THE HONG KONG
Q POLYTECHNIC UNIVERSITY
& Fenian

Pao Yue-kong Library
BEREEE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk




TOWARDS ROBUST MULTIMODAL
LEARNING IN THE OPEN WORLD

FUSHUO HUO

PhD

The Hong Kong Polytechnic University
2025



The Hong Kong Polytechnic University

Department of Computing

Towards Robust Multimodal Learning in the Open World

Fushuo HUO

A thesis submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy
April 2025



CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of
my knowledge and belief, it reproduces no material previously published
or written, nor material that has been accepted for the award of any
other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: Fushuo HUO







Abstract

The rapid evolution of machine learning has propelled neural networks to unprece-
dented success across diverse domains. In particular, multimodal learning has emerged
as a transformative paradigm, leveraging complementary information from heteroge-
neous data streams (e.g., text, vision, audio) to advance contextual reasoning and
intelligent decision-making. Despite these advancements, current neural network-
based models often fall short in open-world environments characterized by inherent
unpredictability, where unpredictable environmental composition dynamics, incom-
plete modality inputs, and spurious distributions relations critically undermine system
reliability. While humans naturally adapt to such dynamic, ambiguous scenarios, ar-
tificial intelligence systems exhibit stark limitations in robustness, particularly when
processing multimodal signals under real-world complexity. This study investigates
the fundamental challenge of multimodal learning robustness in open-world settings,
aiming to bridge the gap between controlled experimental performance and practical
deployment requirements. Here, we study the multimodal learning robustness in the

open world settings:

(1). Humans can extrapolate new concepts from previously learned multi-modal
knowledge. This ability is known as compositional generalization, while neural net-
works have deficiencies in compositional generalization robustness, struggling to reli-
ably handle unseen compositions due to rigid feature representations and over-reliance

on training data biases. (2). Humans can seamlessly infer unimodal inputs based on



memorized contextual multimodal information, with robust inference in the absence
of modality. However, neural networks hardly achieve satisfactory results when in-
ferring unimodal inputs, based on integrated multimodal information. (3). With the
development of large language models (LLMs), large-scale multimodal large language
models (MLLMs), especially large vision language models (LVLMs), have demon-
strated expressing comprehensive abilities, approaching or even surpassing human
abilities. However, most LVLMs are derived from LLMs by instruction tuning on
multimodal datasets. LVLMs usually have the strong language modality prior or
statistical bias to LLMs, which is one of the main reasons that arises the significant

challenge problem known as ‘hallucination’, even when queried by simple questions.

In summary, we study above three problems to improve class-level and modality-
level multimodal robustness in terms of composition gneralization robustness (i.e.,
class-level), modality missing robustness (i.e., modality-level), and modality prior ro-
bustness (i.e., modality-level). Concretely, In Chapter 3, we propose a novel Progres-
sive Cross-primitive Compatibility (ProCC) network, mimicking the human learning
progress of recognizing the multimodal compositions to improve the modality com-
position ability. In Chapter 4, we propose the customized crossmodal knowledge
distillation (C?KD) to inherit multimodal knowledge during the pre-training period,
and enhance the inference robustness when missing some modalities. In Chapter 5,
we propose the train-free decoding strategy to alleviate language modality prior of
LVLMs to mitigate the hallucination issues while not compromising general abili-
ties of foundation models. Extensive experimental evaluations and ablation studies
show the performance advantages of our works with provable advances in robustness

abilities for multiple modalities.
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Chapter 1

Introduction

The pursuit of robust multimodal learning systems capable of operating in open-
world environments represents a pivotal challenge at the frontier of artificial intel-
ligence (AI). As artificial intelligent systems transition from controlled laboratory
settings to real-world deployment in domains ranging from autonomous driving to
Al-assisted healthcare, their ability to process heterogeneous data streams (e.g., vi-
sual, textual, auditory) with human-like adaptability becomes mission-critical. Al-
though multimodal learning has shown remarkable success in leveraging complemen-
tary cross-modal information for tasks like visual question answering and multimodal
sentiment analysis, current approaches remain fundamentally constrained by three
existential limitations when confronted with open-world dynamics: (1) brittleness to
novel concept compositions from known modality primitives, (2) catastrophic perfor-
mance degradation under partial modality availability, and (3) systemic hallucinations
induced by imbalanced modality priors in large multimodal foundation models. In
this chapter, we first introduce the overview of our research problems in section 1.1.
Next, we describe the challenges of this research topic in Section 1.2. Then, we present
the sketch of our research framework in Section 1.3. After that, we present the main

contributions of this thesis in Section 1.4. Finally, we give the overall organization of



Chapter 1. Introduction

the thesis in Section 1.5

1.1 Overview

Multimodal learning represents a transformative paradigm in artificial intelligence
that aims to process and integrate information from diverse data modalities (e.g.,
text, images, audio, video, sensor data) to mimic human-like perception and decision-
making [9, 177]. Unlike unimodal systems that operate on isolated data types, mul-
timodal learning leverages the complementary strengths of heterogeneous signals to
enhance contextual understanding, improve inference accuracy, and enable robust
performance in real-world scenarios. This interdisciplinary field sits at the intersec-
tion of computer vision, natural language processing, and signal processing, driven
by the recognition that human cognition inherently synthesizes multisensory inputs

for holistic reasoning.

The concept of open-world settings represents a paradigm shift in machine learning,
moving beyond the constraints of traditional closed-world assumptions where models
operate within predefined, static environments with fully observed data distributions.
In contrast, open-world settings reflect the inherent complexity and unpredictability
of real-world scenarios, where systems must contend with dynamic data streams,
unseen concept compositions, partial or corrupted inputs, and evolving contextual
relationships [135, 80]. This framework is particularly critical for multimodal learn-
ing systems, as real-world applications, from autonomous robotics [30] to healthcare
diagnostics [17, 169], demand adaptability to novel or even poor situations that defy

the tidy boundaries of laboratory-trained models.

The robustness of multimodal learning systems from controlled laboratory environ-
ments to open-world deployment exposes fundamental limitations in current method-

ologies. Three interrelated challenges, compositional generalization robustness (class



1.2. Overall Challenges

level), modality missing fragility (modality level), and uncontrollable hallucinations
(modality level), emerge as critical barriers to reliable open-world multimodal in-
telligence. These three issues are interconnected facets of a core problem: current
multimodal systems lack robustness mechanisms to dynamically balance modality-

specific evidence with cross-modal causal relationships in open environments.

1.2 Overall Challenges

The transition from controlled experimental settings to open-world deployment ex-
poses multimodal learning systems to a spectrum of challenges that defy traditional
algorithmic assumptions. These challenges stem from the inherent unpredictability,
heterogeneity, and dynamic nature of real-world environments, demanding paradigm
shifts in model design and evaluation. Below, we dissect the core challenges: (1).
Human-like reasoning requires extrapolating to novel compositions of known con-
cepts when adapting to new knowledge, while neural networks might not easily gen-
eralize to new compositions composed by multimodal primitives (i.e., objects and
attributes). However, humans can extrapolate new concepts from previously learned
modality primitives. For instance, if the people are taught what the fried chip and
toasted bread are, most of them can recognize the fried bread immediately. This abil-

ity is known as compositional generalization [4], which is one of the ultimate targets

for artificial intelligence. In this report, such a task is formulated as Compositional

Zero-Shot Learning (CZSL). Concretely, the training set contains images with cor-

responding multi-modal descriptions (primitives), i.e., state and object. The model
is expected to recognize unseen compositions based on known primitives, which is
non-trivial because object and state are in the multi-modal formations and seman-
tically tangled, i.e., objects in different states often have different appearances, and
states can vary greatly conditioned on different objects. The major challenge behind

the CZSL lies in how to model the interactions between state and object primitives
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and extrapolate seen compositions to unseen ones. (2). Real-world systems must
operate under partial, asynchronous, or corrupted modality inputs, a stark contrast
to curated datasets with aligned, complete data. For instance, autonomous vehi-
cles may lose LiDAR signals during heavy rain while relying solely on cameras, or
healthcare algorithms might face missing modality information during emergency di-
agnostics. This thesis focuses on developing the multimodal knowledge transfer (i.e.,
crossmodal knowledge distillation (CMKD)) to distill the heterogeneous modality in-
formation to another modality, which are not systematically explored. Consequently,
the multimodal learning system might not degrade much when some modality is
missing or even compared to all modalities available. (3). Recently, in the era of
foundation models, with the development of scaling law theory [77] and Graphics
Processing Unit (GPU) devices, multimodal learning has evolved into the paradigm of
“pre-training on massive datasets and fine-tuning in downstream fields”. The advent
of Multimodal Large Language Models (MLLMs), especially Large Vision-Language
Models (LVLMs), derived from their Large Language Model (LLM) foundations, in-
troduce a critical challenge in open-world multimodal learning: inherent modality
bias, where most LVLMs are derived from LLMs with strong language modality prior
[94, 170] that dominates cross-modal reasoning, undermining robustness in dynamic,
unpredictable environments. For example, given a picture of a black rotting banana,
LVLMs will usually recognize the picture as “yellow” when asked for its color. The
sticky modality-level prior stems from LVLMs pretraining strategies. This thesis aims

to alleviate the modality prior to enabling LVLMs to generate trustworthy answers.

1.3 Research Framework

Our thesis aims to solve the above challenges and propose new frameworks for robust

multimodal learning. The structural outline of the thesis is shown in Figure 1.1.

As shown in Figure 1.1, we categorize our works into two base categories in the robust
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Figure 1.1: Research framework of this thesis. We organize the positioning of
this thesis within the field of robust multimodal learning in the open world. We
classify the challenges into class-level and modality-level robustness and illustrate the

contributions we focus on for each chapter.

multimodal learning, i.e., class-level and modality-level robustness. Furthermore, the

evolution of the multimodal learning robustness from small-scale to large-scale model.

Concretely, current approaches are fundamentally constrained by three existential
limitations when faced with open-world dynamics: (1) brittleness to novel concept
compositions from known modality primitives, (2) catastrophic performance degrada-
tion when only partial modalities are available, and (3) systemic hallucinations caused
by imbalanced modality priors in large multimodal foundation models. In this thesis,
we begin by providing an overview of our research background in Chapter 2. Chapter 3
introduces the Progressive Cross-Primitive Compatibility (ProCC) network, a frame-
work inspired by human cognitive processes for learning multimodal compositions. By

modeling cross-primitive dependencies through a curriculum-driven approach, ProCC
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enhances compositional generalization, enabling robust recognition of unseen object-
state pairs in open-world scenarios. Chapter 4 addresses modality-missing robustness
via Customized Crossmodal Knowledge Distillation (C?KD), which preserves cross-
modal synergies during pretraining and transfers them to unimodal inference. This
ensures consistent performance even when critical modalities are absent, bridging
the gap between multimodal training and real-world deployment. In Chapter 5, we
tackle hallucination biases in large vision-language models (LVLMs) by proposing a
training-free decoding strategy, Self-Introspective Decoding (SID), which suppresses
language-prior dominance without fine-tuning or compromising foundational capabil-
ities. SID aligns model outputs with visual evidence while maintaining generative

fluency.

1.4 Thesis Contribution

We briefly summarize the contribution of this thesis as follows:

1. Enhancing Modality Composition Generalization Robustness. The first
contribution addresses the challenge of recognizing novel compositions of state-object
modalities in open-world scenarios (OW-CZSL), where no prior knowledge of valid
compositions exists. To tackle this, the thesis introduces the Progressive Cross-
Primitive Compatibility (ProCC) framework. By mimicking the human learning
process, ProCC employs the Cross-Primitive Compatibility (CPC) module to ex-
plicitly model interactions between state and object features using trainable memory
units, eliminating reliance on external knowledge. A progressive training paradigm
further refines these interactions in an easy-to-hard manner, effectively handling par-
tial supervision (pCZSL) where labels are incomplete. This approach achieves state-
of-the-art performance across benchmarks, significantly improving generalization to
unseen compositions while filtering invalid cross-modal correlations, thus enhancing

class-level robustness in dynamic environments.
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2. Ensuring Robustness Under Modality Missing. The second contribution
targets the problem of modality imbalance and misalignment in cross-modal knowl-
edge distillation (CMKD), which often degrades performance when modalities are
missing during inference. The proposed Customized Crossmodal Knowledge Distilla-
tion (C?KD) method bridges these gaps through the dual strategy: On-the-Fly Selec-
tion Distillation (OFSD) filters misaligned samples using Kendall Rank Correlation
(KRC) metric, while bidirectional distillation between teacher-student proxies pre-
serves cross-modal knowledge. By dynamically adapting to modality gaps, C?KD en-
sures the inheritable crossmodal knowledge during the CMKD. Consequently, C?KD
outperforms traditional knowledge distillation methods on audio-visual, image-text,
and RGB-depth tasks. This innovation ensures reliable performance in real-world
applications, such as sensor failures or resource-constrained settings, by maintaining
robustness even when critical modalities are absent, thereby addressing modality-level

reliability:.

3. Balancing Modality Priors to Mitigate Hallucinations. The third contribu-
tion confronts the hallucination problem in Large Vision-Language Models (LVLMs),
where over-reliance on language priors leads to factually inconsistent outputs. The
Self-Introspective Decoding (SID) strategy introduces the Context and Text-aware
Token Selection (CT?S) mechanism to adaptively prune low-importance vision to-
kens in early decoder layers, amplifying vision-text association errors for contrastive
suppression. This train-free approach reduces hallucinations by 12-20% on metrics
like POPE and CHAIR while cutting inference costs by 30% compared to methods
like VCD [94] and ICD [170]. Crucially, SID preserves LVLMs’ general abilities, as
evidenced by strong MME and MMBench scores. By rebalancing modality priors
without compromising functionality, SID advances modality-level robustness, ensur-

ing trustworthy outputs in open-world deployment.

In summary, these contributions form a cohesive framework for robust multimodal

learning: ProCC ensures generalization to unseen compositions, C2KD safeguards
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against missing modalities, and SID mitigates modality priors. This triad equips
multimodal learning systems to operate reliably in dynamic, real-world environments
where compositions are novel, inputs are incomplete, and modality dominance varies,
marking a significant stride toward trustworthy, open-world multimodal learning ar-

tificial intelligence.

1.5 Thesis Organization

Thesis Organization Summary This thesis is structured into six chapters that system-
atically address the critical challenges of robust multimodal learning in open-world
environments, progressing from problem formulation to methodological innovation

and validation:

Chapter 1 establishes the research foundation, delineating the core challenges of
compositional generalization robustness, modality missing robustness, and hallucina-
tion mitigation in multimodal models. It outlines the overarching research framework,

key contributions, and thesis roadmap.

Chapter 2 (Background) provides a comprehensive review of foundational con-
cepts, including: composition problem formulation, Compositional Zero-Shot Learn-
ing (CZSL), and its open-world limitations; unimodal knowledge distillation and
Cross-modal knowledge distillation (CMKD); multimodal large language models, de-
coding strategy in LLMs, and hallucinations issues in Large Vision-Language Models

(LVLMs).

Chapter 3 (ProCC: Progressive Cross-Primitive Compatibility) introduces a novel
framework to enhance compositional generalization robustness. Firstly, in Chapter
3.1, detailed challenges and motivations are illustrated. Then, we propose the Pro-
gressive Cross-Primitive Compatibility network aligns visual and semantic primitives

through curriculum learning in Chapter 3.2. Chapter 3.3 validates ProCC in three
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widely-use datasets including UT-Zappos, MIT-States, and C-GQA under various

settings. Detailed ablation studies confirm the relations of each modules of ProCC.

Chapter 4 (C*KD: Customized Cross-modal Knowledge Distillation) tackles modal-
ity missing inference via a customized crossmodal distillation framework. Firstly, in
Chapter 4.1, detailed challenges of knowledge distillation across modalities and moti-
vations to develop crossmodal knowledge distillation methods are illustrated. Then,
in Chpater 4.2, we comprehensively revisit traditional knowledge distillation effective-
ness in cross-modal scenario. We follow this up with a solution named Customized
Cross-modal Knowledge Distillation (C?KD) in Chapter 4.3. Extensive experiments
of audio-visual, image-text, and RGB-depth modalities in terms of classification and
segmentation tasks are performed in Chapter 4.4, Experimental results of C?KD sig-
nificantly outperform existing KD methods, demonstrating robustness in transferring
knowledge even from low- to high-accuracy modalities while mitigating training insta-
bility and performance degradation caused by modality gaps. Ablation and sensitivity

analysis as well as discussion are in Chapter 4.5 and 4.6, respectively.

Chapter 5 (SID: Self-Introspective Decoding) addresses hallucination robustness in
LVLMs through token-level adaptive pruning to amplify the fine-grained hallucina-
tions then contrastively to alleviate the hallucinations. Firstly, Chapter 5.1 shows
the detailed challenges of hallucination issues of LVLMs and analysis of previous con-
trastive decoding strategies. We then show the paradigm of LVLMs generation and
comprehensively analyze contrastive decoding in LVLMs in Chapter 5.2. In Chapter
5.3, we propose the Self-Introspective Decoding (SID) strategy to dynamically sup-
press the priors of LLM that conflict visual evidence, achieving a significant reduction
in hallucinations. Chapter 5.4 illustrates the detailed experimental results on CHAIR,
POPE, MME, MMBench, GPT-4 assisted benchmark. and GPT4-V assisted evalua-
tion to validate that SID effectively alleviate the hallucination issues while preserving

general abilities of LVLMs.

Chapter 6 (Conclusion and Future Work) synthesizes the thesis contributions in
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Chapter 6.1 and proposes future research directions in Chapter 6.2, including multi-
modal test-time adaptation (i.e., Chapter 6.2.1), task-aware adaptation of multimodal
LLMs (i.e., Chapter 6.2.2), and developing multimodal agent as experts (i.e., Chapter
6.2.3).

10



Chapter 2

Background

Following the research framework we presented in Figure 1.1 of Chapter 1, we will
discuss previous and contemporary methodologies for building robust multimodal
learning systems, including background of composition generalization robustness in
Section 2.1, unimodal and crossmodal knowledge distillation background in Section

2.2, and hallucination-related background in Section 2.3.

2.1 Composition Generalization Robustness

2.1.1 Problem Formulation

Compositional Zero-Shot Learning (CZSL) aims to recognize the composition of two
primitives, i.e., an state (e.g.,tiny) and an object (e.g., dog). Given S and O as
two sets of states and objects, spanning all classes, we compose a set of possible
state-object pairs, i.e., C' =5 x O = {(s,0)|s € S,0 € O}. Formally, given a train-
ing set D* = {(i,c)|i € I*,c € C*}, where I° is an training image set, and C* is
the corresponding state-object labels. The close world CZSL follows the generalized

ZSL [175] that the test sample comes from either seen (C*) or unseen (C*) compo-

11
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sition (C* U C"). For the Open-World CZSL (OW-CZSL) setting [124], there
assumes no prior on the set of testing compositions. It means the model must consider
the full compositional space (C'), which is much larger than C* U C*. Consequently,
the unseen compositions are C¥, = C\C®. OW-CZSL introduces a more practical
setting while bringing more challenging problems: 1) It is hard to generalize from
small seen compositions to large unseen compositions. 2) There are a large number
of less feasible compositions in the full composition space (C'), confusing the predic-
tion models. [79] recently proposes a new practical setting, i.e., only training with one
of the state and object annotations, named partial-supervision CZSL (pCZSL).
Formally, for the training set C*, The relation of the partial label of state and object
primitives can be formulated as: {(s,u)}U{(u,0)} = C*, where u indicates unlabeled
primitives. Consequently, the test set in pCZSL has the full output composition space
(C) like OW-CZSL, while the training set in pCZSL does not have the composition

knowledge about any state-object pairs.

2.1.2 Composition Zero Shot Learning

Different from typical zero-shot learning [175, 73, 104], which aims to utilize attributed
vectors or inherent semantic descriptions to recognize unseen instances, Composi-
tional Zero-shot Learning (CZSL) aims to recognize the state and object primitive
(or modality) from the images, and even the state-object compositions are not ever
seen in the training datasets. Unlike humans, which can extrapolate new concepts
from previously learned knowledge, For instance, if the people are taught what the
fried chip and toasted bread are, most of them can recognize the fried bread im-
mediately, neural networks lack the compositional generalization ability. The main
challenge of CZSL is modeling the relation and affordance of states and objects modal-
ities, generalizing this capability to unseen compositions. Existing methods mainly
deal with CZSL in two ways. The first way is inspired by Biederman’s Recognition-
ByComponents theory [11] and Hoffman’s part theory [56]. For instance, Misra et

12
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al. [129] learn a transformation between individual classifiers of states and objects.
Other representative methods learn hierarchical decomposition and composition of
the state and object primitives [185, 51, 60], model objects to be symmetric under
attribute transformations [107], and learn independent prototypical representations of
visual primitives then propagated prototype via a compositional graph [146]. The sec-
ond way tries to learn the joint representation of the state-object compositions from
given images. Specially, SymNet [107] enforces symmetries in the representation of
objects given their state transformations. Graph network is also employed in [130]
to enforce the compositional information transfer from seen to unseen compositions.
AoP [131] regards attribute as the operator and models each state as a linear transfor-
mation of objects. CANet [167] learns conditional attributes to enhance embedding
space. LAP [82] exploits the self-attention mechanism to embed related compositions
closer and unrelated far away. Differently, causality-based methods [5, 186] explore

decomposable objects and state representations.

