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Abstract

Intelligent perception represents a critical challenge for mobile robotic systems op-
erating in complex, unknown environments. Current approaches face fundamental
limitations in semantic understanding, optimisation quality for viewpoint selection,
and robust sensing under variable conditions. This thesis investigates these challenges
and proposes novel solutions to enhance the perceptual capabilities of autonomous

mobile robots.

The research is motivated by three key observations: first, traditional Next-Best-View
planning algorithms typically optimize for geometric coverage without considering
semantic significance, resulting in inefficient exploration when specific objects hold
particular importance; second, classical optimization methods for viewpoint selection
often converge to suboptimal solutions due to the vast, high-dimensional solution
space; and third, the predominant reliance on RGB imagery limits robustness in

challenging lighting conditions and raises privacy concerns in sensitive applications.

To address these challenges, this thesis presents three complementary contributions.
The first introduces a semantic-aware Next-Best-View (S-NBV) framework that in-
corporates semantic information alongside visibility metrics in a unified information
gain formulation, enabling efficient search-and-acquisition manoeuvres. Experimental
validation demonstrates up to 27.46% enhancement in region-of-interest reconstruc-

tion efficiency compared to state-of-the-art methods.

The second contribution develops a Hybrid Quantum-Classical Next-Best-View (HQC-



NBV) framework that leverages quantum computing principles to more effectively
navigate the complex solution space of viewpoint selection. Using a novel Hamilto-
nian formulation and bidirectional entanglement patterns, this approach achieves up
to 49.2% higher exploration efficiency than classical methods, establishing a pioneer-

ing connection between quantum computing and robotic perception.

The third contribution presents the Cross Shallow and Deep Perception Network (CS-
DNet), a lightweight architecture designed for integrating low-coherence depth and
thermal modalities. Through spatial information prescreening, implicit coherence
navigation, and Segment Anything Model (SAM)-assisted encoder pre-training, CS-
DNet achieves performance comparable to triple-modality (RGB-D-T) methods while
using only depth and thermal data, and reducing computational requirements by or-
ders of magnitude, demonstrates that effective integration of low-coherence modalities
can achieve robust perception in challenging conditions without relying on RGB data,

offering both efficiency and inherent privacy advantages.

Extensive experiments across diverse scenarios validate the effectiveness of these ap-
proaches. The research advances the capabilities of robotic perception systems, en-
abling more intelligent exploration through semantic awareness, superior viewpoint
selection through hybrid quantum-classical optimisation, and robust operation in

challenging environmental conditions through effective multi-modal integration.

Keywords: Robotic Perception, Next-Best-View Planning, Semantic-Aware View
Planning, Quantum Variational Algorithm, Hybrid Quantum-Classical View Plan-

ning, Low-Coherence Modality Integration
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Chapter 1

Introduction

1.1 The Intelligent Perception in Robotics

In the rapidly evolving landscape of robotics, intelligent perception represents the
foundational capability that bridges the gap between autonomous systems and their
effective operation in real-world environments. Perception—the ability to sense, in-
terpret, and understand the surrounding world—forms the critical first stage in the
perception-planning-control pipeline (as is shown in Figure that governs robotic
behaviour. Without robust and comprehensive perception, even the most sophisti-
cated planning algorithms and precise actuation mechanisms remain fundamentally

limited in their utility and application scope.

The significance of intelligent perception becomes particularly evident in challenging
scenarios such as search and rescue operations, autonomous exploration of unknown
environments, and human-robot interaction systems. In disaster response situations,
for instance, mobile robots must rapidly develop accurate environmental representa-
tions while identifying victims, assessing structural stability, and planning safe traver-
sal paths—all under severe time constraints and in environments characterised by

visual degradation, structural irregularities, and possible dynamic conditions. Such
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==
/ .
==

.

Perception Planning Control

Figure 1.1: A conceptual diagram showing the perception-planning-control cycle in
robotics, highlighting how perception feeds into decision-making and actions.

scenarios demand perception systems that transcend mere geometric reconstruction
to incorporate semantic understanding, uncertainty management, and adaptive view-

point selection.

Current approaches to robotic perception face several fundamental limitations. First,
traditional Next-Best-View planning algorithms typically optimise for geometric cov-
erage or information gain without considering the semantic significance of observed
elements, resulting in inefficient exploration trajectories when specific objects or re-
gions hold particular importance. Second, classical approaches for viewpoint selection
often struggle to navigate the complex, high-dimensional solution space effectively,
frequently resulting in suboptimal solutions due to their reliance on heuristics or lim-
ited sampling approaches. Third, the predominant reliance on RGB imagery creates
significant vulnerabilities to lighting conditions, with performance degrading substan-
tially in low-light, high-contrast, or variable illumination environments commonly en-
countered in real-world applications such as search and rescue operations, industrial

inspection, and round-the-clock monitoring.

Moreover, the integration of perception and planning remains a significant challenge,
with most systems treating these as separate, loosely coupled modules rather than
deeply integrated components. This separation often results in exploration strategies

that fail to leverage the rich semantic information available in the scene, leading to
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inefficient utilisation of limited sensing resources and computational capabilities. As
autonomous systems become increasingly deployed in complex human environments,
the need for perception systems that are simultaneously semantically aware, able
to find optimal solutions to complex planning problems, and robust to challenging

environmental conditions becomes increasingly critical.

These challenges motivate the development of a new generation of intelligent percep-
tion approaches that can operate effectively under the constraints of mobile robotics
while providing richer environmental understanding. By addressing the limitations
in semantic integration, solution optimality in planning, and multi-modal fusion un-
der challenging conditions, such approaches can significantly advance the capabili-
ties of autonomous systems across diverse application domains. The work presented
in this thesis aims to address precisely these challenges through three complemen-
tary research directions: semantic-aware planning for targeted exploration, hybrid
quantum-classical optimisation for superior viewpoint selection, and robust multi-

modal perception leveraging depth and thermal sensing.

1.2 Research Gaps and Challenges

Building upon the fundamental limitations of current robotic perception systems de-
scribed previously, this section identifies specific research gaps that motivate the con-
tributions presented in this thesis. Despite significant advances in robotic perception
over the past decade, several critical challenges remain unaddressed at the intersection
of semantic understanding, optimal viewpoint solution in robot view planning, and

low-coherence modal integration for robust perception in challenging environments.

The semantic understanding gap represents perhaps the most significant limi-
tation in current view planning approaches. While state-of-the-art Next-Best-View

(NBV) algorithms have demonstrated impressive capabilities in geometric reconstruc-



Chapter 1. Introduction

tion and exploration of unknown environments [12} 84], they operate primarily on low-
level geometric representations such as occupancy grids or Truncated Signed Distance
Fields (TSDFs). These approaches typically define information gain solely in terms
of visibility metrics—the number of unknown voxels that can be observed from a can-
didate viewpoint or the expected entropy reduction in the environmental map. Such
formulations fundamentally fail to incorporate the semantic significance of different
scene elements, leading to exploration trajectories that are efficient in covering space
but inefficient in acquiring information about objects of interest. This limitation be-
comes particularly problematic in applications such as search and rescue operations,
where rapidly locating and thoroughly examining specific objects (e.g., victims, haz-

ardous materials) takes precedence over complete environmental mapping.

A related solution optimality gap emerges when considering the inherent com-
plexity of view planning optimisation. The selection of optimal viewpoints repre-
sents a combinatorial optimisation problem with a vast solution space, particularly
in scenarios involving multiple degrees of freedom in sensing platform mobility. Cur-
rent approaches predominantly rely on sampling-based methods or heuristics that,
while computationally tractable, often converge to suboptimal solutions due to their
inherent limitations in navigating complex parameter interdependencies. More so-
phisticated classical optimisation methods typically struggle with the high dimen-
sionality and non-convexity of the solution space. This fundamental limitation in
the optimisation approach has remained a persistent challenge, restricting the explo-
ration efficiency of autonomous systems in complex environments. Recent advances
in quantum computing suggest potential pathways to address this optimisation chal-
lenge through inherently different computational paradigms, but their application to

robotic perception remains largely unexplored.

The third significant research gap concerns low-coherence modal integration for
robust perception in robotic systems. Contemporary perception systems predom-

inantly rely on RGB cameras, which provide rich textural and appearance informa-
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tion but perform poorly in challenging lighting environments such as darkness, glare,
or highly variable illumination. Alternative sensing modalities such as depth cam-
eras and thermal sensors offer potential robustness to these conditions, but integrat-
ing these low-coherence modalities—which exhibit reduced correlation in information
content—presents significant technical challenges. While multi-modal perception sys-
tems have been extensively studied [89, 18], current approaches typically use RGB
as the primary modality and struggle to efficiently integrate depth and thermal data
without substantial computational overhead. The effective integration of these low-
coherence modalities is particularly crucial for applications requiring operation in ex-
treme lighting conditions, such as search and rescue operations and 24-hour surveil-
lance. Moreover, these alternative modalities offer inherent privacy advantages as
an additional benefit. The development of lightweight, efficient fusion architectures
that can leverage complementary information from these low-coherence modalities
represents an important open challenge, particularly for resource-constrained mobile

platforms that must operate reliably across diverse environmental conditions.

These three gaps—in semantic awareness, solution optimality, and low-coherence
modal integration—are deeply interconnected. For instance, incorporating seman-
tic information into view planning increases the complexity of the solution space,
while alternative modalities like depth and thermal that offer robustness to lighting
variations often provide less direct semantic information than RGB imagery. Address-
ing these challenges requires novel approaches across algorithm design, optimisation
frameworks, and sensor fusion architectures. The research presented in this thesis
aims to bridge these gaps through complementary contributions that collectively ad-
vance the state of the art in intelligent perception for mobile robotic systems operating

in complex environments.
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1.3 Research Objectives and Contributions

In response to the critical research gaps identified in semantic understanding, solu-
tion optimality in view planning, and low-coherence modal integration for robotic
perception, this thesis presents three complementary approaches designed to advance
intelligent perception systems for mobile robots operating in complex environments.
The overarching objective of this research is to develop novel solutions that enhance
semantic awareness in exploration, leverage quantum computational paradigms for su-
perior viewpoint selection, and enable robust integration of low-coherence modalities
for perception in challenging lighting conditions. This objective is pursued through
three complementary research directions, each addressing a specific aspect of the

intelligent perception challenge.

The first major contribution of this thesis is the development of a semantic-aware
Next-Best-View (NBV) planning framework for multi-degree-of-freedom mobile sys-
tems. This framework fundamentally reimagines view planning by explicitly incor-
porating semantic information alongside traditional visibility metrics in the utility
function for viewpoint evaluation. Unlike previous approaches that treat all un-
known regions equally, our formulation distinguishes between different environmental
elements based on their semantic significance, enabling more purposeful exploration
trajectories. The key innovation lies in the novel information gain formulation that
integrates both visibility gain and semantic gain in a unified mathematical framework,
allowing the system to dynamically balance between global exploration and targeted
investigation of objects of interest. This approach is further enhanced through an
adaptive strategy with termination criteria that facilitates efficient two-stage search-
and-acquisition manoeuvres, first locating objects of interest and then acquiring com-
prehensive perceptual data about them. Experimental results demonstrate signif-
icant improvements in exploration efficiency, achieving up to 27.46% enhancement

in region-of-interest reconstruction and dramatically improved perspective directivity
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compared to state-of-the-art methods.

Building upon the challenge of solution optimality in viewpoint selection, the sec-
ond major contribution is the development of a hybrid quantum-classical framework
(HQC-NBV) for robotic view planning. This paradigm-shifting approach leverages
recent advances in quantum computing to address the inherent limitations of classi-
cal optimisation methods in navigating the complex solution space of view planning.
Rather than relying on heuristics or approximate sampling methods that often lead
to suboptimal solutions, our approach formulates the NBV problem as a quantum
optimisation task through a carefully designed multi-component Hamiltonian that
encodes exploration objectives, environmental constraints, and complex parameter
interdependencies. The key innovation lies in the parameter-centric variational ansatz
with bidirectional alternating entanglement patterns that capture the hierarchical de-
pendencies between viewpoint parameters. This hybrid quantum-classical approach
enables more effective exploration of the vast solution space by leveraging quantum
superposition and entanglement to simultaneously evaluate multiple movement strate-
gies while encoding complex spatial relationships, leading to significantly improved
optimisation outcomes. Comprehensive experimental validations demonstrate that
quantum-specific components provide measurable performance advantages, with up
to 49.2% higher exploration efficiency compared to classical methods, establishing a

pioneering connection between quantum computing and robotic perception.

The third major contribution addresses the challenge of robust perception through
multi-modal integration of low-coherence sensing data. The proposed Cross Shallow
and Deep Perception Network (CSDNet) represents a lightweight architecture specif-
ically designed to integrate depth and thermal modalities—two sensing approaches
that preserve privacy by not capturing RGB information. Unlike conventional multi-
modal methods that use RGB as the primary modality, our approach maximises scene
interpretation by leveraging the complementary nature of depth and thermal data de-

spite their relatively low coherence. The key innovations include a spatial information
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prescreening mechanism and implicit coherence navigation across shallow and deep
network layers. This architecture is further enhanced through a Segment Anything
Model (SAM)-assisted encoder pre-training framework that guides effective feature
mapping to a generalised feature space. Experimental results demonstrate that our
approach achieves state-of-the-art performance while reducing computational require-
ments by orders of magnitude compared to triple-modality methods, making it par-

ticularly suitable for deployment on resource-constrained mobile platforms.

These three contributions each represent significant advancements for next-generation
intelligent perception systems, addressing key challenges from different perspectives.
The semantic-aware planning approach enables more efficient exploration by focusing
on objects of interest; the hybrid quantum-classical optimisation achieves superior
solution quality in viewpoint selection; and the low-coherence modality integration
architecture provides robust perception capabilities while preserving privacy. While
developed as distinct solutions to specific challenges, these advances collectively push
forward the state of the art in robotic perception for applications ranging from search
and rescue operations to autonomous exploration and privacy-preserving surveillance.
The research presented in this thesis not only makes notable contributions to each of
these domains individually but also demonstrates how innovations across these dif-
ferent aspects of perception can substantially improve the capabilities of autonomous

mobile systems in complex environments.

1.4 Thesis Outline

This thesis is organised into six chapters, structured to progressively develop the
concepts, methodologies, and experimental validations of the proposed intelligent

perception systems for mobile robots.

Chapter (1} introduces the research context, motivation, challenges, and objectives of
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the thesis. It establishes the importance of intelligent perception in robotics, identifies
key research gaps in current approaches, and outlines the main contributions of the

research.

Chapter [2| provides a comprehensive review of the foundational concepts and re-
lated work across the three main research themes. It covers mobile robot perception
fundamentals, Next-Best-View planning approaches, semantics in robot perception,
quantum computing applications in robotics, multi-modal perception systems, and
foundation models for perception. This chapter establishes the theoretical and tech-

nical background necessary for understanding the subsequent contributions.

Chapter |3| presents the Semantic-aware Next-Best-View for Multi-DoFs Mobile Sys-
tems, the first major contribution of this study, focusing on the integration of semantic

information into view planning for mobile robots.

Chapter || presents the Hybrid Quantum-Classical Approach for View Planning. This
chapter introduces the novel hybrid quantum-classical framework for viewpoint opti-

misation.

Chapter [5| presents the Cross Shallow and Deep Perception Network for Multi-Modal
Fusion, the third major contribution of this study, detailing the lightweight architec-

ture for integrating low-coherence modalities.

Chapter [f] is the final chapter that summarises the research contributions, discusses
the limitations of the current approaches, and outlines promising directions for future

work.



Chapter 2

Background and Literature Review

2.1 Robotic Perception and Environmental Rep-

resentation Fundamentals

Mobile robots require reliable sensing and effective environmental representations to
perceive and interact with their surroundings. This section examines fundamental
sensing modalities and representational frameworks that underpin advanced robotic
perception systems, establishing the theoretical foundation for the perception-based

planning and decision-making approaches proposed in this thesis.

2.1.1 Robotic Sensing Modalities

Robotic perception relies on various sensing modalities to capture different aspects
of the environment. Each modality offers unique capabilities and limitations, making
the selection and integration of appropriate sensors critical to the overall performance

of robotic systems.

10
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Visual Perception

RGB cameras remain the primary sensing modality for most robotic systems due to
their rich information content, high spatial resolution, and low cost. These sensors
provide colour and texture information crucial for object recognition, feature tracking,
and general scene understanding. The pinhole camera model forms the mathematical

foundation for projecting 3D world points onto a 2D image plane:

X
u f: 0 ¢
Mol =10 £ ol |R t}y (2.1)
Z
1| o o0 1
1

where (u, v) are the image coordinates, (X,Y, Z) are the world coordinates, f, and f,
are the focal lengths, (s, ¢,) is the principal point, R is the rotation matrix, ¢ is the
translation vector, and A is a scaling factor. This model enables the interpretation of
2D image measurements in the context of 3D spatial reasoning. Despite their utility,
visual sensors are highly sensitive to environmental conditions such as illumination
variations, shadows, and reflections. Additionally, monocular RGB cameras lack di-
rect depth information, necessitating computational approaches to infer 3D structure

from 2D observations.

Depth Perception

Depth sensors directly measure the distance to objects in the environment, providing
explicit 3D structural information that complements visual data. Common depth

sensing technologies include:

Time-of-Flight (ToF) cameras, which measure the time required for light pulses to

travel to objects and return to the sensor. The depth Z is calculated as:

11



Chapter 2. Background and Literature Review

c- At
2

Z = (2.2)

where ¢ is the speed of light and At is the time difference between emitted and

received light.

Structured light sensors, which project known patterns onto the scene and analyse
their deformation. The disparity between the projected and observed patterns enables

depth triangulation:

Z = f'TB (2.3)

where f is the focal length, B is the baseline between the projector and camera, and

d is the disparity.

Stereo vision systems, which estimate depth from the disparity between corresponding

points in two camera images:
f-B

X — TR

Z = (2.4)

where z;, and xg are the x-coordinates of corresponding points in the left and right im-
ages. Depth sensors provide valuable information for navigation, obstacle avoidance,
and object manipulation tasks. However, they often struggle with transparent, re-
flective, or highly absorptive surfaces, as well as in outdoor environments with strong

ambient light.

Thermal Imaging

Thermal cameras detect infrared radiation emitted by objects based on their tem-

perature, enabling perception independent of visible light conditions. The thermal

12
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radiance L at wavelength \ for an object at temperature 1" follows Planck’s law:

- (2.5)

where h is Planck’s constant, ¢ is the speed of light, kg is Boltzmann’s constant, and
T is the absolute temperature. Thermal imaging excels in conditions where visual
perception is challenging, such as darkness, smoke, or fog. It is particularly effective
for detecting living beings, as they typically exhibit temperature signatures distinct
from the background environment. This capability makes thermal sensing valuable for
search and rescue operations, surveillance, and human-robot interaction. The limita-
tions of thermal imaging include lower spatial resolution compared to RGB cameras,
sensitivity to ambient temperature conditions, and difficulty in distinguishing objects
with similar thermal properties. To be more general, the qualitative comparison of

sensing modalities can be represented as shown in Table [2.1]

Table 2.1: Qualitative Comparison of Sensing Modalities

Performance Metric RGB Depth | Thermal
Low Light Performance * * * * * % K K K
Texture Recognition * kK Kk Kk ok *x
Geometric Information *x * K K Kk K Hok
Privacy Preservation * * K ko * K K
Computational Efficiency ok * % X * %k ok
Weather Robustness * * * *x * Sk Kok
Power Consumption * % % *ok * Kk
Material Differentiation * Kk Kok *k * K K Kk K
Cost-Effectiveness * Kk kK k * %k * *x

Sensor Uncertainty Modeling

All sensor measurements contain inherent uncertainties that must be properly mod-

eled for robust perception. Figure illustrates the complete process of transform-

13
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ing raw sensor readings into a geometric model through probabilistic estimation.
This process encompasses sensor reading acquisition, probabilistic sensor modeling,

Bayesian estimation, and final decision rule application.

Sensor reading Sensor model Bayesian estimation process Decision rule
r > ~ ~ ™ ~— ™A
|]< pir |z} Plsix) | rlix) MAP estimator ———
- N/ =
World state Range surace Occupancy Grid Geometric modal

Figure 2.1: The sensor uncertainty modeling pipeline: from raw sensor reading to ge-
ometric model construction via probabilistic estimation. The process involves model-
ing the sensor reading with an appropriate probability distribution, applying Bayesian
estimation to derive the occupancy grid, and using a maximum a posteriori (MAP)
estimator as the decision rule to construct the final geometric model.

The Bayes filter provides a formal probabilistic framework for state estimation under

uncertainty [94]:

p<$t|21:t, Ul:t) =1 'p(2t|1‘t) : /P($t|$t—1, Ut) 'p(xt—1|2’1:t—1,U1:t—1)d$t—1 (2-6)

where p(x|z1.4, u1.¢) is the posterior probability of the state x; given all measurements
21,4 and control inputs wuy.¢, p(2¢|x¢) is the measurement model shown in the second step

of Figure 2.1} p(z¢|z;—1,u;) is the motion model, and 7 is a normalization constant.

