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Abstract

This dissertation focuses on incorporating structure-preserving concepts into the

design and implementation of neural networks (NNs). As a versatile and quintessen-

tial model of deep learning, NNs have been widely applied in various scientific and

engineering fields. However, practical applications often rise to the challenge of en-

suring the physical or mathematical properties of the underlying problem, leading

to external constraints on the network output or training process. Therefore, it is

crucial to develop a systematic NN design that can preserve the intrinsic structure

while maintaining the flexibility and expressiveness of deep learning.

To address this challenge, we draw inspiration from the structure-preserving con-

cept in numerical analysis, which aims to preserve the intrinsic structures of physical

systems, such as conservation laws or symmetries. We incorporate this concept into

the design and implementation of NNs, and then investigate the challenges and

opportunities that arise from this approach. The structure-preserving properties

arose from the practical applications often impose additional challenges, thereby we

need to investigate whether NNs can still maintain effectiveness and efficiency un-

der these constraints. Additionally, we explore the implications of exploiting these

structure-preserving properties as an inductive bias, which can help to improve the

performance and physical fidelity of NN-based models.
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iv Abstract

Following this discussion, we propose two main research directions in this disser-

tation. We first consider the approximation properties under a highly constrained

training process, which has unique advantages in practical applications. Recent

experimental research proposed a novel permutation-based training method, which

exhibited a desired classification performance without modifying the exact weight

values. In the first part of this dissertation, we provide a theoretical guarantee of this

permutation training method by proving its ability to guide a shallow network to ap-

proximate any one-dimensional continuous function. Our numerical results further

validate this method’s efficiency in regression tasks under various initializations. The

notable observations during weight permutation suggest that permutation training

can provide an innovative tool for describing network learning behavior.

In the second part of this dissertation, we consider the application of solving

partial differential equations (PDEs) with NNs, which has shown great potential in

various scientific and engineering fields. However, most existing NN solvers mainly

focus on satisfying the given PDEs, without explicitly considering intrinsic physical

properties, such as mass conservation or energy dissipation. This limitation can

result in unstable or nonphysical solutions, particularly in long-term simulations.

To address this issue, we propose Sidecar, a novel framework that enhances the

physical consistency of existing NN solvers for time-dependent PDEs. Inspired by

a traditional structure-preserving numerical approach, our Sidecar framework in-

troduces a small network as a copilot, guiding the primary function-learning NN

solver to respect the structure-preserving properties. This framework is designed to

be highly flexible, enabling the incorporation of structure-preserving principles from

diverse PDEs into a wide range of NN solvers. Our experimental results on bench-

mark PDEs demonstrate improvements in the accuracy and physical consistency of

existing NN solvers.
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Chapter 1
Introduction

As a powerful and versatile tool, neural networks (NNs) have made significant

impacts in many fields of scientific and engineering, especially for large-scale and

high-dimensional learning problems. Well-designed NN architectures, efficient train-

ing algorithms, and advanced hardware implementations have all contributed to the

success of deep learning. These advancements have enabled deep learning to achieve

state-of-the-art performance in various applications, including image recognition,

natural language processing, and generative modeling [33, 54].

However, the black-box nature of NNs makes them difficult to interpret and

understand. This lack of controllability can lead to issues in safety, reliability, and

trustworthiness, especially in critical applications such as healthcare, finance, and

autonomous systems. Additionally, NNs are often used as a surrogate model for

complex physical systems, where the input-output relationship is highly constrained

by the underlying physics [47]. As a result, there is a growing need for methods

that can provide insights into the behavior of NNs and ensure their reliability in

real-world applications.

The structure-preserving concepts in numerical analysis provide a reliable per-

spective for understanding and controlling the behavior of NNs [15, 20, 57, 77]. By

incorporating physical constraints and symmetries into the design of NNs, we can

create models that are more interpretable, reliable, and efficient. This approach

1



2 Chapter 1. Introduction

allows us to leverage the strengths of deep learning while addressing its limita-

tions [37, 61].

This dissertation focuses on incorporating structure-preserving concepts into the

design and implementation of NNs. It contains both theoretical and practical as-

pects and is organized into two main parts. These two parts share a common

spirit of enhancing the performance and robustness of NNs by integrating structure-

preserving knowledge.

1.1 NNs Trained by Weight Permutation are Uni-

versal Approximators

The first part provides a theoretical guarantee of NNs’ approximation capabil-

ity under the external constraint of the training process. Specifically, we consider

the Universal Approximation Properties (UAP) of NNs, which serve as a corner-

stone in the theoretical guarantee of deep learning. UAP proves that even the

simplest one-hidden-layer fully-connected network can approximate any continuous

function [18, 39, 56]. This fascinating ability allows NNs to act as surrogate models

to replace critical and computationally intensive components in existing methods,

thereby improving efficiency [62, 72]. While UAP has been extensively studied in

various contexts [10, 23, 85], most existing research assumes that the network pa-

rameters can be freely adjusted during the training process. However, specific appli-

cation scenarios may impose constraints on the network parameters, such as fixed

weights or limited weight updates. This constraint is particularly relevant in hard-

ware implementations, where reducing parameter updates can lead to significant

power savings [24, 48, 68].

As an extremely constrained scenario, a permutation-based training method has

been proposed, where the network weights are initialized randomly and then per-

muted during training without any updates. Empirical results showed that this
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training method can achieve comparable or better performance for image classifi-

cation tasks [71]. This unique property makes this training method attractive for

specific hardware applications, such as fixed-weight accelerators [48] and physical

neural networks [68]. While permutation training demonstrates remarkable advan-

tages in practical applications, its lack of theoretical guarantees poses a significant

challenge, limiting further advancements in algorithm design and hardware opti-

mization to fully harness its potential.

In the first part of this dissertation, we establish the first theoretical founda-

tion (to our best knowledge) of this permutation training method by proving that

a permutation-trained Rectified Linear Unit (ReLU) network with random initial-

izations can achieve the UAP for one-dimensional continuous functions. Compared

to the conventional UAP scenarios, the proof of permutation training encounters a

significantly non-trivial challenge, primarily due to the extreme constraints of main-

taining the initialized weight values. The key idea is a four-pair construction of

the step function approximators, which enables the approximation through a piece-

wise constant function [82]. Additionally, we propose a reorganization method to

eliminate the impact of remaining weights.

Our numerical experiments not only validate our theoretical results, which il-

lustrate the widespread existence of the UAP of permutation training in diverse

initializations, but also emphasize the importance of initializations on the permu-

tation training performance. Moreover, the patterns observed during permutation

training also highlight its potential in describing learning behavior, relating to topics

like the pruning technique [26] and continual learning [64, 93].

1.2 Sidecar: A Structure-Preserving Framework

of Solving PDEs with NNs

The second part of this dissertation focuses on the application of a structure-

preserving framework for solving partial differential equations (PDEs) with NNs.



4 Chapter 1. Introduction

PDEs are fundamental tools for modeling physical systems, including fluid dynam-

ics, electromagnetism, and quantum mechanics. Since most PDEs do not have

analytical solutions, various numerical methods have been developed to obtain ap-

proximate solutions with high accuracy and efficiency. In addition to satisfying

the PDE formulation, the numerical solution should also consistently respect the

intrinsic physical properties of the systems, such as mass conservation and energy

dissipation. Therefore, it is essential and highly desirable for numerical solvers to

incorporate structure-preserving knowledge into the solving process to ensure the

stability and physical fidelity of the solutions, especially for long-term simulations.

This principle has been extensively studied in traditional numerical methods, where

structure-preserving properties are explicitly embedded into the scheme design, lead-

ing to robust and reliable results [15, 20, 57, 77].

With advancements in computational hardware and algorithms, NNs can effec-

tively learn intricate patterns and representations, enabling the development of var-

ious NN-based PDE solvers [28,52,69,72,86,87,90,92]. These solvers use NNs to ap-

proximate solution functions directly from the PDE formulation, bypassing the need

for high-resolution training data from traditional numerical methods. This makes

NN solvers particularly advantageous for applications involving high-dimensional

or complex geometries, where conventional numerical approaches often encounter

significant difficulties.

However, most existing NN solvers mainly focus on exploiting the given PDE

formulation (e.g., minimizing the PDE residual), without explicitly accounting for

the intrinsic physical properties of the system. This limitation may result in unsta-

ble or nonphysical solutions, reducing the stability and generalization capability of

NN solvers. Recent works have attempted to incorporate the structure-preserving

knowledge into NN solvers [30, 37, 42, 51], but these approaches often introduce un-

reasonable trade-offs between accuracy and physical fidelity.

To address this issue, we propose Sidecar, a novel framework designed to enhance

the physical consistency of existing NN solvers for time-dependent PDEs. The key
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idea of Sidecar is to introduce a lightweight NN as a copilot, guiding the primary

function-learning NN solver to respect the structure-preserving properties. Both

NNs are trained simultaneously, where the primary NN approximates the PDE so-

lution, while the copilot network learns the structure-preserving knowledge via an

additional structure loss function. This flexible and plug-and-play design enables

Sidecar to cooperate with various NN solvers and adapt to different types of PDEs

with diverse structure-preserving properties. The copilot network design is inspired

by the Time-Dependent Spectral Renormalization (TDSR) method [17,40], which is

a traditional structure-preserving approach for solving time-dependent PDEs. How-

ever, implementing TDSR in NN solvers faces notable challenges, particularly in

incorporating structure-preserving knowledge and collaborating between the two

networks. These challenges are addressed through tailored loss function implemen-

tation and training procedures.

In the experiments, we integrate Sidecar with existing NN solvers such as vanilla

PINNs [72] and its extensions [86], and then consider benchmark PDEs includ-

ing conservative systems (nonlinear Schrödinger equation) and dissipative systems

(Burgers’ equation, Allen-Cahn equation). The resulting solutions show significant

enhancement in both accuracy and physical consistency. It demonstrates that Side-

car can effectively incorporate structure knowledge into NN solvers without sacri-

ficing performance. A further discussion provides insights into the advantages of

Sidecar, including the architecture design and training procedure, showing its flex-

ibility and robustness in various scenarios. This work also showcases the potential

of integrating traditional numerical methods with NN-based techniques to develop

more stable and efficient solvers.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows:

• Chapter 2 introduces the notations and essential preliminaries used throughout
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the dissertation.

• Chapter 3 shows the UAP of permutation-trained NNs, including proofs and

supporting numerical experiments.

• Chapter 4 presents the Sidecar, a structure-preserving framework for NN

solvers, detailing its methodology and numerical validation.

• Chapter 5 summarizes the main findings and outlines potential directions for

future work.



Chapter 2
Preliminaries

Before moving to the main body of this dissertation, we first introduce the pre-

liminaries, including notations used throughout this dissertation and the necessary

background knowledge. We provide a concise overview of neural network (NN) archi-

tecture design, their approximation capabilities, their training methods, their appli-

cations in solving partial differential equations (PDEs), and the structure-preserving

properties inherent to PDEs.

2.1 Notations

We present all notations used throughout this dissertation in this section. Several

notations used only in a particular section are not presented here.

• R,Z,N are the set of real numbers, integers, and natural numbers, respectively;

• R+ is the set of positive real numbers, i.e., R+ = {x ∈ R|x > 0}, which also

holds for Z+ and N+;

• {ai}ni=1 := {a1, · · · , an} is a set with n elements;

• {ai, bi}ni=1 := {ai}ni=1 ∪ {bi}ni=1 = {a1, b1, a2, b2, · · · , an, bn} is a set with 2n

elements;

7
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• {±ai}ni=1 := {+a1,−a1, · · · ,+an,−an} is a set with 2n components containing

the positive and negative values of ai;

• a = (ai)
n
i=1 = (a1, · · · , an) ∈ Rn is a vector with n components; It can also

been denoted as a(n) to highlight the length of the vector;

• (±bi)ni=1 := (+b1,−b1, · · · ,+bn,−bn) ∈ R2n is a vector with 2n components,

where the positive and negative signs are alternated;

• w(2n) ∼ U [−1, 1]2n means that w(2n) is a random vector with independent and

identically distributed (i.i.d.) components, where each component is uniformly

distributed in the interval [−1, 1];

• W ∈ Rm×n is a matrix with m rows and n columns;

• For a function f : Rn → R, x 7→ f(x), we use f to denote the function itself,

and f(x) to denote the value of the function at x;

• The set of all continuous functions from X to Y is denoted by C(X,Y). When

Y = R, we simply write C(X);

• All the operators and functional are denoted by uppercase calligraphic letters

as A,B, · · · . The application of an operator A to a function f is denoted by

A[f ], which is also a function. For example, for a function f : Rn → R, we

denote an operator mapping f to f 2 as A, then

A : (Rn → R)→ (Rn → R), f 7→ f 2,

A[f ] : Rn → R, x 7→ f 2(x);

• χ is the standard one-dimensional Heaviside function defined as

χ : (R→ R), x 7→ χ(x) =

0, x < 0,

1, x ≥ 0;
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• For a vector v(m) = (v1, v2, · · · , vm), the permuted vector is denoted as τ(v(m)) =

(τ(vi))
m
i=1, which is a rearrangement of the elements within v(m);

• a ∼ O(b) means that a is a function of b with the same order, i.e., there exists

a constant C > 0 such that |a| ≤ C|b|;

• a ∼ O(1) means that a is at most a constant, i.e., there exists a constant

C > 0 such that |a| ≤ C;

• For a d-dimensional PDE, the solution function is denoted as

u :
(
Ω× [0, T ]

)
→ R, (x, t) 7→ u(x, t),

where Ω ⊂ Rd is the spatial domain and [0, T ] is the time domain;

• In the context of PDEs, we denote the partial derivative of u with respect to

the spatial variable x as ux, which is equivalent to ∂
∂x
u. Additionally, the time

derivative of u is denoted as ut, which is equivalent to ∂
∂t
u.

