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Abstract

Cross-diffusion, a process in which the density gradient of one species induces an advec-

tive flux of another species, has been widely applied to model the movement of one species

toward or away from the area with higher density of another species (i.e., taxis move-

ment). In this thesis, we first study an indirect prey-taxis model [129] with anti-predation

mechanism. Then, we explore another type of anti-predation mechanism: alarm-taxis [46]

which described by a three-species Lotka-Volterra food chain model. Next, we apply the

cross-diffusion strategy to an SIS epidemic model and numerically explored the effects of

cross-diffusion. Finally, we investigate a toxicant-taxis model and theoretically prove the

effects of cross-diffusion.

Fundamentally, we establish the global boundedness of classical solutions by using

energy estimates. The other main results are as follows:

1. For the indirect prey-taxis model with anti-predation, we prove the global stability of

constant steady states by constructing energy functionals. Moreover, when the prey adopts

the anti-predation strategy, we establish the existence of non-constant positive steady-state

solutions by applying Leray-Schauder degree theory and prove that no Hopf bifurcation

occurs. These pattern formation results are different from both indirect prey-taxis (which

exhibits Hopf bifurcation) and the case without cross-diffusion (where no patterns emerge).

2. For the three-species Lotka-Volterra food chain model with intraguild predation

and taxis mechanisms, we build the global stability of constant steady states by using

energy functionals. Moreover, we numerically demonstrate that the combination of taxis

mechanisms and intraguild predation can induce rich pattern formations. Notably, our

simulations show that prey-taxis may have a destabilizing effect in food chain model with

intraguild predation, which contrasts with the well-known stabilizing effect observed in

two-species predator-prey systems or the food chain model with alarm-taxis but without

intraguild predation.

3. For the SIS model with a cross-diffusion dispersal strategy for the infected individu-

als, which describes the public health intervention measures, we define the basic reproduc-
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tion number R0. Then we employ a change of variable and apply the index theory along

with the principal eigenvalue theory to establish the threshold dynamics in terms of R0.

Moreover, we explore the global stability of constant steady states. Finally, we numerically

demonstrate that the cross-diffusion strategy can reduce R0 and help eradicate the diseases

even if the habitat is high-risk in contrast to the situation without cross-diffusion.

4. For the toxicant-taxis model in a time-periodic environment, we prove the existence

of positive periodic solutions and the uniform persistence by applying the uniform per-

sistence theory and Principal Floquet bundle theory. Moreover, we establish the global

stability of non-constant periodic solutions through energy methods. By studying the

effects of the strong toxicant-taxis on the corresponding periodic principal eigenvalue, we

theoretically prove that the strong toxicant-taxis (i.e., cross-diffusion) helps aquatic species

to survive.

Moreover, we develop new ideas to overcome the difficulties caused by the failure of the

comparison principle in cross-diffusion models. For example, the proof ideas developed in

Chapter 5 can be applied to prove the existence of time-periodic/non-constant steady-state

solutions, and uniform persistence for general cross-diffusion models.
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Chapter 1

Introduction

The reaction-diffusion model is a class of partial differential equations that describe

how population densities/concentration in space change over time. It can explain three

major spatial phenomena of interest in ecology: (a) the formation of spatial patterns; (b)

the impact of spatially environmental characteristics (e.g., size, shape, and heterogeneity)

or other factors on species persistence and community structure; (c) waves of invasion by

exotic species [17]. These phenomena are respectively addressed in four classical pioneering

works on diffusion theory: [133], [72, 116] and [38]. Cross-diffusion, a process in which the

density gradient of one species induces an advective flux of another species, has been

widely applied in various reaction-diffusion systems to model the movement of one species

towards/moves away the area with higher density of another species. Examples include,

but not limited to, prey-taxis [68], chemotaxis [69] and toxicant-taxis [32]. Such systems are

generally referred to as reaction-cross-diffusion systems or simply cross-diffusion systems

without confusion.

1.1 General Cross-diffusion Models

A generic cross-diffusion model can be represented as(ui)t = ∇ ·
( m∑
j=1

Aij(u1, · · · , um)∇uj
)
+ fi(u1, · · · , um), x ∈ Ω, t > 0,

∂νui = 0, x ∈ ∂Ω, t > 0,

(1.1)

where i = 1, · · · ,m < ∞, ui := ui(x, t) denote the population densities/ concentration of

interacting species at position x and time t, and Ω ⊂ Rn (n ≥ 1) is a bounded domain

(habitat) with smooth boundary ∂Ω; ∂ν := ∂
∂ν with ν denoting the outward normal unit

vector of boundary ∂Ω and the homogeneous Neumann boundary conditions are prescribed
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to comply with the closed environment where the species cannot cross the habitat boundary

∂Ω. Functions fi(u1, · · · , um) represent the intra- or inter-specific population interactions

(like cooperation, predator-prey, competition, etc). Aii := Aii(u1, · · · , um) > 0 are the

coefficients of diffusion and Aij := Aij(u1, · · · , um) ∈ R (i ̸= j) account for the coefficients

of cross-diffusion but
∑m

i,j=1,i ̸=j A
2
ij ̸= 0. Different forms of Aij represent different diffusion

strategies. Note that the system (1.1) encompasses many well-known models, such as

chemotaxis [69], prey-taxis [68], bacterial pattern formation [89] for m = 2, as well as

indirect prey-taxis [129, 135], alarm-taxis [46] for m = 3. In particularly, when Ai0i0 =

d(uj0) > 0, Ai0j0 = ui0d
′(uj0) ≥ 0 and Aij = 0 (i ̸= j) for all i ̸= i0 or j ̸= j0, the diffusion

terms of the population ui0 can be rewritten as ∆[d(uj0)ui0 ], which means the diffusion of

the population ui0 depends on the another population density uj0 . This type of diffusion is

referred to density/signal-dependent diffusion, and has been received enormous attention

(e.g., cf. [39, 40, 63, 128, 138]).

For clarity, our thesis only focuses on two types of cross-diffusion: the density/signal-

dependent type cross-diffusion, and the type with constant Aii (such as classical chemo-

taxis [69] and prey-taxis [68]). By introducing such cross-diffusion strategies of limiting

population movement, this thesis incorporates four vital effects: anti-predation tactics of

prey, burglar alarm responses, quarantine for infected individuals and toxicant avoidance

of species into four reaction-diffusion models: indirect predator-prey model, Lotka-Volterra

food chain model, SIS epidemic model, and population-toxicant model, respectively. And

our thesis focuses on

• Investigating the effects of the cross-diffusion strategy on pattern formation or species

persistence;

• Developing some new ideas/methods to overcome challenges arising from the inap-

plicability of the comparison principle, an essential tool in reaction-diffusion models

without cross-diffusion.

In the following sections, we shall introduce these four mathematical models, research

problems and research highlights based on our published journal papers [22, 24, 25].

1.2 An Indirect Predator-prey Model with Cross-diffusion

In ecological systems, some foraging predators may locate the prey by following the

substances emitted from prey species, such as pheromones (kairomones) (cf. [154]), chem-

ical alarm cues (cf. [37]), sexual signals (cf. [159]). This type of foraging behavior, called
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indirect prey-taxis, was first modeled in [129]. Conversely, prey species may exhibit anti-

predation mechanisms by releasing the toxic or foul smelling stimulus to drive away their

predators [26, 91]. Based on works [26, 91, 129], we focus on the following indirect prey-

taxis system with an anti-predation mechanism:
Nt = dN∆N + (λ−N)N −NP, x ∈ Ω, t > 0,

Pt = ∆[d(S)P ] + (µ− P )P + γNP, x ∈ Ω, t > 0,

St = dS∆S + τN − ηS, x ∈ Ω, t > 0,

∂νN = ∂νP = ∂νS = 0, x ∈ ∂Ω,

(1.2)

where N := N(x, t) and P := P (x, t) denote the prey and predator densities at position

x and time t, respectively. S := S(x, t) is the density of signal released by prey species

N with constant production rate τ > 0 and natural decay with rate η > 0. λ − N and

µ− P represent the per-capita growth rate of prey and predators, respectively, where the

constant λ > 0 is the so-called carry capacity and the constant µ ̸= 0. The predator is

said to be specialist if µ < 0 and generalist if µ > 0. The signal is assumed to undergo

random diffusion with a constant rate dS > 0, and dN > 0 is a constant denoting random

diffusion of the prey. The predator adopts a signal/density-dependent type cross-diffusion

with a positive rate function d(S). Specifically, the term ∆[d(S)P ] represents that the

predator’s motility is less active when encountering the attractive signals released by the

prey if d′(S) < 0 and demonstrates the indirect prey-taxis mechanism [129, 135]. When

d′(S) > 0, it means that the predator will increase its motility if they come into the toxic or

foul smelling stimulus released by the prey and demonstrates the anti-predation mechanism

of prey [26, 91].

For the predator-prey system, it has been studied for a long time including global

dynamics, traveling waves, pattern formation and so on. The research [135] on (1.2) shows

that the density-dependent type indirect prey-taxis (i.e., d′(S) < 0) can induce the spatio-

temporal periodic patterns (Andronov-Hopf bifurcation), this contrasts sharply with direct

prey-taxis [65] in which no pattern formation happens. Hence, a critical question arises:

• When the prey act anti-predation behavior (i.e., d′(S) > 0), how does the pattern

formation differ from the case of the indirect prey-taxis mechanism (i.e., d′(S) < 0)?

To explore this question, we shall in Chapter 2 study the global existence of classical

solutions, global stability of constant steady states, and bifurcation as well as existence

of non-constant positive steady-state solutions. Our results will demonstrate that the

anti-predation mechanism induces non-constant steady state patterns without triggering
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Hopf bifurcation. This behavior differs from the density-dependent type indirect prey-

taxis [135] which exhibits Hopf bifurcation, as well as both direct prey-taxis [65] and the

cross-diffusion-free system (1.2), neither of which demonstrates pattern formation.

1.3 A Lotka-Volterra Food Chain Model with Cross-diffusion

Beyond simple predator-prey dynamics (e.g., lion-gazelle system), natural ecosystems

exhibit intricate trophic webs. For instance, marine food webs span multiple levels: from

plankton to fish, sharks, whales, and ultimately humans, with numerous intermediate

species occupying distinct trophic positions. Here, we consider the foundational three-

trophic-level food chain model with intraguild predation and taxis mechanisms:
ut = d1∆u+ u(1− u)− b1uv − γ1uw, x ∈ Ω, t > 0,

vt = d2∆v − ξ∇ · (v∇u) + uv − b2vw − θ1v, x ∈ Ω, t > 0,

wt = ∆w − χ∇ · [w∇ϕ(u, v)] + vw + γ2uw − θ2w, x ∈ Ω, t > 0,

∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0,

(1.3)

where Ω ⊂ Rn is a bounded domain with smooth boundary, and u := u(x, t), v := v(x, t),

w := w(x, t) denote the densities of the prey species, primary and top predators, respec-

tively. The parameters di > 0 are diffusion coefficients, the cross-diffusion term −ξ∇·(v∇u)
describes the directional movement of primary predators toward their prey density gradient

(called prey-taxis mechanism [68]). Similarly, the cross-diffusion term −χ∇ · [w∇ϕ(u, v)]
describes the top predators move toward to high gradient of the signal produced as a re-

sult of the interaction between the prey and primary predator. The constants θ1 > 0 and

θ2 > 0 represent the mortality rates of the primary and top predators, respectively. The

parameters bi > 0 and γi ≥ 0 (i = 1, 2) describe the interaction of interspecies.

For the system (1.3), [66] studied the global dynamics of system (1.3) in a two di-

mensional bounded domain under the assumptions γ1 = γ2 = 0 and ϕ(u, v) = v, and

proved that no pattern formation occurs. When γ1, γ2 > 0, the study [46] incorporated

the intraspecific competitions for v and w along with ϕ(u, v) = uv, and studied the global

boundedness for γ1, γ2 ≥ 0, the global stability as well as pattern formation for γ1 = γ2 = 0

in one dimensional space. Hence, we ae inspired to investigate

• Whether pattern formation occurs for (1.3) with γ1, γ2 > 0 and ϕ(u, v) = v;

• Whether pattern formation occurs for other forms of ϕ(u, v) (instead of ϕ(u, v) = v)

when γ1 = γ2 = 0 and no intraspecific competition exists for v and w.
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In Chapter 3, we shall provide positive answers to these questions. Our results will

demonstrate that prey-taxis can destabilize a positive equilibrium in a three-species Lotka-

Volterra model with intraguild predation, which contrasts with the well-known stabilizing

effect observed in simpler two-species predator-prey systems or three-species Lotka-Volterra

model without intraguild predation.

1.4 An SIS Epidemic Model with Cross-diffusion

To incorporate the effects of human behaviors and public health quarantine measures on

the mobility of individuals during the outbreak of disease such as COVID-19 [60, 74, 131]),

we introduce the cross-diffusion strategy for the infected individuals into an SIS model:
St = dS∆S + Λ(x)− θS − α(x) SI

S+I + β(x)I, x ∈ Ω, t > 0,

It = dI∆[γ(S)I] + α(x) SI
S+I − [β(x) + η(x)]I, x ∈ Ω, t > 0,

∂νS = ∂νI = 0, x ∈ ∂Ω, t > 0,

(1.4)

where Ω ⊂ Rn is a bounded domain with smooth boundary; S := S(x, t) and I := I(x, t)

denote the population density of the susceptible and infected individuals at position x ∈
Ω ⊂ Rn and time t > 0, respectively. The susceptible individuals are assumed to move

randomly with rate dS while infected individuals adopt a density-dependent type cross-

diffusion with a positive rate function γ(S) ∈ C3([0,∞)) satisfying

γ′(S) > 0 for all S ∈ [0,∞). (1.5)

Note that ∆[γ(S)I] = ∇ · (γ(S)∇I) + ∇ · (Iγ′(S)∇S). The cross-diffusion along with

the condition (1.5) indicates that the infected individuals will move away from the area

with a higher density of susceptible individuals (like quarantine measure) while dispersing

themselves at a rate increasing with respect to the density of susceptible individuals (crowd

avoidance). The model (1.4) has included demography changes (recruitment and death of

population), where the recruitment of the susceptible population is represented by Λ(x)−θS
with Λ(x) being a non-negative Hölder continuous function on Ω and θ ≥ 0 being a constant;

α(x), β(x) and η(x) are non-negative Hölder continuous functions on Ω accounting for

the disease transmission rate, recovery rate, and death rate of the infected individuals,

respectively.

We shall study the SIS epidemic model (1.4) in Chapter 4, and aim to

• explore how the cross-diffusion diffusion strategy can play positive roles in controlling

the spread of disease.
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Since this cross-diffusion describes the outcome of quarantine measures to the popula-

tion mobility during the outbreak of infectious disease, our results will elucidate whether

the quarantine measures help to control the disease spread from a theoretical perspective.

As we know, this is the first work on the SIS epidemic model (1.4) with cross-diffusion (i.e.,

γ(S) is non-constant) and there are no results available for such kind of models.

1.5 A Population-toxicant Model with Cross-diffusion

In aquatic ecosystems, species may detect and avoid toxicant [9, 132]), and the input of

toxicant may exhibit temporal periodicity driven by seasonal factors [14]. Therefore, we are

inspired to incorporate the negative toxicant-taxis (cf. [32]), and spatially inhomogeneous

and time-periodic toxicant input into a population-toxicant system, which reads as
ut = d1∆u+ χ∇ · (u∇w) + u(r − u−mw), x ∈ Ω, t > 0,

wt = d2∆w + h(x, t)− αw − βuw, x ∈ Ω, t > 0,

∂νu = ∂νw = 0, x ∈ ∂Ω, t > 0,

(1.6)

where Ω ⊂ Rn is a bounded domain with a smooth boundary. u(x, t) and v(x, t) represent

the species and toxicant densities at position x and time t, respectively. The species u

diffuses through random diffusion d1∆u with the diffusion rate d1 > 0, and cross-diffusion

+χ∇ · (u∇w) with the sensitivity parameter χ > 0. The term +χ∇ · (u∇w) describes that
species move from areas with high toxicant concentrations to regions with lower toxicant

concentration (i.e., negative toxicant-taxis). The toxicant w diffuses randomly with rate

d2 > 0. The positive constants r, m, α and β represent, respectively, the species’ intrinsic

growth rate, the toxicant-induced death rate of species, the toxicant’s loss rate due to envi-

ronmental detoxication or microbial degradation, and the toxicant uptake rate by species.

The function h(x, t) represents the (spatio-)temporally inhomogeneous input of toxicant

into the habit Ω.

For (1.6) with the time-periodic toxicant input h(x, t), the work [86] established the

global stability of periodic solutions and explored the asymptotic profiles of positive peri-

odic solutions when diffusion rates are small or large in the absence of toxicant-taxis (i.e.,

χ = 0). Their results indicate that the toxicant input affect the species persistence and

extinction.

In Chapter 5, we shall study (1.6) with χ > 0 and a more general toxicant input

function h(x, t), and investigate
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• whether the cross-diffusion diffusion strategy (i.e., toxicant-taxis) enhance aquatic

population persistence in heterogeneous polluted environments.

In fact, (1.6) with the cross-diffusion term (i.e., χ > 0) is a non-monotone dynamical

system, thus the asymptotic theory of monotone systems (c.f. [157, Chapter 3]) and the

comparison principle become inapplicable. As a result, no established methods in the

literature can be employed, making the analysis of global dynamics for (1.6) with χ > 0

significantly more challenging. Our proof in Chapter 5 develops some new ideas/outlines

to overcome these difficulties, which can be applied to prove the existence of time-periodic

or non-constant steady-state solutions, and uniform persistence for general cross-diffusion

models.

1.6 Organization of the Thesis

The organization of this thesis is below:

Chapter 2 will explore an indirect prey-taxis system with an anti-predation mechanism

(1.2). Section 2.2 will establish the global in-time existence and uniqueness of classical

solutions, while Section 2.3 will examine the global stability of constant steady states. In

Section 2.4, we shall demonstrate that the anti-predation mechanism can generate steady-

state bifurcation but cannot induce Hopf bifurcation. Finally, Section 2.5 will prove the

global existence of non-constant positive steady-state solutions.

Chapter 3 will investigate a three-species Lotka-Volterra food chain model with in-

traguild predation and taxis mechanisms (prey-taxis and alarm-taxis) (1.3) in an open

bounded interval. Section 3.2 will prove the existence of global classical solutions with

uniform-in-time bounds. Section 3.3 will explore the global stability of constant steady

states. In Section 3.4, we shall conduct linear stability and instability analyses to study

possible pattern formation. Finally, Section 3.5 will numerically verify theoretical analysis

in Section 3.4 and explore the effects of taxis mechanisms.

Chapters 2-3 focus on the effects of cross-diffusion on pattern formation. In the following

two chapters, we shift our focus to the effects of cross-diffusion on species persistence.

Chapter 4 will study an SIS model with a cross-diffusion dispersal strategy for infected

individuals (1.4). Sections 4.2 and 4.4 will establish the existence of global classical solu-

tions and global stability, respectively. Section 4.3 will give a variational expression of the

basic reproduction number R0, and explore its properties as well as the threshold dynamics

in terms of R0. Section 4.5 will use numerical simulations to illustrate the applications of

our analytical results and speculate on unproven results.
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Chapter 5 will consider a population-toxicant model in a time-periodic environment

with toxicant-taxis (1.6). In Section 5.2, we shall establish the global existence of classical

solutions and the ultimately uniform boundedness. Section 5.3 will prove the existence

of positive periodic solution and uniform persistence, and theoretically show that a large

coefficient of cross-diffusion can enlarge the interval of uniform persistence. Section 5.4 will

establish the global stability of the semi-trivial periodic solution, as well as the uniqueness

and global stability of the positive periodic solutions. Chapter 6 will summarize our results

in Chapters 2-5 and list some open questions.

For clarity, we shall abbreviate
∫
Ω fdx, ∥f∥Lp(Ω) and

∫ T
0

∫
Ω fdxdt as

∫
Ω f , ∥f∥Lp and∫

QT
f , respectively. Additionally, we clarify that the results of Chapters 2-4 have been

published as our papers [22, 24, 25].
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Chapter 2

Global Dynamics of an Indirect
Prey-taxis System with an
Anti-predation Mechanism

2.1 Introduction and Main Results

We clarify that the context presented in this chapter has been published in our journal

paper [24].

2.1.1 Introduction

Prey-taxis is the direct (attractive or repulsive) movement of predators along prey den-

sity gradients. It was first proposed by Kareiva and Odell [68] to explore the consequence

of the predator-prey interaction between the ladybug beetle Coccinella septempunctata

(predator) and the golden aphid Uroleucon nigrotuberculatum (prey). The model proposed

in [68] in its generalized form can be formulated as
Nt = dN∆N +Nf(N)− PF (N), x ∈ Ω, t > 0,

Pt = ∇ · (d(N)∇P )−∇ · (Pξ(N)∇N) + γPF (N) + Pg(P ), x ∈ Ω, t > 0,

∂νN = ∂νP = 0, x ∈ ∂Ω,

(2.1)

where N = N(x, t) and P = P (x, t) denote the prey and predator densities at position x

and time t, respectively, and dN > 0 is a constant denoting the prey diffusivity. The term

∇· (d(N)∇P ) describes the predator’s diffusion with a prey-dependent diffusion coefficient

d(N) > 0, d′(N) < 0, and −∇ · (Pξ(N)∇N) accounts for the prey-taxis with a prey-

dependent prey-tactic coefficient ξ(N) ≥ 0. The function F (N) is the so-called functional

response function while f(N) and g(P ) represent the per-capita growth rate of prey and

predators, respectively. The commonly used forms for f and g are f(N) = λ − N where

λ > 0 is the so-called carry capacity and g(P ) = µ − P with µ ̸= 0 where the predator
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is said to be specialist if µ < 0 and generalist if µ > 0. The system (2.1) has been

extensively studied in recent years, we refer the readers to [16, 49, 64, 65, 79, 80, 122, 152]

and references therein for more related works.

Different from the process of direct prey-taxis described by (2.1), some foraging preda-

tors may locate the prey by following the density gradient of substances, such as pheromones

(kairomones) (cf. [154]), chemical alarm cues (cf. [37]), sexual signals (cf. [159]), smells and

so on, which are emitted from prey species. For instance, Parasitoids exploit both plant

volatiles and herbivore pheromones to locate their insect prey [35], the wolf spider Pardosa

milvina moves along stimulus released by crickets [52]. This type of foraging behavior is

called indirect prey-taxis, which was first modeled by Tello and Wrzosek [129]. Its general

form reads as
Nt = dN∆N +Nf(N)− PF (N), x ∈ Ω, t > 0,

Pt = ∇ · (d(S)∇P )−∇ · (Pξ(S)∇S) + γPF (N) + Pg(P ), x ∈ Ω, t > 0,

St = dS∆S + τN − ηS, x ∈ Ω, t > 0,

∂νN = ∂νP = ∂νS = 0, x ∈ ∂Ω.

(2.2)

All notations and parameters have the same interpretation as in Section 1.2.

Compared to the direct prey-taxis model (2.1), the indirect prey-taxis model (2.2)

adds one equation for the released signal S and the movement of predators consists of

two parts: diffusion part ∇ · (d(S)∇P ) and prey-taxis part −∇ · (Pξ(S)∇S) directed by

the signal, where both diffusion and prey-taxis coefficients depend on the signal density.

The term ∇ · (d(S)∇P ) means the diffusion of predators with positive random diffusion

coefficient d(S). −∇· (Pξ(S)∇S) is referred to the indirect prey-taxis describes the biased

diffusion of predators towards the regions of higher density of stimulus rather than prey

with coefficient ξ(S) if ξ(S) > 0 [129, 135], and engraves the predators retreat from the

area of higher density of stimulus with coefficient ξ(S) if ξ(S) < 0, which occurs in the

occasion where prey act anti-predation behavior by using stimulus [26, 91].

Some results on (2.2) with ξ(S) > 0 (i.e., indirect prey-taxis system) have been devel-

oped. We refer to [2, 129, 134, 160] for the case with constant d(S) and ξ(S), and [139]

for the case in which d(S) is constant but ξ(S) is non-constant. However, when both d(S)

and ξ(S) are non-constant, there are only two recent works: [96] for general d(S) and ξ(S),

and [135] for special case where ξ(S) = −d′(S). In such a special case ξ(S) = −d′(S), the
diffusion terms of the second equation in (2.2) can be rewritten as ∆[d(S)P ], which de-

notes that the diffusion of predator P is dependent on the density of signal S and is said to

signal/density-dependent diffusion if d′(S) ̸= 0. Specifically, the term ∆[d(S)P ] represents

10



that the predator’s motility is less active when encountering the attractive signals released

by the prey and is analogous to “density-suppressed motility” (cf. [39]) if d′(S) < 0. When

d′(S) > 0, it means that the predator will increase its motility if they come into the toxic or

foul smelling stimulus released by the prey and demonstrates the anti-predation mechanism

of prey. The results in [135] demonstrate that the density-dependent type indirect prey-

taxis can induce the time-periodic patterns (Andronov-Hopf bifurcation) even when the

predator P adopt the Holling type I functional response (i.e., F (N) = N), which contrasts

sharply with direct prey-taxis [65]. Hence, it is natural to ask:

• When the prey act anti-predation behavior (i.e., d′(S) > 0), how does the long-time

behavior/the population distribution differ from the case of the indirect prey-taxis

mechanism (i.e., d′(S) < 0)?

To explore this question, we focus on the following indirect prey-taxis system with an

anti-predation mechanism

Nt = dN∆N + λN −N2 −NP, x ∈ Ω, t > 0,

Pt = ∆[d(S)P ] + µP − P 2 + γNP, x ∈ Ω, t > 0,

St = dS∆S + τN − ηS, x ∈ Ω, t > 0,

∂νN = ∂νP = ∂νS = 0, x ∈ ∂Ω,

(N,P, S)(x, 0) = (N0, P0, S0)(x), x ∈ Ω,

(2.3)

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary and d′(S) ̸= 0. The

parameter λ, γ, τ and η are positive constants and µ ∈ R is more general than the one in

[96]. And the density-dependent function d(S) accounts for the dispersal coefficient of the

predator and fulfills the assumptions as below

(H0) d(S) ∈ C3([0,∞)) and d(S) > 0 on [0,∞).

Our main goals include the following:

(A.1) Establish the global well-posedness of solutions (global existence and stability) to

(2.3) under suitable conditions;

(A.2) Investigate the existence of spatially inhomogeneous patterns bifurcating from con-

stant steady state when the predator employs an anti-predation strategy.

2.1.2 Main Results

The first main theorem on the global boundedness of solutions of (2.3) is given below.
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Theorem 2.1 (Global boundedness). Let Ω ⊂ Rn (n ≥ 1) be a bounded domain with a

smooth boundary. Assume that (N0, P0, S0) ∈ [W 1,∞(Ω)]3 satisfies N0(x), P0(x), S0(x)≥
0 ( ̸≡ 0) in Ω̄ and (H0) holds. Then the system (2.3) admits a unique classical solution

(N,P, S) ∈ [C0(Ω̄× [0,∞))∩C2,1(Ω̄× (0,∞))]3 with N,P, S > 0 in Ω× (0,∞). Moreover,

the solution (N,P, S) is uniform-in-time bounded in the following sense

∥N(·, t)∥W 1,∞ + ∥P (·, t)∥L∞ + ∥S(·, t)∥W 1,∞ ≤M for all t > 0, (2.4)

where the constant M > 0 is independent of t. Furthermore, one has

∥N(·, t)∥L∞ ≤M0 := max{λ, ∥N0∥L∞}. (2.5)

Remark 2.1. In fact, we may find a constant K > 0 defined in (2.25) such that

∥S(·, t)∥L∞ ≤ K, (2.6)

where K is particularly independent of t, µ and γ.

Next, we aim to study the global stability of solutions to (2.3). For convenience, we

define the regions Ri (i = 1, 2, 3, 4) (see in Figure 2.1) as below

R1 := {(µ, λ) : µ ≤ −λγ}; R2 := {(µ, λ) : −λγ < µ ≤ 0};

R3 := {(µ, λ) : 0 < µ < λ}; R4 := {(µ, λ) : µ ≥ λ}.

The constant steady state (Nc, Pc, Sc) of (2.3) satisfies

Nc(λ−Nc − Pc) = 0, Pc(µ− Pc + γNc) = 0, τNc − ηSc = 0.

One can easily solve the above equations to obtain

(Nc, Pc, Sc) =



(0, 0, 0) or (λ, 0, τλη ), if (µ, λ) ∈ R1,

(0, 0, 0) or (λ, 0, τλη ) or (N∗, P ∗, S∗), if (µ, λ) ∈ R2,

(0, 0, 0) or (0, µ, 0) or (λ, 0, τλη ) or (N∗, P ∗, S∗), if (µ, λ) ∈ R3,

(0, 0, 0) or (0, µ, 0) or (λ, 0, τλη ), if (µ, λ) ∈ R4,

where

(N∗, P ∗, S∗) =

(
λ− µ

γ + 1
,
λγ + µ

γ + 1
,
τ(λ− µ)

η(γ + 1)

)
. (2.7)

Then, we have the following results on the global stability of solutions to (2.3).
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Figure 2.1: The plot of regions Ri (i = 1, 2, 3, 4).

Theorem 2.2 (Global stability). Let the conditions in Theorem 2.1 hold and (N,P, S)

be the solution of (2.3) obtained in Theorem 2.1. Then we can find constans Ci > 0,

κi > 0 (i = 1, 2, 3, 4, 5) independent of t and some constant t0 > 0 such that the solution

of (2.3) has the following convergence properties.

(1) If (µ, λ) ∈ R1, then
(
λ, 0, τλη

)
is globally asymptotically stable such that for all t > t0

∥N − λ∥L∞ + ∥P∥L∞ + ∥S − τλ

η
∥L∞ ≤

{
C1e

−κ1t, if µ < −λγ,

C2(1 + t)−κ2 , if µ = −λγ.
(2.8)

(2) If (µ, λ) ∈ R2 ∪R3 and

γ(γ + 1)

λγ + µ
>

τ2

4ηdS
max

0≤S≤∥S∥L∞

|d′(S)|2

d(S)
, (2.9)

then (N∗, P ∗, S∗) is globally asymptotically stable such that

∥N −N∗∥L∞ + ∥P − P ∗∥L∞ + ∥S − S∗∥L∞ ≤ C3e
−κ3t for all t > t0. (2.10)

(3) If (µ, λ) ∈ R4 and

γ >
τ2λ

2ηdS
max

0≤S≤∥S∥L∞

|d′(S)|2

d(S)
, (2.11)

then (0, µ, 0) is globally asymptotically stable such that for all t > t0

∥N∥L∞ + ∥P − µ∥L∞ + ∥S∥L∞ ≤

{
C4e

−κ4t, if µ > λ,

C5(1 + t)−κ5 , if µ = λ.
(2.12)
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It is easy to verify that (0, 0, 0),
(
λ, 0, τλη

)
and (0, µ, 0) each have the same parameter

regions of linear stability in both the system (2.3) and the corresponding the ordinary

differential equations (ODE) system (c.f. [24]). This implies no spatial patterns bifurcate

from (0, 0, 0),
(
λ, 0, τλη

)
and (0, µ, 0) for any d(S) satisfying (H0). Moreover, for the same

reasons, there are no spatial patterns bifurcating from (N∗, P ∗, S∗) when the predator takes

random dispersal (i.e., d′(S) = 0). For the case of d′(S) < 0, which describes the indirect

prey-taxis, [135] demonstrated that the density-dependent type indirect prey-taxis in (2.3)

can induce the time-periodic patterns, which contrasts sharply with direct prey-taxis [65].

Therefore, a relevant question arises: can spatial patterns bifurcate from (N∗, P ∗, S∗)

when the predator employs density-dependent dispersal with an anti-predation strategy

(i.e., d′(S) > 0). To give a satisfactory answer to this question for general d(S) is quite

hard due to excessive technical computations and abstraction of d(S). Below we shall focus

on a specific simple case d(S) = dP + βS to discuss possible bifurcations near (N∗, P ∗, S∗)

and prove the existence of non-constant steady states. However, the analysis directly

extends to other forms of d(S) and results can be obtained similarly.

Before stating our results, we introduce some notations. Let 0 = σ1 < σ2 < σ3 < · · ·
be the eigenvalues of the operator −∆ on Ω with the homogeneous Neumann boundary

condition. Denote

βTm :=
1

|H(σm)|
[σ2mdNdSdP + σm (ηdNdP + dNdSP

∗ + dPdSN
∗)

+ (dNP
∗η + dPN

∗η + dSN
∗P ∗ + γN∗P ∗dS) + (1 + γ)N∗P ∗η/σm], m ≥ 2,

(2.13)

where

H(z) := z2dNdSS
∗ + z(ηdN + dSN

∗)S∗ +
τN∗(λ(1− γ)− 2µ)

γ + 1
with z ≥ 0, (2.14)

and

σ =
−(ηdN + dSN

∗)S∗ +
√

(ηdN + dSN∗)2(S∗)2 + 4dNdSS∗τN∗ [2µ−λ(1−γ)]
γ+1

2dNdSS∗ , (2.15)

which is the positive root of H(z). Then we have the following bifurcation results.

Theorem 2.3 (Bifurcation). Let σm (m ∈ N+) be the eigenvalues of the operator −∆ with

the homogeneous Neumann boundary condition and γ, τ, η, dN , dP , dS be fixed parameters.

Assume that βTm, H(z) and σ are defined in (2.13), (2.14) and (2.15), respectively, and

(µ, λ) ∈ R2 ∪R3. Suppose d(S) = dp + βS. Then the following conclusions hold.
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(1) System (2.3) has no Hopf bifurcation arising from (N∗, P ∗, S∗) for any β > 0;

(2) System (2.3) undergoes a steady state bifurcation near (N∗, P ∗, S∗) at β = βTj if the

following conditions are satisfied

(i) λ(1−γ)
2 < µ < λ;

(ii) there exists an integer j ≥ 2 such that σj < σ.

From Theorem 2.3, we see that the anti-predation mechanism only yields steady state

bifurcation arising from (N∗, P ∗, S∗), which is different from the indirect prey-taxis. Since

the aforementioned steady state bifurcation is just local, we shall show the global existence

of non-constant steady state solutions (i.e., stationary patterns) of (2.3) with d(S) =

dP + βS by applying Leray-Schauder degree theory.

Therefore, we consider the following stationary problem:

dN∆N + λN −N2 −NP = 0, x ∈ Ω,

∆[(dP + βS)P ] + µP − P 2 + γNP = 0, x ∈ Ω,

dS∆S − ηS + τN = 0, x ∈ Ω,

∂νN = ∂νP = ∂νS = 0, x ∈ ∂Ω.

(2.16)

Theorem 2.4 (Stationary patterns). Let σm (m ∈ N+) be the eigenvalues of the operator

−∆ with the homogeneous Neumann boundary condition and γ, τ, η, dN , dP , dS be fixed

parameters. Then there is a positive constant β∗ such that (2.16) has at least one non-

constant positive solution if β ≥ β∗ and the following conditions are satisfied:

(i) λ(1−γ)
2 < µ < λ;

(ii) there exist an integer j ≥ 2 such that σ ∈ (σj , σj+1);

(iii) the sum
j∑

m=2
dimE(σm) is odd,

where σ is defined in (2.15) and E(σm) is the eigenspace corresponding to σm in H1(Ω).

Remark 2.2. When β = 0 and hence d(S) = dP is constant, we know from Theorem

2.2 that the constant positive solution (N∗, P ∗, S∗) is globally asymptotically stable for

any (µ, λ) ∈ R2 ∪ R3, and hence (2.16) has no non-constant positive solution. However,

Theorem 2.4 shows that, under suitable additional assumptions, (2.16) has at least one

non-constant positive solution for large β > 0. This implies that the anti-predation β helps

create spatial heterogeneity.
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By Theorem 2.4, we obtain the result on the system (2.16) for the case of one-dimensional

space Ω = (0, l) with the constant l > 0.

Proposition 2.1. Let σm (m ∈ N+) be the eigenvalues of the operator −∆ with the ho-

mogeneous Neumann boundary condition and γ, τ, η, dN , dP , dS be fixed parameters. Then

there is a positive constant β∗ such that (2.16) has at least one non-constant positive solu-

tion if β ≥ β∗ and the following conditions are satisfied:

(i) λ(1−γ)
2 < µ < λ;

(ii) there exists an integer j ≥ 2 such that (j−1)2π2

l2
< σ < j2π2

l2
;

(iii) the sum
j∑

m=2
dimE(σm) = j − 1 is odd,

where σ is defined in (2.15), E(σm) is the eigenspace corresponding to σm in H1(Ω).

2.2 Global Boundedness: Proof of Theorem 2.1

In this section, we shall prove Theorem 2.1 by semigroup estimates and Moser iteration.

ci and Mi (i = 1, 2, 3, · · · ) are used to denote the generic positive constants which may

vary in the context. First, the local existence of classical solutions to the system (2.3) can

be proved by Amann’s theorems [7, 8] (see details in [96]).

2.2.1 Local Existence and Preliminaries

Lemma 2.1 (Local existence). Let the conditions in Theorem 2.1 hold. Then there exists

a Tmax ∈ (0,∞] such that the system (2.3) admits a unique classical solution (N,P, S)

∈ [C0(Ω̄× [0, Tmax))∩C2,1(Ω̄× (0, Tmax))]
3 with N,P, S > 0 in Ω× (0, Tmax). Furthermore,

if Tmax <∞, then

lim
t↗Tmax

(∥N(·, t)∥L∞ + ∥P (·, t)∥L∞ + ∥S(·, t)∥W 1,∞) = ∞.

Lemma 2.2. Let (N,P, S) be the solution of (2.3) obtained in Lemma 2.1. Then one has

0 < N(·, t) ≤M0 := max{λ, ∥N0∥L∞} for all x ∈ Ω, t ∈ (0, Tmax). (2.17)

Proof. Using the same arguments as the proof of [64, Lemma 2.2], we get (2.17).
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Lemma 2.3. Let (N,P, S) be the solution of (2.3) obtained in Lemma 2.1. Then one has∫
Ω
P (·, t) ≤M1 for all t ∈ (0, Tmax), (2.18)

and ∫
Ω
Sn(·, t) ≤M2 ((τ/η)

n + 1) for all t ∈ (0, Tmax), (2.19)

where

M1 :=
(|µ|+ γM0 + 1)2 |Ω|

2
+

∫
Ω
P0, M2 := (n− 1)n−1

(
2M0

n

)n
|Ω|+ ∥S0∥nL∞ |Ω|.

Proof. Integrating the second equation of (2.3) over Ω, using (2.17) and Young’s inequality,

one derives

d

dt

∫
Ω
P +

∫
Ω
P 2 +

∫
Ω
P = µ

∫
Ω
P + γ

∫
Ω
NP +

∫
Ω
P

≤ (|µ|+ γM0 + 1)

∫
Ω
P

≤ 1

2

∫
Ω
P 2 +

(|µ|+ γM0 + 1)2 |Ω|
2

.

Then it follows that

d

dt

∫
Ω
P +

∫
Ω
P ≤ (|µ|+ γM0 + 1)2 |Ω|

2
,

which, along with Grönwall’s inequality, gives (2.18) directly.

Next, we show (2.19). Multiplying the third equation of (2.3) by Sn−1 (n ≥ 1), and

using (2.17) and Young’s inequality again, we have

d

dt

∫
Ω
Sn + n(n− 1)dS

∫
Ω
Sn−2|∇S|2 + ηn

∫
Ω
Sn ≤ τM0n

∫
Ω
Sn−1

≤ ηn

2

∫
Ω
Sn + M̂,

(2.20)

where M̂ := (2(n− 1)/ηn)n−1 (τM0)
n|Ω|. Then (2.20) leads to

d

dt

∫
Ω
Sn +

ηn

2

∫
Ω
Sn ≤ (2(n− 1)/ηn)n−1 (τM0)

n|Ω|,

which alongside Grönwall’s inequality implies∫
Ω
Sn ≤ (n− 1)n−1 (2τM0/ηn)

n |Ω|+
∫
Ω
Sn0

≤M2 ((τ/η)
n + 1) ,
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and hence (2.19) holds. The proof of Lemma 2.3 is completed.

2.2.2 Boundedness of Solutions

Lemma 2.4. Let (N,P, S) be the solution of (2.3) obtained in Lemma 2.1. Then, there

admits a constant M3 > 0 such that

∥S(·, t)∥W 1,∞ ≤M3 for all t ∈ (0, Tmax). (2.21)

Proof. We rewrite the third equation of (2.3) as

St = dS∆S − dSS + τN + (dS − η)S. (2.22)

Denote the Neumann heat semigroup in Ω by (e∆t)t>0. Then using Duhamel’s principle

to (2.22), one has

S(·, t) = etdS(∆−1)S0 +

∫ t

0
e(t−s)dS(∆−1)[τN + (dS − η)S](·, s)ds

≤ etdS(∆−1)S0 +

∫ t

0
e(t−s)dS(∆−1)(τN + dSS)(·, s)ds.

(2.23)

By the well-known semigroup estimate [147, Lemma 1.3], we can find a constant σ1 > 0

depending only on Ω such that

∥S(·, t)∥L∞ ≤ ∥etdS(∆−1)S0∥L∞ +

∫ t

0
∥e(t−s)dS(∆−1)(τN + dSS)(·, s)∥L∞ds

≤ σ1∥S0∥L∞ + σ1

∫ t

0

(
1 + (t− s)−

1
2

)
e−dS(t−s)∥τN + dSS∥Lnds

≤ σ1∥S0∥L∞ +
σ1
dS

(
τM0|Ω|

1
n + dSM

1
n
2 ((τ/η)n + 1)

1
n

)
·
(
1 + d

1
2
SΓ (1/2)

)
,

(2.24)

where we have used (2.17), (2.19) and Γ(·) denotes the Gamma function. Therefore, (2.6)

follows by letting

Q := K0

[
1 +

(
τ/dS + ((τ/η)n + 1)

1
n
)
·
(
1 + d

1
2
S

)]
, (2.25)

with K0 := σ1∥S0∥L∞ + σ1
(
M0|Ω|

1
n +M

1
n
2

)
(1 + Γ (1/2)) independent of t, µ, γ.

Using the semigroup estimate again, we can find a constant σ2 > 0 depending only on
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Ω such that

∥∇S(·, t)∥L∞ ≤ ∥∇etdS(∆−1)S0∥L∞ +

∫ t

0
∥∇e(t−s)dS(∆−1)[τN + (dS − η)S](·, s)∥L∞ds

≤ c1 + σ2(τM0 + dSΓ1 + ηΓ1)

∫ t

0

(
1 + (t− s)−

1
2

)
e−(λ1+1)dS(t−s)ds

≤ c1 +
σ2(τM0 + dSΓ1 + ηΓ1)

(λ1 + 1)dS

(
1 + (λ1 + 1)

1
2d

1
2
SΓ (1/2)

)
for all t ∈ (0, Tmax), which together with (2.24) gives (2.21) directly.