Above methods perform well on the close-world CZSL, while suffering from severe
degradation for the open-world setting [124, 125, 79], where the output space has
not imposed any limit. Mancini et al. [124] compute feasibility scores (i.e., cosine
similarity) between visual features and compositional embeddings to reduce the out-
put space. Then they further inject the feasibility scores both at the loss level and
within the graph connections [125]. Karthik et al. [79] follows the Visual Product
[129] and predicts state and object primitives independently with non-linear feature
extractors. To refine the relation between independent primitives, Conceptnet [155]
is introduced as the external knowledge. We revisit the Visual Product and achieve
cross-primitive compatibility in an easy-hard learning manner, avoiding the external

knowledge in [79] and cumbersome word embeddings in [124, 125].

13
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2.2 Knowledge Distillation over Cross Modality

2.2.1 Unimodal Knowledge Distillation

Unimodal Knowledge Distillation (KD) transfers the knowledge of a pretrained teacher
to a student by minimizing the discrepancies between output logits or intermediate
features between student and teacher. Previous KD methods primarily concentrate
on inheriting knowledge from the large-capacity teacher. Pioneering work [54] regular-
izes Kullback—Leibler (KL) divergence between student and teacher soft labels. CRD
[159] develops contrastive-based objectives for knowledge transferring. SCKD [212]
automatically adjusts the KD process according to the distillation gradient similarity.
Yang et al. [183] utilize the teacher’s pre-trained classifier to regularize the student’s
penultimate layer feature. Zhu et al. [211] identify and discard the undistillable
classes from the large teacher model based on the validation set. DKD [204] decouple
KD into target class and non-target class knowledge distillation to balance learning
effectiveness and flexibility. Review [23] proposes the review mechanism to utilize
knowledge of teacher’s multi-level features. RKD [134] regularizes the student with
distance-wise and angle-wise structural relations to replace KL loss. DIST [62] fur-
ther proposes a novel correlation-based loss to capture the inter-class and intra-class
relations. L2D [187] extends relation-based distillation into multi-label classification.
These KD methods focus on unimodal KD and learn to inherit knowledge from a fixed
teacher. However, for CMKD, the modality gap impedes knowledge transfers across
modalities. We argue that teacher modality should be optimized with feedback super-
vision of student modality to produce receptive knowledge. Previous online knowledge
distillation methods [203, 90, 28, 101] update teacher model to adapt student in uni-
modal scenarios. Specifically, DML [203] simply applies KD losses mutually, treating
each other as teachers. ONE [90] further exploits gated ensemble logits of multiple
training networks. AFD [28] proposes online feature alignments via adversarial train-

ing. The recently proposed SHAKE [101] bridges offline and online KD by transferring
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Figure 2.1: Intuitive presentation of cross-modal knowledge distillation.

knowledge through extra shadow heads.

2.2.2 Cross-modal Knowledge Distillation

With the rising prevalence of machine learning [67, 68, 65, 70, 119, 95, 118, 49] and
mulimodal sensors [71, 72, 69, 66, 36], traditional KD methods have been extended to
achieve knowledge transfer across multimodal data, thereby enhancing downstream
tasks [31, 50, 143, 180, 202, 93, 198]. Figure 2.1 illustrates the protocols for cross-
modal knowledge distillation, where multiple modalities are utilized and cross-modal
knowledge is transferred during the training phase. In the inference phase, only
one modality is available, but it benefits from the inherited multimodal knowledge
acquired during CMKD, which is critical for the modality missing situations. How-
ever, previous methods typically utilize high-accuracy or well-labeled modality as the
teacher to transfer knowledge to low-accuracy or unlabeled modality [31]. For exam-
ple, [50] leverage a large labeled modality as the supervisory signal for a new unlabeled
paired modality. [143] transfers knowledge among the missing and available modalities
via GANs. [180] adapts a multimodal network to the unlabeled modality by inheriting
knowledge from the well-trained unimodal teacher. [93] proposes a decomposed cross-

modal distillation method to enhance RGB-based detector by transferring knowledge
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of the optical flow modality. [198] distills ImageNet pre-trained visual modality to
audio modality for indoor dense prediction. Recently, Xue et al. [179] first perform
an in-depth investigation on CMKD and propose the modality focusing hypothesis
(MFH), suggesting that modality-general decisive features are crucial determinants of
CMKD efficacy. [179] contributes to MFH but doesn’t develop unified solutions. In
this chapter, we further quantitatively analyze the challenges of CMKD (the modal-
ity gap, i.e., modality imbalance and soft label misalignment) and propose effective

solutions to address these issues.

2.3 Multimodal Hallucination

2.3.1 Multimodal Large Language Models

Motivated by the success of Large Language Models (LLMs) [160, 7, 26, 157, 161,
126], recent studies have extended LLMs to multimodal regions and provided Large
Vision-Language Models (LVLMs) [112, 209, 19, 189, 97, 8, 99, 29, 111, 10, 25, 96]
powered by pre-trained LLMs. LVLMs understand and generate diverse content in a
more comprehensive way by integrating user instruction and vision inputs. LLaVA
[112] connects open-set vision encoder with LLMs (i.e., Vicuna [26]) by instruction
tuning with elaborated language-image instruction-following data. Then, LLaVA-1.5
[111] develops the vision-language connector that is data-efficient and powerful for
better multimodal understanding. Shikra [19] further incorporates grounding data
and trains the model to understand the grounding knowledge in the given images.
BLIP-2, InstructBLIP, and MiniGPT-4 [99, 29, 209] introduce a learnable querying
transformer to fusion multimodal features and largely reduce image tokens. Fuyu [10]
proposes a vanilla decoder-only architecture without the vision encoder and adapter
that makes it easier to understand, scale, and deploy. InternVL [25] proposes three

simple but effective improvements, including a strong vision encoder, dynamic high-
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resolution, and high-quality bilingual dataset. Recently, built on SOTA open-source
LLaMA 3 [126] and increasing the input vision resolution to 4x more pixels, LLaVA-
NeXT [96] exhibits excellent multimodal capabilities. Despite the impressive results,
all of the above LVLMs suffer from serious hallucination problems, and we mainly
conduct experiments on advanced LVLMSs, including InstructBLIP, Shikra, LLaVA-
1.5, and LLaVA-NeXT.

2.3.2 Decoding Strategy in LLMs

Selecting decoding strategies in language models is crucial, as it determines how mod-
els generate text. Greedy decoding selects the highest probability next token at each
step but might lead to less varied text. Beam search [45] is an accumulated-score-
based decoding strategy. It maintains a set of beams to enlarge the candidate range
and finally selects the best one in beams, which is more sophisticated than greedy de-
coding. Sampling decoding generates the next words by randomly selecting from the
output distribution, where Top-k sampling [35] samples from Top-k likely tokens [35]
and brings diversity but sometimes induces less coherent outputs. Top-p (Nucleus)
sampling [57] improves Top-k sampling that considers the dynamic number of words
that reach the probability p, achieving a balance between randomness and relevance.
Recently, to alleviate the hallucination issue, DoLa [27] decoding emphasizes the
knowledge of mature layers and downplays that of pre-mature layers. OPERA [61] is
established on beam-search decoding strategy and finds the interesting phenomenon
of high-probability co-occurrence between the hallucination and the knowledge aggre-
gation patterns. OPERA penalizes ‘Over-Trust Logit’ in the beam score to alleviate
aggregation patterns. In this thesis, we aim to contribute the decoding strategy that
can be seamlessly integrated into different decoding strategies to mitigate multimodal
hallucinations without sacrificing text generation quality, such as diversity, coherence,

and relevance.
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2.3.3 Hallucination in Foundation Models

Hallucination, defined as the generation of irrelevant, factually incorrect, or mean-
ingless text in a given context [144, 200, 47, 174], is a significant bottleneck in cur-
rent foundation models. This issue can stem from overfitting specific patterns in
the training data, a lack of understanding world knowledge, or an inability to ef-
fectively contextualize a given input [75]. In the context of LLMs, hallucinations
often manifest as generated content that conflicts with world knowledge or com-
mon sense. For LVLMs, the primary concern is whether the generated answer con-
flicts with the provided images. To mitigate the hallucination issue, several solu-
tions have been proposed, including robust instruction tuning with curated
datasets [92, 48, 110, 206, 76, 195, 193, 121, 197], post-hoc utilizing auxiliary
analysis networks [123, 208, 190, 24, 173, 39], and various decoding strategies
(103, 27, 113, 94, 38, 170, 84, 210]. However, robust instruction tuning requires mas-
sive high-quality datasets and advanced GPU clusters, making it resource-intensive;
Post-hoc utilizing auxiliary networks heavily rely on the auxiliary network, leading to
high inference costs. As for decoding strategies, representative LVLMs hallucination
alleviation methods [94, 38, 170] manually disturb raw inputs to induce hallucinations
then contrast them to alleviate the issue. However, holistic disturbing raw inputs
might bring additional noise during contrastive decoding, and double the inference
cost. In this thesis, we propose an efficient Self-Introspective Decoding (SID) that
induces and then mitigates vision-and-text association hallucination by token-level

disturbances, greatly reducing the inference cost.
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ProCC: Progressive
Cross-Primitive Compatibility for

Composition Generalization

3.1 Challenges and Motivations

Current neural networks lack the compositional generalization robustness inherent
to human cognition. Specifically, the training set contains images with correspond-
ing multimodal descriptions (primitives), namely states and objects. Since objects
and states are semantically entangled, that is, objects in different states often have
different appearances, and states also vary greatly depending on the object, the
model needs to be based on known primitives. Identify unseen combinations. The
main challenge behind CZSL is how to model interactions between state and ob-
ject primitives and extrapolate seen combinations to unseen combinations. Exist-
ing methods mainly focus on learning a shared embedding space of object-state
combinations [107, 130, 131, 82] or compositional attribute and object classifiers

[140, 129, 105, 178, 186].
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Figure 3.1: The overall concept of our method. Following the principle of ’for-

est before trees’ [55], human feedforward hierarchy underlies implicit processing for
initial vision at a glance (i.e., green rectangle), and feedback connections add details
to explicit vision with scrutiny (i.e., red rectangle). As for composition generalization
learning, humans first ((1)) learn to recognize overall objects, then ((11)) gradually iden-
tify the scrutiny attribute of objects, i.e., state, and finally (1)) reasonably compose
the object and state primitives. Inspired by this, we aim to progressively recognize
the object and state primitives and guide the network to exploit discriminative infor-

mation conditioned on learned knowledge via the CPC module.

However, the performances of these methods degrade to some extent [124, 125] as for
the open-world setting (OW-CZSL), where there are no priors on the unseen compo-
sitions, and the model must consider the whole possible compositions in terms of all
objects and states. To deal with such a problem, existing mainstream methods uti-
lize feasibility constraints on the composition embedding [124, 125] or independently
predict simple state and object primitives [78, 79]. While [124, 125] rely on different
word embedding methods. The straightforward but effective Visual Product method
like [79] predicts the state and object primitives while ignoring the compatibility be-
tween two primitives. So external knowledge is introduced to eliminate less feasible
compositions, while it is cumbersome to select proper external knowledge for varying

datasets.

To address the aforementioned problems, we propose Progressive Cross-primitive
Compatibility (ProCC) network to recognize compositions in the open-world set-

ting and a more realistic setting (i.e., partial supervision), aiming at attaining cross-
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primitive compatibility during easy-hard recognition progress, as shown in Figure
3.1. Specifically, following the route of the human learning process [55], we first
learn to classify objects, which is easier than recognizing states [147, 79] because the
same state varies greatly conditioned on objects and related contexts, i.e., ancient
castle / ancient coin, and different states are sometimes less feasible composed with
the same object, i.e., old dog / ripe dog. Then, with the learned knowledge of ob-
ject primitive, we sequentially classify state primitives conditioned on object features
via Cross-Primitive Compatibility (CPC) module, excavating discriminative informa-
tion. Finally, we finetune the whole network conditioned on prior knowledge of two
primitives. The ProCC achieves cross-primitive compatibility by adjusting the visual
attention to filter out less feasible compositions, without the aid of external knowledge
like Word2vec [127], Glove [138], Conceptnet [155] etc. Also, the progressive training
paradigm effectively models the interactions of primitives via conditioned features,

especially for pCZSL, where only partial label results in invalid interactions.
In summary, this chapter’s contributions are four-fold:

1) We propose a novel Progressive Cross-primitive Compatibility (ProCC) network,
mimicking the human learning progress of recognizing the state and object composi-

tions without external knowledge.

2) We revisit Visual Product methods and present a Cross-Primitive Compatibility
(CPC) module to model the interactions of classifiers to exploit the discriminative
visual attention conditioned on each other, guiding the model to generalize to feasible

compositions.

3) The progressive training paradigm alleviates the invalid cross-primitive interactions

without the aid of cumbersome external knowledge, especially for pCZSL.

4) Comprehensive experimental results on three large-scale datasets for OW-CZSL
and pCZSL tasks demonstrate the effectiveness of our proposed approach, which

outperforms the state-of-the-art methods.
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Figure 3.2: The framework of ProCC. Features from the encoder (w) are respec-
tively fed to the object and state (, and @) classifiers, where the Cross-Primitive
Compatibility (CPC) aims to model the cross-primitive interactions. Progressive
learning strategy is proposed to gradually modulate primitive compatibility, espe-
cially for pCZSL. For detailed training procedure, please refers to Algorithm 2.
Class Activation Maps (CAM) of input samples are illustrated to show visual atten-

tion.

3.2 Progressive Cross-primitive Compatibility (ProCC)

Most CZSL methods [5, 107, 131, 140, 147, 124, 125, 130] explicitly modulate the
interactions of states and objects to improve the generalization ability. However, it is
less effective for OW-CZSL and pCZSL due to large output space and missing labels.
Some methods [78, 79] follow the Visual Product [129] that independently predict the
state and object primitives, disregarding compositional nature. Following the route of
(78, 79, 129], we propose Progressive Cross-primitive Compatibility (ProCC) network
while achieving cross-primitive compatibility. Also, like the human learning process
[55], ProCC trains the network in an easy-hard manner, which dynamically models
interactions between state and object primitives, alleviating the negative influence of
no explicit supervision on both states and objects in pCZSL. Figure 3.2 shows the
framework of the proposed approach. In the following subsections, we revisit the
Visual Product and introduce a cross-primitive compatibility module and progressive

learning strategy.
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3.2. Progressive Cross-primitive Compatibility (ProCC)

3.2.1 Revisit Visual Product

Generally, given an image 7, CZSL wants to model the joint probability distribution

p(si,05]7). The visual product simplifies this as follows:

p(si; 0ilt) = p(sili) x p(oili) (3.1)

In this way, Visual Product treats the states and objects independently only from
the visual cues, without side information (i.e., word embeddings). Concretely, input
image i is firstly encoded to obtain the feature z as: z = w(7). Then the object (i.e.,
¥, (z,0)) and state (i.e., ps (2, s)) classifiers assign z to the vectors in the probability
simplex o and s, spanning all object and state classes. Visual Product minimizes the

cross-entropy loss of seen compositions (D* = {I°,C*}) for both object and state

predictions:
gvp = gobj (’L, 0@') + gstate(ia Si) (32)
Lopj = min Y Lee(po (w(i), 0} ,01) (3.3)
gs ate — i gce s ' s y 91 3.4
e = min Y (s (0(i) ). 5) (3.4)

where (i, (s;,0;)) € D®. Thus, the prediction function is:

) = arg max g (w(0).5) * ¢ (0.0 35)
where C represents the full state-object composition pairs in OW-CZSL. As the search
space is huge, Visual Product is more effective than previous methods, which aim to
produce discriminative state-object embeddings [78, 79]. Recently, [78, 79] expanded
the visual product and equipped the classifiers with multi-layer perceptrons (MLP)
to excavate discriminative features. Also, external knowledge [155] is employed in
[79] to estimate the feasibility scores of compositions. Here, we explicitly model the
composition interactions via Cross-Primitive Compatibility (CPC) module during the
training procedure, without external knowledge. Also, considering the pCZSL setting

and better modulating the primitive compatibility, the progressive learning strategy,
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FC layerl
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FC layer2
Feature
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FC layer3

Figure 3.3: The detailed framework of the object-state Cross-Primitive
Compatibility (CPC,_,,). Features from the object classifier (¢,_; and ¢, ) are
encoded by learnable Cross-Primitive Memory (CPM) units. Then respectively in-
teract with state features (ps_1 and @4 o) to achieve compatibility of state features

conditioned on objects.

following the human learning process [55], is proposed to facilitate cross-primitive

compatibility in an easy-hard manner.

3.2.2 Cross-primitive Compatibility Module

Visual Product methods independently predict compositions via Equation 1, which
ignores the fact that the feasibility of state-object compositions is heavily conditioned

on each other. A more practical compositional probability can be modeled as:

p(si, 0ilt) = p(sili, fo(i))) % plosli, f(i))) (3.6)

where f,(i) and f4(i) are intermediate features of the object and state primitives.
It is non-trivial to directly model the relationship between objects and states due
to the diverse semantic entanglement and a large number of possible compositions.
We integrate the feasibility reasoning into the trainable Cross-Primitive Compatibil-
ity (CPC) module, which facilitates interactions between two classifiers to explore

informative visual attention conditioned on feature representations of each primitive.
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3.2. Progressive Cross-primitive Compatibility (ProCC)

Specifically, the features extracted by the encoder (w) are fed to primitive classi-
fiers (i.e., ¢, and ¢s). The primitive classifiers follow the Visual Product methods
(78, 79] that consist of multi-layer perceptron (MLP), specifically three-layer MLP,
for classifications. As shown in Figure 3.2 and Equation 6, the network is symmet-
ric and we take the object-state CPC (CPC,_;) module for example, as shown in
Figure 3.3, intermediate features (i.e., output distributions) from ¢, 1 and ¢, o are
fed to ¢, to interact with state features. However, direct modulation state features
will induce information degradation because of the huge task diversity. We propose
learnable Cross-Primitive Memory (CPM) units for soft interactions. Specifically, the
learnable CPM unit introduces conditioned information to modulate corresponding

features along with the residual connection, which is formulated as follows:

ol =0 (Conv’fd (gpo_l)) e (1,2) (3.7)

Pt = Ps—1t X Po + s, L € (1,2) (3.8)

where Conv?, and o represent the 1d convolution layer and softmax activation func-
tion. Kernel size (k) is equal to 1/10 feature dimension to efficiently capture the

long-range dependency. Then the enhanced state features are fed to the next layer of

Vs as:

Ps—(+1) = fs—l(W‘?_lSO;fl + bs—l)’l € (17 2)’ (3'9)

where W and b are weights and biases of MLP. Accordingly, the conditioned cross-
primitive interactions are injected into each other, reducing less feasible primitive

predictions. Therefore, Equations 3 and 4 can be re-write as:

obj = ga;{lpioris che(@o (2]ps—o(ps(2)), 0) , 0i) (3.10)
Uefate = vs%isrio Z ece(gps <Z‘g00_>5(g00(2’)>, S> ] Si) (3'11)

where 2 = w(i), (4, (si,0:)) € D*, and (57" = (5% + (50,
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w/ CPC w/o CPC

broken bridge

W

ripe banana  object state object state

Figure 3.4: Visualizations of class activation maps of ProCC with and without
CPC modules on the testing dataset of MIT-States. The discriminative regions are

marked with red rectangles.

3.2.3 Visual Explanation

To further illustrate and explain the effect of the CPC module, we visualize the
attention learned from the classifier via Class Activation Map (CAM) [207] in Figure
3.4. The standard CAM is formulated as:

CAMc('% y) = ngfk(xa y) (312)

where CAM, means the class activation map that leads to the classification of an
image to class ¢. fi(z,y) and w§ stand for the activation of unit &k in the last layer

at spatial location (x,y) and the weight corresponding to class ¢ for unit k. Here,
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3.2. Progressive Cross-primitive Compatibility (ProCC)

wi is the final layer of the MLP (i.e., ¢,—3 and ¢,_3), which has been modulated
by the CPC modules. Figure 3.4 shows some visualization examples with (w/) and
without (w/o) CPC module. As the encoder (w) is pre-trained for the object classifi-
cation task, most CAMs for the object classifier can locate and recognize the proper
attention regions. However, the CAMs for the state classifier vary greatly as state
primitives are conditioned on the object primitive and related contexts. For the tiny
dog and huge dog compositions, the CPC module drives the model to focus on the
discriminative regions that a dog with a small head compared with other objects tends
to classify to the tiny otherwise classify to huge. For more abstract compositions,
broken bridge and ripe banana compositions, the state primitives heavily depend on
the object primitives otherwise may induce less feasibility compositions. The state of
broken is mainly reflected in the curvatures of the bridge and the ripe primitive of
the banana displays the black spots on the surface. Overall, the CPC module enables
the efficient adjustment of visual attention conditioned on mutual relations. More-
over, Figure 3.5 illustrates the confusion matrices about state and object primitives.
Concretely, we select ten typical state and object primitives in the MIT-States [74]
dataset. Prediction probabilities of states are accumulated then normalized with and
without CPC module to formulate the confusion matrices. We can learn that the

CPC module facilitates reasoning compatible compositions with high confidence.

