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Abstract

Associations between various influenza strains (H3N2, HINI, and influenza B),
different air pollutants (PM2.5, PM10, ozone, etc.) and mortality have been a ma-
jor concern in the past decade. The worldwide outbreak of COVID-19 in early
2020 made it urgent to explore the mortality attributed to the disease. Meanwhile,
the influences of influenza and air pollution on mortality keep changing during
the pandemic period and the post pandemic era. This thesis will study the im-
pact of COVID-19, influenza, and air pollution on mortality by deploying widely
adopted statistical methods, such as generalized additive models, maximum like-
lihood estimation and generalized linear model, along with state-of-the-art data
science methods such as eXtreme Gradient Boosting and neural network.

Chapter 2 used death certificates dataset provided by Peru Ministry of Health
and reported the heterogeneity of the median age of all-cause mortality and the
daily pattern of cause-specific mortality directly and indirectly related to COVID
in Peru. An assumption that most of the indirectly excess death in Peru were pri-
marily caused by circulatory system diseases was raised.

In Chapter 3, exposure history and symptom onset date for patients infected
by different SARS-CoV-2 variants was collected. Maximum likelihood estimators

of mean and standard deviation of the distributions of incubation periods were



il
calculated. For the Delta variant, the mean incubation period was 6.54 days (95%
CI: 5.28 — 7.68), while for the Omicron variant, it was significantly shorter at 3.43
days (95% CI: 2.47—3.76). Thus, a 7-day quarantine may be more effective during
Omicron predominance.

Moreover, a metric called daily exceedance concentration hours (DECH) was
reinvestigated in Chapter 4. Generalized additive models with quasi-Poisson dis-
tribution links were fitted to calculate relative effects of DECH levels on mortal-
ity risk across the disease groups. A fairly consistent size of the association be-
tween DECH levels and mortality risk was found with a less significance during
the COVID pandemic period.

Futhermore, eXtreme Gradient Boosting was adopted in Chapter 5 to esti-
mate the excess mortality attributable to air pollutants and influenza, during the
pre-pandemic and pandemic period in Hong Kong. In the first two years of the
COVID-19 pandemic, 8,762 (95% confidence interval, 7,503 —9,993), and 12,496
(11,718 — 13,332) excess all-cause deaths were estimated. A notable shift in dis-
ease burden attributable to influenza and air pollutants was observed in the pan-
demic period, suggesting that mortality directly and indirectly caused by COVID-
19 shall be considered when assessing the global and regional burden of the
COVID-19 pandemic.

Finally, in Chapter 6, suggestions for future research on influenza forecasting
were discussed. Human Influenza hemagglutinin (HA) and Neuraminidase (NA)
A(H3N2) sequences and their association with influenza spread were reviewed.
Deep Learning Framework was introduced to handle both sequencing and time

series data.
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Chapter 1

Introduction

1.1 Background

1.1.1 COVID-19 pandemic

The COVID-19 pandemic, initiated by the emergence of the novel coronavirus
SARS-CoV-2 in late 2019, rapidly developed into a global outbreak that over-
whelmed health systems and led to catastrophic loss of life [1]. By the end of
March 2024, the World Health Organization (WHO) reported that the COVID-
19 pandemic had caused 775 million infections, and 7 million deaths around the
world [2]. [3] concluded that the severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) had a half rate of influenza mutation and one-fourth rate of human
immunodeficiency virus mutation. And they further revealed that the rapid mu-
tation may cause higher infectivity, transmissibility, and lower neutralization effi-
cacy by vaccines. [4] emphasized that although the pressure of COVID pandemic

will be significantly reduced, the SARS-CoV-2 will continue to circulate and re-



1.1. BACKGROUND 3

main a part of our lives. Meanwhile, the Long Covid, the persistent symptoms
after recovering from SARS-CoV-2 infection, caused sustained health challenges
and may elevate indirectly mortality risk [5]. All the evidence argued that it is
essential to understand the key parameters of different variants of SARS-CoV-2
and mortality burden related to COVID whether the pandemic ended or not.

The mortality of COVID-19 has been estimated using various methods in dif-
ferent regions. A study conducted in Ceara, Brazil deployed Poisson regression
on a cohort with 2070 people having flu-like symptoms and tested positive to
COVID-19 to estimate the mortality rate [6]. [7] based on 114 studies argued that
demographic factors, such as age, gender, and behavior like smoking, as well as
preexisting comorbidities including chronic health conditions could increase the
risk of death. [8] ensembled multiple models to calculate the excess mortality for
74 countries and territories during the pandemic in 2020 and 2021 as the differ-
ence between observed mortality and expected mortality. A total of 18.2 million
deaths was estimated as excess mortality worldwide caused by COVID-19 pan-
demic compared to a 5.94 million reported direct mortality. However, a further
investigation on the cause of death of those excess mortality remained unclear.

Meanwhile, the global response to the COVID-19 pandemic led to a sharp re-
duction in economic and transportation activities. Nitrogen dioxide and particulate
matter levels were reduced by roughly 60% and 31% due to the lockdown events
[9]. Moreover, strict travel restrictions, lockdowns, and stay-at-home orders were
implemented by governments worldwide and global human mobility was disrupted
by the pandemic [10]. With the lower air pollution level, it was possible that the
population had less exposure to air pollution. The association between air pollution

and mortality needs to be reviewed over the COVID outbreak and it is crucial to
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understand whether the association between specific-cause mortalities and PM, 5
remain significant during the pandemic and post-pandemic period.

Besides, with the emergence of COVID-19, the seasonal influenza epidemic
has been reshaped. The non-pharmacological interventions (NPI) such as face
masks, social distancing, school and business closures, implemented to slow
COVID-19 spread eventually limited influenza transmission and led to a signifi-
cant drop in influenza cases [11]. Also, the respiratory pathogen testing increased
up to a 4.6 fold between pre-pandemic period and the peak of the pandemic re-
sponse [12]. This change could cause a shift in the number of positive detections
of seasonal influenza and positive percentage for influenza among all respiratory
specimens. Moreover, a rebound of influenza activity in the post COVID-19 pan-
demic period was observed and possibly caused by released non-pharmacological
interventions, diminished population-level immunity, and influenza virus evolu-
tion [13]. It is essential to rebuild a long-term influenza forecasting model cover-

ing the rebound of influenza activity.

1.1.2 Association between air pollution and mortality

Similar to influenza, the association between air pollution and mortality has been
noticed for decades. The well-known Great Smog of London led to about 4000
deaths directly and later analyses estimated the mortality to be around 10000 to
12000 and more than 100000 individuals suffered from respiratory diseases and
other complications [14]. The air pollution started to be treated as a critical public
health issue. Even though in early period, the association between air pollution

and mortality was not fully measured or understood, it was suspected that adverse
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health outcomes were related to air pollution [15]. Later, continuous air quality
monitoring was collected, and statistical methods can be applied to time series data
of air pollution.

In recent decades, the air quality has maintained or even improved due to en-
ergy policies and pollution regulations and [16] expected a 75% reduction of the
mean population exposure to PM, 5 in 2040 compared to 2015. Meanwhile, the
World Health Organization (WHO) has updated Air Quality Guidelines (AQG) to
a stricter threshold multiple times [17, 18, 19]. The AQG were designed to pro-
vide guidance to avoid health impacts of air pollution and included 37 of the most
common air pollutants including PM, 5, NO», etc. [17]. Take 24-hour mean par-
ticulate matter 10 (PM;) as an example, in the 2021 updated WHO Guidelines
[19], the threshold was reduced from 50 pg/m3 to 45 ug/m?3. Yet, temporal air pol-
lution associations with daily mortality could be found with a historically low air
pollution level [15]. It remained significant to investigate the association between
air pollution, even at a low level, and mortality.

Unlike the early observational approaches of air pollution, epidemiological
techniques and statistical modeling have been applied to quantify the association
between air pollution and mortality. Meanwhile, confounders including temper-
ature, humidity and socioeconomic factors have been controlled in the analyses
[15]. Among the 37 most common air pollutants listed in AQG, most research fo-
cused on particulate matter (PMs 5), nitrogen dioxide (NO,), sulfur dioxide SO,
and ozone O3. [20] reviewed research deploying statistical methods to investigate
impact of incremental increases in pollutant concentrations on mortality rates and
concluded that even modest increases in air pollution levels are associated with

measurable rises in daily mortality. Generalized additive model (GAM) and gen-
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eralized linear model (GLM) were commonly used methods to explore the health
effects of air pollution in time-series analyses and capture the complex, nonlin-
ear relationships [21]. Temporal trends and relative humidity were smoothed as
covariates [22] and mortalities were usually lagged by 0-3 days when assessing
the association between air pollution and mortality. Moreover, besides using daily
mean concentration or daily peak of air pollutants in the analysis, daily concen-
tration hours of air pollutants over a certain threshold were introduced to consider
both exposure intensities and durations [23].

Despite the adverse health outcomes related to air pollution, [24] examined
the potential impact of ozone on influenza transmission and revealed a negative
association between ambient ozone and influenza activity, particularly with a one-
week lag. Possible reasons include the strong oxidizing properties of ozone and
the enhancement of immune system while exposing to ambient ozone. This re-
search indicated that the air pollution can be jointly investigated with influenza on

mortality.

1.1.3 Forecasting Influenza Epidemics and Mortality

Influenza remains a leading cause of morbidity and mortality in human popula-
tions, causing 3 to 5 million severe infections and 290,000 to 650,000 respira-
tory deaths worldwide annually. Among influenza viruses, influenza A, including
A(HIN1) and A(H3N2), and influenza B circulate and cause seasonal epidemics
of disease [25]. Mortality caused by influenza has been aware of since the 1918
influenza pandemic [26]. Later, two more overwhelming pandemics, in 1957 and

1968, led to excess mortality, the difference between observed death and expected
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death, in infants, the elderly and people with chronic diseases [27].

Thus, understanding the impact of influenza on mortality and providing cor-
rectly influenza forecasting is crucial to inform disease control decisions and de-
cisions concerning the use of influenza vaccines [28]. Many researches have been
conducted on forecasting influenza epidemics, retrospective analysis of mortal-
ity, and estimating excess mortality associated with influenza epidemics in Hong
Kong and worldwide [29, 30, 31, 32]. Commonly used approaches can be con-
cluded as compartmental models of infectious disease transmission (Susceptible-
Infected-Recovered (SIR), Suceptible-Infectious-Recovered-Susceptible (SIRS),
and Suceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) [32]) and sta-
tistical methods (Seasonal Autoregressive Integrated Moving Average (SARIMA),
Poisson regression model, and log-linear regression model). Temporal fea-
tures and the influenza surveillance data including influenza-like illness (ILI),
laboratory-confirmed influenza positives, and severe cases have been used in al-
most all researches both as target and predictors. Other features selected by pre-
vious studies include demographic data for both population size and age group
distribution, weather data, such as temperature and humidity, and mobility data
for population movement patterns.

Deep learning networks have been adopted in recent years, such as self-
attention-based network [33], feedforward neural networks [34], and long short-
term memory (LSTM) model [35]. Compared to mechanistic approaches, deep
learning methods can utilize more data besides surveillance data, such as protein
sequencing data. Moreover, deep learning methods can capture the complex dy-
namics and interactions between the multiple influenza strains. Although those

approaches have highlighted short-term performance, they usually have unsatis-
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factory long-term accuracy and have limited interpretations of the influenza pan-

demic compared to compartmental methods and statistical methods.

1.2 Objectives and significance

This thesis aims to investigate the impact of COVID-19, influenza, and air pollu-
tion on mortality by 1) deploying statistical methods and machine learning models
to estimate the key parameters of SARS-CoV-2 virus, understand the structure of
excess mortality related to COVID-19, and have an insight into disease control
measures and disease burden shifting; 2) using regression models and new metrics
to evaluate whether the association between air pollution and mortality is consis-
tent over time, especially during the COVID outbreak and updating air pollution
impacts on specific-cause mortality; 3) exploring new variables in influenza ac-
tivity forecasting and constructing neural network to balance model accuracy and

interpretation.

1.3 Outlines

In Chapter 1, a background, objectives, and significance of this thesis were intro-
duced and the outlines of the remaining thesis were discussed.

All-cause mortality during COVID-19 pandemic in Peru was analyzed in
Chapter 2. We reported the peaks of all-cause mortality. Median age of daily death
during the peaks was calculated and compared with that during normal period.
Moreover, the primary cause of death for the direct and indirect excess mortality

related to COVID-19 was examined. The structure of excess mortality related to
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COVID-19 was revealed.

We first collected information on exposure history and symptom onset of Omi-
cron BA.1 (i.e., B.1.1.529.1) cases and cases reported with Delta variants domi-
nant in South Korea in Chapter 3. Then gamma distributions were deployed to
estimate the incubation period. Both likelihood with interval censoring, and like-
lihood with convolution between Gamma distribution of incubation period of the
assumed exponential distribution were applied. The maximum likelihood estima-
tors of mean and standard deviation of those Gamma distributions were estimated
with sensitivity analysis. The estimations of Omicron BA.1 were compared with
the estimations during Delta variants dominance period. The findings were linked
to disease control measures and gave an insight into disease control measures.

In Chapter 4, previous studies on the associations between air pollution metrics
and mortality rates were reviewed. A new air pollution metric, “daily exceedance
concentration hours” (DECH) introduced by [23] were reconstructed based on up-
dated World Health Organization guidelines and the association between DECH
and mortality risk across disease groups were examined in Hong Kong for pre-
pandemic era as well as the pandemic period. The relative effects of DECH levels
on mortality risk for different disease groups and model significance were reported.
Whether the strength of associations between air pollution metrics and mortality
rates are time-dependent was discussed. The change of association during the
COVID pandemic was reported.

In Chapter 5, eXtreme Gradient Boosting (XGBoost) was used to estimate
the disease burden attributable to influenza and environmental factors and com-
pared with estimates from the general additive model (GAM) with a Gaussian link

function. The weekly mortality rates of different age groups during pre-pandemic
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(2014-2019) and pandemic period (2020-2021) were compared and discussed.
Overall excess mortality, and excess mortality associated with influenza, air pol-
lution was calculated. Possible reasons for the mortality changes were discussed.