Lemma 2.5. Let (N,P, S) be the solution of (2.3) obtained in Lemma 2.1. Then, there

admits a constant M4 > 0 such that

∥P (·, t)∥L∞ ≤M4 for all t ∈ (0, Tmax). (2.26)

Proof. Multiplying the second equation of (2.3) by P k−1(k ≥ 2), and integrating the result

over Ω, we have

1

k

d

dt

∫
Ω
P k + (k − 1)

∫
Ω
P k−2d(S)|∇P |2 +

∫
Ω
P k+1

= −(k − 1)

∫
Ω
P k−1d′(S)∇P · ∇S + µ

∫
Ω
P k + γ

∫
Ω
NP k.

(2.27)

From (H0) and 0 < S(·, t) ≤ Q, there admit constants δi > 0 (i = 1, 2, 3, 4) such that

δ1 ≤ d(S) ≤ δ2, (2.28)

and

δ3 ≤ |d′(S)| ≤ δ4. (2.29)

Then applying (2.28), (2.29), (2.5), (2.21) and Young’s inequality, we derive from (2.27)

that

1

k

d

dt

∫
Ω
P k + δ1(k − 1)

∫
Ω
P k−2|∇P |2 +

∫
Ω
P k+1 + (k − 1)

∫
Ω
P k

≤ (k − 1)δ4

∫
Ω
P k−1|∇P ||∇S|+ µ

∫
Ω
P k + γM0

∫
Ω
P k + (k − 1)

∫
Ω
P k

≤ δ1(k − 1)

2

∫
Ω
P k−2|∇P |2 + (k − 1)δ24

2δ1

∫
Ω
P k|∇S|2 + (k − 1)(|µ|+ γM0 + 1)

∫
Ω
P k

≤ δ1(k − 1)

2

∫
Ω
P k−2|∇P |2 + (k − 1)

(
δ24M

2
3

2δ1
+ |µ|+ γM0 + 1

)∫
Ω
P k,
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which yields

d

dt

∫
Ω
P k + k(k − 1)

∫
Ω
P k +

δ1k(k − 1)

2

∫
Ω
P k−2|∇P |2 ≤ c1k(k − 1)

∫
Ω
P k, (2.30)

where c1 =
δ24M

2
3

2δ1
+ |µ|+ γM0 + 1 > 0 is independent of t and k.

Then using the Moser iteration process (cf. [123] or [3]) and (2.18), from (2.30) one

obtains (2.26) readily. Hence, we complete the proof of Lemma 2.5.

Proof of Theorem 2.1. The combination of (2.17), (2.21) and (2.26) gives a constant

c1 > 0 such that

∥N(·, t)∥L∞ + ∥S(·, t)∥W 1,∞ + ∥P (·, t)∥L∞ ≤ c1. (2.31)

Noting (2.31), using Duhamel’s principle to the first equation of (2.3) and proceeding with

the similar way as the proof in Lemma 2.4 alongside the semigroup estimate [147], one has

∥∇N(·, t)∥L∞ ≤ c2, which together with (2.31) and Lemma 2.1 yields Theorem 2.1.

2.3 Global Stability: Proof of Theorem 2.2

In this section, we shall show (N,P, S) obtained in Theorem 2.1 will converge to con-

stant steady states and give the convergence rate. We start by presenting a result that will

be utilized in the subsequent analysis.

Lemma 2.6. (Barǎlat’s Lemma [11]) If g : [1,∞) → R is a uniformly continuous function

such that lim
t→∞

∫ t
1 g(s)ds exists, then lim

t→∞
g(t) = 0.

Next, we improve the regularity of the solution (N,P, S).

Lemma 2.7. Let (N,P, S) be the solution of (2.3) obtained in Theorem 2.1. Then there

exist θ ∈ (0, 1) and M5 > 0 such that

∥(N,P, S)(·, t)∥
C2+θ,1+ θ

2 (Ω̄×[1,∞))
≤M5, for allt ≥ 1. (2.32)

Proof. Based on (2.4), (2.32) is a consequence of the Hölder estimates for quasilinear

parabolic equations (cf. [111, Theorem 1.3 and Remark 1.4]) and the standard parabolic

Schauder theory [76]. The proof details can follow the similar procedures as the proof in

[145, Lemma 3.4].
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Proof of Theorem 2.2(1). We consider the following energy functional

L1(t) := L1(N,P, S) := γ

∫
Ω

(
N − λ− λ ln

N

λ

)
+

∫
Ω
P +

γη

2τ2

∫
Ω

(
S − τλ

η

)2

. (2.33)

Define f(y) = y − y∗ ln y. Then f
′(y∗) = 0 and the Taylor’s expansion entails

y − y∗ − y∗ ln
y

y∗
= f(y)− f(y∗) =

f ′′(z)

2
(y − y∗)

2 =
y∗
2z2

(y − y∗)
2 ≥ 0 (2.34)

for all y, y∗ > 0 and z is between y and y∗. Then, we take y = N , y∗ = λ in (2.34) to

obtain

N − λ− λ ln
N

λ
=

λ

2z21
(N − λ)2 ≥ 0, (2.35)

where z1 is between N and λ. Hence, (2.35) together with (2.33) indicates L1(t) ≥ 0 and

“=” holds iff (N,P, S) = (λ, 0, τλη ).

Simple calculations along with the fact (µ, λ) ∈ R1 (i.e., µ+ γλ ≤ 0) give that

d

dt
L1(t) ≤ −γdN

∫
Ω

|∇N |2

N2
− γηdS

τ2

∫
Ω
|∇S|2 + (µ+ γλ)

∫
Ω
P

− γ

2

∫
Ω
(N − λ)2 − γη2

2τ2

∫
Ω

(
S − τλ

η

)2 − ∫
Ω
P 2 ≤ −c1F1(t),

(2.36)

where F1(t) :=
∫
Ω(N − λ)2 +

∫
Ω

(
S − τλ

η

)2
+
∫
Ω P

2 and c1 := min
{γ
2 ,

γη2

2τ2
, 1
}
.

Since L1(t) ≥ 0, (2.36) implies that
∫∞
1 F1(t)dt ≤ 1

c1
L1(1) < ∞. And we deduce from

(2.32) that F1(t) is uniformly continuous in [1,∞). Then Lemma 2.6 yields

lim
t→∞

(
∥N − λ∥L2 + ∥P∥L1 +

∥∥S − τλ

η

∥∥
L2

)
= 0.

Therefore, following the similar procedures as the proof of [64, Lemma 4.2], we can find

positive constants ci (i = 1, 2, 3) and t1 such that{
∥N − λ∥L2 + ∥P∥L1 + ∥S − τλ

η ∥L2 ≤ c2e
−c1t, if µ < −γλ,

∥N − λ∥L2 + ∥P∥L1 + ∥S − τλ
η ∥L2 ≤ c3(1 + t)−1, if µ = −γλ,

for all t ≥ t1. By (2.32), Theorem 2.1 and Gagliardo-Nirenberg inequality, we get (2.8)

directly.

Proof of Theorem 2.2(2). We define the following energy functional

L2(t) := L2(N,P, S) := γFN (t) + FP (t) +
γη

2τ2

∫
Ω
(S − S∗)2,
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where Fy(t) =
∫
Ω

(
y− y∗− y∗ ln y

y∗

)
, y = N, P. Proceeding the same procedures as (2.35),

we obtain L2(t) ≥ 0. Moreover, L2(t) = 0 iff (N,P, S) = (N∗, P ∗, S∗).

On the other hand, after some calculations, one has

d

dt
L2(t) ≤ J1 −

γ

2

∫
Ω
(N −N∗)2 −

∫
Ω
(P − P ∗)2 − γη2

2τ2

∫
Ω
(S − S∗)2, (2.37)

where J1 := −
∫
Ω Y

T
1 A1Y1 with

Y1 =


∇N
N

∇P
P

∇S
S

 , A1 =


γN∗dN 0 0

0 P ∗d(S) P ∗d′(S)S
2

0 P ∗d′(S)S
2

γηdSS
2

τ2

 .

Noting P ∗ := λγ+µ
γ+1 in (2.7) and calculating directly, we can verify that the matrix A1 is

positive definite iff

γ(γ + 1)

λγ + µ
>

τ2

4ηdS

|d′(S)|2

d(S)
. (2.38)

Moreover, (2.38) is ensured by the condition (2.9). Hence, there is a constant c1 > 0 such

that

J1 = −
∫
Ω
Y T
1 A1Y1 ≤ −c1

∫
Ω

(
|∇N |2

N2
+

|∇P |2

P 2
+

|∇S|2

S2

)
.

Therefore, (2.37) can be updated as

d

dt
L2(t) ≤ −γ

2

∫
Ω
(N −N∗)2 −

∫
Ω
(P − P ∗)2 − γη2

2τ2

∫
Ω
(S − S∗)2.

Then, following the same way as the proof of Theorem 2.2 (1), one can show that

lim
t→∞

(∥N −N∗∥L2 + ∥P − P ∗∥L2 + ∥S − S∗∥L2) = 0.

We proceed same way as the proof in [64, Lemma 4.2] again to get

∥N −N∗∥L2 + ∥P − P ∗∥L2 + ∥S − S∗∥L2 ≤ c3e
−c2t for all t ≥ t2

with some positive constants c2, c3 and t2. Applying (2.32), Theorem 2.1 and Gagliardo-

Nirenberg inequality again, we get (2.10) readily.

Proof of Theorem 2.2(3). Define the following energy functional

L3(t) := L3(N,P, S)

:=
τ2(λ+ µ)

η

∫
Ω
N +

2τ2λ

γη

∫
Ω

(
P − µ− µ ln

P

µ

)
+
µ

2

∫
Ω
S2 +

τ2

2η

∫
Ω
N2.
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Similar to the proof of (2.35), one obtains that L3(t) ≥ 0 and L3(t) = 0 iff (N,P, S) =

(0, µ, 0).

Differentating L3(t), we have

d

dt
L3(t) = J2−

τ2µ

η

∫
Ω
N2 − 2τ2λ

γη

∫
Ω
(P − µ)2 − µη

∫
Ω
S2 + µτ

∫
Ω
SN︸ ︷︷ ︸

J3

− τ2λ(µ− λ)

η

∫
Ω
N − τ2(µ− λ)

η

∫
Ω
NP − τ2

η

∫
Ω
N3 − τ2

η

∫
Ω
N2P,

(2.39)

where J2 := −
∫
Ω Y

T
2 A2Y2 with

Y2 =


∇N
N

∇P
P

∇S
S

 and A2 =


τ2dNN

2

η 0 0

0 2τ2λµd(S)
γη

τ2λµd′(S)S
γη

0 τ2λµd′(S)S
γη µdSS

2

 .

Then A2 is positive definite iff γ > τ2λ|d′(S)|2
2ηdSd(S)

, which is ensured by noting (2.11). Hence,

there is a constant c1 > 0 such that

J2 = −
∫
Ω
Y T
2 A2Y2 ≤ −c1

∫
Ω

(
|∇N |2

N2
+

|∇P |2

P 2
+

|∇S|2

S2

)
≤ 0. (2.40)

As for J3, using Young’s inequality, one has

J3 ≤ −τ
2µ

2η

∫
Ω
N2 − 2τ2λ

γη

∫
Ω
(P − µ)2 − µη

2

∫
Ω
S2,

which together with (2.40), (2.39) and λ ≤ µ yeilds

d

dt
L3(t) ≤ −τ

2µ

2η

∫
Ω
N2 − 2τ2λ

γη

∫
Ω
(P − µ)2 − µη

2

∫
Ω
S2. (2.41)

Then, we follow the same way as the proof of Theorem 2.2 (1) to show that

lim
t→∞

(∥N∥L2 + ∥P − µ∥L2 + ∥S∥L2) = 0.

Moreover, similar to the proof in [64, Lemma 4.2], we can find some positive constants

ci (i = 2, 3, 4) and t3 such that for all t ≥ t3{
∥N∥L2 + ∥P − µ∥L2 + ∥S∥L2 ≤ c3e

−c2t, if µ > λ,

∥N∥L2 + ∥P − µ∥L2 + ∥S∥L2 ≤ c4(1 + t)−1, if µ = λ,

which alongside (2.32), Theorem 2.1 and Gagliardo-Nirenberg inequality implies (2.12)

readily.
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2.4 Bifurcation Analysis: Proof of Theorem 2.3

In this section, we shall analyze the stability of the positive constant steady state

(N∗, P ∗, S∗) and discuss Hopf/steady state bifurcation arising from (N∗, P ∗, S∗) for the

predator-prey system with anti-predation d(S) = dP + βS. We assume (µ, λ) ∈ R2 ∪ R3

throughout this section.

Before proceeding, we introduce some important notations used in the sequel. Let

0 = σ1 < σ2 < σ3 < · · · be the eigenvalues of the operator −∆ on Ω with the homogeneous

Neumann boundary condition. We denote by E(σm) the eigenspace corresponding to σm

in H1(Ω). Let X = [H1(Ω)]3 and {θmj : j = 1, 2, · · · ,dimE(σm)} be an orthonormal basis

of E(σm). Then

X =

∞⊕
m=1

Xm and Xm =

dimE(σm)⊕
j=1

Xmj , (2.42)

where Xmj = {cθmj , c ∈ R3}. Denote

Φ(u) =


dNN

d(S)P

dSS

 and Ψ(u) =


Ψ1(u)

Ψ2(u)

Ψ3(u)

 =


λN −N2 −NP

µP − P 2 + γNP

−ηS + τN

 ,

where u = (N,P, S)T . Then (2.3) can be rewritten as

∂u

∂t
= ∆Φ(u) + Ψ(u).

The linearized system of (2.3) at the positive constant steady state u∗ = (N∗, P ∗, S∗)T is:

∂U

∂t
= LU with L = Φu(u

∗)∆ + Ψu(u
∗),

where U := u− u∗ and

Φu(u
∗) =


dN 0 0

0 d(S∗) d′(S∗)P ∗

0 0 dS

 and Ψu(u
∗) =


−N∗ −N∗ 0

γP ∗ −P ∗ 0

τ 0 −η

 .

By a simple calculation, the characteristic polynomial of the matrix −σmΦu(u
∗) +

Ψu(u
∗) is given by

α3 +B1(β, σm)α
2 +B2(β, σm)α+B3(β, σm) = 0, (2.43)
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where

B1(β, σm) =σm (dS + d(S∗) + dN ) + η + P ∗ +N∗ > 0,

B2(β, σm) =σ
2
m (dSd(S

∗) + dNdS + dNd(S
∗))

+ σm (η(d(S∗) + dN ) + P ∗(dS + dN ) +N∗(dS + d(S∗)))

+ (P ∗ +N∗)η + (1 + γ)N∗P ∗ > 0,

B3(β, σm) =σ
3
mdNdSdP + σ2m (ηdNdP + dNdSP

∗ + dPdSN
∗) + βσmH(σm)

+ σm (dNP
∗η + dPN

∗η + dSN
∗P ∗ + γN∗P ∗dS) + (1 + γ)N∗P ∗η

(2.44)

with

H(z) := z2dNdSS
∗ + z(ηdN + dSN

∗)S∗ +
τN∗(λ(1− γ)− 2µ)

γ + 1
.

A direct calculation yields

T (β, σm) := B1(β, σm)B2(β, σm)−B3(β, σm)

= b1σ
3
m + b2σ

2
m + b3σm + τN∗βP ∗σm + b4,

(2.45)

where

b1 =d
2
S(d(S

∗) + dN ) + d2(S∗)(dN + dS) + d2N (dS + d(S∗)) + 2dSdNd(S
∗) > 0,

b2 =η(d(S
∗) + dN )(2dS + d(S∗) + dN ) + P ∗(dS + dN )(dS + 2d(S∗) + dN )

+N∗(dS + d(S∗))(dS + d(S∗) + 2dN ) > 0,

b3 =dS(P
∗ +N∗)η + d(S∗)(P ∗η +N∗P ∗ + γN∗P ∗) + dN (N

∗η +N∗P ∗ + γN∗P ∗)

+ (η + P ∗ +N∗)(η(d(S∗) + dN ) + P ∗(dS + dN ) +N∗(dS + d(S∗))) > 0,

b4 =η
2(P ∗ +N∗) + η(P ∗ +N∗)2 + (1 + γ)(P ∗ +N∗)N∗P ∗ > 0,

(2.46)

and hence T (β, σm) := B1(β, σm)B2(β, σm)−B3(β, σm) > 0 for each m ≥ 1. Then we have

the following stability result.

Lemma 2.8. The positive constant steady state u∗ of (2.3) is linearly stable provided one

of the following conditions holds:

(a) 2µ ≤ λ(1− γ);

(b) 2µ > λ(1− γ) and σm ≥ σ̄ > 0 for each m ≥ 2,
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where σ is defined in (2.15).

Proof. From the above analysis, one has Bj(β, σm) > 0 (j = 1, 2) and T (β, σm) > 0 for

each m ≥ 1. To show that u∗ is linearly stable, it suffices to prove B3(β, σm) > 0 for each

m ≥ 1 based on the well-known Routh-Hurwitz criterion (see Appendix B.1 in [100]).

If 2µ ≤ λ(1− γ), one has B3(β, σm) > 0 for each m ≥ 1. For the case of 2µ > λ(1− γ),

we obtain B3(β, σm) > 0 directly when m = 1. Since σm ≥ σ̄ for each m ≥ 2, one obtains

that H(σm) ≥ 0 for each m ≥ 2 and hence B3(β, σm) > 0 for each m ≥ 1. The proof of

Lemma 2.8 is finished.

We are left to discuss the linear stability/instability of u∗ for the parameters satisfying

the following assumptions:

(A1) 2µ > λ(1− γ) and there exist some m ≥ 2 such that σm < σ̄.

Lemma 2.9. Let the assumption (A1) hold. Then we have the following statements:

(1) u∗ is linearly stable with respect to (2.3) if 0 < β < min
m0

{βTm0
};

(2) u∗ is linearly unstable with respect to (2.3) if β > min
m0

{βTm0
},

where βTm and σ̄ are defined in (2.13) and (2.15), respectively, and m0 ≥ 2 satisfying

σm0 < σ̄.

Proof. We first show that min
m0

{βTm0
} (m0 ≥ 2 satisfying σm0 < σ̄) exists. For fixed param-

eters γ, τ, η, dN , dP , dS , µ and λ, (2.15) shows that σ̄ > 0 is also fixed. Since the sequence

{σm}∞m=1 is increasing respect to m and satisfies σ1 = 0 and σm → ∞ as m → ∞, then

there exists an integer m∗ such that σm∗ < σ̄ < σm∗+1. Hence, for all 2 ≤ m0 ≤ m∗ < ∞,

one has σm0 < σ̄ and such m0 is finite, which implies that min
m0

{βTm0
} exists.

Next, we discuss the stability/ instability of u∗. It follows from (2.44), (2.45) and (2.46)

that B1 > 0, B2 > 0 and B1B2 −B3 > 0 for any β > 0. On the other hand, one can check

that B3(β, σm) > 0 for any β > 0 when m = 1. When m ≥ 2 satisfying σm ≥ σ̄, one

has H(σm) ≥ 0 and hence B3(β, σm) > 0 for any β > 0. If m ≥ 2 satisfying σm < σ̄,

then H(σm) < 0. It follows from (2.44) that B3(β, σm) > 0 for 0 < β < βTm with m ≥ 2

satisfying σm < σ̄. Consequently, with the above three cases, the Routh-Hurwitz criterion

implies that u∗ is linearly stable if 0 < β < βTm for each m ≥ 2 satisfying σm < σ̄, which

together with the existence of min
m0

{βTm0
} gives Lemma 2.9 (1).
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When β > βTm0
for some m0 ≥ 2 satisfying σm0 < σ̄, we get B3(β, σm0) < 0 readily.

Then the Routh-Hurwitz criterion indicates that u∗ is linearly unstable. With the existence

of min
m0

{βTm0
}, we obtain Lemma 2.9 (2) directly. The proof of Lemma 2.9 is finished.

Proof of Theorem 2.3. Now, we discuss the bifurcations from u∗ = (N∗, P ∗, S∗)T . Re-

call that L has a pair of purely imaginary eigenvalues if and only if −σmΦu(u
∗) + Ψu(u

∗)

for somem ≥ 1 does so. Assume that −σmΦu(u
∗)+Ψu(u

∗) for somem ≥ 1 has eigenvalues

iν, −iν and δ, where ν, δ ∈ R and ν ̸= 0. It follows from the Routh-Hurwitz criterion that

B1(β, σm) = −δ, B2(β, σm) = ν2, B3(β, σm) = −ν2δ. (2.47)

Then (2.47) yields

T (β, σm) = B1(β, σm)B2(β, σm)−B3(β, σm) = 0.

This shows that if L has a pair of purely imaginary eigenvalues, then T (β, σm) = 0. That

is, a necessary condition for the Hopf bifurcation to occur is T (β, σm) = 0 for some m ≥ 1.

Hence, from (2.45) and (2.46), we know that (2.3) has no Hopf bifurcation arising from u∗

for all (µ, λ) ∈ R2 ∪R3 and β > 0. Hence, we complete the proof of Theorem 2.3 (1).

We next consider the possibility of steady state bifurcation arising from u∗. First, we

determine the potential steady state bifurcation points. Assume that 0 is an eigenvalue

of −σmΦu(u
∗) + Ψu(u

∗) for some m ≥ 1. It follows from the Routh-Hurwitz criterion

that B3(β, σm) = 0, which means that a necessary condition for steady state bifurcation

is B3(β, σm) = 0 for some m ≥ 1. Consequently, noting Lemma 2.8 and Lemma 2.9, if

λ(1−γ)
2 < µ < λ, then the potential steady state bifurcation points are β = βTm0

for some

m0 ≥ 2 satisfying σm0 < σ̄.

Second, we verify that the transversality condition holds for the steady state bifurcation.

Differentiating the characteristic equation (2.43) with respect to β, we obtain(
dα

dβ

) ∣∣∣
β=βT

m0

= − σm0H(σm0)

B2(βTm0
, σm)

> 0,

where H(σm0) is defined in (2.14). Thus, the proof of Theorem 2.3 (2) is finished.

2.5 Stationary Patterns: Proof of Theorem 2.4

In this section, motivated by the ideas in [142, Chapter 6], we shall establish the

existence of positive solutions of (2.16) by the Leray-Schauder degree theory. To this end,

we first give a priori positive upper and lower bounds for the positive solutions.
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2.5.1 Priori Estimates of Positive Solutions

In this subsection, we shall fix the parameters λ, µ, γ, η, τ and estimate the upper and

lower positive bounds of positive solutions of (2.16) concerning the diffusion coefficients

dN , dP , dS and cross-diffusion coefficient β. We first give a priori positive upper bound for

the positive solutions of (2.16).

Lemma 2.10. Let ε > 0 be any fixed constant. Then any positive solution (N,P, S) of

(2.16) with dN , dP , dS ≥ ε and 0 ≤ β ≤ 1/ε satisfies

max
Ω

N ≤ λ, max
Ω

P ≤ (ε+ τλ/εη)(µ+ γλ)/ε, max
Ω

S ≤ τλ/η. (2.48)

Furthermore, there exists a positive constant C = C(λ, µ, γ, η, τ, ε, |Ω|) such that any posi-

tive solution (N,P, S) of (2.16) with dN , dP , dS ≥ ε and 0 ≤ β ≤ 1/ε satisfies

||(N,P, S)||C2+κ(Ω) ≤ C. (2.49)

Proof. Let x1 ∈ Ω be a point such that N(x1) = maxΩN(x). Applying the maximum

principle [94, Lemma 2.1] to the equation of N , it is clear that N(x1) ≤ λ. Thus, maxΩN ≤
λ. Let x2 ∈ Ω be a point such that S(x2) = maxΩ S(x). Applying the maximum principle

[94, Lemma 2.1] to the equation of S, we have S(x2) ≤ τλ/η. Thus, maxΩ S ≤ τλ/η. Let

Φ = (dP + βS)P and x3 ∈ Ω be a point such that Φ(x3) = maxΩΦ(x). Applying the

maximum principle [94, Lemma 2.1] to the equation of P , we have P (x3) ≤ µ+ γN(x3) ≤
µ+ γλ. Thus,

dP max
Ω

P ≤ max
Ω

Φ = Φ(x3) = (dP + βS(x3))P ((x3)) ≤ (dP + βτλ/η)(µ+ γλ).

Hence, maxΩ P ≤ (ε+ τλ/εη)(µ+ γλ)/ε. This gives the estimate (2.48).

We now prove the estimate (2.49). Given (2.48), we apply the standard regularity for

elliptic equations (see, e.g., [41]) to derive that N , S and Φ = (dP + βS)P belong to

C1+κ(Ω). Moreover, the C1+κ(Ω) norms of them depend only on the parameter ε and the

parameters λ, µ, γ, η, τ . Thus, P ∈ C1+κ(Ω) and the C1+κ(Ω) norm of P depends only on

the parameter ε and the parameters λ, µ, γ, η, τ . We again apply the standard regularity

for elliptic equations to derive the estimate (2.49).

We next give a positive lower bound for the positive solutions of (2.16) with respect

to the diffusion coefficients dN , dP , dS and cross-diffusion coefficient β. For this, we first

prove the following lemma.
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Lemma 2.11. Let dN,m, dP,m, dS,m, βm ∈ (0,∞) and (Nm, Pm, Sm) be the correspond-

ing positive solution of (2.16) with (dN , dP , dS , β) = (dN,m, dP,m, dS,m, βm). Suppose that

(dN,m, dP,m, dS,m, βm)→ (dN,∞, dP,∞, dS,∞, β∞) and (Nm, Pm, Sm) → (N∞, P∞, S∞) uni-

formly on Ω, where N∞, P∞, S∞ are constants. Then (N∞, P∞, S∞) satisfies
λ−N∞ − P∞ = 0,

µ− P∞ + γN∞ = 0,

−ηS∞ + τN∞ = 0.

In particular, if λ > 0, λ > µ and µ+ γλ > 0, then (N∞, P∞, S∞) = (N∗, P ∗, S∗), which is

the unique positive constant solution of (2.16).

Proof. From the first equation of (2.16), it follows that
∫
Ω(λ − Nm − Pm)Nm = 0 for all

m ≥ 1. Assume that λ − N∞ − P∞ > 0. Then it is clear that λ − Nm − Pm > 0 for

large m. Thus,
∫
Ω(λ − Nm − Pm)Nm > 0 for large m due to Nm is positive. This is

a contradiction. Similarly, if λ − N∞ − P∞ < 0, we can get a contradiction as above.

Therefore, λ − N∞ − P∞ = 0. The same argument shows that µ − P∞ + γN∞ = 0. It

follows from the first equation of (2.16) that

0 =

∫
Ω
(−ηSm + τNm)dx→

∫
Ω
(−ηS∞ + τN∞) = (−ηS∞ + τN∞)|Ω|

as m→ ∞. Thus, −ηS∞ + τN∞ = 0. This completes the proof for the first part.

Suppose that N∞ = 0. Then we use the proven result to obtain P∞ = λ and λ = µ,

which is a contradiction to λ > µ. Suppose that P∞ = 0. Then N∞ = λ and µ+ γλ = 0,

which is a contradiction to µ+ γλ > 0. This implies that N∞ > 0 and P∞ > 0, and thus

S∞ = τ
ηN∞ > 0. Hence (N∞, P∞, S∞) = (N∗, P ∗, S∗). This completes the proof for the

second part.

Lemma 2.12. Let ε > 0 be any fixed constant. Assume that λ > 0, λ > µ and µ + γλ >

0. Then there exists a positive constant C = C(λ, µ, γ, η, τ, ε, |Ω|) such that any positive

solution (N,P, S) of (2.16) with dN , dP , dS ≥ ε and 0 ≤ β ≤ 1/ε satisfies

min
Ω
N, min

Ω
P, min

Ω
S ≥ C−1(ε).

Proof. Suppose that the conclusion does not hold. Then we may assume there exists a

sequence {(dN,m, dP,m, dS,m, βm)}∞m=1, satisfying dN,m, dP,m, dS,m ≥ ε and βm ≤ 1/ε, such
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that the corresponding positive solutions (Nm, Pm, Sm) of (2.16) with (dN , dP , dS , β) =

(dN,m, dP,m, dS,m, βm) satisfy

min
Ω
Nm → 0 or min

Ω
Pm → 0 or min

Ω
Sm → 0

as m → ∞. Since dN,m, dP,m, dS,m ≥ ε, and 0 ≤ βm ≤ 1/ε, subject to a subsequence,

we may assume dN,m → dN,∞ ∈ [ε,∞], dP,m → dP,∞ ∈ [ε,∞], dS,m → dS,∞ ∈ [ε,∞] and

βm → β∞ ∈ [0, 1/ε]. Moreover, it follows from (2.49) that

(Nm, Pm, Sm) → (N∞, P∞, S∞) in C2+κ(Ω)× C2+κ(Ω)× C2+κ(Ω)

for some nonnegative functions N∞, P∞, S∞. It is not hard to see that (N∞, P∞, S∞) also

satisfies the estimate (2.49), and

min
Ω
N∞ = 0 or min

Ω
P∞ = 0 or min

Ω
S∞ = 0.

Furthermore, if dN,∞, dS,∞, dP,∞ < ∞, then (N∞, P∞, S∞) satisfies (2.16). If dN,∞ = ∞,

then it follows from the estimate (2.48) that N∞ satisfies −∆N∞ = 0 in Ω and ∂νN∞ = 0

on ∂Ω. This means that N∞ is constant. Likewise, the analogous conclusions hold for

dP,∞ = ∞ and dS,∞ = ∞.

The constants Ci to be used below will depend on the parameters (λ, µ, γ, η, τ, ε,|Ω|).
As they are fixed, this dependence will not be stated explicitly. Due to (2.48), we find that∥∥∥∥λ−Nm − Pm

dN,m

∥∥∥∥
L∞

≤ λ+ λ+ (ε+ τλ/εη)(µ+ γλ)/ε

ε

for all dN,m, dP,m, dS,m ≥ ε. We apply Harnack inequality [88, Lemma 4.3] to the equation

of Nm to obtain

max
Ω

Nm ≤ C1min
Ω
Nm. (2.50)

Let Φm = (dP,m + βmSm)Pm. Then

−∆Φm =
µ− Pm + γNm

dP,m + βmSm
Φm, x ∈ Ω, ∂νΦm = 0, x ∈ ∂Ω. (2.51)

Since ∥∥∥∥µ− Pm + γNm

dP,m + βmSm

∥∥∥∥
L∞

≤ µ+ (ε+ τλ/εη)(µ+ γλ)/ε+ γλ

ε

for all dN,m, dP,m, dS,m ≥ ε, we apply Harnack inequality [88, Lemma 4.3] to the equation

of Φm to obtain

max
Ω

Φm ≤ C2min
Ω

Φm.
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Hence,

maxΩ Pm
minΩ Pm

≤
maxΩΦm
minΩΦm

dP,m + τλ/εη

dP,m
≤ C2

ε+ τλ/εη

ε
:= C3,

and thus

max
Ω

Pm ≤ C3min
Ω
Pm. (2.52)

Let xm,1 ∈ Ω be a point such that Sm(xm,1) = maxΩ Sm(x). Applying the maximum

principle [94, Lemma 2.1] to the equation of Sm, we have Sm(xm,1) ≤ (τ/η)Nm(xm,1).

Thus,

max
Ω

Sm ≤ (τ/η)max
Ω

Nm. (2.53)

Similarly, we let xm,2 ∈ Ω be a point such that Sm(xm,2) = minΩ Sm(x). Applying the max-

imum principle [94, Lemma 2.1] to the equation of Sm, we have Sm(xm,2) ≥ (τ/η)Nm(xm,2).

Thus,

min
Ω
Sm ≥ (τ/η)min

Ω
Nm. (2.54)

We next complete the proof by considering several different cases.

Case 1: dN,∞, dS,∞, dP,∞ <∞. Assume that minΩNm → 0 as m→ ∞. Then it follows

from (2.50) that maxΩNm → 0 as m → ∞, and so N∞ = 0 in Ω. Moreover, it follows

from (2.53) that maxΩ Sm → 0 as m → ∞, and so S∞ = 0 in Ω. Since there is a positive

constant C4 independent of m such that

||Φm||L∞ ≤ C4 and
∣∣∣∣∣∣µ− Pm + γNm

dP,m + βmSm

∣∣∣∣∣∣
L∞

≤ C4

for all m ≥ 1. Thus, by the standard regularity for elliptic equations (see, e.g., [41]), we

may assume that Φm → Φ∞ uniformly in C1(Ω), by passing to a subsequence if necessary.

Note that maxΩ Sm → 0 as m→ ∞ and βm ≤ 1/ε. Then

Pm =
Φm

dP,m + βmSm
→ Φ∞

dP,∞
:= P∞ uniformly in Ω.

Hence, we derive from (2.51) that Φ∞ satisfies

−∆Φ∞ =

(
µ− Φ∞

dP,∞

)
Φ∞
dP,∞

, x ∈ Ω, ∂νΦ∞ = 0, x ∈ ∂Ω.

This implies that either Φ∞ = µdP,∞ or Φ∞ = 0, and so P∞ = µ or P∞ = 0. Thus,

(N∞, P∞, S∞) = (0, µ, 0) or (0, 0, 0). This is a contradiction to Lemma 2.11. Thus,
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minΩN∞ > 0. Assume that minΩ Sm → 0 as m → ∞. Then it follows from (2.54)

that minΩNm → 0 as m → ∞, and so (2.50) gives N∞ = 0 in Ω. This is a contradiction.

Hence, minΩ S∞ > 0. Assume that minΩ Pm → 0 as m → ∞. Then it follows from (2.52)

that maxΩ Pm → 0 as m→ ∞, and so P∞ = 0 in Ω. Given the equation of Nm, we apply

the standard regularity for elliptic equations (see, e.g., [41]) to get Nm → N∞ uniformly

in C1(Ω), by passing to a subsequence if necessary. Here N∞ ≥ 0 satisfies

−dN,∞∆N∞ = (λ−N∞)N∞, x ∈ Ω, ∂νN∞ = 0, x ∈ ∂Ω.

Since we have proved that minΩN∞ > 0, it is clear that N∞ = λ in Ω. Similarly, we derive

from the equation of Si that S∞ = τλ/η in Ω. Thus, (N∞, P∞, S∞) = (λ, 0, τλ/η). This is

a contradiction to Lemma 2.11, and we complete the proof of this case.

Case 2: dN,∞ = ∞ or dP,∞ = ∞ or dS,∞ = ∞. If dN,∞ = ∞, then N∞ is a nonnegative

constant. Assume that minΩNm → 0 as m → ∞. Then it follows from (2.50) that

maxΩNm → 0 as m → ∞, and so N∞ = 0 in Ω. Moreover, it follows from (2.53) that

maxΩ Sm → 0 as m→ ∞, and so S∞ = 0 in Ω. If dP,∞ <∞, by the same argument as case

1, (N∞, P∞, S∞) = (0, µ, 0) or (0, 0, 0), which contradicts to Lemma 2.11. If dP,∞ = ∞,

then P∞ is a nonnegative constant. Thus, N∞, P∞, S∞ are constants and N∞ = S∞ = 0

in Ω. This is a contradiction to Lemma 2.11. Thus, minΩN∞ > 0, and so N∞ is a

positive constant. Assume that minΩ Sm → 0 as m → ∞. Then it follows from (2.54)

that minΩNm → 0 as m → ∞, and so (2.50) gives N∞ = 0 in Ω. This is a contradiction.

Hence, minΩ S∞ > 0, and so S∞ is a positive constant. Assume that minΩ Pm → 0 as

m → ∞. Then it follows from (2.52) that maxΩ Pm → 0 as m → ∞, and so P∞ = 0 in

Ω. Thus, N∞, P∞, S∞ are constants and P∞ = 0 in Ω. This is a contradiction to Lemma

2.11. Consequently, we completed the proof for dN,∞ = ∞.

Similarly, we can derive contradictions for the cases dP,∞ = ∞ and dS,∞ = ∞.

2.5.2 Proof of Theorem 2.4

With the priori bounds for the positive solutions in hand, we shall apply the Leray-

Schauder degree theory to establish the existence of positive solutions of (2.16).

We use the same notations as before. System (2.16) can be written as{
−∆Φ(u) = Ψ(u), x ∈ Ω,

∂νu = 0, x ∈ ∂Ω.
(2.55)

In what follows, we study the linearization of (2.55) at positive constant steady state

u∗ = (N∗, P ∗, S∗), and then calculate the fixed point index of u∗.
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Since the determinant of Φu(u) is positive for all nonnegative u, a simple calculation

shows that Φ−1
u (u) exists and detΦ−1

u (u) is positive. Hence, u is a positive solution to

(2.16) if and only if

F(u) ≜ u− (I−∆)−1
{
Φ−1
u (u) [Ψ(u) +∇uΦuu(u)∇u] + u

}
= 0 in Y+.

Here (I−∆)−1 is the inverse of I−∆ under homogeneous Neumann boundary conditions

and Y+ = {u ∈ Y : N,P, S > 0 on Ω}, where Y = [C1(Ω)]3. Since F(·) is a compact

perturbation of the identity operator, the Leray-Schauder degree deg (F(·), 0, B(C)) is well

defined if F(u) ̸= 0 on ∂B(C), where B(C) = {u ∈ Y : C−1 < N,P, S < C on Ω} for

C > 0. By a straightforward calculation, the linearization of F(u) at u∗ is given by

DuF(u
∗) = I− (I−∆)−1

{
Φ−1
u (u∗)Ψu(u

∗) + I
}
.

According to the Leray-Schauder index formula [102, Theorem 2.8.1], it is well known that

if DuF(u
∗) is invertible, then the fixed point index of F at u∗ is well defined and

index (F(·),u∗) = (−1)ς ,

where ς is the number of negative eigenvalues (counting the algebraic multiplicity) of the

linearized operator DuF(u
∗).

Significantly, the eigenvalues of the linearized operator DuF(u
∗) and their algebraic

multiplicities are the same regardless of whether it is considered an operator in X or Y.

Hence, it is convenient to use the decomposition (2.42) in our discussion of the eigenvalues

of the linearized operator DuF(u
∗). By a simple calculation, one sees that Xmj is invariant

under DuF(u
∗) for each integer m ≥ 1 and each integer 1 ≤ i ≤ dimE(σm). Moreover, α

is an eigenvalue of DuF(u
∗) if and only if it is an eigenvalue of the matrix

Km := I− 1

1 + σm

[
Φ−1
u (u∗)Ψu(u

∗) + I
]
=

1

1 + σm

[
σmI− Φ−1

u (u∗)Ψu(u
∗)
]

for some m ≥ 1. Consequently, DuF(u
∗) is invertible if and only if the matrix Km is

nonsingular for all m ≥ 1.

Assume that α is an eigenvalue of DuF(u
∗). We next calculate its algebraic multiplici-

ties, which we denote by χ(α). By definition, it is well known that the algebraic multiplicity

of the eigenvalue α is the dimension of the generalized null space Eα, where

Eα :=
∞⋃
i=1

Ker [αI−DuF(u
∗)]i .
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Every Θ ∈ X can be uniquely expressed in the form

Θ =
∞∑
m=1

dimE(σm)∑
j=1

Cmjθmj ,

where Cmj ∈ R3. Since Xmj is invariant under DuF(u
∗), it is also invariant under [αI −

DuF(u
∗)]i for each i ≥ 1. Consequently, for any fixed i ≥ 1

Θ ∈ Ker [αI−DuF(u
∗)]i ⇐⇒ [αI−DuF(u

∗)]iCmjθmj = 0

for all m ≥ 1 and 1 ≤ j ≤ dimE(σm). By a direct calculation, we find that

[αI−DuF(u
∗)]iCmjθmj = 0 ⇐⇒ [αI−Km]

iCmj = 0.

It follows that

dimEα =

∞∑
m=1

[
dimE(σm)× dim

( ∞⋃
i=1

Ker [αI−Km]
i

)]
.

Here dim
(⋃∞

i=1Ker [αI−Km]
i
)
is just the algebraic multiplicity of α as an eigenvalue of

the matrix Km. A simple calculation gives that

det{Km} =
1

(1 + σm)3
det
{
σmI− Φ−1

u (u∗)Ψu(u
∗)
}
. (2.56)

Moreover, when det{Km} ≠ 0 (i.e., det
{
σmI− Φ−1

u (u∗)Ψu(u
∗)
}

̸= 0), the number of

negative eigenvalues (counting algebraic multiplicity) of the matrix Km is odd if and only

if det{Km} < 0. Consequently,

ς =
∑
α<0

χ(α) =
∑
α<0

dim (Eα) =
∑

m≥1,det{Km}<0

dimE(σm) (mod 2).

In summary, we have the following lemma.

Lemma 2.13. Assume that det
{
σmI− Φ−1

u (u∗)Ψu(u
∗)
}
̸= 0 for all m ≥ 1. Then

index (F(·),u∗) = (−1)ς , where ς =
∑

m≥1,det{Km}<0

dimE(σm).

Given Lemma 2.13, to facilitate our computation of index (F(·),u∗), we next determine

the sign of det{Km}. By virtue of (2.56), we see that

det{Km} = det{σmΦu(u
∗)−Ψu(u

∗)} · det{Φ−1
u (u∗)}/(1 + σm)

3. (2.57)
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As we have known for all σ ≥ 0, det{Φ−1
u (u∗)}/(1 + σ)3 is positive, we shall consider

det{σΦu(u
∗)−Ψu(u

∗)}. A direct calculation yields

Φu(u
∗) =


dN 0 0

0 dP + βS∗ βP ∗

0 0 dS

 and Ψu(u
∗) =


−N∗ −N∗ 0

γP ∗ −P ∗ 0

τ 0 −η

 .

Thus,

σΦu(u
∗)−Ψu(u

∗) =


σdN +N∗ N∗ 0

−γP ∗ σ(dP + βS∗) + P ∗ σβP ∗

−τ 0 σdS + η

 .

Furthermore, we have

det{σΦu(u
∗)−Ψu(u

∗)} = C3(β)σ
3 + C2(β)σ

2 + C1(β)σ + C0(β)

≜ C(β, σ),

(2.58)

where

C3(β) = dNdS(dP + βS∗) > 0,

C2(β) = ηdN (dP + βS∗) + dNdSP
∗ +N∗dS(dP + βS∗) > 0,

C1(β) = ηdNP
∗ + ηN∗(dP + βS∗) + dSN

∗P ∗ − τβN∗P ∗ + γN∗P ∗dS ,

C0(β) = N∗P ∗η + γN∗P ∗η > 0.

(2.59)

Next, we discuss the dependence of C(β, σ) on the cross-diffusion coefficient β. Suppose

that σ̃1(β), σ̃2(β), σ̃3(β) are the three roots of C(β, σ) = 0 and satisfy Re{σ̃1(β)} ≤
Re{σ̃2(β)} ≤ Re{σ̃3(β)}. Notice that C3(β) > 0 and C0(β) > 0. It follows from the Routh-

Hurwitz criterion [100, Appendix B.1] that σ̃1(β)σ̃2(β)σ̃3(β) < 0. Thus, at least one of

σ̃1(β), σ̃2(β), σ̃3(β) is real and negative, and the product of the other two are positive.