For sensors with Gaussian noise characteristics, the Kalman filter provides an efficient

recursive estimation solution for the third step in Figure 2.1}

Typ—1 = FyZ_1je—1 + Buuy
Py = BPt—l\t—lFtT + Qs

Ky = Py H (H Py H + R,) ™' (2.7)
Ty = Typ—1 + Ko(2e — HyZypp—1)

Py = (I — KyHy) Py

14
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where z is the state estimate, P is the covariance matrix, I’ is the state transition
matrix, H is the observation matrix, K is the Kalman gain, and () and R are the
process and measurement noise covariance matrices, respectively. The final MAP
estimator shown in the fourth step of Figure [2.1] selects the most likely state from

this posterior distribution.

2.1.2 Environmental Representation Techniques

Environmental representations form the foundation for robotic understanding of the
surrounding world, enabling tasks such as mapping, localisation, planning, and inter-
action. This section explores key representation techniques, focusing on their math-

ematical foundations and practical applications.

Occupancy Grid Maps

Occupancy grid maps represent the environment as a discrete grid of cells, each
associated with a probability of being occupied. Figure illustrates this concept,
showing how sensor measurements from a single viewpoint update the occupancy
probabilities of cells in the map. Black cells indicate high occupancy probability
(0.95), white cells represent low occupancy probability (0.05), and gray cells denote

unknown or uncertain regions (0.5).

For a cell m, ;, the posterior probability of occupancy given sensor measurements z; .

and robot poses 1, is calculated using Bayes’ rule:

p(Zt|mz’,j7 iUt) 'p(mi,j|21;t—17 $1:t—1)
p(Zt|let—17 $1:t—1)

p(mijlzie, 214) = (2.8)

As shown in Figure , the sensor model p(z|m; ;,z:) assigns different occupancy
probabilities based on sensor readings. Cells along the sensor rays (shown in red)

before an obstacle are typically assigned low occupancy probabilities, while cells where
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. Pz yn (Ok‘+l|zk+lJ =0.95
O Pzisr (Okt1]zi41) = 0.05
D Pzyy (()FG?+1 |'3-I‘-‘+1) =0.5

Figure 2.2: Occupancy grid mapping example showing a robot updating cell occu-
pancy probabilities based on sensor measurements.

rays end are assigned high occupancy probabilities, consistent with the detection of

an obstacle.

To simplify the computation, the log-odds representation is often used:

Ui glz1, @) = Umjlzra—1, 21e1) + U(majlze, ) — o (2.9)
where (m; ;) = log % and [y is the prior log-odds ratio [94].

Occupancy grid maps are widely used in robotic navigation and planning due to their
simplicity and effectiveness in representing both known obstacles and unexplored
regions. However, they suffer from discretisation artifacts, memory inefficiency for

large environments, and limited ability to represent uncertainty in object boundaries

[43].

Truncated Signed Distance Fields

Truncated Signed Distance Fields (TSDFs) encode the environment by storing the

distance to the nearest surface at each point in space, truncated to a maximum value

16
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(a) (b)

Figure 2.3: The black line represents the surface. Positive distances are indicated by
the colour blue to green; negative distances are indicated by the colour green to red

[70)].

for computational efficiency [24]. The TSDF function ®,(x) is defined as:

min(7, d(x, 092)) if x is outside €2
P, (x) = (2.10)

max(—7, —d(x,00)) if x is inside 2

where d(x,0f2) is the Euclidean distance from point x to the nearest point on the
boundary 02 of object €2, and 7 is the truncation distance. TSDFs can be incremen-

tally updated with new measurements through weighted average fusion:

_ Wio1(x) - @41 (X) + wi(X) © Prew(X)
Wi_1(x) + wi(x)

,(x) (2.11)

Wi(x) = Wi_1(x) + wy(x) (2.12)

where W;(x) is the cumulative weight at position x and time ¢, and w;(x) is the weight
of the new measurement, typically inversely proportional to the measurement uncer-
tainty. TSDF-based representations enable efficient surface reconstruction through
methods like Marching Cubes [86] and support rapid ray-casting for synthetic view
generation and collision detection. The KinectFusion system [72] demonstrated the

effectiveness of TSDF for real-time 3D reconstruction, influencing numerous subse-
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quent mapping systems. A visualised representation is presented in Figure [2.3]

Point Cloud Representations

Point clouds represent the environment as a collection of 3D points directly sampled

from surfaces. A point cloud P can be defined as:
P=pi=(zi,y,%) €ER*|i=1,2...,N (2.13)
For colored point clouds with normals:
Pcolored = pi = (x, Yi, 2i, iy Gis biynx, i,ny,i,n, ;) |1 =1,2,..., N (2.14)

Point clouds provide a direct representation of sensor measurements without discreti-
sation, making them suitable for preserving fine details. However, they lack explicit
connectivity information and can be memory-intensive for dense representations. Pro-
cessing point clouds often involves registration to align multiple scans, which can be
formulated as finding the rigid transformation that minimises the distance between

the source point cloud and the target point cloud:

N
b= i 4+t — qil? 2.1

R, argr%}glz;lRpﬂr ail (2.15)

where p; and q; are corresponding points, R is a rotation matrix, and t is a translation

vector. The Iterative Closest Point (ICP) algorithm and its variants are commonly

used for point cloud registration, iteratively refining the transformation estimate by

alternating between correspondence identification and transformation optimisation

83)].
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Figure 2.4: An illustration of the Octomap octree representation [39].

Octree-Based Representations

Octrees provide a hierarchical spatial partitioning of the environment, offering a com-
promise between the resolution of occupancy grids and the memory efficiency of sparse
representations [43]. Each node in the octree represents a cubic volume of space, which

is recursively subdivided into eight octants if needed, as is illustrated in Figure [2.4}

volume(Nparent ) /8 if n is not root
volume(n) = (2.16)

volume(entirespace) if n is root

Octrees enable multi-resolution representation of the environment, with higher reso-
lution in areas of interest and lower resolution in empty or homogeneous regions. This
property makes them particularly suitable for large-scale outdoor environments and
scenarios with varying detail requirements. The OctoMap framework [43] combines
octrees with probabilistic occupancy estimation, enabling efficient 3D mapping with

the ability to represent unknown space explicitly:

(zn) - p(n|z1)
p(2i|21)

p(n|z) =2 (2.17)

where p(n|z;) is the posterior occupancy probability of node n given all measurements

Z1-
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2.1.3 Multi-Modal Perception

Multi-modal perception systems integrate information from multiple sensing modal-
ities to achieve more robust and comprehensive environmental understanding. This
section presents theoretical frameworks and practical approaches for multi-modal fu-

sion.

Theoretical Foundations of Multi-Modal Fusion

From an information-theoretic perspective, the benefit of multi-modal fusion arises
from complementary information across modalities. The mutual information between
multiple modalities X', X2, ..., X™ and the environment state Y can be decomposed

as:

M M
I(XN X2 XMY) =) I(XhY) =) I(X5X . XX XMy

. . (2.18)

where I(X*;Y') represents the information content of modality ¢ with respect to Y, and

the second term represents redundancy across modalities. The effectiveness of multi-

modal fusion depends on both the complementarity of information across modalities

and the quality of integration methods. Fusion approaches can be categorised based

on the level at which information from different modalities is combined [3].

Early, Late, and Intermediate Fusion

Early fusion combines raw data or low-level features from different modalities before
processing:

F=¢(X) X2 ... XM) (2.19)

where [X*1, X2, ..., XM] represents the concatenation of features from different modal-

ities, and ¢ is a function that maps the concatenated features to a joint representation

20



2.1. Robotic Perception and Environmental Representation Fundamentals

F'. Late fusion combines predictions or decisions from modality-specific models:

Y = g(fi(XY), fo(X?),..., far(X™M)) (2.20)

where f; is the model for modality i, and ¢ is the fusion function [3]. Intermediate

fusion combines features at multiple levels of abstraction:

where F! represents features from modality i at level [ [79]. Each fusion approach
offers distinct advantages and limitations. Early fusion can capture low-level corre-
lations between modalities but may struggle with modalities of different dimension-
alities or sampling rates. Late fusion is more modular and can leverage pre-trained
unimodal models but may miss cross-modal interactions. Intermediate fusion aims
to balance these trade-offs by integrating information at multiple levels but often

requires more complex architectures [3].

Modality Coherence and Integration Challenges

The coherence between modalities—defined as the degree of correlation in the in-
formation they provide—significantly influences fusion strategies [3]. High-coherence
modality pairs exhibit strong correlations in their information content, facilitating
simpler fusion approaches. In contrast, low-coherence modalities may contain more
complementary information but require more sophisticated integration methods [46].

Modality coherence can be quantified using mutual information:

I(X7 X9)

C(X', X7) = ) A0

(2.22)

where I(X*%; X7) is the mutual information between modalities ¢ and j, and H(X") is

the entropy of modality 1.
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Challenges in multi-modal integration include:

e Alignment and registration: Different modalities may have different spatial res-

olutions, fields of view, or sampling rates, necessitating careful alignment.

e Missing or corrupted data: Sensors may fail or provide unreliable data under
certain conditions, requiring robust fusion methods that can handle incomplete

information.

e Conflicting information: Different modalities may provide contradictory infor-
mation about the same scene element, necessitating conflict resolution strate-

gies.

e Computational efficiency: Processing multiple data streams increases computa-
tional requirements, which can be challenging for resource-constrained robotic

platforms.

Advanced fusion methods address these challenges through techniques such as at-
tention mechanisms, uncertainty modelling, and adaptive weighting of modalities
based on their reliability in different contexts [3]. These approaches enable robust
multimodal perception across a wide range of environmental conditions, supporting

advanced robot perception and decision-making capabilities.

2.2 Next-Best-View Planning

Next-Best-View (NBV) planning addresses the fundamental challenge of determining
optimal sensor configurations to maximise information gain about an environment or
object. This section examines the theoretical foundations, algorithmic approaches,
and evaluation metrics for NBV planning, providing the background for the semantic-

aware and hybrid quantum-classical approaches proposed in this thesis.
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2.2.1 Theoretical Foundations

Next-Best-View planning originated in the context of unknown environment explo-
ration and reconstruction, with pioneering work by Connolly et al. [22] and Maver et

al. [67] establishing the conceptual framework.

Problem Formulation

The NBV problem, initially approached through heuristic methods in early work by
Connolly [22], has evolved to be formalised as an optimisation problem over possible
viewpoints. In modern formulations, selecting from a set of candidate viewpoints
V = {vy,vq,...,v,}, the objective is to select the next viewpoint v* that maximizes

an information gain function I(v) [85]:
v = argmax I(v) (2.23)

For model-based NBV, where a coarse model of the object is available, the information
gain can be computed directly from the model [20]. In contrast, non-model-based
approaches operate without prior knowledge, requiring sequential decision-making as

information is accumulated [25].

At each step t of non-model-based exploration, the next best viewpoint v} is selected

based on the current knowledge state K;_1:
vy = arg max I(v|Ki—q) (2.24)
The knowledge state K, is updated after each observation:
Ki =K1 UO(vy) (2.25)

where O(v}) represents the observation obtained from viewpoint v;.
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Mathematical Properties

The NBV problem exhibits several mathematical properties that influence algorithm

design and performance:

Non-convexity: The information gain function /(v) is generally non-convex, making
global optimisation challenging and often necessitating sampling-based or heuristic

approaches.

Submodularity: Under certain conditions, the information gain function exhibits
submodularity, meaning that the marginal benefit of adding a new viewpoint decreases

as more viewpoints are selected:

I(AUv) = I(A) > I(BUv)—I(B), YACB,v¢B (2.26)

This property enables near-optimal greedy solutions with theoretical performance

guarantees.

Diminishing returns: The incremental information gain typically decreases as more

observations are collected, following a logarithmic or exponential decay pattern [12]:

dI(t)
o —al(t) (2.27)

where « is a decay constant and ¢ represents time or the number of observations.

2.2.2 Algorithmic Approaches

NBYV planning algorithms can be categorised based on their search strategy, infor-
mation gain metrics, and application domain. This section examines key algorithmic

approaches and their relative strengths and limitations.
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Sampling-Based Methods

Sampling-based NBV methods generate candidate viewpoints through random sam-
pling or structured sampling strategies [96, 12]. These approaches are particularly
effective in large or complex environments where exhaustive evaluation of all possible
viewpoints is computationally infeasible. The Rapidly-exploring Random Tree (RRT)
algorithm [60] and its variant RRT* [53] are commonly employed for exploring the
configuration space. The RRT algorithm incrementally builds a tree 7 = (V, E) in
the configuration space C, starting from an initial configuration g,;;. At each itera-
tion, a random configuration g..,q is sampled, and the nearest node ¢e,r in the tree

is identified:

Qnear = arg min |q - C]rand| (228)
qeVv
A new node ¢y 18 generated by moving from ¢,e.r towards ¢anqg by a step size Ag:

Aq

]'7 ° qr nd — qH T 229
|qrand - QHear|) ( * e ) ( )

Gnew = Gnear 1 min (
The node ¢yew is added to the tree if it passes collision checks against known obstacles
[60]. RRT* improves upon RRT by incorporating two additional steps [53]:
Parent selection: Choose the parent node that minimises the cost to reach guew:

Gparent — arg qgggln C(q) + d(Q7 QHew) (230>

where ¢(q) is the cost to reach node ¢ from the root, d(q, gnew) is the distance between

q and @pew, and Qpear 18 the set of nodes within a specified radius of gpey-.

Rewiring: Update the parent of existing nodes if reaching them through gpe, results

in a lower cost:

Vq € Quear : if ¢(qnew) + d(qnew, ) < ¢(q) then parent(q) < Gnew (2.31)
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These modifications ensure asymptotic optimality, guaranteeing convergence to the

optimal solution as the number of samples approaches infinity.

In the context of NBV planning, RRT-based methods grow trees in the known free
space and evaluate candidate viewpoints along the branches based on expected infor-
mation gain and movement cost. For unknown environment exploration, the Receding
Horizon Next-Best-View (RH-NBV) approach [12] has demonstrated particular effec-

tiveness by combining RRT-based exploration with receding horizon control:
* I(v) - ~4®) 9.
b* = arg max ze; (v) -y (2.32)

where B is the set of all branches in the RRT, I(v) is the information gain at viewpoint

v, v is a discount factor, and d(v) is the depth of node v in the tree.

Deterministic Approaches

Deterministic NBV methods rely on analytical criteria to determine optimal view-
points [35], [85]. These approaches often employ geometrical reasoning, voxel visibility

analysis, or information-theoretic metrics to evaluate viewpoint utility.

Frontier-based exploration [104] is a popular deterministic approach that directs the
robot towards boundaries between known and unknown regions. The frontier F is

defined as the set of known free cells that are adjacent to unknown cells:
F=ce Mfree | 30/ S N(C) : C/ S Munknown (233)

where Miee and M uimown are the sets of free and unknown cells in the map, re-
spectively, and N (c) is the set of neighboring cells of ¢. The next best viewpoint is

typically selected to minimise the distance to the nearest frontier:

= in min |v — 2.34
v* = argminmin[v — f| (2.34)
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Frontier-based methods have shown particular effectiveness in high-speed flight and
fast exploration tasks [21], but may struggle to generalise to other applications that

require more sophisticated information gain formulations.

For object reconstruction tasks, volumetric approaches evaluate viewpoints based on
the visibility of unknown voxels [96]. The information gain for a viewpoint v can be

formulated as:

I(v) = > Visible(z, v) (2.35)

xeMunknowanOV(U)
where FOV(v) is the field of view from viewpoint v, and Visible(z,v) is a binary

function indicating whether voxel z is visible from viewpoint v.

2.2.3 Information Gain Metrics

Information gain metrics quantify the expected utility of a viewpoint in terms of new
information about the environment or object of interest. Different metrics emphasise

various aspects of exploration, such as coverage, precision, or task relevance.

Visibility-Based Gain

Visibility-based metrics measure the number or proportion of unknown voxels that

would become visible from a candidate viewpoint [4]:

Lis(v) = > 1(z € Mynknown and Visible(z, v)) (2.36)
zeM

where 1(+) is the indicator function, and Visible(x, v) checks if voxel x is visible from

viewpoint v. Raycasting is commonly used to determine visibility:

1 if ray r,, does not intersect before reaching x
Visible(z, v) = (2.37)

0 otherwise
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where 7, , is the ray from viewpoint v to voxel x [12]. While visibility-based gain
is computationally efficient, it treats all unknown voxels equally, regardless of their

significance for the task at hand or their spatial relationship to the viewpoint.

Information-Theoretic Gain

Information theory provides a rigorous framework for quantifying information gain.
Entropy reduction measures the expected decrease in uncertainty about the environ-
ment:

Lentropy (v) = H(M) — Bz [H(M]2)] (2.38)

where H(M) is the entropy of the current map, and H(M|z) is the conditional
entropy after obtaining observation z from viewpoint v. For occupancy grid maps,

the entropy can be computed as:

H(M) ==Y [p(x)logp(z) + (1 — p(x)) log(1 — p(x))] (2.39)

reM
where p(z) is the probability of voxel x being occupied. Mutual information be-
tween the map M and a potential observation z from viewpoint v provides another

information-theoretic metric:
Iha(v) = I(M; z|v) = H(z|v) — H(z| M, v) (2.40)

where H(z|v) is the entropy of the observation given the viewpoint, and H (z| M, v) is
the entropy of the observation given both the map and the viewpoint. Information-
theoretic metrics provide a principled approach to uncertainty reduction but can be

computationally intensive for large environments or complex sensor models.
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Proximity-Based Volumetric Information

Delmerico et al. [25] introduced several proximity-based volumetric information gain

metrics that consider the spatial relationship between viewpoints and voxels:

Proximity Count (PC):

Ipc(v) = > ﬁ (2.41)

xeMunknownnFov(U)

Occlusion Aware (OA):

P(Visible(x, v
3 ( (z,v))

Ioa(v) = |z — o2

(2.42)
xeMunknowanOV(’U)

Area Factor (AF):

Inp(v) = 3 €08 O (2.43)

|z —f?
xEMunknowanOV(U)

where 0, , is the angle between the viewing ray and the surface normal at voxel .
These metrics account for the fact that closer observations generally provide more

accurate information, addressing a limitation of simpler visibility-based approaches.

Utility Functions with Cost Considerations

In practice, NBV planning must balance information gain with the cost of reaching

a viewpoint. Utility functions typically combine gain and cost terms:
U(v) =I(v) — AC(v) (2.44)

where I(v) is the information gain, C(v) is the cost (e.g., distance, energy, time), and
A is a weighting factor that determines the relative importance of gain versus cost

[12]. Schmid et al. [84] proposed a ratio-based utility function that eliminates the
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need for parameter tuning:
I(v)
C(v)

U(v) = (2.45)

This formulation naturally balances information gain against cost, avoiding the sen-

sitivity to parameter selection present in weighted-sum approaches.

2.2.4 Receding Horizon and Multi-Step Planning

While greedy NBV approaches select the single best next viewpoint, receding horizon
and multi-step planning methods consider sequences of viewpoints to avoid local

optima and improve global exploration efficiency.

Receding Horizon NBV

Receding Horizon Control (RHC), also known as Model Predictive Control (MPC),
optimises over a finite planning horizon but only executes the first step before replan-
ning:

P* = arg max Latn (P) (2.46)

where P is the set of feasible paths, and I, (P) is the cumulative information gain
along path P. The robot executes only the first action to reach the first viewpoint
vy € P*, then replans based on the updated knowledge state. This approach allows
the robot to adapt to new observations while still considering multi-step consequences

of its actions.

The RH-NBV algorithm [I3] combines RRT-based exploration with receding hori-
zon control. It grows an RRT from the current position, evaluates the information

gain along each branch, selects the best branch, and executes the first edge before
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replanning. The information gain for a path is computed as:

Tpan(P) = ) | 1(v) 7" (247)

veP
where 7 is a discount factor, and d(v) is the depth of node v in the tree. The discount
factor prioritises near-term gains over long-term ones, addressing the increasing un-
certainty in future observations. The RH-NBV approach has demonstrated superior
performance compared to greedy methods, particularly in complex environments with
local minima [12} [68]. By considering multiple steps ahead, it can identify paths that

may have low immediate gain but lead to high-gain regions later.

POMDP Formulations

The NBV problem can be formulated as a Partially Observable Markov Decision
Process (POMDP), providing a principled framework for sequential decision-making

under uncertainty:

POMDP = (S, A, Z,T,0, R, ~) (2.48)

where: S is the state space (e.g., robot pose and environment map), A is the action
space (e.g., robot movements), Z is the observation space (e.g., sensor measurements),
T(s,a,s") = P(s'|s,a) is the transition function, O(s, a, z) = P(z|s, a) is the observa-

tion function, R(s,a) is the reward function, v is the discount factor.

