

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

CHOLESKYQR-TYPE ALGORITHMS:DEVELOPMENT AND ANALYSIS

HAORAN GUAN

PhD

The Hong Kong Polytechnic University

2025

The Hong Kong Polytechnic University

Department of Applied Mathematics

CholeskyQR-type Algorithms:Development and Analysis

Haoran Guan

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

June 2025

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published or

written, nor material that has been accepted for the award of any other degree

or diploma, except where due acknowledgement has been made in the text.

(Signed)

(Name of student)
 Haoran Guan

Abstract

This thesis focuses on the development of CholeskyQR-type algorithms, which are very popular in

recent years due to their efficiency and accuracy. Compared to the traditional algorithms for QR

factorization, such as HouseholderQR and MGS, CholeskyQR-type algorithms have special advantages

and have raised much attention from both academia and industry. In this thesis, We present some

progress we have made in CholeskyQR-type algorithms in the past several years.

Though with good efficiency and accuracy, CholeskyQR is seldom used alone due to its lack of or-

thogonality. In order to receive numerical stability in orthogonality, CholeskyQR2 has been developed

by repeating CholeskyQR twice. In recent years, researchers has proposed Shifted CholeskyQR3 to deal

with QR factorization of ill-conditioned matrices, with a shifted item s in the step of Cholesky factor-

ization to avoid numerical breakdown in ill-conditioned cases. Moreover, some other CholeskyQR-type

algorithms have occurred, such as LU-CholeskyQR2 and some randomized algorithms. The develop-

ment of CholeskyQR-type algorithms aims for improving the applicability of the algorithms. In this

thesis, we show our improvements on the applicability of CholeskyQR-type algorithms, especially for

Shifted CholeskyQR3. Some cases based on real-world problems are also considered.

Shifted CholeskyQR3 avoids the problem of encountering numerical breakdown in ill-conditioned

cases which belongs to CholeskyQR2. With the structure of CholeskyQR2 after Shifted CholeskyQR,

Shifted CholeskyQR3 can keep numerical stability and replace CholeskyQR2. However, the original

shifted item s = 11(mnu+ (n+ 1)nu)∥X∥22 for the input matrix X ∈ Rm×n is relatively conservative

due to overestimation in rounding error analysis. We introduce a new matrix norm∥X∥c and propose

an improved shifted item s = 11(mu + (n + 1)u)∥X∥2c for Shifted CholeskyQR3. Our theoretical

analysis and numerical experiments demonstrate that our new s can enhance the applicability of

Shifted CholeskyQR3, while maintaining numerical stability and efficiency.

In fact, in many real-world applications, the input matrix X ∈ Rm×n is often sparse, especially

when m and n are large. Due to the structure of the algorithm, the sparsity of the input matrix will

influence rounding error analysis of CholeskyQR and exhibit different properties compared to those of

dense matrices. For sparse matrices, we build a new model and divide them into two types, T1 matrices

with the dense columns and T2 matrices whose columns are all sparse. Therefore, an alternative choice

of the shifted item s is proposed for Shifted CholeskyQR3 based on the structure and the key element

of the input X. We prove that such an alternative s are optimal compared to the original s we propose

in the previous part with certain element-norm conditions(ENCs). It can improve the applicability

of Shifted CholeskyQR3 for T1 matrices and maintain numerical stability of the algorithm in this

way. Numerical experiments demonstrate our findings and show that shifted CholeskyQR3 with the

iv

alternative s can also deal with more ill-conditioned cases for T2 matrices because of the potential

sparsity of the orthogonal factor after Shifted CholeskyQR. The algorithm with such an s is also as

efficient as the case with the original s. ∥·∥g, a definition connected to∥·∥c, is utilized in the theoretical

analysis.

In recent years, probabilistic rounding error analysis has become a hot topic in numerical linear

algebra. We can receive tighter error bounds compared to the deterministic ones. Based on the

theoretical analysis of CholeskyQR-type algorithms, probabilistic error analysis can improve the suf-

ficient condition of κ2(X) for X ∈ Rm×n and bring more accurate error analysis. Therefore, we do

probabilistic error analysis of CholeskyQR-type algorithms. We receive tighter upper bounds of both

orthogonality and residual for CholeskyQR-type algorithms, together with looser sufficient conditions

of κ2(X) with the corresponding probabilities. Additionally, a probabilistic s with ∥X∥c is proposed

for Shifted CholeskyQR3. Numerical experiments show that such a probabilistic s can improve the ap-

plicability of the algorithm further. Shifted CholeskyQR3 with such a probabilistic s is also numerical

stable and robust enough after numerous experiments.

Generally speaking, we propose and utilize new tools for more accurate rounding error analysis

of CholeskyQR-type algorithms theoretically, which also helps to improve the properties of the algo-

rithm. Our improvements on the applicability of the algorithm are effective according to numerical

experiments, which correspond to the new theoretical results in this work.

v

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr. Zhonghua Qiao

from the Hong Kong Polytechnic University, and Dr. Yuwei Fan from Huawei for their invaluable

guidance, unwavering support, and academic insights throughout my four-year PhD journey. Their

expertise in computational mathematics has significantly enhanced my research skills and academic

development. I feel fortunate to have met Dr. Qiao and Dr. Fan during my studies at the Hong Kong

Polytechnic University. They not only taught me how to conduct scientific research but also guided

me on how to become a good scientist in my future career. I am deeply thankful for their assistance

and advice during the challenges I faced in my research over the past several years. Their support and

encouragement were crucial in helping me overcome obstacles and successfully complete my thesis.

Moreover, I am very grateful for many colleagues and professors for their academic advice and

help in my research. Dr. Ting-kei Pong, Dr. Zhian Wang, Dr. Xingqiu Zhao and Dr. Buyang

Li taught me several courses in mathematics. Dr. Xiaojun Chen told us how to present our work

appropriately in a brief talk. Dr. Yanping Lin served as the BoE Chair of mine. Dr. Tiexiang Li from

Southeast University, China gave me the idea of ChoelskyQR-type algorithms in the case of sparse

matrices. Dr. Qinmeng Zou from Beijing University of Posts and Telecommunications, China gave

me many suggestions regarding probabilistic error analysis in numerical linear algebra. Dr. Valeria

Simoncini and Dr. Davide Palitta from University of Bologna, Italy had some discussions with me

regarding my topic and worked with me in solving Lyapunov equations with RPCholesky. I am also

very thankful for their supervision and support during my RSAP study in Italy in 2024. Dr. Michael

Kwok-Po Ng from Hong Kong Baptist University attended my oral examination and discussed with

me regarding my research topic. Dr. Yuji Nakatsukasa from Oxford University, England provided

many helpful suggestions regarding CholeskyQR and presentations. Mr. Renfeng Peng from Chinese

Academy of Science, China discussed with me about sparse matrices. Mr. Yuan Liang from Beijing

Normal University, Zhuhai, China gave me useful examples in the numerical experiments of my articles.

Moreover, I thank Dr. Defeng Sun, Miss. Natalie Cheung Ting-ting, Ms. Cynthia Hau, Miss. Teresa

Ko Shuk-wai, Ms. Elki Wong Ya-king and all other staffs of AMA department for their appropriate

support.

I feel fortunate to have met many wonderful PhD students and research fellows in the AMA

department. I would like to express my deep appreciation to my group members at PolyU: Dr. Xiao

Li, Dr. Qian Zhang, Dr. Chaoyu Liu, Dr. Qian Yin, Dr. Limin Ma, Dr. Yonghui Bo, Dr. Dianming

Hou, Dr. Shuyu Sun, Dr. Jianbo Cui, Dr. Yuze Zhang, Dr. Nan Zheng, Dr. Yaping Chen, Dr.

vi

Xuguang Yang, Dr. Caixia Nan, Dr. Jingyun Lv, Dr. Yifan Wei, Dr. Yunzhuo Guo, Dr. Wangbo

Luo, Mr. Qizhe Fan, Dr. Gaohang Chen, Miss Jiayi Duan, Mr. Yunzhuo Guo, Dr. Huiting Yang, Mr.

Yongchen Fan, Mr. Jingwen Dai, Miss Xin Wang, Miss Yuyan Chang, Mr. Shengtong Liang, Miss

Li Xia, Miss Yue Qian, and Mr. Guangshen Liu for their continuous support and camaraderie over

the past four years. I would also like to thank Dr. Jun Li and Dr. Yipei Chen from Huawei for their

valuable help and advice. Additionally, I am grateful to my old friends—Mr. Hongzhan Zhao, Ms.

Yingchao Xu, Miss Mingrui Li, Mr. Zheyuan Zhao, Mr. Chaoyi Cai, and Miss Yaping Dong—who

provided me with support and encouragement throughout the years. I truly appreciate their kindness

and friendship.

Finally, I would like to express my deep gratitude to my parents and family for their unwavering

love and patience. I am here to honor my grandma passing away in recent days, who has taken care

of me and always been proud of me for many years.

vii

Contents

1 INTRODUCTION 1

1.1 Notations of this thesis . 1

1.2 Existing CholeskyQR-type algorithms . 1

1.2.1 CholeskyQR2 . 2

1.2.2 Shifted CholeskyQR3 . 3

1.2.3 LU-CholeskyQR2 . 4

1.2.4 Randomized algorithms . 5

1.3 Theoretical results of the existing algorithms and some considerations 6

1.3.1 Theoretical results of the existing algorithms 7

1.3.2 Considerations of the existing algorithms . 7

1.4 Our contributions . 9

1.5 Some preliminaries for the theoretical analysis . 12

1.5.1 Deterministic rounding error analysis . 12

1.5.2 Probabilistic error analysis . 13

1.6 Outline of this thesis . 14

2 AN IMPROVED SHIFTED CHOLESKYQR BASED ON COLUMNS 15

2.1 ∥·∥c and its properties . 15

2.2 Theorems of the improved Shifted CholeskyQR3 . 17

2.3 Theoretical analysis of the improved Shifted CholeskyQR3 19

2.3.1 General settings and assumptions . 19

2.3.2 Algorithms . 20

2.3.3 Some lemmas for proving theorems . 20

2.3.4 Proof of Theorem 2.1 . 24

2.3.5 Proof of Theorem 2.2 . 26

2.3.6 Proof of Theorem 2.3 . 28

2.4 Numerical experiments . 31

2.4.1 Numerical examples . 32

2.4.2 Numerical stability of the algorithms . 33

2.4.3 Comparison between the theoretical bounds and real performances 37

2.4.4 κ2(Q) under different conditions . 38

2.4.5 CPU times of the algorithms . 39

viii

2.4.6 The improvement of s . 40

2.5 Conclusions . 41

3 SHIFTED CHOLESKYQR FOR SPARSE MATRICES 42

3.1 Our contributions and theoretical results . 42

3.1.1 Our new divisions of sparse matrices . 42

3.1.2 General settings and Shifted CholeskyQR3 for sparse matrices 43

3.1.3 Theoretical results of T1 matrices . 44

3.1.4 Theoretical results of T2 matrices . 45

3.2 Proof of Theorem 3.1-Theorem 3.4 . 46

3.2.1 Lemmas to prove Theorem 3.1-Theorem 3.3 matrices 46

3.2.2 Proof of Theorem 3.1 . 50

3.2.3 Proof of Theorem 3.2 . 53

3.2.4 Proof of Theorem 3.3 . 56

3.2.5 Proof of Theorem 3.4 . 56

3.3 Numerical experiments . 57

3.3.1 T1 matrices . 57

3.3.2 T2 matrices . 61

3.4 Conclusions . 64

4 PROBABILISTIC ERROR ANALYSIS OF CHOLESKYQR BASED ON COLUMNS 65

4.1 Probabilistic error analysis of CholeskyQR2 . 65

4.1.1 General settings . 65

4.1.2 Probabilistic error analysis of CholeskyQR2 . 66

4.1.3 Lemmas for proving Theorem 4.1 . 66

4.1.4 Proof of Theorem 4.1 . 69

4.2 Probabilistic error analysis for Shifted CholeskyQR3 72

4.2.1 General settings and algorithms . 73

4.2.2 Probabilistic error analysis of Shifted CholeskyQR3 73

4.2.3 Lemmas for proving Theorem 4.2 and Theorem 4.3 74

4.2.4 Proof of Theorem 4.2 . 76

4.2.5 Proof of Theorem 4.3 . 77

4.3 Numerical experiments . 81

4.3.1 Applicability and accuracy of Shifted CholeskyQR3 with the probabilistic s . . 82

4.3.2 Comparison between the theoretical bounds and real performances 84

ix

4.3.3 Improvements of ∥·∥c . 85

4.3.4 Robustness of Shifted CholeskyQR3 with the probabilistic s 86

4.4 Conclusions . 87

5 CONCLUSIONS AND FUTURE WORKS 88

x

List of Figures

xi

List of Tables

1.1 Upper bounds of κ2(X), orthogonality and residual for X ∈ Rm×n 7

1.2 Comparison of κ2(X) between the improved and the original s 9

1.3 Comparison of the upper bounds of residual between the improved and the original s . 9

1.4 Comparison of κ2(X) between the improved and the alternative s for T1 matrices . . . 10

1.5 Comparison of the upper bounds of ∥QR−X∥F between the improved and the alter-

native s for T1 matrices . 10

1.6 Comparison of κ2(X) of CholeskyQR2 between the deterministic and the probabilistic

analysis . 11

1.7 Comparison of the upper bounds of CholeskyQR2 between the deterministic and the

probabilistic analysis . 11

1.8 Comparison of κ2(X) of Shifted CholeskyQR3 between the improved and the proba-

bilistic s . 11

1.9 Comparison of the upper bounds of Shifted CholeskyQR3 between the improved and

the probabilistic s . 12

2.1 The specifications of our computer . 31

2.2 Orthogonality of the algorithms with κ2(X) varying when m = 2048 and n = 64 . . . 34

2.3 Residual of the algorithms with κ2(X) varying when m = 2048 and n = 64 35

2.4 Orthogonality of the algorithms with κ2(X) varying when m = 16384 and n = 1024 . 35

2.5 Residual of the algorithms with κ2(X) varying when m = 16384 and n = 1024 35

2.6 Orthogonality of the algorithm for the Hilbert matrix with different n 35

2.7 Residual of the algorithm for the Hilbert matrix with different n 35

2.8 Orthogonality of the algorithm for the arrowhead matrix when n = 64 35

2.9 Residual of the algorithm for the arrowhead matrix when n = 64 36

2.10 Orthogonality of all the algorithms with m varying when κ2(X) = 1012 and n = 64 . . 36

2.11 Residual of all the algorithms with m varying when κ2(X) = 1012 and n = 64 36

2.12 Orthogonality of all the algorithms with n varying when κ2(X) = 1012 and m = 2048 . 36

2.13 Residual of all the algorithms with n varying when κ2(X) = 1012 and m = 2048 36

2.14 Comparison of orthogonality with the improved s when κ2(X) = 1012 and n = 64 . . . 37

2.15 Comparison of orthogonality with the improved s when κ2(X) = 1012 and m = 2048 . 37

2.16 Comparison of residual with the improved s when κ2(X) = 1012 and n = 64 37

2.17 Comparison of residual with the improved s when κ2(X) = 1012 and m = 2048 37

xii

2.18 Comparison of κ2(X) with the improved s when κ2(X) = 1012 and n = 128 38

2.19 Comparison of κ2(X) with the improved s when κ2(X) = 1012 and m = 4096 38

2.20 κ2(Q) with κ2(X) varying with different s when m = 2048 and n = 64 39

2.21 κ2(Q) with m varying using different s when κ2(X) = 1012 and n = 64 39

2.22 κ2(Q) with n varying using different s when κ2(X) = 1012 and m = 2048 39

2.23 CPU time with m varying (in second) when κ2(X) = 1012 and n = 64 40

2.24 CPU time with n varying (in second) when κ2(X) = 1012 and m = 2048 40

2.25 l1 with m varying when κ2(X) = 1012 and n = 64 for X ∈ Rm×n based on SVD 41

2.26 l1 with n varying when κ2(X) = 1012 and m = 2048 for X ∈ Rm×n based on SVD . . 41

2.27 l1 with n varying for the Hilbert matrix X ∈ Rm×n with m = 10n 41

3.1 Shifted CholeskyQR3 with the alternative s for the medium-size X 58

3.2 Shifted CholeskyQR3 with the improved s for the medium-size X 58

3.3 Shifted CholeskyQR3 with the improved s for the medium-size U 58

3.4 Comparison of CPU time(s) with different s for the medium-size X 59

3.5 Shifted CholeskyQR3 with the alternative s for the large-size X 60

3.6 Shifted CholeskyQR3 with the improved s for the large-size X 60

3.7 Shifted CholeskyQR3 with the improved s for the large-size Ub 60

3.8 Comparison of CPU time(s) with different s for the large-size X 60

3.9 Shifted CholeskyQR3 with the alternative s for the medium-size X 62

3.10 Shifted CholeskyQR3 with the improved s for U . 62

3.11 Comparison of CPU time(s) with different s for the medium size X 62

3.12 Shifted CholeskyQR3 with the alternative s for the large-size X 63

3.13 Shifted CholeskyQR3 with the improved s for Ub . 63

3.14 Comparison of CPU time(s) with different s for the large-size X 64

4.1 Shifted CholeskyQR3 with the probabilistic s for X ∈ R1032×32 82

4.2 Shifted CholeskyQR3 with the improved s for X ∈ R1032×32 83

4.3 Shifted CholeskyQR3 with the probabilistic s for X ∈ R16384×1024 83

4.4 Shifted CholeskyQR3 with the improved s for X ∈ R16384×1024 83

4.5 Shifted CholeskyQR3 with the probabilistic s under different n 83

4.6 Shifted CholeskyQR3 with the probabilistic s under different m 83

4.7 Comparison of orthogonality with the probabilistic s when κ2(X) = 1012, n = 128 and

η = 8 . 84

xiii

4.8 Comparison of orthogonality with the probabilistic s when κ2(X) = 1012, m = 4096

and η = 8 . 84

4.9 Comparison of residual with the probabilistic s when κ2(X) = 1012, n = 128 and η = 8 84

4.10 Comparison of residual with the probabilistic s when κ2(X) = 1012, m = 4096 and η = 8 85

4.11 Comparison of κ2(X) with the probabilistic s when κ2(X) = 1012, n = 128 and η = 8 . 85

4.12 Comparison of κ2(X) with the probabilistic s when κ2(X) = 1012, m = 4096 and η = 8 85

4.13 l-values with different κ2(X) for Shifted CholeskyQR3 86

4.14 l-values with different n for Shifted CholeskyQR3 . 86

4.15 l-values with different m for Shifted CholeskyQR3 . 86

4.16 Times of success with different κ2(X) for Shifted CholeskyQR3 87

4.17 Times of success with different n for Shifted CholeskyQR3 87

4.18 Times of success with different m for Shifted CholeskyQR3 87

xiv

CHAPTER 1.

INTRODUCTION

QR factorization is one of the most important components of numerical linear algebra and is widely

used in both academia and industry. There are many illustrations regarding such an issue in the

existing works, see [18, 30, 36, 47, 53] for more details. Among all the various algorithms for QR

factorization, CholeskyQR has gained popularity in recent years due to its ability to balance efficiency

and accuracy. Different from other algorithms for QR factorization, CholeskyQR exclusively utilizes

BLAS3 operations and requires only simple reductions in parallel environments, which is a significant

advantage compared to other algorithms such as HouseholderQR, CGS (MGS), and TSQR [5, 12, 16,

25, 32, 50, 55].

This chapter is an introduction of this thesis. Notations used in this thesis are introduced in

Section 1.1. We show some existing CholeskyQR-type algorithms and their theoretical properties in

Section 1.2. Then, some comparisons and considerations are presented in Section 1.3, which illustrates

our purposes to improve the properties of CholeskyQR-type algorithms. We show our contributions

in Section 1.4 and the primary tools for analysis are in Section 1.5. In the end of this chapter, we put

an outline of this thesis in Section 1.6.

1.1 Notations of this thesis

In this thesis, all vectors and matrices are real. The notations∥·∥2 and∥·∥F denote the 2-norm and the

Frobenius norm of the matrix, respectively. The condition number κ2(·) utilized in this thesis refers

to the 2-norm condition number and is defined as

κ2(X) =
∥X∥2

σmin(X)
,

where ∥X∥2 equals to the largest singular value of X. σmin(X) denotes the smallest singular value of

matrix X. u is the machine precision and u = 2−53. For the input matrix X, |X| is the matrix whose

elements are all the absolute values of the elements of X.

1.2 Existing CholeskyQR-type algorithms

CholeskyQR is a novel algorithm which is primarily designed for the QR factorizaton of tall-skinny

matrices that are prevalent in the real problems of engineering. It is primarily designed for full rank

matrices. For X ∈ Rm×n with m ≥ n and rank(X)=n, the Gram matrix B is computed first through

1

X⊤X, and the upper-triangular R-factor is obtained through Cholesky factorization. The orthogonal

factor Q ∈ Rm×n can then be derived using Q = XR−1. The basic form of CholeskyQR is outlined in

Algorithm 1.

Algorithm 1: [Q,R] = CholeskyQR(X)

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: G = X⊤X,

2: R = Cholesky(B),

3: Q = XR−1.

In CholeskyQR-type algorithms, regarding the sizes of the matrices, we always define

mnu ≤ 1

64
, (1.1)

n(n+ 1)u ≤ 1

64
. (1.2)

Here, u is the machine precision and u = 2−53. It shows that CholeskyQR can deal with matrices

with millions of dimensions.

1.2.1 CholeskyQR2

Although with many advantages, Algorithm 1 exhibits certain limitations and is seldom used directly.

When considering the error of orthogonality, it is shown in [68] that∥∥∥Q⊤Q− I
∥∥∥
F
≤ 5

64
δ2, (1.3)

where

δ = 8κ2(X)
√

mnu+ n(n+ 1)u. (1.4)

Here, κ2(X) =
∥X∥2

σmin(X) is the condition number of X. ∥X∥2 equals to the largest singular value of X

while σmin(X) denotes the smallest one.

According to (1.3) and (1.4), the orthogonality error of CholeskyQR is proportional to (κ2(X))2.

Numerous numerical experiments indicate that CholeskyQR is numerically stable only when the input

X is very well-conditioned. Consequently, a new algorithm, named CholeskyQR2, has been developed

by performing two iterations of the CholeskyQR algorithm [22]. It is presented in Algorithm 2.

Algorithm 2: [Q,R] = CholeskyQR2(X)

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: [W,Y] = CholeskyQR(X),

2: [Q,Z] = CholeskyQR(W),

3: R = ZY.

2

In [68], it has been shown that compared to Algorithm 1, Algorithm 2 is numerically stable in both

orthogonality and residual. Rounding error analysis of CholeskyQR2 is shown below in Lemma 1.1

Lemma 1.1. For X ∈ Rm×n and [Q,R] = CholeskyQR2(X), with δ = 8κ2(X)
√
mnu+ n(n+ 1)u ≤

1, (1.1) and (1.2), we have ∥∥∥Q⊤Q− I
∥∥∥
F
≤ 6(mnu+ n(n+ 1)u), (1.5)

∥QR−X∥F ≤ 5n2√nu∥X∥2 . (1.6)

According to Lemma 1.1, CholeskyQR2 is numerically stable in terms of both orthogonality and

residual compared to CholeskyQR in Algorithm 1.

1.2.2 Shifted CholeskyQR3

When X is ill-conditioned, CholeskyQR2 may encounter numerical breakdown due to rounding er-

rors. To address this challenge, researchers have introduced an improved algorithm known as Shifted

CholeskyQR (SCholeskyQR), which is detailed in Algorithm 3 [21].

Algorithm 3: [Q,R] = SCholeskyQR(X)

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: G = X⊤X,

2: take s > 0,

3: R = Cholesky(B + sI),

4: Q = XR−1.

Shifted CholeskyQR is a superior algorithm in terms of applicability compared to CholeskyQR.

The concept behind the algorithm is straightforward. For an ill-conditioned matrix B ∈ Rn×n, the

addition of a scaled identity matrix reduces κ2(B+sI) and prevents numerical breakdown. To further

improve the numerical stability, CholeskyQR2 is performed subsequently, and a new algorithm called

Shifted CholeskyQR3 (SCholeskyQR3) has been developed, which is given in Algorithm 4.

Algorithm 4: [Q,R] = SCholeskyQR3(X)

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: [W,Y] = SCholeskyQR(X),

2: [Q,Z] = CholeskyQR2(W),

3: R = ZY.

For Shifted CholeskyQR and Shifted CholeskyQR3, some theoretical results are provided in [21].

They are shown below in Lemma 1.2-Lemma 1.4.

3

Lemma 1.2. For X ∈ Rm×n and [Q,R] = SCholeskyQR(X), with 11(mnu+ n(n+ 1)u)∥X∥22 ≤ s ≤
1

100∥X∥22 , κ2(X) ≤ 1
6n2u

, (1.1) and (1.2), we have∥∥∥Q⊤Q− I
∥∥∥
2
≤ 2, (1.7)

∥QR−X∥F ≤ 2n2u∥X∥2 . (1.8)

Lemma 1.3. For X ∈ Rm×n and [W,Y] = SCholeskyQR(X), with 11(mnu+ n(n+ 1)u)∥X∥22 ≤ s ≤
1

100∥X∥22, κ2(X) ≤ 1
6n2u

, (1.1) and (1.2), we have

κ2(W) ≤ 2
√
3 ·

√
1 + α(κ2(X))2. (1.9)

Here, α = s
∥X∥22

. When [Q,R] = SCholeskyQR3(X), if we take s = 11(mnu + n(n + 1)u)∥X∥22 and

κ2(X) is large enough, a sufficient condition for κ2(X) is

κ2(X) ≤ 1

96(mnu+ n(n+ 1)u)
. (1.10)

Lemma 1.4. For X ∈ Rm×n and [Q,R] = SCholeskyQR3(X), with s = 11(mnu + n(n + 1)u)∥X∥22,

(1.1), (1.2) and (1.10), we have∥∥∥Q⊤Q− I
∥∥∥
F
≤ 6(mnu+ n(n+ 1)u), (1.11)

∥QR−X∥F ≤ 15n2u∥X∥2 . (1.12)

In particular, Lemma 1.3 highlights one of the most important properties of Shifted CholeskyQR3.

It demonstrates that when s is within a certain interval, increasing s results in a larger value of

κ2(Q). Since CholeskyQR2, which follows Shifted CholeskyQR, may break down if κ2(Q) is large, the

selection of the shifted item s is crucial for Shifted CholeskyQR3. It cannot be too large, as this would

affect the applicability of Shifted CholeskyQR3, nor too small, as this could lead to the breakdown of

Shifted CholeskyQR. Therefore, the most important point of Shifted CholeskyQR3 is to pick a proper

s, which will greatly influence the properties of the algorithm.

1.2.3 LU-CholeskyQR2

Among all the deterministic CholeskyQR-type algorithms, LU-CholeskyQR [62] is particularly note-

worthy. It has the unique advantage of not imposing a restriction on κ2(X), which is crucial for

real-world applications in industry. LU-CholeskyQR combines LU factorization with CholeskyQR, as

shown in Algorithm 5. Here, L ∈ Rm×n is a unit tall-skinny lower triangular matrix, and U ∈ Rn×n

is an upper triangular matrix when X ∈ Rm×n is tall-skinny. A CholeskyQR step is performed after-

wards to form LU-CholeskyQR2, ensuring orthogonality, as detailed in Algorithm 6. There are also

some other works discussing CholeskyQR-type algorithms, see [69, 70].

4

Algorithm 5: [Q,R] = LU-CholeskyQR(X)

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: PX = LU,

2: G = L⊤L,

3: S = Cholesky(G),

4: R = SU,

5: Q = XR−1.

Algorithm 6: [Q,R] = LU-CholeskyQR2(X)

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: [W,Y] = LU-CholeskyQR(X),

2: [Q,Z] = CholeskyQR(W),

3: R = ZY.

Regarding LU-CholeskyQR2 in Algorithm 6, both (1.1) and (1.2) are required. Additionally, the

following assumptions concerning κ2(L) and κ2(U) are shown below.

8κ2(L)
√

mnu+ n(n+ 1)u ≤ 1, (1.13)

64n2u · κ2(L)κ2(U) ≤ 1. (1.14)

Under the assumptions stated above, we present rounding error analysis of LU-CholeskyQR2 [62]

in Lemma 1.5.

Lemma 1.5. For X ∈ Rm×n and [Q,R] = LU-CholeskyQR2(X), when (1.1), (1.2), (1.13) and (1.14)

are satisfied, we have ∥∥∥Q⊤Q− I
∥∥∥
2
≤ 6(mnu+ n(n+ 1)u), (1.15)

∥QR−X∥2 ≤ 4.09n2u∥X∥2 . (1.16)

According to Lemma 1.5, we find that LU-CholeskyQR2 is as stable as CholeskyQR2.

