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Abstract

Associations between various influenza strains (H3N2, H1N1, and influenza B),

different air pollutants (PM2.5, PM10, ozone, etc.) and mortality have been a ma-

jor concern in the past decade. The worldwide outbreak of COVID-19 in early

2020 made it urgent to explore the mortality attributed to the disease. Meanwhile,

the influences of influenza and air pollution on mortality keep changing during

the pandemic period and the post pandemic era. This thesis will study the im-

pact of COVID-19, influenza, and air pollution on mortality by deploying widely

adopted statistical methods, such as generalized additive models, maximum like-

lihood estimation and generalized linear model, along with state-of-the-art data

science methods such as eXtreme Gradient Boosting and neural network.

Chapter 2 used death certificates dataset provided by Peru Ministry of Health

and reported the heterogeneity of the median age of all-cause mortality and the

daily pattern of cause-specific mortality directly and indirectly related to COVID

in Peru. An assumption that most of the indirectly excess death in Peru were pri-

marily caused by circulatory system diseases was raised.

In Chapter 3, exposure history and symptom onset date for patients infected

by different SARS-CoV-2 variants was collected. Maximum likelihood estimators

of mean and standard deviation of the distributions of incubation periods were
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calculated. For the Delta variant, the mean incubation period was 6.54 days (95%

CI: 5.28 – 7.68), while for the Omicron variant, it was significantly shorter at 3.43

days (95%CI: 2.47 – 3.76). Thus, a 7-day quarantinemay bemore effective during

Omicron predominance.

Moreover, a metric called daily exceedance concentration hours (DECH) was

reinvestigated in Chapter 4. Generalized additive models with quasi-Poisson dis-

tribution links were fitted to calculate relative effects of DECH levels on mortal-

ity risk across the disease groups. A fairly consistent size of the association be-

tween DECH levels and mortality risk was found with a less significance during

the COVID pandemic period.

Futhermore, eXtreme Gradient Boosting was adopted in Chapter 5 to esti-

mate the excess mortality attributable to air pollutants and influenza, during the

pre-pandemic and pandemic period in Hong Kong. In the first two years of the

COVID-19 pandemic, 8,762 (95% confidence interval, 7,503 – 9,993), and 12,496

(11,718 – 13,332) excess all-cause deaths were estimated. A notable shift in dis-

ease burden attributable to influenza and air pollutants was observed in the pan-

demic period, suggesting that mortality directly and indirectly caused by COVID-

19 shall be considered when assessing the global and regional burden of the

COVID-19 pandemic.

Finally, in Chapter 6, suggestions for future research on influenza forecasting

were discussed. Human Influenza hemagglutinin (HA) and Neuraminidase (NA)

A(H3N2) sequences and their association with influenza spread were reviewed.

Deep Learning Framework was introduced to handle both sequencing and time

series data.
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Chapter 1

Introduction

1.1 Background

1.1.1 COVID-19 pandemic

The COVID-19 pandemic, initiated by the emergence of the novel coronavirus

SARS-CoV-2 in late 2019, rapidly developed into a global outbreak that over-

whelmed health systems and led to catastrophic loss of life [1]. By the end of

March 2024, the World Health Organization (WHO) reported that the COVID-

19 pandemic had caused 775 million infections, and 7 million deaths around the

world [2]. [3] concluded that the severe acute respiratory syndrome coronavirus-2

(SARS-CoV-2) had a half rate of influenza mutation and one-fourth rate of human

immunodeficiency virus mutation. And they further revealed that the rapid mu-

tation may cause higher infectivity, transmissibility, and lower neutralization effi-

cacy by vaccines. [4] emphasized that although the pressure of COVID pandemic

will be significantly reduced, the SARS-CoV-2 will continue to circulate and re-

2
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main a part of our lives. Meanwhile, the Long Covid, the persistent symptoms

after recovering from SARS-CoV-2 infection, caused sustained health challenges

and may elevate indirectly mortality risk [5]. All the evidence argued that it is

essential to understand the key parameters of different variants of SARS-CoV-2

and mortality burden related to COVID whether the pandemic ended or not.

The mortality of COVID-19 has been estimated using various methods in dif-

ferent regions. A study conducted in Ceará, Brazil deployed Poisson regression

on a cohort with 2070 people having flu-like symptoms and tested positive to

COVID-19 to estimate the mortality rate [6]. [7] based on 114 studies argued that

demographic factors, such as age, gender, and behavior like smoking, as well as

preexisting comorbidities including chronic health conditions could increase the

risk of death. [8] ensembled multiple models to calculate the excess mortality for

74 countries and territories during the pandemic in 2020 and 2021 as the differ-

ence between observed mortality and expected mortality. A total of 18.2 million

deaths was estimated as excess mortality worldwide caused by COVID-19 pan-

demic compared to a 5.94 million reported direct mortality. However, a further

investigation on the cause of death of those excess mortality remained unclear.

Meanwhile, the global response to the COVID-19 pandemic led to a sharp re-

duction in economic and transportation activities. Nitrogen dioxide and particulate

matter levels were reduced by roughly 60% and 31% due to the lockdown events

[9]. Moreover, strict travel restrictions, lockdowns, and stay-at-home orders were

implemented by governmentsworldwide and global humanmobilitywas disrupted

by the pandemic [10]. With the lower air pollution level, it was possible that the

population had less exposure to air pollution. The association between air pollution

and mortality needs to be reviewed over the COVID outbreak and it is crucial to
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understand whether the association between specific-cause mortalities and PM2.5

remain significant during the pandemic and post-pandemic period.

Besides, with the emergence of COVID-19, the seasonal influenza epidemic

has been reshaped. The non-pharmacological interventions (NPI) such as face

masks, social distancing, school and business closures, implemented to slow

COVID-19 spread eventually limited influenza transmission and led to a signifi-

cant drop in influenza cases [11]. Also, the respiratory pathogen testing increased

up to a 4.6 fold between pre-pandemic period and the peak of the pandemic re-

sponse [12]. This change could cause a shift in the number of positive detections

of seasonal influenza and positive percentage for influenza among all respiratory

specimens. Moreover, a rebound of influenza activity in the post COVID-19 pan-

demic period was observed and possibly caused by released non-pharmacological

interventions, diminished population-level immunity, and influenza virus evolu-

tion [13]. It is essential to rebuild a long-term influenza forecasting model cover-

ing the rebound of influenza activity.

1.1.2 Association between air pollution and mortality

Similar to influenza, the association between air pollution and mortality has been

noticed for decades. The well-known Great Smog of London led to about 4000

deaths directly and later analyses estimated the mortality to be around 10000 to

12000 and more than 100000 individuals suffered from respiratory diseases and

other complications [14]. The air pollution started to be treated as a critical public

health issue. Even though in early period, the association between air pollution

and mortality was not fully measured or understood, it was suspected that adverse



1.1. BACKGROUND 5

health outcomes were related to air pollution [15]. Later, continuous air quality

monitoring was collected, and statistical methods can be applied to time series data

of air pollution.

In recent decades, the air quality has maintained or even improved due to en-

ergy policies and pollution regulations and [16] expected a 75% reduction of the

mean population exposure to PM2.5 in 2040 compared to 2015. Meanwhile, the

World Health Organization (WHO) has updated Air Quality Guidelines (AQG) to

a stricter threshold multiple times [17, 18, 19]. The AQG were designed to pro-

vide guidance to avoid health impacts of air pollution and included 37 of the most

common air pollutants including PM2.5, NO2, etc. [17]. Take 24-hour mean par-

ticulate matter 10 (PM10) as an example, in the 2021 updated WHO Guidelines

[19], the threshold was reduced from 50 µg/m3 to 45 µg/m3. Yet, temporal air pol-

lution associations with daily mortality could be found with a historically low air

pollution level [15]. It remained significant to investigate the association between

air pollution, even at a low level, and mortality.

Unlike the early observational approaches of air pollution, epidemiological

techniques and statistical modeling have been applied to quantify the association

between air pollution and mortality. Meanwhile, confounders including temper-

ature, humidity and socioeconomic factors have been controlled in the analyses

[15]. Among the 37 most common air pollutants listed in AQG, most research fo-

cused on particulate matter (PM2.5), nitrogen dioxide (NO2), sulfur dioxide SO2,

and ozone O3. [20] reviewed research deploying statistical methods to investigate

impact of incremental increases in pollutant concentrations on mortality rates and

concluded that even modest increases in air pollution levels are associated with

measurable rises in daily mortality. Generalized additive model (GAM) and gen-
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eralized linear model (GLM) were commonly used methods to explore the health

effects of air pollution in time-series analyses and capture the complex, nonlin-

ear relationships [21]. Temporal trends and relative humidity were smoothed as

covariates [22] and mortalities were usually lagged by 0–3 days when assessing

the association between air pollution and mortality. Moreover, besides using daily

mean concentration or daily peak of air pollutants in the analysis, daily concen-

tration hours of air pollutants over a certain threshold were introduced to consider

both exposure intensities and durations [23].

Despite the adverse health outcomes related to air pollution, [24] examined

the potential impact of ozone on influenza transmission and revealed a negative

association between ambient ozone and influenza activity, particularly with a one-

week lag. Possible reasons include the strong oxidizing properties of ozone and

the enhancement of immune system while exposing to ambient ozone. This re-

search indicated that the air pollution can be jointly investigated with influenza on

mortality.

1.1.3 Forecasting Influenza Epidemics and Mortality

Influenza remains a leading cause of morbidity and mortality in human popula-

tions, causing 3 to 5 million severe infections and 290,000 to 650,000 respira-

tory deaths worldwide annually. Among influenza viruses, influenza A, including

A(H1N1) and A(H3N2), and influenza B circulate and cause seasonal epidemics

of disease [25]. Mortality caused by influenza has been aware of since the 1918

influenza pandemic [26]. Later, two more overwhelming pandemics, in 1957 and

1968, led to excess mortality, the difference between observed death and expected
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death, in infants, the elderly and people with chronic diseases [27].

Thus, understanding the impact of influenza on mortality and providing cor-

rectly influenza forecasting is crucial to inform disease control decisions and de-

cisions concerning the use of influenza vaccines [28]. Many researches have been

conducted on forecasting influenza epidemics, retrospective analysis of mortal-

ity, and estimating excess mortality associated with influenza epidemics in Hong

Kong and worldwide [29, 30, 31, 32]. Commonly used approaches can be con-

cluded as compartmental models of infectious disease transmission (Susceptible-

Infected-Recovered (SIR), Suceptible-Infectious-Recovered-Susceptible (SIRS),

and Suceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) [32]) and sta-

tistical methods (SeasonalAutoregressive IntegratedMovingAverage (SARIMA),

Poisson regression model, and log-linear regression model). Temporal fea-

tures and the influenza surveillance data including influenza-like illness (ILI),

laboratory-confirmed influenza positives, and severe cases have been used in al-

most all researches both as target and predictors. Other features selected by pre-

vious studies include demographic data for both population size and age group

distribution, weather data, such as temperature and humidity, and mobility data

for population movement patterns.

Deep learning networks have been adopted in recent years, such as self-

attention-based network [33], feedforward neural networks [34], and long short-

term memory (LSTM) model [35]. Compared to mechanistic approaches, deep

learning methods can utilize more data besides surveillance data, such as protein

sequencing data. Moreover, deep learning methods can capture the complex dy-

namics and interactions between the multiple influenza strains. Although those

approaches have highlighted short-term performance, they usually have unsatis-
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factory long-term accuracy and have limited interpretations of the influenza pan-

demic compared to compartmental methods and statistical methods.

1.2 Objectives and significance

This thesis aims to investigate the impact of COVID-19, influenza, and air pollu-

tion on mortality by 1) deploying statistical methods and machine learning models

to estimate the key parameters of SARS-CoV-2 virus, understand the structure of

excess mortality related to COVID-19, and have an insight into disease control

measures and disease burden shifting; 2) using regression models and new metrics

to evaluate whether the association between air pollution and mortality is consis-

tent over time, especially during the COVID outbreak and updating air pollution

impacts on specific-cause mortality; 3) exploring new variables in influenza ac-

tivity forecasting and constructing neural network to balance model accuracy and

interpretation.

1.3 Outlines

In Chapter 1, a background, objectives, and significance of this thesis were intro-

duced and the outlines of the remaining thesis were discussed.

All-cause mortality during COVID-19 pandemic in Peru was analyzed in

Chapter 2. We reported the peaks of all-causemortality. Median age of daily death

during the peaks was calculated and compared with that during normal period.

Moreover, the primary cause of death for the direct and indirect excess mortality

related to COVID-19 was examined. The structure of excess mortality related to
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COVID-19 was revealed.

We first collected information on exposure history and symptom onset of Omi-

cron BA.1 (i.e., B.1.1.529.1) cases and cases reported with Delta variants domi-

nant in South Korea in Chapter 3. Then gamma distributions were deployed to

estimate the incubation period. Both likelihood with interval censoring, and like-

lihood with convolution between Gamma distribution of incubation period of the

assumed exponential distribution were applied. The maximum likelihood estima-

tors of mean and standard deviation of those Gamma distributions were estimated

with sensitivity analysis. The estimations of Omicron BA.1 were compared with

the estimations during Delta variants dominance period. The findings were linked

to disease control measures and gave an insight into disease control measures.

In Chapter 4, previous studies on the associations between air pollutionmetrics

and mortality rates were reviewed. A new air pollution metric, “daily exceedance

concentration hours” (DECH) introduced by [23] were reconstructed based on up-

dated World Health Organization guidelines and the association between DECH

and mortality risk across disease groups were examined in Hong Kong for pre-

pandemic era as well as the pandemic period. The relative effects of DECH levels

onmortality risk for different disease groups andmodel significancewere reported.

Whether the strength of associations between air pollution metrics and mortality

rates are time-dependent was discussed. The change of association during the

COVID pandemic was reported.

In Chapter 5, eXtreme Gradient Boosting (XGBoost) was used to estimate

the disease burden attributable to influenza and environmental factors and com-

pared with estimates from the general additive model (GAM) with a Gaussian link

function. The weekly mortality rates of different age groups during pre-pandemic
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(2014-2019) and pandemic period (2020-2021) were compared and discussed.

Overall excess mortality, and excess mortality associated with influenza, air pol-

lution was calculated. Possible reasons for the mortality changes were discussed.

In Chapter 6, previous influenza forecasting approaches were reviewed. The

evolution of Human Influenza hemagglutinin (HA) and Neuraminidase (NA) se-

quences and their possible relationship between influenza outbreak and fatality

were introduced. New deep learning framework was proposed to handle sequence

data and time series data as well as providing certain interpretability.



Chapter 2

All-cause mortality during

COVID-19 pandemic in Peru

Abstract: We reported the heterogeneity of the median age of all-cause mortality

in Peru during different waves of COVID-19 pandemic. We believed that before

the Omicron variants dominance, during the peaks of daily all-cause mortality,

the median age of daily death was lower than the usual level. The median age

of daily death bounced higher than normal during the peaks of daily all-cause

mortality with the Omicron variants dominance. We also revealed the daily

pattern of cause-specific mortality directly and indirectly related to COVID in

Peru. We argued that most of the indirectly excess death in Peru were primarily

caused by circulatory system diseases possibly caused by disruption in medical

service, while the majority of directly excess death have the primary cause of

death as COVID-19 and respiratory system diseases.

Keywords: COVID-19, Median age, Excess mortality.
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COVID-19 has spread all over the world and by the end of 2021, the death toll

had reached around 5.7 million with more than 384 million people being infected.

Peru, as one of the most affected countries in the COVID-19 pandemic, has the

highest number of confirmed cases, deaths per million, and total excess death [36].

Beaney et al. [37] suggested that distinguishing the direct COVID-19 and in-

direct COVID-19 death was crucial to understand the full impact of death caused

by COVID-19. Previous studies conducted in Peru explored the direct and indirect

impacts of COVID-19 on the wellbeing of population and qualities of healthcare

system and delivery [38, 39]. However, there is limited research further classifying

the direct and indirect COVID-19 death into specific cause of death.

Numerous studies mentioned that increasing age is strongly associated with

COVID-19 mortality [37, 40]. The NewYork Times also reported that in the U.S.

during theOmicronwave, older population had a highermortality rate compared to

previous waves [41]. On the other hand, few research discussed the heterogeneity

of age distribution of daily death during the pandemic period in Peru.

We first used the death certificates dataset provided by PeruMinistry of Health

to extract daily all-cause mortality and the median age of daily death from Jan

2019 to Apr 2022. Then we used the same dataset which listed every death reg-

istry with up to six descriptions of the cause of death. We identified a death is

related to COVID-19 if at least one of the six descriptions of the cause of death

included ‘COV’. We sub-grouped cause-specific deaths based on the icd-10 code

of the primary cause of death. The daily count of cause-specific death in Peru

was visualized in several disease groups in comparison with the daily number of

cause-specific death not related to COVID during the same period.

We noticed that during the COVID-19 pandemic before Jan 2022, there were
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two peaks of all-cause mortality (Fig 2.1). During those two peaks, the median

ages of daily death were lower than normal period, especially during the second

peak roughly from the first half of 2021 with Lambda variant dominance accord-

ing to GISAID [42]. After Jan 2022, the Omicron variants were dominant in Peru

according to GISAID [42]. The peak of all-cause mortality was lower than the

previous two peaks. However, the median age of daily death bounced higher to

around 77 compared to 71 and 69 during the previous two peaks. One possible rea-

son was that despite the lower fatality rate of Omicron variants, elderly population

were more vulnerable than younger generation.