The objective is to find a policy 7 that maximises the expected discounted reward:
V7 (b) = En [Zt — 0%~'R(ss,az) | by = b (2.49)

where b is the belief state (probability distribution over states). Exact POMDP
solutions are computationally intractable for large state spaces typical in robotics.
However, approximate methods such as Monte Carlo Tree Search (MCTS) [87] and
Point-Based Value Iteration (PBVI) [77] have shown promise for NBV planning in
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specific scenarios.

Information-Theoretic Planning

Information-theoretic planning approaches optimise sensor trajectories to maximise

information gain over extended horizons. The objective is to find a trajectory 7 =

(v1,v9,...,vr) that maximizes the cumulative information gain:
T
" = arg mTax; I(vg|vr, .. v01) (2.50)

subject to dynamic constraints:

Vi1 = f(vg, ug) (2.51)

where f is the system dynamics, and u; is the control input. Hollinger et al. [42]
proposed the use of Gaussian processes to model the information content in the
environment, enabling more effective planning by capturing the spatial correlation

between measurements:

1 Y1
I(vg; vgga|vn, - vpmg) = —logﬂ

2.52
2o (2:52)

where ;4 is the predicted covariance matrix, and ;1,1 is the updated covariance

matrix after incorporating the measurement at vy .

2.2.5 Current Limitations and Research Gaps

Despite significant progress in NBV planning, several limitations and research gaps

remain, particularly in the context of complex environments and specialised tasks.
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Semantic Awareness

Traditional NBV approaches focus on geometric information gain without consider-
ing the semantic content of the environment. All unknown voxels are treated equally,
regardless of their significance for the task at hand. This limitation becomes particu-
larly apparent in scenarios where certain objects or regions are more important than
others, such as search and rescue operations or object-specific exploration. Semantic
information, such as object categories, functional areas, or points of interest, could be
integrated into the information gain metric to guide exploration towards task-relevant
regions:

Isemantic(v) - ]geometric(v) + )\S : S(’U) (253)

where S(v) is a semantic relevance function, and \g is a weighting factor. Few works
have explored semantic-guided NBV planning, leaving room for novel approaches that

leverage rich semantic understanding for more efficient exploration.

Adaptation to Dynamic Environments

Most NBV approaches assume static environments, where the only changes result
from the robot’s observations. However, many real-world scenarios involve dynamic
elements, such as moving objects, changing lighting conditions, or evolving objectives.
Adapting NBV planning to dynamic environments requires modeling and predicting

changes in the environment:

p(3t+1|5t7at) = /p<5t+1|5t,at,wt) 'p(wt|5t)dwt (2'54)

where w; represents external disturbances or environmental dynamics. Few works
have addressed truly dynamic NBV planning, leaving opportunities for novel ap-

proaches that explicitly consider environmental changes in the planning process.
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Task-Specific Exploration

Different tasks may require different exploration strategies and information gain met-
rics. For instance, object search requires focusing on potential object locations, while
mapping aims for comprehensive coverage. Task-specific NBV planning could incor-

porate task objectives directly into the utility function:
Utask (v) = Ez|v[AUtask(z)] (2.55)

where AU (2) is the expected improvement in task utility after obtaining observa-
tion z. The semantic-aware NBV approach proposed in this thesis addresses several
of these limitations by incorporating semantic information to guide viewpoint selec-
tion, enabling more efficient and task-relevant exploration in complex environments.
Additionally, the hybrid quantum-classical NBV approach tackles the computational
complexity challenge by leveraging quantum computing advantages for the combina-

torial aspects of viewpoint planning.

2.3 Quantum Computing in Computer Vision

Quantum computing represents a paradigm shift in computational approaches, offer-
ing potential advantages for solving complex problems in computer vision and robotic
perception. This section explores the principles of quantum computing relevant to
visual perception, presents algorithmic approaches, and investigates emerging appli-
cations in perception and planning, establishing the theoretical foundation for the

hybrid quantum-classical NBV algorithm proposed in this thesis.
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2.3.1 Quantum Computing Fundamentals

Quantum computing leverages quantum mechanical phenomena to perform computa-
tional tasks with potentially exponential speedups compared to classical approaches
for certain problems. Understanding these fundamental principles is essential for

developing effective quantum algorithms for computer vision tasks.

Quantum Bits and Quantum States

The fundamental unit of quantum information is the quantum bit or qubit, which
exists in a superposition of states until measured. Unlike classical bits that can only

be 0 or 1, a qubit’s state is represented as:

[¥) = al0) + 5[1) (2.56)

where a, § € C are complex probability amplitudes satisfying |a|* 4 |3|*> = 1, and |0)
and |1) are the computational basis states. The state of an n-qubit system resides in
a 2"-dimensional Hilbert space and can be written as:

2" —1

) = aili) (2.57)

=0

where Zia Y2 =1, and |i) represents the computational basis state corresponding
to the binary representation of integer . This exponential scaling of the state space
with the number of qubits is a key source of quantum computational advantage,
allowing quantum systems to represent and process vast amounts of information with

relatively few qubits.
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Key Quantum Phenomena

Several quantum phenomena provide potential computational advantages for com-

puter vision applications:

Superposition allows qubits to exist in multiple states simultaneously, enabling paral-
lel computation. When n qubits are placed in superposition, the system can represent
2" classical states simultaneously. For image processing, this could theoretically allow

simultaneous operations on all pixels.

Entanglement creates non-classical correlations between qubits. For a two-qubit sys-

tem, an entangled state cannot be factored as a product of individual qubit states:

‘wentangled> 7A |¢1> & ’¢2> (258)

Entanglement enables quantum systems to exhibit correlations stronger than any
classical system, providing resources for quantum teleportation, superdense coding,

and certain speedups in quantum algorithms.

Quantum Interference allows probability amplitudes to constructively or destructively
interfere, directing the quantum system toward desired states and away from unde-
sired ones. This phenomenon is central to quantum algorithms like Grover’s search

and quantum walks.

Quantum Circuits and Gates

Quantum computations are implemented using quantum gates, represented math-
ematically as unitary matrices that act on quantum states. These gates form the
fundamental building blocks of quantum circuits, analogous to logic gates in classical

computing but with significantly different properties and capabilities.
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Pauli Operators The Pauli operators (X, Y, Z) are fundamental single-qubit gates
that correspond to rotations around the respective axes of the Bloch sphere, a geo-

metrical representation of a qubit’s state space:
0 1 '

The Pauli-X gate (quantum NOT) flips the computational basis states:
X[0) = 1),  X[1) = 10) (2.60)
The Pauli-Y gate performs a bit flip with an additional phase shift:
Y|0) =11), Y1) = —i|0) (2.61)
The Pauli-Z gate (phase flip) leaves |0) unchanged but applies a phase of —1 to |1):
Z0) = 0),  Z1) = —|1) (2.62)

These Pauli operators satisfy important algebraic properties:

X?=Y?*=27?=1] (2.63)
XY =iZ YZ=iX, ZX=iY (2.64)
(X,Y]=2iZ, [Y,Z]=2iX, [Z X]=2iY (2.65)

where [ is the identity operator and [A, B] = AB — BA is the commutator.
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Rotation Gates Rotation gates implement rotations around the Bloch sphere axes
by arbitrary angles. For a rotation angle #, these gates are defined as:
cos(0/2) —isin(0/2)

R,(0) = e %/2 = cos(0/2)1 —isin(A/2)X = (2.66)
—isin(f/2)  cos(0/2)

Ry (6) = P2 — cos(9/2)] — isin(oy2)y = |2 —smlO/2) (2.67)
sin(0/2)  cos(6/2)

R.(0) = e %%/% = cos(0/2)I — isin(h/2)Z = (2.68)

These rotation gates are particularly important in variational quantum algorithms,

where their rotation angles serve as tunable parameters.

Hadamard Gate The Hadamard gate (H) creates superposition states and is de-

fined as:

H=_—— (2.69)

It transforms the computational basis states into equal superpositions:

H{0) = % = ) (2.70)

HIL) = % ~ ) (2.11)

The Hadamard gate is self-inverse: H? = I, and when applied to all qubits in a

register, it creates a uniform superposition of all computational basis states:

2m—1

H®|0)®" = \/% Z% |z) (2.72)
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Phase Gates The phase (S) and 7/8 (T) gates implement phase rotations:

10 1 0
S = =z, T= ‘ =S (2.73)
0 ¢ 0 em/4
These gates, together with the Hadamard gate and the CNOT gate, form a universal

set for quantum computation, meaning any unitary operation can be approximated

to arbitrary precision using only these gates.

Multi-Qubit Gates Multi-qubit gates enable interactions between qubits, which is
essential for creating entanglement and implementing complex quantum algorithms.
The CNOT (Controlled-NOT) gate is a two-qubit gate that performs an X operation

on the target qubit if the control qubit is in state |1):

1000

0100
CNOT = (2.74)

0001

0010

The action of CNOT on computational basis states is:

CNOT|00) = |00), CNOT|01) = |01) (2.75)
CNOT|10) = [11), CNOT|11) = [10) (2.76)

The CNOT gate is central to quantum computing as it can create entanglement. For

example, applying CNOT to |+)]0) creates a maximally entangled Bell state:

100) + [10)  [00) + |11)
V2o V2

CNOT(H ® I)|00) = CNOT (2.77)
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The SWAP gate exchanges the states of two qubits:

SWAP = (2.78)

o o o =
S = O O
o O = O
_ o O O

The Toffoli gate (CCNOT) is a three-qubit gate that performs an X operation on
the target qubit if both control qubits are in state |1). It is a universal gate for
classical reversible computation and plays a key role in quantum error correction and

fault-tolerant quantum computing.

Parameterized Quantum Circuits Parameterised quantum circuits, central to
variational quantum algorithms, combine fixed gate structures with variable rotation

angles:
L

U(@) = HUZ(01> =UL(0r) - - Us(02)U1(61) (2.79)

=1
where each layer U;(6;) typically includes parameterized rotation gates and fixed
entangling operations:

U(01) = E [ [ i = 1"Ri(61,) (2.80)

Here, R;(0,;) represents a rotation gate applied to qubit ¢ with angle 6;;, and Ej is an
entangling operation such as a layer of CNOT gates between adjacent qubits. These
parameterised circuits form the basis for quantum machine learning and optimisation

applications, including those in computer vision and viewpoint planning.

Quantum Circuit Measurement Quantum computation concludes with mea-

surement, which collapses the quantum state to a classical state. Measurement in the
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computational basis is represented by projection operators:
Py =10)(0], P = [1)(]] (2.81)

For a state [¢)) = a|0) + SB|1), measurement yields outcome 0 with probability |/
and outcome 1 with probability |3]?. In quantum algorithms for computer vision,
measurements are typically performed multiple times (shots) to estimate expectation

values of observables:

(0) = (¥|O[y) (2.82)

where O is an observable, often expressed as a sum of Pauli operators.

2.3.2 Quantum Algorithms for Image and Vision

The unique properties of quantum computing provide opportunities to develop al-
gorithms that can potentially outperform classical approaches for specific computer
vision tasks. This section examines key quantum algorithms with applications in

computer vision.

Quantum Search and Optimization

Grover’s algorithm [38] provides a quadratic speedup for unstructured search prob-
lems, requiring O(v/'N) operations to find a marked item in a database of size N,
compared to O(N) for classical algorithms. In robotics, Grover’s algorithm can be

effectively applied to path planning problems [16].

For a robotic path planning task, the Grover operator G = U,U,, is constructed by
combining two key components: the diffuser Uy, = 2|¢)(¢)| — I and the oracle U,

which tests potential solutions by marking desired states with phase inversion. The
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diffuser can be implemented as:
Uy = H* X (MCZ) Xk HE* (2.83)

where H is the Hadamard gate, X is the Pauli-X gate, and MCZ is the multi-

controlled-Z operation.

For path planning in an n x n grid map, the algorithm encodes both positions using
nuap(n) = [logyn?| qubits and movement directions with additional qubits. The
oracle U, is decomposed into M and T blocks, where M performs quantum moves
and T tests if the output contains the target cell. This quantum approach has been
shown to find optimal paths with only O(\/E_/S ) time complexity, where E represents

the number of elements in the search space and S the number of solutions [16].

The Quantum Approximate Optimization Algorithm (QAOA) [29] has shown promis-
ing applications in image segmentation problems that can be formulated as quadratic
unconstrained binary optimisation (QUBO) [61]. For geometric-constrained image
segmentation, the problem is first modeled as finding a minimum s-¢ cut in a directed

graph. This is converted to a QUBO formulation with an objective function:

Fo=2"Qx = Z Qijxiz; (2.84)

1,J

where © = [z1, 9, ...] is a binary vector representing graph nodes, and @ is derived
from the adjacency matrix of the graph with appropriate modifications. This QUBO

problem is then mapped to finding the ground state of a quantum Hamiltonian:

1-Z;1-Z;
'7]’

where Z; and Z; are Pauli-Z operators. QAOA approximates the ground state through
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a parameterised quantum circuit:

107, B)) = Un(Bp)Uc(Vp) -+ - Une(B1)Uc (1) [to) (2.86)

where Ug(y) = e~"H¢ is the cost unitary, Uy (3) = e~ M is the mixer unitary, and
|tg) is an initial state. The parameters v and 8 are optimized classically to min-
imize the expectation value (V(v, 8)|Hc|w (7, 5)), which corresponds to the QUBO
objective function value. This hybrid quantum-classical approach has been shown
to successfully identify optimal segmentation surfaces in both 2D and 3D images,
while incorporating smoothness constraints that are essential for realistic delineation
of anatomical structures [61]. Importantly, the quantum implementation can identify
multiple globally minimal solutions, providing alternative valid segmentations that
classical algorithms might miss. QAOA and related variational quantum algorithms
represent a promising direction for quantum advantage in computer vision tasks that
involve combinatorial optimisation, especially when constraints and domain knowl-

edge need to be incorporated into the segmentation process.

Quantum Machine Learning for Vision

Quantum machine learning algorithms leverage quantum computation to enhance
classical machine learning tasks applicable to computer vision [I1]. Quantum Prin-
cipal Component Analysis (QPCA) [64] exponentially reduces the dimensionality of

quantum data:
k
p= Z Ail i) (il (2.87)
i=1

where p is the density matrix of the input data, \; are the k largest eigenvalues, and
|1;) are the corresponding eigenvectors. QPCA can be applied to feature extraction
and dimensionality reduction in image processing, potentially offering exponential

speedup compared to classical PCA for certain data structures. Quantum Support
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Vector Machines [81] use quantum algorithms to compute kernel functions exponen-

tially faster than classical algorithms:

K (i, 25) = ((x:)|o(x)))[* (2.88)

where |¢(x)) is a quantum feature map encoding classical data into quantum states.

Quantum Neural Networks [30] use parameterized quantum circuits as models:
fo(x) = (0[UT(6)OU (8)|x) (2.89)

where U(0) is a parameterized quantum circuit, |z) is the input state, and O is an
observable. These quantum machine learning approaches offer potential advantages
for image classification, object detection, and other computer vision tasks, particularly

as quantum hardware continues to advance [11].

2.3.3 Quantum Approaches for Computer Vision Tasks

Recent research has applied quantum computing to specific computer vision tasks,
demonstrating potential advantages over classical approaches for certain problem in-

stances.

Quantum Algorithms for Feature Extraction and Matching

Quantum algorithms for feature extraction leverage quantum properties to achieve
computational speedups in image processing tasks. For feature matching and corre-
spondence problems, quantum computing has shown significant promise. Benkner et
al. [7] pioneered quantum approaches to graph matching problems, which are funda-
mental in computer vision for establishing correspondences between features. They
reformulated quadratic assignment problems (QAPs) with permutation matrix con-

straints as quadratic unconstrained binary optimisation (QUBO) problems suitable
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for quantum annealing:

i =zt r 2.
)r(ré%f(w) v We+cuw (2.90)

where P, is the set of permutation matrices, and W and ¢ encode the matching costs.
Their Quantum Graph Matching (QGM) method efficiently implements permutation
constraints through innovative quantum Hamiltonian formulations that maximise the
spectral gap, increasing the probability of measuring valid permutation matrices in a
single run. The approach was successfully demonstrated on a D-Wave quantum an-
nealer for 3D shape matching applications, showing competitive performance against

classical relaxation methods.

Building on this foundation, Benkner et al. [] later introduced Q-Match, an iterative
quantum method for solving correspondence problems that addresses key limitations
of previous quantum approaches. Unlike earlier methods that directly enforced per-
mutation constraints via penalty terms—which significantly limited success probabil-
ity on quantum hardware—Q-Match employs a cyclic a-expansion strategy inspired
by classical computer vision algorithms. This novel formulation allows the method to
update current correspondence estimates through a series of smaller QUBO problems
that implicitly enforce the permutation constraints. By solving:

aerg)%{l}m " Wa (2.91)
where « determines whether to apply specific permutation cycles and W encodes the
energy changes, Q-Match efficiently navigates the solution space while guaranteeing
valid permutations. This approach enabled the matching of substantially larger point
sets (up to 502 vertices compared to previous quantum methods’ limit of 3-4 points)
and demonstrated performance comparable to classical state-of-the-art methods on
the FAUST dataset [14]. The ability to scale to problems an order of magnitude larger
represents a significant advancement in practical quantum computing applications for

computer vision tasks.
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Most recently, Bhatia et al. [9] proposed CCuantuMM, advancing quantum shape
matching to handle multiple shapes with guaranteed cycle consistency. Cycle consis-
tency ensures that following correspondences around a chain of shapes returns to the
original point—a critical property for multi-shape alignment that previous quantum
methods could not guarantee. CCuantuMM introduces a novel approach that reduces
the N-shape matching problem to a series of three-shape matching subproblems, en-
abling linear scaling with the number of shapes. The method integrates visibility
and semantic information while carefully managing higher-order quantum terms that
would exceed current hardware capabilities. By formulating shape triplet matching
as QUBOs that preserve cycle consistency by construction, CCuantuMM can match
up to 100 shapes—a significant improvement over previous quantum methods—while
producing results competitive with classical state-of-the-art approaches. The work
demonstrates that by designing algorithms within hardware constraints and discard-
ing negligible higher-order terms, quantum methods can effectively address complex

computer vision problems that were previously inaccessible to quantum computing.

Quantum Approaches for Multi-Model Fitting and Motion Analysis

Recent advances have extended quantum computing to complex computer vision
tasks, leveraging adiabatic quantum computing (AQC) to solve combinatorial op-

timisation problems in visual perception.

Quantum Multi-Model Fitting (QUMF) [31] reformulates geometric model fitting as a
quadratic unconstrained binary optimisation (QUBO) problem suitable for quantum
annealing. QUMF addresses the task of selecting the best subset of models to explain

data points as a set cover problem:
min z' Qz +s'z (2.92)

ze{0,1}™

where z represents model selection variables, and () and s encode both data fidelity
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and constraint satisfaction. The method demonstrates competitive performance on
multi-homography estimation and motion segmentation tasks, with a decomposed

version (DEQUMF) handling larger problem instances by iterative pruning.

Quantum Motion Segmentation [2] introduces the first algorithm for motion seg-
mentation using quantum optimisation. It maps the synchronisation formulation of

motion segmentation to a QUBO problem:

min 2" (Ijxa ® (22 — 1pxp))z (2.93)

ze€{0,1}¢

where Z is the preference-consensus matrix encoding which points belong to the same
motion. This approach achieves competitive accuracy with classical state-of-the-art

methods while potentially offering advantages for large-scale problems.

Adiabatic Quantum Computing for Multi-Object Tracking [106] formulates tracking

as an assignment problem between detections and tracks across frames:
minz’ Q'z + bz (2.94)

where z represents detection-to-track assignments, (' incorporates pairwise similarity
costs, and b’ encodes linear terms and constraints. A unique feature is the adaptive
Lagrangian multiplier optimisation to improve the spectral gap and solution proba-
bility. The authors demonstrate that their approach is already solvable on current
quantum hardware for small examples and achieves competitive performance with

state-of-the-art methods.

Common to these approaches is the formulation of vision problems in terms of an

Ising model Hamiltonian:

H = Z Jz‘jO'iO'j —+ Z hiO'i (295)
%, i

47



Chapter 2. Background and Literature Review

where 0 € {—1,+1} represents spin variables, and parameters J;; and h; encode
problem-specific costs and constraints. The potential advantage of quantum ap-
proaches lies in efficiently exploring the exponentially large solution space of these
NP-hard problems, although current hardware limitations restrict experimental vali-

dation to small-scale problems.

These approaches represent significant steps toward leveraging quantum computing
for vision tasks that involve combinatorial optimisation, indicating the potential for

quantum advantage as hardware capabilities advance.

48



Chapter 3

Semantic-aware Next-Best-View
for Multi-DoF's Mobile System in
Search-and-Acquisition Based

Visual Perception

3.1 Abstract

Efficient visual perception using mobile systems is crucial, particularly in unknown
environments such as search and rescue operations, where swift and comprehensive
perception of objects of interest is essential. In such real-world applications, objects
of interest are often situated in complex settings, making the selection of the 'Next
Best’ view based solely on maximizing visibility gain suboptimal. We argue that
incorporating semantics—providing a higher-level interpretation of perception—can
significantly contribute to the selection of viewpoints for various perception tasks.
In this study, we formulate a novel information gain that integrates both visibility

and semantic gain in a unified form to select the semantic-aware Next-Best-View.
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Next view
~ > candidate 2

Unobserved Region

Highlight: Refrigerator

Figure 3.1: When the refrigerator is designated as the object of interest, next view
candidate 1 provides higher semantic gain while next view candidate 2 offers higher
visibility gain.