1.2.4 Randomized algorithms

In recent years, randomized numerical linear algebra [30, 47] has become a hot topic worldwide. A new

randomized technique called sketching [1] has been widely applied to various problems. The sketching

technique primarily aims to reduce computational costs by replacing the original large matrices with

alternative matrices of smaller sizes after some preconditioning steps. The sketching matrix is typically

5

chosen to be an ϵ-subspace embedding or a linear map to a lower-dimensional space, preserving

the inner products and norms of all vectors within the subspace up to a factor of
√
1 + ϵ, where

0 ≤ ϵ < 1. Several existing methods for sketching matrices include Gaussian Sketch, SRHT, and

Count Sketch [4, 42, 56, 57, 73]. Research on randomized CholeskyQR has also emerged. Y. Fan

and his collaborators [20] proposed the initial version of randomized CholeskyQR, while O. Balabanov

[3] provided a detailed analysis of CholeskyQR-type algorithms with various randomized strategies,

including sketching. A recent work by A. J. Higgins and his collaborators [31] introduced a novel

method called multi-sketching, which employs two different sketching steps consecutively. This work

developed a new algorithm called Randomized Householder QR(RHQR), utilizing HouseholderQR to

replace the original generation step of the R-factor in CholeskyQR to avoid numerical breakdown.

The multi-sketching technique is designed to accelerate the entire algorithm. The corresponding

algorithm is outlined in Algorithm 7. Here, Ω1 ∈ Rs1×m is the matrix for CountSketch while Ω2 ∈

Rs2×s1 is the matrix for Gaussian Sketch, with n ≤ s2 ≤ s1 ≤ 1. To ensure good orthogonality, a

CholeskyQR step is added afterwards, resulting in the Rand.Householder-Cholesky algorithm(RHC),

as shown in Algorithm 8. They provide a clear rounding error analysis of the algorithms with two

ϵ-subspace embeddings, and numerical experiments demonstrate that their Randomized Householder-

CholeskyQR is more efficient and numerically stable than the algorithms in [3].

Algorithm 7: [Q,R] = RHQR(X)

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: K = Ω2Ω1X,

2: [W,R] = HouseholderQR(K),

3: Q = XR−1.

Algorithm 8: [Q,R] = RHC(X)

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: [W,Y] = Randomized Householder QR(X)

2: [Q,Z] = CholeskyQR(W),

3: R = ZY.

1.3 Theoretical results of the existing algorithms and some considerations

According to the previous algorithms, we find that all the CholeskyQR-type algorithms are all in

the form of ’Preconditioning step+CholeskyQR/CholeskyQR2’. The primary purpose of this type of

structure is due to (1.3) and (1.4). If κ2(X) of the input matrix X for the last step of CholeskyQR is

6

very small, the whole algorithm can have good orthogonality. Otherwise, we need to put CholeskyQR2

after the preconditioning step to guarantee numerical stability. It is also easy to prove the numeri-

cal stability of residual for CholeskyQR and the corresponding preconditioning steps in the level of

’n2u∥X∥2’ if X ∈ Rm×n.

1.3.1 Theoretical results of the existing algorithms

In this section, we show the theoretical properties of some CholeskyQR-type algorithms. We mea-

sure the properties of these numerical algorithms from three perspectives, numerical stability, ap-

plicability and efficiency, which corresponds to the theoretical upper bounds of orthogonality and

residual(
∥∥∥Q⊤Q− I

∥∥∥
F

and ∥QR−X∥F), upper bounds of κ2(X) for the input matrix X ∈ Rm×n.

Although some randomized algorithms are introduced in Section 1.2.4, we focus on deterministic

algorithms in this thesis. The comparisons of the theoretical results are listed in Table 1.1.

Table 1.1: Upper bounds of κ2(X), orthogonality and residual for X ∈ Rm×n

Algorithms CholeskyQR2 SCholeskyQR3 LU-CholeskyQR2

κ2(X) 1

8
√

mnu+n(n+1)u

1
96(mnu+n(n+1)u) No requirements

Orthogonality 6(mnu+ n(n+ 1)u) 6(mnu+ n(n+ 1)u) 6.5(mnu+ n(n+ 1)u)

Residual 5n2√n∥X∥2 15n2u∥X∥2 4.09n2u∥X∥2

1.3.2 Considerations of the existing algorithms

Although CholeskyQR2 is numerical stable and the computational cost of CholeskyQR2 is about 2
3

of that of Shifted CholeskyQR3 according to Lemma 1.1, it is a very vulnerable algorithm for the

existence of Cholesky factorization in calculating the first R-factor Y in Algorithm 2. A sufficient

condition for Cholesky factorization here to work on is that W must be positive definite. However,

with the existence of the rounding errors in calculating the gram matrix W and Cholesky factorization,

W may not be positive definite if κ2(X) is large enough for the input matrix X, which will lead to

numerical breakdown in Cholesky factorization. Therefore, there is a sufficient condition of κ2(X)

for CholeskyQR2 according to Table 1.1. The primary target for the research regarding CholeskyQR-

type algorithms is improving its applicability. From this perspective, Shifted CholeskyQR3 can almost

’cover’ all the properties of CholeskyQR2 and deal with ill-conditioned cases with numerical stability,

see the comparison in Table 1.1 and Lemma 1.4. Therefore, the properties of Shifted CholeskyQR3

are primarily discussed in this thesis.

Regarding Shifted CholeskyQR3, we write the first two steps of Shifted CholeskyQR with error

7

matrices below.

G = X⊤X + EA, (1.17)

R⊤R = G+ EB + sI. (1.18)

In fact, the error bounds for ∥EA∥2 and ∥EB∥2 in (1.17) and (1.18) significantly influence the choice

of the shifted item s. In [21], the original s is set to be 10 times the sum of ∥EA∥2 and ∥EB∥2.

Previous researchers have used ∥X∥2 to bound the 2-norm of each column of X when estimating

∥EA∥2 and ∥EB∥2. However, in practice, both ∥EA∥2 and ∥EB∥2 tend to be overestimated. In most

cases, the 2-norm of each column of X can be significantly smaller than ∥X∥2. This overestimation

leads to a conservative choice of s, limiting the applicability of Shifted CholeskyQR3 for matrices X

with a large κ2(X). Therefore, one of our primary objectives is to select a smaller shifted item s

for Shifted CholeskyQR3 and to demonstrate that this improved s can ensure the numerical stability

of the algorithm. We aim to provide a more accurate error estimation for the residuals of Shifted

CholeskyQR3 theoretically. Such an alternative s improves the applicability of Shifted CholeskyQR3,

reflected in a better sufficient condition for κ2(X) to some extent.

Furthermore, the rounding error analysis of [21, 68] on CholeskyQR-type algorithms is primarily

based on deterministic models by Higham [32]. However, using these deterministic models may lead

to overestimating the norms of error matrices, especially ∥EA∥2 and ∥EB∥2 in (1.17) and (1.18). This

may result in a conservative s and poorer sufficient conditions for κ2(X) for Shifted CholeskyQR3. In

floating-point arithmetic, the norms of the error matrices rarely reach the upper bounds predicted by

deterministic models. Recently, randomized linear algebra has gained popularity, with several works

addressing probabilistic error analysis using the randomized models, see [10, 37, 74] and related ref-

erences. Many tools and conclusions regarding the randomized models for probabilistic error analysis

[11, 33, 35, 66, 67] have been developed, which can significantly improve the error analysis. In the con-

text of rounding error analysis for matrix multiplications, the randomized models have been provided

in [11] to provide smaller upper bounds for error estimations, see Section 1.5.2. Since the theoretical

results of CholeskyQR-type algorithms are primarily based on the estimations of some error matrices,

we can apply the randomized models to CholeskyQR-type algorithms to conduct new error analysis.

Such advancements can also improve various properties of these algorithms, including the shifted item

s in Shifted CholeskyQR3.

Generally speaking, all the existing algorithms and our previous thoughts are designed for QR

factorization of dense X. However, in many real-world problems such as numerical PDEs and their

applications in physics, chemistry, and astronomy, X is often large and sparse. Sparse matrices often

exhibit different properties compared to those of dense matrices. In recent years, there are many works

for the design of algorithms and the analysis of properties for sparse matrices, see [2, 13, 14, 23, 72, 73]

8

and their references. In CholeskyQR, it is meaningful for us to do analysis and explore the properties

of CholeskyQR-type algorithms for sparse matrices. Regarding sparsity, we aim to receive a new

perspective on CholeskyQR-type algorithms based on the structure of X. When the input matrix X

is sparse, it is possible for us to achieve a different and more accurate rounding error analysis based

on its structure, thus leading to a better shifted item s for Shifted CholeskyQR3.

1.4 Our contributions

Based on all our considerations before, we do some innovative works with some new techniques regard-

ing CholeskyQR. The primary target of us is to improve the preconditioning steps of CholeskyQR-type

algorithms, together with the theoretical analysis of the algorithms.

In Chapter 2, we define a new ∥·∥c in Definition 2.1 as ∥X∥c =
√
n∥X∥g for X ∈ Rm×n, where ∥·∥g

denotes the largest 2-norm of the columns of X. Some properties of ∥·∥c are shown in Section 2.1.

With ∥·∥c, we can take a smaller s for Shifted CholeskyQR3 as s = 11(mu + (n + 1)u)∥X∥2c and

construct the improved Shifted CholeskyQR (ISCholeskyQR) and improved Shifted CholeskyQR3

(ISCholeskyQR3) in Section 2.3.2 for the input matrix X ∈ Rm×n. Our rounding error analysis

demonstrates that this improved s based on∥X∥c can keep numerical stability of Shifted CholeskyQR3

as reflected in Theorem 2.3. Numerical experiments show that our improved Shifted CholeskyQR3

has better applicability compared to Shifted CholeskyQR3 with the original s [21] while achieving

numerical stability and efficiency comparable to those of the original algorithm. The comparisons

between the original Shifted CholeskyQR3 and our improved one are listed in Table 1.2 and Table 1.3.

Here, j is defined in (2.7). We discover the relationship between the column of X and CholeskyQR in

this chapter. The definition of∥·∥c provides us with a new perspective on CholeskyQR-type algorithms

and will be utilized in our subsequent research.

Table 1.2: Comparison of κ2(X) between the improved and the original s

s Sufficient condition of κ2(X) Upper bound of κ2(X)

11(mnu+ n(n+ 1)u)∥X∥22
1

96(mnu+n(n+1)u)
1

6n2u

11(mu+ (n+ 1)u)∥X∥2c
1

86j(m
√
nu+(n+1)

√
nu)

1
4.89jn

√
nu

Table 1.3: Comparison of the upper bounds of residual between the improved and the original s

s SCholeskyQR SCholeskyQR3

11(mnu+ n(n+ 1)u)∥X∥22 2n2u∥X∥2 15n2u∥X∥2
11(mu+ (n+ 1)u)∥X∥2c 1.6n

√
nu∥X∥c (6.57 · j√

n
+ 4.87)n2u∥X∥2

9

In Chapter 3, we combine the properties of sparse matrices with theoretical analysis, which is the

first to build connections between sparsity and rounding error analysis to the best our knowledge.

We introduce a new classification for the sparse X ∈ Rm×n based on the presence of dense columns,

dividing sparse matrices into T1 and T2 matrices. For Shifted CholeskyQR3, when the input matrix X

is sparse, we propose an alternative choice of s in (3.1) based on the structure and the element with the

largest absolute value ofX according to Definition 3.1. This approach differs significantly from those in

[21]. We prove that this alternative s can prevent numerical breakdown and ensure numerical stability

of Shifted CholeskyQR3 with proper element-norm conditions(ENCs) in Theorem 3.1 and Theorem 3.2.

For T1 matrices satisfying these ENCs, such an s and the corresponding sufficient condition of κ2(X)

are significantly better than those of our improved Shifted CholeskyQR3. The theoretical analysis

in this part is deeply tied to the properties of ∥·∥g as shown in Chapter 2. Numerical experiments

illustrate the properties of Shifted CholeskyQR3 for sparse matrices and confirm the effectiveness

of the improved s for T1 matrices satisfying proper ENCs. Additionally, Shifted CholeskyQR3 can

handle more ill-conditioned cases for T2 matrices compared to dense cases. Moreover, the efficiency of

Shifted CholeskyQR3 with our alternative s is comparable to that of the original s in Chapter 2 for

sparse matrices. The comparisons between the improved Shifted CholeskyQR3 and our alternative

for T1 matrices are listed in Table 1.4 and Table 1.5. Here, l, h and k are mentioned in Section 3.1.2

and Theorem 3.1. As far as we know, this work is the first to explore the connection between QR

factorization and sparse matrices and provide detailed theoretical analysis, which is very meaningful

in the research of sparse matrices and many real applications.

Table 1.4: Comparison of κ2(X) between the improved and the alternative s for T1 matrices

s Sufficient condition of κ2(X) Upper bound of κ2(X)

11(mu+ (n+ 1)u)∥X∥2c
1

86j(m
√
nu+(n+1)

√
nu)

1
4.89jn

√
nu

11(mu+ (n+ 1)u) · (vt1 + nt2)c
2 1

16
√
11nk·(mu+(n+1)u)h

1
4n2uhl

Table 1.5: Comparison of the upper bounds of∥QR−X∥F between the improved and the alternative

s for T1 matrices

s SCholeskyQR SCholeskyQR3

11(mu+ (n+ 1)u)∥X∥2c 1.6n
√
nu∥X∥c (6.57 · j√

n
+ 4.87)n2u∥X∥2

11(mu+ (n+ 1)u) · (vt1 + nt2)c
2 1.03hln2u∥X∥2 (2.19 + 3.4l)hn2u∥X∥2

We have already discussed the sparse cases which can lead to better error analysis and theoretical

results compared to our improved Shifted CholeskyQR3 in Chapter 3. In Chapter 4, we focus on

10

common cases again based on the randomized models in recent years, doing probabilistic error analysis

of CholeskyQR-type algorithms with such tools. We apply the randomized models in [33] to provide

probabilistic error analysis of CholeskyQR2 and Shifted CholeskyQR3 for the input matrix X ∈

Rm×n, which also utilizes ∥X∥c defined in Chapter 2. Specially, a new probabilistic s is also taken

in Theorem 4.3 for Shifted CholeskyQR3. We can get tighter upper bounds for both orthogonality

and residual in Theorem 4.1 and Theorem 4.3. Numerical experiments demonstrate that such a

probabilistic s can improve the applicability of Shifted CholeskyQR3 again compared to our work in

Chapter 2. We also show the robustness of Shifted CholeskyQR3 with such an s through extensive

and numerous experiments. The comparisons between the theoretical results of the deterministic and

probabilistic error analysis are listed in Table 1.6-Table 1.9. Here, j1, j2, j3, L and ϕ1(j1, j2, j3, n) are

defined in Section 4.1.1, Section 4.2.1 and Theorem 4.3. η is a positive constant in the randomized

models, which occurred in Section 1.5.2. Our work is the first to conduct probabilistic error analysis

for CholeskyQR-type algorithms. The combination of ∥·∥c and the randomized models in analysis

is distinct from other works regarding probabilistic error analysis. The utilization of ∥·∥c can also

minimize the influence of the constant η in the randomized models which are shown in Section 1.5.2.

Table 1.6: Comparison of κ2(X) of CholeskyQR2 between the deterministic and the probabilistic

analysis

Type of analysis Sufficient condition of κ2(X)

Deterministic 1

8
√

mnu+n(n+1)u

Probabilistic 1

8j1
√

η(
√
mu+

√
n+1u)

Table 1.7: Comparison of the upper bounds of CholeskyQR2 between the deterministic and the

probabilistic analysis

Type of analysis
∥∥∥Q⊤Q− I

∥∥∥
F

∥QR−X∥F

Deterministic 6(mnu+ n(n+ 1)u) 5n2√nu∥X∥2
Probabilistic 6η · j22(

√
mu+

√
n+ 1u) (1.2j1 + 1.32j2 + 1.32 · j1j2√

n
)η · nu∥X∥2

Table 1.8: Comparison of κ2(X) of Shifted CholeskyQR3 between the improved and the probabilistic

s

s Sufficient condition of κ2(X) Upper bound of κ2(X)

11(mu+ (n+ 1)u)∥X∥2c
1

86j(m
√
nu+(n+1)

√
nu)

1
4.89jn

√
nu

11η(
√
mu+

√
n+ 1u)∥X∥2c L 1

4.89j1·ηnu

11

Table 1.9: Comparison of the upper bounds of Shifted CholeskyQR3 between the improved and the

probabilistic s

s
∥∥∥Q⊤Q− I

∥∥∥
F

∥QR−X∥F

11(mu+ (n+ 1)u)∥X∥2c 6(mnu+ n(n+ 1)u) (6.57p+ 4.87)n2u∥X∥2
11η(

√
mu+

√
n+ 1u)∥X∥2c 6η · j23(

√
mu+

√
n+ 1u) ϕ1(j1, j2, j3, n)η · nu∥X∥2

1.5 Some preliminaries for the theoretical analysis

Before presenting detailed theoretical analysis of CholeskyQR-type algorithms in this thesis, we in-

troduce some preliminaries related to deterministic rounding error analysis and probabilistic error

analysis in this section. They are widely used in Chapter 2-Chapter 4.

1.5.1 Deterministic rounding error analysis

In the beginning of this section, we show the following classical model for floating-point arithmetic

from [32].

fl(a op b) = (a op b)(1 + δ), |δ| ≤ u, op ∈ {+,−,×, /,
√
}. (1.19)

Here, fl(·) denotes the computed value in floating-point arithmetic. This model holds for IEEE

arithmetic and the IEEE standard even requires that fl(a op b) be the correctly rounded (to

nearest) value of a op b. We will refer to δ as the rounding error in the operation, though it is

perhaps more common to describe the absolute error a op b− fl(a op b) in this way.

This thesis primarily focuses on rounding error analysis originating from (1.19). In the following,

we show some fundamental lemmas of deterministic rounding error analysis [25, 32], which are widely

used in the error estimations of numerical linear algebra.

Lemma 1.6. If A,B ∈ Rm×n, then

σmin(A+B) ≥ σmin(A)−∥B∥2 .

Lemma 1.7. For A ∈ Rm×n, B ∈ Rn×p, the error in computing the matrix product AB in floating-

point arithmetic is bounded by ∣∣AB − fl(AB)
∣∣ ≤ γn|A||B| .

Here, |A| is the matrix whose (i, j) element is
∣∣aij∣∣ and

γn :=
nu

1− nu
≤ 1.02nu.

12

Lemma 1.8. If Cholesky factorization applied to the symmetric positive definite A ∈ Rn×n runs to

completion, then the computed factor R ∈ Rn×n satisfies

R⊤R = A+∆A, |∆A| ≤ γn+1

∣∣∣R⊤
∣∣∣|R| .

Lemma 1.9. Let the triangular system Tx = b, where T ∈ Rn×n is non-singular, be solved by

institution with any ordering. Then the computed solution x satisfies

(T +∆T)x = b, |∆T | ≤ γn|R| .

To learn more about matrix perturbations, readers can refer to [38, 51, 58] for more details.

1.5.2 Probabilistic error analysis

In this section, we introduce the probabilistic error bounds in the probabilistic techniques and present

the following lemmas related to probabilistic error analysis. We show the probabilistic model of

rounding errors [33] first.

Lemma 1.10. In the computation of interest, the quantities δ in (1.19) associated with every pair of

operands are independent random variables of mean zero.

Before showing the lemmas of probabilistic error analysis, we define

P (η) = 1− 2 exp(−η2(1− u)2

2
), (1.20)

Q(η, n) = 1− n(1− P (η)), (1.21)

γ̃n = exp(η
√
nu+

nu2

1− u
)− 1. (1.22)

Here, η is a positive constant. From (1.22), we can find that when η
√
nu is small and close to 0,

γ̃n ≈ 1.02η
√
nu. This setting is used in the following of this work. Below, we present several lemmas

from [33] for probabilistic error analysis, which corresponds to Lemma 1.7-Lemma 1.9.

Lemma 1.11. For A ∈ Rm×n and B ∈ Rn×p, under Lemma 1.10, the error in computing the matrix

product C = AB in floating-point arithmetic satisfies∣∣AB − fl(AB)
∣∣ ≤ γ̃n(η)|A||B| ,

with probability at least Q(η,mnp).

Lemma 1.12. If Cholesky factorization applied to the symmetric positive definite matrix A ∈ Rn×n

runs to completion, under Lemma 1.10, the computed factor R ∈ Rn×n satisfies

R⊤R = A+∆A, |∆R| ≤ γ̃n+1(η)
∣∣∣R⊤

∣∣∣|R| ,

with probability at least Q(η, n
3

6 + n2

2 + n
3).

13

Lemma 1.13. Let the triangular system Tx = b, where T ∈ Rn×n is non-singular, be solved by

institution with any ordering. Under Lemma 1.10, the computed solution x satisfies

(T +∆T)x = b, |∆T | ≤ γ̃n(η)|T | ,

with probability at least Q(η, n(n+1)
2).

1.6 Outline of this thesis

The remainder of this thesis is organized as follows. In Chapter 2, we introduce and analyze the

properties of the improved Shifted CholeskyQR based on the new matrix norm∥·∥c. Chapter 3 focuses

on Shifted CholeskyQR for sparse matrices with a new division of sparse matrices based on the

presence of dense columns. In Chapter 4, we show the probabilistic error analysis of CholeskyQR-type

algorithms with ∥·∥c. We show the conclusion of this thesis and list some potential directions for our

future work in Chapter 5. The content of this thesis is based on several existing articles, including

[19, 27, 29].

14

CHAPTER 2.

AN IMPROVED SHIFTED CHOLESKYQR BASED ON

COLUMNS

In this chapter, we focus on taking an optimal choice of the shifted item s for Shifted CholeskyQR3.

We introduce a new matrix norm∥X∥c for the input matrix X ∈ Rm×n, which is based on the column

properties of the input matrix. Thus, we can take an improved s with ∥X∥c. We show that such

an s can improve the applicability of Shifted CholeskyQR3 while maintaining its numerical stability

and efficiency from both theoretical analysis and numerical experiments. This chapter is organized as

follows. In Section 2.1, we present the definition of∥·∥c and some of its properties. Section 2.2 outlines

the primary theorems of the improved Shifted CholeskyQR3. The theoretical analysis of the improved

Shifted CholeskyQR3 are detailed in Section 2.3, which serves as the key contribution of this chapter.

Furthermore, Section 2.4 presents numerical results of the improved Shifted CHoleskyQR3 and the

comparison between our new algorithm and the existing algorithms. Section 2.5 is a summary of this

chapter.

2.1 ∥·∥c and its properties

In this section, we introduce a new matrix norm ∥·∥c. Before introducing ∥·∥c, we take consideration

of the largest 2-norm among all the columns of X, which is defined as ∥X∥g in Definition 2.1.

Definition 2.1. For X = [X1, X2, · · ·Xn−1, Xn] ∈ Rm×n,

∥X∥g := max
1≤j≤n

∥∥Xj

∥∥
2
, (2.1)

where

∥∥Xj

∥∥
2
=

√
x21,j + x22,j + + x2m−1,j + x2m,j .

In the following, we present several properties of ∥X∥g of the matrix, which will be used in the

theoretical analysis of this thesis.

Lemma 2.1. For X ∈ Rm×n, we have

∥X∥g ≤∥X∥2 ≤∥X∥F .

Proof. The left inequality is based on the property of the singular values of the matrix. The right

inequality is obvious.

15

Lemma 2.2. For X,Y ∈ Rm×n, we have

∥X + Y ∥g ≤∥X∥g +∥Y ∥g . (2.2)

Proof. Based on Definition 2.1 and the triangular inequality of the norms of vectors, we can easily get

(2.2).

Lemma 2.3. For X ∈ Rm×p and Y ∈ Rp×n, we have

∥XY ∥g ≤∥X∥2∥Y ∥g , ∥XY ∥g ≤∥X∥F ∥Y ∥g . (2.3)

Proof. Regarding ∥XY ∥g, with Definition 2.1, we have

∥XY ∥g ≤ max(∥XY1∥2 ,∥XY2∥2 , · · · ,∥XYn∥2)

≤ max(∥X∥2∥Y1∥2 ,∥X∥2∥Y2∥2 , · · · ,∥X∥2∥Yn∥2)

≤∥X∥2 ·max(∥Y1∥2 ,∥Y2∥2 , · · · ,∥Yn∥2)

≤∥X∥2∥Y ∥g .

Here, the first inequality of (2.3) is received. Since∥X∥2 ≤∥X∥F , it is easy to get the second inequality

of (2.3).

Though ∥·∥g is a matrix norm, it is not sub-multiplicative. With ∥·∥g, we introduce a new ∥·∥c in

Definition 2.2.

Definition 2.2. When X ∈ Rm×n, we define ∥X∥c as

∥X∥c =
√
n∥X∥g .

With Definition 2.2, we prove that ∥X∥c is a matrix norm in Lemma 2.4.

Lemma 2.4. For X ∈ Rm×n, ∥X∥c is a matrix norm.

Proof. The non-negativity of ∥X∥c when X ∈ Rm×n is clear according to Definition 2.1. For X,

Y ∈ Rm×n, with (2.2), we can get the triangular inequality

√
n∥X + Y ∥g ≤

√
n(∥X∥g +∥Y ∥g). (2.4)

For X ∈ Rm×n and Y ∈ Rn×p, with (2.3), we can have

√
p∥XY ∥g ≤ √

p∥X∥F ∥Y ∥g

≤ (
√
n∥X∥g) · (

√
p∥Y ∥g).

(2.5)

Based on (2.4) and (2.5), ∥X∥c is a matrix norm.

16

For ∥·∥c, we show the relationship between ∥·∥c and other matrix norms.

Lemma 2.5. For X ∈ Rm×n, we have

∥X∥2 ≤∥X∥F ≤∥X∥c ≤
√
n∥X∥2 . (2.6)

Proof. (2.6) is easy to get with Definition 2.2 and Lemma 2.1.

In this thesis, we use ∥·∥c to improve the properties of Shifted CholeskyQR3. ∥·∥g is also used in

some steps of theoretical analysis.

2.2 Theorems of the improved Shifted CholeskyQR3

With ∥·∥c, we can estimate ∥EA∥2 and ∥EB∥2 with tighter upper bounds based on ∥X∥c for the input

matrix X. A smaller s with ∥X∥c can be taken for Shifted CholeskyQR3. Regarding ∥X∥c, we define

a constant j as

j =
∥X∥c
∥X∥2

. (2.7)

Here, 1 ≤ j ≤
√
n. j is taken for the comparison of residual with ∥·∥2. We present the follow-

ing theorems related to the improved Shifted CholeskyQR (ISCholeskyQR) and improved Shifted

CholeskyQR3 (ISCholeskyQR3).

Theorem 2.1 (Rounding error analysis of the improved Shifted CholeskyQR). For X ∈ Rm×n and

[Q,R] = ISCholeskyQR(X), with 11(mu + (n + 1)u)∥X∥2c ≤ s ≤ 1
100n∥X∥2c and κ2(X) ≤ 1

4.89jn
√
nu

,

we have ∥∥∥Q⊤Q− I
∥∥∥
2
≤ 1.6, (2.8)

∥QR−X∥F ≤ 1.67jn
√
nu∥X∥2 . (2.9)

Theorem 2.2 (The relationship between κ2(X) and κ2(Q) for the improved Shifted CholeskyQR).

For X ∈ Rm×n and [W,Y] = ISCholeskyQR(X), with 11(mu + (n + 1)u)∥X∥2c ≤ s ≤ 1
100n∥X∥2c and

κ2(X) ≤ 1
4.89jn

√
nu

, we have

κ2(W) ≤ 3.24
√
1 + t(κ2(X))2. (2.10)

Here, we have t = s
∥X∥22

≤ 1
100 . When [Q,R] = ISCholeskyQR3(X), if we take s = 11(mu + (n +

1)u)∥X∥2c and κ2(X) is large enough, a sufficient condition for κ2(X) is

κ2(X) ≤ 1

86j(m
√
nu+ (n+ 1)

√
nu)

≤ 1

4.89jn
√
nu

.