Figure 2.1: Daily confirmed COVID-19 cases in Peru (top left). Daily all-cause

mortality (top right). Daily COVID-19 deaths (bottom left). Daily median age of

all-cause mortality (in red), bootstrap 99% CI (shaded area) in Peru (bottom right).

We found a clear pattern of three peaks of total mortality counts during the three

waves of COVID-19 (Fig 2.2). Compared to the pre-pandemic daily death counts,

the excess mortality mostly fell into the following four disease groups: diseases of

the circulatory system (ICD-10 codes starting with I), diseases of the respiratory
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system (ICD-10 codes starting with J), general symptoms and sign (ICD-10 codes

from R50 to R69), and COVID-19 (ICD-10 codes U71 and U72). Most excess

deathswith primary cause of death as diseases of the respiratory system or COVID-

19 (including virus not identified) were directly related to COVID-19 since the

death registries had mentioned COVID-19 at least one time in the descriptions of

the cause of death.

Most of the indirectly excess mortality had a primary cause of death as diseases

of the circulatory system. During the first two waves of COVID-19, we can see

a peak of roughly 100 daily excess deaths caused by circulatory system diseases.

Among those indirectly excess deaths caused by circulatory system diseases, most

of them had the cause of death listed as acute myocardial infarction (42.8%), car-

diac arrest (20.7%), and heart failure (7.9%). Similar results have been found in

Latvia [43]. It can be explained by the previous finding of the World Health Or-

ganization [44] stating that some countries have partially or completely disrupted

services for cardiovascular emergencies during the pandemic. Furthermore, Peru’s

cardiovascular prevalence before the pandemic was also pronounced in the most

urbanized regions, particularly on the Coast [45], overlapping with the areas hard-

est hit by the pandemic [46], which may have increased the unmet demand for

cardiovascular services. Another explanation is that Coronavirus disease is asso-

ciated with a high inflammatory burden which may cause cardiovascular disease

[47]. Most of the excess mortality with general symptoms and sign listed as the

primary cause of death could be concluded as a combination of both directly and

indirectly related to COVID-19 based on the descriptions of all causes of death.

In summary, we reported themedian age of daily death and the pattern of cause-

specific daily mortality in Peru. We also revealed the directly and indirectly cause-
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Figure 2.2: Daily death counts of four major groups of cause-specific mortality

based on primary cause of death. The yellow lines include all death registries with

cause of death information, while the blue lines exclude all death registries with

‘COV’mentioned in at least one of the descriptions of the cause of death.

specific excess mortality during the three waves of COVID-19 by digging into all

the descriptions of the cause of death of each deceased. We concluded that unlike

the lower-than-normal median age of daily death during the first two waves of

COVID, the median age bounced to a higher level when the Omicron variants were

dominant in Peru. We figured that the majority of excess death directly related to

COVID-19 had the primary cause of death as COVID-19 and respiratory system

diseases, while most of the excess death indirectly caused by COVID-19 were

primarily caused by circulatory system diseases, which may be the consequence

of disruption in medical service during the pandemic.



Chapter 3

Estimating the incubation period of

SARS-CoV-2 Omicron BA.1 variant

in comparison with that during the

Delta variant dominance in South

Korea

Abstract: Based on exposure history and symptom onset of 22 Omicron BA.1

cases in South Korea from November to December 2021, we estimated mean

incubation period of 3.5 days (95% CI: 2.5, 3.8), and then compared it to that

of 6.5 days (95% CI: 5.3, 7.7) for 64 cases during Delta variants’ dominance in

June 2021. For Omicron BA.1 variants, we found that 95% of symptomatic cases

developed clinical conditions within 6.0 days (95% CI: 4.3, 6.6) after exposure.

Thus, a shorter quarantine period may be considered based on symptoms, or

16
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similarly laboratory testing, when Omicron BA.1 variants are circulating.

Keywords: incubation period; Omicron BA.1 variant; Delta variant; quaran-

tine.

3.1 Introduction

Since the end of 2019, COVID-19 has continuously posed threat to public health

globally [48]. The novel genetic mutations of SARS-CoV-2 have continually chal-

lenged the control system for the COVID-19 pandemic, making it critical to moni-

tor key epidemiological parameters for understanding the transmission and clinical

characteristics of emerging variants [49, 50]. The incubation period is defined as

the time interval between exposure and onset of illness for symptomatic infections

[51], which is important to informing quarantine policies, to studying transmis-

sion dynamics of an infectious disease, and to assessing the effectiveness of entry

screening [52, 53]. While estimates of incubation period can be found in literature

for various historical SARS-CoV-2 strains [54, 55], the knowledge of incubation

period for Omicron variants remains largely unassessed.

In this study, we collected information on exposure history and symptom onset

of 22 Omicron BA.1 (i.e., B.1.1.529.1) cases in South Korea from November to

December 2021, and estimated distribution of incubation period, which was then

compared to that of 64 cases during Delta (i.e., B.1.617.2) variants’ dominance in

June 2021.
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3.2 Method

3.2.1 Data collection

Based on the information of COVID-19 cases who tested positive for SARS-CoV-

2 previously published [56, 57], we extracted exposure history and symptom onset

date for patients with this information available. To use for incubation period es-

timation, we identified 22 cases laboratory-confirmed for Omicron BA.1 variants

who were reported in South Korea from November 25 to December 31, 2021, and

for comparison, we also included 64 cases reported in June 2021 when the Delta

variants were dominant at a prevalence of 68.3% according to GISAID [42]. The

exposure history was translated into exposure time window with upper and lower

bounds of exposure date, which will be used for the calculation of the likelihood.

Among these 86 (64+22) patients, all of them have illness onset date observed.

Among the 22 identified Omicron BA.1 cases, 21 of them have both lower and

upper bounds of exposure date, while 1 only has the upper bound of exposure

date, and 12 cases during Delta dominance have both lower and upper bounds but

52 only have the upper bound.

3.2.2 Statistical analysis

Log-normal, gamma, andWeibull were among the most common distributions ap-

plied to estimate the incubation period [52]. The gamma distribution has a more

concise mathematical expression compared to the other two distributions, hence

less computational power is required to estimate the parameters. In this study, two

different Gamma distributions (fincubation) were adopted to govern the distributions
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of incubation period for Omicron BA.1 cases and cases during Delta variants’

dominance, respectively. For the samples with both lower and upper bounds of

exposure date, i.e., with exposure window, we calculated the likelihood with in-

terval censoring [52]. The exposure date was bounded within a time window, even

though the exposure date could not be observed directly. We applied the interval-

censoring on the likelihood function to account for the uncertainty of the observed

exposure (or infection) time windows. Then, the difference between the observed

illness onset date (denoted by S) and exposure date (denoted by I) of each indi-

vidual case is the incubation period. As such, the likelihood function to estimate

the incubation period was as follows,

L
(1)
incubation =

∫ IL

IU

fincubation(S − I)dI

Here, IL and IU were the lower and upper bounds of exposure date, respectively.

For the remaining samples only with upper bound of exposure date observed,

we assumed an exponential distribution indexed by this upper bound backwardly

(denoted by function g), and calculated the likelihood with convolution between

Gamma distribution of incubation period of the assumed exponential distribution

[58, 59]. The likelihood function was as follows,

L
(2)
incubation =

∫ ∞

IU

g(I − IU) • fincubation(S − I)dI.

By using all samples, the overall likelihood is calculated bymultiplying the two

versions of likelihood functions. For the commonly noted selection bias issue of

backward time interval during epidemic growth or decay phase [60], we consider
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this is not applicable in our situations. For the cases infected by Omicron BA.1

variants, the epidemics curve from November to December 2021 presented an

exponential growth with rate around 0.04 per capita per day, and thus we corrected

the backward-observational sampling bias by using approach in previous study

[61], and thus inferred the distribution of forward incubation period. For the cases

collected in June 2021 when the Delta variants were dominant in South Korea,

the epidemics curve appeared relatively flat in South Korea, which indicated an

exponential growth with rate around 0, and thus there is unlikely to have selection

bias due to backward observation.

We assumed the exponential infectiousness distribution has amean of 3.7 days,

which corresponded to the mean infectious period estimated in previous research

[62]. We calculated the maximum likelihood estimators of mean and standard de-

viation of the Gamma distributions. We adopted non-linear optimization to max-

imize the overall log-likelihood function with a sufficiently small scale of 10(−6)

as relative tolerance level for convergence. To evaluate the statistical uncertainty,

we used a parametric bootstrap with 1000 iterations of resampling to obtain 95%

confidence intervals (CI) for each parameter. Limiting the dataset to those with

exposure window observed, i.e., with both lower and upper bounds, we repeated

the estimation with only 21 samples for Omicron BA.1, and 12 samples for Delta

dominance period, respectively.

Sensitivity analysis was conducted by assuming shorter and longer versions

of the exponential-distributed exposure window with 2.8 and 4.6 days to repeat

the estimation (see Table in Appendices). Additionally, to relax the exponential

assumption for the missing exposure window, we assumed the exposure windows

of those samples only with upper bound of exposure date observed following an
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empirical distribution from the samples with both lower and upper bounds of ex-

posure date observed.

All analyses were conducted in R version 4.1.0 (R Foundation for Statistical

Computing, Vienna, Austria).

3.3 Results and discussion

For the 22 cases infected by Omicron BA.1 variants, the estimated mean incuba-

tion period was 3.5 days (95% CI: 2.5, 3.8), and SD was 1.4 days (95% CI: 1.0,

1.5), see Fig 3.1. We found that 50%, 95% or 99% of symptomatic cases may

present clinical conditions within 3.3 days (95% CI: 2.4, 3.7), 6.0 days (95% CI:

4.3, 6.6) or 7.4 days (95% CI: 5.3, 8.2) after exposure, respectively. When limiting

dataset to the 21 samples with exposure window observed, the mean incubation

period decreased was estimated at 3.2 days (95% CI: 2.3, 3.8), see Table 3.3.
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Figure 3.1: Estimated cumulative distributions of incubation period for Omicron

BA.1 variants (in blue), and for cases during Delta dominance (in red). The statis-

tical uncertainty was illustrated by 100 bootstrap estimates, which were curves in

light colors, and the mean estimates were the bold curves in dark colors.
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Table 3.1: Summary of incubation period estimates (unit: day) for cases infected by Omicron BA.1 variants and cases during

Delta predominance period in South Korea.

Type of SARS-CoV-2 strain sample& sample size
estimate (95%CI)

mean median 95-th percentile SD

Omicron BA.1
all samples n = 22 3.5(2.5, 3.8) 3.3(2.4, 3.7) 6.0(4.3, 6.6) 1.4(1.0, 1.5)

with exposure window n = 21 3.2(2.3, 3.8) 3.1(2.2, 3.6) 5.5(4.0, 6.6) 1.3(0.9, 1.5)

those during Delta dominance$
all samples n = 64 6.5(5.3, 7.7) 5.9(4.4, 7.1) 13.6(11.1, 15.9) 3.7(2.9, 4.6)

with exposure window n = 12 8.7(6.0, 11.6) 8.1(5.5, 11.0) 16.0(10.5, 21.0) 3.8(2.4, 5.6)

Notes:
$ These cases were collected in June 2021 when the Delta variants were dominant at a prevalence of 68.3% in South Korea according to GISAID

[42].
& The samples ”with exposure window” are those with both lower and upper bounds of exposure date observed, whereas ”all samples” included the

samples with exposure window and sample with only upper bound of exposure date observed.
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By contrast, for the 64 cases identified during Delta dominance, the estimated

mean incubation period was 6.5 days (95% CI: 5.3, 7.7), and SD was 3.7 days

(95% CI: 2.9, 4.6). We found that 50%, or 95% of symptomatic cases may present

clinical conditions within 5.9 days (95% CI: 4.4, 7.1), or 13.6 days (95% CI: 11.1,

15.9) after exposure, respectively.

For the sensitivity analysis, we found that the estimates with either shorter

or longer version of exposure bound are consistent with main results in similar

scales, which suggested the robustness of our findings, see Appendices. By using

empirical distribution for those with missing exposure window, we found that the

estimates were largely in line with the main results.

The mean and percentiles of incubation period of Omicron BA.1 variants were

found considerably shorter than those of cases during Delta dominance period, as

well as previous estimates based on other historical SARS-CoV-2 strains [54, 63].

Given the pre-symptomatic transmission feature of SARS-CoV-2 infection [64],

a shorter incubation period indicated the Omicron BA.1 cases are likely to have

a relatively higher rate at which they become new sources of infection to other

susceptible individuals. Theoretical study also suggests that the generation time

may be shortened with a short latent period [65], which is roughly equal to or less

than the incubation period, and thus the Omicron BA.1 variants may lead to a lower

period doubling time for epidemic curve regarding advantageous transmissibility

in natural population and escape feature against herd immunity [66, 67].

Linking our findings to the disease control measures, some countries and re-

gions have been using quarantine and entry screening as control measures against

COVID-19. The initial quarantine periods were 14 days, and then extended to 21

days in some areas [68]. Although a longer quarantine period may lower the risk
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of disease spread in community, people under quarantine or isolation were at risk

of adverse mental health outcomes suggested by synthesized evidence [69], espe-

cially when the containment duration is longer than one week. Considering the

latent period was typically shorter than incubation period [53], our estimates of

the 99-th percentile at 7.2 days suggested a 7-day quarantine with PCR tests could

be sufficient to detect around 99% of infections of Omicron BA.1 variants, and

PCR tests have been confirmed effective to filter asymptomatic patients before

they have onset of illness [70, 71].

There are some limitations in this study. First, for cases collected during Delta

dominance period, we could not confirm these cases were infected by Delta vari-

ants due to the lack of genetic sequencing data. We could only conclude that the

Delta variants were dominant at a prevalence of 68.3% in June 2021 in South Ko-

rea. Second, we adopted a Gamma distribution to govern the observed incubation

period distribution, where symptoms were assumed to start immediately after in-

fection. This may not be biologically reasonable, where a certain but minor lag

may exist for patients to develop symptoms. Third, the exposure windows and

illness onset time for patients can only be accurate to days. Therefore, a maxi-

mum of one-day error may exist in our determination of the intervals of exposure

and symptom onset. Last, our estimate may be subjected to reporting and recall

biases. It is suggested to further explore the heterogeneity of the incubation pe-

riod among different SARS-CoV-2 Omicron variants, in order to adjust the disease

control measures.



Chapter 4

Trends in the effects of ambient

PM2.5 concentration on mortality

risk in Hong Kong, China

Background: Associations between levels of various types of airborne particu-

late matter such as ambient PM2.5 and short-term mortality risk have been studied

extensively. A metric called daily exceedance concentration hours (DECH) has

been proved useful with respect to better modeling and understanding of acute

mortality risk associated with pollution in southern Chinese cities. Notably how-

ever, it is unclear whether the strength of the association is time dependent. The

current study investigated this using a comprehensive dataset acquired in Hong

Kong spanning from 1999 to 2023. The methodology and modeling employed

were similar to those used in prior studies.

Methods: Generalized additive models with quasi-Poisson distribution links were

fitted to varying periods of an overall time series. These models were then exam-

26



4.1. INTRODUCTION 27

ined to identify changes in implied effects on mortality risk over time.

Results: The replicated methodology of prior studies resulted in fairly consis-

tent, but much reduced relative effects of DECH levels on mortality risk across

the disease groups. The model remained significant with the inclusion of newer

datasets. When applying the model to sliding time-windows of data, the effec-

tive risk of mortality remained relatively constant despite significantly changing

levels of pollutants, especially with regard to mortality risk among cardiovascular

diseases. Modelling other cause groups using DECH metrics yielded similar re-

sults to those acquired using other air pollution variables.

Conclusion: The results of the study support the use of DECH as a mortality risk

factor, particularly with respect to cardiovascular diseases, and the size of the as-

sociation is fairly consistent. During the COVID pandemic, the effect of DECH

levels was reduced.

Keywords: air pollution, cardiovascular, Hong Kong, mortality, PM2.5

4.1 Introduction

Numerous studies indicate that PM2.5 is strongly associated with all-cause and

specific-cause mortality [72, 73], but few reports mention whether the strength of

associations between air pollution metrics and mortality rates are time-dependent.

There are two possibilities. Either the size of an association is consistent, then one

can use it with confidence to inform policymaking; or the size of an association is

time-dependent, in which case identifying the mechanisms involved in variations

would be informative. A recent study conducted by Lin et al. [23] introduced a

new air pollution metric, “daily exceedance concentration hours” (DECH).
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All conventional measures of air pollution concentration have trended down

significantly in recent years (Figure 4.1). This includes the novel DECH metric.

Intuition suggests that if DECH is a major indicator and cause of acute circulatory-

cause mortality, as these levels decline over time the contributing risk of DECH

should also decline. Most previous studies investigating air pollution and health

hazards have focused on all-cause, circulatory-cause, or respiratory cause mortal-

ity, but in recent years more attention has been paid to mental, nervous system, and

skin-related diseases [74, 75, 76]. Given that the quantitative association between

these specific-cause mortalities and PM2.5 is vague, a mathematical model using

real-life data is necessary to fill the research gap.

Moreover, the outbreak of COVID-19 and the following disease control mea-

sures led to a significant decrease in all-cause and specific-cause mortality as-

sociated with air pollutants [77], and dramatic air pollution reduction including

PM2.5 in 2020 [78]. It’s crucial to understand whether the association between

specific-cause mortalities and PM2.5 remain significant during the pandemic and

post-pandemic period.