2.2 Neural Networks (NNs)

Neural networks (NNs) are powerful and flexible deep learning models that have

been widely applied across scientific and engineering domains. There are many

different architectures of NNs. In this dissertation, we mainly focus on the multi-

layer perceptron (MLP, also called fully-connected NNs, or feedforward NNs) [33],

which is a quintessential model in deep learning.

Specifically, the MLP model is an NN that consists of multiple layers of neurons.

Here, we denote an MLP as

fNN :Rd → Rn,

x 7→Woutσ(WLσ(· · · σ(W1(x) + b1) · · · ) + bL) + bout,
(2.1)
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where the input vector is x = (x1, x2, · · · , xd) ∈ Rd. The number of hidden layers is

denoted as L, and the width (i.e., the number of neurons in each hidden layer) is

denoted as Wi, i = 1, 2, · · · , L. The weights and biases of the i-th hidden layer are

denoted as Wi ∈ RWi+1×Wi and bi ∈ RWi+1 , respectively. The widths of the hidden

layers are often chosen to be the same, i.e., Wi = W , ∀i = 1, 2, · · · , L. Additionally,

the output layer is denoted as Wout ∈ Rn×WL and bout ∈ Rn to match the output

dimension. The trainable parameters of the MLP are the weights and biases, which

are denoted as θ = {Wi,bi}Li=1 ∪ {Wout,bout}.

Here σ is the activation function. Common choices for the activation function

include

• Sigmoid function: σ(z) = 1

1 + e−z
;

• Hyperbolic tangent function: σ(z) = tanh(z) =
ex − e−x

2
;

• Rectified linear unit (ReLU) function: σ(z) = ReLU(z) = max{0, z}.

Notice that ReLU activation is positively homogeneous i.e., ReLU(λx) = λReLU(x)

for all λ > 0. Therefore, in the special case of one-dimensional functions and one-

hidden-layer MLP, where the MLP has the form of a linear combination of ReLU

basis functions like

f(x) =
W∑
i=1

aiReLU(wix+ bi) + c,

and then the weights wi can be chosen as wi = ±1 without loss of generality.

For a multi-dimensional vector z = (z1, z2, · · · , zn), the activation function is

applied component-wise, i.e., σ(z) =
(
σ(z1), σ(z2), · · · , σ(zn)

)
.

2.3 Approximation Properties of NNs

As a cornerstone in the theoretical guarantee of deep learning, the universal

approximation property (UAP) of NNs states that a sufficiently large NN can ap-

proximate any continuous function to any desired accuracy [18,39,56]. It evaluates
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the ability of NNs to represent functions within a target function space. If the hy-

pothesis space, which is defined as the set of functions that can be represented by

an NN with a given architecture, is dense in the target function space, then the NN

is said to have the UAP. It is important to note that the UAP of NNs does not

depend on the specific training algorithms or data sampling strategies; it is deter-

mined solely by the network architecture and the choice of target function space.

Therefore, it serves as both a fundamental and ideal scenario for evaluating the

performance of NNs.

The UAP of NNs has been extensively studied in the literature. The first foun-

dational result of UAP was established for MLPs with a single hidden layer and

arbitrary width [18, 39, 56]. It can be stated as

Theorem 2.1 (UAP of MLPs with a single hidden layer, [56]). For any m,n ∈ N,

compact set K ⊂ Rd, continuous function f ∈ C(Ω, Rm), non-polynomial activation

functions σ ∈ C(R, R), and ε > 0, there exists k ∈ N, W ∈ Rk×n, b ∈ Rk, and

A ∈ Rm×k, such that

sup
x∈K
‖f(x)−A · σ(Wx+ b)‖ < ε.

This theorem can be proved through several methods, such as interpreting the

single-hidden-layer MLP as a linear combination of basis functions or applying the

Stone-Weierstrass theorem [82]. However, this result does not impose constraints on

the parameters of the MLP, as it abstracts away from the specific training process.

While it guarantees the existence of a solution for the approximation problem, it

does not provide a constructive method for designing NNs that achieve the UAP.

Further research primarily concentrated on how the width and depth of NNs

influence their UAP. The optimal approximation rate of MLPs equipped with ReLU

activation functions has been established in terms of the width and depth, which is

given by the following theorem in [80]:

Theorem 2.2 (Optimal approximation rate of MLPs with ReLU activation, [80]).
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Given a continuous function f ∈ C([0, 1]d), for any N ∈ N+, L ∈ N+, and

p ∈ [1,∞], there exists a function ϕ implemented by a ReLU network with width

C1 max
{
dbN1/dc, N + 2

}
and depth 11L+ C2, such that

‖f − ϕ‖Lp([0,1]d) ≤ 131
√
dωf

((
N2L2 log3(N + 2)

)−1/d
)
,

where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p = ∞.

The function ωf is the modulus of continuity of f defined as

ωf (δ) = sup{|f(x)− f(y)| : x,y ∈ [0, 1]d, ‖x− y‖ ≤ δ}.

Other related works include estimating the lower bound for the minimum width

required by NNs to achieve UAP [5,63]. Additionally, MLPs with specific activation

functions can achieve UAP with fixed width and depth [95].

The following works also studied the UAP of different target function spaces,

such as the UAP of continuous functional or operator [13], dynamical systems [21],

and functions with certain symmetry [59]. Additionally, the UAP of NNs has been

extended to other architectures, including convolutional neural networks (CNNs)

[14, 35] and residual networks (ResNets) [58].

2.4 Training Methods of NNs

Training a NN is to find the optimal (or good enough) parameters θ that maxi-

mize the NN’s prediction accuracy. It can be formulated as an optimization problem,

where the goal is to minimize the loss function L(θ). The loss function L evaluates

the discrepancy between the predicted output and the true output. The specific

form of L depends on the nature of the problem being addressed. For example, in

a regression problem, the loss function is often defined as the mean squared error
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(MSE) between the predicted output fNN and the true output f , given by

L =
1

N

N∑
i=1

(
fNN(xi, ti)− f(xi, ti)

)2
, (2.2)

where N is the number of training samples, {(xi, ti), f(xi, ti)}Ni=1 are the training

samples, where f(xi, ti) are the true output corresponding to the input (xi, ti).

2.4.1 Traditional Training Methods

The traditional training process is typically performed using a gradient descent

algorithm, which updates the parameters θ within the NN in the direction of the

negative gradient of the loss function. The update rule for the weights and biases is

given by

θ ← θ − η Gθ, (2.3)

where η is the learning rate, which can be adjusted during the training process to

improve convergence. Here Gθ is the gradient computed using back-propagation [74].

If the gradients are computed using the entire training set, the update is called full-

batch gradient descent, which is often computationally expensive. In practice, a

mini-batch gradient descent is often used, where the gradients are computed using a

small subset of the training data (called a mini-batch) instead of the entire dataset.

This approach reduces the computational cost and can lead to faster convergence.

Further improvements can be made by using adaptive learning rate methods such

as Adam [46], which adjust the learning rate based on the historical gradients.

The update in Eq. (2.3) is repeated for several epochs until the performance of

NNs reaches a satisfactory level, or the maximum number of epochs is reached. The

pseudocode of the Adam-based traditional training process is shown in Algorithm

1.
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Algorithm 1: Adam-based traditional training algorithm
Input: Loss function L, training set DT , maximum training epoch M ,

optimizer Adam, learning rate η, initial weights w

Output: Trained weights θM

θ0 ← w ; // Initialize the weights

// Training iteration

for t = 1, 2, . . . ,M do

θt ← Adam(L,θt−1, DT ) ; // Update the weights by Adam

return θM ;

2.4.2 Permutation Training

The traditional training methods discussed above have no constraint on the

parameters within NNs, leading to the scenario called free training. However, in

some applications, especially in specific hardware implementations, the parameters

of NNs are preferably constrained to a certain range or structure.

As an extreme constrained scenario, NNs are trained by rearranging the initial-

ized parameters without altering their exact values [71]. This can be described as a

permutation of the initialized weights, thereby we call it permutation training.

Definition 2.3. For a vector v(m) = (v1, v2, · · · , vm), the permutation τ is a bijection

from the element set {vi}mi=1 to itself.

In the implementation of permutation training, guidance is crucial in finding the

ideal order relationship of weights. The algorithm lookahead permutation (LaPerm)

[71] introduces an k-times Adam-based free updating. This algorithm rearranges the

initial weights θ0 by the order relationship learned during the free training process.

Therefore, the trained weights θT can be viewed as a permutation of the initial

weights θ0. The pseudocode is shown in Algorithm 2.

Permutation training has a unique property that distinguishes it from traditional

training methods. Notice that all permutations of v(m) can form a group denoted
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Algorithm 2: Adam-based LaPerm algorithm
Input: Loss function L, training set DT , maximum training epoch M ,

Inner optimizer Adam, permutation period k, initial weights w

Output: Trained weights θM

θ0 ← w ; // Initialize the weights

// Training iteration

for t = 1, 2, . . . ,M do

θt ← Adam(L,θt−1, DT ) ; // Free training by Adam

if k divides t then

θt ← τt(w) ; // Apply the permutation

return θM ;

as Sm, which is closed under composition. Precisely, for any π, τ ∈ Sm, there is

a ρ ∈ Sm such that ρ(vi) = π(τ(vi)) for all vi within v(m). This property leads

to the major advance of permutation training: ideally, the final weight θT can be

achieved by permuting the initialized weight θ0 only once, i.e., there exists a τ ∈ Sm

such that θT = τ(θ0). This one-step nature significantly distinguishes permutation

training from other iterative training methods like Adam.

2.4.3 Advantages of Permutation Training in Hardware Im-

plementation

Permutation training in Algorithm 2 has been applied to image classification

tasks [71], achieving comparable or even superior performance to conventional free-

training training methods like Adam. However, there is currently no evidence to

report a significant advantage when applied to more diverse tasks on contempo-

rary Graphics Processing Unit (GPU)-based hardware. Nevertheless, we believe it

is highly suitable for the design of physical neural networks [68], as reducing the

number of weight updates can significantly lower the power consumption during the
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training process. Therefore, permutation training may inspire alternative physical

weight connection implementations, such as using fixed-weight devices controlled

by a permutation circuit [71]. This idea has been applied to a fixed-weight network

accelerator [48, 49].

Another potential application scenario is the hardware with an explicit structure

to store the weight value, such as the integrated photonic tensor core [24]. In this

novel computing chip, an array of phase-change cells to separately store each ele-

ment of the weight matrix, with their values adjusted through optical modulation of

the transmission states of the cells. This design has been successfully employed by

international commercial companies in their photonic computing products. How-

ever, permutation training indicates that, in addition to changing the exact value, it

is feasible to connect each cell with the permutation circuit for convenient reconnec-

tions. This flexibility can significantly enhance the learning process by leveraging

permutation training.

2.5 Solving Partial Differential Equations (PDEs)

with NNs

As a typical scientific and engineering application, developing efficient and accu-

rate NN-based PDE solvers has attracted increasing interest in recent years. PDEs

serve as essential mathematical models for describing physical systems. Since most

PDEs do not have closed-form exact solutions, numerical methods have been devel-

oped to compute approximate solutions with high accuracy and efficiency. For a

general time-dependent PDE of u(x, t) in the form
ut = A[u], (x, t) ∈ Ω× [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ].

(2.4)
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Here x = (x1, x2, · · · , xd) ∈ Ω ⊂ Rd is the spatial coordinate, t ∈ [0, T ] is the

temporal coordinate, A is a known operator, Ω ∈ Rd is the spatial domain, T is the

final time, u0(x) is the given initial condition defined on the spatial domain Ω, and

g(x, t) is the given boundary condition defined on the boundary ∂Ω × [0, T ] of the

spatiotemporal domain.

For clarity, we denote u as the exact solution of the PDE and ū as the approxi-

mate solution obtained by the NN solvers. The goal is to find the solution function

ū(x, t) that satisfies Eq. (2.4). This task can be viewed as a direct application of

the UAP of NNs to different target function spaces, and can be categorized into two

main approaches: function learning and operator learning.

Function Learning Methods

Thanks to the function-UAP of NNs [18,39,56], the function learning approaches

[72, 90, 92] focus on approximating the solution function u(x, t) directly using NNs,

which is based on the function-UAP of NNs. A key advantage of these function

approximation-based methods is their ability to learn solutions directly from the

given PDE formulation, eliminating the need for high-resolution training data from

traditional solvers. These methods are particularly advantageous for practical ap-

plications involving high-dimensional or complex geometries, where traditional nu-

merical approaches often face challenges.

