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Abstract

Cross-diffusion, a process in which the density gradient of one species induces an advec-
tive flux of another species, has been widely applied to model the movement of one species
toward or away from the area with higher density of another species (i.e., taxis move-
ment). In this thesis, we first study an indirect prey-taxis model [129] with anti-predation
mechanism. Then, we explore another type of anti-predation mechanism: alarm-taxis [46]
which described by a three-species Lotka-Volterra food chain model. Next, we apply the
cross-diffusion strategy to an SIS epidemic model and numerically explored the effects of
cross-diffusion. Finally, we investigate a toxicant-taxis model and theoretically prove the
effects of cross-diffusion.

Fundamentally, we establish the global boundedness of classical solutions by using
energy estimates. The other main results are as follows:

1. For the indirect prey-taxis model with anti-predation, we prove the global stability of
constant steady states by constructing energy functionals. Moreover, when the prey adopts
the anti-predation strategy, we establish the existence of non-constant positive steady-state
solutions by applying Leray-Schauder degree theory and prove that no Hopf bifurcation
occurs. These pattern formation results are different from both indirect prey-taxis (which
exhibits Hopf bifurcation) and the case without cross-diffusion (where no patterns emerge).

2. For the three-species Lotka-Volterra food chain model with intraguild predation
and taxis mechanisms, we build the global stability of constant steady states by using
energy functionals. Moreover, we numerically demonstrate that the combination of taxis
mechanisms and intraguild predation can induce rich pattern formations. Notably, our
simulations show that prey-taxis may have a destabilizing effect in food chain model with
intraguild predation, which contrasts with the well-known stabilizing effect observed in
two-species predator-prey systems or the food chain model with alarm-taxis but without
intraguild predation.

3. For the SIS model with a cross-diffusion dispersal strategy for the infected individu-

als, which describes the public health intervention measures, we define the basic reproduc-



tion number Ry. Then we employ a change of variable and apply the index theory along
with the principal eigenvalue theory to establish the threshold dynamics in terms of Ry.
Moreover, we explore the global stability of constant steady states. Finally, we numerically
demonstrate that the cross-diffusion strategy can reduce Ry and help eradicate the diseases
even if the habitat is high-risk in contrast to the situation without cross-diffusion.

4. For the toxicant-taxis model in a time-periodic environment, we prove the existence
of positive periodic solutions and the uniform persistence by applying the uniform per-
sistence theory and Principal Floquet bundle theory. Moreover, we establish the global
stability of non-constant periodic solutions through energy methods. By studying the
effects of the strong toxicant-taxis on the corresponding periodic principal eigenvalue, we
theoretically prove that the strong toxicant-taxis (i.e., cross-diffusion) helps aquatic species
to survive.

Moreover, we develop new ideas to overcome the difficulties caused by the failure of the
comparison principle in cross-diffusion models. For example, the proof ideas developed in
Chapter 5 can be applied to prove the existence of time-periodic/non-constant steady-state

solutions, and uniform persistence for general cross-diffusion models.
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Chapter 1

Introduction

The reaction-diffusion model is a class of partial differential equations that describe
how population densities/concentration in space change over time. It can explain three
major spatial phenomena of interest in ecology: (a) the formation of spatial patterns; (b)
the impact of spatially environmental characteristics (e.g., size, shape, and heterogeneity)
or other factors on species persistence and community structure; (c) waves of invasion by
exotic species [17]. These phenomena are respectively addressed in four classical pioneering
works on diffusion theory: [133], [72, 116] and [38]. Cross-diffusion, a process in which the
density gradient of one species induces an advective flux of another species, has been
widely applied in various reaction-diffusion systems to model the movement of one species
towards/moves away the area with higher density of another species. Examples include,
but not limited to, prey-taxis [68], chemotaxis [69] and toxicant-taxis [32]. Such systems are
generally referred to as reaction-cross-diffusion systems or simply cross-diffusion systems

without confusion.

1.1 General Cross-diffusion Models

A generic cross-diffusion model can be represented as
m
(Ui)t =V ( Z Aij(ul, s 7um)Vuj) + fi(ul, s ,um), r e t>0,
=1

j:
Oyu; =0, x € 00Q,t>0,

(1.1)

where ¢ = 1,--- ,m < oo, u; := u;(z,t) denote the population densities/ concentration of
interacting species at position z and time ¢, and Q@ C R™ (n > 1) is a bounded domain
(habitat) with smooth boundary 09; 9, := % with v denoting the outward normal unit

vector of boundary 02 and the homogeneous Neumann boundary conditions are prescribed



to comply with the closed environment where the species cannot cross the habitat boundary
0Q. Functions f;(uy,--- ,uy) represent the intra- or inter-specific population interactions
(like cooperation, predator-prey, competition, etc). A = A;(ug, -+ ,uy) > 0 are the
coefficients of diffusion and A;; := A;j(u1,- -, um) € R (i # j) account for the coefficients
of cross-diffusion but Z:”]:“ £ A?j # 0. Different forms of A;; represent different diffusion
strategies. Note that the system (1.1) encompasses many well-known models, such as
chemotaxis [69], prey-taxis [68], bacterial pattern formation [89] for m = 2, as well as
indirect prey-taxis [129, 135], alarm-taxis [46] for m = 3. In particularly, when A;,;, =
d(ujy) > 0, Aipjo = wipd (uj,) > 0 and A;; =0 (i # j) for all i # ig or j # jo, the diffusion
terms of the population u;, can be rewritten as A[d(u;,)us,], which means the diffusion of
the population u;, depends on the another population density u;,. This type of diffusion is
referred to density/signal-dependent diffusion, and has been received enormous attention
(e.g., cf. [39, 40, 63, 128, 138]).

For clarity, our thesis only focuses on two types of cross-diffusion: the density/signal-
dependent type cross-diffusion, and the type with constant A;; (such as classical chemo-
taxis [69] and prey-taxis [68]). By introducing such cross-diffusion strategies of limiting
population movement, this thesis incorporates four vital effects: anti-predation tactics of
prey, burglar alarm responses, quarantine for infected individuals and toxicant avoidance
of species into four reaction-diffusion models: indirect predator-prey model, Lotka-Volterra
food chain model, SIS epidemic model, and population-toxicant model, respectively. And

our thesis focuses on

e Investigating the effects of the cross-diffusion strategy on pattern formation or species

persistence;

e Developing some new ideas/methods to overcome challenges arising from the inap-
plicability of the comparison principle, an essential tool in reaction-diffusion models

without cross-diffusion.

In the following sections, we shall introduce these four mathematical models, research

problems and research highlights based on our published journal papers [22, 24, 25].

1.2 An Indirect Predator-prey Model with Cross-diffusion

In ecological systems, some foraging predators may locate the prey by following the
substances emitted from prey species, such as pheromones (kairomones) (cf. [154]), chem-

ical alarm cues (cf. [37]), sexual signals (cf. [159]). This type of foraging behavior, called

2



indirect prey-taxis, was first modeled in [129]. Conversely, prey species may exhibit anti-
predation mechanisms by releasing the toxic or foul smelling stimulus to drive away their
predators [26, 91]. Based on works [26, 91, 129], we focus on the following indirect prey-

taxis system with an anti-predation mechanism:

Ny =dNyAN + (A — N)N — NP, x e t>0,
P, =A[d(S)P]+ (u— P)P+~yNP, z€Q,t>0,
St =dsAS + 7N — 1S, xeQ,t>0,
o,N=09,P=0,5=0, x € 09,

(1.2)

where N := N(x,t) and P := P(z,t) denote the prey and predator densities at position
x and time ¢, respectively. S := S(z,t) is the density of signal released by prey species
N with constant production rate 7 > 0 and natural decay with rate n > 0. A — N and
u — P represent the per-capita growth rate of prey and predators, respectively, where the
constant A > 0 is the so-called carry capacity and the constant p # 0. The predator is
said to be specialist if 4 < 0 and generalist if 4 > 0. The signal is assumed to undergo
random diffusion with a constant rate dg > 0, and d > 0 is a constant denoting random
diffusion of the prey. The predator adopts a signal/density-dependent type cross-diffusion
with a positive rate function d(S). Specifically, the term A[d(S)P] represents that the
predator’s motility is less active when encountering the attractive signals released by the
prey if d'(S) < 0 and demonstrates the indirect prey-taxis mechanism [129, 135]. When
d'(S) > 0, it means that the predator will increase its motility if they come into the toxic or
foul smelling stimulus released by the prey and demonstrates the anti-predation mechanism
of prey [26, 91].

For the predator-prey system, it has been studied for a long time including global
dynamics, traveling waves, pattern formation and so on. The research [135] on (1.2) shows
that the density-dependent type indirect prey-taxis (i.e., d’(S) < 0) can induce the spatio-
temporal periodic patterns (Andronov-Hopf bifurcation), this contrasts sharply with direct

prey-taxis [65] in which no pattern formation happens. Hence, a critical question arises:

e When the prey act anti-predation behavior (i.e., d’'(S) > 0), how does the pattern

formation differ from the case of the indirect prey-taxis mechanism (i.e., d'(S) < 0)?

To explore this question, we shall in Chapter 2 study the global existence of classical
solutions, global stability of constant steady states, and bifurcation as well as existence
of non-constant positive steady-state solutions. Our results will demonstrate that the

anti-predation mechanism induces non-constant steady state patterns without triggering

3



Hopf bifurcation. This behavior differs from the density-dependent type indirect prey-
taxis [135] which exhibits Hopf bifurcation, as well as both direct prey-taxis [65] and the

cross-diffusion-free system (1.2), neither of which demonstrates pattern formation.

1.3 A Lotka-Volterra Food Chain Model with Cross-diffusion

Beyond simple predator-prey dynamics (e.g., lion-gazelle system), natural ecosystems
exhibit intricate trophic webs. For instance, marine food webs span multiple levels: from
plankton to fish, sharks, whales, and ultimately humans, with numerous intermediate
species occupying distinct trophic positions. Here, we consider the foundational three-

trophic-level food chain model with intraguild predation and taxis mechanisms:

up = d1Au + u(l — u) — byuv — yuw, z e t>0,

vy = doAv — €V - (vVVu) + uv — byvw — qv, x €O, t>0, (13)
wy = Aw — xV - [wVeo(u,v)] + vw + youw — w, x € Q,t >0,

Oyu = d,v = 0w =0, x €00t >0,

where Q C R" is a bounded domain with smooth boundary, and u := u(x,t), v := v(x, t),
w := w(z,t) denote the densities of the prey species, primary and top predators, respec-
tively. The parameters d; > 0 are diffusion coefficients, the cross-diffusion term —¢V-(vVu)
describes the directional movement of primary predators toward their prey density gradient
(called prey-taxis mechanism [68]). Similarly, the cross-diffusion term —xV - [wVe(u,v)]
describes the top predators move toward to high gradient of the signal produced as a re-
sult of the interaction between the prey and primary predator. The constants #; > 0 and
02 > 0 represent the mortality rates of the primary and top predators, respectively. The
parameters b; > 0 and v; > 0 (i = 1,2) describe the interaction of interspecies.

For the system (1.3), [66] studied the global dynamics of system (1.3) in a two di-
mensional bounded domain under the assumptions 73 = v = 0 and ¢(u,v) = v, and
proved that no pattern formation occurs. When v1,v2 > 0, the study [46] incorporated
the intraspecific competitions for v and w along with ¢(u,v) = uv, and studied the global
boundedness for 1, v2 > 0, the global stability as well as pattern formation for vy = 9 =0

in one dimensional space. Hence, we ae inspired to investigate
e Whether pattern formation occurs for (1.3) with 7,72 > 0 and ¢(u,v) = v;

e Whether pattern formation occurs for other forms of ¢(u,v) (instead of ¢(u,v) = v)

when v; = 72 = 0 and no intraspecific competition exists for v and w.



In Chapter 3, we shall provide positive answers to these questions. Our results will
demonstrate that prey-taxis can destabilize a positive equilibrium in a three-species Lotka-
Volterra model with intraguild predation, which contrasts with the well-known stabilizing
effect observed in simpler two-species predator-prey systems or three-species Lotka-Volterra

model without intraguild predation.

1.4 An SIS Epidemic Model with Cross-diffusion

To incorporate the effects of human behaviors and public health quarantine measures on
the mobility of individuals during the outbreak of disease such as COVID-19 [60, 74, 131]),

we introduce the cross-diffusion strategy for the infected individuals into an SIS model:

Sp = dsAS + A(x) — 0S — a(x) 25 + B(z)], ze€Q,t>0,
I = diA[y(S)I] + a(x)SS—JrII —[B(z) +n(x)]L, ze,t>0, (1.4)
9,8 = 0,I =0, x €00t >0,

where € C R" is a bounded domain with smooth boundary; S := S(x,t) and [ := I(z,t)
denote the population density of the susceptible and infected individuals at position = €
Q C R™ and time ¢t > 0, respectively. The susceptible individuals are assumed to move
randomly with rate dg while infected individuals adopt a density-dependent type cross-

diffusion with a positive rate function v(S) € C3(]0, 00)) satisfying
7'(8) > 0 for all S € [0, c0). (1.5)

Note that A[y(S)I] = V - (v(S)VI) + V - (I5/(S)VS). The cross-diffusion along with
the condition (1.5) indicates that the infected individuals will move away from the area
with a higher density of susceptible individuals (like quarantine measure) while dispersing
themselves at a rate increasing with respect to the density of susceptible individuals (crowd
avoidance). The model (1.4) has included demography changes (recruitment and death of
population), where the recruitment of the susceptible population is represented by A(x)—6S
with A(x) being a non-negative Holder continuous function on 2 and # > 0 being a constant;
a(z), B(x) and n(x) are non-negative Holder continuous functions on € accounting for
the disease transmission rate, recovery rate, and death rate of the infected individuals,
respectively.

We shall study the SIS epidemic model (1.4) in Chapter 4, and aim to

e explore how the cross-diffusion diffusion strategy can play positive roles in controlling

the spread of disease.



Since this cross-diffusion describes the outcome of quarantine measures to the popula-
tion mobility during the outbreak of infectious disease, our results will elucidate whether
the quarantine measures help to control the disease spread from a theoretical perspective.
As we know, this is the first work on the SIS epidemic model (1.4) with cross-diffusion (i.e.,

v(S) is non-constant) and there are no results available for such kind of models.

1.5 A Population-toxicant Model with Cross-diffusion

In aquatic ecosystems, species may detect and avoid toxicant [9, 132]), and the input of
toxicant may exhibit temporal periodicity driven by seasonal factors [14]. Therefore, we are
inspired to incorporate the negative toxicant-taxis (cf. [32]), and spatially inhomogeneous

and time-periodic toxicant input into a population-toxicant system, which reads as

u = diAu+ xV - (uVw) + u(r —u —mw), x€Q, t>0,
wy = doAw + h(x,t) — aw — Puw, reN, t>0, (1.6)
dyu = dpw =0, eI, t>0,

where 2 C R" is a bounded domain with a smooth boundary. u(x,t) and v(z,t) represent
the species and toxicant densities at position x and time ¢, respectively. The species u
diffuses through random diffusion diAwu with the diffusion rate d; > 0, and cross-diffusion
+xV - (uVw) with the sensitivity parameter xy > 0. The term +xV - (uVw) describes that
species move from areas with high toxicant concentrations to regions with lower toxicant
concentration (i.e., negative toxicant-taxis). The toxicant w diffuses randomly with rate
ds > 0. The positive constants r, m, « and ( represent, respectively, the species’ intrinsic
growth rate, the toxicant-induced death rate of species, the toxicant’s loss rate due to envi-
ronmental detoxication or microbial degradation, and the toxicant uptake rate by species.
The function h(z,t) represents the (spatio-)temporally inhomogeneous input of toxicant
into the habit 2.

For (1.6) with the time-periodic toxicant input h(z,t), the work [86] established the
global stability of periodic solutions and explored the asymptotic profiles of positive peri-
odic solutions when diffusion rates are small or large in the absence of toxicant-taxis (i.e.,
X = 0). Their results indicate that the toxicant input affect the species persistence and
extinction.

In Chapter 5, we shall study (1.6) with xy > 0 and a more general toxicant input

function h(z,t), and investigate



e whether the cross-diffusion diffusion strategy (i.e., toxicant-taxis) enhance aquatic

population persistence in heterogeneous polluted environments.

In fact, (1.6) with the cross-diffusion term (i.e., x > 0) is a non-monotone dynamical
system, thus the asymptotic theory of monotone systems (c.f. [157, Chapter 3]) and the
comparison principle become inapplicable. As a result, no established methods in the
literature can be employed, making the analysis of global dynamics for (1.6) with x > 0
significantly more challenging. Our proof in Chapter 5 develops some new ideas/outlines
to overcome these difficulties, which can be applied to prove the existence of time-periodic
or non-constant steady-state solutions, and uniform persistence for general cross-diffusion

models.

1.6 Organization of the Thesis

The organization of this thesis is below:

Chapter 2 will explore an indirect prey-taxis system with an anti-predation mechanism
(1.2). Section 2.2 will establish the global in-time existence and uniqueness of classical
solutions, while Section 2.3 will examine the global stability of constant steady states. In
Section 2.4, we shall demonstrate that the anti-predation mechanism can generate steady-
state bifurcation but cannot induce Hopf bifurcation. Finally, Section 2.5 will prove the
global existence of non-constant positive steady-state solutions.

Chapter 3 will investigate a three-species Lotka-Volterra food chain model with in-
traguild predation and taxis mechanisms (prey-taxis and alarm-taxis) (1.3) in an open
bounded interval. Section 3.2 will prove the existence of global classical solutions with
uniform-in-time bounds. Section 3.3 will explore the global stability of constant steady
states. In Section 3.4, we shall conduct linear stability and instability analyses to study
possible pattern formation. Finally, Section 3.5 will numerically verify theoretical analysis
in Section 3.4 and explore the effects of taxis mechanisms.

Chapters 2-3 focus on the effects of cross-diffusion on pattern formation. In the following
two chapters, we shift our focus to the effects of cross-diffusion on species persistence.

Chapter 4 will study an SIS model with a cross-diffusion dispersal strategy for infected
individuals (1.4). Sections 4.2 and 4.4 will establish the existence of global classical solu-
tions and global stability, respectively. Section 4.3 will give a variational expression of the
basic reproduction number Ry, and explore its properties as well as the threshold dynamics
in terms of Ry. Section 4.5 will use numerical simulations to illustrate the applications of

our analytical results and speculate on unproven results.

7



Chapter 5 will consider a population-toxicant model in a time-periodic environment
with toxicant-taxis (1.6). In Section 5.2, we shall establish the global existence of classical
solutions and the wultimately uniform boundedness. Section 5.3 will prove the existence
of positive periodic solution and uniform persistence, and theoretically show that a large
coefficient of cross-diffusion can enlarge the interval of uniform persistence. Section 5.4 will
establish the global stability of the semi-trivial periodic solution, as well as the uniqueness
and global stability of the positive periodic solutions. Chapter 6 will summarize our results
in Chapters 2-5 and list some open questions.

For clarity, we shall abbreviate [, fdz, || f|l1r(q) and f(;[ Jo fdzdt as [ f, || fllzr and
‘[QT f, respectively. Additionally, we clarify that the results of Chapters 2-4 have been
published as our papers [22, 24, 25].



Chapter 2

Global Dynamics of an Indirect
Prey-taxis System with an
Anti-predation Mechanism

2.1 Introduction and Main Results

We clarify that the context presented in this chapter has been published in our journal

paper [24].

2.1.1 Introduction

Prey-taxis is the direct (attractive or repulsive) movement of predators along prey den-
sity gradients. It was first proposed by Kareiva and Odell [68] to explore the consequence
of the predator-prey interaction between the ladybug beetle Coccinella septempunctata
(predator) and the golden aphid Uroleucon nigrotuberculatum (prey). The model proposed

in [68] in its generalized form can be formulated as

N, = dyAN + Nf(N) — PF(N), zEQt>0,
P, =V - (d(N)VP) =V - (P{(N)VN) +yPF(N) + Pg(P), € Q,t>0, (2.1)
d,N =08,P =0, x €09,

where N = N(z,t) and P = P(x,t) denote the prey and predator densities at position z
and time ¢, respectively, and dy > 0 is a constant denoting the prey diffusivity. The term
V- (d(N)VP) describes the predator’s diffusion with a prey-dependent diffusion coefficient
d(N) > 0, d(N) < 0, and —V - (P{(N)VN) accounts for the prey-taxis with a prey-
dependent prey-tactic coefficient £(IN) > 0. The function F'(N) is the so-called functional
response function while f(N) and g(P) represent the per-capita growth rate of prey and
predators, respectively. The commonly used forms for f and g are f(N) = A — N where

A > 0 is the so-called carry capacity and g(P) = u — P with g # 0 where the predator

9



is said to be specialist if 4 < 0 and generalist if g > 0. The system (2.1) has been
extensively studied in recent years, we refer the readers to [16, 49, 64, 65, 79, 80, 122, 152]
and references therein for more related works.

Different from the process of direct prey-taxis described by (2.1), some foraging preda-
tors may locate the prey by following the density gradient of substances, such as pheromones
(kairomones) (cf. [154]), chemical alarm cues (cf. [37]), sexual signals (cf. [159]), smells and
so on, which are emitted from prey species. For instance, Parasitoids exploit both plant
volatiles and herbivore pheromones to locate their insect prey [35], the wolf spider Pardosa
milvina moves along stimulus released by crickets [52]. This type of foraging behavior is
called indirect prey-taxis, which was first modeled by Tello and Wrzosek [129]. Its general

form reads as

Ny =dNyAN + Nf(N) — PF(N), x € Q,t>0,

P, =V .- (d(S)VP) -V - (P{(S)VS)+~yPF(N)+ Pg(P), z€Q,t>0, (2.2)
St =dsAS + 7N — 1S, reQ,t>0,
o,N=09,P=0,5=0, x € 0N.

All notations and parameters have the same interpretation as in Section 1.2.

Compared to the direct prey-taxis model (2.1), the indirect prey-taxis model (2.2)
adds one equation for the released signal S and the movement of predators consists of
two parts: diffusion part V - (d(S)VP) and prey-taxis part —V - (P£(S)VS) directed by
the signal, where both diffusion and prey-taxis coefficients depend on the signal density.
The term V - (d(S)VP) means the diffusion of predators with positive random diffusion
coefficient d(S). —V - (P&(S)V.S) is referred to the indirect prey-taxis describes the biased
diffusion of predators towards the regions of higher density of stimulus rather than prey
with coefficient £(S) if £(S) > 0 [129, 135], and engraves the predators retreat from the
area of higher density of stimulus with coefficient £(.S) if £(S) < 0, which occurs in the
occasion where prey act anti-predation behavior by using stimulus [26, 91].

Some results on (2.2) with £(S) > 0 (i.e., indirect prey-taxis system) have been devel-
oped. We refer to [2, 129, 134, 160] for the case with constant d(S) and £(S), and [139]
for the case in which d(S) is constant but £(S) is non-constant. However, when both d(.5)
and £(.5) are non-constant, there are only two recent works: [96] for general d(S) and £(.5),
and [135] for special case where £(S) = —d/(S). In such a special case £(S) = —d'(5), the
diffusion terms of the second equation in (2.2) can be rewritten as A[d(S)P], which de-
notes that the diffusion of predator P is dependent on the density of signal S and is said to
signal /density-dependent diffusion if d’(S) # 0. Specifically, the term A[d(S)P] represents
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that the predator’s motility is less active when encountering the attractive signals released
by the prey and is analogous to “density-suppressed motility” (cf. [39]) if d'(S) < 0. When
d'(S) > 0, it means that the predator will increase its motility if they come into the toxic or
foul smelling stimulus released by the prey and demonstrates the anti-predation mechanism
of prey. The results in [135] demonstrate that the density-dependent type indirect prey-
taxis can induce the time-periodic patterns (Andronov-Hopf bifurcation) even when the
predator P adopt the Holling type I functional response (i.e., F'(N) = N), which contrasts
sharply with direct prey-taxis [65]. Hence, it is natural to ask:

e When the prey act anti-predation behavior (i.e., d'(S) > 0), how does the long-time
behavior/the population distribution differ from the case of the indirect prey-taxis

mechanism (i.e., d'(S) < 0)?

To explore this question, we focus on the following indirect prey-taxis system with an

anti-predation mechanism

(N; = dNAN + AN — N2 — NP, reNt>0,
P, = A[d(S)P] +puP — P2 +yNP, x€Q,t>0,
St =dsAS + TN —nS, xeQt>0, (2.3)
o,N =08,P =9,5=0, x € 09,

L (IV, P, S)(z,0) = (No, Po, So)(z), =€,

where Q@ C R"™ (n > 1) is a bounded domain with smooth boundary and d'(S) # 0. The
parameter X, v, 7 and n are positive constants and p € R is more general than the one in
[96]. And the density-dependent function d(.S) accounts for the dispersal coefficient of the

predator and fulfills the assumptions as below
(Hp) d(S) € C3([0,00)) and d(S) > 0 on [0, 00).
Our main goals include the following:

(A.1) Establish the global well-posedness of solutions (global existence and stability) to

(2.3) under suitable conditions;

(A.2) Investigate the existence of spatially inhomogeneous patterns bifurcating from con-

stant steady state when the predator employs an anti-predation strategy.

2.1.2 Main Results
The first main theorem on the global boundedness of solutions of (2.3) is given below.
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Theorem 2.1 (Global boundedness). Let & C R™ (n > 1) be a bounded domain with a
smooth boundary. Assume that (No, Py, So) € [W1*(Q)]? satisfies No(x), Po(x), So(z)>
0 (£ 0) in Q and (Hy) holds. Then the system (2.3) admits a unique classical solution
(N, P,S) € [C°(2x [0,00)) NC?H(Q x (0,00))]? with N, P,S > 0 in  x (0,00). Moreover,

the solution (N, P, S) is uniform-in-time bounded in the following sense
INC D) lwree +IPC )z +1SC)llwree <M for all t >0, (2.4)
where the constant M > 0 is independent of t. Furthermore, one has
INC,8)][Lee < Mo := max{A, || No|[ oo }- (2.5)
Remark 2.1. In fact, we may find a constant K > 0 defined in (2.25) such that
1S(- )|~ < K, (2.6)
where K is particularly independent of t, i and .

Next, we aim to study the global stability of solutions to (2.3). For convenience, we

define the regions R; (i = 1,2,3,4) (see in Figure 2.1) as below

Ri={(A) s p < =My} Ro = {(, A) : =Ay <pp < O
Rs3 = {(,LL,)\)10<,U< >\}, Ry = {(/%)‘):NZ >\}

The constant steady state (N, P, S¢) of (2.3) satisfies
N (A—=N.,—-PF.)=0, P.(u—P.++vN.)=0, 7N.—nS.=0.

One can easily solve the above equations to obtain

(0,0,0) or (A,0,7%), if (4, \) € Ry,
0,0,0) or (A,0, 22 N*, P* 5%, if (1, \) € Ra,
(N.. P,. 5,) = ( ) or (A,0,72) or ( ) (1, A) € Ra
(0,0,0) or (0, 4, ) r(A,0,%%) or (N*, P*,8%), if (1, ) € R,
(0,0,0) or (0,1,0) or (X,0,7%), if (1, A) € Ra,
where
* * * >‘_/1' )"7+N T(A_/J’)>
N*, P* §%) = , , . 2.7
( ) <7+1 y+1 n(y+1) 27)

Then, we have the following results on the global stability of solutions to (2.3).
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0 I
Figure 2.1: The plot of regions R; (i = 1,2,3,4).

Theorem 2.2 (Global stability). Let the conditions in Theorem 2.1 hold and (N, P,S)
be the solution of (2.3) obtained in Theorem 2.1. Then we can find constans C; > 0,
ki >0 (i =1,2,3,4,5) independent of t and some constant ty > 0 such that the solution

of (2.3) has the following convergence properties.

(1) If (1, ) € Ry, then ()\, 0, 7;7—)‘) is globally asymptotically stable such that for all t > tg

A Cre ™, if p< =M\,
IN = Allzee + [[Pllpe + |18 = — ||z < ~ , (2.8)
U] Co(L+1t)7 "2, if p=—Xy.
(2) If (u,\) € Re UR3 and
1 2 d’ 2

A+ u 4dndg ogsrgﬁbz(nmo d(s) ’
then (N*, P*,5*) is globally asymptotically stable such that

IN — N*|| oo + | P — P*||oe + ||S — S*|| 1 < Cse™5" for allt >to.  (2.10)

(8) If (u, \) € Ry and

A |d'(S)I?
> ) 2.11
77 2nds 0<5< Sl d(S) @10
then (0, i, 0) is globally asymptotically stable such that for all t > tg
Cerat, if p> A,
[Nllzee + 1P = pllzee +[1S]|zee < _ , (2.12)
Cs(1+t) ", difu=A\
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It is easy to verify that (0,0,0), ()\, 0, %‘) and (0, i, 0) each have the same parameter
regions of linear stability in both the system (2.3) and the corresponding the ordinary
differential equations (ODE) system (c.f. [24]). This implies no spatial patterns bifurcate
from (0,0,0), (X0, %) and (0, i, 0) for any d(S) satisfying (Hy). Moreover, for the same
reasons, there are no spatial patterns bifurcating from (N*, P*, S*) when the predator takes
random dispersal (i.e., d'(S) = 0). For the case of d’(S) < 0, which describes the indirect
prey-taxis, [135] demonstrated that the density-dependent type indirect prey-taxis in (2.3)
can induce the time-periodic patterns, which contrasts sharply with direct prey-taxis [65].

Therefore, a relevant question arises: can spatial patterns bifurcate from (N*, P*, S*)
when the predator employs density-dependent dispersal with an anti-predation strategy
(i.e., d'(S) > 0). To give a satisfactory answer to this question for general d(S) is quite
hard due to excessive technical computations and abstraction of d(.S). Below we shall focus
on a specific simple case d(S) = dp + 5 to discuss possible bifurcations near (N*, P*, S*)
and prove the existence of non-constant steady states. However, the analysis directly
extends to other forms of d(S) and results can be obtained similarly.

Before stating our results, we introduce some notations. Let 0 = 01 < 09 < 03 < - -~
be the eigenvalues of the operator —A on  with the homogeneous Neumann boundary
condition. Denote

gL .= #[a?nd]vdsdp + om (ndndp + dyds P* + dpdgN*)
[H (om)| (2.13)
+ (dnP*n+dpN*n+ dsN*P* +~yN*P*dg) + (1 + v)N*P*n/on], m > 2,

where

FN*(A(1 =) — 21)

H(z) := 22dndgS* + z(ndy + dgN*)S* +
(Z) zranas Z(UN S ) N1

with z >0,  (2.14)

and

—(ndy + dgN*)S* + \/ (ndy + dsN*)2(S*)? + ddydgS*TN* =200

2.15
2dndgS* ’ ( )

E:

which is the positive root of H(z). Then we have the following bifurcation results.

Theorem 2.3 (Bifurcation). Let 0, (m € NT) be the eigenvalues of the operator —A with
the homogeneous Neumann boundary condition and v, T,n,dn,dp,dg be fized parameters.
Assume that BL, H(z) and & are defined in (2.13), (2.14) and (2.15), respectively, and
(1, A) € RaUR3. Suppose d(S) = dp, + BS. Then the following conclusions hold.
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(1) System (2.3) has no Hopf bifurcation arising from (N*, P*,S*) for any B > 0;

(2) System (2.3) undergoes a steady state bifurcation near (N*, P*,S*) at f = B;r if the

following conditions are satisfied

(z) <,u<)\

(ii) there exists an integer j > 2 such that o; < G.

From Theorem 2.3, we see that the anti-predation mechanism only yields steady state
bifurcation arising from (N*, P*, S*), which is different from the indirect prey-taxis. Since
the aforementioned steady state bifurcation is just local, we shall show the global existence
of non-constant steady state solutions (i.e., stationary patterns) of (2.3) with d(S) =
dp + BS by applying Leray-Schauder degree theory.

Therefore, we consider the following stationary problem:

dNAN + AN — N2 — NP =0, x €,
Al(dp + BS)P] +pP — P24+ ~yNP =0, z€Q, (2.16)
dsAS —nS + 1N =0, x € €,
oyN =09,P=29,5=0, x € 0.

Theorem 2.4 (Stationary patterns). Let o, (m € N1) be the eigenvalues of the operator
—A with the homogeneous Neumann boundary condition and ~,T,n,dyN,dp,ds be fixed
parameters. Then there is a positive constant B* such that (2.16) has at least one non-

constant positive solution if B > 6* and the following conditions are satisfied:
(i) 20 << )

(i1) there exist an integer j > 2 such that @ € (0j,0j41);
J
(iii) the sum > dim E(o,,) is odd,
m=2

where & is defined in (2.15) and E(oy,) is the eigenspace corresponding to o, in H ().

Remark 2.2. When = 0 and hence d(S) = dp is constant, we know from Theorem
2.2 that the constant positive solution (N*,P* S8*) is globally asymptotically stable for
any (pu, \) € RaURs3, and hence (2.16) has no non-constant positive solution. However,
Theorem 2.4 shows that, under suitable additional assumptions, (2.16) has at least one
non-constant positive solution for large 5 > 0. This implies that the anti-predation B helps

create spatial heterogeneity.
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By Theorem 2.4, we obtain the result on the system (2.16) for the case of one-dimensional

space Q = (0,1) with the constant [ > 0.

Proposition 2.1. Let 0, (m € NT) be the eigenvalues of the operator —A with the ho-
mogeneous Neumann boundary condition and v, 7,n,dyx,dp,dg be fixed parameters. Then
there is a positive constant * such that (2.16) has at least one non-constant positive solu-

tion if B > B* and the following conditions are satisfied:

(i) 2052 < <

(ii) there exists an integer j > 2 such that (]_ZI# <

S|
AN
~
Y

J
(i1i) the sum > dim E(o,,) =7 — 1 is odd,

m=2

where @ is defined in (2.15), E(om) is the eigenspace corresponding to oy, in H(Q).

2.2 Global Boundedness: Proof of Theorem 2.1

In this section, we shall prove Theorem 2.1 by semigroup estimates and Moser iteration.
¢i and M; (1 = 1,2,3,---) are used to denote the generic positive constants which may
vary in the context. First, the local existence of classical solutions to the system (2.3) can

be proved by Amann’s theorems [7, 8] (see details in [96]).