We also design an adaptive strategy with termination criterion to facilitate the two-
stage search-and-acquisition manoeuvre on multiple objects of interest aided by a
multi-degree-of-freedoms (Multi-DoFs) mobile system. To evaluate our approach, we
introduce several semantically relevant reconstruction metrics, including perspective
directivity and the region of interest (ROI)-to-full reconstruction volume ratio. Simu-
lation experiments demonstrate that our approach outperforms the existing methods
by up to 27.46% in the ROI-to-full reconstruction volume ratio and 0.88234 in average
perspective directivity. Furthermore, the planned motion trajectory exhibits better

perceiving coverage toward the target.

3.2 Introduction
Efficient visual acquisition is a crucial aspect of unknown scene perception using mo-

bile platforms, providing essential information for various manipulation tasks, such as

search and rescue operations. Multi-DoFs mobile systems equipped with cameras have
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become increasingly popular due to their high mobility and agility, making them well-
suited for a wide range of applications. Specifically, autonomous visual acquisition
by multi-DoF mobile systems (e.g. unmanned aerial vehicles, UAVs) in unknown and
inaccessible environments has proven to be an effective means in search and rescue,
reducing the need for professional remote control skills among emergency personnel.
However, exhaustive observation is a time-consuming and resource-intensive process.
To ensure an efficient visual perception process, it is vital to select adaptive views
that provide the most information. Next-Best-View (NBV) was initially presented
for an unknown area exploration using the mobile robot [12] [68, 86, T03], usually a
finite iteration random tree is grown in the known free space, e.g., Rapidly-exploring
Random Tree (RRT), RRT* [60], 53] then the best branch is selected by maximizing
the gain (e.g., the amount of unobserved space that can be observed) while minimiz-
ing the moving cost (e.g., distance or time cost). After that, it was also adopted to
the path planning for single object surface reconstruction [57, 58], online inspection
[90, 911, [7T] and so on. However, the existing studies determining the next best view
focus on information gain by evaluating the visibility of unknown voxels, regardless
of their semantics. Unlike the previously mentioned scenarios, visual perception on
the objects of interest under complex environments should be semantically selective
rather than solely focused on perceiving the unknowns. In other words, the ”Next
Best” viewpoint in a complex environment cannot be evaluated effectively without the
relevant semantic information. In Figure semantically informative views should
be selected as a higher priority to ensure the efficiency of visual perception on the

specific target using mobile systems.

In this work, we propose a semantic-aware NBV scheme for efficient visual perception
under complex environments and implement it in a two-stage search-and-acquisition
manoeuvre aided by the multi-DoF's mobile system. We develop a novel informa-
tion gain formulation which integrates both semantic gain and visibility gain. We

also design an adaptive strategy to balance these two components so that the mobile
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robot can perform both search and acquisition operations on specified semantically
important objects. We evaluate the proposed approach using different self-build sce-
narios in the simulation environment. The results we obtained demonstrate that
the proposed approach significantly improves the efficiency of visual perception on
specified objects under complex environments through evaluating the reconstruction
progress against region of interest (ROI) in volume, ROI-to-full reconstruction vol-
ume ratio and perspective directivity. Both the motion planning and reconstruction
are implemented based on the voxblox [74] as the map representation, which employs
Truncated Signed Distance Fields (TSDFs) to represent the object surface. Then, the
RRT™* is generated in the observed free space. To the best of our knowledge, this is
the first work that investigates semantic-aware NBV for search-and-acquisition-based
visual perception by mobile systems, which integrates the contribution from both
semantic gain and visibility gain in a unified form for evaluating and selecting the
next viewpoint. We demonstrate its capability in the application of different complex

environments.

The main contributions of this work include:

1. We present a novel information gain formulation for evaluating the candidate view-
points that integrates both semantic gain and visibility gain. Such novel formula-
tion can be applied to many other application scenarios in which the visual data

acquired contain rich semantics of the complex environment.

2. We design an adaptive strategy with termination criterion to balance the semantic
and visibility terms so that the mobile platform can perform an effective two-
stage search-and-acquisition manoeuvre on the specified object or multiple objects
under the complex environment. The principle behind this two-stage approach
can also be applied to scenarios in which the objective of the task can be properly

decomposed to facilitate effective implementation.

3. To assess this novel formulation, we also introduce several evaluation metrics to
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characterize the system performance and demonstrate the efficiency in perceiving
the specific objects under the complex environment while the data acquisition

mobile system is undergoing multi-DoF's motion.

The paper content is organized as follows: an overview of the related work and how
we step further is presented in Section We introduce the proposed system and
showcase its effectiveness in visual acquisition on the objects of interest in simulation
experiments in Sections [3.4] and [3.5] Finally, we analyze the results obtained and

draw conclusions in Sections .6l and B.17

3.3 Related Work

3.3.1 DMobile System Informative Path Planning for Visual

Acquisition

Real-time informative path planning is typically the approach to tackle the non-
model-based visual acquisition problem that has no prior information or knowledge
of the environment or the target object. Thus, the non-model-based reconstruction
needs to plan each view in real-time, which is different from the model-based approach
that can be planned offline. There are two main approaches for evaluating new
viewpoints in 3D reconstruction: surface-based methods and volumetric methods.
Surface-based approaches represent the 3D shape as a mesh and evaluate new views
by analyzing the mesh surface [20]. For example, Krainin et al. [53] used a surface-
based approach that modelled uncertainty with a Gaussian distribution along each
camera ray and measured information gain as the total entropy reduction weighted
by surface area. Surface-based methods can evaluate the quality of the 3D model
during reconstruction but are computationally expensive due to complex visibility

calculations [85]. And more recently, dynamic objects can be accurately reconstructed
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by surface-based method [93]. Volumetric methods, on the other hand, represent the
3D shape with voxels, which allow for simple visibility calculations and estimating
the probability that each voxel is occupied [43]. Volumetric view evaluation casts
rays from the candidate next views through the voxel space to simulate how a camera
would sample the scene. Volumetric approaches are computationally more efficient
but may not directly provide a surface model of the 3D shape. After that, hybrid
methods [58] have combined both surface and volumetric representations to gain the
benefits of each. In summary, surface-based 3D reconstruction evaluates new views by
analyzing an estimated 3D mesh surface [20], [56], while volumetric methods evaluate
new views by casting rays through the voxel representation [43]. The hybrid methods

use both representations to improve the efficiency of 3D modelling [5§].

3.3.2 Next-Best-View and Related Applications

Next-Best-View is a widely-used greedy method to find local solutions from incom-
plete information. It was first addressed in the 1980s [22] 67]. It determines the
next viewpoint that can observe the largest information gain from the current map
iteratively, finally resulting in a completed observation. The information gain met-
ric depends on the specific application and requirements. In order to perceive the
unknown volumetric information, besides the early stage approach [4] which simply
counts the number of unknown voxels that can be seen, Kriegel et al. [58] use in-
formation theoretic entropy to estimate the expected observation. To achieve high
completeness of reconstruction, Delmerico et al. [25] proposed proximity count and
area factor volumetric information, optimizing the expected gain on a probabilistic
map. In 2016, Bircher et al. [I2] presented the receding horizon NBV (RH-NBV)
that adopts the core idea of model predictive control (MPC). It only executes the
first edge in the best branch of RRT to avoid the dilemma of local minima. It also
introduces the exponential discount term to penalize the long-distance path. In [84],

a novel utility function is formulated as the ratio of gain and cost, minimizing the
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number of parameters that need to be fine-tuned. Different from the NBV, which
belongs to the sampling-based informative viewpoint planning method, the frontier-
based method [104] consistently pursues the boundaries between the explored free
and unexplored areas in the occupancy map. The frontier-based method is widely
employed in high-speed flight and fast exploration tasks [21], [6], but it is difficult to
be generalized to other applications since it cannot have a flexible information gain
formulation in NBV fashion. In [50], an uncertainty-guided mapless NBV scheme
is proposed, leading to more accurate scene reconstruction. In [69], the predicted
fruit shapes are explicitly used to compute information gain for fruit mapping and

reconstruction.

Due to the simplicity of the purpose or the environment, there is no existing research
that has focused on the contribution of semantics on viewpoint selection in NBV
fashion in the application of either unknown exploration or single-object reconstruc-
tion. However, under challenging environments (e.g., search and rescue), searching
and perceiving the semantic informative views can help us model the object and its
surroundings more efficiently. For a more closely related work [54] that proposed a
semantically informed scheme for reconstruction. It presents the utility term multi-
plied by the entropy-formed gain, but does not formulate the semantic term explicitly.
It may result in penalization on the unknown exploration capability and would be

difficult to generalize to different tasks such as the search—and-acquisition mission.

3.4 Proposed Method

3.4.1 Problem Description

The problem considered in this work is that there exist one or more specific targets
A={A, ..., Ax}, located at the unknown positions in a 3D space V' C R3. Unlike the

other exploration approaches, the focus is not on observing all the free and occupied
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Figure 3.2: Diagram of the system overview: Both the occupancy map and labelled
map are constructed in parallel. The Semantic-aware NBV planner takes two maps
as the input. The reconstructed mesh is visualized using the occupancy TSDF map.

space (Viree and V.. C V) to achieve Vi U Ve = V. Instead, our approach
focuses on searching for and observing each target A, € A sequentially, We begin by
exploring space V' and once we identify a set of occupied voxels Va1 C Vi that
have been labelled as c;g—, it indicates that the target Aj; has been found. Then
the acquisition mode is initiated to retrieve not only the volume V4 of each target
Ayj, but also its surroundings (Viur—x C Viree OF Vi C Viee), with the objective
of effectively enlarging the observed volume Voya_j s.t. min |V,es—x| = min|Vig—s —
Voba—x| utilizing the most extensive accessible perspective coverage within the limited
time, where Vs represents the residue voxels of the target A,. The searching
and acquisition process will be switched to the next target A, after achieving the

maximum observation on Ay.

3.4.2 System Overview

Two maps are constructed to support the two-stage search-and-acquisition scheme
of the proposed semantic-aware NBV framework, an occupancy TSDF map and a

labelled TSDF map. Figure illustrates the overall system, where the occupancy
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TSDF map is incrementally updated from the observations. This is achieved by
utilizing the point cloud input from the Intel RealSense D435i depth camera and
the real-time pose of the UAV, following the approach proposed in voxblox [74].
The occupancy TSDF map provides information about the occupancy status of the
environment, which is essential for the planner to generate RRT™* in free space and
calculate visibility gain. Additionally, we constructed a labelled TSDF map inspired
by the work of Grinvald et al. [37]. This map is generated by raycasting the overlap
of the segmentation results from Mask R-CNN [4I] based on the RGB input and
the depth segments from the depth image input. Depth segments are identified by
finding the convex area of depth discontinuity in the depth image. The labelled TSDF
map provides a detailed representation of the environment’s geometry with semantics,
which is useful for the planner to identify the semantic gain. The different types of
map representations used in the system are organized into separate layers, with each
layer consisting of a set of blocks that are indexed based on their position in the map.
It is the same as the structure adopted in voxblox [74]. The mapping between the
block positions and their locations is stored in the hash table adopting voxel hashing
[73]. Finally, the acquisition result is visualized by the surface model generated from

the occupancy TSDF map.

3.4.3 Semantic-aware NBV Framework

From the representation of input TSDF maps, the space V is divided into separate
layers of unit-volume cubical voxel m, € M,, m; € M;, where M, and M, denote
the occupancy and labelled map respectively. Each voxel m,; in the occupancy map
M, consists of an associated centre position p;, distance d;, weight w; and state s;.
The centre position is represented by p; using the coordinate of its geometric centre,
and the voxel’s distance from the surface boundary is represented by d;. In order to
minimize the quadratic sensing error of the 3D sensor (e.g., depth camera), we adopt

the distance d; updating approach in [84]. The weight w; is a metric that refers to
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the reliability of the distance’s measurement. Here we employ the weighting method
formulated in voxblox [74]. The state s; of each voxel can be marked as "FREE”,
"OCCUPIED”, or ”"UNKNOWN?”. For the voxel m;; in the labelled map M;, there
are three additional associated properties instance label /;, semantic category ¢; and
label confidence [.;. In which the instance label is the index with the highest overlap
probability between the binary mask result m; from Mask R-CNN and the result r;
from depth segmentation. The corresponding semantic category is assigned to ¢; if
available; otherwise, the default semantics is the background. The label confidence
is the number of times the voxel has been labelled as [; divided by the observation

times.

Visibility Gain Formulation

In order to perceive the unknown area and search for the target we are interested

in, we define the visibility gain of a branch b associated n nodes {by, by, ...,b,} in

Equation
Visible(M,,b) = Y _ Visible(M,, b;) (3.1)
J

The visible voxels {mo1, Mo2, ..., Mom } at node b; are obtained using the intrinsic and

extrinsic parameters of the camera. Thus,
Visible(Mo,bj) = > V_gain(M,, mo;) (3.2)

For simply perceiving the unknown in the ’search’ stage, we employ the conventional
V _gain formulation that applies a unit increase in gain if the s; is "UNKNOWN”
and there is no gain for ”OCCUPIED” or "FREE” voxel.

o8



3.4. Proposed Method

Semantic Gain Formulation
Similar to the visibility gain, we have the semantic gain for each branch:
Semantic(M,,b) = Z Semantic(M;, b;) (3.3)
J

Again for each node b; on the branch,
Semantic(M,, b;) = Z S_gain(M;, my;) (3.4)

The S_gain for each visible voxel m,; at the specific node b; is formulated intuitively
favours the viewpoints that can observe the new area around the labelled target voxel.

As is shown in Equation 3.5

exp(—Aidy), if s; = Unknown

Mgt - f(mui), if s; = Occupied

&& c; = Ctgt—k
S_gain(M;,my;) = (3.5)
exp(—XAody;), if s; = Occupied

&& ¢! = g1 && ¢;! = background

0, otherwise

Where 7,4 denotes the influence factor that refers to the significance or priority of the
voxel with the target label. The exponential term represents the exponential discount
on the influence regarding the distance d;; of the current voxel to the target volume
Vopa_r of the target Ax. A, Ay are the weight term. In order to minimize the sensing
error and refine the voxel that has already been labelled as ¢;4—, we also introduced

the function f in Equation as its gain.

|Nrays(mli) - Nexp‘
1 + ‘Nrays(mli) - Ne:r:pl

Wy

flmui) = (1= ) (1 - ) (3.6)
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Where N,qys(my;) denotes the number of rays intersecting the my;, which is usually
proportional to the inverse of depth quadratically. N.,, represents the expected num-
ber of intersecting rays. The list £y stores the voxels which have been labelled with
the semantic category cig—x, and Ly is maintained to serve the calculation of the
shortest distance dj;. Inspired by [65], we maintain the listed voxels (i.e. Vpa_) in a

continuous and convex shape.

Adaptive Strategy with Termination Criterion

The proposed method integrates both visibility gain and semantic gain in a consistent

format in Equation [3.7]

Gain(Mo, My, K) = K - Visible(Mo, b;) fo(3,_,)
. (3.7)

+(1-K)- Z Semantic(M,, bj)fl(ézj_l)

J

Where 52;_1 denotes the edge distance from node b;_; to node b;. K is a bool variable
controlling the mode preference switching between ’search’ and ’acquisition’ in our
case. f, and f; represent the cost function penalizing on the distance of the long
edge. It could be in the form of exponential penalty [I3] 86], linear penalty [23] or a
reciprocal cost to reduce the complexity in tuning parameters [84]. Here, we employ

the format in [84]. \,, A; are the constant parameters.
b bj
fo(0y) ) =1/Xe0;) | (3.8)

A7) =1/Nb,) (3.9)

The state switching of the bool variable K ensures the smoothness of the stage chang-
ing between searching and acquisition in the manoeuvre. We also introduce a ter-

mination criterion for the acquisition stage to perform the target switching within a
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manoeuvre. We separate the semantic gain for each branch into three parts:

Sunknown Mb Z Z €$p A dlz (310)

b; my;|conl

Tefme(Mb Z Z Mgt - mlz (311)

b;  my;|con2

Ssurround Ml7 Z Z e:L‘p /\lel (312)

b; myi|con3
Where conl refers to condition 1 s; = Unknown, con2 refers to s; = Occupied && ¢; =
crgt—r and con3 refers to s; = Occupied && ¢;! = ¢ && ¢;! = background. The
planner starts with a zero-size Ly, K is initially assigned to 1. Once the list L.y is
expanded, K is switched to 0. The acquisition for one target is terminated if S round
is far greater than the summation of Sypinown and Syefine fOr cipre branches. Then K
flips to 1, the L,y is cleared, and meanwhile, the target label is switched to cg¢—(5+1)-
Once the list L4 is further expanded, K will be set to 0 again. This described

strategy can also be represented as Algorithm [I] below.

Algorithm 1 Semantic-aware NBV adaptive strategy with termination criterion
K=1,
while Occupancy TSDF and Labelled TSDF is updated do
last_size = L,4.size();
Maintain the list L;g;
if L;4:.size() > 0 then
Calculate Sunknoum; Sta'rget; Srefine
if Ly .size() > last_size then

K =0;
else lf Count(ssurround > Sunknoum + Srefine) > Cthre then
K=1;

Lyg.clear();
Target switch to ¢gi—(x+1);
end if
end if
gain = Gain(M,, M,, K);

end while
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3.5 Experiments and Results

3.5.1 Experimental Setup

Since the planner operates within a perception-planning-execution loop, realistic sim-
ulation is compulsory for the evaluation of the proposed scheme. The proposed ap-
proach is tested in the simulated world scenes in Gazebo, a 3D dynamic physical
robotics simulator. The developed behaviour of the UAV is operating on the Robot
Operating System (ROS) [7§]. Gazebo-based simulator RotorS [33] is employed to
provide an accurate model of the UAV’s physics. The underlying control hierarchy of
UAV is presented in [52].

The experiments are conducted in the simulation environment, three different settings
with two self-build scenes (a narrow collapsed scene with an uneven lighting condition
and a larger indoor house scene with ideal lighting condition) in Gazebo with the aid
of the individual models by Open Robotics [75] and Google Research [26]. All the
experiment results are collected on the machine with an Intel 8C16T Core i7-11700KF
at 3.6 GHz x 16 and an NVIDIA GeForce RTX 3060 graphic card.

Collapsed Room Scene

The Collapsed Room Scene used in the experiment is a 10 m x 10 m x 2.5 m map
with various furniture, industrial tools and a standing person within the obstacles.

The standing person is highlighted as the specific target.

Kitchen and Dining Room Scene

The Kitchen and Dining Room Scene used in the experiment is a 16 m x 10 m X
3.5 m map with common facilities in the family house and a standing person in the

corner. The standing person is highlighted as the specific target.
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Table 3.1: System parameters for all experiments

Max. velocity 0.8 m/s | Camera RGB FOV 68° x 42°
Max. acceleration 0.8 m/s? | Camera depth FOV 87° x 58°
Max. yaw rate  7/4 rad/s || Camera ray length 5m

Kitchen and Dining Room with Multiple Specified Objects

The third one has the same environment as the Kitchen and Dining Room Scene, but

the refrigerator and sink are highlighted as the specific targets.

The basic system parameters are consistent throughout all the experiments described
in this study, including the motion dynamics constraints of the UAV and the camera
parameters for acquisition, as shown in Table [3.1] For each experiment, the UAV
starts at the initial pose where the target is not within the field of view (FOV).

3.5.2 Evaluation Metrics

Since the proposed scheme is designed to execute the search-and-acquisition manoeu-
vre for the specific target, once the target is found, we aim to acquire the target from
multiple accessible viewpoints and achieve maximum reconstruction coverage of the
target itself and potential interactions with the surroundings. For most real-world
applications, the perception, planning and motion control pipeline of the UAV is ex-
pected to execute fully onboard. Thus, algorithmic complexity is also a crucial aspect

of the evaluations.

Perspective Directivity

In order to measure whether the UAV consistently perceives the target and its nearest
surroundings during the acquisition stage, we calculated the perspective directivity

in the target direction D,y for each selected view. The current position pt, and
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orientation o' of the UAV at view i are obtained from the odometry. The ground
truth position of the target p.y— is a privileged knowledge that we defined based on
the built scene and is not known to the planner. 0% and o} denote the pitch and yaw
angle of view i. The directivity at the target direction Dj,, , of view i is defined as
the cosine of the angle between the camera optical axis O.,,, and the line connecting
the current position p* with the target position pg—g, i.e.