Operator Learning Methods

NNs have also been proven to have UAP for operators [13], which inspires the

development of operator learning methods for PDEs [50,60,62]. These methods can

neither learn the semi-discretized evolution operators [60], nor learn the operators

from the given conditions (such as initial conditions, boundary conditions, or coef-

ficients) to the solutions [62]. In this way, the learned operator can handle different

given conditions or coefficients without requiring retraining. This approach also

shows potential in solving inverse problems, i.e., inferring conditions or coefficients
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from the given solutions [34, 66]. However, learning operators is significantly more

challenging than learning solution functions, as it often demands a large amount of

training data.

2.5.1 Physics-Informed Neural Networks (PINNs)

The most commonly used function learning method is PINNs [45, 72] and its

extensions [28, 52, 69, 86, 87]. The vanilla PINNs [72] adopt a MLP in Eq. (2.1)

to approximate the solution function u(x, t), where the input vector is aligned as

(x, t) = (x1, x2, · · · , xd, t). To ensure the differentiability of the solution function,

the activation function σ is often chosen as the hyperbolic tangent function σ(x) =

tanh(x). The loss function is designed to minimize the mean square L2-norm (also

called MSE) of the PDE residual, i.e., the difference between the left-hand side

and the right-hand side of the PDEs. The initial and boundary conditions are also

incorporated into the loss function to ensure that the solutions satisfy the given

conditions. For the general PDE system in Eq. (2.4), the loss function of PINNs

can be written as

LPINNs[ū] = LPDE[ū] + Ldata[ū], (2.5)

where

LPDE[ū] =
1

NPDE

NPDE∑
i=1

|ūt(xi, ti)−A[ū](xi, ti)|2 ,

Ldata[ū] =
1

NIC

NIC∑
j=1

|ū(xj, 0)− u0(xj)|2 +
1

NBC

NBC∑
k=1

|ū(xk, tk)− g(xk, tk)|2 .
(2.6)

Here {(xi, ti)}NPDE
i=1 ∈ Ω× [0, T ] are the collocation points for the PDE residual loss,

and {(xj, 0)}NIC
j=1 ∈ Ω and {(xk, tk)}NBC

k=1 ∈ ∂Ω× [0, T ] are for the initial and boundary

conditions, respectively. These collocation points can be randomly sampled, making

PINNs a mesh-free method. Notice that the loss function Eq. (2.5) depends solely
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on the given PDE formulation and its associated conditions, without requiring ex-

plicit or high-resolution numerical solutions. This characteristic greatly enhances

the practical applicability of PINNs.

2.5.2 Causal Training Strategy for PINNs

There are some advanced techniques to improve the performance and training

efficiency of PINNs, such as adaptive sampling strategy [28, 52] and learning rate

annealing algorithm [87]. One insightful technique is the causal training strategy

[86], which encourages PINNs to learn the solution in accordance with the temporal

causality of the PDEs. To illustrate this idea, we discretize the time domain [0, T ]

into NT time points as {tn}NT
n=0, and define the residual loss at each time point tn as

Ln
PDE[ū] =

1

Nn

Nn∑
i=1

|ūt(xi, t
n)−A[ū](xi, t

n)|2 ,

where Nn is the number of spatial collocation points at time tn. Under this set-

ting, the overall PDE residual loss can be written as LPDE[ū] =
1

NT

∑NT

n=0 Ln
PDE[ū].

However, to respect the temporal causality, the residual loss is reformulated as a

weighted form:

L̃PDE[ū] =
1

NT

NT∑
n=0

wn Ln
PDE[ū], where wn = exp

(
−ε

n−1∑
l=0

Ll
PDE[ū]

)
. (2.7)

Here the temporal weights wn are designed to be small unless all the previous time

points {tl}0≤l<n are well-approximated, and ε is a hyperparameter that controls the

decay rate of the weights (i.e., the larger ε indicates the higher accuracy requirement

for the previous time points). The causal training strategy can be easily integrated

into the existing PINNs solvers, and has shown great potential in improving the

performance of the PINNs for PDEs with strong temporal dependencies.
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2.6 The Structure-Preserving Properties of PDEs

The structure-preserving properties of PDEs are the intrinsic physical laws that

the solutions satisfy. For a general temporal evolution PDE of u(x, t) in a form

given by Eq. (2.4), which is restated as
ut = A[u], (x, t) ∈ Ω× [0, T ],

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ].

The systems may have some intrinsic physical properties, which are often described

by the evolution of preserved quantities over time with a certain speed:
d

dt
Q[u] = S[u],

Q[u](0) = Q ◦ ι[u0] =: C0,

(2.8)

where Q, S : (Ω × [0, T ] → R) → ([0, T ] → R) is the quantity of interest and

its evolution speed, respectively. The initial value C0 is determined by the initial

condition u0(x), where ι is the natural embedding operator

ι : (Ω→ R)→ (Ω× [0, T ]→ R), u0(·) 7→ u(·, 0),

and ◦ denotes the composition of operators. Eq. (2.8) holds for both conservative

and dissipative systems:

• Conservative systems: The preserved quantities remain unchanged over

time, i.e., S[u] = 0 and Q[u](t) ≡ C0, ∀t ∈ [0, T ];

• Dissipative systems: The preserved quantities decay over time at a rate

given by S[u] < 0.

Our goal is to find an approximate solution ū(x, t) that satisfies the PDE Eq. (2.4)

as well as the structure-preserving properties Eq. (2.8), ensuring that the solutions
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are stable, accurate, and physically meaningful.

2.6.1 Example of Structure-Preserving PDEs

Example 2.1 (Burgers’ equation). Burgers’ equation is a well-known nonlinear

PDE in various physical phenomena such as fluid dynamics and traffic flow [88].

The one-dimensional Burgers’ equation of u(x, t) as
ut + uux − νuxx = 0, (x, t) ∈ [−1, 1]× [0, 1],

u(x, 0) = u0(x), x ∈ [−1, 1],

u(−1, t) = u(1, t) = 0, t ∈ [0, 1],

(2.9)

where ν is the viscosity coefficient. The case of ν = 0 corresponds to the inviscid

Burgers’ equation, which is a conservative system. Burgers’ equation with ν > 0 is

a classical example of a dissipative system, in which the total energy decays over

time. By multiplying Eq. (2.9) by u and integrating over the domain [−1, 1], we

obtain the following dissipation law of the energy EB[u]:


d

dt
EB[u] = SB[u],

EB[u](0) = C0,

where
EB[u](t) :=

∫ 1

−1

u2(x, t) dx,

SB[u](t) := −2ν
∫ 1

−1

u2x(x, t) dx,

(2.10)

and C0 = EB ◦ ι[u0] =
∫ 1

−1
u20 dx. This equation describes the evolution of the total

energy EB[u] of the system, which decays over time with the speed SB[u]. Ideally,

the approximate solution ū(x, t) should satisfy both the Burgers’ equation (2.9) and

the energy dissipation rates Eq. (2.10).

Example 2.2 (Nonlinear Schrödinger equationl, NLS). The NLS equation is a

complex-valued PDE system with the form in one dimension as

iut +
1

2
uxx = κ|u|2u, (x, t) ∈ [−15, 15]× [0, π/2], (2.11)
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where u(x, t) ∈ C is the complex-valued wave function, and | · | denotes the norm of

the complex number. We choose κ = −1 to ensure the stability of the solution [88],

along with the periodic boundary conditions as

u(x, 0) = u0(x),

u(−15, t) = u(15, t),

ux(−15, t) = ux(15, t).

The NLS equation has several preserved quantities, one of which is the mass con-

servation law [19], i.e., the total probability density of the wave function remains

constant over time, which is given by

Q1[u](t) :=

∫ 15

−15

|u(x, t)|2 dx = C
(1)
0 , where C(1)

0 =

∫ 15

−15

|u0(x)|2 dx. (2.12)

Another important conserved quantity is the total momentum of the wave function,

which is defined as

Q2[u](t) := Im

[∫ 15

−15

u∗(x, t) ux(x, t) dx

]
=

∫ 15

−15

(
Re[u] · Im[ux]− Im[u] · Re[ux]

)
dx,

where u∗ = Re[u] − i · Im[u] is the complex conjugate of u. The corresponding

momentum conservation law gives

Q2[u](t) = C
(2)
0 , whereC(2)

0 =

∫ 15

−15

Re[u0] ·Im[(u0)x]−Im[u0] ·Re[(u0)x] dx. (2.13)

Example 2.3 (Allen-Cahn equation). The Allen-Cahn equation is a typical phase-

field model for the phase transition phenomena [2]. The one-dimensional form is

given as 
ut = ε2uxx + f [u], (x, t) ∈ [−1, 1]× [0, 1],

u(x, 0) = u0(x),

u(−1, t) = u(1, t), ux(−1, t) = ux(1, t),

(2.14)
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where ε reflects the width of the transition regions, and f [u] is a reaction source. As a

typical gradient flow model, the Allen-Cahn equation satisfies the energy dissipation

law. Specifically, the energy functional is defined as

EAC [u](t) :=

∫ 1

−1

(
ε2

2
|ux(x, t)|2 + F [u](x, t)

)
dx, (2.15)

where F [u] is the double-well potential function (i.e., −F ′ = f). Therefore, the

solution to Eq. (2.14) should decrease the energy Eq. (2.15) over time, i.e.,


d

dt
EAC [u] = SAC [u],

EAC [u](0) = C0,

(2.16)

where

SAC [u] := −
∫ 1

−1

u2t (x, t) dx ≤ 0

and C0 = EAC ◦ ι[u0] =
∫ 1

−1

(
ε2

2
(u0)

2
x + F [u0]

)
dx.

2.6.2 The Time-Dependent Spectral Renormalization (TDSR)

Method

The TDSR method [17,40] is a structure-preserving technique for traditional nu-

merical scheme, which introduce a time-dependent factor to incorporate the struc-

ture equation Eq. (2.8) into the PDE Eq. (2.4).

The idea of TDSR starts with the observation that the preserved quantities Q[u]

and its evolution speed S[u] in Eq. (2.8) are often global, i.e., with integration over

the spatial domain Ω (such as the energy dissipation law Eq. (2.10) of the Burgers’

equation). Therefore, we can assume both Q[u] and S[u] have the integration form

as

Q[u](t) =
∫
Ω

KQ[u](x, t) dx, S[u](t) =
∫
Ω

KS [u](x, t) dx,

where KQ, KS : (Ω× [0, T ]→ R)→ (Ω× [0, T ]→ R) are known operators serve as
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the integration kernel of Q and S, respectively. The structure equation (2.8) is then

transformed into the integration form as
d

dt

∫
Ω

KQ[u](x, t) dx =

∫
Ω

KS [u](x, t) dx,∫
Ω

KQ[u](x, 0) dx = C0,

(2.17)

where C0 =
∫
Ω
KQ◦ι[u0](x) dx. Notice that after integrating over the spatial domain

Ω, the structure equation (2.17) only depends on the temporal variable t. Therefore,

we can introduce a time-dependent factor R(t) by applying a variable transformation

u(x, t) = R(t) v(x, t),

such that the structure equation (2.8) can be merged into the PDE Eq. (2.4) as a

coupled system: 
∂

∂t
(Rv) = A[Rv],

d

dt

∫
Ω

KQ[Rv](x, t) dx =

∫
Ω

KS [Rv](x, t) dx.
(2.18)

Since R(t) can be treated as a constant within the spatial integration, we factor out

R(t) from the integration kernel KQ and KS as∫
Ω

KQ[Rv](x, t) dx = FQ[R](t)

∫
Ω

Kv
Q[v](x, t) dx,∫

Ω

KS [Rv](x, t) dx = FS [R](t)

∫
Ω

Kv
S [v](x, t) dx,

where FQ, FS : ([0, T ]→ R)→ ([0, T ]→ R) are the factors depending on R(t), and

Kv
Q, Kv

S : (Ω × [0, T ] → R) → (Ω × [0, T ] → R) are the renormalized integration

kernels depending on v(x, t). Therefore, the structure equation can be rewritten
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into an ordinary differential equation (ODE) for R(t) as
d

dt

(
FQ[R] IQ[v]

)
= FS [R] IS [v],

FQ[R](0) IQ[v](0) = C0,

where
IQ[v](t) =

∫
Ω

Kv
Q[v](x, t) dx,

IS [v](t) =
∫
Ω

Kv
S [v](x, t) dx.

(2.19)

Here, IQ, IS : (Ω × [0, T ] → R) → ([0, T ] → R) are the integration opera-

tors of the renormalized integration kernels Kv
Q, Kv

S . Thus, by alternately solving

Eq. Eq. (2.18), the TDSR method guarantees that the solutions adhere to intrin-

sic physical properties. This framework holds for both conservative and dissipative

systems, and allows a flexible integration of various PDE systems. In the context

of traditional numerical methods, the structure ODE Eq. (2.19) is solved either by

deriving the analytical solution [17] or by fixed-point iteration [40]. TDSR ensures

theoretical guarantees for structure-preserving properties and has been effectively

applied to a variety of PDE systems.

