shifted item s = 11(mnu + (n + 1)nu)|| X |3 for the input matrix X € R™ " is relatively conservative
due to overestimation in rounding error analysis. We introduce a new matrix norm ||X ||, and propose
an improved shifted item s = 11(mu + (n + 1)u)||X|? for Shifted CholeskyQR3. Our theoretical
analysis and numerical experiments demonstrate that our new s can enhance the applicability of
Shifted CholeskyQR3, while maintaining numerical stability and efficiency.

In fact, in many real-world applications, the input matrix X € R™*" is often sparse, especially
when m and n are large. Due to the structure of the algorithm, the sparsity of the input matrix will
influence rounding error analysis of CholeskyQR and exhibit different properties compared to those of
dense matrices. For sparse matrices, we build a new model and divide them into two types, T1 matrices
with the dense columns and T, matrices whose columns are all sparse. Therefore, an alternative choice
of the shifted item s is proposed for Shifted CholeskyQR3 based on the structure and the key element
of the input X. We prove that such an alternative s are optimal compared to the original s we propose
in the previous part with certain element-norm conditions(ENCs). It can improve the applicability
of Shifted CholeskyQR3 for 77 matrices and maintain numerical stability of the algorithm in this

way. Numerical experiments demonstrate our findings and show that shifted CholeskyQR3 with the
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alternative s can also deal with more ill-conditioned cases for 75 matrices because of the potential
sparsity of the orthogonal factor after Shifted CholeskyQR. The algorithm with such an s is also as
efficient as the case with the original s. [-[|, a definition connected to |-, is utilized in the theoretical
analysis.

In recent years, probabilistic rounding error analysis has become a hot topic in numerical linear
algebra. We can receive tighter error bounds compared to the deterministic ones. Based on the
theoretical analysis of CholeskyQR-type algorithms, probabilistic error analysis can improve the suf-
ficient condition of k2(X) for X € R™*™ and bring more accurate error analysis. Therefore, we do
probabilistic error analysis of CholeskyQR-type algorithms. We receive tighter upper bounds of both
orthogonality and residual for CholeskyQR-type algorithms, together with looser sufficient conditions
of ko(X) with the corresponding probabilities. Additionally, a probabilistic s with ||.X|. is proposed
for Shifted CholeskyQR3. Numerical experiments show that such a probabilistic s can improve the ap-
plicability of the algorithm further. Shifted CholeskyQR3 with such a probabilistic s is also numerical
stable and robust enough after numerous experiments.

Generally speaking, we propose and utilize new tools for more accurate rounding error analysis
of CholeskyQR-type algorithms theoretically, which also helps to improve the properties of the algo-
rithm. Our improvements on the applicability of the algorithm are effective according to numerical

experiments, which correspond to the new theoretical results in this work.
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CHAPTER 1.
INTRODUCTION

QR factorization is one of the most important components of numerical linear algebra and is widely
used in both academia and industry. There are many illustrations regarding such an issue in the
existing works, see [I8| [30, 36, 47, 53] for more details. Among all the various algorithms for QR
factorization, CholeskyQR has gained popularity in recent years due to its ability to balance efficiency
and accuracy. Different from other algorithms for QR factorization, CholeskyQR exclusively utilizes
BLAS3 operations and requires only simple reductions in parallel environments, which is a significant
advantage compared to other algorithms such as HouseholderQR, CGS (MGS), and TSQR [5, 12 [16,
25, [32], 50L 55].

This chapter is an introduction of this thesis. Notations used in this thesis are introduced in
Section We show some existing CholeskyQR-type algorithms and their theoretical properties in
Section Then, some comparisons and considerations are presented in Section[I.3] which illustrates
our purposes to improve the properties of CholeskyQR-type algorithms. We show our contributions
in Section and the primary tools for analysis are in Section In the end of this chapter, we put
an outline of this thesis in Section

1.1 Notations of this thesis

In this thesis, all vectors and matrices are real. The notations||-||, and||-|| » denote the 2-norm and the
Frobenius norm of the matrix, respectively. The condition number ko(-) utilized in this thesis refers

to the 2-norm condition number and is defined as

Ry
ko(X) = —,
where || X ||, equals to the largest singular value of X. 0y,:,(X) denotes the smallest singular value of
matrix X. u is the machine precision and u = 2753, For the input matrix X, |X| is the matrix whose

elements are all the absolute values of the elements of X.

1.2 Existing CholeskyQR-type algorithms

CholeskyQR is a novel algorithm which is primarily designed for the QR factorizaton of tall-skinny
matrices that are prevalent in the real problems of engineering. It is primarily designed for full rank

matrices. For X € R™*" with m > n and rank(X)=n, the Gram matrix B is computed first through



X T X, and the upper-triangular R-factor is obtained through Cholesky factorization. The orthogonal
factor Q € R™*™ can then be derived using @ = X R~!. The basic form of CholeskyQR is outlined in
Algorithm

Algorithm 1: [@, R] = CholeskyQR(X)
Input: X € R™*",

Output: Orthogonal factor Q € R™*", Upper triangular factor R € R™*",

L G=XTX,
2: R = Cholesky(B),
3 Q= XR L.

In CholeskyQR-type algorithms, regarding the sizes of the matrices, we always define

; (1.1)

(1.2)

mnu <

2|-2|~

nn+ 1u <

Here, u is the machine precision and u = 27°3. It shows that CholeskyQR can deal with matrices

with millions of dimensions.

1.2.1 CholeskyQR2

Although with many advantages, Algorithm [I| exhibits certain limitations and is seldom used directly.

When considering the error of orthogonality, it is shown in [68] that

)
T 2
— IH <25 1.3
HQ @ F~ 64 (13)
where

5 = 8ka(X)y/mnu + n(n + 1)u. (1.4)
Here, ro(X) = U“X“(&) is the condition number of X. || X||, equals to the largest singular value of X

while /i, (X) denotes the smallest one.

According to and (L.4)), the orthogonality error of CholeskyQR is proportional to (k2(X))2.
Numerous numerical experiments indicate that CholeskyQR is numerically stable only when the input
X is very well-conditioned. Consequently, a new algorithm, named CholeskyQR2, has been developed

by performing two iterations of the CholeskyQR algorithm [22]. It is presented in Algorithm
Algorithm 2: [, R] = CholeskyQR2(X)
Input: X € R™*",

Output: Orthogonal factor Q € R™*™, Upper triangular factor R € R™*".
1. [W,Y] = CholeskyQR(X),
2: [@Q, Z] = CholeskyQR(W),
3 R=72Y.




In [68], it has been shown that compared to Algorithm[I] Algorithm [2]is numerically stable in both

orthogonality and residual. Rounding error analysis of CholeskyQR2 is shown below in Lemma [I.1

Lemma 1.1. For X € R™" and [Q, R] = CholeskyQR2(X), with § = 8k2(X)y/mnu+ n(n+ L)u <

1, and , we have
HQTQ - IHF < 6(mnu + n(n + u), (1.5)
|QR — X < 50> /u|| X, (1.6)

According to Lemma CholeskyQR2 is numerically stable in terms of both orthogonality and
residual compared to CholeskyQR in Algorithm

1.2.2 Shifted CholeskyQR3

When X is ill-conditioned, CholeskyQR2 may encounter numerical breakdown due to rounding er-
rors. To address this challenge, researchers have introduced an improved algorithm known as Shifted
CholeskyQR (SCholeskyQR), which is detailed in Algorithm 3| [21].

Algorithm 3: [@Q, R] = SCholeskyQR(X)
Input: X € R™*™,

Output: Orthogonal factor @ € R™*"™ Upper triangular factor R € R™*"™,

L G=XTX,
2: take s > 0,
3: R = Cholesky (B + sI),
4 Q=XR

Shifted CholeskyQR is a superior algorithm in terms of applicability compared to CholeskyQR.
The concept behind the algorithm is straightforward. For an ill-conditioned matrix B € R™*", the
addition of a scaled identity matrix reduces k2(B + sI) and prevents numerical breakdown. To further
improve the numerical stability, CholeskyQR2 is performed subsequently, and a new algorithm called

Shifted CholeskyQR3 (SCholeskyQR3) has been developed, which is given in Algorithm

Algorithm 4: [@, R] = SCholeskyQR3(X)
Input: X € R™*",

Output: Orthogonal factor Q € R™*", Upper triangular factor R € R™*",
1. [W,Y] = SCholeskyQR(X),
2: [@Q, Z] = CholeskyQR2(W),
33 R=72Y.
For Shifted CholeskyQR and Shifted CholeskyQR3, some theoretical results are provided in [21].
They are shown below in Lemma [I.2} Lemma [1.4




Lemma 1.2. For X € R™*" and [Q, R] = SCholeskyQR(X), with 11(mnu + n(n + 1)u)HXH§ <s<
WIOHXH% s Ko(X) < 6n2u’ ) and -, we have

|leTe-1|, <2 (1.7)

IQR - XI|, < 2nu] X, (L9)
Lemma 1.3. For X € R™*" and [W,Y] = SCholeskyQR(X), with 11(mnu+ n(n + 1)“)”XH§ <s<
ﬁ”XH; Ka(X) < 6n2u7 and (1.2)), we have

W) < 2V3 - V/1+ alka(X))2 (1.9)

Here, o = W When [Q, R] = SCholeskyQR3(X), if we take s = 11(mnu + n(n + 1)u)HX||§ and
2

ko(X) is large enough, a sufficient condition for rke(X) is

IQQ(X) < 1

~ 96(mnu+n(n+1)u) (1.10)

Lemma 1.4. For X € R™" and [Q, R] = SCholeskyQR3(X), with s = 11(mnu + n(n + 1)u)| X|3,

L1, and (1.10), we have
HQTQ—IHF < 6(mnu+ n(n+ 1)u), (1.11)

|QR — X || < 15n%u][X]], (1.12)

In particular, Lemma[I.3] highlights one of the most important properties of Shifted CholeskyQR3.
It demonstrates that when s is within a certain interval, increasing s results in a larger value of
k2(Q). Since CholeskyQR2, which follows Shifted CholeskyQR, may break down if k2(Q) is large, the
selection of the shifted item s is crucial for Shifted CholeskyQR3. It cannot be too large, as this would
affect the applicability of Shifted CholeskyQR3, nor too small, as this could lead to the breakdown of
Shifted CholeskyQR. Therefore, the most important point of Shifted CholeskyQRS3 is to pick a proper

s, which will greatly influence the properties of the algorithm.

1.2.3 LU-CholeskyQR2

Among all the deterministic CholeskyQR-type algorithms, LU-CholeskyQR [62] is particularly note-
worthy. It has the unique advantage of not imposing a restriction on ko(X), which is crucial for
real-world applications in industry. LU-CholeskyQR combines LU factorization with CholeskyQR, as
shown in Algorithm [5} Here, L € R™*" is a unit tall-skinny lower triangular matrix, and U € R"*"
is an upper triangular matrix when X € R™*™ ig tall-skinny. A CholeskyQR step is performed after-
wards to form LU-CholeskyQR2, ensuring orthogonality, as detailed in Algorithm [ There are also
some other works discussing CholeskyQR-type algorithms, see [69] [70].
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Algorithm 5: [@, R] = LU-CholeskyQR(X)
Input: X € R™*",

Output: Orthogonal factor Q € R™*", Upper triangular factor R € R™*".

1. PX = LU,

2 G=L"L,

3: S = Cholesky(G),
4: R = SU,

5 Q=XR L.

Algorithm 6: [, R] = LU-CholeskyQR2(X)
Input: X € R™*",

Output: Orthogonal factor Q € R™*" Upper triangular factor R € R™*".
1. [W,Y] = LU-CholeskyQR(X),
2: (@, Z] = CholeskyQR(W),
3: R=72Y.
Regarding LU-CholeskyQR2 in Algorithm @ both and are required. Additionally, the

following assumptions concerning xko(L) and ko(U) are shown below.

8k2(L)y/mnu+n(n+ 1u < 1, (1.13)

64n2u - rko(L)ko(U) < 1. (1.14)

Under the assumptions stated above, we present rounding error analysis of LU-CholeskyQR2 [62]
in Lemma [1.5]

Lemma 1.5. For X € R™*" and [Q, R| = LU-CholeskyQR2(X ), when (1.1), (1.2), (1.13) and (1.14))

are satisfied, we have

HQTQ—IH2 < 6(mnu+n(n+1)u), (1.15)

QR — X||, < 4.09n%u| X |, . (1.16)

According to Lemma we find that LU-CholeskyQR2 is as stable as CholeskyQR2.

1.2.4 Randomized algorithms

In recent years, randomized numerical linear algebra [30), [47] has become a hot topic worldwide. A new
randomized technique called sketching [1] has been widely applied to various problems. The sketching
technique primarily aims to reduce computational costs by replacing the original large matrices with

alternative matrices of smaller sizes after some preconditioning steps. The sketching matrix is typically

S



chosen to be an e-subspace embedding or a linear map to a lower-dimensional space, preserving
the inner products and norms of all vectors within the subspace up to a factor of /1 + ¢, where
0 < e < 1. Several existing methods for sketching matrices include Gaussian Sketch, SRHT, and
Count Sketch [4], 42| [56, 57, [73]. Research on randomized CholeskyQR has also emerged. Y. Fan
and his collaborators [20] proposed the initial version of randomized CholeskyQR, while O. Balabanov
[3] provided a detailed analysis of CholeskyQR-type algorithms with various randomized strategies,
including sketching. A recent work by A. J. Higgins and his collaborators [31] introduced a novel
method called multi-sketching, which employs two different sketching steps consecutively. This work
developed a new algorithm called Randomized Householder QR(RHQR), utilizing HouseholderQR. to
replace the original generation step of the R-factor in CholeskyQR to avoid numerical breakdown.
The multi-sketching technique is designed to accelerate the entire algorithm. The corresponding
algorithm is outlined in Algorithm |7} Here, ; € R*1*™ is the matrix for CountSketch while Q5 €
R%2%51 ig the matrix for Gaussian Sketch, with n < s9 < s1 < 1. To ensure good orthogonality, a
CholeskyQR step is added afterwards, resulting in the Rand.Householder-Cholesky algorithm(RHC),
as shown in Algorithm They provide a clear rounding error analysis of the algorithms with two
e-subspace embeddings, and numerical experiments demonstrate that their Randomized Householder-

CholeskyQR . is more efficient and numerically stable than the algorithms in [3].
Algorithm 7: [@, R] = RHQR(X)
Input: X € R™*",

Output: Orthogonal factor Q € R™*" Upper triangular factor R € R™*".

1: K = Q01 X,
2: [W, R| = HouseholderQR(K),
3 Q= XR L.

Algorithm 8: [@, R] = RHC(X)
Input: X € R™*™,

Output: Orthogonal factor Q € R™*", Upper triangular factor R € R™"*",
1: [W,Y] = Randomized Householder QR(X)
2: [@Q, Z] = CholeskyQR(W),
33 R=72Y.

1.3 Theoretical results of the existing algorithms and some considerations

According to the previous algorithms, we find that all the CholeskyQR-type algorithms are all in
the form of 'Preconditioning step+CholeskyQR/CholeskyQR2’. The primary purpose of this type of
structure is due to ([1.3) and (1.4]). If ko(X) of the input matrix X for the last step of CholeskyQR is



very small, the whole algorithm can have good orthogonality. Otherwise, we need to put CholeskyQR2
after the preconditioning step to guarantee numerical stability. It is also easy to prove the numeri-
cal stability of residual for CholeskyQR and the corresponding preconditioning steps in the level of
n2ul| X ||y if X € Rm*m,

1.3.1 Theoretical results of the existing algorithms

In this section, we show the theoretical properties of some CholeskyQR-type algorithms. We mea-
sure the properties of these numerical algorithms from three perspectives, numerical stability, ap-
plicability and efficiency, which corresponds to the theoretical upper bounds of orthogonality and
residual(HQTQ - IHF and ||[QR — X||z), upper bounds of k2(X) for the input matrix X € R™*".
Although some randomized algorithms are introduced in Section we focus on deterministic

algorithms in this thesis. The comparisons of the theoretical results are listed in Table

Table 1.1: Upper bounds of k2(X), orthogonality and residual for X € R™*"

Algorithms CholeskyQR2 SCholeskyQR3 LU-CholeskyQR2
1 1 :
ko(X) P Ty ewn S ITE RSy No requirements

Orthogonality 6(mnu+n(n+ 1)u) 6(mnu+n(n+ 1)u) 6.5(mnu+ n(n+ 1)u)
Residual 5n2y/n|| X ||, 15n%ul| X ||, 4.09n%ul| X,

1.3.2 Considerations of the existing algorithms

Although CholeskyQR2 is numerical stable and the computational cost of CholeskyQR2 is about %
of that of Shifted CholeskyQR3 according to Lemma [1.1} it is a very vulnerable algorithm for the
existence of Cholesky factorization in calculating the first R-factor Y in Algorithm A sufficient
condition for Cholesky factorization here to work on is that W must be positive definite. However,
with the existence of the rounding errors in calculating the gram matrix W and Cholesky factorization,
W may not be positive definite if ko(X) is large enough for the input matrix X, which will lead to
numerical breakdown in Cholesky factorization. Therefore, there is a sufficient condition of ka(X)
for CholeskyQR2 according to Table The primary target for the research regarding CholeskyQR-
type algorithms is improving its applicability. From this perspective, Shifted CholeskyQR3 can almost
"cover’ all the properties of CholeskyQR2 and deal with ill-conditioned cases with numerical stability,
see the comparison in Table and Lemma Therefore, the properties of Shifted CholeskyQR3
are primarily discussed in this thesis.

Regarding Shifted CholeskyQR3, we write the first two steps of Shifted CholeskyQR with error



matrices below.

G=XT"X+Eq, (1.17)

R'"R=G+ Ep+sl. (1.18)

In fact, the error bounds for ||E 4|, and || Eg||, in (1.17) and (L.18) significantly influence the choice

of the shifted item s. In [2I], the original s is set to be 10 times the sum of ||E4ll, and ||Eg||,.
Previous researchers have used || X||, to bound the 2-norm of each column of X when estimating
|Eall, and || EB||,. However, in practice, both ||[E4l|, and |[Eg||, tend to be overestimated. In most
cases, the 2-norm of each column of X can be significantly smaller than || X||,. This overestimation
leads to a conservative choice of s, limiting the applicability of Shifted CholeskyQR3 for matrices X
with a large k2(X). Therefore, one of our primary objectives is to select a smaller shifted item s
for Shifted CholeskyQR3 and to demonstrate that this improved s can ensure the numerical stability
of the algorithm. We aim to provide a more accurate error estimation for the residuals of Shifted
CholeskyQR3 theoretically. Such an alternative s improves the applicability of Shifted CholeskyQRS3,
reflected in a better sufficient condition for k9(X) to some extent.

Furthermore, the rounding error analysis of [21] 68] on CholeskyQR-type algorithms is primarily
based on deterministic models by Higham [32]. However, using these deterministic models may lead
to overestimating the norms of error matrices, especially ||E4l|, and || Eg||, in and (|1.18). This
may result in a conservative s and poorer sufficient conditions for rxo(X) for Shifted CholeskyQR3. In
floating-point arithmetic, the norms of the error matrices rarely reach the upper bounds predicted by
deterministic models. Recently, randomized linear algebra has gained popularity, with several works
addressing probabilistic error analysis using the randomized models, see [10, 37, [74] and related ref-
erences. Many tools and conclusions regarding the randomized models for probabilistic error analysis
[111, [33), 135, 66, 67] have been developed, which can significantly improve the error analysis. In the con-
text of rounding error analysis for matrix multiplications, the randomized models have been provided
in [I1] to provide smaller upper bounds for error estimations, see Section . Since the theoretical
results of CholeskyQR-type algorithms are primarily based on the estimations of some error matrices,
we can apply the randomized models to CholeskyQR-type algorithms to conduct new error analysis.
Such advancements can also improve various properties of these algorithms, including the shifted item
s in Shifted CholeskyQRS3.

Generally speaking, all the existing algorithms and our previous thoughts are designed for QR
factorization of dense X. However, in many real-world problems such as numerical PDEs and their
applications in physics, chemistry, and astronomy, X is often large and sparse. Sparse matrices often
exhibit different properties compared to those of dense matrices. In recent years, there are many works

for the design of algorithms and the analysis of properties for sparse matrices, see [2} 13}, 14}, 23] 72}, [73]
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and their references. In CholeskyQR, it is meaningful for us to do analysis and explore the properties
of CholeskyQR-type algorithms for sparse matrices. Regarding sparsity, we aim to receive a new
perspective on CholeskyQR-type algorithms based on the structure of X. When the input matrix X
is sparse, it is possible for us to achieve a different and more accurate rounding error analysis based

on its structure, thus leading to a better shifted item s for Shifted CholeskyQR3.

1.4 Our contributions

Based on all our considerations before, we do some innovative works with some new techniques regard-
ing CholeskyQR. The primary target of us is to improve the preconditioning steps of CholeskyQR-type
algorithms, together with the theoretical analysis of the algorithms.

In Chapter we define a new [|-||, in Deﬁnition as || X|, = vnl|X[|, for X € R™*", where]|-||,
denotes the largest 2-norm of the columns of X. Some properties of ||-||, are shown in Section
With ||-||,, we can take a smaller s for Shifted CholeskyQR3 as s = 11(mu + (n + 1)u)||X||? and
construct the improved Shifted CholeskyQR (ISCholeskyQR) and improved Shifted CholeskyQR3
(ISCholeskyQR3) in Section for the input matrix X € R™*™. Our rounding error analysis
demonstrates that this improved s based on || X||. can keep numerical stability of Shifted CholeskyQR3
as reflected in Theorem Numerical experiments show that our improved Shifted CholeskyQR3
has better applicability compared to Shifted CholeskyQR3 with the original s [2I] while achieving
numerical stability and efficiency comparable to those of the original algorithm. The comparisons
between the original Shifted CholeskyQR3 and our improved one are listed in Table and Table
Here, j is defined in . We discover the relationship between the column of X and CholeskyQR. in
this chapter. The definition of||-||, provides us with a new perspective on CholeskyQR-type algorithms

and will be utilized in our subsequent research.