Oi

L = [cos(0}) - cos(0}), cos(0%) - sin(ol), sin(o%)] (3.13)

Digt = cos < Of:am? (ptgtfk - pl) > (314)

ROI Reconstruction Progress in Volume and ROI-to-full Reconstruction

Ratio

In addition to the perspective directivity, we also periodically record the reconstructed
map and analyze the global growth of the reconstruction volume as well as the growth
within the region of interest. Again, the region of interest (ROI) is a privileged
knowledge that is not known to the planner. It comprises the target V5, and the
nearest surroundings V,._r. The volume ratio of reconstructed ROI over the full
reconstructed map indicates the strength of the purpose. A higher ratio implies less
reconstruction redundancy in perceiving the target under the complex environment,
while a lower ratio indicates more storage consumption on the non-important re-
constructions. The target perceiving coverage is analyzed and compared using the

motion trajectories with each pose of the UAV and the frustum of the camera.
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Figure 3.3: Sub-figures (a), (b) are the normalized ROI reconstruction volume and
ROI-to-full reconstruction volume ratio verse the simulation time in the Collapsed
Room scene. Sub-figures (c¢) and (d) are the corresponding results in the Kitchen
and Dining Room experiment. Sub-figures (e) and (f) are the corresponding results
in the Kitchen and Dining Room with Multiple Specified Objects. The performance
comparisons between the proposed approach (S-NBV), RH-NBV [13], the frontier-
based approach [105], AEP [86] and WG-NBYV [71] are presented.
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Figure 3.4: Sub-figure (a), (b) and (c) represent the distributions of directivity during
the completed experiment in the Collapsed Room scene, Kitchen and Dining Room
and Kitchen and Dining Room with Multiple Specified Objects, respectively

3.5.3 Experimental Results

The experiments in this study are conducted in two simulation scenes with three dif-
ferent settings in total. Compared to the smaller scene Collapsed Room, it typically
takes longer for the UAV to locate the target in the larger one. In Figure (a) and
(d), the target is well located within the first 30 s in each scenario. In complex scenes
with more intricate structures, the proposed approach demonstrates significant ad-
vantages over the existing approaches, around 40% to 7% ahead at 60 s. Meanwhile,

the frontier-based approach [105] also performed well in Figure [3.3(d) since it has a
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strong pattern of exploring along the large and continuous entity, such as walls. It
also can be seen in the trajectory in Figure [3.5(h) that the target person in Kitchen
and Dining Scene is located closer to the corner of the wall. However, the proposed
approach still exhibits 12% to 3% advantages over the frontier-based approach at 60
s. And in both single target reconstruction progress, the ROI reconstruction vol-
ume increases every 30 s with the semantic-aware approach, i.e. we are progressively
perceiving the ROI, while other approaches show less progress or even remain the
same when the normalized reconstruction volume is greater than 0.9. The proposed
approach finally achieves the ROI reconstruction progresses at 99.03% and 96.31%,
while the other four planners stop at 97.86%, 98.58%, 97.32%, 98.01% in Collapsed
Room and 93.12%, 92.27%, 91.73%, 91.51% in Kitchen and Dining Room, respec-
tively. In the experiment involving multiple specified objects, the proposed method
demonstrates a significant improvement in reconstruction progress, outperforming the
existing planners by up to 27.81% within the first 120 seconds. Ultimately, it achieves
a more detailed ROI reconstruction, surpassing the other methods by up to 26.72%,
as illustrated in Figure [3.3(g).

Table 3.2: Average Perspective Directivity of Entire Manoeuvre

Scene Name S-NBV RH-NBV Frontier

Collapsed Room

0.90516+0.04

0.44037+0.20

0.02282+0.34

Kit & Din Room

0.76042+0.02

0.13461+0.15

0.45207+£0.40

0.64037£0.2

0.10375+0.14

0.12442+0.26

K&D Multi-Obj

In Figure [3.3(b) and (e), the proposed planner prioritizes the ROI reconstruction
once the target is located, while other planners focus on perceiving other unknowns,
which may belong to semantically redundant areas. The proposed approach achieves
an average ROI-to-full ratio of 0.3268 and 0.5046 for each scene, respectively. In
comparison, the other approaches achieve averages of 0.2120, 0.2061, 0.1929, 0.1957
in Figure [3.3(b) and 0.2300, 0.3652, 0.2390, 0.2320 in Figure [3.3(e) respectively. For

the multi-object scenario in Figure [3.3[(h), our method still demonstrates a small
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advantage range from 1.99% to 6.00% in ROI-to-full ratio, although multi-target

searching and target switching require more observations of the environment.

The distribution of view directivity during the entire manoeuvre is shown in Figure
3.3(c) and (f). The proposed planner exhibits stronger directionality and purposive-
ness towards the target, with a significant amount of perspective directivity (90%
and 83.871%) falling in the interval [0.5, 1.0]. The proposed approach planned more
views which have directivity in the range of [-1.0, 0.5) in the Kitchen and Dining
scene because it takes more views to search for the target. In Figure 3.3[(i), The
multi-object directivity distribution spends more views switching between different
targets, but the ratio of occurrence in [0.5,1.0] still dominates. In Table , the
proposed approach shows a significant advantage over the other two planners by up

to 0.88234 and 0.62581 in the average perspective directivity.

Figure [3.5| shows the two original scenes in Gazebo and planned trajectories by each
planner, where the green, red and blue trajectories denote the planned ones by our
method, the RH-NBV and the Frontier-based one in order. The green trajectories
exhibit the maximum coverage of the viewing angles of the target, circling around
the target within the reachable region. Compared to the trajectories of the other two
in Figure [3.5(c), (d), (g), and (h), the proposed method also shows strong direction-
ality and purposiveness towards the target and the target’s surroundings evidently
with its trajectory in Figure [3.5(b) and (f), while the others seem like ”wandering
aimlessly and enjoying freedom”. Due to space limitations, more visualization results

are presented in the supplementary material.

In addition, the algorithmic complexity is analysed. The 3D space to be considered
is denoted as V, and the resolution of the TSDFs is denoted as r. The number of
nodes in the tree is Np, and the maximum sensing range of the sensor [(%". The
proposed method queries in both the occupancy and semantic map, corresponding

complexity O(2log(V/r?)). The complexity of generating an RRT tree can be repre-
sented as O(Nrlog(Nr)), while the query for the best node with O(N7). Following
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the complexity of the collision check in the occupancy TSDF can be denoted as
O(Nz/r3log(V/r®)). Moreover, both the visibility gain and semantic gain are calcu-
lated, considering the volume proportional to (1¥™)3  the complexity of evaluating

max

[cam /r) by ray casting, resulting in O((2(™ /r)log(V/r?)).

every voxel on the ray O(l55" i

Thus, O(2(1¢™ /r)*log(V/r?)) for total gain calculation for once. Hence, the total

max

complexity of single planning can be represented as:
O(Nrlog(Ny) + Np/r*log(V /1) + 2N (15" /r)*log(V /1)) (3.15)

The complexities of RH-NBV and frontier-based method can be denoted as Equation
(3.16) and (3.17), respectively. Where M denotes the frontier evaluation, which is
proportional to the number of frontier voxels.

O(Nrlog(Nt) 4+ Np/r3log(V/r?) + N (1€ /r)*og(V /1)) (3.16)

maxr

O(Nrlog(Np) 4+ Np/r*log(V/r®) + M) (3.17)

The proposed method shows the highest complexity since we have both the occupancy
and semantic status to be queried. We record the execution time of our method on
NVIDIA Jetson Xavier NX. The average time costs in planning are shown in Table|3.3|

It takes 3.79 s per planning on average on the mobile platform, which is acceptable.

Table 3.3: Measured Execution Time of the Proposed Method on NVIDIA Jetson
Xavier NX

Task Time (s) Task Time (s)
Tree Expansion 8.08x107! || Gain Calculation 4.98x107*
View Selection 6.97x10~! || TSDFs Update 1.79
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3.6 Discussion and Future Work

The proposed semantic-aware NBV scheme in this study demonstrates its advantages
in search-and-acquisition manoeuvre under the complex environment over the existing
informative path planners in the ROI reconstruction progress, ROI-to-full reconstruc-
tion volume ratio and perspective directivity. From the experimental results in Section
[3.5, the RH-NBYV planner also demonstrates good ROI reconstruction performance in
the smaller scene but poor performance in the larger scene. The frontier-based plan-
ner exhibits a good ROI-to-full ratio at the beginning of the experiment, which profits
from its pattern of pursuing the frontier voxels. After that, the planner intends to
find the other unknowns, thus the ROI-to-full ratio drops. The significant difference
here is that we are keen on perceiving the region we are interested in instead of pur-
suing unknown areas. More than 80% of the perspective directivity of the proposed
approach falls in the interval [0.5, 1.0] in both scenes, while the other two distribute
more average within four intervals. It means we are consistently looking towards the
target’s location once the target is well-located, while the other two are looking in
all directions more evenly. The results also demonstrate the generalization poten-
tial of the proposed method by introducing the termination criterion to handle the
multi-object search-and-acquisition. As the complexity of the manoeuvre increases,
particularly when dealing with multiple objects, the proposed method offers a more

exhaustive capture of the objects of interest.

However, there are some limitations to this work. First of all, both the planning
and reconstruction processes are based on the same volumetric map. The choice
of voxel size is a trade-off between reconstruction precision and planning efficiency,
i.e. real-time smooth planning (e.g. around 3 to 6 seconds per planning) results in
a compromise in the reconstruction precision. The second one is that the proposed
approach is less aggressive in exploring or searching in the larger area than the frontier-

based planner. Thus, it takes longer to locate the target as the area increases.
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3.7 Conclusion

In this study, we presented a semantic-aware Next-Best-View aided by the multi-DoF's
mobile system for autonomous visual perception under the complex and unknown en-
vironment. We formulate the novel semantic gain, combined with the conventional
visibility gain in a unified form, to evaluate the "Next Best” view among the candi-
date views with the contribution of semantics. An adaptive strategy is introduced to
control the mode switching between ’search’ and ’acquisition’” on the specific target
under the challenging environment, and a termination criterion is designed to handle
the target switching in multi-target visual acquisition. The capability of the proposed
approach is demonstrated in three different settings in the simulation, achieving im-
provements of up to 27.46% in the ROI-to-full reconstruction volume ratio and 0.88234
in average perspective directivity. The planned motion trajectory is compared with
the ones produced by existing planners, and a better target perceiving coverage is

demonstrated evidently.

71



Chapter 3. S-NBV: Semantic-aware Next-Best-View

Figure 3.5: Original Scenes in Gazebo (the red square denotes the specified target):
(a) Collapsed Room; (e) Kitchen and Dining Room; Sub-figures (b) and (f) show the
motion trajectories planned by the proposed approach; (¢) and (g) are the trajectories
planned by RH-NBV [13]; (d) and (h) show the trajectories planned by the frontier-
based approach [105]; The trajectories of different approaches are shown in the same
global map, the trajectories of the proposed approach demonstrate the best target
perceiving coverage around the target.
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Chapter 4

HQC-NBV: A Hybrid
Quantum-Classical View Planning

Approach

4.1 Abstract

Efficient view planning is a fundamental challenge in computer vision and robotic per-
ception, critical for tasks ranging from search and rescue operations to autonomous
navigation. While classical approaches, including sampling-based and determinis-
tic methods, have shown promise in planning camera viewpoints for scene explo-
ration, they often struggle with computational scalability and solution optimality
in complex settings. This study introduces HQC-NBV, a hybrid quantum-classical
framework for view planning that leverages quantum properties to efficiently explore
the parameter space while maintaining robustness and scalability. We propose a
specific Hamiltonian formulation with multi-component cost terms and a parameter-
centric variational ansatz with bidirectional alternating entanglement patterns that

capture the hierarchical dependencies between viewpoint parameters. Comprehen-
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sive experiments demonstrate that quantum-specific components provide measurable
performance advantages. Compared to the classical methods, our approach achieves
7.9-49.2% higher exploration efficiency across diverse environments. Our analysis of
entanglement architecture and coherence-preserving terms provides insights into the
mechanisms of quantum advantage in robotic exploration tasks. This work represents
a significant advancement in integrating quantum computing into robotic perception

systems, offering a paradigm-shifting solution for various robot vision tasks.

4.2 Introduction

In unknown scene perception, determining where to move a camera next - known as
the informative view planning problem - can mean the difference between success and
failure in critical applications. For instance, in search and rescue operations, ineffi-
cient view planning can lead to crucial delays, where every minute matters for survival
rates. Similar challenges exist in autonomous navigation and robotic manipulation,
where systematic and efficient environment exploration directly impacts task comple-
tion time and resource utilization. The Next Best View (NBV) problem represents
a fundamental challenge in computer vision and robotic exploration and perception,
where the objective is to determine optimal sequential viewpoints to maximize in-
formation gained about the environment with each move. Solving the NBV problem
effectively can significantly enhance the performance of robotic systems by ensuring

that they gather the most relevant and useful visual data with minimal resources.

Next-Best-View was initially introduced for exploring unknown areas using mobile
robots [12], (68, 86), 103]. Early approaches can be primarily categorized into sampling-
based and deterministic methods. Sampling-based approaches [12, 82, [5] typically
employ Rapidly-exploring Random Trees (RRT) or RRT* within known free space
[60, 53], generating candidate views and selecting the optimal one based on infor-

mation gain versus cost metrics. While these methods have shown success in simple
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Unobserved Region i 1 Execute
: Ansatz

Solution

Initial
value L.
Optimize params

Figure 4.1: Execution logic of our HQC-NBYV. Different from the classical approaches,
we do not rely on heuristics but leverage quantum superposition to simultaneously
evaluate multiple view parameters and quantum entanglement to capture complex
dependencies between movement decisions.

environments, they face significant scalability challenges in complex scenarios, often
requiring exponentially increasing computational resources with environment size.
Deterministic methods [101], 107, 92], on the other hand, rely on heuristics to guide
viewpoint selection, focusing on specific metrics or uncertainty minimization. Despite
their convenient and widespread deployment in real-world mobile platforms, these
classical approaches suffer from fundamental limitations. Heuristic-based methods
often struggle to find global optima, particularly in large-scale environments, while
sampling techniques frequently result in suboptimal solutions due to their approxi-

mative nature of the solution space.

To address these challenges, we explore the potential of quantum computing in solv-
ing the NBV problem. Quantum computing has recently demonstrated promising re-
sults in various computer vision tasks, including multi-model fitting [31], multi-object

tracking [106], motion segmentation [2], and graph matching [7, 8]. The quantum ad-
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vantage derives from its ability to leverage quantum phenomena such as superposition
and entanglement, enabling efficient exploration of vast solution spaces. The NBV
problem is particularly well-suited for quantum approaches due to its combinatorial
nature and the presence of complex parameter interdependencies that can be natu-
rally encoded in quantum entanglement structures. Recent quantum implementations
in the related problem [31] have shown the potential of adiabatic quantum computing
(AQC) in disjoint set cover problems, suggesting a similar potential for view planning

optimization.

Our work introduces a novel hybrid quantum-classical framework that combines the
computational advantages of quantum systems with the robustness of classical opti-
mization techniques, as shown in Figure [4.1] This hybrid approach aims to overcome
the limitations of traditional methods while maintaining collocation with current

quantum computing devices. Specifically, our contributions are as follows:

e A novel hybrid quantum-classical approach for informative view planning fea-
turing a Hamiltonian formulation of the NBV problem that effectively maps

robotic navigation intuition into the quantum computing paradigm.

e A parameter-centric variational ansatz design with bidirectional alternating en-
tanglement patterns that capture the hierarchical dependencies between view
parameters, allowing simultaneous exploration of movement directions, dis-

tances, and orientations.

e Comprehensive experimental validations demonstrate the contribution of quantum-
specific components (i.e., entanglement architecture and coherence-preserving
terms), as well as the robustness and effectiveness of our approach in different
experimental settings, achieving 7.9-49.2% higher exploration efficiency com-

pared to the classical methods.

To the best of our knowledge, this is the first study to propose a hybrid quantum-
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classical approach for informative view planning, opening new possibilities for efficient
robot perception and navigation. The paper content is organised as follows: Section
[4.3] and Section [4.4] provide an overview of the related work and essential quantum
computing preliminaries. Section presents the problem formulation of NBV and
our proposed hybrid quantum-classical approach. Section presents the implemen-
tation of the proposed framework and an additional local strategy. The experimental
setup and results are presented in Section [£.7 Finally, we analyse the results and

draw the conclusion in Section (4.8

4.3 Related Work

4.3.1 Informative View Planning

Informative view planning, particularly in non-model-based visual acquisition scenar-
ios where no prior environmental knowledge is available, requires real-time decision-
making for each viewpoint. This planning process has evolved significantly since its
introduction in the 1980s [22, [67], with approaches generally falling into three main
categories: surface-based, volumetric, and hybrid methods. Surface-based approaches
represent the 3D environment as a mesh and evaluate viewpoints by analyzing the
mesh surface [20]. For instance, Krainin et al. [53] modelled uncertainty using Gaus-
sian distributions along camera rays and quantified information gain through entropy
reduction weighted by surface area. While these methods enable direct quality as-
sessment during reconstruction and can handle dynamic objects accurately [93], they
are computationally intensive due to complex visibility calculations [85]. Volumet-
ric methods, alternatively, employ voxel-based representations that simplify visibility
calculations and occupation probability estimation [43]. These methods evaluate po-
tential views by ray-casting through voxel space, offering computational efficiency at

the cost of direct surface modelling capability. To leverage the advantages of both
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approaches, hybrid methods [58] combine surface and volumetric representations,
achieving a balance between accuracy and efficiency. The Next-Best-View (NBV)
paradigm has emerged as a dominant strategy in informative view planning, itera-
tively selecting viewpoints to maximize information gain. Information gain metrics
have evolved from simple unknown voxel counting [4] to sophisticated measures such
as information theoretic entropy [58] and proximity-based volumetric information
[25]. A significant advancement came with Bircher et al. [I2] receding horizon NBV
(RH-NBV) approach, which incorporated model predictive control principles to avoid
local minima through selective path execution and distance-based penalization. Re-
cent developments include ratio-based utility functions [84] and uncertainty-guided
schemes [50] that enhance reconstruction accuracy. While frontier-based methods
[104] offer an alternative approach by focusing on boundaries between explored and
unexplored areas, particularly effective in high-speed flight scenarios |21, 6], they lack
the flexible information gain formulation characteristic of NBV methods. Recent
work has extended view planning to specialized applications, such as fruit mapping

[69], demonstrating the adaptability of these approaches to diverse scenarios.

4.3.2 Quantum Computer Vision

There is a growing interest in the potential of quantum computing for solving chal-
lenging problems in computer vision. The inherent advantages of quantum systems,
e.g. superposition, entanglement, and quantum parallelism, offer unique opportuni-
ties to tackle computational intensive tasks more effectively. Farina et al. [31] pro-
pose Quantum Unconstrained Multi-Model Fitting (QUMF and DEQUMF') method
effectively utilizes quantum annealing to optimize the selection of multiple geometric
models as a combinatorial optimization, taking advantage of quantum superposition
to explore multiple solutions simultaneously. Zaech et al. [I06] map the multi-object
tracking problem to an Ising model and utilize adiabatic quantum computing (AQC)

to find optimal assignments through a quadratic unconstrained binary optimization
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(QUBO) approach. Similarly, Arrigoni et al. [2] reformulate the motion segmenta-
tion problem into a quadratic unconstrained binary optimization format suitable for
adiabatic quantum computing. Benkner et al. [7] reformulate quadratic assignment
problems (QAPs) with permutation matrix constraints into a quadratic unconstrained
binary optimization format suitable for quantum annealing. Later, they present an
iterative method for solving the quadratic assignment problem in shape matching us-
ing quantum annealing, achieving high-quality correspondences between non-rigidly
transformed shapes [§]. The existing studies focus on reformulating the problem to
the Ising model or quadratic unconstrained binary optimization problems and solving
them by adiabatic quantum computing. With the recent development of quantum
technologies, we are currently within the Noisy Intermediate-Scale Quantum (NISQ)
era [59], where new possibilities are emerging for solving complex problems using

variational quantum algorithms, quantum approximate optimization algorithms, etc.

4.4 Quantum Computing Preliminaries

4.4.1 Basic Concepts and Properties

Quantum bit (qubit) is the basic computational element in quantum computers.
Different from the classical bit, a qubit has the state of a superposition formed by two
basis states |0) = [1 0]7 and |1) = [0 1]7. Qubits can be prepared via different kinds
of approaches, including but not limited to photons, trapped ions, Si-based quantum
dots, and superconducting circuits. In the NISQ era, the most widely used one is the

superconducting circuit approach, leveraging its advantage in scalability.

Superposition refers to the property of the quantum state that can be a linear
combination of the corresponding basis states. i.e. a qubit state 1)) can be described

as:

[¥) = c1{0) + ca[1) (4.1)
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c1 and ¢y are complex numbers, named probability amplitudes, with |c;|* + |e|* = 1.

Entanglement is the critical property for quantum computing. In an entangled
system, the state of each qubit is interconnected with the states of the other qubits
without space limit, meaning that no qubit can be described independently of the

rest of the system.