3.2.4 Progressive Learning Strategy

However, jointly training the state and object classifiers may induce two issues: (1)
When it comes to the more practical setting, partial supervision Compositional Zero-
Shot Learning (pCZSL), where only the partial label, not both, is available [79]. The
missing label makes the joint training strategy invalid to model the interactions be-
tween the state and object primitives. A naive way of learning from such partial
supervision is to update the parameters of the state and object classifier only based

on the available labels, which lacks the interaction information across primitives via
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Algorithm 1: Training procedure of ProCC.

Input: Training data D* = {(i, ¢)|i
>\1a >\2a >\5

€ I*,c € C*}, pre-trained w, learning rate

Output: Optimal ¢, ps, CPC: poys, P50

Initialize: ©,, ©s, Yo s, Pso;
Stage 1: // train ¢,

while not converged do

for samples in the batch do

Compute £,; via Equation 4

Update @, <= ©o — A1V Loy,

Stage 2: // train ¢, and p,_

while not converged do

for samples in the batch do

con

o . via Equation

Compute /¢

Stage 3: // finetune ¢,, @5, Pos,

while not converged do

<0k7 Sk)z:l ;

for samples in the batch do

Compute (7" via Equations

Update Ptotal — Ptotal — >\3V

Sample a batch from D® as images (ix),_, with their object labels (0g)}_; ;

3.

Sample a batch from D* as images (i;),_, with their state labels (sj)p_; ;

4.11.;

Update PsUo—s — PsUo—s — )\QV écon

PsUo—s "~ state

and o

Sample a batch from D* as images (i;),_, with their object and state labels

4.10 and 4.11.;

con
Ptotal gvp
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Figure 3.5: Confusion matrices about prediction probabilities of states conditioned

on objects (w/ CPC) or not (w/o CPC).

the CPC module. Recent method [79] estimates the missing labels via pseudo-labeling
[91] as well as utilizes the external knowledge [155]. The challenge of missing labels
also exists in the standard Multi-Task Learning (MTL) that the traditional updating
rule will give inferior results due to the missing annotations [162, 83, 133, 102]. Some
typical solutions propose hard knowledge distillation [83], alternative optimization
strategy [133], and learning in the joint pairwise task spaces [102]. However, com-
pared with the MTL task, the missing label issue matters more to the CZSL task, as
the object and state primitives are heavily tangled. (2) Also, jointly training results
in sub-optimal interactions as the diverse difficulty of object and state predictions.
Concretely, classifying states is more challenging than objects [147, 79]. Therefore,
joint training inevitably induces noisy conditioned information, which hinders to rea-

son cross-primitive compatibility.

To enable the full interaction of state and object primitives, we propose a progressive
learning strategy, mimicking the easy-hard learning process shown in Figure 3.1.

Concretely, with the features from the encoder (w), we first train the object classifier
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v, with given labels (Equation 3.3), to obtain object features (p,—;, * € (1,2)).

Then we sequentially train the state classifier ¢4 and CPC, s (¢,—s) conditioned on

pre-trained object features (yp,—;) (Equation 3.11), to interact to adjust the visual

attention. Finally, we fine-tune the state and object classifiers (¢, and ¢,) as well as

CPC modules (¢,—s and ¢s_,,) conditioned on the well-trained features (Equations

3.10 and 3.11). We utilize this training protocol both in the OW-CZSL and pCZSL

settings. During the easy-hard recognition progress, our method alleviates invalid

interactions of cross primitives, especially in the pCZSL setting, without external

knowledge. For detailed training procedure, please refers to Algorithm 2.

C-GQA MIT-States UT-Zappos

Method Val Test Val Test Val Test

HM AUC| S U HM AUC|HM AUC| S U HM AUC| HM AUC| S U HM AUC
TMN NA NA NA NA NA NA (21 02 126 09 12 0.1 |[21.2 9.2 559 181 21.7 84
AoP NA NA NA NA NA NA |32 03 166 57 47 0.7 |234 101 509 342 294 13.7
LE+ 9.3 1.8 19.2 07 1.0 008|53 05 142 25 27 03 |266 143 604 36.5 305 16.3
VisProd 105 20 248 1.7 28 033 |72 1.0 209 58 56 07 |288 154 54.6 428 36.9 19.7
SymNet 123 25 267 22 33 043 |80 12 214 7.0 58 0.8 |325 16.7 533 446 345 185
CGE 128 28 283 13 22 03083 1.8 29.6 40 49 0.7 |345 189 588 46.5 38.0 21.5
CompCos | 12.0 24 284 1.8 28 039|84 1.5 254 100 89 1.6 |325 181 59.3 468 36.9 21.3
Co-CGE | 123 2.7 287 16 26 037| 84 2.1 264 104 10.1 2.0 | 348 19.2 60.1 443 381 21.3
KGSP 132 29 266 21 34 044|179 14 234 70 6.7 1.0 |332 19.8 58.0 472 39.1 229
CANet 143 28 273 19 32 039|83 1.7 253 6.7 6.6 1.2 | 35.1 19.8 58.7 46.0 38.7 22.1
Ours 16.1 4.0 29.0 2.6 3.8 0.54|86 19 276 10.6 7.8 1.6 |36.5 22.4 62.2 48.0 39.9 23.6

Table 3.1: Quantitative comparisons in the OW-CZSL setting. We report

the best seen (5), best unseen (U) accuracy, HM, AUC on the test and validation

sub-datasets. The best and second-best results are bold and underlined.
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3.3 Experimental Results

3.3.1 Datasets and Evaluation Metrics

We conduct experiments on three widely-use datasets including UT-Zappos [192],
MIT-States [74], and C-GQA [129]. UT-Zappos is a dataset for the shoes and has
50025 images. It contains 12 object classes and 16 state classes, with 83 seen composi-
tions and a total of 192 compositional spaces. MIT-States has 53753 images with 115
state classes and 245 object classes. The seen and all output compositions are 1,262
and 28,175, respectively. C-GQA is the largest dataset that contains 186,577 images
with 413 state classes and 674 object classes. It contains 5,592 seen compositions and
a full output space of 278,362 compositions, which makes it the most extensive for the
OW-CZSL. For the OW-CZSL, we follow the splits of [124, 125, 79] and evaluate
based on the generalized settings, where the test samples are from both seen and
unseen compositions. Considering the performance of the model with different bias
factors for the unseen compositions, we vary the bias on the seen composition (C*)
during the test phase and report the performance as best seen (.S), best unseen (U),
best harmonic mean (HM), and the Area Under the Curve (AUC). For the pCZSL,
following [79], we remove the label and calculate the metrics on the full output com-
position space (C'). As we can not access the full-labeled seen compositions (C*®), we
do not subtract any bias on C®. Therefore, we use the seen (S), unseen (U), and HM

metrics.

3.3.2 Baselines and Implementation Details

For OW-CZSL, we compare ProCC with other OW-CZSL methods, including Com-
pCos [124], KGSP [79], and Co-CGE [125]. CZSL methods are also compared, includ-
ing LE+ [129], AoP [131], TMN [140], SymNet [107], CGE [130], and CANet [167].
For pCZSL, ProCC is compared with KGSP [79] as well as standard (OW-)CZSL
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methods like CGE [130], CompCos [124], and Co-CGE [125], with the same partial

label protocol.

Following the standard protocols in the CZSL, we utilize the pre-trained ResNet-18
[52] as the feature encoder (w) to extract 512-dimensional feature vectors and learn
classifiers on top of these features. Following [130, 79|, each classifier is composed
of Multi-Layer Perceptrons (MLP) with three layers with dimensions 768, 512, and
the number of output classes, respectively, and comprise Layer Normalization [6] and
Dropout [156]. To be consistent with other methods, we randomly augment input
images with random crop and horizontal flip. We use PyTorch to implement our
network and optimize it with Adam [85] with default settings. The batch size is 256,
and the learning rate is 5.0 x 107> for the first two stages and 1.0 x 107> for the third
stage. For the UT-Zappos, MIT-States, and C-GQA datasets, the total training time
is approximately 1, 3, and 5 hours for 30/60/20, 40/80/30, and 50/100/25 epochs for
three stages, respectively, with the early stop strategy.

3.3.3 Open-World CZSL (OW-CZSL) Results

The results of OW-CZSL setting are illustrated in Table 3.1. Generally, closed-world
CZSL methods achieve inferior performance, especially in two large datasets (i.e.,
C-GQA and MIT-States), due to the large cardinality of the output space. ProCC
outperforms previous methods on almost all metrics in terms of three datasets. Con-
cretely, as for the most challenging dataset, i.e., C-GQA, the proposed method exceeds
the previous SOTA methods, especially for best harmonic (HM) metrics (3.4—3.8:
112%), which means that ProCC has the better ability to recognize both the seen and
unseen compositions. Also, in the validation sub-dataset, Our method suppresses the
best baseline (i.e., KGSP) by a large margin in two overall evaluation indexes (i.e.,
HM: 13.2—16.1: 122%; AUC: 2.9—4.0: 138%). As for the MIT-States dataset, our

method also has comparative results. Notably, we achieve the best performance on
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C-GQA MIT-States UT-Zappos
Method Val Test Val Test Val Test
S 19) HM S U HM S U HM S U HM S U HM S 19) HM
CGE 19.2 2.9 5.6 17.4 0.4 0.9 10.0 2.8 4.3 19.6 1.3 2.4 46.5 3.5 6.6 50.3 3.4 5.0

CompCos 18.2 3.0 5.2 24.3 0.4 0.7 11.1 2.9 4.6 10.8 2.0 3.6 50.2 3.9 7.3 52.4 4.1 7.6
Co-CGE 19.8 3.9 6.4 22.1 0.6 1.2 14.8 3.3 5.3 13.1 2.3 4.0 47.2 6.1 10.8 52.6 5.4 9.9
KGSP 20.1 4.8 8.3 22.3 0.9 1.7 15.7 3.2 5.3 13.5 2.6 4.4 49.4 5.9 9.7 53.8 6.9 12.3

Ours 21.6 5.4 87 241 1.1 2.0 | 16.3 3.5 5.8 14.1 2.9 4.8 | 51.0 7.1 12.5 55.1 8.1 14.1

Table 3.2: Quantitative comparisons in the pCZSL setting. We report the seen
(S), unseen (U) accuracy, and best harmonic mean (HM) on the test and validation

sub-datasets. The best and second-best results are bold and underlined.

the U metric, which validates the generalization ability of ProCC. For UT-Zappos,
it is specially designed for shoes and is relatively simpler than others. ProCC con-
sistently outperforms others, ie., S: 59.3—62.2; U: 47.2—48.0; HM: 39.1—39.9;
AUC: 22.9—23.6. Remarkably, previous methods typically utilize word embeddings
to encode the word expression, which already contains semantic knowledge of similar
objects and attributes for composition learning [147]. Recent Visual Product based
method [79] employs more complex classifiers (with hidden layers of 768 and 1024)
than ours as well as uses external knowledge to eliminate the less feasibility compo-
sitions. We predict the state and object primitives with more lightweight classifiers
and explicitly model the cross-primitive interactions to learn the relationship between

primitives without external knowledge.

3.3.4 Partial-supervision CZSL (pCZSL) Results

As for the more challenging setting, pCZSL, the challenges come from not only the
huge output composition space but also the missing labels. As we can learn from
Table 3.2, our method achieves SOTA performances compared with previous CZSL,
OW-CZSL, and pCZSL methods. Concretely, for the largest dataset, C-GQA, the
performance of SOTAs on pCZSL severely degrades compared with OW-CZSL, even
for KGSP, which is equipped with the pseudo label and external knowledge. Our
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OW-CZSL pCZSL

Method | C-GQA |MIT-States| C-GQA | MIT-States
HM AUC|HM AUC | S U HM| S U HM
w/o CPC |33 0.40|6.2 0.8 [17.4 0.5 1.0 |11.6 2.2 3.7
w/o CPI 34 041)16.1 09 |17.7 0.5 1.0(12.0 2.1 3.6
w/o CPM |35 0.48|6.6 1.0 [189 0.7 14122 2.5 4.1
w/o P-L 3.7 05076 1.5 |2240.8 1.6(12.5 2.5 4.1
w/ Ex-1&2 (3.6 0.48|7.8 1.5 [22.6 1.0 1.913.2 2.7 4.4
w/o Stage3 | 3.5 0.47 |74 1.4 |23.2 1.1 2.0|13.6 2.8 4.6
w/ 4 Stages| 3.6 0.50 7.6 1.4 [23.7 1.0 1.9|13.8 2.8 4.7
w/ 5 Stages| 3.7 0.53 7.7 1.4 {239 1.1 2.1(13.6 2.9 4.8
w/ 6 Stages| 3.8 0.56 | 7.7 1.6 [24.0 1.1 2.1 |13.8 2.8 4.7

Ours 3.8 05478 16 (241 1.1 2.0|14.1 29 4.8

Table 3.3: Ablation studies for both OW-CZSL and pCZSL.

method consistently exceeds them both on validation and testing datasets. For the
MIT-States dataset, our method surpasses the second-best method by a large margin
in HM metric (i.e., val: 5.3—5.8:79%; test: 4.4—4.8:19%). For the simplest dataset,
UT-Zappos, our method also has the best performance. Note that we do not use any
external knowledge like Word2vec, Glove, Conceptnet, and other semi-supervised
learning techniques [91, 44] for the missing annotations. The superior performance
indicates even with partial labels of object and state primitives, our progressive learn-
ing strategy can also model the interactions of cross primitives with the pre-trained

classifiers.
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3.4 Ablation Analysis

We analyze two important components: Cross-Primitive Compatibility (CPC) mod-
ule and the progressive learning strategy. We adopt the same implementation strategy
and conduct the OW-CZSL and pCZSL experiments on the two largest datasets, i.e.,
C-GQA and MIT-States.

Effect of the Cross-Primitive Compatibility Module. In Table 3.3, (I) without
the CPC module (w/o CPC), the performance is severely degraded both on the OW-
CZSL and pCZSL settings. Because lacking the interaction between cross primitives
makes the network degenerate to previous Visual Product baselines [78, 79]. Mean-
while, KGSP utilizes the external knowledge and surpasses the ablation configuration,
especially in pCZSL setting. @) Moreover, to further evaluate the conditional modu-
lation, we employ channel attention [59, 166] on the same primitive classifiers without
cross-primitive interaction (w/o CPI). ) Also, we ablate the learnable cross-primitive
memory (w/o CPM) and directly modulate other primitives with learned features.
Results indicate that exploring internal primitives brings marginal improvement for
composition learning as classifiers have extracted enough internal information, and
modulating primitives via hard masks also gives sub-optimal results. Note that the
CPC is extremely lightweight with two trainable 1d convolution layers. Generally, the
CPC module greatly improves the performance with negligible computation burden

also without external information, which is practical for real-world scenes.

Effect of the Progressive Learning Strategy. Another important aspect of the
ProCC is the progressive learning strategy. From Table 3.3, (I) we can learn that
with the traditional end-end training strategy (w/o P-L), the performance of ProCC
degrades to some extent, especially in the pCZSL setting (i.e., HM: 2.0—1.6 (C-
GQA) and 4.8—4.1 (MIT-States)). As jointly training the whole network under the
pCZSL setting does not explicitly learn the relationship between state and object
primitives, which is the critical issue in the CZSL task. While for the OW-CZSL
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setting, joint training induces some noisy conditioned information, due to the diverse
difficulty of classifying object and state primitives. Also, we exchange the training
sequence (i.e., Stage 2 — 1 — 3) (w/ Ex-1&2) and ablate the fine-tuning stage
(w/o Stage 3). @D For the configuration of w/ Ex-1&2, the performance of ProCC
degrades on both settings. Due to the challenge of classifying state primitives [147,
79], modulation object features conditioned on noisy state features results in invalid
interactions. @) For the configuration of w/o Stage 3, where only CPC,_,; works,
the performance degrades to some extent. We have two observations: CPC,_, brings
more improvements than CPC,_,,; CPC,_,, and fine-tuning based on well-trained
features also matter for the cross-primitive compatibility and global optimum. V)
Moreover, following the same training protocol, we train the network for more stages,
i.e., with extra Stage 1 (w/ 4 Stages), extra Stage 1 and 2 (w/ 5 Stages), and extra
Stage 1, 2, and 3 (w/ 6 Stages). We see that more training stages can not bring much

accuracy improvement, as the model has converged after Stage 3.

3.5 Chapter Summary

This chapter proposes the Progressive Cross-Primitive Compatibility (ProCC) frame-
work to enhance multimodal compositional generalization in open-world scenarios, ad-
dressing both Open-World (OW-CZSL) and partially supervised (pCZSL) Composi-
tional Zero-Shot Learning. ProCC introduces a Cross-Primitive Compatibility (CPC)
module that models conditional dependencies between object and state modality
primitives (e.g., inferring "ripe” only for edible objects) through self-supervised visual-
semantic correlations, eliminating reliance on external linguistic resources. Com-
plemented by a progressive learning strategy, the framework adopts a curriculum-
driven, easy-to-hard paradigm—first learning coarse-grained primitive distinctions
(e.g., "metal” vs. "wood”) before refining fine-grained compatibility constraints (e.g.,

"polished” vs. “rusty”)—effectively suppressing invalid compositions (e.g., "flying
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tables”) and noisy supervision. Experiments on benchmarks like MIT-States and
CGQA demonstrate ProCC’s superiority, outperforming state-of-the-art methods by
a large margin in accuracy under OW-CZSL settings and reducing invalid predictions
by 27% in pCZSL. By addressing combinatorial complexity and noisy adaptation
through adaptive cross-modal conditioning, ProCC advances the thesis’s core theme
of robust open-world learning, and in the subsequent chapters, we introduce the cross-
modal knowledge distillation for missing or invalid modality situations (Chapter 4:
C?KD) and Self-Introspective Decoding for multimodal large model hallucination al-

leviation (Chapter 5: SID).
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Chapter 4

C?KD: Bridging the Modality Gap
for Cross-Modal Knowledge
Distillation

4.1 Challenges and Motivations

Knowledge Distillation (KD) is an effective approach to transfer knowledge from
the large-capacity teacher model to the low-capacity student model during training
[165, 43]. During the KD process, the student is trained to mimic the teacher’s output
via the distillation loss. KD methods can be divided into two main categories: logits-
based and feature-based methods. The former minimizes the discrepancy between
soft labels of the teacher model and the student model [54, 203, 62], and the latter

distills knowledge from intermediate feature layers [53, 23, 63].

Despite the success of traditional KD methods in single modality scenario, extending
these methods to address the Cross-Modal Knowledge Distillation (CMKD) tasks
remains a critical challenge. The CMKD task involves knowledge transfer from one

modality to another during the distillation phase, with inference only on the distilled
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AVE[158] VGGSound|[18]

Visual Audio | Visual Audio
Method (A—=V) (V=A) | (A—=V) (V=A)
w/o KD 31.6+0.18  52.8+0.11 | 38.7+0.16 59.4+0.16
KD [54] 32.3+0.35 46.6+0.24 | 38.5+0.50 56.3+0.46

Review [23] 32.1+0.63 50.6+0.31 | 38.2+047 57.9+0.33
DML [203] 31.8+041 48.0+1.31 | 38.7+0.86 58.2+1.01
SHAKE [101] | 32.2+0.50 47.3+0.72 | 38.3+041 59.5+0.34
DKD [204] 32.6+0.65 48.6+1.02 | 38.1+£0.43 57.2+0.86

DIST [62] 29.8+0.61 49.3+0.52 | 38.5+039 58.9+0.45
NKD [188] 32.9+032 52.2+0.62 | 39.2+0.52  59.3+0.40
Ours 34.7+023 54.9+0.16 | 40.9+031 61.9+0.27

Table 4.1: Performances of traditional KD in CMKD. The results of distilled
student modality infer only on the student modality. A—V: Audio teacher modality
distills visual student modality; V—A: Visual teacher modality distills audio student
modality.

student modality, which is crucial especially in computation-constrained and sensor-
failure scenarios. As demonstrated in Table 4.1, unimodal KD methods struggle to
transfer knowledge from the low-accuracy visual modality to the high-accuracy audio
modality, while the visual modality has only marginal gains from the audio modality.
Based on the above analysis, a pivotal and fundamental question arises: Can we

effectively transfer arbitrary unimodal information to another modality?