Table 1.2: Comparison of k2(X) between the improved and the original s

s Sufficient condition of k2(X) Upper bound of kao(X)
11(mnu + n(n + 1)”—) HXHg 96(mnu+1n(n+1)u) ﬁ

1 1
867 (my/nu+(n+1)/nu) 4.89jn+/nu

11 (mu+ (n + Du)|| X ||

Table 1.3: Comparison of the upper bounds of residual between the improved and the original s

S SCholeskyQR SCholeskyQR3
11(mnu + n(n + Du)|| X |3 2n%ul| X, 15n%ul X ||,
11(mu+ (n+ 1)u)||X||z 1.6ny/nu||X||, (6.57- ﬁ + 4.87)n%u|| X ||,




In Chapter (3] we combine the properties of sparse matrices with theoretical analysis, which is the
first to build connections between sparsity and rounding error analysis to the best our knowledge.
We introduce a new classification for the sparse X € R™*" based on the presence of dense columns,
dividing sparse matrices into 17 and T5 matrices. For Shifted CholeskyQR3, when the input matrix X
is sparse, we propose an alternative choice of s in based on the structure and the element with the
largest absolute value of X according to Definition[3.1] This approach differs significantly from those in
[21]. We prove that this alternative s can prevent numerical breakdown and ensure numerical stability
of Shifted CholeskyQR3 with proper element-norm conditions(ENCs) in Theorem [3.1and Theorem 3.2
For T; matrices satisfying these ENCs, such an s and the corresponding sufficient condition of k(X))
are significantly better than those of our improved Shifted CholeskyQR3. The theoretical analysis
in this part is deeply tied to the properties of ||| ; as shown in Chapter Numerical experiments
illustrate the properties of Shifted CholeskyQR3 for sparse matrices and confirm the effectiveness
of the improved s for 77 matrices satisfying proper ENCs. Additionally, Shifted CholeskyQR3 can
handle more ill-conditioned cases for T5 matrices compared to dense cases. Moreover, the efficiency of
Shifted CholeskyQR3 with our alternative s is comparable to that of the original s in Chapter [2] for
sparse matrices. The comparisons between the improved Shifted CholeskyQR3 and our alternative
for T matrices are listed in Table and Table Here, [, h and k are mentioned in Section
and Theorem As far as we know, this work is the first to explore the connection between QR
factorization and sparse matrices and provide detailed theoretical analysis, which is very meaningful

in the research of sparse matrices and many real applications.

Table 1.4: Comparison of k2(X) between the improved and the alternative s for 77 matrices

s Sufficient condition of k2(X) Upper bound of ka(X)
2 1 1
1(mu + (n + Du) || X|; 865 (my/nu+ (n+1)/nu) 1.89jny/nu
11(mu + (n+ 1)) - (vt; + nta)c? TRV (mlu RS T

Table 1.5: Comparison of the upper bounds of |QR — X|| » between the improved and the alternative

s for 17 matrices

S SCholeskyQR SCholeskyQR3
11 (mu + (n+ Du)|| X2 L6ny/nul| X[, (6.57 J- + 4.87)n’ul|X|,

11(mu+ (n+ 1)u) - (vty + nt2)c*  1.03hinul X||, (2.19 + 3.40) hn*u|| X ||,

We have already discussed the sparse cases which can lead to better error analysis and theoretical

results compared to our improved Shifted CholeskyQR3 in Chapter In Chapter 4l we focus on
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common cases again based on the randomized models in recent years, doing probabilistic error analysis
of CholeskyQR-type algorithms with such tools. We apply the randomized models in [33] to provide
probabilistic error analysis of CholeskyQR2 and Shifted CholeskyQR3 for the input matrix X €
R™*™ " which also utilizes || X ||, defined in Chapter Specially, a new probabilistic s is also taken
in Theorem for Shifted CholeskyQR3. We can get tighter upper bounds for both orthogonality
and residual in Theorem and Theorem Numerical experiments demonstrate that such a
probabilistic s can improve the applicability of Shifted CholeskyQR3 again compared to our work in
Chapter 2l We also show the robustness of Shifted CholeskyQR3 with such an s through extensive
and numerous experiments. The comparisons between the theoretical results of the deterministic and
probabilistic error analysis are listed in Table Table Here, j1, j2, j3, L and é1(j1, jo, j3,n) are
defined in Section Section and Theorem 7 is a positive constant in the randomized
models, which occurred in Section Our work is the first to conduct probabilistic error analysis
for CholeskyQR-type algorithms. The combination of ||-||. and the randomized models in analysis
is distinct from other works regarding probabilistic error analysis. The utilization of ||-||, can also

minimize the influence of the constant 1 in the randomized models which are shown in Section [1.5.2

Table 1.6: Comparison of ka(X) of CholeskyQR2 between the deterministic and the probabilistic

analysis

Type of analysis Sufficient condition of kg (X)

1

Deterministic ——
8y/mnu+n(n+1)u

Probabilistic

1
8j11/n(yv/mu+yv/n+1u)

Table 1.7: Comparison of the upper bounds of CholeskyQR2 between the deterministic and the

probabilistic analysis

Type of analysis HQTQ—IHF QR — X|| &

Deterministic 6(mnu+ n(n + 1)u) 5n?y/nul| X ||,
Probabilistic 67 - 73(v/mu + vn + 1u)  (1.251 4 1.32j5 + 1.32 - 42y pu| X ||,

n

Table 1.8: Comparison of xo(X) of Shifted CholeskyQR3 between the improved and the probabilistic

S

s Sufficient condition of k2(X) Upper bound of ko(X)
L1(mu + (n+ Du)|| X7 86j(m\/ﬁu-i(n+1)\/ﬁu) 4.89;‘;\/511
11n(y/mu + v/n + Tu)|| X|? L T8
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Table 1.9: Comparison of the upper bounds of Shifted CholeskyQR3 between the improved and the

probabilistic s

s leTe-1], |QR - X]|
11 (mu+ (n + Du)|| X2 6(mnu+n(n+ 1)u) (6.57p + 4.87)n*ul| X |,
Ln(ymu + Vo + )| X|7 69 j3(vVmu+va+Ta) G101, jz. gz, n)n - nuf X

1.5 Some preliminaries for the theoretical analysis

Before presenting detailed theoretical analysis of CholeskyQR-type algorithms in this thesis, we in-
troduce some preliminaries related to deterministic rounding error analysis and probabilistic error

analysis in this section. They are widely used in Chapter [2FChapter

1.5.1 Deterministic rounding error analysis

In the beginning of this section, we show the following classical model for floating-point arithmetic
from [32].
fila op b)=(a op B)(1+3), 10/ <u, ope{+,— x /s v} (1.19)

Here, fI(-) denotes the computed value in floating-point arithmetic. This model holds for IEEE
arithmetic and the IEEE standard even requires that fl(a op b) be the correctly rounded (to
nearest) value of @ op b. We will refer to ¢ as the rounding error in the operation, though it is
perhaps more common to describe the absolute error @ op b— fl(a op b) in this way.

This thesis primarily focuses on rounding error analysis originating from (1.19). In the following,
we show some fundamental lemmas of deterministic rounding error analysis [25] 32], which are widely

used in the error estimations of numerical linear algebra.

Lemma 1.6. If A, B € R™*", then

Lemma 1.7. For A € R™*" B € R™"*P_ the error in computing the matriz product AB in floating-
point arithmetic is bounded by

|AB - fI(AB)| < 7| AlIB].
Here, |A| is the matriz whose (i,j) element is|a;;| and

Ay = < 1,020
1 —nu
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Lemma 1.8. If Cholesky factorization applied to the symmetric positive definite A € R™ "™ runs to

completion, then the computed factor R € R™™™ satisfies
RTR=A+AA, |AA< %H’RT“R\ .

Lemma 1.9. Let the triangular system Tx = b, where T € R™™ is non-singular, be solved by

institution with any ordering. Then the computed solution x satisfies
(T+AT)z =b, |AT| < 7|R|.

To learn more about matrix perturbations, readers can refer to [38, 5], 58] for more details.

1.5.2  Probabilistic error analysis

In this section, we introduce the probabilistic error bounds in the probabilistic techniques and present
the following lemmas related to probabilistic error analysis. We show the probabilistic model of

rounding errors [33] first.

Lemma 1.10. In the computation of interest, the quantities 0 in (1.19) associated with every pair of

operands are independent random variables of mean zero.

Before showing the lemmas of probabilistic error analysis, we define

n?(1 —u)?
2

Q(n,n) =1-n(l—P(n)), (1.21)
2

P(n)=1-—2exp(— ), (1.20)

. u
Y = exp(ny/nu + 1n ) — 1. (1.22)

Here, 7 is a positive constant. From ((1.22), we can find that when ny/nu is small and close to 0,
An & 1.02ny/nu. This setting is used in the following of this work. Below, we present several lemmas

from [33] for probabilistic error analysis, which corresponds to Lemma [1.7}Lemma

Lemma 1.11. For A € R™ " and B € R"*P, under Lemma the error in computing the matriz

product C = AB in floating-point arithmetic satisfies
|AB — fI(AB)| < 7u(n)|Al|B],
with probability at least Q(n, mnp).

Lemma 1.12. If Cholesky factorization applied to the symmetric positive definite matriz A € R™*™

runs to completion, under Lemma[1.10, the computed factor R € R™™ satisfies
RTR=A+AA, |AR| <3 (n)|RT|RI,
2

with probability at least Q(n, % + & + §).
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Lemma 1.13. Let the triangular system Tx = b, where T € R™ " is non-singular, be solved by

institution with any ordering. Under Lemma[I.10, the computed solution z satisfies

(T'+AT)x = b, [AT] <A (n)[T],

with probability at least Q(n, %)

1.6 Outline of this thesis

The remainder of this thesis is organized as follows. In Chapter [2| we introduce and analyze the
properties of the improved Shifted CholeskyQR based on the new matrix norm ||-||.. Chapter [3|focuses
on Shifted CholeskyQR for sparse matrices with a new division of sparse matrices based on the
presence of dense columns. In Chapter [d, we show the probabilistic error analysis of CholeskyQR-type
algorithms with ||-||.. We show the conclusion of this thesis and list some potential directions for our
future work in Chapter The content of this thesis is based on several existing articles, including

[19, 27, 29).
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CHAPTER 2.

AN IMPROVED SHIFTED CHOLESKYQR BASED ON
COLUMNS

In this chapter, we focus on taking an optimal choice of the shifted item s for Shifted CholeskyQR3.
We introduce a new matrix norm || X ||, for the input matrix X € R”*", which is based on the column
properties of the input matrix. Thus, we can take an improved s with || X||.. We show that such
an s can improve the applicability of Shifted CholeskyQR3 while maintaining its numerical stability
and efficiency from both theoretical analysis and numerical experiments. This chapter is organized as
follows. In Section we present the definition of ||-||. and some of its properties. Section [2.2|outlines
the primary theorems of the improved Shifted CholeskyQR3. The theoretical analysis of the improved
Shifted CholeskyQR3 are detailed in Section which serves as the key contribution of this chapter.
Furthermore, Section presents numerical results of the improved Shifted CHoleskyQR3 and the
comparison between our new algorithm and the existing algorithms. Section is a summary of this

chapter.

2.1 |||, and its properties

In this section, we introduce a new matrix norm ||-||.. Before introducing ||-||., we take consideration

of the largest 2-norm among all the columns of X, which is defined as || X||, in Definition

Definition 2.1. For X = (X1, Xo, - X,,—1, Xp] € R™*",

11, = max [|X;]], (2.1)
where
X[l = /23 + 23 4o+ ad ol

In the following, we present several properties of [ X||; of the matrix, which will be used in the

theoretical analysis of this thesis.

Lemma 2.1. For X € R™*" we have

1 Xl <Xy <N X7

Proof. The left inequality is based on the property of the singular values of the matrix. The right

inequality is obvious. O
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Lemma 2.2. For X,Y € R™ " we have

X+ Yy <[1XIl, + 1Yl - (22)

Proof. Based on Definition [2.1] and the triangular inequality of the norms of vectors, we can easily get

22). O

Lemma 2.3. For X € R™*P and Y € RP*™ we have

XYy <IXMMY g, N1XY I, <IXURIY, - (2.3)

Proof. Regarding [[XY||,, with Definition we have

XY, < max([XY1lly,[[XYally, - - [ XVall2)
< max((| X[l [[Yillg s | X Il Y2lly s - 51 X o[ Yall2)
<[ Xl - max([Yallg,[[Y2lly -5 [[Yallo)
<[ Xl [Y']l -

Here, the first inequality of (2.3)) is received. Sincel||X||, <||X||p, it is easy to get the second inequality

of . O

Though [|-[|,, is a matrix norm, it is not sub-multiplicative. With ||

Definition 2.2

> we introduce a new ||-[|, in

Definition 2.2. When X € R™*", we define || X|. as

X1l = vnl X, -
With Definition we prove that ||.X||. is a matrix norm in Lemma
Lemma 2.4. For X € R™*" || X]||, is a matriz norm.

Proof. The non-negativity of || X||. when X € R™*" is clear according to Definition For X,
Y € R™*" with (2.2]), we can get the triangular inequality

Vol X + Y, < Vol X, +IY],)- (2.4)
For X € R"™*"™ and Y € R"*P, with ({2.3]), we can have

VoIIXY T, < VPIXI[EIY],

(2.5)
< (VallXlly) - (VPIYll,)-
Based on ([2.4) and ([2.5)), || X|, is a matrix norm. O
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For |||, we show the relationship between ||-||. and other matrix norms.

Lemma 2.5. For X € R™*" we have

X1, <X <X < Vol X, (2.6)
Proof. (2.6)) is easy to get with Definition and Lemma O

In this thesis, we use||-||. to improve the properties of Shifted CholeskyQRS3. [|-[|,, is also used in

some steps of theoretical analysis.

2.2 Theorems of the improved Shifted CholeskyQR3

With [|-||, we can estimate || E4||, and || Eg||, with tighter upper bounds based on || X||. for the input
matrix X. A smaller s with | X ||, can be taken for Shifted CholeskyQR3. Regarding || X||., we define

a constant j as

51Xl
1]l

(2.7)

Here, 1 < j < y/n. j is taken for the comparison of residual with ||-[|,. We present the follow-
ing theorems related to the improved Shifted CholeskyQR (ISCholeskyQR) and improved Shifted
CholeskyQR3 (ISCholeskyQR3).

Theorem 2.1 (Rounding error analysis of the improved Shifted CholeskyQR). For X € R™*" and

[Q, R] = ISCholeskyQR(X), with 11(mu + (n + Du)|| X|? < s < ﬁ“X”g and k2(X) < m,
we have
HQTQ - IH2 < 1.6, (2.8)
IQR — Xl < 167jn/im] X1l 29)

Theorem 2.2 (The relationship between k2(X) and k2(Q) for the improved Shifted CholeskyQR).
For X € R™" and [W,Y] = ISCholeskyQR(X), with 11(mu + (n + Du)||X|? < s < 1o | X||2 and

Hg(X) <

1
> 1895nynu’ W€ have

ko (W) < 3.24\/1 + t(ra(X))2. (2.10)

Here, we have t = W < 155- When [Q, R] = ISCholeskyQR3(X), if we take s = 11(mu + (n +
2

1)u)||X||g and ko(X) is large enough, a sufficient condition for ko(X) is

1
<
~ 86j(my/nu+ (n+ 1)y/nu)
< L
~ 4.89jn/nu

K2 (X)

(2.11)
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Theorem 2.3 (Rounding error analysis of the improved Shifted CholeskyQR3). For X € R™*™ and
[Q, R] = ISCholeskyQR3(X), with s = 11(mu + (n + D)uw)| X||? and @2.11), we have

HQTQ—IHF < 6(mnu + n(n + u), (2.12)
IQR — X||» < (6.57 - # + 4.87)n%u X, . (2.13)

Theorem 2.1} Theorem [2.3] correspond to Lemma [I.2} Lemma respectively, which are proved in
Section [2.3.4}Section 2.3.6] These theorems show that the improved Shifted CholeskyQR3 has a better
sufficient condition of ko(X) compared to the original one in [2I]. Consequently, the improved Shifted
CholeskyQR3 can effectively handle more ill-conditioned X, as shown in the numerical experiments
in Section The properties of the Y-factor can also be described by the ||.X||., which will loosen
the upper bound of k2(X). From a theoretical perspective, we prove the numerical stability of the
improved Shifted CholeskyQR3 in Section and provide tighter theoretical upper bounds of the
residual ||QR — X||» using the properties of || X||, compared to the original one in [2I]. This provides
new insights into the problem of rounding error analysis. The definition of |-, and ||-[[, shows the
connection between CholeskyQR-type algorithms and the column properties of the input matrix.
Similar definitions regarding the largest or smallest norm among the columns or the rows of a matrix
is widely used in many other problems, such as some methods for low-rank approximation and matrix
factorization [8, [26], together with strategies for some iteration methods, e.g., Randomized Kaczmarz
method [61].

Defining ||-||, and |||, offers several advantages. ||-[|, is a more accurate approach for researchers to
estimate ||-|| -, as shown in . In many cases, when the size of X is large, e.g., m > 10° or n > 104,
X tends to be sparse for storage efficiency. In such scenarios, calculating the norms of the matrix can
be computationally expensive. The properties of ||-| g allow us to select an s based on key elements of
X without the need to compute the norms of the entire large matrix. Furthermore, |-, enables better
utilization of the matrix structure and the inherent properties of its elements, while |||, primarily
highlights the general characteristics of the matrix. We plan to leverage these properties for further
exploration of CholeskyQR-type algorithms in our future works. In other words, the definition of ||-| g
offers a novel approach to rounding error analysis for matrices, based on their structures and elements.
In Chapter [3| we utilize the properties of [|-||, to conduct an error analysis for Shifted CholeskyQR3
in sparse cases. Although this perspective is not directly evident from numerical experiments in this

chapter, it represents an innovative advancement compared to existing results.
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2.3 Theoretical analysis of the improved Shifted CholeskyQR3

In this section, we provide the theoretical analysis of the improved Shifted CholeskyQR3 with an s
based on ||-||. of the input X € R™*". In this section, we present the relevant settings and lemmas for

the improved Shifted CholeskyQR3, and we prove Theorem [2.1} Theorem theoretically.

2.3.1 General settings and assumptions

Given the presence of rounding errors at each step of the algorithm, we express the first Shifted

CholeskyQR. of Algorithm 4] with error matrices as follows.

G=X"X+Ey, (2.14)
Y'Y =G+ sI+ Eg, (2.15)
w] =z (Y + Ey;)" 1, (2.16)
WY = X + Ex. (2.17)

We let wiT and a:ZT represent the i-th rows of w and @ respectively. The error matrix £ 4 in
denotes the discrepancy generated when calculating the Gram matrix X ' X. Similarly, Ep in
represents the error matrix after performing Cholesky factorization on G with a shifted item. Since
Y may be non-invertible, the w, can be solved by solving the linear system (YT + (AY;)")(w,) " =
(:UZ-T)T, that is, the transpose of . We do not write this step into the form of the whole matrices
because each AY; depends on Y and x:, where Fy; denotes the rounding error for the Y-factor when
calculating wiT . In spite of this, AY; has an uniform upper bound according to Lemma If we
write the last step of Algorithm [3| without Y ~!, the general error matrix of QR factorization is given
by Ex in . A crucial aspect of the subsequent analysis is establishing connections between Ex
and Ey;.

Under (2.1)), we provide a new interval of the shifted item s based on||X||, and X, If X e R™>",

except (1.1]) and (|1.2), we have the following settings.

4.89jnv/nu - ko(X) <1, (2.18)

1
11 D|IXI?<s < —|X]2. 2.19
(mu+ (n+1)u)| HC_S_loonH I (2.19)

Here, j is defined in (2.7)). We observe that, compared to the original Shifted CholeskyQR based on
| X5, the range of k2(X) expands with a constant j related to n as indicated in (2.18)). Further-
more, (2.19) demonstrates that the new s is still constrained by a relative large upper bound. The

applicability of this new s can be established using a method similar to those in [15] [52] [71].
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2.3.2 Algorithms

In this section, we present the improved Shifted CholeskyQR (ISCholeskyQR) and the improved
Shifted CholeskyQR3 (ISCholeskyQR3). They are detailed in Algorithm [9| and Algorithm respec-
tively.
Algorithm 9: [@Q, R] = ISCholeskyQR(X)
Input: X € R™*",

Output: Orthogonal factor Q € R™*", Upper triangular factor R € R™*",
1: calculate || X,
2: take s = 11(mu + (n + 1)u)|| X2,
3: (@, R] = SCholeskyQR(X).

Algorithm 10: [Q), R] = ISCholeskyQR3(X)
Input: X € R™*™,

Output: Orthogonal factor @Q € R™*" Upper triangular factor R € R™*".
1: calculate || X, ,
2: take s = 11(mu + (n + 1)u)| X| 2,
3: [@, R] = SCholeskyQR3(X).

2.3.3 Some lemmas for proving theorems

To prove Theorem [2.1} Theorem we require the following lemmas. These theoretical results re-
semble those in [21] and their proofs closely follow those of [21]. However, by utilizing the definition
of the ||-||. and its properties, we can improve many upper bounds of the algorithm. We will discuss

these improvements in detail below.

Lemma 2.6. For E4 and Ep in (2.14)) and (2.15)), if (2.19) is satisfied, we have

1Eally < LImul X2, (2.20)

IEBly < 1.1(n + 1)ul X]|7. (2.21)

Proof. In this part, we aim to estimate ||E4l|, and || Eg||, using || X ||, instead of || X||,. Although our
analysis follows a similar approach to that in [21], [68], our new definitions of ||-[|, and ||-||, allow us to
provide improved analysis for error matrices.