2.2.1 Local Existence and Preliminaries

Lemma 2.1 (Local existence). Let the conditions in Theorem 2.1 hold. Then there exists
a Tmax € (0,00] such that the system (2.3) admits a unique classical solution (N, P,S)
€ [CO(Q2x [0, Tinax)) N O (Q x (0, Tinax))]? with N, P, S > 0 in Qx (0, Tynax). Furthermore,
if Thax < 00, then

tfliTrgax(HN(-,t)HLw HIPC )L + [1SC Dlwree) = oo

Lemma 2.2. Let (N, P,S) be the solution of (2.3) obtained in Lemma 2.1. Then one has
0 < N(-,t) < My :=max{\, |[|[No||p=} for all x € Q,t € (0, Tynax)- (2.17)

Proof. Using the same arguments as the proof of [64, Lemma 2.2], we get (2.17). O
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Lemma 2.3. Let (N, P,S) be the solution of (2.3) obtained in Lemma 2.1. Then one has

/QP(-,t) < M, for all t € (0, Tonax), (2.18)
and
/QS”(-,t) < My ((7/n)" + 1) for all t € (0, Trmay), (2.19)
where
Muz(M+w@+imeﬁ£Rth:def1(%?>HW+W%HMQL

Proof. Integrating the second equation of (2.3) over 2, using (2.17) and Young’s inequality,

4 P+/P2+/P_M/P+7/NP+/P
dt Jo 0 0 Q Q Q

OM+M%+DAP

one derives

IN

IN

1/132+ (Il + Mo + D)* 9]
Q

2 2

Then it follows that

2
! [ py [ pelileaie o]

which, along with Gronwall’s inequality, gives (2.18) directly.
Next, we show (2.19). Multiplying the third equation of (2.3) by S*! (n > 1), and

using (2.17) and Young’s inequality again, we have

d/ S"—i—n(n—l)ds/ S”_QIVS]z—i—nn/ s ngon/ snl
dt Jo Q Q Q
(2.20)
< mL/ S™ 4+ M,
2 Ja

where M := (2(n — 1)/nn)" "' (1 My)"|€|. Then (2.20) leads to
d _
[ 5+ [ 5" < et = 1/t (Mool
which alongside Grénwall’s inequality implies
/ S < (n—1)""t (27 My /nn)"™ |9 +/ Sy
Q Q

< My ((r/n)" +1),
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and hence (2.19) holds. The proof of Lemma 2.3 is completed. O

2.2.2 Boundedness of Solutions

Lemma 2.4. Let (N, P,S) be the solution of (2.3) obtained in Lemma 2.1. Then, there
admits a constant Mg > 0 such that

IS(, ) [[pyiee < Mg for all t € (0, Tinax)- (2.21)
Proof. We rewrite the third equation of (2.3) as
S = dsAS —dsS + 1N + (ds — ?7)S. (2.22)

Denote the Neumann heat semigroup in € by (eAt)t>0. Then using Duhamel’s principle
to (2.22), one has

t
S(,t) = els(A-D g 4 / et=)As(A=1 - N 4 (dg — 1)S](-, s)ds
0 (2.23)

t
< (tds(d-D g, | / t=9)ds(A=1) (2 N 1 44 5)(., )ds.
0

By the well-known semigroup estimate [147, Lemma 1.3], we can find a constant o1 > 0

depending only on €2 such that
t
ISC,8)llzee < [l 5BV Spll e + / et~ ED TN + dgS)(-, )1 ds
0
t 1
<ailSollie +on [ (14 (0= 9)7) e ECINrN + dSnds
0

g 1 n 1 1
< 01| Sol| e + é <7'M0|Q\rlz +dsMg ((t/n)" + 1)n> . <1 + d;F(l/Q)) ,

(2.24)
where we have used (2.17), (2.19) and I'(-) denotes the Gamma function. Therefore, (2.6)
follows by letting

Q= Ko[l+ (r/d5+((r/n)"+1)%) : (1+dé)], (2.25)

1
with Kg = JlHSOHLOO + 01 (M()’Q‘% =+ M;)(l +T (1/2)) independent of t,,u,’y.

Using the semigroup estimate again, we can find a constant oo > 0 depending only on
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) such that
t
IVS(, )|z < Ve sAD Sy Lo +/ |Velt=2)dsA=D [z N + (dg — 1) S](-, 5) | oo s
0

t
<1+ oo(tMy+dsI'y + nfl)/ (1 +(t— s)_%) e~ Mt Dds(t=s) g
0

O’Q(TM() +dgI'1 + T}Fl)

<
<c+ (v + Dds

(1 + (A +1)iaET (1/2))

for all ¢ € (0, Timax), which together with (2.24) gives (2.21) directly. O

Lemma 2.5. Let (N, P,S) be the solution of (2.3) obtained in Lemma 2.1. Then, there
admits a constant My > 0 such that

|P(-,t)||pe < My for all t € (0, Trnax)- (2.26)

Proof. Multiplying the second equation of (2.3) by P¥~1(k > 2), and integrating the result

over {2, we have

ld
kdt g

= —(k:—l)/ Pk‘ld’(S)VP-VS+u/ P'“rv/ NPk,
Q Q Q

Pr 4 (k—1) [ PF24(S)|VP]> + [ PFH
e

From (Hp) and 0 < S(-,t) < @, there admit constants §; > 0 (¢ = 1,2,3,4) such that
81 < d(S) < 6, (2.28)

and
53 < |d'(S)] < 4. (2.29)

Then applying (2.28), (2.29), (2.5), (2.21) and Young’s inequality, we derive from (2.27)
that

1d/Pk+61(k—1)/P’f—QyVP12+/P’f+1+(k—1)/P’f

kdt Jo Q Q Q

g(k—1)54/P’f1|VP|WS\+M/P’<+7MO/Pk+(k—1)/Pk
Q Q Q Q

-1 —1)62
< k1) )/Pk_2|VP|2+(k )64/Pk|VS|2+(k—1)(|u|+7Mo+1)/Pk
Q Q Q

- 2 201
-1 2M2
S(W)/P’“‘2|VP|2+(I<:—1) OiM; + || + Mo + 1 /Pk,
2 Q 251 Q
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which yields

d/Pk+k(k:—1)/Pk+51k(k_1)/P’“_2|VP|2§clk(k—1)/Pk, (2.30)
dt Jo Q 2 Q Q

2172
where ¢; = 5‘52{3 + |p| +vMo + 1 > 0 is independent of ¢ and k.

Then using the Moser iteration process (cf. [123] or [3]) and (2.18), from (2.30) one

obtains (2.26) readily. Hence, we complete the proof of Lemma 2.5. O

Proof of Theorem 2.1. The combination of (2.17), (2.21) and (2.26) gives a constant
c1 > 0 such that
INC Ol +1SC O llwree + [1PC ][ < e (2.31)

Noting (2.31), using Duhamel’s principle to the first equation of (2.3) and proceeding with
the similar way as the proof in Lemma 2.4 alongside the semigroup estimate [147], one has

IVN(-,t)|| e < c2, which together with (2.31) and Lemma 2.1 yields Theorem 2.1. O

2.3 Global Stability: Proof of Theorem 2.2

In this section, we shall show (N, P, S) obtained in Theorem 2.1 will converge to con-
stant steady states and give the convergence rate. We start by presenting a result that will

be utilized in the subsequent analysis.

Lemma 2.6. (Bardlat’s Lemma [11]) If g : [1,00) — R is a uniformly continuous function

such that tlim ffg(s)ds exists, then tlim g(t) =0.
—00

—00

Next, we improve the regularity of the solution (N, P, S).

Lemma 2.7. Let (N, P,S) be the solution of (2.3) obtained in Theorem 2.1. Then there
exist 0 € (0,1) and Ms > 0 such that

(N, P,S)(-,1) < Ms, for allt > 1. (2.32)

||C'2+9’1+%(§_2><[1,oo))

Proof. Based on (2.4), (2.32) is a consequence of the Holder estimates for quasilinear
parabolic equations (cf. [111, Theorem 1.3 and Remark 1.4]) and the standard parabolic
Schauder theory [76]. The proof details can follow the similar procedures as the proof in

[145, Lemma 3.4]. O
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Proof of Theorem 2.2(1). We consider the following energy functional

Li(t) == L1(N, P, S) :—fy/Q(N A /\ln> /P+272/Q<5—?>2. (2.33)

Define f(y) =y — y«Iny. Then f'(y.) = 0 and the Taylor’s expansion entails

v-v—vnl =) - fo) = L2 00 = B -wrzo sy

for all y,y. > 0 and z is between y and y.. Then, we take y = N, y. = X in (2.34) to

obtain

N A
N-X—Aln—=-""“(N=-)?2?>0 2.35
n~ 2z%( )= >0, (2.35)

where z; is between N and A. Hence, (2.35) together with (2.33) indicates £1(¢) > 0 and
“=” holds iff (N, P,S) = (\,0, %).
Simple calculations along with the fact (4, \) € Ry (i.e., u + v\ < 0) give that

d [VN? st 2
—L —~d S A [ P
dt 1(t) < —vdn o N2 2 / IVSI"+ (n+ /

7 2 v _22_ 2 o _
2/9(N N 272 Q(S 77) /QP = —ahl,

(2.36)

where Fy(t) := [o(N = A)*+ [, (S — )2—|—fQP2 and ¢y := min{%,%,l}.
Since El( ) >0, (2.36) implies that [ Fy(t)dt < 2 = L£1(1) < oo. And we deduce from
(2.32) that Fi(¢) is uniformly continuous in [1,00). Then Lemma 2.6 yields

) A
Jim (1N = Nlgz + 1Pl + 18 = 77 2) = 0.

Therefore, following the similar procedures as the proof of [64, Lemma 4.2], we can find

positive constants ¢; (i = 1,2,3) and ¢; such that

IN = Alzz + [[Pllpy + 1S = 2 2 < ez, if o< —7yA,
IN = A2 + 1Pllpr + 1S = e < es(+ )71, if p= =7y,

for all ¢ > t;. By (2.32), Theorem 2.1 and Gagliardo-Nirenberg inequality, we get (2.8)
directly. O

Proof of Theorem 2.2(2). We define the following energy functional

£alt) = L2(N, P.S) == A Fx (1) + Folt) + 2% /Q(s $2,

21



where F,(t) = [, (y y —y*ln L ) y = N, P. Proceeding the same procedures as (2.35),
we obtain Eg( ) > 0. Moreover, Eg( )=0iff (N,P,S)=(N*, P*,S%).

On the other hand, after some calculations, one has

%52( £) < Jp — ;/Q(N N*)? - /Q(P P2 '2”77 (5~ 542, (2.37)
where J; == — [, YT A1Y; with
A YN*dy 0 0
vi=|S2], 4= o P 2488
% 0 P*d’2(S)S ’ynil—gSQ

Noting P* := /\7% in (2.7) and calculating directly, we can verify that the matrix A; is

positive definite iff

WD) )P

2.38
M +p o dnds d(S) (2.38)

Moreover, (2.38) is ensured by the condition (2.9). Hence, there is a constant ¢; > 0 such

that
VT AV, IVN]? |[VP]*  |VS]?
/gl “Scl/Q(N2 P2 52 )

Therefore, (2.37) can be updated as

Geaty <=3 [ -np- [Py il (552

Then, following the same way as the proof of Theorem 2.2 (1), one can show that
Jim ([N = N7|[2 + ([P = P¥[[ g2 + [|S = §7([2) = 0
— 00
We proceed same way as the proof in [64, Lemma 4.2] again to get
IN — N*|z2 + [P — P*||p2 + [|S — S*||12 < cze™ 2" for all t > t5

with some positive constants ca, c3 and to. Applying (2.32), Theorem 2.1 and Gagliardo-
Nirenberg inequality again, we get (2.10) readily. O

Proof of Theorem 2.2(3). Define the following energy functional
L3(t) :== L3(N, P,S)

2
I [ (s ) o [ [
Q n
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Similar to the proof of (2.35), one obtains that £3(t) > 0 and L3(t) = 0 iff (V,P,S) =

(0, 1, 0).
Differentating £3(t), we have

d 272\
—L3(t) JQ—/N2 T /(P—M)Q—/LT]/S2+NT/SN
J3
2 _ 20, _ 2 2
A A)/N_T(u )\>/NP—T/N3—T/N2P,
n Q n Q nJa nJa

where Jy := — fQ Y2TA2Y2 with

(2.39)

YN 72dy N? 0 0
N n
2 2 4
Y, = % and Ay = 0 27 )xvpi]d(S) T )\u’;ln(S)S
vs 2 \ud' (S)S 9
S 0 i udgS
T2Ald'(

Then A, is positive definite iff v > gl) , which is ensured by noting (2.11). Hence,

2ndsd(
there is a constant ¢; > 0 such that

_ T [VN[? | [VP? | [VSP
Jo = _/QY2 AsY, < _CI/§;< N2 + P2 + 52 <0. (240)

As for J3, using Young’s inequality, one has

T2 272\
Jgg—j/NL/(P—m?—“;/SZ,
n Jo m Ja Q

which together with (2.40), (2.39) and A < p yeilds

d 7'2#/ 2 272A/ 2 ;m/ >
) TR N A [(pop2 BT [ g2 (2.41)
dt a(f) < 2n Jo m Q( 2 2 Jo

Then, we follow the same way as the proof of Theorem 2.2 (1) to show that
Jim ([Nl 2 + [P = gl g2 4 [1S]]2) = 0
— 00

Moreover, similar to the proof in [64, Lemma 4.2], we can find some positive constants

¢ (1=2,3,4) and t3 such that for all ¢ > t3

INllz2 + 1P = pllr2 + (18]l 2 < eze™, if pp > A,
INlgz + 1P = pllzz + 1Slpe < ea(@+6)71 if p= A,

which alongside (2.32), Theorem 2.1 and Gagliardo-Nirenberg inequality implies (2.12)
readily. O
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2.4 Bifurcation Analysis: Proof of Theorem 2.3

In this section, we shall analyze the stability of the positive constant steady state
(N*, P*,S*) and discuss Hopf/steady state bifurcation arising from (N*, P*, S*) for the
predator-prey system with anti-predation d(S) = dp + £S. We assume (u, ) € Ro UR3
throughout this section.

Before proceeding, we introduce some important notations used in the sequel. Let
0 =01 < 09 <03 < --- be the eigenvalues of the operator —A on {2 with the homogeneous
Neumann boundary condition. We denote by F(o,,) the eigenspace corresponding to o,
in H(Q). Let X = [HY(Q)]? and {0,,; : j = 1,2, ,dim E(0,,)} be an orthonormal basis
of E(op,). Then

00 dim E(om)
X=PX, and X, = Xy, (2.42)
m=1 j=1
where X,,,; = {cOnj, ¢ € R3}. Denote
dnN Uy (u) AN — N2 - NP
O(u) = | d(S)P and ¥(u)= | Uy(u) | =| uP—-P?>+yNP |,
dsS s(u) —nS+ 71N

where u = (N, P, S)7. Then (2.3) can be rewritten as

Ou
Fri Ad(u) + U(u).

The linearized system of (2.3) at the positive constant steady state u* = (N*, P*, §*)7 is:

%J = LU with L£=®y(u")A+ ¥yu(u),

where U := u — u* and

dn 0 0 —N* —=N* 0
Dy(u*) = 0 d(s*) d(s*)pP* and UYy(u*)=1| yP* —-P* 0
0 0 ds 0 -

By a simple calculation, the characteristic polynomial of the matrix —o,,®y(u*) +

Uy, (u*) is given by

o + B1(B,0m)a” + Ba(B,0m)a + Bs(B,01m) = 0, (2.43)

24



where
Bi(B,0m) =0m (ds +d(S*) +dn) +n+ P*+ N* >0,

Bo(B,0m) =02, (dsd(S*) + dyds + dnd(S*))
+om (n(d(S*) + dn) + P*(ds + dn) + N*(ds + d(S7)))

(2.44)
+ (P* 4+ N+ (1+~)N*P* >0,

B3(B,0m) =03 dydsdp + o2, (ndndp + dydsP* + dpdsN*) + Bo, H(om)
+om (dNP*n+dpN*n+ dgN*P* +yN*P*dg) + (1 + v)N*P*n

with
0 N*(AM(1—~) —2
(2) == 22dndsS* + z(ndy + dsN*)S* + LA (7 n ,1Y) ,u).

A direct calculation yields

T(B,0m) := B1(B,0m)B2(B,0m) — B3(83,0m)
(2.45)
= blagl + bQO'Z,L + b30’m + TN*,BP*Um + b4,
where

by =d%(d(S*) + dy) + d*(S*)(dn + ds) + d%(ds + d(5*)) + 2dgdnd(S*) > 0,

by =n(d(S*) + dn)(2ds + d(S*) + dn) + P*(ds + dn)(ds + 2d(S™) + dn)

+ N*(ds + d(5*))(ds + d(S*) + 2dy) > 0,
(2.46)
by =dg(P* + N*)n + d(S*)(P*n + N*P* + yN*P*) + dy(N*n + N*P* + yN* P*)

+ (n+ P*+ N*)(n(d(S*) + dn) + P*(ds + dn) + N*(ds + d(5%))) > 0,
by =n*(P*+ N*) + n(P* + N*)* + (1 +)(P* + N*)N*P* > 0,

and hence T'(8, o) := B1(B, om)B2(5, 0m) — B3(3,0m) > 0 for each m > 1. Then we have
the following stability result.

Lemma 2.8. The positive constant steady state u* of (2.3) is linearly stable provided one

of the following conditions holds:
(a) 210 < A(1L —7);

(b) 2u> A1 —+) and oy, > 3 > 0 for each m > 2,
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where & is defined in (2.15).

Proof. From the above analysis, one has B;(5,0m) > 0 (j = 1,2) and T(8,0,,) > 0 for
each m > 1. To show that u* is linearly stable, it suffices to prove B3(3,0y,) > 0 for each
m > 1 based on the well-known Routh-Hurwitz criterion (see Appendix B.1 in [100]).

If 20 < A(1 —7), one has B3(8,0,,) > 0 for each m > 1. For the case of 2u > A(1 —7),
we obtain Bs(f3,0y,) > 0 directly when m = 1. Since o, > & for each m > 2, one obtains
that H(op,) > 0 for each m > 2 and hence B3(f3,0,,) > 0 for each m > 1. The proof of
Lemma 2.8 is finished. O

We are left to discuss the linear stability/instability of u* for the parameters satisfying

the following assumptions:

(A1) 2> A(1 — ) and there exist some m > 2 such that o, < 7.

Lemma 2.9. Let the assumption (A1) hold. Then we have the following statements:

(1) u* is linearly stable with respect to (2.3) if 0 < B < H#Lion{ﬂg;o};
(2) u* is linearly unstable with respect to (2.3) if B > Hnllion{ﬁgm},

where BL and & are defined in (2.13) and (2.15), respectively, and mqg > 2 satisfying

Omg < 0.

Proof. We first show that min{8%, } (mg > 2 satisfying oy, < &) exists. For fixed param-
mo

eters v, 7,1n,dn,dp,dg, p and A, (2.15) shows that & > 0 is also fixed. Since the sequence
{om}5°_ is increasing respect to m and satisfies o7 = 0 and o, — 00 as m — oo, then
there exists an integer m* such that o, < & < g+4+1. Hence, for all 2 < mg < m* < oo,

one has oy, < & and such my is finite, which implies that min{87, } exists.
mo

Next, we discuss the stability/ instability of u*. It follows from (2.44), (2.45) and (2.46)
that By > 0, By > 0 and B1By — B3 > 0 for any § > 0. On the other hand, one can check
that Bs(B,0m) > 0 for any 8 > 0 when m = 1. When m > 2 satisfying o, > &, one
has H(o,,) > 0 and hence Bs3(83,0,,) > 0 for any g > 0. If m > 2 satisfying o, < 7,
then H(oy,) < 0. It follows from (2.44) that B3(8,0y,) > 0 for 0 < 8 < 8L with m > 2
satisfying o, < . Consequently, with the above three cases, the Routh-Hurwitz criterion
implies that u* is linearly stable if 0 < 3 < I for each m > 2 satisfying o, < &, which

together with the existence of min{3%, } gives Lemma 2.9 (1).
mo
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When 8 > BnTm for some mgy > 2 satisfying oy, < 7, we get Bs(8,0m,) < 0 readily.
Then the Routh-Hurwitz criterion indicates that u* is linearly unstable. With the existence

of min{] }, we obtain Lemma 2.9 (2) directly. The proof of Lemma 2.9 is finished. [
mo

Proof of Theorem 2.3. Now, we discuss the bifurcations from u* = (N*, P*, $*)7. Re-
call that £ has a pair of purely imaginary eigenvalues if and only if —o,, &y (u*) + ¥y (u*)
for some m > 1 does so. Assume that —o,, &y (u*)+ ¥y, (u*) for some m > 1 has eigenvalues

iv, —iv and §, where v,6 € R and v # 0. It follows from the Routh-Hurwitz criterion that
Bl (/8’ O'm) - 757 BQ(B; Um) — V25 B3(ﬂa Um) = 71/25‘ (247)
Then (2.47) yields

T(ﬁ,O’m) = Bl(ﬁao-m)BQ(B7o-m) - B3(/850m) =0.

This shows that if £ has a pair of purely imaginary eigenvalues, then T'(3,0y,) = 0. That
is, a necessary condition for the Hopf bifurcation to occur is T'(3, o,,) = 0 for some m > 1.
Hence, from (2.45) and (2.46), we know that (2.3) has no Hopf bifurcation arising from u*
for all (u,\) € Ro UR3 and 5 > 0. Hence, we complete the proof of Theorem 2.3 (1).

We next consider the possibility of steady state bifurcation arising from u*. First, we
determine the potential steady state bifurcation points. Assume that 0 is an eigenvalue
of =0, Py(u*) + Uy(u*) for some m > 1. It follows from the Routh-Hurwitz criterion
that B3(5,0m) = 0, which means that a necessary condition for steady state bifurcation
is B3(B,0m,) = 0 for some m > 1. Consequently, noting Lemma 2.8 and Lemma 2.9, if
M < p < A, then the potential steady state bifurcation points are § = @Z;O for some
mg > 2 satisfying o,,, < 0.

Second, we verify that the transversality condition holds for the steady state bifurcation.
Differentiating the characteristic equation (2.43) with respect to 3, we obtain

dj _ o H(0myg)
(d5> ‘65%0 BBl om) >0

mo?

where H (o, ) is defined in (2.14). Thus, the proof of Theorem 2.3 (2) is finished. O

2.5 Stationary Patterns: Proof of Theorem 2.4

In this section, motivated by the ideas in [142, Chapter 6], we shall establish the
existence of positive solutions of (2.16) by the Leray-Schauder degree theory. To this end,

we first give a priori positive upper and lower bounds for the positive solutions.
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2.5.1 Priori Estimates of Positive Solutions

In this subsection, we shall fix the parameters A, u,~, 7,7 and estimate the upper and
lower positive bounds of positive solutions of (2.16) concerning the diffusion coefficients
dy,dp,dg and cross-diffusion coefficient 5. We first give a priori positive upper bound for

the positive solutions of (2.16).

Lemma 2.10. Let € > 0 be any fized constant. Then any positive solution (N, P,S) of
(2.16) with dn,dp,ds > ¢ and 0 < 8 < 1/e satisfies
max N < A, maxP < (e+7\/en)(p+\)/e, maxS < 7A/n. (2.48)
Q Q Q

Furthermore, there exists a positive constant C = C'(\, p,v,n,T,€,|2|) such that any posi-
tive solution (N, P, S) of (2.16) with dn,dp,ds > ¢ and 0 < 8 < 1/e satisfies

(N, Py S) [ g2y < C (2.49)

Proof. Let z1 € Q be a point such that N(z1) = maxg N(z). Applying the maximum
principle [94, Lemma 2.1] to the equation of N, it is clear that N(x1) < A. Thus, maxg N <
A. Let x5 € Q be a point such that S(z2) = maxg S(z). Applying the maximum principle
(94, Lemma 2.1] to the equation of S, we have S(x2) < 7A/n. Thus, maxg S < 7A/n. Let
® = (dp + BS)P and x3 € Q be a point such that ®(z3) = maxg®(z). Applying the
maximum principle [94, Lemma 2.1] to the equation of P, we have P(z3) < pu+yN(x3) <
u—+ yA. Thus,
dp mﬁaxP < mﬁax@ = ®(x3) = (dp + BS(x3))P((x3)) < (dp + BTA/1) (1t + YA).

Hence, maxg P < (e + 7A/en) (1 4+ yA)/e. This gives the estimate (2.48).

We now prove the estimate (2.49). Given (2.48), we apply the standard regularity for
elliptic equations (see, e.g., [41]) to derive that N, S and ® = (dp + BS)P belong to
Ct5(Q)). Moreover, the C'T#(Q) norms of them depend only on the parameter ¢ and the
parameters A, u1,7,n,7. Thus, P € C1*#(Q) and the C1*#(2) norm of P depends only on
the parameter € and the parameters A, u,v,n,7. We again apply the standard regularity
for elliptic equations to derive the estimate (2.49). O

We next give a positive lower bound for the positive solutions of (2.16) with respect
to the diffusion coefficients dy,dp,ds and cross-diffusion coefficient 5. For this, we first

prove the following lemma.
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Lemma 2.11. Let dnm,dpm;dsm,Bm € (0,00) and (N, Py, Sm) be the correspond-
ing positive solution of (2.16) with (dn,dp,ds, ) = (ANm,dPm;dSm,Bm). Suppose that
(AN ms APms ASm, Bm)— (AN,00, APoo, dS,00s Boo) and (N, P, Sm) — (Noos Pooy Soo) uni-
formly on Q, where Nuo, Pso, Seo are constants. Then (Noo, Pxo, Seo) satisfies

A—No — P =0,
p— Poo + 7Noo = 0,
—NSs0 + TNs = 0.

In particular, if X > 0,A > p and p+ X > 0, then (Noo, Poo, Soc) = (N*, P*, 5*), which is

the unique positive constant solution of (2.16).

Proof. From the first equation of (2.16), it follows that [,(A — Ny — P ) Ny = 0 for all
m > 1. Assume that A — Noo — Psx, > 0. Then it is clear that A — N,,, — P,, > 0 for
large m. Thus, fQ(A — Ny — Pp)Ny, > 0 for large m due to N, is positive. This is
a contradiction. Similarly, if A — Ny — P < 0, we can get a contradiction as above.
Therefore, A — Noo — P = 0. The same argument shows that y — Py + YNoo = 0. It
follows from the first equation of (2.16) that

0= /(nSm + 7Ny )dx — / (—1S00 + TNoo) = (—1Se0 + TN ) ||
Q Q

as m — 00. Thus, —nSo + 7N = 0. This completes the proof for the first part.
Suppose that No, = 0. Then we use the proven result to obtain P, = A and A\ = p,
which is a contradiction to A > p. Suppose that P,, = 0. Then Ny, = XA and u+ yA =0,
which is a contradiction to g+ A > 0. This implies that Ny, > 0 and P > 0, and thus
Seo = %Noo > 0. Hence (Noo, Pooy, Soo) = (N*, P*,S*). This completes the proof for the
second part. O

Lemma 2.12. Let € > 0 be any fixed constant. Assume that A > 0, A > p and p+ Y\ >

0. Then there exists a positive constant C' = C(\, p,~v,n,7,&,|Q|) such that any positive
solution (N, P,S) of (2.16) with dn,dp,ds > € and 0 < B < 1/ satisfies

min N, min P, minS > C~!(¢).
Q Q Q

Proof. Suppose that the conclusion does not hold. Then we may assume there exists a

sequence {(dNm, dpm,dsm, Bm)}oo_;, satisfying dn m, dpm,dsm > € and By, < 1/e, such
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that the corresponding positive solutions (N, P, Sy) of (2.16) with (dy,dp,ds, ) =
(dN,ma dP,m7 ds,mv /Bm) SatiSfy

minN,, =0 or minF, -0 or minsS,, =0
Q Q Q

as m — oo. Since dym,dpm,dsm > €, and 0 < B, < 1/e, subject to a subsequence,
we may assume dy,, — dy oo € [€,00], dpm — dpoo € [€,00], dsm — ds,oo € [€,00] and
Bm — Poo € [0,1/€]. Moreover, it follows from (2.49) that

(Niy Py Sin) = (Noos Poo, Seo)  in C?TF(Q) x C2FR(Q) x C*TE(Q)

for some nonnegative functions Noo, Px, Soo. It is not hard to see that (Nuo, Px, Seo) also
satisfies the estimate (2.49), and

minNo =0 or minP, =0 or minS, =0.
Q Q Q

Furthermore, if dy o0, ds 00, dPooc < 00, then (Noo, Pso, Soo) satisfies (2.16). If dy oo = 00,
then it follows from the estimate (2.48) that N satisfies —ANy =0 in 2 and 9, Noo =0
on 0f). This means that N, is constant. Likewise, the analogous conclusions hold for
dpoo = 00 and dg oo = 00.

The constants C; to be used below will depend on the parameters (A, u,v,n,7,¢€,|Q|).
As they are fixed, this dependence will not be stated explicitly. Due to (2.48), we find that

< A+ A+ (e+7Aen)(p+A\) /e
- 5

H A— Ny, — Py,
dN,m

LOO
for all dn m, dpm,dsm > €. We apply Harnack inequality [88, Lemma 4.3] to the equation

of N,,, to obtain

max Ny, < Cpmin N,,. (2.50)
Q Q

Let ®,,, = (dpm + BmSm)Pm. Then

p— P, +vNp,
“Ad,,=———— D, e, 0,9,=0, € 0f. 2.51
dP,m + /BmSm v v ( )
Since
p= P A YN || pt (e 7Aen)(p+yA) /e + A
dpm + BmSm oo €

for all dn m,dpm,dsm > €, we apply Harnack inequality [88, Lemma 4.3] to the equation
of ®,,, to obtain

max &, < Cymin ®,,.
Q Q
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Hence,

m:.ixﬁPm < mz.ix§§>m dpm + TN/ en < 025+T)\/517 — s
ming Pp, ming @, dpm €
and thus
max P, < C3min Pp,. (2.52)
Q Q

Let 2,1 € Q be a point such that Sy, (xm1) = maxg Sy, (). Applying the maximum
principle [94, Lemma 2.1] to the equation of S,,, we have Sy, (zm1) < (7/7)Np(zm1)-
Thus,

mﬁax Sm < (1/7) mﬁax Np,. (2.53)

Similarly, we let z,, 2 € Q be a point such that Sy, (2 2) = ming Sy, (). Applying the max-
imum principle [94, Lemma 2.1] to the equation of Sy,, we have Sp,(zm.2) > (7/17) Ny (2m,2)-
Thus,

mﬁinSm > (1/n) mﬁin Np,. (2.54)

We next complete the proof by considering several different cases.

Case 1: dN,00, ds 00, dpse < 00. Assume that ming Ny, — 0 as m — oco. Then it follows
from (2.50) that maxg Ny, — 0 as m — oo, and so Nog = 0 in Q. Moreover, it follows
from (2.53) that maxg S,, — 0 as m — 0o, and s0 So, = 0 in Q. Since there is a positive

constant Cy4 independent of m such that

w— Pn+ YN,

e ad’
H HL = N dP,m ‘I‘ﬂmsm

I, <
LOO

for all m > 1. Thus, by the standard regularity for elliptic equations (see, e.g., [41]), we
may assume that ®,, — ®,, uniformly in C'(Q), by passing to a subsequence if necessary.

Note that maxg S, — 0 as m — oo and 3, < 1/e. Then

P, Poo

P, = —
dP,m + 5mSm dP,oo

:= Py, uniformly in €.

Hence, we derive from (2.51) that @, satisfies

b b
A = (g =2 ) B2 peQ, 9,0 =0, €
dP,oo dP 0o

)

This implies that either ®, = pdpo or oo = 0, and so P = p or Py = 0. Thus,
(Noo, Pso, Soc) = (0,11,0) or (0,0,0). This is a contradiction to Lemma 2.11. Thus,
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ming Noo > 0. Assume that mingS,, — 0 as m — oo. Then it follows from (2.54)
that ming N,,, — 0 as m — oo, and so (2.50) gives Ny = 0 in Q. This is a contradiction.
Hence, ming S, > 0. Assume that ming P, — 0 as m — oo. Then it follows from (2.52)
that maxg P, — 0 as m — 0o, and so Py, = 0 in Q. Given the equation of N,,, we apply
the standard regularity for elliptic equations (see, e.g., [41]) to get N, — No uniformly

in C1(Q2), by passing to a subsequence if necessary. Here N, > 0 satisfies
—AdN00ANs = (A= Nyo)Noow, €8, 0,Ny =0, xe€dd

Since we have proved that ming Ny, > 0, it is clear that Ny, = A in Q. Similarly, we derive
from the equation of S; that Soo = 7A/n in Q. Thus, (Noo, P, Sx) = (A, 0,7A/n). This is
a contradiction to Lemma 2.11, and we complete the proof of this case.

Case 2: dNoo = 00 0T dp o = 00 0T dg,00 = 00. If dy oo = 00, then N4, is a nonnegative
constant. Assume that ming N,, — 0 as m — oo. Then it follows from (2.50) that
maxg Ny, — 0 as m — oo, and so Ne = 0 in Q. Moreover, it follows from (2.53) that
maxg S, — 0 as m — 00, and 80 Soe = 0 in Q. If dpo < o0, by the same argument as case
1, (Noo, Poo, Sx0) = (0, 1,0) or (0,0,0), which contradicts to Lemma 2.11. If dp, = o0,
then P, is a nonnegative constant. Thus, Nuy, Pso, Seo are constants and Noo = Soo = 0
in Q. This is a contradiction to Lemma 2.11. Thus, ming Noo > 0, and so Ny is a
positive constant. Assume that ming S, — 0 as m — oo. Then it follows from (2.54)
that ming N,,, = 0 as m — oo, and so (2.50) gives Noo = 0 in Q. This is a contradiction.
Hence, ming S > 0, and so S is a positive constant. Assume that ming P, — 0 as
m — oo. Then it follows from (2.52) that maxg P, — 0 as m — oo, and so Py, = 0 in
Q. Thus, Ny, P, So are constants and Py, = 0 in €. This is a contradiction to Lemma
2.11. Consequently, we completed the proof for dy o = oco.

Similarly, we can derive contradictions for the cases dp, = 00 and dg o = 00. ]

2.5.2 Proof of Theorem 2.4

With the priori bounds for the positive solutions in hand, we shall apply the Leray-
Schauder degree theory to establish the existence of positive solutions of (2.16).

We use the same notations as before. System (2.16) can be written as

{_Aé(u) =U(u), z€Q, (2.55)

o,u =0, r € 0N

In what follows, we study the linearization of (2.55) at positive constant steady state

u* = (N*, P*,S*), and then calculate the fixed point index of u*.
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Since the determinant of ®,(u) is positive for all nonnegative u, a simple calculation
shows that ®!(u) exists and det ®;!(u) is positive. Hence, u is a positive solution to

(2.16) if and only if
Fu) 2u— I-A)" {&; (u) [¥(u) + Vulyu(uw)Vu] +u} =0 in YT

Here (I — A)~1 is the inverse of I — A under homogeneous Neumann boundary conditions
and YT ={u €Y :NPS>0onQ}, where Y = [C(Q)]?. Since F(-) is a compact
perturbation of the identity operator, the Leray-Schauder degree deg (F(-),0, B(C)) is well
defined if F(u) # 0 on dB(C), where B(C) = {fu e Y : C~! < N,P,S < C on Q} for

C > 0. By a straightforward calculation, the linearization of F(u) at u* is given by
DyF(u*) =1— (I-A)" {o ' (u")Ty(u*) +1}.

According to the Leray-Schauder index formula [102, Theorem 2.8.1], it is well known that
if DyF(u*) is invertible, then the fixed point index of F at u* is well defined and

index (F(-),u*) = (—1)°,

where ¢ is the number of negative eigenvalues (counting the algebraic multiplicity) of the
linearized operator DyF(u*).