To answer this question, we conduct empirical analysis to investigate why traditional
KD methods fail in CMKD from the logits-based perspective, which can be attributed
to the inter-modality gap that inducing modality imbalance and soft label misalign-

ment, as illustrated in Figure 4.1.
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For the first factor, we define modality imbalance, akin to [137, 37|, as the performance
disparities between modalities. We quantitatively calculate the top-1 accuracy (fol-
lowed by the average prediction probability of target classes) after training on the
corresponding single modality. Figure 4.1(a) shows that the audio modality outper-
forms the visual modality in AVE and VGGsound datasets, and there are significant
gaps in the average prediction probability of the target class, particularly in AVE.
Merely distilling knowledge from the visual to the audio modality could potentially

yield adverse effects, as shown in Table 4.1 (Audio columns).

For the second factor, we define soft label as the output distributions from the teacher
network, following [54, 108]. The soft labels contain meaningful information on sim-
ilarity among various classes. However, inter-modality gap leads to severe soft label
misalignment between teacher and student modalities. Take three-class classifica-
tion as an example (Figure 4.1(b) Up). Although both Audio and Visual modalities
branches successfully predict the target class of ‘female singing’, the non-target soft
labels are rank-distorted, where the audio accent of ‘child singing’ is more closely re-
lated to ‘female singing’, while the visual appearance of ‘male singing’ is more closely
resembles ‘female singing’. Direct transferring soft label information across modal-
ities is unreasonable, which could explain why distilling the audio modality to the
visual modality does not yield significant improvements. To quantitatively validate
soft label misalignment, we further calculate the average Kendall Rank Correlation
(KRC) [81] of soft labels in Figure 4.1(b) Down. A higher KRC indicates better rank
correlation. The table indicates the KRC of multimodal soft label (i.e., A-V(RN-18))
is significantly lower than that of a single modality with diverse-capacity networks
(i.e., A(RN18-50) and V(RN18-50)), indicating the presence of misalignment of mul-

timodal soft labels.

To address the above issues in CMKD, this chapter proposes Customized cross-
modal Knowledge Distillation (C?KD). Concretely, instead of using the pre-trained

teacher to provide supervision signals to the student, we bidirectionally update to
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Figure 4.1: The Modality Gap of CMKD. (a) Top-1 accuracy (followed by aver-
age prediction probability of target classes) of each modality. Both modalities utilize
ResNet-18 as the backbone. (b) Up: Example of three-class classification. Down:
Kendall Rank Correlation [81] of soft labels across modalities in VGGSound. A: au-
dio; V: visual; RN: ResNet.

customize both the pre-trained teacher and student via On-the-Fly Selection Distil-
lation (OFSD) strategy, where OFSD selectively distill receptive soft labels according
to the Kendall Rank Correlation, and cross-modal knowledge is transferred from
non-target classes to avoid the modality imbalance issue. Furthermore, Proxy stu-
dent and teacher, inheriting unimodal and cross-modal knowledge, is formulated to

progressively transfer cross-modal knowledge in the bidirectional distillation form.

The main contributions of this chapter can be summarized as follows.

e We empirically analyze the factors for the failure of unimodal KD in CMKD,

which can be attributed to the modality imbalance and soft label misalignment.

e To address these issues, we propose a novel method named C2KD. Specifically,
OFSD produces selected crossmodel non-target class knowledge through on-the-

fly bidirectionally distilling both student and teacher. Moreover, Proxy stu-
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dent and teacher are built to progressively transfer receptive knowledge across
modalities. The proposed strategies are plug-and-play, enhancing traditional

KD methods in CMKD.

e We conduct experiments on sparse and dense prediction tasks, including audio-
visual, image-text, and RGB-Depth datasets. Diverse capacities and homoge-
neous/heterogeneous architectures are also considered. Extensive experiments
validate C?KD can transfer cross-modal knowledge from arbitrary modality to

another.

4.2 Cross-Modal KD Effectiveness Analysis

First, this sub-chapter revisits traditional KD in cross-modal scenario. Given mul-
timodal training data ([X;, X5], Y) containing multimodal samples X; and X, and
labels Y. Let fr and fs be the output logits of the teacher T" and student S. The
corresponding prediction probabilities are obtained using the softmax function (o):

ps = o(fs) and pr = o(fr). Typical KD trains the student network as follows:

LKD = H(p5'7 Y) + )\D(}?S,]?T) (41)

where H is the supervision loss function (typical Cross-Entropy (CE) loss), D is the
KD loss to minimize the discrepancy of output distribution between teachers and
students, commonly achieved using Kullback—Leibler (KL) divergence [54], and A is a
balancing parameter for these two terms. Pioneering work [179] proposes the Modality
Focusing Hypothesis (MFH) and claims that modality-general decisive features are
crucial for transferring knowledge across modalities during the distillation phase. In
this work, we provide another fine-grained perspective to investigate the efficacy of
CMKD: the modality gap, which refers to the modality imbalance in target-class logits

and soft label misalignment, incurs the failure of CMKD.
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Regarding modality imbalance, as depicted in Figure 4.1(a), the prediction possibility

of the target class exhibits significant variations across modalities.

If simply let student modality (audio) imitate teacher modality (vision), audio will
inevitably reduce prediction confidence [164] and conflict one-hot label (Y'). To val-
idate our claim, we follow DKD [204] and decouple the KD loss into Target Class
(TC) and Non-target Class (NC) KD:

¢ \t
D(fs, fr) = alplog(2L) + pylog(“L)]
Ps Ps
TCVKD (4.2)
=8 Z
2 1,0t
NCKD

where o and 3 are hyperparameters. p' denotes the target class probability: p' =
exp(f*)/ Zle exp(f7), p\t represents the probability of all the other non-target classes

= chzlyk# exp(f?)/ Zjozl exp(f7), and p’ means the probability among non-target
classes: p' = exp(f?)/ Z]Q:l’j# exp(f7). Here, C is the number of classes. When only
applying TCKD in CMKD, as shown in Table 4.2, the performance of distilled audio
modality severely degrades 4.8% and 3.6%, respectively, while the distilled visual
modality is not clearly enhanced. Therefore, modality imbalance hinders the efficiency
of CMKD, particularly when transferring knowledge from a low-accuracy modality

to a high-accuracy modality.

To analyze soft label misalignment, we only conduct NCKD (Equation 4.2) to exclude
the influence of modality imbalance. As depicted in Table 4.2, the low-accuracy vi-
sual teacher modality degrades the performance of the high-accuracy audio student
modality. Notably, distilling high-accuracy audio information into the low-accuracy
visual modality only results in marginal gains in the AVE, while surprisingly exhibit-
ing a degradation in the VGGsound. [54, 196, 108, 204] investigate the mechanism
of logit distillation, as soft logits provide reliable similarity information between cat-

egories. The privileged similarity information brings fine-grained supervision com-
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pared to a one-hot label. However, in the context of CMKD, the category similarities
between different modalities are varied and even conflicting. An intuitive example
is the three-class classification example in Figure 4.1(b) Up, where the unreliable
similarity information of non-target classes across the modalities is contradictory. Di-
rectly minimizing cross-modal distributions leads to performance degradation. To
quantitatively evaluate the misalignment of soft labels, we employ the Kendall Rank
Correlation (KRC) [81] metric to measure the rank correlation. Specifically, given
teacher and student output logits fr and fg, the KRC between fr and fs can be

explicitly computed as follows:

2 . . . .
KRC:m;sign(f%—f%)sign(fé—fé) (43)

As depicted in Figure 4.1(b) Down, the KRC between multimodal networks is signif-
icantly lower than that observed in unimodal networks with different capacities. We
argue that the misalignment of rank correlation is another reason for the failure of
CMKD. To validate our argument, we filter out multimodal samples with KRC < 0
(+KRC), indicating that the count of misaligned soft label pairs is larger than aligned
ones. Additionally, we randomly filter out the same number of samples (+Random).
From Table 4.2, we can see that both visual and audio modalities are improved when
guided by the KRC metric, whereas randomly filtering out samples has almost no

effect.

4.3 Customized Cross-modal Knowledge Distilla-
tion (C?’KD)

Based on the aforementioned analysis, this chapter proposes a simple yet effective
method named Customized Cross-modal Knowledge Distillation (C*KD) to trans-
fer cross-modal knowledge to an arbitrary single modality. To bridge the modality

gap, we argue that both student and teacher should be tuned with the bidirectional
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AVE [158] VGGsound [18§]
Visual Audio Visual Audio
Method (A—=V) (V=A) (A—V) (V=A)
w/o KD 31.6 52.8 38.7 59.4
proba. 0.355 0.901 0.340 0.534
w/ KD 323 10.7 | 46.6 ]6.2 | 385 [0.2 | 56.3 |3.1
+Random | 32.1 -0.2 | 46.8 +0.2|382 -0.3 |56.4 +0.1
+KRC 329 +4+0.6 | 479 +1.3|39.2 +0.7|574 +1.1
TCKD 31.8 10.2 | 48.0 [4.8 | 379 ]0.8 | 55.8 [3.6
NCKD 31.9 10.3 | 50.1 |27 | 385 J0.2 | 57.5 [1.9
+Random | 31.5 -04 |50.2 +0.1|385 - 57.6 +0.1
+KRC 33.1 +1.2|51.0 +09|39.6 +1.1|583 +40.8
DKD [204] | 32.6 11.0 | 48.6 4.2 | 38.1 0.6 |57.2 2.2

Table 4.2: Efficacy Analysis on modality imbalance and soft label misalign-
ment. proba. represents average prediction probability of target class. DKD is with

defaulted {a =1, 5 = 8} (Eq. 4.2).
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Figure 4.2: Evolution of our Customized Cross-modal Knowledge Distilla-
tion (C?KD) method. (a) Traditional KD [54] with output logits from the fixed
teacher. (b) We (partially) tune the teacher with the bidirectional distillation to
provide customized teacher knowledge. (c) To bridge the modality gap of CMKD,
On-the-Fly Selection Distillation (OFSD) is proposed to filter out samples with dis-

torted rank correlations and perform KD on non-target classes. (d) Additionally, we

introduce proxy teacher and proxy student as bridges to progressively transfer recep-

tive cross-modal knowledge.
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distillation from each other, in this way, teacher modality could provide receptive
information for student modality. Meanwhile, the soft label misalignment samples
should be filtered out otherwise induce conflicting information. Therefore, we pro-
pose the On-the-Fly Selection Distillation (OFSD) strategy to exclude non-distillable
samples and inherit knowledge from non-target classes. Furthermore, dual proxies
with the bidirectional distillation strategy are introduced to progressively transfer
cross-modality knowledge. The evolution of our proposed framework is depicted in

Figure 4.2.

4.3.1 Formulation of C2KD

As illustrated in Figure 4.2(d), C?KD proposes the OFSD strategy to dynamically
select receptive knowledge. This strategy involves distilling knowledge from non-
target classes and innovatively employing the Kendall Rank Correlation (KRC) [81]
metric to filter out samples with rank-distorted soft labels. Given the output logits
fr and fs from the teacher and student modalities, the sample selection strategy is

as follows:

17 KRC(fT7 fS) > w
n= (4.4)
0, otherwise

The KRC is as Equation 4.3, n € {0,1} is OFSD filter, and w is the threshold.

Moreover, we additionally build dual proxies to progressively produce soft labels.
Formally, the output features (F') obtained from the backbone (B) are fed to the

original classification head and the proposed proxy as follows:

fm = [ (GAP(Bpn(F))),m € {T,S} (45)

o = e PO (AIGAP(By(Fn))]), m € {T, S}
where GAP and fc® refer to global average pooling and classification head. A
represents feature adaptation layer, akin to [145, 101], consisting of the ‘Conv-BN-

ReLU’ block. To further produce customized knowledge, both student and teacher

47



Chapter 4. C?KD: Bridging the Modality Gap for Cross-Modal Knowledge
Distillation

proxies serve as bridges and get bidirectional distillation from both uni-modality and

cross modality. In summary, the total loss function can be expressed as follows:

Lo =H(o(fs),Y) + H(o(fr),Y)
+MD(o(fr),0(f77)) + MD(a(f77), o (fr))
+XD(0(fs),0(f5) + 2D(a(f57), 0 (fs)) (4.6)
+ AnD(o(fE), 0 (f1))
+ XD (o (f7), 0 (fE)

where A1, Ay, and A3 are balancing parameters and ¢ # t. ‘H and D represent supervi-

sion and KD loss, respectively. We simply set {\; = Ay = A3 = 1} in all experiments.

4.3.2 Analysis of Cross-modal Knowledge distillation

Understanding CMKD training dynamics. We visualize the training dynamics
of CMKD and compare it with SHAKE [101] and NKD [188] to demonstrate the
CMKD progress. Figure 4.3 shows the test accuracy and the average number of sam-
ples with KRC < w (w = 0) during the training process. As the advanced online KD,
SHAKE gets the reverse cross-modal feedback supervision without discrimination.
However, SHAKE suffers from severe instability of training, possibly due to conflict-
ing cross-modal information. Meanwhile, the sample number of KRC < w drops to
close to 0 within initial epochs, which represents the teacher modality is influenced
by the student modality and might lose teacher modality information. In contrast,
NKD minimizes the distance between student modality logits and teacher modality
logits. The teacher model of NKD is not updated to cater to student modality, so the
sample number of KRC < w is large, and NKD also falls into the unstable training
process. As for ours, we selectively inherit cross-modal knowledge based on KRC and
progressively update the teacher model through proxies to obtain receptive knowl-
edge. During the distillation progress, the rank-distorted samples gradually reduce,

and our method only filters out the non-distillable samples.
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Figure 4.3: Training dynamics analysis. The solid lines correspond to the test
accuracy, and the dotted lines indicate the average number of samples with KRC < w

each data batch during the training process. Here we set {w = 0, batchsize = 64}.
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Figure 4.4: Comparisons of different distance metrics. The X-axis represents

the value of w.

Comparisons with other distance metrics. We select other distance metrics
to verify the effectiveness of KRC defined in Equation 4.4. Concretely, we choose
the cosine similarity (Cos), gradient cosine similarity (GradCos), and Pearson cor-
relation coefficient [136] (Pearson) as alternatives. Cosine similarity and Pearson
correlation coefficient are used to measure the distance between teacher and stu-
dent logits, ranging from -1 to 1. They can be formulated as: II(fr, fs) > w,
IT € {Cos; Pearson}. Similar to [194, 212|, Gradient cosine similarity regards CMKD
(Equation 4.1) as two tasks: cross-modal distillation (Lenka = D(ps,pr)) and uni-
modal task (Lisx = H(ps,Y)) and calculates the gradient cosine similarity between
these two tasks as: Cos(VgLenka, VoLiask) > w. It’s worth noting that these three

metrics consider both rank and intensity between cross-modal logits, while KRC only
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concerns about rank-distorted ones. As shown in Figure 4.4, KRC makes the best
performance among these metrics. Although inferior to KRC metric, other metrics
with proper w perform better than without sample selection (w/o Selection) strategy.

The results validate the necessity of filtering out samples with misaligned soft labels.

4.4 Experimental Results

We conduct extensive experiments to validate the effectiveness of our method. First,
we compare our method with KD methods regarding multimodal classification tasks.
Also, we apply our method to the multimodal semantic segmentation. Then, we

perform ablation and sensitivity analysis.

4.4.1 Multimodal Classification

We follow [137, 37, 1] and conduct experiments on four visual-audio and image-
text datasets: (1) CREMA-D [15] is an audio-visual dataset for speech emotion
recognition, with 6 categorizations. (2) AVE [158] is an audio-visual dataset for
audio-visual event localization, in which there are 28 event classes. (3) VGGsound
[18] is a large-scale video dataset containing 309 classes covering daily life activities.
We randomly choose 50 class to conduct experiments due to limited computation
resources. (4) CrisisMMD [2] is a multimodal crisis prediction dataset and is divided

into eight humanitarian categories.

Implementation. For visual-audio datasets, the preprocess strategy follows [137,
37]. Concretely, for audio modality, we change the input channel from 3 to 1 as
[18]. Audio data is transformed into a spectrogram of size 257x299 for CREMA-D,
257%x1,004 for AVE, and 257x1,004 for VGGsound, respectively, with the window
length of 512 and overlap of 353. For visual modality, the input channel is adjusted

considering input frames [205]. Concretely, 3 frames are uniformly sampled from

o1



Chapter 4. C?KD: Bridging the Modality Gap for Cross-Modal Knowledge
Distillation

CREMA-D AVE VGGsound CrisisMMD
Method Visual Audio Visual Audio Visual Audio Image Text

w/o KD 58.140.33 56.340.22 31.6+0.18 52.840.11 38.7+0.16 59.440.16 66.7+0.22 68.14+0.21

FitNet[145] 56.440.47 52.940.32 29.64+0.63 48.040.81 37.940.39 57.14+0.79 - -

Review[23] 59.640.45 55.740.36 32.14+0.63 50.640.31 38.240.47 57.940.33 - -
KD[54] 57.440.92 53.440.85 32.34+0.35 46.640.24 38.5+0.50 56.340.46 66.3+0.24 68.440.12
DML[203] 60.34+1.60 56.440.55 31.84+0.41 48.04+1.31 38.7+0.86 58.24+1.01 67.940.18 69.640.24
SHAKE[101] 60.0+0.35 58.64+0.61 32.240.59 47.34+0.72 38.34+0.41 59.5+0.34 68.1+0.16 69.7+0.26
RKD[134] 48.31+0.68 51.94+1.36 28.240.71 44.54+0.73 33.440.49 41.54+1.36 67.0+£0.23 67.44+0.21
DKD [204] 60.440.82 55.14+0.65 32.6+0.65 48.6+1.02 38.14+0.43 57.240.86 68.0+0.17 69.240.23
DIST [62] 61.1+1.82 57.940.57 29.840.61 49.340.29 38.5+0.39 58.940.45 68.3+0.21 67.84+0.18
NKD [188] 60.61+0.64 56.14+0.68 32.940.32 52.24+0.62 39.240.52 59.340.40 67.24+0.26 68.54+0.16
Ours’ 62.440.24 60.5+0.37 34.240.28 54.540.22 40.84+0.23 61.640.34 68.2+0.09 69.840.16
Ours? 62.8+0.28 61.4+0.44 34.7+0.23 54.9+0.16 40.9+0.31 61.9+0.27 68.8+0.15 70.1+0.12

Table 4.3: Comparison results on Visual-Audio and Image-Text datasets.
The metric is the top-1 accuracy (%). Ourst means fully updating the teacher model,
and Ours’ means partially finetuning the top 2 layers. The best is in bold, and the

second is underlined.

VGGsound, and 1 frame is extracted from AVE and CREMA-D. Standard augmen-
tations are employed, including random cropping and flipping. We train the network
for 100 epochs with le-2 initial learning rate and decay follow the ‘poly’ policy with
the power of 0.9. We use SGD with 0.9 momentum and default hyperparameters as
the optimizer. For the image-tert dataset, we use the same training strategies and
adopt w = 0 across all experiments. Here, following [137, 1], we adopt the same
ResNet-18 [52] as the backbone for visual and audio modality, and BERT-base [32]
for text and MobileNetV2 [148] and image feature extractors, respectively. All results

are the average of three different seeds.

Comparison Results. In Table 4.3, we compare our method to some advanced
KD methods with the same training settings. We follow [137, 37] and give the de-
tailed preprocess strategy. For audio modality, we change the input channel from
3 to 1 as [18]. Audio data is transformed into a spectrogram of size 257x299 for
CREMA-D, 257x1,004 for AVE, and 257x1,004 for VGGsound, respectively, with
the window length of 512 and overlap of 353. For visual modality, the input channel
is adjusted considering input frames [205]. Concretely, 3 frames are uniformly sam-

pled from VGGsound, and 1 frame is extracted from AVE and CREMA-D. Standard
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augmentations are employed, including random cropping and flipping. We initialize
weights of the student model and proxies following [132]. All experiments are con-
ducted with NVIDIA RTX3090 GPUs on CUDA 11.4 using the PyTorch framework.
All results are the average of three different seeds, which are set to 1, 2, and 3, re-
spectively. We imply traditional unimodal knowledge distillation with their defaulted
settings. Previous logits-based KD methods can be seamlessly applied to the Cross-
Modal Knowledge Distillation (CMKD) task. Due to the different spatial dimensions
of multimodal inputs, the intermediate features have different spatial dimensions.
Feature-based KD methods cannot be directly applied to CMKD. To deal with this
issue, we employ the bilinear interpolation operator to align the intermediate fea-
tures of teacher and student. Besides, BERT has 12 layers while MobileNetV2 has 5
layers. We do not conduct feature-based KD on the CrisisMMD dataset for compar-
isons because we can not choose which layers to be distilled based on their original

implementations.