We can estimate || E4l| first since [|E4||, is bounded by ||E4l| ;. With Lemma [1.7] and (2.14)), we
have

G=flXTX).
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Therefore, we have
|E4| = ‘G - XTX’
(2.22)
< fym’XT“X\ .
With (2.22), for E4;; which denotes the element of E4 in the i-th row and the j-th column, we have
| Baij| < vmlXil| X (2.23)
Here, X; denotes the i-th column of X. We combine ([2.23) with (2.1)) and have

| Eaij| < wmll X2 (2.24)

Since we have

1Ballp = | D2 (Eai))?

i=1 j=1

with (2.24)), we can bound || E4]|, as

1Eally <[|Ealll

< Tm Z Z(’EAUDQ

i=1 j=1

< ymn | X

< Limnu| X |2

= L1mu| X%,
Then, (2.20) is proved. is a more accurate estimation of || E4||, compared to that in [21] 68
based on Lemma 2.1

When estimating ||Eg||, we focus on (2.15). We use the same idea as that in [2I] [68] for this
estimation. With (2.1)), we have

2
IYI% =]
L=l o
2
<nllY].
Based on the properties of Cholesky factorization and the structure of the algorithm, we find that the

square of the|[-[|; of the matrix corresponds to the largest entry on the diagonal of the Gram matrix.

Using Lemma (2.14), (2.15)) and ([2.25)), we can get
1E5]ly <||E5]||

< 'Yn+1H|Y|H§W

(2.26)
2
S ’)/TlrFl : nHYHg

2
<t 0| Xy + s+l Eally +EBl2)-
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With (L1.1), (1.2)), (2.19), (2.20]) and (2.26]), we can bound ||Eg||, as
'7n+1n(1 + Ymn + t)
L = Ynyin
< 1.02(n+ 1)u-n(l+ 1.1mu-n+0.01)

- 1-1.02(n+1u-n

_ 102 n(n+ Du- (1411 & +0.01)

= 1.02
I- 64

2
1EBlly < X1,

2
X1l

115

< Lin(n+ ul|X|?
= 1.1(n+ Dul|X|?.

(2.21]) is proved. Here, we take t = HXSHQ < 0.01 based on (2.7) and (2.19). In all, Lemma is
2
proved. O

Remark 2.1. The last step of (2.26) relies on Lemma and Lemma . While the approach for
estimating||Ep||y parallels that in [21,[68], we utilize the relationships betweenl||-[|y and||-||, established
in Lemma[2.1], which derive from a distinctly different perspective on the norms of matrices compared

to the existing works about CholeskyQR-type algorithms.

Lemma 2.7. For Y~ and XY ! from ([2.16)), when ([2.19)) is satisfied, we have
1

Y| < , 2.27
H H2  V(Omin(X))2+0.9s (2.27)
HXY_1H2 <15, (2.28)

Proof. With Lemma [1.6] (2.14) and (2.15)), we can get
(Omin(Y)? = (0min(X))? + 5 = Eally — [ Esll, - (2.29)

According to (2.19)-(2.21)), it is easy to see that

2
[Eally +[|EBlly < 1.1(mnu+n(n + 1u) [ Xl

(2.30)
< 0.1s.
Therefore, we put (2.30) into (2.29)) and we can have
(Omin(Y))? > Gmin(X)? 4 0.9s. (2.31)

With (2.31), (2.27) holds. Regarding | XY ~!||,, based on (2.14), (2.15), (2.30) and (2.31)), we can get

|yt < U+ 23 G5 + 1Bl +1B5 )

<. 14 1.1s
- (Omin(X))? 4+ 0.9s

<43/ 1+ 2
- 0.9
< 1.5.
(2.28) holds. O
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Lemma 2.8. For Ey; from ([2.16]), when (2.19) is satisfied, we have

| Eyilly < 1.03nul|X||, . (2.32)

Proof. The steps to get (2.32)) are similar to those in [21]. However, we can get a tighter bound of
| Eyilly with || X]|.. For 1 <4 < m, based on Lemma and Definition we have

1Eyilly <[|Eyill
< Yllp (2.33)
< 1.02n\/ﬁu||YHg.

With (2.14), (2.15) and (2.19)), we obtain

IY1l; <IX15+ s+ (1Eally +II1E5l,)

(2.34)
< 1.011[| X2 .
With ([2.34)), it is easy to see that
Y]], < 1.006]| X[, . (2.35)
Therefore, we put (2.35)) into (2.33)) and we can get(2.32). Lemma is proved. O
Lemma 2.9. For Ex from (2.17)), when (2.19) is satisfied, we have
1.15nu| X |2

IEx]ly < om0 0

Proof. For Shifted CholeskyQR, Y will not always be invertible due to errors in numerical computa-

tions. Therefore, we estimate this by examining each row. Similar to the approach in [2I], we can

express as
w; =z} (Y + By) (2.37)
=z (I4+Y 'Ey;) Yy ! ‘
When we define
(I+Y'E)t=TI+0;, (2.38)
where .
0; := Z(—YﬁlEYi)j, (2.39)
j=1
based on and , we can have
Ev;, =] 0; (2.40)
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which is the i-th row of Ex. Based on , , and , we can bound HY‘leH2 as

HY”EYZ-

-1
<[ v
1.03nul| X,

- \/(Umm(X))2 +0.9s
< 1.03nul| X,

v0.9s
1.03nu|| X ||,

/9.9(mu + (n+ Dul| X2
1.03nul| X,

/990 + Dl x]?
<0.35-/nu

<0.1.

Putting (2.27)), (2.32)), (2.41)) into (3.35)) and we have

(2.41)

10:1 < i(HY‘lﬂ2|!EYi\|2)j
j=1

I M2
L= [V, 1 Byl
1 103nufX],

(2.42)

0.9 /(omin(X))? + 0.95
1.15nu|X|,

" V(Omin(X))2+0.9s
We sum all the items of (2.40), together with Lemma [2.5] and (2.42)), and we can have

1Exly <|ExIlF
<[ X1 116:l

1.15nu| X ||
" V(0min(X))2 4+ 0.9s

Therefore, Lemma [2.9|is proved. 0

Remark 2.2. The derivations of Lemma [2.6-Lemma utilize the properties of ||-||.. We can get
sharper upper bounds compared to those in [21]. This shows that Shifted CholeskyQR can be analyzed
from the column of the input matrix X. The calculation of the Gram matriz and the existence of

Cholesky factorization make it possible for us to improve the algorithm from this perspective.

2.3.4 Proof of Theorem

Proof. Using the previous lemmas in Section we begin to estimate the orthogonality and residual
of our improved Shifted CholeskyQR. The proof of Theorem is similar to that in [2I]. We aim to
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demonstrate that comparable results hold, even with our enhanced bounds in the previous lemmas

discussed in Section [2.3.3]
First, we consider the orthogonality. Based on ([2.17)), we can get

WI'W=Y"T(X+Ex) (X +Ex)Y!
=Y 'X"XYy '+ Y TXTExY !
+Y TELXY L4 Y TEVExY !
=I-Y "(sI+E s+ Ep)Y '+ (XY 1) TExy!
+Y TEL(XY Y4+ Y TELExY L
With , we have
[wrw =1 <[y 0Bty +1Esl, +5) + 2y 1| |5y 12,
v nex e

With (2.27) and (2.30]), we can get

1.1s
Y- H (IE E
[y, 0Bt 1251, +9) < o — g
11
< =
-9
< 1.23.
Based on ([2.19)), (2.27)), (2.28) and (2.36]), we can obtain
1 1.15nu|| X ||?
- e 1. i
2 2 V (Omin(X))2 +0.9s vV (Omin(X))2 +0.9s
3.45nu) X ||?
= (omin(X))2 +0.9s
3.45
< 115
— 0.9s
< 0.35.

With (2.27)) and (2.36)), we have

1 (1.15nul| X ||?)?
(Omin(X))2 4095 (Gmin(X))? +0.95

2
— 2
= et <

We put - - ) into (| and we can get

HWTW _ IH2 <1.2340.35 4+ 0.02

< 1.6.
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Therefore, ((2.8]) is proved.
From (2.8)), it is easy to see that

WL, < 1.62. (2.48)

For the residual, from ([2.48)), we can easily get
W], < 1.62¢/. (2.49)

For ||WY — X|| 5, based on (2.16), we can get

|oly a7 || <||jwly —wl (v + By)
F F (2.50)
<lwill pll Byl g -
With (2.50)), we can easily get
WY = X|p <IWllgllEyilly - (2.51)
We put (2.32)) and (2.49) into (2.51]) and we can have (2.9). In all, Theorem is proved O

Remark 2.3. In the proof of Theorem|2.1], we demonstrate that our improved s is sufficient to ensure
numerical stability for Shifted CholeskyQR, with enhanced bounds established in the previous lemmas.
This represents significant progress compared to that in [21]. The residual in shows a tighter
upper bound compared to that in [21)]. More importantly, can improve the condition for ka(X)

in the estimation of the singular values of W in the next section.

2.3.5 Proof of Theorem

In this section, we give the proof for Theorem

Proof. We have already estimated ||W||,. To estimate k2(X), we need to estimate o, (W). The
primary steps of analysis are similar to that in [2I]. When (2.17) holds, according to Lemma we
can get

Umzn(W) > Umin(XY_l) _HE‘XYV_IH2 . (252)

With (2.27)) and (2.36)), we can obtain

R L

1.67n/mul X, (2:53)
= (omin(X))2 +0.9s°
Using the similar method in [21], we have
Omin (XY 1) > —Tmin®) (2.54)
\/(Umin(X))2 +s
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When (2.18] - ) holds, we put (2.53]) and (2.54)) into ), together with ¢ = ”XHQ and , we can get

i 0. 90mm(X) _ L67ny/nuf|X]|,
mm B \/ Umm + S \/(Jm’m(X))2 +0.9s
0.9 1.67
“(Omin(X ny/nul| X
Z Vammoor s e 5 e Y (2.55)
Umin(X) .

- 2\/(Umm(X))2 + s

1

24/1 + t(ra(X))2
Based on (2.48)) and ({2.55), we have

W) < 3.24 - /1 + t(ra(X))2.

Therefore, we can get .

To improve the stability of orthogonality and residual, we add a CholeskyQR2 following the Shifted
CholeskyQR, resulting in the Shifted CholeskyQR3. The numerical stability of this approach will be
demonstrated in the next section similar to that in [2I]. To obtain the sufficient condition of k9(X)

without encountering the numerical breakdown, based on ([1.4)) in [68], we let

W) < 3.24\/1 + t(ra(X))?
1

(2.56)
~ 8y/mnu+n(n+1)u
When s = 11(mu+ (n + 1)u)||X||g, we can have
= —11%(mu+ (n+ Du). (2.57)
1X113
With (2.57), if ko(X) is large enough, e.g., ko(X) > u_%, we can get
t(r2(X))? > 11(m +n) >> 1.
So it is easy to see that
1+ t(K,Q(X))2 ~ t(l{g(X))2.
Therefore, using (2.56]), we can conclude that
1
Ko (X) < (2.58)

25.92v/t - \/mnu +n(n + 1)u
We put ¢ = 11p?(mnu + n(n + 1)u) into (2.58) and we can obtain (2.11]). Therefore, Theorem is
proved. ]

Remark 2.4. We have shown that our improved Shifted CholeskyQR, with a smaller s, has advantages
in terms of the requirement for rko(X) and its sufficient condition compared to the original method. A
comprehensive comparison of the theoretical results is provided in Table[1.9 and Table[1.3, highlighting
these advantages, which are further illustrated in Section [2.])
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2.3.6 Proof of Theorem

In this part, we prove Theorem with some results in Theorem

Proof. We write CholeskyQR2 in Shifted CholeskyQR3 with error matrices below.

C—-W'W = E;,

D'D—C = E»,
VD —W = Ejs, (2.59)
DY — N = Ey, (2.60)

B-V'V =Es,

J'J - B = Fg,
QJ -V = Ex, (2.61)
JN — R = Eg. (2.62)

Here, the calculation of R in Algorithm [12]is divided into two steps, that is, (2.60) and (2.62)).
Similar to that of [68], Z in Algorithm |10| satisfies

Z=JD, (2.63)
without error matrices. With (2.63)), R should be written as
R =JDY, (2.64)

if we do not consider rounding errors. In order to simplify rounding error analysis of , we write
the multiplication of D and Y with error matrices as and the multiplication of J and N can be
written as .

Similar to the proof of Theorem we consider the orthogonality first. For our improved Shifted
CholeskyQR3, similar to that in [68], when Shifted CholeskyQR3 is applicable, we can get

1
ko(W) < ,
(W) < 8y/mnu+n(n + 1)u

(2.65)

ko (V) < 1.1, (2.66)

Therefore, we can obtain (2.12)).
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When considering the residual, based on ([2.59)-(2.62]), we have
QR = (V + E;)J Y (JN — Ey)
= (V4 E;)N — (V + E;)J ' Eg

=VN+ E;N — QFg

(2.67)
= (W + E3)D™Y(DY — Ey) + EzN — QEg
= (W + E3)Y — (W + E3)D'E; + E;N — QF3
= WY + EsY —VEy+ E;N — QE;s.
Therefore, with , it is obvious that
QR — X|[p <IIWY = X|lp +[|Es|| oIV |l + Vo] Eall o (2.68)

HIE RN, Q[ Esl - -

Similar to (2.16)), we express (2.59) in each row as
v =w (D+ Ep;)~ ",

where v and w, denote the i-th rows of V and W. Following the methodologies outlined in [21} [65]

and the concepts presented in this chapter, we have

Y], < 1.006] X5, (2.69)
1EDilly < 1.2nv/nu-[|[W|,

(2.70)

< 2.079n+/nu,
V], < 1.039, (2.71)

ID]l, < LW
? ? (2.72)
< 1.906.

We combine (2.69)-(2.72) with Lemma Lemma (2.7)), (2.35)) and similar steps in [2I], we can
bound |[Esll . | Esll - and | E4 ], in (59) and @50) as
1Bl <IIVIlp -l EDill,
< 1.039 - /n - 2.079n+y/nu (2.73)

< 2.16n%u,

1Esllp < mlIDllp - [1Y]p)
< m(Vn-|Dlly-vn-Yl,)
< 1.1ny/nu - 1.906 - 1.006]| X ||,

(2.74)

< 2.11jny/nu| X|,
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1Eally <Dl 1Y)
<YVl Dl 1Y 1l,)

< 1.1nu-1.906 - 1.006/ X |,

(2.75)

< 2.11jnul| X, .
Moreover, based on Lemma Lemma (2-35), (2.69), (2.74) and (2.75), [Ny and [| V][, in (2.60)

can be bounded as

1Ny <[IDIAY Ml +[1 £l
< 1.906 - 1.006| X ||, 4 2.11jny/nul| X, (2.76)

< L95[| XY,

[Nl <NIDllolY Wl +IEall,

1.006; .

< 1.906 - 7 NX |y + 2.115nul| X, (2.77)
1.955

< — | X5 .

Similar to (2.16)), we write (2.61]) in each row as
g =v] (J+Ep,

where ¢, and v, represent the i-th rows of @ and V. Similar to (2.70)-(2.72) and with (T.1)), (T.2)

and (2.12)), we can get
lQll, < 1.1, (2.78)

1Eilly < 1.2nv/n|[V

< 1.2ny/nu - 1.039 (2.79)
< 1.246n+/nu,
[7]ly < L1V
? 2 (2.80)
< 1.143.

With Lemma [1.7 and (2.77)-(2.80)), we can bound || E7||; and || Esl| in (2.61)) and (2.62) as

1E7r <@l -1 Egilly s
< 1.1y/n - 1.246ny/nu (2.81)

< 1.38n%u,

1Bl <l -IN )
< m(Vn |y vn-lIN,)
< 1.1ny/nu - 1.143 - 1.955| X ||,

(2.82)

< 2.46jnv/nul| X||, .
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Table 2.1: The specifications of our computer

Item Specification
System Windows 11 family(10.0, Version 22000)
BIOS GBCN17TWW
CPU Intel(R) Core(TM) i5-10500H CPU @ 2.50GHz -2.5 GHz
Number of CPUs / node 12
Memory size / node 8 GB
Direct Version DirectX 12

Therefore, we put (2.9), [2.69), ©.71), @.73), @.74), @.76), 2.79), 2.81) and (2.82) into (2.68) and
we can get (2.13)). In all, Theorem is proved. O

Remark 2.5. Based on , we find that we obtain a sharper upper bound of the residual of the
algorithm compared to that in [21)], utilizing properties of |||, and ||-||,. This represents a theoretical
advancement in rounding error analysis. The steps leading to highlight the effectiveness of
Lemma and Lemma . Although the second inequality of appears weaker than the first
inequality of ([2.3), it cannot be dismissed in estimating |[l, of the error matriz in terms of its absolute
value. This lays a solid foundation for and , marking advancements in estimation methods

for problems related to matriz multiplications.

2.4 Numerical experiments

In this section, we conduct numerical experiments using MATLAB R2022a on a laptop. We compare
our improved Shifted CholeskyQR3 with the original Shifted CholeskyQR3, focusing on three key prop-
erties: numerical stability(assessed through orthogonality HQTQ —1I HF and residual ||QR — X || for
Shifted CholeskyQR), the condition number of Q(denoted as k2(Q)) and the computational time(CPU
time measured in seconds). Additionally, we present the [;-value, defined as [} = ﬁ for X € R™*"
to illustrate the extent of improvement brought by our reduced s compared to the original method in
[21]. As a comparison group, we also evaluate the properties of HouseholderQR, which is considered
one of the most stable numerical algorithms, to demonstrate the effectiveness and advantages of our
improved Shifted CholeskyQR3. The specifications of our computer used for these experiments are

provided in Table We assess the performance of our method in multi-core CPU environments.
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2.4.1 Numerical examples

In this part, we introduce the numerical examples, specifically the test matrix X utilized in this
chapter. The primary test matrix X € R™*" is similar to that used in [2I] 68] and is constructed
by SVD. It is straightforward to observe the influence of ko(X), m and n while controlling the other
two factors. Additionally, to test the applicability and the numerical stability of our improved Shifted

CholeskyQR3, we present two examples widely used in engineering and other fields.

The input X based on SVD

We first construct the matrix X for the numerical experiments using Singular Value Decomposition
(SVD), similar to the approach described in [211 [68]. We control ko(X) through oy, (X). Specifically,
we set

X =OxHT.

Here, O € R™*™ H € R™ "™ are random orthogonal matrices and
, 1 n=2 y
Y =diag(l,on-1,--- jon-1,0) € R™*",

Here, 0 < o < 1 is a constant. Therefore, we have 01(X) =|/X||, =1 and x(X) = 1.
In our numerical experiments, we will focus on some large matrices. We construct large matrices

in a block version. We can construct some small X7 € R™*" based on SVD and build X € R™*" as

X1
X
x=|""

X1

The Hilbert matrix

The Hilbert matrix is a well-known ill-conditioned square matrix. It is widely used in many appli-
cations, including numerical approximation theory and solving linear systems, seeing [6, 9, B34] and
the references therein. For a Hilbert matrix T, as n increases, ko(7') also increases. The element of
Hilbert matrix X is shown as below:

1

X —
Yot

71'7]':1)27"' y 1.
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For X € R™*" we take m = 10n. We form X through

The arrowhead matrix

The arrowhead matrix X € R™*™ plays an important role in graph theory, control theory and some
eigenvalue problems, seeing [7), [45], [48, 49, 60] and the references therein. Its primary characteristic
is that all the elements are zero except for those in the first column, the first row and the diagonal.
In this chapter, we take two vectors, e; = (1,0,0---0,0)" € R” and g = (1,1,1---1,1)T € R",
V}fe define a diagonal matrix M = diag(y) € R™*", where y = (y1,%2,"* ,Yn—1,Yn) and y; =
0, ifi=1

10, ifi=2,---,n—1. We build an arrowhead matrix P through

y, ifi=n
P =30e;-g' + M.

Similar to the previous section, we take m = 5n and construct X through

We vary v to modify ka(X).

2.4.2 Numerical stability of the algorithms

In this section, we test the numerical stability of the algorithms. To assess this, we conduct experiments
considering three factors: ko(X), m and n to demonstrate the properties of Shifted CholeskyQR3. For
clarity, we refer to our improved Shifted CholeskyQR3 with s = 11(mu+ (n+1)u) HXH? as ‘Improved’,
while the original Shifted CholeskyQR3 with s = 11(mnu+ (n+1)nu)| X |3 is referred to as ‘ Original’.

To assess the potential influence of k2(X), we obtain X using SVD first. We fix m = 2048
and n = 64, varying o to evaluate the effectiveness of our algorithm with different ko(X). The
numerical results are listed in Table and Table We also carry out numerical experiments

for a large X € R16384x1024° We construct a small X; € R1024X1024 haged on SVD with || X, = 1
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and ko(X) = % X is build with 16 X; from the up to the bottom. We vary o from 1076, 1078,
10719 10712 to 2 x 10713, The numerical results are listed in Table and Table Table
and Table show that our improved Shifted CholeskyQR3 exhibit better orthogonality and residual
compared to HouseholderQR, demonstrating strong numerical stability. The numerical stability of our
improved algorithm is comparable to that of the original Shifted CholeskyQR3. A key advantage of our
improved Shifted CholeskyQR3 over the original one is that our improved algorithm can handle more
ill-conditioned X with ro(X) > 10'2. The conservative choice of s in the original Shifted CholeskyQR3
limits its computational range, as reflected in the comparison of ko(X) between and . We
have similar results for large matrices according to Table and Table When m and n get
increasing, the computational range of Shifted CholeskyQR3 will decrease, which corresponds to the
theoretical results. In our real example based on the Hilbert matrix, we vary n from 9, 10, 11 to 12 and
ko2(X) is also varying. In the example based on the arrowhead matrix, we take n = 64 and vary y from
1071110712, 10713 to 10~ to modify ko(X). The numerical results are shown in Table Table
They also demonstrate that our improved Shifted CholeskyQR3 has better applicability and is able
to handle more ill-conditioned matrices effectively than the original one.