Significantly, the eigenvalues of the linearized operator DyF(u*) and their algebraic
multiplicities are the same regardless of whether it is considered an operator in X or Y.
Hence, it is convenient to use the decomposition (2.42) in our discussion of the eigenvalues
of the linearized operator D, F(u*). By a simple calculation, one sees that X,,; is invariant
under DyF(u*) for each integer m > 1 and each integer 1 < i < dim E(0,,). Moreover, «

is an eigenvalue of D,F(u*) if and only if it is an eigenvalue of the matrix

1

K, =1-
1+o,

(@5 (") Ty(u*) + 1) = —— [05,] — O (u*) Ty (u*)]

for some m > 1. Consequently, DyF(u*) is invertible if and only if the matrix K,, is
nonsingular for all m > 1.

Assume that « is an eigenvalue of Dy F(u*). We next calculate its algebraic multiplici-
ties, which we denote by x(«). By definition, it is well known that the algebraic multiplicity

of the eigenvalue « is the dimension of the generalized null space E%, where

oo
E® = U Ker [oI — D F(u*)]".
i=1
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Every © € X can be uniquely expressed in the form

where C,; € R3. Since X,,; is invariant under D, F(u*), it is also invariant under [l —

DyF(u*)]? for each i > 1. Consequently, for any fixed i > 1
0 € Ker [l — DyF(u")] <= [aI — DyF(u*)]!Cpjfm; = 0
forallm > 1 and 1 < j < dim E(0,,). By a direct calculation, we find that
[aI — DyF(u")]"Cppjbpm; = 0 <= [aI — K, ]'Cpj = 0.

It follows that

dim E* = Y |dim E(oyn) x dim (U Ker [oI — Km]>] :
m=1 i=1

Here dim (Uf; Ker [oI — Km}z) is just the algebraic multiplicity of « as an eigenvalue of

the matrix K,,,. A simple calculation gives that

det{K,,} = 5 det {o] — @1 (u*) Wy (")} . (2.56)

1
(I1+om)

Moreover, when det{K,,} # 0 (i.e., det {o,I — 5! (u*)¥yu(u*)} # 0), the number of
negative eigenvalues (counting algebraic multiplicity) of the matrix K, is odd if and only

if det{K,,} < 0. Consequently,

c=> x(@)=> dm(E)= Y  dimE(o,) (mod2).

a<0 a<0 m>1,det{K, }<0

In summary, we have the following lemma.

Lemma 2.13. Assume that det {omI — @51 (u*)Wy(u*)} #0 for allm > 1. Then

index (F(-),u*) = (-1)%, where ¢= Z dim E(oy,).
m>1,det{K, }<0

Given Lemma 2.13, to facilitate our computation of index (F(-), u*), we next determine

the sign of det{K,,}. By virtue of (2.56), we see that
det{K,,} = det{c,,®u(u*) — Uy(u*)} - det{®; " (u*)}/(1 4+ o). (2.57)
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As we have known for all ¢ > 0, det{®,'(u*)}/(1 + 0)? is positive, we shall consider
det{o®y(u*) — Uy(u*)}. A direct calculation yields

dn 0 0 —-N* —N* 0
Dy(u*) = 0 dp+pBS* BP* and Yy(u*)=| yP* —-P* 0
0 0 ds T 0 -n
Thus,
ody + N* N* 0
o®y(u*) — ¥y (u*) = —yP*  o(dp+ BS*)+P* opP*
—T 0 ods+n

Furthermore, we have

det{o®y(u*) — Wy (u)} = €3(8)o® + €a(B)a? + €1(B)o + €o(B)
(2.58)
= ¢(8,0),

where
€3(8) = dnds(dp + 85™) > 0,
€2(B) = ndn(dp + BS*) + dnydsP* + N*ds(dp + BS*) > 0,
&1 (B) = ndnP* +nN*(dp + BS*) +dsN*P* — TBN*P* +yN*P"dg, 299
&(8) = N*P*n+~yN*P*n > 0.

Next, we discuss the dependence of €(3, o) on the cross-diffusion coefficient 5. Suppose
that o1(8), d2(8), o3(5) are the three roots of €(8,0) = 0 and satisfy Re{ci(3)} <
Re{o2(8)} < Re{c3(B)}. Notice that €3(8) > 0 and €y(B) > 0. It follows from the Routh-
Hurwitz criterion [100, Appendix B.1] that o1(8)o2(5)os(8) < 0. Thus, at least one of
a1(8), a2(8), o3(B) is real and negative, and the product of the other two are positive.

Moreover, we have the following limits:

ma ¢3(8)/B = dndgS* = Cs > 0,

—00

Blim @ (B)/B = ndnS* + dsN*S* = Cqy > 0,

— 00

Jim &4(8)/8 = TN"AQ — ) = 24/ (v +1) 2C,

Jim €(8)/8=0.
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When 2 > (1 — ), it is clear that C; < 0, and thus €;(8) < 0 for large 5. By virtue of
(2.58) and (2.59), we obtain

Jim 57

= 0[C30” 4 Cyo + C1] £ C(0). (2.60)

Obviously, C(o) has three real roots

- VCZ—4 —Cy—+/CZ—14
0, Cot VG C3Cl>0, G2 = vG 746G (2.61)

2C; 2C;

Hence, when 2u > A(1 — «) and (3 is sufficiently large, a continuity argument shows
that o1(f) is real and negative. Moreover, oo(f) and o3(3) are real and positive since

2(B)o3(B) > 0. In particular, o1(53), o2(8) and &3(3) satisty

_ _ 2_

lim 71(8) = —= VQ‘% 1601,

B—o00

lim 59(8) =

552002(5) 0, (2.62)
_ 2_AC-

lim 3(8) = =g =7 > 0,

B—o00 3

Summarizing, we have the following lemma.

Lemma 2.14. Let 71(8), 02(8) and c3(3) be the three roots of €(8,0) = 0 (see (2.58)).

Assume 2p > N(1—-y). Then there is a positive number 3* such that, for all 5 > B*, 51(8),
2(B) and os3(B) are all real and satisfy (2.62). Moreover, if > B*, then

—00 < 01(8) <0 < 52(B) < 73(B),
€(B,0) <0 when o€ (—00,01(8))U(2(8),05(5)), (2.63)
¢(B,0) >0 when o € (a1(8),02(8)) U (3(5),0).

Proof of Theorem 2.4. In view of the assumption on &, Lemma 2.14 shows that there

is a positive constant 5* such that, for all g > 8*, (2.63) holds and
51(5) <0=o01 <52(ﬁ) < 09, 53(,8) € (O’j,O’j_H). (2.64)
It follows from (2.57) and (2.58) that

det{®y"(u")}

. _ det{®;' (u*)} - €(B,0m)
(14 0pm)3 N

det{Km} — (1 i Um)3

det{y Py (u*) — Ty(u*)}

)

36



which, along with (2.63) and (2.64), gives

det{K;} = det{®7!(u*)}(1 +v)N*P*n > 0,
det{K,,} > 0, m>j+ 1.

Hence, 0 is not an eigenvalue of the matrix o,,I — &1 (u*)W¥,(u*) for any m > 1, and thus,

Lemma 2.13 shows that

g = Z dim E(oy,) Z dim E(0,,),  which is odd,
m>1,det{K, }<0

and

index (F(-),u*) = (~1)° = —1. (2.65)

Based on the homotopy invariance of the topological degree, we shall complete the
proof by contradiction. Assume that the conclusion is false for some 8 = B > B*. In the

following, we will fix 3 = 3. For t € [0, 1], we define
and consider
—A®(t,u) =V(u), z€Q, Ju=0, zecd. (2.66)

Clearly, u is a positive non-constant solution of (2.16) if and only if it is such a solution of
(2.66) for t = 1. For any 0 < ¢ < 1, u* is the unique constant positive solution of (2.66).

As we observed above, u is a positive solution to (2.66) if and only if
F(t;u) 2u— (I-A)""{o ! (u) + Vu®yuy(t;u)Vu] +u} =0 in Y.

Obviously, F(1;u) = F(u). It follows from Theorem 2.2 that u* is the only solution of
F(0;u) = 0 in Y*. By a straightforward calculation, the linearization of F(¢;u) at u* is
given by

DyF(t;u*) =1— (I—- A" @ (Hu") Uy (u) +1}.

In particular,

DyF(0;u*) =I— (I-A) " {D ¥, (u*) + 1}

and

DyF(1;u*) =1- oyt u*) +1} = D F(u”),
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where D = diag(dy,dp,ds). Hence, noting the facts F(1;u) = F(u) and D F(1;u*) =
DyF(u*), from (2.65), one has

index (F(1;-),u") = index (F(-),u") = —1.
And by virtue of the stability of u*, we can easily show that
index (F(0;-),u*) = (-1)® = 1.

In addition, according to Lemmas 2.10 and 2.12, for all 0 < ¢ < 1, there exists a positive
constant C' such that any positive solution of (2.16) satisfies 1/C < N, P,S < C. Con-
sequently, for all 0 < ¢t < 1, F(t;u) # 0 on 0B(C). By the homotopy invariance of the
topological degree [5, Theorem 11.1], we see that

deg (F(1;-),0,B(C)) = deg (F(0;-),0, B(C)) . (2.67)

Since Theorem 2.2 shows that u* is the only solution of F(0;u) = 0 in B(C'), the excision
property [5, Corollary 11.2] implies that

deg (F(0;-),0, B(C)) = index (F(0;-),u*) = 1.

On the other hand, our supposition implies that the equation F(1;u) = 0 has only the

positive solution u* in B(C'). Thus, the excision property yields
deg (F(1;),0, B(C)) = index (F(1; ), u*) = —1.

This contradicts (2.67), and the proof is complete. O
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Chapter 3

Global Dynamics of a
Three-Species Lotka-Volterra Food
Chain Model with Intraguild

Predation and Taxis Mechanisms

3.1 Introduction and Main results

Before presenting our context, we clarify that the results stated in this chapter have

been published in our journal paper [22].

3.1.1 Introduction

To understand the complex ecological interactions, various ordinary differential equa-
tion (ODE) type food chain models have been proposed, and some interesting and im-
pressive results have been established on the dynamics of three species food chain model
(e.g., [47, 53, 75, 120, 137]). In particular, the chaos phenomenon can be found for the
three species food chain models with nonlinear functional responses [47, 73] or for the
simple Lotka-Volterra type functional responses with intraguild predation (i.e., a simple
kind of omnivory in which a predator and a prey share a common resource) [120]. As
we know, the spatial movement plays an indispensable role for the population species to
survive and thrive. However, compared with the well-known results on the temporal three
species predator-prey systems (e.g., [47, 53, 75, 120, 137]), few results are available for

the food chain model with spatial movement. Here, we shall consider the three-species
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Lotka-Volterra food chain model with spatial movement:

up = diAu + u(l — u) — byuv — yuw, z e, t>0,

vy = doAv — &V - (vVVu) + uv — byvw — O v, zeOt>0, (3.1)
wy = Aw — xV - [wVé(u,v)] + vw + youw — bw, x € Q,t >0,

Oyu = dyv = d,w =0, x € 0Q,t > 0.

All notations and parameters have the same interpretation as in Section 1.3.

Related works on the system (3.1). To put our research into perspective, we first
recall some related results for (3.1). If w =0, (3.1) becomes the two species predator-prey
system with prey-taxis (called the prey-taxis system), which was first proposed by Kareiva
and Odell to interpret the heterogeneous aggregative patterns due to the area-restricted
search strategy [68] and has been extensively studied (cf. [16, 64, 65, 68, 148, 151] and
references therein).

Different from the substantial results on the two-species predator-prey systems with
various taxis mechanisms, limited attention has been paid to the three-species spatial food
chain model (3.1) (i.e., w # 0). Recently, the authors in [66] studied the global dynamics

of system (3.1) in a two dimensional bounded domain under the following assumptions:
Mm=7v=0 and ¢(u,v)=0. (3.2)

The ideas/methods used in [66] depend on that the system (3.1) with (3.2) has a nice
entropy estimate, which was first developed in [124] for the classical chemotaxis system
with consumption of chemoattractant and later was used to study the prey-taxis system
[64].

If 71, 72 > 0, the ODE counterpart of (3.1), termed the intraguild predation (IGP)
model, exhibits complex dynamics and was extensively studied (see [53, 98, 110, 120] and
references therein). For the spatial model (3.1) with intraguild predation (i.e., v1,v2 > 0),
the study [46] incorporated the intraspecific competitions for v and w along with the signal
intensity function ¢(u,v) = uwv, termed the alarm-taxis, which was proposed to test the
“burglar alarm” hypothesis (cf. [15]): a prey species renders itself dangerous to a primary
predator by generating an alarm call to attract a second predator at higher trophic levels
in the food chain that preys on the primary predator. In [46], the authors established
the global boundedness for 41,72 > 0 and pattern formations for 731 = v = 0 in one
dimensional space. Motivated by the work [46], the authors in [67] considered the ratio-

dependent functional response (i.e., replacing v;uw by 7; wgp fori=1, 2) and established

the global boundedness and stability for v1,v2 > 0 in two dimensions. No results exist for

40



the spatial Lotka-Volterra food chain model (3.1) with intraguild predation (i.e., v1,v2 > 0)
and more general signal functional ¢(u,v).

Consequently, our goal is to study (3.1) with 71,72 > 0 and more general signal func-
tional ¢(u,v). To explore the combined effects of the intraguild predation and taxis mech-
anisms more clearly, we focus on studying the global dynamics of the system (3.1) in an

open interval 2 C R:

(1w = gy + u(l — u) — bjuv — yiuw, x €N, t>0,

vy = dovgy — E(Vug)y + uv — boyvw — Oyv, xeQ,t>0,

W = Wee — X(WH(U, V) 1) + VW + Youw — Gw, x € Q,t >0, (3.3)
Uy = Vyp = Wy = 0, x € 0Q,t>0,

(u, v, w)(x,0) = (ug, vo, wo)(x), z € Q.

For more generally, we assume that the signal intensity function ¢(u,v) satisfies the fol-

lowing conditions:
(HO) ¢(y, 2) : (0,00) x (0,00) — R is positive and it belongs to C2([0, 00) x [0, 00)).
Specifically, our objectives include the following;:

(B.1) Establish the global well-posedness of solutions (global existence and stability) to

(3.1) under suitable conditions;

(B.2) Explore the effects of the intraguild predation and/or taxis mechanisms (prey-taxis

and alarm-taxis) on pattern formations.

The main challenge in the analyses is that, if 41,72 > 0 or ¢(u,v) # v, the ideas used
in [66] are not available anymore. Moreover, due to the lack of quadratic decay terms (i.e.,
intraspecific competitions) for v and w, the methods developed in [67] are also inapplicable,

which motivates us to develop new ideas to study this model.

3.1.2 Main Results

We first show the global existence of classical solution as follows.

Theorem 3.1 (Global boundedness). Let Q C R be a bounded open interval. Suppose that
the initial data 0 < (uo, v, wo) € [WH(Q)]? and (HO) holds. Then (3.3) admits a unique
global classical solution (u,v,w) fulfilling u,v,w > 0. Moreover, there erists a constant

M > 0 independent of t such that

[us D)llwrz + oG O)llwrz + lw( Dl < M.
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Remark 3.1. The upper bounds of ||u(-,t)||re and ||v(-, )|~ play an important role in

studying the large time behavior of solutions. In fact, we can show that
lu(-,t)|| e < Mp := max{1, ||ug|| g}, (3.4)
and
1
[o(-, 8)]| Lo < Ko == O[L +€(€° +1)2], (3.5)

where the constant C > 0 depends on the parameters ug,vo, i, 0;,bi,d; (i = 1,2) and ||
but it is independent of £ and x.

A central question in population dynamics is whether the interacting species population
will arrive at the coexistence, exclusion or extinction eventually. When 7, = 79 = 0 and
¢(u,v) = v, it has been proved in [66] that the globally bounded solution will converge to
the constant steady state as ¢ — oo and no pattern formation occurs. Hence, there exist

some interesting questions:

(i) How about the global dynamics of solution for the system (3.3) with 1,72 > 07

Whether or not pattern formation occurs?

(ii) If 44 = 72 = 0, whether or not pattern formation occurs for other forms of ¢(u,v)

instead of ¢(u,v) = v?

To answer the above questions, we first classify the constant steady state (u, ve, we) of the

system (3.3) with ~;,72 > 0, which satisfies
Ue(1 — ue — b1ve — y1we) =0, ve(ue — bowe — 01) =0, we(ve + Y2ue —02) =0.  (3.6)

A direct calculation implies that the constant steady state (uc, v, w.) takes the following

five cases:

e Trivial steady states: Ep:= (0,0,0) and F; := (1,0,0);

e Semi-trivial steady states: Ejg := <01, %, 0) and Fq3 := <%,O, 75;22);

e Coexistence steady state: Ey := (U, Vs, wy), where

_ ba(1=b162)+7161

* 7 ba+y1—bibay2 >0,
v, = W02=101)+b2(O2=73) 0, (3.7)

ba+v1—b1b2v2

_ bi(y201—02)+(1-61)

ba+v1—b1b2y2 > 0.

Wi
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One can check that the coexistence steady state E. := (us, vs, wy) is linearly unstable if
by + 1 — bibaya < 0. Therefore, for the case of coexistence steady state (us,vs,wy), we

only focus on studying the dynamics in the following range of parameters

ba +v1 — b1bay2 > 0, by + 1 — bibaye > 0,
(02 —92b1) + ba(fy —2) >0, = {0 > 20 4 20 (3.8)
bi(y26h — 62) + (1 —601) > 0, 0y < b”b%_l& + A

Then by constructing some appropriate energy functionals, we can derive the global sta-

bility of the constant steady states as follows.

Theorem 3.2 (Global stability). Assume My and Ky are defined in (3.4) and (3.5),
respectively. Then the solution (u,v,w) of (3.3) obtained in Theorem 3.1 has the following

convergence properties:

(1) If 61 > 1 and 03 > 2, then it holds that

Jim (ffu = 1z + Jell oo + ] z<) = 0.

(2) IfO < 91 <1 and92 >£1 with

71 6p 1 max{bibyy2 — 1,0}
fp= g P11 .
s S biby ! (3.9)

then there exists & > 0 such that whenever £ € (0,&), it holds that

. 1-6
Jim (1= 1l + 1o = 25w + ol ) =o.
(3) If@l >1, 0, < min{’}@,fg} with
M b2y 2 min{b1bay2 — 71,0}
0y = . , (3.10)
b1bay2 + bo b1bay2 + bo b1b2y2 + b2

then there exist & > 0 and x1 > 0 such that whenever & € (0,&1) and x € (0,x1), it
holds that

. 6 -0
i (= 2+ ollm + o= 22 ) 0.
=00 2 Y172
(4) If (3.8) and 1 = bibays hold, then there exist & > 0 and x2 > 0 such that whenever
€ €(0,&) and x € (0, x2), it holds that

Hm (flu = wellzoe + [[v = vellLoe + lw = ws[z) =0,
t—o00

where the coexistence steady state (us, vy, wy) is defined in (3.7).
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In view of the results obtained in Theorem 3.2, it is natural to ask whether or not
pattern formations (non-constant steady states) are possible when parameters outside the
stability regimes found in Theorem 3.2. To answer this question, we first do some linearly
stable analysis (see Proposition 3.1 ), which together with the global stability results for the
corresponding space-absent ODE system obtained in [55], implies that the pattern (if any)
can only arise from the homogeneous coexistence steady state (u.,vs,ws). In Section 3.4,
we shall use linear stability analysis to find the conditions on parameters for the instability
of coexistence steady state. Then we perform numerical simulations to illustrate that
spatially inhomogeneous patterns indeed can be found under certain conditions in Section

3.5, and give positive answers to aforementioned questions (i) and (ii).

3.2 Global Boundedness: Proof of Theorem 3.1

This section will prove the boundedness of the global classical solution to (3.3) as stated
in Theorem 3.1. In the following context, the constants k; and M; (i = 1,2,3---) represent

generic positive constants independent of ¢ and will vary line-by-line.

3.2.1 Local Existence and Preliminaries

Firstly, the local existence of solutions can be proved by using the Amann’s theorem

[7, Theorem 7.3], we omit the proof details for brevity.

Lemma 3.1 (Local existence). Let the conditions in Theorem 3.1 hold. Then there admits

Tmax € (0,00] such that the system (3.3) has a unique classical solution
(1, v,w) € [CO([0, Trnax); WH2()] 1 C*H(Q X (0, Tonax))]”
satisfying w,v,w > 0 for all t > 0. Moreover, it holds that if Thmax < 00, then

li;nTsup (luC, Ollwre + [l Ollwre + [lw(- )] L) = 00, ¥p > 1.
t max

Using similar arguments as in [64, Lemma 2.2], we obtain the boundedness of u imme-

diately as follows.
Lemma 3.2. Suppose the assumptions in Lemma 3.1 hold. Then it holds that
0 <u(x,t) < Mp:=max{1, [|ug|lp=}  for all (z,t) € Q x (0, Timax); (3.11)

Moreover, one has

limsupu(z,t) <1  forall z €. (3.12)

t—o00
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Lemma 3.3. Let (u,v,w) be a solution to the system (3.3) obtained in Lemma 3.1. Then
there exist two constants My > 0 and My > 0 independent of & and x such that for all
t € (0, Timax)

N HIHUOHLl -+ 91[)1”’00”[11 + (1 + 91)M0|Q‘

o(, Ol < My = ol (3.13)
101
and
F0(lluoll 1 +b1lvoll 1 +b1b2[|lwoll 1) +2Mo|$ if v =0
Hw( t)HLl < My = b1b270 ) Vi )
’ - yo(b2y2lluoll L1 +b271 lwoll 1 +71llvoll 1) +2b2v2 Mo |$2]+Mo M1v1 .

~oba1 ) lf Yi > 05

(3.14)

where i =1, 2.

Proof. Using the first and second equations of (3.3) and applying the homogeneous Neu-

mann boundary conditions, we obtain

4 (u—i—bw)—k/u2:/u—b191/v—71/uw—b1b2/vw,
dt Jq Q Q Q Q Q
S/u—blﬁl/v,
Q Q

which, along with #; > 0 and (3.11), can be updated as

< (1+91)/u§ (14 01) M|,
Q

d
— (u+bw)+01/

dtQ Q

(u+byv) +/

Q

and hence applying Gronwall’s inequality, one has

(1+061) Mol

o]
.t < WML
o Bllpr < F T ol + g

L M. (3.15)

Next, we shall show the boundedness of ||w(-,t)||;1. To this end, we divide our proof
into two cases: v1 = v2 = 0 and 71,72 > 0.

Case 1: 7; = 72 = 0. In this case, we deduce from the equations of (3.3) that

d
/ (u+blv+b1b2w)+/u2+b191/v+b1b292/w:/u. (316)
dt Jo Q Q Q Q

Denoting 7o := min{1, 01,602} and using (3.11), it follows from (3.16) that

d
& (u+blv+b1b2w)+70/(u—|—b1v+b1b2w) < 2M0‘Q|,
Q Q
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which, together with Gronwall’s inequality, gives

Yo([Juoll L1 + bilvol| L1 + bibe||wol| 1) + 2Mp |9
b1b270

[w(, )l < (3.17)

Case 2: 71,72 > 0. Using the equations of (3.3), one has
d

— (72u+71w—|—%v)+72/u2+0271/w+/ 72/u+
dt Q b2 Q

which together with (3.11) and (3.15) derives

y1 Mo My

d
(’Y2U + w4+ o)+ 70/ (Yot + Mw + v) < 27, Mp|Q] + by

dt ba ba

and hence using Gronwall’s inequality, we have

Yo(bavy2luo | L1 + bayillwoll 1 + Y1llvollL1) + 20272 Mo |2 + MoMl’Yl

ZU',t 1§
-, 2)]. e

which combined with (3.17) gives (3.14). Then, the proof of Lemma 3.3 is completed. [

Next, we can use the semigroup estimates to obtain the boundedness of ||uy(-,t)|| s for

any ¢ > 1 in one dimensional space.

Lemma 3.4. Let (u,v,w) be the solution to the system (3.3) obtained in Lemma 3.1. Then
for any q > 1, it holds that

sz, )20 < M == My(g), for all £ € (0, Tas), (3.18)
where the constant M3(q) > 0 is defined in (3.22), and is independent of & and x.
Proof. The first equation of (3.3) can be rewritten as

— di(ugz — u) = f(2,1), (3.19)

where f(x,t) = (di + 1 — u — bjv — yw)u. Using Hélder inequality, the facts 0 < u < M
n (3.11), |lv(-, )|l < My in (3.13) and [Jw(-,t)|1 < Mz in (3.14), one has
£l = lI(dy + 1 = u = bro = yw)ul| 1

(3.20)
< Mo (|9](dy + 1+ Mo) + Miby + Mayy) =: 3.

We denote the Neumann heat semigroup in 2 by (em)bo. Applying Duhamel’s principle to
(3.19) and using the semigroup estimates (e.g., see [147, Lemma 1.3]) and (3.20) guarantee

46



that there exist two constants o; > 0 and g2 > 0 depending only on €2 such that

t
e ) < 10,3 Dl + [ (05O £ 5) | ads
0

IN

t
1| 0zuol La + 02/ e~ Prtldi(i=s) (1 + (- S)*Hi) 1£(,8)l[zrds
0 (3.21)

IN

o0 1
o1||0zuo||Le + 02£3/ e~ atl)diz (1 + z_1+271) ds
0

IN

ool3 1- 4
o1]|0zuol| e + m (1 +T'(1/2q) (M1 + 1)dy) > ;

where T'(+) represents the Gamma function defined by I'(y) := fooo t=1*Ye~tdt, and A\ > 0
denotes the first nonzero eigenvalue of —A under Neumann boundary conditions. Then

(3.18) follows directly from (3.21) by choosing

My (|9 (dy + 1 4+ M, Miby + M- 1
M3(q) — o2 0(| ‘( 1+ 1+ 0)+ 101 + 271) (1+F(1/2q) ((>\1+1)d1)1 21q)
()\1 =+ 1)d1
+ 1|0z uo e,
(3.22)
which is independent of ¢, £ and x. Then the proof of Lemma 3.4 is completed. O

The following is an auxiliary result that will be used later.

Lemma 3.5. [119, Lemma 3.4] Let T > 0 and Ty € (0,T) and suppose f(t) : [0,T) —

[0,00) is an absolutely continuous function and satisfies
/() + af(t) < h(t) for all t € (0,T),

where constant o > 0 and the nonnegative function h € L, ([0,T)) fulfilling

t+To
/ h(s)ds < for allt € [0,T — Tp).
t

Then

f(t) <max {f(0) + 8, 0;8% + 28} for allt € (0,T).

3.2.2 Boundedness of ||v(-,t)| L=

Since the upper bound of ||v(-,t)||z~ plays a vital role in studying the global stability
of coexistence steady state, in the following, we shall give the explicit relation between the

upper bound of ||v(+,t)| e~ and &.
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Lemma 3.6. Let (u,v,w) be the solution of the system (3.3) obtained in Lemma 3.1. Then

/ V2(-, 1) < My (€5 +€%24+1),  for allt € (0, Tax), (3.23)
Q
and
t+1 5 2M4 6 5
va(, 8)drds < d—(f +&°+1), forallte (0,Tymax —7), (3.24)
t Q 2

where T = min{1, %} and My > 0 defined in (3.30), is independent of x, & and t.

Proof. Multiplying v-equation in (3.3) by v, and using Young’s inequality and 0 < u(-,t) <

My, we obtain

1d
—— v2+d2/v§+b2/wv2+91/v2:§/m}$-ux+/uv2

< Ellollzeolval 2 el 2 + Mollv]1 72

Taking ¢ = 2 in (3.18), it follows that

aoMy (|Q2(d1 + 1 4+ Mo) + Miby + Mayr)
()\1 + 1)d1

ua (-8)| 2 < (14T (1/4) (A + D))

+ UluamuQHLz

= Fla
(3.26)

and then applying Gagliardo-Nirenberg inequality, Young’s inequality as well as ||v(-, ¢)|| ;1 <
M; in (3.13), one derives

2 1
Elvllpeellvall 2 luzll 2 < Bié(llvallf2llollfy + vl o) vzl L2 llwall 22
1 5
< kiEMP T vzl 2 + ki EMiT [|log || o2 (3.27)

d
< lluelfe + k(€ +€9),

where kg := { (%) b %? + % }M 2T2(14T%). Similarly, using Gagliardo-Nirenberg inequality

and the fact ||v(-,t)|| ;1 < M; again, we have
2 2 2 2
(1/2+ Mol < ka(1/2+ 3o) (Josl ol + o1 )

4 2
< kg(1/2 4 Mo) M ||ve 32 + ks (1/2 + Mo) M7 (3.28)

48



d
< lvelEe + ka,

where k4 1= k‘g(% + MO)M {1 + (3d2) % (% + Mo)% } is independent of & and y. Substi-

tuting (3.27), (3.28) into (3.25) ensures a constant ks := 2(ky + k4) such that

d

/ v2+/v2+d2/ 02 < 2ko (€8 + €2) + 2y < K5 (€8 + €2 + 1),

dt Jo Q Q
which along with Gronwall’s inequality gives

[o(-, 1)1 72 < ks(€° + €2 + 1) + [Jvol| e,
and hence (3.23) follows by taking
My = ks + ||’U0”L2 = 2(k2 + k‘4) + ||’U()||L2.

Finally, we integrate (3.29) with respect to t to obtain that for all ¢t € (0, Tinax

dQ/HT/ s)dzds < ks(€5 + €2 4+ 1) + /Q v (-, 1)

< 2k5(€5 4+ €2 + 1) + ||vol| 2
<2My(f + 2+ 1),

and hence (3.24) follows directly. Then the proof of Lemma 3.6 is completed.

=),

(3.29)

(3.30)

O]

Lemma 3.7. Let (u,v,w) be the solution of the system (3.3) obtained in Lemma 3.1. Then

there exists a positive constant Ms defined in (3.36), which is independent of &, x, such

that
o, 8) | poe < Ms[L+ (€8 + €2 4+ 1)3], for all t € (0, Tinax)-

Proof. We rewrite the second equation of (3.3) as
vy = doVgy — dov — (Vg )z + (do + uw)v — (bow + 61)v.

Applying Duhamel’s principle to (3.32), one has

t t
V(- 1) =BV ¢ / (= )(A=1) (v e / = )(A-D) (@0 4 s
0

0

t
- / =951 (o 4 6, )uds,
0
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which, combined with the facts by, w,v > 0 and the semigroup estimates [147, Lemma 1.3],

entails us to find two constants o3 > 0 and o4 > 0 depending only on €2 such that
t
O N R / A (g )y | oo ds
0

t
. / He(tis)dQ(Ail) (u + d1 — Hl)UHchzdS
0

(3.33)

t
<os3||vol| Lo +5a4/ em DRI (1 4 (¢ — 5)76) oug | g ds
0

t
by [ OEIEEI (¢ )t ol
0
=:03lvol L + J1 + Ja.

Choosing ¢ = 6 in (3.22), we can find a constant I's > 0 independent of y and £ such that

oaMo (1Q](dy 4+ 1 + Mo) + Miby + Mayy) n
Jua )l s TR e S (LT (1/12) (A + D) )

+ 0'1||8$U0HL6

::FQ,
which, along with Hélder inequality, and (3.23), indicates

1
louall 5 < ol zellusllzs < M (€0 + €% + )3T,
L2

and hence
Ji:=o0uf /Ot e~ BMINE) (1 4 (1 5)78) fouy | 5 ds
< meg(gﬁ +E24+1)2T, /Ote—@@l“)(t—s)u +(t—s)6)ds (3.34)
< J4M4%§(§6 + &2+ 1)2T, /Ooo e~ d2(tl)z <1 - z*H%) ds
< Bg(E5 + €2+ 1)3,
where

1
O’4M42F2 5 5
= —= " (14+T1T(1 s 1
k1 B0 + 1) ( +T'(1/6)ds (M + )6>
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is independent of x and &. Noting the facts 0 < u < My and ||v(-,t)||z1 < Mj, one derives

t
Tyt — 03/ e 2MHDE=9) (1 4 (¢t — 5)73)||(u + do)v|| 1 ds
0

t
<oy [T ()t ol o
0

t
< 03(MO + d2)M1/ efd2()\l+1)(tfs)(1 + (t _ 3)7%>d8
0
< ko,
where

o U3(M(] + dg)Ml
> Aida + da

(1 T (1/2) (Ads + dz)%) .
Then substituting (3.34) and (3.35) into (3.33), we have

lo(-, )|z < osllvollzoe + k1€(ES + 2 +1)2 + ko,
which gives (3.31) by choosing

1
O'4M42F2 < 5 5>
My :=——=—"1+T(1/6)dS(N\{ +1)s
im 2O (Lr /0 dhu +1)

o3(Mo + d2) M,
Aida + da

Hence the proof of Lemma 3.7 is finished.

3.2.3 Boundedness of ||w(-, )| e

(1 FT(1/2) (Ao + dQ)%) + o3| vo | oo

(3.35)

(3.36)

To establish the boundedness of ||w(-, )|z, we first prove the space-time bound for w

based on some ideas in [125].

Lemma 3.8. Let (u,v,w) be the solution of the system (3.3) obtained in Lemma 3.1. Then

there exists a constant Mg > 0 such that
t+7
/ / w? (-, s)dzds < Mg, for all t € (0, Tmax — 7),
t Q

where T = min{1, fmax}

o1

(3.37)



Proof. Applying Gagliardo-Nirenberg inequality, Cauchy-Schwarz inequality, and the fact
H\/;HH = fQ(w +1) < My + |Q], we obtain

/w2 §/(w+1)2
Q Q
=[Vw+ 1|14

Skﬁll\@x\/er1H%1H\/w+1||%2+k1||vIU+1||4L2
k1 (M + 1) </ |w, | )2 2
< + k(Mo + Q2

< 1 o Vo1 1(M2 +19])

k1(Msy + Q)2 w?
= 4 / (w+1)?

(3.38)

+ k(Mg + Q)%

On the other hand, we use the third equation of (3.3), (3.13) and Young’s inequality to
derive that

/lnw+1
w+1
:/ X/ wo(u,v), - +/ (U+’72u)w_92/ w
w—|—1 o (w+1) Q w+1 qw+1
wgf)u,v
>
_/ w+1 X/Q 92’Q|

1 w3 X \¢(uv)|
Z2/(w+1) 2/9 wrrz P

Noting the facts 0 < In(w + 1) < w and < 1 for all w > 0 and integrating (3.39)

(w +1)2
from ¢ to (t + T) one has

t+71 t+1 2|¢U’U
<26,|Q2 +2 /1 1)(-
[ [ e [ [ A s [yt

(3.39)
t+7
<20/ + 202+ [ [ fouua + by
t Q

Furthermore, by (HO) and the L>°-boundedness of u,v (see (3.11) and (3.31)), there exists
a constant v > 0 independent of ¢ such that

|pu| + |pu] < forall t € (0, Tiax), (3.40)

and then using (3.24) and (3.26), one derives

t+r tr
/ / |¢uuaz + ¢vvx|2 < 2X272/ / u +U

(3.41)
< 2%y (F1 + d—(£G+§ + 1))
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We substitute (3.41) into (3.39) to obtain that for all ¢ € (0, Tipax — 7)

t+7 5 2M4 p 5
T < 205|Q + 2Ma + 2x%% (T + - (E@+E+1) ). (3.42)
2

Hence, integrating (3.38) from ¢ to (¢4 7) and applying (3.42), we get (3.37) directly. Then
the proof of Lemma 3.8 is finished. 0

Lemma 3.9. Let (u,v,w) be the solution to the system (3.3) obtained in Lemma 3.1. Then

there exists a positive constant My such that

t+7
/ / s)dzds < My, for all t € (0, Tmax — T), (3.43)

where T := min{1, %Tmax}.