We can learn from Table 4.3 that our proposed method, C2KD, consistently outper-
forms other KD methods across four datasets. Existing KD methods can not effec-
tively distill one modality information to another modality, especially for the datasets
with the significant modality imbalance issue like AVE and VGGsound. Concretely,
feature-based KD (FitNet[145], Review[23]) methods fail in CMKD because of signif-
icant feature divergence (see Section 4.6). Online KD (DML [203] and SHAKE [101])
methods update teacher models and achieve better cross-modal knowledge transfer
ability, compared with the baseline [54]. Due to soft label misalignment between
modalities, the relation-based method (RKD [134]) degrades severely in CMKD. Re-
cent advanced logits-based methods (DKD [204], DIST [62], and NKD [188]) signif-
icantly outperform the vanilla KL loss by proposing the relaxed KD functions and
logits decoupling strategies. However, these methods fail to transfer cross-modal

knowledge from low-accuracy to high-accuracy modality, impeding their practical

deployments in CMKD.
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4.4.2 Multimodal Semantic Segmentation

We also extend C2KD to the multimodal semantic segmentation, a challenging dense
prediction task. Concretely, following [179], we conduct experiments on the NYU-
Depth V2 dataset [154]. NYU-Depth V2 contains 1,449 aligned RGB and depth pairs
with 40 category labels, of which 795 pairs are used for training, and 654 pairs are

used for testing.

Implementation. Both teacher and student networks deploy the DeepLab V34
[21] architecture with diverse backbones. The training settings follow [182] that we
adopt SGD as the optimizer with a momentum of 0.9, a batch size of 16, an initial
learning rate of 0.02, and ImageNet pre-trained weights. The total training iterations
is 40K, decayed by the ‘poly’ policy with the power of 0.9. Experiments on ho-
mogeneous,/ heterogeneous backbones, including ResNet-18/ResNet-18 and ResNet-
18 /MobileNetV2 pairs, are conducted to validate our method. All results are the

average of three different seeds.

Comparison Results. We compare our methods with advanced traditional KD
methods (KD [54], SHAKE [101], DIST [62], and NKD [188]) as well as the seman-
tic segmentation KD method (CIRKD [182]). The results compared with previous
methods are summarized in Table 4.4. We can see that previous KD methods do not
perform well in CMKD, especially in transferring low-accuracy modality information
to high-accuracy modality. Our method can significantly improve the distilled per-
formance of arbitrary single modality. For instance, ours consistently surpasses the
advanced CIRKD in transferring depth information to RGB modality. Besides, when

replacing KL loss with DIST loss [62], our method affords clear improvements.
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4.5. Ablation and Sensitivity Analysis

Visual Modality Audio Modality
1.0 62.0
Origin . Origin
40.5 +BD 61.5 +BD
E +OFSD H +OFSD
B +Proxy B +Proxy

.0+
NormKD NormKD

(a) T: audio; S: visual (b) T: visual; S: audio

Figure 4.5: Generalizability of each module. We conduct experiments on VG-

Gsound dataset in terms of DIST [62] and NKD [188].

4.5 Ablation and Sensitivity Analysis

Effectiveness and generalizability of each module. We analyze how the pro-
posed modules improve CMKD. Table 4.5 reports the results of ablation studies on
AVE, VGGsound, and CrisisMMD with the same backbones. The configurations of
(a), (b), (c), and (d) correspond to the evolution steps shown in Figure 4.2. Com-
pared to the vanilla KD (i.e., (a)), the Bidirectional Distillation (BD) updates the

x/y-axis: Visual/Audio(RN18/RN18) x/y-axis: Audio/Audio(RN18/RN50) x/y-axis: Visual/Visual(RN18/RN50)

4 4 4

3 3 3

2 2 2

Figure 4.6: The CKA score of intermediate features on AVE.
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RGB Depth | RGB Depth | RGB Depth
RN18 RN18 | RN18 MNV2 | MNV2 RNI18

w/o KD 36.1 30.5 36.1 31.2 36.3 30.5

KD [54] 358 309 | 362 319 | 365  31.8
SHAKE [101] | 37.1 312 | 37.0 327 | 371 329
DIST [62] | 369 320 | 365 329 | 368  33.1
NKD [188] | 365  30.8 | 364 322 | 364 327
CIRKD [182] | 37.3 326 | 369 327 | 367 334

Ours 37.5 32.5 37.2 32.8 37.4 33.1
Ours+[62] 38.1 33.2 37.7 33.5 37.9 33.7

Table 4.4: Comparison results on RGB-Depth semantic segmentation
dataset. The metric denotes the mean Intersection over Union (mloU: %). Ours+[62]
means we replace KL loss with the advanced DIST loss. RN18: ResNet-18; MNV2:
MobileNet V2.

teacher model (i.e., (b)) to mitigate the model gap. Furthermore, to validate the
effectiveness of OFSD, we decouple OFSD into the On-the-Fly Selection (OFS) strat-
egy and Non-Target (NT) classes distillation approach. We can learn that both OFS
and N'T benefit CMKD, and the combination of both brings significant improvement
compared to (b). The proxy teacher and student circumvent the direct imitation
of cross-modal logits, serving as bridges for inheriting unimodal and cross-modal
knowledge and facilitating the transfer of integrated knowledge through bidirectional
distillation. The progressive KD strategy further improves the CMKD results. The
structure of proxies adheres to [145, 101].

To ascertain the generalizability of each component, we incorporate the proposed
plug-and-play modules into advanced KD methods (i.e., DIST [62] and NKD [188]).
We can learn from Figure 4.5 that the proposed modules consistently improve the

performances of traditional KD methods in the CMKD task, especially for the OFSD
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Proxy VGGsound CrisisMMD
Visual Awudio | Visual Audio | Image Text

Proxy OFS NT BD

(e) 316 528 | 387 594 | 66.7 68.1
(a) 323 466 | 385 563 | 663  69.2
(b) V| 327 479 | 388 576 | 673  69.2
(c) v v v | 346 543 | 404 615 | 685  69.8
- v v | 332 529 | 394 603 | 679 689
- v V| 344 525 | 400 599 | 680 695
d|v v v v| 347 549 | 409 619 | 688 70.1

Table 4.5: Ablation studies on each module. (a), (b), (c), and (d) represent
the evolution steps of C2KD (Figure 4.2). (e) indicates the results without KD. The

metric is the top-1 accuracy (%).

strategy.

Necessity of cross-modal KD. Considering the challenges of cross-modal KD,
a question may arise: Do we really need CMKD rather than fully explore self-
knowledge? Self-knowledge distillation (Self-KD) techniques [100, 181, 152, 108, 188]
have been proposed to utilize the information within the student model to facilitate its
learning process. Specially, DLB [152] leverages the soft targets generated in the last
mini-batch backup for training consistency and stability. ZipfKD [108] and USKD
[188] generate soft labels following the Zipf’s law distribution [120]. We conduct ex-
periments on these advanced Self-KD methods to validate the necessity of CMKD.
From Table 4.6, we can learn that although Self-KD improves the performance of each
modality, our method consistently outperforms Self-KD methods by a clear margin.

The results indicate the necessity of cross-modal KD.

Parameter sensitivity. Here, we conduct a sensitivity study on KRC threshold

w. Results are in Figure 4.4. Large w filters out more samples, which might hinder
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AVE VGGsound CrisisMMD

Method Visual Audio | Visual Audio | Image Text

DLB[152] 32.6 53.3 39.1 60.2 66.9 68.6
ZipfKD[108] 33.3 53.5 40.2 60.3 67.4 68.9
USKDI188] 33.1 53.2 40.0 60.1 67.1 69.0

Ours 34.7 54.9 40.9 61.9 68.8 70.1

Table 4.6: Comparison results of different Self-KD methods.

cross-modal knowledge transfer, while low w preserves more samples, which might
contain rank-distorted samples that induce adverse effects. We heuristically set w
to 0 and achieve balanced results. Note that, as shown in Tables 4.3 and 4.5, even
the worst accuracy of varying w is still competitive with the baselines, we think the
studies show the necessity of on-the-fly filtering out rank-distorted samples based
on KRC. More analyses of A\j, Ay, and A3 are given in Figure 4.7. Our method is
robust in terms of different hyperparameters. As our method can effectively transfer
corssmodal information, large and small values of A could hinder knowledge transfer.

Therefore, we adopt {A\; = Ay = A3 = 1} in all experiments.

Different Backbones Evaluations. Besides the results in Tables 4.3 and 4.4, we
conduct more experiments to further demonstrate the effectiveness of our method
across diverse-capacities homogeneous and heterogeneous architectures. We compare
C?KD with vanilla KD [54], the state-of-the-art feature-based KD (Review [23]),
online KD (SHAKE [101]), logits-based KD (NKD [188]). The results in Table 4.7 il-
lustrate C2KD can effectively transfer crossmodal knowledge across diverse-capacities
homogeneous architectures (i.e., ResNet-18-ResNet-50) and heterogeneous architec-

tures (i.e., BERT-ResNet-18 and BERT-ShuffleNet V2).

Proxy Analysis. We provide the detailed analysis of the student and teacher prox-

ies. The proxy consists of the feature adaptation layer and the linear classification
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AVE(Audio) AVE(Audio) AVE(Audio)
56.0 56.0 56.0
55.5 55.5 55.5
55.0 55.0
2550 54.9 54.9 2550 sis 54.9 54.9 2 55.0 sds 54.9
8 547 @ 8
g g kas 546 S 54.6
9 54 g . ¥
& sa5 P & 545 & 5454
54.
54.0 54.0 54.0
53.5 1 - - - - 535 1 - - - - 535 1 - - - -
0.1 05 1.0 15 2.0 0.1 05 1.0 15 2.0 0.1 05 1.0 15 2.0
A1 A2 A3
AVE(Visual) AVE(Visual) AVE(Visual)
355 355 35.5
35.0 34.8 35.0 35.0
3de 34.7 346 34.7 34.7 346 34.7 34.7

g : |8 baa %3 | g 34.4 343
3345843 s 3345843
S S S
< < <

34.0 34.0 34.0

3351 - - 3351 - - 3351 - - - -

0.1 05 1.0 15 2.0 0.1 05 1.0 15 2.0 01 05 1.0 15 2.0
A1 A2 A3

Figure 4.7: Analysis of \;, Ay, A\3. We conduct experiments on the AVE [158]

dataset with ResNet-18 as the multimodal backbones.

CREMA-D ([15] AVE [158] VGGsound [18] CrisisMMD |[2]
Visual Audio Visual Audio Visual Audio Image Text
(A— V) (V= A) (A—V) (V—A) (A—V) (V—=A) (T—I) (I-T)
RN18 RN50 RN18 RN50 RN18 RN50 BERT SNV2
w/o KD 58.1+0.33  57.940.19 | 31.6%0.18 53.7£0.16 | 38.7£0.16 60.1+0.18 | 66.7£0.22  68.0+0.12
KD [54] 57.14£0.57  54.1£0.43 32.64£0.62  48.5+£0.35 | 39.04£0.46 57.8+0.51 | 66.2£0.38  68.410.22
Review [23] 59.440.52  56.9£0.62 | 32.0£0.53  51.3%£0.57 | 38.5+£0.53  58.740.60 - -
SHAKE [101] | 60.2£0.36  58.9£0.63 32.540.67  48.6£0.46 | 38.9+0.51 59.940.38 | 68.240.23  69.64+0.25
NKD [188] 60.5£0.62  56.910.43 | 33.0£0.36  52.5£0.36 | 39.24£0.67 59.64+0.54 | 67.3£0.31 68.6+0.25
Ours 63.1+0.25  62.140.37 | 35.0£0.21  55.3+0.12 | 41.0£0.22 62.0+£0.23 | 68.9£0.12  70.0£0.09
RN50 RN18 RN50 RN18 RN50 RN18 BERT RN18
w/o KD 59.740.20  56.31£0.22 | 32.7£0.25 52.84£0.11 | 39.3£0.13 59.440.16 | 66.7£0.22 68.1+0.13
KD [54] 58.240.53  54.01+0.36 33.0+0.43  46.910.42 | 38.9+0.52 56.4+£0.61 | 66.240.42  68.5+0.21
Review [23] 60.41+0.58 55.94+0.39 | 32.74.0.56 51.240.61 | 38.2£0.43 58.1£0.61 - -
SHAKE [101] | 60.5£0.53  59.0+£0.48 | 33.4+0.53  47.5+£0.43 | 38.6£0.41 59.8+£0.49 | 68.0£0.19  69.84+0.23
NKD [188] 60.9£0.54  58.440.62 33.24£0.47  52.84£0.55 | 39.5+£0.53 59.1£0.46 | 67.4£0.26 68.610.22
Ours 63.5£0.28  61.61+0.23 35.5£0.30  55.14£0.22 | 41.3+£0.28 62.1£0.24 | 68.8£0.16 70.24+0.16
Table 4.7: Comparison results on Visual-Audio and Image-Text datasets.

The metric is the top-1 accuracy (%). RN18: ResNet-18; RN50: ResNet-50; SNV2:
ShuffleNet V2 [122].
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AVE [158] VGGsound [18]
Visual Audio | Visual Audio
Method | (A—V) (V=A) | (A=V) (V—=A)
w/o FA | 34.44036 53.0+0.22 | 40.2+0.25 60.6+0.24
w/ CFA | 34.7+018 55.0+0.20 | 40.8+0.28 62.0+0.21
Ours 34.7+023 54.9+0.16 | 40.9+031 61.9+0.27

Table 4.8: Analysis of the structure of the proxy. We conduct experiments
on the AVE [158] and VGGsound [18] datasets with ResNet-18 as the multimodal

backbones.

head, as shown in Equation 5. The feature adaptation layer follows the feature-based
KD methods [145, 23], consisting of ‘Conv-BN-ReL.U’ block. Specifically, the kernel
size of ‘Conv’ is set to 1x1, and input and output channel dimensions remain the
same. Here, we analyse the structure of the proxy. We ablate the feature adaptation
layer (w/o FA) and employ a complicated feature adaptation layer (‘Conv-BN-Conv-
BN-ReLU’, i.e., w/ CFA). Table 4.8 illustrates that without the feature adaptation
layer (w/o FA), the linear classification head can not effectively transfer crossmodal
information, possibly due to the degradation of nonlinear ability. However, the com-
plicated feature adaptation layer does not bring obvious improvement. Therefore, the

feature adaptation layer and linear classification head constitute the proxy.

4.6 Discussion

Feature-based CMKD Analysis. We analyze the modality gap of CMKD in the
logits-based perspective and propose C2KD to mitigate the issues. Furthermore, we
provide the analysis of the challenge of CMKD from the feature-based perspective.
We adopt the Center Kernel Alignment (CKA) [87], a feature similarity metric that

measures input similarity with different dimensions. As shown in Figure 4.6, com-
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AVE VGGsound
Method V(S) T A(S) T V(S) T A(S) T
NKD [188] 329 52.8 | 522 31.6 | 392 59.4 | 59.3 38.7

+FiLM [139] | 33.2 574 | 51.7 57.6 | 39.0 62.1 | 58.6 62.8
+OGM [137] | 33.6 60.9 | 52.7 (1.6 | 40.2 65.2 | 59.8 (4.3

Table 4.9: Comparison results of different multimodal teachers. The italic

numbers mean teachers’ accuracy. S: student; T: teacher.

pared to unimodal features, cross-modal features have significant feature divergence,
and directly using feature-based distillation methods for CMKD is unreasonable. We

leave the exploration of feature-based CMKD as the future work.

Multimodal Teacher Efficacy Analysis. We provide analysis of the efficacy of
multimodal teacher in CMKD. Concretely, the multimodal teacher is formulated by
fusing the teacher and the student modalities with the supervision loss. Following
the multimodal learning [33, 137, 37], we adopt the fusion strategies including Con-
catenation (Cat), FiLM [139], and OGM [137]. Pretrained teachers are updated for
the better information fusion. Table 4.9 indicates multimodal teachers generate high-
accuracy soft labels, while don’t necessarily improve the distilled modality, especially
for the high-accuracy modality (i.e., audio). Our customized teacher integrates re-
ceptive corssmodal information and ensures effective knowledge transfer. Inspired
by [179], developing the multimodal learning method that contains more modality-
general decisive information is a possible solution. We leave this intriguing challenge

to future work.
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4.7 Chapter Summary

Chapter 4 contribution targets the problem of modality imbalance and misalignment
in cross-modal knowledge distillation (CMKD), which often degrades performance
when modalities are missing during inference. This chapter reveals that modality im-
balance and soft label misalignment in cross-modal knowledge distillation (CMKD)
are critical bottlenecks that degrade performance when modalities are missing during
inference. Through systematic analysis, we identify the inter-modality gap—divergent
feature distributions between modalities (e.g., text vs. vision) as the root cause of
distorted knowledge transfer. To address this, we propose Customized Crossmodal
Knowledge Distillation (C*KD), specifically, we propose On-the-Fly Sample Selection
(OFSD) strategy to filter out rank-distorted samples based on the KRC metric and
distill knowledge from non-target classes. Meanwhile, the pre-trained teacher con-
ducts bidirectional distillation with the student. Proxy student and teacher, inheriting
unimodal and cross-modal knowledge, progressively transfer cross-modal knowledge.
Extensive experiments demonstrate the effectiveness of our method. By resolving
knowledge misalignment through adaptive sample selection and proxy-guided distil-
lation, C2KD advances the thesis’s theme of robust multimodal integration, extending
Chapter 3’s compatibility principles to cross-modal distillation while setting the stage
for Chapter 5’s self-introspective decoding to tackle hallucination in the multimodal

inference.
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Chapter 5

SID: Self-Introspective Decoding
for Modality Prior to Alleviate
Hallucinations for Multimodal

Large Models

5.1 Challenges and Motivations

Chapters 3 and 4 demonstrate how to improve the robustness abilities of multimodal
learning in terms of composition ability and inference with missing modalities situ-
ations. In the past few years, large-scale models pre-trained on massive amounts of
data and then applied on downstream tasks have become the new paradigm, illus-
trating the robust and flexible solutions to diverse tasks. Concretely, recent advance-
ments in Large Language Models (LLMs) [160, 7, 26, 161, 126] have demonstrated
great success over the past few years. Many efforts have been made to extend LLMs
to Multimodal Large Language Models (MLLMs), especially Large Vision-Language
Models (LVLMs) [189, 97, 8, 99, 29, 111, 10, 191, 96|, achieving impressive perfor-
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mance across various vision tasks [98, 201] as well as more complex tasks like content

comprehension [89] and generation [41].

Despite their extraordinary versatility, LVLMs face a significant challenge known as
the ‘hallucination’. Concretely, hallucinated texts are fluent and semantically co-
herent but contain incorrect or non-existent statements about the given image, e.g.,
generating irrelevant or meaningless responses, identifying inaccurate colors, num-
bers, and locations of objects not present in the image [61]. This flaw in LVLMs
poses a significant risk for real-world applications to become trustworthy Al assis-
tants. For instance, in model-assisted computer-aided diagnosis scenarios [168], such

misinterpretation of medical images could lead to serious medical accidents.

One mainstream approach to alleviating hallucinations in LVLMs involves developing
training-free decoding strategies known as Contrastive Decoding (CD) [94, 38, 170,
84], which adjusts the next-token logits in a contrastive manner. Concretely, Vision
CD (VCD) manipulates vision inputs with Gaussian noise [94] or directly ablates
visual inputs [38] to amplify language modality priors. Instruction CD (ICD) [170,
84] designs negative prompt.! The rationale is that disturbed inputs significantly
exacerbate hallucinations, and CD subtracts hallucinated concepts from the original

distribution to mitigate hallucinations.

However, input disturbances require elaborate designs for various downstream tasks,
and the inference cost is inevitably doubled. Moreover, the contrastive distributions
are viston-and-text agnostic, not necessarily amplify desired hallucinations but some-
times induce potential uncertainty noise for CD. Intuitive examples are illustrated
in Figure 5.1, and detailed analyses are in Sec. 5.2.2. In Figure 5.1 (a) and (b),
LVLMs directly infer the correct next token from multimodal inputs. For Vision CD,
distorted vision input exacerbates hallucinated object logits such as football and bas-

ketball, while the holistic noise suppresses baseball to a low logit value. Consequently,

Inegative prompts like ‘You are a confused object detector.’ and ‘Always respond

with the opposite of what you’re asked.’ for different tasks.
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Figure 5.1: Contrastive Decoding strategies: (a) Visual Contrastive Decoding
(VCD) [94] manually distort vision inputs. (b) Instruction Contrastive Decoding
(ICD) [170, 84] also manually design noisy instruction (negative prompt). We ablate
other modules like the vision encoder and tokenizer for clarity. ¢: ‘Please describe

this image in detail.’; sys.: system prompt. g: generated text tokens.

VCD might compromise normal decoding. Similarly, for Instruction CD, LVLMs tend
to refuse to answer negative prompts in open-end generation task (as seen in Figure

5.3 and 5.4), and also suffer from potential uncertainty noise similar to VCD.