Example 2.4 (Example 2.1 revisited). For the Burgers’ equation (2.9), we introduce

a time-dependent factor R(t) to satisfy the structure equation (2.10). By setting

u(x, t) = R(t) v(x, t), the whole system is rewritten as
Rvt +Rt v +R2vvx − νR vxx = 0,

d

dt
EB[Rv] = SB[Rv].

(2.20)

where R(0) = 1, v(x, 0) = u0(x), and EB[Rv](0) =
∫ 1

−1
u20(x) dx. Following the

previous discussion to substrate R(t) from the integration kernel, it can be further

simplified as

EB[Rv](t) = R2(t)

∫ 1

−1

v2(x, t) dx, SB[Rv](t) = −2νR2(t)

∫ 1

−1

v2x(x, t) dx.
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Then the structure equation (2.10) can be rewritten into an ODE for R(t) as


d

dt

(
R2 IQ[v]

)
= −2νR2 IS [v],

R2(0) IQ[v](0) =
∫ 1

−1

u20(x) dx.
where

IQ[v](t) =
∫ 1

−1

v2(x, t) dx;

IS [v](t) =
∫ 1

−1

v2x(x, t) dx.

(2.21)

Therefore, for a given solution v̄(x, t) from the primary solver, the TDSR factor R̄(t)

can be obtained by solving the ODE Eq. (2.21), leading to the approximate solution

ū(x, t) = R̄(t) v̄(x, t).



Chapter 3
NNs Trained by Weight Permutation are

Universal Approximators

In this chapter, we provide a theoretical foundation for a novel training method

known as permutation training. Specifically, we prove that a permutation-trained

ReLU MLP with random initializations can achieve UAP for any one-dimensional

continuous function. Our numerical experiments confirm these theoretical find-

ings by demonstrating the UAP’s prevalence across various initialization strategies.

Additionally, the experiments highlight the significant impact of initialization on

permutation training performance and reveal intriguing patterns that suggest its

potential for describing learning behaviors [6]. Our main findings are summarized

below:

1. We prove the UAP of permutation-trained ReLU networks with pairwise ran-

dom initialization to one-dimensional continuous functions.

2. The numerical experiments of regression problems emphasize the crucial role

played by the initializations in the permutation training scenario.

3. By observing the permutation patterns, we find that permutation training as

a new approach holds promise in describing intricate learning behaviors.

27
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3.1 Introduction

In this section, we briefly discuss the related works of achieving UAP via per-

mutation training, which serves as a complement to the introduction in Section 1.1.

3.1.1 Related works

Permutation is a typical group structure with a systematic description [8]. In

deep learning, it closely relates to permutation equivariant or invariant networks

[16] designed to learn from symmetrical data [55, 91]. It is also evident in graph-

structured data, which inherently exhibits permutation invariance [65,75]. However,

permutation training is not limited to the issues with intrinsic symmetry.

As for the weight permutation attempts, [71] empirically proposed the first (to

our knowledge) weight-permuted training method. This method preserves the ini-

tialized weight value, allowing more efficient and reconfigurable implementation of

the physical neural networks [48, 49]. Our work provides theoretical guarantees of

this method and considers some regression tasks numerically. Additionally, ini-

tialization can be improved by rewiring neurons from the perspective of computer

networks [76], but the training methods are unchanged.

Permutation training is also closely related to the permutation symmetry and

Linear Mode Connectivity (LMC) [22, 27]. The LMC suggests that after a proper

permutation, most stochastic gradient descent solutions under different initializa-

tion will fall in the same basin in the loss landscape. Similarly, permutation training

also seeks a permutation to improve performance. Therefore, the search algorithms

utilized in LMC indicate the possibility of more efficient permutation training al-

gorithms, as the fastest algorithm can search a proper permutation of large ResNet

models in seconds to minutes [1, 44].
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3.1.2 Outline

We state the main result and proof ideas in Section 3.2. In Section 3.3, we

provide a detailed construction of the proof. The numerical results of permutation

training are presented in Section 3.4, along with the observation of permutation

behavior during the training process.

3.2 Main Results

This section introduces the UAP theorems, accompanied by a brief discussion of

the proof idea.

3.2.1 Architecture of Shallow NNs

We start with an MLP in Eq. (2.1) equipped with ReLU activation functions and

a single hidden layer with N hidden neurons. It has the form of a linear combination

of ReLU basis functions like

f(x) =
N∑
i=1

aiReLU(wix+ bi) + c, ReLU(z) = max{z, 0},

where all parameters are scalars when approximating one-dimensional functions, i.e.,

wi, bi, ai, c ∈ R. Since ReLU activation is positively homogeneous i.e., ReLU(λx) =

λReLU(x) for all λ > 0, we consider a homogeneous case with wi = ±1. To facilitate

our construction below, we assume N is an even number (i.e., N = 2n) and the basis

functions located pairwisely as

ϕ±
k (x) = ReLU

(
± (x− bk)

)
, k = 1, 2, ..., n, (3.1)

where the biases {bk}nk=1 determine the basis locations. Next, we introduce two

factors α, γ to adjust the network’s output, leading to an additional one-dimensional

linear layer. While this layer is not essential for achieving UAP, it does simplify the
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proof and offer practical value. The network’s output function fNN gives

fNN(x) = α + γ
n∑

k=1

[
pkϕ

+
k (x) + qkϕ

−
k (x)

]
, (3.2)

where θ(2n) = (p1, q1, ..., pn, qn) ∈ [−1, 1]2n are the coefficient vector of basis func-

tions, which also correspond to the parameters in the second hidden layer of the

network.

Remark 3.1. The requirement of even N can be removed by adding a ghost basis

function ϕ±
k (x) with ai = 0 if it can be paired with an existing ϕ∓

k (x) also with

ai = 0. Nevertheless, we retain this condition for simplicity.

3.2.2 Weight Configuration and Main Theorems

Without loss of generality, we consider the target continuous function f ∗ ∈

C([0, 1]). The permutation training is applied on the weights θ(2n) within second

hidden layer’s, leading to the following configuration: the coefficient vector θ(2n)

is permuted from a predetermined vector w(2n) ∈ R2n, i.e., θ(2n) = τ(w(2n)). To

aid in readers’ comprehension, we begin with a simple scenario with equidistantly

distributed location vector b
(n)
equi and pairwise coefficient vector w

(2n)
equi as

b
(n)
equi = (bi)

n
i=1 :=

(
0, 1

n−1
, · · · , 1

)
,

w
(2n)
equi = (±bi)ni=1 := (+b1,−b1, ...,+bn,−bn).

(3.3)

The UAP of a permutation-trained network fNN in Eq. (3.2) to f ∗ can be stated as

follows:

Theorem 3.2 (UAP with a linear layer). For any function f ∗ ∈ C([0, 1]) and any

small number ε > 0, there exists a large integer n ∈ Z+, and α, γ ∈ R for fNN

in Eq. (3.2) with equidistantly distributed b
(n)
equi and w

(2n)
equi in Eq. (3.3), along with

a permuted coefficients θ(2n) = τ(w
(2n)
equi ), such that |fNN(x) − f ∗(x)| ≤ ε for all

x ∈ [0, 1].
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The intuition of this result comes from the rich expressive possibilities of permu-

tation training. Next, we enhance the result in Theorem 3.2 to a purely permuted

situation, suggesting the UAP can be achieved without changing α, γ in Eq. (3.2).

Theorem 3.3 (UAP without the linear layer). Let α = 0, γ = 1. For any function

f ∗ ∈ C([0, 1]) and any small number ε > 0, there exists a large integer n ∈ Z+, for

fNN in Eq. (3.2) with equidistantly distributed b
(n)
equi and w

(2n)
equi in Eq. (3.3), along

with a permuted coefficients θ(2n) = τ(w
(2n)
equi ) such that |fNN(x)− f ∗(x)| ≤ ε for all

x ∈ [0, 1].

Although Theorem 3.3 considers a theoretically stronger setting, the additional

requirement of n reveals the practical meanings of learnable α, γ in reducing the

necessary network width to achieve UAP. Moreover, the result can be generalized

to the scenario with pairwise random initialization:

b
(n)
rand ∼ U [0, 1]

n, w
(2n)
rand = (±pi)ni=1, (pi)

n
i=1 ∼ U [0, 1]n. (3.4)

The result is stated by the following theorem.

Theorem 3.4 (UAP for randomly initialized parameters). Given a probability

threshold δ ∈ (0, 1), for any function f ∗ ∈ C([0, 1]) and any small number ε > 0,

there exists a large integer n ∈ Z+, and α, γ ∈ R for fNN in Eq. (3.2) with ran-

domly initialized b
(n)
rand and w

(2n)
rand in Eq. (3.4), along with a permuted coefficients

θ(2n) = τ(w
(2n)
rand), such that with probability 1 − δ, |fNN(x) − f ∗(x)| ≤ ε for all

x ∈ [0, 1].

3.2.3 Proof Outline

To establish the UAP of fNN in Eq. (3.2) for f ∗ ∈ C([0, 1]), we first approximate

the target function f ∗ by a piecewise constant function g, leveraging a common

approach in continuous function approximation [82]. Since g can be expressed as a

sum of step functions, we can construct a subnetwork within fNN to approximate
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each individual step function. Finally, we need to eliminate the remaining part

of fNN to ensure that the approximation error is controlled. In this spirit, our

constructive proof includes the following three steps (illustrated in Figure 3.1):

1. Approach the target function f ∗ by a piecewise constant function g;

2. Approximate each step functions of g by a subnetwork within fNN;

3. Annihilate the impact of the remaining parts of fNN.

Refine the basis locations L-times
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Figure 3.1: Main idea of the construction. (a) Approximate the continuous function
f ∗ by a piecewise constant function g which is further approximated by permuted
networks fNN. (b) The step function approximator fNN

s is constructed by step-
matching. (c) Refine the basis functions L-times. (d) Stacking pseudo-copies to
achieve the desired height.

Step 1 can be achieved by cutting the range of f ∗ into subregions with an equal

width ∆h, and then constructing a step function at each point where f ∗ crosses a

boundary of these subregions, leading to an approximator with an error ∆h (illus-

trated in Figure 3.1(a)). The detailed construction is given in Lemma 3.5.

The execution of step 2 is inspired by the divide-and-conquer algorithm in com-

puter science [38]. For each step function fsj in g, we select basis functions to

construct a step function approximator fNN
sj

, then sum them up to approach g. This

step-matching construction utilizes four pairs of basis functions {±bi}4i=1 (shown

in Figure 3.1(b)), and establishing a one-to-one mapping between coefficients and
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biases, i.e., {pi, qi}4i=1 = {±bi}4i=1. It ensures that each coefficient and location

is uniquely assigned and prevents conflict between different approximators. The

detailed construction is discussed in Section 3.3.2.

Step 3 plays a vital role in the proof construction, serving as an essential dis-

tinguishing factor that sets permutation training apart from conventional scenarios.

Note that the specific setting of permutation training poses a crucial challenge that

the proof must utilize every parameter, rather than just pick up the desired parame-

ters and discard the rest. Therefore, after the construction in step 2, it is essential to

eliminate the remaining network parameters to prevent the potential accumulation

of errors. We solve this problem by proposing a linear reorganization to write the

remaining part as a linear function with a controllable slope. The detailed reorga-

nization is given in Section 3.3.3. Combining the above three steps, we can achieve

the UAP of fNN in Eq. (3.2) for any f ∗ ∈ C([0, 1]). The whole proof of Theorem 3.2

is presented in Section 3.3.4.

To further enhance the conclusion of Theorem 3.2 to Theorem 3.3, we first in-

troduce a technique called pseudo-copy, which can achieve UAP without altering

γ in Eq. (3.2). By partitioning the refined basis functions, several pseudo-copies

fNN
s,p of the original approximator fNN

s can be constructed with a controllable error.

The final height can then be achieved by stacking these copies together rather than

changing γ (see Figure 3.1(d)). Additionally, to make the shift factor α removable,

our constant-matching construction can provide the necessary shifting. It also en-

ables another way to eliminate the remaining part of the network. The detailed

proof of Theorem 3.3 is given in Section 3.3.5.

Extending the UAP to the random initializations in Theorem 3.4 is justified by

the fact that the parameters randomly sampled from uniform distributions become

denser, thus approaching the equidistant case. Therefore, a sufficiently wide network

has a high probability of finding a subnetwork that is close enough to the network

with UAP in the equidistant case. Then this subnetwork can also achieve UAP due

to its continuity. The remaining part of the network can be eliminated by step 3.
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The detailed proof of Theorem 3.4 is given in Section 3.3.7.

3.3 UAP of Permutation-Trained NNs

This section first provides a detailed construction of the approximator with a

weight-permuted NN in the equidistant case, along with an estimation of the con-

vergent rate of approximation error. The extension to the scenario with random

initialization is also thoroughly discussed.

3.3.1 Approximate the Target Function with a Piecewise

Constant Function

As we discussed previously, the first step of our proof is to approximate the

target function f ∗ by a piecewise constant function g. It can be summarized as the

following lemma, which is based on the Stone-Weierstrass theorem [83].