(2.11)

17

Theorem 2.3 (Rounding error analysis of the improved Shifted CholeskyQR3). For X ∈ Rm×n and

[Q,R] = ISCholeskyQR3(X), with s = 11(mu+ (n+ 1)u)∥X∥2c and (2.11), we have∥∥∥Q⊤Q− I
∥∥∥
F
≤ 6(mnu+ n(n+ 1)u), (2.12)

∥QR−X∥F ≤ (6.57 · j√
n
+ 4.87)n2u∥X∥2 . (2.13)

Theorem 2.1-Theorem 2.3 correspond to Lemma 1.2-Lemma 1.4, respectively, which are proved in

Section 2.3.4-Section 2.3.6. These theorems show that the improved Shifted CholeskyQR3 has a better

sufficient condition of κ2(X) compared to the original one in [21]. Consequently, the improved Shifted

CholeskyQR3 can effectively handle more ill-conditioned X, as shown in the numerical experiments

in Section 3.3. The properties of the Y -factor can also be described by the ∥X∥c, which will loosen

the upper bound of κ2(X). From a theoretical perspective, we prove the numerical stability of the

improved Shifted CholeskyQR3 in Section 2.3 and provide tighter theoretical upper bounds of the

residual ∥QR−X∥F using the properties of ∥X∥c compared to the original one in [21]. This provides

new insights into the problem of rounding error analysis. The definition of ∥·∥g and ∥·∥c shows the

connection between CholeskyQR-type algorithms and the column properties of the input matrix.

Similar definitions regarding the largest or smallest norm among the columns or the rows of a matrix

is widely used in many other problems, such as some methods for low-rank approximation and matrix

factorization [8, 26], together with strategies for some iteration methods, e.g., Randomized Kaczmarz

method [61].

Defining∥·∥c and∥·∥g offers several advantages. ∥·∥c is a more accurate approach for researchers to

estimate∥·∥F , as shown in (2.6). In many cases, when the size of X is large, e.g., m > 105 or n > 104,

X tends to be sparse for storage efficiency. In such scenarios, calculating the norms of the matrix can

be computationally expensive. The properties of ∥·∥g allow us to select an s based on key elements of

X without the need to compute the norms of the entire large matrix. Furthermore,∥·∥g enables better

utilization of the matrix structure and the inherent properties of its elements, while ∥·∥2 primarily

highlights the general characteristics of the matrix. We plan to leverage these properties for further

exploration of CholeskyQR-type algorithms in our future works. In other words, the definition of∥·∥g
offers a novel approach to rounding error analysis for matrices, based on their structures and elements.

In Chapter 3, we utilize the properties of ∥·∥g to conduct an error analysis for Shifted CholeskyQR3

in sparse cases. Although this perspective is not directly evident from numerical experiments in this

chapter, it represents an innovative advancement compared to existing results.

18

2.3 Theoretical analysis of the improved Shifted CholeskyQR3

In this section, we provide the theoretical analysis of the improved Shifted CholeskyQR3 with an s

based on∥·∥c of the input X ∈ Rm×n. In this section, we present the relevant settings and lemmas for

the improved Shifted CholeskyQR3, and we prove Theorem 2.1-Theorem 2.3 theoretically.

2.3.1 General settings and assumptions

Given the presence of rounding errors at each step of the algorithm, we express the first Shifted

CholeskyQR of Algorithm 4 with error matrices as follows.

G = X⊤X + EA, (2.14)

Y ⊤Y = G+ sI + EB, (2.15)

w⊤
i = x⊤i (Y + EY i)

−1, (2.16)

WY = X + EX . (2.17)

We let w⊤
i and x⊤i represent the i-th rows of w and Q respectively. The error matrix EA in (2.14)

denotes the discrepancy generated when calculating the Gram matrix X⊤X. Similarly, EB in (2.15)

represents the error matrix after performing Cholesky factorization on G with a shifted item. Since

Y may be non-invertible, the w⊤
i can be solved by solving the linear system (Y ⊤ + (∆Yi)

⊤)(w⊤
i)

⊤ =

(x⊤i)
⊤, that is, the transpose of (2.16). We do not write this step into the form of the whole matrices

because each ∆Yi depends on Y and x⊤i , where EY i denotes the rounding error for the Y -factor when

calculating w⊤
i . In spite of this, ∆Yi has an uniform upper bound according to Lemma 1.9. If we

write the last step of Algorithm 3 without Y −1, the general error matrix of QR factorization is given

by EX in (2.17). A crucial aspect of the subsequent analysis is establishing connections between EX

and EY i.

Under (2.1), we provide a new interval of the shifted item s based on∥X∥c and∥X∥g. If X ∈ Rm×n,

except (1.1) and (1.2), we have the following settings.

4.89jn
√
nu · κ2(X) ≤ 1, (2.18)

11(mu+ (n+ 1)u)∥X∥2c ≤ s ≤ 1

100n
∥X∥2c . (2.19)

Here, j is defined in (2.7). We observe that, compared to the original Shifted CholeskyQR based on

∥X∥2, the range of κ2(X) expands with a constant j related to n as indicated in (2.18). Further-

more, (2.19) demonstrates that the new s is still constrained by a relative large upper bound. The

applicability of this new s can be established using a method similar to those in [15, 52, 71].

19

2.3.2 Algorithms

In this section, we present the improved Shifted CholeskyQR (ISCholeskyQR) and the improved

Shifted CholeskyQR3 (ISCholeskyQR3). They are detailed in Algorithm 9 and Algorithm 10, respec-

tively.

Algorithm 9: [Q,R] = ISCholeskyQR(X)

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: calculate ∥X∥c ,

2: take s = 11(mu+ (n+ 1)u)∥X∥2c ,

3: [Q,R] = SCholeskyQR(X).

Algorithm 10: [Q,R] = ISCholeskyQR3(X)

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: calculate ∥X∥c ,

2: take s = 11(mu+ (n+ 1)u)∥X∥2c ,

3: [Q,R] = SCholeskyQR3(X).

2.3.3 Some lemmas for proving theorems

To prove Theorem 2.1-Theorem 2.3, we require the following lemmas. These theoretical results re-

semble those in [21] and their proofs closely follow those of [21]. However, by utilizing the definition

of the ∥·∥c and its properties, we can improve many upper bounds of the algorithm. We will discuss

these improvements in detail below.

Lemma 2.6. For EA and EB in (2.14) and (2.15), if (2.19) is satisfied, we have

∥EA∥2 ≤ 1.1mu∥X∥2c , (2.20)

∥EB∥2 ≤ 1.1(n+ 1)u∥X∥2c . (2.21)

Proof. In this part, we aim to estimate ∥EA∥2 and ∥EB∥2 using ∥X∥c instead of ∥X∥2. Although our

analysis follows a similar approach to that in [21, 68], our new definitions of ∥·∥c and ∥·∥g allow us to

provide improved analysis for error matrices.

We can estimate ∥EA∥F first since ∥EA∥2 is bounded by ∥EA∥F . With Lemma 1.7 and (2.14), we

have

G = fl(X⊤X).

20

Therefore, we have

|EA| =
∣∣∣G−X⊤X

∣∣∣
≤ γm

∣∣∣X⊤
∣∣∣|X| .

(2.22)

With (2.22), for EAij which denotes the element of EA in the i-th row and the j-th column, we have∣∣EAij

∣∣ ≤ γm|Xi|
∣∣Xj

∣∣ . (2.23)

Here, Xi denotes the i-th column of X. We combine (2.23) with (2.1) and have∣∣EAij

∣∣ ≤ γm∥X∥2g . (2.24)

Since we have

∥EA∥F =

√√√√ n∑
i=1

n∑
j=1

(
∣∣EAij

∣∣)2,
with (2.24), we can bound ∥EA∥2 as

∥EA∥2 ≤
∥∥|EA|

∥∥
F

≤ γm

√√√√ n∑
i=1

n∑
j=1

(
∣∣EAij

∣∣)2
≤ γmn∥X∥2g

≤ 1.1mnu∥X∥2g

= 1.1mu∥X∥2c .

Then, (2.20) is proved. (2.20) is a more accurate estimation of ∥EA∥2 compared to that in [21, 68]

based on Lemma 2.1.

When estimating ∥EB∥F , we focus on (2.15). We use the same idea as that in [21, 68] for this

estimation. With (2.1), we have

∥Y ∥2F =
∥∥|Y |

∥∥2
F

≤ n∥Y ∥2g .
(2.25)

Based on the properties of Cholesky factorization and the structure of the algorithm, we find that the

square of the ∥·∥g of the matrix corresponds to the largest entry on the diagonal of the Gram matrix.

Using Lemma 1.8, (2.14), (2.15) and (2.25), we can get

∥EB∥2 ≤
∥∥|EB|

∥∥
F

≤ γn+1

∥∥|Y |
∥∥2
F

≤ γn+1 · n∥Y ∥2g

≤ γn+1 · n(∥X∥2g + s+∥EA∥2 +∥EB∥2).

(2.26)

21

With (1.1), (1.2), (2.19), (2.20) and (2.26), we can bound ∥EB∥2 as

∥EB∥2 ≤
γn+1n(1 + γmn+ t)

1− γn+1n
∥X∥2g

≤ 1.02(n+ 1)u · n(1 + 1.1mu · n+ 0.01)

1− 1.02(n+ 1)u · n
∥X∥2g

≤
1.02 · n(n+ 1)u · (1 + 1.1 · 1

64 + 0.01)

1− 1.02
64

∥X∥2g

≤ 1.1n(n+ 1)u∥X∥2g

= 1.1(n+ 1)u∥X∥2c .

(2.21) is proved. Here, we take t = s
∥X∥22

≤ 0.01 based on (2.7) and (2.19). In all, Lemma 2.6 is

proved.

Remark 2.1. The last step of (2.26) relies on Lemma 2.2 and Lemma 2.1. While the approach for

estimating∥EB∥2 parallels that in [21, 68], we utilize the relationships between∥·∥2 and∥·∥g established

in Lemma 2.1, which derive from a distinctly different perspective on the norms of matrices compared

to the existing works about CholeskyQR-type algorithms.

Lemma 2.7. For Y −1 and XY −1 from (2.16), when (2.19) is satisfied, we have∥∥∥Y −1
∥∥∥
2
≤ 1√

(σmin(X))2 + 0.9s
, (2.27)∥∥∥XY −1

∥∥∥
2
≤ 1.5. (2.28)

Proof. With Lemma 1.6, (2.14) and (2.15), we can get

(σmin(Y))2 ≥ (σmin(X))2 + s−∥EA∥2 −∥EB∥2 . (2.29)

According to (2.19)-(2.21), it is easy to see that

∥EA∥2 +∥EB∥2 ≤ 1.1(mnu+ n(n+ 1)u)∥X∥2g

≤ 0.1s.
(2.30)

Therefore, we put (2.30) into (2.29) and we can have

(σmin(Y))2 ≥ σmin(X)2 + 0.9s. (2.31)

With (2.31), (2.27) holds. Regarding
∥∥XY −1

∥∥
2
, based on (2.14), (2.15), (2.30) and (2.31), we can get∥∥∥XY −1

∥∥∥
2
≤

√
1 +

∥∥Y −1
∥∥2
2
(s+∥EA∥2 +∥EB∥2)

≤

√
1 +

1.1s

(σmin(X))2 + 0.9s

≤
√
1 +

1.1

0.9

≤ 1.5.

(2.28) holds.

22

Lemma 2.8. For EY i from (2.16), when (2.19) is satisfied, we have

∥EY i∥2 ≤ 1.03nu∥X∥c . (2.32)

Proof. The steps to get (2.32) are similar to those in [21]. However, we can get a tighter bound of

∥EY i∥2 with ∥X∥c. For 1 ≤ i ≤ m, based on Lemma 1.9 and Definition 2.1, we have

∥EY i∥2 ≤∥EY i∥F

≤ γn ·∥Y ∥F

≤ 1.02n
√
nu∥Y ∥g .

(2.33)

With (2.14), (2.15) and (2.19), we obtain

∥Y ∥2g ≤∥X∥2g + s+ (∥EA∥2 +∥EB∥2)

≤ 1.011∥X∥2g .
(2.34)

With (2.34), it is easy to see that

∥Y ∥g ≤ 1.006∥X∥g . (2.35)

Therefore, we put (2.35) into (2.33) and we can get(2.32). Lemma 2.8 is proved.

Lemma 2.9. For EX from (2.17), when (2.19) is satisfied, we have

∥EX∥2 ≤
1.15nu∥X∥2c√

(σmin(X))2 + 0.9s
. (2.36)

Proof. For Shifted CholeskyQR, Y will not always be invertible due to errors in numerical computa-

tions. Therefore, we estimate this by examining each row. Similar to the approach in [21], we can

express (2.16) as

w⊤
i = x⊤i (Y + EY i)

−1

= x⊤i (I + Y −1EY i)
−1Y −1.

(2.37)

When we define

(I + Y −1Ei)
−1 = I + θi, (2.38)

where

θi :=
∞∑
j=1

(−Y −1EY i)
j , (2.39)

based on (2.16) and (2.17), we can have

E⊤
Xi = x⊤i θi (2.40)

23

which is the i-th row of EX . Based on (1.2), (2.19), (2.27) and (2.32), we can bound
∥∥Y −1EY i

∥∥
2
as∥∥∥Y −1EY i

∥∥∥
2
≤
∥∥∥Y −1

∥∥∥
2
∥EY i∥2

≤
1.03nu∥X∥c√

(σmin(X))2 + 0.9s

≤
1.03nu∥X∥c√

0.9s

≤
1.03nu∥X∥c√

9.9(mu+ (n+ 1)u∥X∥2c

≤
1.03nu∥X∥c√

9.9(n+ 1)u∥X∥2c

≤ 0.35 ·
√
nu

≤ 0.1.

(2.41)

Putting (2.27), (2.32), (2.41) into (3.35) and we have

∥θi∥2 ≤
∞∑
j=1

(
∥∥∥Y −1

∥∥∥
2
∥EY i∥2)

j

=

∥∥Y −1
∥∥
2
∥EY i∥2

1−
∥∥Y −1

∥∥
2
∥EY i∥2

≤ 1

0.9
·

1.03nu∥X∥c√
(σmin(X))2 + 0.9s

≤
1.15nu∥X∥c√

(σmin(X))2 + 0.9s
.

(2.42)

We sum all the items of (2.40), together with Lemma 2.5 and (2.42), and we can have

∥EX∥2 ≤∥EX∥F

≤∥X∥F ∥θi∥2

≤
1.15nu∥X∥2c√

(σmin(X))2 + 0.9s
.

Therefore, Lemma 2.9 is proved.

Remark 2.2. The derivations of Lemma 2.6-Lemma 2.9 utilize the properties of ∥·∥c. We can get

sharper upper bounds compared to those in [21]. This shows that Shifted CholeskyQR can be analyzed

from the column of the input matrix X. The calculation of the Gram matrix and the existence of

Cholesky factorization make it possible for us to improve the algorithm from this perspective.

2.3.4 Proof of Theorem 2.1

Proof. Using the previous lemmas in Section 2.3.3, we begin to estimate the orthogonality and residual

of our improved Shifted CholeskyQR. The proof of Theorem 2.1 is similar to that in [21]. We aim to

24

demonstrate that comparable results hold, even with our enhanced bounds in the previous lemmas

discussed in Section 2.3.3.

First, we consider the orthogonality. Based on (2.17), we can get

W⊤W = Y −⊤(X + EX)⊤(X + EX)Y −1

= Y −⊤X⊤XY −1 + Y −⊤X⊤EXY −1

+ Y −⊤E⊤
XXY −1 + Y −⊤E⊤

XEXY −1

= I − Y −⊤(sI + EA + EB)Y
−1 + (XY −1)⊤EXY −1

+ Y −⊤E⊤
X(XY −1) + Y −⊤E⊤

XEXY −1.

(2.43)

With (2.43), we have∥∥∥W⊤W − I
∥∥∥
2
≤
∥∥∥Y −1

∥∥∥2
2
(∥EA∥2 +∥EB∥2 + s) + 2

∥∥∥Y −1
∥∥∥
2

∥∥∥XY −1
∥∥∥
2
∥EX∥2

+
∥∥∥Y −1

∥∥∥2
2
∥EX∥22 .

(2.44)

With (2.27) and (2.30), we can get∥∥∥Y −1
∥∥∥2
2
(∥EA∥2 +∥EB∥2 + s) ≤ 1.1s

(σmin(X))2 + 0.9s

≤ 11

9

≤ 1.23.

(2.45)

Based on (2.19), (2.27), (2.28) and (2.36), we can obtain

2
∥∥∥Y −1

∥∥∥
2

∥∥∥XY −1
∥∥∥
2
∥EX∥2 ≤ 2 · 1√

(σmin(X))2 + 0.9s
· 1.5 ·

1.15nu∥X∥2c√
(σmin(X))2 + 0.9s

≤
3.45nu∥X∥2c

(σmin(X))2 + 0.9s

≤
3.45
11 · s
0.9s

≤ 0.35.

(2.46)

With (2.27) and (2.36), we have∥∥∥Y −1
∥∥∥2
2
∥EX∥22 ≤

1

(σmin(X))2 + 0.9s
·

(1.15nu∥X∥2c)2

(σmin(X))2 + 0.9s

≤
(3.4511 · s)2

(0.9s)2

≤ 0.02.

(2.47)

We put (2.45)-(2.47) into (2.44) and we can get∥∥∥W⊤W − I
∥∥∥
2
≤ 1.23 + 0.35 + 0.02

≤ 1.6.

25

Therefore, (2.8) is proved.

From (2.8), it is easy to see that

∥W∥2 ≤ 1.62. (2.48)

For the residual, from (2.48), we can easily get

∥W∥F ≤ 1.62
√
n. (2.49)

For ∥WY −X∥F , based on (2.16), we can get∥∥∥w⊤
i Y − x⊤i

∥∥∥
F
≤
∥∥∥w⊤

i Y − w⊤
i (Y + EY i)

∥∥∥
F

≤∥wi∥F ∥EY i∥F .

(2.50)

With (2.50), we can easily get

∥WY −X∥F ≤∥W∥F ∥EY i∥2 . (2.51)

We put (2.32) and (2.49) into (2.51) and we can have (2.9). In all, Theorem 2.1 is proved

Remark 2.3. In the proof of Theorem 2.1, we demonstrate that our improved s is sufficient to ensure

numerical stability for Shifted CholeskyQR, with enhanced bounds established in the previous lemmas.

This represents significant progress compared to that in [21]. The residual in (2.9) shows a tighter

upper bound compared to that in [21]. More importantly, (2.9) can improve the condition for κ2(X)

in the estimation of the singular values of W in the next section.

2.3.5 Proof of Theorem 2.2

In this section, we give the proof for Theorem 2.2.

Proof. We have already estimated ∥W∥2. To estimate κ2(X), we need to estimate σmin(W). The

primary steps of analysis are similar to that in [21]. When (2.17) holds, according to Lemma 1.6, we

can get

σmin(W) ≥ σmin(XY −1)−
∥∥∥EXY −1

∥∥∥
2
. (2.52)

With (2.27) and (2.36), we can obtain∥∥∥EXY −1
∥∥∥
2
≤∥EX∥2

∥∥∥Y −1
∥∥∥
2

≤
1.67n

√
nu∥X∥c

(σmin(X))2 + 0.9s
.

(2.53)

Using the similar method in [21], we have

σmin(XY −1) ≥ σmin(X)√
(σmin(X))2 + s

· 0.9. (2.54)

26

When (2.18) holds, we put (2.53) and (2.54) into (2.52), together with t = s
∥X∥22

and (2.7), we can get

σmin(Q) ≥ 0.9σmin(X)√
(σmin(X))2 + s

−
1.67n

√
nu∥X∥c√

(σmin(X))2 + 0.9s

≥ 0.9√
(σmin(X))2 + s

· (σmin(X)− 1.67

0.9 ·
√
0.9

· jn
√
nu∥X∥2)

≥ σmin(X)

2
√

(σmin(X))2 + s

=
1

2
√

1 + t(κ2(X))2
.

(2.55)

Based on (2.48) and (2.55), we have

κ2(W) ≤ 3.24 ·
√

1 + t(κ2(X))2.

Therefore, we can get (2.10).

To improve the stability of orthogonality and residual, we add a CholeskyQR2 following the Shifted

CholeskyQR, resulting in the Shifted CholeskyQR3. The numerical stability of this approach will be

demonstrated in the next section similar to that in [21]. To obtain the sufficient condition of κ2(X)

without encountering the numerical breakdown, based on (1.4) in [68], we let

κ2(W) ≤ 3.24
√

1 + t(κ2(X))2

≤ 1

8
√

mnu+ n(n+ 1)u
.

(2.56)

When s = 11(mu+ (n+ 1)u)∥X∥2c , we can have

t =
s

∥X∥22
= 11j2(mu+ (n+ 1)u). (2.57)

With (2.57), if κ2(X) is large enough, e.g., κ2(X) ≥ u− 1
2 , we can get

t(κ2(X))2 ≥ 11(m+ n) >> 1.

So it is easy to see that

1 + t(κ2(X))2 ≈ t(κ2(X))2.

Therefore, using (2.56), we can conclude that

κ2(X) ≤ 1

25.92
√
t ·

√
mnu+ n(n+ 1)u

. (2.58)

We put t = 11p2(mnu+ n(n+ 1)u) into (2.58) and we can obtain (2.11). Therefore, Theorem 2.2 is

proved.

Remark 2.4. We have shown that our improved Shifted CholeskyQR, with a smaller s, has advantages

in terms of the requirement for κ2(X) and its sufficient condition compared to the original method. A

comprehensive comparison of the theoretical results is provided in Table 1.2 and Table 1.3, highlighting

these advantages, which are further illustrated in Section 2.4.

27

2.3.6 Proof of Theorem 2.3

In this part, we prove Theorem 2.3 with some results in Theorem 2.1.

Proof. We write CholeskyQR2 in Shifted CholeskyQR3 with error matrices below.

C −W⊤W = E1,

D⊤D − C = E2,

V D −W = E3, (2.59)

DY −N = E4, (2.60)

B − V ⊤V = E5,

J⊤J −B = E6,

QJ − V = E7, (2.61)

JN −R = E8. (2.62)

Here, the calculation of R in Algorithm 12 is divided into two steps, that is, (2.60) and (2.62).

Similar to that of [68], Z in Algorithm 10 satisfies

Z = JD, (2.63)

without error matrices. With (2.63), R should be written as

R = JDY, (2.64)

if we do not consider rounding errors. In order to simplify rounding error analysis of (2.64), we write

the multiplication of D and Y with error matrices as (2.60) and the multiplication of J and N can be

written as (2.62).

Similar to the proof of Theorem 2.1, we consider the orthogonality first. For our improved Shifted

CholeskyQR3, similar to that in [68], when Shifted CholeskyQR3 is applicable, we can get

κ2(W) ≤ 1

8
√

mnu+ n(n+ 1)u
, (2.65)

κ2(V) ≤ 1.1. (2.66)

Therefore, we can obtain (2.12).

28

When considering the residual, based on (2.59)-(2.62), we have

QR = (V + E7)J
−1(JN − E8)

= (V + E7)N − (V + E7)J
−1E8

= V N + E7N −QE8

= (W + E3)D
−1(DY − E4) + E7N −QE8

= (W + E3)Y − (W + E3)D
−1E4 + E7N −QE8

= WY + E3Y − V E4 + E7N −QE8.

(2.67)

Therefore, with (2.67), it is obvious that

∥QR−X∥F ≤∥WY −X∥F +∥E3∥F ∥Y ∥2 +∥V ∥2∥E4∥F

+∥E7∥F ∥N∥2 +∥Q∥2∥E8∥F .
(2.68)

Similar to (2.16), we express (2.59) in each row as

v⊤i = w⊤
i (D + EDi)

−1,

where v⊤i and w⊤
i denote the i-th rows of V and W . Following the methodologies outlined in [21, 68]

and the concepts presented in this chapter, we have

∥Y ∥2 ≤ 1.006∥X∥2 , (2.69)

∥EDi∥2 ≤ 1.2n
√
nu ·∥W∥2

≤ 2.079n
√
nu,

(2.70)

∥V ∥2 ≤ 1.039, (2.71)

∥D∥2 ≤ 1.1∥W∥2

≤ 1.906.
(2.72)

We combine (2.69)-(2.72) with Lemma 1.7, Lemma 2.3, (2.7), (2.35) and similar steps in [21], we can

bound ∥E3∥F , ∥E4∥F and ∥E4∥g in (2.59) and (2.60) as

∥E3∥F ≤∥V ∥F ·∥EDi∥2

≤ 1.039 ·
√
n · 2.079n

√
nu

≤ 2.16n2u,

(2.73)

∥E4∥F ≤ γn(∥D∥F ·∥Y ∥F)

≤ γn(
√
n ·∥D∥2 ·

√
n ·∥Y ∥g)

≤ 1.1n
√
nu · 1.906 · 1.006∥X∥c

≤ 2.11jn
√
nu∥X∥2 ,

(2.74)

29

∥E4∥g ≤ γn(∥D∥F ·∥Y ∥g)

≤ γn(
√
n∥D∥2 ·∥Y ∥g)

≤ 1.1nu · 1.906 · 1.006∥X∥c

≤ 2.11jnu∥X∥2 .

(2.75)

Moreover, based on Lemma 2.3, Lemma 2.2, (2.35), (2.69), (2.74) and (2.75),∥N∥2 and∥N∥g in (2.60)

can be bounded as

∥N∥2 ≤∥D∥2∥Y ∥2 +∥E4∥2

≤ 1.906 · 1.006∥X∥2 + 2.11jn
√
nu∥X∥2

≤ 1.95∥X∥2 ,

(2.76)

∥N∥g ≤∥D∥2∥Y ∥g +∥E4∥g

≤ 1.906 · 1.006j√
n

·∥X∥2 + 2.11jnu∥X∥2

≤ 1.95j√
n

·∥X∥2 .

(2.77)

Similar to (2.16), we write (2.61) in each row as

q⊤i = v⊤i (J + EJi)
−1,

where q⊤i and v⊤i represent the i-th rows of Q and V . Similar to (2.70)-(2.72) and with (1.1), (1.2)

and (2.12), we can get

∥Q∥2 ≤ 1.1, (2.78)

∥EJi∥2 ≤ 1.2n
√
n∥V ∥2

≤ 1.2n
√
nu · 1.039

≤ 1.246n
√
nu,

(2.79)

∥J∥2 ≤ 1.1∥V ∥2

≤ 1.143.
(2.80)

With Lemma 1.7 and (2.77)-(2.80), we can bound ∥E7∥F and ∥E8∥F in (2.61) and (2.62) as

∥E7∥F ≤∥Q∥F ·∥EJi∥2 ,

≤ 1.1
√
n · 1.246n

√
nu

≤ 1.38n2u,

(2.81)

∥E8∥F ≤ γn(∥J∥F ·∥N∥F)

≤ γn(
√
n ·∥J∥2 ·

√
n ·∥N∥g)

≤ 1.1n
√
nu · 1.143 · 1.95j∥X∥2

≤ 2.46jn
√
nu∥X∥2 .

(2.82)

30

Table 2.1: The specifications of our computer

Item Specification

System Windows 11 family(10.0, Version 22000)

BIOS GBCN17WW

CPU Intel(R) Core(TM) i5-10500H CPU @ 2.50GHz -2.5 GHz

Number of CPUs / node 12

Memory size / node 8 GB

Direct Version DirectX 12

Therefore, we put (2.9), (2.69), (2.71), (2.73), (2.74), (2.76), (2.78), (2.81) and (2.82) into (2.68) and

we can get (2.13). In all, Theorem 2.3 is proved.

Remark 2.5. Based on (2.13), we find that we obtain a sharper upper bound of the residual of the

algorithm compared to that in [21], utilizing properties of ∥·∥c and ∥·∥g. This represents a theoretical

advancement in rounding error analysis. The steps leading to (2.77) highlight the effectiveness of

Lemma 2.3 and Lemma 2.1. Although the second inequality of (2.3) appears weaker than the first

inequality of (2.3), it cannot be dismissed in estimating∥·∥g of the error matrix in terms of its absolute

value. This lays a solid foundation for (2.77) and (2.82), marking advancements in estimation methods

for problems related to matrix multiplications.

2.4 Numerical experiments

In this section, we conduct numerical experiments using MATLAB R2022a on a laptop. We compare

our improved Shifted CholeskyQR3 with the original Shifted CholeskyQR3, focusing on three key prop-

erties: numerical stability(assessed through orthogonality
∥∥∥Q⊤Q− I

∥∥∥
F

and residual ∥QR−X∥F for

Shifted CholeskyQR), the condition number of Q(denoted as κ2(Q)) and the computational time(CPU

time measured in seconds). Additionally, we present the l1-value, defined as l1 = j√
n
for X ∈ Rm×n,

to illustrate the extent of improvement brought by our reduced s compared to the original method in

[21]. As a comparison group, we also evaluate the properties of HouseholderQR, which is considered

one of the most stable numerical algorithms, to demonstrate the effectiveness and advantages of our

improved Shifted CholeskyQR3. The specifications of our computer used for these experiments are

provided in Table 2.1. We assess the performance of our method in multi-core CPU environments.