To address the aforementioned issues, we propose a novel decoding strategy called
Self-Introspective Decoding (SID). Our empirical investigations reveal that pre-trained
LVLMs can introspectively assess the importance of vision tokens adaptively, based on
preceding vision and text (both instruction and generated) tokens. SID leverages this
capability to amplify and then subtract vision-and-text association hallucinations by
proposing token-level disturbances named Context and Text-aware Token Selection
(CT?S) strategy. This strategy induces multimodal contextual hallucinations, rather

than aimless ones, by conducting token selection in the early decoder layers.
In summary, this chapter’s main contributions are three-fold:

e We re-think CD methods in LVLMs and attribute their failure cases to vision-and-
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text agnostic input distributions that induce potential uncertainty noise.

e To address this, we propose Self-Introspective Decoding (SID), where the CT?S
strategy adaptively amplifies and then subtracts vision-and-text association halluci-
nations. This approach is grounded in our investigations that pre-trained LVLMs can

introspectively assess visual importance informed by preceding tokens.

e Through comprehensive comparisons, we demonstrate that SID generates high-
quality texts with fewer hallucinations. Additionally, SID significantly reduces infer-

ence cost of contrastive decoding.

5.2 Preliminary and Discussions

In the following, this sub-chapter first illustrates the generation paradigm of LVLMs
to facilitate the understanding of SID. We then re-think the contrastive decoding in
LVLMs and propose our motivation for SID.

5.2.1 Paradigm of LVLMs Generation

Vision and Language Inputs. The inputs of LVLMs consist of both image (v) and
text (t). Generally, the raw images are commonly fed to the visual encoder, and then
the cross-model projection module maps vision information into LLMs’ input space,
which is denoted as vision tokens v = {vy, vq...v,} (n is the length of vision tokens).
Similarily, text is processed by tokenizer and embedding modules, which is denoted
as text tokens t = {t1,ts...t,,} (m is length of text tokens). Then, the image (v) and
text (t) tokens are concatenated as the final input of LLMs.

LVLMs Forward. The backbone networks of LVLMs are pre-trained LLMs like
Vicuna [26] and LLaMA 2 [161], parameterized by #. Given multimodal tokens {v,t},

LVLMs predict the next token probability (y;) at ¢ time step in an auto-regressive

66



5.2. Preliminary and Discussions

manner following the methodology of LLMs, over the vocabulary set v:
p(yilv7 ta y<1) = SOftmaX(logit9<yi|/U7 t? y<i>>7 Yi S (51)

Next Token Decoding. After obtaining the next token probability p(y;|v,t, y<;),
different decoding strategies are proposed to predict next token. The decoded token
is concatenated to the last original input token, for the next round of generation until

the end of the generation process.

5.2.2 Re-thinking Contrastive Decoding in LVLMs

Following the seminal works [103] in natural language processing, which introduced
the Contrastive Decoding (CD) mechanism to enhance coherence and informativeness
by considering the differences between expert and amateur models, various studies
have adapted this strategy to LVLMs by distorting the visual or instruction inputs
for contrastive purposes. As the vision and instruction contrastive processes are
symmetrical, we use visual contrastive decoding as an example. The contrastive

decoded probability of next-token (p.q) can be generally formulated as follows:

Pea(Yilv, va, t, y<;) = softmax[(1 + a)logity(y;|v, t,y<i) — alogite(yi|va, t,y<i)] (5.2)

where d and « indicate distortion operation and hyperparameter, respectively. Gen-
erally, CD methods employ an adaptive plausibility constraint to calibrate the entire
output distribution, preventing implausible outputs from the augmented distribution
(103, 27, 94, 38, 170, 84, 210]:

Vioken(Y<i) = {yi cv:py(yilv,t,y<i) > 5m3Xp0(W’U,tay<z‘)} ; (53)

pcd(yilvavdu tay<z)) = 07 if Yi ¢ Vtoken<y<i)
where v and Ve, are the output vocabulary and selected tokens. [ controls the
strength of truncation, with larger § indicating more aggressive truncation that re-

tains only high-probability tokens.
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Table 5.1: Efficacy Analyses on CD strategies on MSCOCO dataset. The Ran-
dom setting means objects absent from the image are chosen randomly, while the

Adversarial setting prioritizes co-occurring objects which are not present in the im-

age.

Setting Method

Greedy

Sampling

Accuracy T F1 Score T Accuracy T F1 Score 1

Normal 88.8+0.05 88.6:+0.08 84.9+0.03 83.2+0.01
vep | $7T8s00  ST9mm  STT3 8328
w/o Eq. 5.3 - - 83.3+0.04 82.2+0.02
Random 1CD | $79:000 S8l 86.9:001 8525001
w/o Eq. 5.3 ; ; 8271002 81.8%00s
Ours | 89.3:008  89.5:00  88.8:00  88.Tim
w/o Eq. 5.3 - - 87.2+0.01 88.0+0.02
Normal 79.3+0.05 80.9+0.09 78.7+0.03 78.9 +o.02
vep | 8095000 810z 8088 8133
w/o Eq. 5.3 - - 762001 76.0%001
Adversarial 1CD | | 802500 SL3sm 791 80dso0s
w/o Eq. 5.3 - - 75.4+0.02 76.4+0.04
Ours | 83.3:00r 825000 82.6:0m  82.1i000
w/o Eq. 5.3 . ; 8224005 81.9+001
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However, we argue that manually disturbing raw inputs might not trigger the desired
hallucinations, while holistic disturbances will bring uncertainty noise that compro-
mises the normal decoding. To validate our claim, we analyze the performances of
normal decoding, VCD, and ICD using the POPE [106] metric, under both sampling
and greedy decoding settings. POPE quantitatively converts the hallucination eval-
uation into a binary classification problem by using the question format to prompt
the model: ‘Is there a <object> in the image?’, with expected answers being
‘Yes’ or ‘No’. From Table 5.1, under the greedy decoding setting, CD methods
improve performance in the adversarial setting, which are more challenging as they
prioritize co-occurring confusing objects. CD methods achieve this by exacerbating
and subtracting hallucinated concepts from the original distribution. However, in
random settings, where objects absent from the image are chosen randomly and are
easily recognized, CD methods slightly underperform normal greedy decoding, which
indicates that the correct token logit is somewhat compromised during contrastive
decoding. In the sampling decoding setting, CD methods clearly outperform the
normal sampling decoding. However, CD methods rely on the adaptive plausibility
constraint (Equation 5.3) to filter out low-probability tokens. Without Equation 5.3,
CD methods are inferior to normal decoding in both random and adversarial set-
tings, validating that vision-and-text agnostic input distributions induces potential
uncertainty noise after Equation 5.2. To address these issues, we propose a decoding
strategy named Self-Introspective Decoding (SID). SID adaptively amplifies vision-
and-text association hallucinations informed by generated tokens to guide LVLMs in

exploring factualness. Details are illustrated in the Sec. 5.3 and Figure 5.2.
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Figure 5.2: Overview of Self-Introspective Decoding (SID). CT?S: Context
and Text-aware Token Selection strategy. LLaVA-1.5 7B is utilized as an example to

visualize visual tokens with low and high scores (Equation 5.5).

5.3 Self-Introspective Decoding (SID)

5.3.1 Understanding the Self-Introspective Pre-trained LVLMs

LLMs [7, 26, 161, 126] have been scaled up to billions of paramters and pre-trained on
trillions of tokens, endowing LLMs with encyclopedic ability like in-context learning
[171], zero [86]/few-shot [13] ability. LVLMs extend LLMs to multimodal understand-
ing capabilities by visual instruction tuning. Some works [16, 151, 20] pointed out
that vision information is redundant in LVLMs, and develop vision token reduction
technologies to prune [142] and merge [12] tokens guided by importance metrics with-
out further re-training. Regarding the hallucination issue, we argue that vision tokens
with low attention scores induce vision-and-text association hallucination. For-
2

mally, for the transformer block [163] in the auto-regressive decoder *, vision (v),

2Here we illustrate the transformer block without KV Cache for better understanding.
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Original Ours
. T F | ey s s

ID

‘You are a confused

.- . . )
(dynamic pruning important vision SRS Celeissienl mieidll

token based on preceding tokens)

Normal (Greedy): The image features a small white dog standing in front of a TV, which is mounted on a wooden cabinet. The dog
appears to be watching the TV with interest, possibly captivated by the content displayed on the screen.\n\nThe room also contains a
dining table, a chair, and a few vases placed. One vase is located near the left side of the room, another is situated in the middle, and
the third one is on the right side. These decorative items adds a touch of elegance to the living space.

Ours: The image features a large, well-lit room with a yellow color scheme. The room is furnished with a couch and a chair, both
placed against the wall. A TV is mounted on the wall, and a remote control can be seen resting on the couch.\n\nThere are two vases
in the room, one located near the left side and the other near the right side. A potted plant is placed in the room, adding a touch of
greenery to the space. A clock is mounted on the wall, and a book can be found resting on a surface in the room.

VD: The image features a dark room with a television turned on, displaying a TV show. The television is placed on a stand, and the
room appears to be a living area. There are several books scattered around the room, with some placed on the floor and others on
surfaces. A remote control can be seen resting on a surface, likely used to operate the television.

ID: What is this dog doing? I'm sorry, I'm not sure what you're asking for. Could you provide more context or clarify your question?

Figure 5.3: Instance Illustration of Different Disturbance Results. Examples
are from MSCOCO inferred by LLaVA-1.5 7B with ¢ = 3 and Top-k=50. Hallucina-

tions are marked in red.

text instruction (¢), and generated tokens (g) are concatenated and projected into

three distinct vectors: the query vector Q, the key vector K, and the value vector

V, utilizing three linear transformations W,, Wy, and W,. The self-attention (SA)

mechanism computes the relevance of each item to other items as follows:
R=SAQK V)=A-V,

T (5.4)

-K
A= softmax(Q— + M)
Vi

where d; represents the dimension of Q, K, V, M represents the casual mask. A €
R® ) where b, h, and n denote batch size, number of key-value heads, and total
token number, respectively. We denote the A; as the attention matrix after Layer i
of LVLMs. We then calculate vision token importance scores (Score;(v)) as shown in

Figure 5.2 (Selector) based on A;:
h

Score; (v) = % S A1) (5.5)

j=1
where v means vision token indexes. Contrary to token pruning/merging [142, 12]

strategies, we preserve a certain number of the least important vision tokens based
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‘You are a confused
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Normal (Greedy): The image captures a beautiful beach scene with a man standing on the sand, flying a colorful kite. The kite is soaring
high in the sky, adding a vibrant touch to the scene. The man appears to be enjoying his time at the beach, possibly taking a break from flying
the kite to admire the view.\n\nThe beach is surrounded by a lush green forest, creating a serene and picturesque environment. The waves are
crashing gently on the shore, and the overall atmosphere is calm and peaceful.

Ours: The image depicts a beautiful beach scene with a large body of water in the background. The beach is lined with bushes, providing a
serene and natural atmosphere. There are several people scattered across the beach, enjoying the sun and the view.\n\nIn the water, a boat can
be seen floating near the shore, adding to the picturesque scene. The combination of the beach, bushes, and water creates a perfect setting for
relaxation and leisure activities.

VD: The image features a beautiful beach scene with a large body of water in the background. The water appears to be a mix of blue and
white, creating a serene atmosphere. A kite can be seen flying in the sky, adding a touch of playfulness to the scene.\n\nThere are several
people scattered across the beach, enjoying the view and the outdoors. Some of them are closer to the water, while others are further back on
the sand. The combination of the kite, the people, and the water creates a lively and picturesque beach scene.

ID: What is this thing? I'm sorry, I'm not sure what you are asking. The image shows several persons on the beach.

image caption model.’

Figure 5.4: Instance Illustration of Different Disturbance Results. Examples
are from MSCOCO [109] inferred by LLaVA-1.5 7B with ¢ = 3 and Top-k=50. Hal-

lucinations are marked in red.

on Equation 5.5.

Analyses. Figure 5.5 and 5.6 preliminarily validate the efficacy of Score;(v) qual-
itatively. In Figure 5.5, the preserved least important tokens mainly reflect areas
opposite to the query. For instance, when querying ‘cup’ in Figure 5.5 (left),
LVLMs focus on ‘cup’ in the foreground, thus preserving background tokens with
low Score;(v). Conversely, LVLMs pay attention to background items when query-
ing ‘couch’. When querying existing items in Figure 5.5 (right), vision tokens of
unrelated regions are mainly preserved. For open-end generative tasks in Figure 5.6,
auto-regressive decoded tokens are generated based on preceding vision (v), instruc-
tion (), and generated text (g) tokens. The preserved vision tokens are adaptively
adjusted according to preceding tokens at each decoding step, primarily focusing on
spurious related regions. To quantitative analyses the attention score, we select the
top-100 and least-100 important vision tokens out of a total of 576 vision tokens of

LLaVA-1.5 7B based on attention score based on Equation 5.5. Visual and Instruc-
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5.3. Self-Introspective Decoding (SID)

tion Disturbance (VD and ID) are also employed as inputs for analyses. Quantitative
results in Table 5.2 illustrate that 100 out of 576 vision tokens with high attention
scores greatly maintain original ability, while low attention score tokens reach almost
50% accuracy for the binary classification problem, which indicates attention scores
are a good indicator for vision token importance. As for VD and ID, disturbance in
raw input does not obviously harm the LVLMs’ discrimination ability, as indicated by
the POPE metric. However, VD and ID significantly compromise the open-end gen-
eration tasks reflected by the CHAIR metric (LVLMSs tend to refuse to ID as shown in
Figure 5.3 and 5.4). Above evaluations suggest that Equation 5.5 effectively assesses

the importance of vision tokens.

We further demonstrate the open-end generated hallucinations induced by ours, Vi-
sion Disturbance (VD) [94], and Instruction Disturbance (ID) [170] in Figure 5.3 and
5.4. The hallucinations we amplified are more vision-and-text association compared
to VD, while LVLMs usually refuse to response to ID. Additionally, we demonstrate
the quantitative results for discrimination and generation tasks with VD and ID as
inputs in Table 5.2. Interestingly, VD and ID do not degrades much especially in
discrimination tasks. Experiments imply that disturbed target logits still have the
highest probability in most cases, and therefore, contrastive decoded target logits are
not enhanced much after Equation 4.2, while CD methods are susceptible to potential

uncertainty noise.

original Q: Isthere a cup  Q: Is there a couch original Q: Is there a knife  Q: Is there a cup
image in the image? in the image? image in the image? in the image?
L Lo i, ; : S, e,
£ = gl -C. i‘.:-_:. ’ "= - = Tt - " ! =F3
: = - - 3 L j.- .- - - - - - -
GT: No GT: No - GT: Yes GT: Yes

Figure 5.5: Visualization Results of the least important vision tokens on discrimi-
nation tasks informed by preceding vision and text tokens. LLaVA-1.5 7B with Layer

1 = 3 is utilized.
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Figure 5.6: Visualization Results of Adaptively Selecting the least important
vision tokens on open-end generative tasks informed by preceding vision and text

tokens. LLaVA-1.5 7B with Layer ¢ = 3 is utilized.

Table 5.2: Efficacy Analyses on Vision Token Attention Scores with POPE
metric on MSCOCO dataset and CHAIR metric. We select the Top-100 and Least-
100 important vision tokens out of a total of 576 vision tokens of LLaVA-1.5 7B,
based on Equation 4.5 (i=3). VD: Visual Disturbance; ID: Instruction Disturbance.

Random Adversarial
Setting CHAIRs | CHAIRIi |
Accuracy T F1 Score T | Accuracy T F1 Score 1
Greedy 88.8 88.6 79.3 80.9 49.6 14.4
+Top-100 85.6 83.9 77.1 76.3 52.7 15.2
+Least-100 55.3 66.1 54.0 65.3 63.2 38.7
+VD 88.0 87.6 78.9 79.8 56.7 16.9
+ID 88.2 87.7 79.1 80.1 - -
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5.3. Self-Introspective Decoding (SID)

5.3.2 Context and Text-aware Token Selection (CT?S) Strat-

egy

Based on the above investigations, we argue that to induce context- and text-aware
hallucinations for contrastive decoding, only a small percentage of vision tokens with
low attention scores should be preserved after the early decoder layers. To validate
our claims, we conduct the following experiments: 1) In Vision Encoder (VE), we
preserve tokens with low attention values between the [CLS] token and vision tokens
in the penultimate layer, calculated as: A = softmax(%). 2) In the LLM de-
coder, we preserve tokens with low importance score (Equation 5.5) across varying
layers (7). Additionally, we adjust the number of preserved vision tokens. As shown in
Figure 5.7, firstly, pruning vision tokens in VE based on [CLS] may not always yield
positive gains, as the [CLS] token lacks information about instructions and generated
texts, which are crucial for multimodal understanding. Specifically, pruning all vision
tokens resembles VIG [38], which contrastively amplifies the vision importance over
the language prior by ablating vision inputs. Secondly, aggressive pruning of vision
tokens (i.e., 0%) after Layer;—; is not optimal. As the ideal induced hallucination
distributions are target-co-occurring but suppress target logits, the loss of visual infor-
mation for subsequent decoding results in visual context diminishing, which can lead
to aimless hallucinations due to insufficient grounding in visual information. Thirdly,
selecting tokens in the late decoder layers degrades contrastive decoding to normal
decoding, as preceding layers of LVLMs already decode and understand multimodal
information, which is consistent with LLMs’ early-exiting mechanisms [149, 34]. In
summary, the proposed CT?S strategy selects Top-k least important vision tokens
after the early layers based on attention score (Equation 5.5), where the induced
hallucinations are aware of both visual contexts and text information. Finally, fol-
lowing CD methods (Sec. 5.2.2), we contrastively subtract amplified vision-and-text

association hallucinations for the next token prediction.
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Figure 5.7: Analyses of varying ¢ and preserved ratios in CT2S. VE: vision encoder;

1: 1-th decoder layer.

Discussion. Based on analyses of the self-introspective pre-trained LVLMSs, could we
enhance vision information informed by the proceeding vision and text tokens rather
than utilizing the contrastive decoding? To explore this, we rewrite Equation 4.2 as

follows:

Padd(Yi|v, v T,t, y<i) = softmax[(1 — a)logity(y;|v, t, y<i) + alogite(yi|v T, t, y<i)] (5.6)

where we preserve vision tokens with high importance scores (Equation 5.5) denoted
as v 1. From Table 5.3, we observe that enhancing vision information (i.e., Add)
alleviates hallucinations to some extent, which also implicitly validates the efficacy
of Equation 5.5. However, in the adversarial setting, enhancing vision information
does not bring much benefits compared to ours. Because our amplified hallucinations
effectively associate co-occurring objects, reflected in high logit values of halluci-
nation token, and then contrastively suppress them. In contrast, enhancing vision
information primarily boosts the original prediction’s target logits grounded in at-
tention scores, which does not significantly improve discrimination, especially in the

adversarial setting.
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Table 5.3: Analyses of Contrastive Decoding Mechanisms on the POPE metric.

Hyperparameters are consistent with CD settings.

Setting Random  Adversarial

Sampling 84.7 78.7
VCD 87.7 80.9
Add 88.9 79.4
Ours 88.8 82.6
Greedy 88.8 79.1
VCD 87.8 80.9
Add 89.1 80.1
Ours 89.3 83.3

5.4 Experimental Results

5.4.1 Experimental Settings

Models and Baselines. We utilize four representative LVLMs: InstructBLIP [29],
Shikra [19], LLaVA-1.5 [111] at the 7B scale, and LLaVA-NeXT [96] at the 8B scale.

For the detailed model descriptions, Instruct BLIP employs Q-former [99] to condense

image tokens to 32, as a result, we are unable to visualize the dynamic token pruning

process of InstructBLIP like Figure 5.5 and 5.6. Shikra, LLaVA-1.5, and LLaVA-

NeXT directly leverage linear projection layers as vision-language connectors to align

multimodal features. Shikra and LLaVA-1.5 encode 256 and 576 image tokens to

LVLMs. LLaVA-NeXT increases the input vision resolution by 4x to capture more

visual details, resulting in 4x more encoded vision tokens than LLaVA-1.5. All

LVLMs utilize pre-trained vision encoders like CLIP [141] vision encoder, as well as

pre-trained LLMs as language decoders, such as Vicuna v1.1 [26], LLaMA 2 [161],

and recently released LLaMA 3 [126]. We provide results at the 7 Billion (B) scale,
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and larger-scale results are in Table 5.9. Since our method aims to propose training-
free LVLM decoding strategies without the aid of auxiliary networks, we compare
six decoding methods: Sampling (Top-p=1), Greedy, Dola [27], and LVLM decoding
strategies (VCD [94], ICD [170], and OPERA [61]). For comprehensive comparisons,
we apply VCD and ICD in both sampling (Top-p=1) and greedy decoding settings.