Lemma 3.5. For any function f ∗ ∈ C([0, 1]) and any small number ε′ > 0, there

is a piecewise constant function g with a common jump ∆h ≤ ε′, such that |g(x)−

f ∗(x)| ≤ ε′ for all x ∈ [0, 1]. Moreover, the function g can be written as a summation

of J step functions {fsj}Jj=1 as the following form,

g(x) =
J∑

j=1

ajfsj(x) =
J∑

j=1

aj∆hχ(x− sj), aj = ±1, sj ∈ [0, 1], J ∈ Z+. (3.5)

Here J is the step number, sj is the step location, aj is the step sign controlling the

direction, and χ is the standard step function

χ(x) =

0, x < 0,

1, x ≥ 0.

Proof. For a given target function f ∗, the function g can be constructed explicitly.
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Thanks to the Stone-Weierstrass theorem [83], we assume f ∗ to be a polynomial func-

tion for simplicity. Let the range of f ∗ be covered by an interval [kmin∆h, kmax∆h]

with two integers kmin, kmax ∈ Z. Then denote J as the number of intersections

between f ∗ and parallel lines y = (k + 0.5)∆h, k = kmin, kmin + 1, · · · , kmax − 1.

Notice that J must be finite since f ∗ is a polynomial function (Otherwise f ∗ will be

a constant function due to the fundamental theorem of algebra [43], which can be

directly approximated by g). The scenario with J = 0 is also trivial since it indi-

cates that f ∗ lies in a single interval [(k0 − 0.5)∆h, (k0 + 0.5)∆h] for some integer

k0 ∈ [kmin, kmax], such that f ∗ can be approached by the constant function y = k0∆h

with an error ∆h.

Hence, for any j = 1, · · · , J , we choose sj ∈ [0, 1] such that f ∗(sj) = (kj+0.5)∆h

for some kj ∈ Z. The step locations s1 < · · · < sJ are distinct since any repetition

would contradict the continuity of f ∗. The step sign aj is determined according to

the values of f ∗ on [sj−1, sj+1]. It is easy to verify that such a construction satisfies

our requirements.

3.3.2 Construct Step and Constant Function Approximators

Lemma 3.5 enables us to approximate the target function f ∗ by a piecewise

constant function g in Eq. (3.5). Next, we aim to approximate each step function

within g by a subnetwork of fNN, respectively, and then eliminate the remaining

part of fNN. This section introduces several key constructions to achieve this goal

in the equidistant case.

Step-Matching Construction of Step Function Approximators fNN
s

Here we construct the step function approximator fNN
s for a given step function

fs(x) = ∆hχ(x−s) with height ∆h and location s. The construction considers four

pairs of basis functions {ϕ±
i }4i=1 with locations {bi}4i=1 and coefficients {pi, qi}4i=1 =
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{±bi}4i=1, which has the following form,

fNN
s (x) =

4∑
i=1

piϕ
+
i (x) +

4∑
i=1

qiϕ
−
i (x), x ∈ [0, 1]. (3.6)

Here we require the locations b1 < b2 < b3 < b4 satisfy the following symmetric

condition,

d := b2 − b1 = b4 − b3 =⇒ b1 + b4 = b2 + b3, (3.7)

where d is the basis distance. To ensure a local error of the approximator, we appeal

fNN
s to be x-independent outside the interval [b1, b4]. As a result, the coefficients

pi, qi must satisfy
∑4

i=1 pi =
∑4

i=1 qi = 0, which implies the correspondence between

{pi, qi}4i=1 and {±bi}4i=1 as

p1 = −b1, p2 = +b2, p3 = +b3, p4 = −b4,

q1 = +b4, q2 = −b3, q3 = −b2, q4 = +b1.
(3.8)

We call the {pi, qi}4i=1 and {±bi}4i=1 is step-matching if they satisfy Eq. (3.8), which

gives the piecewise form of fNN
s in Eq. (3.6) as

fNN
s (x) =



2b1b4 − 2b2b3 0 ≤ x < b1,

(−b1 + b4)x+ b21 + b1b4 − 2b2b3 b1 ≤ x < b2,

(−2b1 + 2b2)x+ b21 − b22 + b1b4 − b2b3 b2 ≤ x < b3,

(−b1 + b4)x+ b21 − b22 − b23 + b1b4 b3 ≤ x < b4,

b21 − b22 − b23 + b24 b4 ≤ x ≤ 1.

(3.9)

The profile of this fNN
s can be found in Figure 3.1(b), which shows that fNN

s is

monotone and can approach a step function with the height h satisfying the following

relation,

h = 2(b21 − b22 − b23 + b24) = 4d(b4 − b2). (3.10)
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Notice that choosing the basis functions adjacent will lead to d = 1
n−1

and h = 8d2.

By shifting h/2 and scaling ∆h/h, we use fNN
s to approach step function fs with

s ∈ [b1, b4]. It is obvious that the L∞ error has the following trivial bound,∣∣∣∣∆hh
[
fNN
s (x) +

h

2

]
− fs(x)

∣∣∣∣ ≤ ∆h, ∀ x ∈ [0, 1]. (3.11)

Notice that Eq. (3.9) implies that the approximation is exactly accurate when x /∈

[b1, b4]. A toy example of this step-matching construction is shown in Figure 3.2.

Remark 3.6. Although [7] suggested that a step function could be approached by

two ReLU basis functions, this approach is unsuitable for the permutation training

scenario. For an error tolerance ε, a step function fs(x) = hsχ(x − s) can be well

approximated by a linear combination of two ReLU basis functions as

f̃NN
s (x) =

hs
2ε

[ReLU(x− s+ ε)− ReLU(x− s− ε)].

However, the dependence of the coefficients on the step height hs hinders further

construction, as the permutation training scenario can use each coefficient only once.

Example 3.1. To illustrate the key idea of our construction, we consider a toy

example of approaching a step function fs(x) = 0.8χ(x−0.4) for x ∈ [0, 1] by a net-

work in Eq. (3.2) with n = 11 and equidistantly initialized {bk}11k=1 = {0, 0.1, · · · , 1}.

This setting is considered after applying Lemma 2.1 with ∆h = 0.8.

Following our step-matching construction, we can choose the basis functions

with {bk}4k=1 = {0.1, 0.3, 0.6, 0.8} to be step-matching in Eq. (3.8), leading to a step

function approximator fNN
s . The height of fNN

s is given by h = 0.4. Therefore, the

target step function fs can be approximated by fNN
s along with shifting ∆h/2 = 0.4

and scaling ∆h/h = 2 with the following error estimation:∣∣∣∣[∆hh (x) fNN
s +

h

2

]
− fs(x)

∣∣∣∣ ≤ 0.8 = ∆h, x ∈ [0, 1].

The target step function fs and its approximator fNN
s are plotted in Figure 3.2.
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Figure 3.2: Approximating a step function fs(x) = 0.8χ(x − 0.4) and a constant
function fc(x) = 0.2 in x ∈ [0, 1] with the step-function approximator fNN

s and the
constant function approximator fNN

c , respectively. The target functions are plotted
as lines, and the approximation results are shown as dashed lines. The locations
of the basis functions used for fNN

s and fNN
c are marked with ”×” and ”▲” on the

x-axis, respectively.

Constant-Matching Construction of Constant Function Approximators

fNN
c

The four-pair form in Eq. (3.6) can also be utilized to approximate a constant

function, which plays a crucial role in the proof of Theorem 3.3. The constant

function approximator (denoted as fNN
c ) shares the same form as fNN

s in Eq. (3.6) but

differs slightly in the parameter assignment in Eq. (3.8). The coefficients {pi, qi}4i=1

are set to equalize the height of the two constant pieces x < b1 and b4 ≤ x, leading

to −
∑4

i=1 pibi =
∑4

i=1 qibi. A possible choice is

p1 = −b1, p2 = +b2, p3 = +b3, p4 = −b4,

q1 = +b1, q2 = −b2, q3 = −b3, q4 = +b4.
(3.12)

We call the {pi, qi}4i=1 and {±bi}4i=1 is constant-matching if they satisfy Eq. (3.12).

With these chosen coefficients {pi, qi}4i=1 and the the symmetry of coefficients in
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Eq. (3.7), the constant function approximator fNN
c can be written as:

fNN
c (x) = (b2 + b3 − b1 − b4) x+ b21 − b22 − b23 + b24

= 2d(b4 − b2) =
h

2
, ∀ x ∈ [0, 1].

(3.13)

By the relations of h in Eq. (3.10), it gives a representation of constant C = h/2

without the approximation error, i.e., |fNN
c (x)− h/2| = 0 for all x ∈ [0, 1].

Furthermore, by changing the sign of {pi, qi}4i=1 in Eq. (3.12) simultaneously, an

approximator fNN
−c with a negative constant −C = −h/2 can also be constructed:

fNN
−c (x) = −2d(b4 − b2) = −

h

2
, ∀ x ∈ [0, 1].

Therefore, we can freely adjust the sign aj = ±1 of the approached constant. It also

enables us to construct fNN
c and fNN

−c with the same constant separately, then pair

them up to offset with each other, i.e., fNN
c (x)+ fNN

−c (x) = 0 for all x ∈ [0, 1]. A toy

example of this constant-matching construction is shown in Figure 3.2.

Example 3.2 (Example 3.1 continued). In the previous example, we can also con-

sider the constant function approximator fNN
c following our constant-matching con-

struction in Eq. (3.12). We choose the basis functions located at {0.2, 0.4, 0.7, 0.9} to

be constant-matching, leading to a constant function approximator fNN
c = h/2. The

height of fNN
c is given by h/2 = 0.4. From the shape of fNN

c plotted in Figure 3.2,

we can see that it can approximate a constant function without any error.

3.3.3 Annihilate the Unused Part of NNs

After constructing approximators to approach the target function, the permu-

tation training setting requires that the remaining parameters be suitably arranged

to eliminate their impact. Notice that a pair of basis functions ϕ±
i are either used

together or not at all. Concretely, we choose a pair of basis functions located at bi
and set the coefficients as {pi, qi} = {±bi}. The linear function approximator fNN

ℓ
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can be written as the following form,

fNN
ℓ (x) = miℓi, ℓi(x) := biϕ

+
i (x)− biϕ−

i (x) = bix− b2i , x ∈ [0, 1], (3.14)

where mi = ±1 is a freely adjusted sign. We call this method linear reorganization.

It allows us to adjust the number of the total basis functions, as the L∞-norm of

fNN
ℓ located at bi has an upper bound of b2i . Hence, we can choose the unwanted bi

that is small enough, then omit it along with the related coefficients {pi, qi} = {±bi}

from the network without affecting the approximation error.

Concretely, denote Iun ⊂ {1, 2, ..., n} as the index of unused basis functions and

n̄ as the number of elements in Iun, which can be processed to be an even number.

After taking a sum of all i ∈ Iun, the resulting Sℓ has the following linear form,

Sℓ(x) =
∑
i∈Iun

fNN
ℓi

(x) =
∑
i∈Iun

mibix−
∑
i∈Iun

mib
2
i =: βx+ η, x ∈ [0, 1], (3.15)

where β is the slope and η is the intercept. The goal then is to control the L∞-norm

of Sℓ. We first choose a proper mi ∈ {−1, 1} for each i ∈ Iun to reduce |β|, which is

equivalent to assigning addition and subtraction operations within a given sequence

to reduce the final result’s absolute value. Motivated by the Leibniz’s test (known

as alternating series test) [73], the following lemma offers a solution with an upper

bound of β.

Lemma 3.7. For an even number n̄ and a sequence of real number ci ∈ R, i =

1, · · · , n̄, there exists a choice of mi ∈ {−1, 1}, i = 1, · · · , n̄, such that

0 ≤
n̄∑

i=1

mici ≤ ∆c, ∆c = max
1≤j≤n̄

j /∈argmax cj

min
i ̸=j
ci≥cj

(ci − cj)

 , (3.16)

where ∆c can be regarded as the largest gap between the adjacent elements after

sorting ci in descending order.

Proof. Without loss of generality, we assume c1 ≥ c2 ≥ · · · ≥ cn̄ ≥ 0 and thus
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∆c = maxi |ci − ci−1|. Since n̄ is an even number, we define a new series {rj}n̄/2j=1 as

the difference between each pair of elements in {ci}n̄i=1,

rj = c2j−1 − c2j ≥ 0, j = 1, 2, · · · , n̄
2
.

Then we permute (rj)
n̄/2
j=1 to be descending order. Concretely, we find a permutation

τ and denote r′j = τ(rj) = [τ(c2j−1) − τ(c2j)], such that r′1 ≥ r′2 ≥ · · · ≥ r′n̄/2 ≥ 0.

Next, we alternatively use addition and subtraction operations on each r′j by noting

λj = (−1)j−1, j = 1, · · · , n̄/2, and estimate the summation Sn̄/2 as the following

forms,

Sn̄/2 :=
n̄/2∑
j=1

λjr
′
j =

(r′1 − r′2) + (r′3 − r′4) + · · · ≥ 0,

r′1 − (r′2 − r′3)− (r′4 − r′5)− · · · ≤ r′1 ≤ ∆c.