Moreover, we have the following limits:

lim
β→∞

C3(β)/β = dNdSS
∗ ≜ C3 > 0,

lim
β→∞

C2(β)/β = ηdNS
∗ + dSN

∗S∗ ≜ C2 > 0,

lim
β→∞

C1(β)/β = τN∗[λ(1− γ)− 2µ]/(γ + 1) ≜ C1,

lim
β→∞

C0(β)/β = 0.
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When 2µ > λ(1− γ), it is clear that C1 < 0, and thus C1(β) < 0 for large β. By virtue of

(2.58) and (2.59), we obtain

lim
β→∞

C(β, σ)

β
= σ[C3σ

2 + C2σ + C1] ≜ C(σ). (2.60)

Obviously, C(σ) has three real roots

0,
−C2 +

√
C2
2 − 4C3C1

2C3
> 0,

−C2 −
√

C2
2 − 4C3C1

2C3
< 0. (2.61)

Hence, when 2µ > λ(1 − γ) and β is sufficiently large, a continuity argument shows

that σ̃1(β) is real and negative. Moreover, σ̃2(β) and σ̃3(β) are real and positive since

σ̃2(β)σ̃3(β) > 0. In particular, σ̃1(β), σ̃2(β) and σ̃3(β) satisfy
lim
β→∞

σ̃1(β) =
−C2−

√
C2
2−4C3C1

2C3
< 0,

lim
β→∞

σ̃2(β) = 0,

lim
β→∞

σ̃3(β) =
−C2+

√
C2
2−4C3C1

2C3
= σ > 0.

(2.62)

Summarizing, we have the following lemma.

Lemma 2.14. Let σ̃1(β), σ̃2(β) and σ̃3(β) be the three roots of C(β, σ) = 0 (see (2.58)).

Assume 2µ > λ(1−γ). Then there is a positive number β∗ such that, for all β ≥ β∗, σ̃1(β),

σ̃2(β) and σ̃3(β) are all real and satisfy (2.62). Moreover, if β ≥ β∗, then
−∞ < σ̃1(β) < 0 < σ̃2(β) < σ̃3(β),

C(β, σ) < 0 when σ ∈ (−∞, σ̃1(β)) ∪ (σ̃2(β), σ̃3(β)),

C(β, σ) > 0 when σ ∈ (σ̃1(β), σ̃2(β)) ∪ (σ̃3(β),∞).

(2.63)

Proof of Theorem 2.4. In view of the assumption on σ, Lemma 2.14 shows that there

is a positive constant β∗ such that, for all β ≥ β∗, (2.63) holds and

σ̃1(β) < 0 = σ1 < σ̃2(β) < σ2, σ̃3(β) ∈ (σj , σj+1). (2.64)

It follows from (2.57) and (2.58) that

det{Km} =
det{Φ−1

u (u∗)}
(1 + σm)3

· det{σmΦu(u
∗)−Ψu(u

∗)} =
det{Φ−1

u (u∗)} · C(β, σm)
(1 + σm)3

,
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which, along with (2.63) and (2.64), gives
det{K1} = det{Φ−1

u (u∗)}(1 + γ)N∗P ∗η > 0,

det{Km} < 0, 2 ≤ m ≤ j,

det{Km} > 0, m ≥ j + 1.

Hence, 0 is not an eigenvalue of the matrix σmI−Φ−1
u (u∗)Ψu(u

∗) for any m ≥ 1, and thus,

Lemma 2.13 shows that

ς =
∑

m≥1,det{Km}<0

dimE(σm) =

j∑
m=2

dimE(σm), which is odd,

and

index (F(·),u∗) = (−1)ς = −1. (2.65)

Based on the homotopy invariance of the topological degree, we shall complete the

proof by contradiction. Assume that the conclusion is false for some β = β ≥ β∗. In the

following, we will fix β = β. For t ∈ [0, 1], we define

Φ(t,u) = (dNN, dPP + tβSP, dSS)
T

and consider

−∆Φ(t,u) = Ψ(u), x ∈ Ω, ∂νu = 0, x ∈ ∂Ω. (2.66)

Clearly, u is a positive non-constant solution of (2.16) if and only if it is such a solution of

(2.66) for t = 1. For any 0 ≤ t ≤ 1, u∗ is the unique constant positive solution of (2.66).

As we observed above, u is a positive solution to (2.66) if and only if

F(t;u) ≜ u− (I−∆)−1
{
Φ−1
u (t;u) [Ψ(u) +∇uΦuu(t;u)∇u] + u

}
= 0 in Y+.

Obviously, F(1;u) = F(u). It follows from Theorem 2.2 that u∗ is the only solution of

F(0;u) = 0 in Y+. By a straightforward calculation, the linearization of F(t;u) at u∗ is

given by

DuF(t;u
∗) = I− (I−∆)−1

{
Φ−1
u (t;u∗)Ψu(u

∗) + I
}
.

In particular,

DuF(0;u
∗) = I− (I−∆)−1

{
D−1Ψu(u

∗) + I
}

and

DuF(1;u
∗) = I− (I−∆)−1

{
Φ−1
u (u∗)Ψu(u

∗) + I
}
= DuF(u

∗),
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where D = diag(dN , dP , dS). Hence, noting the facts F(1;u) = F(u) and DuF(1;u
∗) =

DuF(u
∗), from (2.65), one has

index (F(1; ·),u∗) = index (F(·),u∗) = −1.

And by virtue of the stability of u∗, we can easily show that

index (F(0; ·),u∗) = (−1)0 = 1.

In addition, according to Lemmas 2.10 and 2.12, for all 0 ≤ t ≤ 1, there exists a positive

constant C such that any positive solution of (2.16) satisfies 1/C < N,P, S < C. Con-

sequently, for all 0 ≤ t ≤ 1, F(t;u) ̸= 0 on ∂B(C). By the homotopy invariance of the

topological degree [5, Theorem 11.1], we see that

deg (F(1; ·), 0, B(C)) = deg (F(0; ·), 0, B(C)) . (2.67)

Since Theorem 2.2 shows that u∗ is the only solution of F(0;u) = 0 in B(C), the excision

property [5, Corollary 11.2] implies that

deg (F(0; ·), 0, B(C)) = index (F(0; ·),u∗) = 1.

On the other hand, our supposition implies that the equation F(1;u) = 0 has only the

positive solution u∗ in B(C). Thus, the excision property yields

deg (F(1; ·), 0, B(C)) = index (F(1; ·),u∗) = −1.

This contradicts (2.67), and the proof is complete.

38



Chapter 3

Global Dynamics of a
Three-Species Lotka-Volterra Food
Chain Model with Intraguild
Predation and Taxis Mechanisms

3.1 Introduction and Main results

Before presenting our context, we clarify that the results stated in this chapter have

been published in our journal paper [22].

3.1.1 Introduction

To understand the complex ecological interactions, various ordinary differential equa-

tion (ODE) type food chain models have been proposed, and some interesting and im-

pressive results have been established on the dynamics of three species food chain model

(e.g., [47, 53, 75, 120, 137]). In particular, the chaos phenomenon can be found for the

three species food chain models with nonlinear functional responses [47, 73] or for the

simple Lotka-Volterra type functional responses with intraguild predation (i.e., a simple

kind of omnivory in which a predator and a prey share a common resource) [120]. As

we know, the spatial movement plays an indispensable role for the population species to

survive and thrive. However, compared with the well-known results on the temporal three

species predator-prey systems (e.g., [47, 53, 75, 120, 137]), few results are available for

the food chain model with spatial movement. Here, we shall consider the three-species
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Lotka-Volterra food chain model with spatial movement:
ut = d1∆u+ u(1− u)− b1uv − γ1uw, x ∈ Ω, t > 0,

vt = d2∆v − ξ∇ · (v∇u) + uv − b2vw − θ1v, x ∈ Ω, t > 0,

wt = ∆w − χ∇ · [w∇ϕ(u, v)] + vw + γ2uw − θ2w, x ∈ Ω, t > 0,

∂νu = ∂νv = ∂νw = 0, x ∈ ∂Ω, t > 0.

(3.1)

All notations and parameters have the same interpretation as in Section 1.3.

Related works on the system (3.1). To put our research into perspective, we first

recall some related results for (3.1). If w ≡ 0, (3.1) becomes the two species predator-prey

system with prey-taxis (called the prey-taxis system), which was first proposed by Kareiva

and Odell to interpret the heterogeneous aggregative patterns due to the area-restricted

search strategy [68] and has been extensively studied (cf. [16, 64, 65, 68, 148, 151] and

references therein).

Different from the substantial results on the two-species predator-prey systems with

various taxis mechanisms, limited attention has been paid to the three-species spatial food

chain model (3.1) (i.e., w ̸= 0). Recently, the authors in [66] studied the global dynamics

of system (3.1) in a two dimensional bounded domain under the following assumptions:

γ1 = γ2 = 0 and ϕ(u, v) = v. (3.2)

The ideas/methods used in [66] depend on that the system (3.1) with (3.2) has a nice

entropy estimate, which was first developed in [124] for the classical chemotaxis system

with consumption of chemoattractant and later was used to study the prey-taxis system

[64].

If γ1, γ2 > 0, the ODE counterpart of (3.1), termed the intraguild predation (IGP)

model, exhibits complex dynamics and was extensively studied (see [53, 98, 110, 120] and

references therein). For the spatial model (3.1) with intraguild predation (i.e., γ1, γ2 > 0),

the study [46] incorporated the intraspecific competitions for v and w along with the signal

intensity function ϕ(u, v) = uv, termed the alarm-taxis, which was proposed to test the

“burglar alarm” hypothesis (cf. [15]): a prey species renders itself dangerous to a primary

predator by generating an alarm call to attract a second predator at higher trophic levels

in the food chain that preys on the primary predator. In [46], the authors established

the global boundedness for γ1, γ2 ≥ 0 and pattern formations for γ1 = γ2 = 0 in one

dimensional space. Motivated by the work [46], the authors in [67] considered the ratio-

dependent functional response (i.e., replacing γiuw by γi
uw
u+w for i = 1, 2) and established

the global boundedness and stability for γ1, γ2 ≥ 0 in two dimensions. No results exist for
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the spatial Lotka-Volterra food chain model (3.1) with intraguild predation (i.e., γ1, γ2 > 0)

and more general signal functional ϕ(u, v).

Consequently, our goal is to study (3.1) with γ1, γ2 > 0 and more general signal func-

tional ϕ(u, v). To explore the combined effects of the intraguild predation and taxis mech-

anisms more clearly, we focus on studying the global dynamics of the system (3.1) in an

open interval Ω ⊂ R:

ut = d1uxx + u(1− u)− b1uv − γ1uw, x ∈ Ω, t > 0,

vt = d2vxx − ξ(vux)x + uv − b2vw − θ1v, x ∈ Ω, t > 0,

wt = wxx − χ(wϕ(u, v)x)x + vw + γ2uw − θ2w, x ∈ Ω, t > 0,

ux = vx = wx = 0, x ∈ ∂Ω, t > 0,

(u, v, w)(x, 0) = (u0, v0, w0)(x), x ∈ Ω.

(3.3)

For more generally, we assume that the signal intensity function ϕ(u, v) satisfies the fol-

lowing conditions:

(H0) ϕ(y, z) : (0,∞)× (0,∞) → R is positive and it belongs to C2([0,∞)× [0,∞)).

Specifically, our objectives include the following:

(B.1) Establish the global well-posedness of solutions (global existence and stability) to

(3.1) under suitable conditions;

(B.2) Explore the effects of the intraguild predation and/or taxis mechanisms (prey-taxis

and alarm-taxis) on pattern formations.

The main challenge in the analyses is that, if γ1, γ2 > 0 or ϕ(u, v) ̸= v, the ideas used

in [66] are not available anymore. Moreover, due to the lack of quadratic decay terms (i.e.,

intraspecific competitions) for v and w, the methods developed in [67] are also inapplicable,

which motivates us to develop new ideas to study this model.

3.1.2 Main Results

We first show the global existence of classical solution as follows.

Theorem 3.1 (Global boundedness). Let Ω ⊂ R be a bounded open interval. Suppose that

the initial data 0 ≨ (u0, v0, w0) ∈ [W 1,∞(Ω)]3 and (H0) holds. Then (3.3) admits a unique

global classical solution (u, v, w) fulfilling u, v, w > 0. Moreover, there exists a constant

M > 0 independent of t such that

∥u(·, t)∥W 1,2 + ∥v(·, t)∥W 1,2 + ∥w(·, t)∥L∞ ≤M.
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Remark 3.1. The upper bounds of ∥u(·, t)∥L∞ and ∥v(·, t)∥L∞ play an important role in

studying the large time behavior of solutions. In fact, we can show that

∥u(·, t)∥L∞ ≤M0 := max{1, ∥u0∥L∞}, (3.4)

and

∥v(·, t)∥L∞ ≤ K0 := C[1 + ξ(ξ6 + 1)
1
2 ], (3.5)

where the constant C > 0 depends on the parameters u0, v0, γi, θi, bi, di (i = 1, 2) and |Ω|
but it is independent of ξ and χ.

A central question in population dynamics is whether the interacting species population

will arrive at the coexistence, exclusion or extinction eventually. When γ1 = γ2 = 0 and

ϕ(u, v) = v, it has been proved in [66] that the globally bounded solution will converge to

the constant steady state as t → ∞ and no pattern formation occurs. Hence, there exist

some interesting questions:

(i) How about the global dynamics of solution for the system (3.3) with γ1, γ2 > 0?

Whether or not pattern formation occurs?

(ii) If γ1 = γ2 = 0, whether or not pattern formation occurs for other forms of ϕ(u, v)

instead of ϕ(u, v) = v?

To answer the above questions, we first classify the constant steady state (uc, vc, wc) of the

system (3.3) with γ1, γ2 > 0, which satisfies

uc(1− uc − b1vc − γ1wc) = 0, vc(uc − b2wc − θ1) = 0, wc(vc + γ2uc − θ2) = 0. (3.6)

A direct calculation implies that the constant steady state (uc, vc, wc) takes the following

five cases:

• Trivial steady states: E0 := (0, 0, 0) and E1 := (1, 0, 0);

• Semi-trivial steady states: E12 :=
(
θ1,

1−θ1
b1

, 0
)
and E13 :=

(
θ2
γ2
, 0, γ2−θ2γ1γ2

)
;

• Coexistence steady state: E∗ := (u∗, v∗, w∗), where
u∗ =

b2(1−b1θ2)+γ1θ1
b2+γ1−b1b2γ2 > 0,

v∗ =
γ1(θ2−γ2θ1)+b2(θ2−γ2)

b2+γ1−b1b2γ2 > 0,

w∗ =
b1(γ2θ1−θ2)+(1−θ1)

b2+γ1−b1b2γ2 > 0.

(3.7)
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One can check that the coexistence steady state E∗ := (u∗, v∗, w∗) is linearly unstable if

b2 + γ1 − b1b2γ2 < 0. Therefore, for the case of coexistence steady state (u∗, v∗, w∗), we

only focus on studying the dynamics in the following range of parameters
b2 + γ1 − b1b2γ2 > 0,

γ1(θ2 − γ2θ1) + b2(θ2 − γ2) > 0,

b1(γ2θ1 − θ2) + (1− θ1) > 0,

⇐⇒


b2 + γ1 − b1b2γ2 > 0,

θ2 >
γ1γ2
b2+γ1

θ1 +
b2γ2
b2+γ1

,

θ2 <
b1γ2−1
b1

θ1 +
1
b1
.

(3.8)

Then by constructing some appropriate energy functionals, we can derive the global sta-

bility of the constant steady states as follows.

Theorem 3.2 (Global stability). Assume M0 and K0 are defined in (3.4) and (3.5),

respectively. Then the solution (u, v, w) of (3.3) obtained in Theorem 3.1 has the following

convergence properties:

(1) If θ1 > 1 and θ2 > γ2, then it holds that

lim
t→∞

(∥u− 1∥L∞ + ∥v∥L∞ + ∥w∥L∞) = 0.

(2) If 0 < θ1 < 1 and θ2 > ℓ1 with

ℓ1 :=
γ1
b1b2

θ1 −
θ1
b1

+
1

b1
+

max{b1b2γ2 − γ1, 0}
b1b2

, (3.9)

then there exists ξ0 > 0 such that whenever ξ ∈ (0, ξ0), it holds that

lim
t→∞

(
∥u− θ1∥L∞ + ∥v − 1− θ1

b1
∥L∞ + ∥w∥L∞

)
= 0.

(3) If θ1 > 1, θ2 < min{γ2, ℓ2} with

ℓ2 :=
γ1γ2

b1b2γ2 + b2
θ1 +

b2γ2
b1b2γ2 + b2

+
γ2min{b1b2γ2 − γ1, 0}

b1b2γ2 + b2
, (3.10)

then there exist ξ1 > 0 and χ1 > 0 such that whenever ξ ∈ (0, ξ1) and χ ∈ (0, χ1), it

holds that

lim
t→∞

(
∥u− θ2

γ2
∥L∞ + ∥v∥L∞ + ∥w − γ2 − θ2

γ1γ2
∥L∞

)
= 0.

(4) If (3.8) and γ1 = b1b2γ2 hold, then there exist ξ2 > 0 and χ2 > 0 such that whenever

ξ ∈ (0, ξ2) and χ ∈ (0, χ2), it holds that

lim
t→∞

(∥u− u∗∥L∞ + ∥v − v∗∥L∞ + ∥w − w∗∥L∞) = 0,

where the coexistence steady state (u∗, v∗, w∗) is defined in (3.7).
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In view of the results obtained in Theorem 3.2, it is natural to ask whether or not

pattern formations (non-constant steady states) are possible when parameters outside the

stability regimes found in Theorem 3.2. To answer this question, we first do some linearly

stable analysis (see Proposition 3.1 ), which together with the global stability results for the

corresponding space-absent ODE system obtained in [55], implies that the pattern (if any)

can only arise from the homogeneous coexistence steady state (u∗, v∗, w∗). In Section 3.4,

we shall use linear stability analysis to find the conditions on parameters for the instability

of coexistence steady state. Then we perform numerical simulations to illustrate that

spatially inhomogeneous patterns indeed can be found under certain conditions in Section

3.5, and give positive answers to aforementioned questions (i) and (ii).

3.2 Global Boundedness: Proof of Theorem 3.1

This section will prove the boundedness of the global classical solution to (3.3) as stated

in Theorem 3.1. In the following context, the constants ki andMi (i = 1, 2, 3 · · · ) represent
generic positive constants independent of t and will vary line-by-line.

3.2.1 Local Existence and Preliminaries

Firstly, the local existence of solutions can be proved by using the Amann’s theorem

[7, Theorem 7.3], we omit the proof details for brevity.

Lemma 3.1 (Local existence). Let the conditions in Theorem 3.1 hold. Then there admits

Tmax ∈ (0,∞] such that the system (3.3) has a unique classical solution

(u, v, w) ∈
[
C0([0, Tmax);W

1,2(Ω)] ∩ C2,1(Ω̄× (0, Tmax))
]3

satisfying u, v, w > 0 for all t > 0. Moreover, it holds that if Tmax <∞, then

lim sup
t↗Tmax

(∥u(·, t)∥W 1,p + ∥v(·, t)∥W 1,p + ∥w(·, t)∥L∞) = ∞, ∀p > 1.

Using similar arguments as in [64, Lemma 2.2], we obtain the boundedness of u imme-

diately as follows.

Lemma 3.2. Suppose the assumptions in Lemma 3.1 hold. Then it holds that

0 < u(x, t) ≤M0:= max{1, ∥u0∥L∞} for all (x, t) ∈ Ω× (0, Tmax); (3.11)

Moreover, one has

lim sup
t→∞

u(x, t) ≤ 1 for all x ∈ Ω̄. (3.12)
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Lemma 3.3. Let (u, v, w) be a solution to the system (3.3) obtained in Lemma 3.1. Then

there exist two constants M1 > 0 and M2 > 0 independent of ξ and χ such that for all

t ∈ (0, Tmax)

∥v(·, t)∥L1 ≤M1 :=
θ1∥u0∥L1 + θ1b1∥v0∥L1 + (1 + θ1)M0|Ω|

θ1b1
, (3.13)

and

∥w(·, t)∥L1 ≤M2 :=


γ0(∥u0∥L1+b1∥v0∥L1+b1b2∥w0∥L1 )+2M0|Ω|

b1b2γ0
, if γi = 0,

γ0(b2γ2∥u0∥L1+b2γ1∥w0∥L1+γ1∥v0∥L1 )+2b2γ2M0|Ω|+M0M1γ1
γ0b2γ1

, if γi > 0,

(3.14)

where i = 1, 2.

Proof. Using the first and second equations of (3.3) and applying the homogeneous Neu-

mann boundary conditions, we obtain

d

dt

∫
Ω
(u+ b1v) +

∫
Ω
u2 =

∫
Ω
u− b1θ1

∫
Ω
v − γ1

∫
Ω
uw − b1b2

∫
Ω
vw,

≤
∫
Ω
u− b1θ1

∫
Ω
v,

which, along with θ1 > 0 and (3.11), can be updated as

d

dt

∫
Ω
(u+ b1v) + θ1

∫
Ω
(u+ b1v) +

∫
Ω
u2 ≤ (1 + θ1)

∫
Ω
u ≤ (1 + θ1)M0|Ω|,

and hence applying Grönwall’s inequality, one has

∥v(·, t)∥L1 ≤ ∥u0∥L1

b1
+ ∥v0∥L1 +

(1 + θ1)M0|Ω|
θ1b1

=:M1. (3.15)

Next, we shall show the boundedness of ∥w(·, t)∥L1 . To this end, we divide our proof

into two cases: γ1 = γ2 = 0 and γ1, γ2 > 0.

Case 1: γ1 = γ2 = 0. In this case, we deduce from the equations of (3.3) that

d

dt

∫
Ω
(u+ b1v + b1b2w) +

∫
Ω
u2 + b1θ1

∫
Ω
v + b1b2θ2

∫
Ω
w =

∫
Ω
u. (3.16)

Denoting γ0 := min{1, θ1, θ2} and using (3.11), it follows from (3.16) that

d

dt

∫
Ω
(u+ b1v + b1b2w) + γ0

∫
Ω
(u+ b1v + b1b2w) ≤ 2M0|Ω|,
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which, together with Grönwall’s inequality, gives

∥w(·, t)∥L1 ≤ γ0(∥u0∥L1 + b1∥v0∥L1 + b1b2∥w0∥L1) + 2M0|Ω|
b1b2γ0

. (3.17)

Case 2: γ1, γ2 > 0. Using the equations of (3.3), one has

d

dt

∫
Ω

(
γ2u+ γ1w +

γ1
b2
v
)
+ γ2

∫
Ω
u2 + θ2γ1

∫
Ω
w +

θ1γ1
b2

∫
Ω
v ≤ γ2

∫
Ω
u+

γ1
b2

∫
Ω
uv,

which together with (3.11) and (3.15) derives

d

dt

∫
Ω

(
γ2u+ γ1w +

γ1
b2
v
)
+ γ0

∫
Ω

(
γ2u+ γ1w +

γ1
b2
v
)
≤ 2γ2M0|Ω|+

γ1M0M1

b2
,

and hence using Grönwall’s inequality, we have

∥w(·, t)∥L1 ≤ γ0(b2γ2∥u0∥L1 + b2γ1∥w0∥L1 + γ1∥v0∥L1) + 2b2γ2M0|Ω|+M0M1γ1
γ0b2γ1

,

which combined with (3.17) gives (3.14). Then, the proof of Lemma 3.3 is completed.

Next, we can use the semigroup estimates to obtain the boundedness of ∥ux(·, t)∥Lq for

any q > 1 in one dimensional space.

Lemma 3.4. Let (u, v, w) be the solution to the system (3.3) obtained in Lemma 3.1. Then

for any q > 1, it holds that

∥ux(·, t)∥Lq ≤M3 :=M3(q), for all t ∈ (0, Tmax), (3.18)

where the constant M3(q) > 0 is defined in (3.22), and is independent of ξ and χ.

Proof. The first equation of (3.3) can be rewritten as

ut − d1(uxx − u) = f(x, t), (3.19)

where f(x, t) = (d1 + 1− u− b1v − γ1w)u. Using Hölder inequality, the facts 0 < u ≤M0

in (3.11), ∥v(·, t)∥L1 ≤M1 in (3.13) and ∥w(·, t)∥L1 ≤M2 in (3.14), one has

∥f(·, t)∥L1 = ∥(d1 + 1− u− b1v − γ1w)u∥L1

≤M0 (|Ω|(d1 + 1 +M0) +M1b1 +M2γ1) =: ℓ3.
(3.20)

We denote the Neumann heat semigroup in Ω by (e∆t)t>0. Applying Duhamel’s principle to

(3.19) and using the semigroup estimates (e.g., see [147, Lemma 1.3]) and (3.20) guarantee
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that there exist two constants σ1 > 0 and σ2 > 0 depending only on Ω such that

∥ux(·, t)∥Lq ≤ ∥∂xetd1(∆−1)u0∥Lq +

∫ t

0
∥∂xe(t−s)d1(∆−1)f(·, s)∥Lqds

≤ σ1∥∂xu0∥Lq + σ2

∫ t

0
e−(λ1+1)d1(t−s)

(
1 + (t− s)

−1+ 1
2q

)
∥f(·, s)∥L1ds

≤ σ1∥∂xu0∥Lq + σ2ℓ3

∫ ∞

0
e−(λ1+1)d1z

(
1 + z

−1+ 1
2q

)
ds

≤ σ1∥∂xu0∥Lq +
σ2ℓ3

(λ1 + 1)d1

(
1 + Γ (1/2q) ((λ1 + 1)d1)

1− 1
2q

)
,

(3.21)

where Γ(·) represents the Gamma function defined by Γ(y) :=
∫∞
0 t−1+ye−tdt, and λ1 > 0

denotes the first nonzero eigenvalue of −∆ under Neumann boundary conditions. Then

(3.18) follows directly from (3.21) by choosing

M3(q) :=
σ2M0 (|Ω|(d1 + 1 +M0) +M1b1 +M2γ1)

(λ1 + 1)d1

(
1 + Γ (1/2q) ((λ1 + 1)d1)

1− 1
2q

)
+ σ1∥∂xu0∥Lq ,

(3.22)

which is independent of t, ξ and χ. Then the proof of Lemma 3.4 is completed.

The following is an auxiliary result that will be used later.

Lemma 3.5. [119, Lemma 3.4] Let T > 0 and T0 ∈ (0, T ) and suppose f(t) : [0, T ) →
[0,∞) is an absolutely continuous function and satisfies

f ′(t) + αf(t) ≤ h(t) for all t ∈ (0, T ),

where constant α > 0 and the nonnegative function h ∈ L1
loc([0, T )) fulfilling∫ t+T0

t
h(s)ds ≤ β for all t ∈ [0, T − T0).

Then

f(t) ≤ max
{
f(0) + β,

β

αT0
+ 2β

}
for all t ∈ (0, T ).

3.2.2 Boundedness of ∥v(·, t)∥L∞

Since the upper bound of ∥v(·, t)∥L∞ plays a vital role in studying the global stability

of coexistence steady state, in the following, we shall give the explicit relation between the

upper bound of ∥v(·, t)∥L∞ and ξ.
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Lemma 3.6. Let (u, v, w) be the solution of the system (3.3) obtained in Lemma 3.1. Then∫
Ω
v2(·, t) ≤M4(ξ

6 + ξ2 + 1), for all t ∈ (0, Tmax), (3.23)

and ∫ t+τ

t

∫
Ω
v2x(·, s)dxds ≤

2M4

d2
(ξ6 + ξ2 + 1), for all t ∈ (0, Tmax − τ), (3.24)

where τ = min{1, Tmax
2 } and M4 > 0 defined in (3.30), is independent of χ, ξ and t.

Proof. Multiplying v-equation in (3.3) by v, and using Young’s inequality and 0 < u(·, t) ≤
M0, we obtain

1

2

d

dt

∫
Ω
v2 + d2

∫
Ω
v2x + b2

∫
Ω
wv2+θ1

∫
Ω
v2 = ξ

∫
Ω
vvx · ux +

∫
Ω
uv2

≤ ξ∥v∥L∞∥vx∥L2∥ux∥L2 +M0∥v∥2L2 .

(3.25)

Taking q = 2 in (3.18), it follows that

∥ux(·.t)∥L2 ≤ σ2M0 (|Ω|(d1 + 1 +M0) +M1b1 +M2γ1)

(λ1 + 1)d1

(
1 + Γ (1/4) ((λ1 + 1)d1)

3
4

)
+ σ1∥∂xu0∥L2

=: Γ1,

(3.26)

and then applying Gagliardo-Nirenberg inequality, Young’s inequality as well as ∥v(·, t)∥L1 ≤
M1 in (3.13), one derives

ξ∥v∥L∞∥vx∥L2∥ux∥L2 ≤ k1ξ(∥vx∥
2
3

L2∥v∥
1
3

L1 + ∥v∥L1)∥vx∥L2∥ux∥L2

≤ k1ξM
1
3
1 Γ1∥vx∥

5
3

L2 + k1ξM1Γ1∥vx∥L2

≤ d2
4
∥vx∥2L2 + k2(ξ

6 + ξ2),

(3.27)

where k2 :=
{(

20
3d2

)5 k61
6 +

2k21
d2

}
M2

1Γ
2
1(1+Γ4

1). Similarly, using Gagliardo-Nirenberg inequality

and the fact ∥v(·, t)∥L1 ≤M1 again, we have

(
1/2 +M0

)
∥v∥2L2 ≤ k3

(
1/2 +M0

)(
∥vx∥

2
3

L2∥v∥
4
3

L1 + ∥v∥2L1

)
≤ k3

(
1/2 +M0

)
M

4
3
1 ∥vx∥

2
3

L2 + k3
(
1/2 +M0

)
M2

1 (3.28)
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≤ d2
4
∥vx∥2L2 + k4,

where k4 := k3
(
1
2 +M0

)
M2

1

{
1 +

(
k3
3d2

) 1
2 4
3

(
1
2 +M0

) 1
2
}
is independent of ξ and χ. Substi-

tuting (3.27), (3.28) into (3.25) ensures a constant k5 := 2(k2 + k4) such that

d

dt

∫
Ω
v2 +

∫
Ω
v2 + d2

∫
Ω
v2x ≤ 2k2(ξ

6 + ξ2) + 2k4 ≤ k5(ξ
6 + ξ2 + 1), (3.29)

which along with Grönwall’s inequality gives

∥v(·, t)∥2L2 ≤ k5(ξ
6 + ξ2 + 1) + ∥v0∥2L2 ,

and hence (3.23) follows by taking

M4 := k5 + ∥v0∥L2 = 2(k2 + k4) + ∥v0∥L2 . (3.30)

Finally, we integrate (3.29) with respect to t to obtain that for all t ∈ (0, Tmax − τ),

d2

∫ t+τ

t

∫
Ω
v2x(·, s)dxds ≤ k5(ξ

6 + ξ2 + 1) +

∫
Ω
v2(·, t)

≤ 2k5(ξ
6 + ξ2 + 1) + ∥v0∥L2

≤ 2M4(ξ
6 + ξ2 + 1),

and hence (3.24) follows directly. Then the proof of Lemma 3.6 is completed.

Lemma 3.7. Let (u, v, w) be the solution of the system (3.3) obtained in Lemma 3.1. Then

there exists a positive constant M5 defined in (3.36), which is independent of ξ, χ, such

that

∥v(·, t)∥L∞ ≤M5[1 + ξ(ξ6 + ξ2 + 1)
1
2 ], for all t ∈ (0, Tmax). (3.31)

Proof. We rewrite the second equation of (3.3) as

vt = d2vxx − d2v − (ξvux)x + (d2 + u)v − (b2w + θ1)v. (3.32)

Applying Duhamel’s principle to (3.32), one has

v(·, t) =etd2(∆−1)v0 − ξ

∫ t

0
e(t−s)d2(∆−1)(vux)xds+

∫ t

0
e(t−s)d2(∆−1)(d2 + u)vds

−
∫ t

0
e(t−s)d2(∆−1)(b2w + θ1)vds,
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which, combined with the facts b2, w, v > 0 and the semigroup estimates [147, Lemma 1.3],

entails us to find two constants σ3 > 0 and σ4 > 0 depending only on Ω such that

∥v(·, t)∥L∞ ≤∥etd2(∆−1)v0∥L∞ + ξ

∫ t

0
∥e(t−s)d2(∆−1)(vux)x∥L∞ds

+

∫ t

0
∥e(t−s)d2(∆−1)(u+ d1 − θ1)v∥L∞ds

≤σ3∥v0∥L∞ + ξσ4

∫ t

0
e−(λ1+1)d2(t−s)(1 + (t− s)−

5
6 )∥vux∥

L
3
2
ds

+ σ3

∫ t

0
e−(λ1+1)d2(t−s)(1 + (t− s)−

1
2 )∥(u+ d2)v∥L1ds

=:σ3∥v0∥L∞ + J1 + J2.

(3.33)

Choosing q = 6 in (3.22), we can find a constant Γ2 > 0 independent of χ and ξ such that

∥ux(·.t)∥L6 ≤σ2M0 (|Ω|(d1 + 1 +M0) +M1b1 +M2γ1)

(λ1 + 1)d1

(
1 + Γ (1/12) ((λ1 + 1)d1)

11
12

)
+ σ1∥∂xu0∥L6

=:Γ2,

which, along with Hölder inequality, and (3.23), indicates

∥vux∥
L

3
2
≤ ∥v∥L2∥ux∥L6 ≤M

1
2
4 (ξ

6 + ξ2 + 1)
1
2Γ2,

and hence

J1 : = σ4ξ

∫ t

0
e−d2(λ1+1)(t−s)(1 + (t− s)−

5
6 )∥vux∥

L
3
2
ds

≤ σ4M
1
2
4 ξ(ξ

6 + ξ2 + 1)
1
2Γ2

∫ t

0
e−d2(λ1+1)(t−s)(1 + (t− s)−

5
6 )ds (3.34)

≤ σ4M
1
2
4 ξ(ξ

6 + ξ2 + 1)
1
2Γ2

∫ ∞

0
e−d2(λ1+1)z

(
1 + z−1+ 1

6

)
ds

≤ k1ξ(ξ
6 + ξ2 + 1)

1
2 ,

where

k1 :=
σ4M

1
2
4 Γ2

d2(λ1 + 1)

(
1 + Γ (1/6) d

5
6
2 (λ1 + 1)

5
6

)
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is independent of χ and ξ. Noting the facts 0 < u ≤M0 and ∥v(·, t)∥L1 ≤M1, one derives

J2 : = σ3

∫ t

0
e−d2(λ1+1)(t−s)(1 + (t− s)−

1
2 )∥(u+ d2)v∥L1ds

≤ σ3

∫ t

0
e−d2(λ1+1)(t−s)(1 + (t− s)−

1
2 )∥u+ d2∥L∞∥v∥L1ds

≤ σ3(M0 + d2)M1

∫ t

0
e−d2(λ1+1)(t−s)(1 + (t− s)−

1
2 )ds

≤ k2,

(3.35)

where

k2 :=
σ3(M0 + d2)M1

λ1d2 + d2

(
1 + Γ (1/2) (λ1d2 + d2)

1
2

)
.

Then substituting (3.34) and (3.35) into (3.33), we have

∥v(·, t)∥L∞ ≤ σ3∥v0∥L∞ + k1ξ(ξ
6 + ξ2 + 1)

1
2 + k2,

which gives (3.31) by choosing

M5 :=
σ4M

1
2
4 Γ2

d2(λ1 + 1)

(
1 + Γ (1/6) d

5
6
2 (λ1 + 1)

5
6

)
+
σ3(M0 + d2)M1

λ1d2 + d2

(
1 + Γ (1/2) (λ1d2 + d2)

1
2

)
+ σ3∥v0∥L∞ .

(3.36)

Hence the proof of Lemma 3.7 is finished.

3.2.3 Boundedness of ∥w(·, t)∥L∞

To establish the boundedness of ∥w(·, t)∥L∞ , we first prove the space-time bound for w

based on some ideas in [125].

Lemma 3.8. Let (u, v, w) be the solution of the system (3.3) obtained in Lemma 3.1. Then

there exists a constant M6 > 0 such that∫ t+τ

t

∫
Ω
w2(·, s)dxds ≤M6, for all t ∈ (0, Tmax − τ), (3.37)

where τ = min{1, Tmax
2 }.
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Proof. Applying Gagliardo-Nirenberg inequality, Cauchy-Schwarz inequality, and the fact

∥
√
w + 1∥2L2 =

∫
Ω(w + 1) ≤M2 + |Ω|, we obtain∫

Ω
w2 ≤

∫
Ω
(w + 1)2

=∥
√
w + 1∥4L4

≤k1∥∂x
√
w + 1∥2L1∥

√
w + 1∥2L2 + k1∥

√
w + 1∥4L2

≤k1(M2 + |Ω|)
4

(∫
Ω

|wx|√
w + 1

)2

+ k1(M2 + |Ω|)2

≤k1(M2 + |Ω|)2

4

∫
Ω

w2
x

(w + 1)2
+ k1(M2 + |Ω|)2.

(3.38)

On the other hand, we use the third equation of (3.3), (3.13) and Young’s inequality to

derive that

d

dt

∫
Ω
ln(w + 1) =

∫
Ω

wt
w + 1

=

∫
Ω

w2
x

(w + 1)2
− χ

∫
Ω

wϕ(u, v)x · wx
(w + 1)2

+

∫
Ω

(v + γ2u)w

w + 1
− θ2

∫
Ω

w

w + 1

≥
∫
Ω

w2
x

(w + 1)2
− χ

∫
Ω

wϕ(u, v)x · wx
(w + 1)2

− θ2|Ω|

≥ 1

2

∫
Ω

w2
x

(w + 1)2
− χ2

2

∫
Ω

w2|ϕ(u, v)x|2

(w + 1)2
− θ2|Ω|.

Noting the facts 0 ≤ ln(w + 1) ≤ w and w2

(w+1)2
≤ 1 for all w ≥ 0 and integrating (3.39)

from t to (t+ τ), one has∫ t+τ

t

∫
Ω

w2
x

(w + 1)2
≤2θ2|Ω|+ χ2

∫ t+τ

t

∫
Ω

w2|ϕ(u, v)x|2

(w + 1)2
+ 2

∫
Ω
ln(w + 1)(·, t+ τ)

≤2θ2|Ω|+ 2M2 + χ2

∫ t+τ

t

∫
Ω
|ϕuux + ϕvvx|2.

(3.39)

Furthermore, by (H0) and the L∞-boundedness of u, v (see (3.11) and (3.31)), there exists

a constant γ > 0 independent of t such that

|ϕu|+ |ϕv| ≤ γ for all t ∈ (0, Tmax), (3.40)

and then using (3.24) and (3.26), one derives

χ2

∫ t+τ

t

∫
Ω
|ϕuux + ϕvvx|2 ≤ 2χ2γ2

∫ t+τ

t

∫
Ω
(u2x + v2x)

≤ 2χ2γ2
(
Γ2
1 +

2M4

d2

(
ξ6 + ξ2 + 1

))
.

(3.41)
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We substitute (3.41) into (3.39) to obtain that for all t ∈ (0, Tmax − τ)

∫ t+τ

t

∫
Ω

w2
x

(w + 1)2
≤ 2θ2|Ω|+ 2M2 + 2χ2γ2

(
Γ2
1 +

2M4

d2

(
ξ6 + ξ2 + 1

))
. (3.42)

Hence, integrating (3.38) from t to (t+τ) and applying (3.42), we get (3.37) directly. Then

the proof of Lemma 3.8 is finished.

Lemma 3.9. Let (u, v, w) be the solution to the system (3.3) obtained in Lemma 3.1. Then

there exists a positive constant M7 such that∫ t+τ

t

∫
Ω
u2xx(·, s)dxds ≤M7, for all t ∈ (0, Tmax − τ), (3.43)

where τ := min{1, 12Tmax}.

Proof. We multiply the first equation by −uxx, and use Young’s inequality and (3.26) to

derive

1

2

d

dt

∫
Ω
u2x + d1

∫
Ω
u2xx + 2

∫
Ω
uu2x =

∫
Ω
u2x + b1

∫
Ω
uvuxx + γ1

∫
Ω
uwuxx

≤
∫
Ω
u2x +

d1
2

∫
Ω
u2xx +

b21
d1

∫
Ω
u2v2 +

γ21
d1

∫
Ω
u2w2

≤d1
2

∫
Ω
u2xx +

γ21M
2
0

d1

∫
Ω
w2 +

b21M
2
0M4(ξ

6 + ξ2 + 1)

d1
+ Γ2

1,

which gives

d

dt

∫
Ω
u2x + d1

∫
Ω
u2xx ≤ 2γ21M

2
0

d1

∫
Ω
w2 +

2b21M
2
0M4(ξ

6 + ξ2 + 1)

d1
+ 2Γ2

1. (3.44)

Then integrating (3.44) with respect to t, and using (3.37) and (3.26) imply that for all

t ∈ (0, Tmax − τ),∫ t+τ

t

∫
Ω
u2xx(·, s)dxds ≤

2γ21M
2
0

d21

∫ t+τ

t

∫
Ω
w2 +

1

d1

∫
Ω
u2x(·, t) +

2b21M
2
0M4(ξ

6 + 1)

d21
+

2Γ2
1

d1

≤ 2γ21M
2
0M6

d21
+

3Γ2
1

d1
+

2b21M
2
0M4(ξ

6 + ξ2 + 1)

d21

=:M7,

which entails (3.43) immediately. Then the proof of Lemma 3.9 is completed.
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Lemma 3.10. Let (u, v, w) be the solution of the system (3.3) obtained in Lemma 3.1.

Then there exists a positive constant M8 such that for all t ∈ (0, Tmax),∫
Ω
v2x(·, t) ≤M8, for all t ∈ (0, Tmax − τ). (3.45)

Proof. Multiplying the second equation of (3.3) by −vxx, integrating the result over Ω,

and using Hölder inequality and ∥u(·, t)∥L∞ + ∥v(·, t)∥L2 + ∥v(·, t)∥L∞ ≤ k1, one obtains

d

dt

∫
Ω
v2x + 2d2

∫
Ω
v2xx

= 2ξ

∫
Ω
vuxxvxx + 2ξ

∫
Ω
vxuxvxx + 2θ1

∫
Ω
vvxx + 2b2

∫
Ω
vwvxx − 2

∫
Ω
uvvxx

≤ 2ξk1∥uxx∥L2∥vxx∥L2 + 2ξ∥vxux∥L2∥vxx∥L2

+ 2k1(θ1 + k1)∥vxx∥L2 |Ω|
1
2 + 2b2k1∥w∥L2∥vxx∥L2

≤ d2∥vxx∥2L2 +
4ξ2k21
d2

∥uxx∥2L2 +
4ξ2

d2
∥vxux∥2L2 +

4b22k
2
1

d2
∥w∥2L2

+
4k21(θ1 + k1)

2|Ω|
d2

,

which yields

d

dt

∫
Ω
v2x + d2

∫
Ω
v2xx ≤4ξ2k21

d2
∥uxx∥2L2 +

4ξ2

d2
∥vxux∥2L2 +

4b22k
2
1

d2
∥w∥2L2 +

4k21(θ1 + k1)
2|Ω|

d2
.