31

2.4.1 Numerical examples

In this part, we introduce the numerical examples, specifically the test matrix X utilized in this

chapter. The primary test matrix X ∈ Rm×n is similar to that used in [21, 68] and is constructed

by SVD. It is straightforward to observe the influence of κ2(X), m and n while controlling the other

two factors. Additionally, to test the applicability and the numerical stability of our improved Shifted

CholeskyQR3, we present two examples widely used in engineering and other fields.

The input X based on SVD

We first construct the matrix X for the numerical experiments using Singular Value Decomposition

(SVD), similar to the approach described in [21, 68]. We control κ2(X) through σmin(X). Specifically,

we set

X = OΣHT .

Here, O ∈ Rm×m, H ∈ Rn×n are random orthogonal matrices and

Σ = diag(1, σ
1

n−1 , · · · , σ
n−2
n−1 , σ) ∈ Rm×n.

Here, 0 < σ < 1 is a constant. Therefore, we have σ1(X) =∥X∥2 = 1 and κ2(X) = 1
σ .

In our numerical experiments, we will focus on some large matrices. We construct large matrices

in a block version. We can construct some small X1 ∈ Rn×n based on SVD and build X ∈ Rm×n as

X =


X1

X1

...

X1


.

The Hilbert matrix

The Hilbert matrix is a well-known ill-conditioned square matrix. It is widely used in many appli-

cations, including numerical approximation theory and solving linear systems, seeing [6, 9, 34] and

the references therein. For a Hilbert matrix T , as n increases, κ2(T) also increases. The element of

Hilbert matrix X is shown as below:

Xij =
1

i+ j − 1
, i, j = 1, 2, · · · , n.

32

For X ∈ Rm×n, we take m = 10n. We form X through

X =


T

T
...

T


.

The arrowhead matrix

The arrowhead matrix X ∈ Rn×n plays an important role in graph theory, control theory and some

eigenvalue problems, seeing [7, 45, 48, 49, 60] and the references therein. Its primary characteristic

is that all the elements are zero except for those in the first column, the first row and the diagonal.

In this chapter, we take two vectors, e1 = (1, 0, 0 · · · 0, 0)⊤ ∈ Rn and g = (1, 1, 1 · · · 1, 1)⊤ ∈ Rn.

We define a diagonal matrix M = diag(y) ∈ Rn×n, where y = (y1, y2, · · · , yn−1, yn) and yi =
0, if i = 1

10, if i = 2, · · · , n− 1

y, if i = n

. We build an arrowhead matrix P through

P = 30e1 · g⊤ +M.

Similar to the previous section, we take m = 5n and construct X through

X =


P

P
...

P


.

We vary v to modify κ2(X).

2.4.2 Numerical stability of the algorithms

In this section, we test the numerical stability of the algorithms. To assess this, we conduct experiments

considering three factors: κ2(X), m and n to demonstrate the properties of Shifted CholeskyQR3. For

clarity, we refer to our improved Shifted CholeskyQR3 with s = 11(mu+(n+1)u)∥X∥2c as ‘Improved ’,

while the original Shifted CholeskyQR3 with s = 11(mnu+(n+1)nu)∥X∥22 is referred to as ‘Original ’.

To assess the potential influence of κ2(X), we obtain X using SVD first. We fix m = 2048

and n = 64, varying σ to evaluate the effectiveness of our algorithm with different κ2(X). The

numerical results are listed in Table 2.2 and Table 2.3. We also carry out numerical experiments

for a large X ∈ R16384×1024. We construct a small X1 ∈ R1024×1024 based on SVD with ∥X1∥2 = 1

33

and κ2(X) = 1
σ . X is build with 16 X1 from the up to the bottom. We vary σ from 10−6, 10−8,

10−10, 10−12 to 2 × 10−13. The numerical results are listed in Table 2.4 and Table 2.5. Table 2.2

and Table 2.3 show that our improved Shifted CholeskyQR3 exhibit better orthogonality and residual

compared to HouseholderQR, demonstrating strong numerical stability. The numerical stability of our

improved algorithm is comparable to that of the original Shifted CholeskyQR3. A key advantage of our

improved Shifted CholeskyQR3 over the original one is that our improved algorithm can handle more

ill-conditioned X with κ2(X) ≥ 1012. The conservative choice of s in the original Shifted CholeskyQR3

limits its computational range, as reflected in the comparison of κ2(X) between (1.10) and (2.11). We

have similar results for large matrices according to Table 2.4 and Table 2.5. When m and n get

increasing, the computational range of Shifted CholeskyQR3 will decrease, which corresponds to the

theoretical results. In our real example based on the Hilbert matrix, we vary n from 9, 10, 11 to 12 and

κ2(X) is also varying. In the example based on the arrowhead matrix, we take n = 64 and vary y from

10−11, 10−12, 10−13 to 10−14 to modify κ2(X). The numerical results are shown in Table 2.6-Table 2.9.

They also demonstrate that our improved Shifted CholeskyQR3 has better applicability and is able

to handle more ill-conditioned matrices effectively than the original one.

To examine the influence of m and n, we construct X based on SVD while maintaining κ2(X) =

1012. When m is varying, we keep n = 64. When n is varying, we keep m = 2048. The numerical

results are presented in Table 2.10- 2.13. Our findings indicate that the increasing n leads to greater

rounding errors in orthogonality and residual, while m does not impact these aspects significantly.

Our improved Shifted CholeskyQR3 maintains a level of the numerical stability comparable to that of

the original Shifted CholeskyQR3 and is more accurate compared to HouseholderQR across various

values of m and n. This set of experiments shows that our improved Shifted CholeskyQR3 is numerical

stable across different problem sizes.

Overall, our examples demonstrate that our improved Shifted CholeskyQR3 is more applicable for

ill-conditioned matrices without sacrificing numerical stability, performing at a level comparable to

the original Shifted CholeskyQR3. In many cases, it even exhibits better accuracy compared to the

traditional HouseholderQR.

Table 2.2: Orthogonality of the algorithms with κ2(X) varying when m = 2048 and n = 64

κ2(X) 1.00e+ 8 1.00e+ 10 1.00e+ 12 1.00e+ 14 1.00e+ 16

Improved 2.07e− 15 2.04e− 15 2.03e− 15 2.04e− 15 -

Original 2.14e− 15 2.21e− 15 1.90e− 15 - -

HouseholderQR 2.77e− 15 2.46e− 15 2.48e− 15 2.75e− 14 2.67e− 15

34

Table 2.3: Residual of the algorithms with κ2(X) varying when m = 2048 and n = 64

κ2(X) 1.00e+ 8 1.00e+ 10 1.00e+ 12 1.00e+ 14 1.00e+ 16

Improved 6.35e− 16 6.01e− 16 5.80e− 16 5.64e− 16 -

Original 6.67e− 16 6.20e− 16 6.22e− 16 - -

HouseholderQR 1.26e− 15 1.38e− 15 1.27e− 15 1.27e− 15 9.61e− 16

Table 2.4: Orthogonality of the algorithms with κ2(X) varying when m = 16384 and n = 1024

κ2(X) 1.00e+ 6 1.00e+ 8 1.00e+ 10 1.00e+ 12 5.00e+ 12

Improved 1.73e− 14 1.90e− 14 1.99e− 14 2.10e− 14 2.05e− 14

Original 1.88e− 14 1.97e− 14 2.04e− 14 2.10e− 14 -

Table 2.5: Residual of the algorithms with κ2(X) varying when m = 16384 and n = 1024

κ2(X) 1.00e+ 6 1.00e+ 8 1.00e+ 10 1.00e+ 12 5.00e+ 12

Improved 2.23e− 14 2.02e− 14 1.86e− 14 1.74e− 14 1.70e− 14

Original 2.23e− 14 2.02e− 14 1.87e− 14 1.75e− 14 -

Table 2.6: Orthogonality of the algorithm for the Hilbert matrix with different n

n 9 10 11 12

Original 1.43e− 15 1.59e− 15 1.64e− 15 −

Improved 9.29e− 16 9.59e− 16 1.90e− 15 1.96e− 12

Table 2.7: Residual of the algorithm for the Hilbert matrix with different n

n 9 10 11 12

Original 9.45e− 16 1.16e− 15 6.69e− 16 −

Improved 8.15e− 16 1.05e− 15 5.78e− 16 1.15e− 15

Table 2.8: Orthogonality of the algorithm for the arrowhead matrix when n = 64

κ2(X) 3.40e+ 13 3.40e+ 14 3.40e+ 15 3.24e+ 16

Original 1.11e− 15 1.11e− 15 1.13e− 15 −

Improved 1.75e− 15 1.80e− 15 1.80e− 15 1.80e− 15

35

Table 2.9: Residual of the algorithm for the arrowhead matrix when n = 64

κ2(X) 3.40e+ 13 3.40e+ 14 3.40e+ 15 3.24e+ 16

Original 1.49e− 13 1.49e− 13 1.49e− 13 −

Improved 7.08e− 14 7.08e− 14 7.08e− 14 7.08e− 14

Table 2.10: Orthogonality of all the algorithms with m varying when κ2(X) = 1012 and n = 64

m 128 256 512 1024 2048

Improved 3.62e− 15 4.07e− 15 3.11e− 15 2.12e− 15 2.03e− 15

Original 3.31e− 15 3.93e− 15 2.89e− 15 2.36e− 15 1.90e− 15

HouseholderQR 6.54e− 15 6.35e− 15 3.56e− 15 2.80e− 15 2.48e− 15

Table 2.11: Residual of all the algorithms with m varying when κ2(X) = 1012 and n = 64

m 128 256 512 1024 2048

Improved 6.04e− 16 5.92e− 16 6.08e− 16 6.06e− 16 5.80e− 16

Original 6.09e− 16 5.91e− 16 5.95e− 16 5.86e− 16 6.22e− 16

HouseholderQR 7.31e− 16 9.45e− 16 7.55e− 16 7.48e− 16 1.27e− 15

Table 2.12: Orthogonality of all the algorithms with n varying when κ2(X) = 1012 and m = 2048

n 64 128 256 512 1024

Improved 2.03e− 15 3.25e− 15 5.29e− 15 9.53e− 15 1.69e− 14

Original 1.90e− 15 3.33e− 15 5.19e− 15 1.66e− 15 1.77e− 14

HouseholderQR 2.48e− 15 4.66e− 15 9.39e− 15 2.07e− 14 5.02e− 14

Table 2.13: Residual of all the algorithms with n varying when κ2(X) = 1012 and m = 2048

n 64 128 256 512 1024

Improved 5.80e− 16 1.07e− 15 2.01e− 15 3.06e− 15 4.32e− 15

Original 6.22e− 16 1.08e− 15 2.04e− 15 3.08e− 15 4.33e− 15

HouseholderQR 1.27e− 15 1.76e− 15 2.55e− 15 3.62e− 15 5.00e− 15

36

2.4.3 Comparison between the theoretical bounds and real performances

In this part, we make a comparison between the theoretical bounds of Shifted CholeskyQR3 and its

real performances. In the beginning, we test the accuracy. For the input X ∈ Rm×n based on SVD,

we fix ∥X∥2 = 1 and κ2(X) = 1012. We denote 6(mnu + n(n + 1)u) in (2.12) as the ‘Theoretical

bound ’ in orthogonality. Moreover, (6.57 · j√
n
+ 4.87)n2u∥X∥2 in (2.13) is the ‘Theoretical bound ’ in

residual. To test the influence of m, we fix n = 64 and vary m. To test the influence of n, we fix

m = 2048 and vary n. Comparisons of orthogonality and residual with different m and n are shown in

Table 2.14-Table 2.17. Regarding the conditions of κ2(X), we denote 1
86j(m

√
nu+(n+1)

√
nu)

in Table 1.2

as the ‘Sufficient condition’ of κ2(X) and 1
4.89jn

√
nu

as the ‘Upper bound ’ of κ2(X). We vary m and n

and comparisons of conditions of κ2(X) are shown in Table 2.18 and Table 2.19.

Table 2.14: Comparison of orthogonality with the improved s when κ2(X) = 1012 and n = 64

m 128 256 512 1024 2048

Real error 3.29e− 15 3.66e− 15 2.64e− 15 2.28e− 15 1.89e− 15

Theoretical bound 8.23e− 12 1.37e− 11 2.46e− 11 4.64e− 11 9.01e− 11

Table 2.15: Comparison of orthogonality with the improved s when κ2(X) = 1012 and m = 2048

n 64 128 256 512 1024

Real error 1.89e− 15 2.99e− 15 5.08e− 15 9.27e− 15 1.74e− 14

Theoretical bound 9.01e− 11 1.86e− 10 3.93e− 10 8.73e− 10 2.10e− 09

Table 2.16: Comparison of residual with the improved s when κ2(X) = 1012 and n = 64

m 128 256 512 1024 2048

Real error 5.90e− 16 5.97e− 16 5.56e− 16 5.76e− 16 5.67e− 16

Theoretical bound 2.89e− 12 2.89e− 12 2.89e− 12 2.89e− 12 2.89e− 12

Table 2.17: Comparison of residual with the improved s when κ2(X) = 1012 and m = 2048

n 64 128 256 512 1024

Real error 5.66e− 16 1.07e− 15 2.00e− 15 3.08e− 15 4.35e− 15

Theoretical bound 2.89e− 12 1.16e− 11 4.64e− 11 1.82e− 10 7.21e− 10

37

Table 2.18: Comparison of κ2(X) with the improved s when κ2(X) = 1012 and n = 128

m 256 512 1024 2048 4096

Real case ≥ 1012 ≥ 1012 ≥ 1012 ≥ 1012 ≥ 1012

Upper bound 4.68e+ 11 4.68e+ 11 4.68e+ 11 4.68e+ 11 4.68e+ 11

Sufficient condition 8.85e+ 09 5.31e+ 09 2.95e+ 09 1.56e+ 09 8.06e+ 08

Table 2.19: Comparison of κ2(X) with the improved s when κ2(X) = 1012 and m = 4096

n 128 256 512 1024 2048

Real case ≥ 1012 ≥ 1012 ≥ 1012 ≥ 1012 ≥ 1012

Upper bound 4.68e+ 11 1.39e+ 11 3.81e+ 10 9.23e+ 09 2.62e+ 09

Sufficient condition 8.06e+ 08 4.66e+ 08 2.41e+ 08 1.05e+ 08 4.96e+ 07

According to Table 2.14-Table 2.19, we can find that the theoretical results of κ2(X) and accuracy,

including orthogonality and residual, are worse than the real results after computation on the laptop.

It shows that the deterministic models for rounding error analysis have the problem of overestimation,

which has distance from the real cases.

2.4.4 κ2(Q) under different conditions

In this group of experiments, we evaluate the impact of κ2(X), m and n on κ2(Q) using different

values of s for Shifted CholeskyQR3, which is crucial for assessing the applicability of the algorithms.

We compare our improved Shifted CholeskyQR3 with the original Shifted CholeskyQR3.

In this group of experiments, we use X based on SVD. Initially, we fix m = 2048 and n = 64,

varying κ2(X) to see the corresponding κ2(Q) with different values of s in Shifted CholeskyQR3. The

results are listed in Table 2.20. From Table 2.20, we can see that κ2(X) exhibits a nearly direct

proportionality to κ2(Q). With an improved smaller s, our improved Shifted CholeskyQR3 achieves

a smaller κ2(X) compared to the original Shifted CholeskyQR3, which is consistent with (1.9) and

(2.10).

Next, we test the influence of m and n on κ2(X). When varying m, we fix κ2(X) = 1012 and

n = 64. For different n, we set κ2(X) = 1012 and m = 2048. The numerical results are listed

in Table 2.21 and Table 2.22. These results indicate that when dealing with a tall-skinny matrix

X ∈ Rm×n with m > n, increasing both m and n leads to a larger κ2(Q) while keeping κ2(X) fixed.

This arises from the structures of both our improved s and the original s. Across Table 2.20-Table 2.22,

we consistently observe that our method achieves a smaller κ2(Q) compared to the original Shifted

38

CholeskyQR3, demonstrating the effectiveness of the improved s.

In conclusion, our reduced s in this chapter results in a smaller κ2(Q), enhancing the applicability

of our improved Shifted CholesyQR3 compared to the original algorithm. This represents a significant

advancement in our research.

Table 2.20: κ2(Q) with κ2(X) varying with different s when m = 2048 and n = 64

κ2(X) 1.00e+ 8 1.00e+ 10 1.00e+ 12 1.00e+ 14 1.00e+ 16

Improved 358.60 3.37e+ 04 3.18e+ 06 3.01e+ 08 -

Original 1.29e+ 03 1.29e+ 05 1.29e+ 07 - -

Table 2.21: κ2(Q) with m varying using different s when κ2(X) = 1012 and n = 64

m 128 256 512 1024 2048

Improved 9.62e+ 05 1.24e+ 06 1.66e+ 06 2.29e+ 06 3.18e+ 06

Original 3.88e+ 06 5.01e+ 06 6.72e+ 06 9.23e+ 06 1.29e+ 07

Table 2.22: κ2(Q) with n varying using different s when κ2(X) = 1012 and m = 2048

n 64 128 256 512 1024

Improved 3.18e+ 06 4.24e+ 06 5.76e+ 06 8.11e+ 06 1.11e+ 07

Original 1.29e+ 07 1.84e+ 07 2.68e+ 07 4.00e+ 07 6.20e+ 07

2.4.5 CPU times of the algorithms

In addition to considering numerical stability and κ2(Q), we also need to take into account the CPU

time required by these algorithms to demonstrate the efficiency of our improved algorithm. We test

the corresponding CPU time with respect to the two variables, m and n.

Similar to the previous section, we use X based on SVD. For varying values of m, we set n = 64

and κ2(X) = 1012. When n is varying, we fix m = 2048 and κ2(X) = 1012. We observe the variation

in CPU time for our improved Shifted CholeskyQR3, the original Shifted CholeskyQR3 algorithm

and HouseholderQR. The CPU times for these algorithms are listed in Table 2.23 and Table 2.24.

Numerical experiments show that both our improved Shifted CholeskyQR3 and the original Shifted

CholeskyQR3 are significantly more efficient compared to HouseholderQR, highlighting a primary

drawback of the widely-used HouseholderQR. In fact, the computational costs of HouseholderQR

and CholeskyQR are all in the level of mn2 for the input matrix X ∈ Rm×n. HouseholderQR is

not so efficient in implementation because it primarily uses BLAS2 routines, while CholeskyQR uses

39

BLAS3 due to its structure. Our improved Shifted CholeskyQR3 exhibits comparable speed to the

original Shifted CholeskyQR3 with normest. Additionally, n has a greater influence on CPU time

compared to m. However, as both m and n increase, our improved Shifted CholeskyQR3 maintains

a level of efficiency similar to that of the original Shifted CholeskyQR3. Therefore, we conclude that

our improved Shifted CholeskyQR3 is an efficient algorithm with good accuracy for problems with

moderate sizes.

Table 2.23: CPU time with m varying (in second) when κ2(X) = 1012 and n = 64

m 128 256 512 1024 2048

Improved 6.90e− 04 8.65e− 04 1.70e− 03 3.80e− 03 4.70e− 03

Original 2.10e− 03 9.55e− 04 1.50e− 03 4.40e− 03 6.20e− 03

HouseholderQR 1.21e− 02 3.45e− 02 3.38e− 01 2.00e+ 00 1.24e+ 01

Table 2.24: CPU time with n varying (in second) when κ2(X) = 1012 and m = 2048

n 64 128 256 512 1024

Improved 4.70e− 03 1.25e− 02 4.66e− 02 9.80e− 02 3.52e− 01

Original 6.20e− 03 1.46e− 02 4.59e− 02 9.02e− 02 4.45e− 01

HouseholderQR 1.12e+ 01 2.59e+ 01 5.66e+ 01 1.16e+ 02 3.11e+ 02

2.4.6 The improvement of s

Here, we aim to show the l1-values in this chapter by using some examples since l1 =
∥X∥g
∥X∥2

= j√
n
=√

11(mu+(n+1)u)∥X∥2c
11(mnu+n(n+1)u)∥X∥22

for X ∈ Rm×n. Therefore, the l1-value reflects how much the shifted item s is

reduced according to our definition of ∥X∥c. In the future, we will investigate how to estimate l1 in

different cases.

In the beginning, we test the l1-value with varying values of m and n using X based on SVD.

With m varying, we fix n = 64 and κ2(X) = 1012. For different values of n, we fix m = 2048 and

κ2(X) = 1012. The numerical experiments are listed in Table 2.25 and Table 2.26. Moreover, we

test the l1-value with varying m and n for the Hilbert matrix X ∈ Rm×n, where m = 10n. The

experimental results are listed in Table 2.27. The numerical results indicate that l1 is relatively small

compared to 1. Notably, n significantly influences l1 more than m. With n increasing, l1 decreases

markedly, which aligns with the theoretical lower bound of the l1-value. This observation suggests

that our improved s is likely more effective for relatively large matrices.

40

Table 2.25: l1 with m varying when κ2(X) = 1012 and n = 64 for X ∈ Rm×n based on SVD

m 128 256 512 1024 2048

l1 0.2824 0.2762 0.2386 0.2453 0.2498

Table 2.26: l1 with n varying when κ2(X) = 1012 and m = 2048 for X ∈ Rm×n based on SVD

n 64 128 256 512 1024

l1 0.2498 0.2396 0.2127 0.2024 0.1726

Table 2.27: l1 with n varying for the Hilbert matrix X ∈ Rm×n with m = 10n

n 9 10 11 12

l1 0.7190 0.7106 0.7033 0.6968

2.5 Conclusions

This chapter focuses on the improvement of Shifted Cholesky3. We define a new ∥X∥c for the input

matrix X and construct a new shifted item s based on ∥X∥c for Shifted CholeskyQR3. We prove

theoretically that this s can improve the applicability of Shifted CholeskyQR3 while maintaining

numerical stability. Numerical experiments verify our findings and show that our improved Shifted

CholeskyQR3 with ∥X∥c is as efficient as the original Shifted CholeskyQR3.

41

CHAPTER 3.

SHIFTED CHOLESKYQR FOR SPARSE MATRICES

In this chapter, we focus on Shifted CholeskyQR for sparse matrices. We provide a new model for

sparse matrices and divide sparse matrices into two types, T1 matrices and T2 matrices, based on

the presence of dense columns. We introduce an alternative choice of the shifted item s based on

the structure and the key element of the input X ∈ Rm×n. We prove that such an s is superior

to that mentioned in Chapter 2 for T1 matrices with the certain element-conditions(ENCs) since it

improves the applicability of the algorithm. Shifted CholeskyQR3 is also numerical stable with this s

in these cases. Numerical experiments demonstrate the effectiveness of such an alternative choice of s

in improving the applicability and maintaining numerical stability for T1 matrices. For T2 matrices,

Shifted CholeskyQR3 exhibits new properties compared to dense cases. Furthermore, our alternative

choice of s remains as efficient as it is with the improved s from Chapter 2. This chapter is organized as

follows. Our contributions and primary theoretical results are outlined in Section 3.1. In Section 3.2,

we conduct a theoretical analysis of Shifted CholeskyQR3 for sparse matrices and prove Theorems 3.3

through 3.4, which were proposed in Section 3.1. This analysis constitutes a key part of this chapter.

Following the theoretical analysis, we perform numerical experiments using typical examples from

real-world problems, and we present the results in Section 3.3. Section 3.4 shows the conclusions of

this chapter.

3.1 Our contributions and theoretical results

In this part, we introduce our new model for sparse matrices along with its corresponding divisions.

With these new concepts and general settings, we present several theoretical results related to Shifted

CholeskyQR3 for sparse matrices.

3.1.1 Our new divisions of sparse matrices

In the beginning, we introduce a new model of sparse matrices based on column sparsity and provide

the definitions of T1 and T2 matrices in Definition 3.1.

Definition 3.1. A sparse matrix X ∈ Rm×n has v dense columns, 0 ≤ v << n, with each dense

column containing at most t1 non-zero elements, where t1 is relatively close to m. For the remaining

sparse columns, each column has at most t2 non-zero elements, where 0 < t2 << t1. When v > 0, we

refer to such a sparse matrix X as a T1 matrix. When v = 0, we call X a T2 matrix. Moreover, we

42

define

c = max
∣∣xij∣∣ , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

as the element with the largest absolute value in X.

3.1.2 General settings and Shifted CholeskyQR3 for sparse matrices

When X ∈ Rm×n is a sparse matrix which follows Definition 3.1, except (1.1) and (1.2), we give some

settings below.

js ≤ s ≤ jb, (3.1)

κ2(X) ≤ F. (3.2)

In (3.1) and (3.2), we take

js = min(11(mu+ (n+ 1)u) · (vt1 + nt2)c
2, 11(mu+ (n+ 1)u)∥X∥2c),

jb =


ϕ, if js = 11(mu+ (n+ 1)u) · (vt1 + nt2)c

2

1
100n∥X∥2c , if js = 11(mu+ (n+ 1)u)∥X∥2c

,

F =


1

4n2uhl
, if js = 11(mu+ (n+ 1)u) · (vt1 + nt2)c

2

1
4.89jn

√
nu

, if js = 11(mu+ (n+ 1)u)∥X∥2c
.

Here, j is defined in (2.7) and we let

ϕ = min(
1

100n
· (vt1 + nt2)c

2,
1

100
t1c

2),

l =
c
√
t1

∥X∥2
,

r =
n
√
n

m
√
v
,

h =
√

2.23 + 0.34r + 0.013r2.

c, v, t1 and t2 are defined in Definition 3.1.

In the general settings described above, we utilize the definition of ∥·∥g from Chapter 2, which

is presented in Definition 2.2. (3.4) and (3.1) are similar to those in [21] for the original Shifted

CholeskyQR3. (3.2) outlines the requirements for κ2(X) in Shifted CholeskyQR3. Shifted CholeskyQR

and Shifted CholeskyQR3 for sparse matrices are detailed in Algorithm 11 and Algorithm 12, with

s = js as specified in (3.1). This demonstrates that an alternative s can be utilized in Shifted

CholeskyQR3 for sparse cases, which is a key innovative aspect of this chapter.

43

Algorithm 11: [Q,R] = SCholeskyQR(X) for sparse matrices

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: get c, v, t1, t2 as defined in Definition 3.1 for the input X,

2: take s = js as defined in (4.45),

3: [Q,R] = SCholeskyQR(X).

Algorithm 12: [Q,R] = SCholeskyQR3(X) for sparse matrices

Input: X ∈ Rm×n.

Output: Orthogonal factor Q ∈ Rm×n, Upper triangular factor R ∈ Rn×n.

1: get c, v, t1, t2 as defined in Definition 3.1 for the input X,

2: take s = js as defined in (4.45),

3: [Q,R] = SCholeskyQR3(X).

3.1.3 Theoretical results of T1 matrices

For T1 matrices, we have already provided detailed analysis under (2.18) and (2.19) in Chapter 2. In

this chapter, we primarily focus on the case when

11(mu+ (n+ 1)u) · (vt1 + nt2)c
2 ≤ s ≤ ϕ, (3.3)

4n2u · hlκ2(X) ≤ 1, (3.4)

where

ϕ = min(
1

100n
· (vt1 + nt2)c

2,
1

100
t1c

2).

In the following, we show the properties of Shifted CholeskyQR3 for T1 matrices in Theorem 3.1-

Theorem 3.3 under (3.3) and (3.4).

Theorem 3.1. If X ∈ Rm×n is a T1 matrix and [W,Y] = SCholeskyQR(X), when (3.3) and (3.4)

are satisfied, we have

κ2(Q) ≤ 2h ·
√
1 + α0(κ2(X))2, (3.5)

if α0 = s
∥X∥22

= 11(mu + (n + 1)u) · k and k = (vt1+nt2)c2

∥X∥22
. For [Q,R] = SCholeskyQR3(X) with

s = 11(mu+ (n+ 1)u) · (vt1 + nt2)c
2, if κ2(X) is large enough, the sufficient condition of κ2(X) is

κ2(X) ≤ 1

16
√
11nk · (mu+ (n+ 1)u)h

. (3.6)

Here, h is utilized and defined in (3.2).

44

Theorem 3.2. Under (3.6), if X ∈ Rm×n is a T1 matrix and [Q,R] = SCholeskyQR3(X), when

s = 11(mu+ (n+ 1)u) · (vt1 + nt2)c
2, we have∥∥∥Q⊤Q− I

∥∥∥
F
≤ 6(mnu+ n(n+ 1)u), (3.7)

∥QR−X∥F ≤ (2.79 + 3.97l)hn2u∥X∥2 . (3.8)

Here, l is utilized and defined in (3.2).

In Theorem 3.3, when we take

s = 11(mu+ (n+ 1)u) · (vt1 + nt2)c
2, (3.9)

we provide a corresponding element-norm condition (ENC) under which s in (3.9) is optimal, which

differs significantly from s in [21] and Chapter 2. The ENC is not unique, and we present a typical

example in the following theoretical results.