Note that Sn̄/2 =
∑n̄/2

j=1 λj[τ(c2j−1) − τ(c2j)] is of the form of
∑n̄

i=1mici, hence the

choice of mi implied by λj satisfies our requirement and the proof is finished

Example 3.3. To illustrate the processing method of Lemma 3.7, we consider a

given sequence

3, 1, 4, −1, 5, 9,

with the largest gap ∆c = 4. The aim is to choose choose mi ∈ {−1, 1} to reduce

the absolute value of the result

S = 3 ·m1 + 1 ·m2 + 4 ·m3 − 1 ·m4 + 5 ·m5 + 9 ·m6.

This can be achieved by the following steps:

1. Rearrange the sequence into 9, 5, 4, 3, 1, −1;

2. Compute the gap between every two adjacent elements as 4, 1, 2;

3. Reorganize the gap sequence into an alternating series and compute the result

as S = 4− 2 + 1 = 3;
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4. Transfer the choice of mi ∈ {−1, 1} to the original sequence as

S = (9− 5)− [1− (−1)] + (4− 3) = 9− 5− 1− 1 + 4− 3 = 3 < 4 = ∆c.

Therefore, the result S = 3 can be achieved by choosing m1 = −1,m2 = −1,m3 =

1,m4 = 1,m5 = −1,m6 = 1.

Remark 3.8. Leibniz’s test guarantees that an alternating series that decreases

in absolute value is bounded by the leading term. However, we emphasize that

utilizing Leibniz’s test directly to {ci}n̄i=1 can only get a trivial bound. Therefore,

the introduction of rj is important to get the desired result.

After applying Lemma 3.7 to control the slope β, the intercept η is consequently

determined by the chosen {mi}i∈Iun . Thus, we can choose a constant to adjust the

intercept, which establishes an upper bound for the error Sℓ of the remaining part.

Remark 3.9. We follow the conventional setting of the UAP study and primarily

focus on shallow MLPs, as the generalization of the results to deep networks is

expected. The linear reorganization in Eq. (3.14) enables construct an identity

function y = x using a pair of basis functions y = pnϕ
+
1 (x) + qnϕ

−
1 (x), where b1 = 0,

pn = 1, qn = −1. This process enables us to utilize identity functions within

subsequent layers. Consequently, the deep networks scenario parallels the shallow

cases.

3.3.4 Proof of Theorem 3.2

Lemma 3.5 offers a piecewise constant function g to approach the target function

f ∗. Now we prove that by permuting the selected coefficients and eliminating the

remaining part, fNN can approximate the piecewise constant function g with the

same accuracy, enabling us to prove Theorem 3.2.

Proof of Theorem 3.2. For any target function f ∗ ∈ C([0, 1]) and small number ε,
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we aim to construct a network fNN in Eq. (3.2) with n pairs of basis functions to

approximate f ∗ with error ε. The goal is achieved with the following points:

a) Approach f ∗ by a piecewise constant function g. Employing Lemma 3.5 by

letting ε′ = ε/4, we can construct a piecewise constant function g in Eq. (3.5) with

a constant height ∆h ≤ ε′ = ε/4, distinct step locations s1 < · · · < sJ . It gives

|g(x)−f ∗(x)| ≤ ∆h < ε/2 for all x ∈ [0, 1]. Here we denote δs := maxj |sj− sj−1| as

the maximal gap of step locations, where j = 0, 1, · · · , J + 1 and s0 = 0, sJ+1 = 1.

b) Approximate each step function in g by the step-matching approximator fNN
sj

in Eq. (3.6). Since the step locations {sj}Jj=1 are distinct, we can choose a network

fNN with large enough n̂, i.e., the locations in b
(n̂)
equi are dense enough, such that

there are enough basis functions to construct fNN
sj

for each ajfsj , respectively. In

fact, for any n̂ > 8/δs+1, the distance between basis functions d̂ = 1/(n̂−1) satisfies

d̂ < δs/8.

Additionally, to maintain the consistency of the following estimation, we refine

the basis locations b
(n̂)
equi to b

(n)
equi with n = L(n̂ − 1) + 1 for some integer L ≥

∆h(n̂ − 1)2/8 (see Figure 3.1(c)). Denote K = {1, · · · , n} as the index set of the

locations b
(n)
equi, and for each j = 1, · · · , J , we choose the basis functions with the

index Kj := {kj, kj + L, kj + 2L, kj + 3L} ⊂ K, such that sj ∈ [bkj+L, bkj+2L)

and {Kj}Jj=1 has empty intersection. Therefore, for each ajfsj , an approximator

(fNN
sj

+ajh/2) with a shifting ajh/2 can be constructed by applying the step-matching

construction on {pk, qk}k∈Kj
. This approximation has the following error estimation

given by Eq. (3.11):∣∣∣∣[fNN
sj

(x) + aj
h

2

]
− aj

h

∆h
fsj(x)

∣∣∣∣ ≤ h, ∀ x ∈ [0, 1], j = 1, · · · , J, (3.17)

where h = 8d̂2 = 8/(n̂− 1)2 = 8L2/(n− 1)2 is the height determined by n̂, and the

scaling h/∆h serves to match the constant height ∆h and its approximator height

h. Our requirement of L gives the condition L ≥ ∆h/h. Furthermore, denote

Kuse = ∪J
j=1Kj as the index set for all involved basis functions in Eq. (3.17), which
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leads to the requirement of n̂ > 4J . We define Suse as the picked subnetwork of fNN,

Suse(x) :=
∑

k∈Kuse

[
pkϕ

+
k (x) + qkϕ

−
k (x)

]
=

J∑
j=1

fNN
sj

(x), x ∈ [0, 1],

then the properties of our step-matching construction and Eq. (3.17) imply the error

Euse of the summed approximators can be estimated in the following form,

Euse := max
x∈[0,1]

∣∣∣∣∣Suse(x) +
h

2

J∑
j=1

aj −
h

∆h
g(x)

∣∣∣∣∣
= max

x∈[0,1]

∣∣∣∣∣
J∑

j=1

[
fNN
sj ,pl

(x) + aj
h

2

]
−

J∑
j=1

h

∆h
ajfsj(x)

∣∣∣∣∣ ≤ h.

(3.18)

Here
∑J

j=1 aj =: J ′ ≤ J is a constant, and height h satisfies h = 8L2/(n− 1)2.

c) Annihilate the impact of the unused part. The linear reorganization in

Eq. (3.14) enables write the unused part in fNN into a linear function Sun, namely,

Sun(x) =
∑

k∈K\Kuse

[
pkϕ

+
k (x) + qkϕ

−
k (x)

]
=

∑
k∈K\Kuse

(mkbkx−mkb
2
k) =: βx+ η.

Since the number of unused basis functions can be processed to be even, we apply

Lemma 3.7 on the series {bk}k∈K\Kuse to get a choice of mk ∈ {−1, 1} for each

k ∈ K \Kuse, which provides an upper bound of the slope β as 0 ≤ β ≤ ∆b, where

∆b is the largest gap between the adjacent locations in {bk}k∈K\Kuse . Notice that

in fNN, the refined basis distance d < 1/Ln̂ is small enough to ensure that there is

at least one unused basis function between two adjacent used basis functions, i.e.,

∆b ≤ 2/Ln̂. To control the error of the intercept η, we introduce a shifting Cη = −η,

thus the error Eun introduced by the unused part gives the following estimation,

Eun := max
x∈[0,1]

∣∣Sun(x) + Cη

∣∣ ≤ ∆b <
2

Ln̂
≤ 2h

∆hn̂
. (3.19)

Therefore, we choose n̂ > 2/∆h such that the error Eun satisfies Eun ≤ h.
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d) Complete the proof by choosing the suitable values of γ, α. We choose n̂ and

two factors γ, α, such that

n̂ ≥ max

{
4J,

8

δs
+ 1,

2

∆h

}
, γ =

∆h

h
, α = ∆h

(
J ′

2
+
Cη

h

)
.

Moreover, Let n = L(n̂−1)+1 for some integer L ≥ ∆h(n̂−1)2/8, then Eq. (3.19)-

(3.21) implies that the approximation error of the network fNN with width n satisfies

∣∣fNN(x)− g(x)
∣∣ = ∣∣∣∣∣γ∑

k∈K

[
pkϕ

+
k (x) + qkϕ

−
k (x)

]
+ α− g(x)

∣∣∣∣∣
≤
∣∣∣∣∆hh [Suse(x) + Sun(x)

]
+

(
∆h

2
J ′ +

∆h

h
Cη

)
− g(x)

∣∣∣∣
≤ ∆h

h

∣∣∣∣Suse(x) +
h

2
J ′ − h

∆h
g(x)

∣∣∣∣+ ∆h

h

∣∣Sun(x) + Cη

∣∣
≤ ∆h

h
(Euse + Eun) ≤ 2∆h ≤ ε

2
, ∀ x ∈ [0, 1].

This complete the proof since |fNN(x)− f ∗(x)| ≤ ε for all x ∈ [0, 1].

3.3.5 Proof of Theorem 3.3

Next, we remove scaling γ and shifting α during the proof, i.e., achieve UAP

with fixed factors γ = 1, α = 0 as stated in Theorem 3.3. To eliminate the scaling

γ, we introduce the pseudo-copy technique to let γ = L for an integer L ∈ Z+,

allowing copy the approximator L-times and stack them (instead of multiplying by

γ) to match the desired height. The shifting α can be replaced by our constant-

matching construction in Eq. (3.13), which is also applied to eliminate the remaining

parameters, since our linear reorganization in Eq. (3.14) requires a shifting Cη to

control the error.

Proof of Theorem 3.3. For a given target function f ∗ ∈ C([0, 1]), we first apply

Theorem 3.2 to obtain a network fNN to approximate f ∗, and then enhance the
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construction by pseudo-copy technique and constant-matching construction to elim-

inate the scaling γ and shifting α, leading to a network fNN in Eq. (3.2) with fixed

factors γ = 1, α = 0. To facilitate distinction, we will denote this network equipped

with the pseudo-copy technique as fNN
pc in the following text.

a) Approximate the target function f ∗ by a network fNN with learnable factors

γ and α. By applying Theorem 3.2, we construct fNN to approximate f ∗ through

a piecewise constant function g with error ε. Following the previous discussion, we

have ∆h ≤ ε/8, γ = ∆h/h. During the construction, L is chosen to be L = γ.

b) Remove the scaling γ by the pseudo-copy technique. We first reassign the

basis functions in fNN to construct the pseudo-copies of each approximator fNN
sj

.

For each Kj = {kj, kj + L, kj + 2L, kj + 3L} ⊂ K, we denote the corresponding

adjacent index set for pseudo-copy as K ′
j := {kj, kj + 1, · · · , kj + 4L− 1} such that

Kj ⊂ K ′
j. To maintain the same height of each pseudo-copy, we partition K ′

j into

L subsets as K ′
j = ∪Ll=1Kj,l by choosing after every L indexes (illustrated at the top

of Figure 3.1(d)).

For each l = 1, · · · , L, we apply the step-matching construction on {pk, qk}k∈Kj,l

to construct the pseudo-copy fNN
sj ,pl

for fNN
sj

in Eq. (3.17), respectively. Since each

fNN
sj ,pl

has the same height h with fNN
sj

, we have the copy error as |fNN
sj ,pl

(x)−fNN
sj

(x)| <

h for all x ∈ [0, 1]. Therefore, Eq. (3.17) allows the summed fNN
sj ,pl

to approximate

ajfsj with the following error:

∣∣∣∣∣
L∑
l=1

[
fNN
sj ,pl

(x) + aj
h

2

]
− ajfsj(x)

∣∣∣∣∣
≤

L∑
l=1

∣∣∣fNN
sj ,pl

(x)− fNN
sj

(x)
∣∣∣+ ∣∣∣∣L [fNN

sj
(x) + aj

h

2

]
− ajfsj(x)

∣∣∣∣
≤Lh+∆h = 2∆h, ∀ x ∈ [0, 1], j = 1, · · · , J.

(3.20)

Here, ajh/2 is the shifting required by the pseudo-copies.

c) Replace the shifting with a constant-matching construction. After construct-

ing the pseudo-copies fNN
sj ,pl

, our constant-matching construction in Eq. (3.13) can
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pair them up with the necessary shifting fNN
cj

= ajh/2, enabling the combined∑L
l=1(f

NN
sj ,pl

+ fNN
cj

) to approach ajfsj . Denote K ′
use as the index set for all involved

basis functions. We define S ′
use as the picked subnetwork of fNN

pc ,

S ′
use(x) :=

∑
k∈K′

use

[
pkϕ

+
k (x) + qkϕ

−
k (x)

]
=

L∑
l=1

J∑
j=1

[
fNN
sj ,pl

(x) + fNN
cj

(x)
]
,

where x ∈ [0, 1]. Eq. (3.20) implies the following error estimation,

E ′
use := max

x∈[0,1]
|S ′

use(x)− g(x)|

= max
x∈[0,1]

∣∣∣∣∣
J∑

j=1

L∑
l=1

[
fNN
sj ,pl

(x) + fNN
cj

(x)
]
−

J∑
j=1

ajfsj(x)

∣∣∣∣∣ ≤ 2∆h.
(3.21)

This construction uses 8L basis locations, leading to the requirement that n > 8LJ .

d) Eliminate the unused part of the network. Since the linear reorganization

in Eq. (3.14) is invalid, we turn to apply the constant-matching construction in

Eq. (3.13) to eliminate the unused part of the network. Concretely, for the remaining

n − 8JL pairs of basis functions in fNN
pc , we construct fNN

±ct , t = 1, · · · , bn/8c − JL,

then pairing them up to offset with each other, i.e.,

S ′
un(x) =

∑
k∈K\K′

use

[
pkϕ

+
k (x) + qkϕ

−
k (x)

]
=

⌊n/8⌋−JL∑
t=1

[
fNN
ct (x) + fNN

−ct(x)
]
+R(x).