(3.46)

Furthermore, choosing q = 4 in Lemma 3.4, and using Hölder inequality and Gagliardo-

Nirenberg inequality, we derive

4ξ2

d2
∥vxux∥2L2 ≤ 4ξ2

d2
∥ux∥2L4∥vx∥2L4 ≤ k2∥vxx∥L2∥v∥L∞+k2∥v∥2L∞ ≤ d2

2
∥vxx∥2L2+k3, (3.47)

and ∫
Ω
v2x = ∥vx∥2L2 ≤ k4

(
∥vxx∥L2∥v∥L2 + ∥v∥2L2

)
≤ d2

2
∥vxx∥2L2 + k5. (3.48)

Substituting (3.47) and (3.48) into (3.46), one has

d

dt

∫
Ω
v2x +

∫
Ω
v2x ≤4ξ2k21

d2
∥uxx∥2L2 +

4b22k
2
1

d2
∥w∥2L2 + k6, (3.49)

with k6 = k3 + k5 +
4k21(θ1+k1)

2|Ω|
d2

. Letting

h(t) :=
4ξ2k21
d2

∥uxx∥2L2 +
4b22k

2
1

d2
∥w∥2L2 + k6,
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then using Lemma 3.9 and Lemma 3.8, we have∫ t+τ

t
h(s)ds =

4ξ2k21
d2

∫ t+τ

t

∫
Ω
u2xx(·, s)dxds+

4b22k
2
1

d2

∫ t+τ

t

∫
Ω
w2(·, s)dxds+ k6τ ≤ k7.

(3.50)

Applying Lemma 3.5 to (3.49) and using (3.50), one gets (3.45). Then, we complete the

proof of Lemma 3.10.

Lemma 3.11. Let (u, v, w) be the solution of the system (3.3) obtained in Lemma 3.1.

Then it holds that

∥w(·, t)∥L4 ≤M9, for all t ∈ (0, Tmax), (3.51)

where M9 > 0 is a constant independent of t.

Proof. We multiply the third equation of (3.3) by w3, integrate the results over Ω and use

Young’s inequality with the boundedness of ∥u(·, t)∥L∞ and ∥v(·, t)∥L∞ to derive

1

4

d

dt

∫
Ω
w4 + 3

∫
Ω
w2w2

x = 3χ

∫
Ω
w3(ϕuux · wx + ϕvvx · wx) +

∫
Ω
w4(v + γ2u− θ2)

≤ 3χ

∫
Ω
w3(|ϕu||ux|+ |ϕv||vx|)|wx|+ k1

∫
Ω
w4

≤ 3

2

∫
Ω
w2w2

x +
3χ2

2

∫
Ω
w4(|ϕu||ux|+ |ϕv||vx|)2 + k1

∫
Ω
w4,

which, together with the basic inequality (y+ z)2 ≤ 2(y2+ z2) and the fact 1
4

∫
Ω |(w2)x|2 =∫

Ωw
2w2

x, gives

d

dt

∫
Ω
w4 +

∫
Ω
w4 +

3

2

∫
Ω
|(w2)x|2

≤ 12χ2

∫
Ω
w4(ϕ2uu

2
x + ϕ2vv

2
x) + (4k1 + 1)

∫
Ω
w4

≤ ∥w∥4L∞
(
12χ2∥ϕu∥2L∞∥ux∥2L2 + ∥ϕv∥2L∞∥vx∥2L2 + (4k1 + 1)|Ω|

)
≤ k2∥w∥4L∞ ,

(3.52)

where we have used Hölder inequality, (3.40) and (3.45) as well as (3.26). By Gagliardo-

Nirenberg inequality, Young’s inequality and (3.13), one has

k2∥w∥4L∞ = k2∥w2∥2L∞ ≤k3∥(w2)x∥
8
5

L2∥w2∥
2
5

L
1
2
+ k3∥w2∥2

L
1
2

=k3∥(w2)x∥
8
5

L2∥w∥
4
5

L1 + k3∥w∥4L1

≤3

2
∥(w2)x∥2L2 + k4,
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which, substituted into (3.52), gives

d

dt

∫
Ω
w4 +

∫
Ω
w4 ≤ k4,

and then (3.51) follows by Grönwall’s inequality. Hence, the proof of Lemma 3.11 is

completed.

Lemma 3.12. Let (u, v, w) be the solution of the system (3.3) obtained in Lemma 3.1.

Then there exists a constant M10 > 0 independent of t such that

∥w(·, t)∥L∞ ≤M10, for all t ∈ (0, Tmax). (3.53)

Proof. Applying Duhamel’s principle to the third equation of (3.3), and using the well-

known semigroup estimates, we have

∥w(·, t)∥L∞ ≤k1∥w0∥L∞ + k2

∫ t

0
e−(λ1+1)(t−s)(1 + (t− s)−

7
8 )∥ϕ(u, v)xw∥

L
4
3
ds

+ k3

∫ t

0
e−(λ1+1)(t−s)(1 + (t− s)−

1
4 )∥(v + γ2u+ 1− θ2)w∥L2ds

≤k1∥w0∥L∞ + I1 + I2.

(3.54)

Noting the facts ∥w(·, t)∥L4 ≤ M9, (3.40), (3.45) and (3.26), and using Hölder inequality,

one has

∥ϕ(u, v)xw∥
L

4
3
=∥(ϕuux + ϕvvx)w∥

L
4
3

≤∥ϕuux + ϕvvx∥L2∥w∥L4

≤M
2
9

2
+ ∥ϕu∥2L∞∥ux∥2L2 + ∥ϕv∥2L∞∥vx∥2L2

≤M
2
9

2
+ γ2(M8 + Γ2

1) =: k4,

and hence

I1 ≤k2k4
∫ t

0
e−(λ1+1)(t−s)(1 + (t− s)−

7
8 )ds ≤ k5. (3.55)

On the other hand, using Hölder inequality and the boundedness of u, v and ∥w∥L4 , we

can find a constant k6 > 0 such that

∥(v + γ2u− θ2 + 1)w∥L2 ≤ ∥v + γ2u− θ2 + 1∥L4∥w∥L4 ≤ k6,
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and hence

I2 ≤k3k6
∫ t

0
e−(λ1+1)(t−s)(1 + (t− s)−

1
4 )ds ≤ k7. (3.56)

Substituting (3.55) and (3.56) into (3.54) gives (3.53), and hence the proof of Lemma 3.12

is completed.

Proof of Theorem 3.1. Noting (3.11) and (3.26), we derive

∥u(·, t)∥W 1,2 ≤ k1, for all t ∈ (0, Tmax). (3.57)

And the combination of (3.31) and (3.45) gives

∥v(·, t)∥W 1,2 ≤ k2, for all t ∈ (0, Tmax). (3.58)

Then combining (3.57), (3.58) and (3.53), and using Lemma 3.1, we directly prove Theorem

3.1.

3.3 Global Stability: Proof of Theorem 3.2

In this section, we use Lyapunov functionals and LaSalle’s invariant principle to estab-

lish global stability of constant steady states for the system (3.3).

3.3.1 Case of Prey-only

In this subsection, we shall study the global stability of (1, 0, 0) (i.e., prey-only steady

state) provided θ1 > 1 and θ2 > γ2. To this end, we introduce the energy functional as

below:

F1(t) := F1(u, v, w) = α1

∫
Ω
(u− 1− lnu) + b1

∫
Ω
v + b1b2

∫
Ω
w,

where

α1 :=

1, if γ1 = γ2 = 0,

min
{
θ1−1
4 , b1b2(θ2−γ2)4γ1

}
, if γ1, γ2 > 0.

Proof Theorem 3.2(1). By same way as proof in Theorem 2.2 (1), we derive that

F1(t) ≥ 0 and F1(t) = 0 if and only if (u, v, w) = (1, 0, 0). Moreover, some calculations

give

d

dt
F1(t) = −α1d1

∫
Ω

u2x
u2

− α1

∫
Ω
(u− 1)2 − α1b1

∫
Ω
uv − α1γ1

∫
Ω
uw

+ b1

∫
Ω
(u− θ1 + α1)v +

∫
Ω
(b1b2γ2u− b1b2θ2 + α1γ1)w.

(3.59)
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Case 1: γ1 = γ2 = 0. In this case, substituting α1 = 1 and γ1 = γ2 = 0 into (3.59), and

using θ1 > 1, one has

d

dt
F1(t) = −d1

∫
Ω

u2x
u2

−
∫
Ω
(u− 1)2 − b1(θ1 − 1)

∫
Ω
v − b1b2θ2

∫
Ω
w

≤ −
∫
Ω
(u− 1)2 − b1(θ1 − 1)

∫
Ω
v − b1b2θ2

∫
Ω
w ≤ 0.

(3.60)

Case 2: γ1, γ2 > 0. Noting the facts lim sup
t→∞

u(x, t) ≤ 1 in (3.12) and θ1 > 1 as well as

θ2 > γ2, for ε1 := min
{
θ1−1
2 , θ2−γ22γ2

}
, we can find a t1 > 0 such that

u(x, t) ≤ 1 + ε1 for any x ∈ Ω̄ and t > t1,

which, together with α1 := min
{
θ1−1
4 , b1b2(θ2−γ2)4γ1

}
, entails

u− θ1 + α1 ≤ 1 + ε1 + α1 − θ1

≤ 1 +
θ1 − 1

2
− θ1 +

θ1 − 1

4

= −θ1 − 1

4
< 0 for all t > t1,

(3.61)

and

b1b2γ2u− b1b2θ2 + α1γ1 ≤ b1b2γ2(1 + ε1)− b1b2θ2 + α1γ1

≤ b1b2(γ2 − θ2) + b1b2γ2
θ2 − γ2
2γ2

+
b1b2(θ2 − γ2)

4γ1
γ1

= −b1b2(θ2 − γ2)

4
< 0 for all t > t1.

(3.62)

The combination of (3.59), (3.61) and (3.62) gives that for all t > t1

d

dt
F1(t) ≤ −α1

∫
Ω
(u− 1)2 − b1(θ1 − 1)

4

∫
Ω
v − b1b2(θ2 − γ2)

4

∫
Ω
w ≤ 0. (3.63)

Furthermore, all the above cases indicates that d
dtF1(t) = 0 iff (u, v, w) = (1, 0, 0).

Hence, by LaSalle’s invariance principle (e.g. see [115, pp.198-199, Theorem 5.24]), we

know that (u, v, w) converges to (1, 0, 0) in L∞ as t→ ∞.

3.3.2 Case of Semi-coexistence

In this subsection, we first study the global stability of semi-coexistence E12 :=
(
θ1,

1−θ1
b1

, 0
)
.

Denote V := 1−θ1
b1

, we introduce the following energy functional:

F2(t) := F2(u, v, w) =

∫
Ω

(
u− θ1 − θ1 ln

u

θ1

)
+ b1

∫
Ω

(
v − V − V ln

v

V

)
+ b1b2

∫
Ω
w.
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Proof of Theorem 3.2(2). Following same way as the proof in Theorem 2.2 (1), we can

check that F2(t) ≥ 0 and F2(t) = 0 iff (u, v, w) =
(
θ1,

1−θ1
b1

, 0
)
. Applying the equations of

(3.3) and using the fact 1 = θ1 + b1V , one has

d

dt
F2(t) = −

∫
Ω
Y T
1 B1Y1 +

∫
Ω
h1(x, t)w −

∫
Ω
(u− θ1)

2, (3.64)

where

Y1 =

(
ux
v

vx
v

)
, B1 :=

(
θ1d1 − b1V ξu

2

− b1V ξu
2 b1d2V

)

and

h1(x, t) := (b1b2γ2 − γ1)u+ b1b2V + γ1θ1 − b1b2θ2.

After some calculations, one can check that B1 is a positive definite matrix provided that

ξ2(1− θ1)∥u∥2L∞ < 4θ1d1d2. (3.65)

Since 0 < θ1 < 1 and ∥u∥L∞ is independent of ξ, we can find an appropriate constant

ξ0 > 0 such that if 0 < ξ < ξ0, then (3.65) holds, which entails us to find a constant k1 > 0

such that

−
∫
Ω
Y T
1 B1Y1 ≤ −k1

∫
Ω

(
u2x
u2

+
v2x
v2

)
. (3.66)

Next, we shall show that under condition θ2 > ℓ1 with ℓ1 defined in (3.9), there exists

a constant k2 > 0 such that ∫
Ω
h1(x, t)w ≤ −b1b2k2

2

∫
Ω
w. (3.67)

We divide our proof into two cases: b1b2γ2 ≤ γ1 and b1b2γ2 > γ1.

Case 1: b1b2γ2 ≤ γ1. In this case, from θ2 > ℓ1, one has θ2 >
γ1
b1b2

θ1 − θ1
b1

+ 1
b1
, which

indicates

h1(x, t) ≤ b1b2
1− θ1
b1

+ γ1θ1 − b1b2θ2 = −b1b2
(
θ2 −

γ1
b1b2

θ1 +
θ1
b1

− 1

b1

)
< 0. (3.68)

Case 2: b1b2γ2 > γ1. For this case, θ2 > ℓ1 and the fact lim sup
t→∞

u(x, t) ≤ 1 in (3.12) can

guarantee that for the positive constant ε2 :=
b1b2

2(b1b2γ2−γ1)(θ2 − ℓ1), there exists a constant

t2 > 0 such that u(x, t) ≤ 1 + ε2 for any x ∈ Ω̄ and t > t2, and hence

h1(x, t) ≤ (b1b2γ2 − γ1) +
b1b2
2

(θ2 − ℓ1) + b1b2
1− θ1
b1

+ γ1θ1 − b1b2θ2

= −b1b2
2

(θ2 − ℓ1) < 0.

(3.69)
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Combining (3.68) with (3.69) and letting

k2 = θ2 −
γ1
b1b2

θ1 +
θ1
b1

− 1

b1
− max{b1b2γ2 − γ1, 0}

b1b2
,

we directly obtain (3.67). Then substituting (3.66) and (3.67) into (3.64), one has

d

dt
F2(t) ≤ −k1

∫
Ω

(
u2x
u2

+
v2x
v2

)
−
∫
Ω
(u− θ1)

2 − b1b2k2
2

∫
Ω
w ≤ 0,

and “=” holds iff (u, vx, w) = (θ1, 0, 0). Furthermore, the fact vx = 0 entails v = ṽ, where

ṽ is a positive constant. Hence, (u, v, w) = (θ1, ṽ, 0) satisfies 0 = θ1(1 − θ1 − b1ṽ), which

yields ṽ = 1−θ1
b1

= V . Then d
dtF2(t) = 0 implies (u, v, w) =

(
θ1,

1−θ1
b1

, 0
)
.

Applying LaSalle’s invariance principle, one obtains that the semi-coexistence
(
θ1,

1−θ1
b1

, 0
)

is globally asymptotically stable, which proves Theorem 3.2 (2).

Next, we shall study the global stability of
(
θ2
γ2
, 0, γ2−θ2γ1γ2

)
. Denote W := γ2−θ2

γ1γ2
, then we

introduce the following energy functional:

F3(t) := F3(u, v, w) =
b1b2γ2
γ1

∫
Ω

(
u− θ2

γ2
− θ2
γ2

ln
uγ2
θ2

)
+ b1b2

∫
Ω

(
w −W −W ln

w

W

)
+ b1

∫
Ω
v +

∫
Ω
v2.

(3.70)

Proof of Theorem 3.2(3). We follow the same way as the proof in Theorem 2.2 (1) to

get that F3(t) ≥ 0 and “=” holds iff (u, v, w) =
(
θ2
γ2
, 0, γ2−θ2γ1γ2

)
. Moreover, by the definition

of F3(t) in (3.70), we utilize the equations of (3.3) and the fact 1 = θ2
γ2

+ γ1W to derive

d

dt
F3(t) = −

∫
Ω
Y T
2 B2Y2 −

b1b2γ2
γ1

∫
Ω

(
u− θ2

γ2

)2

+ b1

∫
Ω
vh2(x, t) + 2

∫
Ω
v2h3(x, t),

(3.71)

where

Y2 =


ux
u

vx
v

wx
w

 , B2 :=


b1b2d1θ2

γ1
−ξuv2 − b1b2χWuϕu

2

−ξuv2 2d2v
2 − b1b2χWvϕv

2

− b1b2χWuϕu
2 − b1b2χWvϕv

2 b1b2W,


and

h2(x, t) := (1− b1b2γ2
γ1

)u− θ1 − b2W +
b1b2θ2
γ1

, h3(x, t) := u− b2w − θ1. (3.72)
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After some calculations, we can check that B2 is positive definite if∣∣∣∣∣
b1b2d1θ2

γ1
−ξuv2

−ξuv2 2d2v
2

∣∣∣∣∣ =
(
2b1b2d1d2θ2

γ1
− ξ2u2v2

)
v2 > 0, (3.73)

and

|B2| =b1b2Wv2
(
2b1b2d1d2θ2

γ1
− ξ2u2v2

)
− b21b

2
2χ

2W 2v2

4

(
2uvϕuϕvξu+ 2u2ϕ2ud2 + ϕ2v

d1θ2b1b2
γ1

)
> 0.

(3.74)

Indeed, it can be verified that (3.73) and (3.74) hold if

2b1b2d1d2θ2 > ξ2γ1M
2
0K

2
0 + χ2M c

∗ , (3.75)

where M0 and K0 are defined in (3.4) and (3.5), respectively, and

M c
∗ :=

b1b2(γ2 − θ2)

4γ2

(
2ξM2

0K0∥ϕv∥L∞∥ϕu∥L∞ + 2d2M
2
0 ∥ϕu∥2L∞ +

d1θ2b1b2
γ1

∥ϕv∥2L∞

)
.

Since M0 ≥ ∥u∥L∞ is independent of ξ, χ and K0 ≥ ∥v∥L∞ is independent of χ, moreover,

for any given ϕ(u, v) ∈ C2([0,∞)), we can obtain the upper bounds of ∥ϕu∥L∞ and ∥ϕv∥L∞

are independent of χ. Then there exist ξ1 > 0 and χ1 > 0 such that (3.75) holds if ξ ∈ (0, ξ1)

and χ ∈ (0, χ1). Hence, we can find a constant k1 > 0 such that

−
∫
Ω
Y T
2 B2Y2 ≤ −k1

∫
Ω

(
u2x
u2

+
v2x
v2

+
w2
x

w2

)
. (3.76)

Next, we shall show h3(x, t) < 0 and h2(x, t) < 0, respectively. Noting θ1 > 1 and

θ2 < ℓ2 with ℓ2 defined in (3.10), we can take

ε3 :=


θ1−1
2 , if γ1 ≤ b1b2γ2,

min
{
θ1−1
2 , (ℓ2−θ2)(b1b2γ2+b2)2(γ1−b1b2γ2)γ2

}
, if γ1 > b1b2γ2.

From (3.12), we can find a constant t3 > 0 such that

u(x, t) ≤ 1 + ε3 for all x ∈ Ω̄ and t > t3, (3.77)

and hence

h3(x, t) := u− b2w − θ1 ≤ 1 + ε3 − θ1 ≤
θ1 − 1

2
+ 1− θ1 = −θ1 − 1

2
< 0. (3.78)
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As for h2, we need to distinguish in two cases:

Case 1: γ1 ≤ b1b2γ2. This case means 1 − b1b2γ2
γ1

≤ 0, thus it follows from θ2 < ℓ2 and

(3.72) that

h2(x, t) ≤ −θ1 −
b2γ2 − b2θ2

γ1γ2
+
b1b2θ2
γ1

= −b1b2γ2 + b2
γ1γ2

(ℓ2 − θ2) < 0. (3.79)

Case 2: γ1 > b1b2γ2. In this case, we have 1− b1b2γ2
γ1

> 0, which along with (3.72), (3.77)

and θ2 < ℓ2 gives

h2(x, t) ≤ (1− b1b2γ2
γ1

) + (1− b1b2γ2
γ1

)
(ℓ2 − θ2)(b1b2γ2 + b2)

2(γ1 − b1b2γ2)γ2
− θ1 − b2W +

b1b2θ2
γ1

=
(b1b2γ2 + b2)(ℓ2 − θ2)

2γ1γ2
+
γ1 − b1b2γ2

γ1
− θ1 −

b2γ2 − b2θ2
γ1γ2

+
b1b2θ2
γ1

= −b1b2γ2 + b2
2γ1γ2

(ℓ2 − θ2) < 0.

(3.80)

Then combining (3.78), (3.79) and (3.80), we derive that

b1

∫
Ω
vh2(x, t) + 2

∫
Ω
v2h3(x, t) ≤ −b1b2(b1γ2 + 1)(ℓ2 − θ2)

2γ1γ2

∫
Ω
v,

which, along with (3.76) and (3.71), gives

d

dt
F3(t)

≤ −k1
∫
Ω

(
u2x
u2

+
v2x
v2

+
w2
x

w2

)
− b1b2γ2

γ1

∫
Ω

(
u− θ2

γ2

)2

− b1(b1b2γ2 + b2)(ℓ2 − θ2)

2γ1γ2

∫
Ω
v

≤ 0.

Thus, d
dtF3(t) = 0 iff (u, v, wx) =

(
θ2
γ2
, 0, 0

)
. This indicates w = w̃, where w̃ > 0 is a

constant. Since
(
θ2
γ2
, 0, w̃

)
is a solution of (3.6), then one has θ2

γ2

(
1− θ2

γ2
− γ1w̃

)
= 0, which

implies w̃ = γ2−θ2
γ1γ2

. Hence, d
dtF3(t) = 0 iff (u, v, w) =

(
θ2
γ2
, 0, γ2−θ2γ1γ2

)
. Then, one obtains that(

θ2
γ2
, 0, γ2−θ2γ1γ2

)
is globally asymptotically stable by applying LaSalle’s invariance principle.

This proves Theorem 3.2 (3).

3.3.3 Case of Coexistence

In this subsection, we shall study the global stability of coexistence steady state (u∗, v∗, w∗)

defined in (3.7) under the condition (3.8). We first introduce the following energy function

F4(t) := F4(u, v, w) = Fu(t) + b1Fv(t) + b1b2Fw(t),
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where Fy(t) =
∫
Ω

(
y − y∗ − y∗ ln

y
y∗

)
, y = u, v, w.

Proof of Theorem 3.2(4). Using the same way as the proof in Theorem 2.2 (1), we can

check that F(t) ≥ 0 and F(t) = 0 iff (u, v, w) = (u∗, v∗, w∗).

Next, we shall show d
dtF4(t) ≤ 0 under certain conditions for the parameters. In fact,

using the first equation of (3.3) and u∗ + b1v∗ + γ1w∗ = 1, we derive

d

dt
Fu(t) = −u∗d1

∫
Ω

u2x
u2

−
∫
Ω
(u− u∗)

2 − b1

∫
Ω
(u− u∗)(v − v∗)

− γ1

∫
Ω
(u− u∗)(w − w∗).

(3.81)

Applying u∗ − b2w∗ = θ1 and the second equation of (3.3), one has

b1
d

dt
Fv(t) = −b1v∗d2

∫
Ω

v2x
v2

+ b1ξv∗

∫
Ω

ux · vx
v

+ b1

∫
Ω
(v − v∗)(u− u∗)

− b1b2

∫
Ω
(v − v∗)(w − w∗).

(3.82)

Similarly, noting v∗ + γ2u∗ = θ2 and applying the third equation of (3.3), we derive that

b1b2
d

dt
Fw(t) = −b1b2w∗

∫
Ω

w2
x

w2
+ b1b2w∗χ

∫
Ω

ϕuux · wx + ϕvvx · wx
w

+ b1b2

∫
Ω
(w − w∗)(v − v∗) + b1b2γ2

∫
Ω
(w − w∗)(u− u∗).

(3.83)

We combine (3.81), (3.82) and (3.83) and use b1b2γ2 − γ1 = 0 to obtain

d

dt
F4(t) = −

∫
Ω
Y T
3 B3Y3 −

∫
Ω
(u− u∗)

2, (3.84)

where

Y3 =


ux
u

vx
v

wx
w

 and B3 =


u∗d1 − b1ξv∗u

2 −χb1b2w∗ϕuu
2

− b1ξv∗u
2 b1v∗d2 −χb1b2w∗ϕvv

2

−χb1b2w∗ϕuu
2 −χb1b2w∗ϕvv

2 b1b2w∗

 .

After some calculations, one can verify that the matrix B3 is positive definite if and only if∣∣∣∣ u∗d1 − b1ξv∗u
2

− b1ξv∗u
2 b1v∗d2

∣∣∣∣ = v∗b1(4u∗d1d2 − b1v∗ξ
2u2)

4
> 0, (3.85)
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and

|B3| =
b21b2w∗

4
(4d1d2u∗v∗ − b1ξ

2v2∗u
2)

− b21b2w∗χ
2

4
(u∗d1b2w∗ϕ

2
vv

2 + ξv∗uw∗ϕvv · b1b2ϕuu+ b1b2v∗d2w∗ϕ
2
uu

2)

> 0.

(3.86)

Since M0 ≥ ∥u∥L∞ is independent of ξ, χ and K0 ≥ ∥v∥L∞ is independent of χ (see

Remark 3.1), we can find appropriate numbers ξ2 > 0 and χ2 > 0 such that if ξ ∈ (0, ξ2)

and χ ∈ (0, χ2), then

4d1d2u∗v∗ > b1v
2
∗M

2
0 ξ

2 + χ2M∗(ξ, u, v),

where

M∗(ξ, u, v) := u∗w∗b2d1∥ϕv∥2L∞K2
0 + ξv∗w∗b1b2∥ϕv∥L∞∥ϕu∥L∞M2

0K0

+ b1b2v∗w∗d2∥ϕu∥2L∞K2
0 ,

which gives (3.85) and (3.86). Hence, there exists a constant k1 > 0 such that (3.84) can

be updated as

d

dt
F4(t) ≤ −k1

∫
Ω

(
u2x
u2

+
v2x
v2

+
w2
x

w2

)
−
∫
Ω
(u− u∗)

2 ≤ 0. (3.87)

Then (3.87) implies d
dtF4(t) ≤ 0 and “=” holds iff (u, vx, wx) = (u∗, 0, 0), this indicates

v = ṽ∗ and w = w̃∗, where ṽ∗ and w̃∗ are positive constants satisfying

u∗(1− u∗ − b1ṽ∗ − γ1w̃∗) = 0, ṽ∗(u∗ − b2w̃∗ − θ1) = 0, w̃∗(ṽ∗ + γ2u∗ − θ2) = 0.

This together with the definition of u∗ in (3.7) gives

ṽ∗ =
γ1(θ2 − γ2θ1) + b2(θ2 − γ2)

b2
= v∗, w̃∗ =

b1(γ2θ1 + θ2) + (1− θ1)

b2
= w∗.

Therefore, we conclude that d
dtF4(t) ≤ 0 and d

dtF4(t) = 0 iff (u, v, w) = (u∗, v∗, w∗). Then,

LaSalle’s invariance principle yields that (u∗, v∗, w∗) is globally asymptotically stable. This

proves Theorem 3.2 (4).
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3.4 Linear Stability/Instability Analysis

In this section, we shall study the possible pattern formation for the system (3.3). In

fact, for the space-absent ODE system of (3.3)


ut = u(1− u)− b1uv − γ1uw,

vt = uv − b2vw − θ1v,

wt = vw + γ2uw − θ2w,

it has been proved in [55] that:

(1) The trivial steady state E0 := (0, 0, 0) is always linearly unstable.

(2) The prey-only steady state E1 := (1, 0, 0) is linearly stable if θ1 > 1 and θ2 > γ2.

(3) The semi-coexistence steady state E12 :=
(
θ1,

1−θ1
b1

, 0
)
exists if θ1 < 1 and it is linearly

stable provided

θ2 > (b1γ2 − 1)θ1/b1 + 1/b1. (3.88)

(4) The semi-coexistence steady state E13 :=
(
θ2
γ2
, 0, γ2−θ2γ1γ2

)
exists if θ2 < γ2 and it is

linearly stable provided

θ2 < γ1γ2θ1/(b2 + γ1) + b2γ2/(b2 + γ1). (3.89)

For the system (3.3) with spatial movement, by the linear analysis, we can show that the

steady states E1, E12 and E13 are still linearly stable and hence no pattern formation

occurs. More precisely, we have the following results:

Proposition 3.1. Assume (H0) and ϕu ≥ 0, ϕv ≥ 0 hold. Then for the system (3.3), E1

is linearly stable if θ1 > 1 and θ2 > γ2; E12 is linearly stable if θ1 < 1 and (3.88) hold; E13

is linearly stable if θ2 < γ2 and (3.89) hold.

Proof. The proof can be found in the Appendix, see Section 3.6.

And it has been shown in [55] that if (u∗, v∗, w∗) exists for the corresponding ODE

system of (3.3), then it is linearly stable if and only if{
b2 + γ1 − b1b2γ2 > 0,

γ1γ2u∗w∗ + b1u∗v∗ > (γ1 − γ2b1b2)v∗w∗.
(3.90)
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Hence, in the following, we focus only on whether pattern formation emerges from the

coexistence steady state (u∗, v∗, w∗) under the conditions (3.90) and (3.8).

As discussed in Section 3.6, the linear stability/instability of (u∗, v∗, w∗) are determined

by the eigenvalue of the following characteristic equation

µ3 + P1(χ, λk)µ
2 + P2(χ, λk)µ+ P3(χ, λk) = 0,

where {λk}∞k=0 : 0 = λ0 < λ1 ≤ λ2 ≤ λ3 . . . denote the sequence of eigenvalues of −∆

under Neumann boundary conditions and Pi(χ, λk) (i = 1, 2, 3) are given as follows

P1(χ, λk) :=λk(d1 + d2 + 1) + u∗ > 0,

P2(χ, λk) :=λ
2
k(d1d2 + d1 + d2) + λk[(d2 + 1)u∗ + χϕ∗uγ1u∗w∗ + χϕ∗vb2v∗w∗ + ξb1u∗v∗]

+ γ1γ2u∗w∗ + b2v∗w∗ + b1u∗v∗,

P3(χ, λk) :=λ
3
kd1d2

+ λ2k (d2u∗ + χϕ∗ud2γ1u∗w∗ + χϕ∗vd1b2v∗w∗ + ξb1u∗v∗ + χϕ∗vξγ1u∗v∗w∗)

+ λk [γ1ξu∗v∗w∗ + χ(b2ϕ
∗
v + γ1ϕ

∗
v − ϕ∗ub1b2)u∗v∗w∗]

+ λk(γ1γ2d2u∗w∗ + b2d1v∗w∗ + b1u∗v∗)

+ (b2 + γ1 − γ2b1b2)u∗v∗w∗, (3.91)

with ϕ∗u = ϕu(u∗, v∗) and ϕ
∗
v = ϕv(u∗, v∗). From Routh-Hurwitz criterion (e.g., Appendix

B.1 in [100]), (u∗, v∗, w∗) is linearly stable iff for each k ∈ N, it holds that

P1(χ, λk) > 0, P3(χ, λk) > 0, P1(χ, λk)P2(χ, λk)− P3(χ, λk) > 0.

A direct calculation gives

H(χ, λk) := P1(χ, λk)P2(χ, λk)− P3(χ, λk) = λ3kK1 + λ2kK2 + λkK3 +K4, (3.92)

where

K1 :=(d1d2 + d1 + d2 + 1)(d1 + d2) > 0,

K2 :=(d1d2 + d1)u∗ + ξ(d1 + d2)b1u∗v∗ + (d1 + d2 + 1)(d2 + 1)u∗

+ (d1 + 1)χϕ∗uγ1u∗w∗ + (d2 + 1)χϕ∗vb2v∗w∗ − χϕ∗vξγ1u∗v∗w∗,

K3 :=(d2 + 1)u2∗ + (d1 + 1)γ1γ2u∗w∗ + (d2 + 1)b2v∗w∗ + (d1 + d2)b1u∗v∗ + b1ξu
2
∗v∗

+ χϕ∗uγ1u
2
∗w∗ + χϕ∗ub1b2u∗v∗w∗ − (χϕ∗v + ξ)γ1u∗v∗w∗,

K4 :=u∗[γ1γ2u∗w∗ + b1u∗v∗ − (γ1 − γ2b1b2)v∗w∗].

(3.93)
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When χ = ξ = 0, one can easily check that P3(χ, λk) > 0 and H(χ, λk) > 0 for all

k ∈ N, which indicates that (u∗, v∗, w∗) is linearly stable. Hence, in the following, we

will study whether or not the taxis mechanisms can induce the pattern formations. Since

H(χ, λk) depends on the values of ϕ∗u = ϕu(u∗, v∗), ϕ
∗
v = ϕv(u∗, v∗), γ1 and γ2. For a

better understanding of the difference between the effect of prey-taxis and alarm-taxis

in the food chain model with/without intraguild predation, we shall focus on the linear

stability/instability of coexistence steady state for two types of ϕ(u, v): ϕ(u, v) = v and

ϕ(u, v) = uv, both under the conditions γ1, γ2 ≥ 0.

3.4.1 Linear Stability/Instability Analysis: γ1 = γ2 = 0

In this subsection, we shall study the linear stability/instability of (u∗, v∗, w∗) to (3.3)

with ϕ(u, v) = v or ϕ(u, v) = uv in the case of γ1 = γ2 = 0. In this case, (3.3) can be

simplified as 
ut = d1uxx + u(1− u)− b1uv,

vt = d2vxx − ξ(vux)x + uv − b2vw − θ1v,

wt = wxx − χ(wϕ(u, v)x)x + vw − θ2w,

(3.94)

which is the classical Lotka-Volterra food chain model with taxis mechanisms (i.e., ξ, χ > 0).

And (u∗, v∗, w∗) = (1− b1θ2, θ2,
1−θ1−b1θ2

b2
) exists provided

θ1 + b1θ2 < 1. (3.95)

It has been proved in [66] that if ϕ(v) = v, the coexistence steady state of the system (3.94)

is globally stable if ξ > 0 and χ > 0 are both small. Thus, it is natural to ask whether

or not (u∗, v∗, w∗) is linearly unstable and pattern formation occurs for large ξ and χ. In

fact, we have the following results.

Lemma 3.13 (Linear stability: ϕ(u, v) = v). Let ϕ(u, v) = v and assume (3.95) holds,

then (u∗, v∗, w∗) of (3.94) is linearly stable for all χ, ξ ≥ 0.

Proof. Since ϕ(u, v) = v, we have ϕ∗u = 0 and ϕ∗v = 1. Then noting γ1 = γ2 = 0, it follows

from (3.91) that for each k ∈ N

P3(χ, λk) =λ
3
kd1d2 + λ2k (d2u∗ + χd1b2v∗w∗ + ξb1u∗v∗)

+ λk (b2d1v∗w∗ + b1u∗v∗ + χb2u∗v∗w∗) + b2u∗v∗w∗ > 0.

On the other hand, by Ki(i = 1, 2, 3, 4) in (3.93), one can check that Ki > 0 for i =

1, 2, 3, 4, which implies for each k ∈ N

H(χ, λk) = P1(χ, λk)P2(χ, λk)− P3(χ, λk) = λ3kK1 + λ2kK2 + λkK3 +K4 > 0.
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Then Routh-Hurwitz criterion implies that (u∗, v∗, w∗) is linearly stable.

Remark 3.2. Lemma 3.13 implies that no pattern formation occurs for the classical Lotka-

Volterra food chain model with prey-taxis mechanisms for any ξ, χ ≥ 0.

Next, we shall study the possibility of pattern formation for the Lotka-Volterra food

chain model incorporating the alarm-taxis. The main results are as follows.

Lemma 3.14 (Linear stability/instability: ϕ(u, v) = uv). Let ϕ(u, v) = uv and assume

(3.95) holds. It holds that

(1) If 2b1θ2 ≤ 1, then (u∗, v∗, w∗) is linearly stable for all χ > 0.

(2) If 2b1θ2 > 1, then (u∗, v∗, w∗) is linearly unstable provided χ > 0 is large enough and

there exists some k ∈ N+ such that

0 < λk < (2b1θ2 − 1)/d1. (3.96)

Proof. For ϕ(u, v) = uv, one has ϕ∗u = ϕu(u∗, v∗) = v∗ and ϕ∗v = ϕv(u∗, v∗) = u∗. Noting

γ1 = γ2 = 0 and the definitions of Ki(i = 1, 2, 3, 4) in (3.93), we have Ki > 0 for all i =

1, 2, 3, 4, which implies that for each k ∈ N

H(χ, λk) = P1(χ, λk)P2(χ, λk)− P3(χ, λk) > 0.

Moreover, using u∗ − b1v∗ = 1− 2b1θ2 and the facts γ1 = γ2 = 0, ϕ∗u = v∗, ϕ
∗
v = u∗ again,

we deduce from (3.91) that

P3(χ, λk) =λ
3
kd1d2 + λ2k(d2 + ξb1v∗)u∗ + λk(d1b2w∗ + b1u∗)v∗ + b2u∗v∗w∗

+ λkχb2u∗v∗w∗(λkd1 + 1− 2b1θ2).
(3.97)

Then if 2b1θ2 ≤ 1, one has P3(χ, λk) > 0 for any k ∈ N, and hence (u∗, v∗, w∗) is linearly

stable by Routh-Hurwitz criterion.

On the other hand, if 2b1θ2 > 1 and (3.96) holds, we get that λkd1 + 1 − 2b1θ2 < 0

for some k ∈ N+. Since λk, u∗, v∗, w∗ are independent of χ, it follows that P3(χ, λk) ≤ 0

for sufficiently large χ > 0. Therefore, according to Routh-Hurwitz criterion, (u∗, v∗, w∗)

is linearly unstable.

Remark 3.3. For the Lotka-Volterra food chain model (3.94), our results imply that ϕ(u, v)

plays an important role on the pattern formation. If ϕ(u, v) = v (i.e., prey-taxis mecha-

nism), no pattern formation occurs. If ϕ(u, v) = uv (i.e., alarm-taxis mechanism), the

potential steady state bifurcations generating from (u∗, v∗, w∗) may happen. Compared with

the results in [46], our results confirm that the alarm-taxis can trigger the pattern formation

by itself even without logistic growth source.
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3.4.2 Linear Stability/Instability Analysis: γ1, γ2 > 0

In this subsection, we shall study the possibility of pattern formation for the system

(3.3) with intraguild predation (i.e., γ1, γ2 > 0). To this end, we analyze the linear sta-

bility/instability of (u∗, v∗, w∗) defined in (3.7). When γ1, γ2 > 0, we rewrite P3(χ, λk) in

(3.91) as follows:

P3(χ, λk) =λ
3
kd1d2 + λ2k(d2u∗ + ξb1u∗v∗)

+ λk(γ1u∗w∗γ2d2 + b2v∗w∗d1 + b1u∗v∗ + γ1u∗v∗w∗ξ)

+ λ2kχ(ϕ
∗
ud2γ1u∗w∗ + ϕ∗vd1b2v∗w∗ + ϕ∗vξγ1u∗v∗w∗)

+ λkχu∗v∗w∗(b2ϕ
∗
v + γ1ϕ

∗
v − ϕ∗ub1b2) + (b2 + γ1 − γ2b1b2)u∗v∗w∗.

(3.98)

Lemma 3.15 (Linear stability/instability: ϕ(u, v) = v). Let ϕ(u, v) = v and assume (3.8)

and (3.90) hold. Then we have the following results:

(1) (u∗, v∗, w∗) is linearly stable provided

χ+ ξ ≤ K̃3/γ1u∗v∗w∗ and d2 + 1 ≥ ξγ1u∗/b2, (3.99)

with K̃3 > 0 defined in (3.103).

(2) (u∗, v∗, w∗) is linearly unstable provided χ > 0 large enough and one of the following

conditions holds: d2 + 1 > ξγ1u∗
b2

,

0 < λk <
γ1u∗

(d2+1)b2−ξγ1u∗ for some k ∈ N+,
(3.100)

or

d2 + 1 ≤ ξγ1u∗
b2

for all k ∈ N+. (3.101)

Proof. Since ϕ(u, v) = v, one has ϕ∗v = 1 and ϕ∗u = 0. Noting b2+γ1−γ2b1b2 > 0, it follows

from (3.98) that P3(χ, λk) > 0 for all k ∈ N.
Since (3.8) and (3.90) hold, we derive from (3.93) that K1 > 0 and K4 > 0. Hence, to

determine the sign of H(χ, λk), we only need to consider the values of K2 and K3. Using

the facts ϕ∗v = 1 and ϕ∗u = 0, we rewrite K2 and K3 defined in (3.93) as follows:

K2 = K̃2 + χv∗w∗[(d2 + 1)b2 − ξγ1u∗] and K3 = K̃3 − (χ+ ξ)γ1u∗v∗w∗,

where K̃2 > 0 and K̃3 > 0 are defined by

K̃2 := (d1d2 + d1)u∗ + ξ(d1 + d2)b1u∗v∗ + (d1 + d2 + 1)(d2 + 1)u∗, (3.102)
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K̃3 := (d2+1)u2∗+(d1+1)γ1γ2u∗w∗+(d2+1)b2v∗w∗+(d1+d2)b1u∗v∗+ b1ξu
2
∗v∗. (3.103)

Then we can derive from (3.99) that K2 and K3 are positive and hence H(χ, λk) > 0 for all

k ∈ N, which implies that (u∗, v∗, w∗) is linearly stable by using Routh-Hurwitz criterion.

Next, we shall show that (u∗, v∗, w∗) is linearly unstable for large χ under conditions

(3.100) or (3.101). To this end, we rewrite H(χ, λk) (see in (3.92)) as follows:

H(χ, λk) = λ3kK1 + λ2kK̃2 + λkK̃3 +K4

+ λkχv∗w∗ (λk[(d2 + 1)b2 − ξγ1u∗]− γ1u∗)− λkξγ1u∗v∗w∗,
(3.104)

where K̃2 and K̃3 are defined by (3.102) and (3.103), respectively.

Since λk and the value of (u∗, v∗, w∗) are independent of χ, then if (3.100) or (3.101)

holds, we can find χ > 0 large enough such that H(χ, λk) ≤ 0, and hence (u∗, v∗, w∗) is

linearly unstable by applying Routh-Hurwitz criterion again.

Remark 3.4. Compared with Lemma 3.13 and Lemma 3.15, we found that the intraguild

predation (i.e., γ1, γ2 > 0) plays an important role for the pattern formation.

Next, we shall study the possible pattern formation in the system (3.3) with alarm-taxis

in the sense of ϕ(u, v) = uv.

Lemma 3.16 (Linear stability/instability: ϕ(u, v) = uv). Let ϕ(u, v) = uv, χ > 0 and

ξ ≥ 0. Assume (3.8) and (3.90) hold. Then it holds that:

(1) (u∗, v∗, w∗) is linearly stable provided

b2u∗ + γ1u∗ − v∗b1b2 ≥ 0 (3.105)

and

0 < ξ ≤ min
{
K̃3/γ1u∗v∗w∗, (d1 + 1)/u∗ + (d2 + 1)b2/u∗γ1

}
, (3.106)

where K̃3 > 0 defined in (3.103).