In Chapter 6, previous influenza forecasting approaches were reviewed. The
evolution of Human Influenza hemagglutinin (HA) and Neuraminidase (NA) se-
quences and their possible relationship between influenza outbreak and fatality
were introduced. New deep learning framework was proposed to handle sequence

data and time series data as well as providing certain interpretability.



Chapter 2

All-cause mortality during

COVID-19 pandemic in Peru

Abstract: We reported the heterogeneity of the median age of all-cause mortality
in Peru during different waves of COVID-19 pandemic. We believed that before
the Omicron variants dominance, during the peaks of daily all-cause mortality,
the median age of daily death was lower than the usual level. The median age
of daily death bounced higher than normal during the peaks of daily all-cause
mortality with the Omicron variants dominance. We also revealed the daily
pattern of cause-specific mortality directly and indirectly related to COVID in
Peru. We argued that most of the indirectly excess death in Peru were primarily
caused by circulatory system diseases possibly caused by disruption in medical
service, while the majority of directly excess death have the primary cause of

death as COVID-19 and respiratory system diseases.

Keywords: COVID-19, Median age, Excess mortality.

11



12

COVID-19 has spread all over the world and by the end of 2021, the death toll
had reached around 5.7 million with more than 384 million people being infected.
Peru, as one of the most affected countries in the COVID-19 pandemic, has the
highest number of confirmed cases, deaths per million, and total excess death [36].

Beaney et al. [37] suggested that distinguishing the direct COVID-19 and in-
direct COVID-19 death was crucial to understand the full impact of death caused
by COVID-19. Previous studies conducted in Peru explored the direct and indirect
impacts of COVID-19 on the wellbeing of population and qualities of healthcare
system and delivery [38, 39]. However, there is limited research further classifying
the direct and indirect COVID-19 death into specific cause of death.

Numerous studies mentioned that increasing age is strongly associated with
COVID-19 mortality [37, 40]. The New York Times also reported that in the U.S.
during the Omicron wave, older population had a higher mortality rate compared to
previous waves [41]. On the other hand, few research discussed the heterogeneity
of age distribution of daily death during the pandemic period in Peru.

We first used the death certificates dataset provided by Peru Ministry of Health
to extract daily all-cause mortality and the median age of daily death from Jan
2019 to Apr 2022. Then we used the same dataset which listed every death reg-
istry with up to six descriptions of the cause of death. We identified a death is
related to COVID-19 if at least one of the six descriptions of the cause of death
included ‘COV’. We sub-grouped cause-specific deaths based on the icd-10 code
of the primary cause of death. The daily count of cause-specific death in Peru
was visualized in several disease groups in comparison with the daily number of
cause-specific death not related to COVID during the same period.

We noticed that during the COVID-19 pandemic before Jan 2022, there were
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two peaks of all-cause mortality (Fig 2.1). During those two peaks, the median
ages of daily death were lower than normal period, especially during the second
peak roughly from the first half of 2021 with Lambda variant dominance accord-
ing to GISAID [42]. After Jan 2022, the Omicron variants were dominant in Peru
according to GISAID [42]. The peak of all-cause mortality was lower than the
previous two peaks. However, the median age of daily death bounced higher to
around 77 compared to 71 and 69 during the previous two peaks. One possible rea-
son was that despite the lower fatality rate of Omicron variants, elderly population

were more vulnerable than younger generation.
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Figure 2.1: Daily confirmed COVID-19 cases in Peru (top left). Daily all-cause
mortality (top right). Daily COVID-19 deaths (bottom left). Daily median age of
all-cause mortality (in red), bootstrap 99% CI (shaded area) in Peru (bottom right).

We found a clear pattern of three peaks of total mortality counts during the three
waves of COVID-19 (Fig 2.2). Compared to the pre-pandemic daily death counts,
the excess mortality mostly fell into the following four disease groups: diseases of

the circulatory system (ICD-10 codes starting with I), diseases of the respiratory
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system (ICD-10 codes starting with J), general symptoms and sign (ICD-10 codes
from R50 to R69), and COVID-19 (ICD-10 codes U71 and U72). Most excess
deaths with primary cause of death as diseases of the respiratory system or COVID-
19 (including virus not identified) were directly related to COVID-19 since the
death registries had mentioned COVID-19 at least one time in the descriptions of
the cause of death.

Most of the indirectly excess mortality had a primary cause of death as diseases
of the circulatory system. During the first two waves of COVID-19, we can see
a peak of roughly 100 daily excess deaths caused by circulatory system diseases.
Among those indirectly excess deaths caused by circulatory system diseases, most
of them had the cause of death listed as acute myocardial infarction (42.8%), car-
diac arrest (20.7%), and heart failure (7.9%). Similar results have been found in
Latvia [43]. It can be explained by the previous finding of the World Health Or-
ganization [44] stating that some countries have partially or completely disrupted
services for cardiovascular emergencies during the pandemic. Furthermore, Peru’s
cardiovascular prevalence before the pandemic was also pronounced in the most
urbanized regions, particularly on the Coast [45], overlapping with the areas hard-
est hit by the pandemic [46], which may have increased the unmet demand for
cardiovascular services. Another explanation is that Coronavirus disease is asso-
ciated with a high inflammatory burden which may cause cardiovascular disease
[47]. Most of the excess mortality with general symptoms and sign listed as the
primary cause of death could be concluded as a combination of both directly and
indirectly related to COVID-19 based on the descriptions of all causes of death.

In summary, we reported the median age of daily death and the pattern of cause-

specific daily mortality in Peru. We also revealed the directly and indirectly cause-
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Daily cause-specific death counts in Peru
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Figure 2.2: Daily death counts of four major groups of cause-specific mortality
based on primary cause of death. The yellow lines include all death registries with
cause of death information, while the blue lines exclude all death registries with
‘COV’ mentioned in at least one of the descriptions of the cause of death.

specific excess mortality during the three waves of COVID-19 by digging into all
the descriptions of the cause of death of each deceased. We concluded that unlike
the lower-than-normal median age of daily death during the first two waves of
COVID, the median age bounced to a higher level when the Omicron variants were
dominant in Peru. We figured that the majority of excess death directly related to
COVID-19 had the primary cause of death as COVID-19 and respiratory system
diseases, while most of the excess death indirectly caused by COVID-19 were

primarily caused by circulatory system diseases, which may be the consequence

of disruption in medical service during the pandemic.



Chapter 3

Estimating the incubation period of
SARS-CoV-2 Omicron BA.1 variant
in comparison with that during the
Delta variant dominance in South

Korea

Abstract: Based on exposure history and symptom onset of 22 Omicron BA.1
cases in South Korea from November to December 2021, we estimated mean
incubation period of 3.5 days (95% CI: 2.5, 3.8), and then compared it to that
of 6.5 days (95% CI: 5.3, 7.7) for 64 cases during Delta variants’ dominance in
June 2021. For Omicron BA.1 variants, we found that 95% of symptomatic cases
developed clinical conditions within 6.0 days (95% CI: 4.3, 6.6) after exposure.

Thus, a shorter quarantine period may be considered based on symptoms, or

16
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similarly laboratory testing, when Omicron BA.1 variants are circulating.

Keywords: incubation period; Omicron BA.1 variant; Delta variant; quaran-

tine.

3.1 Introduction

Since the end of 2019, COVID-19 has continuously posed threat to public health
globally [48]. The novel genetic mutations of SARS-CoV-2 have continually chal-
lenged the control system for the COVID-19 pandemic, making it critical to moni-
tor key epidemiological parameters for understanding the transmission and clinical
characteristics of emerging variants [49, 50]. The incubation period is defined as
the time interval between exposure and onset of illness for symptomatic infections
[51], which is important to informing quarantine policies, to studying transmis-
sion dynamics of an infectious disease, and to assessing the effectiveness of entry
screening [52, 53]. While estimates of incubation period can be found in literature
for various historical SARS-CoV-2 strains [54, 55], the knowledge of incubation
period for Omicron variants remains largely unassessed.

In this study, we collected information on exposure history and symptom onset
of 22 Omicron BA.1 (i.e., B.1.1.529.1) cases in South Korea from November to
December 2021, and estimated distribution of incubation period, which was then
compared to that of 64 cases during Delta (i.e., B.1.617.2) variants’ dominance in

June 2021.
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3.2 Method

3.2.1 Data collection

Based on the information of COVID-19 cases who tested positive for SARS-CoV-
2 previously published [56, 57], we extracted exposure history and symptom onset
date for patients with this information available. To use for incubation period es-
timation, we identified 22 cases laboratory-confirmed for Omicron BA.1 variants
who were reported in South Korea from November 25 to December 31, 2021, and
for comparison, we also included 64 cases reported in June 2021 when the Delta
variants were dominant at a prevalence of 68.3% according to GISAID [42]. The
exposure history was translated into exposure time window with upper and lower
bounds of exposure date, which will be used for the calculation of the likelihood.
Among these 86 (64+22) patients, all of them have illness onset date observed.
Among the 22 identified Omicron BA.1 cases, 21 of them have both lower and
upper bounds of exposure date, while 1 only has the upper bound of exposure
date, and 12 cases during Delta dominance have both lower and upper bounds but

52 only have the upper bound.

3.2.2 Statistical analysis

Log-normal, gamma, and Weibull were among the most common distributions ap-
plied to estimate the incubation period [52]. The gamma distribution has a more
concise mathematical expression compared to the other two distributions, hence
less computational power is required to estimate the parameters. In this study, two

different Gamma distributions ( fincubation) Were adopted to govern the distributions
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of incubation period for Omicron BA.1 cases and cases during Delta variants’
dominance, respectively. For the samples with both lower and upper bounds of
exposure date, i.e., with exposure window, we calculated the likelihood with in-
terval censoring [52]. The exposure date was bounded within a time window, even
though the exposure date could not be observed directly. We applied the interval-
censoring on the likelihood function to account for the uncertainty of the observed
exposure (or infection) time windows. Then, the difference between the observed
illness onset date (denoted by 5) and exposure date (denoted by /) of each indi-
vidual case is the incubation period. As such, the likelihood function to estimate

the incubation period was as follows,

Iy,

L i(r}c?ubation = | f incubation(S -1 )d[
U

Here, I, and I;; were the lower and upper bounds of exposure date, respectively.

For the remaining samples only with upper bound of exposure date observed,
we assumed an exponential distribution indexed by this upper bound backwardly
(denoted by function g), and calculated the likelihood with convolution between
Gamma distribution of incubation period of the assumed exponential distribution

[58, 59]. The likelihood function was as follows,

Lz(izzubation = / g(I - ]U) L4 fincubation(s - I>dI

Iy

By using all samples, the overall likelihood is calculated by multiplying the two
versions of likelihood functions. For the commonly noted selection bias issue of

backward time interval during epidemic growth or decay phase [60], we consider
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this is not applicable in our situations. For the cases infected by Omicron BA.1
variants, the epidemics curve from November to December 2021 presented an
exponential growth with rate around 0.04 per capita per day, and thus we corrected
the backward-observational sampling bias by using approach in previous study
[61], and thus inferred the distribution of forward incubation period. For the cases
collected in June 2021 when the Delta variants were dominant in South Korea,
the epidemics curve appeared relatively flat in South Korea, which indicated an
exponential growth with rate around 0, and thus there is unlikely to have selection
bias due to backward observation.

We assumed the exponential infectiousness distribution has a mean of 3.7 days,
which corresponded to the mean infectious period estimated in previous research
[62]. We calculated the maximum likelihood estimators of mean and standard de-
viation of the Gamma distributions. We adopted non-linear optimization to max-
imize the overall log-likelihood function with a sufficiently small scale of 10(~%
as relative tolerance level for convergence. To evaluate the statistical uncertainty,
we used a parametric bootstrap with 1000 iterations of resampling to obtain 95%
confidence intervals (CI) for each parameter. Limiting the dataset to those with
exposure window observed, i.e., with both lower and upper bounds, we repeated
the estimation with only 21 samples for Omicron BA.1, and 12 samples for Delta
dominance period, respectively.

Sensitivity analysis was conducted by assuming shorter and longer versions
of the exponential-distributed exposure window with 2.8 and 4.6 days to repeat
the estimation (see Table in Appendices). Additionally, to relax the exponential
assumption for the missing exposure window, we assumed the exposure windows

of those samples only with upper bound of exposure date observed following an
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empirical distribution from the samples with both lower and upper bounds of ex-
posure date observed.
All analyses were conducted in R version 4.1.0 (R Foundation for Statistical

Computing, Vienna, Austria).

3.3 Results and discussion

For the 22 cases infected by Omicron BA.1 variants, the estimated mean incuba-
tion period was 3.5 days (95% CI: 2.5, 3.8), and SD was 1.4 days (95% CI: 1.0,
1.5), see Fig 3.1. We found that 50%, 95% or 99% of symptomatic cases may
present clinical conditions within 3.3 days (95% CI: 2.4, 3.7), 6.0 days (95% CI:
4.3, 6.6) or 7.4 days (95% CI: 5.3, 8.2) after exposure, respectively. When limiting
dataset to the 21 samples with exposure window observed, the mean incubation

period decreased was estimated at 3.2 days (95% CI: 2.3, 3.8), see Table 3.3.



3.3. RESULTS AND DISCUSSION 22

1.001

=
-
1

ot

Proportion of symptomatic
cases developed symptoms

0 5 10 15
Time after infection (days)

Figure 3.1: Estimated cumulative distributions of incubation period for Omicron
BA.1 variants (in blue), and for cases during Delta dominance (in red). The statis-
tical uncertainty was illustrated by 100 bootstrap estimates, which were curves in
light colors, and the mean estimates were the bold curves in dark colors.
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Table 3.1: Summary of incubation period estimates (unit: day) for cases infected by Omicron BA.1 variants and cases during
Delta predominance period in South Korea.