Proof. We multiply the first equation by —u,,, and use Young’s inequality and (3.26) to

derive

1d
—— u§+d1/uix+2/uu§:/ui+b1/uvu$x+’y1/uwum
2dt Jo Q Q Q Q Q
d1 b2 Y
< 2 @1 2 U1 1/ 2, 2
_/qu-l—2/ﬂum—l—dl uv—l—dl u w

dy V2 M? bIMZMy (8 4+ €2 + 1)
§2/u32m+ 1d10 /w2_|_ 1-0 dl —|—F%,
which gives
d 292 M, 202 MEM (5 + €2 41
e +d1/ L < 0/w2+ IMMAEHEH D) | ore (3.44)
dt Q dl Q dl

Then integrating (3.44) with respect to ¢, and using (3.37) and (3.26) imply that for all
t € (0, Tiax — 7),

t+1 22 M t+7 2b2M2M 6 1 2F2
// dxd<710/ /w—l— ()+104§(f+)+71
ds dy
_ 2v3 MG Mg N 313 N 2b§MO My (€5 +€2+1)
- d% dy d%
=: Mz,
which entails (3.43) immediately. Then the proof of Lemma 3.9 is completed. O
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Lemma 3.10. Let (u,v,w) be the solution of the system (3.3) obtained in Lemma 3.1.
Then there exists a positive constant Mg such that for all t € (0, Tynax),

/ U:%("t) < Mg, fOT’ all te (OaTmaX - T)- (345)
Q

Proof. Multiplying the second equation of (3.3) by —wv,s, integrating the result over €2,
and using Holder inequality and |[u(-,t)||z + [[v(-, t)||z2 + [[v(-, t)||ze < k1, one obtains

d
2d
o v—l— Q/Q

:25/ vumvm—i—%/ vxuxvm—i—%l/ vvm—k%g/ VWV —2/ UVVgy
Q Q Q Q Q

< 28k vz || 2 [|Vexl 2 + 28 ||vate| L2 [|vae || 2

1
+ 261 (01 + k1) |vea || 12[$2]2 + 202k [[w]| 12 [0z | 2

4€%k2 42 4b3k3
< dalfvaa B + L i B + o fortale + 22 w2
n 4/€%<91 + k1)2’Q|

do
which yields

48%k? 4¢?

d 4b3k3
I ey

4k2(01 + k1)2|9
w”%2 + ! d2 :

(3.46)

Furthermore, choosing ¢ = 4 in Lemma 3.4, and using Holder inequality and Gagliardo-

Nirenberg inequality, we derive

4€2 4€2 ds 5
dnmum_drmmmmm<bmmmwm+mwm_EWwMﬁ@wwm

and
d
/glﬁ = [[vall7> < ka ([[vae p2llvll 2 + vll72) < ngvxxH%z%-k5- (3.48)

Substituting (3.47) and (3.48) into (3.46), one has

46212 4b2k?
U+/2<£1Hmhz WIW+%= (3.49)
with kg = k3 + ks + W. Letting
4€2K2 4b3k?
h(t) := ®1WMW+ HlwlZe + ke,
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then using Lemma 3.9 and Lemma 3.8, we have

t+T1 4 2k2 t+T1 4b2k2 t+1
/ h(s)d 5 / / s)dxds + / / s)dxds + ket < k7.
t

(3.50)

Applying Lemma 3.5 to (3.49) and using (3.50), one gets (3.45). Then, we complete the
proof of Lemma 3.10. O

Lemma 3.11. Let (u,v,w) be the solution of the system (3.3) obtained in Lemma 3.1.
Then it holds that
|lw(-t)||pa < Mg,  for allt € (0, Tiax), (3.51)

where Mg > 0 is a constant independent of t.

Proof. We multiply the third equation of (3.3) by w3, integrate the results over 2 and use

Young’s inequality with the boundedness of |[u(-, )|z~ and |[v(:,t)||r to derive

ld
+3/w Wy —3X/ 3(¢u“:p'wz+¢vvz'wx)+/w4(v+72u_02)

SMAWWWMH%MM%HMLW

§ 2, 2 3X2 4 2 4
< wrwy + W (|ul[uz] 4 |Pol[vz])” + K1 w-,
2 Ja 2 Jo 0

which, together with the basic inequality (y+2)? < 2(y?+22) and the fact 1 [, |(w?),|*> =
Jq ww?, gives

3
— w4+/w4—|—/\(w2
Q Q 2 Ja

2 40422 | 422 1
<12y /ﬂw (Ppuy + dpvy) + (k1 + 1)/Qw (3.52)
< llwllzee (1207 Gullzoe lualZz + [ @ullEex [valZ2 + (451 + 1)]2)

< kaf|w| Lo,

where we have used Holder inequality, (3.40) and (3.45) as well as (3.26). By Gagliardo-
Nirenberg inequality, Young’s inequality and (3.13), one has

8 2
k||l w| 7o = kllw?||Fee SkS”(wQ)wHiszwz% + k3Hw2”2L%
2\ 1% 3 4
=k3||(w)zl 22 llwll 71 + Ksllw|| 71

3
< lwP)alZ2 + b,
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which, substituted into (3.52), gives

d 4 4
z <
o7 /Qw + /Qw < ky,

and then (3.51) follows by Gronwall’s inequality. Hence, the proof of Lemma 3.11 is
completed. O

Lemma 3.12. Let (u,v,w) be the solution of the system (3.3) obtained in Lemma 3.1.
Then there exists a constant Mg > 0 independent of t such that

lw(:,t)|| e < Myg, for allt € (0, Tiax)- (3.53)

Proof. Applying Duhamel’s principle to the third equation of (3.3), and using the well-

known semigroup estimates, we have

t
o Dl <k lwoll o + ko / eI (1 g (£ — 5)7F) (s, v)ow] g ds
0

t
+k:3/ eI 4 (¢ o) D) (04 g+ 1 — Byl peds DY
0

<ki||lwo||ree + I1 + Io.

Noting the facts ||w(-,t)||+ < Moy, (3.40), (3.45) and (3.26), and using Holder inequality,

one has
HQS(U? v)waL% :H(d)uux + ¢vvx)w”L§

<[|putie + Pvvz| p2]|w]| L

Mg 2 2 2 2
<5+ HQZSuHLOOHUxHLQ + H¢v||L°°Hva:||L2

M2
§79 + 73 (Mg +T%) =: ky,
and hence

t
I §k2k4/ e~ MHDE=9) (1 4 (¢ — 5)7%)ds < ks. (3.55)
0

On the other hand, using Holder inequality and the boundedness of u, v and ||w|| 4, we

can find a constant kg > 0 such that

[(v 4+ v2u = b3 + Vw2 < |lv+ you = O + 1| g [|wl[ L+ < ks,
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and hence
Iy <kskg /O t e~ MADE=) (1 4 (¢ — 5)1)ds < kr. (3.56)

Substituting (3.55) and (3.56) into (3.54) gives (3.53), and hence the proof of Lemma 3.12
is completed. O
Proof of Theorem 3.1. Noting (3.11) and (3.26), we derive

|lu(-,t)|[pre < k1, for all ¢ € (0, Tinax)- (3.57)
And the combination of (3.31) and (3.45) gives

(-, 8)|[wre < kg, for all t € (0, Thnax)- (3.58)

Then combining (3.57), (3.58) and (3.53), and using Lemma 3.1, we directly prove Theorem
3.1. O

3.3 Global Stability: Proof of Theorem 3.2

In this section, we use Lyapunov functionals and LaSalle’s invariant principle to estab-

lish global stability of constant steady states for the system (3.3).

3.3.1 Case of Prey-only

In this subsection, we shall study the global stability of (1,0,0) (i.e., prey-only steady

state) provided 6; > 1 and f2 > ~. To this end, we introduce the energy functional as

below:
Fi(t) == Fi(u,v,w) = oy / (u—1—1Inwu) —|—b1/ v+ blbg/ w,
Q Q Q
where
L, if v =72 =0,
o min {%, 7b1b2f$;72)} , if 1,72 > 0.

Proof Theorem 3.2(1). By same way as proof in Theorem 2.2 (1), we derive that
Fi(t) > 0 and Fi(t) = 0 if and only if (u,v,w) = (1,0,0). Moreover, some calculations

d 2
a]—](t) = —ody /Q % — a1 /Q(u — 1)2 — albl/ﬂuv —am /Quw

+ b1 / (u — 6 + Oél)’U + / (blbg’mu — b1boby + alyl)w.
Q Q

give

(3.59)
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Case 1: 73 = 72 = 0. In this case, substituting a; = 1 and ;3 = 72 = 0 into (3.59), and

using 67 > 1, one has

d u? 2
dt]ﬁ(t):—dl/QuQ—/Q(U_l) —b1(91—1)/QU—b15292/Qw

S—/(u—1)2—b1(91—1)/U—blbgeg/’U)SO.
Q Q Q

Case 2: 71,72 > 0. Noting the facts limsupu(x,t) < 1 in (3.12) and 6; > 1 as well as

t—o00

(3.60)

Oy > v, for g1 := min{elT*l, 92{772}, we can find a t; > 0 such that

u(w,t) < 1+¢; for any x € Q and t > ¢4,

which, together with a; := min {914—_1, %ﬁ;”)}, entails

u—0i+a1 <1l4+e+a—6;

0 —1
1 (3.61)

61 — 1
ST =g b+

0 — 1
=— 14 <0for allt >t

and
bibayau — b1ba02 + a1yr < bibaya(l 4 e1) — bibaba +

02 — 2 N biba (02 — 72)

< byba (e — 62) + brbaye g o n (3.62)

__biba(02 — )
4
The combination of (3.59), (3.61) and (3.62) gives that for all ¢ > ¢;
~1 _
dfl(t)g—al/(u—1)2—bl(01)/v—m/wgo. (3.63)

Furthermore, all the above cases indicates that %fl(t) = 0 iff (u,v,w) = (1,0,0).

< 0 for all ¢t > t;.

Hence, by LaSalle’s invariance principle (e.g. see [115, pp.198-199, Theorem 5.24]), we

know that (u,v,w) converges to (1,0,0) in L* as t — oo. O

3.3.2 Case of Semi-coexistence

In this subsection, we first study the global stability of semi-coexistence E19 := (91, lg—fl,

Denote V' := 1319 L we introduce the following energy functional:

Fa(t) := Fo(u,v,w) = /

u v
— 01 —011n— b -V —-Vin— b1b .
Q(U 1 1n91>+1/g<v HV)+12/QU)
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Proof of Theorem 3.2(2). Following same way as the proof in Theorem 2.2 (1), we can
check that F»(t) > 0 and Fa(t) = 0 iff (u,v,w) = (01, 1;61,0). Applying the equations of
(3.3) and using the fact 1 = 61 + b1V, one has

75 /Y1 BiY; + /Qh1($,t)w—/g(u—91)2, (3.64)

1= ’ 1=
o B bidyV

hi(x,t) := (bibays — v1)u + b1baV + 1601 — b1babs.

where

and

After some calculations, one can check that By is a positive definite matrix provided that
52(1 — 01)”UH%00 < 491d1d2. (3.65)

Since 0 < 0; < 1 and ||u||p~ is independent of &, we can find an appropriate constant

& > 0 such that if 0 < £ < &, then (3.65) holds, which entails us to find a constant k; > 0

such that
T U?: ”3:

Next, we shall show that under condition #y > ¢; with ¢; defined in (3.9), there exists
a constant ko > 0 such that

/hl(x,t)wg—b1b2k2/w. (3.67)
0 2 Ja

We divide our proof into two cases: bibsye < 1 and biboys > 1.
Case 1: bibsys < 7. In this case, from 6 > £1, one has 0y > bz—éﬁl — % + é, which

indicates
ha (3, 1) < blbgl — 0 + v101 — b1bably = —b1by («92 — E% —+ zi b11> < 0. (3.68)
Case 2: bibsys > 1. For this case, 63 > ¢1 and the fact lign supu(x,t) < 1in (3.12) can
—00
guarantee that for the positive constant €5 : m(ﬁg — (), there exists a constant

ty > 0 such that u(z,t) < 1+ ey for any z € Q and t > t3, and hence

b1b
hi(z,t) < (bibaya — 1) + 1—2(92 — )+ b1b2

— 0,
b + 7101 — b1b202
! (3.69)
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Combining (3.68) with (3.69) and letting

- 01 1  max{bibeya — 1,0}
2 2 b1bs 1+ by by b1bo ’

we directly obtain (3.67). Then substituting (3.66) and (3.67) into (3.64), one has

d uz 02 b1boks
—F(t) < -k — 4+ -2 - —61)% - <

and “=" holds iff (u, vy, w) = (01,0,0). Furthermore, the fact v, = 0 entails v = 0, where

¥ is a positive constant. Hence, (u,v,w) = (61,7,0) satisfies 0 = 61(1 — 61 — b10), which

yields v = % = V. Then £ 7,(t) = 0 implies (u,v,w) = (61, 1;191, ).

Applying LaSalle’s invariance principle, one obtains that the semi-coexistence (91, %, O)

is globally asymptotically stable, which proves Theorem 3.2 (2). O

3 } 13 62 Y2—02 . Y2—02
Next, we shall study the global stability of <7§ ,0, pr ) Denote W := T then we

introduce the following energy functional:

5152’72/ O 02, uye / w
3(t) 3(u, v, w) n v n o, + 0102 ; (w W —W nW>

" Q
+b1/v+/v2.
Q Q

Proof of Theorem 3.2(3). We follow the same way as the proof in Theorem 2.2 (1) to

get that F3(t) > 0 and “=" holds iff (u,v,w) = (% 0, %) Moreover, by the definition

(3.70)

of F3(t) in (3.70), we utilize the equations of (3.3) and the fact 1 = ,% + W to derive

d bib 05\ 2
2 F(t) ——/ YZTB2Y2—12”/ (u—2> —|—b1/vh2(a:,t)+2/v2h3(x,t),
dt Q M Jo 2 Q Q

(3.71)
where
. bibady 6 2 bibaxWudy
% 1 211 2 _guv _ o 2x2 U
Y2 = ij , B2 = _é‘qu 2d2’U2 _bleX;/VU(f)v
% _blb2xgvu¢>u _b1b2X§/VU¢v biba W,
and
b1b b1b20
ho(z,t) = (1 — 22220 — 0 — byW + 22222 hg(a,t) i=u—bow — 61 (3.72)
g4l a!
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After some calculations, we can check that Bs is positive definite if

b1bad;i 62 2

7
—Euv?®  2dyv?

—&uv

2b1byd1daf
= (1 271 = —§2u2v2> v? >0, (3.73)
1

and

| Bs| =b by Wv? <2b1b2d1d292 — §2u2v2>

!
2712 27172,,2 0 (3.74)
bsbsxW d10201b
- % <2uv¢u¢v§u + 2uPp2dy + qb%l?y”) > 0.
1
Indeed, it can be verified that (3.73) and (3.74) hold if
2b1b2d1d292 > 62’)/1M02Kg =+ X2Mf, (3.75)

where My and Ky are defined in (3.4) and (3.5), respectively, and

_ bi1ba(y2 — 02)

ME .
47

*

d102b1bo
(2008 Koloull=l6 e + 2031l + D222 o ).
Since My > ||ul|r~ is independent of &, x and Ky > ||v||e is independent of x, moreover,
for any given ¢(u,v) € C?([0,00)), we can obtain the upper bounds of ||¢y||ze and ¢y || L
are independent of x. Then there exist £ > 0 and x; > 0 such that (3.75) holds if £ € (0, &)
and y € (0, x1). Hence, we can find a constant k; > 0 such that

u2 '1)2 w2
— [ YIBY, < —k —z g x g ) 3.76
/Qz 2Ys < 1/Q<u2+v2+w2> (3.76)

Next, we shall show hs(x,t) < 0 and ha(z,t) < 0, respectively. Noting ¢; > 1 and
2 < l9 with ¢y defined in (3.10), we can take

ft, if 1 < b1baya,

€3 1=
. 01—1 (L2—02)(b1bay2+b2) ;
i { 2 0 2(y1—biba2)y2 o 1y > by,

From (3.12), we can find a constant t3 > 0 such that
u(z,t) <1+¢eg forall z € Q and t > t3, (3.77)

and hence

0 —1 0 —1

hg(a?,t)I:’LL—bg’w—el§1—|—83—91§ +1—-60,=-— 5

<0. (3.78)
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As for ho, we need to distinguish in two cases:
Case 1: 71 < biboye. This case means 1 — 1’1:72172 < 0, thus it follows from 0y < ¢5 and
(3.72) that

baya — bably  b1bab bib b
272 — 0202 | Diboba 10272 + 2 (£ — 85) < 0. (3.79)

ha(z,t) < —6; —
Y172 71 Y172

Case 2: 71 > bibaye. In this case, we have 1 — blf’%ﬂ > 0, which along with (3.72), (3.77)
and 0y < fo gives

bib bib Uy — 02)(bibaya + b b1b26
hg(x,t)g(l— 1272)+(1_ 1272)(2 2)(12’72 2)—91—b2W+ 192V2
T gl 2(71 = bib272) 72 "
bib ba) (b — 6 —bib baya — bably  b1b2f
_ (bibap +bo)(l2 —02) | 1 —bibeys ) Bave —bafly | bibafs (3.80)
27172 94! Y172 94!
bib b
_ e tbe g, gy <o
27172

Then combining (3.78), (3.79) and (3.80), we derive that

b1ba (b 1)(fy — 0
bl/vh2(x,t)+2/v2h3(:c,t) <2 2(bry2 +1)(62 2)/,07
@ Q 2’7172 QO

which, along with (3.76) and (3.71), gives

d
%}"3(75)

<—k1/ <ug+v§+w§>_b1bﬂz/ (u_92>2_bl(b1b2W2+b2)(€2—92)/v
B o \uw?  v? o w? 7 Jo V2 2772 Q

<0.

Thus, %]:3(25) = 0 iff (u,v,w;) = (,%,0,0). This indicates w = w, where @ > 0 is a

constant. Since (%, O,ID) is a solution of (3.6), then one has %(1 — % — 71121) =0, which

R —0 d - 9 ) -
implies w = % Hence, 3 F3(t) = 0iff (u,v,w) = (72’ 0, 7’?1722)' Then, one obtains that

<92 0 Y2—02

70,0, ) is globally asymptotically stable by applying LaSalle’s invariance principle.

This proves Theorem 3.2 (3). O
3.3.3 Case of Coexistence

In this subsection, we shall study the global stability of coexistence steady state (., vy, ws)

defined in (3.7) under the condition (3.8). We first introduce the following energy function
}—4(t> = f4(uavaw) = Fu(t) + blfv(t) + b1b2fw(t)7
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where F,(t) = [, <y —Us — Yx In y%) LY = U, v, W.

Proof of Theorem 3.2(4). Using the same way as the proof in Theorem 2.2 (1), we can
check that F(t) > 0 and F(t) = 0 iff (u,v,w) = (Us, Vs, Wy).
Next, we shall show %.7—"4(15) < 0 under certain conditions for the parameters. In fact,

using the first equation of (3.3) and u, + biv. + Yw. = 1, we derive

d u? 9
—Fu(t) = —uudy | — — [ (u—us)”—b1 | (u—us)(v—vy)
dt au?  Jo Q
(3.81)
o [ ) - w),
Q
Applying u, — bow, = 6; and the second equation of (3.3), one has
d 7}% Ug * Vg
bi—Fu(t) = —brveda | —5 + b1fvs +b1 [ (v—ve)(u—us)
dt Qv Q 0
(3.82)

— byby /Q(U — vy) (W — wy).

Similarly, noting v, + you« = 62 and applying the third equation of (3.3), we derive that

d 2 uly © Wy vUg * Wy
bibo o Fu(t) = —blbgw*/ Ze +b1b2w*></ ulls Wy + PV - W
Qw Q

dt w
(3.83)

+ b1bo /Q(w — wy) (v — ) + b1baya /Q(w — wy) (U — Uy).

We combine (3.81), (3.82) and (3.83) and use b1bay2 — 71 = 0 to obtain

d
4@ = / YT ByYs — / (1 — )2, (3.84)
where
% Usdy _ blﬁg*u . xblbzéu*qﬁuu
Yi= [t | and By= | e bivedy —~— —Xobaledwv
% _ xb1 bzlzu*%u - xblbzéu*qbuv b1bow,

After some calculations, one can verify that the matrix Bsg is positive definite if and only if

wedy =2 w,by (duadidy — biv.&Pu?)
_7111{;*11 blv*dQ - 4

>0, (3.85)
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and

b2bow,
’33’ = %(4d1d2u*v* - b1§203U2)
b2byw. x? '
N %(U*dlb21,l)*¢12ﬂ)2 + g'U*UQU*(b'UU . b162¢uu + b1b2v*d2w*¢iu2) (3 86)
> 0.

Since My > ||u||p~ is independent of &, x and Ky > ||v||L~ is independent of x (see
Remark 3.1), we can find appropriate numbers £, > 0 and y2 > 0 such that if £ € (0,&2)
and x € (0, x2), then

4didous vy > bl’UfMgf2 + XQM* (ga u, U)a

where
Mo (€, 1, 0) = et bac | 6y o K3 + €000 b1b0] 0| o |60 e M2
+ bleU*w*d2H¢UH%°°ng
which gives (3.85) and (3.86). Hence, there exists a constant k; > 0 such that (3.84) can

be updated as

d u?2 w2 w? 9
— < — . AT A k) —uy)” <0. 3.87
S < kl/ﬂ<u2+v2+w2> /Q(u w)? <0 (3.87)

Then (3.87) implies %]:4(15) < 0 and “=" holds iff (u, v, wz) = (us,0,0), this indicates

v = U, and w = W, where 7, and W, are positive constants satisfying
U (1 — Uy — D10 — NWs) = 0, Vs — oy — 61) =0, Wy (Vs + yous — 62) = 0.
This together with the definition of u, in (3.7) gives

_ _ 1
5 — Y1(02 = 261) + ba(02 — 72) _ ve. Dy = bi(201 +02) +(1—061) w..

b2 b2

Therefore, we conclude that %.7—"4@) <0 and %]—"4(15) =0 iff (u,v,w) = (ux, v, ws). Then,
LaSalle’s invariance principle yields that (u., vs, wy) is globally asymptotically stable. This
proves Theorem 3.2 (4). O
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3.4 Linear Stability /Instability Analysis

In this section, we shall study the possible pattern formation for the system (3.3). In
fact, for the space-absent ODE system of (3.3)

up = u(l —u) — bjuv — yyuw,
v = uv — bovw — v,

wy = vw + Yuw — fow,
it has been proved in [55] that:
(1) The trivial steady state Ep := (0,0, 0) is always linearly unstable.
(2) The prey-only steady state Ej := (1,0,0) is linearly stable if #; > 1 and 02 > ~,.

(3) The semi-coexistence steady state Fqg := (01, %, 0) exists if 01 < 1 and it is linearly
stable provided
0y > (bl’YQ — 1)91/[)1 + 1/()1. (388)

b2 Y2—02
Y2777 Y172

(4) The semi-coexistence steady state Ejz := ( ) exists if 3 < 9 and it is

linearly stable provided
02 < 17201/ (b2 + 1) + bay2 /(b2 +71). (3.89)

For the system (3.3) with spatial movement, by the linear analysis, we can show that the
steady states E1, F19 and Ej3 are still linearly stable and hence no pattern formation

occurs. More precisely, we have the following results:

Proposition 3.1. Assume (HO) and ¢,, > 0,¢, > 0 hold. Then for the system (3.3), E1
is linearly stable if 01 > 1 and 0 > ~yo; F19 is linearly stable if 01 < 1 and (3.88) hold; E13
is linearly stable if 02 < 2 and (3.89) hold.

Proof. The proof can be found in the Appendix, see Section 3.6. O

And it has been shown in [55] that if (u.,v., wy) exists for the corresponding ODE
system of (3.3), then it is linearly stable if and only if

b — b1b 0
{ 2+ M 10272 > 0, (3.90)

Y1 Y2Us Wy + b1usvs > (71 — Y2b1ba)viwy.
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Hence, in the following, we focus only on whether pattern formation emerges from the
coexistence steady state (u, vy, wy) under the conditions (3.90) and (3.8).
As discussed in Section 3.6, the linear stability /instability of (., v, w,) are determined

by the eigenvalue of the following characteristic equation

N3 + Pl(Xv )\k)MQ + P2(X7 Ak)# + P3(X7 )\k) = Oa

where {A\p}72, : 0 = Ao < A1 < A2 < A3... denote the sequence of eigenvalues of —A

under Neumann boundary conditions and P;(x, \x) (i = 1,2,3) are given as follows

Pl(X, )\k) ::)\k(dl +dy + 1) + uy > 0,

Py(x, k) ::)\z(dldg +di + da) + Me[(d2 4+ D)us + XPp 1 usws + X Ppbavsws + Eby vy
+ Y1Y2U Wy + b2V Wy + D1y vy,
Py(x, Ak) :=Aid1da
+ A2 (dous + XL doy1usws 4+ XBid1bovsws + ED1ULV, + XPEEVIULVLW)
+ Ak [V1€usviws + x(bady, + 710, — By,b1b2)usviw,]
+ A (V172douswy + badyviws + brusvy)
+ (b2 + 71 — y2b1b2)usviwy, (3.91)

with ¢ = ¢ (us, vs) and @) = ¢y (us, v4). From Routh-Hurwitz criterion (e.g., Appendix
B.1 in [100]), (us, v, ws) is linearly stable iff for each k& € N, it holds that

Pi(x,\) >0, P3(x,Ak) >0, Pr(x, Ae)P2(x, Ak) — Ps(x; k) > 0.
A direct calculation gives
H(x, A) = Prx M) P (06 Ak) = P06 Ak) = ALK + ALK + A K + K, (3.92)
where
Ky i=(dvds + dy + do + 1)(dy + da) > 0,
Ky :=(didg + dy)us + &(d1 + d2)brusvy + (di + dg + 1)(d2 + 1)us
+ (di + 1) xdym1usws + (d2 + 1)XPpbaviws — XPpEy1UsVstws,
K3 :=(d2 + 1)u§ + (d1 + D)yiy2uswy + (do 4 1)bovsws + (di + da)biusvy, + blﬁuiv*
+ XPE W, + XOLb1 b2 vaws — (XB) + €)Y UV,

K4 =ty [y172usws + biusve — (71 — Y2b1b2)vswy].
(3.93)
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When x = £ = 0, one can easily check that Ps(x,A;x) > 0 and H(x,\x) > 0 for all
k € N, which indicates that (us,v., wy) is linearly stable. Hence, in the following, we
will study whether or not the taxis mechanisms can induce the pattern formations. Since
H(x, ;) depends on the values of ¢ = ¢y (us,vs), o5 = Pp(us,vs), 71 and 2. For a
better understanding of the difference between the effect of prey-taxis and alarm-taxis
in the food chain model with/without intraguild predation, we shall focus on the linear
stability /instability of coexistence steady state for two types of ¢(u,v): ¢(u,v) = v and
¢(u,v) = uv, both under the conditions 1,72 > 0.

3.4.1 Linear Stability /Instability Analysis: 77, =72 =0

In this subsection, we shall study the linear stability/instability of (u., vs, ws) to (3.3)
with ¢(u,v) = v or ¢(u,v) = wv in the case of v; = 72 = 0. In this case, (3.3) can be
simplified as
up = ditgy +u(l — u) — byuw,
v = dovge — E(Vug )z + uv — bovw — Oyv, (3.94)
W = Way — X(WP(U, V) z) s + vw — Ow,

which is the classical Lotka-Volterra food chain model with taxis mechanisms (i.e., £, x > 0).

And (s, Vs, wi) = (1 — b162, O, %) exists provided
01+ 0105 < 1. (395)

It has been proved in [66] that if ¢(v) = v, the coexistence steady state of the system (3.94)
is globally stable if & > 0 and x > 0 are both small. Thus, it is natural to ask whether
or not (us, Vs, wy) is linearly unstable and pattern formation occurs for large £ and y. In

fact, we have the following results.

Lemma 3.13 (Linear stability: ¢(u,v) = v). Let ¢(u,v) = v and assume (3.95) holds,
then (uy, v, wy) of (3.94) is linearly stable for all x,& > 0.

Proof. Since ¢(u,v) = v, we have ¢} = 0 and ¢} = 1. Then noting v, = 2 = 0, it follows
from (3.91) that for each k € N

P3(x, \e) =A3didy + AP (dous + xdibovews + Ebyusvy)

+ >\k (delv*w* + blu*v* + XbZU*'U*w*) + bQU*U*w* > 0.

On the other hand, by K;(i: = 1,2,3,4) in (3.93), one can check that K; > 0 for i =
1,2, 3,4, which implies for each k € N

H(x, A1) = PrO6G M) Pa(x, Ak) — Ps(x M) = MK + A2 Ka + M\ K3 + Ky > 0.
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Then Routh-Hurwitz criterion implies that (u., vs, wy) is linearly stable. O

Remark 3.2. Lemma 3.183 implies that no pattern formation occurs for the classical Lotka-

Volterra food chain model with prey-taxis mechanisms for any &, x > 0.

Next, we shall study the possibility of pattern formation for the Lotka-Volterra food

chain model incorporating the alarm-taxis. The main results are as follows.

Lemma 3.14 (Linear stability/instability: ¢(u,v) = uv). Let ¢(u,v) = uv and assume
(3.95) holds. It holds that

(1) If 2b165 < 1, then (us, vy, wy) is linearly stable for all x > 0.

(2) If 2b16y > 1, then (us, v, wy) is linearly unstable provided x > 0 is large enough and

there exists some k € N1 such that

0< )\k < (2[)102 — 1)/d1. (3.96)

Proof. For ¢(u,v) = uv, one has ¢} = ¢, (us,vs) = ve and ¢} = ¢y (U, v4) = uy. Noting
v1 = v2 = 0 and the definitions of K;(i = 1,2,3,4) in (3.93), we have K; > 0 for all i =
1,2, 3,4, which implies that for each k£ € N

H(x, M) = Pr(x, Ae)Pa(x, Ax) — Ps(x, Ak) > 0.

Moreover, using u. — bjv. = 1 — 2b162 and the facts y1 = 72 = 0, ¢}, = vs, @) = u. again,
we deduce from (3.91) that
P3(x, M) =Aidida + A (da + Eb1vs)us + A (dibowy + brus)vs + bousviw,

(3.97)
+ A xbouvaws (Agdy + 1 — 2b169).

Then if 2b1602 < 1, one has Ps(x,A;) > 0 for any k& € N, and hence (ux, vy, w,) is linearly
stable by Routh-Hurwitz criterion.

On the other hand, if 2b;03 > 1 and (3.96) holds, we get that A\gd; + 1 — 2b1605 < 0
for some k € NT. Since \g,us, vs, ws are independent of , it follows that Ps(x,A\x) < 0
for sufficiently large x > 0. Therefore, according to Routh-Hurwitz criterion, (u., vy, wy)

is linearly unstable. O

Remark 3.3. For the Lotka- Volterra food chain model (3.94), our results imply that ¢(u, v)
plays an important role on the pattern formation. If ¢p(u,v) = v (i.e., prey-tazis mecha-
nism), no pattern formation occurs. If ¢(u,v) = uwv (i.e., alarm-taxis mechanism), the
potential steady state bifurcations generating from (u., vy, wy) may happen. Compared with
the results in [46], our results confirm that the alarm-tazis can trigger the pattern formation

by itself even without logistic growth source.
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3.4.2 Linear Stability/Instability Analysis: 71,72 > 0

In this subsection, we shall study the possibility of pattern formation for the system
(3.3) with intraguild predation (i.e., 1,72 > 0). To this end, we analyze the linear sta-
bility /instability of (u«, v«,ws) defined in (3.7). When 1,72 > 0, we rewrite P3(x, Ag) in
(3.91) as follows:

Ps(x, \) =Apdida + A (dows + Ebjusvy)

+ M (V1uswsy2da 4+ bavwydy 4 biusvy + Y1U VW E) (3.98)
3.98
+ A2 x(rdayiuswy 4 Grdbov,w, + GrEYVI ULV WS

+ )\kXU*U*w*(b2¢: + 71@533 - @bzble) + (b2 +m - ’YlebZ)u*U*w*-

Lemma 3.15 (Linear stability /instability: ¢(u,v) = v). Let ¢(u,v) = v and assume (3.8)
and (3.90) hold. Then we have the following results:

(1) (Us, Vs, wy) 1s linearly stable provided
X+ € < Ks/muwaw, and dg + 1 > Eyiuy/ba, (3.99)
with K3 > 0 defined in (3.103).

(2) (Us, Vs, wy) 18 linearly unstable provided x > 0 large enough and one of the following

conditions holds:

d2 + 1 > §’7b12u* )

(3.100)
0< A\ < W% for some k € NT,
or
dy+1< 57;“* for allk € N, (3.101)
2

Proof. Since ¢(u,v) = v, one has ¢ = 1 and ¢}, = 0. Noting by +~y1 —y2b1b2 > 0, it follows
from (3.98) that Ps(x, Ax) > 0 for all k£ € N.

Since (3.8) and (3.90) hold, we derive from (3.93) that K7 > 0 and K4 > 0. Hence, to
determine the sign of H(x, Ax), we only need to consider the values of Ky and K3. Using
the facts ¢} = 1 and ¢} = 0, we rewrite K3 and K3 defined in (3.93) as follows:

Ky = I?; + xvsws[(d2 + 1)b2 — Ey1us] and K3 = I,ZZ% = (X + Omuwviwy,
where E > 0 and IA(; > 0 are defined by

Ky = (dida + di)us + &(d1 + d2)brusvs + (di + do + 1)(d2 + 1)us, (3.102)
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1?/3 = (do+ l)ui + (di + D)y1vouswy + (do + 1)bovswy + (dy + d2)brusvs + bi&uv,. (3.103)

Then we can derive from (3.99) that Ky and K3 are positive and hence H (x, A\r) > 0 for all
k € N, which implies that (u., v, w,) is linearly stable by using Routh-Hurwitz criterion.
Next, we shall show that (u.,vs, w,) is linearly unstable for large y under conditions

(3.100) or (3.101). To this end, we rewrite H(x, A\x) (see in (3.92)) as follows:
H(x, M) = ALK+ N Ky + MK + Ky

(3.104)
+ )\kXU*UJ* ()\k[(dZ + 1)b2 - fVlu*] - 'Ylu*) - )\kg'}/lu*v*w*,

where Ky and K3 are defined by (3.102) and (3.103), respectively.

Since A\, and the value of (u,vs,w,) are independent of y, then if (3.100) or (3.101)
holds, we can find x > 0 large enough such that H(x,A\x) < 0, and hence (us, vy, wy) is
linearly unstable by applying Routh-Hurwitz criterion again. O

Remark 3.4. Compared with Lemma 3.13 and Lemma 3.15, we found that the intraguild

predation (i.e., y1,7v2 > 0) plays an important role for the pattern formation.

Next, we shall study the possible pattern formation in the system (3.3) with alarm-taxis

in the sense of ¢(u,v) = uv.