(2) (u∗, v∗, w∗) is linearly unstable provided χ > 0 large enough and one of the following

conditions holds:

b2u∗ + γ1u∗ − v∗b1b2 < 0 and 0 < λk0 <
|b2u∗ + γ1u∗ − v∗b1b2|
d2γ1 + d1b2 + u∗ξγ1

for some k0 ∈ N+,

(3.107)

or for some k0 ∈ N+

ξ >
d1 + 1

u∗
+

(d2 + 1)b2
u∗γ1

and λk0 >
v∗b1b2

|(d1 + 1)γ1 + (d2 + 1)b2 − u∗ξγ1|
. (3.108)
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Proof. From ϕ(u, v) = uv, one has ϕ∗v = u∗ and ϕ∗u = v∗. Hence we can derive that

P3(χ, λk)

= λ3kd1d2 + λ2k(d2u∗ + ξb1u∗v∗) + λk(γ1u∗w∗γ2d2 + b2v∗w∗d1 + b1u∗v∗ + γ1u∗v∗w∗ξ)

+ λkχu∗v∗w∗[λk(d2γ1 + d1b2 + u∗ξγ1) + (b2u∗ + γ1u∗ − v∗b1b2)]

+ (b2 + γ1 − γ2b1b2)u∗v∗w∗,

(3.109)

and

H(χ, λk) = λ3kK1 + λ2kK̃2 + λk(K̃3 − ξγ1u∗v∗w∗) +K4

+ λkχu∗v∗w∗ (λk[(d1 + 1)γ1 + (d2 + 1)b2 − u∗ξγ1] + v∗b1b2) .
(3.110)

Then if (3.105) and (3.106) hold, one can verify that P3(χ, λk) > 0 and H(χ, λk) > 0 for

each k ∈ N, and hence by applying Routh-Hurwitz criterion, we obtain that (u∗, v∗, w∗) is

linearly stable .

On the contrary, if (3.107) holds, we can choose χ large enough such that P3(χ, λk) <

0. Thus, we derive from Routh-Hurwitz criterion that (u∗, v∗, w∗) is linearly unstable.

Similarly, if (3.108) holds, we have H(χ, λk) < 0 for large χ, and hence (u∗, v∗, w∗) is

linearly unstable.

Remark 3.5. Compared with the the Lotka-Volterra food chain model (3.94) with ϕ(u, v) =

uv, the intraguild predation model (i.e., γ1, γ2 > 0) has richer dynamics. Specifically, the

intraguild predation model has not only the potential of steady state bifurcations but also

that of Hopf bifurcations.

Remark 3.6. The instability results of the intraguild predation model with ϕ(u, v) = uv

indicate that the alarm taxis mechanism can promote potential steady state bifurcations,

which can not be induced by the intraguild predation model with ϕ(u, v) = v.

3.5 Pattern Formations: Numerical Simulations

In this section, we shall give some numerical simulations to verify our theoretical anal-

ysis in Section 3.4.

3.5.1 Food Chain Model with Alarm-taxis: γ1 = γ2 = 0 and ϕ(u, v) = uv

In this case, we fix the value of the parameters in all simulations as follows:

d1 = 0.1, d2 = b1 = b2 = 1, θ1 = 0.1, θ2 = 0.7, γ1 = γ2 = 0,
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Figure 3.1: Numerical simulation of spatio-temporal patterns generated by (3.3) with
ϕ(u, v) = uv and γ1 = γ2 = 0. The parameter values are: χ = 80, ξ = 0, d1 = 0.1, d2 =
b1 = b2 = 1, θ1 = 0.1, θ2 = 0.7. The initial datum (u0, v0, w0) is set as a small random
perturbation of the homogeneous coexistence steady state (0.3, 0.7, 0.2).

which gives (u∗, v∗, w∗) = (0.3, 0.7, 0.2) and θ1 + b1θ2 < 1 as well as 2b1θ2 > 1. Hence, by

Lemma 3.14 and the fact H(χ, λk) > 0, we expect only the spatio-temporal steady state

(aggregation) pattern occurs when

χ ≥ χS1
k (ξ) :=

5

21(4− λk)

(
100λ2k + 30(10 + 7ξ)λk + 224 +

42

λk

)
, (3.111)

for some k ∈ N+ such that 0 < λk < 4 and here χS1
k (ξ) is the root of P3(χ, λk) = 0 in

(3.97). Taking Ω = (0, 10π), with allowable wavenumber satisfying 0 < λk = (k/10)2 < 4,

we get the allowable unstable modes for k = 1, 2, 3 · · · , 18, 19. We choose λk = (5/10)2,

then χS1
k (ξ) in (3.111) can be updated as χS1

5 (ξ) = 631+70ξ
21 .

We first pick ξ = 0 to find a value χS1
5 (0) ≈ 30.0476 for the possibility of pattern

formations. As shown in Figure 3.1, by letting χ = 80 > 30.0476 and we can find the steady

state patterns (see Figure 3.1): the time evolutionary profiles of solutions are horizontal
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(a) χ = 80, ξ=10 (b) χ = 80, ξ=20 (c) χ = 80, ξ=40

Figure 3.2: Numerical simulation of spatio-temporal patterns for (3.3) with ϕ(u, v) = uv.
The fixed parameter values are: d1 = 0.1, d2 = b1 = b2 = 1, θ1 = 0.1, θ2 = 0.7 and
γ1 = γ2 = 0. The initial datum (u0, v0, w0) is set as a small random perturbation of the
homogeneous coexistence steady state (0.3, 0.7, 0.2).

lines, and the space-profiles show that all species reach an inhomogeneous coexistence state

in space.

The expression in (3.111) implies that the critical value χS1
k (ξ) > 0 is increasing in

terms of ξ ≥ 0, the spatio-temporal patterns generated due to any fixed large χ and fixed

mode k will disappear as the value of ξ ≥ 0 increases, which implies the prey-taxis has a

stabilization effect on the homogeneous steady state. To verify this fact, we use numerical

simulations to find that the spatio-temporal patterns gradually evolve into the spatially

homogeneous patterns as ξ increases from 0 to 10, then to 20, and finally disappear at

ξ = 40, see more details in Figure 3.2.
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3.5.2 Food Chain Model with Intraguild Predation and Prey-taxis: γ1 >
0, γ2 > 0 and ϕ(u, v) = v

In this case, we fix the value of the parameters as follows:

d1 = 0.1, d2 = b1 = b2 = γ2 = 1, γ1 = 2, θ1 = 0.1, θ2 = 0.9. (3.112)

Then (u∗, v∗, w∗) = (0.15, 0.75, 0.05). As discussed in Lemma 3.15, only Hopf bifurcations

can occur by noting the fact P3(χ, λk) > 0.

We derive from (3.112) that H(χ, λk) = 0 in (3.104) is equivalent to

χ = χH1
k (ξ) :=

9680λ2k + (2640 + 495ξ)λk +
54
λk

+ 1041 + 90ξ

15(3 + 3λkξ − 20λk)
, (3.113)

which is positive provided λk(20−3ξ) < 3. Taking Ω = (0, 10π), the allowable wavenumber

λk = (k/10)2 satisfying λk(20− 3ξ) < 3, then k = 1, 2, 3 are allowable unstable modes for

any ξ ≥ 0. Fixing k = 2 and (3.113) can be simplified as

χH1
2 (ξ) = 61 +

62386

75(55 + 3ξ)
. (3.114)

We first choose ξ = 0 to obtain a value χH1
2 (0) ≈ 76.124 for possible pattern formations.

As shown in Figure 3.3(a), with χ = 100 > 76.124 in hand, we can find the spatio-

temporal patterns. In particular, the time evolutionary profiles of solutions are periodically

oscillatory, which indicates the bifurcation might be of Hopf bifurcation type (see the last

picture in Figure 3.3(a)). Moreover, (3.114) indicates that for fixed unstable mode k = 2,

the critical value χH1
2 (ξ) > 0 is decreasing about ξ ≥ 0, which implies the prey-taxis might

have a destabilization effect on patterns. This is an interesting phenomenon, which is

different from the food chain model without intraguild predation.

To verify this fact, we take ξ = 10 and ξ = 20 and find that the patterns become

unstable as ξ increasing from 0 to 10 and then to 20, and the chaotic spatio-temporal

patterns may happen, see Figure 3.3(c).

3.5.3 Food Chain Model with Intraguild Predation and Alarm-taxis:
γ1, γ2 > 0 and ϕ(u, v) = uv

In this case, we fix the parameters as follows for simulations:

d1 = 0.1, d2 = b1 = b2 = γ2 = 1, γ1 = 2, θ1 = 0.1, θ2 = 0.9, (3.115)

this implies (u∗, v∗, w∗) = (0.15, 0.75, 0.05). From Lemma 3.16, we know that the steady

state and Hopf bifurcations are both possible.
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Figure 3.3: Numerical simulation of spatio-temporal patterns generated by (3.3) with
ϕ(u, v) = v and γ1, γ2 > 0. The parameter values are: d1 = 0.1, d2 = b1 = b2 =
γ2 = 1, γ1 = 2, θ1 = 0.1, θ2 = 0.9. The initial datum (u0, v0, w0) is set as a small random
perturbation of the homogeneous coexistence steady state (0.15, 0.75, 0.05).

By (3.115), we first derive from (3.109) and (3.110) in Lemma 3.16 to obtain that

P3(χ, λk) = 0 and H(χ, λk) = 0 are, respectively, equivalent to

χ = χS2
k (ξ) :=

1600λ2k + 600λk(4 + 3ξ) + 180
λk

+ 2100 + 180ξ

27− 27λk(7 + ξ)
, (3.116)

and

χ = χH2
k (ξ) :=

77440λ2k + 120λk(176 + 33ξ) + 432
λk

+ 8328 + 180ξ

54λk(ξ − 14)− 135
. (3.117)
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(a) χ = 0, ξ=0 (b) χ = 450, ξ=0 (c) χ = 450, ξ=4 (d) χ = 450, ξ=45

Figure 3.4: Numerical simulation of spatio-temporal patterns generated by (3.3) with
ϕ(u, v) = uv and γ1, γ2 > 0. The parameter values are: d1 = 0.1, d2 = b1 = b2 =
γ2 = 1, γ1 = 2, θ1 = 0.1, θ2 = 0.9. The initial datum (u0, v0, w0) is set as a small random
perturbation of the homogeneous coexistence steady state (0.15, 0.75, 0.05).

We deduce from (3.110) in Lemma 3.16 that if

0 ≤ ξ ≤ min

{
K̃3

γ1u∗v∗w∗
,
d1 + 1

u∗
+

(d2 + 1)b2
u∗γ1

}
= min

{
347

15
+

3ξ

2
, 14

}
= 14,

then H(χ, λk) > 0 for any k ∈ N and hence no Hopf bifurcation occurs, which motivates

us to study the possibility of steady state pattern formation. To illustrate this case, we

take Ω = (0, 10π), then from (3.107), the allowable unstable modes k ∈ N+ must satisfy

0 < λk = (k/10)2 < 1
7+ξ .

We take k = 3 and ξ = 0, then (3.116) implies that χS2
3 (0) ≈ 433.329, which is a value

for possible pattern formations. As shown in Figure 3.4(b), choosing χ = 450 > 433.329,

we can find the steady state patterns. Furthermore, for the fixed unstable mode k = 3, the

pattern formations will disappear as ξ increasing from 0 to 4, see Figure 3.4(c).

For relatively large ξ > 14, from Lemma 3.16 and the definition of χH2
k in (3.117), the

Hopf bifurcations possibly occur as long as the allowable unstable modes k ∈ N+ satisfying
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λ = (k/10)2 > 5
2(ξ−14) . With χ = 450 in hand, for the same unstable mode k = 3, we pick

ξ = 45 to find the spatio-temporal patterns, see Figure 3.4(d).

Our results demonstrate that for the fixed large χ = 450, as the parameter ξ increases,

the steady state patterns (see Figure 3.4(b)) evolve first into the constant state (see Figure

3.4(c)) and then further develop into the Hopf bifurcation patterns (see Figure 3.4(d)).

Moreover, from Figure 3.4(a), we observe that no pattern formation occurs when χ = ξ = 0

and γ1, γ2 > 0. This, together with Figure 3.1, Figure 3.3(a), Figure 3.4(b) and Lemma

3.13, indicates that the signal taxis mechanism plays an essential role in promoting pattern

formation.

3.6 Appendix: Proof of Proposition 3.1

In this section, we are devoted to giving some basic linear analysis on the linear stabil-

ity/instability of constant steady state for the system (3.3). To this end, we first linearize

the system (3.3) at constant steady state (uc, vc, wc) to obtain
Ψt = A∆Ψ+ BΨ, x ∈ Ω, t > 0,

∇Ψ · ν = 0, x ∈ ∂Ω, t > 0,

Ψ(x, 0) = (u0 − uc, v0 − vc, w0 − wc)
T , x ∈ Ω,

where

Ψ :=


u− uc

v − vc

w − wc

 , A =


d1 0 0

−ξvc d2 0

−χwcϕcu −χwcϕcv 1

 and B =


−uc −b1uc −γ1uc
vc B22 −b2vc
γ2wc wc B33

 ,

with ϕcu := ϕu(uc, vc), ϕ
c
v := ϕv(uc, vc) and

B22 := uc − b2wc − θ1 and B33 := vc + γ2uc − θ2. (3.118)

Then, the linear stability of (uc, vc, wc) is determined by the eigenvalues of the matrix

(−λkA + B), which satisfies the characteristic equation µ3 + P1µ
2 + P2µ + P3 = 0, where

Pi := Pi(λk) (i = 1, 2, 3) are defined as below

P1(λk) :=λk(d1 + d2 + 1) + uc −B22 −B33,

P2(λk) :=λ
2
k(d1d2 + d1 + d2) + λk {(d2 + 1)uc − (d1 + 1)B22 − (d1 + d2)B33}

+ λk(χϕ
c
uγ1ucwc + χϕcvb2vcwc + ξb1ucvc) + γ1γ2ucwc + b2vcwc + b1ucvc

− ucB22 − ucB33 +B22B33,
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P3(λk) :=λ
3
kd1d2 + λ2k(−d1d2B33 + d2uc − d1B22)

+ λ2k(χϕ
c
ud2γ1ucwc + χϕcvd1b2vcwc + ξb1ucvc + χϕcvξγ1ucvcwc)

+ λk(−ucB22 − d2ucB33 + d1B22B33)

+ λk {γ1ucwc(γ2d2 − χϕcuB22) + b2vcwc(d1 + χϕcvuc) + b1ucvc(1− ξB33)

+γ1ucvcwc(χϕ
c
v + ξ)− χϕcub1b2ucvcwc}

+ ucB22B33 − γ1γ2ucwcB22 − b1ucvcB33 + (b2 + γ1 − γ2b1b2)ucvcwc. (3.119)

Based on Routh-Hurwitz criterion (e.g., Appendix B.1 in [100]), the nonnegative constant

steady states (uc, vc, wc) are linearly stable if and only if for each k ∈ N, it holds that

P1 > 0, P3 > 0, P1P2 − P3 > 0.

Calculating directly, one obtains

P1P2 − P3 =: λ3kK
c
1 + λ2kK

c
2 + λkK

c
3 +Kc

4 + χ(λ2kK
c
5 + λkK

c
6),

where

Kc
1 :=(d1d2 + d1 + d2 + 1)(d1 + d2) > 0,

Kc
2 :=(d1d2 + d1)uc + (d1 + d2)(−B33) + (d1d2 + d2)(−B22) + ξ(d1 + d2)b1ucvc

+ (d1 + d2 + 1){(d2 + 1)uc − (d1 + 1)B22 − (d1 + d2)B33},

Kc
3 :=(uc −B22 −B33){(d2 + 1)us − (d1 + d2)B33 − (d1 + 1)B22}

+ (d2 + 1)B22B33 − (d1 + 1)ucB33 − (d1 + d2)usB22

+ [(d1 + 1)γ2 − ξ]γ1ucwc + (d2 + 1)b2vcwc + (d1 + d2)b1ucvc + (uc −B22)b1ξucvc,

Kc
4 :=− (B22 +B33)(B22B33 + b2vsws)− uc(uc −B22 −B33)(B22 +B33)

+ (uc −B33)γ1γ2ucwc + (uc −B22)b1ucvc − (γ1 − γ2b1b2)ucvcwc.

Also

Kc
5 := (d1 + 1)ϕcuγ1ucwc + (d2 + 1)ϕcvb2vcwc − ϕcvξγ1ucvcwc, (3.120)

and

Kc
6 :=(uc −B33)ϕ

c
uγ1ucwc + (−B22 −B33)ϕ

c
vb2vcwc + ϕcub1b2ucvcwc − ϕcvγ1ucvcwc.

(3.121)

Proof of Proposition 3.1. For the corresponding ODE system of (3.3), it has been proved

in [55] that the constant steady state (uc, vc, wc) is linearly stable under the following
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conditions:

(uc, vc, wc) =


(1, 0, 0), if θ1 > 1 and θ2 > γ2,(
θ1,

1−θ1
b1

, 0
)
, if θ1 < 1 and θ2 >

b1γ2−1
b1

θ1 +
1
b1
,(

θ2
γ2
, 0, γ2−θ2γ1γ2

)
, if θ2 < γ2 and θ2 <

γ1γ2
b2+γ1

θ1 +
b2γ2
b2+γ1

.

(3.122)

Under the conditions (3.122), we can derive from (3.118) that B22 ≤ 0 and B33 ≤ 0, which

gives Kc
j > 0 (j = 1, 2, 3, 4).

For (1, 0, 0) or
(
θ1,

1−θ1
b1

, 0
)
, one obtains wc = 0, which together with the facts B22 ≤ 0

and B33 ≤ 0 substituted into P3 in (3.119) implies that for any k ∈ N

P3 =λ
3
kd1d2 + λ2k(−d1d2B33 + d2uc − d1B22 + ξb1ucvc) + ucB22B33 − b1ucvcB33

+ λk[−ucB22 − d2ucB33 + d1B22B33 + b1ucvc(1− ξB33)] > 0.

Since wc = 0, by (3.120)-(3.121), one has Kc
5 = Kc

6 = 0, which together with Kc
i > 0 (i =

1, 2, 3, 4) implies P1P2−P3 > 0. Hence, by Routh-Hurwitz criterion, E1 and E12 are linearly

stable.

As for E13 :=
(
θ2
γ2
, 0, γ2−θ2γ1γ2

)
, one has vc = 0 which together with ϕu ≥ 0, gives Kc

5 =

(d1 + 1)γ1χϕ
c
uucwc ≥ 0 and Kc

6 = (uc − B33)χϕ
c
uγ1ucwc ≥ 0. Using Kc

i > 0 (j = 1, 2, 3, 4)

again, one obtains P1P2 − P3 > 0 for each k ∈ N. On the other hand, noting the facts

B22 ≤ 0, B33 ≤ 0, vc = 0 and ϕcu ≥ 0, ϕcv ≥ 0, from (3.119), we get that

0 < P3 :=λ
3
kd1d2 + λ2k(−d1d2B33 + d2uc − d1B22 + χϕcud2γ1ucwc)

+ λk{−ucB22 − d2ucB33 + d1B22B33 + (γ2d2 − χϕcuB22)γ1ucwc}

+ ucB22B33 − γ1γ2ucwcB22.

Therefore,
(
θ2
γ2
, 0, γ2−θ2γ1γ2

)
is linearly stable by applying Routh-Hurwitz criterion. Then we

complete the proof of Proposition 3.1.
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Chapter 4

Global Dynamics of an SIS
Epidemic Model with
Cross-diffusion: Applications to
Quarantine Measures

4.1 Introduction and Main Results

Before presenting our context, we clarify that the results presented in this chapter have

been published in our journal paper [25].

4.1.1 Introduction

Infectious diseases [10, 13, 60] have brought in tremendous impacts on public health and

the global economy such as the unprecedented novel coronavirus disease 2019 (COVID-19).

Mathematical modelings and analysis of infectious diseases have had a long history and

numerous results are available (cf. [33, 51, 97]). In epidemiology, the basic reproduction

number of an infection, denoted by R0, is the expected number of cases directly generated

by one case in a population where all individuals are susceptible to infection. This number

is the threshold determining if an emerging infectious disease can spread in a population.

Specifically, the infection persists if R0 > 1 while becomes extinct in the long run if

R0 < 1. Generally, the larger the value of R0, the harder it is to control the epidemic. It

is therefore of mathematical and biological importance to properly define and give explicit

estimates of R0 (cf. [50, 136]). It is noteworthy that the value of R0 can vary, even for the

same disease strain, depending on external factors such as environmental conditions, public

health policy governing the detection and movement pattern of the infected population, and

so on. Among a large number of mathematical works based on reaction-diffusion (or with
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advection) models (cf. [4, 82, 99, 144] and reference therein), most (if not all) mathematical

models have assumed that both susceptible and infected individuals employ homogeneous

diffusive movements. However, this assumption leaves out the effects of human behaviors

and public health quarantine measures on the mobility of individuals during the outbreak

of disease such as COVID-19 [60, 74, 131]).

To fill this gap, we shall introduce the cross-diffusion for the infected individuals (i.e.,

the diffusion of the infected individuals depend on the density of the susceptible population)

into the SIS model and explore the effect of the human intervention on the propagation of

infectious diseases, particularly on the basic reproduction number R0. There are many SIS

epidemic models, we choose, among others, the SIS model with frequency-dependent trans-

mission mechanism (cf. [30]) and demographic change (i.e., population growth/recruitment

and death). That is, denoting the population density of the susceptible and infected in-

dividuals at position x ∈ Ω ⊂ Rn and time t > 0 by S(x, t) and I(x, t), respectively, we

consider the following SIS model with cross-diffusion on I:
St = dS∆S + Λ(x)− θS − α(x) SI

S+I + β(x)I, x ∈ Ω, t > 0,

It = dI∆[γ(S)I] + α(x) SI
S+I − [β(x) + η(x)]I, x ∈ Ω, t > 0,

∂νS = ∂νI = 0, x ∈ ∂Ω, t > 0.

(4.1)

All the other notations and parameters have the same interpretation as in Section 1.4.

Relevant results on (4.1) with γ(S) = 1.We recall some related results developed

for the SIS model (4.1) with γ(S) = 1. When the demographic changes are not considered

(i.e., Λ(x) = θ = η(x) = 0), by integrating the sum of the two equations of (4.1), one

immediately finds that the total population is conserved, namely∫
Ω
[S(x, t) + I(x, t)]dx =

∫
Ω
(S0 + I0)dx =: N, ∀ t > 0,

where the constant N > 0 denotes the number of total population. For this case, Allen

et al. [4] first introduced the basic reproduction number R0 via a variational formula

and established the existence, uniqueness and global stability of the disease-free equilib-

rium (DFE) if R0 < 1. When R0 > 1, they proved the existence and uniqueness of

the endemic equilibrium (EE), and explored the asymptotic behavior of the unique EE as

dS → 0. Particularly, they conjectured that this unique EE is globally stable, which was

later confirmed by [104] for the cases of dI = dS or α(x) = rβ(x) with constant r > 1.

The results in [104] imply that the disease will persist in the high-risk domain Ω (namely∫
Ω α(x)dx >

∫
Ω β(x)dx). When α and β are temporally and spatially inhomogeneous, Peng
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and Zhao [107] showed that the disease will persist in the high-risk domain Ω, and the joint

effect of spatial heterogeneity and temporal periodicity may enhance the persistence of the

disease. In addition, [34] explored the existence of traveling wave solutions.

When the demographic changes are included (i.e., Λ(x), θ, η(x) > 0), the total popula-

tion is no longer conserved and the analysis will be more involved. The first result seemed

to be obtained by Li et al. in [81] where the global existence and boundedness of classical

solutions as well as the threshold dynamics in terms of the basic reproduction number R0

were studied. By the uniform persistence theory, they showed that the disease will persist

uniformly and hence at least one EE exists in the high-risk domain. The asymptotic pro-

files of EE for large and/or small of dS or dI were further obtained in [81]. These findings

imply that a varying total population may enhance disease persistence, thereby posing

greater challenges to the disease control. In addition, Li et al. [83] introduced an infectious

population oriented taxis advection term for S (i.e., the susceptible moves away from the

density gradient of the infected individuals) with varying/conserved total population and

showed that such a cross-diffusion does not contribute to eradication of the disease. Last

but not least, we refer readers to [84, 126, 127] for some results on SIS models with taxis

movement in the S-equation, and [19, 31, 82, 105, 146, 153] and the references therein for

more results on various SIS epidemic models with random diffusion.

We aim to study the SIS epidemic model (4.1) with cross-diffusion for I and explore

how the cross-diffusion diffusion strategy can play positive roles in controlling the spread

of disease. Our main goals include the following:

(S.1) Establish the global well-posedness of solutions (global existence and stability) to

(4.1) under suitable conditions;

(S.2) Investigate the effects of cross-diffusion on the persistence and extinction of the in-

fectious disease.

The main challenge in the analyses arises from the cross-diffusion structure in the I-

equation. The SIS model with taxis-like advection in the S-equation considered in [83] is

significantly different from (4.1) with the cross-diffusion in the I-equation. For the model

of [83], the L∞ boundedness of I can be directly obtained from the I-equation based on

the boundedness of L1 by using the result “L1-boundedness implies L∞-boundedness” for

classical reaction-diffusion equations proved in [3]. But for the cross-diffusion SIS system

(4.1), the boundedness of I can not be obtained directly from the I-equation alone. This

needs more complicated coupling estimates to establish the global boundedness of solutions
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under the structural hypothesis (H2), as shown in Section 4.2.

4.1.2 Main Results

Throughout this chapter, we suppose that the initial value (S0, I0) satisfies

0 ≤ S0 ∈W 1,∞(Ω), I0 ∈ C(Ω) with I0 ≥ 0 and

∫
Ω
I0(x)dx > 0, (4.2)

and the following conditions hold:

(H0) The functions Λ(x), α(x), β(x), η(x) are positive and Hölder continuous on Ω, and

θ is a positive constant.

Moreover, γ(S) is assumed to fulfill the following conditions:

(H1) γ(S) ∈ C3([0,∞)), γ′(S) > 0 and γ(0) = 1;

(H2) There exist some positive constants K0 and K1 such that γ(S) ≤ K0 and γ′(S) ≤ K1.

Note that in (H1), γ(0) can be any positive constant, which however can be absorbed into

dI . Hence, we simply assume γ(0) = 1 without loss of generality.

Our first result concerning the global boundedness of solutions is given below.

Theorem 4.1. Let Ω ⊂ R2 be a bounded domain with smooth boundary and hypotheses

(H0)-(H2) hold. Then (4.1) with (4.2) admits a unique classical solution (S, I) ∈ [C(Ω ×
[0,∞)) ∩ C2,1(Ω × (0,∞))]2 satisfying S, I > 0 on Ω × (0,∞). Moreover, there exists a

constant C > 0 independent of K1 such that

∥S∥W 1,∞ + ∥I∥L∞ ≤ C(1 +K12
1 )eC(1+K4

1) =:M(K1) for all t > 0. (4.3)

Remark 4.1. When considering the mass action infection mechanism (cf. [70]), namely

SI
S+I is replaced by SI in (4.1), Theorem 4.1 can hold without the assumption (H2) since

the boundedness of S can follow directly from the comparison principle.

Next we shall explore how the cross-diffusion affects the basic reproduction number R0.

To this end, we consider the stationary problem
dS∆S + Λ(x)− θS − α(x) SI

S+I + β(x)I = 0, x ∈ Ω,

dI∆[γ(S)I] + α(x) SI
S+I − [β(x) + η(x)]I = 0, x ∈ Ω,

∂νS = ∂νI = 0, x ∈ ∂Ω.

(4.4)
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It is easy to check that (4.4) has a unique semi-trivial solution (S̃(x), 0) =: (S̃, 0) satisfying

0 < S̃ ≤ 1
θ maxx∈Ω Λ and

dS∆S + Λ(x)− θS = 0 in Ω; ∂νS = 0 on ∂Ω.

(S̃, 0) is called the disease-free equilibrium (DFE). An endemic equilibrium (EE), denoted

by (Ŝ(x), Î(x)), is a solution of (4.4) satisfying Î(x) ≥ 0 and Î(x) ̸≡ 0 on Ω. In fact, if EE

exists, then the maximum principle and the Hopf boundary lemma for elliptic equations

assert that Ŝ(x) > 0, Î(x) > 0 in Ω. By the nomenclature from [4], we define the low-risk

site Ω− and the high-risk site Ω+ as:

Ω− = {x ∈ Ω : α(x) < β(x) + η(x)}, Ω+ = {x ∈ Ω : α(x) > β(x) + η(x)}.

The domain Ω is called a low-risk domain if
∫
Ω α(x)dx <

∫
Ω[β(x)+η(x)]dx and a high-risk

domain if
∫
Ω α(x)dx ≥

∫
Ω[β(x) + η(x)]dx.

Now we define the basic reproduction number R0 of (4.1) by the following variational

form (see the motivation detailed in Section 4.3.1):

R0 := R0(dI , γ(S̃)) = sup
0̸=w∈H1(Ω)

∫
Ω α(x)w

2dx∫
Ω{dI |∇(γ

1
2 (S̃)w)|2 + (β(x) + η(x))w2}dx

. (4.5)

When the infected individuals take random movement (i.e., γ(S) = 1), we denote the basic

reproduction number by R̂0 given in [81]. Below we present some qualitative properties of

R0 in terms of dI , which can be readily proved by the proofs of [4, Lemma 2.2] and [92,

Lemma 3.1]. We skip the details here for brevity.

Proposition 4.1. Let q1(x) := α(x)γ−1(S̃), q2(x) := [β(x)+η(x)]γ−1(S̃) and q(x) := q1(x)
q2(x)

with γ−1(S̃) = 1/γ(S̃). Under hypotheses (H0)-(H1), the following results hold.

(i) R0 is strictly decreasing in dI provided that Ω− and Ω+ are nonempty. Moreover,

R0 → max{q(x) : x ∈ Ω} as dI → 0 and R0 →
∫
Ω q1(x)dx/

∫
Ω q2(x)dx as dI → ∞;

(ii) If
∫
Ω q1(x)dx >

∫
Ω q2(x)dx, then R0 > 1 for all dI > 0;

(iii) If
∫
Ω q1(x)dx <

∫
Ω q2(x)dx, then there admits a unique positive constant d∗I such that

R0 > 1 (resp. R0 < 1) for dI < d∗I (reps. dI > d∗I) when Ω− and Ω+ are nonempty.

Remark 4.2. If Ω− and Ω+ are nonempty and Λ(x) is a constant, then S̃ > 0 is a constant.

This along with the monotonicity of R0 in Proposition 4.1-(i) yields R0 < R̂0, and hence
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implies that the cross-diffusion can reduce the value of R0. In other words, the intervention

measures are effective for controlling the spread of diseases (see more discussion in Section

4.5).

Remark 4.3. If Ω is a high-risk domain, namely
∫
Ω α(x)dx ≥

∫
Ω[β(x) + η(x)]dx, we can

choose a rate function γ(S) such that
∫
Ω α(x)γ

−1(S̃)dx <
∫
Ω[β(x) + η(x)]γ−1(S̃)dx (see

a specific example in Section 4.5). By Proposition 4.1-(iii), there exists a unique d∗I such

that R0 < 1 whenever dI > d∗I , which is substantially different from the well-known results

with random diffusion (i.e., γ(S) = 1) for which the basic reproduction number R̂0 > 1 for

all dI > 0 (e.g., [81, Proposition 3.2 (c)], [107, Theorem 2.5 (a)]).

The basic reproduction number R0 normally can determine threshold dynamics. Specif-

ically, if R0 > 1 (resp. R0 < 1), the disease persists (resp. becomes extinct). The following

theorem indicates that R0 defined in (4.5) can determine the threshold dynamics locally.

Theorem 4.2. Let hypotheses (H0)-(H2) hold. Then the following statements hold.

(i) If R0 < 1, then DFE (S̃, 0) is linearly stable;

(ii) If R0 > 1, then DFE (S̃, 0) is linearly unstable and (4.1) admits at least one EE.

Remark 4.4. The uniqueness of non-trivial EE in general and the existence of non-trivial

EE when R0 ≤ 1 remain open.

Finally we prove the global stability of DFE and EE depending on the sign of 1−R0.

Theorem 4.3. Let (S, I) be the solution obtained in Theorem 4.1. The following state-

ments hold.

(i) If α(x) ≤ β(x) + εη(x) with fixed constant 0 < ε < 1, then R0 < 1 and DFE is

globally asymptotically stable with

∥S − S̃(x)∥L∞ + ∥I∥L∞ ≤M1e
−κ1t for all t > 1. (4.6)

(ii) Assume that Λ, α, β, η are all positive constants. If α > β + η (i.e., R0 > 1),

then the unique constant EE (Ŝ, Î) defined in (4.72) is globally asymptotically stable

provided that θ = η and

2dSdI + 4dSdIM2 > d2IK2
0 + d2S + dIK1H(K1), (4.7)

where H(K1) =M(K1)[1+M2(M(K1)+1)2]{2dS+K1M(K1)dI [1+M2(M(K1)+1)2]}

with M2 :=
4η[Λ(α−β−η)+ηα]
(α−β−η)2(Λ+η) .
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Remark 4.5. If γ(S) = 1, the global stability of DEF can be proved with the mere condition

R0 < 1 (see [81]). Here we give a more sufficient condition. If Λ, α, β, η are positive

constant, it follows from Proposition 4.1-(i) that R0 =
α
β+η . Thus, α > β + η is equivalent

to R0 > 1. In addition, θ = η is a technical assumption, which is not needed in the case

γ(S) = 1 and dI = dS (see [81]).

Remark 4.6. Since M(K1) > 0 is an increasing function of K1 and M2 is independent

of K1, the condition (4.7) can be achieved by choosing K1 small. For example, fixing

Λ = η = θ = dS = 1, α = dI = 2.5, β = 0.5 and taking γ(S) = K0 − K0−1
S+1 with

1 < K0 ≪ 2, then γ′(S) = K0−1
(S+1)2

≤ (K0 − 1) =: K1. Let K0 be close to 1 (i.e., K1 be close

to 0) such that dIK1H(K1) ≪ 1, then 2dSdI + 4dSdIM2 = 75 > d2I2
2 + d2S + 1 = 27 >

d2IK2
0 + d2S + dIK1H(K1), and thus (4.7) holds.

4.2 Global Boundedness and Existence: Proof of Theorem
4.1

In this section, we will study the global existence and boundedness of solutions to

(4.1). Throughout this chapter, ci and Ci (i = 1, 2, 3, · · · ) are used to denote generic

positive constants, which may vary in the context and are independent of t and K1.

4.2.1 Local Existence and Preliminaries

Firstly, the local solvability of (4.1) can be proved by using the Amann’s theorem [7,

Theorem 7.3], and the positivity of S and I follows from the strong maximum principle,

see e.g. [65, Lemma 2.1]. We omit the proof details for brevity..

Lemma 4.1 (Local existence). Let the conditions in Theorem 4.1 hold. Then there admits

a Tmax ∈ (0,∞] such that (4.1) has a unique classical solution (S, I) ∈ [C(Ω× [0, Tmax))∩
C2,1(Ω× (0, Tmax))]

2 with S, I > 0 on Ω× (0, Tmax). Moreover,

if Tmax <∞, then lim
t↗Tmax

(∥S∥W 1,∞ + ∥I∥L∞) = ∞. (4.8)

In the sequel, we denote

g∗ = min
x∈Ω

g and g∗ = max
x∈Ω

g for g ∈ {Λ(x), α(x), β(x), η(x)}. (4.9)
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Lemma 4.2. Let (S, I) be the solution obtained in Lemma 4.1. Then there exists a constant

C1 > 0 such that

∥S(·, t)∥L1 + ∥I(·, t)∥L1 ≤ C1 for all t ∈ (0, Tmax).

Proof. Adding the first two equations of (4.1) and integrating the result by parts, we get

d

dt

∫
Ω
(S + I) + min{θ, η∗}

∫
Ω
(S + I) ≤ Λ∗|Ω|.

This along with Grönwall’s inequality indicates∫
Ω
(S + I) ≤ Λ∗|Ω|

min{θ, η∗}
+

∫
Ω
(S0 + I0) =: C1,

where η∗ and Λ∗ are defined in (4.9). Hence, the proof of Lemma 4.2 is completed.

Lemma 4.3. Let (S, I) be the solution obtained in Lemma 4.1. Then there exists a constant

C2 > 0 such that ∫ t+τ

t

∫
Ω
I2 ≤ C2 for all t ∈ (0, T̃max), (4.10)

where τ is a constant such that

0 < τ < min {1, Tmax} and T̃max := Tmax − τ. (4.11)

Proof. We add the first equation of (4.1) with the second one to get

(S + I)t = ∆(dSS + dIγ(S)I) + Λ(x)− θS − η(x)I,

which, along with hypothesis (H2), can be rewritten as

(S + I)t +A (dSS + dIγ(S)I) = (δdIγ(S)− η(x))I + (δdS − θ)S + Λ(x)

≤ (δdIK0 − η∗)I + (δdS − θ)S + Λ∗ ≤ Λ∗,
(4.12)

where δ := min
{ η∗
dIK0

, θ
dS

}
> 0, and A is the self-adjoint realisation of −∆+ δ subject to

homogeneous Neumann boundary conditions in L2(Ω). Then A is invertible with bounded

inverse by the Fredholm alternative theorem. Hence there is a constant c1 > 0 such that

∥A−1ϕ∥L2 ≤ c1∥ϕ∥L2 for all ϕ ∈ L2(Ω), (4.13)

and

∥A− 1
2ϕ∥2L2 =

∫
Ω
ϕ · A−1ϕdx ≤ c1∥ϕ∥2L2 for all ϕ ∈ L2(Ω). (4.14)
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We multiply (4.12) by A−1(S + I) ≥ 0 to get

1

2

d

dt

∫
Ω
|A− 1

2 (S + I)|2 +
∫
Ω
(dSS + dIγ(S)I)(S + I) ≤ Λ∗

∫
Ω
A−1 (S + I) ,

which together with hypothesis (H1) gives a constant c2 := min{dS , dI} such that

1

2

d

dt

∫
Ω
|A− 1

2 (S + I)|2 + c2

∫
Ω
(S + I)2 ≤ Λ∗

∫
Ω
A−1 (S + I) . (4.15)

Using (4.13), (4.14) along with Hölder inequality and Young’s inequality yields

Λ∗
∫
Ω
A−1 (S + I) ≤ Λ∗|Ω|

1
2 c1∥S + I∥L2 ≤ c2

4
∥S + I∥2L2 +

(Λ∗)2|Ω|c21
c2

, (4.16)

and
c2
4c1

∫
Ω
|A− 1

2 (S + I)|2 ≤ c2
4
∥S + I∥2L2 . (4.17)

We substitute (4.16) and (4.17) into (4.15) to obtain

d

dt

∫
Ω
|A− 1

2 (S + I)|2 + c2
2c1

∫
Ω
|A− 1

2 (S + I)|2 + c2

∫
Ω
(S + I)2 ≤ 2(Λ∗)2|Ω|c21

c2
=: c3. (4.18)

Applying Grönwall’s inequality to (4.18) and using (4.14) again, one has∫
Ω
|A− 1

2 (S + I)|2 ≤ 2c1c3
c2

+ c1(∥S0∥2L2 + ∥I0∥2L2) =: c4. (4.19)

We integrate (4.18) over (t, t+ τ) and apply (4.19) to get

c2

∫ t+τ

t

∫
Ω
I2 ≤ c2

∫ t+τ

t

∫
Ω
(S + I)2 ≤ c3 + c4,

which gives (4.10) by letting C2 :=
c3+c4
c2

. This finishes the proof of Lemma 4.3.

Lemma 4.4. Let (S, I) be the solution obtained in Lemma 4.1. Then there exist two

positive constants C3 and C4 such that

∥∇S(·, t)∥L2 ≤ C3 for all t ∈ (0, Tmax), (4.20)

and ∫ t+τ

t

∫
Ω
|∆S|2 ≤ C4 for all t ∈ (0, T̃max), (4.21)

where τ and T̃max are defined in (4.11).
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Proof. We multiply the first equation of (4.1) by −∆S and apply Young’s inequality to get

1

2

d

dt

∫
Ω
|∇S|2 + dS

∫
Ω
|∆S|2

= −
∫
Ω
Λ(x)∆S + θ

∫
Ω
S∆S +

∫
Ω

(
α(x)

SI

S + I
− β(x)I

)
∆S

≤ Λ∗
∫
Ω
|∆S| − θ

∫
Ω
|∇S|2 + (α∗ + β∗)

∫
Ω
I|∆S|

≤ dS
2

∫
Ω
|∆S|2 − θ

∫
Ω
|∇S|2 + (α∗ + β∗)2

dS

∫
Ω
I2 +

(Λ∗)2|Ω|
dS

,

which indicates

d

dt

∫
Ω
|∇S|2 + 2θ

∫
Ω
|∇S|2 + dS

∫
Ω
|∆S|2 ≤ c1

∫
Ω
I2 + c2 =: h(t), (4.22)

where c1 =
2(α∗+β∗)2

dS
and c2 =

2(Λ∗)2|Ω|
dS

. Moreover, it follows from (4.10) that
∫ t+τ
t h(s)ds ≤

c1C2 + c2 =: c3. This along with [61, Lemma 2.4] gives∫
Ω
|∇S|2 ≤ c3 + 2(||∇S0||2L2 + 3c3 + 6θτ + c3/2θτ + 1) =: C2

3 ,

which implies (4.20) directly. Integrating (4.22) over (t, t+ τ) yields

dS

∫ t+τ

t

∫
Ω
|∆S|2 ≤ c3 + C2

3 .

Thus (4.21) holds with C4 := (c3 + C2
3 )/dS and the proof of Lemma 4.4 is finished.

4.2.2 Boundedness of solutions

We first derive the a priori L2-estimate of I.