] 0
Type of SARS-CoV-2 strain sample ‘ sample size ‘ estimate (95%6C)
| | mean | median | 95-th percentile | SD
Omicron BA.I all samples n =22 3.5(2.5,3.8) | 3.3(2.4,3.7) 6.0(4.3,6.6) | 1.4(1.0,1.5)
' with exposure window | n = 21 3.2(2.3,3.8) | 3.1(2.2,3.6) 5.5(4.0,6.6) | 1.3(0.9,1.5)
those durine Delta dominance® all samples n = 64 6.5(5.3,7.7) | 5.9(4.4,7.1) | 13.6(11.1,15.9) | 3.7(2.9,4.6)
£ with exposure window n =12 8. 7(6 0,11.6) | 8. 1(5 5,11.0) | 16.0(10.5,21.0) | 3.8(2.4,5.6)

Notes:

$ These cases were collected in June 2021 when the Delta variants were dominant at a prevalence of 68.3% in South Korea according to GISAID
[42].

& The samples “with exposure window” are those with both lower and upper bounds of exposure date observed, whereas “all samples” included the
samples with exposure window and sample with only upper bound of exposure date observed.
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By contrast, for the 64 cases identified during Delta dominance, the estimated
mean incubation period was 6.5 days (95% CI: 5.3, 7.7), and SD was 3.7 days
(95% CI: 2.9, 4.6). We found that 50%, or 95% of symptomatic cases may present
clinical conditions within 5.9 days (95% CI: 4.4, 7.1), or 13.6 days (95% CI: 11.1,
15.9) after exposure, respectively.

For the sensitivity analysis, we found that the estimates with either shorter
or longer version of exposure bound are consistent with main results in similar
scales, which suggested the robustness of our findings, see Appendices. By using
empirical distribution for those with missing exposure window, we found that the
estimates were largely in line with the main results.

The mean and percentiles of incubation period of Omicron BA.1 variants were
found considerably shorter than those of cases during Delta dominance period, as
well as previous estimates based on other historical SARS-CoV-2 strains [54, 63].
Given the pre-symptomatic transmission feature of SARS-CoV-2 infection [64],
a shorter incubation period indicated the Omicron BA.1 cases are likely to have
a relatively higher rate at which they become new sources of infection to other
susceptible individuals. Theoretical study also suggests that the generation time
may be shortened with a short latent period [65], which is roughly equal to or less
than the incubation period, and thus the Omicron BA.1 variants may lead to a lower
period doubling time for epidemic curve regarding advantageous transmissibility
in natural population and escape feature against herd immunity [66, 67].

Linking our findings to the disease control measures, some countries and re-
gions have been using quarantine and entry screening as control measures against
COVID-19. The initial quarantine periods were 14 days, and then extended to 21

days in some areas [68]. Although a longer quarantine period may lower the risk
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of disease spread in community, people under quarantine or isolation were at risk
of adverse mental health outcomes suggested by synthesized evidence [69], espe-
cially when the containment duration is longer than one week. Considering the
latent period was typically shorter than incubation period [53], our estimates of
the 99-th percentile at 7.2 days suggested a 7-day quarantine with PCR tests could
be sufficient to detect around 99% of infections of Omicron BA.1 variants, and
PCR tests have been confirmed effective to filter asymptomatic patients before
they have onset of illness [70, 71].

There are some limitations in this study. First, for cases collected during Delta
dominance period, we could not confirm these cases were infected by Delta vari-
ants due to the lack of genetic sequencing data. We could only conclude that the
Delta variants were dominant at a prevalence of 68.3% in June 2021 in South Ko-
rea. Second, we adopted a Gamma distribution to govern the observed incubation
period distribution, where symptoms were assumed to start immediately after in-
fection. This may not be biologically reasonable, where a certain but minor lag
may exist for patients to develop symptoms. Third, the exposure windows and
illness onset time for patients can only be accurate to days. Therefore, a maxi-
mum of one-day error may exist in our determination of the intervals of exposure
and symptom onset. Last, our estimate may be subjected to reporting and recall
biases. It is suggested to further explore the heterogeneity of the incubation pe-
riod among different SARS-CoV-2 Omicron variants, in order to adjust the disease

control measures.



Chapter 4

Trends in the effects of ambient
PM> 5 concentration on mortality

risk in Hong Kong, China

Background: Associations between levels of various types of airborne particu-
late matter such as ambient PM, 5 and short-term mortality risk have been studied
extensively. A metric called daily exceedance concentration hours (DECH) has
been proved useful with respect to better modeling and understanding of acute
mortality risk associated with pollution in southern Chinese cities. Notably how-
ever, it 1s unclear whether the strength of the association is time dependent. The
current study investigated this using a comprehensive dataset acquired in Hong
Kong spanning from 1999 to 2023. The methodology and modeling employed
were similar to those used in prior studies.

Methods: Generalized additive models with quasi-Poisson distribution links were

fitted to varying periods of an overall time series. These models were then exam-
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ined to identify changes in implied effects on mortality risk over time.

Results: The replicated methodology of prior studies resulted in fairly consis-
tent, but much reduced relative effects of DECH levels on mortality risk across
the disease groups. The model remained significant with the inclusion of newer
datasets. When applying the model to sliding time-windows of data, the effec-
tive risk of mortality remained relatively constant despite significantly changing
levels of pollutants, especially with regard to mortality risk among cardiovascular
diseases. Modelling other cause groups using DECH metrics yielded similar re-
sults to those acquired using other air pollution variables.

Conclusion: The results of the study support the use of DECH as a mortality risk
factor, particularly with respect to cardiovascular diseases, and the size of the as-
sociation is fairly consistent. During the COVID pandemic, the effect of DECH
levels was reduced.

Keywords: air pollution, cardiovascular, Hong Kong, mortality, PM, 5

4.1 Introduction

Numerous studies indicate that PM, 5 is strongly associated with all-cause and
specific-cause mortality [72, 73], but few reports mention whether the strength of
associations between air pollution metrics and mortality rates are time-dependent.
There are two possibilities. Either the size of an association is consistent, then one
can use it with confidence to inform policymaking; or the size of an association is
time-dependent, in which case identifying the mechanisms involved in variations
would be informative. A recent study conducted by Lin et al. [23] introduced a

new air pollution metric, “daily exceedance concentration hours” (DECH).
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All conventional measures of air pollution concentration have trended down
significantly in recent years (Figure 4.1). This includes the novel DECH metric.
Intuition suggests that if DECH is a major indicator and cause of acute circulatory-
cause mortality, as these levels decline over time the contributing risk of DECH
should also decline. Most previous studies investigating air pollution and health
hazards have focused on all-cause, circulatory-cause, or respiratory cause mortal-
ity, but in recent years more attention has been paid to mental, nervous system, and
skin-related diseases [74, 75, 76]. Given that the quantitative association between
these specific-cause mortalities and PMs 5 is vague, a mathematical model using
real-life data is necessary to fill the research gap.

Moreover, the outbreak of COVID-19 and the following disease control mea-
sures led to a significant decrease in all-cause and specific-cause mortality as-
sociated with air pollutants [77], and dramatic air pollution reduction including
PM, 5 in 2020 [78]. It’s crucial to understand whether the association between
specific-cause mortalities and PM; 5 remain significant during the pandemic and
post-pandemic period.

In the current study DECH and other variables were used to model all-cause
and specific-cause mortality from 1999 to 2023 with time windows of different
lengths, to investigate the sizes of associations between air pollution metrics and
specific-cause mortality rates. The results of the study are organized into four sec-
tions; (A) replicating the methods of prior studies, (B) extending those methods to
new data, (C) further exploring the conclusions of prior studies, and (D) applying
models and the DECH metric to other diseases. The main target of this study is to
investigate whether the strength of the association between PMs 5 and mortality is

time dependent for all-cause and cause-specific mortality.
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Figure 4.1: Simple moving average applied to daily mean and peak PM; 5 concen-
trations and daily mean DECH indicating a trend of improved air quality in Hong
Kong in recent years. Compared to the daily mean PM, 5, the daily mean DECH
better captures variations in air pollution within a day.

4.2 Methods

Data sources were used to gather daily information on mortality, air pollution,
weather, hospital admissions for influenza and COVID-19, and public holidays in
Hong Kong. All data were indexed daily to form a time series from 01 January
1999 to 30 December 2023. All data processing and analyses were performed

using the statistical computation language R, and models were generated using
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the ‘mgcv’ package.

4.2.1 Mortality

Mortality data were obtained from the death registry supplied by the Census and
Statistics Department of Hong Kong. Data were filtered over three cause groups;
all diseases, circulatory diseases, and respiratory diseases. Data from 01 January
1999 to 31 December 2000 were acquired, and cause of death was differentiated in
accordance with the International Classification of Diseases (ICD) version 9. All
deaths were filtered by numeric codes ranging from 001-799, deaths from circu-
latory diseases were filtered via codes 390459, and deaths from respiratory dis-
eases were filtered via codes 460-519. Data from 01 January 2001 to 31 December
2016 were differentiated in accordance with the ICD-10, therefore all deaths were
filtered by numeric codes ranging from A00-R99, deaths from circulatory dis-
eases were filtered via codes 100-199, and deaths from respiratory diseases were
filtered via codes JO0—J99 [23]. Three more cause groups based on conditions
commonly considered to be associated with air pollution were also incorporated
into the current study; mental and behavioral conditions [74, 79], diseases of the
nervous system and sense organs [80, 75], and diseases of the skin and subcuta-
neous tissue [76]. ICD-10 codes FO0-F99 and ICD-9 codes 290-319 were used
to filter deaths associated with mental conditions. ICD-10 codes GO0-G99 and
ICD-9 codes 320-389 were used to filter deaths associated with diseases of the
nervous system. ICD-10 codes LO0-L99 and ICD-9 codes 680—709 where used

to filter deaths associated with skin diseases.
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4.2.2 Air pollution

Hourly air pollution data including PM; ;5 levels were obtained from the Hong
Kong Environmental Protection Department. Only 4 of 18 weather stations col-
lected PM,, 5 levels before 2004, but more weather stations began to monitor PMs 5
levels after that time. By the end of 2019 a total of 16 weather stations across Hong
Kong were monitoring PM, 5 levels. In the present study daily average pollution
levels were calculated using all the data available for each given timepoint. In ac-
cordance with many prior studies [23, 81], daily mean and daily peak PM; 5 con-
centrations were calculated. Daily meteorological data such as mean temperature
(degrees Celsius) and relative humidity (percentage) were also collected. Daily

data from all available stations where averaged to obtain daily means.

4.2.3 Influenza hospital admissions

Influenza hospital admissions data were obtained from the Hong Kong Department
of Health’s Centre for Health Protection. These data record the weekly influenza
admissions totals. In accordance with [82] an “outbreak™ week was defined as a
week exceeding the 75th percentile of admissions for all weeks in that year. No-
tably the Centre for Health Protection has stated that “Since Feb 10, 2014, Public
Health Laboratory Services Branch has adopted new genetic tests ... this transition
... may bring about increases in detection of and percentage positive for influenza

viruses” [83].
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4.2.4 COVID-19 surveillance data

Weekly surveillance data of COVID-19 were obtained from the Hong Kong De-
partment of Health’s Centre for Health Protection. Weekly fatal cases have been
recorded since 2023. From 2020 to 2022, a separate dataset has been obtained
from the Hong Kong Department of Health’s Centre for Health Protection report-
ing daily covid death. Similar to the ‘outbreak’ week of influenza, an ‘outbreak’
week of COVID-19 was defined as a week exceeding the 75th percentile of fatal

cases for all weeks in 2023.

4.2.5 DECH metric

As initially proposed by Lin et al. [84] the DECH metric is defined as ’daily
concentration hours > 25 ug/m?... [where] for example, an hour with a mean
concentration of 28.5 ug/m? contributes 3.5 concentration-hours to the daily to-
tal; and hours with average concentration lower than 25 ug/m? contribute zero
... to the daily total’. The boundary of 25 1g/m? was chosen by Lin et al. [84]
based on guidelines published by the World Health Organization [18]. However,
the guidelines published by the World Health Organization [19] updated recom-
mended AQG levels to 15 g/m3. Thus, we redefined the DECH metric as daily
concentration hours > 15 g/m?®” in this research. DECH values were calculated
for each day on a per-station basis, then the mean DECH of all available stations

was used to define the DECH for that day over the region.



4.2. METHODS 33

4.2.6 A general summary of the time series data

A general summary of the time series data mentioned in Section 4.2.1, 4.2.2, and
4.2.5 is provided in Table 4.1 below. From the summary statistics, it can be found
that mental and behavioral conditions, diseases of the nervous system and sense
organs, and diseases of the skin and subcutaneous tissue have limited mortality
cases in Hong Kong. The spread of respiratory diseases related mortality is left

skewed with relatively high variability. It may be caused by COVID related death.