Measurement the state of a qubit yields one of the basis states, either |0) or |1).
The probability of measuring |0) and |1) are given by |c;|? and |cs|? respectively. Once
a measurement is performed, it corresponds to an observation of the qubit, leading

to the collapse of its wave function.

4.4.2 NISQ and AQC

Adiabatic Quantum Computing (AQC) is a paradigm that focuses on solving opti-
mization problems by evolving a quantum system from a known initial state to a
final state encoding the solution. This is achieved by slowly evolution the system’s
Hamiltonian H (t), ensuring the ground state of the initial Hamiltonian H, evolves to

the ground state of the final Hamiltonian H.

H(t) = (1—t/T)Hy+ (t/T)H; (4.2)

The Noisy Intermediate-Scale Quantum (NISQ) era represents the current stage of
quantum technology, characterized by quantum computers with a moderate number
of qubits (typically a few dozen to a few hundred) that are prone to noise and errors.
Despite these limitations, NISQ devices show promise in solving practical problems
using variational quantum algorithms and quantum approximate optimization algo-
rithms, which are resilient to noise and can be implemented on current hardware.
Variational quantum algorithms (VQAs) are a class of hybrid quantum-classical algo-

rithms designed to work on NISQ devices. They use a parameterized quantum circuit

80



4.5. Methodology

U(0) to prepare a quantum state |1(#)) and then measure an observable O. The goal

is to minimize the expectation value E(#) of a given Hamiltonian H:

E(0) = (L(0)|H[(0)) (4.3)

The parameters 6 are optimized using a classical optimizer to find the minimum

energy state.

4.5 Methodology

4.5.1 Problem Formulation

CConsider a bounded 2D environment S C R? containing obstacles O = {0y, O, ..., Oy}
to be explored. The camera’s viewpoint is given by v = (z,y,0) € C. We aim to
find the next best viewpoint that maximizes exploration while minimizing movement

cost:

min J(v) = —E(v) + A\, M (v) (4.4)

vel

subject to:

P —=v)Nn0O =1 (4.5)

where E(v) denotes the exploration benefit function quantifying potential information
gain, M (v) denote the movement cost. A, is the weight parameter. And P(v' —
v) represents the path between viewpoints. The exploration benefit function E(v)
measures the amount of new information gained by moving to viewpoint v, while
M (v) penalizes excessive movement. To evaluate E(v) based on the historical and
current views, we maintain an occupancy grid map M representing the accumulated
knowledge of the environment, with each grid in a ternary state: unknown, free space,

or occupied.
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In practice, this formulation inherently becomes a combinatorial optimization prob-
lem. The continuous viewpoint space is discretized into a finite set V = {vy,...,un} of
feasible positions. The collision-free constraint creates a finite feasible set 7 C V. The
exploration benefit F(v) depends on discrete visibility relationships derived from the
M, where each preference depends on the discrete distribution of unknown regions
in the environment. Therefore, our problem becomes:

v = argmin J(v) (4.6)

where F is a finite feasible set with solution space complexity O(|F]|), making it
naturally suited for quantum algorithms that can leverage superposition to explore

multiple discrete solutions simultaneously.

4.5.2 Proposed Method

Problem Hamiltonian Formulation

We formulate the informative view planning problem as a combinatorial optimization
task through a carefully designed Hamiltonian H. This Hamiltonian is constructed
as a weighted sum of Pauli operators, where each term encodes specific aspects of the

exploration problem:

H=> P, (4.7)

Here, 2 represents a Pauli string (tensor product of Pauli matrices I, X, Y, Z), and
«; is the corresponding coefficient that determines the strength and direction of each
term’s contribution to the optimization objective. We decompose the Hamiltonian

into five functional components:
f{ = [:[dir + F[dist + [:[adj + ﬁorient + Hcoh (48)
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Our novel approach uses a 10-qubit system to encode viewpoint parameters for effi-
cient exploration. The allocation of qubits is carefully designed to match the physical
parameters’ importance and range requirements. The main direction is encoded with
the first 2 qubits. Distance and adjustment parameters are allocated 2 qubits each,
providing sufficient precision for movement magnitudes while keeping the quantum
circuit complexity manageable. The camera orientation angle receives 4 qubits to
precisely direct the field of view toward information-rich regions. This allocation re-
flects the hierarchical nature of the exploration task while maintaining an efficient
quantum representation with only 10 qubits total. This physical parameter encoding

allows for effective quantum representation of navigation decisions.

The directional component Hyg;, encodes exploration preferences using Z operators on

the first two qubits:
1

Hyyr = Z QdiriZi + Qz7 2021 (4.9)
i=0

Here Z; denotes the Pauli-Z operator acting on qubit 7. Identity operators on unspec-
ified qubits are omitted for notational simplicity. The coefficients are directional ex-
ploration value derived from the occupancy map, e represents the unexplored density
in each cardinal direction based on the area ratio, where £/, N, W, and S correspond

to East, North, West, and South directions, respectively:

Qir0 = Adiro - tanh(ew +es —ep —en)
Qir1 = Adir1 - tanh(ey + es — ep — ew) (4.10)

Qzz =Adiag - tanh(esg + eng — esw — enw)

azz captures directional interdependencies. Here Agir and Agiag are weighting param-

eters.

The distance component Hgis; controls movement magnitude using Z operators on
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distance-encoding qubits:
1
Hdist = Z OéZdisty,iZi+2 (411)
i=0

with coefficients proportional to observed obstacle proximity and bit significance:

~(i+1) . dobs (4.12)

max

O Zgiae,; = Adist * 2

QU

The adjustment component ﬁadj provides fine-tuning of the movement direction

through Z operators on adjustment-encoding qubits:

1
f{adj = Zazadj,izi+4 (413)
=0

where the coefficients are scaled by both bit significance and the remaining unexplored
area:
= Xagj - 27V (1 = ¢) (4.14)

QO Za5

Here, (1 — ¢) represents the proportion of unexplored environment, ensuring that
directional adjustments become more precise as exploration progresses. The expo-
nential term 2~ (+1) maintains the binary significance hierarchy, with higher-order

bits contributing more substantially to the directional refinement.

The orientation component ]:Iorient combines target direction terms with exploration-

promoting terms:
3 3
Horient = Z aZoricnt,iZi+6 + Z aXoricnt,iXi“FG + Z aZZCOuple ZmZn (415)

=0 =0 m,n

The target direction coefficients are:

Qg

orient,

= )\orient—Z ' 27(1#1) P (1 - D) : bz (416)

where p represents normalized point density, D is angular dispersion, and b; € {—1,1}
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encodes the target angle. Meanwhile, the ZZ operator handles the highest 2-bit

coupling between direction and orientation with the coefficient:

AZZeoupe = Morient-zz * (1 — D) (4.17)

For high dispersion scenarios, the exploration coefficients are:

OXorient,i — )\orient-X -D - (’}/)Z (418)

where Agent-x 1S @ weighting parameter and « is a decay factor for higher-order bits.

Finally, the coherence component H., maintains quantum advantage through X

operators and entangling terms:

Heon = ZCVXiXi + Z axx;,; XiX; (4.19)
i (i,5)eP

where P represents selected qubit pairs (based on the physical meaning and cor-
relation between view parameters. i.e., direction-adjustment, distance-adjustment,

direction-orientation). The entanglement coefficients scale with unexplored area:

axx;; = Acoh-xx - (I —¢) (4.20)

And the X term promotes the exploration proportional to the coverage as well as the

estimated information gain with Bresenham algorithm:
ax, = Acoh-X * Eea:p ) 7i " C (421)

In our Hamiltonian formulation, the ground state of the Hamiltonian corresponds
to the optimal next viewpoints for efficient environment exploration. This corre-
spondence is established through the cost function encoding: since we minimize

J(v) = —E(v) + Ay M (v) in the classical formulation, the Hamiltonian components
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Figure 4.2: Block scheme of the proposed variational ansatz

are designed such that configurations yielding lower classical costs result in lower
energy quantum states. Specifically, the directional terms Hg;, favour movements
toward unexplored regions, distance terms Haise penalize excessive movement, and
orientation terms ﬁoriem promote information-rich viewing directions. The coherence
terms H.o, maintain quantum superposition to explore multiple solutions simultane-
ously. Therefore, the ground state |¢y) satisfying H [o) = Eol|tbp) with minimum
eigenvalue Ej encodes the optimal viewpoint parameters that minimize the objective
function J(v). This ground state correspondence enables our variational quantum
algorithm to approximate the optimal solution by minimizing the expectation value
(w(g)]ﬁ W(é}), where the variational parameters 6 are optimized to approach the

ground state configuration.

Variational Ansatz Design

—

We develop a multi-layered parameterized quantum circuit U(#) that acts on n native

qubits initialized in a uniform superposition state:

— —

[¥(0)) = UO)1+)*" (4.22)
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Figure 4.3: (Left) The block module with even index; (Right) The block module with
odd index.

where |[4)®™ represents the uniform superposition state obtained by applying Hadamard

gates to all qubits in the |0)®" state.

The circuit architecture consists of L = 5 alternating layers of parameterized rotations

and structured entanglement operations, the overview is shown in Figure [4.2

—

Uu(o) = UL(gL) e U2(§2)U1(§1) (4.23)
Each layer U;(0;) comprises three key components:

Ui(6) = U6 - U™ - Up™ (6 (4.24)

The rotational component Ulr°t(5;”°t) applies R, rotations to encode the parameters

into the quantum state. These rotations are partitioned according to the parameter

groups:
~ 1 . 3 . 5 .
U (0°) = Q) By (017) © Q) Ry (65") © Q) Ry (675
=0 . =2 1=4 (425)
® ® Ry( Zl;ient)
=6
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This structured encoding allows the circuit to independently modulate each parameter

while maintaining correlations through subsequent entanglement operations.

The entanglement component U™ establishes quantum correlations between qubits
following a two-level hierarchical strategy, as is shown in Figure [4.3; intra-group
entanglement followed by inter-group entanglement. The intra-group entanglement

creates linear chains of CNOT gates within each parameter group:

lg+ng—2

Ulintra - H H CNOTi,i—‘rl (426)

ge{dir,dist,adj,orient} i=lg
where [, and ny represent the starting position and size of group g, respectively.

The inter-group entanglement establishes connections between parameter groups,

with the pattern alternating between even and odd layers:

CNOT,,, ;.. - CNOT,, ... -CNOT, . 1%2=0

adj adj orient ?

Ut = (4.27)

CNOT, . CNOT, - CNOTy . 1y (%2 # 0

orientyldir adjaldist

This bidirectional entanglement pattern ensures information flow between parameter
groups in both forward and reverse directions, facilitating complex correlations while

maintaining circuit depth efficiency.

The final component in each layer applies R, rotations to all qubits:
n—1
UP(07) = @) Ra(677) (4.28)
=0
These rotations introduce non-commutativity with respect to the R, rotations and

the Z-based measurement observables, enhancing the circuit expressivity and enabling

exploration of a larger subspace of the Hilbert space.
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Optimization Process

The variational quantum circuit is optimized to minimize the expectation value of

the cost Hamiltonian:

— —

o = arg min (1 )| H |(6)) (4.29)

where H is the problem-specific cost Hamiltonian incorporating exploration objec-
tives, environmental constraints, and quantum coherence requirements. The opti-
mization is performed using an adaptive Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) algorithm, which efficiently handles the high-dimensional pa-
rameter space of the variational circuit while being robust to the statistical noise
inherent in quantum measurements. The adaptive learning rate mechanism adjusts

the optimization step size based on progress metrics and stagnation detection:

N1 = N + pmy + (1 — p) A, (4.30)

where p is the momentum coefficient, m; is the momentum term at iteration ¢, and

An; is the learning rate adjustment based on recent optimization progress.

4.6 Implementation Details

The HQC-NBYV system optimizes viewpoint selection for exploring unknown environ-
ments with obstacles. The process begins by initializing the scene with an initial
viewpoint. In each iteration, before the coverage threshold is reached, the system up-
dates the set of observed points by checking visibility from the current viewpoint. The
variational ansatz is initialized for the current viewpoint and the problem Hamiltonian
is constructed to encode the exploration objectives. The parameters are optimized
using a Variational Quantum Eigensolver (VQE) with an adaptive SPSA optimizer,

where the Hamiltonian-driven optimization is augmented with auxiliary constraints
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Algorithm 2 Hybrid Quantum-Classical NBV System

Require: S, v, 9rov, dmazs Teoverage

Ensure: V = {vg,v1,...,0,} 1 C(V) > Teoverage
1 V « {v}, M < InitializeMap(S)
2: M <+ UpdateObservation(M, vy)
3: while C(M) < Tepverage dO

4:
5
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

H + ConstructHamiltonian(M, v;)
U(f) + CreateParameterizedCircuit (n, L)
o) — HEJo)yer
0 < InitializeParameters()
for i =0 to Ny, — 1 do
¢ = (V(0,)| H|$(6:) + f(6)) o
g; < AdaptiveSPSA_GradientEsti.(U, H, ;)
n; < AdaptiveLearningRate(cy, ..., ¢;)
‘9_;'+1 — 6_; =N Gi
end for
0 5Niter
7« Measure_Z_Expectations(U (6*)|1))
Unext < DecodeParameters(Z, vy, M)
valid < ValidateTrajectory(vy, Upegt, M)
if valid then
Vt41 < Uneat
else
Vi1 ¢ ClassicalFallbackStrategy (M, vy, Upert)
end if
V< VU{v1}
M <« UpdateObservation(M, v, 1)

25: end while

26: return V

to ensure solution feasibility. The optimal parameters are decoded from Z expecta-
tion values to determine the next viewpoint, and trajectory validation ensures the
new viewpoint lies within the observed area in M and avoids obstacle collisions. If

the trajectory is invalid, we select the furthest valid position along the moving direc-
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tion using a classical fallback strategy. The process iteratively executes to find out a

sequence of optimal viewpoints, as detailed in Algorithm [2|

4.7 Experiments and Results

To demonstrate the effectiveness and robustness of the proposed HQC-NBV, we con-
duct a series of experiments on scenes with different areas and different obstacles.
To examine the design of variational ansatz, we also conduct specialized experiments
to isolate and quantify the contributions of key quantum components in our hybrid
approach aiming to provide insights into how quantum characteristics—specifically
entanglement patterns and coherence-preserving terms—impact exploration perfor-
mance. In this study, the proposed method is implemented using the Qiskit frame-
work, and all the experiments are performed on the Qiskit Aer backend simulator
[49]. The camera parameters used in this study consistently respected a field of view
(FOV) 27/3, and a maximum ray distance of 8 units. The starting view is initialized

at a non-collision position.

4.7.1 Experimental Setup

We designed three distinct scenes with varying levels of complexity to comprehensively

evaluate the robustness and scalability of the proposed methods.

e Scene 1 (S1): Surrounding obstacles in area 20 x 20 unit?, Figld.4|a);
e Scene 2 (S2): Central obstacle in area 20 x 20 unit?, Fig[t.4|(b);

e Scene 3 (S3): Complex walls with surrounding obstacles in area 20 x 20 unit?,

Fig[L.4(c);

91



Chapter 4. HQC-NBV: A Hybrid Quantum-Classical View Planning Approach

Iteration 0

uuuuuuuu
aaaaaa

@ - )

............

............

Iteration O

40

35 .

30

15

10

Figure 4.4: Visualized experimental scenes: (a) Scene 1; (b) Scene 2; (¢) Scene 3; (d)
Scene 4.

e Scene 4 (S4): Surrounding and central obstacles in larger area 40 x 40 unit?,

Figlt.4(d).

To investigate the impact of entanglement structure in our approach, we implemented
four variants of Ansatz architecture while maintaining identical Hamiltonian formu-

lations and classical optimization procedures:

e Full Architecture (FA): Our proposed bidirectional alternating entanglement
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pattern with both intra-group and inter-group CNOT gates;

e Non-Entangled (NE): A circuit with the same number of parameterized rota-
tions but without any entangling gates, equivalent to independent qubit rota-

tions;

e Intra-Group Only (IG): Preserving parameter group coherence through intra-

group entanglement but removing connections between different parameter groups;

e Inter-Group Only (EG): Maintaining only the connections between parameter

groups while removing intra-group entanglement.

To assess the contribution of quantum coherence-preserving terms in our cost Hamil-

tonian, we conducted a systematic ablation study by modifying the Heon component:

e Complete Hamiltonian (CH): Including all coherence-preserving terms (X and

X X operators with adaptive weights);

e No Coherence Terms (NC): Removing all H,,, components, retaining only the

problem-encoding Z-based terms;

e Single-Qubit X Only (SQX): Preserving the >, OéXiXi terms while removing
two-qubit X X interactions.

In addition to these, we also comprehensively evaluate the performance of our ap-
proach against two classical exploration approaches, RH-NBV and the frontier-based
method, regarding the exploration coverage ratio, path length and exploration effi-
ciency. Additionally, we conduct comparative experiments with established classical
optimization algorithms to assess the advantage of our approach over general-purpose

optimization approaches.
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Figure 4.5: The effectiveness of entanglement architecture on the exploration perfor-
mance: (a) coverage ratio in Scene 1; (b) coverage ratio in Scene 2.

4.7.2 Experimental Results

Figure presents the comparative results, demonstrating that the full bidirectional
entanglement architecture consistently outperformed reduced-entanglement variants.
Notably, the non-entangled circuit required an average of 61.11% and 57.14% more
views to achieve 65% coverage in S1 and S2 respectively, highlighting the signifi-
cant role of quantum correlations in effective exploration planning. The inter-group-
only variant performed better than the intra-group-only variant in both scenes, sug-
gesting that maintaining cross-parameter entanglement between parameter groups
is more critical than the entanglement within parameter groups. The intra-group
entanglement architecture also contributes to the improvement compared to the non-
entanglement variant because of the intrinsic connection between qubits within the
logical groups of the informative view planning. Figure[4.6]illustrates that the absence
of coherence-preserving terms led to frequent entrapment in local minima, with the
no-coherence variant failing to achieve above 68.46% coverage and 65.77% on average
in Scene 1 and Scene 2, respectively. The performance degradation was most pro-

nounced in later exploration stages (coverage > 50%), where remaining unexplored
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Figure 4.6: The evaluation of coherence-preserving term on the exploration perfor-
mance: (a) coverage ratio in Scene 1; (b) coverage ratio in Scene 2.

regions became sparse and disconnected. The single-qubit X-only variant demon-
strated intermediate performance, maintaining reasonable exploration capabilities but
showing reduced ability to escape local minima in complex scenarios. This suggests
that while single-qubit superposition maintenance contributes to exploration effec-
tiveness, the two-qubit coherence terms play a crucial role in coordinating parameter
updates across different aspects of the navigation decision. Figure demonstrates
the robustness and scalability of our approach. Our approach performs an efficient
exploration in S1, S2 and S3 within 15 viewpoints. The coverage growth in S2 is more
dramatic than that in S1 and S3 due to the simplicity of the scene. The exploration in
S4 requires 56 viewpoints to achieve comparable coverage, which is roughly four times
the number required for S1, S2 and S3. This scaling factor meets the simple 4:1 ratio
of environment sizes (S4 is four times larger in area than S1, S2 and S3), suggest-
ing that the proposed approach does not degrade with the increase in environment
size and complexity. HQC-NBYV consistently outperforms classical methods across
all evaluation scenarios. In Scene 1, our method achieves 92.85% coverage within
16 viewpoints, while RH-NBV and frontier-based methods reach only 80.54% with

the same views. Scene 2 demonstrates advantages with HQC-NBV achieving 93.02%
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Figure 4.7: The coverage against the number of views of our approach in different
scenes

Figure 4.8: Sample continues views planned by HQC-NBV in S1, S2 and S3. The red
rectangles denote the obstacles, the blue wedges represent the FOV of the viewpoint,
and the green dots are the observed grid.
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Figure 4.12: Optimization insight (direction qubits example): (Left) Evolution of
directional probabilities; (Right) Decision formation process measured by decisiveness

coverage in 12 viewpoints compared to RH-NBV requiring twice as many viewpoints
for 78.27% coverage. In the most challenging Scene 3, while frontier-based methods
shows initial advantages in open spaces, they encounter early termination at 81.75%
coverage due to disconnected unexplored regions. Our approach maintains consis-
tent progress, achieving 91.97% coverage within 18 viewpoints as shown in Figure
4.9 Beyond coverage efficiency, HQC-NBV demonstrates 9.60-27.92% reduction in
total path length and 16.19-30.75% higher exploration efficiency compared to classical
approaches. The method also exhibits superior stability across multiple runs, par-
ticularly during the critical middle phase of exploration, as is shown in Figure [4.11]
Comparison with traditional optimization methods (Powell and COBYLA) shows
even more significant advantages, as shown in Figure [£.10, While classical optimizers
frequently become trapped in local minima with coverage plateauing below 67.1%,
HQC-NBV maintains superior performance across all complexity levels, highlight-
ing the scalability advantages of our quantum-enhanced framework. The proposed
approach outperforms traditional optimizers since we reformulate the conventional
discrete information gain, which is ill-suited for optimization, into a continuous, differ-
entiable Hamiltonian expectation. This expectation provides smooth gradients with

respect to the variational parameters ¢, while the underlying Hamiltonian encodes
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the exploration objectives through structured Pauli operators with smooth coefficient

functions.