Lemma 4.5. Let (S, I) be the solution obtained in Lemma 4.1. Then there exists a constant

C5 > 0 such that

∥I(·, t)∥L2 ≤ eC5(K2
1+1)2 for all t ∈ (0, Tmax) . (4.23)

Proof. Multiplying I-equation in (4.1) by I and integrating the result by parts, one has

1

2

d

dt

∫
Ω
I2 = −dI

∫
Ω
γ(S)|∇I|2 − dI

∫
Ω
Iγ′(S)∇S · ∇I +

∫
Ω

α(x)SI2

S + I
−
∫
Ω
[β + η](x)I2

≤ −dI
∫
Ω
γ(S)|∇I|2 + dI

∫
Ω
γ′(S)I|∇S||∇I|+ α∗

∫
Ω
I2 − (β∗ + η∗)

∫
Ω
I2,
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which, along with hypotheses (H1) and (H2), gives

d

dt

∫
Ω
I2 + 2dI

∫
Ω
|∇I|2 + 2(β∗ + η∗)

∫
Ω
I2 ≤ 2dIK1

∫
Ω
I|∇S||∇I|+ 2α∗

∫
Ω
I2. (4.24)

With Young’s inequality and Hölder inequality, we have

2dIK1

∫
Ω
I|∇S||∇I| ≤ dI

∫
Ω
|∇I|2 + dIK2

1∥I∥2L4∥∇S∥2L4 ,

which, substituted into (4.24), gives

d

dt

∫
Ω
I2 + dI

∫
Ω
|∇I|2 + 2(β∗ + η∗)

∫
Ω
I2 ≤ dIK2

1∥I∥2L4∥∇S∥2L4 + 2α∗∥I∥2L2 . (4.25)

On the other hand, we use Gagliardo-Nirenberg inequality in two dimensions to get

∥I∥2L4 ≤ c1
(
∥∇I∥L2∥I∥L2 + ∥I∥2L2

)
, (4.26)

and the estimate (cf. [63, Lemma 2.5])

∥∇S∥2L4 ≤ c2
(
∥∆S∥L2∥∇S∥L2 + ∥∇S∥2L2

)
≤ c2C3 (∥∆S∥L2 + C3) , (4.27)

where we have used (4.20). The combination of (4.26) with (4.27) yields

dIK2
1∥I∥2L4∥∇S∥2L4 ≤dIK2

1c1c2C3

(
∥∇I∥L2∥I∥L2 + ∥I∥2L2

)
(∥∆S∥L2 + C3)

≤dIK2
1c1c2C3∥∇I∥L2∥I∥L2∥∆S∥L2 + dIK2

1c1c2C
2
3∥∇I∥L2∥I∥L2

+ dIK2
1c1c2C3∥I∥2L2∥∆S∥L2 + dIK2

1c1c2C
2
3∥I∥2L2

≤dI∥∇I∥2L2 + c3K4
1∥I∥2L2∥∆S∥2L2 + c4(1 +K2

1)
2∥I∥2L2

(4.28)

with c3 := dIc
2
1c

2
2C

2
3 and c4 :=

dI(1+c1c2C
2
3 )

2

2 . Substituting (4.28) into (4.25) gives a constant

c5 := c4 + 2α∗ such that

d

dt
∥I∥2L2 ≤ [c3K4

1∥∆S∥2L2 + c5(1 +K2
1)

2]∥I∥2L2 . (4.29)

Furthermore, (4.10) motivates us to find a positive constant t1 ∈ [(t − τ)+, t) for any

t ∈ (0, Tmax) such that

∥I (·, t1)∥2L2 ≤ max{∥I0∥2L2 , C2/τ} =: c6. (4.30)

It then follows from (4.21) that ∫ t1+τ

t1

∫
Ω
|∆S|2 ≤ C4. (4.31)
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Noting t1 < t ≤ t1 + τ ≤ t1 + 1, (4.30) and (4.31), we integrate (4.29) over (t1, t) and get

∥I(·, t)∥2L2 ≤ ∥I (·, t1)∥2L2 e
c3K4

1

∫ t
t1

∥∆S(·,s)∥2
L2ds+c5(1+K2

1)
2

≤ c6e
c3K4

1C4+c5(1+K2
1)

2 ≤ e(c6+c3C4+c5)(1+K2
1)

2
.

Hence (4.23) follows by letting C5 := (c6 + c3C4 + c5)/2 and the proof is finished.

Lemma 4.6. Let (S, I) be the solution obtained in Lemma 4.1. Then there exists a constant

C6 > 0 such that

∥∇S(·, t)∥L4 ≤ eC6(1+K2
1)

2
for all t ∈ (0, Tmax) . (4.32)

Proof. We rewrite the first equation of (4.1) as

St − dS∆S + θS = Λ(x)− α(x)
SI

S + I
+ β(x)I =: H(x, t). (4.33)

Applying (4.23) gives

∥H(·, t)∥L2 ≤ ∥Λ∗ + α∗I + β∗I∥L2 ≤ c1e
C5(1+K2

1)
2
, (4.34)

where c1 = Λ∗|Ω|
1
2 +(α∗ + β∗). By (et∆)t>0 we denote the Neumann heat semigroup in Ω.

Then applying Duhamel’s principle to (4.33) yields that

S(·, t) = et(dS∆−θ)S0 +

∫ t

0
e(t−s)(dS∆−θ)H(·, s)ds, (4.35)

which, along with (4.34) and well-known semigroup estimates (see e.g., [18, Lemma 2.1]),

gives

∥∇S(·, t)∥L4 ≤ ∥∇et(dS∆−θ)S0∥L4 +

∫ t

0
∥∇e(t−s)(dS∆−θ)H(·, s)∥L4ds

≤ κ1e
−dSλ1t∥∇S0∥L4 + κ2

∫ t

0

(
1 + (t− s)−

3
4

)
e−dSλ1(t−s)∥H(·, s)∥L2ds

≤ κ1 ∥∇S0∥L4 + κ2c1e
C5(1+K2

1)
2
[1 + Γ(1/4)(dSλ1)

3
4 ]

≤ c2e
C5(1+K2

1)
2
,

where positive constants κi (i = 1, 2) and λ1 are independent of K1, and c2 := κ1 ∥∇S0∥L4+

κ2c1[1 + Γ(1/4)(dSλ1)
3
4 ]. Here Γ(·) denotes the Gamma function defined by Γ(z) =∫∞

0 tz−1e−tdt. Hence, (4.32) follows by letting C6 := c2 +C5 and we complete the proof of

Lemma 4.6.
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Lemma 4.7. Let (S, I) be the solution obtained in Lemma 4.1. Then there exists a constant

C7 > 0 such that

∥I(·, t)∥L3 ≤ (1 +K2
1)e

C7(1+K2
1)

2
for all t ∈ (0, Tmax) . (4.36)

Proof. We multiply the second equation of (4.1) by I2 and integrate the result to get

1

3

d

dt

∫
Ω
I3 = −2dI

∫
Ω
γ(S)I|∇I|2 − 2dI

∫
Ω
I2γ′1(S)∇S · ∇I +

∫
Ω

α(x)SI3

S + I
−
∫
Ω
[β + η](x)I3,

which, together with hypotheses (H1) and (H2), gives

d

dt

∫
Ω
I3 + 6dI

∫
Ω
I|∇I|2 + 3(β∗ + η∗)

∫
Ω
I3 ≤ 6dIK1

∫
Ω
I2|∇S||∇I|+ 3α∗

∫
Ω
I3. (4.37)

Applying Young’s inequality, Hölder inequality and (4.32), one has

6dIK1

∫
Ω
I2|∇S||∇I|+ 3α∗

∫
Ω
I3 ≤ 3dI

∫
Ω
I|∇I|2 + 3dIK2

1

∫
Ω
I3|∇S|2 + 3α∗

∫
Ω
I3

≤ 3dI

∫
Ω
I|∇I|2 + 3dIK2

1∥I∥3L6∥∇S∥2L4 + 3α∗|Ω|
1
2 ∥I∥3L6

≤ 3dI

∫
Ω
I|∇I|2 + c1σ1(K1)∥I∥3L6 ,

which substituted into (4.37) gives

d

dt

∫
Ω
I3 + 3dI

∫
Ω
I|∇I|2 + 3(β∗ + η∗)

∫
Ω
I3 ≤ c1σ1(K1)∥I∥3L6 , (4.38)

where c1 := 3dI + 3α∗|Ω|
1
2 and σ1(K1) := 1 +K2

1e
2C6(1+K2

1)
2
> 1.

From (4.23), we have ∥I
3
2 (·, t)∥

L
4
3
= ∥I(·, t)∥

3
2

L2 ≤ e
3
2
C5(1+K2

1)
2
. Then using Gagliardo-

Nirenberg inequality in two dimensions and Young’s inequality, one derives

c1σ1(K1)∥I∥3L6 = c1σ1(K1)∥I
3
2 ∥2L4 ≤c1c2σ1(K1)

(
∥∇I

3
2 ∥

4
3

L2∥I
3
2 ∥

2
3

L
4
3
+ ∥I

3
2 ∥2
L

4
3

)
≤c3σ2(K1)

(
∥∇I

3
2 ∥

4
3

L2 + 1
)

≤4dI
3

∥∇I
3
2 ∥2L2 +

c33σ
3
2(K1)

12d2I
+ c3σ2(K1),

(4.39)

where c3 := c1c2 and σ2(K1) := (1 +K2
1)e

(2C6+3C5)(1+K2
1)

2
> 1. The combination of (4.39)

with (4.38) implies

d

dt
∥I∥3L3 + 3(β∗ + η∗)∥I∥3L3 ≤ c4σ

3
2(K1), (4.40)
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where c4 := c3 +
c33

12d2I
. Then (4.40) gives

∥I∥3L3 ≤ e−3(β∗+η∗)t∥I0∥3L3 +
c4σ

3
2(K1)

3(β∗ + η∗)
(1− e−3(β∗+η∗)t) ≤ c8σ

3
2(K1)

with c8 := c4/(3β∗+3η∗)+∥I0∥3L3 . Therefore, (4.36) follows by letting C7 := c
1
3
8 +2C6+3C5

and the proof of Lemma 4.7 is completed.

Lemma 4.8. Let (S, I) be the solution obtained in Lemma 4.1. Then there exist two

positive constants C8 and C9 such that

∥S(·, t)∥W 1,∞ ≤ (1 +K2
1)e

C8(1+K2
1)

2
for all t ∈ (0, Tmax) , (4.41)

and

∥I(·, t)∥L∞ ≤ (1 +K2
1)

6eC9(1+K2
1)

2
for all t ∈ (0, Tmax) . (4.42)

Proof. By (4.36), we conclude from (4.33) that

∥H(·, t)∥L3 ≤ ∥Λ∗ + α∗I + β∗I∥L3 ≤ c1(1 +K2
1)e

C7(1+K2
1)

2
=: c1σ3(K1), (4.43)

where c1 := Λ∗|Ω|
1
3 +α∗+β∗. Applying the semigroup estimates to (4.35) and using (4.43),

one has

∥S(·, t)∥L∞ ≤ κ3e
−θt ∥S0∥L∞ + κ4

∫ t

0

(
1 + (t− s)−

1
3

)
e−θ(t−s)∥H(·, s)∥L3ds

≤ κ3 ∥S0∥L∞ + κ4c1σ3(K1)

∫ t

0

(
1 + (t− s)−

1
3

)
e−θ(t−s)ds

≤ c2σ3(K1),

(4.44)

where c2 := κ3 ∥S0∥L∞ + κ4c1[1 + Γ(2/3)θ
1
3 ] with constants κ3 and κ4 independent of K1.

Similarly, (4.43) along with the semigroup estimates yields

∥∇S(·, t)∥L∞ ≤ c3 ∥S0∥W 1,∞ + κ2

∫ t

0

(
1 + (t− s)−

5
6

)
e−dSλ1(t−s)∥H(·, s)∥L3ds

≤ c4σ3(K1).

(4.45)

Here c4 := c3 ∥S0∥W 1,∞+κ2c1[1+Γ(1/6)(dSλ)
5
6 ]. Then, (4.45) alongside (4.44) gives (4.41)

by letting C8 := c2 + c4 + C7.
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Multiplying the second equation of (4.1) by Ip−1(p ≥ 2) and integrating the result, one

derives

1

p

d

dt

∫
Ω
Ip =− dI(p− 1)

∫
Ω
γ(S)Ip−2|∇I|2 − dI(p− 1)

∫
Ω
Ip−1γ′(S)∇S · ∇I

+

∫
Ω
α(x)

SIp

S + I
−
∫
Ω
[β(x) + η(x)]Ip,

which, along with hypotheses (H1) and (H2) and (4.45), gives

1

p

d

dt

∫
Ω
Ip + dI(p− 1)

∫
Ω
Ip−2|∇I|2 + (β∗ + η∗)

∫
Ω
Ip

≤ dI(p− 1)σ4(K1)

∫
Ω
Ip−1|∇I|+ α∗

∫
Ω
Ip

≤ dI(p− 1)

2

∫
Ω
Ip−2|∇I|2 + σ5(K1)

∫
Ω
Ip,

where σ4(K1) := c4K1(1+K2
1)e

C7(1+K2
1)

2
and σ5(K1) :=

dI(p−1)σ2
4(K1)+2α∗

2 . Hence, we obtain

d

dt

∫
Ω
Ip +

p(p− 1)dI
2

∫
Ω
Ip−2|∇I|2 ≤ σ5(K1)p

∫
Ω
Ip ≤ c5σ6(K1)p(p− 1)

∫
Ω
Ip, (4.46)

where σ6(K1) := (1 + K2
1)

3e2C7(1+K2
1)

2
> 1 and c5 :=

dIc
2
4+2α∗

2 are independent of p. We

add p(p− 1)
∫
Ω I

p to the both sides of (4.46) and denote c6 := c5 + 1. Then the inequality

(4.46) can be rewritten as

d

dt

∫
Ω
Ip + p(p− 1)

∫
Ω
Ip ≤ −p(p− 1)dI

2

∫
Ω
Ip−2|∇I|2 + c6σ6(K1)p(p− 1)

∫
Ω
Ip. (4.47)

Based on (4.47), we can proceed with the same procedure as the proof in [23, Lemma 3.6]

to find a constant c7 > 0 only depending on Ω such that

∥I(·, t)∥L∞ ≤ 26c8max {C1, ∥I0∥L∞} ≤ c9(1 +K2
1)

6e4C7(1+K2
1)

2

with c8 := c6σ6(K1)c7max
{
1, c6σ6(K1)

2dI

}
+ |Ω|+ 1 and c9 := 26(C1 + ∥I0∥L∞)(c6c7 +

c26c7
2dI

+

|Ω|+ 1). Hence (4.42) holds with C9 := c9 + 4C7, and we finish the proof.

Proof of Theorem 4.1. The combination of Lemma 4.8 with Lemma 4.1 yields Theorem

4.1.
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4.3 Basic Reproduction Number R0: Proof of Theorem 4.2

In this section, we study the properties of R0 and the threshold dynamics of (4.1) in

terms of R0. Below we always suppose that hypotheses (H0)-(H1) hold.

4.3.1 Properties of R0 and Stability of DFE

Motivated by the ideas in [4], we consider the linearized eigenvalue problem of (4.1) at

(S̃, 0): 
dS∆ϕ− θϕ+ [β(x)− α(x)]ψ + λϕ = 0, x ∈ Ω,

dI∆[γ(S̃)ψ] + [α(x)− β(x)− η(x)]ψ + λψ = 0, x ∈ Ω,

∂νϕ = ∂νψ = 0, x ∈ ∂Ω.

(4.48)

Obviously, the differential operator defined in (4.48) is not self-adjoint and hence inconve-

nient to be studied by the conventional variational approach. To treat (4.48) variationally,

we introduce a change of variable u = γ(S̃)ψ, which, along with the fact that the mapping

ψ 7→ γ(S̃)ψ is bijective due to 1 ≤ γ(S̃) ≤ γ
(
Λ∗

θ

)
, reformulates (4.48) as

dS∆ϕ− θϕ+ [β(x)− α(x)]γ−1(S̃)u+ λϕ = 0, x ∈ Ω, (4.49)

dI∆u+ [α(x)− β(x)− η(x)]γ−1(S̃)u+ λγ−1(S̃)u = 0, x ∈ Ω, (4.50)

∂νϕ = ∂νu = 0, x ∈ ∂Ω, (4.51)

where we denote γ−1(S̃) = 1/γ(S̃) hereafter. The reformulated eigenvalue problem (4.49)-

(4.51) is an elliptic system with self-adjoint operators and a weight function γ−1(S̃). For

the weighted eigenvalue problem (4.50) with ∂νu = 0, it follows from [77, Remark 1.3.8]

that there exists a principal eigenvalue λ∗ ∈ R, which is simple and corresponds to a

unique positive eigenfunction u∗ up to a constant multiple. Since the weight function

γ−1(S̃) is strictly positive, we may use the variational formula (e.g., [17, pp. 102] and [27])

to characterize λ∗ as

λ∗ = inf
0̸=w∈H1(Ω)

∫
Ω dI |∇w|

2 + [β(x) + η(x)− α(x)]γ−1(S̃)w2dx∫
Ω γ

−1(S̃)w2dx
.

This inspires us to define the basic reproduction number

R0 = sup
0̸=w∈H1(Ω)

∫
Ω α(x)γ

−1(S̃)w2dx∫
Ω[dI |∇w|2 + (β(x) + η(x))γ−1(S̃)w2]dx

> 0, (4.52)

which is equivalent to (4.5). The above transformation makes the analysis on the properties

of R0 more tractable. To explore the threshold dynamics in terms of R0, we establish the
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following property of R0 in addition to those stated in Proposition 4.1:

R0 > 1 iff λ∗ < 0, R0 = 1 iff λ∗ = 0 and R0 < 1 iff λ∗ > 0, (4.53)

which can be proved by the same argument of the proof of [4, Lemma 2.3].

Next, we shall show that the linear stability of DFE (S̃, 0) can be classified by the value

of R0.

Lemma 4.9. The DFE (S̃, 0) is linearly stable if R0 < 1, and unstable if R0 > 1.

Proof. We first show the linear stability of (S̃, 0) under the assumption R0 < 1. This

amounts to show that if (λ, ϕ, u) is a solution to (4.49)-(4.51) with ϕ ̸≡ 0 or u ̸≡ 0, then

Re(λ) > 0. We have two cases to proceed.

Case 1: u ≡ 0 and ϕ ̸≡ 0. Hence (λ, ϕ) is an eigenpair of the following eigenvalue

problem

dS∆ϕ− θϕ+ λϕ = 0, x ∈ Ω; ∂νϕ = 0, x ∈ ∂Ω. (4.54)

Since the Laplacian operator ∆ in (4.54) is self-adjoint, λ is real. Multiplying the first

equation of (4.54) by ϕ and integrating the result, we immediately get λ ≥ θ > 0.

Case 2: u ̸≡ 0. In this case, (λ, u) is an eigenpair of the eigenvalue problem (4.50) with

∂νu = 0. It follows from (4.53) and R0 < 1 that Re(λ) ≥ λ∗ > 0. Therefore, DFE (S̃, 0) is

stable if R0 < 1.

We now show that (S̃, 0) is linearly unstable if R0 > 1. First (4.53) indicates that

λ∗ < 0. On the other hand, one can easily check that

dS∆ϕ− θϕ+ [β(x)− α(x)]γ−1(S̃)u∗ + λ∗ϕ = 0, x ∈ Ω; ∂νϕ = 0, x ∈ ∂Ω

has a solution ϕ∗. Then (λ∗, ϕ∗, u∗) is a solution to (4.49)-(4.51) with u∗ > 0 and λ∗ < 0,

which shows that (S̃, 0) is linearly unstable.

4.3.2 Existence of EE with R0 > 1

In this subsection, we shall establish the existence of EE for R0 > 1. Usually the

existence of EE can be established based on the uniform persistence theory. But this is

inapplicable here due to the cross-diffusion structure in the I-equation. Below we shall

directly explore the existence of positive solutions to (4.4).

To this end, we introduce a change of variable Z = γ(S)I, and reformulate (4.4) into

the following problem without cross-diffusion
dS∆S + Λ(x)− θS − α(x) SZγ−1(S)

S+Zγ−1(S)
+ β(x)Zγ−1(S) = 0, x ∈ Ω,

dI∆Z + α(x) SZγ−1(S)
S+Zγ−1(S)

− [β(x) + η(x)]Zγ−1(S) = 0, x ∈ Ω,

∂νS = ∂νZ = 0, x ∈ ∂Ω.

(4.55)
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Thus, (4.4) admits a positive solution if and only if (4.55) admits a positive solution. In the

spatially homogeneous environment, it is easy to verify that (4.4) admits a unique constant

EE if R0 > 1. For the spatially inhomogeneous environment, to establish the existence of

EE for R0 > 1, we first prove (4.55) admits a positive solution by applying the index theory

and principal eigenvalue theory.

We start by giving a result on the eigenvalue problem, which will be used later.

Lemma 4.10 ([29, 85, 121]). Let λ1(d, r) be the principal eigenvalue of

d∆u+ r(x)u+ λu = 0, x ∈ Ω; ∂νu = 0, x ∈ ∂Ω. (4.56)

Consider the weighted eigenvalue problem

−d∆u+Mu = µ(M + r)u, x ∈ Ω; ∂νu = 0, x ∈ ∂Ω, (4.57)

where function r(x) ∈ C(Ω), d > 0, M > 0 and M + r > 0 on Ω. Then the following

statements hold:

(i) If λ1(d, r) < 0, (4.57) has an eigenvalue µ smaller than 1;

(ii) If λ1(d, r) > 0, (4.57) has no eigenvalue µ smaller than or equal to 1.

Next we derive a priori estimates for the positive solutions of (4.55).

Lemma 4.11. Let (S,Z) be a positive solution of (4.55) and assumptions (H1)-(H2) hold.

Then

S ≤ Λ∗

c0dS
=: CS and Z ≤ Λ∗

c0dI
=: CZ in Ω, (4.58)

where the constant c0 := min
{

θ
dS
, η∗
K0dI

}
.

Proof. Adding the first two equations of (4.55), one gets

∆(dSS + dIZ) + Λ(x)− θS − η(x)Zγ−1(S) = 0,

which, along with hypotheses (H1)-(H2) and (4.55), gives{
∆(dSS + dIZ) + Λ∗ − c0(dSS + dIZ) ≥ 0, x ∈ Ω,

∂ν(dSS + dIZ) = 0, x ∈ ∂Ω.
(4.59)

Denoting v := dSS + dIZ and applying the maximum principle [93, Proposition 2.2] to

(4.59), we get max
Ω

(dSS + dIZ) = max
Ω

v ≤ Λ∗

c0
. This gives (4.58) and the proof of Lemma

4.11 is finished.
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With Lemma 4.11 in hand, we introduce some notations as in [121]:

X = {ϕ ∈ C1(Ω) ∩ C2(Ω) | ∂νϕ = 0 on ∂Ω}, E = C(Ω)× C(Ω),

W = C+(Ω)× C+(Ω) with C+(Ω) = {ϕ ∈ C(Ω) | ϕ ≥ 0},

D = {(S,Z) ∈W | S < 1 + CS , Z < 1 + CZ} ⊂W.

Then for any constant δ ∈ [0, 1], we define a operator Tδ : D →W by

Tδ(S, Z) ≜

( T −1
1

[
Λ(x)− α(x) SZγ−1(S)

S+Zγ−1(S)
+ β(x)Zγ−1(S) + (m− θ)S

]
T −1
2

[
mZ + δα(x) SZγ−1(S)

S+Zγ−1(S)
− (β(x) + η(x))Zγ−1(S)

] )
,

where m > 0 is a large constant such that m − [β(x) + η(x)]γ−1(S) − θ > 0 for all

(S,Z) ∈ D, and T −1
i (i = 1, 2) denote the inverse operators of Ti under homogeneous

Neumann boundary conditions, respectively, with T1(S) := −dS∆S +mS for S ∈ X and

T2(Z) := −dI∆Z + mZ for Z ∈ X. Lemma 4.11 shows that (4.55) admits a positive

solution if and only if T1 has a positive fixed point on D. Moreover, one can check that

the operator T1 is compact and T1(D) ⊆W by applying the elliptic regularity theory and

compact embedding theorem, and (S̃, 0) is the unique non-positive fixed point of T1 on D.

Then, we shall show that indexW (T1, (S̃, 0)), as defined in [71, Definition I.2.1], exists

and compute it.

Lemma 4.12. Let the conditions in Lemma 4.11 hold and assume λ1 (dI ,m2(x)) ̸≡ 0.

Then

indexW (T1, (S̃, 0)) =

{
0, if λ1 (dI ,m2(x)) < 0,

1, if λ1 (dI ,m2(x)) > 0,

where m2(x) := [α(x)− β(x)− η(x)]γ−1(S̃).

Proof. By a straightforward calculation, the Fréchet derivative DT1(S̃, 0) of T1 at (S̃, 0) is

given by

DT1(S̃, 0)(ϕ, ψ) =

( T −1
1

[
(m− θ)ϕ+m1(x)ψ

]
T −1
2

[
(m+m2(x))ψ

] )
,

wherem1(x) := [β(x)−α(x)F (S̃, 0)]γ−1(S̃). We shall prove that DT1(S̃, 0) has no non-zero

fixed point in C(Ω)× C+(Ω). If not, then we obtain
dS∆ϕ− θϕ+m1(x)ψ = 0, x ∈ Ω,

dI∆ψ +m2(x)ψ = 0, x ∈ Ω,

∂νϕ = ∂νψ = 0, x ∈ ∂Ω.

(4.60)
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It follows from the first equation of (4.60) that ϕ = 0 if ψ = 0. Hence, ψ ∈ C+(Ω)\{0}, this
along with [77, Theorem 1.3.6] gives λ1 (dI ,m2(x)) ≡ 0, which contradicts the assumption

λ1 (dI ,m2(x)) ̸≡ 0. Therefore, DT1(S̃, 0) has no non-zero fixed point in C(Ω) × C+(Ω),

this means that indexW (T1, (S̃, 0)) exists.

To compute indexW (T1, (S̃, 0)), we shall employ principal eigenvalue result given in

Lemma 4.10 and the index theory (see [28, 113]), which is presented in [121, Lemma

3.1]. Choose W
(S̃,0)

= C(Ω) × C+(Ω), H
(S̃,0)

= C(Ω) × {0}, E
(S̃,0)

= {0} × C(Ω)

such that E = Hy ⊕ Ey and W
(S̃,0)

is a generating cone. Then it follows from [121,

Lemma 3.1] that P ◦ DT1(S̃, 0) = T −1
2 [m+m2(x)], where P : E → Ey is a projection

operator. If λ1 (dI ,m2(x)) < 0, by Lemma 4.10, we know that T −1
2 [m+m2(x)] has an

eigenvalue bigger than 1. This along with [121, Lemma 3.1] gives indexW (T1, (S̃, 0)) = 0. If

λ1 (dI ,m2(x)) > 0, Lemma 4.10 shows that all eigenvalues of the operator T −1
2 [m+m2(x)]

are smaller than 1. Thus, [121, Lemma 3.1] yields

indexW (T1, (S̃, 0)) = (−1)ℓ,

where ℓ denotes the sum of algebraic multiplicities of the eigenvalues of DT1(S̃, 0) restricted

in H
(S̃,0)

which are greater than 1.

We next prove that DT1(S̃, 0) restricted in H
(S̃,0)

does not have eigenvalues greater

than or equal to 1. Assume that DT1(S̃, 0) has an eigenvalue µ0 ≥ 1 associated with

eigenfunction (ϕ, ψ) = (ϕ, 0) ∈ H
(S̃,0)

fulfilling ∥ϕ∥L2 = 1. Then we have

−dS∆ϕ+mϕ =
1

µ0
(m− θ)ϕ, x ∈ Ω; ∂νϕ = 0, x ∈ ∂Ω.

Since λ1 (dS ,−θ) > 0, Lemma 4.10 gives 1
µ0

> 1. This contradicts µ0 ≥ 1. Hence

indexW (T, (S̃, 0)) = (−1)ℓ = (−1)0 = 1 and the proof of Lemma 4.12 is completed.

Lemma 4.13. Let the conditions in Lemma 4.11 hold. Then (4.55) admits at least one

positive solution when λ1 (dI ,m2(x)) < 0.

Proof. Assume that (4.55) has no positive solution, then (S̃, 0) is the unique fixed point of

T1 on D. Lemma 4.11 indicates that T1 has no fixed point on ∂D (i.e., (I − T1)(∂D) ̸= 0),

and thus degW (I − T1, D, 0) is well-defined (see the definition in [71, Definition II.2.2]).

Then the excision property [5, Corollary 11.2] shows that

degW (I − T1, D, 0) = indexW (T1, (S̃, 0)),
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which, along with λ1 (dI ,m2(x)) < 0 and Lemma 4.12, gives

degW (I − T1, D, 0) = 0. (4.61)

On the other hand, for each δ ∈ [0, 1], Tδ has a fixed point (S,Z) iff (S,Z) is a solution

of the following problem
dS∆S + Λ(x)− θS − α(x) SZγ−1(S)

S+Zγ−1(S)
+ β(x)Zγ−1(S) = 0, x ∈ Ω,

dI∆Z + δα(x) SZγ−1(S)
S+Zγ−1(S)

− [β(x) + η(x)]Zγ−1(S) = 0, x ∈ Ω,

∂νS = ∂νZ = 0, x ∈ ∂Ω.

(4.62)

Proceeding with the similar procedure as the proof in Lemma 4.11, we get that all fixed

points of Tδ satisfy (4.58) for each δ ∈ [0, 1], which means that (I − Tδ)(∂D) ̸= 0. Hence,

the homotopy invariance of the topological degree [5, Theorem 11.1] implies

degW (I − Tδ, D, 0) = degW (I − T1, D, 0) = degW (I − T0, D, 0) . (4.63)

When δ = 0, (4.62) only has a unique solution, which is denoted by (S̃0, 0). Hence, the

excision property implies that

degW (I − T0, D, 0) = indexW (T0, (S̃
0, 0)). (4.64)

Following the same proof as in Lemma 4.12, one can check that

indexW (T0, (S̃
0, 0)) = 1,

which, together with (4.63) and (4.64), gives degW (I − T1, D, 0)) = degW (I − T0, D, 0)) =

1. This contradicts (4.61). Hence (4.55) admits at least one positive solution and the proof

of Lemma 4.13 is completed.

Using Lemma 4.13, we further establish the existence of EE when R0 > 1. To achieve

this goal, we show that the principal eigenvalues of the weighted and unweighted eigenvalue

problems have the same sign.

Lemma 4.14. Assume that d > 0, r(x) ∈ C(Ω), and the positive function a(x) ∈ C(Ω).

Let λ1(d, r) and ς
∗ be the principal eigenvalue of (4.56) and

d∆u+ r(x)u+ ςa(x)u = 0, x ∈ Ω; ∂νu = 0, x ∈ ∂Ω,

respectively. Then it follows that

sign(ς∗) = sign[λ1(d, r)]. (4.65)
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Proof. Denote the positive eigenfunctions associated with λ1(d, r) and ς∗ by u∗ and w∗,

respectively, satisfying ∥u∗∥L∞ = ∥w∗∥L∞ = 1. Then we have


d∆u∗ + r(x)u∗ + λ1(d, r)u

∗ = 0, x ∈ Ω,

d∆w∗ + r(x)w∗ + ς∗a(x)w∗ = 0, x ∈ Ω,

∂νu
∗ = ∂νw

∗ = 0, x ∈ ∂Ω.

(4.66)

We multiply the first equation of (4.66) by w∗ and the second by u∗, and integrate the

results by parts. Then subtract the resulting equation, we get

ς∗
∫
Ω
a(x)w∗u∗ = λ1(d, r)

∫
Ω
w∗u∗.

This along with the fact that a(x), w∗, u∗ are positive gives (4.65) directly and hence

completes the proof of Lemma 4.14.

Lemma 4.15. Let the conditions in Lemma 4.11 hold. Then (4.4) admits at least an EE

when R0 > 1.

Proof. Taking d = dI , r(x) = m2(x) and a(x) = γ−1(S̃) in Lemma 4.14, then (4.65)

along with (4.53) indicates that sign(λ1 (dI ,m2(x))) = sign(λ∗) = sign(1−R0) < 0. Thus,

Lemma 4.13 implies Lemma 4.15 directly.

Proof of Theorem 4.2. Combining Lemma 4.9 with Lemma 4.15, we get Theorem 4.2.

4.4 Global Stability: Proof of Theorem 4.3

In this section, we shall explore the globally asymptotical stability of non-negative

steady states of (4.1). We first improve the regularity of the solution (S, I).

Lemma 4.16. Let (S, I) be the solution obtained in Theorem 4.1. Then there exist con-

stants κ ∈ (0, 1) and C10 > 0 such that

∥(S, I)(·, t)∥
C2+κ,1+κ

2 (Ω×[1,∞))
≤ C10. (4.67)

Proof. The result is obtained by the Hölder estimates for quasilinear parabolic equations

(cf. [111, Theorem 1.3 and Remark 1.4]) and the standard parabolic Schauder theory [76].

The proof details can follow the similar procedures as the proof in [145, Lemma 3.4], we

omit for brevity.
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Proof of Theorem 4.3. We first prove the results claimed in Theorem 4.3-(i). With

the given condition, it is obvious R0 < 1 by the definition (4.5). Integrating the second

equation of (4.1) by parts yields

d

dt

∫
Ω
I + (1− ε)

∫
Ω
η(x)I =

∫
Ω

[α(x)S
S + I

− β(x)− εη(x)
]
I ≤

∫
Ω
[α− β − εη] (x)I,

which, along with α(x) ≤ β(x) + εη(x) and ε ∈ [0, 1), implies

d

dt

∫
Ω
I + (1− ε)η∗

∫
Ω
I ≤ 0.

This indicates that for all t > 0

∥I∥L1 ≤ e−(1−ε)η∗t∥I0∥L1 . (4.68)

We utilize Gagliardo-Nirenberg inequality in two dimensions to find a constant c1 > 0 such

that

∥I∥L∞ ≤ c1

(
∥∇I∥

2
3
L∞∥I∥

1
3

L1 + ∥I∥L1

)
≤ c2e

− (1−ε)η∗
3

t, ∀t > 1, (4.69)

where we have used (4.67) and (4.68).

It follows from the first equation of (4.1) that

(S − S̃)t = dS∆(S − S̃)− θ(S − S̃)− α(x)
SI

S + I
+ β(x)I. (4.70)

Applying Duhamel’s principle to (4.70), one has

S − S̃ = e(t−1)(dS∆−θ)(S(·, 1)− S̃) +

∫ t

1
e(t−z)(dS∆−θ)

[
β(x)− α(x)

S

S + I

]
I(·, z)dz.

By the standard heat Neumann semigroup estimates (see e.g., [18, Lemma 2.1]), we get

from (4.69) that

∥S − S̃∥L∞ ≤ c3e
−θt∥S(·, 1)− S̃∥L∞

+ c3

∫ t

1
e−θ(t−z)

(
1 + (t− z)−

1
2

)∥∥∥∥(β(x)− α(x)S

S + I

)
I(·, z)

∥∥∥∥
L2

dz

≤ c3e
−θt∥S(·, 1)− S̃∥L∞ + c4

∫ t

1
e−θ(t−z)

(
1 + (t− z)−

1
2

)
∥I(·, z)∥L2dz

≤ c5e
−θt + c4c2|Ω|

1
2

∫ t

1
e−θ(t−z)

(
1 + (t− z)−

1
2

)
e−

(1−ε)η∗
3

zdz (4.71)
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≤ c5e
−θt + c4c2|Ω|

1
2

∫ t

1
e−θ(t−z)

(
1 + (t− z)−

1
2

)
e−c6zdz

≤ c7e
−c6t,

where c4 := c3(β
∗+α∗) and c6 :=

1
2 min {θ, (1− ε)η∗/3}. Therefore, combining (4.69) with

(4.71) indicates (4.6) directly. This completes the proof of Theorem 4.3-(i).

Next we proceed to prove Theorem 4.3-(ii). When Λ(x), α(x), β(x) and η(x) are

positive constants, it follows from Proposition 4.1-(i) that R0 = α
β+η . Clearly there exists

a unique constant EE (Ŝ, Î) iff R0 > 1, where

Ŝ =
Λ(β + η)

η(α− β − η) + θ(β + η)
and Î =

Λ(α− β − η)

η(α− β − η) + θ(β + η)
. (4.72)

We define

E(t) :=
∫
Ω

{
(S + I + 1)− (Ŝ + Î + 1)− (Ŝ + Î + 1) ln

S + I + 1

Ŝ + Î + 1

}
+

4ηα

(α− β − η)2

∫
Ω

[
(I + 1)− (Î + 1)− (Î + 1) ln

I + 1

Î + 1

]
.

Following the same way as the proof of Theorem 2.2 (1), one can directly check that

E(t) ≥ 0 where “=” holds iff (S, I) = (Ŝ, Î). Next, we show that d
dtE(t) ≤ −c1F(t) for

some c1 > 0 and function F(t) ≥ 0. For simplicity, we denote

E := E(S, I) :=(S + I + 1)− (Ŝ + Î + 1)− (Ŝ + Î + 1) ln
S + I + 1

Ŝ + Î + 1

+
4ηα

(α− β − η)2

[
(I + 1)− (Î + 1)− (Î + 1) ln

I + 1

Î + 1

]
,

and

h1 := h1(S, I) = Λ− θS − α
SI

S + I
+ βI, h2 := h2(S, I) = α

SI

S + I
− (β + η)I.

Hence, one gets

d

dt
E(t) =

∫
Ω
ESSt + EIIt

=

∫
Ω
[ESh1 + EIh2] +

∫
Ω
[dSES∆S + dIEI∆(γ(S)I)] =: J1 + J2,

(4.73)

where ES := ∂E
∂S and EI :=

∂E
∂I . Noting Λ = θŜ + ηÎ, β + η = αŜ

Ŝ+Î
and θ = η, we have

J1 =

∫
Ω

(
1− Î + Ŝ + 1

S + I + 1

)
h1 +

∫
Ω

[
1− Î + Ŝ + 1

S + I + 1
+

4ηα

(α− β − η)2

(
1− Î + 1

I + 1

)]
h2
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=

∫
Ω

S − Ŝ + I − Î

S + I + 1
(Λ− θS − ηI) +

4ηα

(α− β − η)2

∫
Ω

I − Î

I + 1

(
αS

S + I
− β − η

)
I

= −
∫
Ω
ΦB1Φ

T ,

where Φ =

(
S−Ŝ√
S+I+1

, I−Î√
S+I+1

)
and

B1 =

 η 1
2

[
2η − 4ηα

(α−β−η) ·
I(S+I+1)
(I+1)(S+I)

]
1
2

[
2η − 4ηα

(α−β−η) ·
I(S+I+1)
(I+1)(S+I)

]
4ηα(β+η)
(α−β−η)2 · I(S+I+1)

(I+1)(S+I) + η

 .

A direct calculation gives that |B1| = 4η2α2

(α−β−η)2 · I(S+I+1)
(I+1)(S+1)

(
1− I(S+I+1)

(I+1)(S+I)

)
> 0, which

yields a constant c1 > 0 such that

J1 = −
∫
Ω
ΦB1Φ

T ≤ −c1
∫
Ω

(
(S − Ŝ)2

S + I + 1
+

(I − Î)2

S + I + 1

)
≤ 0. (4.74)

With simple calculations, we find ESS = ESI = EIS = Ŝ+Î+1
(S+I+1)2

, and

EII =
Ŝ + Î + 1

(S + I + 1)2

[
1 +

4ηα

(α− β − η)2
Î + 1

Ŝ + Î + 1

(
S + I + 1

I + 1

)2]

=:
(Ŝ + Î + 1)[1 +M0f(S, I)]

(S + I + 1)2
,

where M0 :=
4η[Λ(α−β−η)+ηα]
(α−β−η)2(Λ+η) and f(S, I) :=

(
S+I+1
I+1

)2
. Thus, J2 can be rewritten as

J2 =− dS

∫
Ω
ESS |∇S|2 − dS

∫
Ω
ESI∇I · ∇S − dI

∫
Ω
γ(S)EIS∇I · ∇S

− dI

∫
Ω
γ(S)EII |∇I|2 − dI

∫
Ω
Iγ′(S)EIS |∇S|2 − dI

∫
Ω
Iγ′(S)EII∇I · ∇S

=−
∫
Ω
ΨB2Ψ

T

with Ψ = (∇S,∇I) and

B2 =

(
dSESS + dIIγ

′(S)EIS
dSESI+dIγ(S)EIS+dIIγ

′(S)EII

2

dSESI+dIγ(S)EIS+dIIγ
′(S)EII

2 dIγ(S)EII

)
.

With direct computation, we can show that B2 is positive definite iff

g1(S, I) > g2(S, I), (4.75)
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where

g1(S, I) = 2dSdIγ(S) + 2d2IIγ
′(S)γ(S)[1 +M0f(S, I)] + 4dSdIγ(S)M0f(S, I),

g2(S, I) = d2I [γ(S)]
2 + d2S + dIγ

′(S)I[1 +M0f(S, I)]{2dS + dIIγ
′(S)[1 +M0f(S, I)]}.

By hypothesis (H2), (4.3) and 1 < f(S, I) < (S + I + 1)2, (4.7) ensures that (4.75) holds.

Therefore, there is a constant c2 > 0 such that

J2 = −
∫
Ω
ΨB2Ψ

T ≤ −c2
∫
Ω
(|∇S|2 + |∇I|2) ≤ 0,

which along with (4.74) substituted into (4.73) gives

d

dt
E(t) ≤ −c1

∫
Ω

(
(S − Ŝ)2

S + I + 1
+

(I − Î)2

S + I + 1

)
=: −c1F(t).

Based on Lemma 4.16, following the same way as the proof of Theorem 2.2 (1), one can

get

lim
t→∞

(∥S − Ŝ∥L2 + ∥I − Î∥L2) = 0. (4.76)

Applying the Gagliardo-Nirenberg inequality in two dimensions for any u ∈W 1,∞:

∥u∥L∞ ≤ c3
(
∥∇u∥

1
2
L∞∥u∥

1
2

L2 + ∥u∥L2

)
,

we obtain from (4.67) and (4.76) that lim
t→∞

(∥S− Ŝ∥L∞ + ∥I − Î∥L∞) = 0. This finishes the

proof of Theorem 4.3-(ii).

4.5 Numerical Simulations and Discussion

This chapter investigates an SIS model with cross-diffusion dispersal strategy for the

infected individuals describing the public health intervention measures (like quarantine)

during the outbreak of infectious diseases. The considered SIS model adopts the frequency-

dependent transmission mechanism and includes demographic changes (i.e., population

recruitment and death). Apart from the global boundedness of solutions established in

Theorem 4.1, we define the basic reproduction number R0 by a variational formula and

study the threshold dynamics of the model based on R0 (see Theorem 4.2 and Theorem 4.3).

Below we shall use numerical simulations to illustrate the applications of our analytical

results and speculate some results not proved in this chapter. We set Ω = (0, 2) in all

simulations.
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In a special case where the recruitment rate Λ(x) of susceptible individuals is constant,

we see that cross-diffusion dispersal strategy (see Remark 4.2) reduces the value of R0,

namely the basic reproduction number R0 for γ′(S) ̸= 0 is less than R̂0, where R̂0 is the

basic reproduction number when γ(S) = 1. We can see a numerical example shown in

Figure 4.1-(a). This implies that public health intervention measures limiting the mobility

of infected individuals is effective in controlling the spread of infectious diseases. However,

if Λ(x) is not constant, we are unable to prove R0 < R̂0 analytically. Below we use an

example to illustrate this conclusion numerically for non-constant Λ(x). To this end, we

take

γ(S) = eS (4.77)

satisfying hypothesis (H1) and

dS = θ = 1, (4.78)

as well as

Λ(x) = −1

3
x3 + x2 + 2x, α(x) = 2x+ 1, β(x) = x, η(x) = 1.8. (4.79)

Then Λ(x) is positive on Ω and one can check that S̃ = −1
3x

3 + x2 + 2 > 0. The graphs

of functions R0 and R̂0 are numerically plotted in Figure 4.1-(b), where we observe that

R0 < R̂0. However, whether or not the cross-diffusion dispersal strategy reduces the basic

reproduction number so that R0 < R̂0 for all γ(S) satisfying the hypothesis (H1) remains

an outstanding theoretical question for future efforts.