Table 4.1: Basic information about the time series data

Variable # Days Mean +=-SD  Min 1stQ Median 3rd Q Max
Daily Mortality

All diseases 9128 100.7 +28.65 44 84 96 112 481
Circ. 9128  21.33 £6.33 3 17 21 25 59
Resp. 9128 2414 +17.77 3 16 22 29 347
Ment. 9128 2.18 £2.05 0 0 2 3 14
Nerv. 9128 0.89 £0.98 0 0 1 1 6
Skin 9128 0.50 +0.73 0 0 0 1 6
Air Pollution

PM, ;s DECH 9128 376.1£4069 0 64.5 230.8 5709 35855
PM, s 9128 295+£192 26 154 24.6 399 172.0
Weather

Temperature (°C) 9128 24+£5 5 20 25 28 32
Rel. Humidity (%) 9128 78 + 10 27 73 79 85 99

4.2.7 Statistical model

A model was generated then applied to different segments of the time series data.
In an effort to maximize consistency and reproducibility, a generalized additive
model (GAM) with an expected quasi-Poisson distribution was generated in ac-
cordance with Lin et al. [84]. The aim of this model was to relate the discrete

variable of daily circulatory mortality (count) to PM, 5 concentrations. By finding
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the coefficient on the DECH term for the model, a relative mortality risk effect per-
cent relationship to changes in DECH PM, 5 levels can be calculated. The model
has been updated to consider the COVID-19 outbreak starting from 2020. The
specific statistical model is as follows, where the time series Y is indexed by day,

and hence E[Y;] gives the expected daily cardiovascular mortality at day ¢:

log(E[Y]) =51 - DECH(_y) + s(t,df = 6) + s(MTy,df = 6)
+ S(MTl_g, df = 6) + S(MRH(), df = 3)

+Bg'INFL+53'COVID+B4'DOW+55'PH—l-CY

DECH is the mean daily measure described in Section 4.2.5 for PM, 5 concentra-
tion lag 3 days. DECH(-]) is lagged 1 day from t as described in [84], where acute
mortality occurs between hours and days from initial exposure to elevated levels.
MT is the mean temperature (degrees Celsius) at lag 0, and MT1-3 is a moving
average of MT from days lag 1 through 3. This parameter was chosen for similar
reasons as DECH being lagged 3 days. MRH is mean relative humidity (%) at lag
0. INFL is a dummy variable that takes the value of 1 when the given day at t is
contained within a week designated as an ’outbreak’ as described in Section 4.2.3
above. COVID is a dummy variable that takes the value of 1 when the givn day at
t is contained within a week designated as an “outbreak™ as described in Section
4.2.4 above. DOW refers to the day of the week, a dummy variable ranging from
0 to 6 from Monday through Sunday. PH is a dummy variable indicating a public
holiday on the present day, where 0 indicates no holiday and 1 indicates a holiday
(including Sunday, as defined by the Hong Kong government). The temporal in-

dex t was included to account for the clear trend and seasonality observed in Figure
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4.1 above, and « is a random error term. The model incorporates smoother func-
tions as penalized regression splines: s(). Degrees of freedom (df) were chosen in

accordance with standards described in [84] and [85].

4.2.8 Model DECH lags

In the above model, DECH lag | was 2 days when applied to all mortalities, 3
days when applied to circulatory system mortalities, and 2 days when applied to
respiratory system mortalities. These lag days were differentiated to match the
significance figures identified and used by Lin et al. [84]. For the newly added
cause groups, 1 day lag was applied to mental condition mortalities and nervous

system mortalities, and 0 day lag was applied to skin mortalities [79].

4.2.9 Model objectives

The data sources and model were carefully constructed to replicate the methods
described in [84] compiled with newly updated WHO air quality guidelines and
the recent COVID pandemic. That study incorporated three models over the mor-
tality groups; all cause, circulatory system, and respiratory system ranging from
1998-2011. The data used in the current study spanned from 1999-2023, facilitat-
ing testing and validation of the results over a more comprehensive scale. Three
additional mortality groups were also incorporated into the current study; mental
and behavioral, nervous system and sense organs, and skin. Notably the lack of
1998 data is due to fine suspended particulate (FSP) data not being available from
the Environmental Protection Department for that year. It is unclear how other

reports were able to include this data.
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Part A of this study aimed to directly replicate results reported by Lin et al. [84]
within the same time series with DECH threshold as 25 (for a fully reproduction),
and Part B aimed to investigate validity beyond the fitted time series. In Part
B the 13-year model in Part A was fitted on a sliding window basis starting in
1999, extending through 2007, and ending in years 2011 and 2023, generating
13 models to test the significance of the model on newer and out-of-sample data
(data from 2012-2023). In Part C, to test shorter term changes in DECH, models
were fitted to 5-year periods on a sliding window basis starting from 1999 and
ending in 2023 inclusive, yielding fitted models across mortality groups for time
series beginning with the year range 1999-2003, and extending to the year range
2019-2023. In Part D three additional models were incorporated, derived from
the mortality groups mental and behavioral, nervous system and sense organs, and
skin using 5-year periods on a sliding window basis starting from 1999 and ending
in 2023 inclusive. This resulted in fitted models across mortality groups for time

series with year ranges beginning at 1999-2003, and extending to 2019-2023.

4.3 Results

4.3.1 Replication of Prior Methods

For data ranging from 1999-2011, fitting the model described in Section 4.2
over all-cause, circulatory-cause, and respiratory-cause mortality groups gener-
ated the DECH coefficients (threshold ‘> 25 pg/m?’ applied) shown in Table 4.2.
The interquartile range (IQR) for hourly DECH measurements was 508.55 pg/m?3

throughout the period. This contrasts with the IQR of 565 ug/m? throughout



4.3. RESULTS 37

1998-2011 in [84]. The DECH coefficients were multiplied by this IQR to gener-
ate relative effect percentages for an hourly IQR increase in DECH concentration.
Confidence intervals associated with the effect were determined by multiplying
the standard error by 1.96. In Table 4.3 results reported by Lin et al. [84] are com-
pared with results generated in the current study, including adjusted relative effect
percentages using the Lin IQR value. Ratios of the current study’s coefficients
to Lin et al.’s [84] coefficients are also presented to neutralize any IQR issue by

comparing ratios across groups.

Table 4.2: Fitted DECH coefficients for 1999-2011.

Coefficient | Std. Error | Significance (Pr(> [t]))
ALL DISEASES | 1.763e-05 | 4.871e-06 0.000298
CIRCULATORY | 2.825e-05 | 8.863¢-06 0.00145
RESPIRATORY | 2.155e-05 | 1.104e-05 0.0511

Table 4.3: Relative effect percentage comparison of fitted models.

Relative Effect %

All Diseases

Circulatory

Respiratory

Our Results (IQR 508.55)

0.90 (0.40, 1.39)

1.44 (0.53, 2.34)

1.10 (-0.03, 2.22)

Our Results (IQR 565) | 1.00 (0.45, 1.55) | 1.60 (0.59, 2.60) | 1.22 (-0.03, 2.46)
Lin Results (IQR 565) | 1.65 (1.05, 2.26) | 2.01 (0.82,3.21) | 1.41 (0.34, 2.49)
Ratio (Our / Lin) 55% 72% 78%

4.3.2 Extending the model

To explore the validity of the model using other intervals and beyond the original
sample data (1999-2011) a windowed approach was used to compute several mod-
els on a rolling basis. The values of the DECH coefficients (updated threshold >
15 pug/m3 applied) for a given window’s model are shown in the following figures,

with 0.05 significance level confidence intervals for each coefficient plotted above
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and below inred. Fitting on 13-year intervals of data, the sliding window generated
9 models ending in years 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019,
2020, 2021, 2022 and 2023. Coefficient values for each mortality group are shown
in Figure 4.2, and reference data for the plotted figures are presented in Appen-
dices. During the pre-pandemic era, in the 13-year windowed models the DECH
coefficients for all-cause and circulatory-cause cases reached significance at the
0.05 level for all windows, but respiratory models did not reach significance in the
vast majority of cases. For the 13-year windowed models including pandemic era,
the DECH coefficients started to lose significance for all-cause and respiratory-
cause models, while the DECH coefficients of circulatory-cause models remained

significance at the 0.05 level.

4.3.3 Extending the model to short-term intervals

Using a sliding window with 5-year intervals, models were fitted to identify short-
term changes. DECH coefficients for each mortality group are shown in Figure
4.3, and reference data for the plotted figures are shown in Appendices. Multiply-
ing each coefficient by the window’s DECH IQR, the relative effect percentages
across each mortality group are shown in Figure 4.4. Reference data for the plotted
figures are shown in Appendices. After using a narrower time window, the vast
majority of respiratory models remained lack of significance. For the all-cause
and circulatory models, roughly half of them reached significance. Models that
reached significance at the 0.05 level are indicated by “*” in Table 4.3.3. The rel-
ative all-cause mortality risk effect related to DECH fluctuated decreasing from

roughly 1.5% to 0.5% across all models. The relative circulatory-cause mortality
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Figure 4.2: DECH coefficients across mortality groups for 13-year sliding window
fitted models with 0.05 significance level confidence intervals. DECH IQRs asso-
ciated with later sliding windows were dramatically lower, consistent with results
shown in Figure 1. The DECH coefficients for all-cause and circulatory-cause
groups reached the 0.05 level of significance for all windows in pre-pandemic era,
while only the DECH coefficients for circulatory-cause group remained the 0.05
level of significance for windows including pandemic era. The respiratory models
did not reach significance in the vast majority of cases. The DECH coefficients
in circulatory-cause groups exhibited an increasing trend during the pre-pandemic
period with a plunge during the pandemic period, while in all-cause groups they
remained nearly unchanged during the pre-pandemic period with a similar plunge
during the pandemic period.
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risk effect related to DECH fluctuated around 1% across all models.
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Figure 4.3: DECH coeftficients across mortality groups for 5-year sliding window
fitted models with 0.05 significance level confidence intervals. With a narrower
time window the DECH IQR peak occurred during 2004-2007. The respiratory
models did not reach significance in the vast majority of cases, whereas all-cause
and circulatory-cause groups reached significance in some cases.

4.3.4 Applying the model to other cause groups

The same independent variables fitting the model described in section 2 were ap-
plied to data pertaining to mental, nervous, and skin diseases, which are commonly
considered to be related to air pollution. A 5-year sliding window was applied to

these models. The DECH coefticients for each window’s model are shown in Fig
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Figure 4.4: The relative effect percentages across mortality groups for 5-year slid-
ing window fitted models with 0.05 significance level confidence intervals. The
respiratory models did not reach significance in the vast majority of cases, whereas
all-cause and circulatory-cause groups reached 0.05 significance in some cases.

4.5, with 0.05 significance level confidence intervals for each coefficient plotted
above and below in red. Reference data for the plotted figures are shown in Ap-
pendices. From the generalized additive models applied to 5-year sliding windows

for all mental-cause, nervous-cause, and skin-cause mortality groups, there was no

clear clue of association between DECH variable and those cause groups.
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Table 4.4: Indication of significance of each fitted model’s DECH coefficient at
the 0.05 level.“*” indicates that the model term reached significance at the 0.05
level.

>

Window Year
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023

Circulatory | Respiratory

k

%

%

*| ¥ K| *| *

K| K| K| K| K] K| K| K| ®| ¥

K| K| K| K| K| ¥| ®| *
*

4.4 Discussion

4.4.1 Application to New Data

Part A results in section 4.3.1 are generally consistent with [84]. All three mor-
tality groups’ models reached significance of the DECH term for their given lag,
and the relative difference between mortality groups followed a similar pattern,

1.e., the DECH coefficient for all-cause was much lower than that for circulatory-
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Figure 4.5: DECH coefficients across the new cause groups for 5-year sliding
window-fitted models with 0.05 significance level confidence intervals. There
were no clear associations between DECH level and nervous-cause mortality,
mental-cause mortality, or skin cause mortality in any time windows.
cause, and respiratory-cause was somewhat lower than that for circulatory-cause
but greater than that for all-cause.

While the circulatory and respiratory coefficient ratios were consistent with
[84] (respective ratios of 72% and 78%), the all-cause coefficient was 55%, far
less than the aforementioned circulatory and respiratory ratios. Further, all of the

DECH coefficients indicated lower relative effect percentages, and it is unclear

what the source of this large divergence between the two result sets could be be-
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cause the vast majority of underlying data and modeling techniques used in the two
studies were the same. The omission of 1998 weather data as described in section
is a clear difference, however this is not believed to have had a strong effect due

to the model’s use of penalized splines to account for long-term trends.

4.4.2 Extending the model

When extending the model to years of data out-of-sample in Part A with a updated
DECH threshold corresponding to the updated WHO guideline, significance of
the DECH coefficients was reached for all-cause and circulatory-cause groups for
all windows during pre-pandemic era. The coefficients in these groups were also
fairly stable across windows before 2019, then a sudden increase in 2020 and fol-
lowed by a plunge in 2021 and 2022. A possible explanation is that the association
between air pollutants and mortality was covered by the surge of fatal cases of
COVID in 2021 and 2022. Notably circulatory-cause coefficients exhibited an
increasing trend during pre-pandemic era. This coefficient trend was neutralized
by a rapidly lowered DECH IQR in recent years due to decreased air pollutants.
Respiratory models did not reach significance in many cases, which is somewhat
consistent with the weaker results reported throughout literature. Since we only
have the data by the end of 2023, it’s still unclear about the significance and effect
of the DECH coefficients in the post pandemic period. It’s crucial to keep atten-
tion to the association between mortality and air pollutants in Hong Kong during
the post pandemic period considering a trend of improved air quality and a huge
excess mortality in Hong Kong during the COVID pandemic which wiped out

vulnerable population.
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4.4.3 Extending the model to short-term intervals

The motivation to model based on a short-term interval such as 5 years was to
investigate potential changes in relationships between FSP levels and mortalities
in recent years compared to a decade prior where various measures of FSP clearly
declined; principally from 2006 to 2023. In the present study most DECH coef-
ficients derived from shorter-term respiratory models did not reach significance,
whereas half of circulatory-cause and all-cause DECH coefficients were signifi-
cant, especially those all-cause DECH coeftficients derived from models fitted be-
tween 2010 to 2020. No models had significant DECH coefficients in the windows
ending in 2007, 2012, 2013, or 2014. The DECH coefficients of all three mod-
els started to have a wider confidence interval after the COVID outbreak in 2020.
Further investigation is needed to determine what led to this strong inconsistency.

Consistent with expectations, all-cause and circulatory-cause mortality were
significantly related to elevated DECH levels, and there was an increasing trend
in windows ending in years after 2011—which were above levels of the signifi-
cant models ending in years 2008—2011. While circulatory-cause mortality exhib-
ited a stable relative effect in later years despite increasing coefficients, this was
due to simultaneously decreasing DECH IQRs, and is generally consistent with
results presented by Lin et al. [84]. This indicates that DECH is a novel compo-
nent of mortality risk, and the model presents a constant level of relative effect
of DECH despite changing levels of pollution. The coefficients of DECH related
to respiratory-cause mortality were fluctuated near zero, showing no evidence of
relationship between FSP levels and respiratory-cause mortalities based on our

generalized additive model.