Figure provides crucial insights into the optimization process underlying HQC-
NBYV performance. The left figure demonstrates our method’s parallel search capa-
bility, taking the directional qubits as the example, where all four directional choices
(East, North, West, South) are simultaneously evaluated through quantum superpo-
sition. Unlike classical methods that evaluate directions sequentially, the quantum
approach maintains probability distributions for each direction throughout the opti-
mization process. The evolution shows how initially uniform probabilities (0.25 each)
gradually converge toward the optimal choice, with South direction emerging as the
final selection with 59% probability after 500 iterations. The right figure denotes
the quantum decision formation process, showing how quantum superposition grad-
ually resolves into a definitive choice. The color-coded bars represent decisiveness
levels (Prae — Phsecond), progressing from superposition to definitive decisions. This
visualization captures the optimization transitions from exploring all possibilities si-
multaneously to converging on the optimal solution. This figure effectively illustrates
the optimization simultaneous exploration of all possibilities followed by gradual con-
vergence to optimal solutions. The smooth probability evolution and stable decision
formation explain the observed performance improvements and reduced variance in

exploration outcomes.

Figure presents two groups of continuous views planned by HQC-NBV in S1,
S2 and S3, respectively. It demonstrates the effectiveness of our viewpoint planning
algorithm in progressively expanding coverage across different scenes, over several
iterations. The samples start from an initial status where only a few areas have
been explored, the algorithm efficiently selects viewpoints that maximize the cover-
age of unobserved regions. With each subsequent iteration, the coverage area grows

substantially with feasible movement.
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4.8 Conclusion

In this paper, we present a paradigm-shifting scheme in view planning, namely, Hy-
brid Quantum-Classical Next-Best-View (HQC-NBV) for autonomous exploration
tasks. Our approach features a multi-component quantum Hamiltonian and a vari-
ational circuit with bidirectional entanglement patterns. Experiments across various
environments demonstrated that quantum-specific elements provide measurable con-
tributions, with our entanglement architecture and coherence-preserving terms sig-
nificantly enhancing exploration efficiency. Compared to the classical approaches,
our method consistently achieved higher coverage rates (up to 95.8%) with 7.9-49.2%
higher exploration efficiency against travel lengths. Moreover, our approach demon-
strated excellent scalability and robustness across environments of increasing size and
complexity. The framework achieves high-efficiency exploration while being compat-
ible with current NISQ devices. This work paves the first step toward integrating

quantum variational algorithms for solving robot vision problems.
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Chapter 5

CSDNet: Detect Salient Object in
Depth-Thermal via A Lightweight
Cross Shallow and Deep

Perception Network

5.1 Abstract

While we enjoy the richness and informativeness of multimodal data, it also introduces
redundancy of information and distractions. To achieve optimal domain interpreta-
tion with limited resources, we propose CSDNet, a lightweight Cross Shallow and
Deep Perception Network designed to integrate two modalities with less coherence,
thereby discarding redundant information or even modality. We implement our CS-
DNet for Salient Object Detection (SOD) tasks in robotic perception, emphasizing
that effective integration of the depth-thermal (D-T) modality can facilitate mobile-
friendly privacy-preserving visual tasks. The proposed method capitalises on spatial

information prescreening and implicit coherence navigation across shallow and deep
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layers of D-T modality, prioritising integration over fusion to maximise the scene
interpretation. To further refine the descriptive capabilities of the encoder for the
less-known D-T modalities, we also propose the Segment Anything Model (SAM) as-
sist framework to guide an effective feature mapping to the generalised feature space.
Our approach is tested on the VDT-2048 dataset, leveraging the D-T modality out-
performs those of SOTA methods using RGB-T or RGB-D modalities for the first
time, achieves comparable performance with the RGB-D-T triple-modality bench-
mark method with a runtime speed improvement of 5.97 times and a reduction in

required FLOPs to 0.36% of the original.

5.2 Introduction

In recent decades, various multimodality techniques have shown significant advance-
ments in this learning era, especially in the field of robotic perception. Within the
scope of multimodality techniques, it is commonly observed that the performance of
models tends to improve with an increasing number of modalities [46]. However, this
inevitably leads to higher costs, higher computational demands, and unpredictable
noise. In contrast, crossing off a modality with information density may also cause
the loss of crucial scene interpretation [97], presenting a trade-off dilemma. Neverthe-
less, we identify an entirely new pivot beyond this lever: the integration of modalities
with low coherence to achieve broader domain coverage, exploring the possibility of

breaking the constraint of ’adding modalities for better interpretation’.

In the existing multimodal studies, RGB typically serves as the primary modality
with high priority since it is widely recognised as a senior modality due to its rich
texture information, colour and high-resolution spatial details. Depth and thermal
modalities are considered subsidiary modalities since they provide relatively limited
but more specialised information with particular significance. Conventional multi-

modal approaches on visual perception tasks by RGB-D [110} 115 11T, 1T12], RGB-T
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[114], 62, 102, T16] and RGB-D-T [88],[97] have already achieved commendable results.
The addition of depth information (i.e., RGB-D) facilitates a more comprehensive
understanding of 3D geometry, proving inherently superior to unimodal RGB, partic-
ularly in challenging environments such as low light [32]. Additionally, the inclusion
of thermal images (i.e., RGB-T) accentuates specific temperature variances within
the sensing domain, reducing distractions and enhancing domain awareness under

clustered environments.
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In this case, triple-modality data (RGB-depth-thermal) could potentially offer the
most comprehensive information. Therefore, the triple-modality benchmark method
[88] yields superior results compared to the other two multimodal combinations (RGB-
D and RGB-T) [88, O7] at the cost of a substantial model size of 403.4 MB and a
high computational complexity of 357.69G FLOPs. Indeed, in contrast to RGB-D-T

methods, neither RGB-D nor RGB-T approaches can offer a complete representation.

However, indiscriminately incorporating additional modalities in multimodal tasks
can lead to data redundancy, increased computational costs, and potential privacy
concerns. In order to identify the redundant elements across these three modalities,
we analyse the intrinsic characteristics of different modalities, revealing significant
overlap between RGB and depth or thermal, while depth and thermal exhibit less
overlap but offer broad domain coverage, as shown in Figure [5.1[a) and (b) indicat-
ing that D-T introduces less redundancy. Nevertheless, unlike the texture coherence of
RGB-T and the spatial coherence of RGB-D, the lack of coherence between depth and
thermal modalities poses a challenge for existing multimodal methods when dealing
with depth-thermal data. Visualization results in Figure [5.1(c) show significant dis-
crepancies in the description of the same region in D-T, which can confuse the model
and lead to incorrect interpretations. To address the challenge of the information
integration of the low coherence modalities, we present the Cross Shallow and Deep
Perception Network, CSDNet. This two-stage approach explores synergies between
the low-coherence modalities through saliency-aware prescreening at the shallow layer
and implicit coherence activation at the deep layer to reasonably select similarities
and distinctions among high-level features derived from these disparate inputs. Fur-
thermore, considering that the selected backbone of our encoder, MobileNet-V2, was
pre-trained on the expansive RGB dataset ImageNet, which shows less interpretation
capability on depth and thermal data, we utilise the powerful and robust SAM [55]
to guide the encoder in mapping the D-T into a generalised feature space. To the

best of our knowledge, this is not only the first study to investigate the low coherence
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modality synergies using depth and thermal data but also the first study of applying
D-T modalities to the task of salient object detection. The main contribution of this

work can be summarised as follows:

e We propose a novel cross shallow and deep perception scheme to maximise the

scene interpretation by leveraging low-coherence modalities.

e We introduce an innovative SAM-assist encoder pre-training (SEP) framework

to guide the encoder to extract more generalised features.

e The proposed method is implemented in the salient object detection network us-
ing only depth and thermal images. Comprehensive experiments are carried out
to demonstrate the effective integration of depth and thermal modalities, which
can benefit privacy-preserving visual applications, such as home service/care

robots.

5.3 Related Works

5.3.1 Multi-modal Salient Object Detection

Recent advancements in image capture technologies have facilitated the integration
of depth and thermal imaging in Salient Object Detection (SOD) tasks. Huang et al.
[45] introduced an RGB-D saliency detection model using dual shallow subnetworks to
extract unimodal RGB and depth features. Concurrently, Song et al. [89] presented a
modality-aware decoder that includes feature embedding and modality reasoning. Bi
et al. [10] developed a cross-modal hierarchical interaction network for progressively
fusing multi-level features. The positional dependence of depth information compli-
cates object identification, especially for targets near their background, leading to the

incorporation of thermal imaging to enhance saliency detection. In [34], Gao et al.
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proposed a depth-aware inverted refinement network innovatively structured to ac-
count for depth awareness, employing backward propagation to manage multimodal
attributes across strata, thus preserving relevant details. Chen et al. [I8] proposed
a network that reduces modality discrepancies through various integrated modules.
Similarly, He et al. [40] proposed a network centered on enhancement and feedback
aggregation, with specialised blocks for inter-modal complementation. In existing
dual-modality approaches, RGB serves as the primary modality, but neither RGB-
D nor RGB-T provides a comprehensive representation compared to the RGB-D-T
triple-modality:.

Limited studies on RGB-D-T salient object detection exist due to the high costs
of collecting and aligning triple-modality data. In [88], Song et al. introduced the
VDT-2048 dataset for salient object detection, comprising 2048 image groups from
14 challenging scenes to evaluate multimodal SOD methods. They also presented a
benchmark using a hierarchical weighted suppress interference (HWSI) architecture
for effective feature fusion. Subsequently, Wan et al. [07] addressed the limitations
of single and dual-modal methods by introducing MFFNet, which integrates RGB,
depth, and thermal images through a deep fusion encoder and a progressive feature
enhancement decoder, improving performance over dual-modality methods. However,
they inevitably lead to larger model size and increasing computational burden. In
this study, we present the low-coherence D-T modality integration method, aiming

to achieve scene interpretation comparable to the triple-modality approach.

5.3.2 Segment Anything Model and Derived Works

The release of the Segment Anything Model (SAM) [55] by Meta has gained widespread
attention. SAM is built around a powerful and robust image encoder, leveraging the
strengths of the Vision Transformer (ViT) architecture, coupled with a lightweight

decoder that generates prompt-guided masks which work in sequence. SAM was
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trained on the SA-1B dataset, which comprises an impressive collection of over 1 bil-
lion masks on 11 million images. The extensive training offered the model with strong
generalisation ability and can be easily adapted to a range of downstream vision tasks,
positioning it as a pivotal foundation model in computer vision and it is believed to
be a ’GPT moment’ for vision. Following the release of SAM, numerous studies have
been conducted to make it more mobile-friendly [I13], 108 109], as well as to tailor
it for specific data types, such as medical imagery [99, (17, [36] and video stream [80].
In this work, we propose the SEP framework, which employs the SAM to guide the
encoder in effectively interpreting depth and thermal data, thereby improving model

performance.

5.4 Proposed Method

This section presents the overview of our proposed CSDNet for salient object detec-
tion relying only on thermal and depth images. For the integration of the modalities
with low coherence, the prescreened spatial information is exchanged between the
modalities at the shallow layer. Meanwhile, the middle layers select the relevant rep-
resentations from the superposition features. And finally, the deep layer facilitates the
implicit coherence between two modalities utilizing high-level features. Following this
pipeline, the cross shallow and deep integration scheme consists of two modules. For
the shallow layer spatial synergies, we introduce the CFAR detector-based saliency
prescreening (CSP) module, while the implicit coherence activation navigator (ICAN)
module is designed for the deep layer semantic synergies. The motivation and im-
plementation of CSP, ICAN, and SEP will be presented in detail in the following
subsections. Finally, the loss used in the proposed method is formulated. Figure [5.2
shows the overview of our proposed network. The overall network structure follows
the conventional encoder-decoder framework. The adapted MobileNet-V2 is incorpo-

rated as the encoder backbone for both depth and thermal modalities. Representative
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Figure 5.2: The overview of the proposed network CSDNet

features extracted by the encoder at five distinct scales are denoted as Fj; and Fy;,
where 7 = 1,2, 3,4,5. The CSP module accepts the original depth and thermal images
as inputs, yielding a saliency-aware prescreening mask. The ICAN module utilises
Fy5 and Fi5 as input features and subsequently integrates the supplementary features

at 4. The ultimate output of the decoder is a refined saliency map, symbolised as

0.
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Figure 5.3: The schematic of CFAR Saliency Prescreening Module

5.4.1 CFAR Saliency Prescreening Module

As mentioned in the introduction, hastily fusing two low-coherence modalities in the
shallow layers of the network can confuse the model on how to interpret them. To
ensure the distinctiveness of each modality, and to exchange information between two
modalities in shallow layers, we propose the CSP module. The overall architecture
of the CSP module is shown in Figure [5.3] The constant false alarm rate (CFAR)
detection is a technique widely used in radar systems to identify and eliminate false
alarm signals caused by noise or other interference. Its binary nature implies that it
imposes a lower computational burden and can serve as a screening mask to highlight
significant features of the modality. We follow the modelling approach of CFAR
using probability density functions to describe background clutter. In this work,
the 2D probability of false alarm (PFA) for the threshold T' can be represented as
PFA=1- f_TOO f(@)dz = [° f(z)dz.

In instances of medium and lower resolution imagery, such clutter frequently adheres
to a Gaussian distribution when examined within the intensity domain or, alterna-

tively, conforms to a Rayleigh distribution within the amplitude domain, in accor-
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dance with the principles of the central limit theorem [I5]. In this case, we employ
the commonly used Gaussian distribution model and use a sliding window to make
saliency judgments on candidate points in the background. Thus the detector can be
described as: Y > g + 0pgTs < target. where Y denotes the pixel under testing,
pg and oy, represent the mean value and standard deviation of the background. And
T, is the design parameter threshold scale which controls the sensitivity of CFAR

detector.

5.4.2 Implicit Coherence Activation Navigation Module

Our analysis indicates that deep networks can have different semantic descriptions of
the same scene in two modalities with lower coherence. In this context, the model
can facilitate a more comprehensive scene interpretation by linking the semantic in-
formation from depth and thermal modalities wisely. Motivated by this potential
for enhanced scene understanding, we introduce a new implicit coherence activa-
tion navigator aimed at activating hidden coherence relationships by emphasizing
the consistency and difference between two semantics. The implementation logic is
demonstrated in the upper-right corner in Figure (a). The highest level features
Fy5 and F5 are weighted by the squeeze-and-excitation block [44], denoted as Wys
and W;s. The soft logic operations can be represented as AN D5 = min(Wys, Wis),
OR5 = max(Wys, Wys), XOR,5 = abs(Wys —Ws5), and then the results are concate-
nated along the channel axis Ly = concat(AN D5, OR5, XOR,;5). The concatenated
logic result is added to O4 with a higher resolution feature after sequential operations
of convolution, batch normalisation, Gaussian Error Linear Unit (GELU) activation

and a bilinear interpolation upsampling.
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5.4.3 SAM-Assist Encoder Pre-training Framework

It is noticed that the pre-trained MobileNet-V2 on the ImageNet dataset has limited
capability in extracting spatial information from depth images. Informed by the
recent progress in vision foundation models, notably the Segment Anything Model
(SAM) [55], which demonstrates exceptional aptitude in interpreting various types of
images, we have incorporated a SAM-assisted depth encoder pre-training stage. This
framework aims to augment the feature extraction capabilities specific to the depth
modality, thereby enhancing the overall performance of the CSDNet. The schematic of
the proposed SEP framework is depicted in Figure[5.4] The robust and powerful vision
transformer (ViT)-based encoder of SAM yields an image embedding Sy dimensioned
at [256, 64, 64] for a single input instance. To capitalise on the potential of these
embeddings, they are strategically deployed to guide the depth encoder at the fourth
phase feature output using SAM-assist loss (SAL), simultaneously ensuring the full
depth encoder is weakly aligned with the thermal encoder using geometric transfer

loss (GTL) and semantic transfer loss (STL) proposed in [116].

5.4.4 Loss Formulation

In the SAM-assist depth encoder pre-training stage, SAL integrate the Mean Square
Error (MSE) loss with the STL. The feature from the depth encoder is denoted as
Fy;, and the image embedding from SAM is denoted as Sy. For instance, considering
the STL loss transfers the feature from the Fy;,7 = 4 to Sy, the channel attention for
attentive transfer involves a sequence of global average pooling (AP), two convolutions
(Conv) and a sigmoid activation (Sig), followed by a global normalisation (GN)
along the channel dimension after AP. The normalized feature wgy; from Fy; can be

represented as:

wrg; = GN(Sig(Conv(ReLU(Conv(AP(Fje ™)) (5.1)
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Figure 5.4: The schematic of SAM-assist depth encoder pre-training framework

The L2 norm is applied on the plane dimension to preserve the representations across

different channels.

Sdnorm = L2norm(Sy), Jdetach L2norm(ijt“Ch) (5.2)

di_norm

Hence, the STL from the depth encoder feature to SAM embedding is represented as:

ST Lpgi—ssi = Wrai X MSE(FE" S norm) (5.3)

di_norm>

The SAL is formulated as a weighted sum of MSE loss and STL, where w; and w»

signify the respective weights:

SAL = w1 MSE(Fd“ Sd) + Wwa - STLFdi—)Sd (54)
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Meanwhile, the GTL and STL are employed to anchor the depth encoder using the

ImageNet pre-trained thermal encoder. Following the approach in [116]:

6
ST Lpaisri = Y wpai X MSE(Fh  Fyi norm)

di_norm>
=3

ti-norm>

6
ST Lptisra = Y wri X MSE(FIG%" | Fii norm)
1=3

Unlike STL, GTL calculates spatial attention rather than channel attention to obtain
the global geometric weight and distinguish the significant features on the plane. The
L2norm in GTL is computed along the channel axis to preserve geometric information

of the spatial structure.

di_norm>

3
GTLpgisri = Z Wrgi X MSE(FFE“ " Fi orm)
i=1

ti_norm>

3
GTLptisrai = Z Wry X MSE(F et F i norm)
i1

The overall loss for the pre-training stage can be represented as follows, where w3 and

wy denote different weights.

Lsgp = SAL 4+ w3(GT Lrai—rei + ST Lrdi—ri) (5.5)

+wy(GT Lptispai + ST Lptisrai)

After the depth encoder pre-training stage, the SOD loss functions are employed
for joint encoder-decoder training. The predicted saliency region should not only
be accurately aligned with the ground truth but also demonstrate a good fit on
the boundary of the saliency region. Therefore, the saliency region boundaries are

extracted from both GT and O; from the decoder. The intersection-over-union (IOU)

113



Chapter 5. CSDNet: Salient Object Detection in Depth-Thermal

and binary cross-entropy (BCE) are utilised to measure the accuracy and precision:

LSon = Ligiyee + Ligusee (5.6)
Where L;oupce = Liow + Lpce. To achieve a better performance, the Lgop is calculated
for the last three stages in the decoder, i.e. for O, O and O,, with the final loss being

the summation of the three terms:

Lsop = L3op + L35 + L33y (5.7)

5.5 Experiments

5.5.1 Dataset and Evaluation Metrics

We validate the proposed model CSDNet on the VDT-2048 dataset as reported by
Song et al. [88], which contains 1048 images for training and 1000 images for testing.
In the context of SOD evaluation, we incorporate the following five benchmark met-
rics: mean absolute error (MAE) [76], F-measure (F,) [1], weighted F-measure (Wr)
[66], structure measure (S,,) [27] and E-measure (E,,) [28]:

(1) Mean absolute error (MAE) quantifies the difference between the predicted
saliency map O and ground truth GT on a pixel-by-pixel basis, i.e.. MAE =
Yo 2?21 |0(i,7) — GT(i,7)|/(w x h). Where w and h denote the height and width
of the images, respectively. The MAE score ranges within [0,1], with 0 indicating
a perfect overlap between the saliency map and the ground truth and 1 indicating
complete disparity. However, the limitation of MAE lies in its inability to precisely
depict the divergence between the saliency map and the ground truth for smaller
objects, given that it computes an average value across the entire image, potentially

resulting in a lower MAE for smaller objects.
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(2) F-Measure (F),) calculates a weighted harmonic mean of precision and recall.
An adaptive thresholding approach is employed to establish the comparison of the
binary saliency map with ground truth, wherein the threshold is set dynamically
based on the saliency map. Fg = (1+ 2) - precision - recall /(3% - precision + recall).

Specifically, the threshold is defined as twice the average value of the saliency map.