In the current study DECH and other variables were used to model all-cause

and specific-cause mortality from 1999 to 2023 with time windows of different

lengths, to investigate the sizes of associations between air pollution metrics and

specific-cause mortality rates. The results of the study are organized into four sec-

tions; (A) replicating the methods of prior studies, (B) extending those methods to

new data, (C) further exploring the conclusions of prior studies, and (D) applying

models and the DECH metric to other diseases. The main target of this study is to

investigate whether the strength of the association between PM2.5 and mortality is

time dependent for all-cause and cause-specific mortality.
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Figure 4.1: Simple moving average applied to daily mean and peak PM2.5 concen-

trations and daily mean DECH indicating a trend of improved air quality in Hong

Kong in recent years. Compared to the daily mean PM2.5, the daily mean DECH

better captures variations in air pollution within a day.

4.2 Methods

Data sources were used to gather daily information on mortality, air pollution,

weather, hospital admissions for influenza and COVID-19, and public holidays in

Hong Kong. All data were indexed daily to form a time series from 01 January

1999 to 30 December 2023. All data processing and analyses were performed

using the statistical computation language R, and models were generated using
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the ‘mgcv’ package.

4.2.1 Mortality

Mortality data were obtained from the death registry supplied by the Census and

Statistics Department of Hong Kong. Data were filtered over three cause groups;

all diseases, circulatory diseases, and respiratory diseases. Data from 01 January

1999 to 31 December 2000 were acquired, and cause of death was differentiated in

accordance with the International Classification of Diseases (ICD) version 9. All

deaths were filtered by numeric codes ranging from 001–799, deaths from circu-

latory diseases were filtered via codes 390–459, and deaths from respiratory dis-

eases were filtered via codes 460–519. Data from 01 January 2001 to 31December

2016 were differentiated in accordance with the ICD-10, therefore all deaths were

filtered by numeric codes ranging from A00–R99, deaths from circulatory dis-

eases were filtered via codes I00–I99, and deaths from respiratory diseases were

filtered via codes J00–J99 [23]. Three more cause groups based on conditions

commonly considered to be associated with air pollution were also incorporated

into the current study; mental and behavioral conditions [74, 79], diseases of the

nervous system and sense organs [80, 75], and diseases of the skin and subcuta-

neous tissue [76]. ICD-10 codes F00–F99 and ICD-9 codes 290–319 were used

to filter deaths associated with mental conditions. ICD-10 codes G00–G99 and

ICD-9 codes 320–389 were used to filter deaths associated with diseases of the

nervous system. ICD-10 codes L00–L99 and ICD-9 codes 680–709 where used

to filter deaths associated with skin diseases.
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4.2.2 Air pollution

Hourly air pollution data including PM2.5 levels were obtained from the Hong

Kong Environmental Protection Department. Only 4 of 18 weather stations col-

lected PM2.5 levels before 2004, but more weather stations began to monitor PM2.5

levels after that time. By the end of 2019 a total of 16 weather stations across Hong

Kong were monitoring PM2.5 levels. In the present study daily average pollution

levels were calculated using all the data available for each given timepoint. In ac-

cordance with many prior studies [23, 81], daily mean and daily peak PM2.5 con-

centrations were calculated. Daily meteorological data such as mean temperature

(degrees Celsius) and relative humidity (percentage) were also collected. Daily

data from all available stations where averaged to obtain daily means.

4.2.3 Influenza hospital admissions

Influenza hospital admissions data were obtained from theHongKongDepartment

of Health’s Centre for Health Protection. These data record the weekly influenza

admissions totals. In accordance with [82] an “outbreak” week was defined as a

week exceeding the 75th percentile of admissions for all weeks in that year. No-

tably the Centre for Health Protection has stated that “Since Feb 10, 2014, Public

Health Laboratory Services Branch has adopted new genetic tests… this transition

…may bring about increases in detection of and percentage positive for influenza

viruses” [83].
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4.2.4 COVID-19 surveillance data

Weekly surveillance data of COVID-19 were obtained from the Hong Kong De-

partment of Health’s Centre for Health Protection. Weekly fatal cases have been

recorded since 2023. From 2020 to 2022, a separate dataset has been obtained

from the Hong Kong Department of Health’s Centre for Health Protection report-

ing daily covid death. Similar to the ‘outbreak’ week of influenza, an ‘outbreak’

week of COVID-19 was defined as a week exceeding the 75th percentile of fatal

cases for all weeks in 2023.

4.2.5 DECH metric

As initially proposed by Lin et al. [84] the DECH metric is defined as ’daily

concentration hours > 25 µg/m3… [where] for example, an hour with a mean

concentration of 28.5 µg/m3 contributes 3.5 concentration-hours to the daily to-

tal; and hours with average concentration lower than 25 µg/m3 contribute zero

… to the daily total’. The boundary of 25 µg/m3 was chosen by Lin et al. [84]

based on guidelines published by the World Health Organization [18]. However,

the guidelines published by the World Health Organization [19] updated recom-

mended AQG levels to 15 µg/m3. Thus, we redefined the DECH metric as ’daily

concentration hours > 15 µg/m3’ in this research. DECH values were calculated

for each day on a per-station basis, then the mean DECH of all available stations

was used to define the DECH for that day over the region.
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4.2.6 A general summary of the time series data

A general summary of the time series data mentioned in Section 4.2.1, 4.2.2, and

4.2.5 is provided in Table 4.1 below. From the summary statistics, it can be found

that mental and behavioral conditions, diseases of the nervous system and sense

organs, and diseases of the skin and subcutaneous tissue have limited mortality

cases in Hong Kong. The spread of respiratory diseases related mortality is left

skewed with relatively high variability. It may be caused by COVID related death.

Table 4.1: Basic information about the time series data
Variable # Days Mean ±-SD Min 1st Q Median 3rd Q Max

Daily Mortality

All diseases 9128 100.7± 28.65 44 84 96 112 481

Circ. 9128 21.33± 6.33 3 17 21 25 59

Resp. 9128 24.14± 17.77 3 16 22 29 347

Ment. 9128 2.18± 2.05 0 0 2 3 14

Nerv. 9128 0.89± 0.98 0 0 1 1 6

Skin 9128 0.50± 0.73 0 0 0 1 6

Air Pollution

PM2.5 DECH 9128 376.1± 406.9 0 64.5 230.8 570.9 3585.5

PM2.5 9128 29.5± 19.2 2.6 15.4 24.6 39.9 172.0

Weather

Temperature (◦C) 9128 24± 5 5 20 25 28 32

Rel. Humidity (%) 9128 78± 10 27 73 79 85 99

4.2.7 Statistical model

Amodel was generated then applied to different segments of the time series data.

In an effort to maximize consistency and reproducibility, a generalized additive

model (GAM) with an expected quasi-Poisson distribution was generated in ac-

cordance with Lin et al. [84]. The aim of this model was to relate the discrete

variable of daily circulatory mortality (count) to PM2.5 concentrations. By finding
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the coefficient on the DECH term for the model, a relative mortality risk effect per-

cent relationship to changes in DECH PM2.5 levels can be calculated. The model

has been updated to consider the COVID-19 outbreak starting from 2020. The

specific statistical model is as follows, where the time series Y is indexed by day,

and hence E[Yt] gives the expected daily cardiovascular mortality at day t:

log(E[Yt]) =β1 · DECH(−l) + s(t, df = 6) + s(MT0, df = 6)

+ s(MT1−3, df = 6) + s(MRH0, df = 3)

+ β2 · INFL+ β3 · COVID+ β4 · DOW+ β5 · PH+ α

DECH is the mean daily measure described in Section 4.2.5 for PM2.5 concentra-

tion lag 3 days. DECH(-l) is lagged l day from t as described in [84], where acute

mortality occurs between hours and days from initial exposure to elevated levels.

MT is the mean temperature (degrees Celsius) at lag 0, and MT1-3 is a moving

average of MT from days lag 1 through 3. This parameter was chosen for similar

reasons as DECH being lagged 3 days. MRH is mean relative humidity (%) at lag

0. INFL is a dummy variable that takes the value of 1 when the given day at t is

contained within a week designated as an ’outbreak’ as described in Section 4.2.3

above. COVID is a dummy variable that takes the value of 1 when the givn day at

t is contained within a week designated as an “outbreak” as described in Section

4.2.4 above. DOW refers to the day of the week, a dummy variable ranging from

0 to 6 from Monday through Sunday. PH is a dummy variable indicating a public

holiday on the present day, where 0 indicates no holiday and 1 indicates a holiday

(including Sunday, as defined by the Hong Kong government). The temporal in-

dex t was included to account for the clear trend and seasonality observed in Figure
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4.1 above, and α is a random error term. The model incorporates smoother func-

tions as penalized regression splines: s(). Degrees of freedom (df) were chosen in

accordance with standards described in [84] and [85].

4.2.8 Model DECH lags

In the above model, DECH lag l was 2 days when applied to all mortalities, 3

days when applied to circulatory system mortalities, and 2 days when applied to

respiratory system mortalities. These lag days were differentiated to match the

significance figures identified and used by Lin et al. [84]. For the newly added

cause groups, 1 day lag was applied to mental condition mortalities and nervous

system mortalities, and 0 day lag was applied to skin mortalities [79].

4.2.9 Model objectives

The data sources and model were carefully constructed to replicate the methods

described in [84] compiled with newly updated WHO air quality guidelines and

the recent COVID pandemic. That study incorporated three models over the mor-

tality groups; all cause, circulatory system, and respiratory system ranging from

1998–2011. The data used in the current study spanned from 1999–2023, facilitat-

ing testing and validation of the results over a more comprehensive scale. Three

additional mortality groups were also incorporated into the current study; mental

and behavioral, nervous system and sense organs, and skin. Notably the lack of

1998 data is due to fine suspended particulate (FSP) data not being available from

the Environmental Protection Department for that year. It is unclear how other

reports were able to include this data.
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PartAof this study aimed to directly replicate results reported by Lin et al. [84]

within the same time series with DECH threshold as 25 (for a fully reproduction),

and Part B aimed to investigate validity beyond the fitted time series. In Part

B the 13-year model in Part A was fitted on a sliding window basis starting in

1999, extending through 2007, and ending in years 2011 and 2023, generating

13 models to test the significance of the model on newer and out-of-sample data

(data from 2012–2023). In Part C, to test shorter term changes in DECH, models

were fitted to 5-year periods on a sliding window basis starting from 1999 and

ending in 2023 inclusive, yielding fitted models across mortality groups for time

series beginning with the year range 1999–2003, and extending to the year range

2019–2023. In Part D three additional models were incorporated, derived from

the mortality groups mental and behavioral, nervous system and sense organs, and

skin using 5-year periods on a sliding window basis starting from 1999 and ending

in 2023 inclusive. This resulted in fitted models across mortality groups for time

series with year ranges beginning at 1999–2003, and extending to 2019–2023.

4.3 Results

4.3.1 Replication of Prior Methods

For data ranging from 1999–2011, fitting the model described in Section 4.2

over all-cause, circulatory-cause, and respiratory-cause mortality groups gener-

ated the DECH coefficients (threshold ‘> 25 µg/m3’ applied) shown in Table 4.2.

The interquartile range (IQR) for hourly DECH measurements was 508.55 µg/m3

throughout the period. This contrasts with the IQR of 565 µg/m3 throughout
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1998–2011 in [84]. The DECH coefficients were multiplied by this IQR to gener-

ate relative effect percentages for an hourly IQR increase in DECH concentration.

Confidence intervals associated with the effect were determined by multiplying

the standard error by 1.96. In Table 4.3 results reported by Lin et al. [84] are com-

pared with results generated in the current study, including adjusted relative effect

percentages using the Lin IQR value. Ratios of the current study’s coefficients

to Lin et al.’s [84] coefficients are also presented to neutralize any IQR issue by

comparing ratios across groups.

Table 4.2: Fitted DECH coefficients for 1999–2011.
Coefficient Std. Error Significance (Pr(> |t|))

ALL DISEASES 1.763e-05 4.871e-06 0.000298

CIRCULATORY 2.825e-05 8.863e-06 0.00145

RESPIRATORY 2.155e-05 1.104e-05 0.0511

Table 4.3: Relative effect percentage comparison of fitted models.

Relative Effect % All Diseases Circulatory Respiratory

Our Results (IQR 508.55) 0.90 (0.40, 1.39) 1.44 (0.53, 2.34) 1.10 (-0.03, 2.22)

Our Results (IQR 565) 1.00 (0.45, 1.55) 1.60 (0.59, 2.60) 1.22 (-0.03, 2.46)

Lin Results (IQR 565) 1.65 (1.05, 2.26) 2.01 (0.82, 3.21) 1.41 (0.34, 2.49)

Ratio (Our / Lin) 55% 72% 78%

4.3.2 Extending the model

To explore the validity of the model using other intervals and beyond the original

sample data (1999–2011) a windowed approach was used to compute several mod-

els on a rolling basis. The values of the DECH coefficients (updated threshold ‘>

15 µg/m3’applied) for a given window’s model are shown in the following figures,

with 0.05 significance level confidence intervals for each coefficient plotted above
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and below in red. Fitting on 13-year intervals of data, the slidingwindow generated

9 models ending in years 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019,

2020, 2021, 2022 and 2023. Coefficient values for each mortality group are shown

in Figure 4.2, and reference data for the plotted figures are presented in Appen-

dices. During the pre-pandemic era, in the 13-year windowed models the DECH

coefficients for all-cause and circulatory-cause cases reached significance at the

0.05 level for all windows, but respiratory models did not reach significance in the

vast majority of cases. For the 13-year windowed models including pandemic era,

the DECH coefficients started to lose significance for all-cause and respiratory-

cause models, while the DECH coefficients of circulatory-cause models remained

significance at the 0.05 level.

4.3.3 Extending the model to short-term intervals

Using a sliding window with 5-year intervals, models were fitted to identify short-

term changes. DECH coefficients for each mortality group are shown in Figure

4.3, and reference data for the plotted figures are shown inAppendices. Multiply-

ing each coefficient by the window’s DECH IQR, the relative effect percentages

across eachmortality group are shown in Figure 4.4. Reference data for the plotted

figures are shown in Appendices. After using a narrower time window, the vast

majority of respiratory models remained lack of significance. For the all-cause

and circulatory models, roughly half of them reached significance. Models that

reached significance at the 0.05 level are indicated by “*” in Table 4.3.3. The rel-

ative all-cause mortality risk effect related to DECH fluctuated decreasing from

roughly 1.5% to 0.5% across all models. The relative circulatory-cause mortality
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Figure 4.2: DECH coefficients across mortality groups for 13-year sliding window

fitted models with 0.05 significance level confidence intervals. DECH IQRs asso-

ciated with later sliding windows were dramatically lower, consistent with results

shown in Figure 1. The DECH coefficients for all-cause and circulatory-cause

groups reached the 0.05 level of significance for all windows in pre-pandemic era,

while only the DECH coefficients for circulatory-cause group remained the 0.05

level of significance for windows including pandemic era. The respiratory models

did not reach significance in the vast majority of cases. The DECH coefficients

in circulatory-cause groups exhibited an increasing trend during the pre-pandemic

period with a plunge during the pandemic period, while in all-cause groups they

remained nearly unchanged during the pre-pandemic period with a similar plunge

during the pandemic period.
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risk effect related to DECH fluctuated around 1% across all models.

Figure 4.3: DECH coefficients across mortality groups for 5-year sliding window

fitted models with 0.05 significance level confidence intervals. With a narrower

time window the DECH IQR peak occurred during 2004–2007. The respiratory

models did not reach significance in the vast majority of cases, whereas all-cause

and circulatory-cause groups reached significance in some cases.

4.3.4 Applying the model to other cause groups

The same independent variables fitting the model described in section 2 were ap-

plied to data pertaining to mental, nervous, and skin diseases, which are commonly

considered to be related to air pollution. A 5-year sliding window was applied to

these models. The DECH coefficients for each window’s model are shown in Fig
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Figure 4.4: The relative effect percentages across mortality groups for 5-year slid-

ing window fitted models with 0.05 significance level confidence intervals. The

respiratory models did not reach significance in the vast majority of cases, whereas

all-cause and circulatory-cause groups reached 0.05 significance in some cases.

4.5, with 0.05 significance level confidence intervals for each coefficient plotted

above and below in red. Reference data for the plotted figures are shown in Ap-

pendices. From the generalized additive models applied to 5-year sliding windows

for all mental-cause, nervous-cause, and skin-cause mortality groups, there was no

clear clue of association between DECH variable and those cause groups.
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Table 4.4: Indication of significance of each fitted model’s DECH coefficient at

the 0.05 level.“*” indicates that the model term reached significance at the 0.05

level.
Window Year All Circulatory Respiratory

2003 *

2004 * * *

2005 * * *

2006 * * *

2007 * *

2008 * *

2009 *

2010 *

2011 *

2012 *

2013

2014 *

2015 *

2016 * *

2017 * *

2018 * * *

2019 *

2020 * *

2021 * *

2022

2023

4.4 Discussion

4.4.1 Application to New Data

Part A results in section 4.3.1 are generally consistent with [84]. All three mor-

tality groups’ models reached significance of the DECH term for their given lag,

and the relative difference between mortality groups followed a similar pattern,

i.e., the DECH coefficient for all-cause was much lower than that for circulatory-
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Figure 4.5: DECH coefficients across the new cause groups for 5-year sliding

window-fitted models with 0.05 significance level confidence intervals. There

were no clear associations between DECH level and nervous-cause mortality,

mental-cause mortality, or skin cause mortality in any time windows.

cause, and respiratory-cause was somewhat lower than that for circulatory-cause

but greater than that for all-cause.