Theorem 3.3. If T1 matrix X ∈ Rm×n is a T1 matrix and [Q,R] = SCholeskyQR3(X), if X satisfies

the ENC: c =
√

β
m ·∥X∥2 and β ≤ mj2

vt1+nt2
, then

js = 11(mu+ (n+ 1)u) · (vt1 + nt2)c
2. (3.10)

Here, j and js are utilized and defined in (2.7) and (3.1). Therefore, the sufficient condition of κ2(X)

is

κ2(X) ≤ 1

16
√
11nϵ · (mu+ (n+ 1)u)h

, (3.11)

when we define ϵ = β(vt1+nt2)
m .

Remark 3.1. Theorem 3.1 is one of the most important results of this chapter. It demonstrates that

when X is a T1 matrix, s in (3.9) can be taken for Shifted CholeskyQR3. Theorem 3.2 shows that such

an s maintains numerical stability. These two theorems indicate that we can leverage the structure

of the sparse X to construct a new shifted item s, which is superior to that in Chapter 2 with proper

ENCs, such as the one mentioned in Theorem 3.3. With the ENC in Theorem 3.3, (3.8) is equivalent

to

∥QR−X∥F ≤ (2.79 + 3.97β)hn2u∥X∥2 .

This shows that, given a suitable ENC and when (3.10) is satisfied, Shifted CholeskyQR3 is numerically

stable with respect to the residual.

3.1.4 Theoretical results of T2 matrices

When X is a T2 matrix under Definition 3.1, the following theorem holds.

45

Theorem 3.4. If X ∈ Rm×n is a T2 matrix and [Q,R] = SCholeskyQR3(X), we have

js = 11(mu+ (n+ 1)u)∥X∥2c . (3.12)

When s = js, the sufficient condition of κ2(X) and rounding error analysis of Shifted CholeskyQR3

for T2 matrices follow Theorem 2.3 in Chapter 2.

Remark 3.2. In the real practice, we can easily obtain c using MATLAB, and determining t1 and t2

requires only a few lines of code. Since we have already defined ∥X∥g in Chapter 2, we can conduct

theoretical analysis based on the structure of X. In many real-world applications, there are many T1

matrices with relatively dense columns. The presence of such dense columns can greatly influence∥X∥2,

especially when the absolute values of the elements of X are very close to each other. It is acceptable

to estimate t1 and t2 roughly, as this will not affect the primary results when m is sufficiently large.

3.2 Proof of Theorem 3.1-Theorem 3.4

In this section, we prove Theorem 3.1-Theorem 3.4 under the assumption that X is sparse, based on

Definition 3.1. Among all the theorems, Theorem 3.1 and Theorem 3.2 are the key results.

3.2.1 Lemmas to prove Theorem 3.1-Theorem 3.3 matrices

Before proving Theorem 3.1-Theorem 3.3, we write Shifted CholeskyQR with error matrices below.

G = X⊤X + EA, (3.13)

Y ⊤Y = G+ sI + EB, (3.14)

w⊤
i = x⊤i (Y +∆Yi)

−1, (3.15)

WY = X +∆X. (3.16)

Here, x⊤i and w⊤
i represent the i-th rows of X and W , respectively. The definitions of EA in (3.13),

EB in (3.14), ∆Yi in (3.15) and ∆X in (3.16) are the same as those defined in Chapter 2.

To prove these theorems, we first need to establish some lemmas. When 11(mu+(n+1)u)∥X∥2c ≤

s ≤ 1
100n∥X∥2c , we have conducted rounding error analysis in Chapter 2. Therefore, we primarily focus

on the case when 11(mu + (n + 1)u) · (vt1 + nt2)c
2 ≤ s ≤ ϕ, ϕ = min(1

100n · (vt1 + nt2)c
2, 1

100 t1c
2)

and v > 0. The general ideas of the theoretical analysis are similar to those in [21] and Chapter 2.

However, we integrate the model of sparsity from Definition 3.1 with rounding error analysis, providing

different theoretical results compared to existing works.

46

Lemma 3.1. For ∥EA∥2 and ∥EB∥2 in (3.13) and (3.14), when (3.3) is satisfied, we have

∥EA∥2 ≤ 1.1mu · (vt1 + nt2)c
2, (3.17)

∥EB∥2 ≤ 1.1(n+ 1)u · (vt1 + nt2)c
2. (3.18)

Proof. According to Definition 3.1, it X is a T1 matrix, it has v dense columns with at most t1 non-zero

elements and sparse columns with at most t2 non-zero elements, when estimating the ij-th element of

EA, with Lemma 1.7, we can have

|EA|ij1 ≤ γm|xi|
∣∣xj∣∣

≤ γm · t1 ·∥xi∥2
∥∥xj∥∥2

≤ γm · t1c2,

(3.19)

if both xi and xj are dense columns. xi is the i-th column of X. There are v2 elements of EA can be

estimated in this way. When at least one of xi and xj is sparse, we can have

|EA|ij2 ≤ γm|xi|
∣∣xj∣∣

≤ γm · t2 ·∥xi∥2
∥∥xj∥∥2

≤ γm · t2c2.

(3.20)

There are 2v(n−v)+(n−v)2 elements of EA can be estimated in this way. Therefore, based on (3.19)

and (3.20), we can estimate ∥EA∥2 as

∥EA∥2 ≤
∥∥|EA|

∥∥
F

≤
√
v2 · [γm · t1c2]2 + (2v(n− v) + (n− v)2) · [γm · t2c2]2

≤ 1.1mu · (vt1 + nt2)c
2.

(3.17) is proved.

For ∥EB∥2, Lemma 2.2, (3.13) and (3.14), we can get

∥EB∥2 ≤
∥∥|EB|

∥∥
F

≤ γn+1∥Y ∥2F .
(3.21)

In fact, we have

∥Y ∥2F = tr(Y ⊤Y), (3.22)

which denotes the trace of the gram matrix Y ⊤Y . With Definition 3.1, (3.13), (3.14) and (3.22), we

can get

γn+1∥Y ∥2F ≤ γn+1 tr(Y
⊤Y)

≤ γn+1 tr(X
⊤X + sI + EA + EB)

≤ γn+1(∥X∥2F + sn+ n∥EA∥2 + n∥EB∥2)

≤ γn+1((vt1 + nt2)c
2 + sn+ n∥EA∥F + n∥EB∥F).

(3.23)

47

If we set

z =
s

(vt1 + nt2)c2
,

with (3.1), we can have

11(mu+ (n+ 1)u) ≤ z ≤ 1

100n
. (3.24)

With (3.24), we combine (3.21) and (3.23) with (1.1), (1.2), (3.3) and (3.17), and we can bound∥EB∥2
as

∥EB∥2 ≤
γn+1 · (1 + 1.1mnu+ zn)

1− γn+1 · n
· (vt1 + nt2)c

2

≤ 1.02(n+ 1)u · (1 + 1.1mnu+ 0.01)

1− 1.02(n+ 1)u · n
· (vt1 + nt2)c

2

≤
1.02(n+ 1)u · (1 + 1.1 · 1

64 + 0.01)

1− 1.02
64

· (vt1 + nt2)c
2

≤ 1.1(n+ 1)u · (vt1 + nt2)c
2.

(3.18) is proved.

Remark 3.3. The steps to prove (3.18) contains a step utilizing the properties of traces in (3.23). This

idea of proof has not occurred in the works of CholeskyQR before. Although (3.18) seems similar to the

corresponding results in [21, 68] and Chapter 2, our ideas in the theoretical analysis are distinguished

from those in the previous works, which is an innovative point of this chapter.

Lemma 3.2. For
∥∥Y −1

∥∥
2
and

∥∥XY −1
∥∥
2
in (3.15), when (3.3) is satisfied, we have∥∥∥Y −1
∥∥∥
2
≤ 1√

(σmin(X))2 + 0.9s
, (3.25)∥∥∥XY −1

∥∥∥
2
≤ 1.5. (3.26)

Proof. The steps to prove (3.25) and (3.26) are the same as those in [21] and Chapter 2.

Lemma 3.3. For ∥∆Yi∥2 in (3.15), when (3.3) is satisfied, we have

∥∆Yi∥2 ≤ 1.03n
√
nu · c

√
t1. (3.27)

Proof. For (3.15), based on Lemma 1.9, we can have

∥∆Yi∥2 ≤ γn ·
∥∥|Y |

∥∥
F

≤ γn ·
√
n∥Y ∥g

≤ 1.02n
√
nu ·∥Y ∥g .

(3.28)

With (3.3), (3.17) and (3.18), we can have

∥EA∥2 +∥EB∥2 ≤ 1.1 · (mu+ (n+ 1)u) · (vt1 + nt2) · c2

≤ 0.1s.
(3.29)

48

For ∥Y ∥g, similar to the steps in Chapter 2 and based on (3.3), (3.13), (3.14) and (3.29), we can have

∥Y ∥2g ≤∥X∥2g + s+ (∥EA∥2 +∥EB∥2)

≤ 1.011t1c
2.

(3.30)

Therefore, with (3.30), it is easy to see that

∥Y ∥g ≤ 1.006c
√
t1. (3.31)

We put (3.31) into (3.28) and we can have (3.27).

Lemma 3.4. For ∥∆X∥2 in (3.16), when (3.3) is satisfied, we have

∥∆X∥2 ≤
1.09n

√
nu ·

√
t1 ·

√
(vt1 + nt2) · c2√

(σmin(X))2 + 0.9s
. (3.32)

Proof. Similar to the approach in [21] and Chapter 2, we can express (3.15) as

w⊤
i = x⊤i (Y +∆Yi)

−1

= x⊤i (I + Y −1∆Yi)
−1Y −1.

(3.33)

When we define

(I + Y −1∆Yi)
−1 = I + θi, (3.34)

where

θi :=
∞∑
j=1

(−Y −1∆Yi)
j , (3.35)

based on (3.15) and (3.16), we can have

∆xi
⊤ = x⊤i θi. (3.36)

∆xi is the i-th row of ∆X. Based on (1.2), (3.3), (3.25) and (3.27), when (3.3) is satisfied and v is a

small positive integer, we can have∥∥∥Y −1∆Yi

∥∥∥
2
≤
∥∥∥Y −1

∥∥∥
2
∥∆Yi∥2

≤
1.03n

√
nu∥X∥g√

(σmin(X))2 + 0.9s

≤ 1.03n
√
nu · c

√
t1√

0.9s

≤ 1.03n
√
nu · c

√
t1√

9.9(mu+ (n+ 1)u) ·
√
(vt1 + nt2)c2

≤ 1.03√
9.9

· n
√
u · 1√

v

≤ 0.05.

(3.37)

49

For (3.35), with (3.25), (3.27) and (3.37), we can have

∥θi∥2 ≤
∞∑
j=1

(
∥∥∥Y −1

∥∥∥
2
∥∆Yi∥2)

j

=

∥∥Y −1
∥∥
2
∥∆Yi∥2

1−
∥∥Y −1

∥∥
2
∥∆Yi∥2

≤ 1

0.95
· 1.03n

√
nu · c

√
t1√

(σmin(X))2 + 0.9s

≤ 1.09n
√
nu · c

√
t1√

(σmin(X))2 + 0.9s
.

(3.38)

Based on (3.36), it is easy to see that ∥∥∥∆x⊤i

∥∥∥
2
≤
∥∥∥x⊤i ∥∥∥

2
∥θi∥2 . (3.39)

According to Definition 3.1, when X is a T1 matrix, we have

∥X∥F ≤
√
vt1 + nt2 · c. (3.40)

Therefore, similar to the step in [21], with (3.39), we can have

∥∆X∥2 ≤∥∆X∥F

≤∥X∥F ∥θi∥2 .
(3.41)

We put (3.39) and (3.40) into (3.41) and we can have (3.32).

3.2.2 Proof of Theorem 3.1

Here, we prove Theorem 3.1 with Lemma 3.2-Lemma 3.4.

Proof. The general approach to proving Theorem 3.1 is similar to those in [21] and Chapter 2. However,

we establish connections between the structure of X and QR factorization. Our proof will be divided

into three parts: estimating
∥∥∥W⊤W − I

∥∥∥
F
, estimating∥∆X∥F , and analyzing the relationship between

κ2(X) and κ2(W).

Estimating
∥∥∥W⊤W − I

∥∥∥
2

With (3.13)-(3.16), we can have

W⊤W = Y −⊤(X +∆X)⊤(X +∆X)Y −1

= Y −⊤X⊤XY −1 + Y −⊤X⊤∆XY −1

+ Y −⊤∆X⊤XY −1 + Y −⊤∆X⊤∆XY −1

= I − Y −⊤(sI + E1 + E2)Y
−1 + (XY −1)⊤∆XY −1

+ Y −⊤∆X⊤(XY −1) + Y −⊤∆X⊤∆XY −1.

50

Therefore, we can have∥∥∥W⊤W − I
∥∥∥
2
≤
∥∥∥Y −1

∥∥∥2
2
(∥EA∥2 +∥EB∥2 + s) + 2

∥∥∥Y −1
∥∥∥
2

∥∥∥XY −1
∥∥∥
2
∥∆X∥2

+
∥∥∥Y −1

∥∥∥2
2
∥∆X∥22 .

(3.42)

According to (3.25) and (3.29), we can have∥∥∥Y −1
∥∥∥2
2
(∥EA∥2 +∥EB∥2 + s) ≤ 1.1s

(σmin(X))2 + 0.9s

≤ 1.23.

(3.43)

Based on (3.25), (3.26) and (3.32), when v is a small positive integer, we can have

2
∥∥∥Y −1

∥∥∥
2

∥∥∥XY −1
∥∥∥
2
∥∆X∥2 ≤ 2 · 1√

(σmin(X))2 + 0.9s
· 1.5 ·

1.09n
√
nu ·

√
t1 ·

√
(vt1 + nt2) · c2√

(σmin(X))2 + 0.9s

≤ 3.27 ·
n
√
nu ·

√
t1 ·

√
(vt1 + nt2) · c2

(σmin(X))2 + 0.9s

≤ 3.27 ·
n
√
nu ·

√
t1 ·

√
(vt1 + nt2) · c2

9.9(mu+ (n+ 1)u) · (vt1 + nt2)c2

≤ 0.34 · n
√
t1n√

vt1 + nt2 · (m+ (n+ 1))

≤ 0.34 · n
√
n

m
√
v
.

(3.44)

With (3.25) and (3.32), if v is a small positive integer, we can have∥∥∥Y −1
∥∥∥2
2
∥∆X∥22 ≤

1

(σmin(X))2 + 0.9s
·
(1.09n

√
nu ·

√
t1 ·

√
(vt1 + nt2) · c2)2

(σmin(X))2 + 0.9s

≤
(1.09n

√
nu ·

√
t1 ·

√
(vt1 + nt2) · c2)2

[9.9(mu+ (n+ 1)u) · (vt1 + nt2)c2]2

≤ 0.013 · n3t1
(vt1 + nt2)[m+ (n+ 1)]2

≤ 0.013 · n3

m2v
.

(3.45)

Therefore, we put (3.43)-(3.45) into (3.42) and we can have∥∥∥W⊤W − I
∥∥∥
2
≤ 1.23 + 0.34r + 0.013r2, (3.46)

where r = n
√
n

m
√
v
. With (3.46), we can have

∥W∥2 ≤ h, (3.47)

if h =
√
2.3 + 0.37r + 0.015r2. From (3.47), we can see that ∥W∥2 is influenced by the size of X and

the number of dense columns when X is a T1 matrix. When X ∈ Rm×n is very tall and skinny, e.g.,

m ≥ n
√
n, ∥W∥2 can be bounded by a small constant since v is a small positive number. Moreover,

when m ≥ n and v is a small positive integer, we have r <
√
n. Therefore, it is easy to see that h can

be bounded by
√
3n, which is very meaningful in estimating the residual of Shifted CholeskyQR3 in

the following.

51

Estimating ∥∆X∥F

Regarding ∥∆X∥F in (3.16), similar to the results in [21] and Chapter 2, when l = c
√
t1

∥X∥2
, based on

(3.27) and (3.47), we can have

∥∆X∥F =∥QR−X∥F

≤∥Q∥F ·∥∆Yi∥2

≤ h
√
n · 1.03n

√
nu · c

√
t1

≤ 1.03n2u · hc
√
t1

= 1.03hln2u∥X∥2 .

(3.48)

This is an upper bound based on the settings of T1 matrices.

The relationship between κ2(X) and κ2(W)

In order to estimate κ2(W), since we have already estimated∥W∥2, we only need to estimate σmin(W).

Based on Lemma 1.6, we can have

σmin(W) ≥ σmin(XY −1)−
∥∥∥∆XY −1

∥∥∥
2
. (3.49)

Based on (3.25) and (3.48), we can have∥∥∥∆XY −1
∥∥∥
2
≤∥∆X∥2

∥∥∥Y −1
∥∥∥
2

≤ 1.03n2u · hc
√
t1√

(σmin(X))2 + 0.9s
.

(3.50)

Based on the result in [21], we can have

σmin(XY −1) ≥ σmin(X)√
(σmin(X))2 + s

· 0.9. (3.51)

Therefore, we put (3.50) and (3.51) into (3.49) and based on (3.4), we can have

σmin(W) ≥ 0.9σmin(X)√
(σmin(X))2 + s

−
1.1n2u · hl∥X∥2√
(σmin(X))2 + 0.9s

≥ 0.9√
(σmin(X))2 + s

(σmin(X)− 1.1

0.9 ·
√
0.9

· n2u · hl∥X∥2)

≥ σmin(X)

2
√
(σmin(X))2 + s

=
1

2
√
1 + α0(κ2(X))2

,

(3.52)

where α0 =
s

∥X∥22
= 11(mu+ (n+ 1)u) · k, k = (vt1+nt2)c2

∥X∥22
. Based on (3.47) and (3.52), we can have

κ2(W) ≤ 2h ·
√
1 + α0(κ2(X))2.

52

Here, (3.5) is proved.

With (3.40), we can have

k =
(vt1 + nt2)c

2

∥X∥22
≥ 1. (3.53)

When (3.9) is satisfied, similar to the steps in Chapter 2, when κ2(X) is large, it is easy to see that

α0(κ2(X))2 ≥ mk >> 1 with (3.53). Therefore, we can get

2h ·
√
1 + α0(κ2(W))2 ≈ 2h ·

√
α0 · κ2(X).

With (3.5), we can have

κ2(W) ≤ 2h ·
√
α0 · κ2(X).

Using the similar method as that in [21] and Chapter 2, in order to receive a sufficient condition for

Shifted CholeskyQR3, we only need to have

κ2(W) ≤ 2h ·
√
α0 · κ2(X)

≤ 1

8(mnu+ n(n+ 1)u)
.

(3.54)

We put α0 =
s

∥X∥22
= 11(mu+ (n+ 1)u) · k into (3.54) and we can have (3.6).

3.2.3 Proof of Theorem 3.2

In this section, we prove Theorem 3.2 based on Theorem 3.1 and the properties of∥·∥g. Our approach

to prove Theorem 3.2 is inspired by that in Chapter 2.

Proof. When s = 11(mu + (n + 1)u) · (vt1 + nt2)c
2, κ2(X) satisfies (3.6). We can easily derive (3.7)

with κ2(X), which is similar to that in [68].

For the residual of Shifted CholeskyQR3, ∥QR−X∥F , we express the CholeskyQR2 after Shifted

CholeskyQR with the error matrices as follows.

C −W⊤W = E1,

D⊤D − C = E2,

V D −W = E3, (3.55)

DY −N = E4. (3.56)

B − V ⊤V = E5,

J⊤J −B = E6,

QJ − V = E7, (3.57)

JN −R = E8. (3.58)

53

The same as that in Chapter 2, we divide the last step of calculating R in Algorithm 10 into (3.56)

and (3.58). Based on (3.55)-(3.58), we can have

QR = (V + E7)J
−1(JN − E8)

= (V + E7)N − (V + E7)J
−1E8

= V N + E7N −QE8

= (W + E3)D
−1(DY − E4) + E7N −QE8

= (W + E3)Y − (W + E3)D
−1E4 + E7N −QE8

= WY + E3Y − V E4 + E7N −QE8.

(3.59)

Therefore, based on (3.59), we can get

∥QR−X∥F ≤∥WY −X∥F +∥E3∥F ∥Y ∥2 +∥V ∥2∥E4∥F

+∥E7∥F ∥N∥2 +∥Q∥2∥E8∥F .
(3.60)

Similar to (3.15), we rewrite (3.55) through rows as

v⊤i = w⊤
i (D +∆Di)

−1,

where v⊤i and w⊤
i represent the i-th rows of V and W . Based on the results in [21, 68] and (3.47), we

can have

∥∆Di∥2 ≤ 1.03n
√
nu ·∥W∥2

≤ 1.03hn
√
nu,

(3.61)

∥Y ∥2 ≤ 1.006∥X∥2 , (3.62)

∥V ∥2 ≤
√
69

8
, (3.63)

∥D∥2 ≤ 1.02∥W∥2

≤ 1.02h.
(3.64)

With Lemma 1.7, Lemma 2.3, (3.31) and (3.61)-(3.64), we can bound ∥E3∥F , ∥E4∥F and ∥E4∥g as

∥E3∥F ≤∥V ∥F ·∥∆Di∥2

≤
√
69n

8
· 1.03hn

√
nu

≤ 1.07hn2u,

(3.65)

∥E4∥F ≤ γn(∥D∥F ·∥Y ∥F)

≤ γn(
√
n∥D∥2 ·

√
n∥Y ∥g)

≤ 1.02n2u · 1.02h · 1.006c
√
t1

≤ 1.05hln2u∥X∥2 ,

(3.66)

54

∥E4∥g ≤ γn(∥D∥F ·∥Y ∥g)

≤ γn(
√
n∥D∥2 ·∥Y ∥g)

≤ 1.02n
√
nu · 1.02h · 1.006c

√
t1

≤ 1.05hln
√
nu∥X∥2 .

(3.67)

Moreover, when l = c
√
t1

∥X∥2
, based on Lemma 2.2, Lemma 2.1, (3.31), (3.62), (3.64) and (3.67), ∥N∥2

and ∥N∥g can be bounded as

∥N∥2 ≤∥D∥2∥Y ∥2 +∥E4∥2

≤ 1.02h · 1.006∥X∥2 + 1.05hln2u∥X∥2

= (1.03h+ 0.02hl)∥X∥2 ,

(3.68)

∥N∥g ≤∥D∥2∥Y ∥g +∥E4∥g

≤ 1.02h · 1.006c
√
t1 + 1.05hln

√
nu∥X∥2

≤ 1.05hl∥X∥2 .

(3.69)

If we rewrite (3.57) through rows as

q⊤i = v⊤i (J +∆Ji)
−1,

where q⊤i and v⊤i represent the i-th rows of Q and V , based on the results in [21, 68], we can have

∥∆Ji∥2 ≤ 1.03n
√
n∥V ∥2

≤ 1.03n
√
nu ·

√
69

8

≤ 1.07n
√
nu,

(3.70)

∥Q∥2 ≤ 1.1, (3.71)

∥J∥2 ≤ 1.02∥V ∥2

≤ 1.06.
(3.72)

With Lemma 1.7 and (3.69)-(3.72), we can bound ∥E7∥F and ∥E8∥F as

∥E7∥F ≤∥Q∥F ·∥∆Ji∥2

≤ 1.1
√
n · 1.07n

√
nu

≤ 1.18n2u,

(3.73)

∥E8∥F ≤ γn(∥J∥F ·∥N∥F)

≤ γn(
√
n∥J∥2 ·

√
n∥N∥g)

≤ 1.02n2u · 1.06 · 1.05hc
√
t1

≤ 1.14hln2u∥X∥2 .

(3.74)

55

Therefore, we put (3.48), (3.62), (3.63), (3.65), (3.66), (3.68), (3.71), (3.73) and (3.74) into (3.60) and

we can have (3.8). Theorem 3.2 is proved.

3.2.4 Proof of Theorem 3.3

In this part, we prove Theorem 3.3 based on the proper ENC provided.

Proof. When we have the ENC: c =
√

β
m · ∥X∥2 and β ≤ mj2

vt1+nt2
, we just need to put the ENC

into js as defined in (3.1) and we can have (3.10). When s = 11(mu + (n + 1)u) · (vt1 + nt2)c
2 and

c =
√

β
m ·∥X∥2, α0 in Theorem 3.1 satisfies α0 = 11(mu+(n+1)u) ·ϵ, where ϵ = β(vt1+nt2)

m . Therefore,

we only to replace k in (3.6) with ϵ and we can receive (3.11). Therefore, Theorem 3.3 is proved.

3.2.5 Proof of Theorem 3.4

After proving Theorem 3.1-Theorem 3.3 matrices, we prove the special case of Definition 3.1 when X

is a T2 matrix.

Proof. According to Definition 3.1, if the input X ∈ Rm×n is a T2 matrix, then v = 0. In (3.1), js

becomes min(11(mnu + n(n + 1)u) · t2c2, 11(mu + (n + 1)u)∥X∥2c). From (2.1) and Definition 3.1,

we have t2c
2 ≥∥X∥2g. Therefore, we can derive (3.12). When (3.12) is satisfied, it is Theorem 2.3 in

Chapter 2.

Remark 3.4. Among all the lemmas used to prove Theorem 3.1-Theorem 3.4, Lemma 3.1 is one of

the most crucial. We build connections between the model of sparse matrices in Definition 3.1 and

the estimation of ∥EA∥2 and ∥EB∥2. Our alternative s is based on (3.17) and (3.18). The proof of

Lemma 3.1 lays a solid foundation for the subsequent analysis. (3.30) demonstrates the advantage

of ∥X∥g over ∥X∥2 for sparse matrices. For the sparse X, estimating ∥X∥2 through the element and

structure of X is challenging. The traditional ∥·∥2 is not the best to reflect the properties of the sparse

matrix. We often need to estimate ∥X∥F to replace ∥X∥2, which will influences the required ENCs

and error bounds. In fact, ∥·∥g plays a significant role in rounding error analysis for sparse matrices,

particularly in the steps of proving Theorem 3.2 to get tighter error bounds of residual. Although we

do not calculate ∥X∥g directly in the proof of these theorems, its connection to the structure and the

element of X greatly simplifies our analysis, leveraging the relationship between the columns of the

input X and CholeskyQR-type algorithms, as also mentioned in Chapter 2.

56

3.3 Numerical experiments

In this section, we conduct numerical experiments to examine the properties of Shifted CholeskyQR3

for sparse matrices. We primarily focus on the applicability, numerical stability, and CPU time(s) of

Shifted CholeskyQR3 with our alternative s. The experiments are performed on our own laptop using

MATLAB R2022a, and the specifications of the computer are listed in Table 2.1.

3.3.1 T1 matrices

In real applications, T1 matrices are very common in graph theory, control theory, and certain eigen-

value problems, see [7, 45, 49] and their references. One of the most well-known T1 matrices is the

arrowhead matrix, which features a dense column and a dense row. In this section, we focus on the

arrowhead matrix and conduct numerical experiments. Two different types of numerical examples are

shown below.

A medium-size X in the block version

For the medium-sizeX in the block version, we takem = 2048 and n = 64. We build a group of orthog-

onal basis in R64 in the form of e1 = (1, 0, 0 · · · 0, 0)⊤, e2 = (0, 1, 0 · · · 0, 0)⊤, · · · , e64 = (0, 0, 0 · · · 0, 1)⊤.

We take a vector f ∈ R64, which satisfies f = (f1, f2, · · · , fn−1, fn)
⊤ and fi =


0, if i = 1

1, if i = 2, 3, · · · , 64
.

We define a diagonal matrix P = diag(u) ∈ R64×64, where u = (u1, u2, · · · , u63, u64) and ui =
3, if i = 1, 2, · · · , 32

3 · (a3)
i−33
31 , if i = 33, 34, · · · , 64

. Here, a is a small positive constant. We form K ∈ R64×64 as

K = −5e1 · f⊤ − 10f · e⊤1 + P.

We build X ∈ R2048×64 with 32 K as

X =


K

K
...

K


.

As a comparison group, we construct a common dense matrix U using the same method described

in [21, 68] and Chapter 2. U is constructed using Singular Value Decomposition (SVD), and we control

κ2(U) through σmin(U). We set

U = OΣH⊤.

57

Here, O ∈ Rm×m, H ∈ Rn×n are random orthogonal matrices and

Σ = diag(1, σ
1

n−1 , · · · , σ
n−2
n−1 , σ) ∈ Rm×n

is a diagonal matrix. Here, 0 < σ = σmin(U) < 1 is a constant. Therefore, we have σ1(U) =∥U∥2 = 1

and κ2(U) = 1
σ .