4.5. CONCLUSION 46

4.4.4 Applying the model to other cause groups

In extensions of the model investigating three more disease groups, there were no
significant DECH coefficients for any time windows with respect to diseases of
the nervous system and sense organs, or skin and subcutaneous tissue. Those re-
sults are consistent with a previous study reported by Ho et al. [79] using Poisson
regression models and hazy days as a predictor. For some recent time windows,
there were some associations between DECH and deaths associated with mental
and behavioral problems, which is consistent with a study reported by Ho et al.
[86] that focused on associations between dementia mortality and environmental
pollution. One possible reason for the association between DECH and mental-
cause mortality in recent years is that society is paying more attention to mental
and behavioral problems, and deaths related to mental health may have been mis-
classified in the past. In the mortality dataset there were more than 1000 deaths
per year related to mental diseases after 2014, whereas there were less than 500
per year before 2009.

Compared to the circulatory-cause and respiratory-cause groups, which were
included in the previous study, mental, nervous, and skin disease groups had lower
daily death counts. The median of those three groups was to 1 or 0. Zero inflation

can cause inaccuracy in quasi-Poisson models.

4.5 Conclusion

The current study builds on the incremental work of several researchers, prin-

cipally that of [84]. Methods described by Lin et al. [84] were replicated, and
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similar but much weaker effects of DECH levels on mortality risk were identified.
There was also evidence to support the use of DECH as a mortality risk factor,
specifically with regard to circulatory diseases. Despite the downward trend in air
pollution in recent years, relative effects between mortality rate and DECH have
remained stable. The COVID pandemic spread all over the world brought with
large amounts of excess mortality and made the effect of DECH levels less signif-
icant for all disease groups. A further investigation of the relation between FSP
levels and daily mortality in Hong Kong is recommended for the post pandemic
era. The methods were applied to other disease specific mortality risks, and the

results obtained were consistent with other studies.



Chapter 5

Change in disease burden associated
with influenza and air pollutants

during the COVID-19 pandemic in

Hong Kong

Objectives: This study aimed to estimate the variation in disease burden associ-
ated with air pollutants and other respiratory viruses during the COVID-19 pan-
demic.

Methods: We adopted a machine learning approach to calculate the excess mor-
tality attributable to air pollutants and influenza, during the pre-pandemic and pan-
demic period.

Results: In the first two years of the COVID-19 pandemic, there were 8,762 (95%
confidence interval, 7,503 —9,993), and 12,496 (11,718 —13,332) excess all-cause

deaths in Hong Kong. These figures correspond to 117.4 and 167.9 per 100,000

48
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population, and 12.6% and 8.5% of total deaths in 2020 and 2021 respectively.
Compared to the period before the pandemic, excess deaths from all causes, car-
diovascular and respiratory diseases, pneumonia and influenza attributable to in-
fluenza A and B significantly decreased in all age groups. However, excess deaths
associated with ozone increased in all age-disease categories, while the relative
change of nitrogen dioxide (NO2) and particulate matters less than 10um (PMy()
associated burden showed a varied pattern.

Conclusions: A notable shift in disease burden attributable to influenza and air
pollutants was observed in the pandemic period, suggesting that both direct and
indirect impacts shall be considered when assessing the global and regional burden
of the COVID-19 pandemic.

Keywords: machine learning, mortality, COVID-19, influenza, air pollution

5.1 Introduction

As of 10 March 2024, the World Health Organization (WHO) reported that the
COVID-19 pandemic has caused 775 million infections and 7 million deaths
worldwide[2]. Prior to the availability of vaccines in early 2021, global health
authorities adopted various strategies to curb the spread of the virus. Mainland
China and the Hong Kong Special Administrative Region, which implemented a
Zero-COVID policy to eradicate community outbreaks, enforced stringent pub-
lic health and social measures. These included strict border control, mandatory
quarantine for incoming travelers, and the promotion of social distancing through
work-from-home policies and school closures [87, 88, 89]. Mask mandates were

also enforced from July 2020 [90]. As a result, Hong Kong recorded a relatively
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low number of COVID-19 cases and a low mortality rate in the first year of the
pandemic, with only 148 deaths in 2020 [91].

The COVID-19 outbreak has significantly interfered the seasonal patterns of
other respiratory viruses. Influenza activity, for instance, has remained low in
many regions or countries since 2020, largely due to enhanced personal hygiene
and social distancing measures [92]. The 2019-20 winter influenza season in Hong
Kong, was remarkably shorter than previous seasons [93], which likely resulted in
a significant reduction in disease burden attributable to the influenza virus. Prior to
the pandemic, the WHO estimated that seasonal influenza was associated with 3 to
5 million cases globally, and 290,000 to 650,000 respiratory deaths annually [93].
In Hong Kong, our previous studies estimated that influenza resulted in approxi-
mately one thousand annual deaths and tens of thousands of hospitalizations [30,
94]. Most influenza associated deaths occurred in people with chronic diseases
[95] and the elderly, who were also at higher risks of severe infections and deaths
from COVID-19. Hence, the displacement of mortality or morbidity of suscep-
tible populations by COVID-19 might have offset the disease burden caused by
influenza. Similarly, improved air quality has been reported during the pandemic,
likely due to social distancing and reduced economic activities [9]. While the di-
rect effects of these containment measures on COVID-19 have been intensively
evaluated [88, 96], few studies have investigated their indirect effects on the dis-
ease burden of other respiratory viruses and air pollution. A few studies estimated
excess all-cause mortality in the pandemic across countries [97, 98]. However,
most just calculated the difference between observed deaths and seasonal baseline
based on simple time series models, few have considered other factors such as air

pollution, temperature, and influenza in their models.
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Previous ecological studies on the disease burden associated with influenza
have often used time series modeling approaches such as quasi-Poisson regres-
sion or linear regression models [99, 100, 31]. These models share a common ap-
proach to calculating excess mortality. Initially, a model is fitted to the observed
data and seasonal baselines are estimated from the model under the assumption
that virus proxies are zero. The disease burden is then quantified by excess mor-
tality, calculated as the difference between the observed data and the predicted
baseline data. However, the selection of regression models and virus proxies re-
mains a topic of debate. For example, the quasi-Poisson model with a log-link
function has been used for weekly counts of all-cause and cause-specific mortal-
ity, but it has faced criticism for assuming a log-linear relationship between virus
proxies and outcomes. The Gaussian linear model, which assumes a linear rela-
tionship between virus proxies and outcome variables, often yields negative effect
estimates for virus proxies. These time-series models incorporate covariates such
as seasonal trends, temperature, humidity, and proxies for influenza virus activities
[99, 101].

In this study, we used a machine learning modeling strategy, eXtreme Gradient
Boosting (XGBoost), to estimate the disease burden attributable to influenza and
environmental factors. The XGBoost model offers the flexibility of assessing the
marginal effect of each variable and minimizes overfitting through regularization
penalties, bootstrapping of samples and cross-validation. This model has been ap-
plied to various research topics, including prediction models for disease incidence
and prognosis, as well as the mortality burden of air pollution [102, 103, 104]. We
also compared the XGBoost model estimates with those from the general additive

model (GAM) with a Gaussian link function, which has been used in previous
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studies on the disease burden of influenza [99, 105].

5.2 Method

5.2.1 Data

We obtained individual death records from 2014 to 2021 in Hong Kong from the
Census and Statistics Department of the Hong Kong Special Administrative Re-
gion, China. These records were then aggregated to weekly death counts based
on the International Classification of Diseases, Tenth Revision (ICD-10). As in
our previous studies [30, 94], we considered the following categories: all-cause
(ICD-10 codes A00-Z99), cardiovascular and respiratory diseases (CRD, ICD-10
codes 100-199&J00-J99), and pneumonia and influenza (P&I, ICD-10 codes J10-
J18). We further divided weekly death counts into six age groups: 0 -19, 20 - 39,
40 - 64, 65 - 84, and 85+ years. These age groups were selected to be consis-
tent with our previous research on influenza disease burden [30]. Population data
of these age groups were obtained from the Census and Statistics Department of
Hong Kong. Weekly age-specific population size was calculated from annual mid-
year age-specific population using a LOESS smooth function. Influenza surveil-
lance data and weekly COVID-19 death counts were retrieved from the Centre for
Health Protection. Meteorological data, including daily temperature and relative
humidity, were downloaded from the Hong Kong Observatory (HKO) website.
Air pollution data, including hourly concentrations of particulate matter less than
10 pm in diameter (PM;), ozone (O3) and nitrogen dioxide (NO,), were retrieved

from the 18 General and Roadside Air Quality Monitoring Stations of the Envi-
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ronmental Protection Department (EPD).

5.2.2 Statistical Models

5.2.2.1 Model development

We first trained the XGBoost models on weekly death data by age groups. Weekly
proportions of specimens testing positive for influenza type A (subtype HINI and
H3N2) or type B were added to the models as proxy variables for influenza. The
models also included weekly averages of mean, maximum, and minimum tem-
perature, weekly average relative humidity, and weekly average concentration of
PM,, O3, and NO,. Other covariates in the models were week and year dummies
to adjust for seasonal and annual trends. Weekly age-specific population was used
as an offset in the model to adjust for population size.

Before fitting the models, weekly COVID-19 deaths were subtracted from
weekly mortality data. We first trained the XGBoost model by repeatedly fit-
ting models to the pre-pandemic data (2014-2019). We assumed different learning
rates and maximum tree depth during the validation process with a 5-fold cross
validation to prevent overfitting. The training procedure of the XGBoost models
was conducted separately on all-cause mortality and cause-specific mortality by
different age groups. The model parameters and number of boosted trees were
decided based on the log-likelihood.

We also adopted a classical time series modeling approach, the GAM model
with a Gaussian link function, which has been used in previous studies on the
disease burden of influenza and air pollution. We fit the GAM models to all-

cause mortality and cause-specific mortality, with adjustment for overfitting [106].
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The best fit GAM model was selected after 5-fold cross validation. Cubic splines
were applied to covariates like week number, average temperature, and relative
humidity with 10 knots each. Similar to the XGBoost model, the GAM models also
added weekly age-specific population size as an offset to adjust for age structure

change over time.

5.2.2.2 [Estimation of mortality burden

The mortality burden during the pre-pandemic and pandemic period was assessed
using the following measurements: 1) Overall excess mortality in the pandemic:
this was calculated as the difference between the observed death counts in 2020-
2021 and the predicted counts from the XGBoost and GAM models using the ob-
served data of covariates (meteorological data, air pollutants and influenza). 2)
Excess mortality associated with influenza : We first estimated the influenza base-
line mortality by setting the influenza proxy variable in 2020-2021 to zero (i.e.,
assuming no influenza virus activity) in the models. The difference between the
observed death counts in 2020-2021 and the influenza baseline mortality was the
excess mortality specifically attributable to influenza. 3) Excess mortality associ-
ated with air pollution : Using PM;, as an example, we first estimated the PM;
baseline mortality by setting the PM; variable in 2020-2021 to its minimum value
during the pre-pandemic period (9.7 ug/m?), and subtracted this baseline data from
the observed data to calculate excess mortality specifically attributable to PMjy. A
similar calculation was repeated for O3 and NO,y (minimum values 23.8 and 13.8
pg/m?, respectively). Considering the potential delay in mortality effects, we also
calculated the lag effects up to 14 days prior for each influenza proxy and air pol-

lutant. The 95% confidence interval (CI) for each estimate was calculated using
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bootstrapping for 10,000 times.

All data analysis was conducted using the ‘H20’ and ‘xgboost’ packages
in R software (version 4.1.0) (R Foundation for Statistical Computing, Vienna,
Austria). The R codes are publicly accessible at https://github.com/yanglin-

polyu/covid-excess-mortality.

5.3 Results

5.3.1 Mortality burden during the pre- pandemic and pan-
demic period

Figure 5.1 shows a comparison of weekly mortality rates specific to different age
groups during the pre-pandemic (2014-2019) and pandemic period (2020-2021).
Mortality rates for all categories increased in the age groups of 20-39, 40-64 and
85+ during the pandemic compared to the pre-pandemic period. The numbers of
all-cause deaths showed a sudden drop from February to April 2020, but gradually
increased thereafter, peaking in early 2021 (Figure 5.2). Influenza nearly disap-
peared during these two years, with a small peak of influenza type B in winter
2020 only (Figure 9.1). Air pollutants generally remained at a relatively low level
during the pandemic, with a sudden drop in early 2020 (except O3), and gradually

returned to pre-pandemic levels thereafter.

5.3.2 Overall excess mortality during the pandemic

Both the XGBoost and GAM models fitted well to the weekly data of all-cause

mortality counts from 2014 to 2019 (Figure 5.2). The XGBoost models outper-
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Figure 5.1: Weekly all-cause and cause-specific mortality by age group, during
the pre- and pandemic period. CRD, cardiovascular and respiratory diseases; P&,
pneumonia and influenza.

formed the GAM models in terms of Model goodness-of-fit and prediction ac-
curacy (Table 9.9). Given its capability of handling non-linear relationships and
multicollinearity of predictors (Figure 9.2), we adopted the XGBoost models for
main analysis and reported the estimates from these models hereafter. The greatest
increase in excess mortality was observed in the 65-84 and 85+ age groups, with
little to no significant increase in children and adolescents (Figure 5.2). A simi-
lar change in excess mortality was found in CRD, but not in P&I (Figure 9.3 and
9.4). There was a significant increase in all-cause excess mortality in Hong Kong
during the first two years of the COVID-19 pandemic, with an estimate of 8,762
(95% CI, 7,503 9,993), and 12,496 (95% CI, 11,718 13,332) in 2020 and 2021,
respectively (Table 5.1). These correspond to 117.4 and 167.9 per 100,000 popu-
lation, 12.6% and 8.5% of total deaths in these years. The highest rate of excess

mortality was found in those aged 65-84 years, with the excess rate estimates of
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Figure 5.2: Observed and fitted weekly all-cause mortality data by age groups.
The XGBoost (blue line) and GAM models (red line) were developed from the
training data from 2014 to 2019 and used to predict the data in 2020 and 2021.

1,263.4 and 1,797.1 per 100,000 population, respectively (Table 5.1).