While the circulatory and respiratory coefficient ratios were consistent with

[84] (respective ratios of 72% and 78%), the all-cause coefficient was 55%, far

less than the aforementioned circulatory and respiratory ratios. Further, all of the

DECH coefficients indicated lower relative effect percentages, and it is unclear

what the source of this large divergence between the two result sets could be be-
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cause the vast majority of underlying data andmodeling techniques used in the two

studies were the same. The omission of 1998 weather data as described in section

is a clear difference, however this is not believed to have had a strong effect due

to the model’s use of penalized splines to account for long-term trends.

4.4.2 Extending the model

When extending the model to years of data out-of-sample in Part Awith a updated

DECH threshold corresponding to the updated WHO guideline, significance of

the DECH coefficients was reached for all-cause and circulatory-cause groups for

all windows during pre-pandemic era. The coefficients in these groups were also

fairly stable across windows before 2019, then a sudden increase in 2020 and fol-

lowed by a plunge in 2021 and 2022. Apossible explanation is that the association

between air pollutants and mortality was covered by the surge of fatal cases of

COVID in 2021 and 2022. Notably circulatory-cause coefficients exhibited an

increasing trend during pre-pandemic era. This coefficient trend was neutralized

by a rapidly lowered DECH IQR in recent years due to decreased air pollutants.

Respiratory models did not reach significance in many cases, which is somewhat

consistent with the weaker results reported throughout literature. Since we only

have the data by the end of 2023, it’s still unclear about the significance and effect

of the DECH coefficients in the post pandemic period. It’s crucial to keep atten-

tion to the association between mortality and air pollutants in Hong Kong during

the post pandemic period considering a trend of improved air quality and a huge

excess mortality in Hong Kong during the COVID pandemic which wiped out

vulnerable population.
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4.4.3 Extending the model to short-term intervals

The motivation to model based on a short-term interval such as 5 years was to

investigate potential changes in relationships between FSP levels and mortalities

in recent years compared to a decade prior where various measures of FSP clearly

declined; principally from 2006 to 2023. In the present study most DECH coef-

ficients derived from shorter-term respiratory models did not reach significance,

whereas half of circulatory-cause and all-cause DECH coefficients were signifi-

cant, especially those all-cause DECH coefficients derived from models fitted be-

tween 2010 to 2020. Nomodels had significant DECH coefficients in the windows

ending in 2007, 2012, 2013, or 2014. The DECH coefficients of all three mod-

els started to have a wider confidence interval after the COVID outbreak in 2020.

Further investigation is needed to determine what led to this strong inconsistency.

Consistent with expectations, all-cause and circulatory-cause mortality were

significantly related to elevated DECH levels, and there was an increasing trend

in windows ending in years after 2011—which were above levels of the signifi-

cant models ending in years 2008–2011. While circulatory-cause mortality exhib-

ited a stable relative effect in later years despite increasing coefficients, this was

due to simultaneously decreasing DECH IQRs, and is generally consistent with

results presented by Lin et al. [84]. This indicates that DECH is a novel compo-

nent of mortality risk, and the model presents a constant level of relative effect

of DECH despite changing levels of pollution. The coefficients of DECH related

to respiratory-cause mortality were fluctuated near zero, showing no evidence of

relationship between FSP levels and respiratory-cause mortalities based on our

generalized additive model.
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4.4.4 Applying the model to other cause groups

In extensions of the model investigating three more disease groups, there were no

significant DECH coefficients for any time windows with respect to diseases of

the nervous system and sense organs, or skin and subcutaneous tissue. Those re-

sults are consistent with a previous study reported by Ho et al. [79] using Poisson

regression models and hazy days as a predictor. For some recent time windows,

there were some associations between DECH and deaths associated with mental

and behavioral problems, which is consistent with a study reported by Ho et al.

[86] that focused on associations between dementia mortality and environmental

pollution. One possible reason for the association between DECH and mental-

cause mortality in recent years is that society is paying more attention to mental

and behavioral problems, and deaths related to mental health may have been mis-

classified in the past. In the mortality dataset there were more than 1000 deaths

per year related to mental diseases after 2014, whereas there were less than 500

per year before 2009.

Compared to the circulatory-cause and respiratory-cause groups, which were

included in the previous study, mental, nervous, and skin disease groups had lower

daily death counts. The median of those three groups was to 1 or 0. Zero inflation

can cause inaccuracy in quasi-Poisson models.

4.5 Conclusion

The current study builds on the incremental work of several researchers, prin-

cipally that of [84]. Methods described by Lin et al. [84] were replicated, and
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similar but much weaker effects of DECH levels on mortality risk were identified.

There was also evidence to support the use of DECH as a mortality risk factor,

specifically with regard to circulatory diseases. Despite the downward trend in air

pollution in recent years, relative effects between mortality rate and DECH have

remained stable. The COVID pandemic spread all over the world brought with

large amounts of excess mortality and made the effect of DECH levels less signif-

icant for all disease groups. A further investigation of the relation between FSP

levels and daily mortality in Hong Kong is recommended for the post pandemic

era. The methods were applied to other disease specific mortality risks, and the

results obtained were consistent with other studies.



Chapter 5

Change in disease burden associated

with influenza and air pollutants

during the COVID-19 pandemic in

Hong Kong

Objectives: This study aimed to estimate the variation in disease burden associ-

ated with air pollutants and other respiratory viruses during the COVID-19 pan-

demic.

Methods: We adopted a machine learning approach to calculate the excess mor-

tality attributable to air pollutants and influenza, during the pre-pandemic and pan-

demic period.

Results: In the first two years of the COVID-19 pandemic, there were 8,762 (95%

confidence interval, 7,503 – 9,993), and 12,496 (11,718 – 13,332) excess all-cause

deaths in Hong Kong. These figures correspond to 117.4 and 167.9 per 100,000

48
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population, and 12.6% and 8.5% of total deaths in 2020 and 2021 respectively.

Compared to the period before the pandemic, excess deaths from all causes, car-

diovascular and respiratory diseases, pneumonia and influenza attributable to in-

fluenzaA and B significantly decreased in all age groups. However, excess deaths

associated with ozone increased in all age-disease categories, while the relative

change of nitrogen dioxide (NO2) and particulate matters less than 10µm (PM10)

associated burden showed a varied pattern.

Conclusions: A notable shift in disease burden attributable to influenza and air

pollutants was observed in the pandemic period, suggesting that both direct and

indirect impacts shall be considered when assessing the global and regional burden

of the COVID-19 pandemic.

Keywords: machine learning, mortality, COVID-19, influenza, air pollution

5.1 Introduction

As of 10 March 2024, the World Health Organization (WHO) reported that the

COVID-19 pandemic has caused 775 million infections and 7 million deaths

worldwide[2]. Prior to the availability of vaccines in early 2021, global health

authorities adopted various strategies to curb the spread of the virus. Mainland

China and the Hong Kong Special Administrative Region, which implemented a

Zero-COVID policy to eradicate community outbreaks, enforced stringent pub-

lic health and social measures. These included strict border control, mandatory

quarantine for incoming travelers, and the promotion of social distancing through

work-from-home policies and school closures [87, 88, 89]. Mask mandates were

also enforced from July 2020 [90]. As a result, Hong Kong recorded a relatively
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low number of COVID-19 cases and a low mortality rate in the first year of the

pandemic, with only 148 deaths in 2020 [91].

The COVID-19 outbreak has significantly interfered the seasonal patterns of

other respiratory viruses. Influenza activity, for instance, has remained low in

many regions or countries since 2020, largely due to enhanced personal hygiene

and social distancingmeasures [92]. The 2019-20 winter influenza season in Hong

Kong, was remarkably shorter than previous seasons [93], which likely resulted in

a significant reduction in disease burden attributable to the influenza virus. Prior to

the pandemic, theWHO estimated that seasonal influenza was associated with 3 to

5 million cases globally, and 290,000 to 650,000 respiratory deaths annually [93].

In Hong Kong, our previous studies estimated that influenza resulted in approxi-

mately one thousand annual deaths and tens of thousands of hospitalizations [30,

94]. Most influenza associated deaths occurred in people with chronic diseases

[95] and the elderly, who were also at higher risks of severe infections and deaths

from COVID-19. Hence, the displacement of mortality or morbidity of suscep-

tible populations by COVID-19 might have offset the disease burden caused by

influenza. Similarly, improved air quality has been reported during the pandemic,

likely due to social distancing and reduced economic activities [9]. While the di-

rect effects of these containment measures on COVID-19 have been intensively

evaluated [88, 96], few studies have investigated their indirect effects on the dis-

ease burden of other respiratory viruses and air pollution. A few studies estimated

excess all-cause mortality in the pandemic across countries [97, 98]. However,

most just calculated the difference between observed deaths and seasonal baseline

based on simple time series models, few have considered other factors such as air

pollution, temperature, and influenza in their models.
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Previous ecological studies on the disease burden associated with influenza

have often used time series modeling approaches such as quasi-Poisson regres-

sion or linear regression models [99, 100, 31]. These models share a common ap-

proach to calculating excess mortality. Initially, a model is fitted to the observed

data and seasonal baselines are estimated from the model under the assumption

that virus proxies are zero. The disease burden is then quantified by excess mor-

tality, calculated as the difference between the observed data and the predicted

baseline data. However, the selection of regression models and virus proxies re-

mains a topic of debate. For example, the quasi-Poisson model with a log-link

function has been used for weekly counts of all-cause and cause-specific mortal-

ity, but it has faced criticism for assuming a log-linear relationship between virus

proxies and outcomes. The Gaussian linear model, which assumes a linear rela-

tionship between virus proxies and outcome variables, often yields negative effect

estimates for virus proxies. These time-series models incorporate covariates such

as seasonal trends, temperature, humidity, and proxies for influenza virus activities

[99, 101].

In this study, we used a machine learning modeling strategy, eXtreme Gradient

Boosting (XGBoost), to estimate the disease burden attributable to influenza and

environmental factors. The XGBoost model offers the flexibility of assessing the

marginal effect of each variable and minimizes overfitting through regularization

penalties, bootstrapping of samples and cross-validation. This model has been ap-

plied to various research topics, including prediction models for disease incidence

and prognosis, as well as the mortality burden of air pollution [102, 103, 104]. We

also compared the XGBoost model estimates with those from the general additive

model (GAM) with a Gaussian link function, which has been used in previous
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studies on the disease burden of influenza [99, 105].

5.2 Method

5.2.1 Data

We obtained individual death records from 2014 to 2021 in Hong Kong from the

Census and Statistics Department of the Hong Kong Special Administrative Re-

gion, China. These records were then aggregated to weekly death counts based

on the International Classification of Diseases, Tenth Revision (ICD-10). As in

our previous studies [30, 94], we considered the following categories: all-cause

(ICD-10 codes A00-Z99), cardiovascular and respiratory diseases (CRD, ICD-10

codes I00-I99&J00-J99), and pneumonia and influenza (P&I, ICD-10 codes J10-

J18). We further divided weekly death counts into six age groups: 0 -19, 20 - 39,

40 - 64, 65 - 84, and 85+ years. These age groups were selected to be consis-

tent with our previous research on influenza disease burden [30]. Population data

of these age groups were obtained from the Census and Statistics Department of

Hong Kong. Weekly age-specific population size was calculated from annual mid-

year age-specific population using a LOESS smooth function. Influenza surveil-

lance data and weekly COVID-19 death counts were retrieved from the Centre for

Health Protection. Meteorological data, including daily temperature and relative

humidity, were downloaded from the Hong Kong Observatory (HKO) website.

Air pollution data, including hourly concentrations of particulate matter less than

10 µm in diameter (PM10), ozone (O3) and nitrogen dioxide (NO2), were retrieved

from the 18 General and Roadside Air Quality Monitoring Stations of the Envi-
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ronmental Protection Department (EPD).

5.2.2 Statistical Models

5.2.2.1 Model development

We first trained the XGBoost models on weekly death data by age groups. Weekly

proportions of specimens testing positive for influenza typeA (subtype H1N1 and

H3N2) or type B were added to the models as proxy variables for influenza. The

models also included weekly averages of mean, maximum, and minimum tem-

perature, weekly average relative humidity, and weekly average concentration of

PM10, O3, and NO2. Other covariates in the models were week and year dummies

to adjust for seasonal and annual trends. Weekly age-specific population was used

as an offset in the model to adjust for population size.

Before fitting the models, weekly COVID-19 deaths were subtracted from

weekly mortality data. We first trained the XGBoost model by repeatedly fit-

ting models to the pre-pandemic data (2014-2019). We assumed different learning

rates and maximum tree depth during the validation process with a 5-fold cross

validation to prevent overfitting. The training procedure of the XGBoost models

was conducted separately on all-cause mortality and cause-specific mortality by

different age groups. The model parameters and number of boosted trees were

decided based on the log-likelihood.

We also adopted a classical time series modeling approach, the GAM model

with a Gaussian link function, which has been used in previous studies on the

disease burden of influenza and air pollution. We fit the GAM models to all-

cause mortality and cause-specific mortality, with adjustment for overfitting [106].



5.2. METHOD 54

The best fit GAM model was selected after 5-fold cross validation. Cubic splines

were applied to covariates like week number, average temperature, and relative

humiditywith 10 knots each. Similar to theXGBoostmodel, theGAMmodels also

added weekly age-specific population size as an offset to adjust for age structure

change over time.

5.2.2.2 Estimation of mortality burden

The mortality burden during the pre-pandemic and pandemic period was assessed

using the following measurements: 1) Overall excess mortality in the pandemic:

this was calculated as the difference between the observed death counts in 2020-

2021 and the predicted counts from the XGBoost and GAM models using the ob-

served data of covariates (meteorological data, air pollutants and influenza). 2)

Excess mortality associated with influenza : We first estimated the influenza base-

line mortality by setting the influenza proxy variable in 2020-2021 to zero (i.e.,

assuming no influenza virus activity) in the models. The difference between the

observed death counts in 2020-2021 and the influenza baseline mortality was the

excess mortality specifically attributable to influenza. 3) Excess mortality associ-

ated with air pollution : Using PM10 as an example, we first estimated the PM10

baseline mortality by setting the PM10 variable in 2020-2021 to its minimum value

during the pre-pandemic period (9.7 µg/m3), and subtracted this baseline data from

the observed data to calculate excess mortality specifically attributable to PM10. A

similar calculation was repeated for O3 and NO2 (minimum values 23.8 and 13.8

µg/m3, respectively). Considering the potential delay in mortality effects, we also

calculated the lag effects up to 14 days prior for each influenza proxy and air pol-

lutant. The 95% confidence interval (CI) for each estimate was calculated using
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bootstrapping for 10,000 times.

All data analysis was conducted using the ‘H2O’ and ‘xgboost’ packages

in R software (version 4.1.0) (R Foundation for Statistical Computing, Vienna,

Austria). The R codes are publicly accessible at https://github.com/yanglin-

polyu/covid-excess-mortality.

5.3 Results

5.3.1 Mortality burden during the pre- pandemic and pan-

demic period

Figure 5.1 shows a comparison of weekly mortality rates specific to different age

groups during the pre-pandemic (2014-2019) and pandemic period (2020-2021).

Mortality rates for all categories increased in the age groups of 20-39, 40-64 and

85+ during the pandemic compared to the pre-pandemic period. The numbers of

all-cause deaths showed a sudden drop from February toApril 2020, but gradually

increased thereafter, peaking in early 2021 (Figure 5.2). Influenza nearly disap-

peared during these two years, with a small peak of influenza type B in winter

2020 only (Figure 9.1). Air pollutants generally remained at a relatively low level

during the pandemic, with a sudden drop in early 2020 (except O3), and gradually

returned to pre-pandemic levels thereafter.

5.3.2 Overall excess mortality during the pandemic

Both the XGBoost and GAM models fitted well to the weekly data of all-cause

mortality counts from 2014 to 2019 (Figure 5.2). The XGBoost models outper-
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Figure 5.1: Weekly all-cause and cause-specific mortality by age group, during

the pre- and pandemic period. CRD, cardiovascular and respiratory diseases; P&I,

pneumonia and influenza.

formed the GAM models in terms of Model goodness-of-fit and prediction ac-

curacy (Table 9.9). Given its capability of handling non-linear relationships and

multicollinearity of predictors (Figure 9.2), we adopted the XGBoost models for

main analysis and reported the estimates from these models hereafter. The greatest

increase in excess mortality was observed in the 65-84 and 85+ age groups, with

little to no significant increase in children and adolescents (Figure 5.2). A simi-

lar change in excess mortality was found in CRD, but not in P&I (Figure 9.3 and

9.4). There was a significant increase in all-cause excess mortality in Hong Kong

during the first two years of the COVID-19 pandemic, with an estimate of 8,762

(95% CI, 7,503 9,993), and 12,496 (95% CI, 11,718 13,332) in 2020 and 2021,

respectively (Table 5.1). These correspond to 117.4 and 167.9 per 100,000 popu-

lation, 12.6% and 8.5% of total deaths in these years. The highest rate of excess

mortality was found in those aged 65-84 years, with the excess rate estimates of
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Figure 5.2: Observed and fitted weekly all-cause mortality data by age groups.