In the beginning, we test the applicability and accuracy of Shifted CholeskyQR3 between different

s for such a medium-size T1 matrix X in the block version. Our X satisfies the ENC in Theorem 3.3

with c = 10, v = 1, t1 = 2048 and t2 = 64. We choose s = js = min(11(mu + (n + 1)u) · (vt1 +

nt2)c
2, 11(mu + (n + 1)u)∥X∥2c) based on (3.1). Here, js = 11(mu + (n + 1)u) · (vt1 + nt2)c

2 with

the ENC. We vary a from 3 × 10−6, 3 × 10−8, 3 × 10−10, 3 × 10−12 to 3 × 10−14 to adjust κ2(X).

The σ of U is also varying to ensure κ2(U) ≈ κ2(X). For U , we use s = 11(mu + (n + 1)u)∥X∥2c
in Chapter 2. We test the applicability and accuracy of Shifted CholeskyQR3 with different s in

the cases of X and U . All results are listed in Table 3.1–Table 3.3. We refer to our alternative

s = js = min(11(mu + (n + 1)u) · (vt1 + nt2)c
2, 11(mu + (n + 1)u)∥X∥2c) as ‘the alternative s’ and

s = 11(mu+ (n+ 1)u)∥X∥2c as ‘the improved s’.

Table 3.1: Shifted CholeskyQR3 with the alternative s for the medium-size X

κ2(X) 2.18e+ 07 1.99e+ 09 1.81e+ 11 1.63e+ 13 1.46e+ 15

Orthogonality 2.92e− 15 3.52e− 15 4.43e− 15 3.80e− 15 3.84e− 15

Residual 1.08e− 13 1.07e− 13 1.00e− 13 1.16e− 13 8.83e− 14

Table 3.2: Shifted CholeskyQR3 with the improved s for the medium-size X

κ2(X) 2.18e+ 07 1.99e+ 09 1.81e+ 11 1.63e+ 13 1.46e+ 15

Orthogonality 3.02e− 15 3.60e− 15 5.67e− 15 4.08e− 15 −

Residual 1.10e− 13 1.09e− 13 1.00e− 13 1.04e− 13 −

Table 3.3: Shifted CholeskyQR3 with the improved s for the medium-size U

κ2(X) 2.18e+ 07 1.99e+ 09 1.81e+ 11 1.63e+ 13 1.46e+ 15

Orthogonality 1.96e− 15 1.83e− 15 2.13e− 15 1.86e− 15 −

Residual 6.95e− 16 6.47e− 16 6.10e− 16 5.69e− 16 −

According to Table 3.1 and Table 3.2, we find that Shifted CholeskyQR3 with our alternative s

can handle more ill-conditioned T1 matrices than with the improved s in Chapter 2 in this medium-

size case, demonstrating the improvement of our new s for T1 matrices in terms of applicability with

58

appropriate ENCs. When κ2(X) ≥ 1014, our alternative s remains applicable, while the improved s

does not. The comparison between Table 3.1 and Table 3.3 highlights the effectiveness of designing a

different choice of s for sparse cases, which corresponds to the comparison in Table 1.4. Furthermore,

Shifted CholeskyQR3 maintains a similar level of numerical stability in this case with our alternative

s compared to both the case with the improved s and the case of dense matrices, as indicated by the

comparison of orthogonality and residuals in Table 3.1–Table 3.3. This aligns with the theoretical

results presented in Table 1.5.

In addition to testing applicability and numerical stability, we also evaluate the CPU time(s) of

Shifted CholeskyQR3 with different s in this case with respect to X in our numerical experiments.

The corresponding results of CPU times for the various s values are listed in Table 3.4.

Table 3.4: Comparison of CPU time(s) with different s for the medium-size X

κ2(X) 2.18e+ 07 1.99e+ 09 1.81e+ 11 1.63e+ 13 1.46e+ 15

The alternative s 0.007 0.006 0.006 0.009 0.006

The improved s 0.008 0.007 0.005 0.008 −

Table 3.4 shows that the CPU time(s) of Shifted CholeskyQR3 with different s are almost in the

same level for the medium-size X, which indicates that our alternative choice s can keep the efficiency

of Shifted CholeskyQR3 for such a T1 matrix.

A large-size X in the general form

In this part, we form a large-size X in the general form. We take m = 16384 and n = 1024. We define

some vectors in the beginning: e1ns = (1, 0, 0, · · · , 0, 0)⊤ ∈ R1024, e1zs = (0, 1, 1, · · · , 1, 1)⊤ ∈ R1024,

e1nb = (1, 0, 0, · · · , 0, 0)⊤ ∈ R16384 and e1zs = (0, 1, 1, · · · , 1, 1)⊤ ∈ R16384, together with a diagonal

matrix E = diag(1, β
1

1023 , · · · , β
1022
1023 , β) ∈ R1024×1024. Moreover, a large matrix O15360×1024 is formed

with all the elements 0. Therefore, a matrix Psparse ∈ R16384×1024 is formed as

Psparse =

 E

O15360×1024

 .

We build X ∈ R16384×1024 as

X = −5e1nb · e⊤1zs − 10e1zs · e⊤1ns + Psparse (3.75)

Similar to the previous part, we build a comparison group with a common dense matrix Ub ∈

R16384×1024. It is constructed in the same way as that in the previous section with σ1(Ub) =∥Ub∥2 = 1

and κ2(Ub) =
1
σ . Here, σ is a positive constant.

59

In the beginning, we test the applicability and accuracy of Shifted CholeskyQR3 between different

s for such a large-size T1 matrix X in the general form. Our X satisfies the ENC in Theorem 3.3

with c = 10, v = 1, t1 = 16384 and t2 = 2. We choose s = js = min(11(mu + (n + 1)u) · (vt1 +

nt2)c
2, 11(mu + (n + 1)u)∥X∥2c) based on (3.1). Here, js = 11(mu + (n + 1)u) · (vt1 + nt2)c

2 with

the ENC. We vary β from 10−6, 10−7, 10−8, 10−9 to ×10−10 to adjust κ2(X). σ of Ub is also

varying to ensure κ2(Ub) ≈ κ2(X). For Ub, we use s = 11(mu + (n + 1)u)∥X∥2c in Chapter 2. We

test the applicability and accuracy of Shifted CholeskyQR3 with different s in the cases of X and

Ub. Moreover, CPU time(s) is also tested for Shifted CholeskyQR3 with different s. All results are

listed in Table 3.5–Table 3.8. The same as the previous section, we still refer to our alternative

s = js = min(11(mu + (n + 1)u) · (vt1 + nt2)c
2, 11(mu + (n + 1)u)∥X∥2c) as ‘the alternative s’ and

s = 11(mu+ (n+ 1)u)∥X∥2c as ‘the improved s’.

Table 3.5: Shifted CholeskyQR3 with the alternative s for the large-size X

κ2(X) 1.28e+ 09 1.28e+ 10 1.28e+ 11 1.27e+ 12 1.27e+ 13

Orthogonality 2.67e− 14 6.37e− 14 9.19e− 14 1.04e− 13 1.19e− 13

Residual 3.07e− 13 2.92e− 13 2.98e− 13 2.82e− 13 3.26e− 13

Table 3.6: Shifted CholeskyQR3 with the improved s for the large-size X

κ2(X) 1.28e+ 09 1.28e+ 10 1.28e+ 11 1.27e+ 12 1.27e+ 13

Orthogonality 8.95e− 14 1.14e− 13 1.24e− 13 1.37e− 13 −

Residual 2.93e− 13 2.98e− 13 3.16e− 13 2.92e− 13 −

Table 3.7: Shifted CholeskyQR3 with the improved s for the large-size Ub

κ2(X) 1.28e+ 09 1.28e+ 10 1.28e+ 11 1.27e+ 12 1.27e+ 13

Orthogonality 1.96e− 14 2.00e− 14 2.06e− 14 2.05e− 14 −

Residual 1.93e− 14 1.85e− 14 1.79e− 14 1.73e− 14 −

Table 3.8: Comparison of CPU time(s) with different s for the large-size X

κ2(X) 2.18e+ 07 1.99e+ 09 1.81e+ 11 1.63e+ 13 1.46e+ 15

The alternative s 1.63 1.71 1.73 1.69 1.70

The improved s 1.61 1.70 1.71 1.72 −

According to Table 3.5-Table 3.8, similar findings hold for the large-size X in the general form as

60

those of the medium-size X in the block version. We can say that our Shifted CholeskyQR3 with the

alternative s for the sparse matrices exhibits the advantages compared to case with the improved s in

Chapter 2 under certain ENCs, showing that such an alternative s is an optimal one for T1 matrices.

3.3.2 T2 matrices

T2 matrices with all columns being sparse are also very common in real applications, such as scientific

computing, machine learning, and image processing [54, 59, 63]. Similar to the case of T1 matrices, we

do two groups of numerical experiments with a medium size X in the block version and a large-size

X in the general form.

A medium-size X in the block version

For the medium-size X, we still take m = 2048 and n = 64. We form matrices X ∈ R2048×64 with 32

K ∈ R64×64 as

X =


K

K
...

K


.

Similar to the construction of a diagonal matrix P , the diagonal matrix P = diag(u) ∈ R64×64, where

u = (u1, u2, · · · , u63, u64) and ui =


10, if i = 1, 2, · · · , 32

10 · (b
10)

i−33
31 , if i = 33, 34, · · · , 64

. Here, b is a small positive

constant. We utilize the definition of the orthogonal basis and form K as

K = 10e32 · d⊤ + 10e33 · d⊤ + P.

Here, d ∈ R64 is a vector with all the elements 1. Therefore, X is also formed. The comparison group

of the common dense matrix U is built in the same way as the part of T1 matrices.

In the beginning, we make comparison of the applicability and accuracy between different s for such

a medium-size T2 matrix. We choose s = js = min(11(mnu+n(n+1)u) ·t2c2, 11(mu+(n+1)u)∥X∥2c)

based on (3.1). According to Theorem 3.4, we have s = js = 11(mu + (n + 1)u)∥X∥2c . We vary b

from 10−5, 10−7, 10−9, 10−11 to 10−13 to adjust κ2(Xs) and κ2(X). Meanwhile, we vary the σ of

U to ensure κ2(U) ≈ κ2(X). For U , we use s = 11(mu + (n + 1)u)∥X∥2c . We test the applicability

of Shifted CholeskyQR3 with different s for both X and U . The corresponding results are listed in

Table 3.9 and Table 3.10.

61

Table 3.9: Shifted CholeskyQR3 with the alternative s for the medium-size X

κ2(X) 1.30e+ 07 1.29e+ 09 1.28e+ 11 1.28e+ 13 1.28e+ 15

Orthogonality 2.05e− 15 2.06e− 15 2.20e− 15 2.05e− 15 2.22e− 15

Residual 3.42e− 13 3.51e− 13 1.65e− 13 3.32e− 13 3.47e− 13

Table 3.10: Shifted CholeskyQR3 with the improved s for U

κ2(X) 1.30e+ 07 1.29e+ 09 1.28e+ 11 1.28e+ 13 1.28e+ 15

Orthogonality 2.13e− 15 1.98e− 15 1.94e− 15 2.07e− 15 −

Residual 6.95e− 16 6.56e− 16 6.19e− 16 5.74e− 16 −

According to Table 3.9 and Table 3.10, we observe that similar results hold for such a medium-size

T2 matrix in the block version as for T1 matrices. With the alternative s and appropriate ENCs, Shifted

CholeskyQR3 can handle cases with larger κ2(X) compared to the dense cases in this example. This

highlights the difference between the sparse and the dense cases for Shifted CholeskyQR3. Further-

more, with the alternative s, Shifted CholeskyQR3 remains numerically stable for such a medium-size

T2 matrix in the block version, as indicated by Chapter 2 and Theorem 3.4.

In the following, we show the CPU time(s) of Shifted CholeskyQR3 with different s when X is a

medium-size T2 matrix in the block version. We do hundreds of tests and take the average of the CPU

time(s) of different s. They are presented in Table 3.11.

Table 3.11: Comparison of CPU time(s) with different s for the medium size X

κ2(X) 1.30e+ 07 1.29e+ 09 1.28e+ 11 1.28e+ 13 1.28e+ 15

The alternative s 0.009 0.008 0.010 0.007 0.009

The improved s 0.007 0.007 0.011 0.009 −

According to Table 3.11, we find that Shifted CholeskyQR3 exhibits similar CPU times for Shifted

CholeskyQR3 with different s values in this example, which aligns with the conclusion drawn when X

is a T1 matrix. Although js for the T2 matrix is equivalent to the improved s from Chapter 2, we can

still use s = js because js in (3.1) represents a common form applicable to all the sparse matrices.

A large-size X in the general form

For T2 matrices, we also form a large-size X in the general form. We take m = 16384 and n =

1024. We define a vector ut ∈ R1024 as ut = (10, 10, · · · , 10, 10)⊤. We define a diagonal matrix

62

Es = diag(1, b
1

1023
1 , · · · , b

1022
1023
1 , b1) ∈ R1024×1024. This is the same as that in Chapter 2. Moreover,

we build two matrices with all the elements 0, O15360×1024 and O8191×1024. Therefore, a matrix

Psparse ∈ R16384×1024 is formed as

Dsparse =

 Es

O15360×1024

 .

Another matrix Csparse ∈ R16384×1024 is defined as

Csparse =


O8191×1024

ut

ut

O8191×1024


.

We build X ∈ R16384×1024 as

X = Csparse +Dsparse.

In the beginning, we make comparison of the applicability and accuracy between the cases with

different s for such a large-size T2 matrix. We choose s = js = min(11(mnu+n(n+1)u)·t2c2, 11(mu+

(n + 1)u)∥X∥2c) based on (3.1). We vary b1 from 10−7, 10−8, 10−9, 10−10 to 10−11 to adjust κ2(X).

For the comparison group, we take the same Ub based on SVD as that in the previous section for T1

matrices. We vary σ of Ub to ensure κ2(U) ≈ κ2(X). For Ub, we use s = 11(mu+(n+1)u)∥X∥2c . We

test the applicability of Shifted CholeskyQR3 with different s for both X and Ub. The same as that of

T1 matrices, CPU time(s) is also tested for Shifted CholeskyQR3 with different s. The corresponding

results are listed in Table 3.12-Table 3.14.

Table 3.12: Shifted CholeskyQR3 with the alternative s for the large-size X

κ2(X) 1.85e+ 10 1.73e+ 11 1.64e+ 12 1.56e+ 13 1.49e+ 14

Orthogonality 2.67e− 14 6.37e− 14 9.19e− 14 1.04e− 13 1.19e− 13

Residual 3.07e− 13 2.92e− 13 2.98e− 13 2.83e− 13 3.26e− 13

Table 3.13: Shifted CholeskyQR3 with the improved s for Ub

κ2(X) 1.85e+ 10 1.73e+ 11 1.64e+ 12 1.56e+ 13 1.49e+ 14

Orthogonality 8.95e− 14 1.14e− 13 1.24e− 13 1.37e− 13 −

Residual 2.93e− 13 2.98e− 13 3.16e− 13 2.92e− 13 −

63

Table 3.14: Comparison of CPU time(s) with different s for the large-size X

κ2(X) 1.85e+ 10 1.73e+ 11 1.64e+ 12 1.56e+ 13 1.49e+ 14

The alternative s 1.66 1.74 1.72 1.75 1.69

The improved s 1.64 1.73 1.74 1.73 1.69

According to Table 3.12-Table 3.14, we find that Shifted CholeskyQR3 with the alternative s

exhibits good properties in the applicability, accuracy and efficiency for such a large-size X in the

general form, which is not worse than the case with the improved s proposed in Chapter 2. Generally

speaking, our Shifted CholeskyQR3 with the alternative s performs well for T2 matrices. Combing

with the theoretical results and numerical experiments for both T1 and T2 matrices, we can say that

our alternative s is an optimal one compared to the improved s for Shifted CholeskyQR3 in sparse

cases.

3.4 Conclusions

This chapter focuses on the theoretical analysis of Shifted CholeskyQR3 for sparse matrices. We divide

sparse matrices into two types: T1 matrices and T2 matrices based on the presence of dense columns.

We propose an alternative choice of the shifted item s based on the structure and the key element of

the input X, which is a novel approach compared to the existing works. Our rounding error analysis

demonstrates that this alternative s is optimal for T1 matrices and can ensure numerical stability

of Shifted CholeskyQR3 with certain element-norm conditions(ENCs). Numerical experiments verify

our theoretical results for T1 matrices. Furthermore, Shifted CholeskyQR3 exhibits new properties

for T2 matrices compared to dense cases, and it remains as efficient with our alternative s as with the

improved s from Chapter 2.

64

CHAPTER 4.

PROBABILISTIC ERROR ANALYSIS OF CHOLESKYQR

BASED ON COLUMNS

In this chapter, we do probabilistic error analysis of CholeskyQR-type algorithms with the randomized

models in [33] and ∥X∥c defined in Chapter 2 for the input matrix X. Different from other works of

probabilistic error analysis, all the steps of CholeskyQR-type algorithms are matrix multiplications

and matrix factorization. Therefore, we set that all the steps of CholeskyQR-type algorithms in

this chapter follow Lemma 1.10-Lemma 1.12 independently. We receive tighter upper bounds for

both orthogonality and residual for Shifted CholeskyQR3 and Shifted CholeskyQR2, together with

an improved probabilistic shifted item s for Shifted CholeskyQR3 compared to that in Chapter 2.

Numerical experiments demonstrate that the improvement of such a probabilistic s on the applicability

and show its robustness in ill-conditioned cases. This chapter is organized as follows. We present the

probabilistic error analysis for CholeskyQR2 in Section 4.1 and for Shifted CholeskyQR3 in Section 4.2.

Detailed numerical experiments are provided in Section 4.3.

4.1 Probabilistic error analysis of CholeskyQR2

In this section, we aim to utilize the randomized models to conduct a probabilistic error analysis of

CholeskyQR2. The same as Chapter 2, ∥·∥g and its properties are utilized in the theoretical analysis.

4.1.1 General settings

In the beginning, we present CholeskyQR2 step by step, accompanied by the corresponding error

matrices below.

G−X⊤X = EA, (4.1)

Y ⊤Y −G = EB, (4.2)

WY = X + EWY , (4.3)

C −W⊤W = E1,

Z⊤Z − C = E2,

QZ −W = E3, (4.4)

ZY −R = E4. (4.5)

65

For the input matrix X ∈ Rm×n, we provide some general settings for all the algorithms in this

chapter below.

max(η
√
mnu,mnu) ≤ 1

64
, (4.6)

max(η
√
n+ 1nu, (n+ 1)nu) ≤ 1

64
. (4.7)

Here, η occurs in (1.20) and (1.21). For CholeskyQR2, when (4.6) and (4.7) are satisfied, if we want

to have Q(η,mn2), Q(η, n
3

6 + n2

2 + n
3) and Q(η, n3) to be all positive, we can choose η as a positive

constant not exceeding 10 in numerical experiments. The same as that in Chapter 2, we keep j1 =
∥X∥c
∥X∥2

.

Moreover, we define j2 =
∥W∥c
∥W∥2

, 1 ≤ ji ≤
√
n, i = 1, 2.

4.1.2 Probabilistic error analysis of CholeskyQR2

In this section, we present some theoretical results related to the probabilistic error analysis of

CholeskyQR2.

Theorem 4.1. With Lemma 1.10-Lemma 1.12, for X ∈ Rm×n and [Q,R] = CholeskyQR2(X), with

(4.6), (4.7) and

k1 = 8j1κ2(X)

√
η(
√
mu+

√
n+ 1u) ≤ 1, (4.8)

we have ∥∥∥Q⊤Q− I
∥∥∥
F
≤ 6η · j22(

√
mu+

√
n+ 1u), (4.9)

∥QR−X∥F ≤ (1.1j1 + 1.23j2 + 1.19 · j1j2√
n
)η · nu∥X∥2 , (4.10)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2Q(η, n3).

4.1.3 Lemmas for proving Theorem 4.1

Before proving Theorem 4.1, we present some lemmas related to it. The analytical steps of these

lemmas in this chapter are similar to those in [21, 68], Chapter 2 and Chapter 3. However, we utilize

the randomized models, allowing us to obtain sharper upper bounds with minimal probabilities for all

results, which are fundamentally different from existing works.

Lemma 4.1. For EA and EB in (4.1) and (4.2), we have

∥EA∥2 ≤ 1.1η
√
mu∥X∥2c , (4.11)

∥EB∥2 ≤ 1.1η
√
n+ 1u∥X∥2c , (4.12)

with probability at least Q(η,mn2)Q(η, n
3

6 + n2

2 + n
3).

66

Proof. Regarding ∥EA∥2, with Lemma 1.7 and (4.1), we can have

|EA| =
∣∣∣G−X⊤X

∣∣∣
≤ γ̃m(η)

∣∣∣X⊤
∣∣∣|X|

≤ 1.1η
√
mu ·

∣∣∣X⊤
∣∣∣|X| ,

(4.13)

with probability at least Q(η,mn2). Similar to those in [21, 69] and Chapter 2, we can bound ∥EA∥2
as

∥EA∥2 ≤
∥∥|EA|

∥∥
F
≤ γ̃m(η) ·∥X∥2F

≤ γ̃m(η) ·∥X∥2c

≤ 1.1η
√
mu ·∥X∥2c ,

with probability at least Q(η,mn2). Here, xi denotes the i-th column of X. (4.11) is proved.

Regarding∥EB∥2, we use similar ideas in Chapter 2 with∥·∥g and its properties. With Lemma 1.12,

(4.1) and (4.2), we can have

∥EB∥2 ≤
∥∥|EB|

∥∥
F

≤ γ̃n+1(η)∥Y ∥2F

≤ γ̃n+1(η) · n∥Y ∥2g

≤ γ̃n+1(η) · n(∥X∥2g +∥EA∥2 +∥EB∥2),

(4.14)

with probability at least Q(η, n
3

6 + n2

2 + n
3). Based on (2.20), we can get an deterministic upper bound

of ∥EA∥2 as 1.1mnu∥X∥2g. Therefore, with (4.6), (4.7), (4.11) and (4.14), we can get

∥EB∥2 ≤
γ̃n+1(η) · n(1 + 1.1mnu)

1− γ̃n+1(η) · n
∥X∥2g

≤ 1.02η
√
n+ 1 · nu(1 + 1.1mnu)

1− 1.02η
√
n+ 1 · nu

∥X∥2g

≤
1.02η

√
n+ 1 · nu · (1 + 1.1 · 1

64)

1− 1.02
64

∥X∥2g

≤ 1.1η
√
n+ 1 · nu∥X∥2g

= 1.1η
√
n+ 1u∥X∥2c ,

with probability at least Q(η, n
3

6 + n2

2 + n
3). (4.12) is proved. Therefore, Lemma 4.1 holds.

Lemma 4.2. For Y −1 and XY −1 in (4.3), we have∥∥∥Y −1
∥∥∥
2
≤ 1.1

σmin(X)
, (4.15)∥∥∥XY −1

∥∥∥
2
≤ 1.1, (4.16)

with probability at least Q(η,mn2)Q(η, n
3

6 + n2

2 + n
3).

67

Proof. The idea to prove Lemma 4.2 is the same as that in [68]. Based on Lemma 1.6, (4.1) and (4.2),

we can have

(σmin(Y))2 ≥ (σmin(X))2 − (∥EA∥2 +∥EB∥2). (4.17)

Based on (4.8), (4.11) and (4.12), we can have

∥EA∥2 +∥EB∥2 ≤
1.1

64
(σmin(X))2

≤ (1− 1

1.12
)(σmin(X))2,

(4.18)

with probability at least Q(η,mn2)Q(η, n
3

6 + n2

2 + n
3). We combine (4.17) with (4.18) and we can have

1

1.12
· (σmin(X))2 ≤ (σmin(Y))2, (4.19)

with probability at least Q(η,mn2)Q(η, n
3

6 + n2

2 + n
3). Therefore, we can easily get (4.15). Similar to

[68], we can have (4.16). Lemma 4.2 holds.

Lemma 4.3. For EWY in (4.3), we have

∥EWY ∥2 ≤ 1.05ηnu ·∥W∥2∥X∥c , (4.20)

with probability at least Q(η,mn2).

Proof. With Lemma 1.11 and (4.3), we can have

∥EWY ∥2 ≤ 1.02η
√
nu · (∥W∥F ·∥Y ∥F)

≤ 1.02ηn
√
nu∥W∥2∥Y ∥g ,

(4.21)

with probability at least Q(η,mn2). In Chapter 2, we show the deterministic upper bounds of both

∥EA∥2 and ∥EB∥2 in (4.6) and (4.7). Based on (4.1), (4.2), (4.6) and (4.7), we can have

∥Y ∥2g ≤∥X∥2g +∥EA∥2 +∥EB∥2)

≤ 1.04∥X∥2g .
(4.22)

Based on (4.22), we can have

∥Y ∥g ≤ 1.02∥X∥g . (4.23)

Therefore, we put (4.23) into (4.21) and we can get (4.20). Lemma 4.3 holds.

Lemma 4.4. For W in (4.3), we have

∥W∥2 ≤ 1.13, (4.24)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3).

68

Proof. Based on (4.3), we can have

∥W∥2 ≤
∥∥∥XY −1

∥∥∥
2
+
∥∥∥EWY Y

−1
∥∥∥
2

≤
∥∥∥XY −1

∥∥∥
2
+∥EWY ∥2

∥∥∥Y −1
∥∥∥
2
.

(4.25)

With (4.7), (4.15) and (4.20), we can have

∥EWY ∥2
∥∥∥Y −1

∥∥∥
2
≤

1.16ηnu ·∥W∥2∥X∥c
σmin(X)

≤
1.16j1ηnu∥X∥2

8j1

√
η(
√
mu+

√
n+ 1u)

·∥W∥2

≤ 1.06

8
·
√
ηn

√
n+ 1u ·∥W∥2

≤ 0.02∥W∥2 ,

(4.26)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). Therefore, we put (4.60) and (4.26) into

(4.25) and we can have

∥W∥2 ≤ 1.1 + 0.02∥W∥2 , (4.27)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). With (4.27), we can have (4.24). Lemma 4.4

holds.

4.1.4 Proof of Theorem 4.1

With Lemma 4.1-Lemma 4.4, we begin to prove Theorem 4.1.

Proof. The proof of Theorem 4.1 is divided into two parts, orthogonality and residual.

The upper bound of orthogonality

First, we consider the orthogonality. Based on (4.1), (4.2) and (4.3), it is easy to get

W⊤W = Y −⊤(X + EWY)
⊤(X + EWY)Y

−1

= Y −⊤X⊤XY −1 + Y −⊤X⊤EWY Y
−1

+ Y −⊤E⊤
WY XY −1 + Y −⊤E⊤

WY EWY Y
−1

= I − Y −⊤(EA + EB)Y
−1 + (XY −1)⊤EWY Y

−1

+ Y −⊤E⊤
WY (XR−1) + Y −⊤E⊤

WY EWY Y
−1.

Therefore, we can have∥∥∥W⊤W − I
∥∥∥
2
≤
∥∥∥Y −1

∥∥∥2
2
(∥EA∥2 +∥EB∥2) + 2

∥∥∥Y −1
∥∥∥
2

∥∥∥XY −1
∥∥∥
2
∥EWY ∥2

+
∥∥∥Y −1

∥∥∥2
2
∥EWY ∥22 .

(4.28)

69

Based on (4.8), (4.11), (4.12) and (4.15), when j1 =
∥X∥c
∥X∥2

, we can have

∥∥∥Y −1
∥∥∥2
2
(∥EA∥2 +∥EB∥2) ≤

1.21 · (1.1j21 · η(
√
mu+

√
n+ 1u)∥X∥22)

(σmin(X))2

≤ 1.34

64
k21,

(4.29)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). Based on (4.8), (4.15), (4.16), (4.20) and

(4.33), we can have

2
∥∥∥Y −1

∥∥∥
2

∥∥∥XY −1
∥∥∥
2
∥EWY ∥2 ≤ 2 · 1.1

σmin(X)
· 1.1 · (1.05j1 · ηnu∥X∥2 · 1.13)

≤ 3

64
k1,

(4.30)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). With (4.8), (4.15), (4.20) and (4.33), we can

have ∥∥∥Y −1
∥∥∥2
2
∥EWY ∥22 ≤

1.21

(σmin(X))2
· (1.05j1 · ηnu∥X∥2 · 1.13)

2

≤ 2

4096
k21,

(4.31)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). Therefore, we put (4.29)-(4.31) into (4.28)

and with (4.8), we can have ∥∥∥W⊤W − I
∥∥∥
2
≤ 5

64
, (4.32)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). With (4.32), it is easy to have

∥W∥2 ≤
√
69

8
, (4.33)

σmin(W) ≥
√
59

8
, (4.34)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). (4.33) is an improved upper bound of ∥W∥2

compared to (4.24). With (4.33) and (4.34), we can get

κ2(W) ≤
√

69

59
, (4.35)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). Based on (4.6), (4.7) and (4.35), when j2 ≤ 1,

we can get

k2 = 8j2κ2(W)

√
η(
√
mu+

√
n+ 1u ≤ 1. (4.36)

With (4.36) and similar to the previous steps to get (4.32), we can have∥∥∥Q⊤Q− I
∥∥∥
F
≤ 5

64
k22

≤ 6j22 · η(
√
mu+

√
n+ 1u),

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2. (4.9) holds.