Table 5.1: Overall excess mortality numbers and rates (per 100,000 population) of all-causes, cardiovascular diseases (CVD),
pneumonia and influenza (P&I) by age group in 2020 and 2021, estimated from the XGBoost models, respectively.

All-cause CVD
Excess Excess Excess Excess Excess Excess
number (95% CI) rate (95% CI) number (95% CI)  rate (95% CI)  number (95% CI)  rate (95% CI)
2020
All- 8762 (7503, 117.36 4221 (3571, 56.59 2199 (1874, 29.52
age 9993) (100.17,134.71) 4874) (47.82,65.36) 2530) (25.22,34.08)
0- 49 (19, 4.48 -1(-9,9) -0.07 -1 (-6, 6) -0.08
19 80) (1.76,7.27) (-0.82,0.79) (-0.55,0.5)
20- 108 (57, 5.49 42 (19, 2.12 1(-7, 0.06
39 159) (2.9,8.07) 66) (0.96,3.32) 10) (-0.36,0.52)
40- 805 (590, 27.03 677 (557, 22.63 123 (79, 4.13
64 1018) (19.63,34.14) 800) (18.6,26.71) 169) (2.64,5.67)
65- 1399 (888, 118.65 989 (668, 84.31 431 (279, 36.80
84 1889) (75.26,160.07) 1317) (55.62,112.52) 587) (23.45,50.62)
85+ 2750 (2123, 1263.36 960 (617, 440.54 672 (465, 311.33
3413) (978.04,1562.29) 1300) (279.09,598.14) 887) (214.32,405.93)
2021
All- 12496 (11718, 167.86 6008 (5539, 80.60 2911 (2675, 39.07
age 13332) (157.43,179.48) 6534) (74.29,87.56) 3150) (35.93,42.27)
0- 29 (8, 50) 2.66 -5 (-11, -0.47 0(4,)5) 0.04
19 (0.74,4.63) 1) (-1.04,0.12) (-0.33,0.49)
20- 111 (66, 5.75 37 (21, 1.93 2 (-6, 0.12
39 156) (3.5,8.01) 54) (1.07,2.84) 1) (-0.32,0.59)
40- 1150 (976, 38.52 811 (699, 27.02 103 (59, 343
64 1325) (32.7,44.17) 919) (23.38,30.65) 147) (1.96,4.91)
65- 1770 (1325, 146.33 1312 (1086, 107.96 412 (271, 33.87
84 2221) (109.4,182.39) 1552) (88.82,127) 546) (22.47,45.15)
85+ 4062 (3650, 1797.08 1518 (1226, 672.23 973 (792, 431.59
4480) (1618.03,1982.17) 1815) (544.9,803.74) 1165) (346.89,512.62)
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5.3.3 [Excess mortality associated with influenza

During 2014-2019, influenza A (HIN1 and H3N2) resulted in more deaths than
influenza B in children and adolescents, but fewer in older adults (Figure 5.3). A
similar pattern was observed in CRD and P&I, except for more P&I deaths as-
sociated with influenza A in the 85+ group (Figure 9.5 and 9.6). Annual excess
mortality rates attributable to influenza A and B dramatically decreased in all age
groups during the pandemic period, compared to the pre-pandemic period (Fig-
ure 5.4). The largest decrease (87% reduction from pre-pandemic estimates) was
observed in excess mortality associated with PM; in the 0-19 group, and the high-
est decrease (273.47 times higher) was observed in influenza B associated deaths
in the 85+ group. Similarly, annual rates of CRD and P&I excess mortality at-
tributable to influenza A and B dramatically decreased in all age groups during the

pandemic (Figure 9.7 and 9.8).

5.3.4 Excess mortality associated with air pollution

During the pre-pandemic period, annual all-cause excess mortality associated with
NO, and PM;, showed a decreasing trend across years in all age groups, while
O3 estimates slightly increased (Figure 5.3). Annual all-cause excess mortality
rates attributable to air pollutants decreased in all age groups during the pandemic
period, with a few exceptions including O3 estimates in the all-age group (Figure
5.4). The estimates of CRD and P&I excess mortality rates attributable to all air
pollutants had a similar pattern (Figure 9.7 and 9.8).

We also conducted a sensitivity analysis by incorporating data on air pollutants

and influenza proxies from up to 14 days before (Figure 9.9). The model estimates
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are generally similar to the main results. Compared to the XGBoost models, the
estimates from the GAM models were more conservative than those from showing
negative values in several age-disease categories. However, the overall trends of

relative change remained consistent between the two models (Table 9.10).

5.4 Discussion

In this study, we observed a significant rise in all-cause, CRD and P&I mortality
during the pandemic in Hong Kong. The XGBoost model estimated excess mor-
tality at 21,258, 10,229 and 5,110, while the GAM model estimated it at 15,431,
8,426 and 2,660, respectively. These numbers are significantly higher than the
148 COVID-19 deaths reported during the same period. As expected, older age
groups (65-84 and 85+ years) had a greater increase than younger age groups.
Interestingly, the annual all-cause excess mortality rates attributable to both in-
fluenza and three common air pollutants decreased in all age groups during the
pandemic compared to the pre-pandemic period, with the exception of a slight
increase in all-cause excess mortality rates associated with Ogz. Although we in-
cluded time, temperature, relatively humidity, respiratory viruses, and air pollution
as covariates in the models, there were likely other unadjusted factors contributing
to the increased mortality burden. We hypothesize that changes in health seeking
behavior could be one potential reason, with people possibly delaying diagnosis
and treatment due to fears of contracting COVID-19 in healthcare facilities. This
is supported by reports of a significant decrease in overall hospitalizations in Hong
Kong in 2020, with a corresponding decrease in in-hospital mortality and an in-

crease in out-of-hospital mortality [107].
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Most previous studies on excess mortality only considered time and sea-
sonal trends in predicting baseline deaths, and some even produced negative esti-
mates[37]. This highlights the difficulty in assessing the true impact of the pan-
demic. Our study is one of the first to conduct a comprehensive investigation into
the relative change in disease burden associated with different factors, including
influenza and air pollutants. It is not surprising to observe a dramatic drop in all-
cause excess mortality rates attributable to both influenza A and influenza B during
the pandemic. This is likely due to enhanced personal hygiene and social distanc-
ing measures, which have been reported to have nearly eliminated other respiratory
pathogens during the COVID-19 pandemic in many countries and regions [108,
109]. Additionally, the uptake rates of seasonal influenza vaccination increased
in the Hong Kong population, particularly among children aged six months to six
years, with rates increasing from 19.2% in 2016/17 season to 47.4% in 2019/20
season [110].

Previous studies have investigated changes in air pollutants during lockdowns.
In China, it was found that NO, and CO concentrations decreased during the lock-
down period, while O3 increased. Based on these three air pollutants, the lock-
down policy prevented certain all-cause deaths [111]. A global study involving
air quality stations from 34 countries estimated that a net total of 49,900 excess
deaths were avoided during lockdowns due to reduced emission of NO,, O3 and
PM2.5. In China, the PM, 5-related avoided excess mortality was 19,600 [112].
However, studies in England and Australia found no association between air pollu-
tion and excess mortality when comparing the pre-pandemic and pandemic periods
[113], and the change in air quality during the COVID-19 lockdown had a neg-

ligible impact on calculated health outcomes [114]. Whether the reduction in air
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pollution during the lockdown has an effect on total mortality remains a question,
but studies have found that air quality is the most important factor in the context
of enabling an increase in COVID-19 case load [115]. A review by Becchetti et
al [116] found a strong association between long-term air pollution exposure and
COVID-19 deaths. In our study, we found that the annual all-cause, CRD, and
P&I excess deaths attributed to NO, and PM; decreased during the pandemic in
Hong Kong based on our XGBoost model, while the excess deaths attributed to
O3 increased slightly, similar to the study in China [111]. We also observed an in-
crease in the excess deaths attributed to O3 in the pre-pandemic period. In addition
to the excess deaths attributed to air pollutants, we found a significant decrease in
the annual all-cause, CRD, and P&I excess deaths attributed to both influenza type
A and type B. Although the predicted all-cause weekly mortality counts for each
age group during the pandemic period were lower than those in the pre-pandemic
period due to the decrease in excess deaths attributed to major air pollutants and
influenza proxies (with the exception of excess deaths attributed to O3), there was
a significant amount of all-cause and CRD excess mortality counts for most age
groups based on both prediction methods after deducting the weekly COVID-19
deaths.

Few studies have simultaneously assessed the disease burden of influenza and
air pollutants, primarily due to the multicollinearity between these variables (Fig-
ure 9.2). This challenge is effectively managed by our XGBoost models, which
utilize decision trees and regularization techniques to deal with non-linear rela-
tionships. While accurately determining the disease burden from influenza and
air pollution is challenging, our calculated excess mortality for the period before

the pandemic align well with findings from earlier research. For instance, a study
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conducted in China in 2017 estimated around 4,200 deaths (with a range of 3,300-
5,100) in Hong Kong were due to air pollution [117]. Another study estimated
around 3,000 deaths in Hong Kong in 2013 were attributable to air pollutants [118].
Regarding the burden from influenza, estimates from previous studies using GAM
models suggested between 500 and 1,000 excess deaths from influenza A and B in
Hong Kong between 1998 and 2009 [30, 99]. These numbers are within the range
of our XGBoost model estimates, which suggest between 4,500 and 5,000 excess
deaths from 2014 to 2019 due to these factors (Figure 5.3). Taken together, these
findings support the reliability of the XGBoost models in providing estimates for
the disease burden from air pollutants and influenza.

There are some limitations in this study. First, we only retrieved meteoro-
logical data, air pollution data, and influenza data. We did not include any de-
mographic information. Second, we chose the GAM model with a Gaussian link
function, which may have negative effect estimates of influenza, making it difficult
to compare the influenza and air pollution associated mortality burden calculated
with different models. Finally, further research should be conducted to explore the

possible reasons for excess mortality in Hong Kong during the pandemic period.

5.5 Conclusion

Using advanced machine learning approaches, we estimated a significant decrease
in disease burden associated with influenza and air pollutants in a region with min-
imal COVID-19 cases in the first two years of the pandemic, while the overall mor-
tality burden during the pandemic period increased compared to the pre-pandemic

period. Our findings suggest that comprehensive assessments of the global and re-
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gional burden associated with the COVID-19 pandemic should consider its direct

and indirect impacts.
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Chapter 6

Future Study: Forecasting
long-term influenza activity in Hong

Kong

6.1 Background

An accurate forecast of the influenza activity can help to make public health in-
terventions [119]. Beginning in 2013, the U.S. Centers for Disease Control and
Prevention (CDC) launched FluSight, a forecasting initiative, to decrease the un-
certainty of annual impact of flu at the start of each flu season. The primary targets
of the FluSight challenge included weekly incidence rates, season onset, peak tim-
ing, and peak intensity [120]. Various research groups and modeling teams used
either statistical time-series models or mechanistic transmission models and his-
torical data from surveillance systems to predict key features of seasonal influenza

[32].

67



6.1. BACKGROUND 68

However, unlike the highly seasonal epidemics in temperate regions (like US),
Hong Kong, a subtropics city, can have influenza epidemics occurred at any time of
the year (Figure 6.1) and, often, multiple types/subtypes co-circulate [121]. Many
studies have been conducted in Hong Kong on influenza forecasting using either
traditional statistical method [34, 122] or compartmental model [29] similar to the
study in US. Instead of forecasting key epidemiological indicators, most of them
focused on the time series prediction of weekly influenza-like illness consultation
rate. Yet, those studies focused on short-term or even one-week-ahead forecasts.
Considering the reporting lag of influenza surveillance data, short-term forecasts
may provide limited insights for real-world epidemic management. A long-term
forecast of influenza activity can help decision-makers to design comprehensive
intervention strategies such as school closures, community-wide social distancing
measures, or public awareness campaigns.

After the outbreak of COVID-19, the influenza activity remained in a low level
(Figure 6.1). [109, 123] discussed the reduction in influenza virus infection and
possible reasons included changes in human behavior and the widespread imple-
mentation of nonpharmaceutical interventions (NPIs) such as mask mandates, so-
cial distancing, travel restrictions, and enhanced hygiene practices. Besides the
reduced influenza transmission caused by the NPIs deployed to manage COVID-
19, the respiratory viral testing power has been enhanced dramatically [12] and
possibly created bias when used influenza surveillance data, such as weekly pos-
itive detections of seasonal influenza virus and weekly positive percentage for
influenza among respiratory specimens, before and after the COVID pandemic.
Weekly number of severe influenza cases and the weekly consultation rates of

influenza-like illness reported by General Out-patient Clinics (GOPC) can better
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Figure 6.1: Comparison of different weekly influenza indicators over 10 years in
Hong Kong. Weekly positive detections, positive percentage for influenza, num-
ber of severe cases, and influenza-like-illness consultation rate in GOPC appeared
similar pattern before the COVID-19 pandemic. In the post-pandemic era, the
maximum values of weekly positive percentage for influenza among respiratory
specimens remained considerably lower compared to the pre-pandemic period.
capture the trend of influenza activity and maintain consistency over time.

A key aspect of seasonal influenza outbreaks is that the influenza virus could
evolve over time and evade the immune system [124]. The influenza virus’s
hemagglutinin (HA) and neuraminidase (NA) proteins have been proved to play
a critical role in determining viral infectivity and pandemic potential [125, 126].

Numerous studies used either computational methods or deep learning approaches

to predict the mutation patterns of hemagglutinin [127, 128, 129]. [130] linked
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the indicators of evolutionary changes in influenza based on changes in HA and
NA to regional epidemic characteristics. Evolutionary metrics was introduced by
analyzing amino acid substitutions in antigenically important regions of HA and
modulated the transmission rate in the compartmental model [131]. While de-
riving metrics from HA and NA protein sequences can effectively capture many
aspects of the virus’s evolutionary dynamics, the computational approaches em-
ployed may overlook some critical features.