To examine the influence of m and n, we construct X based on SVD while maintaining ko(X) =
10", When m is varying, we keep n = 64. When n is varying, we keep m = 2048. The numerical
results are presented in Table Our findings indicate that the increasing n leads to greater
rounding errors in orthogonality and residual, while m does not impact these aspects significantly.
Our improved Shifted CholeskyQR3 maintains a level of the numerical stability comparable to that of
the original Shifted CholeskyQR3 and is more accurate compared to HouseholderQR across various
values of m and n. This set of experiments shows that our improved Shifted CholeskyQR3 is numerical
stable across different problem sizes.

Overall, our examples demonstrate that our improved Shifted CholeskyQR3 is more applicable for
ill-conditioned matrices without sacrificing numerical stability, performing at a level comparable to
the original Shifted CholeskyQR3. In many cases, it even exhibits better accuracy compared to the
traditional HouseholderQR.

Table 2.2: Orthogonality of the algorithms with ko(X) varying when m = 2048 and n = 64

ko (X) 1.00e+8 1.00e+10 1.00e+12 1.00e+ 14 1.00e+ 16
Improved 2.07e — 15 2.0de —15 2.03e—15 2.0de—15 -

Original 2.14e — 15 2.21e—15 1.90e —15 - -

HouseholderQR  2.77e — 15 2.46e — 15 2.48e —15 2.75e—14 2.67e — 15

34



Table 2.3: Residual of the algorithms with ko(X) varying when m = 2048 and n = 64

ko (X) 1.00e+8 1.00e+10 1.00e+12 1.00e+ 14 1.00e+ 16
Improved 6.35e — 16 6.0le — 16 5.80e — 16 5.64e — 16 -
Original 6.67e — 16 6.20e — 16 6.22¢ — 16 - -

HouseholderQR  1.26e — 15 1.38¢ — 15 1.27e—15 1.27e—15 9.6le — 16

Table 2.4: Orthogonality of the algorithms with ko(X) varying when m = 16384 and n = 1024

ko(X) 1.00e +6 1.00e +8 1.00e+10 1.00e+ 12 5.00e + 12
Improved 1.73e —14 1.90e —14 1.99¢ —14 2.10e —14 2.05e— 14
Original 1.88¢e —14 1.97e—14 2.0de—14 2.10e— 14 -

Table 2.5: Residual of the algorithms with ko(X) varying when m = 16384 and n = 1024

ko (X) 1.00e+6 1.00e4+8 1.00e+ 10 1.00e+ 12 5.00e+ 12
Improved 2.23e —14 2.02¢e —14 1.86e —14 1.74de—14 1.70e — 14
Original 2.23e —14 2.02¢e —14 1.87e—14 1.75e— 14 -

Table 2.6: Orthogonality of the algorithm for the Hilbert matrix with different n

n 9 10 11 12
Original 1.43e—15 1.59e¢ —15 1.64e—15 -
Improved 9.29¢ —16 9.59¢ — 16 1.90e — 15 1.96e — 12

Table 2.7: Residual of the algorithm for the Hilbert matrix with different n

n 9 10 11 12
Original 9.45¢ — 16 1.16e — 15 6.69¢ — 16 —
Improved 8.15¢ —16 1.05¢e —15 5.78¢ — 16 1.15e —15

Table 2.8: Orthogonality of the algorithm for the arrowhead matrix when n = 64

ka(X) 3.40e +13 3.40e+14 3.40e+15 3.24e+ 16
Original 1.11le—15 1.1le—15 1.13e—15 —
Improved 1.75e —15 1.80e —15 1.80e —15 1.80e— 15
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Table 2.9: Residual of the algorithm for the arrowhead matrix when n = 64

ko(X) 3.40e +13 3.40e+14 3.40e+15 3.24e+16

Original 1.49e¢ — 13 1.49¢ —13 1.49¢ — 13 —

Improved 7.08e —14 7.08e—14 7.08¢ —14 7.08¢e— 14

Table 2.10: Orthogonality of all the algorithms with m varying when o(X) = 10'2 and n = 64

m 128 256 512 1024 2048

Improved 3.62e — 15 4.07e —15 3.1le—15 2.12¢—15 2.03e—15

Original 3.3le—15 3.93e—15 2.89¢—-15 2.36e—15 1.90e—15

HouseholderQR  6.54e — 15 6.35¢ — 15 3.56e — 15 2.80e — 15 2.48e¢ — 15

Table 2.11: Residual of all the algorithms with m varying when x2(X) = 102 and n = 64

m 128 256 512 1024 2048

Improved 6.04e — 16 5.92e — 16 6.08e — 16 6.06e — 16 5.80e — 16

Original 6.09¢ —16 5.9le—16 5.95¢—16 5.86e—16 6.22¢ —16

HouseholderQR  7.31e — 16 9.45¢ — 16 7.55e¢ — 16 7.48¢ —16 1.27¢—15

Table 2.12: Orthogonality of all the algorithms with n varying when x2(X) = 102 and m = 2048

n 64 128 256 512 1024

Improved 2.03e —15 3.25e—15 5.29¢—15 9.53e—15 1.69¢ —14

Original 1.90e — 15 3.33e—15 5.19e—15 1.66e—15 1.77e— 14

HouseholderQR  2.48¢ — 15 4.66e — 15 9.39e¢ — 15 2.07e — 14 5.02¢ — 14

Table 2.13: Residual of all the algorithms with n varying when so(X) = 10'2 and m = 2048

n 64 128 256 512 1024

Improved 5.80e —16 1.07e — 15 2.0le—15 3.06e —15 4.32e —15

Original 6.22¢ —16 1.08e —15 2.04e —15 3.08e —15 4.33e—15

HouseholderQR  1.27¢ — 15 1.76e — 15 2.55e¢ — 15 3.62e — 15 5.00e — 15
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2.4.3 Comparison between the theoretical bounds and real performances

In this part, we make a comparison between the theoretical bounds of Shifted CholeskyQR3 and its
real performances. In the beginning, we test the accuracy. For the input X € R™*™ based on SVD,
we fix | X[, = 1 and ko(X) = 10*2. We denote 6(mnu + n(n + 1)u) in (2.12)) as the ‘Theoretical
bound’ in orthogonality. Moreover, (6.57 - ﬁ + 4.87)n*u|| X ||, in ([2-13)) is the ‘ Theoretical bound’ in
residual. To test the influence of m, we fix n = 64 and vary m. To test the influence of n, we fix
m = 2048 and vary n. Comparisons of orthogonality and residual with different m and n are shown in
Table |2.14}Table |2.17} Regarding the conditions of k2(X), we denote 867 (my/ma i(n V) in Table
as the ‘Sufficient condition’ of k2 (X) and

m as the ‘Upper bound’ of ko(X). We vary m and n

and comparisons of conditions of k(X)) are shown in Table and Table

Table 2.14: Comparison of orthogonality with the improved s when o(X) = 10'2 and n = 64

m 128 256 512 1024 2048

Real error 3.29e — 15 3.66e — 15 2.64e—15 2.28e—15 1.89e—15

Theoretical bound 8.23e —12 1.37e —11 2.46e —11 4.64e—11 9.0le —11

Table 2.15: Comparison of orthogonality with the improved s when ko(X) = 102 and m = 2048

n 64 128 256 512 1024

Real error 1.89¢ — 15 2.99¢ —15 5.08e—15 927e¢e—15 1.74e— 14

Theoretical bound 9.0le —11 1.86e—10 3.93¢e—10 8.73e—10 2.10e —09

Table 2.16: Comparison of residual with the improved s when x2(X) = 1012 and n = 64

m 128 256 512 1024 2048

Real error 5.90e —16 597e—16 5.56e —16 b5.76e—16 5.67e — 16

Theoretical bound 2.89¢ —12 2.89¢ —12 2.89¢—12 2.89¢ —12 2.89¢ — 12

Table 2.17: Comparison of residual with the improved s when (X ) = 10'2 and m = 2048

n 64 128 256 512 1024

Real error 5.66e —16 1.07e —15 2.00e —15 3.08e —15 4.35e—15

Theoretical bound 2.89¢ —12 1.16e—11 4.64e —11 1.82¢—10 7.21e— 10
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Table 2.18: Comparison of k(X ) with the improved s when ro(X) = 10'2 and n = 128

m 256 512 1024 2048 4096
Real case > 1012 > 1012 > 1012 > 1012 > 1012
Upper bound 4.68¢+11 4.68¢e+11 4.68¢+11 4.68¢e+11 4.68e+ 11

Sufficient condition 8.85¢+09 5.31e+09 2.95¢ + 09

1.56e + 09 8.06e + 08

Table 2.19: Comparison of xg(X) with the improved s when ro(X) = 10'2 and m = 4096

n 128 256 512 1024 2048
Real case > 1012 > 1012 > 1012 > 1012 > 1012
Upper bound 4.68¢+11 1.39e+11 3.8le+10 9.23e+09 2.62¢+ 09

Sufficient condition 8.06e + 08 4.66e + 08 2.41e + 08

1.05e + 08  4.96e + 07

According to Table Table we can find that the theoretical results of ko(X) and accuracy,
including orthogonality and residual, are worse than the real results after computation on the laptop.
It shows that the deterministic models for rounding error analysis have the problem of overestimation,

which has distance from the real cases.

2.4.4 £k5(Q) under different conditions

In this group of experiments, we evaluate the impact of ko(X), m and n on ko(Q) using different
values of s for Shifted CholeskyQR3, which is crucial for assessing the applicability of the algorithms.
We compare our improved Shifted CholeskyQR3 with the original Shifted CholeskyQR3.

In this group of experiments, we use X based on SVD. Initially, we fix m = 2048 and n = 64,
varying xk2(X) to see the corresponding ko(Q) with different values of s in Shifted CholeskyQR3. The
results are listed in Table From Table we can see that ko(X) exhibits a nearly direct
proportionality to ko(Q). With an improved smaller s, our improved Shifted CholeskyQR3 achieves
a smaller ko(X) compared to the original Shifted CholeskyQR3, which is consistent with and
(2.10).

Next, we test the influence of m and n on k2(X). When varying m, we fix xo(X) = 10'2 and
n = 64. For different n, we set ro(X) = 10'2 and m = 2048. The numerical results are listed
in Table and Table
X € R™™ with m > n, increasing both m and n leads to a larger k2(Q) while keeping ko (X) fixed.
This arises from the structures of both our improved s and the original s. Across Table[2.20} Table

These results indicate that when dealing with a tall-skinny matrix

we consistently observe that our method achieves a smaller k2(Q) compared to the original Shifted
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CholeskyQR3, demonstrating the effectiveness of the improved s.
In conclusion, our reduced s in this chapter results in a smaller k2(Q), enhancing the applicability
of our improved Shifted CholesyQR3 compared to the original algorithm. This represents a significant

advancement in our research.

Table 2.20: k2(Q) with ko(X) varying with different s when m = 2048 and n = 64

Ko (X) 1.00e +8 1.00e +10 1.00e +12 1.00e + 14 1.00e + 16
Improved 358.60 3.37e+04 3.18¢+06 3.0le+ 08 -
Original 1.29¢+403 1.29e+05 1.29e 4+ 07 - -

Table 2.21: ko(Q) with m varying using different s when x2(X) = 102 and n = 64

m

128

256

512

1024

2048

1.24e + 06

1.66e +06 2.29¢+406 3.18e + 06

Improved 9.62e 4 05

Original 3.88¢ +06 5.0le+06 6.72e 406 9.23e+06 1.29¢ + 07

Table 2.22: k2(Q) with n varying using different s when ko(X) = 10'2 and m = 2048

n

64

128

256

512

1024

Improved 3.18¢ +06 4.24e+4 06 5.76e+ 06 8.11le+ 06

1.11e + 07

Original 1.29¢ +07 1.84e+07 2.68¢+ 07 4.00e + 07 6.20e + 07

2.45 CPU times of the algorithms

In addition to considering numerical stability and k2(Q), we also need to take into account the CPU
time required by these algorithms to demonstrate the efficiency of our improved algorithm. We test
the corresponding CPU time with respect to the two variables, m and n.

Similar to the previous section, we use X based on SVD. For varying values of m, we set n = 64
and k2(X) = 10'2. When n is varying, we fix m = 2048 and x2(X) = 10'2. We observe the variation
in CPU time for our improved Shifted CholeskyQR3, the original Shifted CholeskyQR3 algorithm
and HouseholderQR. The CPU times for these algorithms are listed in Table and Table
Numerical experiments show that both our improved Shifted CholeskyQR3 and the original Shifted
CholeskyQR3 are significantly more efficient compared to HouseholderQR, highlighting a primary
drawback of the widely-used HouseholderQR. In fact, the computational costs of HouseholderQR
and CholeskyQR are all in the level of mn? for the input matrix X € R™*". HouseholderQR is

not so efficient in implementation because it primarily uses BLAS2 routines, while CholeskyQR uses
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BLAS3 due to its structure. Our improved Shifted CholeskyQR3 exhibits comparable speed to the
original Shifted CholeskyQR3 with normest. Additionally, n has a greater influence on CPU time
compared to m. However, as both m and n increase, our improved Shifted CholeskyQR3 maintains
a level of efficiency similar to that of the original Shifted CholeskyQR3. Therefore, we conclude that
our improved Shifted CholeskyQR3 is an efficient algorithm with good accuracy for problems with

moderate sizes.

Table 2.23: CPU time with m varying (in second) when x2(X) = 102 and n = 64

m 128 256 512 1024 2048

Improved 6.90e — 04 8.65e — 04 1.70e — 03 3.80e —03 4.70e —03

Original 2.10e — 03 9.55e — 04 1.50e — 03 4.40e — 03 6.20e — 03
HouseholderQR  1.21e — 02 3.45e — 02 3.38¢ —01 2.00e+ 00 1.24e+ 01

Table 2.24: CPU time with n varying (in second) when k2(X) = 10'? and m = 2048

n 64 128 256 512 1024

Improved 4.70e — 03 1.25e—02 4.66e —02 9.80e—02 3.52¢—01

Original 6.20e — 03 1.46e —02 4.59¢ —02 9.02¢e —02 4.45e —01
HouseholderQR  1.12e 401 2.59e¢ +01 5.66e+ 01 1.16e+4+02 3.1le+ 02

2.4.6 The improvement of s

. X i
Here, we aim to show the l;-values in this chapter by using some examples since [; = H XHZ = ﬁ =

\/ 111(1;2312;?52'1';\{ Eué for X € R™*", Therefore, the [1-value reflects how much the shifted item s is
reduced according to our definition of || X||.. In the future, we will investigate how to estimate [; in
different cases.

In the beginning, we test the [1-value with varying values of m and n using X based on SVD.
With m varying, we fix n = 64 and x2(X) = 10'2. For different values of n, we fix m = 2048 and
k2(X) = 10'. The numerical experiments are listed in Table and Table Moreover, we
test the li-value with varying m and n for the Hilbert matrix X € R™*™, where m = 10n. The
experimental results are listed in Table The numerical results indicate that [y is relatively small
compared to 1. Notably, n significantly influences I; more than m. With n increasing, I; decreases

markedly, which aligns with the theoretical lower bound of the [;-value. This observation suggests

that our improved s is likely more effective for relatively large matrices.
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Table 2.25: [; with m varying when r2(X) = 102 and n = 64 for X € R™*" based on SVD

m 128 256 012 1024 2048

li 0.2824 0.2762 0.2386 0.2453 0.2498

Table 2.26: [; with n varying when rk2(X) = 10'2 and m = 2048 for X € R™*" based on SVD

n 64 128 256 512 1024

[ 0.2498 0.2396 0.2127 0.2024 0.1726

Table 2.27: [y with n varying for the Hilbert matrix X € R™*™ with m = 10n

n 9 10 11 12

li 0.7190 0.7106 0.7033 0.6968

2.5 Conclusions

This chapter focuses on the improvement of Shifted Cholesky3. We define a new ||.X||. for the input
matrix X and construct a new shifted item s based on || X||, for Shifted CholeskyQR3. We prove
theoretically that this s can improve the applicability of Shifted CholeskyQR3 while maintaining
numerical stability. Numerical experiments verify our findings and show that our improved Shifted

CholeskyQR3 with || X ||, is as efficient as the original Shifted CholeskyQR3.
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CHAPTER 3.
SHIFTED CHOLESKYQR FOR SPARSE MATRICES

In this chapter, we focus on Shifted CholeskyQR for sparse matrices. We provide a new model for
sparse matrices and divide sparse matrices into two types, 77 matrices and T, matrices, based on
the presence of dense columns. We introduce an alternative choice of the shifted item s based on
the structure and the key element of the input X € R™*™. We prove that such an s is superior
to that mentioned in Chapter [2| for 77 matrices with the certain element-conditions(ENCs) since it
improves the applicability of the algorithm. Shifted CholeskyQRS3 is also numerical stable with this s
in these cases. Numerical experiments demonstrate the effectiveness of such an alternative choice of s
in improving the applicability and maintaining numerical stability for 77 matrices. For 75 matrices,
Shifted CholeskyQR3 exhibits new properties compared to dense cases. Furthermore, our alternative
choice of s remains as efficient as it is with the improved s from Chapter[2] This chapter is organized as
follows. Our contributions and primary theoretical results are outlined in Section In Section
we conduct a theoretical analysis of Shifted CholeskyQR3 for sparse matrices and prove Theorems (3.3
through which were proposed in Section This analysis constitutes a key part of this chapter.
Following the theoretical analysis, we perform numerical experiments using typical examples from
real-world problems, and we present the results in Section Section [3.4] shows the conclusions of

this chapter.

3.1 Our contributions and theoretical results

In this part, we introduce our new model for sparse matrices along with its corresponding divisions.
With these new concepts and general settings, we present several theoretical results related to Shifted

CholeskyQR3 for sparse matrices.

3.1.1 Our new divisions of sparse matrices

In the beginning, we introduce a new model of sparse matrices based on column sparsity and provide

the definitions of 77 and 75 matrices in Definition [3.1

Definition 3.1. A sparse matriz X € R™*™ has v dense columns, 0 < v << n, with each dense
column containing at most t; non-zero elements, where t1 is relatively close to m. For the remaining
sparse columns, each column has at most to non-zero elements, where 0 < to << ti1. When v >0, we

refer to such a sparse matriz X as a Ty matriz. When v = 0, we call X a T> matriz. Moreover, we
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define

c:max|xij ,1<i<m,1 <5< n.

as the element with the largest absolute value in X.

3.1.2 General settings and Shifted CholeskyQR3 for sparse matrices

When X € R™*" is a sparse matrix which follows Definition except (1.1) and (|1.2), we give some

settings below.

js <s< jb> (31)

r2(X) < F. (3.2)

In (3.1) and (3.2)), we take

js = min(11(mu + (n 4 1)u) - (vty + ntz)c?, 11(mu + (n + 1)u)||X||g),

' o, if jo = 11(mu + (n + 1)u) - (vt] + nta)c?

Jb = ,
o 1 Xl if Js = 11(mu + (n + Du)|| X

p_ )R i =11mut (04 u) - (ot o+ ntz)e?
4‘89jiz\/ﬁu’ if js = 11(mu+ (n+ u)| X||2

Here, j is defined in (2.7)) and we let

(vt + ’I’Ltg)CQ, —tch),

¢ = min(
_ o/
R
v

my/v’
h = +/2.23 + 0.34r + 0.01372.

100n

¢, v, t1 and t9 are defined in Definition [3.1

In the general settings described above, we utilize the definition of ||-||, from Chapter [2, which
is presented in Definition and are similar to those in [2I] for the original Shifted
CholeskyQRS3. outlines the requirements for k9(X ) in Shifted CholeskyQR3. Shifted CholeskyQR
and Shifted CholeskyQR3 for sparse matrices are detailed in Algorithm [11] and Algorithm with
s = js as specified in . This demonstrates that an alternative s can be utilized in Shifted

CholeskyQR3 for sparse cases, which is a key innovative aspect of this chapter.
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Algorithm 11: [Q, R] = SCholeskyQR(X) for sparse matrices
Input: X € R™*",

Output: Orthogonal factor Q € R™*", Upper triangular factor R € R™*",
1: get ¢, v, t1, to as defined in Definition for the input X,

2: take s = js as defined in (4.45)),
3: [@, R] = SCholeskyQR(X).

Algorithm 12: [Q, R] = SCholeskyQR3(X) for sparse matrices
Input: X € R™*",

Output: Orthogonal factor Q € R™*" Upper triangular factor R € R™*".
1: get ¢, v, t1, to as defined in Definition for the input X,

2: take s = js as defined in (4.45)),
3: [@, R] = SCholeskyQR3(X).

3.1.3 Theoretical results of 77 matrices

For T} matrices, we have already provided detailed analysis under (2.18) and (2.19) in Chapter [2| In

this chapter, we primarily focus on the case when

11(mu+ (n + Du) - (vt +nta)c® < s < ¢, (3.3)
4n*u - hlry(X) < 1, (3.4)
where
b = min(—— - (vt1 + nta)c?, —t1%)
= Imin . n —111C ).
100 UPETIRIC 7000

In the following, we show the properties of Shifted CholeskyQR3 for 77 matrices in Theorem (3.1

Theorem 3.3 under (3.3) and (3.4).

Theorem 3.1. If X € R"*" is a Ty matriz and [W,Y] = SCholeskyQR(X), when (3.3) and ({3.4)

are satisfied, we have

ko (Q) < 2h - /1 + ag(ka(X))2, (3.5)

v n C2 .
if ap = HXSHS = 11(mu+ (n+ 1)u) -k and k = % For [Q, R] = SCholeskyQR3(X) with

s =11(mu+ (n+ 1)) - (vt + nta)c?, if ka(X) is large enough, the sufficient condition of ko(X) is

1
< .
©16vV11nk - (mu+ (n+ 1)u)h

Here, h is utilized and defined in (3.2]).

Ko (X) (3.6)
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Theorem 3.2. Under (3.6), if X € R™*™ is a T} matriz and [Q, R] = SCholeskyQR3(X), when
s=11(mu+ (n+ 1)u) - (vt + nta)c?, we have
HQTQ - IHF < 6(mnu + n(n + 1)u), (3.7)

QR — X || p < (2.79 4 3.970)hn?u|| X ||, . (3.8)
Here, 1 is utilized and defined in (3.2)).