Lemma 3.16 (Linear stability /instability: ¢(u,v) = wv). Let ¢(u,v) = wv, x > 0 and
€ >0. Assume (3.8) and (3.90) hold. Then it holds that:

(1) (s, vs,wy) is linearly stable provided
bty + Y1Us — Vxb1b2 >0 (3105)
and

0 < ¢ <min {I?g/'ylu*v*w*, (di 4+ 1)/ux + (d2 + 1)b2/u*71} , (3.106)

where K3 > 0 defined in (3.103).

(2) (Us, Vs, wy) 18 linearly unstable provided x > 0 large enough and one of the following

conditions holds:

|batts + Y1us — Vib1 b2

or some ky € N,
doy1 + diba + uxm f

bouy + Y1us — Vxb1ba <0 and 0 < A, <

(3.107)
or for some ko € NT
di+1 (d2 + 1)b2 Vsb1bg
> + and A\g, > . 3.108
. Use U1 "7 (d1 + D + (dz + )bz — wbyi ( )
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Proof. From ¢(u,v) = uv, one has ¢} = u, and ¢! = v,. Hence we can derive that

P3(x, Ak)
= Nididy + Np(dows + Ebrusvy) + A (Y1uewaeyada + bavaweds + biuvse + Y11 v.w4E)
+ Mex U VWi [Ag (doy1 + diba + uiéy1) + (baus + Y1us — v5b102))]
+ (b2 + 71 — 12b1b2)usvwy,
(3.109)

and

H(x, Ak) = N K1 + MK + A(Ks — Eynusva,) + Ky 3.110)
+ A XU Vsws (AR[(d1 + 1)y1 + (d2 + 1)ba — usly1] + vibiba) .

Then if (3.105) and (3.106) hold, one can verify that P3(x, Ax) > 0 and H(x, A\x) > 0 for

each k£ € N, and hence by applying Routh-Hurwitz criterion, we obtain that (w, v., wy) is
linearly stable .

On the contrary, if (3.107) holds, we can choose x large enough such that Ps(x, \x) <

0. Thus, we derive from Routh-Hurwitz criterion that (u.,vs,w,) is linearly unstable.

Similarly, if (3.108) holds, we have H(x, A\x) < 0 for large x, and hence (uy, vy, wy) is

linearly unstable. O

Remark 3.5. Compared with the the Lotka-Volterra food chain model (3.94) with ¢(u,v) =
uv, the intraguild predation model (i.e., y1,v2 > 0) has richer dynamics. Specifically, the
intraguild predation model has not only the potential of steady state bifurcations but also

that of Hopf bifurcations.

Remark 3.6. The instability results of the intraguild predation model with ¢(u,v) = uv
indicate that the alarm tazis mechanism can promote potential steady state bifurcations,

which can not be induced by the intraguild predation model with ¢(u,v) = v.

3.5 Pattern Formations: Numerical Simulations

In this section, we shall give some numerical simulations to verify our theoretical anal-

ysis in Section 3.4.
3.5.1 Food Chain Model with Alarm-taxis: 7, = 7, = 0 and ¢(u,v) = uv
In this case, we fix the value of the parameters in all simulations as follows:
di1 =01, do=b=b=1,0p =01, =07, 1 =7 =0,
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Figure 3.1: Numerical simulation of spatio-temporal patterns generated by (3.

(a)

35

0 5 10 15 20 25 30

X

(b)

35

3) with

¢(u,v) = wv and 3 = 2 = 0. The parameter values are: x = 80, =0, d; = 0.1, ds =
by = by =1,0; = 0.1, 3 = 0.7. The initial datum (ug,vg,wp) is set as a small random
perturbation of the homogeneous coexistence steady state (0.3,0.7,0.2).

(0.3,0.7,0.2) and 61 + b162 < 1 as well as 2005 > 1. Hence, by
Lemma 3.14 and the fact H(x, A\x) > 0, we expect only the spatio-temporal steady state

which gives (s, vy, wy) =

(aggregation) pattern occurs when

5

= a

X > X5 (100A£ +30(10 4 7€) \g, + 224 + i—i) : (3.111)
for some k& € NT such that 0 < \; < 4 and here X}fl (&) is the root of P3(x,A\x) = 0 in
(3.97). Taking Q2 = (k/10)% < 4,
we get the allowable unstable modes for k = 1,2,3---,18,19. We choose A, = (5/10)2,
then X‘gl (€) in (3.111) can be updated as x5! (£) = %1705.

We first pick & = 10) ~

formations. As shown in Figure 3.1, by letting x = 80 > 30.0476 and we can find the steady

(0,107), with allowable wavenumber satisfying 0 < Ay, =

0 to find a value X‘5S 30.0476 for the possibility of pattern

state patterns (see Figure 3.1): the time evolutionary profiles of solutions are horizontal
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Figure 3.2: Numerical simulation of spatio-temporal patterns for (3.3) with ¢(u,v) = wv.
The fixed parameter values are: di = 0.1, do = by = by = 1,01 = 0.1, 0 = 0.7 and
v1 = 2 = 0. The initial datum (ug, vg, wp) is set as a small random perturbation of the
homogeneous coexistence steady state (0.3,0.7,0.2).

lines, and the space-profiles show that all species reach an inhomogeneous coexistence state
in space.

The expression in (3.111) implies that the critical value X‘,fl (§) > 0 is increasing in
terms of & > 0, the spatio-temporal patterns generated due to any fixed large y and fixed
mode k will disappear as the value of £ > 0 increases, which implies the prey-taxis has a
stabilization effect on the homogeneous steady state. To verify this fact, we use numerical
simulations to find that the spatio-temporal patterns gradually evolve into the spatially
homogeneous patterns as ¢ increases from 0 to 10, then to 20, and finally disappear at

& = 40, see more details in Figure 3.2.
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3.5.2 Food Chain Model with Intraguild Predation and Prey-taxis: ~; >
0, 72 > 0 and ¢(u,v) =v

In this case, we fix the value of the parameters as follows:
d1 = 0.1, d2 = bl = b2 = Y2 = 1, Y1 = 2, 91 = 0.1, 92 =0.9. (3.112)

Then (w, vy, wy) = (0.15,0.75,0.05). As discussed in Lemma 3.15, only Hopf bifurcations
can occur by noting the fact Ps(x, Ax) > 0.
We derive from (3.112) that H(x, A\x) = 0 in (3.104) is equivalent to

2 54
Y= M (E) = 9680XF + (2640 + 495) Ag + 3+ + 1041 + 90¢
g 15(3 1 3MiE — 2004) )

(3.113)

which is positive provided A, (20 —3¢) < 3. Taking 2 = (0, 107), the allowable wavenumber
Ar = (k/10)? satisfying A\ (20 — 3€) < 3, then k = 1,2, 3 are allowable unstable modes for
any £ > 0. Fixing k = 2 and (3.113) can be simplified as

62386

Ha _
Xz (&) =61+ oy

(3.114)
We first choose £ = 0 to obtain a value X;ﬁ(O) ~ 76.124 for possible pattern formations.
As shown in Figure 3.3(a), with x = 100 > 76.124 in hand, we can find the spatio-
temporal patterns. In particular, the time evolutionary profiles of solutions are periodically
oscillatory, which indicates the bifurcation might be of Hopf bifurcation type (see the last
picture in Figure 3.3(a)). Moreover, (3.114) indicates that for fixed unstable mode k = 2,
the critical value X;ll (&) > 0 is decreasing about £ > 0, which implies the prey-taxis might
have a destabilization effect on patterns. This is an interesting phenomenon, which is
different from the food chain model without intraguild predation.

To verify this fact, we take £ = 10 and £ = 20 and find that the patterns become
unstable as £ increasing from 0 to 10 and then to 20, and the chaotic spatio-temporal

patterns may happen, see Figure 3.3(c).

3.5.3 Food Chain Model with Intraguild Predation and Alarm-taxis:
71,7 > 0 and ¢(u,v) = uv

In this case, we fix the parameters as follows for simulations:
d1 = 0.1, d2 = bl = bQ = Y2 = 1, Y1 = 2,91 = 0.1, 92 = 0.9, (3.115)

this implies (uy, vi, wy) = (0.15,0.75,0.05). From Lemma 3.16, we know that the steady
state and Hopf bifurcations are both possible.
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Figure 3.3: Numerical simulation of spatio-temporal patterns generated by (3.3) with
¢(u,v) = v and 71,72 > 0. The parameter values are: d; = 0.1, do = by = by =
v =1, v1 =2, 8 =0.1, 03 = 0.9. The initial datum (ug,vg, wp) is set as a small random
perturbation of the homogeneous coexistence steady state (0.15,0.75,0.05).

By (3.115), we first derive from (3.109) and (3.110) in Lemma 3.16 to obtain that
Ps(x, \x) = 0 and H(x, A\x) = 0 are, respectively, equivalent to

2 180
= () = 160077 + 600Ax(4 + 3¢) + 52 + 2100 + 180¢
k 27 — 2T\ (7T 4 €) ’

(3.116)

and

7744002 + 120\ (176 + 33¢) + 432 + 8328 + 180
X = X2 (8) = b a i < (3.117)
54, (€ — 14) — 135
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Figure 3.4: Numerical simulation of spatio-temporal patterns generated by (3.3) with
¢(u,v) = uv and 1,72 > 0. The parameter values are: di = 0.1, dy = by = by =
vo =1, 71 =2,60 =0.1, § = 0.9. The initial datum (ug, vo, wp) is set as a small random
perturbation of the homogeneous coexistence steady state (0.15,0.75,0.05).

We deduce from (3.110) in Lemma 3.16 that if

K di +1 n (d2 + 1)52} _ min{31457 32f 14} — 14,

0<€L min{ , + 2=
Y1 U Vs Wi U UxY1

then H(x, A\x) > 0 for any k € N and hence no Hopf bifurcation occurs, which motivates
us to study the possibility of steady state pattern formation. To illustrate this case, we
take Q = (0,107), then from (3.107), the allowable unstable modes k& € NT must satisfy
0< M = (k/10)* < 7.

We take k = 3 and £ = 0, then (3.116) implies that ng (0) ~ 433.329, which is a value
for possible pattern formations. As shown in Figure 3.4(b), choosing x = 450 > 433.329,
we can find the steady state patterns. Furthermore, for the fixed unstable mode k£ = 3, the
pattern formations will disappear as £ increasing from 0 to 4, see Figure 3.4(c).

For relatively large £ > 14, from Lemma 3.16 and the definition of XZLQ in (3.117), the

Hopf bifurcations possibly occur as long as the allowable unstable modes k € NT satisfying
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A= (k/10)? > ﬁ. With x =450 in hand, for the same unstable mode k = 3, we pick
& = 45 to find the spatio-temporal patterns, see Figure 3.4(d).

Our results demonstrate that for the fixed large x = 450, as the parameter £ increases,
the steady state patterns (see Figure 3.4(b)) evolve first into the constant state (see Figure
3.4(c)) and then further develop into the Hopf bifurcation patterns (see Figure 3.4(d)).
Moreover, from Figure 3.4(a), we observe that no pattern formation occurs when x = & =0
and 71,72 > 0. This, together with Figure 3.1, Figure 3.3(a), Figure 3.4(b) and Lemma

3.13, indicates that the signal taxis mechanism plays an essential role in promoting pattern

formation.

3.6 Appendix: Proof of Proposition 3.1

In this section, we are devoted to giving some basic linear analysis on the linear stabil-
ity /instability of constant steady state for the system (3.3). To this end, we first linearize

the system (3.3) at constant steady state (uc, v, we) to obtain

v, = AAV + BY, e, t>0,
VU .-v =0, x eI, t>0,
U(x,0) = (up — Ue, Vo — Ve, Wo — we), x € Q,
where
U — Ue dy 0 0 —Ue  —biuc —71Uc
UVi=|lov—v. |, A= —&v, ds 0| and B= Ve By  —bou. |,
W — We —ch% —ch¢5 1 Y2We We B33

with ¢f := ¢u(u0a 'Uc)7 ONES ¢v(u0a 'Uc) and
Bos :=u, — bow, — 01 and Bsz := v, + You. — 0. (3.118)

Then, the linear stability of (uc,ve,w.) is determined by the eigenvalues of the matrix
(=M A + B), which satisfies the characteristic equation 3 + Piu? + Py + P3 = 0, where
P; := P;i(\) (i =1,2,3) are defined as below
Pi(Ag) :=Ai(dy +da + 1) + u. — Bag — Bags,
Pa(Ar) =M (dids + dy + da) + M, {(d2 + D)uc — (di + 1)Bag — (di + da) B33}
+ M (X Py ucwe + xPybovcwe + Eb1ucve) + 1Y2uUwe + bavewe + biucve
— ucBag — ucBs3 + B2z Bss,
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P3(A) :=A}didy + Ai(—d1daBss + dauc — d1Bas)
+ A (x5 darrucwe + XG5 dibavewe + Ebrucve + XPSEVL UVW,)
+ M (—ucBag — doucBsz + di B2 Bs3)
+ M A ucwe(y2de — x @5 B22) + bavewe(d1 + xdyue) + brucve(l — Bs3)
F11ucvwe(XPy + §) — XPybibaucvewe}
+ ucBoa B3z — y1y2ucweBag — biucveBss + (b2 + 71 — y2b1b2)ucvewe.  (3.119)

Based on Routh-Hurwitz criterion (e.g., Appendix B.1 in [100]), the nonnegative constant

steady states (uc,ve, w.) are linearly stable if and only if for each k € N, it holds that
Pr>0, P3>0, P P—P;>0.
Calculating directly, one obtains
PPy — Py = NJKS + N KS + M\ KS + K§ 4+ (VP KE 4+ M\ K§),
where
K7 :=(d1dy + dy + dy + 1)(dy + d2) > 0,

KS§ :=(dida + di)uc + (di + d2)(—Bss) + (dida + d2)(—Ba2) + £(d1 + d2)biucv,
+ (di +da + 1){(d2 + 1)uc — (d1 + 1) Ba2 — (d1 + d2) B33},
KS ::(uc — Byg — Bg3){(d2 + 1)US — (dl + d2)Bg3 — (dl + 1)322}
+ (da + 1) Boa B3z — (di + 1)ucBsz — (di + d2)usBao

w

+ [(d1 + 1)y2 — {nmucwe + (da + 1)bavewe + (di + d2)brucve + (ue — Bag)bi&ucve,
Kj§ := — (Baa + Bs3)(Ba2Bs3 + bavswg) — uc(ue — Bog — Bs3)(Bag + Bss3)
+ (ue — B33)y172ucwe + (ue — Ba2)biucve — (71 — Y2b1b2)ucvewe.
Also
Kg = (d1 + 1)¢;v1ucwe + (da + 1) @5 bavewe — ¢Lyiucvewe, (3.120)
and

Kg ::(Uc - B33)¢Z'Ylucwc + (_BZQ - B33)¢5b2vcwc + ¢Z,b1b2ucvcwc - Qbffylucvcwo
(3.121)

Proof of Proposition 3.1. For the corresponding ODE system of (3.3), it has been proved

in [55] that the constant steady state (uc,ve, w.) is linearly stable under the following
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conditions:

(1,0,0), if 61 > 1 and 65 > Y2,
_ . b —
(tte, ves we) = 4 (01, 552,0), if 61 <1 and 6y > 292=26, + L, (3.122)
[Z] —0 . b
(’Y%’ 0, 7’31’722)’ if 62 < 72 and 02 < bzl—lﬁl 01 + 522-1’—}31'

Under the conditions (3.122), we can derive from (3.118) that By < 0 and B3z < 0, which
gives K5 >0 (j =1,2,3,4).

For (1,0,0) or (01, %, 0), one obtains w, = 0, which together with the facts Bys <0
and Bss < 0 substituted into Ps in (3.119) implies that for any k£ € N

Py =)\3dydy + M2 (—dydaBsg + dou. — dy Bag + bjucv.) + ue.Baa Bz — biucv.Bas
+ Ag[—ucBay — doucBsz + di Baa B3z + biucve(1 — £Bs3)] > 0.

Since w. = 0, by (3.120)-(3.121), one has K¢ = K¢ = 0, which together with K¢ > 0 (i =
1,2,3,4) implies Py P,— P3 > 0. Hence, by Routh-Hurwitz criterion, Fy and E5 are linearly
stable.

As for Fy3 := (92 0 72_02), one has v. = 0 which together with ¢, > 0, gives Kf =

Y277 172
(di + Dyixoucwe > 0 and K§ = (ue — Bss)x ¢S v1ucwe > 0. Using K¢ >0 (j = 1,2,3,4)

again, one obtains PP — P3 > 0 for each £ € N. On the other hand, noting the facts
Bay < 0,Bs3 <0, v, =0 and ¢S >0, ¢5 > 0, from (3.119), we get that

0 < P3 :=\3didy + M2 (—dydaBs3 + doue — dy Bos + x¢Cday1ucwe)
+ Me{—ucB22 — dau.Bss + d1 B2a B33 + (72d2 — x @5, B22)y1ucwe}

+ ucB22 B3z — v172ucweBaa.

Therefore, (%, 0, %) is linearly stable by applying Routh-Hurwitz criterion. Then we

complete the proof of Proposition 3.1. O
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Chapter 4

Global Dynamics of an SIS
Epidemic Model with
Cross-diffusion: Applications to
Quarantine Measures

4.1 Introduction and Main Results

Before presenting our context, we clarify that the results presented in this chapter have

been published in our journal paper [25].

4.1.1 Introduction

Infectious diseases [10, 13, 60] have brought in tremendous impacts on public health and
the global economy such as the unprecedented novel coronavirus disease 2019 (COVID-19).
Mathematical modelings and analysis of infectious diseases have had a long history and
numerous results are available (cf. [33, 51, 97]). In epidemiology, the basic reproduction
number of an infection, denoted by Ry, is the expected number of cases directly generated
by one case in a population where all individuals are susceptible to infection. This number
is the threshold determining if an emerging infectious disease can spread in a population.
Specifically, the infection persists if Ry > 1 while becomes extinct in the long run if
Ry < 1. Generally, the larger the value of Ry, the harder it is to control the epidemic. It
is therefore of mathematical and biological importance to properly define and give explicit
estimates of Ry (cf. [50, 136]). It is noteworthy that the value of Ry can vary, even for the
same disease strain, depending on external factors such as environmental conditions, public
health policy governing the detection and movement pattern of the infected population, and

so on. Among a large number of mathematical works based on reaction-diffusion (or with
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advection) models (cf. [4, 82, 99, 144] and reference therein), most (if not all) mathematical
models have assumed that both susceptible and infected individuals employ homogeneous
diffusive movements. However, this assumption leaves out the effects of human behaviors
and public health quarantine measures on the mobility of individuals during the outbreak
of disease such as COVID-19 [60, 74, 131]).

To fill this gap, we shall introduce the cross-diffusion for the infected individuals (i.e.,
the diffusion of the infected individuals depend on the density of the susceptible population)
into the SIS model and explore the effect of the human intervention on the propagation of
infectious diseases, particularly on the basic reproduction number Ry. There are many SIS
epidemic models, we choose, among others, the SIS model with frequency-dependent trans-
mission mechanism (cf. [30]) and demographic change (i.e., population growth/recruitment
and death). That is, denoting the population density of the susceptible and infected in-
dividuals at position x €  C R"™ and time ¢t > 0 by S(z,t) and I(z,t), respectively, we

consider the following SIS model with cross-diffusion on I:

Sp = dsAS + A(x) — 05 — afz) 25 + B(x)], =€ Q,t>0,
I, = d;A[y(S)I] + a(m)ss—fl —[B(x) + n(x)]I, xe€Q,t>0, (4.1)
0,8 = 0,1 =0, e 0, t>0.

All the other notations and parameters have the same interpretation as in Section 1.4.
Relevant results on (4.1) with v(S) = 1.We recall some related results developed

for the SIS model (4.1) with «(S) = 1. When the demographic changes are not considered

(i.e., A(z) = 6 = n(z) = 0), by integrating the sum of the two equations of (4.1), one

immediately finds that the total population is conserved, namely
/[S(x,t) + I(x,t)]dx = /(SO + Ip)de =N, Vt>0,
Q 0

where the constant N > 0 denotes the number of total population. For this case, Allen
et al. [4] first introduced the basic reproduction number Ry via a variational formula
and established the existence, uniqueness and global stability of the disease-free equilib-
rium (DFE) if Ryp < 1. When Ry > 1, they proved the existence and uniqueness of
the endemic equilibrium (EE), and explored the asymptotic behavior of the unique EE as
dgs — 0. Particularly, they conjectured that this unique EE is globally stable, which was
later confirmed by [104] for the cases of dj = dg or a(x) = rB(z) with constant r > 1.
The results in [104] imply that the disease will persist in the high-risk domain  (namely
Joa(z)dx > [, B(x)dx). When « and 8 are temporally and spatially inhomogeneous, Peng
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and Zhao [107] showed that the disease will persist in the high-risk domain €2, and the joint
effect of spatial heterogeneity and temporal periodicity may enhance the persistence of the
disease. In addition, [34] explored the existence of traveling wave solutions.

When the demographic changes are included (i.e., A(x), 6, n(z) > 0), the total popula-
tion is no longer conserved and the analysis will be more involved. The first result seemed
to be obtained by Li et al. in [81] where the global existence and boundedness of classical
solutions as well as the threshold dynamics in terms of the basic reproduction number Ry
were studied. By the uniform persistence theory, they showed that the disease will persist
uniformly and hence at least one EE exists in the high-risk domain. The asymptotic pro-
files of EE for large and/or small of dg or d; were further obtained in [81]. These findings
imply that a varying total population may enhance disease persistence, thereby posing
greater challenges to the disease control. In addition, Li et al. [83] introduced an infectious
population oriented taxis advection term for S (i.e., the susceptible moves away from the
density gradient of the infected individuals) with varying/conserved total population and
showed that such a cross-diffusion does not contribute to eradication of the disease. Last
but not least, we refer readers to [84, 126, 127] for some results on SIS models with taxis
movement in the S-equation, and [19, 31, 82, 105, 146, 153] and the references therein for
more results on various SIS epidemic models with random diffusion.

We aim to study the SIS epidemic model (4.1) with cross-diffusion for I and explore
how the cross-diffusion diffusion strategy can play positive roles in controlling the spread

of disease. Our main goals include the following;:

(S.1) Establish the global well-posedness of solutions (global existence and stability) to

(4.1) under suitable conditions;

(S.2) Investigate the effects of cross-diffusion on the persistence and extinction of the in-

fectious disease.

The main challenge in the analyses arises from the cross-diffusion structure in the I-
equation. The SIS model with taxis-like advection in the S-equation considered in [83] is
significantly different from (4.1) with the cross-diffusion in the I-equation. For the model
of [83], the L> boundedness of I can be directly obtained from the I-equation based on
the boundedness of L! by using the result “L'-boundedness implies L>°-boundedness” for
classical reaction-diffusion equations proved in [3]. But for the cross-diffusion SIS system
(4.1), the boundedness of I can not be obtained directly from the I-equation alone. This

needs more complicated coupling estimates to establish the global boundedness of solutions
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under the structural hypothesis (H2), as shown in Section 4.2.

4.1.2 Main Results

Throughout this chapter, we suppose that the initial value (S, Iy) satisfies

0< Sy € Whe(Q), Iy € C(Q) with Iy > 0 and / Ip(z)dz > 0, (4.2)
Q

and the following conditions hold:

(HO) The functions A(z), a(z), B(x), n(z) are positive and Hélder continuous on €2, and

0 is a positive constant.

Moreover, v(.S) is assumed to fulfill the following conditions:
(H1) 7(8S) € C?([0,00)), 7'(S) > 0 and 7(0) = 1;
(H2) There exist some positive constants Ky and K1 such that v(S) < K and v/(S) < K.
Note that in (H1), v(0) can be any positive constant, which however can be absorbed into
dr. Hence, we simply assume (0) = 1 without loss of generality.

Our first result concerning the global boundedness of solutions is given below.
Theorem 4.1. Let Q C R? be a bounded domain with smooth boundary and hypotheses
(HO0)-(H2) hold. Then (4.1) with (4.2) admits a unique classical solution (S,I) € [C(Q x

[0,00)) N C%HQ x (0,00)))? satisfying S, I > 0 on Q x (0,00). Moreover, there erists a
constant C > 0 independent of IC1 such that

1S lwrie + [T e < C(1 + K12)eCOHED = M (Ky) for all t > 0. (4.3)

Remark 4.1. When considering the mass action infection mechanism (cf. [70]), namely
SS—JFII is replaced by SI in (4.1), Theorem 4.1 can hold without the assumption (H2) since

the boundedness of S can follow directly from the comparison principle.

Next we shall explore how the cross-diffusion affects the basic reproduction number Ry.
To this end, we consider the stationary problem
dsAS + A(z) - 0S — ax) 2L + B(x) [ =0, z€Q,
A (S + (@) g — [Ba) +n(@)I =0, z e, (4.4)
0,8 = 0,1 = 0, x € 0.
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It is easy to check that (4.4) has a unique semi-trivial solution (S(z), 0) =: (S, 0) satisfying
0<S < %maxxeﬁA and

dsAS + A(z) — S = 0in Q; 9,5 = 0 on OQ.

(5,0) is called the disease-free equilibrium (DFE). An endemic equilibrium (EE), denoted
by (S(z),1(z)), is a solution of (4.4) satisfying I(x) > 0 and I(z) # 0 on Q. In fact, if EE
exists, then the maximum principle and the Hopf boundary lemma for elliptic equations
assert that S(z) > 0,I(z) > 0 in Q. By the nomenclature from [4], we define the low-risk
site Q= and the high-risk site QT as:

T={zecQ: a@) <BE) +n@)}, QT={recQ: alz)> @) +n(x)}.

The domain 2 is called a low-risk domain if [, a(z)dx < [,[B(x)+n(x)]dz and a high-risk
domain if [, oa(x)da > [,[8(x) + n(x)]dx.

Now we define the basic reproduction number Ry of (4.1) by the following variational
form (see the motivation detailed in Section 4.3.1):

a\T ’UJ2 X
RO = Ro(d[,’y(g)) = su fQ ( ) d . (4.5)

ot @) Jo{di]V (V3 (B)w)? + (B(@) + () w?}da

When the infected individuals take random movement (i.e., v(S) = 1), we denote the basic
reproduction number by Ry given in [81]. Below we present some qualitative properties of
Ry in terms of dy, which can be readily proved by the proofs of [4, Lemma 2.2] and [92,
Lemma 3.1]. We skip the details here for brevity.

Proposition 4.1. Let q1(z) := a(z)y2(9), g2(z) = [B(x)+n(z)]y1(S) and q(z) := g;gzg
with v~1(S) = 1/~4(S). Under hypotheses (H0)-(H1), the following results hold.

(i) Ro is strictly decreasing in dj provided that Q= and Q' are nonempty. Moreover,

Ro — max{q(z) : € Q} asd; — 0 and Ry — [ q1(x)dz/ [ q2(x)dz as df — oo;
(i) If [ q(z)dx > [ q2(x)dz, then Ry > 1 for all df > 0;

(iii) If fQ q1(x)dx < fQ q2(x)dx, then there admits a unique positive constant dj such that
Ro > 1 (resp. Ry <1) fordr <dj (reps. d; > dj) when Q= and Q* are nonempty.

Remark 4.2. IfQ~ and Q" are nonempty and A(x) is a constant, then S > 0 is a constant.
This along with the monotonicity of Ry in Proposition 4.1-(1) yields Ry < Ry, and hence
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implies that the cross-diffusion can reduce the value of Rg. In other words, the intervention
measures are effective for controlling the spread of diseases (see more discussion in Section
4.5).

Remark 4.3. If Q is a high-risk domain, namely [, o(x)dx > [,[B(x) + n(x)]dz, we can

choose a rate function v(S) such that [, a(z)y 1(S)dz < [4[8(x) + n(z)]y 1 (S)dz (see
a specific example in Section 4.5). By Proposition 4.1-(iii), there exists a unique dj such
that Ry < 1 whenever dr > dj, which is substantially different from the well-known results

with random diffusion (i.e., v(S) = 1) for which the basic reproduction number Ro > 1 for
all dr > 0 (e.g., [81, Proposition 3.2 (c)], [107, Theorem 2.5 (a)]).

The basic reproduction number Ry normally can determine threshold dynamics. Specif-
ically, if Ry > 1 (resp. Ry < 1), the disease persists (resp. becomes extinct). The following
theorem indicates that Ry defined in (4.5) can determine the threshold dynamics locally.

Theorem 4.2. Let hypotheses (HO)-(H2) hold. Then the following statements hold.
(i) If Ry < 1, then, DFE (S,0) is linearly stable;

(ii) If Ry > 1, then DFE (S,0) is linearly unstable and (4.1) admits at least one EE.

Remark 4.4. The uniqueness of non-trivial EE in general and the existence of non-trivial

EFE when Ry <1 remain open.
Finally we prove the global stability of DFE and EE depending on the sign of 1 — Ry.

Theorem 4.3. Let (S,I) be the solution obtained in Theorem 4.1. The following state-

ments hold.

(1) If a(z) < B(z) + en(z) with fized constant 0 < e < 1, then Ry < 1 and DFE is
globally asymptotically stable with

1S — S(@)|| g + ||| ee < Mye ™t for all t > 1. (4.6)

(i) Assume that A, o, B, n are all positive constants. If o > f+n (i.e., Ry > 1),
then the unique constant EE (5”, .f) defined in (4.72) is globally asymptotically stable
provided that 0 = n and

2dsdy + 4dgd; My > d3CE + d% + d K H(Ky), (4.7)

where H(IC1> = M(Kl)[l—i-MQ(M(IC1>+1)2]{2ds—l—]ClM(]Cl)d][l—i-Mg(M(,Cl)+1)2]}

. . An[A(a—p—n)+na
it 0 = Y
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Remark 4.5. Ifv(S) = 1, the global stability of DEF can be proved with the mere condition
Ry < 1 (see [81]). Here we give a more sufficient condition. If A, a, B, n are positive

constant, it follows from Proposition 4.1-(i) that Ry = Thus, o« > B+ 1 1is equivalent

,6’+77
to Ro > 1. In addition, 0 = n is a technical assumption, which is not needed in the case

v(S) =1 and dr = dg (see [81]).

Remark 4.6. Since M (K1) > 0 is an increasing function of K1 and My is independent
of K1, the condition (4.7) can be achieved by choosing K1 small. For example, fixing

A=n=60=ds =1, a =d; = 2.5, 8 = 0.5 and taking v(S) = Ko — ’%‘:11 with

1< Koy <2, then v/(S) = (S+1)1 < (Ko —1)=: Kq. Let Ky be close to 1 (i.e., K1 be close

to 0) such that d;iK1H (K1) < 1, then 2dgd; + 4dsdiMy = 75 > d32* + d% +1 = 27 >
d3K3 + d% + diK1H (K1), and thus (4.7) holds.

4.2 Global Boundedness and Existence: Proof of Theorem
4.1

In this section, we will study the global existence and boundedness of solutions to
(4.1). Throughout this chapter, ¢; and C; (i = 1,2,3,---) are used to denote generic

positive constants, which may vary in the context and are independent of ¢ and X;.

4.2.1 Local Existence and Preliminaries

Firstly, the local solvability of (4.1) can be proved by using the Amann’s theorem [7,
Theorem 7.3], and the positivity of S and I follows from the strong maximum principle,

see e.g. [65, Lemma 2.1]. We omit the proof details for brevity..

Lemma 4.1 (Local existence). Let the conditions in Theorem 4.1 hold. Then there admits
a Tax € (0,00] such that (4.1) has a unique classical solution (S,T) € [C(Q x [0, Tax)) N
C?H(Q x (0, Tinax))]? with S, T >0 on Q x (0, Tinax). Moreover,

max

if Trnax < 00, then t/llq{rl (II1SIlwree + ]| Lee) = o0. (4.8)

In the sequel, we denote

g« = min g and g = = maxg for g € {A(z),a(z), B(x),n(x)}. (4.9)
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Lemma 4.2. Let (S, 1) be the solution obtained in Lemma 4.1. Then there exists a constant

C1 > 0 such that
WS, + 1 I(t)][pr < C1 for allt € (0, Thax)-

Proof. Adding the first two equations of (4.1) and integrating the result by parts, we get

d

% (S+I)+m1n{9 17*}/ (S+1)<AQ.

This along with Gronwall’s inequality indicates

A*1Q|
/Q(S—I—I)_mm{e - / (So + Io) =: C1,

where 7, and A* are defined in (4.9). Hence, the proof of Lemma 4.2 is completed. O

Lemma 4.3. Let (S, 1) be the solution obtained in Lemma 4.1. Then there exists a constant

Cy > 0 such that

/t . /Q I < Cy forallt € (0, Tax), (4.10)
where T 45 a constant such that
0 <7 <min{l, Tyax} and Tmax = Tax — T. (4.11)
Proof. We add the first equation of (4.1) with the second one to get
(S+1),=A(dsS +dry(S)I) + Alx) — 05 —n(x)I,
which, along with hypothesis (H2), can be rewritten as

(S+ 1)y + A(dsS + diy(S)I) = (6dry(S) — n(@))I + (6ds — 0)S + A(x)

(4.12)
< (6d1Ko —ni)I + (6ds — 0)S + A* <A™,

where ¢ := min { Tk ds} > 0, and A is the self-adjoint realisation of —A + ¢ subject to

homogeneous Neumann boundary conditions in L?(£2). Then A is invertible with bounded

inverse by the Fredholm alternative theorem. Hence there is a constant ¢; > 0 such that
IA7 ¢ll2 < e[l for all g € L*(Q), (4.13)

and

A" 26)|2, = /Q(;s A pdr < ¢p|¢]|72 for all ¢ € LA(Q). (4.14)
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We multiply (4.12) by A~1(S + 1) > 0 to get
2dt/ |A_7 (S+1)*+ /(dSS+dm(S)I)(S+I) < A*/ AL+ 1),
Q

which together with hypothesis (H1) gives a constant co := min{dg, d;} such that

2dt/w S+I)|2+02/(S+I <A*/A (S+1). (4.15)

Using (4.13), (4.14) along with Holder inequality and Young’s inequality yields

(A)?]Qc]
C2 ’

A*/ AN+ 1) < A*|Qzer||S + 1|2 < %Hm 1|12, + (4.16)
Q

and

/|A‘ (S+1))? ||S+IHL2 (4.17)
461

We substitute (4.16) and (4.17) into (4.15) to obtain

1 1 2(A* QQ 2
d/ |A‘2(S+I)\2+62/ |A_2(S+I)|2+02/(S+I)2§ ANV o aas)
dt Q 201 Q 0

C2

Applying Grénwall’s inequality to (4.18) and using (4.14) again, one has

2cic
/ A2 (S + D) < o, FallSollz: + 1 ollz:) = s (4.19)
Q

We integrate (4.18) over (¢,t + 7) and apply (4.19) to get

t+7 t+7
02/ /I <C2/ /S+I < c3+cy,

which gives (4.10) by letting Co := C3+C4 . This finishes the proof of Lemma 4.3. O

Lemma 4.4. Let (S,I) be the solution obtained in Lemma 4.1. Then there exist two

positive constants Cs and C4 such that
IVS(,t)|lr2 < Cs for allt € (0, Tyax), (4.20)

and

t+1 -
/ / IAS|? < Cy for all t € (0, Tax), (4.21)
t Q

where T and Tvmax are defined in (4.11).
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Proof. We multiply the first equation of (4.1) by —AS and apply Young’s inequality to get
2 A 2
33 [ IVSP+ds [ 185
/A AS+0/SAS+/ ()SI — B(x)I |AS
S+1 "\
/|AS| 9/ VS]2 + (0" + 8 )/I\AS\
Q

* )2 A* 2
2 Ja Q ds Q ds

which indicates

d
dt/ \v5\2+2e/ \VS\2+ds/ |AS)? < 01/ I? + ¢y =: h(t), (4.22)
Q Q Q Q
where ¢; = w and cp = 2(/\;722@ Moreover, it follows from (4.10) that [ T h(s)ds <

¢1C2 + ¢2 =: c3. This along with [61, Lemma 2.4] gives

/ VS < e+ 2([VSol 2 + 3cs + 607 + ca/207 + 1) = C2,
Q

which implies (4.20) directly. Integrating (4.22) over (¢,t 4 7) yields
t+7
ds/ / AS|? < e + C2.
t Q

Thus (4.21) holds with Cy := (c3 + C3)/ds and the proof of Lemma 4.4 is finished. O

4.2.2 Boundedness of solutions

We first derive the a priori L?-estimate of I.