To include the full biological sequence data along with the influenza surveil-
lance data, a deep learning framework was preferred. [132] reviewed state-of-the-
art deep learning architectures applied to time series forecasting and highlighted
that deep learning models were designed to capture intricate temporal patterns
and nonlinear relationships that classical models often miss. It also mentioned
that deep learning models may lack interpretability, which remained crucial for
influenza forecasting. N-beats, a novel deep learning architecture, used fully con-
nected layers arranged into deep stacks and employed both forward and backward
residual connections [133]. The special structure can decompose the forecast into
components and provide interpretability. Moreover, diffusion models, widely used
in the generation of images, audio and text, were used to generate long-term time-
series forecasts with improved stability [134]. A N-beats structure with diffusion
models handling the multi-strain influenza time series data can generate stable
long-term predictions, include influenza virus’s HA and NA evolution, and pro-

vide interpretability.
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6.2 Potential Methods and Data

6.2.1 Influenza surveillance data

Weekly surveillance data of influenza and weekly consultation rates of influenza-
like illness reported by General Out-patient Clinics (GOPC) were obtained from
the Hong Kong Department of Health’s Centre for Health Protection. Severe in-
fluenza case, positive percentage for different influenza strain among all respira-
tory specimens and influenza-like illness(ILI) consultation rate in sentinel GOPC
(per 1000 consultations) were used from 2014. Similar to previous research [29]
the weekly ILI+ rate/severe influenza case+ was calculated by multiplying the ILI
rate/total number of severe influenza case and the viral detection rate for each
strain (A(H3N2), A(HINI) and B) individually. Both ILI+ rate and severe in-

fluenza case+ were used for forecasting.

6.2.2 Human influenza HA and NA sequence

Human Influenza hemagglutinin (HA) and Neuraminidase (NA) A(H3N2),
A(HIN1) and B sequences with full length were downloaded from NCBI Influenza
Virus Resources. Duplicated data have been removed by keeping the oldest HA
and NA sequences of each group. Sequences with unkonwn year were removed.
Codon 17 to 345 for HA, codon 36 to 469 for NA were used as the valid positions.
Dominant sequence of each month was determined as the sequence consisting of

all the dominant amino acids in each codon in that month.
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6.2.3 Weather and humidity data

Meteorological data, including daily temperature and relative humidity, were
downloaded from the Hong Kong Observatory (HKO) website. Weekly maxi-
mum temperature, minimum temperature, mean temperature, and mean relative

humidity were extracted from daily data.

6.2.4 N-beats Structure with long-term time series diffusion

An interpretable, multi-variate forecasting framework based on the N-BEATS ar-
chitecture was proposed. It was structured as three additive stacks that provide
influenza surveillance time series forecsating. The first stack is dedicated ex-
clusively to the influenza surveillance signal through a multi-variate long-term
diffusion module , capturing the temporal dynamics and interactions in influenza
surveillance data. This stack is based on diffusion model to gradually adding small
noise to influenza surveillance time series data and then training a neural network
to learn the reverse process.

The second stack concats influenza surveillance data with weather and humid-
ity data to account for exogenous influences on influenza dynamics. The third
stack contains influenza protein sequence data, processed via a deep sequence en-
coder to extract biological signals indicative of viral evolution and strain dynamics
and provide influenza forecasting. Each stack outputs both a forecast and a back-
cast (residual) that can be trained. The final forecast is aggregated by those three
stacks, thus the long-term forecast can be interpreted as a combination of uncer-
tainty and seasonality of influenza dynamic, environmental factors, and biological

evolutionary effect.
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Conclusion

This study explored the impact of COVID-19, influenza, and air pollution on
mortality with statistical methods and machine learning models, focusing on the
COVID-19 pandemic period and post pandemic era.

Chapter 2 revealed two peaks of all-cause mortality during the COVID-19
pandemic in Peru with lower than usual median ages before Jan 2022. The excess
mortality during this period mostly fell into diseases of the circulatory system,
diseases of the respiratory system, general symptoms and sign, and COVID-19
compared to normal period. Meanwhile, the primary cause of death of most indi-
rectly excess mortality was listed as diseases of the circulatory system and may be
caused by the disruption in medical service during the pandemic.

Incubation periods of two variants of SARS-CoV-2 were estimated in Chap-
ter 3 with two separate datasets collected in South Korea. The estimated mean
incubation periods for 22 cases infected by Omicron BA.1 variants and 64 cases
identified during Delta dominance were 3.5 days (95% CI: 2.5, 3.8) with 1.4 days
(95% CI: 1.0, 1.5) SD and 6.5 days (95% CI: 5.3, 7.7) with 3.7 days (95% CI:

73



74

2.9, 4.6) respectively. A sensitivity analysis was performed by using either shorter
or longer exposure bound, and a consistent estimation of incubation period was
carried out. Based on the estimated distribution of incubation periods of both vari-
ants, a shorter incubation period of Omicron BA.1 may cause a relatively higher
rate for Omicron BA.1 cases becoming new sources of infection. Hence, the Omi-
cron BA.1 variants may have a lower period doubling time for epidemic curve.
The Omicron BA.1 incubation period estimates of the 99-th percentile at 7.2 days
further suggested that a 7-day quarantine combined with PCR testing could be
sufficient to detect nearly 99% of Omicron BA.1 infections.

In Chapter 4, a new metric, daily exceedance concentration hours (DECH),
reflected ambient PMs 5 concentration was reviewed with Hong Kong mortality
and air pollution data from 1999 to 2023. Despite the improvement of PM, 5 con-
centration in Hong Kong over years, a fairly consistent and significant association
between PM; 5 concentration and all-cause mortality was found. Cause-specific
mortalities, including circulatory diseases, respiratory diseases, mental and behav-
ioral conditions, diseases of the nervous system and sense organs, and diseases of
the skin and subcutaneous tissue, were examined and only mortality related to cir-
culatory diseases reveals an association with the ambient PMs 5 concentration. A
sudden increase of coefficient in 2020 and a following plunge in 2021 and 2022
may be caused by the improvement of air pollution in 2020 and the surge of fatal
cases of COVID-19 in 2021 and 2022.

Chapter 5 used both XGBoost and GAM model to estimate weekly mortality
of different age groups in Hong Kong based on pre-pandemic data. The total ex-
cess mortality, the difference between estimated mortality and the observed death

counts in 2020-2021, was calculated as well as disease burden attributable to in-
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fluenza and air pollutants. In the first two years of the COVID-19 pandemic in
Hong Kong, besides the 13 direct deaths related to COVID-19, 8762 (95% CI,
7503, 9993) and 12496 (95% CI, 11718, 13332) excess all-cause deaths were esti-
mated, which were 12.6% and 8.5% of total deaths in 2020 and 2021 respectively.
A notable shift in disease burden attributable to influenza and air pollutants was
reported during the pandemic period compared to the previous five years and sug-
gested when estimating the disease burden of the COVID-19 pandemic, both direct
and indirect excess mortality should be considered.

The major limitation of this study is that it relied primarily on traditional sta-
tistical methods and machine learning models rather than deep learning models,
despite their recent advance in time series prediction. Deep learning approaches
usually have limited interpretability which is essential in understanding epidemic
dynamics and accessing the impact of disease and air pollution on mortality. In
Chapter 6, a future study on influenza forecasting using deep learning structure
was discussed. The limited scope of available data (aggregated weekly instead of
per-minute or per-second) further brings troubles on deploying deep learning mod-
els. This coarse temporal resolution and small dataset size needs more efforts to
perform reliably training and validating. Yet, it is worth exploring new approaches
in disease dynamics forecasting in order to generate more accurate predictions and

estimates and provide insights in disease control and epidemic dynamics.
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Chapter 9. Appendices

Table 9.1: DECH Coefficient Data pertaining to Figure 4.2

Window All All All Circ Circ Circ Resp Resp Resp

End Year | (Total) (Lower) | (Upper) (Total) (Lower) | (Upper) (Total) (Lower) (Upper)
2011 1.70E-05 | 7.92E-06 | 2.60E-05 | 2.79E-05 | 1.13E-05 | 4.44E-05 | 2.08E-05 | 2.81E-07 | 4.13E-05
2012 1.49E-05 | 5.81E-06 | 2.40E-05 | 2.79E-05 | 1.09E-05 | 4.50E-05 | 1.50E-05 | -5.22E-06 | 3.52E-05
2013 1.66E-05 | 7.69E-06 | 2.55E-05 | 3.30E-05 | 1.62E-05 | 4.98E-05 | 1.48E-05 | -5.18E-06 | 3.47E-05
2014 1.63E-05 | 7.24E-06 | 2.54E-05 | 3.44E-05 | 1.73E-05 | 5.16E-05 | 1.31E-05 | -7.02E-06 | 3.33E-05
2015 1.66E-05 | 7.42E-06 | 2.57E-05 | 3.20E-05 | 1.46E-05 | 4.94E-05 | 1.53E-05 | -4.99E-06 | 3.56E-05
2016 1.50E-05 | 5.72E-06 | 2.43E-05 | 3.15E-05 | 1.34E-05 | 4.95E-05 | 1.44E-05 | -5.91E-06 | 3.46E-05
2017 1.37E-05 | 3.92E-06 | 2.35E-05 | 4.08E-05 | 2.17E-05 | 5.99E-05 | 8.33E-06 | -1.27E-05 | 2.93E-05
2018 1.64E-05 | 6.16E-06 | 2.66E-05 | 4.26E-05 | 2.23E-05 | 6.29E-05 | 1.13E-05 | -1.03E-05 | 3.29E-05
2019 1.81E-05 | 7.38E-06 | 2.89E-05 | 4.44E-05 | 2.29E-05 | 6.59E-05 | 1.43E-05 | -8.25E-06 | 3.69E-05
2020 3.00E-05 | 1.84E-05 | 4.16E-05 | 5.73E-05 | 3.38E-05 | 8.08E-05 | 2.85E-05 | 4.61E-06 | 5.24E-05
2021 1.82E-05 | 5.92E-06 | 3.06E-05 | 3.88E-05 | 1.34E-05 | 6.43E-05 | 5.42E-06 | -1.95E-05 | 3.03E-05
2022 2.81E-06 | -1.72E-05 | 2.28E-05 | 2.96E-05 | 2.06E-06 | 5.72E-05 | -2.79E-05 | -7.27E-05 | 1.68E-05
2023 6.68E-06 | -1.48E-05 | 2.81E-05 | 3.53E-05 | 6.24E-06 | 6.44E-05 | -2.75E-05 | -7.84E-05 | 2.33E-05
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Table 9.2: DECH IQR values for each window ending in given years during a 13-year sliding window.

Window End Year

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

DECH IQR

608

605

613

611

616

585

538

499

454

415

370

338

307
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Table 9.3: DECH coefficient data pertaining to Figure 4.3

Window All All All Circ Circ Circ Resp Resp Resp
End Year (lower) (upper) (lower) (upper) (lower) (upper)
2003 2.31E-05 | 6.54E-06 | 3.96E-05 | 2.79E-05 | -1.22E-06 | 5.69E-05 | 3.59E-05 | -4.22E-06 | 7.61E-05
2004 2.68E-05 | 1.20E-05 | 4.17E-05 | 1.90E-05 | -8.47E-06 | 4.64E-05 | 4.98E-05 1.40E-05 | 8.56E-05
2005 2.56E-05 | 1.15E-05 | 3.98E-05 | 2.86E-05 | 3.14E-06 | 5.40E-05 | 3.19E-05 | -1.24E-06 | 6.50E-05
2006 2.18E-05 | 8.12E-06 | 3.54E-05 | 2.47E-05 | -8.72E-09 | 4.94E-05 | 3.51E-05 3.55E-06 | 6.67E-05
2007 6.61E-06 | -6.33E-06 | 1.96E-05 | 1.33E-05 | -1.06E-05 | 3.72E-05 | -5.89E-06 | -3.54E-05 | 2.37E-05
2008 1.43E-05 | 1.58E-06 | 2.70E-05 | 2.78E-05 | 3.80E-06 | 5.17E-05 | 1.98E-05 | -8.38E-06 | 4.79E-05
2009 1.01E-05 | -3.16E-06 | 2.34E-05 | 3.92E-05 | 1.45E-05 | 6.40E-05 | 5.26E-06 | -2.37E-05 | 3.43E-05
2010 8.03E-06 | -5.89E-06 | 2.19E-05 | 3.68E-05 | 1.00E-05 | 6.36E-05 | 2.08E-06 | -2.75E-05 | 3.17E-05
2011 9.69E-06 | -5.14E-06 | 2.45E-05 | 3.36E-05 | 5.45E-06 | 6.17E-05 | 9.64E-07 | -3.05E-05 | 3.24E-05
2012 1.60E-05 | 2.47E-07 | 3.18E-05 | 2.76E-05 | -2.85E-06 | 5.80E-05 | 2.08E-05 | -1.25E-05 | 5.40E-05
2013 8.40E-06 | -7.30E-06 | 2.41E-05 | 2.06E-05 | -1.09E-05 | 5.20E-05 | -1.13E-06 | -3.47E-05 | 3.24E-05
2014 1.04E-05 | -6.56E-06 | 2.74E-05 | 4.20E-05 | 7.21E-06 | 7.67E-05 | -1.26E-05 | -4.83E-05 | 2.31E-05
2015 1.83E-05 | 5.65E-07 | 3.60E-05 | 2.94E-05 | -6.90E-06 | 6.58E-05 | 8.48E-06 | -2.95E-05 | 4.64E-05
2016 2.21E-05 | 3.44E-06 | 4.07E-05 | 3.90E-05 | -4.05E-07 | 7.84E-05 | 2.03E-05 | -1.83E-05 | 5.89E-05
2017 2.96E-05 | 1.00E-05 | 4.92E-05 | 7.33E-05 | 3.26E-05 | 0.00114 | 2.65E-05 | -1.36E-05 | 6.66E-05
2018 3.68E-05 | 1.51E-05 | 5.85E-05 | 6.04E-05 | 1.41E-05 | 0.00107 | 2.52E-05 | -1.81E-05 | 6.86E-05
2019 3.28E-05 | 1.07E-05 | 5.48E-05 | 3.58E-05 | -1.31E-05 | 8.48E-05 | 3.10E-05 | -1.31E-05 | 7.50E-05
2020 2.71E-05 | 1.56E-06 | 5.27E-05 | 6.90E-05 | 1.27E-05 | 0.00125 | 4.85E-06 | -4.52E-05 | 5.49E-05
2021 2.72E-05 | 1.97E-07 | 5.42E-05 | 8.44E-05 | 2.55E-05 | 0.00143 | -9.38E-06 | -6.18E-05 | 4.31E-05
2022 2.41E-05 | -2.71E-05 | 7.54E-05 | 6.06E-05 | -4.66E-06 | 0.00126 | 3.14E-05 | -7.20E-05 | 0.00135
2023 -3.06E-06 | -6.63E-05 | 6.02E-05 | 5.31E-05 | -1.85E-05 | 0.00125 | -3.92E-05 | -0.00016972 | 9.14E-05
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Table 9.4: Relative effect percentages (%) from the DECH coefficients in Figure 4.4