The XGBoost (blue line) and GAM models (red line) were developed from the

training data from 2014 to 2019 and used to predict the data in 2020 and 2021.

1,263.4 and 1,797.1 per 100,000 population, respectively (Table 5.1).
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Table 5.1: Overall excess mortality numbers and rates (per 100,000 population) of all-causes, cardiovascular diseases (CVD),

pneumonia and influenza (P&I) by age group in 2020 and 2021, estimated from the XGBoost models, respectively.

All-cause CVD P&I

Excess Excess Excess Excess Excess Excess

number (95% CI) rate (95% CI) number (95% CI) rate (95% CI) number (95% CI) rate (95% CI)

2020

All- 8762 (7503, 117.36 4221 (3571, 56.59 2199 (1874, 29.52

age 9993) (100.17,134.71) 4874) (47.82,65.36) 2530) (25.22,34.08)

0- 49 (19, 4.48 -1 (-9, 9) -0.07 -1 (-6, 6) -0.08

19 80) (1.76,7.27) (-0.82,0.79) (-0.55,0.5)

20- 108 (57, 5.49 42 (19, 2.12 1 (-7, 0.06

39 159) (2.9,8.07) 66) (0.96,3.32) 10) (-0.36,0.52)

40- 805 (590, 27.03 677 (557, 22.63 123 (79, 4.13

64 1018) (19.63,34.14) 800) (18.6,26.71) 169) (2.64,5.67)

65- 1399 (888, 118.65 989 (668, 84.31 431 (279, 36.80

84 1889) (75.26,160.07) 1317) (55.62,112.52) 587) (23.45,50.62)

85+ 2750 (2123, 1263.36 960 (617, 440.54 672 (465, 311.33

3413) (978.04,1562.29) 1300) (279.09,598.14) 887) (214.32,405.93)

2021

All- 12496 (11718, 167.86 6008 (5539, 80.60 2911 (2675, 39.07

age 13332) (157.43,179.48) 6534) (74.29,87.56) 3150) (35.93,42.27)

0- 29 (8, 50) 2.66 -5 (-11, -0.47 0 (-4, 5) 0.04

19 (0.74,4.63) 1) (-1.04,0.12) (-0.33,0.49)

20- 111 (66, 5.75 37 (21, 1.93 2 (-6, 0.12

39 156) (3.5,8.01) 54) (1.07,2.84) 11) (-0.32,0.59)

40- 1150 (976, 38.52 811 (699, 27.02 103 (59, 3.43

64 1325) (32.7,44.17) 919) (23.38,30.65) 147) (1.96,4.91)

65- 1770 (1325, 146.33 1312 (1086, 107.96 412 (271, 33.87

84 2221) (109.4,182.39) 1552) (88.82,127) 546) (22.47,45.15)

85+ 4062 (3650, 1797.08 1518 (1226, 672.23 973 (792, 431.59

4480) (1618.03,1982.17) 1815) (544.9,803.74) 1165) (346.89,512.62)
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5.3.3 Excess mortality associated with influenza

During 2014-2019, influenza A (H1N1 and H3N2) resulted in more deaths than

influenza B in children and adolescents, but fewer in older adults (Figure 5.3). A

similar pattern was observed in CRD and P&I, except for more P&I deaths as-

sociated with influenza A in the 85+ group (Figure 9.5 and 9.6). Annual excess

mortality rates attributable to influenza A and B dramatically decreased in all age

groups during the pandemic period, compared to the pre-pandemic period (Fig-

ure 5.4). The largest decrease (87% reduction from pre-pandemic estimates) was

observed in excess mortality associated with PM10 in the 0-19 group, and the high-

est decrease (273.47 times higher) was observed in influenza B associated deaths

in the 85+ group. Similarly, annual rates of CRD and P&I excess mortality at-

tributable to influenzaA and B dramatically decreased in all age groups during the

pandemic (Figure 9.7 and 9.8).

5.3.4 Excess mortality associated with air pollution

During the pre-pandemic period, annual all-cause excess mortality associated with

NO2 and PM10 showed a decreasing trend across years in all age groups, while

O3 estimates slightly increased (Figure 5.3). Annual all-cause excess mortality

rates attributable to air pollutants decreased in all age groups during the pandemic

period, with a few exceptions including O3 estimates in the all-age group (Figure

5.4). The estimates of CRD and P&I excess mortality rates attributable to all air

pollutants had a similar pattern (Figure 9.7 and 9.8).

We also conducted a sensitivity analysis by incorporating data on air pollutants

and influenza proxies from up to 14 days before (Figure 9.9). The model estimates
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are generally similar to the main results. Compared to the XGBoost models, the

estimates from the GAMmodels were more conservative than those from showing

negative values in several age-disease categories. However, the overall trends of

relative change remained consistent between the two models (Table 9.10).

5.4 Discussion

In this study, we observed a significant rise in all-cause, CRD and P&I mortality

during the pandemic in Hong Kong. The XGBoost model estimated excess mor-

tality at 21,258, 10,229 and 5,110, while the GAM model estimated it at 15,431,

8,426 and 2,666, respectively. These numbers are significantly higher than the

148 COVID-19 deaths reported during the same period. As expected, older age

groups (65-84 and 85+ years) had a greater increase than younger age groups.

Interestingly, the annual all-cause excess mortality rates attributable to both in-

fluenza and three common air pollutants decreased in all age groups during the

pandemic compared to the pre-pandemic period, with the exception of a slight

increase in all-cause excess mortality rates associated with O3. Although we in-

cluded time, temperature, relatively humidity, respiratory viruses, and air pollution

as covariates in the models, there were likely other unadjusted factors contributing

to the increased mortality burden. We hypothesize that changes in health seeking

behavior could be one potential reason, with people possibly delaying diagnosis

and treatment due to fears of contracting COVID-19 in healthcare facilities. This

is supported by reports of a significant decrease in overall hospitalizations in Hong

Kong in 2020, with a corresponding decrease in in-hospital mortality and an in-

crease in out-of-hospital mortality [107].
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Most previous studies on excess mortality only considered time and sea-

sonal trends in predicting baseline deaths, and some even produced negative esti-

mates[37]. This highlights the difficulty in assessing the true impact of the pan-

demic. Our study is one of the first to conduct a comprehensive investigation into

the relative change in disease burden associated with different factors, including

influenza and air pollutants. It is not surprising to observe a dramatic drop in all-

cause excess mortality rates attributable to both influenzaAand influenza B during

the pandemic. This is likely due to enhanced personal hygiene and social distanc-

ingmeasures, which have been reported to have nearly eliminated other respiratory

pathogens during the COVID-19 pandemic in many countries and regions [108,

109]. Additionally, the uptake rates of seasonal influenza vaccination increased

in the Hong Kong population, particularly among children aged six months to six

years, with rates increasing from 19.2% in 2016/17 season to 47.4% in 2019/20

season [110].

Previous studies have investigated changes in air pollutants during lockdowns.

In China, it was found that NO2 and CO concentrations decreased during the lock-

down period, while O3 increased. Based on these three air pollutants, the lock-

down policy prevented certain all-cause deaths [111]. A global study involving

air quality stations from 34 countries estimated that a net total of 49,900 excess

deaths were avoided during lockdowns due to reduced emission of NO2, O3 and

PM2.5. In China, the PM2.5-related avoided excess mortality was 19,600 [112].

However, studies in England andAustralia found no association between air pollu-

tion and excess mortality when comparing the pre-pandemic and pandemic periods

[113], and the change in air quality during the COVID-19 lockdown had a neg-

ligible impact on calculated health outcomes [114]. Whether the reduction in air
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pollution during the lockdown has an effect on total mortality remains a question,

but studies have found that air quality is the most important factor in the context

of enabling an increase in COVID-19 case load [115]. A review by Becchetti et

al [116] found a strong association between long-term air pollution exposure and

COVID-19 deaths. In our study, we found that the annual all-cause, CRD, and

P&I excess deaths attributed to NO2 and PM10 decreased during the pandemic in

Hong Kong based on our XGBoost model, while the excess deaths attributed to

O3 increased slightly, similar to the study in China [111]. We also observed an in-

crease in the excess deaths attributed to O3 in the pre-pandemic period. In addition

to the excess deaths attributed to air pollutants, we found a significant decrease in

the annual all-cause, CRD, and P&I excess deaths attributed to both influenza type

A and type B. Although the predicted all-cause weekly mortality counts for each

age group during the pandemic period were lower than those in the pre-pandemic

period due to the decrease in excess deaths attributed to major air pollutants and

influenza proxies (with the exception of excess deaths attributed to O3), there was

a significant amount of all-cause and CRD excess mortality counts for most age

groups based on both prediction methods after deducting the weekly COVID-19

deaths.

Few studies have simultaneously assessed the disease burden of influenza and

air pollutants, primarily due to the multicollinearity between these variables (Fig-

ure 9.2). This challenge is effectively managed by our XGBoost models, which

utilize decision trees and regularization techniques to deal with non-linear rela-

tionships. While accurately determining the disease burden from influenza and

air pollution is challenging, our calculated excess mortality for the period before

the pandemic align well with findings from earlier research. For instance, a study
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conducted in China in 2017 estimated around 4,200 deaths (with a range of 3,300-

5,100) in Hong Kong were due to air pollution [117]. Another study estimated

around 3,000 deaths in HongKong in 2013were attributable to air pollutants [118].

Regarding the burden from influenza, estimates from previous studies using GAM

models suggested between 500 and 1,000 excess deaths from influenzaA and B in

Hong Kong between 1998 and 2009 [30, 99]. These numbers are within the range

of our XGBoost model estimates, which suggest between 4,500 and 5,000 excess

deaths from 2014 to 2019 due to these factors (Figure 5.3). Taken together, these

findings support the reliability of the XGBoost models in providing estimates for

the disease burden from air pollutants and influenza.

There are some limitations in this study. First, we only retrieved meteoro-

logical data, air pollution data, and influenza data. We did not include any de-

mographic information. Second, we chose the GAM model with a Gaussian link

function, whichmay have negative effect estimates of influenza, making it difficult

to compare the influenza and air pollution associated mortality burden calculated

with different models. Finally, further research should be conducted to explore the

possible reasons for excess mortality in Hong Kong during the pandemic period.

5.5 Conclusion

Using advanced machine learning approaches, we estimated a significant decrease

in disease burden associated with influenza and air pollutants in a region with min-

imal COVID-19 cases in the first two years of the pandemic, while the overall mor-

tality burden during the pandemic period increased compared to the pre-pandemic

period. Our findings suggest that comprehensive assessments of the global and re-
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gional burden associated with the COVID-19 pandemic should consider its direct

and indirect impacts.
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Figure 5.3: Annual all-cause mortality associated with influenza A subtype H1N1

(red bar), H3N2 (orange bar), influenza B (pink bar), O3 (blue bar), NO2 (green

bar), and PM10 (light green bar). The estimates were derived from the XGBoost

model.
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Figure 5.4: Comparison of annual all-cause excess mortality rate (per 100,000

population) associated with air pollutants, influenzaA and B between the pre- and

pandemic period, for different age groups, with 95% confidence interval (error

bar) obtained from bootstrapping for 10,000 times.



Chapter 6

Future Study: Forecasting

long-term influenza activity in Hong

Kong

6.1 Background

An accurate forecast of the influenza activity can help to make public health in-

terventions [119]. Beginning in 2013, the U.S. Centers for Disease Control and

Prevention (CDC) launched FluSight, a forecasting initiative, to decrease the un-

certainty of annual impact of flu at the start of each flu season. The primary targets

of the FluSight challenge included weekly incidence rates, season onset, peak tim-

ing, and peak intensity [120]. Various research groups and modeling teams used

either statistical time-series models or mechanistic transmission models and his-

torical data from surveillance systems to predict key features of seasonal influenza

[32].

67
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However, unlike the highly seasonal epidemics in temperate regions (like US),

HongKong, a subtropics city, can have influenza epidemics occurred at any time of

the year (Figure 6.1) and, often, multiple types/subtypes co-circulate [121]. Many

studies have been conducted in Hong Kong on influenza forecasting using either

traditional statistical method [34, 122] or compartmental model [29] similar to the

study in US. Instead of forecasting key epidemiological indicators, most of them

focused on the time series prediction of weekly influenza-like illness consultation

rate. Yet, those studies focused on short-term or even one-week-ahead forecasts.

Considering the reporting lag of influenza surveillance data, short-term forecasts

may provide limited insights for real-world epidemic management. A long-term

forecast of influenza activity can help decision-makers to design comprehensive

intervention strategies such as school closures, community-wide social distancing

measures, or public awareness campaigns.

After the outbreak of COVID-19, the influenza activity remained in a low level

(Figure 6.1). [109, 123] discussed the reduction in influenza virus infection and

possible reasons included changes in human behavior and the widespread imple-

mentation of nonpharmaceutical interventions (NPIs) such as mask mandates, so-

cial distancing, travel restrictions, and enhanced hygiene practices. Besides the

reduced influenza transmission caused by the NPIs deployed to manage COVID-

19, the respiratory viral testing power has been enhanced dramatically [12] and

possibly created bias when used influenza surveillance data, such as weekly pos-

itive detections of seasonal influenza virus and weekly positive percentage for

influenza among respiratory specimens, before and after the COVID pandemic.

Weekly number of severe influenza cases and the weekly consultation rates of

influenza-like illness reported by General Out-patient Clinics (GOPC) can better
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Figure 6.1: Comparison of different weekly influenza indicators over 10 years in

Hong Kong. Weekly positive detections, positive percentage for influenza, num-

ber of severe cases, and influenza-like-illness consultation rate in GOPC appeared

similar pattern before the COVID-19 pandemic. In the post-pandemic era, the

maximum values of weekly positive percentage for influenza among respiratory

specimens remained considerably lower compared to the pre-pandemic period.

capture the trend of influenza activity and maintain consistency over time.

A key aspect of seasonal influenza outbreaks is that the influenza virus could

evolve over time and evade the immune system [124]. The influenza virus’s

hemagglutinin (HA) and neuraminidase (NA) proteins have been proved to play

a critical role in determining viral infectivity and pandemic potential [125, 126].

Numerous studies used either computational methods or deep learning approaches

to predict the mutation patterns of hemagglutinin [127, 128, 129]. [130] linked
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the indicators of evolutionary changes in influenza based on changes in HA and

NA to regional epidemic characteristics. Evolutionary metrics was introduced by

analyzing amino acid substitutions in antigenically important regions of HA and

modulated the transmission rate in the compartmental model [131]. While de-

riving metrics from HA and NA protein sequences can effectively capture many

aspects of the virus’s evolutionary dynamics, the computational approaches em-

ployed may overlook some critical features.

To include the full biological sequence data along with the influenza surveil-

lance data, a deep learning framework was preferred. [132] reviewed state-of-the-

art deep learning architectures applied to time series forecasting and highlighted

that deep learning models were designed to capture intricate temporal patterns

and nonlinear relationships that classical models often miss. It also mentioned

that deep learning models may lack interpretability, which remained crucial for

influenza forecasting. N-beats, a novel deep learning architecture, used fully con-

nected layers arranged into deep stacks and employed both forward and backward

residual connections [133]. The special structure can decompose the forecast into

components and provide interpretability. Moreover, diffusionmodels, widely used

in the generation of images, audio and text, were used to generate long-term time-

series forecasts with improved stability [134]. A N-beats structure with diffusion

models handling the multi-strain influenza time series data can generate stable

long-term predictions, include influenza virus’s HA and NA evolution, and pro-

vide interpretability.
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6.2 Potential Methods and Data

6.2.1 Influenza surveillance data

Weekly surveillance data of influenza and weekly consultation rates of influenza-

like illness reported by General Out-patient Clinics (GOPC) were obtained from

the Hong Kong Department of Health’s Centre for Health Protection. Severe in-

fluenza case, positive percentage for different influenza strain among all respira-

tory specimens and influenza-like illness(ILI) consultation rate in sentinel GOPC

(per 1000 consultations) were used from 2014. Similar to previous research [29]

the weekly ILI+ rate/severe influenza case+ was calculated by multiplying the ILI

rate/total number of severe influenza case and the viral detection rate for each

strain (A(H3N2), A(H1N1) and B) individually. Both ILI+ rate and severe in-

fluenza case+ were used for forecasting.

6.2.2 Human influenza HA and NA sequence

Human Influenza hemagglutinin (HA) and Neuraminidase (NA) A(H3N2),

A(H1N1) andB sequences with full lengthwere downloaded fromNCBI Influenza

Virus Resources. Duplicated data have been removed by keeping the oldest HA

and NA sequences of each group. Sequences with unkonwn year were removed.

Codon 17 to 345 for HA, codon 36 to 469 for NAwere used as the valid positions.

Dominant sequence of each month was determined as the sequence consisting of

all the dominant amino acids in each codon in that month.
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6.2.3 Weather and humidity data

Meteorological data, including daily temperature and relative humidity, were

downloaded from the Hong Kong Observatory (HKO) website. Weekly maxi-

mum temperature, minimum temperature, mean temperature, and mean relative

humidity were extracted from daily data.

6.2.4 N-beats Structure with long-term time series diffusion

An interpretable, multi-variate forecasting framework based on the N‑BEATS ar-

chitecture was proposed. It was structured as three additive stacks that provide

influenza surveillance time series forecsating. The first stack is dedicated ex-

clusively to the influenza surveillance signal through a multi-variate long‐term

diffusion module , capturing the temporal dynamics and interactions in influenza

surveillance data. This stack is based on diffusion model to gradually adding small

noise to influenza surveillance time series data and then training a neural network

to learn the reverse process.