Lemma 4.5. Let (S, 1) be the solution obtained in Lemma 4.1. Then there exists a constant
C5 > 0 such that
()2 < e®HD" for all t € (0, Tinax) - (4.23)

Proof. Multiplying I-equation in (4.1) by I and integrating the result by parts, one has

1d , SI?
o QIZ——dI/ny(S)]VIP—dI/QIfy (S)vs-v1+/ﬂaggil—/ﬂ[ﬁ+n](x)f2

< —d; / AS)IVIP +d / V(S)IIVS|[VI] + o / (B ) / P,
Q Q Q Q
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which, along with hypotheses (H1) and (H2), gives

yr 12+2d1/ yv112+2(5*+n*)/12 <2dIIC1/I|VSHVI!+2a /12. (4.24)

With Young’s inequality and Hoélder inequality, we have

2aikcy [ 1VS|IVII < di [ (VTP -+ dikE1 VS s,
Q Q

which, substituted into (4.24), gives

d
dt

[Py [ V1P +206. 4 0) [ P < dbHITIAVSIG S 200 (425)
On the other hand, we use Gagliardo-Nirenberg inequality in two dimensions to get
1122 < ex (192 111 + I1T122) | (4.26)
and the estimate (cf. [63, Lemma 2.5])
IVSIZs < 2 (IAS]lIVSizz + IVSII72) < e2C5 (|AS]|z2 + Cs), (4.27)

where we have used (4.20). The combination of (4.26) with (4.27) yields

A 174V S|I7a <drKieicaCs (V| 2]l 2 + 1 11172) (JAS]| L2 + Cs)
<diKie1caCs||VI| 2 | 1| 2| AS|| 2 + diKiereaCE [V I g2 || 1] 2
+ diKEercaCs||I||72]|AS| 2 + dikTercaCE| 1|72
<dr|| V1|72 + sl |7 [ AS|Z2 + ca(l+ K] 72

d1(1+c1c20 )

with ¢z 1= djc3c3C3 and ¢q := . Substituting (4.28) into (4.25) gives a constant

C5 := ¢4 + 2a* such that
d
a\IIH% < [esKIAS|Z2 + es(1+ D122 (4.29)

Furthermore, (4.10) motivates us to find a positive constant t; € [(t — 7)4,t) for any

t € (0, Tinax) such that
I (o t)l172 < max{|[To]l72, Ca/7} =: ce. (4.30)

It then follows from (4.21) that

t1+7
/ / IAS|)? < Cy. (4.31)
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Noting t; <t <t; +7 <t; +1, (4.30) and (4.31), we integrate (4.29) over (¢1,t) and get

LKA [t 3 2 2\2
1I(-,8)]2 < H[(,’tl)”%2 S IAS(9) 17 pdstes (14KF)

Cg’C%C4+C5(1+/C%)2 < 6(66+C3C4+C5)(1+’C%)2 .

< cge
Hence (4.23) follows by letting Cs := (cg + c3Cy + ¢5)/2 and the proof is finished. O

Lemma 4.6. Let (S, 1) be the solution obtained in Lemma 4.1. Then there exists a constant
Cs > 0 such that
IVS ()| e < e“eHED? for all t € (0, Tinax) - (4.32)

Proof. We rewrite the first equation of (4.1) as

I
Sy —dsAS + 605 = A(x) — oz(:c)Si_ 7 + B(x)] =: H(z,1). (4.33)
Applying (4.23) gives
1H (1)l 2 < A" + 0T + B*I|| 2 < ce0HKD7, (4.34)

where ¢; = A*|Q\% + (a* + ). By (e"®)~0 we denote the Neumann heat semigroup in €.

Then applying Duhamel’s principle to (4.33) yields that

t
S(- 1) = etldsd=0) g, | / (=) ds A=) [ (. 6)ds, (4.35)
0

which, along with (4.34) and well-known semigroup estimates (see e.g., [18, Lemma 2.1]),

gives

t
IVSCt)llze < ([ Vet Sy | a +/ IVl @sB=DH (., 5)]| ads
0

t
< rae BNVl 4wy [ (14 (0= 5)7 ) e IO 5) 2
0

< k1 | VS0l g4 + racres D’ [1 4 T(1/4) (ds A1) 7]

< 02605(1+K%)2

)

where positive constants x; (i = 1,2) and A; are independent of K1, and ¢ := k1 ||V So|| 4+

koc1[1 + F(1/4)(d,g)\1)%]. Here I'(-) denotes the Gamma function defined by I'(z) =
fooo t*~le~tdt. Hence, (4.32) follows by letting Cg := co + C5 and we complete the proof of
Lemma 4.6. O
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Lemma 4.7. Let (S, 1) be the solution obtained in Lemma 4.1. Then there exists a constant

C7 > 0 such that
I( )]s < (1 +K2)efr( K22 for all t € (0, Trax) - 4.36
1

Proof. We multiply the second equation of (4.1) by I? and integrate the result to get

1d
3dt /o

13
= —2d1/97(5)1|v1|2—2d1/912%(5)vs'v1+/gO‘(;)f[—/Q[ﬁjun](x)ﬂ,

which, together with hypotheses (H1) and (H2), gives

d
— I3+6d1/ I!VI!2+3(B*+77*)/I3 §6dIICl/I2]VS]VI]+3a*/I3. (4.37)
dt Jo Q Q Q Q

Applying Young’s inequality, Holder inequality and (4.32), one has
6dIIC1/ I?|VS||VI| + 3a*/ < 3d1/ IIVIP? + 3dlic%/ BIVS|? + 3a*/ I3
Q Q Q Q Q
<3d; [ IVIP + 3139813 + 30" |0 1]
Q
<3d; [ IVIP + o ()1
Q
which substituted into (4.37) gives

d
G [ [ 191F 436+ [ P < oo, (4.38)
dt Q Q Q

where ¢ := 3d; + 304*|Q|% and 01(Kq) :=1+ IC%eQCG(H"C%)2 > 1.
‘ 3
From (4.23), we have ng(-,t)HL% = [[I(-,t)[l}> < 305 (HKD?  Then using Gagliardo-

Nirenberg inequality in two dimensions and Young’s inequality, one derives

3 3.2 3 3
o1 (K01 = eror(K0)IT3 30 Sereaon () (IVTE I IT31%, + 17312, )

2

3

L3
3 4

<es0oa (K1) (V1217 +1) (4.39)

Ay
-3

c303 (K1)

3
VIz|?

where c3 := c¢1c2 and 02(Ky) == (1 + IC%)e<206+3c5)(H’C%)2 > 1. The combination of (4.39)
with (4.38) implies

d

S l7s +3(Bs 4 m)l 75 < cao3 (Kn), (4.40)
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3
C3

where ¢4 1= 3 + 15o7. Then (4.40) gives
I

3
Il = ol + g 5 (1= e S vl
* *

1
with cg := ¢4/ (3B« +3n:)+ || Lo||3 5. Therefore, (4.36) follows by letting C7 := ¢ +2Cs+3Cs
and the proof of Lemma 4.7 is completed. O

Lemma 4.8. Let (S,I) be the solution obtained in Lemma 4.1. Then there exist two

positive constants Cs and Cy such that
1S(, )| [iriee < (14 K2)eCs0HED* for all t € (0, Thnax) , (4.41)

and

11(-, )| poe < (14 K2)8eC0+KD* o0 all ¢ € (0, Tonax) - (4.42)

Proof. By (4.36), we conclude from (4.33) that

LH (- 8)|| s < |A* + T + 81| 15 < e1(1 4 K3)eCT 0D —: ¢103(K), (4.43)

where ¢; := A* ]Q|% +a*+4*. Applying the semigroup estimates to (4.35) and using (4.43),

one has

t
IS( t) || Lo < rge” " [1Soll oo + 54/ (1 + (t — 8)_%> e N H (-, )| ads
0

' 4.44
< k3 ||Sol| feo + 546103(IC1)/ (1 + (t— s)_%) o—0(t=5) Jg (4.44)
0

< c03(Ky1),

where ¢z 1= K3 ||So]| 00 + Kac1[1 + F(2/3)0%] with constants k3 and k4 independent of ;.
Similarly, (4.43) along with the semigroup estimates yields

t
IVSC Ol < callSollwne + 2 [ (14— 9)78) SN A, 9] ods
0 (4.45)

< cq03(K1).

Here ¢4 := ¢3|S0]|yy1.00 —|—/1201[1—|—F(1/6)(d5)\)%]. Then, (4.45) alongside (4.44) gives (4.41)
by letting Cg := ca + ¢4 + Cr.
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Multiplying the second equation of (4.1) by I?~!(p > 2) and integrating the result, one
derives

1d

=~ i )/ V() IP2|V I = dy(p — 1)/ P1y/(S)VS - VI
pdt Q Q

SIv .,
+ [ ale)gr - [ 8@ +n@lr

which, along with hypotheses (H1) and (H2) and (4.45), gives

1d
Ip+d1(p—1)/Ip_2|VI|2+(B*+77*)/Ip
pdt Q O
< di(p— 1)ou(Ky) / U 4 o / »

0 Q

Sdl(p_l)/IPQIVIP—I—%(ICl)/Ip
2 Q 0

where 04(K1) := C4’C1(1+’C%)6C7(1+K%)2 and o5(K1) := dl(p*l)”%(’cl)ﬂa*. Hence, we obtain

d —1)d
Ip ()1/ P2\ VP2 < Us(ICl)P/ v §C50’6(K1)p(17—1)/ 17, (4.46)
dt 2 Q Q Q

where 06(K1) == (1 + K2)3e207(4KD* 5 1 and ¢5 := m are independent of p. We
add p(p — 1) [, I” to the both sides of (4.46) and denote ¢ := c5 + 1. Then the inequality

(4.46) can be rewritten as
d —1)d
/1P+p( )/fpg p(p)f/fp—?|v1|2+c60—6(/c1)p(p1)/ . (447)
dt Q 2 Q Q

Based on (4.47), we can proceed with the same procedure as the proof in [23, Lemma 3.6]

to find a constant c; > 0 only depending on €2 such that

(-, )| o < 25cs max {Ch, |[ o] oo } < o1 + K3)0eAC7A+KD?

with cg := cgo6(K1)cr max {17 m} + 19 + 1 and ¢g := 25(Cy + || Lo || o0 ) (coc7 + 026;; +
|2 + 1). Hence (4.42) holds with Cg := cg + 4C7, and we finish the proof. O

Proof of Theorem 4.1. The combination of Lemma 4.8 with Lemma 4.1 yields Theorem

4.1. O
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4.3 Basic Reproduction Number Rj: Proof of Theorem 4.2

In this section, we study the properties of Ry and the threshold dynamics of (4.1) in
terms of Ry. Below we always suppose that hypotheses (H0)-(H1) hold.

4.3.1 Properties of Ry, and Stability of DFE

Motivated by the ideas in [4], we consider the linearized eigenvalue problem of (4.1) at

(5, 0):

dsAd — 06 + [B(z) — a(z)]y + Mg = 0, zeqQ,
diA[y(S)Y] + a(z) — B(z) —n(@)]Y + b =0, z€Q, (4.48)
ay¢ == 8Vw - 07 x € Of).

Obviously, the differential operator defined in (4.48) is not self-adjoint and hence inconve-
nient to be studied by the conventional variational approach. To treat (4.48) variationally,
we introduce a change of variable u = 7(5 )1, which, along with the fact that the mapping
¥ — v(S)e is bijective due to 1 < y(5) < v (%), reformulates (4.48) as

dsAd — 0p + [B(x) — a(2)]y(S)u + A = 0, xeQ, (4.49)
drAu + [o(z) — B(z) — ()7 1 (S)u+ Ay (Su=0, ze€Q, (4.50)
8y = Byu =0, z € O, (4.51)

where we denote 7 (S) = 1/~(S) hereafter. The reformulated eigenvalue problem (4.49)-
(4.51) is an elliptic system with self-adjoint operators and a weight function v~1(S). For
the weighted eigenvalue problem (4.50) with d,u = 0, it follows from [77, Remark 1.3.8]
that there exists a principal eigenvalue A* € R, which is simple and corresponds to a
unique positive eigenfunction u* up to a constant multiple. Since the weight function

7~1(S) is strictly positive, we may use the variational formula (e.g., [17, pp. 102] and [27])

to characterize \* as
Jo di|Vwl? + [B(@) + n(z) — a(@)ly~ Y(S)wde

A= inf —
0£weH (Q) fQ vy~ H(S)w2dx

This inspires us to define the basic reproduction number

“1(S)w?d
Ry=  sup Jo o)y (Su”dz = > 0, (4.52)

0£weH (@) Joldr|Vw[? + (B(x) + n(2))y~ (S)w?]dz

which is equivalent to (4.5). The above transformation makes the analysis on the properties

of Ry more tractable. To explore the threshold dynamics in terms of Ry, we establish the
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following property of Ry in addition to those stated in Proposition 4.1:
Ro>1 iff \N*<0, Rg=1if \*=0and Ry < 1iff \* >0, (4.53)

which can be proved by the same argument of the proof of [4, Lemma 2.3].
Next, we shall show that the linear stability of DFE (S, 0) can be classified by the value
of RO-

Lemma 4.9. The DFFE (§, 0) is linearly stable if Ry < 1, and unstable if Ry > 1.

Proof. We first show the linear stability of (S,0) under the assumption Ry < 1. This
amounts to show that if (A, ¢, u) is a solution to (4.49)-(4.51) with ¢ # 0 or u # 0, then
Re(A) > 0. We have two cases to proceed.

Case 1: uw =0 and ¢ # 0. Hence (), ¢) is an eigenpair of the following eigenvalue
problem

dsAp —0p+Xp =0, x €Q; 0y =0, x €. (4.54)
Since the Laplacian operator A in (4.54) is self-adjoint, A is real. Multiplying the first
equation of (4.54) by ¢ and integrating the result, we immediately get A > 6 > 0.

Case 2: w # 0. In this case, (A, u) is an eigenpair of the eigenvalue problem (4.50) with
d,u = 0. It follows from (4.53) and Ry < 1 that Re(\) > A* > 0. Therefore, DFE (S, 0) is
stable if Ry < 1.

We now show that (S,0) is linearly unstable if Ry > 1. First (4.53) indicates that
A* < 0. On the other hand, one can easily check that

dsA¢ — 09 + [B(z) — a(x)y HS)u* + N'¢p=0, z€Q; dp=0, x€dN

has a solution ¢*. Then (\*, ¢*,u*) is a solution to (4.49)-(4.51) with u* > 0 and \* < 0,
which shows that (S,0) is linearly unstable. O

4.3.2 Existence of EE with Ry > 1

In this subsection, we shall establish the existence of EE for Ry > 1. Usually the
existence of EE can be established based on the uniform persistence theory. But this is
inapplicable here due to the cross-diffusion structure in the I-equation. Below we shall
directly explore the existence of positive solutions to (4.4).

To this end, we introduce a change of variable Z = (5), and reformulate (4.4) into

the following problem without cross-diffusion

dsAS + M) — 08 — a(2) 5 + B(x) Zy1(5) =0, weQ,

’ S+Z7=1(S
UAZ + a(z) EZES [5(@) + ()27 1(5) =0, zen, (4.55)
8115 = al/Z =0, z € 99.
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Thus, (4.4) admits a positive solution if and only if (4.55) admits a positive solution. In the
spatially homogeneous environment, it is easy to verify that (4.4) admits a unique constant
EE if Ry > 1. For the spatially inhomogeneous environment, to establish the existence of
EE for Ry > 1, we first prove (4.55) admits a positive solution by applying the index theory

and principal eigenvalue theory.
We start by giving a result on the eigenvalue problem, which will be used later.

Lemma 4.10 ([29, 85, 121]). Let A1(d,r) be the principal eigenvalue of
dAu+r(x)u+Au=0, z€Q; Ju=0, xe . (4.56)
Consider the weighted eigenvalue problem
—dAu+ Mu=pu(M+r)u, z€; 0ou=0, z¢edf, (4.57)

where function r(z) € C(Q), d >0, M > 0 and M +r > 0 on Q. Then the following

statements hold:
(i) If \i(d,r) <0, (4.57) has an eigenvalue p smaller than 1;
(ii) If Ai(d,r) > 0, (4.57) has no eigenvalue p smaller than or equal to 1.
Next we derive a priori estimates for the positive solutions of (4.55).

Lemma 4.11. Let (S, Z) be a positive solution of (4.55) and assumptions (H1)-(H2) hold.

Then

A* A*
S < =:Cg and Z < 7= Cyz in ), (4.58)

where the constant cp := min {i Ui }
Proof. Adding the first two equations of (4.55), one gets
A(dsS +drZ) + A(z) — S — n(x)Zy~1(S) =0,

which, along with hypotheses (H1)-(H2) and (4.55), gives

{A(dSS +diZ)+ A —co(dgS +diZ) >0, €, (459)

8,,(d55 + d[Z) =0, x € 0N.

Denoting v := dgS + d;Z and applying the maximum principle [93, Proposition 2.2] to

(4.59), we get max(dsS + drZ) = maxv < /C\—; This gives (4.58) and the proof of Lemma
Q Q

4.11 is finished. O
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With Lemma 4.11 in hand, we introduce some notations as in [121]:
X={pcC)NC*Q) | d,¢p=00n00}, E=C(Q) xCQ),
W = CH@) x CH@) with € (@) = { € C(Q) | 6 > 0},
D={(S2)eW |S<1+4+Cs, Z<1+Cz}CW.
Then for any constant § € [0, 1], we define a operator Ts: D — W by
T [AG) — ale) g2 + B(x) 271 (S) + (m — 0)5] )

T5(S, Z) &
2 ( T [mZ + ba(x) 2555 — (B(x) +n(2)) 2y (S)]

where m > 0 is a large constant such that m — [B(z) + n(z)]y~1(S) — 8 > 0 for all
(S,Z) € D, and T; ' (i = 1,2) denote the inverse operators of 7; under homogeneous
Neumann boundary conditions, respectively, with 71(S) := —dsAS + mS for S € X and
T2(Z) == —diAZ + mZ for Z € X. Lemma 4.11 shows that (4.55) admits a positive
solution if and only if 77 has a positive fixed point on D. Moreover, one can check that
the operator T} is compact and 71 (D) C W by applying the elliptic regularity theory and

compact embedding theorem, and (§ ,0) is the unique non-positive fixed point of 77 on D.

Then, we shall show that indexyy (77, (S, 0)), as defined in [71, Definition 1.2.1], exists

and compute it.

Lemma 4.12. Let the conditions in Lemma 4.11 hold and assume Ai (dr,ma(x)) # 0.
Then
O) Zf )‘1 (dfqu(aj)) < 07

indexy (11, (5,0)) = {1, if A1 (dr, ma(x)) > 0,

where ma(x) = [a(x) - Blz) — n(@)y 1 (S).

Proof. By a straightforward calculation, the Fréchet derivative DT (S,0) of T7 at (S, 0) is
given by

- T [(m = 6)6 + ma (e
DT(S,0)(,¢) =( 7-2[—(1 [(m li;(w))(w])w] )

where m1 (z) := [B(x) —a(z)F(S,0)]yL(S). We shall prove that DT} (S, 0) has no non-zero
fixed point in C(Q) x C*(Q). If not, then we obtain

dsAp — 06 +myi(x)yp =0, x€Q
dr A + mao(z)h =0, x €Q, (4.60)
0y = 0, =0, x € 0.
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It follows from the first equation of (4.60) that ¢ = 0 if ¢» = 0. Hence, 1 € C*T(Q)\{0}, this
along with [77, Theorem 1.3.6] gives A; (dr, ma2(x)) = 0, which contradicts the assumption
M1 (dr, mo(x)) # 0. Therefore, DT} (S,0) has no non-zero fixed point in C(Q) x C+(Q),
this means that indexyy (11, (S, 0)) exists.

To compute indexyy (17, (§, 0)), we shall employ principal eigenvalue result given in
Lemma 4.10 and the index theory (see [28, 113]), which is presented in [121, Lemma
3.1]. Choose Wz, = C(Q) x CT(Q), Higg = C(Q) x {0}, Egg = {0} x c(Q)
such that £ = H, ® F, and W(§,0) is a generating cone. Then it follows from [121,
Lemma 3.1] that P o DT}(5,0) = 75 [m + my(z)], where P : E — E, is a projection
operator. If A (dr,ma(z)) < 0, by Lemma 4.10, we know that 75 * [m + ma(x)] has an
eigenvalue bigger than 1. This along with [121, Lemma 3.1] gives indexyy (17, (5, 0)) =0. If
A1 (dr,ma(z)) > 0, Lemma 4.10 shows that all eigenvalues of the operator T, * [m + ma(x)]
are smaller than 1. Thus, [121, Lemma 3.1] yields

indexyy (11, (g, 0)) = (_1)Z>

where ¢ denotes the sum of algebraic multiplicities of the eigenvalues of DT} (§ ,0) restricted

in H 3.0 which are greater than 1.

We next prove that DT1(§ ,0) restricted in H 0) does not have eigenvalues greater

(3,
than or equal to 1. Assume that DTl(g,O) has an eigenvalue pg > 1 associated with

eigenfunction (¢, ) = (¢,0) € H 5 fulfilling |l L2 = 1. Then we have

—dSA¢+mq§::(m—9)¢, z€Q; 0,0=0, x €.
0

Since A; (dg,—0) > 0, Lemma 4.10 gives i > 1. This contradicts pug > 1. Hence

indexyy (T, (5, 0)) = (=1)¢ = (=1)° = 1 and the proof of Lemma 4.12 is completed. O

Lemma 4.13. Let the conditions in Lemma 4.11 hold. Then (4.55) admits at least one

positive solution when \1 (dy, ma(z)) < 0.

Proof. Assume that (4.55) has no positive solution, then (§ ,0) is the unique fixed point of
T; on D. Lemma 4.11 indicates that 77 has no fixed point on 9D (i.e., (I —T171)(0D) # 0),
and thus degy (I — T, D, 0) is well-defined (see the definition in [71, Definition I1.2.2]).
Then the excision property [5, Corollary 11.2] shows that

degyy (I — Ty, D,0) = indexy (T}, (S,0)),
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which, along with A\; (dr, ma2(x)) < 0 and Lemma 4.12, gives
degy, (I — T1, D, 0) = 0. (4.61)
On the other hand, for each € [0, 1], Ts has a fixed point (S, Z) iff (S, Z) is a solution

of the following problem

dsAS + A(x) — 08 — a(2) $E—CL + B(z) 2y 1(5) =0, zeQ,

dIAZ +b0(n) 2G5 — [B(z) +n(@) 2y (S) =0,  weq, (4.62)

0,8 =0,Z =0, x € 0.

Proceeding with the similar procedure as the proof in Lemma 4.11, we get that all fixed
points of Ty satisfy (4.58) for each § € [0, 1], which means that (I — T5)(0D) # 0. Hence,

the homotopy invariance of the topological degree [5, Theorem 11.1] implies
degw (I — Ts,D,0) = degy, (I —T1,D,0) = degy, (I —To, D,0). (4.63)

When § = 0, (4.62) only has a unique solution, which is denoted by (go, 0). Hence, the

excision property implies that
degyy, (I — Ty, D,0) = indexyy (Tp, (5°,0)). (4.64)
Following the same proof as in Lemma 4.12, one can check that
indexyy (Tp, (S°,0)) = 1,

which, together with (4.63) and (4.64), gives degy, (I — T1, D,0)) = degy, (I — To, D,0)) =
1. This contradicts (4.61). Hence (4.55) admits at least one positive solution and the proof
of Lemma 4.13 is completed. O

Using Lemma 4.13, we further establish the existence of EE when Ry > 1. To achieve
this goal, we show that the principal eigenvalues of the weighted and unweighted eigenvalue

problems have the same sign.

Lemma 4.14. Assume that d > 0, r(z) € C(Q), and the positive function a(x) € C(Q).
Let A\i(d,r) and ¢* be the principal eigenvalue of (4.56) and

dAu+r(z)u+sa(x)u=0, z€Q; du=0, zedf,
respectively. Then it follows that
sign(¢*) = sign[Ai(d, r)]. (4.65)
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Proof. Denote the positive eigenfunctions associated with Aj(d,r) and ¢* by u* and w*,

respectively, satisfying ||u*||p~ = ||w*||c = 1. Then we have

dAV* + r(z)u* + A\ (d,r)u* =0, =x€Q,
dAwW* + r(z)w* + ¢*a(z)w* =0, x€Q, (4.66)
oyu* = d,w* =0, x € 0f).

We multiply the first equation of (4.66) by w* and the second by u*, and integrate the

results by parts. Then subtract the resulting equation, we get

G*/ a(x)w*u* = A\ (d, 7“)/ w*u*.
Q Q

This along with the fact that a(x), w*, u* are positive gives (4.65) directly and hence
completes the proof of Lemma 4.14. O

Lemma 4.15. Let the conditions in Lemma 4.11 hold. Then (4.4) admits at least an EE
when Ry > 1.

Proof. Taking d = d, r(z) = ma(z) and a(z) = 7 () in Lemma 4.14, then (4.65)
along with (4.53) indicates that sign(A; (dy, ma(z))) = sign(A\*) = sign(1 — Rpy) < 0. Thus,
Lemma 4.13 implies Lemma 4.15 directly. O

Proof of Theorem 4.2. Combining Lemma 4.9 with Lemma 4.15, we get Theorem 4.2.
O

4.4 Global Stability: Proof of Theorem 4.3

In this section, we shall explore the globally asymptotical stability of non-negative

steady states of (4.1). We first improve the regularity of the solution (S, I).

Lemma 4.16. Let (S,I) be the solution obtained in Theorem 4.1. Then there exist con-
stants k € (0,1) and C19 > 0 such that

||(S7 I)(.’t)||C2+K’1+%(§X[1,OO)) S ClO- (467)

Proof. The result is obtained by the Holder estimates for quasilinear parabolic equations
(cf. [111, Theorem 1.3 and Remark 1.4]) and the standard parabolic Schauder theory [76].
The proof details can follow the similar procedures as the proof in [145, Lemma 3.4], we

omit for brevity. O
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Proof of Theorem 4.3. We first prove the results claimed in Theorem 4.3-(i). With
the given condition, it is obvious Ry < 1 by the definition (4.5). Integrating the second
equation of (4.1) by parts yields

d B a(x)S
G L rva=o [a@r= [ (527 @ -en@)i < [ la-s-en @1,

which, along with a(x) < 8(z) + en(z) and € € [0, 1), implies

d

— [ I+ —¢)n | IL0.
G [ 1+a=am [ 1<

This indicates that for all ¢ > 0
1] pr < e o) 1. (4.68)

We utilize Gagliardo-Nirenberg inequality in two dimensions to find a constant ¢; > 0 such

that

2 1 _(—o)m
1 < e (IVTIZ= T + 1Tl ) < coe™ 550 ves 1, (4.69)

where we have used (4.67) and (4.68).
It follows from the first equation of (4.1) that

(S —8)y =dsA(S —8) —0(S — 5) — a(z) SS+I1

+ B(x)I. (4.70)

Applying Duhamel’s principle to (4.70), one has

. . t
S — 8 =ell=DlsA=0)(g(. 1) - ) + / U= AsA=0) | 3(2) — o(x) S ]I(-7z)dz.
1 S+1

By the standard heat Neumann semigroup estimates (see e.g., [18, Lemma 2.1]), we get

from (4.69) that

IS = Sl < ese®S(-,1) = S|

+ 3 /j e~0(t=2) (1 +(t— z)—%) H <B(w) - O;f?f) 1(2)

- t
< e (1) = Bl o [ e (1 (0= 2)7 ) G, ads
1

dz
L2

_ (A—e)nx
3 4

t
<ecse 4 C4CQ‘Q|% / e 00t=2) (1 + (t— z)*%> e dz (4.71)

1

102



t
<eze 4 0402\9]% / e 00=2) (1 +(t— z)_%) e %%dz
1

—cet
S cre )

where ¢4 := ¢3(* +*) and ¢ := 3 min {6, (1 — €)1, /3}. Therefore, combining (4.69) with
(4.71) indicates (4.6) directly. This completes the proof of Theorem 4.3-(i).
Next we proceed to prove Theorem 4.3-(ii). When A(z), a(a:), B(z) and n(x) are

positive constants, it follows from Proposition 4.1-(i) that Ry = z%. Clearly there exists

a unique constant EE (5’ 1) iff Ry > 1, where

& _ A(B+n) nd Fo Ala—B—n)
S_n(a—ﬁ—n)+9(,8+n) . nla—B8-n)+0B+n) (4.72)
We define
5@%=l;k5+1+n—%é+f+n—4S+i+1ﬂn§i§11}
_ dna T T 1qI+1
+(a—5_n)2/§2[(1+1) I+1)—{I+1) IA+J.

Following the same way as the proof of Theorem 2.2 (1), one can directly check that
E(t) > 0 where “=" holds iff (S,I) = (S,I). Next, we show that $&(t) < —c1F(t) for

some ¢; > 0 and function F(¢) > 0. For simplicity, we denote

. . I+1
E:=ESI):=(S+I+1)—(S+1+1)—(S+1+ )111‘?+7A+
S+1+1
dno - I+1

— I+ 1)-U+1)—-(I+1)In=
(04*6777)2( )~ =T+ I+1

and
ST SI
h1.—hl(S,I)—A—QS—aS+I+ﬁI, hQ._hQ(S,I)_aS+I—(ﬁ+n)I.

Hence, one gets
d

75‘(15) :/ EgS; + Erl
dt Q
(4.73)
—/ [Eshl + E[hz] + / [dsESAS + d]E]A(’}/(S)I)] =:J; + Jo,
Q Q
where Fg := % and Ef := 81 Noting A = 0S5 +nl, B+1n = S—i and 6 = 7, we have

IT+S5+1 I+5+1 dno I+1
Ji=[ (1-222"2 0 1— 1— h
! /Q( S+I+1> 1+/Q[ S+I+1+(a—ﬁ—n)2< I+1)] 2
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S—S+I1-1 dna /I—f( aS )
_ [ 2o A syl —B—n)I
o StT1 Mt G JoTri\ssT P

= —/ oB®7,
Q

_ s-§ i
where ¢ = <\/S+I+1’ \/S+I+1> and

1 N dna o I(S+I+1)
B _ " b |20 sy )
1= 1, [277 _ dna | I(S+I+1) } dna(B+n)  I(S+I+1) 4
2 (a=B—m) (I+1)(S+I) (a=B—m?  (I+1)(S+I)
. . . 202 I(S+1 I(S+I+1 :
A direct calculation gives that |B;| = (Ofinﬁfn)g . (IS_J(;H) (1 — (IS—I—;(;-})) > 0, which
yields a constant ¢; > 0 such that
J—/(I)B(I)T<—c/ (S_S)2+(I_j)2 <0 (4.74)
L e /S Wy T i Sy A '
With simple calculations, we find Fgg = FEg; = Erg = ( 5:{:11)2, and
S+1+1 Ane I+1 [(S+T1+1\?
Eir= 5 R
(S+T+1) (a=B=n?S+I1+1\ I+1
 (SHT+D[I+ Mf(S,1)]
B (S+1+1)2 ’

2
where My := % and f(S,1) := (S}“ﬁﬂ) . Thus, Jo can be rewritten as
Jo = — dg/ Egs|VS|? - dg/ EsiVI-VS — df/ ~(S)EsVI - VS
Q Q Q
—dI/W(S)EH|VI|2—d1/ Ify’(S)EIS\VS\Q—dI/ Iy (S)E VI -VS
Q Q Q

:-/ VB, w7
Q

with U = (VS,VI) and

([ dsEss+diIy(S)Eps Bt Bstdi 1y (5)
2= dsBsr+dry(S)Brs+di 1y (5) By dry(S)Err |

With direct computation, we can show that Bs is positive definite iff

g1(S, 1) > g2(S, 1), (4.75)

104



where

91(8, 1) = 2dsdy(S) + 2d3 1+ (S)7(S)[1 + Mo f(S, I)] + 4dsdy(S) Mo f (S, I),
92(8,1) = di[y(S)]* + d§ + dry (S)I[1 + Mo f(S, I)|{2ds + dr 17/ (S)[1 + Mof(S, I)]}.

By hypothesis (H2), (4.3) and 1 < f(S,I) < (S + I + 1), (4.7) ensures that (4.75) holds.

Therefore, there is a constant co > 0 such that
h——/@BﬂTg—@/UWW+Rm%§Q
Q Q

which along with (4.74) substituted into (4.73) gives

d (§—=8)2 (I-1)? ‘
atW s _Cl/g (S+I+1 T 1> = —ar(t)

Based on Lemma 4.16, following the same way as the proof of Theorem 2.2 (1), one can
get
lim (||S — S|z + ||I — || z2) = 0. (4.76)
t—o0

Applying the Gagliardo-Nirenberg inequality in two dimensions for any u € W1hoe:

1 1
lullzee < es(IVullFoollull72 + [lullz2).,

we obtain from (4.67) and (4.76) that tlim (IIS = S|z + || = I||ze) = 0. This finishes the
— 00
proof of Theorem 4.3-(ii). O

4.5 Numerical Simulations and Discussion

This chapter investigates an SIS model with cross-diffusion dispersal strategy for the
infected individuals describing the public health intervention measures (like quarantine)
during the outbreak of infectious diseases. The considered SIS model adopts the frequency-
dependent transmission mechanism and includes demographic changes (i.e., population
recruitment and death). Apart from the global boundedness of solutions established in
Theorem 4.1, we define the basic reproduction number Ry by a variational formula and
study the threshold dynamics of the model based on Ry (see Theorem 4.2 and Theorem 4.3).
Below we shall use numerical simulations to illustrate the applications of our analytical
results and speculate some results not proved in this chapter. We set Q = (0,2) in all

simulations.
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In a special case where the recruitment rate A(x) of susceptible individuals is constant,
we see that cross-diffusion dispersal strategy (see Remark 4.2) reduces the value of Ry,
namely the basic reproduction number Ry for +/(S) # 0 is less than Ro, where Ry is the
basic reproduction number when «(S) = 1. We can see a numerical example shown in
Figure 4.1-(a). This implies that public health intervention measures limiting the mobility
of infected individuals is effective in controlling the spread of infectious diseases. However,
if A(z) is not constant, we are unable to prove Ry < Ry analytically. Below we use an
example to illustrate this conclusion numerically for non-constant A(z). To this end, we

take

v(S) = e (4.77)
satisfying hypothesis (H1) and
ds =60=1, (4.78)
as well as
1
A(x) = —§x3 + 2242z, az)=22+1, Bz)==z nx)=18. (4.79)

Then A(x) is positive on €2 and one can check that S = —%m3 + 2242 > 0. The graphs
of functions Ry and Ro are numerically plotted in Figure 4.1-(b), where we observe that
Ry < Ry. However, whether or not the cross-diffusion dispersal strategy reduces the basic
reproduction number so that Ry < Ry for all v(S) satisfying the hypothesis (H1) remains
an outstanding theoretical question for future efforts.