In Theorem when we take
s=11(mu+ (n+ 1)u) - (vt; + ntz)c?, (3.9)

we provide a corresponding element-norm condition (ENC) under which s in (3.9)) is optimal, which
differs significantly from s in [2I] and Chapter [21 The ENC is not unique, and we present a typical

example in the following theoretical results.

Theorem 3.3. If T1 matrizc X € R™*" is a T} matriz and [Q, R] = SCholeskyQRS3(X), if X satisfies
the ENC: ¢ = \/% || X |y and g < i then

vt1+nte’

js = 11(mu + (n + 1)u) - (vty + nto)c>. (3.10)

Here, j and js are utilized and defined in (2.7) and (3.1). Therefore, the sufficient condition of ko(X)
18
1

m2(X) < 5 e (mu+ (n+ L)a)h’

(3.11)

when we define € = W

Remark 3.1. Theorem[3.1] is one of the most important results of this chapter. It demonstrates that
when X s a Ty matriz, s in can be taken for Shifted CholeskyQRS3. Theorem shows that such
an s maintains numerical stability. These two theorems indicate that we can leverage the structure
of the sparse X to construct a new shifted item s, which is superior to that in Chapter [ with proper
ENCs, such as the one mentioned in Theorem . With the ENC' in Theorem s equivalent
to

QR — X|| < (2.79 4 3.978)hn*u| X |, .
This shows that, given a suitable ENC and when (3.10)) is satisfied, Shifted CholeskyQRS is numerically

stable with respect to the residual.

3.1.4 Theoretical results of T, matrices

When X is a T» matrix under Definition the following theorem holds.
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Theorem 3.4. If X € R™*" is a Ty matriz and [Q, R] = SCholeskyQR3(X), we have
js = 11(mu+ (n 4+ Du)|| X . (3.12)

When s = js, the sufficient condition of ko(X) and rounding error analysis of Shifted CholeskyQRS3
for Ty matrices follow Theorem [2.3 in Chapter[3

Remark 3.2. In the real practice, we can easily obtain ¢ using MATLAB, and determining t1 and to
requires only a few lines of code. Since we have already defined HXHg mn Chapter@ we can conduct
theoretical analysis based on the structure of X. In many real-world applications, there are many 1T
matrices with relatively dense columns. The presence of such dense columns can greatly influence| X,
especially when the absolute values of the elements of X are very close to each other. It is acceptable

to estimate t1 and to roughly, as this will not affect the primary results when m is sufficiently large.

3.2 Proof of Theorem |3.1FTheorem 3.4

In this section, we prove Theorem [3.1} Theorem under the assumption that X is sparse, based on
Definition [3.1] Among all the theorems, Theorem [3.I] and Theorem [3.2] are the key results.

3.2.1 Lemmas to prove Theorem Theorem matrices

Before proving Theorem [3.1} Theorem we write Shifted CholeskyQR with error matrices below.

G=X"X+Eq, (3.13)
Y'Y = G+ sl + E, (3.14)
wl =] (Y +AY;) ™, (3.15)
WY = X + AX. (3.16)

Here, az;r and w;r represent the ¢-th rows of X and W, respectively. The definitions of F4 in ,
Epin , AYj in and AX in are the same as those defined in Chapter

To prove these theorems, we first need to establish some lemmas. When 11(mu+ (n+1)u)|| X H? <
s < ﬁHX ||§, we have conducted rounding error analysis in Chapter [2l Therefore, we primarily focus
on the case when 11(mu + (n+ 1)u) - (vt + nt2)c® < s < ¢, ¢ = min(1gy- - (vt + nt2)c?, gt
and v > 0. The general ideas of the theoretical analysis are similar to those in [2I] and Chapter

However, we integrate the model of sparsity from Definition [3.I]with rounding error analysis, providing

different theoretical results compared to existing works.
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Lemma 3.1. For||E4l, and||ER|4 in and (3.14)), when is satisfied, we have

|EBally, < 1.1mu - (vty + nt2)c?, (3.17)
By < 1.1(n+ 1)u- (vty + nta)c?. (3.18)
Proof. According to Definition[3.1] it X is a 7} matrix, it has v dense columns with at most ¢; non-zero
elements and sparse columns with at most ¢o non-zero elements, when estimating the ij-th element of
Ey4, with Lemma 1.7, we can have
‘EA‘zjl — 7m‘$1’|xj‘
< Y - t1 Nl |25 ||, (3.19)
< Y - t1c?,
if both x; and x; are dense columns. z; is the i-th column of X. There are v? elements of F4 can be
estimated in this way. When at least one of z; and z; is sparse, we can have
|Ealije < '7m|lexJ‘
< Ym - ta - [lilly ]l (3.20)
< Ym - toc
There are 2v(n —v) + (n—v)? elements of F4 can be estimated in this way. Therefore, based on (3.19)
and (3.20]), we can estimate [|[E4||, as
1Eally < [|Eall

< V2 [y - 1122 + (20(n — v) + (0 — 0)2) - [y - t2c?]?

< 1L.lmu- (vt; + nt2)02
(13.17) is proved.

For || Egl|,, Lemma[2.2} (3.13) and (3.14), we can get

IEBly <||E5|
2 <l .
2
< Y|V
In fact, we have
1Y% = (v TY), (3.22)
which denotes the trace of the gram matrix Y TY. With Definition (3.13)), (3.14) and (3.22), we

can get
2 T
7n+1|’Y||F < Ynt1 tl"(Y Y)
<A1 tr(X "X +sI 4+ E4 + Ep) (3.23)
< Vst (X [[7 + s+ nl| Eally + 1l Epll,)

< 1 ((vts + nt2)e® + sn+nl|Eallp + 0l Esll ).
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If we set
s

- (vty + ntg)c?’

with (3.1]), we can have

1
<z< ——.
11(mu+ (n+1)u) <z < T0om

(3.24)

With (3.24)), we combine (3.21) and (3.23) with (1.1)), (1.2)), (3.3 and (3.17)), and we can bound || Eg||,

as
(1+ 1.1mnu+ zn)
L= nt1-n
_ L02(n+ Du- (1 + 1Imnu+0.01)
- 1-1.02(n+Du-n

1.02(n+1)u- (1+1.1- & +0.01)
< 1.02

64

|Ep], < (ty + nty)?

2

- (vt1 + nta)c

- (vt + nty)c?

< 1.1(n+ 1)u- (vty + nta)c?

(13.18) is proved.

O

Remark 3.3. The steps to prove (3.18) contains a step utilizing the properties of traces in (3.23). This
idea of proof has not occurred in the works of CholeskyQR before. Although (3.18|) seems similar to the

corresponding results in [21, [68] and Ch,apter@ our ideas in the theoretical analysis are distinguished

from those in the previous works, which is an innovative point of this chapter.

Lemma 3.2. FOTHY_1H2 andHXY_1||2 mn , when 1s satisfied, we have

1
V(Omin(X))2 4095
HXY*H2 <15

=], <

Proof. The steps to prove (3.25) and ([3.26]) are the same as those in [21] and Chapter

Lemma 3.3. For||AY;]|, in (3.15)), when (3.3)) is satisfied, we have
|AY; ]|, < 1.03ny/nu - v/t
Proof. For (3.15), based on Lemma 1.9 we can have

IAY; ]y < - IY 1|2
< V|Y],
< 1.02ny/nu A, -
With , and , we can have
IEally +lBplly < 1.1+ (mu+ (n+1)u) - (vty + ntg) -

< 0.1s.
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For [[Y|,,, similar to the steps in Chapter 2{and based on (3.3)), (3.13), (3.14) and (3.29), we can have

Y1y <IX15+ s+ (|Eally +I|E5l,)

(3.30)
< 1.011¢1¢2%
Therefore, with (3.30)), it is easy to see that
Y], < 1.006ev/71. (3.31)
We put (3.31)) into and we can have ]
Lemma 3.4. For|AX]|, in (3.16), when (3.3) is satisfied, we have
Iax], < L0V V- Vivh 4 nfy) - ¢ (332
2= V(O min(X))% +0.95 ‘ ‘
Proof. Similar to the approach in [21] and Chapter [2] we can express (3.15) as
wl =zl (Y +AY;) ™!
(3.33)
=z (I +Y'AY) Yy 1
When we define
(I+Y'AY) P =T1+0;, (3.34)
where
o0
=Y (Y AY;Y (3.35)
j=1
based on (3.15)) and (3.16)), we can have
Az;" =z 6; (3.36)

Az; is the i-th row of AX. Based on ((1.2)), (3.3)), (3.25) and (3.27)), when (3.3)) is satisfied and v is a

small positive integer, we can have

-

i, <[y rav,

2 2

1.03ny/nu| X|,

" V(omin(X))2+0.9s
< 1.03ny/nu - ety
o vV 0.9s (337)
- 1.03ny/nu - c\/t1
~ V/9.9(mu + (n + Du) - / (vt + ntg)c?

1.03
<55V

< 0.05.
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For (3.35), with (3.25), (3.27) and (3.37), we can have

o, < (v avill,y
j=1

Y av,
L= [[y =, l1aYill,
1 1.03ny/nu - e\/t1
= 0.9 \/(Gmm(X))2 + 095
1.09ny/nu - cy/t1
= V(Omin(X))2+0.9s

Based on ([3.36)), it is easy to see that

o

-
Z;

<|
2

16l

According to Definition [3.1] when X is a 7} matrix, we have
| X 7 < Vvt +nta - c.
Therefore, similar to the step in [2I], with (3.39)), we can have

[AX]ly <[|AX] g

<[ X1 #l6:ll, -

We put (3.39) and (3.40) into (3.41]) and we can have (3.32)).

3.2.2 Proof of Theorem

Here, we prove Theorem [3.1] with Lemma [3.2} Lemma [3.4

(3.38)

(3.39)

(3.40)

(3.41)

Proof. The general approach to proving Theoremis similar to those in [21] and Chapter However,

we establish connections between the structure of X and QR factorization. Our proof will be divided

into three parts: estimating HWTW —1I HF, estimating || AX || , and analyzing the relationship between

ko(X) and ko (W).

Estimating HWTW — IH2
With —, we can have
WW=Y"T(X+AX)' (X +AX)Y !
=Y XXy '+ Yy TXTAXY !

+ Y TAXTXY T4y TAXTAXY !

=I-Y "(sI+E +E)Y '+ Xy HTaxy!

+Y TAXT( XY H+y TAXTAXY L
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Therefore, we can have

HWTW IH <HY H (1Eally + 11 E5ll, + 5) +2HY H HXY H IAX],

+HY— HQHAXHQ.

According to (3.25) and (3.29), we can have

-

1.1s
(Omin(X))% 4+ 0.9s

< 1.23.

0Bl +1Esl, + ) <

Based on ({3.25)), (3.26)) and (3.32), when v is a small positive integer, we can have

20| (XY |AX|, <
2 2 2

(3.42)

(3.43)

1 L5 1.09ny/nu - /1 - \/(vty + nt) - ¢

<397 ny/nu - \/ty -/ (vty + nty) -

(Omin(X))? +0.9s

<397 ny/nu - 1 -/ (vt) + ntg) - ¢

9.9(mu+ (n+ 1)u) - (vty + nta)c?

< 0.34 fn
- Vot +nty - (m+ (n+ 1))
<034. V0

my/v

With (3.25) and (3.32)), if v is a small positive integer, we can have

2
YH jax|; <
9 2

IN

<0.013-

Omin(X)2 1095 \/(omm(X))Q 0.0

; (QL09nyu - Vo (vt + k) - )
(Tmin(X))? + 095 (0min(X))2 + 0.9s

(109 - T7 - /ol ] - ¢2)?

[9.9(mu + (n+ 1)u) - (vty + nty)c?]?
n3t1

(Utl + ntg)[m + (TL + 1)]2

n3

<0.013- ——.
m=v

Therefore, we put (3.43)-(3.45) into (3.42)) and we can have

HWTW _ IH2 < 1.23+0.34r +0.01312,

where r = ;—‘/\/7% With (3.46)), we can have

Wy <,

(3.44)

(3.45)

(3.46)

(3.47)

if h =+v2.3+0.37r +0.015r2. From (3.47)), we can see that |||, is influenced by the size of X and

the number of dense columns when X is a 77 matrix. When X € R™*™ is very tall and skinny, e.g.,

m > ny/n, ||W||, can be bounded by a small constant since v is a small positive number. Moreover,

when m > n and v is a small positive integer, we have r < y/n. Therefore, it is easy to see that h can

be bounded by v/3n, which is very meaningful in estimating the residual of Shifted CholeskyQR3 in

the following.
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Estimating || AX]|| 5

Regarding [|AX ||, in (3.16]), similar to the results in [2I] and Chapter when | = ”CXV |t|1, based on
2
(3.27) and (3.47)), we can have

[AX | =lQR - X]p
<Rl -I1AYi]l,
< hy/n - 1.03ny/nu - ety (3.48)
< 1.03n%u - hev/t
= 1.03hIn*u X |, .

This is an upper bound based on the settings of 77 matrices.

The relationship between k2(X) and ko (W)

In order to estimate ko (W), since we have already estimated ||V ||,, we only need to estimate o, (W).

Based on Lemma [1.6] we can have

Tiin(W) > Gmin (XY 1) — HAX}HHZ . (3.49)

Based on (3.25)) and (3.48)), we can have

sy, <naxief 1],

_ L03n%u-heyi (3.50)
" V(0min(X)2+0.9s

Based on the result in [21], we can have

Tmin(XY 1) > : 3.51
( : \/(Umin(X))2 +s ( )
Therefore, we put (3.50)) and (3.51)) into (3.49) and based on (3.4]), we can have
. 2.
onin(W) > 0.90min(X)  Llnu-hi|X|,
VOmin X245 /(Omin(X))2 + 0.95
0.9 1.1
> Omin(X) — ———— -n*u-hl|| X
om0 15 ) G e 1x1) 552
a 2\/(Umin(X))2 +s
1

2T+ ag(re(X))?’

where ay = HXS||§ =11(mu+ (n+1)u) -k, k= % Based on (3.47)) and (3.52)), we can have

ko(W) < 2h - /14 ap(k2(X))2.
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Here, (3.5)) is proved.
With (3.40)), we can have
(vt1 + ntg)c?

k=20 >, (3.53)
1X115

When (3.9)) is satisfied, similar to the steps in Chapter [2, when k2(X) is large, it is easy to see that
ao(k2(X))? > mk >> 1 with (3.53). Therefore, we can get

2h - /1 + ag(ka(W))2 = 2h - \Jag - ka(X).

With (3.5), we can have
H,Q(W) S 2h - Voo - HQ(X).

Using the similar method as that in [2I] and Chapter [2] in order to receive a sufficient condition for

Shifted CholeskyQR3, we only need to have

ko(W) < 2h - \/ag - ka(X)
1 (3.54)

~ 8(mnu+n(n+1)u)

We put ag = HXLllg = 11(mu+ (n+ 1)u) - k into (3.54) and we can have (3.6]). O

3.2.3 Proof of Theorem

In this section, we prove Theorem based on Theorem and the properties of ||| - Our approach
to prove Theorem [3.2]is inspired by that in Chapter

Proof. When s = 11(mu+ (n + 1)u) - (vt1 4+ nta)c?, ko(X) satisfies (3.6). We can easily derive
with ko(X), which is similar to that in [68].

For the residual of Shifted CholeskyQR3, [|QR — X ||, we express the CholeskyQR2 after Shifted
CholeskyQR with the error matrices as follows.

C-W'W = Fy,
D'D—C = Es,
VD —W = Ejs, (3.55)
DY — N = E,. (3.56)
B-V'V = E;,
J'J— B = Fg,
QJ -V = Fy, (3.57)
JN — R = Eg. (3.58)
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The same as that in Chapter 2| we divide the last step of calculating R in Algorithm [10| into (3.56))
and (3.58)). Based on (3.55))-(3.58)), we can have
QR = (V + E;)J Y (JN — Eg)
= (V+E;)N — (V + E;)J 'Eg

= VN + E:N — QFs

(3.59)
= (W + E3)D" (DY — E;) + BN — QEjs
= (W + E3)Y — (W + E3)D'Ey + ErN — QEs
=WY + E3Y —VE, + E;N — QEFEs.
Therefore, based on , we can get
QR = X|[p <[WY = X||p + I E3| IVl VI Eall o (3.60)

HIE R[N + QU Esll £ -
Similar to (3.15)), we rewrite (3.55) through rows as
v =w, (D+ AD;)™,

where v, and w; represent the i-th rows of V and W. Based on the results in [21} [68] and (3.47), we

can have

|AD;, < 1.03ny/nu -|W]|,

(3.61)
< 1.03hny/nu,
1Y]l; < 1.006]|.X]], , (3.62)
V69
Ve < =5 (3.63)
1D, < 1.02[|W]|
? ? (3.64)

< 1.02h.
With Lemma Lemma (3-31) and (3.61)-(3.64), we can bound || Es|| ., | B4l and || E4l|, as

1Es]| <[[Vlp-I|AD;|,
< \/697
- 8
< 1.07hn’u,

-1.03hny/nu (3.65)

1Eallp < (1Dl g -V )
<Y (VnlDlly - valYll,)

(3.66)
< 1.02n%u - 1.02h - 1.006¢v/41

< 1.05hIn*u|| X, ,
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[Eally < v (1Dl g-11Y1l,)
< (Vo[ Dy -1V 1l,)

< 1.02ny/nu - 1.02h - 1.006¢v/t1

(3.67)

< 1.05hiny/nu|| X||, .

Moreover, when [ = ”C)*(/E, based on Lemma Lemma (3.31), (3.62), (3.64) and (3.67), || V||,

and || N||, can be bounded as

[Ny <IDILIY [l + I Eall
< 1.02h - 1.006|| X ||, + 1.05hIn%u|| X ||, (3.68)

= (1.03h + 0.02h1)[| X ||, ,

NNy <IDIIY [lg +I1Eallg
< 1.02h - 1.006¢v/t1 + 1.05hIny/nu| X||, (3.69)
< 1.05Rl[| X, .
If we rewrite (3.57)) through rows as
g =v (J+AJ),
where ql-T and viT represent the i-th rows of @) and V, based on the results in [211 [68], we can have

1ATi]l; < 1.03ny/n| V],
V69

< 1.03ny/nu - = (3.70)
< 1.07n+/nu,
1Qll, < 1.1, (3.71)
171, < 1.O2[|V|
? 2 (3.72)
< 1.06.
With Lemma [1.7] and (8.69)-(3.72)), we can bound || E7||  and || Es||  as
1E7]l p <l1Qll [l
< 1.1y/n-1.07ny/nu (3.73)
< 1.18n%u,
1Esllp < ([Tl -[INIlg)
< W (VallJlly - ValIN]l)
(3.74)

< 1.02n%u - 1.06 - 1.05hey/t

< L.14hin*u|| X |, .
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Therefore, we put (3.48)), (3.62)), (3.63)), (3.65)), (3.66)), (3.68), (3.71), (3.73)) and (3.74) into (3.60) and
we can have (3.8). Theorem is proved. O

3.2.4 Proof of Theorem

In this part, we prove Theorem based on the proper ENC provided.

Proof. When we have the ENC: ¢ = \/% | X|ly and B < %, we just need to put the ENC
into js as defined in (3.1]) and we can have (3.10). When s = 11(mu + (n + 1)u) - (vt; + nte)c® and
c= \/% 1 X5, oo in Theoremsatisﬁes ap = 11(mu+ (n+1)u)-¢€, where € = w Therefore,

we only to replace k in (3.6 with € and we can receive (3.11)). Therefore, Theorem is proved. [

3.2.5 Proof of Theorem

After proving Theorem [3.1} Theorem [3.3] matrices, we prove the special case of Definition [3.1] when X

is a Ty matrix.

Proof. According to Definition if the input X € R™*" is a T, matrix, then v = 0. In (3.1)), js
becomes min(11(mnu + n(n + u) - tac?, 11(mu + (n + 1)u)||X||(2:) From and Definition
we have toc? > ||X ”3 Therefore, we can derive . When is satisfied, it is Theorem ﬁ in
Chapter O

Remark 3.4. Among all the lemmas used to prove Theorem 3.1} Theorem [3.4), Lemma[3.1] is one of
the most crucial. We build connections between the model of sparse matrices in Definition |3.1 and
the estimation of ||E4lly and ||Eg||y. Our alternative s is based on and (3.18). The proof of
Lemma lays a solid foundation for the subsequent analysis. demonstrates the advantage
of | X[|, over||X|ly for sparse matrices. For the sparse X, estimating || X||y through the element and
structure of X is challenging. The traditional ||-||, is not the best to reflect the properties of the sparse
matriz. We often need to estimate || X|| to replace || X||y, which will influences the required ENC's
and error bounds. In fact, ||| g plays a significant role in rounding error analysis for sparse matrices,
particularly in the steps of proving Theorem [3.9 to get tighter error bounds of residual. Although we
do not calculate || X||, directly in the proof of these theorems, its connection to the structure and the
element of X greatly simplifies our analysis, leveraging the relationship between the columns of the

input X and CholeskyQR-type algorithms, as also mentioned in Chapter |3,
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3.3 Numerical experiments

In this section, we conduct numerical experiments to examine the properties of Shifted CholeskyQR3
for sparse matrices. We primarily focus on the applicability, numerical stability, and CPU time(s) of
Shifted CholeskyQR3 with our alternative s. The experiments are performed on our own laptop using

MATLAB R2022a, and the specifications of the computer are listed in Table

3.3.1 T} matrices

In real applications, 77 matrices are very common in graph theory, control theory, and certain eigen-
value problems, see [7, [45] [49] and their references. One of the most well-known T} matrices is the
arrowhead matrix, which features a dense column and a dense row. In this section, we focus on the
arrowhead matrix and conduct numerical experiments. Two different types of numerical examples are

shown below.