70

The upper bound of residual

Regarding the residual, according to (4.4) and (4.5), we can have

QR−X = (W + E3)Z
−1(ZY − E4)−X

= (W + E3)Y − (W + E3)Z
−1E4 −X

= WY −X + E3Y −QE4.

Therefore, it is easy to have

∥QR−X∥F ≤∥WY −X∥F +∥E3∥F ∥Y ∥2 +∥Q∥2∥E4∥F . (4.37)

Based on (4.20) and (4.33), we can have

∥WY −X∥F ≤ 1.05ηnu ·∥W∥2∥X∥c

≤
√
69

8
· 1.05j1 · ηnu∥X∥2

≤ 1.1j1 · ηnu∥X∥2 ,

(4.38)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). We replace ∥Y ∥g and ∥X∥g in (4.22) with

∥Y ∥2 and ∥X∥2 and we can get

∥Y ∥2 ≤ 1.02∥X∥2 . (4.39)

With (4.6), (4.7) and (4.9), we can have

∥Q∥2 ≤ 1.1, (4.40)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2. Similar to the steps of (4.38), with (4.33)

and (4.40), we can bound ∥E3∥F as

∥E3∥F ≤ 1.05ηnu ·∥Q∥2∥W∥c

≤ 1.05ηnu · 1.1 ·
√
69

8
j2

≤ 1.2j2 · ηnu,

(4.41)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2. Similar to the step in [68], Chapter 2 and

Chapter 3, with (4.23) and (4.33), we can get

∥Z∥g ≤ 1.02∥W∥g

≤ 1.02j2√
n

·
√
69

8

≤ 1.06j2√
n

,

(4.42)

71

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2. With Lemma 1.11, (4.23) and (4.42), we

can bound ∥E4∥F as

∥E4∥F ≤ γ̃n(η)(∥Z∥F ·∥Y ∥F)

≤ γ̃n(η)(
√
n∥Z∥g ·

√
n∥Y ∥g)

≤ 1.02η
√
nu · 1.06j2 · 1.02j1∥X∥2

≤ 1.08j1j2 · η
√
nu∥X∥2 ,

(4.43)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2Q(η, n3). We put (4.38)-(4.40), (4.41)

and (4.43) into (4.37) and we can have (4.10) with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 +

n
3))

2Q(η, n3). Therefore, Theorem 4.1 holds.

Remark 4.1. In fact, our theoretical analysis of CholeskyQR is very different from those of [21, 68]

and Chapter 2. Regarding probabilistic analysis, the original analysis of CholeskyQR may lead to a very

limited least probability because of some lemmas using the way of solving linear systems through each

row. The analysis in this part is a more direct way and can avoid the problem. We utilize deterministic

bounds of ∥EA∥2 and ∥EB∥2 to derive (4.22), demonstrating the connection between the deterministic

and the the probabilistic results, which is a significant innovation in this chapter. Theorem 4.1 provides

sharper theoretical upper bounds for CholeskyQR2 with the randomized models compared to Lemma 1.1

when n is large. Furthermore, the sufficient condition for κ2(X) is also significantly better than that

in [68] when m is large.

4.2 Probabilistic error analysis for Shifted CholeskyQR3

In this part, we provide probabilistic error analysis of Shifted CholeskyQR3 with an alternative shifted

item s based on the randomized models.

72

4.2.1 General settings and algorithms

In the beginning, we write Shifted CholeskyQR3 with error matrices step by step below. It is the

same as that in Chapter 2 and Chapter 3.

G−X⊤X = EA, (4.44)

Y ⊤Y = G+ sI + EB, (4.45)

WY = X + EWY , (4.46)

C −W⊤W = E1,

D⊤D − C = E2,

V D −W = E3, (4.47)

DY −N = E4, (4.48)

B − V ⊤V = E5,

J⊤J −B = E6,

QJ − V = E7, (4.49)

JN −R = E8. (4.50)

For Shifted CholeskyQR3, (4.6) and (4.7) still hold. We present more general settings below.

κ2(X) ≤ L, (4.51)

11η(
√
mu+

√
n+ 1u)∥X∥2c ≤ s ≤ 1

100n
∥X∥2c . (4.52)

The same as before, we have j1 =
∥X∥c
∥X∥2

, j2 =
∥W∥c
∥W∥2

. Furthermore, we let j3 =
∥V ∥c
∥V ∥2

. Here, 1 ≤ ji ≤
√
n, i = 1, 2, 3. We define

L = min(
1

4.89j1 · ηnu
,Φ),

Φ =
1

86j1j2 · η(
√
mu+

√
n+ 1u)

.

4.2.2 Probabilistic error analysis of Shifted CholeskyQR3

In this section, we present theoretical results of the probabilistic error analysis for Shifted CholeskyQR3

based on Lemma 1.10-Lemma 1.12.

The same as the corresponding steps in Chapter 2 and Chapter 3, we divide the calculation of

R in the last step of Shifted CholeskyQR3 into (4.48) and (4.50). In the following, we show some

theoretical results of probabilistic error analysis of Shifted CholeskyQR3 below.

73

Theorem 4.2. With Lemma 1.10-Lemma 1.12, for X ∈ Rm×n and [W,Y] = SCholeskyQR(X), when

(4.51) and (4.52) are satisfied, we have

κ2(W) ≤ 3.24
√
1 + t(κ2(X))2, (4.53)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). Here, t = s

∥X∥22
.

Theorem 4.3. With Lemma 1.10-Lemma 1.12, for X ∈ Rm×n and [Q,R] = SCholeskyQR3(X), when

κ2(X) is large enough, if we take s = 11η(
√
mu+

√
n+ 1u)∥X∥2c and (4.51) is satisfied, we have∥∥∥Q⊤Q− I

∥∥∥
F
≤ 6η · j23(

√
mu+

√
n+ 1u), (4.54)

∥QR−X∥F ≤ ϕ1(j1, j2, j3)η · nu∥X∥2 , (4.55)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

3(Q(η, n3))2. Here, ϕ1(j1, j2, j3, n) = (1.66j1+

1.71j2 + 1.78j3 + 1.71 · j1j2√
n
+ 1.70 · j1j3√

n
).

4.2.3 Lemmas for proving Theorem 4.2 and Theorem 4.3

To prove Theorem 4.2 and Theorem 4.3, we present the following lemmas.

Lemma 4.5. For EA and EB in (4.44) and (4.45), when (4.52) is satisfied, we have

∥EA∥2 ≤ 1.1η
√
mu∥X∥2c , (4.56)

∥EB∥2 ≤ 1.1η
√
n+ 1u∥X∥2c , (4.57)

with probability at least Q(η,mn2)Q(η, n
3

6 + n2

2 + n
3).

Proof. When estimating ∥EA∥2, the same as Lemma 4.1, we can get (4.56) with probability at least

Q(η,mn2).

Regarding ∥EB∥2, with Lemma 2.2 and similar to (4.14), we can get

∥EB∥2 ≤
∥∥|EB|

∥∥
F
≤ γ̃n+1(η)

∥∥|Y |
∥∥2
F

≤ γ̃n+1(η) · n∥Y ∥2g

≤ γ̃n+1(η) · n(∥X∥2g + s+∥EA∥2 +∥EB∥2),

(4.58)

with probability at least Q(η, n
3

6 + n2

2 + n
3). Since the deterministic upper bound of ∥EA∥2 can be

taken as 1.1mu∥X∥2c according to (2.20), with Lemma 1.12, (4.6), (4.7), (4.56) and (4.58), when

74

t1 =
s

∥X∥2g
≤ 1

100 , we can get

∥EB∥2 ≤
γ̃n+1(η)n((1 + γm · n+ t1)

1− γ̃n+1(η)n
∥X∥2g

≤ 1.02η
√
n+ 1nu · (1 + 1.1mnu+ t1)

1− 1.02η
√
n+ 1nu

∥X∥2g

≤
1.02η

√
n+ 1nu · (1 + 1.1 · 1

64 + 0.01)

1− 1.02
64

∥X∥2g

≤ 1.1η
√
n+ 1nu∥X∥2g

≤ 1.1η
√
n+ 1u∥X∥2c ,

with probability at least Q(η, n
3

6 + n2

2 + n
3). Therefore, (4.57) holds. Based on the results above,

Lemma 4.5 holds.

Lemma 4.6. For Y −1 and XY −1, we have∥∥∥Y −1
∥∥∥
2
≤ 1√

(σmin(X))2 + 0.9s
, (4.59)∥∥∥XY −1

∥∥∥
2
≤ 1.5, (4.60)

with probability at least Q(η,mn2)Q(η, n
3

6 + n2

2 + n
3).

Proof. The proofs of (4.59) and (4.60) follow the same approach as that in [21], Chapter 2 and

Chapter 3. Since (4.56) and (4.57) are used in the proof, (4.59) and (4.60) hold with a probability of

at least Q(η,mn2)Q(η, n
3

6 + n2

2 + n
3). Thus, Lemma 4.6 holds.

Lemma 4.7. For EWY in (4.46), we have

∥EWY ∥2 ≤ 1.03ηnu ·∥W∥2∥X∥c , (4.61)

with probability at least Q(η,mn2).

Proof. With Lemma 1.11 and (4.46), we can have

∥EWY ∥2 ≤ 1.02η
√
nu · (∥W∥F ·∥Y ∥F)

≤ 1.02ηn
√
nu∥W∥2∥Y ∥g ,

(4.62)

with probability at least Q(η,mn2). Similar to (4.22), we utilize the deterministic bounds of ∥EA∥2
and ∥EB∥2 in (4.6) and (4.7) in Chapter 2. Based on (4.6), (4.7), (4.44), (4.45) and (4.52), we can

have

∥Y ∥2g ≤∥X∥2g + (s+∥EA∥2 +∥EB∥2)

≤ 1.011∥X∥2g .
(4.63)

75

Based on (4.63), we can have

∥Y ∥g ≤ 1.006∥X∥g . (4.64)

Therefore, we put (4.64) into (4.62) and we can get (4.61). Lemma 4.7 holds.

Lemma 4.8. For W in (4.46), we have

∥W∥2 ≤ 1.58, (4.65)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3).

Proof. Based on (4.46), we can have

∥W∥2 ≤
∥∥∥XY −1

∥∥∥
2
+
∥∥∥EWY Y

−1
∥∥∥
2

≤
∥∥∥XY −1

∥∥∥
2
+∥EWY ∥2

∥∥∥Y −1
∥∥∥
2
.

(4.66)

With (4.7), (4.59) and (4.61), we can have

∥EWY ∥2
∥∥∥Y −1

∥∥∥
2
≤

1.03ηnu ·∥W∥2∥X∥c√
(σmin(X))2 + 0.9s

≤
1.03ηnu∥X∥c√

9.9η
√
n+ 1u∥X∥2c

·∥W∥2

≤ 1.06√
9.9

·
√

ηn
√
nu ·∥W∥2

≤ 0.05∥W∥2 ,

(4.67)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). Therefore, we put (4.60) and (4.67) into

(4.66) and we can have

∥W∥2 ≤ 1.5 + 0.05∥W∥2 , (4.68)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). With (4.68), we can have (4.65). Lemma 4.8

holds.

4.2.4 Proof of Theorem 4.2

In this part, we proof Theorem 4.2 regarding κ2(X) and κ2(W).

Proof. For ∥EWY ∥F =∥WY −X∥F , we put (4.65) into (4.61) and we can have

∥EWY ∥F =∥WY −X∥F

≤ 1.03ηnu ·∥W∥2∥X∥c

≤ 1.66j1η · nu∥X∥2 ,

(4.69)

76

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). Since we have already estimated ∥W∥2, we

still need to estimate σmin(W) in order to evaluate κ2(X). Using Lemma 1.6 and (4.46), we can derive

σmin(W) ≥ σmin(XY −1)−
∥∥∥EWY Y

−1
∥∥∥
2
. (4.70)

According to (4.59) and (4.69), we can have∥∥∥EWY Y
−1

∥∥∥
2
≤∥EWY ∥2

∥∥∥Y −1
∥∥∥
2

≤
1.66η · nu∥X∥c√
(σmin(X))2 + 0.9s

,
(4.71)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). Using the same method in [21], we can have

σmin(XY −1) ≥ σmin(X)√
(σmin(X))2 + s

· 0.9, (4.72)

with probability at least Q(η,mn2)Q(η, n
3

6 + n2

2 + n
3). Therefore, we put (4.71) and (4.72) into (4.70)

and when κ2(X) ≤ 1
4.89j1·ηn

√
nu

, we can have

σmin(W) ≥ 0.9σmin(X)√
(σmin(X))2 + s

−
1.66η · nu∥X∥c√
(σmin(X))2 + 0.9s

≥ 0.9√
(σmin(X))2 + s

· (σmin(X)− 1.66

0.9
√
0.9

j1 · ηnu∥X∥2)

≥ σmin(X)

2
√
(σmin(X))2 + s

=
1

2
√
1 + t(κ2(X))2

,

(4.73)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). Here, t = s

∥X∥22
. With (4.65) and (4.73), we

can have

κ2(W) ≤ 3.24
√
1 + t(κ2(X))2,

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). (4.53) is proved. Therefore, Theorem 4.2

holds.

4.2.5 Proof of Theorem 4.3

In this part, we prove Theorem 4.3.

Proof. When we take

s = 11η(
√
mu+

√
n+ 1u)∥X∥2c ,

we have

t =
s

∥X∥22
= 11j21 · η(

√
mu+

√
n+ 1u).

(4.74)

77

Similar to the steps in Chapter 2 and Chapter 3, when X is ill-conditioned, e.g., κ2(X) ≥ u− 1
2 , with

(4.74), we can have t(κ2(X))2 ≥ 11j21 · η(
√
m+

√
n+ 1) >> 1. Therefore, we can get

√
1 + t(κ2(X))2 ≈

√
t · κ2(X).

With (4.53), it is clear to see that

κ2(W) ≤ 3.24
√
t · κ2(X),

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). Based on the results in [21, 68], Chapter 2,

Chapter 3 and (4.8), the sufficient condition of κ2(X) satisfies

κ2(W) ≤ 3.24
√
t · κ2(X)

≤ 1

8j2 ·
√
η(
√
mu+

√
n+ 1u)

,
(4.75)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). When (4.74) is satisfied, based on (4.75), we

can have

κ2(X) ≤ Φ

=
1

86j1j2 · η(
√
mu+

√
n+ 1u)

,

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). Combining Φ with the required condition for

κ2(X) in (4.73), we obtain the requirement for κ2(X) for Shifted CholeskyQR3 with the randomized

models as stated in (4.51). Under the condition given in (4.51), we proceed to prove Theorem 4.3.

The proof is divided into two parts, orthogonality and residual.

Orthogonality of Shifted CholeskyQR3

First, we consider the orthogonality. For Shifted CholeskyQR3, the same as (4.35) , we can have

κ2(V) ≤
√

69

59
, (4.76)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2. Here, the same as (4.9) and the steps in

Chapter 2, we can have (4.54) with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

3.

78

Residual of Shifted CholeskyQR3

For the residual, with (4.47)-(4.50), we can have

QR = (V + E7)J
−1(JN − E8)

= (V + E7)N − (V + E7)J
−1E8

= V N + E7N −QE8

= (W + E3)D
−1(DY − E4) + E7N −QE8

= (W + E3)Y − (W + E3)D
−1E4 + E7N −QE8

= WY + E3Y − V E4 + E7N −QE8.

So it is obvious that

∥QR−X∥F ≤∥WY −X∥F +∥E3∥F ∥Y ∥2 +∥V ∥2∥E4∥F

+∥E7∥F ∥N∥2 +∥Q∥2∥E8∥F .
(4.77)

Based on the results in [21], we can have

∥Y ∥2 ≤ 1.006∥X∥2 . (4.78)

Similar to (4.23) and (4.39), with (4.52) and (4.65), we can estimate ∥D∥2 and ∥D∥g as

∥D∥2 ≤ 1.005∥W∥2

≤ 1.59,
(4.79)

∥D∥g ≤ 1.005∥W∥g

≤ 1.59j2√
n

,
(4.80)

with probability at least (Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3). The same as (4.33), we can get

∥V ∥2 ≤
√
69

8
, (4.81)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2. We follow the steps to get (4.61), together

with (4.65) and (4.81), we can bound ∥E3∥F as

∥E3∥F ≤ 1.03ηnu ·∥V ∥2∥W∥c

≤
√
69n

8
· 1.03j2ηnu · 1.58

≤ 1.69j2 · ηnu,

(4.82)

79

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2. Using Lemma 1.11, (2.3), (4.64) and (4.80),

we can estimate ∥E4∥F and ∥E4∥g as

∥E4∥F ≤ γ̃n(η)(∥D∥F ·∥Y ∥F)

≤ γ̃n(η)(
√
n∥D∥g ·

√
n∥Y ∥g)

≤ 1.02η ·
√
nu · 1.59j2 · 1.006j1∥X∥2

≤ 1.64j1j2 · η
√
nu∥X∥2 ,

(4.83)

∥E4∥g ≤ γ̃n(η)(∥D∥F ·∥Y ∥g)

≤ γ̃n(η)(
√
n∥D∥g ·∥Y ∥g)

≤ 1.02η ·
√
nu · 1.59j2 ·

1.006j1√
n

·∥X∥2

≤ 1.64j1j2 · ηu∥X∥2 ,

(4.84)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2Q(η, n3). Moreover, based on Lemma 2.2,

Lemma 2.3, (4.7), (4.64), (4.78), (4.79), (4.83) and (4.84), ∥N∥2 and ∥N∥g can be bounded as

∥N∥2 ≤∥D∥2∥Y ∥2 +∥E4∥2

≤ 1.59 · 1.006∥X∥2 + 1.64j1j2 · η
√
nu∥X∥2

≤ 1.63∥X∥2 ,

(4.85)

∥N∥g ≤∥D∥2∥Y ∥g +∥E4∥g

≤ 1.59 · 1.006j1√
n

·∥X∥2 + 1.64j1j2 · ηu∥X∥2

≤ 1.63j1√
n

·∥X∥2 ,

(4.86)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2Q(η, n3). Based on (4.52) and (4.54), we

can have

∥Q∥2 ≤ 1.01, (4.87)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

3. Similar to (4.80) and with (4.81), we can

get

∥J∥g ≤ 1.005∥V ∥g

≤ 1.005√
n

· j3,
(4.88)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

2. Similar to (4.82), we can bound ∥E7∥F

80

with (4.81) and (4.87) as

∥E7∥F ≤ 1.03ηnu ·∥Q∥2∥V ∥c

≤ 1.03ηnu · 1.01 · 1.005j3 ·
√
69

8

≤ 1.09j3 · ηnu,

(4.89)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

3. Based on Lemma 1.11, (4.86) and (4.88),

we can bound ∥E8∥F as

∥E8∥F ≤ γ̃n(η)(∥J∥F ·∥N∥F)

≤ γ̃n(η)(
√
n∥J∥g ·

√
n∥N∥g)

≤ 1.02η ·
√
nu · 1.005j3 · 1.63j1∥X∥2

≤ 1.68j1j3 · η
√
nu∥X∥2 ,

(4.90)

with probability at least ((Q(η,mn2))2Q(η, n
3

6 + n2

2 + n
3))

3(Q(η, n3))2. Therefore, we put (4.69),

(4.78), (4.81)-(4.83), (4.85), (4.87), (4.89) and (4.90) into (4.77) and we can have (4.55). Therefore,

Theorem 4.3 holds.

Remark 4.2. Theorem 4.2 is the key theoretical result of this chapter. The primary advantage of the

probabilistic error analysis of Shifted CholeskyQR3 is that it provides a better shifted item s, which

can significantly enhance the properties of Shifted CholeskyQR under certain probabilities. We can

observe these advantages in Section 4.3. Furthermore, Theorem 4.3 offers improved upper bounds of

orthogonality and residual in Shifted CholeskyQR3 compared to those in [21] and Chapter 2.

Actually, there is another approach for rounding analysis of Shifted CholeskyQR3. We can provide

a weaker assumption only for the first Shifted CholeskyQR in this work with the deterministic models

for other steps of analysis in this work to achieve a higher probability for the upper bounds theoretically.

CholeskyQR2 after Shifted ChoelskyQR can be taken as the idea in Remark 4.1.

4.3 Numerical experiments

In this section, we present several groups of numerical experiments. We primarily focus on the nu-

merical experiments of Shifted CholeskyQR3 conducted with the probabilistic s in this work. We test

the numerical stability, the p-values and the robustness of the algorithm in the following. All the

experiments are implemented using MATLAB R2022A on our laptop. Specifications of our computer

are in Table 2.1.

81

4.3.1 Applicability and accuracy of Shifted CholeskyQR3 with the probabilistic s

In this section, we focus on the applicability and accuracy of Shifted CholeskyQR3 with different

s. We take two different s, that is, the probabilistic s used in this chapter and the improved s in

Chapter 2. For the input matrix X ∈ Rm×n, we primarily focus on the potential influence of κ2(X),

m and n. We construct X using SVD, as described in [21, 68] and Chapter 2. The methods in [17, 24]

are also applicable. We control κ2(X) through σmin(X). We set

X = OΣH⊤,

where O ∈ Rm×m, H ∈ Rn×n are random orthogonal matrices and

Σ = diag(1, σ
1

n−1 , · · · , σ
n−2
n−1 , σ) ∈ Rm×n.

Here, 0 < σ < 1 is a positive constant. Therefore, we can have σ1(X) = ∥X∥2 = 1 and κ2(X) = 1
σ .

Similar to the setting in Chapter 2, we can build the large X ∈ Rm×n using X1 ∈ Rn×n based on SVD

as

X =


X1

X1

...

X1


.

To test the influence of κ2(X), we vary κ2(X) while fixing m = 1024, n = 32 and η = 6. When

varying n, we fix m = 4096, κ2(X) = 1012 and η = 8. When varying m, we fix n = 128, κ2(X) = 1012

and η = 8. To assess the influence of κ2(X), we compare the accuracy of Shifted CholeskyQR3 using

the improved s in Chapter 2. Numerical experiments for a large X ∈ R16384×1024 are taken and X is

built in a block version as mentioned above. Here, we take η = 10. We define the probabilistic s as

s = 11η(
√
mu +

√
n+ 1u)∥X∥2c and the improved s as s = 11η(

√
mu +

√
n+ 1u)∥X∥2c . The results

of the numerical experiments are presented in Table 4.1–Table 4.6.

Table 4.1: Shifted CholeskyQR3 with the probabilistic s for X ∈ R1032×32

κ2(X) 108 1010 1012 1014 1015

Orthogonality 1.40e− 15 1.58e− 15 1.58e− 15 1.62e− 15 1.84e− 15

Residual 4.00e− 16 3.95e− 16 3.30e− 16 3.20e− 16 3.20e− 16

82

Table 4.2: Shifted CholeskyQR3 with the improved s for X ∈ R1032×32

κ2(X) 108 1010 1012 1014 1015

Orthogonality 1.30e− 15 1.69e− 15 1.38e− 15 1.49e− 15 −

Residual 3.72e− 16 3.52e− 16 3.55e− 16 3.28e− 16 −

Table 4.3: Shifted CholeskyQR3 with the probabilistic s for X ∈ R16384×1024

κ2(X) 106 108 1010 1012 1013

Orthogonality 1.69e− 14 1.86e− 14 1.98e− 14 2.07e− 14 2.10e− 14

Residual 2.24e− 14 2.02e− 14 1.87e− 14 1.74e− 14 1.69e− 14

Table 4.4: Shifted CholeskyQR3 with the improved s for X ∈ R16384×1024

κ2(X) 106 108 1010 1012 1013

Orthogonality 1.73e− 14 1.90e− 14 1.99e− 14 2.10e− 14 −

Residual 2.23e− 14 2.02e− 14 1.86e− 14 1.74e− 14 −

Table 4.5: Shifted CholeskyQR3 with the probabilistic s under different n

n 128 256 512 1024 2048

Orthogonality 2.75e− 15 4.16e− 15 8.27e− 15 1.40e− 14 2.53e− 14

Residual 1.07e− 15 2.00e− 15 3.08e− 15 4.35e− 15 5.81e− 15

Table 4.6: Shifted CholeskyQR3 with the probabilistic s under different m

m 256 512 1024 2048 4096

Orthogonality 6.08e− 15 4.39e− 15 3.82e− 15 3.03e− 15 2.75e− 15

Residual 1.08e− 15 1.10e− 15 1.08e− 15 1.07e− 15 1.07e− 15

According to Table 4.1 and Table 4.2, we find that both Shifted CholeskyQR3 with the probabilistic

s and the improved s are numerically stable in terms of both orthogonality and residual, as indicated

by (4.54), (4.55), and the results in Chapter 2. Shifted CholeskyQR3 with the probabilistic s shows

better applicability for ill-conditioned matrices. Similar results hold for the large X according to

Table 4.3 and Table 4.4. This highlights the significance of probabilistic error analysis of CholeskyQR

algorithms. Comparing Table 4.1 and Table 4.2 with Table 4.3 and Table 4.4, we find that the

83

increasing m and n will decrease the accuracy and applicability of the algorithm, which corresponds

to the theoretical results of CholeskyQR-type algorithms. Furthermore, Table 4.5 shows that both m

and n do not influence the numerical stability of Shifted CholeskyQR3 with the probabilistic s.

4.3.2 Comparison between the theoretical bounds and real performances

In this part, we make a comparison between the theoretical bounds of Shifted CholeskyQR3 and

its real performances with the probabilistic s. Similar to that in Chapter 2, we primarily focus on

the accuracy. For the input X ∈ Rm×n based on SVD, we fix ∥X∥2 = 1 and κ2(X) = 1012. We

denote 6η · j23(
√
mu +

√
n+ 1u) in (4.54) as the ‘Theoretical bound ’ in orthogonality. Moreover,

ϕ1(j1, j2, j3, n)η · nu∥X∥2 in (4.55) is the ‘Theoretical bound ’ in residual. To test the influence of m,

we fix n = 128 and η = 8. To test the influence of n, we fix m = 2048 and η = 8. Comparisons of

orthogonality and residual with different m and n are shown in Table 4.7-Table 4.10. Regarding the

conditions of κ2(X), we denote L in Table 1.8 as the ‘Sufficient condition’ of κ2(X) and 1
4.89j1·ηnu as

the ‘Upper bound ’ of κ2(X). We vary m and n and comparisons of conditions of κ2(X) are shown in

Table 4.11 and Table 4.12.

Table 4.7: Comparison of orthogonality with the probabilistic s when κ2(X) = 1012, n = 128 and

η = 8

m 256 512 1024 2048 4096

Real error 6.04e− 15 4.55e− 15 3.61e− 15 3.16e− 15 2.74e− 15

Theoretical bound 1.87e− 11 2.32e− 11 2.96e− 11 3.86e− 11 5.14e− 11

Table 4.8: Comparison of orthogonality with the probabilistic s when κ2(X) = 1012, m = 4096 and

η = 8

n 128 256 512 1024 2048

Real error 2.74e− 15 4.10e− 15 7.88e− 15 1.42e− 14 2.51e− 14

Theoretical bound 5.14e− 11 1.09e− 10 2.36e− 10 5.24e− 10 1.19e− 09

Table 4.9: Comparison of residual with the probabilistic s when κ2(X) = 1012, n = 128 and η = 8

m 256 512 1024 2048 4096

Real error 1.08e− 15 1.08e− 15 1.05e− 15 1.09e− 15 1.08e− 15

Theoretical bound 6.09e− 12 6.09e− 12 6.09e− 12 6.09e− 12 6.09e− 12

84

Table 4.10: Comparison of residual with the probabilistic s when κ2(X) = 1012, m = 4096 and η = 8

n 128 256 512 1024 2048

Real error 1.08e− 15 2.04e− 15 3.09e− 15 4.35e− 15 5.84e− 15

Theoretical bound 6.09e− 12 1.65e− 11 4.62e− 11 1.28e− 10 3.58e− 10

Table 4.11: Comparison of κ2(X) with the probabilistic s when κ2(X) = 1012, n = 128 and η = 8

m 256 512 1024 2048 4096

Real case ≥ 1012 ≥ 1012 ≥ 1012 ≥ 1012 ≥ 1012

Upper bound 6.62e+ 11 6.62e+ 11 6.62e+ 11 6.62e+ 11 6.62e+ 11

Sufficient condition 1.55e+ 10 1.25e+ 10 9.82e+ 09 7.52e+ 09 5.65e+ 09

Table 4.12: Comparison of κ2(X) with the probabilistic s when κ2(X) = 1012, m = 4096 and η = 8

n 128 256 512 1024 2048

Real case ≥ 1012 ≥ 1012 ≥ 1012 ≥ 1012 ≥ 1012

Upper bound 6.62e+ 11 2.79e+ 11 1.08e+ 11 3.69e+ 10 1.48e+ 10

Sufficient condition 5.65e+ 09 3.17e+ 09 1.60e+ 09 7.00e+ 08 3.49e+ 08

According to Table 4.7-Table 4.12, similar to the results in Chapter 2, we can find that the

theoretical results of κ2(X) and accuracy have some distances to the real result after many groups

of numerical experiments. However, when comparing Table 4.11 and Table 4.12 with Table 2.18-

Table 2.19, we can find that the theoretical bounds of κ2(X) from probabilistic error analysis are

closer to the real results than those based on deterministic error analysis, which reflects, to some

extent, the advantage of the randomized model for probabilistic error analysis.