When 7(5) is constant, namely the infected individuals undergo random dispersal, the
classical results showed that the disease would persist in the high-risk domain € (cf. [81,
Proposition 3.2, Theorem 3.1], [107, Theorem 2.5, Theorem 3.3]), as numerically shown in
Figure 4.2-(a) where we assume 7(S) = 1 and d; = 0.2 while other functions and parameter
values are given by (4.78) and (4.79). The results in Proposition 4.1 along with Theorem
4.2 and Theorem 4.3 indicate that the cross-diffusion dispersal strategy will help eradicate
the infectious disease even in the high-risk domain. To illustrate this result, we use the

functions and parameter values given in (4.77)-(4.79). With them, we can verify that

2
/0 [a(z) — B(z) — n(x)]de = 0.4 > 0,

which means that €0 is a high-risk domain. In this case, the asymptotically stable spatial
profile of (.S, I') is numerically plotted in Figure 4.2-(b) which demonstrates that the disease
will be eradicated in the whole domain. By (4.79), we find f02 [a(z)—B(z)—n(z)]y1(S)dx ~
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Figure 4.1: Graphs of functions Ry and Ry versus d; > 0, where functions and parameters
are taken as follows: (a) y(S) =2 — (S +1)"1ds =0 = A(x) =1, and a(z) = 2% + 22 +
1.5,8(z) = 2% + 0.5,n(x) = x + 2.5; (b) The functions and parameter values are given in
(4.77), (4.78) and (4.79).
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Figure 4.2: The profile of susceptible and infected populations with d; = 0.2. (a): v(S) = 1;
(b): v(S) = €. Other functions and parameter values are given in (4.78) and (4.79). The
initial value (S, Ip) is set as a small random perturbation of (2,1).

—0.0083 <0, Q2" ={x: 0<z <08} and Q" ={z: 0.8 <z < 2} are nonempty. This
alongside Proposition 4.1-(iii) and the Figure 4.1-(b) show that Ry < 1 if df = 0.2 >
d1 =~ 0.151. Therefore, it follows from Theorem 4.2 that DFE is linearly stable, which
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implies that the disease may be eradicated. This is well supported by numerical results
shown in Figure 2-(b). However, we can not conclude the global stability of DFE based
on Theorem 4.3-(i) since one can check that the condition a(x) < p(z) + en(z) for all
x € Q with some ¢ € [0, 1) is not satisfied by the functions chosen in (4.79). The numerical
simulation of the asymptotically stable spatial profile shown in Figure 4.2-(b) indicates
that DFE may be globally asymptotically stable even if the condition in Theorem 4.3-(i) is
not fulfilled. Therefore how to relax the condition of Theorem 4.3-(i) is another interesting
question remaining open in this chapter. The best situation we anticipate is to replace the
condition of Theorem 4.3-(i) by Ry < 1, but this can not be proven based on the method
in this chapter.
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Chapter 5

A Diffusive Population-toxicant
Model in a Time-periodic
Environment with Negative
Toxicant-taxis

5.1 Introduction and Main Results
5.1.1 Introduction

In aquatic ecosystems, toxicant have detrimental effects on biological systems at various
levels [103, 108, 114]. Investigating their impact on aquatic population dynamics and
identifying the key factors determining species persistence or extinction are vital to protect
aquatic species and preserve ecosystem diversity. This topic has been extensively studied in
early modeling settings, including matrix population models (e.g., [36, 48, 118]), ordinary
differential equation models (e.g., [45, 56, 57]), and reaction-advection-diffusion equation
models [143, 155, 158]. However, these settings leave out the fact that aquatic species may
detect and avoid toxicant [9, 132]. On the other hand, the input of toxicant into aquatic
ecosystems may exhibit temporal periodicity due to seasonal factors such as variation
in rainfall, surface water, and temperature [14]. For example, during the wet seasons,
increased rainfall may lead to more runoff, carrying nitrogen and phosphorus from human
activities, such as agricultural practices or fuel combustion, into water bodies, causing
seasonal pollution peaks [1, 112].

Therefore, we are inspired to incorporate the negative toxicant-taxis (cf. [32]), and

spatially heterogeneous and time-periodic toxicant input into a population-toxicant system,
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which reads as

up = diAu+ xV - (uVw) +u(r —u—mw), x€Q, t>0,

wy = doAw + h(z,t) — aw — Puw, zeQ, t>0, (5.1)
oyu = 0w =0, re i, t>0, '
(u,w)(z,0) = (ug, wo)(x), x €,

All notations and parameters have the same interpretation as in Section 1.5.

Research on the spatiotemporal model (5.1) is still in its formative stage. The first
study on (5.1) with x > 0 was conducted in [32], where the authors established the global
existence of classical solutions to (5.1) with h(x,t) = h(z). When h(x,t) = hg for a constant
ho, they proved the global stability of constant steady states and numerically illustrated
the occurrence of spatially heterogeneous coexistence for large x. The theoretical existence
of such spatially heterogeneous coexistence was later rigorously established in the work [21]
for h(x,t) = hg by using Leray-Schauder degree theory. When the toxicant input is time-
periodic, the work [86] established the global stability of periodic solutions and explored
the asymptotic profiles of positive periodic solutions when diffusion rates are small or large
in the absence of toxicant-taxis (i.e., x = 0). Their results indicate that the toxicant
input affect the species persistence or extinction. In fact, (5.1) with x = 0 is a monotone
dynamical system, which allow the asymptotic theory of monotone systems [157, Chapter
3] to be applied in studying the global dynamics, as shown in [86]. In contrast, the system
(5.1) with x > 0 is non-monotone, and the comparison principle becomes inapplicable. As
a result, no established methods in the literature can be employed, making the analysis of
global dynamics for (5.1) with x > 0 significantly more challenging.

Therefore, we shall focus on (5.1) with x > 0 and a more general toxicant input
function. To overcome the aforementioned challenge, we effectively employ the principal
Floquet bundle theory [77, Chapter 4] and persistence theory [157, Chapter 3] as well as

the energy functional method. Our main objectives are as follows:

(T.1) Identify the conditions for the periodic solution exists, its locally/globally stability,

and the uniform persistence of species;

(T.2) Explore whether the toxicant-taxis (i.e., avoidance of toxicant) helps aquatic species

to survive in a polluted environment.

5.1.2 Main Results
Throughout this chapter, we denote © x (0,7") =: Qr, and assume that
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(HO) nonconstant h(z,t) € Cro-g (2% [0,00)), Oh # 0 and h(z,t) = h(z,t +T) > (#) 0
with constants kg € (0, 1) and period T" > 0.

We begin by stating the global existence and boundedness of solutions to (5.1).

Theorem 5.1 (Global boundedness). Let @ C R? be a bounded domain with smooth
boundary and the hypothesis (H0) hold. Assume that ug € C(Q),wo € C*(Q) with ug, wo >

0 (#0).
(i) Then system (5.1) has a unique global classical solution
(u,w) € [C (0 x [0,00)) NC>! (2 x (0,00))]?
satisfying u,w > 0 for all t > 0 and
[u( )l o) + lw(- ) lwree@) < Co,  VE> 0. (5.2)
where Cy := Cp(up,v0) > 0 is a constant independent of t.
(ii) There exists a constant My independent of (ug,vo) and m such that
u(s )l e () + lw(- ) lwree@) < Mo, YVt > Ty, (5.3)
for some constant Ty > 0 depending on initial data (ug,wp).

Remark 5.1. Theorem 5.1(ii) establishes the ultimately uniform boundedness (see [78,
Definition 2.1]) of the solution to (5.1). This is important to study the uniform persistence

of (5.1).

In fact, the system (5.1) may have two types of nonnegative T-periodic solutions: posi-
tive T-periodic solution which exists in some circumstance, and the semi-trivial T-periodic
solution (0,"(z,t)) which always exists. Here, w"(x,t) =: @(z,t) is the unique solution

of the following equation

wy = doAw + h(x,t) — aw, x € Q,t>0,
dyw =0, x € 00,1 >0, (5.4)
w(z,t) =w(x, t+T), zeNt>0,

and it is bounded and positive [95, Proposition 4.4.8]. Applying the maximum principle
[141, Theorem 7.1] to (5.4) gives

1 1 hs
=== h(z,t) > w(x,t) > — in h(x,t)=: — >0, V(z,t) € .
o« = mm, el 2@ 2wy M@= (@.8) € Qr
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Hence,

*
Dos
— > max w(z,t) =1 0" > W, := min w(z,t) > —, (5.5)
a (w,t)EQT ($,t)€QT o
where “=" holds iff h(z,t) is constant, and w*, w, > 0 are independent of 3, m.

We establish the following results on the uniform persistence and the existence of pos-

itive T-periodic solutions to (5.1).

Theorem 5.2 (Uniform persistence and existence). Let Q C R? be a bounded domain with

smooth boundary and (HO) hold. Then there exists a constant m* := m*(x) satisfies

T r
— <m*(x) < —, Vx>0,
w Wy

where the positive constants w*, W, are defined in (5.5), such that the following statements

hold:
(i) If m > m*, then (0,w) is linearly stable;

(ii) If m < m*, then (0,w) is linearly unstable; moreover, the system (5.1) admits at
least one positive T-periodic solution, and the species u is uniformly persistent, i.e.,

there exists ng > 0 independent of initial data (ug,wy) such that

lim inf u(z,t) > no uniformly for x € Q. (5.6)
t—o0

The following result concerns the effects of toxicant taxis y on the threshold value m*.

Theorem 5.3. Let Q C R? be a bounded domain with smooth boundary, and let h(z,t) =

a(x) + b(x,t) > 0 satisfy (HO). Then for given a(x) € C*0(§2) and n > 0, there exists a
small a(a,n) > 0 such that if 0 < [[b]| oo (@, < o(a,n), then

r

lim inf m*(x) > 7.

X—00 = wh
Remark 5.2. When x =0 and 0;h # 0, Lemma 2.1 and Remark 3.1 in [86] demonstrate
that the species u is uniformly persistent for m € (0,m*(0)), and (5.6) in [86] gives 7z <
m*(0) < wL* Thus, Theorem 5.3 indicates that a large x can enlarge the interval of uniform
persistence, i.e., (0,m*(0)) C (0,m*(x)). This demonstrates that strong tozicant-tazis x
destabilizes the semi-trivial T-periodic solution (0,w), and helps aquatic species to survive

i a polluted environment.
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Next, we employ the energy estimates method to establish the global stability of T-

periodic solutions of (5.1).

Theorem 5.4 (Global stability). Let (u,v) be the solution of (5.1) obtained in Theorem
5.1. The following results hold.

(i) If m > W%’fMD) (> m*) with My given in (5.3) and h(x,t) > 0, then there exist
constants C1 > 0 and 01 > 0 independent of t such that

ull oo () + lw — @[ ooy < Cre™™t, Vit > 4y, (5.7)
for some constant t; > 0.

(ii) Assume 0 <m < 7% (< m*), h(z,t) = h(t) and

4drdom
\/ﬁ maxe (o,7) {t«(t) } maxye (o r){ws(t)} (58)

as well as
402 (ar — mhx)?

0<b<bo= (2ar — mh*)2h*m’

(5.9)

Then (5.1) admits a unique positive T-periodic solution (u.,w.) € [C1([0,T])]? de-
pending on t only, such that

Hu - u*HLoo(Q) + Hw - w*HLoo(Q) < 026_92t, vt > 52, (5.10)
for some constants Cy > 0 and ts > 0. Here, Cy,05 > 0 are independent of t.

Remark 5.3. Global stability for constant h with x > 0 and nonconstant h with x = 0
were established in [32] and [86], respectively. However, the case of nonconstant h with

X > 0 remains open. Theorem 5.4 (in which m € (0, %%) U (T(%'fco),oo)) provides a

preliminary exploration (see a schematic in Figure 5.1), while the global dynamics for

ar r(a+BCo)

spatially nonconstant input rate h(z,t) # h(t) and intermediate m € ($¥, =

) remain

unknown.
Throughout this chapter, ¢;, C;, m; and M;(i = 1,2,3,---) denote generic positive

constants, which may vary in the context and are independent of ¢t. Particularly, ¢;, C;

may depend on the initial data (ug, wp) but m; and M; are independent of (ug, wg) and m.
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Figure 5.1: A graph of global stability regions for (0, w) and the positive T-periodic solution
(ux, wy), where GAS represents globally asymptotical stability.

5.2 Global Boundedness: Proof of Theorem 5.1
5.2.1 Local Existence and Preliminaries

We establish the existence and uniqueness of local classical solutions based on the clas-
sical Amann’s theorem [6-8]. The positivity of u and w follows from the strong maximum

principle.

Lemma 5.1. Let the conditions in Theorem 5.1 hold. Then there is a Tax € (0,00] such
that (5.1) has a unique classical solution (u,w) € [C(Q x [0, Tymax)) N C%H(Q x (0, Thax))]?
with w,w > 0 in Q X (0, Tinax). Moreover,

if Tnax < 00, then t}lj{n (Jw|[y1.00 + ||u]|Loe) = 0. (5.11)

max

Proof. The proof of Lemma 5.1 follows the same way as proof in [32, Lemma 3.1]. O

Lemma 5.2. Let (u,w) be the solution of (5.1) obtained in Lemma 5.1. Then there exists

a constant Cy := Ca(ug,vo) > 0 such that
[u(-s )| oo (@) + lw(-, )[lwroe @) < C2, Yt € (0, Trnaz)-

Proof. By slightly modifying the proof in [32] (replacing h in [32] with h*), one gets Lemma
5.2. We omit the proof for brevity. O

Proof of Theorem 5.1(i). Theorem 5.1(i) is a consequence of the combination of Lemma

5.2 with Lemma 5.1. O
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Next, we shall show that the solutions obtained in Theorem 5.1(3) is ultimately uniformly

bounded in C(2). To this end, we start with the following estimate of w.

Lemma 5.3. There exists a constant My > 0 such that, for every classical solution (u,w)

of (5.1), there exits a constant Ty > 0 such that
0<w< M, Vt>T. (5.12)

Proof. By the second equation in (5.1), one has

d
—(supw) < h* — asupw. 5.13
dt (er ) z€Q (5:13)

Solving (5.13) directly yields sup,cqw < e~ ||wgl| g + %, which immediately implies the

statement in Lemma 5.3. OJ

Lemma 5.4. There exists a constant My > 0 such that, for every classical solution (u,w)

of (5.1), there exits a constant To > 0 such that
[u( ) < M, Yt > Ty, (5.14)

and

t+1
/ / u?(z,s)dzds < My, Yt > Th. (5.15)

Proof. We integrate u-equation in (5.1) over Q by parts, and use Young’s inequality to get

d 2
— [ ut+ [ u+ [ v +m [ vw=(r+1) [ u
dt Jo Q Q Q Q

2
Sl/u2+(r+1) ’Q\.
2 Jo 2

1)%|Q
u—l—/u+ / T+ | | =:1my. (5.16)

Then we have dt( Jou) < mqet, which implies

/ugml(l—e_t)—i—e_t/uo Sml—l—e_t/uo. (5.17)
Q Q Q

For m; > 0, there is a constant ¢; > 0 such that e~* fQ ug < my for all ¢ > t1. Hence,
(5.17) gives

This gives

/USle, YVt > tq.
Q
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Integrating (5.16) over (¢,t + 1) yields

1 t+1
/ / uz(x,s)dxds <mq+ / u(-,t) < 3mq,Vt > ty.
2 /i 0 Q

Then (5.14) and (5.15) are derived by letting My = 3(r + 1)?|Q| and Ty = t;. O

Lemma 5.5. There exist constants M; > 0 (i = 3,4) such that, for every classical solution

(u,w) of (5.1), there exist constants T; > 0 (i = 3,4) such that
IVw(-,t)|7> < Ms, Vt>Ts, (5.18)
and

t+1
/ / |Aw(z, s)Pdeds < My, Yt > Ty. (5.19)
t Q

Proof. We multiply the second equation in (5.1) by w and integrate the result equation
over {) by parts to obtain

1d
w —|-d2/|Vw2—|—a/w —|—B/uw —/h(w,t)w<h*Mlﬂ,

which gives

t+1 h*M 9) 1
/ / ‘V ! + — w2(-,t+1) <mq, Vt>1T1, (5.20)
do 2ds Jq

* 2
where my := %lw. Multiplying w-equation in (5.1) by —Aw, integrating the
result by parts and applying Young’s inequality, one obtain

/\wa2+d2/ Aw? = /[—h(x,t)+aw+5uw]Aw
X 0

S/(h*—l—aw—f—ﬁuwﬂAw\ (5.21)
Q
d 332 M?
§2/ |Aw|? +mg + b My /u2,Vt>T1,
2 Q 2d2 Q
where my : = ) |Q|2tlz’a2M12|Q|. Then (5.21) implies
d 362 M}
/ |Vw|2+d2/ \Aw[2§/ |Vw|? + 2mg + 5 M /u2,Vt>T1. (5.22)
dt Jo Q Q d2  Jo

Combining (5.20), (5.22) with (5.15), and applying the uniform Goénwall inequality in
[130, Lemma 1.1 in Chap.3] yield (5.18) by letting M3 := (mq + 2mg + 382M?Ms)e and
T3 = max{Tl, T2}
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Integrating (5.22) over (¢,t+1) along with (5.18) and (5.15), we obtain (5.19) by taking
My = 2m2/d2 + 3,82M1M2/d% + Mg/dz and Ty :== max{Tl, TQ} OJ

Lemma 5.6. There exists a constant Ms > 0 such that, for every classical solution (u,w)

of (5.1), there exists constant Ts > 0 such that

t+1
/ / |Vw(z, s)|*deds < Ms, Yt > Ts. (5.23)
t Q

Proof. Applying Gagliardo-Nirenberg inequality in two dimensional space, an equality in
[12, Lemma 1] and (5.18), one gets

IVwl[1e < mal|Vwl|:(|Aw] 7 + [[Vw]72) 520
< mi M| Aw||2, +mi M3, Yt > T;. '

Integrating (5.24) and applying (5.19), one derives (5.23) by taking Ms := my Ms(My+ Ms)
and T5 := max{T3,Ty}. O

5.2.2 Ultimately Uniform Boundedness

Lemma 5.7. There exists a constant Mg > 0 such that, for every classical solution (u,w)

of (5.1), there exists constant Tg > 0 such that
u( )z < Mg, V> Ts. (5.25)

Proof. Multiplying u-equation in (5.1) by u and using Young’s inequality yield

d X +2d1/|Vu|2+2/u +2m/uw
dt Q
:—2x/qu-Vu+2r/u2
Q Q
Y2
Sdl/ ]Vu\2+/u2|Vw\2+2r/u2
Q di Jo Q

This gives

d 2
u +d1/ |Vu\2+2/u +2m/uw X 2|Vw\2+2r/u2. (5.26)
dt dy Q

To estimate the right terms in (5.26), we shall use the variant of the Poincaré inequality
[54] as below:
lllwr < c(IVullzo@) + [vllzo@), Yo € WH(Q) (5.27)
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for some constants ¢ > 0, p > 1 and ¢ > 0. And another inequality that Gagliardo-

Nirenberg interpolation inequality [54, 101]:
A A -
[ollzr < el nagyllvl sy, Vo € WHe(@),

where constants ¢ > 0, p,q > 1 satisfying p(n — q) < ng, 6 € (0,p) with

[ESTE
Q3

A= € (0,1).

SSE
+ | =iz
—_

Then applying (5.28), (5.27), (5.14) and Young’s inequality, one has

27«/ o = 20l[ulla < 2rm fullyrs|lull
Q

< 2rma([[Vul 2 + [full 21 ) ]

< 2rmoMs (|| Vul| 2 4+ M)

d
< fuwu; +my, VE> T,

(5.28)

(5.29)

L 47"2m%M22 2 . .. . .
where mg = —a= + 2rmo My On the other hand, using Holder inequality, (5.28),

(5.27) and (5.14), we obtain

2 2
vl < X julvul?,
dy Jo dy
X2 2
< d71m4||UHL2HUHWLQHVWHL‘I
X2 2
< 671ms||UHL2(HV7~L||L2 + [Jull L) Vw74
d1 d1 2m2X4
< —|IVullZs + —llullfr + —Z—llull 72| Vw| 1.
1 1 &
dy
< ZHVUH%z +me + mex|ull72 | Vwl|7s, VE> Ty,
2 2
where mg := dlin + %.
1

Then the combination of (5.29) with (5.30) updates (5.26) as

d dy
Slluli2s + IVl < mexlul2a I 9wl +ms +mo.

(5.30)

(5.31)

Since [/ ||Vw(z, 5)|[4, < Ms for all t > Ts (see (5.23)) and [/ |u(-,¢)[|2, < My for

t t

all t > Ty (see (5.15)), we apply the uniform Groénwall inequality in [130, Lemma 1.1 in
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Chap.3] to (5.31) and then obtain
/ u2(-,t +1) < (ms+me+ M2)€m6X4M5 =: Mg, Vt>Tg= maX{TQ,T5},
Q

this implies (5.25) directly. O

Lemma 5.8. There exists a constant M7 > 0 such that, for every classical solution (u,w)

of (5.1), there exists constant Ty > 0 such that
[Vw(-,t)||pa < Mz, Vt>Tr. (5.32)
Proof. We rewrite the second equation of (5.1) as
w — doAw + aw = h — fuw =: H(x,t). (5.33)
Applying (5.12) and (5.25), one obtains that for all ¢ > max{T1,Ts} =: t1
IH( )2 = ||h — Buw| > < h*|QIZ + BM; M. (5.34)

Denote the Neumann heat semigroup in by (e*®);~o. We apply Duhamel’s principle to
(5.33) and then get

t
w(e 1) = elt=t)A=0) .y / (=) d2D=0) (. ). (5.35)
t1

Using (5.34) and well-known semigroup estimate (see e.g., [18, Lemma 2.1]), if follows

from (5.35) that
t
va("t)HUl - Hve(t_tl)(dzA_a)w("tl)HL4 +/ Hve(t—S)(dgA—a)H(~,S)HL4d5
t1
< mye MO V(- )4
t
+ m2/ (14 (t —s)"1)e =N H(-, 5)|| 2ds
t1
< mre M) |V )]0
. 00 —3\ _dodiz
+m2(h |Q|2+BM1M6) (1+Z 4)6 21dz
0
< mye” M) |y 1) o + s,

where \p is the first nonzero eigenvalue of —A in Q under Neumann boundary conditions.
Since ||Vw| e < Cp, then for mg > 0, we can take T7 > 0 sufficiently large so that, for
all t > Ty > t1, one has ||Vw(-,t)||;+ < 2ms. Then (5.32) follows by letting M7 := 2ms3. O
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Lemma 5.9. There exists a constant Mg > 0 such that, for every classical solution (u,w)

of (5.1), there exists constant Ty > 0 such that
Ju( )]s < Mg, Vt>Ts. (5.36)

Proof. We multiply u-equation in (5.1) by u? and integrate the result over Q by parts to

obtain
d 2
7 u + 6dy u|Vu| +3m wu +3 u +3
= —6x/ WV - Vu+ 3(r + 1) / u? (5.37)
Q Q

§6x/u2\VwHVu|+3(r+1)/u3
Q

Q
Applying Young’s inequality, Holder inequality and (5.32), and using the fact 3dy [ u|Vul?

[ Vus|? = %HVU% 125, one derives that for all t > T

3x? 4d 3x2M?2
bx [ wVul[Val < 3dy [ ulVu + T fullal Volte < THT6 s + 25 ul,
Q Q dy 3 dy
which, along with Holder inequality, upates (5.37) as
d 4d1 3|2
el + 8llals + =5 [Vud | < malulfs, ve> Ty, (5.38)

2a72
where my := % +3(r + 1)\Q|% Applying Gagliardo-Nirenberg inequality in two di-

mensional space and Young’s inequality derives
i ullds = mJu [ <ma (|| Va5 o} H + 24

3,4
=ms ([|Vuz |2, [l g2 + [|ull;

2(H HL2 L2 L2 ) (5.39)
<777,2M6HVU2 HLQ + m2M63

4d
! HVW 12, +ms, Vt>Ts,

where mg := (12d2 + mg) M. We substitute (5.39) into (5.38) to obtain

@HuHig + 3|ull3s < mg, ¥Vt > max{Ts, Tr} =: t1,
which implies
_3(t— m3
lulls < e 2 flu(-, 1) |70 + 3
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Since [Jul[z~ < Co (see (5.2)), for %2, we can find a Ty > 0 sufficiently large so that, for
1
all ¢ > Tg > tq, it holds that |ju|zs < (2ms/3)3 =: M. This gives (5.36) directly. O

Lemma 5.10. There exist constants M; > 0 (i = 9,10) such that, for every classical
solution (u,w) of (5.1), there exist constants T; > 0 (1 = 9,10) such that

||Vw(-,t)||Loo < Mgy, Vt>Ty. (540)

and

u(-,t)[[Lee < Mio, Vt > Tio. (5.41)

Proof. By (5.12) and (5.36), one has
IH(,t)|zs = |h— Buw| s < h*|Q5 + BMy Mg =: my,Vt > max{T}.Ts} =: t;. (5.42)

Applying the semigroup estimate (see e.g., [18, Lemma 2.1]) to (5.35) and using (5.42) and
(5.2), we obtain

t
IVl < [ Vel Dty + [Vl )]s
t1

< mae”BME) (14 (1 — 1)72) ||V (-, 1) 1

t 5.43

+m3/ (14 (t—5)78)e BN H( )| pads (5:43)
t1

< mge~2Mt—t) (1 +(t - tl)fé) [Vw (-, t1)[Lee +ma

< 2my, Vt>Ty>ty,
for some large constant Ty > 0. Then (5.43) gives (5.40) with Mg := 2my.

Next, multiplying u-equation in (5.1) by uP~!(p > 2), integrating the result over €,
and applying (5.40) as well as Young’s inequality, we obtain

ld
pdt Jq

:—X(p—l)/up_1Vu-Vw+r/up
Q Q

up+d1(p—1)/up_2|Vu\2+m/wup+/up+1
Q Q Q

gx(p—l)Mg/Qup_1|Vu|+r/Qup

d -1
< B [ 29u b matp 1) [ vi >,
Q Q
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2 2
where mq := ngfg + r is independent of p. Hence for any t > Ty,

d

—1)d
— [ u? +p(p— 1)/ uP < _p(p)1/ up_QIVu\Q + map(p — 1)/ u?, (5.44)
dt Jo 0 2 Q Q

where mg = m; + 1 is independent of p. Then, we follow the same way as the proof in [23,
Lemma 3.6] to find a constant ms such that

JuCs8) oo < mg maix { ™) (e, To) | e (-, )10 } (5.45)

< 2mgMs, Vt>Tig > Ty,

for some large constant Th9 > 0. Hence, (5.41) follows by taking Mg := 2ms3Ma. ]

Proof of Theorem 5.1(ii). The combination of Lemma 5.3 and Lemma 5.10 implies the

statement in Theorem 5.1(ii). O

5.3 Uniform Persistence and Existence: Proof of Theorems
5.2 and 5.3

The objective of this section is to study the local stability of (0, @), and to explore the
uniform persistence and the existence of positive T-periodic solutions. Finally, we shall

explore the effects of cross-diffusion on the critical point m*(x)

5.3.1 Local Stability of (0,w)

In this subsection, we study the local stability of (0, ), where w is the unique solution

to (5.4) and is independent of m and x. Then it follows from [62, Lemma 2.2] that

[[@]] < Gl gm0 5 (5.46)

oot Gy = oo % (@)
Next, we linearize (5.1) at (0,w) to get
¢t = diAd+ XV - (¢VW) + (r —mab)p, =€ Q,t >0,

Y = daAY — anp — Bob, r€Qt>0, (5.47)
Oyp =0, =0, z €N t>0.

To obtain the linear stability of (0,@) to (5.1), it suffices to study the linearized eigenvalue

problem as follows:

¢y — d1Ap — XV - (VW) — (r — mw)p = A\p, in Q x [0,7T],
Yy — do A + ap + B = A\, in Q x [0,7],
dvp =0y =0, on 09 x [0, 77,
¢(x,0) = ¢p(x, T),¢(x,0) = (x,T), in Q.
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It follows from [77, Theorem 2.1.1] that the first equation in (5.48) with d,¢ = 0 and
o(x,t+T) = ¢(x,t) admits a unique principal eigenvalue A\, := A, (x, m) € R with a positive
eigenfunction ¢., which is unique up to constant multiple. Moreover, using the similar
discussion in [59, Lemma 3.2], we know that the linear stability of (0,w) is determined by

the sign of A4, i.e., (0,0) is linearly stable if A\, > 0 and unstable if A\, < 0.

Lemma 5.11. Let Q C R? be a bounded domain with smooth boundary and (HO) holds.
There admits a unique constant m* := m*(x) > 0 such that (0,w) is linearly stable if

m > m*, and is linearly unstable if 0 < m < m*.

Proof. Note that A\, € R and ¢, > 0 satisfy

(04); — d1AGx — XV - (V) — (r — md)ps = Ay, in Q% [0,T7,
Oy« =0, on 09 x [0, T, (5.49)
¢4 (2,0) = ¢u(z,T), in Q.

We integrate the first equation in (5.49) over Qr by parts to get

_ / (r—md)ds = A | (5.50)
T Qr

Since ¢, > 0, by (5.50) and the definitions of w., w* in (5.5), one has

A >0, ifm>——; A <0, f0<m< —. (5.51)
w

W
We deduce from [17, Lemma 2.15] that if m < m, A(x,m) < A«(x,m). This combined
with (5.51) shows that there is a unique m* :=m*(x) satisfying 7= < m* < 7- such that

M>0ifm>m* A <0if0<m<m”.

This proves Lemma 5.11. O

Next, we shall prove uniform persistence and the existence of positive T-periodic solu-
tions. To this end, we first improve the regularity of (u,w), a key result will be used in

later.

Lemma 5.12. Let (u,w) be the solution obtained in Theorem 5.1.Then there exist con-

stants v € (0,1) and M7 > 0 independent of ug, wo such that

H(U, w)HCQ+’Y’1+%(§><[T0+1,OO)) < M7' (552)
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Proof. Rewriting (1.6) as

up = diAu+ xVw - Vu + Gi(z,t), =€ Q,t>0,

wy = deAw + Ga(z,t), €N, t>0,
oyu = dyw =0, x €N t>0,
(u, w)(x,0) = (ugp, wo), x €,

where G1(z,t) := u(r — mw — u — xAw) and Ga(x,t) := h — aw — fuw. Then it is easy
to check that (5.52) is a consequence of the interior LP estimate ([87, Theorems 7.30 and
7.35]), interior Schauder estimate for parabolic equation [76] as well as the eventual uniform
boundedness (see (5.68)). The proof details can follow the similar procedures as the proof

in [140, Theorem 2.1], we omit here for brevity. O

5.3.2 Uniform Persistence and Positive T-Periodic Solution

In this subsection, we establish the uniform persistence and the existence of positive
T-periodic solutions. The proof mainly based on the results of uniform persistence and
coexistence states for general dynamical systems developed in [156, 157] (see also [117])
as well as the Principal Floquet bundle theory [77, Chapter 4]. To proceed, we first recall

some basic notations and definitions.

Let X be a complete metric space with a metric d. By [43] and [157, Chapter 3.1],
we say that {U(t) : X — X };>0 is a T-periodic (autonomous) semiflow on X if there is a
T > 0 (for every T > 0) such that (¢,z) — ¥(t)z : [0,00) x X — X is jointly continuous
in (¢,z), ¥(0)z = z for all z € X and V(t +7T) = U(¢)¥(T) for all £ > 0. Assume that
Xo C X and 90Xy C X are open and closed sets, respectively, satisfying Xo N 90Xy = () and
X =XoU0Xy. Let U(t) : X — X (t > 0) be a semiflow and ¥ (t) Xy C Xo,t > 0, ¥(¢) is
uniformly persistent with respect to (X, 0Xy) if there is n > 0 such that

liminf d(¥(t)v,0Xo) > 1, Vv € Xo.

—00

Here, we choose
X = {(v,2)(x)lv € C(Q), z € C'Q), v(x)>0,z2(z) > 0,Vz € Q}
with the norm [|(v, 2)[|x = [Vl + 121 gy and
Xo={(v,2)(z) € X|v(z) £0}, 0Xo={(v,2)(z) € X|v(z) =0},
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then X = Xy U dXy. By Theorem 5.1(i), for every (ugp,wp) € X, (5.1) admits a unique
global classical solution ©(¢, (ug, wp)) = (u,w)(x,t) € X. Hence, when d;h # 0, we can
define semiflow ¥(t) : X — X by

U(t)(up, wo) = O(t, (ug, wp)), (ug,wp) € X,t>0.

Clearly, U(t)Xo C Xo and ¥(t)0Xy C 90X for any ¢t > 0. For a given periodic system,
from [157, Theorem 3.1.1], we know that studying the uniform persistence can be reduced
to study the uniform persistence of its corresponding Poincaré map.

Since the toxicant input rate h(z,t) in (5.1) is T-periodic, then the associated semi-
flow W(t) is also T-periodic, and the Poincaré map S : X — X can be defined by
S(v,z) = ¥(T)(v,2) = O(T, (v, 2)) for any (v,z) € X. We shall demonstrate that the
linear instability of the semi-trivial T-periodic solution (0,w) implies that it is a uniform

weak repeller by using the principal Floquet bundle theory [77, Chapter 4].

Proposition 5.1. If A\, < 0, then (0,w) is a uniform weak repeller for Xy in the sense

that there exists a positive constant § > 0 such that

lim sup HSj(uo,wo) —(0,w)||x > 6, V(uo,wp) € Xo.
Jj—00

Proof. Suppose, by contradiction, that there exists (g, wp) € X such that

lim sup |57 (i, o) — (0,%)|x = 0. (5.53)

Jj—o0

Next, we shall divide our proof as three steps.
Step 1. For any t > 0, there exists some j € NT such that ¢t = jT +t with ¢’ € [0,T), we

have
(0, W) (x,t) := O(t, (g, wo)) = O(GT +t', (o, o))

(t', 03T, (o, wo))) (5.54)

(t', 87 (g, ).