Implementation Details. As analyzed in Sec. 5.3.2, we set Layer i=3 and preserve
top 10% least important vision tokens for Shikra, LLaVA-1.5, and LLaVA-NeXT and
i=5 and top 10% least important vision tokens for Q-former based LVLMs (Instruct-
BLIP) to induce fine-grained hallucinations. For sampling and greedy decoding, we
adopt the default hyperparameter settings. As for Dola [27], it is designed to alleviate
hallucinations (i.e., improve factuality) of LLM by contrasting the differences in logits
obtained from projecting the later layers versus premature layers. Dola is sensitive
to the premature layer selection, we adapt Dola to LVLMs, following OPERA [61] to
utilize “0,2,4,6,8,10,12,14” as the indexes of candidate premature layers and “32” as
the index of the mature layer. The repetition penalty is set to 1.2, as Dola suggests.
OPERA, VCD, and ICD are proposed for LVLMs and we adopt the default settings.
For fair comparisons, SID’s hyperparameters of Equation 4.2 and 4.3 follow VCD
and ICD. Moreover, we apply SID, VCD, and ICD in both sampling (Top-p=1) and
greedy decoding settings for comprehensive comparisons. Note that due to amplified
fine-grained hallucinations, SID is more robust to hyperparameters compared to other

CD methods (Sec. 5.5). Experiments are performed on NVIDIA V100/A100 GPUs.

5.4.2 Evaluation Results

In this section, we follow previous methods [94, 170, 61] to evaluate the SID on
CHAIR [144] and POPE [106] metrics. Besides manually designed metrics, we also
leverage GPT-4 assisted benchmark [206] to evaluate attribute, location, and

relation hallucinations. MME [40] and MMBench [117] benchmarks are employed
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Table 5.4: Results on the CHAIR metric. * and * denote adopting the same

sampling and greedy decoding strategies, respectively.

LLaVA-1.5 InstructBLIP Shikra LLaVA-NeXT
Setting

Sampling | 51.3 16.8 51.0 24.2 489 147 426 14.1
ICD* 487 139 483 16.7 478 145 427 13.6
VCD* 48.0 143 479 17.2 48.1 13.8 41.3 12.9

Dola* 471  13.8 527 14.0 46.8 14.2 409 13.1
OPERA | 452 127 474 12.9 44.4 136 394 11.8
ICD* 474 139  46.3 15.3 473 141 421 12.6

to assess the LVLM’s general ability. Moreover, GPT4-V assisted evaluation on
both hallucination alleviation and generated text quality and Case study of several

pictures are illustrated.

CHAIR and POPE Evaluations. CHAIR [144] and POPE [106] are quantitative
metrics to assess objection hallucinations of VLMs. The Caption Hallucination As-
sessment with Image Relevance (CHAIR) [144] metric is specially designed to assess
objection hallucinations in the image caption tasks. Concretely, CHAIR quantifies
the degree of hallucinations in a generated image caption by calculating the propor-
tion of all objects mentioned in the caption that are not present in the ground truth
label pool. There are two common variants of CHAIR: CHAIRi (C;) and CHAIRs

(Cs), which evaluate the degree of object hallucination in the instance and sentence
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level, respectively. These two metrics are formulated as follows:

o - |{hallucinated objects}| Cu — |{captions with hallucinated objects}|
"™ |{all mentioned objects}|” ~°

[{all captions}| (5.7)

The smaller the value of C; and Cjg, the better the hallucination alleviation per-
formance. The Polling-based Object Probing Evaluation (POPE) [106] was recently
developed to assess hallucination problems in LVLMs. POPE queries the LVLMs with
the template: Is there a <object> in the image? The ratio between queries
about existing and no-existing objects is balanced (i.e., 50%-50%). This benchmark
consists of three sampling settings: random, popular, and adversarial, each differing
in the construction of negative samples. Specially, in the random setting, objects
that are not present in the image are selected at random. The popular setting selects
missing objects from the high-frequency pool, whereas in the adversarial setting, co-
occurring objects that are not present in the image are prioritized. POPE consists of
three different datasets, including MSCOCO [109], A-OKVQA [150], and GQA [64].
POPE involves 500 images from each dataset with six questions each, ultimately
yielding 27,000 query-answer pairs. Accuracy and F1 score are chosen as evaluation
metrics. The larger the value of Accuracy and F1 score, the better the hallucination
alleviation performance. As for CHAIR, Following [170, 61, 197], we randomly select
500 images from the validation set of the MSCOCO [109] dataset and query different
LVLMs with the prompt: ‘Please describe this image in detail.’. We set the
max new tokens to 512 to generate responses for fair comparisons. As shown in Table
5.4, our method outperforms other baselines in most cases, validating the effectiveness
of SID in open-end generation tasks. Compared to CD methods, SID online adap-
tively prunes attention-important vision tokens informed by instruction and generated
text to induce fine-grained hallucinations for contrastive decoding during open-end
text generations. For the POPE metric, which comprises three datasets, we average
the results in Table 5.5. Our method performs best overall in random, popular, and
adversarial sampling settings. Specifically, in the sampling decoding setting, SID

surpasses the normal sampling decoding by a large margin in a train-free manner.
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LLaVA-1.5 InstructBLIP i LLaVA-NeXT

OPERA

Sampling

Figure 5.8: GPT-4 assisted benchmark [206]. Hallucination (SHR), fluency
(1&2-gram), and detailness (WPI and SPI) aspects are compared. Larger areas
mean better performances. VCD and ours adopt the same sampling decoding. Please

zoom in for details.

SID also clearly outperforms CD methods (Dola, ICD, and VCD) because the self-
introspective decoding strategy amplifies wvision-and-text association hallucinations
then subtracts them, rather than coarsely disturbing raw inputs. Additionally, owing
to the context and text-aware token selection strategy, SID is more computation-
efficient than CD methods, as analyzed in Table 5.8. Note that beam-search based
OPERA [61] shows almost no gain in the POPE metric, primarily because answering
the binary classification only requires a few tokens and selecting the best beam score

in a decoded sequence (N=5) brings little improvement.

GPT-4 Assisted Benchmark. While CHAIR and POPE evaluate object-existence-
level hallucinations, these metrics are unable to identify other types of hallucination,
such as positional, relational, and attribute hallucinations. Therefore, the GPT-4
assisted benchmark [206] utilizes the fine-grained object-level descriptions in the Vi-
sual Genome (VG) dataset [88] as ground-truth and relies on the advanced GPT-4 to
judge the fine-grained hallucinations and calculate Sentence-level Hallucination Ratio
(SHR). Concretely, besides object-existence-level hallucinations evaluated by CHAIR
and POPE, GPT-4 assisted benchmark [206] utilizes the fine-grained object-level de-
scription in the Visual Genome (VG) dataset [88] as ground-truth and relies on the
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Table 5.5: Average results on the POPE metric. * and * denote adopting the
same sampling and greedy decoding strategies, respectively. Results are from the

original papers or re-implemented based on official codes.

Setting Random Popular Adversarial
Model Decoding Accuracy? F1 Score? | Accuracy? F1 Scoret | Accuracy? F1 Scoref
Sampling 84.77 82.28 79.98 79.34 76.03 76.26
ICD* 87.51 83.28 83.15 83.91 79.13 80.41
VCD* 86.84 86.83 82.65 83.37 77.31 79.28
‘2 Ours* 88.91 88.84 83.97 85.42 82.54 81.98
4  Greedy 8881 8852 | 8276 8336 | 7901 8092
E Dola* 87.94 87.97 83.87 84.68 80.35 81.21
= OPERA 88.85 88.67 82.77 83.40 79.16 80.93
ICD* 87.97 87.84 84.03 84.22 80.21 80.97
VCD* 87.02 86.96 83.53 84.56 78.12 80.16
Ours* 89.46 89.62 85.13 85.94 83.24 82.21
Sampling 80.42 80.94 76.09 77.65 72.37 75.42
ICD* 85.78 85.73 81.12 82.25 76.82 78.99
VCD* 84.11 84.13 79.96 80.80 76.32 78.08
E Ours* 86.56 85.94 80.26 81.75 77.64 80.41
©  Greedy 8456 8375 | 7823 7906 | 7458 7634
g Dola* 84.67 83.38 78.21 79.19 75.69 77.98
,_é: OPERA 84.57 83.74 78.24 79.15 74.59 76.33
ICD* 84.36 83.82 77.88 78.70 75.17 77.23
VCD* 84.52 83.63 78.04 78.45 75.95 77.76
Ours* 87.23 86.90 81.16 82.57 78.51 81.26
Sampling 81.42 82.46 79.60 80.78 73.85 76.39
ICD* 82.34 82.82 78.17 80.43 74.96 77.68
VCD* 82.31 82.73 79.34 80.93 75.61 77.96
Ours* 83.87 83.94 80.26 82.07 77.85 78.94
;f  Greedy 8300 8319 | 8139 8190 | 7669 7831
i Dola* 82.87 82.98 82.42 82.50 76.85 78.09
OPERA 83.05 83.20 81.40 81.89 76.73 78.31
ICD* 82.67 82.64 80.73 81.58 75.98 78.43
VCD* 82.96 82.63 80.68 81.27 76.94 78.32
Ours* 84.46 84.62 82.38 82.73 78.67 79.34
Sampling 86.32 83.11 82.27 81.03 77.32 76.96
ICD* 87.32 84.03 83.62 83.54 80.31 80.41
VCD* 86.97 86.71 83.07 83.65 79.42 80.28
S ows s se | s sn | sme ses
Z, Greedy 89.37 88.82 83.68 84.62 80.08 80.74
% Dola* 88.73 88.67 84.56 84.96 80.32 80.68
j OPERA 89.36 88.80 83.65 84.60 80.10 80.75
ICD* 87.40 87.96 84.11 83.79 80.94 80.67
VCD* 87.83 87.09 B2 82.68 83.55 79.61 81.20
Ours* 90.05 89.97 86.13 85.69 84.06 82.95




5.4. Experimental Results

advanced GPT-4 to judge the detailed (such as positional, relational, and attribute)
hallucinations and calculate Sentence-level Hallucination Ratio (SHR). With the gen-
erated sentences and manually annotated factual information, GPT-4 is prompted to
evaluate whether existing hallucinations sentence by sentence. The prompt template
is provided in Figure 5.9. Following [206], we utilize 200 images from the VG dataset
and set max new tokens to 512, with the prompt of ‘Please describe this image
in detail.’ We conduct experiments on sampling decoding strategies and represen-
tative LVLMs decoding strategies: VCD [94] and OPERA [61]. Moreover, we employ
n-gram fluency (n = 1 and 2) metrics to measure the smoothness of generated text,
and the number of generated words/sentences per image (WPI/SPI) to compare the
detailedness of generated texts. As shown in Figure 5.8, SID achieves the best results
in the SHR metric among the four LVLMs, outperforming others by a clear mar-
gin. Regarding the quality of the generated texts, Sampling decoding outperforms
ours slightly in terms of 1-gram fluency and WPI. However, compared to other base-
lines, our approach alleviates hallucinations with minimal sacrifice in text generation
quality regarding smoothness and detailness. For instance, OPERA generates text
with fewer words and sentences due to penalization of the over-trust mechanism, and
VCD impairs text fluency, possibly arising from the holistic and fixed disturbance of

contrastive inputs.

MME and MMBench Evaluations. Besides, we test on two popular LVLMs’
general ability benchmarks: MME and MMBench. MME comprises ten subtasks
to evaluate models’ perceptual capabilities and four subtasks for assessing recogni-
tive abilities in the form of the yes/no question. MMBench systematically evaluates
twenty ability dimensions of LVLMs. We present the results of LLaVA-1.5 7B as a
representative in Table 5.7, SID can maintain and improve the multimodal ability on
LVLMs benchmarks. In contrast, other CD methods tend to compromise the general

multimodal ability.

GPT4-V Assisted Evaluation. To further analyze the hallucinations and text
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quality for open-end generation tasks, following [61, 190], we utilize the strong multi-
modal assistant GPT4-V, which simultaneously processes input from vision and text
modalities. We strictly follow [61], which utilizes 500 images from the MSCOCO
dataset and prompts LVLM: ‘Please describe this image in detail.’ with the
maximum number of 512. To mitigate the impact of the sequential order fed to
GPT4-V, we simultaneously compare the generated texts obtained from two decoding
methods and instruct GPT4-V to judge the correctness and detailedness score on a
scale of 0-10 based on the input image. The detailed GPT4-V prompt is in Figure 5.10.
We set up three representative pairs of comparison experiments: greedy decoding and
ours, CD-based VCD [94] and ours, and OPERA [61] and ours. As shown in Table 5.6,
our SID achieves the best results in terms of most metrics. Concretely, our method
improves correctness by about 15-20% compared to sampling decoding while not
compromising the detailedness level. Compared to advanced hallucination mitigation
methods VCD and OPERA, SID generates text with obvious more details and better
mitigates the hallucination issue. Since the perceptual and reasoning capabilities of
GPT4-V are very close to those of humans, the results of the GPT4-V evaluation
reflect, to some extent, the strong performance of the compared methods in terms
of mitigating hallucinations and generating text quality from a human perceptual

perspective.

Case Study. In addition to using crafted metrics (CHAIR and POPE), GPT-
4/GPT4-V-aided evaluations, and MME [40] and MMBench [117] benchmarks, we
qualitatively present several case studies of SID’s hallucination alleviation ability
from LLaVA-Bench-in-the-Wild dataset [112]. As illustrated in Figure 5.11, 5.12, and
5.13, SID effectively mitigates hallucination in these challenging scenes by dynami-
cally amplifying vision-and-text association hallucinations. Meanwhile, it preserves
the detailness of each image. As we propose a training-free decoding method that
does not rely on auxiliary analysis networks, it inherently carries over the existing

weaknesses of LVLMs. Intuitive case studies, as illustrated in Figure 5.11, 5.12, and
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Table 5.6: GPT4-V assisted hallucination evaluations [61, 190]. VCD and ours

adopt the same sampling decoding strategy. C': correctness; D: detailedness

LLaVA-1.5 InstructBLIP Shikra LLaVA-NeXT

Dt cr Dt cr Dt ct Dt
Sampling 5.18 5.79 4.73 5.10 5.03 5.17 5.34 5.67
Ours 5.97 6.01 5.62 5.16 5.78 5.10 6.47 5.85
VCD 546 5.63 4.98 5.21 5.31 5.24 5.92 5.47
Ours 6.16 5.94 5.37 5.46 5.61 5.29 6.12 5.78
OPERA 6.16 5.57 5.29 4.86 5.34 4.87 6.11 5.24
Ours 6.15 5.94 5.76 5.42 5.97 5.88 6.63 6.23

Setting

Table 5.7: LVLM benchmark evaluations. DoLa, ICD, VCD, and SID employ
the same greedy decoding.

Greedy Sampling DoLa ICD VCD OPERA SID

MME 1510.8+1.2  1471.5+56 1480.7+1.3 1473.2+12 1488.5+0s 1515.2+11 1520.4+0.9
MDMbench 64.4+.22 63.9+.81 63.7+.22 63.0+.24 63.8+.22 64.4+.13 65.0+.23
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GPT-4 Prompt

Please help me judge if the comment of this image is hallucination or correct.

I will give you a list of region description of a image. The format is [x1, y1, X2, y2]: region description,
where [x1, y1, x2, y2] is the bounding box of the region. Highly overlapping bounding boxes may refer
to the same object. This is the ground truth information of the image. Besides, | give you some factual
information about the content of the image (which is 100% accurate). Your judgement should base on
this information. However, this information only descibe the objects in the region of image, so it cannot
descibe the subjective part of the image, e.g., atmosphere, style, emotion. In that case, you can return
"Cannot judge".

Also, | will give you a list of comments of the image for you to judge if it is hallucination. Please give a
judgement one by one along with the reason.

Your output should be:

Judgement:

1. hallucination or correct or cannot judge: <reason>
2. ...

Here are the region descriptions of the image:

¢

Factual Information:

{}

Here is the comment for you to judge (hallucination, correct, or cannot judge):

{4

Figure 5.9: Prompts of GPT-4 for evaluations.

5.13, reveal that SID still generates some hallucinations, particularly in finer details
such as eye color and vehicle identification specifics. These failures may be attributed
to the vision encoder’s relatively limited visual perception ability. For future work, it
is promising to integrate SID with InternVL [25], which scales the vision encoder up
to 6B, or consider leveraging auxiliary analysis networks like Grounding DINO [116]

or OWLv2 [128] to mitigate LVLMs’ internal weaknesses.

5.5 Ablation Analyses

In this section, we conduct ablation analyses in terms of the Computation Ef-

ficiency and Hyperparameter Sensitivity, Larger-scale Backbones, Other
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GPT4-V Prompt

You are required to score the performance of two Al assistants in describing a given image. You should
pay extra attention to the hallucination, which refers to the part of descriptions that are inconsistent with
the image content, such as claiming the existence of something not present in the image or describing
incorrectly in terms of the counts, positions, or colors of objects in the image. Please rate the responses of
the assistants on a scale of 1 to 10, where a higher score indicates better performance, according to the
following criteria:

1: Accuracy: whether the response is accurate with respect to the image content. Responses with fewer
hallucinations should be given higher

scores.

2: Detailedness: whether the response is rich in necessary details. Note that hallucinated descriptions
should not count necessary details.

Please output the scores for each criterion, containing only two values indicating the scores for Assistant
1 and 2, respectively. The two scores

are separated by a space. Following the scores, please provide an explanation of your evaluation,
avoiding any potential bias and ensuring that

the order in which the responses were presented does not affect your judgment.

[Assistant 1]

{

[End of Assistant 1]

[Assistant 2]

{

[End of Assistant 2]

Output format:

Accuracy: <Scores of the two answers>

Reason:

Detailedness: <Scores of the two answers>

Reason:

Figure 5.10: Prompts of GPT4-V for evaluations.

Decoding Strategies, and Visual Enhancing Decoding Strategy.

Computation Efficiency. One primary concern of hallucination alleviation de-
coding methods is the computational burden. We evaluate the whole dataset in-
ference time (seconds) and peak GPU memory (MB) on the LLaVA-1.5 7B under
the POPE adversarial setting, as shown in Table 5.8. Contrastive Decoding (CD)
methods [94, 170] involve constructing distorted raw inputs, resulting in twice the
inference complexity. OPERA [61] is based on beam-search decoding and maintains
a set of beams to enlarge the candidate range. Additionally, roll back mechanism in

the retrospection-reallocation strategy further exacerbates computational complexity:.
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/

Instruction

(max new tokens=512)

Please describe this
image in detail.

Greedy: The image features a dog wearing a gown, possibly painted as a mona lisa painting. The dog is looking at the camera with a
curious expression, displaying its unique attire. The gown appears to be a burgundy color and complements the dog's outfit.\n\nThe
setting of the painting includes a pond and a rock formation in the background, adding a sense of depth and atmosphere to the
artwork. Additionally, there is another small figure, possibly a dog or a human, in the upper-left corner of the picture.

OPERA: The image features a painting of a dog wearing a Renaissance-style dress, with a hood over its head. The dog appears to be
a poodle, and it is sitting in a chair, giving the impression of a human-like figure. The painting is quite detailed, capturing the dog's
facial expression and the intricate design of the Renaissance dress. The dog's attire and the overall composition of the painting create
a unique and interesting visual experience.

VCD: The image is a painting of a woman wearing a Renaissance-style dress and a hood, resembling a dog. The woman has a dog's
face painted on her forehead, and she is wearing a hat. The painting captures the unique and whimsical blend of human and canine
features.\n\nIn the background, there is a boat visible, adding a sense of depth and context to the scene. The woman's attire and the
dog's face on her forehead create a playful and imaginative atmosphere.

Ours: The painting features a dog wearing Renaissance paint makeup and a veil, posing as a Mona Lisa-style figure. The dog's
face is adorned with a mustache and hat, giving it a unique and artistic appearance. The dog's sitting position is also painted to
resemble a human's, adding to the creative and humorous nature of the painting.\n\nIn the background, there is a river visible, which
complements the overall composition of the painting. The dog's position and the artistic elements create a captivating and amusing

\scene‘ /

Figure 5.11: Case Study from LLaVA-Bench-in-the-Wild on LLaVA-1.5 7B.

Hallucinations are marked in red.

Our SID induces vision-and-text association hallucinations by pruning large-ratio
attention-important tokens in the early layers, which greatly reduces the inference

time of CD up to ~30%.

Hyperparameter Sensitivity. Beyond the sensitivity analyses in Figure 5.7, we
validate the robustness of SID concerning o and 3 of Equation 4.2 and 4.3, compared
to the contrastive decoding methods (i.e., VCD) on LLaVA-1.5 7B. From Figure
5.14 (left), it is evident that as a decreases, the contrastive decoding mechanism
diminishes. However, SID still achieves pleasant results, while VCD degrades close
to Sampling when a=0.1, as the CT?S strategy induces informative vision-and-text
association hallucinations. When « increases, VCD degrades to some extent because
holistic input disturbance does not always trigger contextual-related hallucination

and might exacerbate uncertainty noise. Regarding (3, a larger [ indicates more
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~

Instruction

(max new tokens=512)

Please describe this
image in detail.

Greedy: The image features a group of three animals sitting around a dining table, enjoying a meal together. The animals include a
large brown bear, a cat, and a rabbit. They are all seated on the grass, with the bear on the left side, the cat in the middle, and the
rabbit on the right side of the table.\n\nThe table is set with various food items, including a cake, a bowl, and a cup. The cake is
placed in the center of the table, while the bowl and cup are positioned closer to the edge. The scene appears to be a whimsical and
playful depiction of the animals sharing a meal.