Here R(x) is the residual part since n is not always divisible by 8. However, our linear

reorganization in Eq. (3.14) enables omitting the basis functions with sufficiently

small bi. Concretely, the L∞ error introduced by R(x) can be controlled as |R(x)| ≤∑4
k=1 b̄

2
k =: CR for all x ∈ [0, 1], where {b̄k}4k=1 is the missed or external basis

locations. Since the constant-matching construction has flexibility, {b̄k}4k=1 can be

small enough to ensure CR ≤ ∆h. Hence, the error E ′
un introduced by the unused
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parameters satisfies

E ′
un = max

x∈[0,1]
|S ′

un(x)| = CR + Cc ≤ 2∆h. (3.22)

Here the constant Cc comes from the possible mismatch in pairing up fNN
ct + fNN

−ct .

However, for a sufficiently wide network, Cc can be small enough as Cc < ∆h.

e) Complete the proof by combining the previous estimation. By setting γ =

1, α = 0 and choosing a sufficiently large L ∈ Z+, such that

n =

√
8L3

∆h
+ 1 > max

{
8JL,

8L

δs
+ L,

2L

∆h

}
.

Eq. (3.21)-(3.22) gives estimation of the overall approximation error as follows:

∣∣fNN
pc (x)− g(x)

∣∣ = ∣∣∣∣∣∑
k∈K

[
pkϕ

+
k (x) + qkϕ

−
k (x)

]
− g(x)

∣∣∣∣∣
≤ |S ′

use(x)− g(x)|+ |S ′
un(x)|

≤ E ′
use + E ′

un ≤ 4∆h, ∀ x ∈ [0, 1],

where ∆h is chosen to satisfy ∆h ≤ ε/8. Hence we can finish the proof of Theorem

3.3 since |fNN
pc (x)− f ∗(x)| ≤ ε for all x ∈ [0, 1].

3.3.6 Estimate the Approximation Rate

Here we estimate the approximation rate of the L2-error es of approximating the

single step function fs in Eq. (3.5) by the approximator fNN
s in Eq. (3.9). In our

four-pair construction, we assume s = (b2+ b3)/2 and introduce k1 and k2 to rewrite

the symmetry relations in Eq. (3.7) as:

b1 = s− k2, b3 = s+ k1,

b2 = s− k1, b4 = s+ k2,
(3.23)
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where 0 < k1 ≤ k2, and it also gives d = k2−k1. The piecewise form of step function

approximator fNN
s in Eq. (3.9) enables us to subdivide the error into parts like

e2s =

∫ 1

0

∣∣∣∣γ [fNN
s (x) +

h

2

]
− h

∆h
fs(x)

∣∣∣∣2 dx
= γ2

[∫ s

b1

∣∣∣∣fNN
s (x) +

h

2

∣∣∣∣2 dx+ ∫ b4

s

∣∣∣∣fNN
s (x)− h

2

∣∣∣∣2 dx
]
.

(3.24)

After calculation, the error of each approximator fNN
s can be estimated like

e2s = γ2
[
8

3
(k1 − k2)2

(
k31 + 3k21k2 + 2k1k

2
2 + k32

)]
≤ 56

3
γ2d2k32. (3.25)

During the construction of fNN
s , the basis functions are chosen adjacently, leading to

k2 ∼ O(d) and es ∼ O(γ d
5
2 ). To estimate the order of γ, we derive from Eq. (3.10)

that the height h gives h ∼ O(d2), while the step function fs has a d-independent

height ∆h ∼ O(1). Therefore, the scaling γ = ∆h/h ∼ O(d−2) is needed, and the

error is rewritten as es ∼ O(d
1
2 ). Recall that d in Eq. (3.7) has d ∼ O( 1

n−1
), we

have es ∼ O(n− 1
2 ), which means the approximation rate is roughly 1/2 order with

respect to the network width n. We will numerically verify this rate in Section 4.3.

This estimation also holds for our pseudo-copy fNN
sj ,pl

, where γ = L. The triangle

inequality is adopted to estimate the overall approximation error of these stacked

{fNN
s,pl
}Ll=1 to a predetermined step function fs, i.e.,

es,p =

∥∥∥∥∥
L∑
l=1

(
fNN
s,pl

+
h

2

)
− fs

∥∥∥∥∥
L2

≤
L∑
l=1

∥∥∥∥(fNN
s,pl

+
h

2M

)
− 1

L
fs

∥∥∥∥
L2

=:
L∑
l=1

es,pl .

(3.26)

Now we focus on the approximation error es,pl of each fNN
s,pl

to the fs/L. However, the

result in Eq. (3.25) cannot be directly adopted since it only holds for the symmetry

case in Eq. (3.23). Instead, we choose locations {b̃i}4i=1 almost symmetrically with
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mismatch measured by ∆sl. Therefore, the relation in Eq. (3.23) is transformed into

b̃1 = (s+∆sl)− k2, b̃3 = (s+∆sl) + k1,

b̃2 = (s+∆sl)− k1, b̃4 = (s+∆sl) + k2.
(3.27)

Compared with Eq. (3.23), it’s clear that this transformation is equivalent to replac-

ing fNN
s,pl

(x) with fNN
s (x − ∆sl) for all x ∈ [0, 1]. Therefore, each es,pl in Eq. (3.26)

gives

e2s,pl =

∫ 1

0

∣∣∣∣[fNN
si

(x−∆sl) +
h

2

]
− 1

L
fs(x)

∣∣∣∣2 dx
=

∫ s

b1+∆sl

∣∣∣∣fNN
si

(x−∆sl) +
h

2

∣∣∣∣2 dx+ ∫ b4+∆sl

s

∣∣∣∣fNN
si

(x−∆sl)−
h

2

∣∣∣∣2 dx, (3.28)

where the integral range [b1 +∆sl, b4 +∆sl] is not symmetrical about x = s due to

the mismatch. However, since ∆sl is small, we assume that b2+∆sl ≤ s ≤ b3+∆sl,

then follow the similar procedure used in Eq. (3.24) to divide the error in Eq. (3.28)

into parts. After calculation, we obtain the following estimation

e2s,pl =
8

3
(k1 − k2)2

[
k31 + 3k21k2 + 2k1k

2
2 + k32 + 3∆s2l (k1 + k2)

]
=

8

3
d2
(
−d3 + 6d2k2 − 11dk22 + 7k32 − 3d∆s2l + 6k2 ∆s

2
l

)
.

Since ∆sl can be assumed to be small as ∆sl ∼ O(d), we obtain a similar estimation

es,pl ∼ O(d
5
2 ). Since the number of stacked pseudo-copy satisfies L = γ ∼ O(d−2),

the same estimation es,p = Les,pl ∼ O(n− 1
2 ) is achieved.

3.3.7 Proof of Theorem 3.4

Extending our results of permutation-trained networks to the random initializa-

tion scenarios imposes non-trivial challenges. Note that the symmetry construction

of the step function approximator in Eq. (3.6) becomes invalid with random ini-

tializations, as the error introduced by randomness can accumulate as the width
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increases. Nevertheless, the randomly sampled parameters will become denser upon

increasing width, leading to a high probability of finding parameters that closely

match the required location.

Therefore, we can first apply the UAP in the equidistant case to obtain a net-

work fNN in Eq. (3.2) (denoted as fNN
equi in the following text for distinction), which

exhibits approximation power. Then, within a randomly initialized network fNN in

Eq. (3.2) (denoted as fNN
rand) of sufficient width, we find a subnetwork fNN

sub that can

be regarded as randomly perturbed from fNN
equi. If this perturbation is small enough,

the subnetwork fNN
sub will also possess approximation power.

Proof of Theorem 3.4. We divide the whole proof into the following points:

a) Approach f ∗ with equidistantly initialized fNN
equi. Theorem 3.2 indicate that for

any small ε and the target function f ∗, there is an equidistantly initialized network

fNN
equi in Eq. (3.2) with width ñ and b

(ñ)
equi = (bi)

ñ
i=1, w

(2ñ)
equi = (±bi)ñi=1, such that

∣∣fNN
equi(x)− f ∗(x)

∣∣ < ε

4
, ∀ x ∈ [0, 1]. (3.29)

b) Find a subnetwork fNN
sub in a randomly initialized fNN

rand to approximate fNN
equi.

For a network with sufficiently wide n� ñ, parameters b(n)
rand ∼ U [0, 1]n and w

(2n)
rand =

(±pi)ni=1, pi ∼ U [0, 1], we can find a subnetwork fNN
sub with parameters

b
(ñ)
sub =

(
bi + rbi

)ñ
i=1

, w
(2ñ)
sub =

(
± (bi + rwi )

)2ñ
i=1
,

which can be viewed as randomly perturbed from b
(ñ)
equi, w

(2ñ)
equi , while the independent

and identically distributed (i.i.d.) rbi ∼ U [−∆r,∆r]ñ and rwi ∼ U [−∆r,∆r]2ñ mea-

sured the perturbation, and ∆r > 0 are the maximum allowable perturbation of b(ñ)
equi

and w
(2ñ)
equi . (We impose further constraints on the parameters near the boundary

of [0, 1] to prevent them from exceeding the range.) Consequently, for sufficiently

small ∆r < r0, the subnetwork fNN
sub will approach fNN

equi with the approximation error
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like

∣∣fNN
sub (x)− fNN

equi(x)
∣∣ < ε

4
, ∀ x ∈ [0, 1], with probability Psub, (3.30)

where Psub denote the related possibility. This also enables fNN
sub the approximation

power to f ∗ due to its continuity with respect to the parameters. Combining the

results in Eq. (3.29)-(3.30), the approximation error E sub
rand of the subnetwork gives

that, with probability Psub,

E sub
rand := max

x∈[0,1]

∣∣fNN
sub (x)− f ∗(x)

∣∣
≤ max

x∈[0,1]

∣∣fNN
sub (x)− fNN

equi(x)
∣∣+ max

x∈[0,1]

∣∣fNN
equi(x)− f ∗(x)

∣∣ < ε

2
.

(3.31)

c) Estimate the probability Psub related to the approximation power of fNN
sub .

Here we estimate the probability of finding such a subnetwork fNN
sub with the required

approximation error E sub
rand in Eq. (3.31). We start with the complement event Ac

k:

for a given location b̂k ∈ b
(ñ)
equi, there is no close enough locations in b

(n)
rand, i.e., falls

in the interval [b̂k−∆r, b̂k+∆r]. Concretely, the probability has P[Ac
k] = (1−2∆r)n

since the interval length is 2∆r. Hence, by choosing ∆r small enough such that these

intervals have no overlap, i.e., ∆r < min{δs, 1/2ñ}, we apply the inclusion-exclusion

principle [25] to write the probability of finding all locations b
(ñ)
equi in b

(n)
rand as

P

[
ñ⋂

k=1

Ak

]
= 1− P

[
ñ⋃

k=1

Ac
k

]
= 1−

ñ∑
k=1

(−1)k+1

(
ñ

k

)
(1− 2k∆r)n =: 1− P ′,

where
(
ñ
k

)
is the binomial coefficient, and P ′ is the complement probability. This

probability also holds for finding w
(2ñ)
equi in pairwise w

(2n)
rand. Consequently, we can

find a subnetwork fNN
sub within fNN

rand that is close enough to fNN
equi, such that the

approximation error E sub
rand in Eq. (3.31) is achieved with the probability of

Psub = P
[
E sub

rand <
ε

2

]
= [1− P ′]

2
. (3.32)



3.3 UAP of Permutation-Trained NNs 53

For given ñ and ∆r, we have P ′ → 0 as n→∞. Therefore, we choose a sufficiently

large n to ensure that the probability Psub ≥
√
1− δ.

d) Annihilate the remaining part in the randomly initialized fNN
rand. We follow

the same discussion as in the equidistant case to eliminate the unused parameters in

fNN
rand. By applying linear reorganization and Lemma 3.7, we rewrite the remaining

part as a linear function Sr
un(x) = βrx+ ηr, where x ∈ [0, 1] and 0 ≤ βr ≤ ∆p. The

upper bound ∆p is the largest gap between the adjacent coefficients {pi}i∈Iun . As the

network width n increases, the randomly initialized {pi}i∈Iun become denser, leading

to ∆p
a.s.−−→ 0. Therefore, we can choose a sufficiently large n to ensure ∆p ≤ ε/2

with high probability, i.e., Pun ≥
√
1− δ, where Pun denotes the related possibility.