4.3.3 Improvements of ∥·∥c

In this section, we examine the improvements of∥·∥c on probabilistic error analysis. Similar to that in

Chapter 2, we consider the j-values in probabilistic error analysis of Shifted CholeskyQR3. The same

as that in Chapter 2, we take l1 =
∥X∥g
∥X∥2

. Moreover, we define l2 =
∥W∥g
∥W∥2

and l3 =
∥Y ∥g
∥Y ∥2

. Here, li =
ji√
n

and 1√
n
≤ li ≤ 1, i = 1, 2, 3. We construct the input matrix X in the same manner as described in

Table 4.3.1. We test the influence of κ2(X), n and m on the l-values. When varying κ2(X), we fix

m = 1024, n = 32 and η = 6. For varying n, we fix m = 4096, κ2(X) = 1012 and η = 8. When varying

m, we fix n = 128, κ2(X) = 1012 and η = 8. We use s = 11η · (
√
mu +

√
n+ 1u)∥X∥2c for Shifted

CholeskyQR3. The results of the numerical experiments are presented in Table 4.13-Table 4.15.

85

Table 4.13: l-values with different κ2(X) for Shifted CholeskyQR3

κ2(X) 108 1010 1012 1014 1015

l1 0.2590 0.2413 0.2289 0.2225 0.2200

l2 1.0000 1.0000 1.0000 1.0000 1.0000

l3 1.0000 1.0000 1.0000 0.9953 0.9978

Table 4.14: l-values with different n for Shifted CholeskyQR3

n 128 256 512 1024 2048

l1 0.2228 0.2119 0.1899 0.1869 0.1793

l2 1.0000 1.0000 1.0000 1.0000 1.0000

l3 1.0000 1.0000 0.9999 0.9998 0.9994

Table 4.15: l-values with different m for Shifted CholeskyQR3

m 256 512 1024 2048 4096

l1 0.2181 0.2181 0.2181 0.2181 0.2228

l2 1.0000 1.0000 1.0000 1.0000 1.0000

l3 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.13–Table 4.15 show that the l-values are closely related to n. As n increases, both l1 and

l3 decrease significantly, which aligns with the lower bound of the l-value, 1√
n
. Additionally, l1 is

much smaller than 1. This demonstrates that j1 is much smaller than
√
n, while j2 and j3 tend to be

close to
√
n. Such a phenomenon shows the improvement of using ∥X∥c instead of ∥X∥2 in s on the

applicability of Shifted CholeskyQR3, since
11η(

√
mu+

√
n+1u)∥X∥2c

11η(
√
mnu+

√
n+1nu)∥X∥22

= l21 << 1.

4.3.4 Robustness of Shifted CholeskyQR3 with the probabilistic s

In this section, we demonstrate the robustness of Shifted CholeskyQR3 with the probabilistic s. To the

best of our knowledge, this group of experiments has not been conducted in similar works before. We

construct the input matrixX in the same manner as described in Table 4.3.1 and examine the potential

influence of κ2(X), n and m, which are consistent with those in Table 4.3.3. When varying κ2(X), we

fix m = 1024, n = 32 and η = 6. When varying n, we fix m = 4096, κ2(X) = 1012 and η = 8. When

varying m, we fix n = 128, κ2(X) = 1012 and η = 8. We use s = 11η · (
√
mu +

√
n+ 1u)∥X∥2c for

Shifted CholeskyQR3. We record the number of successful outcomes every 30 trials after conducting

86

several groups and calculate the average. The numerical results are listed in Table 4.16-Table 4.18.

Table 4.16: Times of success with different κ2(X) for Shifted CholeskyQR3

κ2(X) 108 1010 1012 1014 1015

Times 30 30 30 30 30

Table 4.17: Times of success with different n for Shifted CholeskyQR3

n 128 256 512 1024 2048

Times 30 30 30 30 30

Table 4.18: Times of success with different m for Shifted CholeskyQR3

m 256 512 1024 2048 4096

Times 30 30 30 30 30

Table 4.16-Table4.18 demonstrate that Shifted CholeskyQR3 with the probabilistic s exhibits

strong robustness in our numerical examples, which is crucial for the practical application of this

improved algorithm.

4.4 Conclusions

In this chapter, we do probabilistic error analysis of Shifted CholeskyQR3 and CholeskyQR2. The

new matrix ∥·∥c is utilized. We receive tighter upper bounds of orthogonality and residual for the

algorithms and a probabilistic shifted item s for Shifted CholekskyQR3. Numerical experiments show

the improvement on applicability of such a probabilistic s and its robustness.

87

CHAPTER 5.

CONCLUSIONS AND FUTURE WORKS

This thesis presents several improvements on CholeskyQR-type algorithms from different perspectives

and with different tools, including the improved shifted item s for Shifted CholeskyQR3 based on∥·∥c,

an analysis of Shifted CholeskyQR for sparse matrices and rounding error analysis of CholeskyQR-type

algorithms with the randomized model partially. The primary target of these works is to enhancing

the applicability of CholeskyQR-type algorithms by improving rounding error analysis. Complete

and rigorous theoretical proofs, along with the corresponding numerical experiments, are contained in

Chapter 2-Chapter 4.

Chapter 2 focuses on improving the shifted item s for Shifted CholeskyQR3. We introduce a new

matrix norm ∥·∥c and propose an improved shifted item s with ∥X∥c for the input matrix X ∈ Rm×n.

Our theoretical analysis and numerical experiments show that such an improved s can guarantee

numerical stability and efficiency of Shifted CholeskyQR3, along with better applicability compared

to the case with the original s based on ∥X∥2. In Chapter 3, we focus on Shifted CholeskyQR for

sparse matrices. We introduce a new model for the division of sparse matrices based on the presence

of dense columns. Therefore, an alternative choice of s based on the structure and the key element of

X can be taken for Shifted CholeskyQR3. We prove that such an alternative choice s can guarantee

numerical stability of Shifted CholeskyQR3 with certain element-norm conditions (ENCs), under

which our alternative s is optimal compared to s proposed in Chapter 2. Numerical experiments show

that our alternative s can improve the applicability of Shifted CholeskyQR3 in sparse cases while

maintaining numerical stability and efficiency. In Chapter 4, we present rounding error analysis of

CholeskyQR-type algorithms with the randomized model partially under a weak assumption. We

receive the improved sufficient condition of κ2(X) for CholeskyQR2 and the best shifted item s for

Shifted CholeskyQR3 as far as we know with the randomized model. Shifted CholeskyQR3 with such

a probabilistic s is robust after numerous experiments and can still keep numerical stability.

Compared to other algorithms for QR factorization, CholeskyQR strikes a balance between accu-

racy and efficiency, making it more suitable for parallel computing. In this thesis, we explore a new

perspective on CholeskyQR, defining a new ∥X∥c and build connections between CholeskyQR and

randomized models. These strategies improve the applicability of these algorithms in both general

and special scenarios. Our contributions extend the properties of CholeskyQR-type algorithms to

many real-world applications and address several issues in this field, which are significant for the ad-

vancement of QR factorization. But the works contained this thesis are not all the works we have done

88

in the past several years. In fact, the most fragile step of CholeskyQR lies in Cholesky factorization

to calculate the R-factor. Except for Shifted CholeskyQR3 to address the problem of applicability,

there is another way deserving consideration for CholeskyQR-type algorithms, that is, the mixed pre-

conditioning step with CholeskyQR and other types of algorithms, which is often taken with some

randomized techniques. In [3, 20, 31], some researchers tend to use some other structures to replace

the steps of calculating the gram matrix and Cholesky factorization in CholeskyQR to generate the

R-factor, in order to avoid the numerical breakdown of Cholesky factorization in ill-conditioned cases.

Some randomized techniques, such as matrix sketching, are used to accelerate the algorithms. Among

all the CholeskyQR-type algorithms, LU-CholeskyQR2 [62] has no requirement on κ2(X) for the input

X ∈ Rm×n, which is a very special but important advantage compared to other algorithms. In [28],

we improve LU-CholeskyQR2 by combining LU-CholeskyQR with HouseholderQR and form LHC2.

We utilize the recent matrix sketching to accelerate LHC2 and form SLHC3 and SSLHC3. Such new

algorithms do not have requirements on κ2(X) for the input X and are very balanced in accuracy,

applicability, efficiency and robustness, which are the top CholeskyQR-type algorithms in the real

performance.

During our research, we identify several topics for future exploration. We have ongoing and

potential projects related to some of these areas. Below is a list of these topics.

1. In Chapter 2, we introduce a new matrix∥·∥c and demonstrate some of its properties. However,

several issues remain to be addressed in the future. Specifically, ∥·∥c of a matrix warrants

further exploration. Developing efficient methods to quickly estimate ∥X∥c for the input matrix

X is an open topic for future research, particularly for large-scale matrices. Additionally, the

properties of calculating ∥·∥c suggests that parallel computing can be employed to obtain ∥·∥c
more efficiently. In this thesis, we leverage the connections between ∥·∥c and some other matrix

norms to do rounding error analysis. Given that∥·∥c can be applied to various problems, such as

HouseholderQR and Nyström approximation, we aim to explore its relationship with the singular

values of matrices and other factors, such as the condition number. We are also focusing on

additional properties related to ∥·∥c.

2. In Chapter 3, we introduced a new model for dividing sparse matrices into two types based

on the presence of dense columns and provided a detailed rounding error analysis of Shifted

CholeskyQR3 for sparse matrices. We are curious about whether we can do improvements on

this model and provide more accurate error analysis of CholeskyQR-type algorithms for sparse

matrices. We are also interested in exploring whether other algorithms for QR factorization,

such as HouseholderQR and Modified Gram-Schmidt (MGS), can benefit from our framework or

alternative types of models. Focusing on sparse matrices is particularly meaningful, as they are

89

common in real-world applications. We aim to improve HouseholderQR and MGS by addressing

their drawbacks and designing more accurate and efficient methods.

3. In Chapter 4, we utilize the randomized model to do improved analysis of CholeskyQR-type

algorithms. According to Lemma 1.10-Lemma 1.13, we observe that the existing randomized

models has very strict conditions to be applied, which is not friendly towards CholeskyQR-type

algorithms with several different steps of computation. Therefore, in Chapter 4, we only use

the randomized model of matrix multiplications in the first step of CholeskyQR, which can only

improve the applicability of Shifted CholeskyQR3 and the sufficient condition of CholeskyQR2.

In order to provide probabilistic error bounds of CholeskyQR-type algorithms, it is meaningful

for us to provide better randomized models of rounding error analysis with weaker conditions

and larger probabilities, which can provide more tools for rounding error analysis and matrix

perturbations.

4. Among all the CholeskyQR-type algorithms, a key sufficient condition is that the input matrix

should be full-rank, which is closely related to the singular values of the input matrix. For the

tall skinny matrix X ∈ Rm×n with m ≥ n, it means that rank(X)=n. Additionally, many of

the existing Cholesky-type algorithms encounter problems regarding the sufficient condition of

κ2(X) of the input matrix X, limiting their practical use in the real applications. To address

these challenges, we are exploring new preconditioning steps based on singular value decompo-

sition(SVD) for Shifted CholeskyQR3, which can deal with rank-deficient and ill-conditioned

cases. Such an operator aims to strike a balance between speed, accuracy and applicability,

thereby enhancing the performance of CholeskyQR-type algorithms.

5. In recent years, problems concerning Quaternion matrices [39, 43, 46, 65] have attracted the

attention of many researchers in numerical linear algebra. This area has applications in image

processing and signal processing. As one of the most important challenges in numerical linear

algebra, QR factorization of Quaternion matrices [40, 41, 44, 64] warrants further exploration.

We aim to combine CholeskyQR with Quaternion matrices and design new algorithms based on

this integration. Additionally, more theoretical results and properties of CholeskyQR remain to

be discovered.

6. Our work in this thesis are primarily implemented on CPU, so do most of the CholeskyQR-type

algorithms. In recent years, GPU has played an important role in high-performance computing.

We always need to consider the version of many algorithms for parallel computing. There is an

existing work [70] regarding CholeskyQR and its analysis on GPU. However, it only focuses on

the basic version of CholeskyQR. We are currently focusing on constructing new CholeskyQR-

90

type algorithms which is suitable for parallel computing. We hope that it can make use of the

advantages of GPU.

91

Bibliography

[1] D. Achlioptas. Database-friendly random projections. In Proceedings of the Twentieth ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’01, page

274–281, New York, NY, USA, 2001. Association for Computing Machinery.

[2] Y. Aizenbud, G. Shabat, and A. Averbuch. Randomized LU decomposition using sparse projec-

tions. Computers and Mathematics with Applications, 72:2525–2534, 2016.

[3] O. Balabanov. Randomized CholeskyQR factorizations. arxiv preprint arXiv:2210.09953, 2022.

[4] O. Balabanov and L. Grigori. Randomized Gram–Schmidt Process with Application to GMRES.

SIAM Journal on Scientific Computing, 44(3):A1450–A1474, 2022.

[5] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in numerical

linear algebra. SIAM Journal on Matrix Analysis and Applications, 32(3):866–901, 2011.

[6] B. Beckermann. The condition number of real Vandermonde, Krylov and positive definite Hankel

matrices. Numerische Mathematik, 85:553–577, 2000.

[7] A. Borobia. Constructing matrices with prescribed main-diagonal submatrix and characteristic

polynomial. Linear Algebra and its Applications, 418:886–890, 2006.

[8] Yifan Chen, Ethan N. Epperly, Joel A. Tropp, and Robert J. Webber. Randomly pivoted cholesky:

Practical approximation of a kernel matrix with few entry evaluations. Communications on Pure

and Applied Mathematics, 78(5):995–1041, 2025.

[9] M. Choi. Tricks or Treats with the Hilbert Matrix. The American Mathematical Monthly,

90(5):301–312, 1983.

[10] M.P. Connolly and N.J. Higham. Probabilistic Rounding Error Analysis of Householder QR

Factorization. SIAM Journal on Matrix Analysis and Applications, 44:1146–1163, 2023.

[11] M.P. Connolly, N.J. Higham, and T. Mary. Stochastic Rounding and its Probabilistic Backward

Error Analysis. SIAM Journal on Scientific Computing, 43:566–585, 2021.

[12] P.G. Constantine and D.F. Gleich. Tall and skinny QR factorizations in MapReduce architectures.

In Proceedings of the second international workshop on MapReduce and its applications, pages 43–

50, 2011.

92

[13] T.A. Davis and W.W. Hager. Modifying a sparse Cholesky factorization. SIAM Journal on

Matrix Analysis and Applications, 20:606–627, 1999.

[14] T.A. Davis and W.W. Hager. Row modifications of a sparse Cholesky factorization. SIAM Journal

on Matrix Analysis and Applications, 26:621–639, 2005.

[15] J. Demmel. On floating point errors in Cholesky. Tech.Report 14, LAPACK working Note, 1989.

[16] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-optimal parallel and

sequential QR and LU factorizations. in Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis, pages 36:1–36:12, 2009.

[17] Z. Drmač and K. Veselić. New fast and accurate Jacobi SVD algorithm II. SIAM Journal on

Matrix Analysis and Applications, 29:1343–1362, 2008.

[18] J.A. Duersch, M. Shao, C. Yang, and M. Gu. A robust and efficient implementation of LOBPCG.

SIAM Journal on Scientific Computing, 40(5):C655–C676, 2018.

[19] Y. Fan, H. Guan, and Z. Qiao. An Improved Shifted CholeskyQR Based on Columns. Journal

of Scientific Computing, 104(86), 2025.

[20] Y. Fan, Y. Guo, and T. Lin. A Novel Randomized XR-Based Preconditioned CholeskyQR Algo-

rithm. arxiv preprint arXiv:2111.11148, 2021.

[21] T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, and Y. Yanagisawa. Shifted Cholesky

QR for computing the QR factorization of ill-conditioned matrices. SIAM Journal on Scientific

Computing, 42(1):A477–A503, 2020.

[22] T. Fukaya, Y. Nakatsukasa, Y. Yanagisawa, and Y. Yamamoto. CholeskyQR2: a simple and

communication-avoiding algorithm for computing a tall-skinny QR factorization on a large-scale

parallel system. In 2014 5th workshop on latest advances in scalable algorithms for large-scale

systems, pages 31–38. IEEE, 2014.

[23] J. Gao, W. Ji, F. Chang, S. Han, B. Wei, Z. Liu, and Y. Wang. A systematic survey of General

Sparse Matrix-matrix Multiplication. ACM Computing Surveys, 55:1–36, 2023.

[24] W. Gao, Y. Ma, and M. Shao. A Mixed Precision Jacobi SVD Algorithm. ACM Transactions on

Mathematical Software, 51(1), April 2025.

[25] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins University Press,

Baltimore, 4th edition, 2013.

93

[26] Ming Gu and Stanley C. Eisenstat. Efficient algorithms for computing a strong rank-revealing qr

factorization. SIAM Journal on Scientific Computing, 17(4):848–869, 1996.

[27] H. Guan and Y. Fan. An improved error analysis of CholeskyQR with the randomized model.

arxiv preprint arXiv:2410.09389, 2024.

[28] H. Guan and Y. Fan. Deterministic and randomized LU-Householder CholeskyQR. arxiv preprint

arXiv:2412.06551, 2024.

[29] H. Guan and Y. Fan. Shifted CholeskyQR for sparse matrices. arxiv preprint arXiv:2410.06525,

2024.

[30] N. Halko, P.G. Martinsson, and J.A. Tropp. Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288,

2011.

[31] A. Higgins, D. Szyld, E. Boman, and I. Yamazaki. Analysis of Randomized Householder-Cholesky

QR Factorization with Multisketching. arxiv preprint arXiv:2309.05868, 2023.

[32] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, USA,

second ed. edition, 2002.

[33] N.J. Higham and T. Mary. A New Approach to Probabilistic Rounding Error Analysis. SIAM

Journal on Scientific Computing, 41:2815–2835, 2019.

[34] D. Hilbert. Ein Beitrag zur Theorie des Legendre’schen Polynoms. Acta Mathematica,

18(none):155 – 159, 1900.

[35] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the

American Statistical Association, 58:13–30, 1963.

[36] M. Hoemmen. Communication-avoiding Krylov subspace methods. University of California, Berke-

ley, 2010.

[37] I.C.F. Ipsen and H. Zhou. Probabilistic Error Analysis for Inner Products. SIAM Journal on

Matrix Analysis and Applications, 41(4):1726–1741, 2020.

[38] C.P. Jeannerod and S.M. Rump. Improved error bounds for inner products in floating-point

arithmetic. SIAM Journal on Matrix Analysis and Applications, 34:338–344, 2013.

[39] Z. Jia and Michael K. Ng. Structure Preserving Quaternion Generalized Minimal Residual

Method. SIAM Journal on Matrix Analysis and Applications, 42:616–634, 2021.

94

[40] Z. Jia, Michael K. Ng, and G. Song. Lanczos method for large-scale quaternion singular value

decomposition. Numerical Algorithms, 82(2):699–717, Nov 2018.

[41] Z. Jia, M. Wei, M. Zhao, and Y. Chen. A new real structure-preserving quaternion QR algorithm.

Journal of Computational and Applied Mathematics, 343:26–48, 2018.

[42] M. Kapralov, V. Potluru, and D. Woodruff. How to Fake Multiply by a Gaussian Matrix. In

Balcan, Maria Florina and Weinberger, Kilian Q., editor, Proceedings of The 33rd International

Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages

2101–2110, New York, New York, USA, 20–22 Jun 2016. PMLR.

[43] T. Li and Q. Wang. Structure Preserving Quaternion Biconjugate Gradient Method. SIAM

Journal on Matrix Analysis and Applications, 45(1):306–326, 2024.

[44] Y. Li, M. Wei, F. Zhang, and Zhao J. Real structure-preserving algorithms of Householder based

transformations for quaternion matrices. Journal of Computational and Applied Mathematics,

305:82–91, 2016.

[45] Z. Li, Y. Wang, and S. Li. The inverse eigenvalue problem for generalized Jacobi matrices with

functional relationship. 2015 12th International Computer Conference on Wavelet Active Media

Technology and Information Processing (ICCWAMTIP), pages 473–475, 2015.

[46] R. Ma, Z. Jia, and Z. Bai. A structure-preserving Jacobi algorithm for quaternion Hermitian

eigenvalue problems. Computers and Mathematics with Applications, 75(3):809–820, 2018.

[47] P.G. Martinsson and J.A. Tropp. Randomized numerical linear algebra: Foundations and algo-

rithms. Acta Numerica, 29:403 – 572, 2020.

[48] D.P. O’Leary and G.W. Stewart. Computing the eigenvalues and eigenvectors of symmetric

arrowhead matrices. Journal of Computational Physics, 90(2):497–505, 1990.

[49] J. Peng, X. Hu, and L. Zhang. Two inverse eigenvalue problems for a special kind of matrices.

Linear Algebra and its Applications, 416:336–347, 2006.

[50] M. Rozložńık, M. Tůma, A. Smoktunowicz, and J. Kopal. Numerical stability of orthogonalization

methods with a non-standard inner product. BIT Numerical Mathematics, pages 1–24, 2012.

[51] S.M. Rump and C.P. Jeannerod. Improved backward error bounds for LU and Cholesky factor-

ization. SIAM Journal on Matrix Analysis and Applications, 35:684–698, 2014.

[52] S.M. Rump and T. Ogita. Super-fast vallidated solution of linear systems. Journal of Computa-

tional and Applied Mathematics, 199:199–206, 2007.

95

[53] R. Schreiber and C. Van Loan. A storage-efficient WY representation for products of Householder

transformations. SIAM Journal on Scientific and Statistical Computing, 10(1):53–57, 1989.

[54] J. Scott. Algorithms for Sparse Linear Systems. Springer International Publishing, New York,

1st ed. edition, 2023.

[55] A. Smoktunowicz, J.L. Barlow, and J. Langou. A note on the error analysis of classical

Gram–Schmidt. Numerische Mathematik, 105(2):299–313, Nov 2006.

[56] A. Sobczyk and E. Gallopoulos. Estimating Leverage Scores via Rank Revealing Methods and

Randomization. SIAM Journal on Matrix Analysis and Applications, 42(3):1199–1228, 2021.

[57] A. Sobczyk and E. Gallopoulos. pylspack: Parallel Algorithms and Data Structures for Sketching,

Column Subset Selection, Regression, and Leverage Scores. ACM Transactions on Mathematical

Software, 48(4), December 2022.

[58] G.W. Stewart and J. Sun. Matrix perturbation theory. Academic Press, San Diego, CA, USA,

sixth ed. edition, 1990.

[59] J. Stoer and R. Bulirsch. Introduction to numerical analysis. Springer, New York, 3rd ed. edition,

2002.

[60] N.J. Stor, I. Slapničar, and J.L. Barlow. Accurate eigenvalue decomposition of real symmetric ar-

rowhead matrices and applications. Linear Algebra and its Applications, 464:62–89, 2015. Special

issue on eigenvalue problems.

[61] Thomas Strohmer and Roman Vershynin. A randomized Kaczmarz algorithm with exponential

convergence. J. Fourier Anal. Appl., 15(2):262–278, 2009.

[62] T. Terao, K. Ozaki, and T. Ogita. LU-Cholesky QR algorithms for thin QR decomposition.

Parallel Computing, 92:102571, 2020.

[63] R.P. Tewarson. Sparse matrices. Academic Press, 1973.

[64] M. Wang and W. Ma. A structure-preserving method for the quaternion LU decomposition in

quaternionic quantum theory. Computer Physics Communications, 184(9):2182–2186, 2013.

[65] Q. Wang, Z. He, and Y. Zhang. Constrained two-sided coupled Sylvester-type quaternion matrix

equations. Automatica, 101:207–213, 2019.

[66] J.H. Wilkinson. Error analysis of direct methods of matrix inversion. Journal of the ACM,

8:281–330, 1961.

96

[67] J.H. Wilkinson. Rounding Errors in Algebraic Processes. Prentice-Hall, Englewood Cliffs, NJ,

1963.

[68] Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, and T. Fukaya. Roundoff error analysis of the

CholeskyQR2 algorithm. Electronic Transactions on Numerical Analysis, 44(01), 2015.

[69] Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, and T. Fukaya. Roundoff error analysis of the

CholeskyQR2 algorithm in an oblique inner product. JSIAM Letters, 8:5–8, 2016.

[70] I. Yamasaki, S. Tomov, and J. Dongarra. Mixed-precision Cholesky QR factorization and its

case studies on Multicore CPU with Multiple GPUs. SIAM Journal on Scientific Computing,

37:C307–C330, 2015.

[71] Y. Yanagisawa, T. Ogita, and S. Oishi. A modified algorithm for accurate inverse Cholesky

factorization. Nonlinear Theory and Its Applications, IEICE, 5:35–46, 2014.

[72] S.N. Yeralan, T.A. Davis, W.M. Sid-Lakhdar, and S. Ranka. Algorithm 980:Sparse QR Factor-

ization on the GPU. ACM Transactions on Mathematical Software, 44:1–29, 2017.

[73] R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM Transactions on Algorithms,

1:2–13, 2005.

[74] Q. Zou. Probabilistic Rounding Error Analysis of Modified Gram–Schmidt. SIAM Journal on

Matrix Analysis and Applications, 45:1076–1088, 2024.

97

	INTRODUCTION
	Notations of this thesis
	Existing CholeskyQR-type algorithms
	CholeskyQR2
	Shifted CholeskyQR3
	LU-CholeskyQR2
	Randomized algorithms

	Theoretical results of the existing algorithms and some considerations
	Theoretical results of the existing algorithms
	Considerations of the existing algorithms

	Our contributions
	Some preliminaries for the theoretical analysis
	Deterministic rounding error analysis
	Probabilistic error analysis

	Outline of this thesis

	AN IMPROVED SHIFTED CHOLESKYQR BASED ON COLUMNS
	c and its properties
	Theorems of the improved Shifted CholeskyQR3
	Theoretical analysis of the improved Shifted CholeskyQR3
	General settings and assumptions
	Algorithms
	Some lemmas for proving theorems
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3

	Numerical experiments
	Numerical examples
	Numerical stability of the algorithms
	Comparison between the theoretical bounds and real performances
	2(Q) under different conditions
	CPU times of the algorithms
	The improvement of s

	Conclusions

	SHIFTED CHOLESKYQR FOR SPARSE MATRICES
	Our contributions and theoretical results
	Our new divisions of sparse matrices
	General settings and Shifted CholeskyQR3 for sparse matrices
	Theoretical results of T1 matrices
	Theoretical results of T2 matrices

	Proof of Theorem 3.1-Theorem 3.4
	Lemmas to prove Theorem 3.1-Theorem 3.3 matrices
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4

	Numerical experiments
	T1 matrices
	T2 matrices

	Conclusions

	PROBABILISTIC ERROR ANALYSIS OF CHOLESKYQR BASED ON COLUMNS
	Probabilistic error analysis of CholeskyQR2
	General settings
	Probabilistic error analysis of CholeskyQR2
	Lemmas for proving Theorem 4.1
	Proof of Theorem 4.1

	Probabilistic error analysis for Shifted CholeskyQR3
	General settings and algorithms
	Probabilistic error analysis of Shifted CholeskyQR3
	Lemmas for proving Theorem 4.2 and Theorem 4.3
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Numerical experiments
	Applicability and accuracy of Shifted CholeskyQR3 with the probabilistic s
	Comparison between the theoretical bounds and real performances
	Improvements of c
	Robustness of Shifted CholeskyQR3 with the probabilistic s

	Conclusions

	CONCLUSIONS AND FUTURE WORKS