The second stack concats influenza surveillance data with weather and humid-

ity data to account for exogenous influences on influenza dynamics. The third

stack contains influenza protein sequence data, processed via a deep sequence en-

coder to extract biological signals indicative of viral evolution and strain dynamics

and provide influenza forecasting. Each stack outputs both a forecast and a back-

cast (residual) that can be trained. The final forecast is aggregated by those three

stacks, thus the long-term forecast can be interpreted as a combination of uncer-

tainty and seasonality of influenza dynamic, environmental factors, and biological

evolutionary effect.



Chapter 7

Conclusion

This study explored the impact of COVID-19, influenza, and air pollution on

mortality with statistical methods and machine learning models, focusing on the

COVID-19 pandemic period and post pandemic era.

Chapter 2 revealed two peaks of all-cause mortality during the COVID-19

pandemic in Peru with lower than usual median ages before Jan 2022. The excess

mortality during this period mostly fell into diseases of the circulatory system,

diseases of the respiratory system, general symptoms and sign, and COVID-19

compared to normal period. Meanwhile, the primary cause of death of most indi-

rectly excess mortality was listed as diseases of the circulatory system and may be

caused by the disruption in medical service during the pandemic.

Incubation periods of two variants of SARS-CoV-2 were estimated in Chap-

ter 3 with two separate datasets collected in South Korea. The estimated mean

incubation periods for 22 cases infected by Omicron BA.1 variants and 64 cases

identified during Delta dominance were 3.5 days (95% CI: 2.5, 3.8) with 1.4 days

(95% CI: 1.0, 1.5) SD and 6.5 days (95% CI: 5.3, 7.7) with 3.7 days (95% CI:

73
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2.9, 4.6) respectively. A sensitivity analysis was performed by using either shorter

or longer exposure bound, and a consistent estimation of incubation period was

carried out. Based on the estimated distribution of incubation periods of both vari-

ants, a shorter incubation period of Omicron BA.1 may cause a relatively higher

rate for Omicron BA.1 cases becoming new sources of infection. Hence, the Omi-

cron BA.1 variants may have a lower period doubling time for epidemic curve.

The Omicron BA.1 incubation period estimates of the 99-th percentile at 7.2 days

further suggested that a 7-day quarantine combined with PCR testing could be

sufficient to detect nearly 99% of Omicron BA.1 infections.

In Chapter 4, a new metric, daily exceedance concentration hours (DECH),

reflected ambient PM2.5 concentration was reviewed with Hong Kong mortality

and air pollution data from 1999 to 2023. Despite the improvement of PM2.5 con-

centration in Hong Kong over years, a fairly consistent and significant association

between PM2.5 concentration and all-cause mortality was found. Cause-specific

mortalities, including circulatory diseases, respiratory diseases, mental and behav-

ioral conditions, diseases of the nervous system and sense organs, and diseases of

the skin and subcutaneous tissue, were examined and only mortality related to cir-

culatory diseases reveals an association with the ambient PM2.5 concentration. A

sudden increase of coefficient in 2020 and a following plunge in 2021 and 2022

may be caused by the improvement of air pollution in 2020 and the surge of fatal

cases of COVID-19 in 2021 and 2022.

Chapter 5 used both XGBoost and GAM model to estimate weekly mortality

of different age groups in Hong Kong based on pre-pandemic data. The total ex-

cess mortality, the difference between estimated mortality and the observed death

counts in 2020-2021, was calculated as well as disease burden attributable to in-
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fluenza and air pollutants. In the first two years of the COVID-19 pandemic in

Hong Kong, besides the 13 direct deaths related to COVID-19, 8762 (95% CI,

7503, 9993) and 12496 (95% CI, 11718, 13332) excess all-cause deaths were esti-

mated, which were 12.6% and 8.5% of total deaths in 2020 and 2021 respectively.

A notable shift in disease burden attributable to influenza and air pollutants was

reported during the pandemic period compared to the previous five years and sug-

gested when estimating the disease burden of the COVID-19 pandemic, both direct

and indirect excess mortality should be considered.

The major limitation of this study is that it relied primarily on traditional sta-

tistical methods and machine learning models rather than deep learning models,

despite their recent advance in time series prediction. Deep learning approaches

usually have limited interpretability which is essential in understanding epidemic

dynamics and accessing the impact of disease and air pollution on mortality. In

Chapter 6, a future study on influenza forecasting using deep learning structure

was discussed. The limited scope of available data (aggregated weekly instead of

per-minute or per-second) further brings troubles on deploying deep learning mod-

els. This coarse temporal resolution and small dataset size needs more efforts to

perform reliably training and validating. Yet, it is worth exploring new approaches

in disease dynamics forecasting in order to generate more accurate predictions and

estimates and provide insights in disease control and epidemic dynamics.



References

[1] Marco Ciotti et al. “The COVID-19 pandemic”. In: Critical reviews in

clinical laboratory sciences 57.6 (2020), pp. 365–388.

[2] WHO. “Coronavirus disease (COVID-19) pandemic”. 2020.

[3] Malay Sarkar and Irappa Madabhavi. “COVID-19 mutations: An

overview”. In: World Journal of Methodology 14.3 (2024), p. 89761.

[4] Christopher JL Murray. “COVID-19 will continue but the end of the pan-

demic is near”. In: The Lancet 399.10323 (2022), pp. 417–419.

[5] AV Raveendran, Rajeev Jayadevan, and S Sashidharan. “Long COVID:

an overview”. In: Diabetes & Metabolic Syndrome: Clinical Research &

Reviews 15.3 (2021), pp. 869–875.

[6] GJB Sousa et al. “Mortality and survival of COVID-19”. In: Epidemiology

& Infection 148 (2020), e123.

[7] Esmaeil Mehraeen et al. “Predictors of mortality in patients with COVID-

19–a systematic review”. In: European journal of integrative medicine 40

(2020), p. 101226.

76



77

[8] Haidong Wang et al. “Estimating excess mortality due to the COVID-

19 pandemic: a systematic analysis of COVID-19-related mortality,

2020–21”. In: The Lancet 399.10334 (2022), pp. 1513–1536.

[9] ZS Venter, K Aunan, S Chowdhury, et al. “COVID-19 lockdowns cause

global air pollution declines”. In: Proceedings of the National Academy

of Sciences 117 (2020), pp. 18984–18990. DOI: 10 . 1073 / pnas .

2006853117.

[10] Susan Martin and Jonas Bergmann. “(Im) mobility in the age of COVID-

19”. In: International Migration Review 55.3 (2021), pp. 660–687.

[11] Daniel A Solomon, Amy C Sherman, and Sanjat Kanjilal. “Influenza in

the COVID-19 Era”. In: Jama 324.13 (2020), pp. 1342–1343.

[12] Todd W Lyons and Caroline G Kahane. “Changes in Respiratory Viral

Testing Before and After the COVID-19 Pandemic”. In: JAMA Network

Open 8.3 (2025), e250168–e250168.

[13] Shui Shan Lee, Cecile Viboud, and Eskild Petersen. “Understanding the

rebound of influenza in the post COVID-19 pandemic period holds im-

portant clues for epidemiology and control”. In: International Journal of

Infectious Diseases 122 (2022), pp. 1002–1004.

[14] Elliott T Wilkins. “Air pollution and the London fog of December, 1952”.

In: Journal of the Royal Sanitary Institute 74.1 (1954), pp. 1–21.

[15] H Ross Anderson. “Air pollution and mortality: A history”. In: Atmo-

spheric Environment 43.1 (2009), pp. 142–152.



78

[16] Markus Amann et al. “Reducing global air pollution: the scope for further

policy interventions”. In: Philosophical Transactions of the Royal Society

A 378.2183 (2020), p. 20190331.

[17] Michal Krzyzanowski and Aaron Cohen. “Update of WHO air quality

guidelines”. In: Air Quality, Atmosphere & Health 1 (2008), pp. 7–13.

[18] World Health Organization. “Air Quality Guidelines: Global Update 2005:

Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide”. World

Health Organization, 2006.

[19] World Health Organization. “WHO global air quality guidelines: partic-

ulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide

and carbon monoxide”. World Health Organization, 2021.

[20] Joel Schwartz. “Air pollution and daily mortality: a review and meta anal-

ysis”. In: Environmental research 64.1 (1994), pp. 36–52.

[21] Shui He, Sati Mazumdar, and Vincent C Arena. “A comparative study

of the use of GAM and GLM in air pollution research”. In: Environ-

metrics: The official journal of the International Environmetrics Society

17.1 (2006), pp. 81–93.

[22] Roger D Peng et al. “Coarse particulate matter air pollution and hospital

admissions for cardiovascular and respiratory diseases among Medicare

patients”. In: Jama 299.18 (2008), pp. 2172–2179.

[23] H. Lin et al. “Using daily excessive concentration hours to explore the

short-term mortality effects of ambient PM 2.5 in Hong Kong”. In: Envi-

ronmental Pollution 229 (2017), pp. 896–901. DOI: 10.1016/j.envpol.

2017.07.060.



79

[24] Fang Guo et al. “Ozone as an environmental driver of influenza”. In: Na-

ture communications 15.1 (2024), p. 3763.

[25] World Health Organization et al. “Influenza (seasonal) fact sheet”. In:

World Health Organization, Geneva, Switzerland. https://www. who.

int/news-room/fact-sheets/detail/influenza-(seasonal) (2025).

[26] Arnold S Monto and Keiji Fukuda. “Lessons from influenza pandemics of

the last 100 years”. In: Clinical Infectious Diseases 70.5 (2020), pp. 951–

957.

[27] Yu-Chia Hsieh et al. “Influenza pandemics: past, present and future”. In:

Journal of the Formosan Medical Association 105.1 (2006), pp. 1–6.

[28] Aubree Gordon andArthur Reingold. “The burden of influenza: a complex

problem”. In: Current epidemiology reports 5 (2018), pp. 1–9.

[29] Wan Yang et al. “Forecasting influenza epidemics in Hong Kong”. In:

PLoS computational biology 11.7 (2015), e1004383.

[30] L Yang, K Chan, B Cowling, et al. “Excess mortality associated with

the 2009 pandemic of influenza A (H1N1) in Hong Kong”. In: Epi-

demiology & Infection 140 (2012), pp. 1542–1550. DOI: 10 . 1017 /

S0950268811002238.

[31] A Danielle Iuliano et al. “Estimates of global seasonal influenza-

associated respiratory mortality: a modelling study”. In: The Lancet

391.10127 (2018), pp. 1285–1300.



80

[32] Nicholas GReich et al. “Acollaborativemultiyear, multimodel assessment

of seasonal influenza forecasting in the United States”. In: Proceedings of

the National Academy of Sciences 116.8 (2019), pp. 3146–3154.

[33] Seungwon Jung et al. “Self-attention-based deep learning network for re-

gional influenza forecasting”. In: IEEE Journal of Biomedical and Health

Informatics 26.2 (2021), pp. 922–933.

[34] Qinneng Xu et al. “Forecasting influenza in Hong Kong with Google

search queries and statistical model fusion”. In: PloS one 12.5 (2017),

e0176690.

[35] Liuyang Yang et al. “Deep-learning model for influenza prediction from

multisource heterogeneous data in a megacity: model development and

evaluation”. In: Journal of Medical Internet Research 25 (2023), e44238.

[36] Percy Herrera-Añazco et al. “Some lessons that Peru did not learn before

the second wave of COVID-19”. In: The International Journal of Health

Planning and Management (2021).

[37] Thomas Beaney et al. “Excess mortality: the gold standard in measuring

the impact of COVID-19 worldwide?” In: Journal of the Royal Society of

Medicine 113.9 (2020), pp. 329–334.

[38] Luke Taylor. “Covid-19: Why Peru suffers from one of the highest excess

death rates in the world”. In: bmj 372 (2021).

[39] Cesar Munayco et al. “Risk of death by age and gender from CoVID-19 in

Peru, March-May, 2020”. In: Aging (Albany NY) 12.14 (2020), p. 13869.



81

[40] Zelalem G Dessie and Temesgen Zewotir. “Mortality-related risk factors

of COVID-19: a systematic review and meta-analysis of 42 studies and

423,117 patients”. In: BMC infectious diseases 21.1 (2021), pp. 1–28.

[41] B Lutz andME. “During the OmicronWave, Death Rates Soared for Older

People”. In: The New York Times (2022).

[42] Yuelong Shu and John McCauley. “GISAID: Global initiative on shar-

ing all influenza data–from vision to reality”. In: Eurosurveillance 22.13

(2017), p. 30494.

[43] Ilze Gobiņa et al. “Excess mortality associated with the COVID-19 pan-

demic in Latvia: a population-level analysis of all-cause and noncommuni-

cable disease deaths in 2020”. In: BMC Public Health 22.1 (2022), pp. 1–

12.

[44] World Health Organization. “COVID-19 Significantly Impacts Health

Services for Noncommunicable Diseases”. https://www.who.int/

news - room / detail / 01 - 06 - 2020 - covid - 19 - significantly -

impacts - health - services - for - noncommunicable - diseases.

2020.

[45] Diego Chambergo-Michilot et al. “Trends and geographical variation in

mortality from coronary disease in Peru”. In: PloS one 17.9 (2022),

e0273949.

[46] Léa Sempé et al. “Estimation of all-cause excess mortality by age-

specific mortality patterns for countries with incomplete vital statistics:

a population-based study of the case of Peru during the first wave of



82

the COVID-19 pandemic”. In: The Lancet Regional Health-Americas 2

(2021), p. 100039.

[47] Mohammad Madjid et al. “Potential effects of coronaviruses on the car-

diovascular system: a review”. In: JAMA cardiology 5.7 (2020), pp. 831–

840.

[48] Thirumalaisamy P Velavan and Christian G Meyer. “The COVID-19 epi-

demic”. In: Tropical medicine & international health 25.3 (2020), p. 278.

[49] Moritz UG Kraemer et al. “Monitoring key epidemiological parameters of

SARS-CoV-2 transmission”. In: Nature medicine 27.11 (2021), pp. 1854–

1855.

[50] Yuto Homma et al. “The incubation period of the SARS-CoV-2 B1. 1.7

variant is shorter than that of other strains”. In: Journal of Infection 83.2

(2021), e15–e17.

[51] Kenrad E Nelson and Carolyn Masters Williams. “Infectious disease epi-

demiology: theory and practice”. Jones & Bartlett Publishers, 2014.

[52] Hongjie Xin et al. “The incubation period distribution of coronavirus dis-

ease 2019: a systematic review and meta-analysis”. In: Clinical Infectious

Diseases 73.12 (2021), pp. 2344–2352.

[53] StephenA Lauer et al. “The incubation period of coronavirus disease 2019

(COVID-19) from publicly reported confirmed cases: estimation and ap-

plication”. In: Annals of internal medicine 172.9 (2020), pp. 577–582.

[54] Hongjie Xin et al. “Estimating the latent period of coronavirus disease

2019 (COVID-19)”. In: Clinical Infectious Diseases (2021).



83

[55] ConorMcAloon et al. “Incubation period of COVID-19: a rapid systematic

review and meta-analysis of observational research”. In: BMJ open 10.8

(2020), e039652.

[56] Sang-Won Ryu et al. “Serial interval and transmission dynamics during

SARS-CoV-2 delta variant predominance, South Korea”. In: Emerging in-

fectious diseases 28.2 (2022), p. 407.

[57] Donghyun Kim et al. “Estimation of Serial Interval and Reproduction

Number to Quantify the Transmissibility of SARS-CoV-2 Omicron Vari-

ant in South Korea”. In: Viruses 14.3 (2022), p. 533.

[58] Shi Zhao et al. “Estimating the serial interval of the novel coronavirus

disease (COVID-19): a statistical analysis using the public data in Hong

Kong from January 16 to February 15, 2020”. In: Frontiers in Physics 8

(2020), p. 347.

[59] Jantien A Backer, Don Klinkenberg, and Jacco Wallinga. “Incubation pe-

riod of 2019 novel coronavirus (2019-nCoV) infections among travellers

from Wuhan, China, 20–28 January 2020”. In: Eurosurveillance 25.5

(2020), p. 2000062.

[60] Sang Woo Park et al. “Forward-looking serial intervals correctly link epi-

demic growth to reproduction numbers”. In: Proceedings of the National

Academy of Sciences 118.2 (2021).

[61] Yuk Ching Lau et al. “Joint Estimation of Generation Time and Incuba-

tion Period for Coronavirus Disease 2019”. In: The Journal of infectious

diseases 224.10 (2021), pp. 1664–1671.



84

[62] William S Hart et al. “Generation time of the alpha and delta SARS-CoV-2

variants: an epidemiological analysis”. In: The Lancet Infectious Diseases

(2022).

[63] Min Kang et al. “Transmission dynamics and epidemiological character-

istics of SARS-CoV-2 Delta variant infections in Guangdong, China, May

to June 2021”. In: Eurosurveillance 27.10 (2022), p. 2100815.

[64] Xi He et al. “Temporal dynamics in viral shedding and transmissibility of

COVID-19”. In: Nature medicine 26.5 (2020), pp. 672–675.

[65] Åke Svensson. “Anote on generation times in epidemicmodels”. In:Math-

ematical biosciences 208.1 (2007), pp. 300–311.