(3) Weighted F-Measure (Wy) is the F-measure with weighted precision (a mea-
sure of exactness) and weighted recall (a measure of completeness): Fg' = (1 + (7) -

precision™ - recall” /(5% - precision® + recall®)

(4) Structure Measure (5,,) assesses the structural integrity of the detected salient
regions by incorporating two distinct components, region-aware (S,) and object-aware
(S,). Unlike the MAE and F-measure, which compare two images on a pixel-by-pixel
basis, the S-measure emphasises the structural similarity between the saliency map

and ground truth: S, =a-S,+ (1 —a)- 95,

(5) E-Measure (E,,) is the enhanced-alignment measure that combines local pixel
values with the image-level mean value, jointly capturing image-level statistics and
local pixel-matching information: Ee = )", Z?:l ©(1,7)/(w x h). @ represents the
enhanced alignment matrix, which denotes the correlational relationship between the

predicted saliency maps and the corresponding ground truth.

5.5.2 Implementation Details

The proposed model CSDNet is built and trained using the Pytorch framework. Opti-
misation during training is achieved through the application of the Adam optimisation
algorithm. The MobileNet-V2 architecture, serving as the backbone of the network,
is initialised with pre-trained weights obtained from the ImageNet dataset during
the SEP phase, whereas initialisation for the remaining network components is con-
ducted randomly. All experimental training and testing procedures are performed on

a machine equipped with an Intel 8C16T Core i7-11700KF at 3.6 GHz x 16 and an
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Figure 5.5: Visual Comparison on VDT-2048 dataset

NVIDIA GeForce RTX 3060 graphics card.
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Table 5.1:

Dataset. 1/] indicates that a larger/smaller value is better.

Quantitative Comparison Results of Different Methods on VDT-2048

Model Type |MAE] F,t Wgt S.t En.t
CGFNet [98] | RGB-T | 0.0034 0.7777 0.8468 0.9166 0.9299
CSRNet [47] | RGB-T | 0.0050 0.7828 0.8159 0.8827 0.9460
DCNet [95] RGB-T | 0.0038 0.8457 0.8284 0.8803 0.9699
LSNet [116] RGB-T | 0.0045 0.7434 0.8046 0.8878 0.9201
MoADNet [51]| RGB-D | 0.0126 0.5753 0.5796 0.7697 0.8376
RD3D [19] RGB-D | 0.0047 0.6444 0.7948 0.9090 0.8345
SwinNet [63] | RGB-D | 0.0038 0.7287 0.8385 0.9194 0.8962
RFNet [100] RGB-D | 0.0031 0.8252 0.8680 0.9175 0.9635
Ours D-T 0.0029 0.8904 0.8833 0.8794 0.9806
HWSI [88] |RGB-D-T'|0.0027 0.8581 0.8983 0.9324 0.9765
VDT-2048 VDT-2048
1.0 1.0
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Figure 5.6: Precision-Recall Curve and F;,-Threshold Curve Comparison with Dif-

ferent Methods

5.5.3 Experimental Results

We conduct the quantitative comparison of our proposed method with eight SOTA
methods, including four RGB-T methods CGFNet [98], CSRNet [47], DCNet [95],
LSNet [I16], and four RGB-D methods MoADNet [51], RD3D [19], SwinNet [63]
and RFNet [100]. In addition, we include the RGB-D-T benchmark method HWSI

[88] for a comprehensive evaluation. To ensure a fair comparison, we use the official
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Table 5.3: Quantitative Results in V Challenges Cont. BSO, MSO, and SA denote
Big Salient Object, Multiple Salient Object, and Similar Appearance, respectively

V-BSO V-MSO V-SA
CGFNet [98] 0071 9433 9917 | .0049  .8542 9456 | .0030 .8421 .9262
CSRNet [47] 0139 8755 .9618 | .0089  .8000 .9389 | .0047 .7598 .9484
DCNet [95] 0082 9382 .9908 | .0055 .8401 .9801 | .0032 .8338 .9807

MoADNet [51] | .0439 .5349 .8073 | .0137 .6750 .8684 | .0067 .6975 .8929
PANet [48] 0966  .3852 9881 | .1075  .1505 .8349 | .1007  .0885 .7448
LSNet [116] .0101  .9123 9889 | .0061 .8180 .9364 | .0041 .8052 .9289
RD3D [19] .0091  .9240 .9858 | .0058 .8188 .8871 | .0038  .8140 .8705
SwinNet [63] 0072 9434 9918 | .0050 .8414 9195 | .0030 .8524  .9142
RFNet [100] 0067 9484 9920 | .0040 .8708 .9661 | .0024 .8892 .9704

Ours .0060 .9562 9878 | .0040 8885 .9712 | .0028  .8644 .9716
HWST [88] 0061 9517 .9927 | .0041 .8915 .9716 | .0024 .8803 .9748

Model

Table 5.4: Quantitative Comparison with HSWI on Different Modality Combinations

Model | Modality Setting| MAE| F,,T Wr1T ST E,7T
RGB-D 0.0048 0.8454 0.8179 0.8398 0.9548
HWSI RGB-T 0.0034 0.8888 0.8708 0.8709 0.9653
D-T 0.0050 0.8343 0.8088 0.8516 0.9580
Ours D-T 0.0029 0.8904 0.8833 0.8793 0.9806

code released by the authors. The quantitative results are presented in Table [5.1]
where the red colour highlights the best results among all double-modality methods,
and bold text highlights the top-performing results across all types of methods. The
proposed method demonstrates significant advantages over all other dual-modality
approaches, regardless of whether they are RGB-D or RGB-T, and it achieves com-
parable results to the triple-modality benchmark method HWSI on the VDT-2048
dataset. Specifically, our method outperforms the other dual-modality approaches up
to 0.97%, 31.51%, 30.37%, 10.97% and 14.61% in terms of MAE, F,,, Wg, S,, and
E,,, respectively. Compared to the triple-modality method, the proposed method
exhibits a mere 0.02% disparity in MAE and gains 3.23%, 0.41% advantages in Fy,
and E,,. For the remaining two metrics, Wy and S,,, our method also achieves com-

parable results. The visual comparison is shown in Figure [5.5] Furthermore, we
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analyse the triple-modality benchmark method HWSI using different bimodal inputs,
demonstrating the comprehensive advantages of our method over the HSWI across
various dual-modality combinations. The proposed method exhibits advantages up
to 0.21%, 5.61%, 7.45%, 3.95% and 2.58% in terms of the five SOD metrics, and the
numerical comparison is detailed in Table[5.4l In Figure[5.6, our method is positioned
in the upper-right corner among the PR curves and towards the top of the F-measure

against the threshold diagram, demonstrating its superior performance.

Moreover, to demonstrate the effectiveness and robustness of the proposed method, we
also present the numerical results comparison with other methods on the challenges
proposed in the VDT-2048 dataset. We assess the V-challenges encompassing low
illumination (LI), no illumination (NI), side illumination (SI), small salient objects
(SSO) in Table [5.2| and big salient object (BSO), multiple salient object (MSO) and
similar appearance (SA) in Table , D-challenges including background interference
(BI), background messy (BM), information incomplete (II) and small salient object
(SSO) in Table 5.5, and T-challenges including thermal crossover (Cr), heat reflection
(HR), and radiation dispersion (RD) in Table Since the proposed method is de-
signed for indoor privacy-preserving applications and mobile platforms in search and
rescue operations, it does not rely on the RGB visible light data. Thus, our approach
exhibits significant advantages in all challenging illumination scenarios. However, in
the SSO challenge, our method trails the HWSI by 0.04%, 7.53%, 1.2% in terms of
MAE, Wg, E,, respectively, since the triple-modality does have a much richer tex-
ture that can benefit the segmentation in small targets. Despite this, our method,
which emphasises the synergy between depth and thermal data by introducing CSP
and ICAN, outperforms most dual-modality methods that primarily use visible light
data and achieve comparable results to the trimodal HWSI. In the D-Challenges, our
method consistently outperforms all other dual-modality approaches across all met-
rics. While the triple-modality HWSI method achieves slightly lower MAE values in

some cases (e.g., D-BI and D-BM), our method demonstrates comparable or better
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Table 5.5: Quantitative Results in D-Challenges. BI, BM, II and SSO Denote Back-
ground Interference, Background Messy, Information Incomplete and Small Salient
Object Respectively

Vodel D-BI D-BM
MAE| FE,+ FEn.t |MAE| FE,* FE.1

MoADNet [51] | .0107 .5750 8353 | .0147 4674 8017
PANet [48] | .1084 .4528 .6916 | .1062 .5024 .7368
RD3D [19] | .0046 .6161 .8167 | .0044 .6383 .8289
SwinNet [63] | .0036 .6858 .8650 | .0044 .6958 8717
RFNet [100] | .0020 .8124 .9596 | .0032 .8130 .9614
Ours 0027 .8808 .9789 | .0031 .8909 .9807
HWSI [88] | .0024 8501 .0748 | .0029 .8460 .9727

Vodel D-11 D-SSO
MAE|, F,t E.t |MAEl F,t FE.*
MoADNet [51] | .0183 5788 .8461 | .0049 .3251 .6391
PANet [48] | .1013 .6426 .8271 | .1321 .1119 .3773
RD3D [19] | .0052 .7316 .8901 | .0025 .3303 .5698
SwinNet [63] | .0047 7845 .9205 | .0016 .3720 .6073
RFNet [I00] | .0037 .8652 .9752 | .0011 .6544 .8816
Ours 0035 .9200 .9859 | .0011 .7700 .9254
HWSI R3] | .0035 8820 9813 | .0008 .7130 .9134

performance in terms of F,, and FE,,. The visual comparison is visualized in Figure
b.7 In the T-Challenges, our method also shows better performance compared to
other dual-modality approaches in terms of MAE and F,,. For T-HR and T-RD, our
method achieves the best MAE and F;,, among dual-modality methods. However, the
heat reflection and radiation dispersion destroy more alignment information in ther-
mal data. Although HWSI achieves marginally better results in some metrics (e.g.,
MAE for T-Cr and E,, for T-RD), our method consistently performs competitively

and outperforms HWSI in other key metrics. Visualized results are shown in Figure

6.8

Table list the quantitative comparison of the proposed method against the other
SOTA methods in terms of running time, number of parameters and FLOPs. The

proposed model achieves comparable performance with HWSI while utilising only 0.06
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Table 5.6: Quantitative Results in T-Challenges. Cr, HR, RD Represent Crossover,
Heat Reflection and Radiation Dispersion Respectively

T-Cr T-HR T-RD
MAE| F,1 E,1|MAE| F,1 En.t1|MAE| E,1 E,*
CCGFNet [98]] .0034 .7350 .9075| .0020 .8329 .9668 | .0046 .8522 .9750
CSRNet [47] | .0050 .7304 .9234 | .0034 .8495 .9792| .0061 .8453 .9769
LSNet [I16] | .0042 .7119 .8986 | .0043 .7826 .9489 | .0065 .8083 .9647
DCNet [05] | .0039 .8116 .9548 | .0032 .8928 .9893| .0051 .8845 .0845

Ours 0032 .8622 .9558 | .0022 .9459 .0780 |.0037 .9202 .9732
HWSI R3] |.0025 .8323 .9670| .0027 .8318 .0878 | .0041 .8854 .9888

Model

Table 5.7: Comparison in terms of running time, model parameters and FLOPs

Model CGFNet DCNet LSNet RD3D SwinNet HWSI Ours
Runtime (FPS)| 3.59 6.15 12.83 9.03 6.10 1.72 10.27
Params (M) 66.38  24.06 4.56 46.90 198.78 100.77 5.96
FLOPs (G) 345.54 207.21 1.23 50.86 124.72 357.93 1.30

times the number of parameters and requiring 0.0036 times fewer FLOPs. In terms
of processing speed, our model is approximately 5.97 times faster than HWSI. These
results demonstrate that our model is more suited for deployment on edge devices or

mobile platforms.

5.5.4 Ablation Analysis

To demonstrate the effectiveness of each module in our CSDNet (i.e., CSP, ICAN
and SEP), we conduct the ablation experiments incrementally incorporating the cross
shallow and deep scheme (i.e. CSP+ICAN) as well as the SEP framework, the nu-
merical results are presented in Table[5.8] The results demonstrate that each module
contributes to improving the model performance. Where CSP and ICAN improve the
MAE, F,,, Wg, and S,, by 0.059%, 1.872%, 2.759% and 0.982% by exchanging and
enhancing the scene interpretation. SEP improves the MAE, F,,,, Wg, S,, and E,,
by 0.02%, 0.386%, 0.612%, 0.112% and 0.14%. When all the modules are enabled,

123



Chapter 5. CSDNet: Salient Object Detection in Depth-Thermal

the model achieves the best performance, which indicates that there is a synergistic

effect among the modules and the proposed method achieves the effective integration

of depth and thermal modalities based on the intrinsic characteristics of the modality.

Table demonstrates that our model performs best on the D-T modality, as the

proposed method is designed to maximize the utilization of information differences

between the low coherence modality. Figure [5.9| visualizes that our approach intro-

duces more detailed edge and shape information in the extracted features effectively.

Table 5.8: Ablation Study on the Effectiveness of Modules

MAEl Fn,t WpT Sut En?

Settings
CSP ICAN SEP
X X X
v v X
X X v
v v v

0.00366 0.87046 0.85372 0.86939 0.98170
0.00307 0.88918 0.88131 0.87921 0.97833
0.00346 0.87432 0.85984 0.87051 0.98310
0.00291 0.89039 0.88332 0.87934 0.98061

Figure 5.9: Feature difference (left) incorporating the cross shallow and deep scheme;
(right) without the cross shallow and deep scheme.
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Table 5.9: Different Modality Setting on Our Method

Settings | MAE| F, T WrtT S,.1T E., 1
RGB-D [0.00403 0.86006 0.83918 0.85730 0.97664
RGB-T |0.00338 0.88890 0.87153 0.87590 0.97899

D-T ]0.00291 0.89039 0.88332 0.87934 0.98061

5.6 Conclusion

In this study, we introduce CSDNet, a novel lightweight cross shallow and deep percep-
tion network designed to effectively integrate low-coherence modalities. The proposed
method is implemented and assessed on salient object detection task with depth and
thermal imagery. CSDNet outperforms current state-of-the-art RGB-D and RGB-T
methods and achieves comparable results to RGB-D-T on the VDT-2048 dataset,
running 5.96 times faster and demanding 0.0036 times fewer FLOPs. This makes
it suitable for edge device applications with privacy concerns, such as home care or
mobile platforms in challenging lighting conditions, like search and rescue robots. Ex-
tensive experiments under various conditions—including difficult illuminations, small
objects, background interferences, and various thermal interferences—demonstrate
the robustness of our approach. CSDNet effectively integrates low-coherence depth-
thermal modalities and shows great potential for generalization to other low-coherence

modalities.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

This thesis has presented three novel approaches to address three challenges in in-
telligent perception for mobile robotic systems. By focusing on semantic awareness
in view planning, hybrid quantum-classical optimisation for viewpoint selection, and
low-coherence multi-modal integration, this research has significantly advanced the

state-of-the-art in autonomous perception under complex environmental conditions.

The first contribution introduced a semantic-aware Next-Best-View (S-NBV) frame-
work that fundamentally reimagines robotic exploration by incorporating semantic
information alongside traditional visibility metrics. By formulating a unified infor-
mation gain function that balances visibility and semantic gain, the approach enables
mobile robots to perform purposeful exploration with targeted search-and-acquisition
manoeuvres. Experimental evaluations demonstrated substantial improvements over
conventional approaches, achieving up to 27.46% improvement in region-of-interest
reconstruction and dramatically improved perspective directivity when exploring en-
vironments with objects of interest. This semantic-guided exploration paradigm rep-

resents an important step toward more intelligent, goal-directed robotic perception
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systems.

The second contribution addressed the inherent limitations of classical optimisation
methods in viewpoint selection through the development of a Hybrid Quantum-
Classical Next-Best-View (HQC-NBV) framework. By leveraging the unique prop-
erties of quantum computation—specifically superposition and entanglement—this
approach enables more effective exploration of the complex, high-dimensional solu-
tion space characteristic of view planning problems. The novel formulation includes a
multi-component Hamiltonian and parameter-centric variational ansatz with bidirec-
tional alternating entanglement patterns that capture hierarchical dependencies be-
tween viewpoint parameters. Experimental results demonstrated that the quantum-
specific components provide measurable advantages, with the approach achieving up
to 49.2% higher exploration efficiency compared to classical methods. This work
establishes a pioneering connection between quantum computing and robotic per-
ception, offering a new computational paradigm for solving complex optimisation

problems in robotics.

The third contribution focused on robust perception in challenging lighting conditions
through the development of the Cross Shallow and Deep Perception Network (CSD-
Net). This lightweight architecture efficiently integrates depth and thermal modal-
ities—two sensing approaches with low coherence but complementary information
content. By implementing spatial information prescreening and implicit coherence
navigation across network layers, CSDNet achieves state-of-the-art performance while
reducing computational requirements by orders of magnitude compared to triple-
modality methods. The approach was further enhanced through a Segment Anything
Model (SAM)-assisted encoder pre-training framework that effectively guides feature
mapping to a generalised feature space. These innovations enable robust perception
in extreme lighting conditions while offering inherent privacy advantages due to the

non-RGB nature of the sensing modalities.

Collectively, these contributions represent significant advancements in intelligent per-
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ception for mobile robotic systems. While developed as distinct solutions addressing
different aspects of the perception challenge, they share a common goal of enabling
more effective, efficient, and robust environmental understanding for autonomous

systems operating in complex real-world environments.

6.2 Limitations and Future Work

Despite the significant contributions presented in this thesis, several limitations and

promising avenues for future research remain.

6.2.1 Semantic-Aware Next-Best-View Planning

The S-NBV framework, while demonstrating substantial improvements in targeted

exploration, could benefit from several extensions:

1. Multi-Agent Collaborative Exploration: Extending the semantic-aware
planning to multi-robot systems could significantly enhance exploration effi-
ciency. This would require addressing additional challenges in distributed se-
mantic knowledge representation, consensus-building, and coordinated explo-

ration strategies.

2. Dynamic Environment Adaptation: The current framework assumes a
static environment during the manoeuvre. Extending the approach to dy-
namic environments would require incorporating motion removal and developing

strategies for rapid re-planning as the environment changes.

128



6.2. Limitations and Future Work

6.2.2 Hybrid Quantum-Classical View Planning

The HQC-NBV framework, while pioneering the application of quantum computing

to robotic perception, has several limitations that future work could address:

1. Long-Horizon Planning: The current approach employs a selection strategy
considering only the next single step. Investigating longer-horizon planning that
considers sequences of viewpoints could further improve exploration efficiency,
potentially through incorporating model predictive control frameworks with the

optimisation strategy.

2. Scalability to Larger State Spaces: The current implementation is limited
by the number of available qubits. Future work could explore techniques such
as problem decomposition, quantum-inspired classical algorithms, or hybrid ap-
proaches that selectively apply quantum computation to the most challenging

subproblems.

3. Hardware Implementation and Noise Resilience: Current experiments
were primarily conducted on quantum simulators. Deploying the approach on
actual quantum hardware would require addressing challenges related to quan-

tum noise, decoherence, and limited qubit connectivity.

6.2.3 Cross Shallow and Deep Perception Network

The CSDNet, while effective for depth-thermal integration, could be enhanced through

several future directions:

1. Temporal Information Integration: The current architecture processes in-
dividual frames independently. Incorporating temporal information through
recurrent or transformer-based architectures could enhance performance in dy-

namic scenes.
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2. Adaptive Modal Weighting: Different environmental conditions might war-
rant different reliance on each modality. Developing mechanisms to dynamically
adjust the influence of each modality based on environmental conditions could

further improve robustness.

3. Extension to Additional Modalities: While the current work focuses on
depth and thermal integration, the approach could be extended to incorporate
additional privacy-preserving modalities such as radar, event cameras, or audio

Sensors.

6.2.4 Integration and Broader Implications

Looking beyond individual contributions, several promising directions for future re-

search emerge at their intersection:

1. Sequential Information-Aware View Planning: Developing view plan-
ning systems that leverage temporal coherence and sequential observations to
improve exploration efficiency. This could involve incorporating spatio-temporal
prediction models, utilising motion patterns for dynamic objects, and exploiting
the inherent correlation between consecutive viewpoints to reduce uncertainty

accumulation and enhance mapping accuracy.

2. Intelligent Quantum-Classical Resource Allocation: Developing adap-
tive scheduling frameworks that dynamically allocate computational tasks be-
tween classical and quantum processors based on problem characteristics, re-
source availability, and task urgency. This would involve creating quantum-
classical workload classifiers, real-time resource monitoring, and optimisation
strategies that maximise overall system performance while managing quantum

coherence time constraints and classical processing capabilities.
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In conclusion, this thesis has made several contributions to intelligent perception for
mobile robotic systems, advancing the state-of-the-art in semantic-aware planning,
quantum-enabled view planning, and low-coherence multi-modal perception. While
each contribution addresses specific challenges, together they pave the way for more
capable, efficient, and robust autonomous systems that can effectively perceive and
interact with complex real-world environments. The limitations identified and future
research directions proposed offer promising pathways to further enhance these capa-
bilities, ultimately bringing us closer to the vision of truly intelligent and adaptable

robotic perception systems.
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