)
)

The continuous dependence of solution on initial data, together with (5.53) and (5.54),
implies

lim ([[a(,t)][Lee + [[w (-, ) — wllze=) = 0. (5.55)

t—o00

On the other hand, (5.52) and (5.46) implies that for v, := min{~, xo},

<ec, Vt>Ty+1.

|| (@, 0 — w)HwaH%(ﬁx[t,tH]) a
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By [109, Lemma 4], we get that C’QJ”“’H%I(Q X [t,t 4+ 1]) is compactly embedded into
CQJF'VO’H%O(Q x [t,t+1]) for any 7o : 0 < 70 < 1. This together with the (5.55) gives that

(taking a subsequence if necessary)

(-, t)— )| =0, Vt>Ty+1. (5.56)

Jm, (HUHC?“O’HZE@X [t,t+1]) 02+”°’1+§(§X[t7t+1}))

Step 2. Consider the following equation
2t = d1Az+ xV - (2VW) + z(r —mw), z€Q,t>0,

Oz =0, x € 00, t >0, (5.57)
2(z,0) = zo(z), x € Q.

Let (A, ¢x) be the eigenpair of (5.49), then it is clear that ¢,e ™t satisfies the first two
equations of (5.57).

Now, by (5.46), we get w € C’2+“’0’1+770(Q x [0,T]). Hence, it is clear that W extends
smoothly (and periodically) to CHVO’HLQO(Q x R), this smooth extension of  is denoted

Y
by @. We then fix a smooth extension w € C*T0-!+ 2 (2 x R) of w(x,t) satisfying
w(z,t) =w(z,t), x€Q,t e [ty,00). (5.58)
Moreover, using (5.56), for arbitrary dp > 0 (which will be specified later), we can choose
to > 1 in (5.58) to ensure that

< 5. (5.59)

<¢; and HQ_MAHCQ‘F’YOJ‘FA/TO(EXR) -

[

For this given w(z,t) € C2H0:14 3 (Q x R), we deduce from [77, Theorem 4.2.2] that there

exists a unique ordered triple
(P(x,t), I(z,1), A" (1)) € [P0 2@ x R)2 x CF (R)
fulfilling

Py = diAP + XV - (PVw) + (r —mw)P + A?(t)P, z € Q,tcR,
0,P =0, x €00t eR, (5.60)
P>0, (z,t) € Q xR, and [, P(z,t)dz =1, t eR,

and

—It:dlAI—XV@-V[—F(r—mw)I—i—A‘D(t)I, reQ,teR,
o,I =0, z € 00t eR, (5.61)
I>0, (z,t) e QxR, and [, P(z,t)I(x,t)de =1, teR.
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Moreover, there is a constant ¢y > 0 such that

1 1
— < P(z,t) <co, — <I(z,t)<ca2, V(z,t) € QxR (5.62)
c2 C2

Notice that if we replace w by the periodic function w, then it can be verified that

P(z,t) = q(t)pu(z,t), I(z,t) = p(t)hi(m,1t), N%QZA*+¢“)

where (A, ¢« (x,t)) are the eigenpair of (5.49) and v, (z, t) is the eigenfunction of the adjoint

.. . 1 . Jo &+ (z,t) dz . .
T-periodic problem, ¢(t) = oo s and p(t) = A ¢*Q(a;,t)z/;*(x,t) 7o+ 1t is also obvious that
q(t) is T-periodic and so that

1 t 7
im L[ L) 4o o, (5.63)

t=oo t Jo q(s)

Recall also the main hypothesis of the theorem that A\, < 0.

By the smooth dependence of A”(t) on the coefficients in (5.60) (cf. [77, Theorem
4.34]), from (5.56), (5.58) and the equations (5.49), (5.60), we deduce that if jp > 0 in
(5.59) is chosen small enough, then the principal Floquet bundle with w = @ and w = w

is close to each other. In particular,

/
A% (1) = A — L2 (t)H o S,
q(t) "CZ(R) 2
this and (5.63) implies
lim inf t A®(s)ds > L (5.64)
13_1}(1)21 ; — s)as > — 5 > 0. .

Step 3. Multiplying @-equation in (5.1) by I and I-equation in (5.61) by 4, and then

integrating the result over 2 by parts, we have

d/aI:/a[t—dl/Vﬁ-VI—X/ﬂVﬁ)-VI+/&I(r—mﬁ;—ﬂ), vVt > 0, (5.65)
dt Jo Q Q Q Q

and

/Itﬂ—dlfVﬁ-VI—X/ﬂVﬁ)-VI—l—/(r—mu?)Ia:—Aw(t)/Iﬂ, V>0,
Q Q Q Q Q

which combined with (5.65) derives

C‘llt/QaI:—Aw(t)/Qal—/QaQI. (5.66)



Using @ — 0 uniformly, we may choose t1 € [tg, o0) such that supy, ) [|@ec < —);T*, which
gives

CZ/QQIE (_Af”(t)—k);l*)/gﬂ[ for t € [t1,00). (5.67)

Solving (5.67) directly gives

/QM > exp ((t—tl) <t_1t1 t: _AP(s) ds + Z)) /Q&(:v,tl)l(x,tl)dx

— exp((t— 1) (-Z +o(1)> /Qa(m,tl)l(:v,tl)dm.

Since A, < 0, this contradicts that [, %/ — 0 (due to (5.55) and (5.62)) as t — oo.
Therefore, the proof of Proposition 5.1 is finished. O

Proof of Theorem 5.2. Lemma 5.11 gives a description of the linear stability and in-
stability of (0,@). In what follows, we focus on showing the uniform persistence and the
existence of positive T-periodic solutions.

With (5.3), [78, Theorem 2.2] implies that there exist some constants x > 1 and M1 > 0

independent of initial data (ug,wg) such that
e )l geq + 00> Ollong < Mi, ¥t > Tin, (5.68)

for some constants 771 > 0 and x > 1. Since k > 1, it follows from Arzela-Ascoli theorem
that C*(Q) is embedded compactly into C*(Q) and C(Q), this along with (5.68) indicates
that

U(t) is point dissipative in X, and it is compact in X for each t > T7;. (5.69)
Thus, [44, Theorem 2.2] (or [42, Theorem 2.4.7]) implies that

U(t) has a global attractor in X. (5.70)

To prove the uniform persistence of the T-periodic semiflow ®(¢), it suffices to show
that the Poincaré map S : X — X is uniformly persistent (cf. [157, Theorem 3.1.1}).
From the above statements, one can see that S : X — X is point dissipative, continuous,
S(Xo) € Xp and S™ is compact for some integer ng > 1. Then we deduce from [157,
Theorem 1.1.3] that S : X — X has a global attractor B.
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Denote Ay as the maximal compact invariant sets of S in 0Xy. We claim that Ag
consists of a single point. Indeed, if (ug,wy) € Ap, then ug = 0, this gives the existence of

an entire solution w to

wy = doAw + h(z,t) — aw, ze0teR,
d,w =0, x e 0t eR, (5.71)
w(z,0) =wy, x€Q and sup,g||w|re <C.

On the other hand, w satisfies (5.4), which along with (5.71) indicates that W := w — w
satisfies
Wi = do AW — aW, x € N,teR,
a,W =0, zedNteR, (5.72)
W(z,0) = wo(z) —w(z,0), z €.

Multiplying the first equation in (5.72) by W and integrating the result over Q by parts,

we obtain

1d
/W2+a/W2:—d2/]VW\2§O for t € R.

This motives us to find a constant x1 > 0 such that
o =l g2 = 1Wlg2 < () — (-, Dllpze 0D, Vi > ¢, (5.73)

Letting t — —o0, we deduce that w = w. This shows Ay = {(0,w)}.

Next, we claim that if A, < 0, then S is uniformly weakly persistent with respect
to (Xo,0Xo), i.e., there exists 1 > 0 such that limsup; .. [57(v, 2) — 0Xolx > m for
all (v,2z) € Xp. Indeed, suppose not, then same arguments as (5.54) and (5.55) imply
limy_, o ||@|| L= = O for some initial data (7, 2) € Xp, and hence the omega limit set w(7, 2)
of S is a subset of 9Xy. Then w(?,Z) C Ap. This implies that lim;, e ||S7*(7,2) —
(0,w)||x = 0, which is impossible in view of Proposition 5.1. Since S : X — X has a
global attractor B and S is uniformly weakly persistent, then we can apply [157, Theorem
1.3.3] to conclude that S is uniform persistent with respect to (Xo,9Xy) and hence [156,
Theorem 2.1] indicates that T-periodic semiflow {W¥(¢)}:>0 is uniformly persistent in the
following sense

im i > my. .
lim inf {|u(z, t)[| ) > m (5.74)

On the other hand, we derive from (5.1) that

(5.75)

up = d1Au+ xVw - Vu +u(r —u —mw + xAw), z€Q, t>0,
dyu =0, e, t>0.
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Then (5.52) implies that for all ¢ > Ty + 1, one has
IVw||gee < mgo, and |7 —u — mw + YAw| pe < ms.
This combined with Harnack inequality [58, Theorem 2.5] gives that

supu(z,t) < my inf u(z,t), (5.76)
2eQ xeQ)
for some constant m4 > 0. Taking the inferior limit in time ¢ on both sides of (5.76) and

applying (5.74) directly yields litm inf img2 u > %. This proves (5.6).

—00 €

Finally, we prove the existence of positive T-periodic solutions. From Theorems 1.3.7 in
[157], we get that S : Xy — Xj has a global attractor A9 C Xy, and a fixed point pg of S in
Ay exists (see [157, Theorem 1.3.8]). Therefore, (1.6) has a T-periodic solution p.(x,t) :=
U(t)po in Xg. Since Ag C Xo and S = ¥(T), it holds that Ay = S(A4y) = V(T")Ap, which
along with the strong maximum principle yields Ay C Int(Xy). Then p.(x,t) = U(t)pg €
U(t)Ag C Int(Xp) and hence p.(z,t) is a positive T-periodic solution. Furthermore, the
standard regularity theory for parabolic equations yields that p.(z,t) € [C’“’Y’H%(ﬁ X
(0,T])]? (see e.g., Lemma 5.12). Hence, the proof of Theorem 5.2 is finished. O

Next, we investigate the effects of negative toxicant-taxis x on the threshold value
m*(x), which is characterized by the effects of y on A\*. In the sequel, we sometimes denote
W =: w" and its minimum value 0, =: W to emphasize the dependence of the solution
of (5.4) on the coefficient h = h(x,t). Particularly, when h(z,t) = a(x) > 0, then @® is the

unique positive solution to

dAw+a(x) —aw =0, z€Q, dw=0, zcd. (5.77)

Lemma 5.13. Let Q C R? be a bounded domain with smooth boundary and assume that

(H) holds.
(i) If h(z,t) = a(x) > 0 and a(z) is nonconstant, then

limsup Ay < min{mw*(x) —r} = mwd —r. (5.78)
X—00 zel)
(ii) Fiz a(z) € C*(Q) and let W*(x) be the ungiue positive solution of (5.77) and mw? —
)

r < 0. Let h(z,t) = a(x) + b(z,t) with b(x,t) being a T-periodic function, then there
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exists a small 0(a) > 0 such that if 0 < [[b(x,t)|| (@) < o(a), then

limsup A\, < 0, (5.79)

X—00

i.e., we show that b(z,t) is a small perturbation which is uniform for large x.

Proof. We first use the conditions h(x,t) = a(x), mw? < r and Sard’s theorem to prove
the statement (i). When h = a(z), one can check that the eigenpair (\., ¢.) satisfies the
elliptic problem

{—d1A¢ — XV - (¢ViE?) — (r — mi)p = A, x € (5.50)

8l/¢ = 07 x € BQ,

where w® := w®(z) is the unique solution of (5.77). To prove (5.78), it suffices to prove,
for each € > 0, that
limsup A\, < mwg —r +e. (5.81)

X—00

For convenience, considering the following adjoint eigenvalue problem of (5.80)

{—dlAw + XV - Vip — (r—mab®)p = A\, x € Q, (5.82)

8l/’lb == 07 X 6 aQ.

We deduce from [17, Corollary 2.13] that A, is also the principal eigenvalue for (5.82).
Then to prove (5.78), by [77, Lemma 1.3.13|, we only need to construct a nonnegative,
nontrivial subsolution ¢ satisfying
— d1AY + XV - VY +mEy — ey <0, x € Q, (5.83)
oy =0, x € 0N (5.84)

in the generalized sense (see [77, Definition 1.1.1]). Here E := w%(z) — &% > 0 in Q.
Let € > 0 be fixed. Since w%(x) € C?(Q2), by Sard’s theorem, we can fix s1,s2 € R
such that

W< 51 < sy <@+ — and inf|Va?| > 0, (5.85)
4m v’
where we define U’ := U(s2) \ U(s1) and that

U(s) :={z € Q: u%x) < s}. (5.86)
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Next, we choose a smooth cut-off function G(s) = G(s;s1, s2) : R — R satisfying

G(s) =s2—s for s € [(s1+s2)/2,00),
G'(s) <0 for s e (s1,(s1+s82)/2], G(s)=0 forse (—o0,s1], (5.87)
IG(s)lI := supyer [IG" ()] + 1G"(s)]] < +o0.

Define
G (%) diG" () 2
Hi(s) :=sup [—dl — Aﬁ}“] and  Hs(s) :==sup |————=|V0|*|.
U(s) G(u?) U(s) G(w®)
We claim that there is § € (s, s2] such that
Hi(3) < % for i = 1,2. (5.88)

Indeed, the existence of § follows from the fact that (a) [|0*|lc2) < +oo is given, (b)
H;(s) are continuous and finite-valued in [s1, s2), and (c) H;(s) N\ 0 as s N\ s1, for i = 1,2.

Now, define
P(x) = G0 (2))), (5.89)

then by a direct computation, we get

/ d 1
—di AY + XV - Vip = G —dl%Aw“ - 15

G/
|V | + xavaaﬁ : (5.90)
where G := G(w*(z)), G’ := G'(v*(z)) and G := G"(w*(z)). We shall verify that v (x)
satisfies (5.83) in classical sense for z € U(s2) by proceeding two cases:
zeU(s) and x € U(s2)\U(3).

Case 1: z € U(8). Following from (5.88), (5.90), G(s) > 0, G'(s) < 0 (see (5.87)), x >0

and mFE < %, one has
—di1AY + Xvwa -V + (mE — E)w < G[H1(§) + H2(§) + (mE — E)] <0. (591)

Case 2: € U(s2) \U(8) = {x: w*(x) € (8, s2]}. Then it follows from (5.87) that G’ < 0
and G > 0. Note (5.90), infy(s,)\v(s) [V > infyr [V > 0 and mE < §, one has

— d1AY + XV - Vi + (mE — &)

= —G'di A0 — G"d1 [V > 4+ xG' |V > + (mE — ¢)G

< |G|l [d1]|Aw®|| e + di|| V2] + xG' inf |V@?|? <0,
IGI [du]] Iz 1l 7o) +x U(S2)\U(§)I \
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provided that y > ¥, for some xy > 1. In fact, for each x > ¥, the differential inequality
holds in some relatively open set U C Q containing U(sz). Now, note that i(z) :=

max{¢,0} is continuous, and

Y(x) =9(x) inU(s2), ¢(x)=0 inQ\U(s2).

It follows that 1) (x) satisfies the first differential inequality of (5.84) in the generalized sense
(see [77, Definition 1.1.1]). Also, note that ¢ and 0 both satisfies the Neumann boundary
condition classically, so ¢ also satisfies the Neumann boundary condition in the generalized
sense. By the eigenvalue comparison lemma [77, Lemma 1.3.13], this implies that (5.81)
holds. Since £ > 0 is arbitrary, it follows that limsup, _,,, Ax < mwg — r. This proves the

statement (i).

For the statement (ii), let h = a(z) + b(z,t) with b(z,t) being time-periodic, then it
holds that A. € R and ¢, > 0 satisfy (5.49). Following [17, Lemma 2.15], we get that A, is

also the principal eigenvalue of the following adjoint problem

—( — diAC + XV - Vil — (r — mih)¢ = A¢, in Q x [0, 7],

0, =0, on 09 x [0, 7], (5.92)
((x,0) = ((z,T), in Q.
To achieve goal (5.79), for € = Ir=m@2l - 0, we first construct a nontrivial function ¢>0
satisfying
—¢, —diAC+XV( - Vol + [m(w® —w?) —e]( <0, inQx[0,7],
0,¢ =0, on 09 x [0, T, (5.93)
(x,0) = ((x,T), in

in the generalized sense. In fact, for each fixed a(z), one can choose o(a) such that if
0 < [[b(z,t)|| (@) < o(a), then the above argument in statement (i) can be repeated to
show that for x > 1, ¢(z) := max{, 0} qualifies again as a generalized subsolution of the
periodic eigenvalue problem (5.92). To prove this, we shall divide our proof into two steps:

Step 1: We claim that for each fixed a(z), there exists a constant o(a) > 0 so that if
0 < [|b(z, 1) oo (@r) < o(a), then

" (z, t) — 0%(x)|| v <coofa) and inf Vi - Vit > 0. (5.94)

CHHP T Q)

Indeed, denote ¢(z,t) := " (x,t) — %(z), we deduce from w*-equation, w-equation, the

condition h(z,t) = a(z) + b(z,t) and [87, Theorem 7.35] that for some constant p > 1
||l(:737 t)HWQQ;f(QT) < Cl||b($7 t)HLQp(QT)a
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. . . 2,1 1+580 1+8g .
which along with the Sobolev embedding theorem Wy~ — C"77 72 with 0 < Sy <

— ”2—‘]"02 , gives

1
1G] s, 1420 @) < el )| L2e(@r) < c2e1llbllLer(@r) < c2ca|Q2P [|b]| Lo (@r)s
T

this yields
”“w?t)”cuﬁo,%@) < col[bl| e (@r) (5.95)

1
by letting ¢ := c1c2|Q|2r. Taking

Cx
o\a) = = 5.96
@) = Ve (5.96)
such that
10l 2o (@) < o(a), (5.97)

where the constant ¢, := xiélgl |V (x)|?> > 0 (see (5.85)). Applying (5.95), (5.97) and
(5.96), we know that the first inequality in (5.94) holds, and
inf Vil - Viu® = inf |Va®|? + inf V(- Vi
> inf [Vir'[* = [0l o= (@) [ V0" 10 (5.98)

> inf Va2 — coor(a,n)|| Vi L = inf |Va®|?/2 > 0.

Hence, we finish the proof of (5.94).
Step 2: For z € U(8), using (5.98), (5.94), G'(s) = 0 for s < s; and the fact mE < /4,

one has
— ¢, — di A + X V" - Vo + m(i® — b)Y — et
= —G'd Ad* — G"dy |V * + G'X V" - Vo' + [m(i® — i) — £]G
< G[H1(8) + Hy(3) + m(® — %) — €] + G'xVi® - Vuh

< —Ge/d+xG  inf V- V' < xGinf Vit - Vul < 0, Vo e U(3).
U(S)\U(s1) g

For z € U(s2) \ U(3), note (5.87), (5.90), infy (s, (s) Vol - Vi > infy Vot - Va® > 0

and mE < §, we obtain
— ¢, — di A + X VD" - Vi + m (i — )y — ep
= —G'di AW — G"d1 | Vi) + GV - Vuw® + [m(® — v?) — €]G
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< NG| [di]|Aw®|| oo + di || V|20 ] + xG' inf V" Vw® <0,
IGN [du]] Iz 1l 7] + x s o

provided that y > 0 is sufficiently large. Therefore, similar to the proof of Lemma 5.13(i),
we get that ¢ := max{0,7} is a generalized subsolution of (5.92). Then it follows from
[90, Proposition A.1] that

limsup A < maby — 7+ m||l|| oo (@) + M — r|/2. (5.99)

X—00

Hence, by (5.94) and the condition mw? — r < 0, we can choose

. Cx r —muw?
ola) = mm{QcoHVﬁ)a(x)HLoo " deom }

so that limsup A« < 0. This proves the statement (ii). O

X—00

Remark 5.4. In Lemma 5.13, W appears in both advection and linear terms. The results
in Lemma 5.13 include the scenario where the set of local minimum for W may contain
some flat pieces, a case excluded in [20, 106] for high-dimensional settings. And the proof
of Lemma 5.13(ii) removes the nondegeneracy conditions imposed on w in [20, 106] in

high-dimensional spaces.

Proof of Theorem 5.3. We apply (5.99) to get that there exists some constant ¢; > 0
independent of b, x such that
- r—clm||€|]Loo(QT) T—clmHEHLw(QT)

lim inf m*(x) > - > — .
X—00 W W+ 110l (@)

Hence, for each n > 0, one can choose o(a,n) sufficiently small to ensure that ||¢||~ is small

enough (thanks to (5.94)), so that

r

liminf m*(x) >

X—00 - ’([)i‘ -

Therefore, the proof of Theorem 5.3 is complete. O
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5.4 Global Stability: Proof of Theorem 5.4

In this section, we explore the global dynamics of the system (5.1). We start by proving
the global stability of the semi-trivial T-periodic solution (0, w(x,t)).

Proof of Theorem 5.4(i). We first show the convergence of ||u||fe as ¢ — oo. To this

end, we consider the following equation

vy = doAv + h — (a+ BMp)v, x € Q, t > Ty,
O,v =0, x €090, t > Ty, (5.100)
v(z, Ty) = w(x, Tp), x €,

where constants Ty > 0 and My > 0 are introduced in Theorem 5.1(ii). Then, the compar-
ison principle yields
w(z,t) > v(x,t), Vt>Tp. (5.101)

Proceeding the similar procedures as in proof in (5.73), we obtain

lim [[o(-,t) — g = 0, (5.102)

t—o00

where 0 < 9(z,t) € C*T1+3(Q x [0, T]) is the unique solution (see, e.g., [95, Proposition
4.4.8] and [62, Lemma 2.2]) of the following equation

@t:dgA’[)—i—h—(Oé—FﬂMo)’[), x € Q, t>1Typ,
0,0 =0, x €0, t>1Ty, (5.103)
0(x, Tp) = 0(x, To + T), x € Q.

On the other hand, we apply the maximum principle [141, Theorem 7.1] for periodic
parabolic equations to (5.103) to get

h

S S—— > 0. 5.104
Ol‘i‘BMO mMO ( )

o(z,t) >

With (5.101), (5.102) and (5.104), we can find a constant ¢; > Ty such that

mmag, — T mma, — 1T M,

r
eV om 5 +2m>0, Vit >ty

(5.105)
Next, we integrate the first equation of (5.1) and use (5.105) to get that for all ¢ > ¢1,

d/u:/u(r_mw_u)g—mmm/u,
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this derives

T*TVLTVLA{O rT—mmpr

JuC, )l <e ™2 <“1)/u(-,t1) <clemz Uy s (5.106)
Q

Then (5.106) together with Gagliardo-Nirenberg inequality in two dimensional space and
(5.52) gives that for all ¢ > max{t1,To + 1} =: to

Lt < T OB < crer e (i ta) 5.107
u(-t)|[Lee < eallu(- ) |51 lul D7 < cse : (5.107)

Next, we shall prove the convergence of ||w(-,t) —w(-,t)|| e ast — co. Let W := w—1,

then we deduce from (5.1) and (5.4) that

Wi = do AW — aW — BuW — Bwu, x €, t >0,
a,W = 0, zedN, t>0, (5.108)
W(z,0) = wy — w(-,0), x €.

Multiplying the first equation of (5.108) by W, integrating the result and using (5.5), one

obtains

1d
/W2+d2/|VW|2+a/W2+ﬁ/uW2:—B/qu
2dt Jg Q Q Q Q

§564/ ulW|

Q
Sa/w2+ﬁ203/u27
2 0 2 0

which along with (5.107) implies

1d/20‘/2520421/2 _ (mmagg =)
= | Wi - [ W< — [ u” <cse 5 (t—ta), Vt>to. (5.109)
From (5.109), we have

w(-,t) — ()2 = W)l e < coe™ 7712 Wt >t (5.110)
where ¢7 := min{ mm]‘go iy S} Applying Gagliardo-Nirenberg inequality in two dimensional

space and the W1 >-boundedness of w and w (see (5.3) and (5.46), respectively) and
(5.110), one has

1 1 c
(-, ) =, )| < (-, ) = ()| 3 collw(, ) =0 (-, )12 < cge™ 3 (E—t2), VE> 1o,

crt

which combined with (5.107) gives (5.7) by letting Cy := cge 2~ and 6 := . O
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In the following, we assume h(x,t) = h(t) and shall establish the global stability
and uniqueness of the positive T-periodic solution to (5.1). When m < m*, we deduce
from Theorem 5.2 that the system (5.1) admits at least one positive T-periodic solution
(u*, w*)(z,t) =: (u*,w*). On the other hand, note that the positive T-periodic solution
(ws, wy)(t) =: (ux, w,) satisfies the following ordinary differential equation (ODE) system

(Us)t = Us (7 — Uy — MAWy), t>0,
(wi)r = h(t) — qw, — Buswsy, t>0, (5.111)
Ue(t) =us(t+T) >0, we(t)=wi(t+T)>0, t>0.

It is also the positive T-periodic solution of (5.1). We shall show that the positive T-
periodic solution (u.,wy)(t) is globally asymptotically stable, and hence it is the unique
positive T-periodic solution.

To this end, let (u,w) be a solution obtained in Theorem 5.1 and denote V := w — ws,

one deduces from (5.1) and (5.111) that

ur = di1Au+xV - (uVV) +u(r —mV —mw,) —u?, z€Q, t>0,
Vi = do AV — oV — BuV — Bwy(u — uy), zeN, t>0,
oyu =0,V =0, x e, t>0,
u(z,0) = up(z), V(z,0) = wo(x) — wi(z,0), x € ),

(5.112)

where we have used the fact that (us,w,) is independent of x. Then we introduce the

following entropy functional:

_ Asf 2
F(t) : /u* <u—u* Uy In — > 2A1/V

where A; = tlgf&}:;]{w*(t)} and Ay := tre%lx]{u*( )}

Proof of Theorem 5.4(ii). Our proof is divided into two steps:
Step 1. In this step, we show the global stability and uniqueness of (us, w,). Some direct

calculations yield that

d ABd [ 1 u 1 d ,
a _2PC (=, —
il W= /Q s <u e Tt ) 24, dt(/ v )

:—/Q(V;L*, VV)h(VE, VV)T— AQﬁ(u—u*)Q—/QAﬁ(u—u*)V

U

_—/ (V= VV)Il(V— VV)T—/(u—u*,V)IQ(u—u*,V)T
Q Q
(5.113)
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where

A28 G () AoBxuG” () Ao B(224%2)
I = m 2mu I, = e 2
A2ﬁXuG”(i) ds ’ B(Terﬁ) a+pBu
2mus Al 2 Ay

with the function G(s) := s —1—Ins. Then I; is positive definite iff

MG// <u> > WG” <u>2,

mA; Us 4m2u?2 U

which is equivalent to % > x2. This can be ensured by (5.8).

Next, we show that the matrix I is positive definite under some conditions. It is easy

to obtain
* *

<uy <7y < Wy < —. (5.114)

+ Br e
One can check that I is positive definite iff Det(/2) > 0, where

0<r—

A 2
OCAQIB B 62(1 + %)2 > 04,3 /82(1 + minte[O’TQ]{u*(t)})

Det (I — =:J.
et(f) > uLAim 4 - Am 4 J
Applying (5.114) implies
mh* . h*
O0<r— < mi L)} <Ay <, <A < —, 5.115
T S Bt A sn e <A (o419

then

028 P+ i)’
h*m 4

which is guaranteed by (5.9). Hence, we deduce from (5.113) that there is a constant ¢; > 0
such that

Det(l) > J >

> 0,

Ft) < —er /Q [ — ) + (w — w)?] = —e1G(0). (5.116)

Denote I(s) := s — bln s, we apply the fact I'(b) =1 — % = 0 and Taylor’s expansion to
obtain that for all b >0, s > 0

1" (b) b
5 (5= b)? = 0 (s —b)2 >0, (5.117)

s—b—blng:l(s)—l(b):

where b is between s and b. Taking s = u and b = u, in (5.117) gives

U Us
U — Usx — Uy In —

= i u.)? >0, (5.118)
* 1
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where by is between u and u.. On the other hand, by Theorem 5.2, when m < 7$(< 5 <

wr =

m*), there exist some constants co > 0 and ¢; > 0 such that u > ¢y for all ¢ > ¢;. This
along with (5.118), (5.114) and Theorem 5.1 enable us to find constants cg > 0, ¢4 > 0
such that

1 A 1
— (u—u*)2dx§iﬁ (u—u*—u*lnu>da:§04/(u—u*)Qdm‘, Vit > ty.
C3 JO m Q Ux U Q
(5.119)
And (5.115) implies
1 2 1 2 2
— [ (w—wy)de < — [ (w—ws)* <cp | (w—wy)*dz, Vt>0. (5.120)
¢ Jo 242 Jo 0
Then (5.119) along with (5.120) updates (5.116) as
d
—F(t) < —cr F(t), Vt>t1. (5.121)

dt

Solving (5.121) directly, and applying (5.119) and (5.120) again, we can find some positive
constants cg, cg, t2 > t1 such that G(t) < cge™~*2) for all t > t5. Using (5.119), (5.120)

and V := w — w, one has
[t — w2 + [Jw — wel| 2 < cr0e” T2 Wt >t (5.122)

Applying the Gagliardo-Nirenberg inequality in two dimensional space derives

1 1

s = tallzoe < crsll— walZpnell = wellEa, = wallze < exallw — w2 0 — well s,

(5.123)
which along with (5.122), uniform boundeness (see (5.52)) and (u., wy) € [C1([0,T])]? gives
(5.10). O
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, we studied in Chapter 2 an indirect predator-prey model with anti-
predation, which describing by a density-dependent type cross-diffusion. We established
the existence, uniqueness, and uniform-in-time boundedness and global stability of positive
classical solutions in any dimensional bounded domain. Furthermore, we proved the exis-
tence of non-constant positive steady-state solution and non-existence of Hopf bifurcation
when the prey takes the anti-predation strategy. These results show that the anti-predation
helps create spatial heterogeneity (steady state patterns), which is sharply different from
the density-dependent type indirect prey-taxis (which exhibits Hopf bifurcation) and the
case without cross-diffusion (where no patterns emerge).

In Chapter 3, a three-species Lotka-Volterra food chain model with intraguild predation
and taxis mechanisms (prey-taxis and alarm-taxis) was studied. We established the exis-
tence, uniqueness, and uniform-in-time boundedness and global stability of positive classi-
cal solutions in one dimensional bounded interval. Furthermore, we focused on exploring
the effects of intraguild predation and taxis mechanisms (prey-taxis and alarm-taxis). Our

numerical simulations demonstrate the following points:

(a) Even in the absence of prey-taxis, as long as alarm-taxis is sufficiently strong, pattern
formation will occur regardless of whether intraguild predation is included. Hence,
the signal taxis mechanism plays an indispensable and essential role in promoting

spatially inhomogeneous patterns.

(b) The prey-taxis plays very different effects for the system (3.3) between the cases
that without intraguild predation (i.e., 73 = 72 = 0) and with intraguild predation
(i.e., 71,72 > 0). When ;3 = 79 = 0, ¢(u,v) = uv, prey-taxis has a stabilization
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effect on the homogeneous steady state (see Figure 3.2) while it has a destabilization
effect in the intraguild predation model with prey-taxis (i.e., v1,72 > 0, ¢(u,v) = v)
(see Figure 3.3), which contrasts with the well-known results that the prey-taxis
serves to enhance the stability of the spatially homogeneous steady state in two-
species predator-prey systems. As for intraguild predation model with alarm-taxis
(i.e., 71,72 > 0, ¢(u,v) = uv), the effects of prey-taxi £ on pattern formations are
more complicated. The system may subsequently undergo steady state bifurcations,
no pattern formations and Hopf bifurcations as £ increasing from 0 to 4 and then to

45, see Figure 3.4.

In Chapter 4, we explored an SIS model with a cross-diffusion dispersal strategy for
the infected individuals. The existence, uniqueness, and uniform-in-time boundedness of
positive classical solutions in two dimensional bounded domaine were proven. In addition,
we defined the basic reproduction number Ry and established the threshold dynamics in
terms of Ry as well as the global stability of constant steady states. Finally, we gave some
numerical simulations. Our results demonstrate that the cross-diffusion dispersal strategy
can reduce Ry and help eradicate the diseases even if the habitat is high-risk in contrast
to the situation without cross-diffusion.

In Chapter 5, we proved the existence, uniqueness, uniform-in-time boundedness and wl-
timately uniform boundedness of positive classical solutions to a population-toxicant model
in time-periodic environment with toxicant-taxis in two dimensional bounded domain. Fur-
thermore, we demonstrated the uniform persistence for any cross-diffusion coefficients x > 0
and examined the effects of cross-diffusion on uniform persistence for special form of h(z,t).
Additionally, we established the global stability of the non-constant semi-trivial T-periodic
solution (0, w) for general case of h(x,t) and the positive T-periodic solution for the spe-
cial case where h(x,t) = h(t). Our results show that the strong toxicant-taxis (i.e., cross-
diffusion) destabilizes the semi-trivial T-periodic solution (0, @), and helps aquatic species
to survive in a polluted environment.

Our thesis develops some new ideas/methods to overcome the difficulties caused by the
inapplicability of the comparison principle in cross-diffusion models. For example, the proof
ideas and outlines developed in Chapter 5 can be applied to prove the existence of time-
periodic solutions or non-constant steady-state solutions, as well as uniform persistence for

general cross-diffusion models.
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6.2 Future Works

Except for the problems addressed in our thesis, several other pertinent questions re-
main open for further investigation:

(1) Note that the assumption (Hp) in Chapter 2 implies dp > 0. Therefore, exploring
the solution behavior of dp = 0, which may involve potential degeneracy, is also worth
considering in the future (e.g., [149], [150]). Additionally, to study the effects of density-
dependent diffusion, our study specifically focuses on the Holling type I functional response
function, and hence other types of response functions would also be worthwhile to further
investigate.

(2) In Chapter 4, we introduced the expression for Ry and found it to be related to the
density-dependent rate function. Although we numerically demonstrated that this function
can reduce Ry and help eradicate the diseases, proving Ry < ]%0 analytically (where Ro
is the basic reproduction number when the density-dependent rate function is constant)
remains an intriguing and challenging task. Additionally, while we proved the existence of
an EE when Ry > 1 in this chapter, the uniqueness of non-trivial EE when Ry > 1 and
the existence/uniqueness of non-trivial EE when Ry < 1 remain unresolved. Moreover,
the conditions for the global stability of constant DFE and EE are currently stringent,
necessitating further work to relax these conditions.

(3) For the population-toxicant model in time-periodic environment with toxicant-taxis,
we only proved that the effects of cross-diffusion for special h(x,t) = a(x) + b(z,t) with
0 < |b(z,t)| < 1, and the global stability of positive T-periodic solution for h(z,t) = h(t).
Proving these results for general h(z,t) remains open. Additionally, according to the results
in Theorem 5.4, the global dynamics for the system (5.1) are still unclear when m is at an
intermediate and warrant further exploration.

Drawing from aforementioned works and ideas presented in Chapter 2 - 5, aside from the
framework developed in Chapter 5 which can be used to demonstrate uniform persistence
and the existence of periodic solutions or non-constant steady-state solutions for general
cross-diffusion systems, it is necessary and challenging to develop frameworks that clarify
the global stability and examine the effects of cross-diffusion on the principal eigenvalue.

This topic may warrant further investigation.
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