A medium-size X in the block version

For the medium-size X in the block version, we take m = 2048 and n = 64. We build a group of orthog-
onal basis in R% in the form of e; = (1,0,0---0,0)", eo = (0,1,0---0,0)T, -+, egs = (0,0,0---0,1)T.
0, ifi=1

We take a vector f € R, which satisfies f = (f1, fo, - » fu_1, fn) | and f; = .
1, ifi=2,3,---,64
We define a diagonal matrix P = diag(u) € R%*%* where u = (uy,uo,--- ,ue3,ugs) and u; =

3, ifi=1,2,---,32

. Here, a is a small positive constant. We form K € R64x64 a5
1—33
3-(3) 3, ifi=233,34,---,64

K= —5e;-f1 —10f-¢] +P.

We build X € R2048x64 ith 32 K as

As a comparison group, we construct a common dense matrix U using the same method described
in [21}168] and Chapter 2} U is constructed using Singular Value Decomposition (SVD), and we control
ko(U) through p,in(U). We set

U=0zH".
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Here, O € R™*™ H € R™ "™ are random orthogonal matrices and
. _1 n—2
Ezdla‘g(l’gnfl’... 70'1171’0—) eRan

is a diagonal matrix. Here, 0 < 0 = 0,3, (U) < 1 is a constant. Therefore, we have o1(U) =||U||, =1
and ko(U) = 1.

In the beginning, we test the applicability and accuracy of Shifted CholeskyQR3 between different
s for such a medium-size 77 matrix X in the block version. Our X satisfies the ENC in Theorem
with ¢ = 10, v = 1, t; = 2048 and to = 64. We choose s = js = min(11(mu + (n + 1)u) - (vt; +
nta)c?, 11(mu + (n + 1)u)HX||§) based on (3.I). Here, j; = 11(mu + (n + 1)u) - (vt; + nta)c? with
the ENC. We vary a from 3 x 1076, 3 x 1078, 3 x 1071%, 3 x 107'2 to 3 x 10~ to adjust x2(X).
The o of U is also varying to ensure ko(U) ~ rg(X). For U, we use s = 11(mu + (n 4 1)u)|| X ||
in Chapter We test the applicability and accuracy of Shifted CholeskyQR3 with different s in
the cases of X and U. All results are listed in Table B.Jl-Table B3l We refer to our alternative
s = js = min(11(mu + (n + 1)u) - (vt + ntz)c®, 11(mu + (n + 1)u)|| X||?) as ‘the alternative s’ and
s=11(mu+ (n+ 1)u)HX||z as ‘the improved s’.

Table 3.1: Shifted CholeskyQR3 with the alternative s for the medium-size X

Ko(X) 218407 1.99¢+09 18le+11 1.63e+13 1.46e+ 15

Orthogonality 2.92e — 15 3.52e — 15 4.43e —15 3.80e —15 3.84e — 15

Residual 1.08e —13 1.07e—13 1.00e —13 1.16e—13 &8.83e—14

Table 3.2: Shifted CholeskyQR3 with the improved s for the medium-size X

ko (X) 2.18e+07 1.99¢+09 1.8le+11 1.63e+13 1.46e+ 15

Orthogonality 3.02e — 15 3.60e —15 5.67e —15 4.08¢ — 15 —

Residual 1.10e — 13 1.09¢ —13 1.00e —13 1.04e — 13 —

Table 3.3: Shifted CholeskyQR3 with the improved s for the medium-size U

Ko(X) 218407 199 +09 18le+11 1.63e+13 1.46e+ 15

Orthogonality 1.96e —15 1.83e —15 2.13e —15 1.86e — 15 —

Residual 6.95¢ — 16 6.47e —16 6.10e — 16 5.69e¢ — 16 -

According to Table and Table we find that Shifted CholeskyQR3 with our alternative s
can handle more ill-conditioned 77 matrices than with the improved s in Chapter [2|in this medium-

size case, demonstrating the improvement of our new s for 77 matrices in terms of applicability with
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appropriate ENCs. When r2(X) > 10, our alternative s remains applicable, while the improved s
does not. The comparison between Table [3.1] and Table [3.3] highlights the effectiveness of designing a
different choice of s for sparse cases, which corresponds to the comparison in Table Furthermore,
Shifted CholeskyQR3 maintains a similar level of numerical stability in this case with our alternative
s compared to both the case with the improved s and the case of dense matrices, as indicated by the
comparison of orthogonality and residuals in Table [3.1}Table This aligns with the theoretical
results presented in Table

In addition to testing applicability and numerical stability, we also evaluate the CPU time(s) of
Shifted CholeskyQR3 with different s in this case with respect to X in our numerical experiments.

The corresponding results of CPU times for the various s values are listed in Table

Table 3.4: Comparison of CPU time(s) with different s for the medium-size X

Ko (X) 2.18¢+07 1.99¢+09 1.8le+11 1.63e+13 1.46e+ 15
The alternative s 0.007 0.006 0.006 0.009 0.006
The improved s 0.008 0.007 0.005 0.008 —

Table shows that the CPU time(s) of Shifted CholeskyQR3 with different s are almost in the
same level for the medium-size X, which indicates that our alternative choice s can keep the efficiency

of Shifted CholeskyQR3 for such a 77 matrix.

A large-size X in the general form

In this part, we form a large-size X in the general form. We take m = 16384 and n = 1024. We define
some vectors in the beginning: ej,s = (1,0,0,---,0,0)" € R19%4 ¢ . = (0,1,1,---,1,1)T € R0,
ety = (1,0,0,---,0,0)T € RY33 and ey, = (0,1,1,---,1,1)T € R84 together with a diagonal
matrix F = diag(1, [3101723, e ,B%,ﬁ) € R1024x1024 " Noreover, a large matrix Q15360x1024 is formed

o € R16384x1024 4 formed as

with all the elements 0. Therefore, a matrix Pypqrs

)
Psparse =
0153601024
We build X € R16384x1024 g
_ T T
X = —Beipp - 1,5 — 10€125 - €1, + Poparse (3.75)

Similar to the previous part, we build a comparison group with a common dense matrix U, €
R16384x1024 Tt ig constructed in the same way as that in the previous section with o1(Up) = ||Upl|l, = 1

and k2(Up) = 1. Here, o is a positive constant.
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In the beginning, we test the applicability and accuracy of Shifted CholeskyQR3 between different
s for such a large-size 77 matrix X in the general form. Our X satisfies the ENC in Theorem
with ¢ = 10, v = 1, t; = 16384 and to = 2. We choose s = js = min(11(mu + (n + 1)u) - (vt; +
nta)c?, 11(mu + (n + 1)u)HX||z) based on (B.I). Here, j; = 11(mu + (n + 1)u) - (vt; + nta)c? with
the ENC. We vary B from 107%, 1077, 1078, 107 to x107'° to adjust x2(X). o of U, is also
varying to ensure rg(Uy) & ka(X). For Uy, we use s = 11(mu + (n 4 1)u)||X||? in Chapter . We
test the applicability and accuracy of Shifted CholeskyQR3 with different s in the cases of X and
Up. Moreover, CPU time(s) is also tested for Shifted CholeskyQR3 with different s. All results are
listed in Table [3.5}Table The same as the previous section, we still refer to our alternative
s = js = min(11(mu + (n + 1)u) - (vty + ntz)c?, 11(mu + (n + 1)u)||X||z) as ‘the alternative s’ and
s=11(mu+ (n+ 1)u)||X||§ as ‘the improved s’.

Table 3.5: Shifted CholeskyQR3 with the alternative s for the large-size X

Ko (X) 1.28¢ +09 1.28¢+10 1.28e+11 1.27e+12 1.27e+ 13

Orthogonality 2.67e —14 6.37e —14 9.19e—14 1.0de—13 1.19¢—13

Residual 3.07e =13 2.92e —13 298¢ —-13 2.82e—-13 3.26e—13

Table 3.6: Shifted CholeskyQR3 with the improved s for the large-size X

k2(X) 1.28¢+09 1.28e+10 1.28e+11 1.27e+12 1.27e+13

Orthogonality 8.95¢ —14 1.14e —13 1.24e—13 1.37e—13 —

Residual 2.93e — 13 298¢ —13 3.16e—13 2.92¢ —13 —

Table 3.7: Shifted CholeskyQR3 with the improved s for the large-size Uy

ko (X) 1.28e +09 1.28¢+10 1.28¢+11 1.27e+12 1.27e+13

Orthogonality 1.96e — 14 2.00e — 14 2.06e — 14 2.05¢ — 14 —

Residual 193¢ —14 1.85e—14 1.79¢e—14 1.73e —14 —

Table 3.8: Comparison of CPU time(s) with different s for the large-size X

Ko(X) 2.18¢+07 1.99¢+09 1.8le+11 1.63e¢+13 1.46e+ 15
The alternative s 1.63 1.71 1.73 1.69 1.70
The improved s 1.61 1.70 1.71 1.72 —

According to Table 3.5} Table similar findings hold for the large-size X in the general form as
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those of the medium-size X in the block version. We can say that our Shifted CholeskyQR3 with the
alternative s for the sparse matrices exhibits the advantages compared to case with the improved s in

Chapter [2] under certain ENCs, showing that such an alternative s is an optimal one for 77 matrices.

3.3.2 15 matrices

T» matrices with all columns being sparse are also very common in real applications, such as scientific
computing, machine learning, and image processing [54, (59, [63]. Similar to the case of 77 matrices, we
do two groups of numerical experiments with a medium size X in the block version and a large-size

X in the general form.

A medium-size X in the block version

For the medium-size X, we still take m = 2048 and n = 64. We form matrices X € R2048%64 ith 32

K € R64><64 as
K

K

K

Similar to the construction of a diagonal matrix P, the diagonal matrix P = diag(u) € R®**%4 where

10, ifi=1,2,--,32
u = (uy,ug, - ,up3, ugs) and u; = . Here, b is a small positive

10+ (&)55, ifi=33,34,- 64

constant. We utilize the definition of the orthogonal basis and form K as
K= 10632 . dT + 10633 . dT + P.

Here, d € R% is a vector with all the elements 1. Therefore, X is also formed. The comparison group
of the common dense matrix U is built in the same way as the part of 77 matrices.

In the beginning, we make comparison of the applicability and accuracy between different s for such
a medium-size Ty matrix. We choose s = j; = min(11(mnu+n(n+1)u)-tac?, 11(mu+ (n+1)u)||X||g)
based on (3.1)). According to Theorem we have s = j; = 11(mu + (n + 1)u)||X|2. We vary b
from 1075, 1077, 1079, 107! to 107!3 to adjust w2(Xs) and ka(X). Meanwhile, we vary the o of
U to ensure ka(U) =~ k2(X). For U, we use s = 11(mu + (n + 1)u)||X||i We test the applicability
of Shifted CholeskyQR3 with different s for both X and U. The corresponding results are listed in
Table B.9] and Table 3.10l
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Table 3.9: Shifted CholeskyQR3 with the alternative s for the medium-size X

ko (X) 1.30e +07 1.29¢+09 1.28¢e+11 1.28e+13 1.28e+ 15

Orthogonality 2.05e — 15 2.06e — 15 2.20e — 15 2.05e¢ —15 2.22¢ — 15

Residual 3.42e —13 3.5le—13 1.65e—13 3.32e —13 3.47e—13

Table 3.10: Shifted CholeskyQR3 with the improved s for U

Ko(X) 1.30e +07 1.29¢+09 1.28¢+11 1.28e+13 1.28e+ 15

Orthogonality 2.13e —15 1.98¢e —15 1.94e —15 2.07e — 15 -

Residual 6.95e — 16 6.56e — 16 6.19e — 16 5.74e — 16 -

According to Table and Table we observe that similar results hold for such a medium-size
T5 matrix in the block version as for 77 matrices. With the alternative s and appropriate ENCs, Shifted
CholeskyQR3 can handle cases with larger rx2(X) compared to the dense cases in this example. This
highlights the difference between the sparse and the dense cases for Shifted CholeskyQR3. Further-
more, with the alternative s, Shifted CholeskyQR3 remains numerically stable for such a medium-size
T> matrix in the block version, as indicated by Chapter [2] and Theorem

In the following, we show the CPU time(s) of Shifted CholeskyQR3 with different s when X is a
medium-size Tb matrix in the block version. We do hundreds of tests and take the average of the CPU

time(s) of different s. They are presented in Table

Table 3.11: Comparison of CPU time(s) with different s for the medium size X

ko (X) 1.30e +07 1.29¢e4+09 1.28e+11 1.28e¢+13 1.28e+15
The alternative s 0.009 0.008 0.010 0.007 0.009
The improved s 0.007 0.007 0.011 0.009 —

According to Table we find that Shifted CholeskyQR3 exhibits similar CPU times for Shifted
CholeskyQR3 with different s values in this example, which aligns with the conclusion drawn when X
is a 71 matrix. Although j, for the T5 matrix is equivalent to the improved s from Chapter 2] we can

still use s = js because j, in (3.1 represents a common form applicable to all the sparse matrices.

A large-size X in the general form

For T, matrices, we also form a large-size X in the general form. We take m = 16384 and n =

1024. We define a vector u; € R'9%* as u; = (10,10,---,10,10)T. We define a diagonal matrix
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1022

1 1022
Es = diag(1,b{%%, .-+ [ b]0% b)) € RI024x1024 " Thig i5 the same as that in Chapter Moreover,

we build two matrices with all the elements 0, Q15360x1024 and Qgi91x1024. Therefore, a matrix

c R16384X 1024

Poparse is formed as

E;
Dsparse =
0153601024
Another matrix Cyparse € [R16384x1024 44 Jefined as
Os191x1024
Ut
Csparse =
Ut
Os8191x1024

We build X € R16384x1024 g

X = Csparse + Dsparse-

In the beginning, we make comparison of the applicability and accuracy between the cases with
different s for such a large-size T matrix. We choose s = j, = min(11(mnu+n(n+1)u)-tac?, 11(mu+
(n+ 1)u)||X|?) based on (B.1). We vary by from 107, 1078, 1079, 1071% to 10~ to adjust #a(X).
For the comparison group, we take the same U, based on SVD as that in the previous section for T}
matrices. We vary o of Uy to ensure xko(U) =~ ko(X). For Uy, we use s = 11(mu+ (n+ 1)u)||X||i We
test the applicability of Shifted CholeskyQR3 with different s for both X and U,. The same as that of
T, matrices, CPU time(s) is also tested for Shifted CholeskyQR3 with different s. The corresponding
results are listed in Table [3.12 Table [3.14l

Table 3.12: Shifted CholeskyQR3 with the alternative s for the large-size X

ko (X) 1.85e+10 1.73e+11 1.64e+12 1.56e+13 1.49e+ 14

Orthogonality 2.67e —14 6.37e —14 9.19e—14 1.0de—13 1.19¢—13

Residual 3.07e — 13 2.92¢ —13 2.98¢—13 2.83¢—13 3.26e — 13

Table 3.13: Shifted CholeskyQR3 with the improved s for U,

Ko(X) 1.85e+10 1.73e+11 1.64e+12 1.56e+13 1.49e+ 14

Orthogonality 8.95¢ — 14 1.14e—13 1.24e —13 1.37e—13 -

Residual 2.93e —13 298¢ —-13 3.16e —13 2.92e —13 -
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Table 3.14: Comparison of CPU time(s) with different s for the large-size X

ko (X) 1.85e +10 1.73e+11 1.64de+12 1.56e+ 13 1.49¢+ 14
The alternative s 1.66 1.74 1.72 1.75 1.69
The improved s 1.64 1.73 1.74 1.73 1.69

According to Table 3.12} Table we find that Shifted CholeskyQR3 with the alternative s
exhibits good properties in the applicability, accuracy and efficiency for such a large-size X in the
general form, which is not worse than the case with the improved s proposed in Chapter 2l Generally
speaking, our Shifted CholeskyQR3 with the alternative s performs well for 75 matrices. Combing
with the theoretical results and numerical experiments for both 77 and 75 matrices, we can say that
our alternative s is an optimal one compared to the improved s for Shifted CholeskyQR3 in sparse

cases.

3.4 Conclusions

This chapter focuses on the theoretical analysis of Shifted CholeskyQR3 for sparse matrices. We divide
sparse matrices into two types: 717 matrices and T, matrices based on the presence of dense columns.
We propose an alternative choice of the shifted item s based on the structure and the key element of
the input X, which is a novel approach compared to the existing works. Our rounding error analysis
demonstrates that this alternative s is optimal for 77 matrices and can ensure numerical stability
of Shifted CholeskyQR3 with certain element-norm conditions(ENCs). Numerical experiments verify
our theoretical results for 77 matrices. Furthermore, Shifted CholeskyQR3 exhibits new properties
for T5 matrices compared to dense cases, and it remains as efficient with our alternative s as with the

improved s from Chapter
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CHAPTER 4.

PROBABILISTIC ERROR ANALYSIS OF CHOLESKYQR
BASED ON COLUMNS

In this chapter, we do probabilistic error analysis of CholeskyQR-type algorithms with the randomized
models in [33] and || X ||, defined in Chapter [2| for the input matrix X. Different from other works of
probabilistic error analysis, all the steps of CholeskyQR-type algorithms are matrix multiplications
and matrix factorization. Therefore, we set that all the steps of CholeskyQR-type algorithms in
this chapter follow Lemma [I.10}Lemma independently. We receive tighter upper bounds for
both orthogonality and residual for Shifted CholeskyQR3 and Shifted CholeskyQR2, together with
an improved probabilistic shifted item s for Shifted CholeskyQR3 compared to that in Chapter
Numerical experiments demonstrate that the improvement of such a probabilistic s on the applicability
and show its robustness in ill-conditioned cases. This chapter is organized as follows. We present the
probabilistic error analysis for CholeskyQR?2 in Section[4.T]and for Shifted CholeskyQR3 in Section [4.2]
Detailed numerical experiments are provided in Section

4.1 Probabilistic error analysis of CholeskyQR2

In this section, we aim to utilize the randomized models to conduct a probabilistic error analysis of
CholeskyQR2. The same as Chapter [2} ||-| , and its properties are utilized in the theoretical analysis.
4.1.1 General settings

In the beginning, we present CholeskyQR2 step by step, accompanied by the corresponding error

matrices below.

G-X"X=E, (4.1)
Y'Y - G = Ep, (4.2)
WYy =X + Ewy, (4.3)

C—-W'W = Ej,

Z'Z — C = E»,
QZ — W = F, (4.4)
ZY — R = E,. (4.5)
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For the input matrix X € R™*™ we provide some general settings for all the algorithms in this

chapter below.

1
max(ny/mnu, mnu) < o (4.6)
1
max(nvn + 1lnu, (n + 1)nu) < 61 (4.7)

Here, n occurs in ((1.20)) and (1.21]). For CholeskyQR2, when (4.6)) and (4.7) are satisfied, if we want

3

to have Q(n, mn?), Q(n, &+ o4 %) and Q(n,n?) to be all positive, we can choose 7 as a positive

2
constant not exceeding 10 in numerical experiments. The same as that in Chapter we keep j1 = H;(HC
2
Moreover, we define jo = ”g”c 1 <4, <+/n,i=1,2.
2

4.1.2 Probabilistic error analysis of CholeskyQR2

In this section, we present some theoretical results related to the probabilistic error analysis of

CholeskyQR2.

Theorem 4.1. With Lemma Lemma[1.13, for X € R™™ and [Q, R] = CholeskyQR2(X), with
(4.6), (4.7) and

i = 8j1ka(X)\n(vmu + Vo + Tu) < 1, (4.8)

we have
|QT@ 1| < on- F(vmu+ Vot 1w, (4.9)
IQR — X||p < (1.1j1 + 1.23j2 + 1.19 - %)n nul| X, (4.10)

3 2

with probability at least ((Q(n, mn?))?Q(n, % + & + %))?Q(n,n?).

4.1.3 Lemmas for proving Theorem

Before proving Theorem we present some lemmas related to it. The analytical steps of these
lemmas in this chapter are similar to those in [211 [68], Chapter [2| and Chapter [3l However, we utilize
the randomized models, allowing us to obtain sharper upper bounds with minimal probabilities for all

results, which are fundamentally different from existing works.

Lemma 4.1. For E4 and Ep in (4.1) and (4.2)), we have

1EAll; < 1.1nvmu] X2, (4.11)
IEBl, < 1.1nv/n + Tul|X||7, (4.12)

2

. iy 3
with probability at least Q(n, mn?)Q(n, b+ + %)
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Proof. Regarding ||E4 |5, with Lemma and ([(.1), we can have
B4 :‘GfXTX‘
< ()| X 7|1 X] (4.13)
< 1-177\/EU~‘XT‘|X|7

with probability at least Q(n, mn?). Similar to those in [21], [69] and Chapter [2, we can bound ||E4],

as
IEally < | Balllp < () - I X117
< Fm(n) -1 X2
< Linpy/mu-[|X|?2,
with probability at least Q(n, mn?). Here, z; denotes the i-th column of X. (4.11)) is proved.
Regarding || Eg||,, we use similar ideas in Chapterwith |||, and its properties. With Lemma
and , we can have
125, <[|E5l|| -
< A (MY 1[5
< np1(n) - nl[Y]?

~ 2
< nt1(n) - ([ X1+ Eally +EBl2),

(4.14)

with probability at least Q(n, %” + ”72 +%). Based on (2.20)), we can get an deterministic upper bound
of|Eall, as 1.1mnuHXH§. Therefore, with (4.6)), (4.7)), (4.11) and (4.14)), we can get

(n) - n(1 + L.1mnu)
1= Fnt1(n) - n

< 1.02nv/n + 1 - nu(1 + 1.1mnu) 1|2
- 1—-1.02nvn+1-nu g

- 1.02nv/n+1-nu-(1+1.1-4)

= 1.02
1- 64

< Lipyn+1-nu|X|?
= Linvn + 1u| X2,

with probability at least Q(7, %3 + %2 +%). (4.12) is proved. Therefore, Lemma u holds. O

|1Ep|, < 12t

X1y

2
X1l

Lemma 4.2. For Y~ and XY ! in (4.3), we have

1.1
O'min(X)7

IN

i, a1

HXY_1H2 <11, (4.16)

. 7. 3 2
with probability at least Q(n, mn?)Q(n, % + % + %).