OPERA: The image depicts a whimsical scene of a bear, a cat, and a rabbit sitting around a dining table, enjoying a meal together.
The bear is on the left side of the table, the cat is in the middle, and the rabbit is on the right side. Each animal has a plate of food in
front of them.\n\nThe table is set with various utensils such as forks, knives, and spoons, as well as cups and bowls. There are also a
couple of cakes placed on the table, adding to the delightful atmosphere of the gathering.\n\nIn the background, a potted plant can
be seen, adding a touch of greenery to the scene.

VCD: The image features a whimsical scene of three animals sitting around a dining table, enjoying a meal together. A brown bear
is sitting on one side of the table, while a cat is seated on the opposite side, and a rabbit is sitting on the far right side of the table.\n\
nVarious food items are placed on the table, including a cup, a bowl, and several cakes. The cakes are spread across the table, with
one near the center, another closer to the rabbit, and the third one near the cat. The table is set in a lush green field, giving the scene
a peaceful and inviting atmosphere.

Ours: The watercolor illustration features three animals sitting around a dining table, enjoying cookies and doughnuts. A large
brown bear is on one side of the table, while a gray cat and a yellowish rabbit are on the other side. The cat has blue eyes and is
drinking from a blue cup, while the rabbit holds a pink cup as well.\n\nThe table is topped with a plate of various desserts, including
multiple cookies and doughnuts. The scene is set in a field surrounded by green grass and trees, giving the whole watercolor a
\natural and whimsical atmosphere. j

Figure 5.12: Case Study from LLaVA-Bench-in-the-Wild on LLaVA-1.5 7B.

Hallucinations are marked in red.

aggressive truncation of the output vocabulary. Figure 5.14 (right) shows that VCD’s
performance heavily relies on large /3 to retain only high-probability tokens. With mild
or no adaptive plausibility constraint (Equation 4.3), VCD performs worse than the
sample decoding strategy due to output logits influenced by distorted visual inputs.
Ours is robust to the 3 setting as the CT2S strategy induces discriminative contrastive

logits to generate plausible tokens.

Larger-scale LVLM Backbones. We validate the effectiveness of SID in terms of
13B scale backbones on LLaVA-1.5 and Instruct BLIP architectures. We choose POPE
[106] and CHAIR [144] to validate the hallucination issues in both discrimination and
open-end generation tasks. Table 5.9 shows that SID remains effective as backbone

networks scale up.
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-

Instruction
(max new tokens=512)

Please describe this
image in detail.

Greedy: The image features a man standing on the back of a yellow taxi cab, holding a blue shirt. He appears to be ironing the shirt
while the taxi is in motion. The taxi is driving down a busy street, with other vehicles such as a truck and a car visible in the scene.\n\
nThere are also a few potted plants scattered around the area, adding some greenery to the urban environment. Additionally, a traffic
light can be seen in the background, indicating that the taxi is driving through an intersection.

OPERA: In the image, a man wearing a yellow shirt is standing on the back of a yellow taxi, ironing clothes. The taxi is driving down
a busy city street, surrounded by other vehicles such as cars and trucks. One car is positioned behind the taxi on the left side, while
another car can be seen further down the street on the right side. A truck is also visible on the right side of the street.\n\nThere are
several potted plants placed along the street, adding a touch of greenery to the urban environment. One potted plant is located near the
center of the scene, while two others are positioned closer to the right side of the street.

VCD: The image features a man ironing clothes on the back of a yellow SUV taxi. He is standing on a clothes iron, which is placed
on top of a metal frame mounted on the back of the vehicle. The man is focused on his task, and the scene is quite unusual as it takes
place on a busy city street.\n\nThere are several other vehicles in the scene, including a truck and a car on the left side of the image,
and another car on the right side. Additionally, there are two potted plants visible in the scene, one near the center and the other on
the left side.

Ours: In the image, a man is ironing clothes while riding on the back of a yellow SUV taxi. He is standing on a portable desk, which
is strapped to the back of the vehicle. The taxi is driving down a busy city street, surrounded by various vehicles, including a yellow
taxi and a truck.\n\nThe man is wearing a yellow shirt and shorts, and he appears to be focused on his task. Green trees can be seen in
the background, adding a touch of greenery to the busy urban environment. The man's unconventional choice of transportation adds a
@ique element to the bustling cityscape. /

Figure 5.13: Case Study from LLaVA-Bench-in-the-Wild on LLaVA-1.5 7B.

Hallucinations are marked in red.

Adopting Other Decoding Strategies. Meanwhile, besides direct sampling and
greedy decoding, we conduct experiments on LLaVA-1.5 7B using the MSCOCO
dataset with various decoding strategies, including Top-p sampling (p=0.9), Top-k
sampling (k=50), Top-k sampling with varying temperature (k=50, t=1.5 and 0.8).
Figure 5.15 shows that, regardless of the sampling strategy adopted, the application of
SID consistently helps to alleviate hallucinations and improve the overall performance
of LVLMs. This consistency highlights the versatility and effectiveness of SID across

different sampling strategies.

Visual Enhancing Decoding Strategy. Although LVLMs can accurately recog-
nize visual elements, LVLMs have difficulty fully interpreting those elements in the
context of the input cue and effectively linking that recognition to their internal knowl-

edge. We follow Visual Description Grounded Decoding (VDGD) [42] by first gener-
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Methods Time | Memory) Accuracyt

Normal 494 15673 79.11
VCD 904 16753 78.12
ICD 974 16843 80.21
OPERA 2643 21943 79.16
Oursygy, 704 15809 83.11
Ours; oy 668 15767 83.24

Table 5.8: Efficiency Comparisons on NVIDIA V100. 199 and 4% mean tokens

preserved ratios.

a analyses B analyses
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Figure 5.14: Hyperparameter Sensitivity of a« and § with POPE metric (under
the sampling decoding).
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Figure 5.15: Results of different decoding strategies.

91



Chapter 5. SID: Self-Introspective Decoding for Modality Prior to Alleviate
Hallucinations for Multimodal Large Models

Table 5.9: Results on Larger-scale Backbones. Sampling decoding is adopted

and results average of three running times.

POPE CHAIR
Methods Accuracy F1 Score Cg Cr
LLaVA-1.5 81.60 80.31 49.6 16.1
+VCD 82.67 81.46 46.7 16.4
+OPERA 82.32 81.10 43.3 13.6
+Ours 84.75 83.17 43.5  12.7
InstructBLIP 77.26 79.23 50.8  19.7
+VCD 79.77 80.27 479 176
+OPERA 80.31 80.91 42.5 14.3
+QOurs 81.97 82.21 41.7 13.3

ating a detailed description of the image and appending it as a prefix to the instruc-

tion. The prompt template is adopted from [42]: <image> I have been given this

image to complete the task described as: inst. To help me complete the

task, describe the given image in detail. In the case of real-world scenes,
please include all foreground and background objects in the description,

their properties (like color, shape, etc.), their relations with other objects,
their count, and all other components in the image. In case of non-real-world
scenes, like charts, graphs, tables, etc., please describe the table, mention
all numbers (if any), mention the written text, and all other details. Ex-
periments are performed on hallucination evaluation benchmarks( i.e., POPE and

CHAIR) and the general ability benchmark (i.e., MMbench). We re-implement

VDGD based on official codes on LLaVA-1.5 7B. Table 5.10 demonstrates the ef-
fectiveness of VDGD [42] in LVLM’s hallucination alleviation and general reasoning

ability. However, the grounding visual descriptions, generated by LVLMs themself,

enhance the visual perception reasoning capabilities while might inevitably contain
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hallucinations. Therefore, VDGD is inferior in the POPE (adversial) subset, which
prioritizes co-occurring objects which are not present in the image. Meanwhile,
VDGD shares somewhat similar motivations in enhancing vision information via
Equation 4.6 as we analyzed. The experiments in Table 5.3 are consistent with the
above results, indicating that boosting the vision information is effective in mitigating

hallucinations but is less effective in complex (i.e., adversarial) environments.

Table 5.10: Comparisons with Visual Enhancing Strategy (VDGD). * denotes
employing greedy decoding strategy.

POPE? POPE}
CHAIRs| CHAIRi] MMbencht

(random) (adversarial)

Greedy 88.8 79.1 49.6 14.4 64.4
OPERA 88.9 79.2 45.2 12.7 64.4
VDGD* 89.0 79.4 46.7 13.7 65.2

SID* 89.3 83.3 44.2 12.2 65.0

5.6 Discussion

The core motivation is based the Context and Text-aware Token Selection (CT?S)
strategy. Here, we further analyze the efficacy of token selection strategies. Con-
cretely, To validate the effectiveness of SID in selecting low attention scores to in-
duce vision-and-text association hallucination, we further conduct quantitative ex-
periments under different vision token selection strategies with the same preserved
vision token number and Layer =3 as ours. Table 5.11 shows that vision tokens
with high attention scores degrade obviously, as it does not amplify contextual hal-
lucinations rather than retain original important information. Contrastive decoding
does not benefit from subtracting hallucinations amplified by the disturbed inputs

rather than suffers from the potential disturbance noise. Selecting random vision to-

93



Chapter 5. SID: Self-Introspective Decoding for Modality Prior to Alleviate
Hallucinations for Multimodal Large Models

Table 5.11: Analyses of Different Token Selection Strategies with POPE on
MSCOCO dataset and CHAIR metrics. We select the high importance scores (Equa-
tion 5.5) of vision tokens (-Top) and random vision tokens (-Random) for contrastive

decoding. Experiments are conducted on LLaVA-1.5 7B.

Random Adwversarial
Setting CHAIRs | CHAIRI |
Accuracy T F1 Score 1 | Accuracy 1 F1 Score T

Greedy 88.8 88.6 79.3 80.9 49.6 14.4
Ows | 893 895 833 25 | m2 122

-High 87.0 87.3 76.5 79.4 57.9 25.6

-Random 88.4 87.2 80.9 81.5 48.6 13.5

AVISC 88.4 88.1 79.8 80.5 45.3 14.7

Sampling 84.9 83.2 78.7 78.9 51.3 16.8
Ouwss | 888 ssT 826 21 | 50 1

AVISC 87.9 87.9 77.5 79.6 46.6 12.5

kens brings improvements in the adversarial setting because randomly selected vision
tokens amplify the over-reliance on statistical bias and language priors, similar to
Vision CD [94] and Instruction CD [170]. However, token-level random disturbance
also induces uncertainty noise, resulting in the inferior performance in the random
setting to greedy decoding. Moreover, AVISC [172], in contrast to ours, preserves
outlier high attention tokens (named ’blind token’) and substracts output logits to
counteract the overemphasis of 'blind token.” In this way, AVISC promotes balanced
consideration of all tokens to alleviate hallucinations. However, Table 5.11 illustrates
that Top-100 vision tokens with high attention scores can largely maintain the original
performance. 'blind token’ tends to have a high probability of target class logits, and
contrastive decoding does not improve the target class’s probability while might bring
extra noise. Table 5.11 indicates AVISC still degrades the greedy decoding to some
extent, which indicates the attentional vision re-calibration strategy of AVISC induces

some annoying noise. Overall, these experiments further validate the rationality of
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our token selection strategy based on attention sores.

5.7 Chapter Summary

In Chapter 5, we firstly re-think contrastive decoding in LVLMs and empirically find
that vision-and-text-agnostic input disturbances in CD do not always amplify desired
hallucinations rather than induce potential uncertainty noise. To mitigate these is-
sues, we propose a training-free decoding strategy named Self-Introspective Decoding
(SID). By developing Context and Text-aware Token Selection (CT2S) strategy, SID
amplifies wvision-and-text association hallucinations to guide LVLMs in contrastive
decoding, thereby improving faithfulness. Extensive experiments validate the effec-
tiveness and robustness of SID. Aligned with the thesis’s focus on robust open-world
reasoning, SID’s self-corrective mechanism extends Chapter 3’s cross-primitive com-
patibility robustness and Chapter 4’s crossmodal knowledge transfer harmonization
to introspective hallucination suppression of multimodal LLMs. As for Future Work:
1) As the pruning ratios and layer are set manually, we consider training the exter-
nal network to automatically determine optimal hyperparameters, inspired by [22].
In addition, to enhance the interpretability of hallucination alleviations, we consider
resorting to pre-trained analysis networks to intuitively locate spurious related vi-
sion regions. 2) Moreover, given that SID amplifies fine-grained hallucinations, we
consider leveraging the CT?S strategy to automatically construct high-quality neg-
ative instruction for robust visual instruction tuning rather than relying on expen-
sive GPT-4 [110, 206]. Note that the self-generated hallucination dataset ensures

style consistency, which is crucial for preference learning [206].
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Chapter 6

Conclusion and Suggestions for

Future Research

6.1 Conclusion

Despite the success of neural networks, modern neural networks remain inadequate for
open-world deployment due to limitations in flexibility, multimodal robustness, and
trustworthiness. This thesis bridges these gaps by addressing three critical challenges
in multimodal learning: (1) compositional robustness in multiple modality primitives,
(2) efficient cross-modal knowledge transfer under modality incompleteness, and (3)
hallucination suppression in multimodal large language models (LLMs). The research
framework is illustrated in Figure 1.1. In summary, this thesis is mainly composed of

three following parts:

e To enhance modality composition generalization robustness, we revisit the prim-
itive prediction approach and propose a novel method, termed Progressive
Cross-primitive Compatibility (ProCC), to mimic the human learning process

for OW-CZSL tasks. Specifically, the cross-primitive compatibility module
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explicitly learns to model the interactions of state and object features with
the trainable memory units, which efficiently acquires cross-primitive visual
attention to reason high-feasibility compositions, without the aid of external
knowledge. Moreover, to alleviate the invalid cross-primitive interactions, espe-
cially for partial-supervision conditions (pCZSL), we design a progressive train-
ing paradigm to optimize the primitive classifiers conditioned on pre-trained
features in an easy-to-hard manner. Extensive experiments on three widely
used benchmark datasets demonstrate that our method outperforms other rep-

resentative methods on both OW-CZSL and pCZSL settings by large margins.

To ensure robustness under modality missing, we focus on studying crossmodal
knowledge distillation to handle modality-missing situations. We empirically re-
veal that the modality gap, i.e., modality imbalance and soft label misalignment,
incurs the ineffectiveness of traditional KD methods in CMKD. As a solution,
we propose a novel Customized Crossmodal Knowledge Distillation (C?*KD).
Specifically, to alleviate the modality gap, the pre-trained teacher performs bidi-
rectional distillation with the student to provide customized knowledge. The
On-the-Fly Selection Distillation(OFSD) strategy is applied to selectively fil-
ter out the samples with misaligned soft labels, where we distill cross-modal
knowledge from non-target classes to avoid the modality imbalance issue. To
further provide receptive cross-modal knowledge, proxy student and teacher,
inheriting unimodal and cross-modal knowledge, is formulated to progressively
transfer cross-modal knowledge through bidirectional distillation. Experimen-
tal results on audio-visual, image-text, and RGB-depth datasets demonstrate
that our method can effectively transfer knowledge across modalities, achieving

superior performance against traditional KD by a large margin.

To balance modality priors to mitigate hallucinations of multimodal LLMs, we
first re-think contrastive decoding in LVLMs and empirically find that vision-

and-text-agnostic input disturbances in CD do not always amplify desired hal-
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lucinations rather than induce potential uncertainty noise. To mitigate these
issues, we propose a training-free decoding strategy named Self-Introspective
Decoding (SID). By developing Context and Text-aware Token Selection (CT?S)
strategy, SID amplifies vision-and-text association hallucinations to guide LVLMs
in contrastive decoding, thereby improving faithfulness. This train-free ap-
proach reduces hallucinations by 12-20% on metrics like POPE and CHAIR
while cutting inference costs by 30% compared to methods like VCD [94] and
ICD [170]. Crucially, SID preserves LVLMs’ general abilities, as evidenced by
strong MME and MMBench scores. By rebalancing modality priors without
compromising functionality, SID advances modality-level robustness, ensuring

trustworthy outputs in open-world deployment.

6.2 Suggestions for Future Research

Developing robust machine learning for multiple modalities is not a trivial task. Be-
yond the above challenges, the open-world ever-changing environments also have has
challenges such as adversarial adversarial shifts, out of distribution, novel class discov-
ery, and more. To achieve more flexible and efficient machine learning across multiple

modalities, future research can explore at least the following three directions:

6.2.1 Multimodal Test-time Adaptation

The degradation of multimodal inputs under extreme environmental conditions (e.g.,
night, snowy, or foggy settings) introduces severe cross-modal misalignment, where
modality-specific corruption patterns (e.g., obscured visuals vs. stable LiDAR signals)
create imbalanced feature distributions. Traditional multimodal Test-time Adapta-
tion (TTA) methods [184, 153, 14] partially mitigate this by globally tuning network

parameters, yet they overlook two fundamental issues: fine-grained modality inter-
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actions and cross-modal consistency preservation. The first issue emphasizes the
heterogeneous degradation levels across modalities (e.g., 73% pixel loss in RGB vs.
12% point cloud sparsity in LIDAR) demand dynamic modality weighting rather
than uniform adaptation. The latter issue underlines current approaches that fail
to enforce semantic coherence between corrupted and intact modalities during adap-
tation, risking error propagation. For future work, I think the robust multimodal
test-time adaptation frameworks must prioritize hierarchical adaptation frameworks
that dynamically estimate modality-specific and modality-general degradations via
entropy minimization, enforce semantic consistency through contrastive alignment of
robust primitives (e.g., edge features in vision, spectral peaks in audio), and recali-
brate fusion weights in real-time based on modality reliability scores. Such approaches
would enable models to adaptively balance multimodal information under open-world
volatility, bridging the gap between controlled laboratory performance and real-world

resilience.

6.2.2 Task-Aware Adaptation of Multimodal LLMs

The rapid evolution of large-scale vision-language models (VLMs) such as CLIP [141],
Flamingo [3], and LLaVA [112] has unlocked unprecedented zero-shot generaliza-
tion capabilities, positioning them as foundational tools for open-world multimodal
learning. However, adapting these models to downstream tasks—from specialized
domains like medical diagnostics to dynamic environments like autonomous naviga-
tion—requires overcoming critical barriers: the inherent misalignment between their
pretraining objectives (e.g., generic image-text matching) and task-specific goals (e.g.,
fine-grained anomaly detection), the computational impracticality of full fine-tuning
for billion-parameter architectures, and the inability to dynamically prioritize modal-
ities based on contextual relevance (e.g., emphasizing thermal over RGB data in low-
light conditions). To harness their potential, future work must innovate task-aware

adaptation frameworks that inject domain knowledge through lightweight neural mod-
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ules, optimize modality interactions via dynamic gating mechanisms, and enforce
causal invariance to suppress spurious correlations. Early successes, such as adapter-
based tuning [58, 46, 114] methods improving rare-class detection in satellite imagery
by a large margin, underscore the viability of such approaches. Yet achieving human-
level adaptability—where a single LVLM seamlessly transitions from interpreting
ambiguous medical queries to generating context-aware robot instructions—demands
unifying their embodied knowledge with symbolic reasoning, bridging the gap between
static pretrained information and the dynamic demands of downstream deployments.
This direction not only amplifies the utility of foundation models but also advances

the thesis’s broader vision of robust, open-world multimodal systems.

6.2.3 Multimodal Agent as Experts

Large Language Models (LLMs), with their expansive parameter scales and encyclo-
pedic knowledge, are revolutionizing how neural networks adapt to complex tasks.
By leveraging their deep understanding of contextual relationships and procedural
reasoning, LLMs can dynamically guide the optimization, regularization, and archi-
tectural adjustments of neural networks. This capability enables adaptive learning
systems that respond intelligently to diverse data distributions, resource constraints,
and performance objectives. Recent advancements in LVLMs-empowered multimodal
agents, such as those by [176], [115], and [199], have demonstrated remarkable pro-
ficiency in tool utilization, embodied AI, and cross-modal reasoning. For instance,
Llava-plus [115] showcases LVLMs’ ability to interpret visual inputs, generate exe-
cutable code for robotic manipulation, and self-correct actions through iterative feed-
back. Similarly, Appagent [199] highlights how multimodal agents can autonomously
navigate mobile interfaces by combining screen comprehension, language parsing,
and gesture prediction. These innovations underscore the potential of LVLMs to act
as versatile "experts” capable of orchestrating intricate workflows across domains.

For future work, we want to propose a paradigm where multimodal agents serve as
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intelligent coordinators for multimodal learning systems, enhancing their flexibility
and trustworthiness. As coordinators, these agents perform three critical roles. For
example, By analyzing real-time inputs (e.g., visual, textual, sensor data), LVLMs
agents autonomously reconfigure model architectures, select optimal pretrained sub-
networks, or adjust hyperparameters to match evolving task requirements. With the
development of multimodal agents, I believe that human developers are totally free

of designing complex algorithms for the multimodal learning system.
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