[66] Dirk Eggink et al. “Increased risk of infection with SARS-CoV-2 Omi-

cron BA. 1 compared with Delta in vaccinated and previously infected

individuals, the Netherlands, 22 November 2021 to 19 January 2022”. In:

Eurosurveillance 27.4 (2022), p. 2101196.

[67] J Yu et al. “Neutralization of the SARS-CoV-2 Omicron BA. 1 and BA. 2

Variants”. In: New England Journal of Medicine (2022).

[68] Michael A Johansson et al. “Reducing travel-related SARS-CoV-2 trans-

mission with layered mitigation measures: symptom monitoring, quaran-

tine, and testing”. In: BMC medicine 19.1 (2021), pp. 1–13.

[69] Johannes Henssler et al. “Mental health effects of infection contain-

ment strategies: quarantine and isolation—a systematic review and meta-

analysis”. In: European archives of psychiatry and clinical neuroscience

271.2 (2021), pp. 223–234.



85

[70] Anhui Tang et al. “Detection of novel coronavirus by RT-PCR in stool

specimen from asymptomatic child, China”. In: Emerging infectious dis-

eases 26.6 (2020), p. 1337.

[71] Thomas A Treibel et al. “COVID-19: PCR screening of asymptomatic

health-care workers at London hospital”. In: The Lancet 395.10237

(2020), pp. 1608–1610.

[72] M. Franklin, A. Zeka, and J. Schwartz. “Association between PM 2.5 and

all-cause and specific-cause mortality in 27 US communities”. In: Journal

of exposure science & environmental epidemiology 17.3 (2007), pp. 279–

287. DOI: 10.1038/sj.jes.7500530.

[73] J. S. Apte et al. “Addressing global mortality from ambient PM2.5”. In:

Environmental science & technology 49.13 (2015), pp. 8057–8066. DOI:

10.1021/acs.est.5b01236.

[74] R. E. Dales and S. Cakmak. “Does mental health status influence sus-

ceptibility to the physiologic effects of air pollution? A population based

study of Canadian children”. In: PLoS One 11.12 (2016), e0168931. DOI:

10.1371/journal.pone.0168931.

[75] S. Genc et al. “The adverse effects of air pollution on the nervous system”.

In: Journal of toxicology 2012 (2012). DOI: 10.1155/2012/782462.

[76] K. E. Kim, D. Cho, and H. J. Park. “Air pollution and skin diseases: Ad-

verse effects of airborne particulate matter on various skin diseases”. In:

Life sciences 152 (2016), pp. 126–134. DOI: 10.1016/j.lfs.2016.03.

039.



86

[77] Yanwen Liu et al. “Change in disease burden associated with influenza and

air pollutants during the COVID-19 pandemic in Hong Kong”. In: Digital

Health 10 (2024), p. 20552076241261892.

[78] K. Chen et al. “Air pollution reduction and mortality benefit during the

COVID-19 outbreak in China”. In: The Lancet Planetary Health 4.6

(2020), e210–e212.

[79] H. C. Ho et al. “Spatiotemporal influence of temperature, air quality, and

urban environment on cause-specific mortality during hazy days”. In: En-

vironment international 112 (2018), pp. 10–22. DOI: 10.1016/j.envint.

2017.12.001.

[80] L. Calderón-Garcidueñas et al. “Megacities air pollution problems: Mex-

ico City Metropolitan Area critical issues on the central nervous system

pediatric impact”. In: Environmental research 137 (2015), pp. 157–169.

DOI: 10.1016/j.envres.2014.12.012.

[81] H. Lin et al. “Hourly peak concentration measuring the PM 2.5 -mortality

association: Results from six cities in the Pearl River Delta study”. In:

Atmospheric Environment 161 (2017), pp. 27–33. DOI: 10 . 1016 / j .

atmosenv.2017.04.015.

[82] H. Qiu et al. “Effects of coarse particulate matter on emergency hospital

admissions for respiratory diseases: a time series analysis in Hong Kong”.

In: Environmental Health Perspectives 120 (2012), pp. 572–576.

[83] Center for Health Protection. “Flu Express”. 11 (14). 2014.



87

[84] H. Lin et al. “Daily exceedance concentration hours: A novel indicator to

measure acute cardiovascular effects of PM2.5 in six Chinese subtropical

cities”. In: Environment International 111 (2017), pp. 117–123. DOI: 10.

1016/j.envint.2017.11.022.

[85] L. Tian et al. “Ambient carbon monoxide associated with reduced risk of

hospital admissions for respiratory tract infections”. In: American Journal

of Respiratory and Critical Care Medicine 188.10 (2013), pp. 1240–1245.

[86] H. C. Ho et al. “The associations between social, built and geophysical

environment and age-specific dementia mortality among older adults in a

high-densityAsian city”. In: International Journal of Health Geographics

19.1 (2020), pp. 1–13. DOI: 10.1186/s12942-020-00252-y.

[87] CK Lai, RW Ng, MCWong, et al. “Epidemiological characteristics of the

first 100 cases of coronavirus disease 2019 (COVID-19) in Hong Kong

Special Administrative Region, China, a city with a stringent containment

policy”. In: International journal of epidemiology 49 (2020), pp. 1096–

1105. DOI: 10.1093/ije/dyaa106.

[88] MC Wong, RW Ng, KC Chong, et al. “Stringent containment measures

without complete city lockdown to achieve low incidence and mortality

across two waves of COVID-19 in Hong Kong”. In: BMJ global health 5

(2020), e003573.

[89] WC Koh, MFAlikhan, D Koh, et al. “Containing COVID-19: implemen-

tation of early and moderately stringent social distancing measures can

prevent the need for large-scale lockdowns”. In: Annals of global health

86 (2020).



88

[90] SAR HK. “Government further tightens social distancing measures”.

https : / / www . info . gov . hk / gia / general / 202007 / 27 /

P2020072700650.htm?fontSize=1. 2020.

[91] Health CfHPotDo. “Archive of Statistics on Provisional Analysis on Re-

ported Death Cases”. https : / / www . coronavirus . gov . hk / eng /

death_analysis.html. 2022, 2023.

[92] N Jones. “HowCOVID-19 is changing the cold and flu season”. In:Nature

588 (2020), pp. 388–390.

[93] KH Chan, P-w Lee, CY Chan, et al. “Monitoring respiratory infections in

covid-19 epidemics”. In: BMJ 369 (2020), p. m1628. DOI: 10.1136/bmj.

m1628.

[94] L Yang, XWang, K Chan, et al. “Hospitalisation associated with the 2009

H1N1 pandemic and seasonal influenza in Hong Kong, 2005 to 2010”. In:

Eurosurveillance 17 (2012).

[95] Tiffany A Walker et al. “Risk of severe influenza among adults with

chronic medical conditions”. In: The Journal of infectious diseases 221.2

(2020), pp. 183–190.

[96] C Signorelli, T Scognamiglio, and A Odone. “COVID-19 in Italy: impact

of containment measures and prevalence estimates of infection in the gen-

eral population”. In:Acta BioMedica: Atenei Parmensis 91 (2020), p. 175.

DOI: 10.23750/abm.v91i3-S.9511.

[97] H Ritchie, E Mathieu, L Rodés-Guirao, et al. “Coronavirus pandemic

(COVID-19)”. https://ourworldindata.org/coronavirus. 2020.



89

[98] LaurenMRossen et al. “Excess all-cause mortality in the USAand Europe

during the COVID-19 pandemic, 2020 and 2021”. In: Scientific reports

12.1 (2022), p. 18559.

[99] P Wu, E Goldstein, LM Ho, et al. “Excess mortality associated with in-

fluenza A and B virus in Hong Kong, 1998–2009”. In: The Journal of in-

fectious diseases 206 (2012), pp. 1862–1871. DOI: 10.1093/infdis/

jis628.

[100] X-LWang, LYang, K-P Chan, et al. “Model selection in time series studies

of influenza-associated mortality”. In: PLoS One 7 (2012), e39423. DOI:

10.1371/journal.pone.0039423.

[101] X Yu, C Wang, T Chen, et al. “Excess pneumonia and influenza mortal-

ity attributable to seasonal influenza in subtropical Shanghai, China”. In:

BMC Infectious Diseases 17 (2017), pp. 1–9. DOI: 10.1186/s12879-

017-2863-1.

[102] VS Desdhanty and Z Rustam. “Liver cancer classification using random

forest and extreme gradient boosting (xgboost) with genetic algorithm as

feature selection”. In: 2021 International Conference on Decision Aid Sci-

ences and Application (DASA). IEEE. 2021, pp. 716–719.

[103] S Dhillon, C Bansal, and B Sidhu. “Machine Learning Based Approach

Using XGboost for Heart Stroke Prediction”. In: International Conference

on Emerging Technologies: AI, IoT, and CPS for Science & Technology

Applications. 2021, pp. 06–07.



90

[104] J Ding, M Liu, Z Ma, et al. “Spatial and temporal trends in the mortal-

ity burden of ozone pollution in China: 2005-2017”. In: ISEE Conference

Abstracts. 2020.

[105] JYWong, PWu, H Nishiura, et al. “Infection fatality risk of the pandemic

A (H1N1) 2009 virus in Hong Kong”. In: American journal of epidemiol-

ogy 177 (2013), pp. 834–840. DOI: 10.1093/aje/kws314.

[106] DE Hilt and DW Seegrist. “Ridge, a computer program for calculating

ridge regression estimates”. Department of Agriculture, Forest Service,

Northeastern Forest Experiment Station. 1977.

[107] H Xin, P Wu, JY Wong, et al. “Hospitalizations and mortality during the

first year of the COVID-19 pandemic in Hong Kong, China: An observa-

tional study”. In: The Lancet Regional Health–Western Pacific 30 (2023).

[108] NC Chiu, H Chi, YL Tai, et al. “Impact ofWearing Masks, Hand Hygiene,

and Social Distancing on Influenza, Enterovirus, and All-Cause Pneumo-

nia During the Coronavirus Pandemic: Retrospective National Epidemi-

ological Surveillance Study”. In: J Med Internet Res 22 (2020), e21257.

DOI: 10.2196/21257.

[109] Eric J Chow, Timothy M Uyeki, and Helen Y Chu. “The effects of the

COVID-19 pandemic on community respiratory virus activity”. In:Nature

Reviews Microbiology 21.3 (2023), pp. 195–210.

[110] SAR HK. “Statistics on seasonal influenza vaccination”. https://www.

info.gov.hk/gia/general/202011/18/P2020111800593.htm?

fontSize=1. 2020.



91

[111] Z Xu, R Cao, X Hu, et al. “The improvement of air quality and associated

mortality during the COVID-19 lockdown in one megacity of China: an

empirical strategy”. In: International Journal of Environmental Research

and Public Health 18 (2021), p. 8702. DOI: 10.3390/ijerph18168702.

[112] ZS Venter, K Aunan, S Chowdhury, et al. “Air pollution declines during

COVID-19 lockdowns mitigate the global health burden”. In: Environ-

mental research 192 (2021), p. 110403. DOI: 10.1016/j.envres.2020.

110403.

[113] B Davies, BL Parkes, J Bennett, et al. “Community factors and excess

mortality in first wave of the COVID-19 pandemic in England”. In:Nature

communications 12 (2021), p. 3755. DOI: 10.1038/s41467-021-23935-

x.

[114] RG Ryan, JD Silver, and R Schofield. “Air quality and health impact

of 2019–20 Black Summer megafires and COVID-19 lockdown in Mel-

bourne and Sydney, Australia”. In: Environmental Pollution 274 (2021),

p. 116498. DOI: 10.1016/j.envpol.2021.116498.

[115] PA Kowalski, M Szwagrzyk, J Kielpinska, et al. “Numerical analysis of

factors, pace and intensity of the corona virus (COVID-19) epidemic in

Poland”. In: Ecological informatics 63 (2021), p. 101284. DOI: 10.1016/

j.ecoinf.2021.101284.

[116] L Becchetti, G Beccari, G Conzo, et al. “Air quality and COVID-19 ad-

verse outcomes: Divergent views and experimental findings”. In: Environ-

mental research 193 (2021), p. 110556. DOI: 10.1016/j.envres.2020.

110556.



92

[117] P Yin, M Brauer, AJ Cohen, et al. “The effect of air pollution on deaths,

disease burden, and life expectancy across China and its provinces,

1990–2017: an analysis for the Global Burden of Disease Study 2017”.

In: Lancet Planet Health 4 (2020), E386–E398. DOI: 10.1016/S2542-

5196(20)30161-3.

[118] XC Lu, T Yao, JCH Fung, et al. “Estimation of health and economic costs

of air pollution over the Pearl River Delta region in China”. In: Sci Total

Environ 566 (2016), pp. 134–143. DOI: 10.1016/j.scitotenv.2016.

05.060.

[119] Marc Lipsitch et al. “Improving the evidence base for decisionmaking dur-

ing a pandemic: the example of 2009 influenza A/H1N1”. In: Biosecurity

and bioterrorism: biodefense strategy, practice, and science 9.2 (2011),

pp. 89–115.

[120] U.S. Centers for Disease Control and Prevention. “FluSight Challenge”.

Accessed: 13 May 2025. 2025. URL: https : / / www . cdc . gov / flu /

weekly/.

[121] WanYang, Eric HY Lau, and Benjamin J Cowling. “Dynamic interactions

of influenza viruses in Hong Kong during 1998-2018”. In: PLoS compu-

tational biology 16.6 (2020), e1007989.

[122] Yunhao Liu et al. “Forecasting influenza epidemics in Hong Kong using

Google search queries data: A new integrated approach”. In: Expert Sys-

tems with Applications 185 (2021), p. 115604.



93

[123] Nan Zhang et al. “Effects of human behavior changes during the coron-

avirus disease 2019 (COVID-19) pandemic on influenza spread in Hong

Kong”. In: Clinical Infectious Diseases 73.5 (2021), e1142–e1150.

[124] Martha I Nelson and Edward C Holmes. “The evolution of epidemic in-

fluenza”. In: Nature reviews genetics 8.3 (2007), pp. 196–205.

[125] Charles J Russell, Meng Hu, and FatenA Okda. “Influenza hemagglutinin

protein stability, activation, and pandemic risk”. In: Trends inmicrobiology

26.10 (2018), pp. 841–853.

[126] Ravendra PChauhan andMichelle LGordon. “An overview of influenzaA

virus genes, protein functions, and replication cycle highlighting important

updates”. In: Virus genes 58.4 (2022), pp. 255–269.

[127] Yuan-Ling Xia et al. “A deep learning approach for predicting antigenic

variation of influenza A H3N2”. In: Computational and mathematical

methods in medicine 2021.1 (2021), p. 9997669.

[128] Marta Łuksza and Michael Lässig. “A predictive fitness model for in-

fluenza”. In: Nature 507.7490 (2014), pp. 57–61.

[129] Jiankui He and Michael W Deem. “Low-dimensional clustering detects

incipient dominant influenza strain clusters”. In: Protein Engineering, De-

sign & Selection 23.12 (2010), pp. 935–946.

[130] Amanda C Perofsky et al. “Antigenic drift and subtype interference shape

A (H3N2) epidemic dynamics in the United States”. In: Elife 13 (2024),

RP91849.



94

[131] Xiangjun Du et al. “Evolution-informed forecasting of seasonal influenza

A (H3N2)”. In: Science translational medicine 9.413 (2017), eaan5325.

[132] Angelo Casolaro et al. “Deep learning for time series forecasting: Ad-

vances and open problems”. In: Information 14.11 (2023), p. 598.

[133] Boris N Oreshkin et al. “N-BEATS: Neural basis expansion analysis for

interpretable time series forecasting”. In: arXiv preprint arXiv:1905.10437

(2019).

[134] Lifeng Shen and James Kwok. “Non-autoregressive conditional diffusion

models for time series prediction”. In: International Conference on Ma-

chine Learning. PMLR. 2023, pp. 31016–31029.



Appendices

9.1 Trends in the effects of ambient PM2.5 concen-

tration on mortality risk in Hong Kong, China

95



96Chapter 9. Appendices

Table 9.1: DECH Coefficient Data pertaining to Figure 4.2
Window All All All Circ Circ Circ Resp Resp Resp

End Year (Total) (Lower) (Upper) (Total) (Lower) (Upper) (Total) (Lower) (Upper)

2011 1.70E-05 7.92E-06 2.60E-05 2.79E-05 1.13E-05 4.44E-05 2.08E-05 2.81E-07 4.13E-05

2012 1.49E-05 5.81E-06 2.40E-05 2.79E-05 1.09E-05 4.50E-05 1.50E-05 -5.22E-06 3.52E-05

2013 1.66E-05 7.69E-06 2.55E-05 3.30E-05 1.62E-05 4.98E-05 1.48E-05 -5.18E-06 3.47E-05

2014 1.63E-05 7.24E-06 2.54E-05 3.44E-05 1.73E-05 5.16E-05 1.31E-05 -7.02E-06 3.33E-05

2015 1.66E-05 7.42E-06 2.57E-05 3.20E-05 1.46E-05 4.94E-05 1.53E-05 -4.99E-06 3.56E-05

2016 1.50E-05 5.72E-06 2.43E-05 3.15E-05 1.34E-05 4.95E-05 1.44E-05 -5.91E-06 3.46E-05

2017 1.37E-05 3.92E-06 2.35E-05 4.08E-05 2.17E-05 5.99E-05 8.33E-06 -1.27E-05 2.93E-05

2018 1.64E-05 6.16E-06 2.66E-05 4.26E-05 2.23E-05 6.29E-05 1.13E-05 -1.03E-05 3.29E-05

2019 1.81E-05 7.38E-06 2.89E-05 4.44E-05 2.29E-05 6.59E-05 1.43E-05 -8.25E-06 3.69E-05

2020 3.00E-05 1.84E-05 4.16E-05 5.73E-05 3.38E-05 8.08E-05 2.85E-05 4.61E-06 5.24E-05

2021 1.82E-05 5.92E-06 3.06E-05 3.88E-05 1.34E-05 6.43E-05 5.42E-06 -1.95E-05 3.03E-05

2022 2.81E-06 -1.72E-05 2.28E-05 2.96E-05 2.06E-06 5.72E-05 -2.79E-05 -7.27E-05 1.68E-05

2023 6.68E-06 -1.48E-05 2.81E-05 3.53E-05 6.24E-06 6.44E-05 -2.75E-05 -7.84E-05 2.33E-05
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Table 9.2: DECH IQR values for each window ending in given years during a 13-year sliding window.