When γ(S) is constant, namely the infected individuals undergo random dispersal, the

classical results showed that the disease would persist in the high-risk domain Ω (cf. [81,

Proposition 3.2, Theorem 3.1], [107, Theorem 2.5, Theorem 3.3]), as numerically shown in

Figure 4.2-(a) where we assume γ(S) = 1 and dI = 0.2 while other functions and parameter

values are given by (4.78) and (4.79). The results in Proposition 4.1 along with Theorem

4.2 and Theorem 4.3 indicate that the cross-diffusion dispersal strategy will help eradicate

the infectious disease even in the high-risk domain. To illustrate this result, we use the

functions and parameter values given in (4.77)-(4.79). With them, we can verify that∫ 2

0
[α(x)− β(x)− η(x)]dx = 0.4 > 0,

which means that Ω is a high-risk domain. In this case, the asymptotically stable spatial

profile of (S, I) is numerically plotted in Figure 4.2-(b) which demonstrates that the disease

will be eradicated in the whole domain. By (4.79), we find
∫ 2
0 [α(x)−β(x)−η(x)]γ

−1(S̃)dx ≈
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Figure 4.1: Graphs of functions R0 and R̂0 versus dI > 0, where functions and parameters
are taken as follows: (a) γ(S) = 2− (S + 1)−1, dS = θ = Λ(x) = 1, and α(x) = x2 + 2x+
1.5, β(x) = x2 + 0.5, η(x) = x + 2.5; (b) The functions and parameter values are given in
(4.77), (4.78) and (4.79).
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Figure 4.2: The profile of susceptible and infected populations with dI = 0.2. (a): γ(S) = 1;
(b): γ(S) = eS . Other functions and parameter values are given in (4.78) and (4.79). The
initial value (S0, I0) is set as a small random perturbation of (2,1).

−0.0083 < 0, Ω− = {x : 0 < x < 0.8} and Ω+ = {x : 0.8 < x < 2} are nonempty. This

alongside Proposition 4.1-(iii) and the Figure 4.1-(b) show that R0 < 1 if dI = 0.2 >

d1 ≈ 0.151. Therefore, it follows from Theorem 4.2 that DFE is linearly stable, which
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implies that the disease may be eradicated. This is well supported by numerical results

shown in Figure 2-(b). However, we can not conclude the global stability of DFE based

on Theorem 4.3-(i) since one can check that the condition α(x) ≤ β(x) + εη(x) for all

x ∈ Ω with some ε ∈ [0, 1) is not satisfied by the functions chosen in (4.79). The numerical

simulation of the asymptotically stable spatial profile shown in Figure 4.2-(b) indicates

that DFE may be globally asymptotically stable even if the condition in Theorem 4.3-(i) is

not fulfilled. Therefore how to relax the condition of Theorem 4.3-(i) is another interesting

question remaining open in this chapter. The best situation we anticipate is to replace the

condition of Theorem 4.3-(i) by R0 < 1, but this can not be proven based on the method

in this chapter.
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Chapter 5

A Diffusive Population-toxicant
Model in a Time-periodic
Environment with Negative
Toxicant-taxis

5.1 Introduction and Main Results

5.1.1 Introduction

In aquatic ecosystems, toxicant have detrimental effects on biological systems at various

levels [103, 108, 114]. Investigating their impact on aquatic population dynamics and

identifying the key factors determining species persistence or extinction are vital to protect

aquatic species and preserve ecosystem diversity. This topic has been extensively studied in

early modeling settings, including matrix population models (e.g., [36, 48, 118]), ordinary

differential equation models (e.g., [45, 56, 57]), and reaction-advection-diffusion equation

models [143, 155, 158]. However, these settings leave out the fact that aquatic species may

detect and avoid toxicant [9, 132]. On the other hand, the input of toxicant into aquatic

ecosystems may exhibit temporal periodicity due to seasonal factors such as variation

in rainfall, surface water, and temperature [14]. For example, during the wet seasons,

increased rainfall may lead to more runoff, carrying nitrogen and phosphorus from human

activities, such as agricultural practices or fuel combustion, into water bodies, causing

seasonal pollution peaks [1, 112].

Therefore, we are inspired to incorporate the negative toxicant-taxis (cf. [32]), and

spatially heterogeneous and time-periodic toxicant input into a population-toxicant system,

109



which reads as
ut = d1∆u+ χ∇ · (u∇w) + u(r − u−mw), x ∈ Ω, t > 0,

wt = d2∆w + h(x, t)− αw − βuw, x ∈ Ω, t > 0,

∂νu = ∂νw = 0, x ∈ ∂Ω, t > 0,

(u,w)(x, 0) = (u0, w0)(x), x ∈ Ω,

(5.1)

All notations and parameters have the same interpretation as in Section 1.5.

Research on the spatiotemporal model (5.1) is still in its formative stage. The first

study on (5.1) with χ > 0 was conducted in [32], where the authors established the global

existence of classical solutions to (5.1) with h(x, t) = h(x). When h(x, t) = h0 for a constant

h0, they proved the global stability of constant steady states and numerically illustrated

the occurrence of spatially heterogeneous coexistence for large χ. The theoretical existence

of such spatially heterogeneous coexistence was later rigorously established in the work [21]

for h(x, t) = h0 by using Leray-Schauder degree theory. When the toxicant input is time-

periodic, the work [86] established the global stability of periodic solutions and explored

the asymptotic profiles of positive periodic solutions when diffusion rates are small or large

in the absence of toxicant-taxis (i.e., χ = 0). Their results indicate that the toxicant

input affect the species persistence or extinction. In fact, (5.1) with χ = 0 is a monotone

dynamical system, which allow the asymptotic theory of monotone systems [157, Chapter

3] to be applied in studying the global dynamics, as shown in [86]. In contrast, the system

(5.1) with χ > 0 is non-monotone, and the comparison principle becomes inapplicable. As

a result, no established methods in the literature can be employed, making the analysis of

global dynamics for (5.1) with χ > 0 significantly more challenging.

Therefore, we shall focus on (5.1) with χ > 0 and a more general toxicant input

function. To overcome the aforementioned challenge, we effectively employ the principal

Floquet bundle theory [77, Chapter 4] and persistence theory [157, Chapter 3] as well as

the energy functional method. Our main objectives are as follows:

(T.1) Identify the conditions for the periodic solution exists, its locally/globally stability,

and the uniform persistence of species;

(T.2) Explore whether the toxicant-taxis (i.e., avoidance of toxicant) helps aquatic species

to survive in a polluted environment.

5.1.2 Main Results

Throughout this chapter, we denote Ω× (0, T ) =: QT , and assume that
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(H0) nonconstant h(x, t) ∈ Cκ0,
κ0
2

(
Ω× [0,∞)

)
, ∂th ̸≡ 0 and h(x, t) = h(x, t+ T ) ≥ (̸≡) 0

with constants κ0 ∈ (0, 1) and period T > 0.

We begin by stating the global existence and boundedness of solutions to (5.1).

Theorem 5.1 (Global boundedness). Let Ω ⊂ R2 be a bounded domain with smooth

boundary and the hypothesis (H0) hold. Assume that u0 ∈ C(Ω), w0 ∈ C1(Ω) with u0, w0 ≥
0 (̸≡ 0).

(i) Then system (5.1) has a unique global classical solution

(u,w) ∈
[
C
(
Ω× [0,∞)

)
∩ C2,1

(
Ω× (0,∞)

)]2
satisfying u,w > 0 for all t > 0 and

∥u(·, t)∥L∞(Ω) + ∥w(·, t)∥W 1,∞(Ω) ≤ C0, ∀t > 0. (5.2)

where C0 := C0(u0, v0) > 0 is a constant independent of t.

(ii) There exists a constant M0 independent of (u0, v0) and m such that

∥u(·, t)∥L∞(Ω) + ∥w(·, t)∥W 1,∞(Ω) ≤M0, ∀t > T0, (5.3)

for some constant T0 > 0 depending on initial data (u0, w0).

Remark 5.1. Theorem 5.1(ii) establishes the ultimately uniform boundedness (see [78,

Definition 2.1]) of the solution to (5.1). This is important to study the uniform persistence

of (5.1).

In fact, the system (5.1) may have two types of nonnegative T-periodic solutions: posi-

tive T-periodic solution which exists in some circumstance, and the semi-trivial T-periodic

solution (0, ŵh(x, t)) which always exists. Here, ŵh(x, t) =: ŵ(x, t) is the unique solution

of the following equation
wt = d2∆w + h(x, t)− αw, x ∈ Ω, t > 0,

∂νw = 0, x ∈ ∂Ω, t > 0,

w(x, t) = w(x, t+ T ), x ∈ Ω, t ≥ 0,

(5.4)

and it is bounded and positive [95, Proposition 4.4.8]. Applying the maximum principle

[141, Theorem 7.1] to (5.4) gives

h∗

α
:=

1

α
max

(t,x)∈QT

h(x, t) ≥ ŵ(x, t) ≥ 1

α
min

(t,x)∈QT

h(x, t) =:
h∗
α

≥ 0, ∀(x, t) ∈ QT .
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Hence,

h∗

α
≥ max

(x,t)∈QT

ŵ(x, t) =: ŵ∗ ≥ ŵ∗ := min
(x,t)∈QT

ŵ(x, t) ≥ h∗
α
, (5.5)

where “=” holds iff h(x, t) is constant, and ŵ∗, ŵ∗ > 0 are independent of β, m.

We establish the following results on the uniform persistence and the existence of pos-

itive T -periodic solutions to (5.1).

Theorem 5.2 (Uniform persistence and existence). Let Ω ⊂ R2 be a bounded domain with

smooth boundary and (H0) hold. Then there exists a constant m∗ := m∗(χ) satisfies

r

ŵ∗ < m∗(χ) <
r

ŵ∗
, ∀χ ≥ 0,

where the positive constants ŵ∗, ŵ∗ are defined in (5.5), such that the following statements

hold:

(i) If m > m∗, then (0, ŵ) is linearly stable;

(ii) If m < m∗, then (0, ŵ) is linearly unstable; moreover, the system (5.1) admits at

least one positive T-periodic solution, and the species u is uniformly persistent, i.e.,

there exists η0 > 0 independent of initial data (u0, w0) such that

lim inf
t→∞

u(x, t) ≥ η0 uniformly for x ∈ Ω. (5.6)

The following result concerns the effects of toxicant taxis χ on the threshold value m∗.

Theorem 5.3. Let Ω ⊂ R2 be a bounded domain with smooth boundary, and let h(x, t) =

a(x) + b(x, t) ≥ 0 satisfy (H0). Then for given a(x) ∈ Cκ0(Ω) and η > 0, there exists a

small σ(a, η) > 0 such that if 0 < ∥b∥L∞(QT ) < σ(a, η), then

lim inf
χ→∞

m∗(χ) ≥ r

ŵh∗
− η.

Remark 5.2. When χ = 0 and ∂th ̸≡ 0, Lemma 2.1 and Remark 3.1 in [86] demonstrate

that the species u is uniformly persistent for m ∈ (0,m∗(0)), and (3.6) in [86] gives r
ŵ∗ <

m∗(0) < r
ŵ∗

. Thus, Theorem 5.3 indicates that a large χ can enlarge the interval of uniform

persistence, i.e., (0,m∗(0)) ⊂ (0,m∗(χ)). This demonstrates that strong toxicant-taxis χ

destabilizes the semi-trivial T-periodic solution (0, ŵ), and helps aquatic species to survive

in a polluted environment.
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Next, we employ the energy estimates method to establish the global stability of T -

periodic solutions of (5.1).

Theorem 5.4 (Global stability). Let (u, v) be the solution of (5.1) obtained in Theorem

5.1. The following results hold.

(i) If m > r(α+βM0)
h∗

(> m∗) with M0 given in (5.3) and h(x, t) > 0, then there exist

constants C1 > 0 and θ1 > 0 independent of t such that

∥u∥L∞(Ω) + ∥w − ŵ∥L∞(Ω) ≤ C1e
−θ1t, ∀t > t̃1, (5.7)

for some constant t̃1 > 0.

(ii) Assume 0 < m < αr
h∗ (≤ m∗), h(x, t) ≡ h(t) and

0 ≤ χ ≤
√

4d1d2m

βmaxt∈(0,T ){u∗(t)}maxt∈(0,T ){w∗(t)}
=: χ∗, (5.8)

as well as

0 < β < β0 =
4α2(αr −mh∗)2

(2αr −mh∗)2h∗m
. (5.9)

Then (5.1) admits a unique positive T-periodic solution (u∗, w∗) ∈ [C1([0, T ])]2 de-

pending on t only, such that

∥u− u∗∥L∞(Ω) + ∥w − w∗∥L∞(Ω) ≤ C2e
−θ2t, ∀t > t̃2, (5.10)

for some constants C2 > 0 and t̃2 > 0. Here, C2, θ2 > 0 are independent of t.

Remark 5.3. Global stability for constant h with χ > 0 and nonconstant h with χ ≡ 0

were established in [32] and [86], respectively. However, the case of nonconstant h with

χ > 0 remains open. Theorem 5.4 (in which m ∈ (0, αrh∗ ) ∪ ( r(α+βC0)
h∗

,∞)) provides a

preliminary exploration (see a schematic in Figure 5.1), while the global dynamics for

spatially nonconstant input rate h(x, t) ̸≡ h(t) and intermediate m ∈ (αrh∗ ,
r(α+βC0)

h∗
) remain

unknown.

Throughout this chapter, ci, Ci, mi and Mi(i = 1, 2, 3, · · · ) denote generic positive

constants, which may vary in the context and are independent of t. Particularly, ci, Ci

may depend on the initial data (u0, w0) but mi and Mi are independent of (u0, w0) and m.
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r0

m

χ ≤ χ∗ and β < β0

m̃1

m̃2

r0

m̃

χ > χ∗

(u∗, w∗) : GAS

(0, ŵ) : GAS

m̃1 = αr
h∗

m̃2 = (α+C0)r
h∗

m̃1

m̃2

Figure 5.1: A graph of global stability regions for (0, ŵ) and the positive T-periodic solution
(u∗, w∗), where GAS represents globally asymptotical stability.

5.2 Global Boundedness: Proof of Theorem 5.1

5.2.1 Local Existence and Preliminaries

We establish the existence and uniqueness of local classical solutions based on the clas-

sical Amann’s theorem [6–8]. The positivity of u and w follows from the strong maximum

principle.

Lemma 5.1. Let the conditions in Theorem 5.1 hold. Then there is a Tmax ∈ (0,∞] such

that (5.1) has a unique classical solution (u,w) ∈ [C(Ω× [0, Tmax))∩C2,1(Ω× (0, Tmax))]
2

with u,w > 0 in Ω× (0, Tmax). Moreover,

if Tmax <∞, then lim
t↗Tmax

(∥w∥W 1,∞ + ∥u∥L∞) = ∞. (5.11)

Proof. The proof of Lemma 5.1 follows the same way as proof in [32, Lemma 3.1].

Lemma 5.2. Let (u,w) be the solution of (5.1) obtained in Lemma 5.1. Then there exists

a constant C2 := C2(u0, v0) > 0 such that

∥u(·, t)∥L∞(Ω) + ∥w(·, t)∥W 1,∞(Ω) ≤ C2, ∀t ∈ (0, Tmax).

Proof. By slightly modifying the proof in [32] (replacing h in [32] with h∗), one gets Lemma

5.2. We omit the proof for brevity.

Proof of Theorem 5.1(i). Theorem 5.1(i) is a consequence of the combination of Lemma

5.2 with Lemma 5.1.

114



Next, we shall show that the solutions obtained in Theorem 5.1(i) is ultimately uniformly

bounded in C(Ω). To this end, we start with the following estimate of w.

Lemma 5.3. There exists a constant M1 > 0 such that, for every classical solution (u,w)

of (5.1), there exits a constant T1 > 0 such that

0 < w ≤M1, ∀t > T1. (5.12)

Proof. By the second equation in (5.1), one has

d

dt

(
sup
x∈Ω

w
)
≤ h∗ − α sup

x∈Ω
w. (5.13)

Solving (5.13) directly yields supx∈Ωw ≤ e−αt∥w0∥L∞ + h∗

α , which immediately implies the

statement in Lemma 5.3.

Lemma 5.4. There exists a constant M2 > 0 such that, for every classical solution (u,w)

of (5.1), there exits a constant T2 > 0 such that

∥u(·, t)∥L1 ≤M2, ∀t > T2, (5.14)

and ∫ t+1

t

∫
Ω
u2(x, s)dxds ≤M2, ∀t > T2. (5.15)

Proof. We integrate u-equation in (5.1) over Ω by parts, and use Young’s inequality to get

d

dt

∫
Ω
u+

∫
Ω
u+

∫
Ω
u2 +m

∫
Ω
uw = (r + 1)

∫
Ω
u

≤ 1

2

∫
Ω
u2 +

(r + 1)2|Ω|
2

.

This gives

d

dt

∫
Ω
u+

∫
Ω
u+

1

2

∫
Ω
u2 ≤ (r + 1)2|Ω|

2
=: m1. (5.16)

Then we have d
dt

(
et
∫
Ω u
)
≤ m1e

t, which implies∫
Ω
u ≤ m1(1− e−t) + e−t

∫
Ω
u0 ≤ m1 + e−t

∫
Ω
u0. (5.17)

For m1 > 0, there is a constant t1 > 0 such that e−t
∫
Ω u0 ≤ m1 for all t > t1. Hence,

(5.17) gives ∫
Ω
u ≤ 2m1, ∀t > t1.
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Integrating (5.16) over (t, t+ 1) yields

1

2

∫ t+1

t

∫
Ω
u2(x, s)dxds ≤ m1 +

∫
Ω
u(·, t) ≤ 3m1, ∀t > t1.

Then (5.14) and (5.15) are derived by letting M2 = 3(r + 1)2|Ω| and T2 = t1.

Lemma 5.5. There exist constants Mi > 0 (i = 3, 4) such that, for every classical solution

(u,w) of (5.1), there exist constants Ti > 0 (i = 3, 4) such that

∥∇w(·, t)∥2L2 ≤M3, ∀t > T3, (5.18)

and ∫ t+1

t

∫
Ω
|∆w(x, s)|2dxds ≤M4, ∀t > T4. (5.19)

Proof. We multiply the second equation in (5.1) by w and integrate the result equation

over Ω by parts to obtain

1

2

d

dt

∫
Ω
w2 + d2

∫
Ω
|∇w|2 + α

∫
Ω
w2 + β

∫
Ω
uw2 =

∫
Ω
h(x, t)w ≤ h∗M1Ω,

which gives ∫ t+1

t

∫
Ω
|∇w|2 ≤ h∗M1Ω

d2
+

1

2d2

∫
Ω
w2(·, t+ 1) ≤ m1, ∀t > T1, (5.20)

where m1 :=
2h∗M1Ω+M2

1 |Ω|
2d2

. Multiplying w-equation in (5.1) by −∆w, integrating the

result by parts and applying Young’s inequality, one obtain

1

2

d

dt

∫
Ω
|∇w|2 + d2

∫
Ω
|∆w|2 =

∫
Ω
[−h(x, t) + αw + βuw]∆w

≤
∫
Ω
(h∗ + αw + βuw)|∆w| (5.21)

≤ d2
2

∫
Ω
|∆w|2 +m2 +

3β2M2
1

2d2

∫
Ω
u2, ∀t > T1,

where m2 :=
3(h∗)2|Ω|+3α2M2

1 |Ω|
2d2

. Then (5.21) implies

d

dt

∫
Ω
|∇w|2 + d2

∫
Ω
|∆w|2 ≤

∫
Ω
|∇w|2 + 2m2 +

3β2M2
1

d2

∫
Ω
u2,∀t > T1. (5.22)

Combining (5.20), (5.22) with (5.15), and applying the uniform Gönwall inequality in

[130, Lemma 1.1 in Chap.3] yield (5.18) by letting M3 := (m1 + 2m2 + 3β2M2
1M2)e and

T3 := max{T1, T2}.
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Integrating (5.22) over (t, t+1) along with (5.18) and (5.15), we obtain (5.19) by taking

M4 := 2m2/d2 + 3β2M1M2/d
2
2 +M3/d2 and T4 :== max{T1, T2}.

Lemma 5.6. There exists a constant M5 > 0 such that, for every classical solution (u,w)

of (5.1), there exists constant T5 > 0 such that∫ t+1

t

∫
Ω
|∇w(x, s)|4dxds ≤M5, ∀t > T5. (5.23)

Proof. Applying Gagliardo-Nirenberg inequality in two dimensional space, an equality in

[12, Lemma 1] and (5.18), one gets

∥∇w∥4L4 ≤ m1∥∇w∥2L2(∥∆w∥2L2 + ∥∇w∥2L2)

≤ m1M3∥∆w∥2L2 +m1M
2
3 , ∀t > T3.

(5.24)

Integrating (5.24) and applying (5.19), one derives (5.23) by takingM5 := m1M3(M4+M3)

and T5 := max{T3, T4}.

5.2.2 Ultimately Uniform Boundedness

Lemma 5.7. There exists a constant M6 > 0 such that, for every classical solution (u,w)

of (5.1), there exists constant T6 > 0 such that

∥u(·, t)∥L2 ≤M6, ∀t > T6. (5.25)

Proof. Multiplying u-equation in (5.1) by u and using Young’s inequality yield

d

dt

∫
Ω
u2 + 2d1

∫
Ω
|∇u|2 + 2

∫
Ω
u3 + 2m

∫
Ω
u2w

= −2χ

∫
Ω
u∇w · ∇u+ 2r

∫
Ω
u2

≤ d1

∫
Ω
|∇u|2 + χ2

d1

∫
Ω
u2|∇w|2 + 2r

∫
Ω
u2.

This gives

d

dt

∫
Ω
u2 + d1

∫
Ω
|∇u|2 + 2

∫
Ω
u3 + 2m

∫
Ω
uw ≤ χ2

d1

∫
Ω
u2|∇w|2 + 2r

∫
Ω
u2. (5.26)

To estimate the right terms in (5.26), we shall use the variant of the Poincaré inequality

[54] as below:

∥v∥W 1,p ≤ c(∥∇v∥Lp(Ω) + ∥v∥Lq(Ω)),∀v ∈W 1,q(Ω) (5.27)
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for some constants c > 0, p > 1 and q > 0. And another inequality that Gagliardo-

Nirenberg interpolation inequality [54, 101]:

∥v∥Lp ≤ ĉ∥v∥λW 1,q(Ω)∥v∥
1−λ
Lθ(Ω)

, ∀v ∈W 1,q(Ω), (5.28)

where constants ĉ > 0, p, q ≥ 1 satisfying p(n− q) < nq, θ ∈ (0, p) with

λ =

n
θ − n

p
n
θ + 1− n

q

∈ (0, 1).

Then applying (5.28), (5.27), (5.14) and Young’s inequality, one has

2r

∫
Ω
u2 = 2r∥u∥2L2 ≤ 2rm1∥u∥W 1,2∥u∥L1

≤ 2rm2

(
∥∇u∥L2 + ∥u∥L1

)
∥u∥L1

≤ 2rm2M2

(
∥∇u∥L2 +M2

)
≤ d1

4
∥∇u∥2L2 +m3, ∀t > T2,

(5.29)

where m3 :=
4r2m2

2M
2
2

d1
+ 2rm2M

2
2 . On the other hand, using Hölder inequality, (5.28),

(5.27) and (5.14), we obtain

χ2

d1

∫
Ω
u2|∇w|2 ≤ χ2

d1
∥u∥2L4∥∇w∥2L4

≤ χ2

d1
m4∥u∥L2∥u∥W 1,2∥∇w∥2L4

≤ χ2

d1
m5∥u∥L2(∥∇u∥L2 + ∥u∥L1)∥∇w∥2L4 (5.30)

≤ d1
4
∥∇u∥2L2 +

d1
4
∥u∥2L1 +

2m2
5χ

4

d31
∥u∥2L2∥∇w∥4L4

≤ d1
4
∥∇u∥2L2 +m6 +m6χ

4∥u∥2L2∥∇w∥4L4 , ∀t > T2,

where m6 :=
d1M2

2
4 +

2m2
5

d31
.

Then the combination of (5.29) with (5.30) updates (5.26) as

d

dt
∥u∥2L2 +

d1
2
∥∇u∥2L2 ≤ m6χ

4∥u∥2L2∥∇w∥4L4 +m3 +m6. (5.31)

Since
∫ t+1
t ||∇w(x, s)||4L4 ≤ M5 for all t > T5 (see (5.23)) and

∫ t+1
t ||u(·, t)||2L2 ≤ M2 for

all t > T2 (see (5.15)), we apply the uniform Grönwall inequality in [130, Lemma 1.1 in
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Chap.3] to (5.31) and then obtain∫
Ω
u2(·, t+ 1) ≤ (m3 +m6 +M2)e

m6χ4M5 =:M6, ∀t > T6 = max{T2, T5},

this implies (5.25) directly.

Lemma 5.8. There exists a constant M7 > 0 such that, for every classical solution (u,w)

of (5.1), there exists constant T7 > 0 such that

∥∇w(·, t)∥L4 ≤M7, ∀t > T7. (5.32)

Proof. We rewrite the second equation of (5.1) as

wt − d2∆w + αw = h− βuw =: H(x, t). (5.33)

Applying (5.12) and (5.25), one obtains that for all t > max{T1, T6} =: t1

∥H(·, t)∥L2 =
∥∥h− βuw

∥∥
L2 ≤ h∗|Ω|

1
2 + βM1M6. (5.34)

Denote the Neumann heat semigroup in Ω by (et∆)t>0. We apply Duhamel’s principle to

(5.33) and then get

w(·, t) = e(t−t1)(d2∆−α)w(·, t1) +
∫ t

t1

e(t−s)(d2∆−α)H(·, s)ds. (5.35)

Using (5.34) and well-known semigroup estimate (see e.g., [18, Lemma 2.1]), if follows

from (5.35) that

∥∇w(·, t)∥L4 ≤
∥∥∇e(t−t1)(d2∆−α)w(·, t1)

∥∥
L4 +

∫ t

t1

∥∥∇e(t−s)(d2∆−α)H(·, s)
∥∥
L4ds

≤ m1e
−d2λ1(t−t1) ∥∇w(·, t1)∥L4

+m2

∫ t

t1

(
1 + (t− s)−

3
4
)
e−d2λ1(t−s)∥H(·, s)∥L2ds

≤ m1e
−d2λ1(t−t1) ∥∇w(·, t1)∥L4

+m2

(
h∗|Ω|

1
2 + βM1M6

) ∫ ∞

0

(
1 + z−

3
4
)
e−d2λ1zdz

≤ m1e
−d2λ1(t−t1) ∥∇w(·, t1)∥L4 +m3,

where λ1 is the first nonzero eigenvalue of −∆ in Ω under Neumann boundary conditions.

Since ∥∇w∥L∞ ≤ C0, then for m3 > 0, we can take T7 > 0 sufficiently large so that, for

all t > T7 > t1, one has ∥∇w(·, t)∥L4 ≤ 2m3. Then (5.32) follows by lettingM7 := 2m3.
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Lemma 5.9. There exists a constant M8 > 0 such that, for every classical solution (u,w)

of (5.1), there exists constant T8 > 0 such that

∥u(·, t)∥L3 ≤M8, ∀t > T8. (5.36)

Proof. We multiply u-equation in (5.1) by u2 and integrate the result over Ω by parts to

obtain

d

dt

∫
Ω
u3 + 6d1

∫
Ω
u|∇u|2 + 3m

∫
Ω
wu3 + 3

∫
Ω
u4 + 3

∫
Ω
u3

= −6χ

∫
Ω
u2∇w · ∇u+ 3(r + 1)

∫
Ω
u3

≤ 6χ

∫
Ω
u2|∇w||∇u|+ 3(r + 1)

∫
Ω
u3.

(5.37)

Applying Young’s inequality, Hölder inequality and (5.32), and using the fact 3d1
∫
Ω u|∇u|

2 =

4d1
3

∫
Ω |∇u

3
2 |2 = 4d1

3 ∥∇u
3
2 ∥2L2 , one derives that for all t > T7

6χ

∫
Ω
u2|∇w||∇u| ≤ 3d1

∫
Ω
u|∇u|2 + 3χ2

d1
∥u∥3L6∥∇w∥2L4 ≤ 4d1

3
∥∇u

3
2 ∥2L2 +

3χ2M2
7

d1
∥u∥3L6 ,

which, along with Hölder inequality, upates (5.37) as

d

dt
∥u∥3L3 + 3∥u∥3L3 +

4d1
3

∥∥∥∇u 3
2

∥∥∥2
L2

≤ m1∥u∥3L6 , ∀t > T7, (5.38)

where m1 :=
3χ2M2

7
d1

+ 3(r + 1)|Ω|
1
2 . Applying Gagliardo-Nirenberg inequality in two di-

mensional space and Young’s inequality derives

m1∥u∥3L6 = m1∥u
3
2 ∥2L4 ≤m2

(∥∥∇u 3
2

∥∥ 4
3

L2

∥∥u 3
2

∥∥ 2
3

L
4
3
+
∥∥u 3

2

∥∥2
L

4
3

)
=m2

(∥∥∇u 3
2

∥∥ 4
3

L2 ∥u∥L2 + ∥u∥3L2

)
≤m2M6

∥∥∇u 3
2

∥∥ 4
3

L2 +m2M
3
6

≤4d1
3

∥∇u
3
2 ∥2L2 +m3, ∀t > T6,

(5.39)

where m3 :=
( m3

2

12d21
+m2

)
M3

6 . We substitute (5.39) into (5.38) to obtain

d

dt
∥u∥3L3 + 3∥u∥3L3 ≤ m3,∀t > max{T6, T7} =: t1,

which implies

∥u∥3L3 ≤ e−3(t−t1) ∥u(·, t1)∥3L3 +
m3

3
.
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Since ∥u∥L∞ ≤ C0 (see (5.2)), for m3
3 , we can find a T8 > 0 sufficiently large so that, for

all t > T8 ≥ t1, it holds that ∥u∥L3 ≤
(
2m3/3

) 1
3 =:M8. This gives (5.36) directly.

Lemma 5.10. There exist constants Mi > 0 (i = 9, 10) such that, for every classical

solution (u,w) of (5.1), there exist constants Ti > 0 (i = 9, 10) such that

∥∇w(·, t)∥L∞ ≤M9, ∀t > T9. (5.40)

and

∥u(·, t)∥L∞ ≤M10, ∀t > T10. (5.41)

Proof. By (5.12) and (5.36), one has

∥H(·, t)∥L3 = ∥h− βuw∥L3 ≤ h∗|Ω|
1
3 + βM1M8 =: m1, ∀t > max{T1.T8} =: t1. (5.42)

Applying the semigroup estimate (see e.g., [18, Lemma 2.1]) to (5.35) and using (5.42) and

(5.2), we obtain

∥∇w(·, t)∥L∞ ≤ ∥∇e(t−t1)(d2∆−α)w(·, t1)∥L∞ +

∫ t

t1

∥∥∇e(t−s)(d1∆−α)H(·, s)
∥∥
L∞ds

≤ m2e
−d2λ1(t−t1)(1 + (t− t1)

− 1
2
)∥∥∇w(·, t1)∥∥L∞

+m3

∫ t

t1

(
1 + (t− s)−

5
6
)
e−d2λ1(t−s)∥H(·, s)∥L3ds

≤ m2e
−d2λ1(t−t1)(1 + (t− t1)

− 1
2
)
∥∇w(·, t1)∥L∞ +m4

≤ 2m4, ∀t > T9 > t1,

(5.43)

for some large constant T9 > 0. Then (5.43) gives (5.40) with M9 := 2m4.

Next, multiplying u-equation in (5.1) by up−1(p ≥ 2), integrating the result over Ω,

and applying (5.40) as well as Young’s inequality, we obtain

1

p

d

dt

∫
Ω
up + d1(p− 1)

∫
Ω
up−2|∇u|2 +m

∫
Ω
wup +

∫
Ω
up+1

= −χ(p− 1)

∫
Ω
up−1∇u · ∇w + r

∫
Ω
up

≤ χ(p− 1)M9

∫
Ω
up−1|∇u|+ r

∫
Ω
up

≤ d1(p− 1)

2

∫
Ω
up−2|∇u|2 +m1(p− 1)

∫
Ω
up,∀t > T9,
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where m1 :=
χ2M2

9
2d1

+ r is independent of p. Hence for any t > T9,

d

dt

∫
Ω
up + p(p− 1)

∫
Ω
up ≤ −p(p− 1)d1

2

∫
Ω
up−2|∇u|2 +m2p(p− 1)

∫
Ω
up, (5.44)

where m2 = m1 +1 is independent of p. Then, we follow the same way as the proof in [23,

Lemma 3.6] to find a constant m3 such that

∥u(·, t)∥L∞ ≤ m3max
{
e−(t−T9) ∥u(·, T9)∥L∞ , ∥u(·, t)∥L1

}
≤ 2m3M2, ∀t > T10 ≥ T9,

(5.45)

for some large constant T10 > 0. Hence, (5.41) follows by taking M10 := 2m3M2.

Proof of Theorem 5.1(ii). The combination of Lemma 5.3 and Lemma 5.10 implies the

statement in Theorem 5.1(ii).

5.3 Uniform Persistence and Existence: Proof of Theorems
5.2 and 5.3

The objective of this section is to study the local stability of (0, ŵ), and to explore the

uniform persistence and the existence of positive T -periodic solutions. Finally, we shall

explore the effects of cross-diffusion on the critical point m∗(χ)

5.3.1 Local Stability of (0, ŵ)

In this subsection, we study the local stability of (0, ŵ), where ŵ is the unique solution

to (5.4) and is independent of m and χ. Then it follows from [62, Lemma 2.2] that

∥ŵ∥
C2+κ0,1+

κ0
2 (QT )

≤ C3∥h∥
Cκ0,

κ0
2 (QT )

. (5.46)

Next, we linearize (5.1) at (0, ŵ) to get
ϕt = d1∆ϕ+ χ∇ · (ϕ∇ŵ) + (r −mŵ)ϕ, x ∈ Ω, t > 0,

ψt = d2∆ψ − αψ − βϕŵ, x ∈ Ω, t > 0,

∂νϕ = ∂νψ = 0, x ∈ ∂Ω, t > 0.

(5.47)

To obtain the linear stability of (0, ŵ) to (5.1), it suffices to study the linearized eigenvalue

problem as follows:
ϕt − d1∆ϕ− χ∇ · (ϕ∇ŵ)− (r −mŵ)ϕ = λϕ, in Ω× [0, T ],

ψt − d2∆ψ + αψ + βϕŵ = λψ, in Ω× [0, T ],

∂νϕ = ∂νψ = 0, on ∂Ω× [0, T ],

ϕ(x, 0) = ϕ(x, T ), ψ(x, 0) = ψ(x, T ), in Ω.

(5.48)
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It follows from [77, Theorem 2.1.1] that the first equation in (5.48) with ∂νϕ = 0 and

ϕ(x, t+T ) = ϕ(x, t) admits a unique principal eigenvalue λ∗ := λ∗(χ,m) ∈ R with a positive

eigenfunction ϕ∗, which is unique up to constant multiple. Moreover, using the similar

discussion in [59, Lemma 3.2], we know that the linear stability of (0, ŵ) is determined by

the sign of λ∗, i.e., (0, ŵ) is linearly stable if λ∗ > 0 and unstable if λ∗ < 0.

Lemma 5.11. Let Ω ⊂ R2 be a bounded domain with smooth boundary and (H0) holds.

There admits a unique constant m∗ := m∗(χ) > 0 such that (0, ŵ) is linearly stable if

m > m∗, and is linearly unstable if 0 < m < m∗.

Proof. Note that λ∗ ∈ R and ϕ∗ > 0 satisfy
(ϕ∗)t − d1∆ϕ∗ − χ∇ · (ϕ∗∇ŵ)− (r −mŵ)ϕ∗ = λ∗ϕ∗, in Ω× [0, T ],

∂νϕ∗ = 0, on ∂Ω× [0, T ],

ϕ∗(x, 0) = ϕ∗(x, T ), in Ω.

(5.49)

We integrate the first equation in (5.49) over QT by parts to get

−
∫
QT

(r −mŵ)ϕ∗ = λ∗

∫
QT

ϕ∗. (5.50)

Since ϕ∗ > 0, by (5.50) and the definitions of ŵ∗, ŵ
∗ in (5.5), one has

λ∗ > 0, if m >
r

ŵ∗
; λ∗ < 0, if 0 < m <

r

ŵ∗ . (5.51)

We deduce from [17, Lemma 2.15] that if m < m̂, λ∗(χ,m) < λ∗(χ, m̂). This combined

with (5.51) shows that there is a unique m∗ := m∗(χ) satisfying r
ŵ∗ < m∗ < r

ŵ∗
such that

λ∗ > 0 if m > m∗; λ∗ < 0 if 0 < m < m∗.

This proves Lemma 5.11.

Next, we shall prove uniform persistence and the existence of positive T -periodic solu-

tions. To this end, we first improve the regularity of (u,w), a key result will be used in

later.

Lemma 5.12. Let (u,w) be the solution obtained in Theorem 5.1.Then there exist con-

stants γ ∈ (0, 1) and M7 > 0 independent of u0, w0 such that

∥(u,w)∥
C2+γ,1+

γ
2 (Ω×[T0+1,∞))

≤M7. (5.52)
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Proof. Rewriting (1.6) as
ut = d1∆u+ χ∇w · ∇u+G1(x, t), x ∈ Ω, t > 0,

wt = d2∆w +G2(x, t), x ∈ Ω, t > 0,

∂νu = ∂νw = 0, x ∈ ∂Ω, t > 0,

(u,w)(x, 0) = (u0, w0), x ∈ Ω,

where G1(x, t) := u(r −mw − u − χ∆w) and G2(x, t) := h − αw − βuw. Then it is easy

to check that (5.52) is a consequence of the interior Lp estimate ([87, Theorems 7.30 and

7.35]), interior Schauder estimate for parabolic equation [76] as well as the eventual uniform

boundedness (see (5.68)). The proof details can follow the similar procedures as the proof

in [140, Theorem 2.1], we omit here for brevity.

5.3.2 Uniform Persistence and Positive T -Periodic Solution

In this subsection, we establish the uniform persistence and the existence of positive

T -periodic solutions. The proof mainly based on the results of uniform persistence and

coexistence states for general dynamical systems developed in [156, 157] (see also [117])

as well as the Principal Floquet bundle theory [77, Chapter 4]. To proceed, we first recall

some basic notations and definitions.

Let X be a complete metric space with a metric d. By [43] and [157, Chapter 3.1],

we say that {Ψ(t) : X → X}t≥0 is a T -periodic (autonomous) semiflow on X if there is a

T > 0 (for every T > 0) such that (t, z) 7→ Ψ(t)z : [0,∞) ×X → X is jointly continuous

in (t, z), Ψ(0)z = z for all z ∈ X and Ψ(t + T ) = Ψ(t)Ψ(T ) for all t ≥ 0. Assume that

X0 ⊂ X and ∂X0 ⊂ X are open and closed sets, respectively, satisfying X0 ∩ ∂X0 = ∅ and

X = X0 ∪ ∂X0. Let Ψ(t) : X → X(t ≥ 0) be a semiflow and Ψ(t)X0 ⊂ X0, t ≥ 0, Ψ(t) is

uniformly persistent with respect to (X0, ∂X0) if there is η > 0 such that

lim inf
t→∞

d
(
Ψ(t)v, ∂X0

)
≥ η, ∀v ∈ X0.

Here, we choose

X = {(v, z)(x)|v ∈ C(Ω), z ∈ C1(Ω), v(x) ≥ 0, z(x) ≥ 0,∀x ∈ Ω}

with the norm ∥(v, z)∥X = ∥v∥C(Ω) + ∥z∥C1(Ω), and

X0 = {(v, z)(x) ∈ X| v(x) ̸≡ 0}, ∂X0 = {(v, z)(x) ∈ X| v(x) ≡ 0},
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then X = X0 ∪ ∂X0. By Theorem 5.1(i), for every (u0, w0) ∈ X, (5.1) admits a unique

global classical solution Θ(t, (u0, w0)) := (u,w)(x, t) ∈ X. Hence, when ∂th ̸≡ 0, we can

define semiflow Ψ(t) : X → X by

Ψ(t)(u0, w0) = Θ(t, (u0, w0)), (u0, w0) ∈ X, t ≥ 0.

Clearly, Ψ(t)X0 ⊂ X0 and Ψ(t)∂X0 ⊂ ∂X0 for any t ≥ 0. For a given periodic system,

from [157, Theorem 3.1.1], we know that studying the uniform persistence can be reduced

to study the uniform persistence of its corresponding Poincaré map.

Since the toxicant input rate h(x, t) in (5.1) is T -periodic, then the associated semi-

flow Ψ(t) is also T -periodic, and the Poincaré map S : X → X can be defined by

S(v, z) = Ψ(T )(v, z) = Θ(T, (v, z)) for any (v, z) ∈ X. We shall demonstrate that the

linear instability of the semi-trivial T-periodic solution (0, ŵ) implies that it is a uniform

weak repeller by using the principal Floquet bundle theory [77, Chapter 4].

Proposition 5.1. If λ∗ < 0, then (0, ŵ) is a uniform weak repeller for X0 in the sense

that there exists a positive constant δ > 0 such that

lim sup
j→∞

∥Sj(u0, w0)− (0, ŵ)∥X ≥ δ, ∀(u0, w0) ∈ X0.

Proof. Suppose, by contradiction, that there exists (ũ0, w̃0) ∈ X0 such that

lim sup
j→∞

∥Sj(ũ0, w̃0)− (0, ŵ)∥X = 0. (5.53)

Next, we shall divide our proof as three steps.

Step 1. For any t ≥ 0, there exists some j ∈ N+ such that t = jT + t′ with t′ ∈ [0, T ), we

have

(ũ, w̃)(x, t) := Θ(t, (ũ0, w̃0)) = Θ(jT + t′, (ũ0, w̃0))

= Θ(t′,Θ(jT, (ũ0, w̃0)))

= Θ(t′, Sj(ũ0, w̃0)).

(5.54)

The continuous dependence of solution on initial data, together with (5.53) and (5.54),

implies

lim
t→∞

(∥ũ(·, t)∥L∞ + ∥w̃(·, t)− ŵ∥L∞) = 0. (5.55)

On the other hand, (5.52) and (5.46) implies that for γ1 := min{γ, κ0},

∥(ũ, w̃ − ŵ)∥
C2+γ1,1+

γ1
2 (Ω×[t,t+1])

≤ c1, ∀t > T0 + 1.

125



By [109, Lemma 4], we get that C2+γ1,1+
γ1
2 (Ω × [t, t + 1]) is compactly embedded into

C2+γ0,1+
γ0
2 (Ω× [t, t+1]) for any γ0 : 0 < γ0 < γ1. This together with the (5.55) gives that

(taking a subsequence if necessary)

lim
t→∞

(
∥ũ∥

C2+γ0,1+
γ0
2 (Ω×[t,t+1])

+∥w̃(·, t)−ŵ)∥
C2+γ0,1+

γ0
2 (Ω×[t,t+1])

)
= 0, ∀t > T0 + 1. (5.56)

Step 2. Consider the following equation
zt = d1∆z + χ∇ · (z∇ŵ) + z(r −mŵ), x ∈ Ω, t > 0,

∂νz = 0, x ∈ ∂Ω, t > 0,

z(x, 0) = z0(x), x ∈ Ω.