67



Proof. The idea to prove Lemma [4.2]is the same as that in [68]. Based on Lemma [1.6] (4.1)) and (4.2)),

we can have

(Omin(Y))? 2 (0min(X))* = (1 Eally +11EB],)- (4.17)

Based on (4.8)), (4.11)) and (4.12), we can have

1.1

[Eally +[1EBll; < a(O’min(X))z
1 (4.18)
<(1- m)(amin(X))Q,

2

with probability at least Q(n, mn?)Q(n, %3 + % +%). We combine (4.17) with (4.18) and we can have

with probability at least Q(n, mn?)Q(n, %3 + %2 + %). Therefore, we can easily get (4.15)). Similar to
[68], we can have (4.16). Lemma [4.2] holds. O

Lemma 4.3. For Ewy in (4.3)), we have
[Ewy [l < 1.05nmu - [W, [ Xl , (4.20)

with probability at least Q(n, mn?).

Proof. With Lemma and (4.3)), we can have

[Ewylly < L.02nvnua - (IW|[p - IVl )

< 1.02nny/nul[W|, |V,

(4.21)

with probability at least Q(n,mn?). In Chapter [2, we show the deterministic upper bounds of both

|Eally and | EB||, in (4.6) and (4.7)). Based on (4.1)), (4.2)), (4.6)) and (4.7)), we can have

2 2
Y1y <l Xy +[1Eally +[1E5l2)

(4.22)
< 1.04) X2
Based on (4.22), we can have
1Y, < 1.02[X],- (4.23)
Therefore, we put (4.23)) into (4.21)) and we can get (4.20). Lemma holds. O
Lemma 4.4. For W in (4.3)), we have
W, < 1.13, (4.24)

with probability at least (Q(n, mn?))2Q(n, %3 + %2 + 2).
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Proof. Based on (4.3]), we can have

ity < ey + ey
2 2 (4.25)
S R R

With (4.7)), (4.15) and (4.20]), we can have

L16nnu - [|[W|[,[| X,
1.16j1nnul| X |, W
2

851 \/n(\/ﬁu +v/n+ 1u) (4.26)

1.06
< — myvn + 1u-[|[W]|,

< 0.02[Wl;,

1, <

AN

3 2

with probability at least (Q(n, mn?))?Q(n, s + 5 + %). Therefore, we put (4.60) and (4.26) into
(4.25) and we can have
W1, < 1.1+ 0.02||W],, (4.27)

3

with probability at least (Q(n, mn?))*Q(n, % + "72 + %). With (4.27)), we can have (4.24). Lemma
holds. O

4.1.4 Proof of Theorem

With Lemma 4.1} Lemma we begin to prove Theorem

Proof. The proof of Theorem is divided into two parts, orthogonality and residual.

The upper bound of orthogonality

First, we consider the orthogonality. Based on (4.1)), (4.2]) and (4.3), it is easy to get
W'W =Y (X4 Ewy) (X + Eyy)Y !
=Y 'X"XY '+vYv "XTEyyY !
+Y "By XY T+ Y T By EwyY !
=T -Y "(Es+Eg)Y '+ (XY ) EpyY !
+Y TEv(XR Y + Y TEy EwyY L
Therefore, we can have
2
[wrw 1], <[y, 0l 1 ) + 2y 2y i,

2
+ [y B3
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Based on (4.8]), (4.11), (4.12) and (4.15)), when j; = Hif(%’ we can have
2

1.21 - (1.15% - n(y/mu + v/n + 1u)|| X ||3)
(Umm(X)> (4.29)

[v =] 0Bl +15s1,)

IN

1.34

k2,
- 64

with probability at least (Q(n, mn?))?Q(n, %3 + "72 + %). Based on (4.8), (4.15), (4.16)), (4.20) and
(4.33]), we can have

2y || ey 1Ewvll, < 2-

1.1 1
Umzn(X)

kla

1- (10551 - pnu|| X ||, - 1.13)

; (4.30)

< 2
~ 64

with probability at least (Q(n, mn?))?Q(n, % + %2 +5). With (4.8), (4.15), (4.20) and (4.33)), we can

have

1.21 ,
[CNs A (1.0551 - nnu|| X, - 1.13)?
2 (4.31)
2

< =
= 4096k1’

with probability at least (Q(n, mn?))?Q(n, % + % %). Therefore, we put - into ( -
and with (4.8]), we can have

2
[t

5

HWTW IH < (4.32)
with probability at least (Q(n, mn?))*Q(n, % + C 4+ 2). With ([4.32), it is easy to have
V69
Wy < == (4.33)
Tmin(W) > \/85>9’ (4.34)

with probability at least (Q(n, mn?))2Q(n, %3 + %2 + %). (4.33) is an improved upper bound of || W],
compared to (4.24). With (4.33) and (4.34)), we can get

o (W) < 69

i 4.35
<35 (4.35)

with probability at least (Q(n, mn?))2Q(n, %3 + %2 +%). Based on (4.6), (4.7) and (4.35), when jz <1,

we can get

ko = 8j2/§2(W)\/77(\/Eu +vn+lu<l. (4.36)

With (4.36)) and similar to the previous steps to get (4.32)), we can have
T

1], <

o1, < ¢

< 655 - n(v/mu + vn + 1u),

3

with probability at least ((Q(n, mn2))2Q(n, = + % + 2))2. [@9) holds.



The upper bound of residual

Regarding the residual, according to (4.4) and (4.5]), we can have

QR—-X =W+ E3)Z Y 2ZY —E)) - X
= (W+E)Y - (W+E)Z'E,— X

Therefore, it is easy to have

QR = X|[p <[WY = X|p +Esll pl[Ylly + Q] Eall - (4.37)

Based on (4.20]) and (4.33)), we can have

WY = X|[p < 1.059nu - [[W]|, [ X,
< Y99 ) 05y g x 2 (4.38)
gy - ]| XY,
with probability at least (Q(n, mn?))*Q(n, % + % + %). We replace Y], and | X]|, in with
Y]], and || X ||, and we can get
1Yy < 102X, - (4.39)

With (4.6)), (4.7) and (4.9), we can have
1Qly < 1.1, (4.40)

with probability at least ((Q(n, mn?))2Q(n, %3 + "72 + %))?. Similar to the steps of (4.38), with (4£.33)
and (4.40), we can bound || Es||; as
B3] p < 1.05nmu - [[Ql, [ W],
V69
< 1.05pnu-1.1- ?jg (4.41)

< 12]2 s nna,

with probability at least ((Q(n, mn?))2Q(n, %3 + %2 + %))?. Similar to the step in [68], Chapter [2 and
Chapter |3, with (4.23)) and (4.33]), we can get

121y < 1.2V,

1.02jo /69
<2 V2 (4.42)
N

1.06j
<
— \/ﬁ?



3

with probability at least ((Q(n, mn?))?Q(n, % + ”72 + 2))%. With Lemma (4.23) and (4.42)), we

can bound || E4l| » as
1Exllp < M Z11E 1Y 1lp)
<Vl Z] - vallYly)
< 1.02ny/nu - 1.065 - 1.0251 || X |

< 1.08j1j2 - ny/nul| X|,,

(4.43)

with probability at least ((Q(n,mn?))2Q(n, %ﬁ + "72 + 2))2Q(n,n*). We put ([4.38)-(4.40), (4.41)

and (4.43)) into (4.37) and we can have (4.10) with probability at least ((Q(n, mn?))2Q(n, %3 + ”72 +
2))2Q(n, n?). Therefore, Theorem holds. O

Remark 4.1. In fact, our theoretical analysis of CholeskyQR is very different from those of [21, [68]
and Chapter|d. Regarding probabilistic analysis, the original analysis of CholeskyQR may lead to a very
limited least probability because of some lemmas using the way of solving linear systems through each
row. The analysis in this part is a more direct way and can avoid the problem. We utilize deterministic
bounds of |Eal|y and||Ep||y to derive (#.22)), demonstrating the connection between the deterministic
and the the probabilistic results, which is a significant innovation in this chapter. Theorem[].1] provides
sharper theoretical upper bounds for CholeskyQR2 with the randomized models compared to Lemmall.1
when n is large. Furthermore, the sufficient condition for ko(X) is also significantly better than that

in [68] when m is large.

4.2 Probabilistic error analysis for Shifted CholeskyQR3

In this part, we provide probabilistic error analysis of Shifted CholeskyQR3 with an alternative shifted

item s based on the randomized models.
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4.2.1 General settings and algorithms

In the beginning, we write Shifted CholeskyQR3 with error matrices step by step below. It is the
same as that in Chapter 2] and Chapter

G- X"X=Ey, (4.44)
Y'Y =G+ sl + Eg, (4.45)
WY = X + Ewy, (4.46)

C—-W'W = E;,

D'D—C = E»,
VD —W = F, (4.47)
DY — N = Ey, (4.48)

B-V'V =E;s,

J'J - B = F,
QJ -V = Fy, (4.49)
JN — R = Eg. (4.50)

For Shifted CholeskyQR3, (4.6 and (4.7) still hold. We present more general settings below.

ro(X) < L, (4.51)
1
H(v/mu+ Vi + Tu)|| X2 < 5 < oo | X (4.52)
The same as before, we have j; = XN 5 — W Furth let j3 = VI, H 1<y <
, 7= xySJ2 = qwps- Furthermore, we let j3 = pye. Here, 1 < ji <

Vn,i=1,2,3. We define

1
4.8971 - mnu’
1

d = .
86712 - n(v/mu + v/n + 1u)

L = min( ,

4.2.2 Probabilistic error analysis of Shifted CholeskyQR3

In this section, we present theoretical results of the probabilistic error analysis for Shifted CholeskyQR3
based on Lemma [LI0 Lemma

The same as the corresponding steps in Chapter [2| and Chapter [3| we divide the calculation of
R in the last step of Shifted CholeskyQR3 into and . In the following, we show some
theoretical results of probabilistic error analysis of Shifted CholeskyQR3 below.
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Theorem 4.2. With Lemma|[1.10-Lemma[1.19, for X € R™ " and [W,Y] = SCholeskyQR(X), when
(4.51) and (4.52) are satisfied, we have

ko(W) < 3.24\/1 + t(r2(X))2, (4.53)

3 2

with probability at least (Q(n, mn?))*Q(n, % + 5 + %). Here, t =

s

X113

Theorem 4.3. With Lemmal[l.10-Lemma[1.19, for X € R™™ and [Q, R] = SCholeskyQR3(X), when
ko(X) is large enough, if we take s = 11n(y/mu+ v/n + 1u)HXH§ and (4.51)) is satisfied, we have

|lQT@-1| < 6n- 3 (vimu+ va+Tu), (4.54)
IQR = X || p < é1(j1, ja, ja) - nu| Xl (4.55)

with probability at least ((Q(n, mn?))2Q(n, %5 +5 +1))*(Q(n,n*))2. Here, ¢1(j1, j2, j3.n) = (1.66j1+

L7Ljp + 1.78j3 + 1.71 - 32 4 1.70 - L),

4.2.3 Lemmas for proving Theorem and Theorem

To prove Theorem [£.2] and Theorem [£.3], we present the following lemmas.

Lemma 4.5. For E4 and Ep in (4.44) and (4.45), when (4.52) is satisfied, we have

1Eall; < 11nvmu] X2, (4.56)
IEBl, < 1.1nv/n + Tul| X||?, (4.57)

3 2

with probability at least Q(n, mn?)Q(n, % + % + %).

Proof. When estimating || E 4], the same as Lemma we can get (4.56])) with probability at least

Q(n, mn?).
Regarding || Eg||,, with Lemma and similar to (4.14]), we can get

~ 2
B8], <|1Esl|p < Aner(M[IY1[|
< Ans1(n) - nl|Y]]] (4.58)
< A1 () - n XN + s+ Bally +1Esll,),

n

with probability at least Q(n, %3 + %2 + %). Since the deterministic upper bound of [|[E4||, can be

taken as 1.1muHXHz according to ([2.20), with Lemma (4.6), (4.7), (4.56) and (4.58]), when
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S 1
t1 = x| < 1550 We can get
g

(L +ym -n+t)
1- %+1(77)”
1.02nvn + 1nu - (1 + 1.1mnu + t1)

<

- 1—-1.02nvn 4+ 1nu

_ 102pyn+Tnu- (1411 5 +0.01)
— 1.02

64
< l.invn+ 1nuHXH3

< 1LInVn + Tu|| X |2,

Yn+1 2
|Eglly, < = | X]]

g

2
X1l

2
X1l

3 2

with probability at least Q(n, % + & + §). Therefore, (4.57) holds. Based on the results above,
Lemma [4.3] holds. O

Lemma 4.6. For Y ' and XY !, we have

1
\/(Umm(X))2 +0.9s
HXY_1H2 < 1.5, (4.60)

(4.59)

=], <

. .y 3 2
with probability at least Q(n, mn?)Q(n, b+ + %)

Proof. The proofs of (4.59) and (4.60) follow the same approach as that in [2I], Chapter [2[ and

Chapter |3l Since (4.56]) and (4.57)) are used in the proof, (4.59) and (4.60) hold with a probability of
at least Q(n, mn?)Q(n, %3 + "72 + %). Thus, Lemmam holds. O

Lemma 4.7. For Ewy in (4.46), we have
[Ewylly < 1.03nmu-[[Wl,[| X, (4.61)

with probability at least Q(n, mn?).

Proof. With Lemma and ([4.46)), we can have

[Ewylly < 1.02nvna - (W] p -Vl 5)

< 1.02nny/nul[W]|, [V,

(4.62)

with probability at least Q(n, mn?). Similar to (4.22)), we utilize the deterministic bounds of ||E4],
and ||Eg||, in (4.6) and (4.7) in Chapter [2 Based on (4.6), (4.7), (4.44), (4.45) and (4.52)), we can

have

Y12 <IXI2 + (s + [ Eally + 1 Esll,)
g g ? ? (4.63)

< 1.011[| X2 .
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Based on ([4.63)), we can have

Y]], < 1.006]| X[, . (4.64)

Therefore, we put (4.64) into (4.62)) and we can get (4.61)). Lemma holds. O
Lemma 4.8. For W in (4.46|), we have

|W]l, < 1.58, (4.65)

3 2

, " 2\)2
with probability at least (Q(n,mn?))*Q(n, & + & + %).
Proof. Based on (4.46)), we can have

Wl < |1, + 2wy
1 2 21 (4.66)
S R R i

With (4.7), (4.59) and (4.61), we can have

1.03nnu - [ W], [| X,

\/(Umm(X))2 +0.9s
1.0377nu||X||c

< AWy

V9.9 T Tul x| (4.67)

1.06
< . nvnu -||W
< s\ wl,

], <

3 2

with probability at least (Q(n,mn?))*Q(n, s + % + %). Therefore, we put (£.60) and (4.67) into

(4.66) and we can have
|W]ly < 1.5+ 0.05[|W],, (4.68)

3

with probability at least (Q(n, mn?))2Q(n, &+ %2 + %). With (4.68)), we can have (4.65)). Lemma
holds. O

4.2.4 Proof of Theorem

In this part, we proof Theorem regarding k2 (X) and ko(W).

Proof. For |Ewy||p =||WY — X||, we put (4.65)) into (4.61) and we can have

HEWY”F = ”WY - XHF
< 1.03ynu - [ W, ]| X, (4.69)

< 1.6651n - nul| X||, ,
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with probability at least (Q(n, mn?))?Q(n, %3 + “72 + %). Since we have already estimated [|[IW||,, we
still need to estimate o, (W) in order to evaluate k2(X). Using Lemma [1.6|and (4.46]), we can derive

Umzn(W) > Umin(XY_l) - HEIWYYv_1 H2 . (470)

According to (4.59) and (4.69)), we can have

|y ], <t |y,
1.667 - nu X ||, (4.71)
= V(Omin(X))2 4095

with probability at least (Q(n, mn?))2Q(n, %” + %2 + %). Using the same method in [21], we can have

Omin(XY 1) > -0.9, (4.72)
V(omin(X))? + s
with probability at least Q(n, mn?)Q(n, %3 + "72 + 5). Therefore, we put (4.71)) and (4.72)) into (4.70)
and when ko(X) < m, we can have
Gomin (W) > 0.90min(X) 1660 nu|X]|,
V(omin(X))2+s  /(omin(X))? +0.9s
0.9 1.66
> “(Omin(X) — J1-nnu|| X
V(Omin(X))? + s (Tmin(X) 0.94/0.9 1X1l2) (473)
Umin(X) .
~ 2y/(omin(X))? + 5
1

2¢/1+ t(k2(X))?

3 2

with probability at least (Q(n, mn?))?Q(n, % + % + %). Here, t = ”;H2~ With (4.65) and (4.73), we
2

can have

ko(W) < 3.244/1 + t(k2(X))2,

3 2

with probability at least (Q(n, mn?))?Q(n, % + % + %). (4.53) is proved. Therefore, Theorem
holds. O

425 Proof of Theorem

In this part, we prove Theorem

Proof. When we take
s = 1y(v/mu + Vi + Tw)|X 2,

we have

S

I1X13 (4.74)
= 1157 - n(v/mu + vn + 1u).
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Similar to the steps in Chapter |2l and Chapter |3, when X is ill-conditioned, e.g., ro(X) > uf%, with
[@.74), we can have t(k2(X))? > 1152 - n(y/m + /n + 1) >> 1. Therefore, we can get

V14 t(ke(X))2 = VE- ko(X).
With (4.53), it is clear to see that
ro(W) < 3.24V/t - ka(X),

with probability at least (Q(n, mn?))2Q(n, %3 + %2 + %). Based on the results in [21} [68], Chapter
Chapter |3/ and (4.8)), the sufficient condition of ko(X) satisfies

ro(W) < 3.24Vt - ka(X)
1 (4.75)

9

<

© 82 y/n(ymu+ Vi T Tu)

with probability at least (Q(n, mn?))?Q(n, %3 + % + %). When (4.74)) is satisfied, based on (4.75)), we

can have

ko(X) < P
1
" 8612 - n(vmu+ v+ Tu)’
with probability at least (Q(n, mn?))2Q(n, %3 + "72 + %). Combining ® with the required condition for
r2(X) in (.73)), we obtain the requirement for ro(X) for Shifted CholeskyQR3 with the randomized
models as stated in (4.51). Under the condition given in , we proceed to prove Theorem

The proof is divided into two parts, orthogonality and residual.

Orthogonality of Shifted CholeskyQR3

First, we consider the orthogonality. For Shifted CholeskyQR3, the same as (4.35)) , we can have
ko(V) </ —= (4.76)

with probability at least ((Q(n, mn?))2Q(n, %3 + %2 + 2))%. Here, the same as ([1.9) and the steps in
Chapter [2, we can have (4.54) with probability at least ((Q(n, mn?))?Q(n, %3 + %2 +2))%.
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Residual of Shifted CholeskyQR3

For the residual, with (4.47)-(4.50)), we can have

QR = (V + Er)J '(JN — Ey)
= (V + E7)N — (V + E7)J ' Eg
= VN + E;N — QEj
= (W 4 E3)D™ (DY — E4) + E;N — QFj
= (W + E3)Y — (W + E3)D™'Ey + E;N — QEs
= WY + E3Y — VE, + E;N — QFs.

So it is obvious that

QR = X|lp < WY = Xl g+ Bs] p[[Y]lo + V|2l Eall 2

(4.77)
HIE RN, Q[ Es]l - -
Based on the results in [21], we can have
¥}, < 10061, (4.78)
Similar to (4.23) and (4.39), with (4.52) and (4.65)), we can estimate || D||, and || D[, as
1Dl < 1.005]W||
2 ? (4.79)
< 1.59,
I1D]l, < 1.005[[W],
-~ \/ﬁ 9
ith probability at least (Q( 29)2Q(n, % + 2 4+ 7). Th [@33) t
with probability at least (Q(n, mn®))*Q(n, & + % + %). The same as (4.33), we can ge
V69
Vi, < == (4.81)

with probability at least ((Q(n, mn?))2Q(n, %3 + %2 +2))2. We follow the steps to get (4.61]), together
with (4.65) and (4.81), we can bound || E3|| 5 as

1Bl < 1.03nnu - [V W],

v 69n
8

< - 1.03jonnu - 1.58 (4.82)

< 1.6972 - nnu,
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3

with probability at least ((Q(n, mn?))*Q(n, % + %2 +%))?. Using Lemma (2.3)), (4.64) and (4.80)),

we can estimate || Ey[|p and || Eyl|, as

1Eallp < An(m)(IDlle 1Y [l 7)

< An(m 0l Dlly - vrlYll,y)

(4.83)
< 1.02n - v/nu - 1.59j3 - 1.00651[| X |,
S 164]1]2 . U\/HUHXHQ 5
[Eally, < A DN -11Y1,)
< Fn(m)(Vnl DI, -IY1],)
1.00641 (4.84)

< 1.02 - v/nu - 1.597 -

|1 X
T IX

< 1.64j1j2 - nu|| X ||,

with probability at least ((Q(n, mn?))2Q(n, %3 + %2 + 2))2Q(n, n®). Moreover, based on Lemma [2.2
Lemma 4.7), (4.64), (4.78), (4.79), (4.83) and (4.84),[|N||, and || V]|, can be bounded as

N1y < IDIolIY [ls + [ E4lly
< 1.59 - 1.006|| X ||, 4 1645172 - nv/nu| X ||, (4.85)

< 1.63[ X,

N1l <IIDllY Nl +[1Eall,

1.0064, .
1.6351
< A1Xs
vn

3 2

with probability at least ((Q(n,mn?))?Q(n, % + % + 2))*Q(n,n?). Based on (4.52) and ([4.54), we

can have

QI < 1.0, (4.87)

with probability at least ((Q(n, mn?))2Q(n, %ﬁ + % + 2))%. Similar to (4.80) and with (4.81)), we can
get

[71], < 1.005][V],
_ 1005 (4.88)
>~ \/ﬁ © 73

3 2

with probability at least ((Q(n, mn?))2Q(n, R %))2 Similar to (4.82), we can bound || E7||




with (4.81)) and (4.87) as

17l < 1.03nnu-[| Q[ V'l

< 1.03pnu - 1.01 - 100573 - —V869 (4.89)

< 1.0973 - nnu,

with probability at least ((Q(n, mn?))%2Q(n, %3 + %2 + %))?. Based on Lemma (4.86]) and (4.88),

we can bound || Eg|| as
1Es]lp < An(m ] -[IN ]l )
< MWl - vrlNl,)
< 1.02n - v/nu - 1.00553 - 1.63;1] X,

< 1.685173 - nv/nul| X ||,

(4.90)

with probability at least ((Q(n,mn?))2Q(n, %3 + ”72 + 2))3(Q(n,n®))2.  Therefore, we put ([4.69),
(4.78]), (4.81))-(4.83)), (4.85), (4.87)), (4.89) and (4.90) into (4.77) and we can have (4.55)). Therefore,
Theorem [4.3] holds. 0

Remark 4.2. Theorem[[.is the key theoretical result of this chapter. The primary advantage of the
probabilistic error analysis of Shifted CholeskyQRS3 is that it provides a better shifted item s, which
can significantly enhance the properties of Shifted Cholesky@QR under certain probabilities. We can
observe these advantages in Section[[.3 Furthermore, Theorem[{.3 offers improved upper bounds of

orthogonality and residual in Shifted Cholesky@QR3 compared to those in [21] and Chapter @

Actually, there is another approach for rounding analysis of Shifted CholeskyQR3. We can provide
a weaker assumption only for the first Shifted CholeskyQR in this work with the deterministic models
for other steps of analysis in this work to achieve a higher probability for the upper bounds theoretically.