Window End Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

DECH IQR 608 605 613 611 616 585 538 499 454 415 370 338 307
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Table 9.3: DECH coefficient data pertaining to Figure 4.3

Window All All All Circ Circ Circ Resp Resp Resp

End Year (lower) (upper) (lower) (upper) (lower) (upper)

2003 2.31E-05 6.54E-06 3.96E-05 2.79E-05 -1.22E-06 5.69E-05 3.59E-05 -4.22E-06 7.61E-05

2004 2.68E-05 1.20E-05 4.17E-05 1.90E-05 -8.47E-06 4.64E-05 4.98E-05 1.40E-05 8.56E-05

2005 2.56E-05 1.15E-05 3.98E-05 2.86E-05 3.14E-06 5.40E-05 3.19E-05 -1.24E-06 6.50E-05

2006 2.18E-05 8.12E-06 3.54E-05 2.47E-05 -8.72E-09 4.94E-05 3.51E-05 3.55E-06 6.67E-05

2007 6.61E-06 -6.33E-06 1.96E-05 1.33E-05 -1.06E-05 3.72E-05 -5.89E-06 -3.54E-05 2.37E-05

2008 1.43E-05 1.58E-06 2.70E-05 2.78E-05 3.80E-06 5.17E-05 1.98E-05 -8.38E-06 4.79E-05

2009 1.01E-05 -3.16E-06 2.34E-05 3.92E-05 1.45E-05 6.40E-05 5.26E-06 -2.37E-05 3.43E-05

2010 8.03E-06 -5.89E-06 2.19E-05 3.68E-05 1.00E-05 6.36E-05 2.08E-06 -2.75E-05 3.17E-05

2011 9.69E-06 -5.14E-06 2.45E-05 3.36E-05 5.45E-06 6.17E-05 9.64E-07 -3.05E-05 3.24E-05

2012 1.60E-05 2.47E-07 3.18E-05 2.76E-05 -2.85E-06 5.80E-05 2.08E-05 -1.25E-05 5.40E-05

2013 8.40E-06 -7.30E-06 2.41E-05 2.06E-05 -1.09E-05 5.20E-05 -1.13E-06 -3.47E-05 3.24E-05

2014 1.04E-05 -6.56E-06 2.74E-05 4.20E-05 7.21E-06 7.67E-05 -1.26E-05 -4.83E-05 2.31E-05

2015 1.83E-05 5.65E-07 3.60E-05 2.94E-05 -6.90E-06 6.58E-05 8.48E-06 -2.95E-05 4.64E-05

2016 2.21E-05 3.44E-06 4.07E-05 3.90E-05 -4.05E-07 7.84E-05 2.03E-05 -1.83E-05 5.89E-05

2017 2.96E-05 1.00E-05 4.92E-05 7.33E-05 3.26E-05 0.00114 2.65E-05 -1.36E-05 6.66E-05

2018 3.68E-05 1.51E-05 5.85E-05 6.04E-05 1.41E-05 0.00107 2.52E-05 -1.81E-05 6.86E-05

2019 3.28E-05 1.07E-05 5.48E-05 3.58E-05 -1.31E-05 8.48E-05 3.10E-05 -1.31E-05 7.50E-05

2020 2.71E-05 1.56E-06 5.27E-05 6.90E-05 1.27E-05 0.00125 4.85E-06 -4.52E-05 5.49E-05

2021 2.72E-05 1.97E-07 5.42E-05 8.44E-05 2.55E-05 0.00143 -9.38E-06 -6.18E-05 4.31E-05

2022 2.41E-05 -2.71E-05 7.54E-05 6.06E-05 -4.66E-06 0.00126 3.14E-05 -7.20E-05 0.00135

2023 -3.06E-06 -6.63E-05 6.02E-05 5.31E-05 -1.85E-05 0.00125 -3.92E-05 -0.00016972 9.14E-05
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Table 9.4: Relative effect percentages (%) from the DECH coefficients in Figure 4.4

Window All All All Circ Circ Circ Resp Resp Resp

End Year (lower) (upper) (lower) (upper) (lower) (upper)

2003 1.25 0.35 2.14 1.51 -0.07 3.08 1.94 -0.23 4.11

2004 1.57 0.7 2.45 1.11 -0.5 2.72 2.92 0.82 5.02

2005 1.64 0.73 2.54 1.82 0.2 3.44 2.03 -0.08 4.15

2006 1.47 0.55 2.39 1.67 0 3.34 2.37 0.24 4.5

2007 0.48 -0.46 1.41 0.96 -0.76 2.69 -0.42 -2.56 1.71

2008 1.04 0.12 1.97 2.03 0.28 3.78 1.44 -0.61 3.5

2009 0.68 -0.21 1.56 2.62 0.97 4.26 0.35 -1.58 2.28

2010 0.51 -0.37 1.39 2.33 0.64 4.02 0.13 -1.74 2.01

2011 0.59 -0.31 1.49 2.04 0.33 3.75 0.06 -1.85 1.97

2012 0.86 0.01 1.71 1.48 -0.15 3.12 1.12 -0.67 2.91

2013 0.44 -0.38 1.25 1.07 -0.57 2.71 -0.06 -1.81 1.69

2014 0.54 -0.34 1.41 2.16 0.37 3.96 -0.65 -2.49 1.19

2015 0.91 0.03 1.79 1.46 -0.34 3.27 0.42 -1.47 2.31

2016 0.89 0.14 1.65 1.58 -0.02 3.17 0.82 -0.74 2.39

2017 1.08 0.37 1.8 2.68 1.19 4.16 0.97 -0.5 2.43

2018 1.13 0.47 1.8 1.86 0.43 3.28 0.78 -0.56 2.11

2019 0.88 0.29 1.48 0.97 -0.35 2.28 0.83 -0.35 2.02

2020 0.62 0.04 1.21 1.59 0.29 2.88 0.11 -1.04 1.26

2021 0.58 0 1.15 1.79 0.54 3.04 -0.2 -1.31 0.91

2022 0.43 -0.48 1.33 1.07 -0.08 2.22 0.55 -1.27 2.38

2023 -0.05 -0.99 0.9 0.8 -0.28 1.87 -0.59 -2.55 1.37



100Chapter 9. Appendices

Table 9.5: DECH IQR values for windows ending in each given year during a 5-year sliding window.

Window 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

End Year

DECH IQR 541 587 638 675 722 730 667 633 608 538 520 516 498 405

Window 2017 2018 2019 2020 2021 2022 2023

End Year

DECH IQR 365 308 270 230 212 176 150
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Table 9.6: DECH Coefficient data pertaining to Figure 4.5
Window Ment Ment (lower) Ment Nerv Nerv (lower) Nerv Skin Skin (lower) Skin

End Year (upper) (upper) (upper)

2003 -5.40E-05 -0.000239986 0.0001322 2.02E-05 -0.000133645 0.0001741 -0.000167418 -0.000429483 9.46E-05

2004 -1.71E-05 -0.000162917 0.0001291 2.18E-05 -0.000120625 0.0001641 -7.55E-05 -0.000277094 0.0001261

2005 4.71E-06 -0.000122375 0.0001331 4.93E-05 -8.13E-05 0.0001801 2.17E-05 -0.000135762 0.0001791

2006 2.51E-05 -9.89E-05 0.0001491 3.59E-05 -9.23E-05 0.0001641 4.92E-05 -9.51E-05 0.0001931

2007 5.03E-06 -0.000117436 0.0001271 2.03E-05 -0.000105177 0.0001461 5.62E-05 -8.00E-05 0.0001921

2008 -7.79E-06 -0.000128378 0.0001131 6.21E-05 -6.28E-05 0.0001871 5.76E-05 -7.72E-05 0.0002201

2009 -4.36E-05 -0.000164874 7.76E-05 4.42E-05 -9.33E-05 0.0001821 7.75E-05 -6.51E-05 0.0002221

2010 -2.76E-05 -0.000143469 8.84E-05 3.95E-05 -0.000102886 0.0001821 3.39E-05 -0.000125975 0.0001941

2011 -4.34E-05 -0.000155684 6.89E-05 6.48E-05 -8.37E-05 0.0002131 -1.40E-05 -0.000191657 0.0001641

2012 -1.91E-05 -0.000128589 9.04E-05 -1.16E-05 -0.000177506 0.0001541 -5.98E-05 -0.000266508 0.0001471

2013 1.36E-05 -8.83E-05 0.0001161 2.06E-05 -0.000145542 0.0001871 -3.17E-05 -0.000255054 0.0001921

2014 7.39E-05 -2.89E-05 0.0001771 -2.86E-05 -0.000201084 0.0001441 -2.56E-05 -0.000268754 0.0002171

2015 1.98E-05 -8.12E-05 0.0001211 -6.86E-05 -0.000246831 0.0001111 -0.000102631 -0.000353423 0.0001481

2016 4.71E-05 -5.48E-05 0.0001491 9.80E-07 -0.000182638 0.0001851 -9.68E-05 -0.000359713 0.0001661

2017 6.15E-05 -3.95E-05 0.0001631 6.88E-05 -0.000119819 0.0002571 -0.000107133 -0.000386796 0.0001731

2018 8.67E-05 -2.07E-05 0.0001941 1.63E-05 -0.000193479 0.0002261 -0.000174023 -0.000473674 0.0001261

2019 6.42E-05 -4.52E-05 0.0001741 7.31E-05 -0.000138862 0.0002851 -5.91E-05 -0.000375077 0.0002571

2020 7.27E-05 -4.85E-05 0.0001941 3.57E-05 -0.000206688 0.0002781 -6.94E-07 -0.000353642 0.0003521

2021 8.19E-05 -4.40E-05 0.0002081 1.90E-06 -0.000246685 0.0002501 -7.66E-05 -0.000457588 0.0003041

2022 2.17E-05 -0.000116811 0.0001601 -8.19E-05 -0.000339122 0.0001751 -3.20E-05 -0.000427783 0.0003641

2023 -4.74E-05 -0.000201458 0.0001071 -3.38E-05 -0.000303651 0.0002361 -1.35E-05 -0.000453781 0.0004271
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Table 9.7: Summary of incubation period estimates (unit: day) for cases infected by Omicron BA.1 variants and cases during

Delta predominance period in South Korea with different version of exposure bound.

Type of SARS-CoV-2 strain sample size mean of exposure distribution (days)
estimate (95%CI)

mean median 95-th percentile (SD)

Omicron BA.1 n = 22 2.8 3.5(2.5, 3.8) 3.3(2.4, 3.6) 5.8(4.3, 6.6) (1.4 ± 1.0, 1.5)

4.6 3.5(2.6, 3.9) 3.3(2.4, 3.7) 6.0(4.4, 6.6) (1.3 ± 1.0, 1.5)

those during Delta dominance$ n = 64 2.8 6.0(4.7, 7.1) 5.1(3.7, 6.4) 13.6(11.0, 16.4) (3.9 ± 3.0, 5.2)

4.6 7.0(5.7, 8.2) 6.4(5.1, 7.7) 13.8(11.4, 16.0) (3.6 ± 2.8, 4.5)

$ These cases were collected in June 2021 when the Delta variants were dominant at a prevalence of 68.3% in South Korea according to GISAID

[42].

Table 9.8: Summary of incubation period estimates (unit: day) for cases infected by Omicron BA.1 variants and cases during

Delta predominance period in South Korea

Type of SARS-CoV-2 Strain sample size
estimate (95%CI)

mean median 95-th percentile SD

Omicron BA.1 n = 22 4.1(2.5, 5.5) 3.8(2.4, 5.1) 7.9(4.3, 10.6) 2.0(1.0, 2.7)

those during Delta dominance$ n = 64 5.5(5.4, 8.0) 5.0(5.0, 6.4) 10.6(10.5, 15.5) 2.7(2.7, 3.9)

$ These cases were collected in June 2021 when the Delta variants were dominant at a prevalence of 68.3% in South Korea according to GISAID

[42].
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Figure 9.1: Time series plots of weekly proportions of influenza A (subtype H1N1, H3N2) and B, air pollutants in Hong

Kong, 2014 to 2021
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Table 9.9: Model goodness-of-fit and prediction accuracy.

Model R2 Adjusted R2 MAPE RMSE

XGBoost 0.939 0.937 2.056% 18.915

GAM 0.750 0.742 3.85% 37.662

Note: MAPE, mean absolute percentage error; RMSE, root-mean-square error.

Table 9.10: Overall excess mortality numbers and rates (per 100,000 population) of all-cause, cardiovascular diseases (CRD),

pneumonia and influenza (P&I) by age group in 2020 and 2021, estimated from the GAM models, respectively.
All-cause CRD P&I

Excess (95% CI) Excess (95% CI) Excess (95% CI) Excess (95% CI) Excess (95% CI) Excess (95% CI)

number rate number rate number rate

2020

All-age 6034 (4764, 7321) 80.97 (63.47,98.68) 3370 (2632, 4116) 45.28 (35.24,55.04) 679 (329, 1058) 9.16 (4.46,14.31)

0-19 41 (12, 72) 3.79 (1.1,6.55) 1 (-7, 11) 0.13 (-0.63,0.99) -4 (-8, 2) -0.34 (-0.78,0.23)

20-39 65 (13, 117) 3.30 (0.73,5.92) 35 (12, 58) 1.78 (0.62,2.96) -2 (-11, 7) -0.11 (-0.54,0.34)

40-64 665 (474, 857) 22.24 (16.04,28.73) 546 (437, 653) 18.20 (14.54,21.9) 43 (-3, 91) 1.45 (-0.02,3.04)

65-84 2444 (1840, 3020) 207.83 (156.39,256.21) 1469 (1109, 1822) 124.98 (93.68,156.12) 304 (147, 476) 25.89 (12.45,40.68)

85+ 2199 (1539, 2897) 1005.32 (695.78,1331.95) 1107 (703, 1522) 507.95 (316,698.03) 318 (89, 541) 146.17 (40.71,251)

2021

All-age 9397 (8603, 10257) 126.24 (115.51,138.08) 5056 (4554, 5590) 67.86 (61.28,75.12) 987 (743, 1249) 13.30 (9.99,16.7)

0-19 22 (1, 42) 2.00 (0.11,3.92) -1 (-7, 5) -0.13 (-0.69,0.45) -4 (-8, 1) -0.41 (-0.78,0.05)

20-39 75 (28, 121) 3.91 (1.59,6.26) 29 (12, 47) 1.51 (0.63,2.43) -1 (-10, 8) -0.08 (-0.51,0.4)

40-64 1086 (913, 1242) 36.26 (30.64,41.5) 693 (593, 792) 23.08 (19.78,26.43) 16 (-26, 58) 0.52 (-0.89,1.94)

65-84 3648 (3226, 4058) 300.62 (266.24,333.11) 2240 (2004, 2475) 183.75 (164.11,202.98) 359 (228, 495) 29.54 (18.87,40.25)

85+ 3579 (3107, 4084) 1581.25 (1374.19,1802.25) 1777 (1442, 2117) 785.68 (641.65,934.57) 572 (370, 773) 251.61 (164.12,338.54)
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Figure 9.2: Correlation matrix of covariates.
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Figure 9.3: Observed and fitted weekly mortality data of cardiovascular and respiratory (CRD) by age groups. The XGBoost

(blue line) and GAMmodels (red line) were developed from the training data from 2014 to 2019 and used to predict the data

in 2020.
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Figure 9.4: Observed and fitted weekly mortality data of pneumonia and influenza (P&I) by age groups. The XGBoost (blue

line) and GAM models (red line) were developed from the training data from 2014 to 2019 and used to predict the data in

2020 and 2021.
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Figure 9.5: Annual CRD mortality attributable to influenza A (Flu A), influenza B (Flu B), O3, NO2, and PM10, estimated

from the XGBoost models.
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Figure 9.6: Annual P&I mortality attributed by major air pollution variables and influenza proxy estimated by the XGBoost

models.
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Figure 9.7: Annual CRD excess mortality rate (per 100,000 population) associated with air pollutants and influenza pre

pandemic and during the COVID pandemic for different age groups with 95% confidence interval obtained from 10000

times bootstrap
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Figure 9.8: Annual P&I excess mortality rate (per 100,000 population) associated with air pollutants and influenza proxies

pre pandemic and during the COVID pandemic for different age groups with 95% confidence interval obtained from 10000

times bootstrap.
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Figure 9.9: Lag effects (up to 14 days prior) for each influenza proxy and air pollutant. The estimates were from the XGBoost

models.