(5.57)

Let (λ∗, ϕ∗) be the eigenpair of (5.49), then it is clear that ϕ∗e
−λ∗t satisfies the first two

equations of (5.57).

Now, by (5.46), we get ŵ ∈ C2+γ0,1+
γ0
2 (Ω̄ × [0, T ]). Hence, it is clear that ŵ extends

smoothly (and periodically) to C2+γ0,1+
γ0
2 (Ω̄× R), this smooth extension of ŵ is denoted

by ŵ. We then fix a smooth extension w ∈ C2+γ0,1+
γ0
2 (Ω̄× R) of w̃(x, t) satisfying

w(x, t) = w̃(x, t), x ∈ Ω, t ∈ [t0,∞). (5.58)

Moreover, using (5.56), for arbitrary δ0 > 0 (which will be specified later), we can choose

t0 > 1 in (5.58) to ensure that

∥ŵ∥
C2+γ0,1+

γ0
2 (Ω×R)

≤ c1 and ∥w − ŵ∥
C2+γ0,1+

γ0
2 (Ω×R)

≤ δ0. (5.59)

For this given w(x, t) ∈ C2+γ0,1+
γ0
2 (Ω×R), we deduce from [77, Theorem 4.2.2] that there

exists a unique ordered triple

(P (x, t), I(x, t),Λw̃(t)) ∈ [C2+γ0,1+
γ0
2 (Ω× R)]2 × C

γ0
2 (R)

fulfilling
Pt = d1∆P + χ∇ · (P∇w) + (r −mw)P + Λw̃(t)P, x ∈ Ω, t ∈ R,
∂νP = 0, x ∈ ∂Ω, t ∈ R,
P > 0, (x, t) ∈ Ω× R, and

∫
Ω P (x, t)dx = 1, t ∈ R,

(5.60)

and 
−It = d1∆I − χ∇w · ∇I + (r −mw)I + Λw̃(t)I, x ∈ Ω, t ∈ R,
∂νI = 0, x ∈ ∂Ω, t ∈ R,
I > 0, (x, t) ∈ Ω× R, and

∫
Ω P (x, t)I(x, t)dx = 1, t ∈ R.

(5.61)
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Moreover, there is a constant c2 > 0 such that

1

c2
≤ P (x, t) ≤ c2,

1

c2
≤ I(x, t) ≤ c2, ∀(x, t) ∈ Ω× R. (5.62)

Notice that if we replace w by the periodic function ŵ, then it can be verified that

P (x, t) = q(t)ϕ∗(x, t), I(x, t) = p(t)ψ∗(x, t), Λŵ(t) = λ∗ +
q′(t)

q(t)
,

where (λ∗, ϕ∗(x, t)) are the eigenpair of (5.49) and ψ∗(x, t) is the eigenfunction of the adjoint

T -periodic problem, q(t) = 1∫
Ω ϕ∗(x,t)dx

and p(t) =
∫
Ω ϕ∗(x,t) dx∫

Ω ϕ∗(x,t)ψ∗(x,t) dx
. It is also obvious that

q(t) is T -periodic and so that

lim
t→∞

1

t

∫ t

0

q′(s)

q(s)
ds = 0. (5.63)

Recall also the main hypothesis of the theorem that λ∗ < 0.

By the smooth dependence of Λŵ(t) on the coefficients in (5.60) (cf. [77, Theorem

4.34]), from (5.56), (5.58) and the equations (5.49), (5.60), we deduce that if δ0 > 0 in

(5.59) is chosen small enough, then the principal Floquet bundle with w = w̃ and w = ŵ

is close to each other. In particular,

∥∥Λw̃(t)− λ∗ −
q′(t)

q(t)

∥∥
C

γ0
2 (R)

≤ −λ∗
2
,

this and (5.63) implies

lim inf
t→∞

1

t

∫ t

0
−Λw̃(s) ds ≥ −λ∗

2
> 0. (5.64)

Step 3. Multiplying ũ-equation in (5.1) by I and I-equation in (5.61) by ũ, and then

integrating the result over Ω by parts, we have

d

dt

∫
Ω
ũI =

∫
Ω
ũIt− d1

∫
Ω
∇ũ · ∇I −χ

∫
Ω
ũ∇w̃ · ∇I +

∫
Ω
ũI(r−mw̃− ũ), ∀t > 0, (5.65)

and∫
Ω
Itũ− d1

∫
Ω
∇ũ · ∇I − χ

∫
Ω
ũ∇w̃ · ∇I +

∫
Ω
(r −mw̃)Iũ = −Λw̃(t)

∫
Ω
Iũ, ∀t > 0,

which combined with (5.65) derives

d

dt

∫
Ω
ũI = −Λw̃(t)

∫
Ω
ũI −

∫
Ω
ũ2I. (5.66)
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Using ũ→ 0 uniformly, we may choose t1 ∈ [t0,∞) such that sup[t1,∞) ∥ũ∥∞ < −λ∗
4 , which

gives

d

dt

∫
Ω
ũI ≥

(
−Λw̃(t) +

λ∗
4

)∫
Ω
ũI for t ∈ [t1,∞). (5.67)

Solving (5.67) directly gives∫
Ω
ũI ≥ exp

(
(t− t1)

(
1

t− t1

∫ t

t1

−Λw̃(s) ds+
λ∗
4

))∫
Ω
ũ(x, t1)I(x, t1) dx

= exp((t− t1)

(
−λ∗

4
+ o(1)

)∫
Ω
ũ(x, t1)I(x, t1) dx.

Since λ∗ < 0, this contradicts that
∫
Ω ũI → 0 (due to (5.55) and (5.62)) as t → ∞.

Therefore, the proof of Proposition 5.1 is finished.

Proof of Theorem 5.2. Lemma 5.11 gives a description of the linear stability and in-

stability of (0, ŵ). In what follows, we focus on showing the uniform persistence and the

existence of positive T -periodic solutions.

With (5.3), [78, Theorem 2.2] implies that there exist some constants κ > 1 andM11 > 0

independent of initial data (u0, w0) such that

∥u(·, t)∥Cκ(Ω) + ∥w(·, t)∥Cκ(Ω) ≤M11, ∀t > T11, (5.68)

for some constants T11 > 0 and κ > 1. Since κ > 1, it follows from Arzelà-Ascoli theorem

that Cκ(Ω) is embedded compactly into C1(Ω) and C(Ω), this along with (5.68) indicates

that

Ψ(t) is point dissipative in X, and it is compact in X for each t > T11. (5.69)

Thus, [44, Theorem 2.2] (or [42, Theorem 2.4.7]) implies that

Ψ(t) has a global attractor in X. (5.70)

To prove the uniform persistence of the T -periodic semiflow Φ(t), it suffices to show

that the Poincaré map S : X → X is uniformly persistent (cf. [157, Theorem 3.1.1]).

From the above statements, one can see that S : X → X is point dissipative, continuous,

S(X0) ⊂ X0 and Sn0 is compact for some integer n0 ≥ 1. Then we deduce from [157,

Theorem 1.1.3] that S : X → X has a global attractor B.
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Denote A∂ as the maximal compact invariant sets of S in ∂X0. We claim that A∂

consists of a single point. Indeed, if (u0, w0) ∈ A∂ , then u0 ≡ 0, this gives the existence of

an entire solution w to
wt = d2∆w + h(x, t)− αw, x ∈ Ω, t ∈ R,
∂νw = 0, x ∈ ∂Ω, t ∈ R,
w(x, 0) = w0, x ∈ Ω and supt∈R ∥w∥L∞ ≤ C.

(5.71)

On the other hand, ŵ satisfies (5.4), which along with (5.71) indicates that W := w − ŵ

satisfies 
Wt = d2∆W − αW, x ∈ Ω, t ∈ R,
∂νW = 0, x ∈ ∂Ω, t ∈ R,
W (x, 0) = w0(x)− ŵ(x, 0), x ∈ Ω.

(5.72)

Multiplying the first equation in (5.72) by W and integrating the result over Ω by parts,

we obtain
1

2

d

dt

∫
Ω
W 2 + α

∫
Ω
W 2 = −d2

∫
Ω
|∇W |2 ≤ 0 for t ∈ R.

This motives us to find a constant κ1 > 0 such that

∥w − ŵ∥L2 = ∥W∥L2 ≤ ∥w(·, t)− ŵ(·, t)∥L2e−κ1(t−t), ∀t ≥ t. (5.73)

Letting t→ −∞, we deduce that w ≡ ŵ. This shows A∂ = {(0, ŵ)}.
Next, we claim that if λ∗ < 0, then S is uniformly weakly persistent with respect

to (X0, ∂X0), i.e., there exists η1 > 0 such that lim supj→∞ ∥Sj(v, z) − ∂X0∥X ≥ η1 for

all (v, z) ∈ X0. Indeed, suppose not, then same arguments as (5.54) and (5.55) imply

limt→∞ ∥ũ∥L∞ = 0 for some initial data (ṽ, z̃) ∈ X0, and hence the omega limit set ω(ṽ, z̃)

of S is a subset of ∂X0. Then ω(ṽ, z̃) ⊂ A∂ . This implies that limjk→∞ ∥Sjk(ṽ, z̃) −
(0, ŵ)∥X = 0, which is impossible in view of Proposition 5.1. Since S : X → X has a

global attractor B and S is uniformly weakly persistent, then we can apply [157, Theorem

1.3.3] to conclude that S is uniform persistent with respect to (X0, ∂X0) and hence [156,

Theorem 2.1] indicates that T -periodic semiflow {Ψ(t)}t≥0 is uniformly persistent in the

following sense

lim inf
t→∞

∥u(x, t)∥C(Ω) ≥ m1. (5.74)

On the other hand, we derive from (5.1) that{
ut = d1∆u+ χ∇w · ∇u+ u(r − u−mw + χ∆w), x ∈ Ω, t > 0,

∂νu = 0, x ∈ ∂Ω, t > 0.
(5.75)
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Then (5.52) implies that for all t ≥ T0 + 1, one has

∥∇w∥L∞ ≤ m2, and ∥r − u−mw + χ∆w∥L∞ ≤ m3.

This combined with Harnack inequality [58, Theorem 2.5] gives that

sup
x∈Ω

u(x, t) ≤ m4 inf
x∈Ω

u(x, t), (5.76)

for some constant m4 > 0. Taking the inferior limit in time t on both sides of (5.76) and

applying (5.74) directly yields lim inf
t→∞

inf
x∈Ω

u ≥ m1
m4

. This proves (5.6).

Finally, we prove the existence of positive T -periodic solutions. From Theorems 1.3.7 in

[157], we get that S : X0 → X0 has a global attractor A0 ⊂ X0, and a fixed point ρ0 of S in

A0 exists (see [157, Theorem 1.3.8]). Therefore, (1.6) has a T -periodic solution ρ∗(x, t) :=

Ψ(t)ρ0 in X0. Since A0 ⊂ X0 and S = Ψ(T ), it holds that A0 = S(A0) = Ψ(T )A0, which

along with the strong maximum principle yields A0 ⊂ Int(X0). Then ρ∗(x, t) = Ψ(t)ρ0 ∈
Ψ(t)A0 ⊂ Int(X0) and hence ρ∗(x, t) is a positive T -periodic solution. Furthermore, the

standard regularity theory for parabolic equations yields that ρ∗(x, t) ∈ [C2+γ,1+ γ
2 (Ω ×

(0, T ])]2 (see e.g., Lemma 5.12). Hence, the proof of Theorem 5.2 is finished.

Next, we investigate the effects of negative toxicant-taxis χ on the threshold value

m∗(χ), which is characterized by the effects of χ on λ∗. In the sequel, we sometimes denote

ŵ =: ŵh and its minimum value ŵ∗ =: ŵh∗ to emphasize the dependence of the solution ŵ

of (5.4) on the coefficient h = h(x, t). Particularly, when h(x, t) = a(x) ≥ 0, then ŵa is the

unique positive solution to

d2∆w + a(x)− αw = 0, x ∈ Ω, ∂νw = 0, x ∈ ∂Ω. (5.77)

Lemma 5.13. Let Ω ⊂ R2 be a bounded domain with smooth boundary and assume that

(H) holds.

(i) If h(x, t) = a(x) ≥ 0 and a(x) is nonconstant, then

lim sup
χ→∞

λ∗ ≤ min
x∈Ω

{mŵa(x)− r} =: mŵa∗ − r. (5.78)

(ii) Fix a(x) ∈ Cκ0(Ω) and let ŵa(x) be the unqiue positive solution of (5.77) and mŵa∗ −
r < 0. Let h(x, t) = a(x) + b(x, t) with b(x, t) being a T -periodic function, then there
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exists a small σ(a) > 0 such that if 0 < ∥b(x, t)∥L∞(QT ) ≤ σ(a), then

lim sup
χ→∞

λ∗ < 0, (5.79)

i.e., we show that b(x, t) is a small perturbation which is uniform for large χ.

Proof. We first use the conditions h(x, t) = a(x), mŵa∗ < r and Sard’s theorem to prove

the statement (i). When h = a(x), one can check that the eigenpair (λ∗, ϕ∗) satisfies the

elliptic problem {
−d1∆ϕ− χ∇ · (ϕ∇ŵa)− (r −mŵa)ϕ = λϕ, x ∈ Ω,

∂νϕ = 0, x ∈ ∂Ω,
(5.80)

where ŵa := ŵa(x) is the unique solution of (5.77). To prove (5.78), it suffices to prove,

for each ε > 0, that

lim sup
χ→∞

λ∗ < mŵa∗ − r + ε. (5.81)

For convenience, considering the following adjoint eigenvalue problem of (5.80){
−d1∆ψ + χ∇ŵa · ∇ψ − (r −mŵa)ψ = λψ, x ∈ Ω,

∂νψ = 0, x ∈ ∂Ω.
(5.82)

We deduce from [17, Corollary 2.13] that λ∗ is also the principal eigenvalue for (5.82).

Then to prove (5.78), by [77, Lemma 1.3.13], we only need to construct a nonnegative,

nontrivial subsolution ψ satisfying

− d1∆ψ + χ∇ŵa · ∇ψ +mEψ − εψ ≤ 0, x ∈ Ω, (5.83)

∂νψ = 0, x ∈ ∂Ω (5.84)

in the generalized sense (see [77, Definition 1.1.1]). Here E := ŵa(x)− ŵa∗ ≥ 0 in Ω.

Let ε > 0 be fixed. Since ŵa(x) ∈ C2(Ω), by Sard’s theorem, we can fix s1, s2 ∈ R+

such that

ŵa∗ < s1 < s2 < ŵa∗ +
ε

4m
and inf

U ′
|∇ŵa| > 0, (5.85)

where we define U ′ := U(s2) \ U(s1) and that

U(s) := {x ∈ Ω : ŵa(x) ≤ s}. (5.86)
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Next, we choose a smooth cut-off function G(s) = G(s; s1, s2) : R → R satisfying
G(s) = s2 − s for s ∈ [(s1 + s2)/2,∞),

G′(s) < 0 for s ∈ (s1, (s1 + s2)/2], G′(s) ≡ 0 for s ∈ (−∞, s1],

|||G(s)||| := sups∈R
[
|G′(s)|+ |G′′(s)|

]
< +∞.

(5.87)

Define

H1(s) := sup
U(s)

[
−d1

G′(ŵa)

G(ŵa)
∆ŵa

]
and H2(s) := sup

U(s)

[
−d1G

′′(ŵa)

G(ŵa)
|∇ŵa|2

]
.

We claim that there is ŝ ∈ (s1, s2] such that

Hi(ŝ) <
ε

8
for i = 1, 2. (5.88)

Indeed, the existence of ŝ follows from the fact that (a) ∥ŵa∥C2(Ω) < +∞ is given, (b)

Hi(s) are continuous and finite-valued in [s1, s2), and (c) Hi(s) ↘ 0 as s↘ s1, for i = 1, 2.

Now, define

ψ(x) = G(ŵa(x))), (5.89)

then by a direct computation, we get

−d1∆ψ + χ∇ŵa · ∇ψ = G

[
−d1

G′

G
∆ŵa − d1G

′′

G
|∇ŵa|2 + χ

G′

G
|∇ŵa|2

]
, (5.90)

where G := G(ŵa(x)), G′ := G′(ŵa(x)) and G′′ := G′′(ŵa(x)). We shall verify that ψ(x)

satisfies (5.83) in classical sense for x ∈ U(s2) by proceeding two cases:

x ∈ U(ŝ) and x ∈ U(s2) \ U(ŝ).

Case 1: x ∈ U(ŝ). Following from (5.88), (5.90), G(s) > 0, G′(s) ≤ 0 (see (5.87)), χ ≥ 0

and mE < ε
4 , one has

−d1∆ψ + χ∇ŵa · ∇ψ + (mE − ε)ψ ≤ G[H1(ŝ) +H2(ŝ) + (mE − ε)] ≤ 0. (5.91)

Case 2: x ∈ U(s2) \ U(ŝ) = {x : ŵa(x) ∈ (ŝ, s2]}. Then it follows from (5.87) that G′ < 0

and G > 0. Note (5.90), infU(s2)\U(ŝ) |∇ŵa| ≥ infU ′ |∇ŵa| > 0 and mE < ε
4 , one has

− d1∆ψ + χ∇ŵa · ∇ψ + (mE − ε)ψ

= −G′d1∆ŵ
a −G′′d1|∇ŵa|2 + χG′|∇ŵa|2 + (mE − ε)G

≤ |||G|||
[
d1∥∆ŵa∥L∞ + d1∥∇ŵa∥2L∞

]
+ χG′ inf

U(s2)\U(ŝ)
|∇ŵa|2 < 0,
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provided that χ ≥ χ̃, for some χ̃ ≥ 1. In fact, for each χ ≥ χ̃, the differential inequality

holds in some relatively open set U ⊂ Ω containing U(s2). Now, note that ψ(x) :=

max{ψ, 0} is continuous, and

ψ(x) = ψ(x) in U(s2), ψ(x) = 0 in Ω \ U(s2).

It follows that ψ(x) satisfies the first differential inequality of (5.84) in the generalized sense

(see [77, Definition 1.1.1]). Also, note that ψ and 0 both satisfies the Neumann boundary

condition classically, so ψ also satisfies the Neumann boundary condition in the generalized

sense. By the eigenvalue comparison lemma [77, Lemma 1.3.13], this implies that (5.81)

holds. Since ε > 0 is arbitrary, it follows that lim supχ→∞ λ∗ ≤ mŵa∗ − r. This proves the

statement (i).

For the statement (ii), let h = a(x) + b(x, t) with b(x, t) being time-periodic, then it

holds that λ∗ ∈ R and ϕ∗ > 0 satisfy (5.49). Following [17, Lemma 2.15], we get that λ∗ is

also the principal eigenvalue of the following adjoint problem
−ζt − d1∆ζ + χ∇ζ · ∇ŵh − (r −mŵh)ζ = λζ, in Ω× [0, T ],

∂νζ = 0, on ∂Ω× [0, T ],

ζ(x, 0) = ζ(x, T ), in Ω.

(5.92)

To achieve goal (5.79), for ε = |r−mŵa
∗ |

2 > 0, we first construct a nontrivial function ζ ≥ 0

satisfying
−ζ

t
− d1∆ζ + χ∇ζ · ∇ŵh + [m(ŵa − ŵa∗)− ε]ζ ≤ 0, in Ω× [0, T ],

∂νζ = 0, on ∂Ω× [0, T ],

ζ(x, 0) = ζ(x, T ), in Ω

(5.93)

in the generalized sense. In fact, for each fixed a(x), one can choose σ(a) such that if

0 < ∥b(x, t)∥L∞(QT ) ≤ σ(a), then the above argument in statement (i) can be repeated to

show that for χ≫ 1, ψ(x) := max{ψ, 0} qualifies again as a generalized subsolution of the

periodic eigenvalue problem (5.92). To prove this, we shall divide our proof into two steps:

Step 1: We claim that for each fixed a(x), there exists a constant σ(a) > 0 so that if

0 < ∥b(x, t)∥L∞(QT ) ≤ σ(a), then

∥ŵh(x, t)− ŵa(x)∥
C1+β0,

1+β0
2 (QT )

≤ c0σ(a) and inf
U ′

∇ŵh · ∇ŵa > 0. (5.94)

Indeed, denote ℓ(x, t) := ŵh(x, t)− ŵa(x), we deduce from ŵa-equation, ŵh-equation, the

condition h(x, t) = a(x) + b(x, t) and [87, Theorem 7.35] that for some constant p ≥ 1

∥l(x, t)∥
W 2,1

2p (QT )
≤ c1∥b(x, t)∥L2p(QT ),
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which along with the Sobolev embedding theorem W 2,1
2p ↪→ C1+β0,

1+β0
2 with 0 < β0 <

1− n+2
2p , gives

∥ℓ(x, t)∥
C1+β0,

1+β0
2 (QT )

≤ c2∥ℓ(x, t)∥L2p(QT ) ≤ c2c1∥b∥L2p(QT ) ≤ c2c1|Ω|
1
2p ∥b∥L∞(QT ),

this yields

∥ℓ(x, t)∥
C1+β0,

1+β0
2 (QT )

≤ c0∥b∥L∞(QT ) (5.95)

by letting c0 := c1c2|Ω|
1
2p . Taking

σ(a) :=
c∗

2c0∥∇ŵa(x)∥L∞
(5.96)

such that

∥b∥L∞(QT ) ≤ σ(a), (5.97)

where the constant c∗ := inf
x∈U ′

|∇ŵa(x)|2 > 0 (see (5.85)). Applying (5.95), (5.97) and

(5.96), we know that the first inequality in (5.94) holds, and

inf
U ′

∇ŵh · ∇ŵa = inf
U ′

|∇ŵa|2 + inf
U ′

∇ℓ · ∇ŵa

≥ inf
U ′

|∇ŵa|2 − ∥ℓ∥L∞(QT )∥∇ŵa∥L∞

≥ inf
U ′

|∇ŵa|2 − c0σ(a, η)∥∇ŵa∥L∞ = inf
U ′

|∇ŵa|2/2 > 0.

(5.98)

Hence, we finish the proof of (5.94).

Step 2: For x ∈ U(ŝ), using (5.98), (5.94), G′(s) = 0 for s ≤ s1 and the fact mE < ε/4,

one has

− ψ
t
− d1∆ψ + χ∇ŵh · ∇ψ +m(ŵa − ŵa∗)ψ − εψ

= −G′d1∆ŵ
a −G′′d1|∇ŵa|2 +G′χ∇ŵa · ∇wh + [m(ŵa − ŵa∗)− ε]G

≤ G[H1(ŝ) +H2(ŝ) +m(ŵa − ŵa∗)− ε] +G′χ∇ŵa · ∇wh

≤ −Gε/4 + χG′ inf
U(ŝ)\U(s1)

∇ŵa · ∇wh ≤ χG′ inf
U ′

∇ŵa · ∇wh < 0, ∀x ∈ U(ŝ).

For x ∈ U(s2) \ U(ŝ), note (5.87), (5.90), infU(s2)\U(ŝ)∇ŵh · ∇ŵa ≥ infU ′ ∇ŵh · ∇ŵa > 0

and mE < ε
4 , we obtain

− ψ
t
− d1∆ψ + χ∇ŵh · ∇ψ +m(ŵa − ŵa∗)ψ − εψ

= −G′d1∆ŵ
a −G′′d1|∇ŵa|2 +G′χ∇ŵh · ∇wa + [m(ŵa − ŵa∗)− ε]G
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≤ |||G|||
[
d1∥∆ŵa∥L∞ + d1∥∇ŵa∥2L∞

]
+ χG′ inf

U(s2)\U(ŝ)
∇ŵh · ∇wa < 0,

provided that χ > 0 is sufficiently large. Therefore, similar to the proof of Lemma 5.13(i),

we get that ψ := max{0, ψ} is a generalized subsolution of (5.92). Then it follows from

[90, Proposition A.1] that

lim sup
χ→∞

λ∗ ≤ mŵa∗ − r +m∥ℓ∥L∞(QT ) + |mŵa∗ − r|/2. (5.99)

Hence, by (5.94) and the condition mŵa∗ − r < 0, we can choose

σ(a) = min
{ c∗
2c0∥∇ŵa(x)∥L∞

,
r −mŵa∗
4c0m

}
so that lim sup

χ→∞
λ∗ < 0. This proves the statement (ii).

Remark 5.4. In Lemma 5.13, ŵ appears in both advection and linear terms. The results

in Lemma 5.13 include the scenario where the set of local minimum for ŵ may contain

some flat pieces, a case excluded in [20, 106] for high-dimensional settings. And the proof

of Lemma 5.13(ii) removes the nondegeneracy conditions imposed on ŵ in [20, 106] in

high-dimensional spaces.

Proof of Theorem 5.3. We apply (5.99) to get that there exists some constant c1 > 0

independent of b, χ such that

lim inf
χ→∞

m∗(χ) ≥
r − c1m∥ℓ∥L∞(QT )

ŵa∗
≥
r − c1m∥ℓ∥L∞(QT )

ŵh∗ + ∥ℓ∥L∞(QT )
.

Hence, for each η > 0, one can choose σ(a, η) sufficiently small to ensure that ∥ℓ∥∞ is small

enough (thanks to (5.94)), so that

lim inf
χ→∞

m∗(χ) ≥ r

ŵh∗
− η.

Therefore, the proof of Theorem 5.3 is complete.
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5.4 Global Stability: Proof of Theorem 5.4

In this section, we explore the global dynamics of the system (5.1). We start by proving

the global stability of the semi-trivial T -periodic solution (0, ŵ(x, t)).

Proof of Theorem 5.4(i). We first show the convergence of ∥u∥L∞ as t → ∞. To this

end, we consider the following equation
vt = d2∆v + h− (α+ βM0)v, x ∈ Ω, t > T0,

∂νv = 0, x ∈ ∂Ω, t > T0,

v(x, T0) = w(x, T0), x ∈ Ω,

(5.100)

where constants T0 > 0 and M0 > 0 are introduced in Theorem 5.1(ii). Then, the compar-

ison principle yields

w(x, t) ≥ v(x, t), ∀t ≥ T0. (5.101)

Proceeding the similar procedures as in proof in (5.73), we obtain

lim
t→∞

∥v(·, t)− v̂∥L∞ = 0, (5.102)

where 0 < v̂(x, t) ∈ C2+γ,1+ γ
2 (Ω× [0, T ]) is the unique solution (see, e.g., [95, Proposition

4.4.8] and [62, Lemma 2.2]) of the following equation
v̂t = d2∆v̂ + h− (α+ βM0)v̂, x ∈ Ω, t > T0,

∂ν v̂ = 0, x ∈ ∂Ω, t > T0,

v̂(x, T0) = v̂(x, T0 + T ), x ∈ Ω.

(5.103)

On the other hand, we apply the maximum principle [141, Theorem 7.1] for periodic

parabolic equations to (5.103) to get

v̂(x, t) ≥ h∗
α+ βM0

:= mM0 > 0. (5.104)

With (5.101), (5.102) and (5.104), we can find a constant t1 ≥ T0 such that

w(x, t) ≥ v(x, t) ≥ v̂(x, t)− mmM0 − r

2m
≥ mM0 −

mmM0 − r

2m
=
mM0

2
+

r

2m
> 0, ∀t > t1.

(5.105)

Next, we integrate the first equation of (5.1) and use (5.105) to get that for all t > t1,

d

dt

∫
Ω
u =

∫
Ω
u(r −mw − u) ≤ r −mmM0

2

∫
Ω
u,
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this derives

∥u(·, t)∥L1 ≤ e−
r−mmM0

2
(t−t1)

∫
Ω
u(·, t1) ≤ c1e

−
r−mmM0

2
(t−t1), ∀t > t1. (5.106)

Then (5.106) together with Gagliardo-Nirenberg inequality in two dimensional space and

(5.52) gives that for all t > max{t1, T0 + 1} =: t2

∥u(·, t)∥L∞ ≤ c2∥u(·, t)∥
2
3

W 1,∞∥u(·, t)∥
1
3

L1 ≤ c3e
−

(mmM0
−r)

6
(t−t2). (5.107)

Next, we shall prove the convergence of ∥w(·, t)−ŵ(·, t)∥L∞ as t→ ∞. LetW := w−ŵ,
then we deduce from (5.1) and (5.4) that

Wt = d2∆W − αW − βuW − βŵu, x ∈ Ω, t > 0,

∂νW = 0, x ∈ ∂Ω, t > 0,

W (x, 0) = w0 − ŵ(·, 0), x ∈ Ω.

(5.108)

Multiplying the first equation of (5.108) by W , integrating the result and using (5.5), one

obtains

1

2

d

dt

∫
Ω
W 2 + d2

∫
Ω
|∇W |2 + α

∫
Ω
W 2 + β

∫
Ω
uW 2 = −β

∫
Ω
ŵuW

≤ βc4

∫
Ω
u|W |

≤ α

2

∫
Ω
W 2 +

β2c24
2α

∫
Ω
u2,

which along with (5.107) implies

1

2

d

dt

∫
Ω
W 2 +

α

2

∫
Ω
W 2 ≤ β2c24

2α

∫
Ω
u2 ≤ c5e

−
(mmM0

−r)

3 (t− t2), ∀t > t2. (5.109)

From (5.109), we have

∥w(·, t)− ŵ(·, t)∥L2 = ∥W (·, t)∥L2 ≤ c6e
−c7(t−t2), ∀t > t2, (5.110)

where c7 := min{mmM0
−r

6 , α4 }. Applying Gagliardo-Nirenberg inequality in two dimensional

space and the W 1,∞-boundedness of w and ŵ (see (5.3) and (5.46), respectively) and

(5.110), one has

∥w(·, t)− ŵ(·, t)∥L∞ ≤ ∥w(·, t)− ŵ(·, t)∥
1
2

W 1,∞∥w(·, t)− ŵ(·, t)∥
1
2

L2 ≤ c8e
− c7

2 (t− t2), ∀t > t2,

which combined with (5.107) gives (5.7) by letting C1 := c8e
c7t2
2 and θ1 :=

c7
2 .
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In the following, we assume h(x, t) ≡ h(t) and shall establish the global stability

and uniqueness of the positive T -periodic solution to (5.1). When m < m∗, we deduce

from Theorem 5.2 that the system (5.1) admits at least one positive T -periodic solution

(u∗, w∗)(x, t) =: (u∗, w∗). On the other hand, note that the positive T -periodic solution

(u∗, w∗)(t) =: (u∗, w∗) satisfies the following ordinary differential equation (ODE) system
(u∗)t = u∗(r − u∗ −mw∗), t > 0,

(w∗)t = h(t)− αw∗ − βu∗w∗, t > 0,

u∗(t) = u∗(t+ T ) > 0, w∗(t) = w∗(t+ T ) > 0, t ≥ 0.

(5.111)

It is also the positive T -periodic solution of (5.1). We shall show that the positive T -

periodic solution (u∗, w∗)(t) is globally asymptotically stable, and hence it is the unique

positive T -periodic solution.

To this end, let (u,w) be a solution obtained in Theorem 5.1 and denote V := w−w∗,

one deduces from (5.1) and (5.111) that
ut = d1∆u+ χ∇ · (u∇V ) + u(r −mV −mw∗)− u2, x ∈ Ω, t > 0,

Vt = d2∆V − αV − βuV − βw∗(u− u∗), x ∈ Ω, t > 0,

∂νu = ∂νV = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), V (x, 0) = w0(x)− w∗(x, 0), x ∈ Ω,

(5.112)

where we have used the fact that (u∗, w∗) is independent of x. Then we introduce the

following entropy functional:

F(t) :=
A2β

m

∫
Ω

1

u∗

(
u− u∗ − u∗ ln

u

u∗

)
+

1

2A1

∫
Ω
V 2,

where A1 := max
t∈[0,T ]

{w∗(t)} and A2 := max
t∈[0,T ]

{u∗(t)}.

Proof of Theorem 5.4(ii). Our proof is divided into two steps:

Step 1. In this step, we show the global stability and uniqueness of (u∗, w∗). Some direct

calculations yield that

d

dt
F(t) =

A2β

m

d

dt

∫
Ω

1

u∗

(
u− u∗ − u∗ ln

u

u∗

)
+

1

2A1

d

dt

(∫
Ω
V 2

)
= −

∫
Ω

(
∇ u

u∗
, ∇V

)
I1
(
∇ u

u∗
, ∇V

)T −
∫
Ω

A2β

mu∗
(u− u∗)

2 −
∫
Ω

A2β

u∗
(u− u∗)V

−
∫
Ω

βw∗
A1

V (u− u∗)−
∫
Ω

α+ βu

A1
V 2

= −
∫
Ω

(
∇ u

u∗
, ∇V

)
I1
(
∇ u

u∗
, ∇V

)T −
∫
Ω
(u− u∗ , V ) I2 (u− u∗ , V )T

(5.113)
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where

I1 =

 A2βd1G′′
(

u
u∗

)
m

A2βχuG′′
(

u
u∗

)
2mu∗

A2βχuG′′
(

u
u∗

)
2mu∗

d2
A1

 , I2 =

 A2β
mu∗

β(
A2
u∗

+w∗
A1

)

2
β(

A2
u∗

+w∗
A1

)

2
α+βu
A1


with the function G(s) := s− 1− ln s. Then I1 is positive definite iff

A2βd1d2
mA1

G′′
(
u

u∗

)
>
A2

2β
2χ2u2

4m2u2∗
G′′
(
u

u∗

)2

,

which is equivalent to 4d1d2m
A2A1β

> χ2. This can be ensured by (5.8).

Next, we show that the matrix I2 is positive definite under some conditions. It is easy

to obtain

0 < r − mh∗

α
≤ u∗ ≤ r,

h∗
α+ βr

< w∗ ≤
h∗

α
. (5.114)

One can check that I2 is positive definite iff Det(I2) > 0, where

Det(I2) >
αA2β

u∗A1m
−
β2
(
1 + A2

u∗

)2
4

≥ αβ

A1m
−
β2
(
1 + A2

mint∈[0,T ]{u∗(t)}
)2

4
=: J.

Applying (5.114) implies

0 < r − mh∗

α
≤ min

t∈(0,T )
{u∗(t)} ≤ A2 ≤ r,

h∗
α+ βr

< A1 ≤
h∗

α
, (5.115)

then

Det(I2) > J ≥ α2β

h∗m
−
β2
(
1 + r

r−mh∗/α
)2

4
> 0,

which is guaranteed by (5.9). Hence, we deduce from (5.113) that there is a constant c1 > 0

such that

F ′(t) ≤ −c1
∫
Ω

[
(u− u∗)

2 + (w − w∗)
2
]
=: −c1G(t). (5.116)

Denote l(s) := s− b ln s, we apply the fact l′(b) = 1− b
b = 0 and Taylor’s expansion to

obtain that for all b > 0, s > 0

s− b− b ln
s

b
= l(s)− l(b) =

l′′(b̃)

2
(s− b)2 =

b

2b̃2
(s− b)2 ≥ 0, (5.117)

where b̃ is between s and b. Taking s = u and b = u∗ in (5.117) gives

u− u∗ − u∗ ln
u

u∗
=

u∗
2b21

(u− u∗)
2 ≥ 0, (5.118)
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where b1 is between u and u∗. On the other hand, by Theorem 5.2, when m < rα
h∗ (≤

r
ŵ∗ ≤

m∗), there exist some constants c2 > 0 and t1 > 0 such that u ≥ c2 for all t > t1. This

along with (5.118), (5.114) and Theorem 5.1 enable us to find constants c3 > 0, c4 > 0

such that

1

c3

∫
Ω
(u− u∗)

2 dx ≤ A2β

m

∫
Ω

1

u∗

(
u− u∗ − u∗ ln

u

u∗

)
dx ≤ c4

∫
Ω
(u− u∗)

2 dx, ∀t > t1.

(5.119)

And (5.115) implies

1

c5

∫
Ω
(w − w∗)

2dx ≤ 1

2A2

∫
Ω
(w − w∗)

2 ≤ c6

∫
Ω
(w − w∗)

2dx, ∀t > 0. (5.120)

Then (5.119) along with (5.120) updates (5.116) as

d

dt
F(t) ≤ −c7F(t), ∀t > t1. (5.121)

Solving (5.121) directly, and applying (5.119) and (5.120) again, we can find some positive

constants c8, c9, t2 > t1 such that G(t) ≤ c8e
−c9(t−t2) for all t > t2. Using (5.119), (5.120)

and V := w − w∗, one has

∥u− u∗∥L2 + ∥w − w∗∥L2 ≤ c10e
−c11(t−t2), ∀t > t2. (5.122)

Applying the Gagliardo-Nirenberg inequality in two dimensional space derives

∥u− u∗∥L∞ ≤ c12∥u− u∗∥
1
2
W 1,∞∥u− u∗∥

1
2

L2 , ∥w − w∗∥L∞ ≤ c12∥w − w∗∥
1
2
W 1,∞∥w − w∗∥

1
2

L2 ,

(5.123)

which along with (5.122), uniform boundeness (see (5.52)) and (u∗, w∗) ∈ [C1([0, T ])]2 gives

(5.10).
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, we studied in Chapter 2 an indirect predator-prey model with anti-

predation, which describing by a density-dependent type cross-diffusion. We established

the existence, uniqueness, and uniform-in-time boundedness and global stability of positive

classical solutions in any dimensional bounded domain. Furthermore, we proved the exis-

tence of non-constant positive steady-state solution and non-existence of Hopf bifurcation

when the prey takes the anti-predation strategy. These results show that the anti-predation

helps create spatial heterogeneity (steady state patterns), which is sharply different from

the density-dependent type indirect prey-taxis (which exhibits Hopf bifurcation) and the

case without cross-diffusion (where no patterns emerge).

In Chapter 3, a three-species Lotka-Volterra food chain model with intraguild predation

and taxis mechanisms (prey-taxis and alarm-taxis) was studied. We established the exis-

tence, uniqueness, and uniform-in-time boundedness and global stability of positive classi-

cal solutions in one dimensional bounded interval. Furthermore, we focused on exploring

the effects of intraguild predation and taxis mechanisms (prey-taxis and alarm-taxis). Our

numerical simulations demonstrate the following points:

(a) Even in the absence of prey-taxis, as long as alarm-taxis is sufficiently strong, pattern

formation will occur regardless of whether intraguild predation is included. Hence,

the signal taxis mechanism plays an indispensable and essential role in promoting

spatially inhomogeneous patterns.

(b) The prey-taxis plays very different effects for the system (3.3) between the cases

that without intraguild predation (i.e., γ1 = γ2 = 0) and with intraguild predation

(i.e., γ1, γ2 > 0). When γ1 = γ2 = 0, ϕ(u, v) = uv, prey-taxis has a stabilization
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effect on the homogeneous steady state (see Figure 3.2) while it has a destabilization

effect in the intraguild predation model with prey-taxis (i.e., γ1, γ2 > 0, ϕ(u, v) = v)

(see Figure 3.3), which contrasts with the well-known results that the prey-taxis

serves to enhance the stability of the spatially homogeneous steady state in two-

species predator-prey systems. As for intraguild predation model with alarm-taxis

(i.e., γ1, γ2 > 0, ϕ(u, v) = uv), the effects of prey-taxi ξ on pattern formations are

more complicated. The system may subsequently undergo steady state bifurcations,

no pattern formations and Hopf bifurcations as ξ increasing from 0 to 4 and then to

45, see Figure 3.4.

In Chapter 4, we explored an SIS model with a cross-diffusion dispersal strategy for

the infected individuals. The existence, uniqueness, and uniform-in-time boundedness of

positive classical solutions in two dimensional bounded domaine were proven. In addition,

we defined the basic reproduction number R0 and established the threshold dynamics in

terms of R0 as well as the global stability of constant steady states. Finally, we gave some

numerical simulations. Our results demonstrate that the cross-diffusion dispersal strategy

can reduce R0 and help eradicate the diseases even if the habitat is high-risk in contrast

to the situation without cross-diffusion.

In Chapter 5, we proved the existence, uniqueness, uniform-in-time boundedness and ul-

timately uniform boundedness of positive classical solutions to a population-toxicant model

in time-periodic environment with toxicant-taxis in two dimensional bounded domain. Fur-

thermore, we demonstrated the uniform persistence for any cross-diffusion coefficients χ ≥ 0

and examined the effects of cross-diffusion on uniform persistence for special form of h(x, t).

Additionally, we established the global stability of the non-constant semi-trivial T -periodic

solution (0, ŵ) for general case of h(x, t) and the positive T -periodic solution for the spe-

cial case where h(x, t) = h(t). Our results show that the strong toxicant-taxis (i.e., cross-

diffusion) destabilizes the semi-trivial T -periodic solution (0, ŵ), and helps aquatic species

to survive in a polluted environment.

Our thesis develops some new ideas/methods to overcome the difficulties caused by the

inapplicability of the comparison principle in cross-diffusion models. For example, the proof

ideas and outlines developed in Chapter 5 can be applied to prove the existence of time-

periodic solutions or non-constant steady-state solutions, as well as uniform persistence for

general cross-diffusion models.

142



6.2 Future Works

Except for the problems addressed in our thesis, several other pertinent questions re-

main open for further investigation:

(1) Note that the assumption (H0) in Chapter 2 implies dP > 0. Therefore, exploring

the solution behavior of dP = 0, which may involve potential degeneracy, is also worth

considering in the future (e.g., [149], [150]). Additionally, to study the effects of density-

dependent diffusion, our study specifically focuses on the Holling type I functional response

function, and hence other types of response functions would also be worthwhile to further

investigate.

(2) In Chapter 4, we introduced the expression for R0 and found it to be related to the

density-dependent rate function. Although we numerically demonstrated that this function

can reduce R0 and help eradicate the diseases, proving R0 < R̂0 analytically (where R̂0

is the basic reproduction number when the density-dependent rate function is constant)

remains an intriguing and challenging task. Additionally, while we proved the existence of

an EE when R0 > 1 in this chapter, the uniqueness of non-trivial EE when R0 > 1 and

the existence/uniqueness of non-trivial EE when R0 ≤ 1 remain unresolved. Moreover,

the conditions for the global stability of constant DFE and EE are currently stringent,

necessitating further work to relax these conditions.

(3) For the population-toxicant model in time-periodic environment with toxicant-taxis,

we only proved that the effects of cross-diffusion for special h(x, t) = a(x) + b(x, t) with

0 ≤ |b(x, t)| ≪ 1, and the global stability of positive T -periodic solution for h(x, t) = h(t).

Proving these results for general h(x, t) remains open. Additionally, according to the results

in Theorem 5.4, the global dynamics for the system (5.1) are still unclear when m is at an

intermediate and warrant further exploration.

Drawing from aforementioned works and ideas presented in Chapter 2 - 5, aside from the

framework developed in Chapter 5 which can be used to demonstrate uniform persistence

and the existence of periodic solutions or non-constant steady-state solutions for general

cross-diffusion systems, it is necessary and challenging to develop frameworks that clarify

the global stability and examine the effects of cross-diffusion on the principal eigenvalue.

This topic may warrant further investigation.
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