CholeskyQR2 after Shifted ChoelskyQR can be taken as the idea in Remark

4.3 Numerical experiments

In this section, we present several groups of numerical experiments. We primarily focus on the nu-
merical experiments of Shifted CholeskyQR3 conducted with the probabilistic s in this work. We test
the numerical stability, the p-values and the robustness of the algorithm in the following. All the
experiments are implemented using MATLAB R2022A on our laptop. Specifications of our computer
are in Table .11
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4.3.1 Applicability and accuracy of Shifted CholeskyQR3 with the probabilistic s

In this section, we focus on the applicability and accuracy of Shifted CholeskyQR3 with different
s. We take two different s, that is, the probabilistic s used in this chapter and the improved s in
Chapter . For the input matrix X € R™*" we primarily focus on the potential influence of ko(X),
m and n. We construct X using SVD, as described in |21} [68] and Chapter . The methods in [I7, 24]

are also applicable. We control ko(X) through i, (X). We set
X =0xH",
where O € R™*™_ H € R™" are random orthogonal matrices and
1 n—2
Y =diag(l,on-1,--- ,on-1,0) € R™*™

Here, 0 < 0 < 1 is a positive constant. Therefore, we can have 01(X) =/ X[, = 1 and ra(X) = 1.

Similar to the setting in Chapter |2, we can build the large X € R™*" using X; € R™*" based on SVD

as
X1

x— |

X1
To test the influence of ka(X), we vary xo(X) while fixing m = 1024, n = 32 and n = 6. When
varying n, we fix m = 4096, x2(X) = 10'? and n = 8. When varying m, we fix n = 128, x2(X) = 10'?
and 1 = 8. To assess the influence of ko(X), we compare the accuracy of Shifted CholeskyQR3 using

R16384x1024 5.0 taken and X is

the improved s in Chapter |2l Numerical experiments for a large X €
built in a block version as mentioned above. Here, we take n = 10. We define the probabilistic s as
s = 11n(y/mu+ v/n + 1u)HXH3 and the improved s as s = 11n(y/mu + v/n + 1u)||X||g The results

of the numerical experiments are presented in Table [4.1}-Table

Table 4.1: Shifted CholeskyQR3 with the probabilistic s for X € R1032x32

Ko (X) 10% 100 102 104 101

Orthogonality 1.40e — 15 1.58¢ —15 1.58¢ — 15 1.62¢e —15 1.84e—15

Residual 4.00e —16 3.95e¢—16 3.30e —16 3.20e —16 3.20e — 16
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Table 4.2: Shifted CholeskyQR3 with the improved s for X € R1032x32

K2(X) 108 10%0 10%2 10 10%

Orthogonality 1.30e —15 1.69¢ —15 1.38e —15 1.49e—-15 —

Residual 3.72¢ — 16 3.52¢ —16 3.5be—16 3.28¢ — 16 —

Table 4.3: Shifted CholeskyQR3 with the probabilistic s for X € R16384x1024

K2 (X) 106 108 100 10%2 10%3

Orthogonality 1.69e — 14 1.86e —14 1.98e —14 2.07e —14 2.10e — 14

Residual 224e —14 2.02¢—14 187¢e—14 1.74e—14 1.69e— 14

Table 4.4: Shifted CholeskyQR3 with the improved s for X € R16384x1024

Ko (X) 10° 108 1010 102 1013
Orthogonality 1.73e —14 1.90e —14 1.99¢ —14 2.10e—14 —

Residual 223e —14 2.02¢—14 1.86e—14 1.74e— 14 —

Table 4.5: Shifted CholeskyQR3 with the probabilistic s under different n

n 128 256 012 1024 2048

Orthogonality 2.75e — 15 4.16e — 15 8.27¢ —15 1.40e —14 2.53e — 14

Residual 1.07e — 15 2.00e —15 3.08e —15 4.35e —15 b5.8le—15

Table 4.6: Shifted CholeskyQR3 with the probabilistic s under different m

m 256 012 1024 2048 4096

Orthogonality 6.08¢ — 15 4.39¢ — 15 3.82e —15 3.03e — 15 2.75e¢ — 15

Residual 1.08e — 15 1.10e —15 1.08e—15 1.07e —15 1.07e —15

better applicability for ill-conditioned matrices.
Table [4.3] and Table This highlights the significance of probabilistic error analysis of CholeskyQR
algorithms. Comparing Table and Table with Table and Table we find that the

According to Table[d.T]and Table[4.2] we find that both Shifted CholeskyQR3 with the probabilistic
s and the improved s are numerically stable in terms of both orthogonality and residual, as indicated

by (4.54)), (4.55)), and the results in Chapter [21 Shifted CholeskyQR3 with the probabilistic s shows
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increasing m and n will decrease the accuracy and applicability of the algorithm, which corresponds
to the theoretical results of CholeskyQR-type algorithms. Furthermore, Table shows that both m
and n do not influence the numerical stability of Shifted CholeskyQR3 with the probabilistic s.

4.3.2 Comparison between the theoretical bounds and real performances

In this part, we make a comparison between the theoretical bounds of Shifted CholeskyQR3 and
its real performances with the probabilistic s. Similar to that in Chapter [2, we primarily focus on
the accuracy. For the input X € R™*" based on SVD, we fix [|[ X ||, = 1 and ra(X) = 10'2. We
denote 67 - j3(y/mu + v/n+ 1u) in ([A.54) as the ‘Theoretical bound’ in orthogonality. Moreover,
o141, j2, 3, n)n - nu|| X ||y in is the ‘ Theoretical bound’ in residual. To test the influence of m,

we fix n = 128 and n = 8. To test the influence of n, we fix m = 2048 and n = 8. Comparisons of
orthogonality and residual with different m and n are shown in Table [4.7} Table Regarding the
conditions of k2(X), we denote L in Table as the ‘Sufficient condition’ of k2(X) and

1
4.89j51-nnu as

the ‘ Upper bound’ of k2(X). We vary m and n and comparisons of conditions of k2(X) are shown in

Table [4.11] and Table [4.121

Table 4.7: Comparison of orthogonality with the probabilistic s when ro(X) = 102, n = 128 and
n=38

m 256 512 1024 2048 4096

Real error 6.04de — 15 4.55e — 15 3.6le —15 3.16e—15 2.74e — 15

Theoretical bound 1.87e —11 2.32¢e—11 2.96e—11 3.86e—11 5.14e —11

Table 4.8: Comparison of orthogonality with the probabilistic s when so(X) = 10'2, m = 4096 and

n=23

n 128 256 512 1024 2048

Real error 2.74e — 15 4.10e — 15 7.88¢ —15 1.42¢—14 2.51le—14

Theoretical bound 5.14e — 11 1.09¢ —10 2.36e —10 5.24e —10 1.19¢ — 09

Table 4.9: Comparison of residual with the probabilistic s when ro(X) = 10'2, n = 128 and n = 8

m 256 512 1024 2048 4096

Real error 1.08¢ —15 1.08¢e —15 1.05e—15 1.09¢ —15 1.08¢ — 15

Theoretical bound 6.09¢ — 12 6.09e — 12 6.09¢ — 12 6.09¢ — 12 6.09e — 12
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Table 4.10: Comparison of residual with the probabilistic s when ko(X) = 1012, m = 4096 and n = 8

n 128 256 512 1024 2048

Real error 1.08¢ — 15 2.04e —15 3.09¢ —15 4.35¢ —15 5.84e —15

Theoretical bound 6.09¢ — 12 1.65e —11 4.62¢—11 1.28¢ —10 3.58e — 10

Table 4.11: Comparison of r2(X) with the probabilistic s when x2(X) = 10'2, n = 128 and n = 8

m 256 512 1024 2048 4096

Real case > 1012 > 1012 > 1012 > 1012 > 1012

Upper bound 6.62¢ + 11 6.62e+ 11 6.62¢e+ 11 6.62e+11 6.62¢ + 11

Sufficient condition 1.55e+ 10 1.25e+ 10 9.82¢+09 7.52e¢+09 5.65¢ + 09

Table 4.12: Comparison of k(X ) with the probabilistic s when xk2(X) = 1012, m = 4096 and 1 = 8

n 128 256 512 1024 2048

Real case > 1012 > 1012 > 1012 > 1012 > 1012

Upper bound 6.62¢ +11 2.79e+ 11 1.08e+ 11 3.69¢+ 10 1.48e+ 10

Sufficient condition 5.65¢ +09 3.17e +09 1.60e +09 7.00e + 08 3.49e + 08

According to Table [.7} Table similar to the results in Chapter [2, we can find that the
theoretical results of ko(X) and accuracy have some distances to the real result after many groups
of numerical experiments. However, when comparing Table and Table with Table
Table we can find that the theoretical bounds of k2(X) from probabilistic error analysis are
closer to the real results than those based on deterministic error analysis, which reflects, to some

extent, the advantage of the randomized model for probabilistic error analysis.

4.3.3 Improvements of ||-||,

In this section, we examine the improvements of ||-||, on probabilistic error analysis. Similar to that in
Chapter [2, we consider the j-values in probabilistic error analysis of Shifted CholeskyQR3. The same

X 14% Y
as that in Chapter we take [; = X1, — Wl — Il

Ji
1= IXT, 27w, 37V,

vn

and ﬁ <l; <1,i=1,2,3. We construct the input matrix X in the same manner as described in

Table We test the influence of k2(X), n and m on the [-values. When varying k2(X), we fix

. Moreover, we define [ and [ . Here, [; =

m = 1024, n = 32 and n = 6. For varying n, we fix m = 4096, x2(X) = 10'? and = 8. When varying
m, we fix n = 128, x2(X) = 102 and n = 8. We use s = 115 - (y/mu + v/n + 1u)||XH3 for Shifted
CholeskyQR3. The results of the numerical experiments are presented in Table [4.13} Table
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Table 4.13: [-values with different x2(X) for Shifted CholeskyQR3

ko(X) 108 0% 102 10 10

Iy 0.2590 0.2413 0.2289 0.2225 0.2200

lo 1.0000 1.0000 1.0000 1.0000 1.0000
l3 1.0000 1.0000 1.0000 0.9953 0.9978

Table 4.14: I-values with different n for Shifted CholeskyQR3

n 128 256 512 1024 2048

i 0.2228 0.2119 0.1899 0.1869 0.1793

lo  1.0000 1.0000 1.0000 1.0000 1.0000
[3 1.0000 1.0000 0.9999 0.9998 0.9994

Table 4.15: [-values with different m for Shifted CholeskyQR3

m 256 512 1024 2048 4096

;i 0.2181 0.2181 0.2181 0.2181 0.2228

[ 1.0000 1.0000 1.0000 1.0000 1.0000

[z 1.0000 1.0000 1.0000 1.0000 1.0000

Table Table show that the [-values are closely related to n. As n increases, both [y and

I3 decrease significantly, which aligns with the lower bound of the l-value, -=. Additionally, [; is

» n”
much smaller than 1. This demonstrates that j; is much smaller than /n, while jo and j3 tend to be

close to y/n. Such a phenomenon shows the improvement of using || X ||, instead of || X||, in s on the

2
applicability of Shifted CholeskyQRS3, since 111;27%"“‘1 ”i‘ﬂ”)‘)‘f)‘}'ﬁ =12 << 1.
mnua n nu 2

4.3.4 Robustness of Shifted CholeskyQR3 with the probabilistic s

In this section, we demonstrate the robustness of Shifted CholeskyQR3 with the probabilistic s. To the
best of our knowledge, this group of experiments has not been conducted in similar works before. We
construct the input matrix X in the same manner as described in Table and examine the potential
influence of k2(X), n and m, which are consistent with those in Table When varying ko (X), we
fix m = 1024, n = 32 and = 6. When varying n, we fix m = 4096, x2(X) = 10'2 and n = 8. When
varying m, we fix n = 128, ko(X) = 10" and 5 = 8. We use s = 117 - (v/mu + /n + 1u)||X|? for

Shifted CholeskyQR3. We record the number of successful outcomes every 30 trials after conducting
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several groups and calculate the average. The numerical results are listed in Table Table

Table 4.16: Times of success with different ko(X) for Shifted CholeskyQR3

ko(X) 108 1019 10'2 10" 10'°

Times 30 30 30 30 30

Table 4.17: Times of success with different n for Shifted CholeskyQR3

n 128 256 512 1024 2048
Times 30 30 30 30 30

Table 4.18: Times of success with different m for Shifted CholeskyQR3

m 256 512 1024 2048 4096
Times 30 30 30 30 30

Table Tabld4.18] demonstrate that Shifted CholeskyQR3 with the probabilistic s exhibits
strong robustness in our numerical examples, which is crucial for the practical application of this

improved algorithm.

4.4 Conclusions

In this chapter, we do probabilistic error analysis of Shifted CholeskyQR3 and CholeskyQR2. The
new matrix ||-||, is utilized. We receive tighter upper bounds of orthogonality and residual for the
algorithms and a probabilistic shifted item s for Shifted CholekskyQR3. Numerical experiments show

the improvement on applicability of such a probabilistic s and its robustness.
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CHAPTER 5.
CONCLUSIONS AND FUTURE WORKS

This thesis presents several improvements on CholeskyQR-type algorithms from different perspectives
and with different tools, including the improved shifted item s for Shifted CholeskyQR3 based on ||| .,
an analysis of Shifted CholeskyQR for sparse matrices and rounding error analysis of CholeskyQR-type
algorithms with the randomized model partially. The primary target of these works is to enhancing
the applicability of CholeskyQR-type algorithms by improving rounding error analysis. Complete
and rigorous theoretical proofs, along with the corresponding numerical experiments, are contained in
Chapter 2}Chapter

Chapter [2| focuses on improving the shifted item s for Shifted CholeskyQR3. We introduce a new
matrix norm ||-||. and propose an improved shifted item s with ||X ||, for the input matrix X € R™*".
Our theoretical analysis and numerical experiments show that such an improved s can guarantee
numerical stability and efficiency of Shifted CholeskyQR3, along with better applicability compared
to the case with the original s based on || X||,. In Chapter [3| we focus on Shifted CholeskyQR for
sparse matrices. We introduce a new model for the division of sparse matrices based on the presence
of dense columns. Therefore, an alternative choice of s based on the structure and the key element of
X can be taken for Shifted CholeskyQR3. We prove that such an alternative choice s can guarantee
numerical stability of Shifted CholeskyQR3 with certain element-norm conditions (ENCs), under
which our alternative s is optimal compared to s proposed in Chapter [2] Numerical experiments show
that our alternative s can improve the applicability of Shifted CholeskyQR3 in sparse cases while
maintaining numerical stability and efficiency. In Chapter [4] we present rounding error analysis of
CholeskyQR-type algorithms with the randomized model partially under a weak assumption. We
receive the improved sufficient condition of ka(X) for CholeskyQR2 and the best shifted item s for
Shifted CholeskyQR3 as far as we know with the randomized model. Shifted CholeskyQR3 with such
a probabilistic s is robust after numerous experiments and can still keep numerical stability.

Compared to other algorithms for QR factorization, CholeskyQR strikes a balance between accu-
racy and efficiency, making it more suitable for parallel computing. In this thesis, we explore a new
perspective on CholeskyQR, defining a new || X||, and build connections between CholeskyQR and
randomized models. These strategies improve the applicability of these algorithms in both general
and special scenarios. Our contributions extend the properties of CholeskyQR-type algorithms to
many real-world applications and address several issues in this field, which are significant for the ad-

vancement of QR factorization. But the works contained this thesis are not all the works we have done
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in the past several years. In fact, the most fragile step of CholeskyQR lies in Cholesky factorization
to calculate the R-factor. Except for Shifted CholeskyQR3 to address the problem of applicability,
there is another way deserving consideration for CholeskyQR-type algorithms, that is, the mixed pre-
conditioning step with CholeskyQR and other types of algorithms, which is often taken with some
randomized techniques. In [3, 20, [31], some researchers tend to use some other structures to replace
the steps of calculating the gram matrix and Cholesky factorization in CholeskyQR to generate the
R-factor, in order to avoid the numerical breakdown of Cholesky factorization in ill-conditioned cases.
Some randomized techniques, such as matrix sketching, are used to accelerate the algorithms. Among
all the CholeskyQR-type algorithms, LU-CholeskyQR2 [62] has no requirement on k2(X) for the input
X € R™ " which is a very special but important advantage compared to other algorithms. In [2§],
we improve LU-CholeskyQR2 by combining LU-CholeskyQR with HouseholderQR and form LHC2.
We utilize the recent matrix sketching to accelerate LHC2 and form SLHC3 and SSLHC3. Such new
algorithms do not have requirements on k2(X) for the input X and are very balanced in accuracy,
applicability, efficiency and robustness, which are the top CholeskyQR-type algorithms in the real
performance.

During our research, we identify several topics for future exploration. We have ongoing and

potential projects related to some of these areas. Below is a list of these topics.

1. In Chapter [2, we introduce a new matrix ||-||. and demonstrate some of its properties. However,
several issues remain to be addressed in the future. Specifically, ||-||. of a matrix warrants
further exploration. Developing efficient methods to quickly estimate || X||, for the input matrix
X is an open topic for future research, particularly for large-scale matrices. Additionally, the
properties of calculating |-||, suggests that parallel computing can be employed to obtain ||-||,
more efficiently. In this thesis, we leverage the connections between ||-||. and some other matrix
norms to do rounding error analysis. Given that ||-||. can be applied to various problems, such as
HouseholderQR and Nystrom approximation, we aim to explore its relationship with the singular
values of matrices and other factors, such as the condition number. We are also focusing on

additional properties related to [|-||..

2. In Chapter [3] we introduced a new model for dividing sparse matrices into two types based
on the presence of dense columns and provided a detailed rounding error analysis of Shifted
CholeskyQR3 for sparse matrices. We are curious about whether we can do improvements on
this model and provide more accurate error analysis of CholeskyQR-type algorithms for sparse
matrices. We are also interested in exploring whether other algorithms for QR factorization,
such as HouseholderQR and Modified Gram-Schmidt (MGS), can benefit from our framework or

alternative types of models. Focusing on sparse matrices is particularly meaningful, as they are
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common in real-world applications. We aim to improve HouseholderQR and MGS by addressing

their drawbacks and designing more accurate and efficient methods.

. In Chapter [d] we utilize the randomized model to do improved analysis of CholeskyQR-type
algorithms. According to Lemma [[.10}Lemma [T.13] we observe that the existing randomized
models has very strict conditions to be applied, which is not friendly towards CholeskyQR-type
algorithms with several different steps of computation. Therefore, in Chapter [d we only use
the randomized model of matrix multiplications in the first step of CholeskyQR, which can only
improve the applicability of Shifted CholeskyQR3 and the sufficient condition of CholeskyQR2.
In order to provide probabilistic error bounds of CholeskyQR-type algorithms, it is meaningful
for us to provide better randomized models of rounding error analysis with weaker conditions
and larger probabilities, which can provide more tools for rounding error analysis and matrix

perturbations.

. Among all the CholeskyQR-type algorithms, a key sufficient condition is that the input matrix
should be full-rank, which is closely related to the singular values of the input matrix. For the
tall skinny matrix X € R"™*" with m > n, it means that rank(X)=n. Additionally, many of
the existing Cholesky-type algorithms encounter problems regarding the sufficient condition of
k2(X) of the input matrix X, limiting their practical use in the real applications. To address
these challenges, we are exploring new preconditioning steps based on singular value decompo-
sition(SVD) for Shifted CholeskyQR3, which can deal with rank-deficient and ill-conditioned
cases. Such an operator aims to strike a balance between speed, accuracy and applicability,

thereby enhancing the performance of CholeskyQR-type algorithms.

. In recent years, problems concerning Quaternion matrices [39) 43| 46 [65] have attracted the
attention of many researchers in numerical linear algebra. This area has applications in image
processing and signal processing. As one of the most important challenges in numerical linear
algebra, QR factorization of Quaternion matrices [40), 41l 44} [64] warrants further exploration.
We aim to combine CholeskyQR with Quaternion matrices and design new algorithms based on
this integration. Additionally, more theoretical results and properties of CholeskyQR. remain to

be discovered.

. Our work in this thesis are primarily implemented on CPU, so do most of the CholeskyQR-type
algorithms. In recent years, GPU has played an important role in high-performance computing.
We always need to consider the version of many algorithms for parallel computing. There is an
existing work [70] regarding CholeskyQR and its analysis on GPU. However, it only focuses on

the basic version of CholeskyQR. We are currently focusing on constructing new CholeskyQR-
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type algorithms which is suitable for parallel computing. We hope that it can make use of the

advantages of GPU.
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