Window | All All All Circ | Circ Circ | Resp | Resp Resp
End Year (lower) | (upper) (lower) | (upper) (lower) | (upper)
2003 1.25 | 0.35 2.14 | 1.51 | -0.07 3.08 1.94 | -0.23 4.11
2004 1.57 0.7 245 | 1.11 | -05 272 1292 | 0.82 5.02
2005 1.64 | 0.73 2.54 | 1.82 0.2 344 | 2.03 | -0.08 4.15
2006 1.47 | 0.55 2.39 | 1.67 0 334 | 237 | 0.24 4.5
2007 0.48 | -0.46 141 1096 | -0.76 2,69 | -042| -2.56 1.71
2008 1.04 | 0.12 1.97 ]2.03| 0.28 3.78 1.44 | -0.61 3.5
2009 0.68 | -0.21 1.56 |2.62| 097 426 | 035 | -1.58 2.28
2010 0.51 | -0.37 1.39 | 233 | 0.64 4.02 | 013 | -1.74 2.01
2011 0.59 | -0.31 149 |2.04| 033 3.75 | 0.06 | -1.85 1.97
2012 0.86 | 0.01 1.71 | 1.48 | -0.15 3.12 1.12 | -0.67 291
2013 0.44 | -0.38 1.25 |1.07 | -0.57 271 | -0.06 | -1.81 1.69
2014 0.54 | -0.34 141 | 216 | 0.37 396 |-0.65| -2.49 1.19
2015 0.91 0.03 1.79 | 1.46 | -0.34 327 | 042 | -147 2.31
2016 0.89 | 0.14 1.65 | 1.58 | -0.02 3.17 | 0.82 | -0.74 2.39
2017 1.08 | 0.37 1.8 268 | 1.19 4.16 | 0.97 -0.5 243
2018 1.13 | 047 1.8 1.86 | 0.43 328 | 0.78 | -0.56 2.11
2019 0.88 | 0.29 148 | 097 | -0.35 228 | 0.83 | -0.35 2.02
2020 0.62 | 0.04 1.21 | 1.59 | 0.29 2.88 | 0.11 | -1.04 1.26
2021 0.58 0 1.15 | 1.79 | 0.54 3.04 -0.2 | -1.31 0.91
2022 043 | -0.48 1.33 | 1.07 | -0.08 222 | 055 | -1.27 2.38
2023 -0.05 | -0.99 0.9 0.8 | -0.28 1.87 |-0.59 | -2.55 1.37
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Table 9.5: DECH IQR values for windows ending in each given year during a 5-year sliding window.

Window | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016
End Year

DECHIQR | 541 | 587 | 638 | 675 | 722 | 730 | 667 | 633 | 608 | 538 | 520 | 516 | 498 | 405
Window | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023

End Year

DECHIQR | 365 | 308 | 270 | 230 | 212 | 176 | 150
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Table 9.6: DECH Coefficient data pertaining to Figure 4.5
Window Ment Ment (lower) Ment Nerv Nerv (lower) Nerv Skin Skin (lower) Skin
End Year (upper) (upper) (upper)
2003 -5.40E-05 | -0.000239986 | 0.0001322 | 2.02E-05 | -0.000133645 | 0.0001741 | -0.000167418 | -0.000429483 | 9.46E-05
2004 -1.71E-05 | -0.000162917 | 0.0001291 | 2.18E-05 | -0.000120625 | 0.0001641 -7.55E-05 -0.000277094 | 0.0001261
2005 4.71E-06 | -0.000122375 | 0.0001331 | 4.93E-05 -8.13E-05 0.0001801 2.17E-05 -0.000135762 | 0.0001791
2006 2.51E-05 -9.89E-05 0.0001491 | 3.59E-05 -9.23E-05 0.0001641 4.92E-05 -9.51E-05 0.0001931
2007 5.03E-06 | -0.000117436 | 0.0001271 | 2.03E-05 | -0.000105177 | 0.0001461 5.62E-05 -8.00E-05 0.0001921
2008 -7.79E-06 | -0.000128378 | 0.0001131 | 6.21E-05 -6.28E-05 0.0001871 5.76E-05 -7.72E-05 0.0002201
2009 -4.36E-05 | -0.000164874 | 7.76E-05 | 4.42E-05 -9.33E-05 0.0001821 7.75E-05 -6.51E-05 0.0002221
2010 -2.76E-05 | -0.000143469 | 8.84E-05 | 3.95E-05 | -0.000102886 | 0.0001821 3.39E-05 -0.000125975 | 0.0001941
2011 -4.34E-05 | -0.000155684 | 6.89E-05 | 6.48E-05 -8.37E-05 0.0002131 -1.40E-05 -0.000191657 | 0.0001641
2012 -1.91E-05 | -0.000128589 | 9.04E-05 | -1.16E-05 | -0.000177506 | 0.0001541 -5.98E-05 -0.000266508 | 0.0001471
2013 1.36E-05 -8.83E-05 0.0001161 | 2.06E-05 | -0.000145542 | 0.0001871 -3.17E-05 -0.000255054 | 0.0001921
2014 7.39E-05 -2.89E-05 0.0001771 | -2.86E-05 | -0.000201084 | 0.0001441 -2.56E-05 -0.000268754 | 0.0002171
2015 1.98E-05 -8.12E-05 0.0001211 | -6.86E-05 | -0.000246831 | 0.0001111 | -0.000102631 | -0.000353423 | 0.0001481
2016 4.71E-05 -5.48E-05 0.0001491 | 9.80E-07 | -0.000182638 | 0.0001851 -9.68E-05 -0.000359713 | 0.0001661
2017 6.15E-05 -3.95E-05 0.0001631 | 6.88E-05 | -0.000119819 | 0.0002571 | -0.000107133 | -0.000386796 | 0.0001731
2018 8.67E-05 -2.07E-05 0.0001941 | 1.63E-05 | -0.000193479 | 0.0002261 | -0.000174023 | -0.000473674 | 0.0001261
2019 6.42E-05 -4.52E-05 0.0001741 | 7.31E-05 | -0.000138862 | 0.0002851 -5.91E-05 -0.000375077 | 0.0002571
2020 7.27E-05 -4.85E-05 0.0001941 | 3.57E-05 | -0.000206688 | 0.0002781 -6.94E-07 -0.000353642 | 0.0003521
2021 8.19E-05 -4.40E-05 0.0002081 | 1.90E-06 | -0.000246685 | 0.0002501 -7.66E-05 -0.000457588 | 0.0003041
2022 2.17E-05 | -0.000116811 | 0.0001601 | -8.19E-05 | -0.000339122 | 0.0001751 -3.20E-05 -0.000427783 | 0.0003641
2023 -4.74E-05 | -0.000201458 | 0.0001071 | -3.38E-05 | -0.000303651 | 0.0002361 -1.35E-05 -0.000453781 | 0.0004271
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Table 9.7: Summary of incubation period estimates (unit: day) for cases infected by Omicron BA.1 variants and cases during

Delta predominance period in South Korea with different version of exposure bound.

Type of SARS-CoV-2 strain sample size | mean of exposure distribution (days) oA - diziumate (950/905_?11 percentile (SD)

Omicron BA.1 n =22 2.8 3.5(2.5,3.8) | 3.3(2.4,3.6) 5.8(4.3,6.6) (1.4 + 1.0, 1.5)
4.6 3.5(2.6,3.9) | 3.3(2.4,3.7) 6.0(4.4,6.6) (1.3 £ 1.0, 1.5)

those during Delta dominance n = 64 2.8 6.0(4.7,7.1) | 5.1(3.7,6.4) | 13.6(11.0,16.4) (3.9 £ 3.0,5.2
4.6 7.0(5.7,8.2) | 6.4(5.1,7.7) | 13.8(11.4,16.0) (3.6 = 2.8, 4.5

$ These cases were collected in June 2021 when the Delta variants were dominant at a prevalence of 68.3% in South Korea according to GISAID

[42].

Table 9.8: Summary of incubation period estimates (unit: day) for cases infected by Omicron BA.1 variants and cases during
Delta predominance period in South Korea

. . estimate (95%CI)
Type of SARS-CoV-2 Strain | sample size ean odian 95-th percentile D
Omicron BA.1 n =22 4.1(2.5,5.5) | 3.8(2.4,5.1) | 7.9(4.3,10.6) | 2.0(1.0,2.7)
those during Delta dominance® | n =64 |5.5(5.4,8.0) | 5.0(5.0,6.4) | 10.6(10.5,15.5) | 2.7(2.7,3.9)

$ These cases were collected in June 2021 when the Delta variants were dominant at a prevalence of 68.3% in South Korea according to GISAID

[42].
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Figure 9.1: Time series plots of weekly proportions of influenza A (subtype HIN1, H3N2) and B, air pollutants in Hong
Kong, 2014 to 2021
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Table 9.9: Model goodness-of-fit and prediction accuracy.

Model R* Adjusted B2 MAPE RMSE
XGBoost 0.939 0.937 2.056% 18915
GAM 0.750 0.742 3.85% 37.662

Note: MAPE, mean absolute percentage error; RMSE, root-mean-square error.
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Table 9.10: Overall excess mortality numbers and rates (per 100,000 population) of all-cause, cardiovascular diseases (CRD),
pneumonia and influenza (P&I) by age group in 2020 and 2021, estimated from the GAM models, respectively.

All-cause CRD P&l
Excess (95% CI) Excess (95% CI) Excess (95% CI) Excess (95% CI) Excess (95% CI)  Excess (95% CI)
number rate number rate number rate
2020
All-age 6034 (4764, 7321) 80.97 (63.47,98.68) 3370  (2632,4116) 45.28 (35.24,55.04) 679 (329,1058) 9.16 (4.46,14.31)
0-19 41 (12, 72) 3.79 (1.1,6.55) 1 (-7, 11) 0.13 (-0.63,0.99) -4 (-8,2) -0.34 (-0.78,0.23)
20-39 65 (13, 117) 3.30 (0.73,5.92) 35 (12, 58) 1.78 (0.62,2.96) -2 (-11,7) -0.11 (-0.54,0.34)
40-64 665 (474, 857) 22.24 (16.04,28.73) 546 (437, 653) 18.20 (14.54,21.9) 43 (-3,91) 1.45 (-0.02,3.04)
65-84 2444 (1840,3020)  207.83 (156.39,256.21) 1469 (1109, 1822) 12498 (93.68,156.12) 304 (147,476)  25.89 (12.45,40.68)
85+ 2199 (1539,2897) 100532  (695.78,1331.95) 1107 (703, 1522)  507.95 (316,698.03) 318 (89, 541) 146.17 (40.71,251)
2021
All-age 9397 (8603, 10257) 126.24 (115.51,138.08) 5056  (4554,5590) 67.86 (61.28,75.12) 987 (743,1249) 13.30 (9.99,16.7)
0-19 22 (1,42) 2.00 (0.11,3.92) -1 (-7,5) -0.13 (-0.69,0.45) -4 (-8, 1) -0.41 (-0.78,0.05)
20-39 75 (28, 121) 391 (1.59,6.26) 29 (12, 47) 1.51 (0.63,2.43) -1 (-10, 8) -0.08 (-0.51,0.4)
40-64 1086 (913, 1242) 36.26 (30.64,41.5) 693 (593, 792) 23.08 (19.78,26.43) 16 (-26, 58) 0.52 (-0.89,1.94)
65-84 3648 (3226,4058)  300.62 (266.24,333.11) 2240 (2004, 2475) 183.75 (164.11,202.98) 359 (228,495)  29.54 (18.87,40.25)
85+ 3579 (3107,4084) 1581.25 (1374.19,1802.25) 1777  (1442,2117) 785.68 (641.65,934.57) 572 (370,773) 251.61 (164.12,338.54)
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Figure 9.3: Observed and fitted weekly mortality data of cardiovascular and respiratory (CRD) by age groups. The XGBoost
(blue line) and GAM models (red line) were developed from the training data from 2014 to 2019 and used to predict the data

in 2020.
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Figure 9.4: Observed and fitted weekly mortality data of pneumonia and influenza (P&I) by age groups. The XGBoost (blue
line) and GAM models (red line) were developed from the training data from 2014 to 2019 and used to predict the data in

2020 and 2021.
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Figure 9.5: Annual CRD mortality attributable to influenza A (Flu A), influenza B (Flu B), O3, NO,, and PM;,, estimated

from the XGBoost models.

110



Chapter 9. Appendices

o

EN

N

100

7

o

5

Death counts
o

2

a

400

20

o

Figure 9.6: Annual P&I mortality attributed by major air pollution variables and influenza proxy estimated by the XGBoost

models.
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Figure 9.7: Annual CRD excess mortality rate (per 100,000 population) associated with air pollutants and influenza pre

pandemic and during the COVID pandemic for different age groups with 95% confidence interval obtained from 10000
times bootstrap
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Figure 9.8: Annual P&I excess mortality rate (per 100,000 population) associated with air pollutants and influenza proxies

pre pandemic and during the COVID pandemic for different age groups with 95% confidence interval obtained from 10000
times bootstrap.
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Air pollutants and influenza proxies

Figure 9.9: Lag effects (up to 14 days prior) for each influenza proxy and air pollutant. The estimates were from the XGBoost
models.