Similarly to Eq. (3.19), we introduce an additional shift Cr = −ηr to control the

error of the intercept ηr. Therefore, the error E un
rand introduced by the unused part

in fNN
rand satisfies can be estimated similarly with Eq. (3.19) as the following form,

E un
rand = max

x∈[0,1]
|Sr

un(x) + Cr| ≤ ∆p ≤ ε

2
, with probability Pun >

√
1− δ. (3.33)

e) Complete the proof by combining the previous estimation. For any ε > 0 and

f ∗ ∈ C([0, 1]), we choose ∆r < min{r0, δs, 1/2ñ} and a large n to ensure that

1. With probability Psub, the subnetwork fNN
sub can approximate the f ∗ with the

error E sub
rand satisfies E sub

rand < ε/2 based on Eq. (3.31);

2. The probability Psub satisfies Psub ≥
√
1− δ based on Eq. (3.32);

3. With probability Pun >
√
1− δ, the impact of the remaining parameters sat-

isfies E un
rand < ε/2 based on Eq. (3.33).

Hence, we can finish the proof by estimating the overall approximation error of our

network fNN
rand to the target function f ∗, which gives that with probability 1− δ,

∣∣fNN
rand(x)− f ∗(x)

∣∣ ≤ E sub
rand + E un

rand < ε, ∀ x ∈ [0, 1]. (3.34)
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3.4 Experiments

This section presents numerical evidence to support and validate the theoreti-

cal proof. An interesting observation of permutation behaviors also highlights the

theoretical potential of this method. The code and data are publicly available on

GitHub at https://github.com/DanclaChen/PermutationTraining.

3.4.1 Algorithmic Implementation

To find a reference for the permutation, the lookahead permutation (LaPerm)

algorithm introduced a k-times Adam-based free updating, where the learned rela-

tionship can then serve as a reference for permutation [71]. The impact of k’s value

on convergence behavior is evaluated to be negligible (see Section 3.4.6). Apart

from the fixed permutation period k, it’s also possible to adjust k to learn sufficient

information for the next permutation.

3.4.2 Experimental Settings

To validate our theoretical results, we conduct experiments on regression prob-

lems. The settings are deliberately chosen to be consistent with our proof construc-

tion. We consider a three-layer network in Eq. (3.2), where the first hidden layer’s

parameters are fixed to form the basis functions {ϕ±
i }ni=1 in Eq. (3.1). The weights

θ(2n) of the second hidden layer are trained by permutation, while the scaling factors

α, γ in the output layer are freely trained to reduce the required network width.

To establish the convergence property upon increasing network width, we sample

the training points randomly and uniformly in [−1, 1], along with equidistantly

distributed test points. The maximum training epoch is sufficiently large to ensure

reaching the stable state. For the multi-dimensional case, we set the basis functions

at a larger domain than the functions to ensure accuracy near the boundary. The

scale is measured by Tb, which means the biases are in [−1 − Tb, 1 + Tb] in each

dimension. See Table 3.1 for detailed choice.

https://github.com/DanclaChen/PermutationTraining
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Table 3.1: Hyperparameter setting of permutation trained NNs.

Hyperparameters 1D 2D 3D

Architectures 1-2n-1-1 2-8n-1-1 3-26n-1-1

k 5 5 20

Batch size 8 128 640

# training points 1600 51200

# test points 400 12800

Tb 0 0.75

n {10, 20, 40, 80, 160, 320}

# epoch 6400

Learning rate (LR) 1e-3

Multiplicative factor of LR decay 0.998

Multiplicative factor of k increase 10
√
1.002
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The experiments are conducted on an NVIDIA A100 GPU. However, our code

is hardware-friendly since each case only consumes approximately 2GB of memory.

The code is implemented in the PyTorch library [70]. The error bars mark the range

of the maximum and minimum values with ten different random seeds. Additionally,

the training data of each case is sampled under the random seed 2022 to ensure that

they are comparable.

3.4.3 Approximating the One-Dimensional Continuous Func-

tions

We utilize a 1-2n-1-1 network architecture with equidistant initialization dis-

cussed in Theorem 3.2, pairwise random initializations in Theorem 3.4, and also

totally random initialization w(2n) ∼ U [−1, 1]2n. The approximation targets are

sine function y = − sin(2πx) and 3-order Legendre polynomial y = 1
2
(5x3 − 3x),

x ∈ [−1, 1].

The numerical result illustrated in Figure 3.3 exhibits a clear convergence be-

havior of equidistant and pairwise random cases upon increasing n, agreeing with

our theoretical proof. The clear dominance of pairwise random initialization indi-

cates its undiscovered advantages in permutation training scenarios. Besides, the

total random case also shows a certain degree of approximation power. However, to

attain the equivalent accuracy, the total random case requires a wider network (i.e.,

a larger n). Furthermore, the L∞ error exhibits a 1/2 convergence rate with respect

to n. Although the theoretical estimation in Section 3.3 is based on L2 norm, we

indeed observe that it also holds for L∞ error.

3.4.4 Approximating the Multi-Dimensional Continuous Func-

tions

As a natural extension, we consider a two-dimensional function z = − sin πxy,

where (x, y) ∈ [−1, 1]2, starting with the construction of basis functions like ϕ±
i (x)
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Figure 3.3: Approximating one-dimensional continuous function (a): y = − sin(2πx)

and (b): y = 1
2
(5x3 − 3x) with equidistantly, pairwise random, and randomly ini-

tialized network, where x ∈ [−1, 1]. The inset in each panel presents the target
function as lines and an example of the approximation result as dots.

in Eq. (3.1). Recall that in the one-dimensional case, the two subsets of ba-

sis ϕ±
i (x) correspond to the two opposite directions along the x-axis. Therefore,

at least four directions are required to represent a function defined on the xy-

plane, of which two are parallel to the x-axis as ϕ±
i (x, ·) = ReLU(±(x − bi)) and

ϕ±
j (·, y) = ReLU(±(y − bj)) for y-axis, respectively. Furthermore, inspired by the

lattice Boltzmann method in fluid mechanics [12], we introduce another four direc-

tions as ψ±±
k (x, y) = ReLU(±x± y − bk). So the whole basis functions are divided

into eight subsets, each corresponding to a different direction (see Figure 3.4(b)).

Also, the range of biases is essential since the distribution of ψ±±
k (x, y) must be at

least
√
2-times wider to cover the entire domain. Here, we set the biases to range

in varying directions with a uniform scaling factor, providing flexibility in dealing

with the unwanted coefficients.

Accordingly, we utilize a 2-8n-1-1 network architecture and follow the same set-

ting as before (refer to Table 3.1). The results depicted in Figure 3.4(a) also show

good approximation power. However, the 1/2 convergence rate in previous cases

cannot be attained here. We hypothesize that this is due to our preliminary eight-

direction setting of the basis functions. This degeneration indicates the challenge of
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Figure 3.4: (a) Approximating two-dimensional continuous function z = − sin πxy,
where x, y ∈ [−1, 1] × [−1, 1]. The inset panel presents the target function surface
and an example of the approximation result as dots. (b) The two-dimensional basis
function settings.

extending our theoretical results to higher dimensions. Further research will address

this difficulty by considering more appropriate high-dimensional basis function se-

tups. One possible approach relies on the basis construction utilized in the finite

element methods [4]. However, adopting such a method to meet the permutation

training scenario is non-trivial and requires further investigation.

Moreover, the mismatch between the existing implementations and the permuta-

tion setting poses numerical challenges to permutation training in higher dimensions.

The performances are significantly affected by the algorithm implementations and

initialization settings, both of which need further investigation and are beyond the

scope of this work. We hope our work can inspire and motivate the development

of more sophisticated implementations specific to permutation training. However,

the permutation training, as a numerical algorithm, can be directly applied to high-

dimensional cases, even if it requires a significantly larger network width.

Using a similar numerical setting, we can also approximate functions with three-

dimensional inputs. Here we consider f(x, y, z) = sin 3x · cos y · sin 2z, where
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(b)(a)

Figure 3.5: Approximating three-dimensional continuous function f(x, y, z) =

sin 3x · cos y · sin 2z, where (x, y, z) ∈ [−1, 1]3. (a) The convergence behavior under
random seed 2022. (b) The three-dimensional illustration of the target function,
where the function value f(x, y, z) is plotted by the corresponding color in the color
bar.

(x, y, z) ∈ [−1, 1]3. The results plotted in Figure 3.5 demonstrate a certain de-

gree of approximation power (due to the computational cost’s limitation, we only

conduct the experiments once). However, a degeneration convergence rate from 1/2

to 1/6 also indicates the theoretical limitations of the current construction.

3.4.5 Permutation-Trained NNs with Leaky-ReLU

In addition to the ReLU activation function, we also numerically consider the

leaky-ReLU activation function σ(x) = max(0, x) + αmin(0, x), where α is a small

constant. The leaky-ReLU is widely used since it can alleviate the dying ReLU

problem by allowing a small gradient when the unit is not active.

Extending our UAP results to leaky-ReLU is expected. This is because of the

two crucial techniques deployed in our proof: constructing the step function ap-

proximators and eliminating the unused parameters, both can be applied to the

leaky-ReLU. Since our two-direction setting of basis function ϕ± in Eq. (3.1) can

impart leaky-ReLU with symmetry equivalent to ReLU, it’s feasible to construct

a similar step function approximator by re-deriving the relevant coefficients pi, qi.
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Figure 3.6: Approximating one-dimensional continuous function y = − sin(2πx)

with equidistantly initialized network equipped with leaky-ReLU, where x ∈ [−1, 1].
The inset in each panel presents the target function as lines and an example of the
approximation result as dots.

Furthermore, the existing elimination method can be directly employed since a pair

of leaky-ReLU basis functions can be constructed into linear functions for further

processing.

As an initial attempt, we numerically examine the leaky-ReLU networks by only

changing the activation function in the case of Figure 3.3(a). The results plotted

in Figure 3.6 exhibit the approximation power of leaky-ReLU networks. Unlike the

ReLU cases, the random initialization outperforms the equidistant initialization.

However, the 1/2 convergence rate in previous ReLU cases cannot be attained here,

probably because the proof based on leaky-ReLU may result in different constants,

leading to potential discrepancies in details when compared with the ReLU-based

conclusions.

3.4.6 The Impact of Permutation Period

As a hyperparameter, the choice of permutation period k during the implemen-

tation of LaPerm algorithms may affect the convergence behavior. The correlation

between the value of k and the final accuracy is reported to be unambiguous (refer
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Figure 3.7: Approximating one-dimensional continuous function y = a0 +

a1 sin(πx) + a2 cos(2πx) + a3 sin(3πx) with equidistantly initialized network, where
x ∈ [−1, 1], and the value of permutation period k = 1, 3, 5, 10, 20, respectively.
The inset in each panel presents the target function as lines and an example of the
approximation result as dots.

to Figure 6 in [71]). Generally, a larger k is associated with slightly higher accu-

racy of single permutation training result, thus, in our experiments, the weights

are permuted after each k epoch. Figure 3.7 evaluates the impact of k’s value on

convergence behavior, whose results suggest that this effect remains negligible.

3.4.7 The Influence of Initialization Strategies

Here, we explore the effect of different initialization choices on the approximation

behavior, which holds greater significance in permutation training scenarios due to

the preservation of the initialized values. The case in Figure 3.3(a) is utilized to

apply various random initialization strategies. The results plotted in Figure 3.8

show that the UAP of permutation-trained networks is not limited to the setting

considered by our previous theoretical investigation. For more generalized cases, we

first consider randomly initializing only w(2n) and b(n), which are labeled as Random

3 and 4, respectively. Both cases demonstrate competitive or even superior accuracy.

Next, we consider some commonly used initializations, such as Xavier’s uniform
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Random 6: B (n) ∼NH[−1, 1]n, W (2n) ∼NH[−1, 1]2n

Random 7: B (n) ∼U [−1, 1]n, W (2n) ∼UX[−1, 1]2n

Random 8: B (n) ∼U [−1, 1]n, W (2n) ∼NH[−1, 1]2n1 1x

1

1

y
Random 2: n= 160

Figure 3.8: The performance of different initialization strategies in approximating
y = − sin(2πx) in [−1, 1]. The pairwise initialization w(2n) = (±pi)ni=1, pi ∼ U [−1, 1]
is denoted as w(2n) ∼ U±[0, 1]n. The error bars are omitted for conciseness. The
inset panel presents the target function as lines and an example of the approximation
result as dots.

initialization UX [31], and He’s normal initialization NH [36]. However, the imple-

mentation of UX on Random 5 and NH on Random 6 fails to result in convergence.

This abnormal poor performance may be attributed to the mismatch of the scale

in b(n) and the approximation domain [0, 1]. To verify our hypothesis, we hold

b(n) ∼ U [−1, 1]n, and only apply UX and NH on the coefficients w(2n) in Random

7 and 8. Consequently, both cases successfully regain the approximation ability.

These surprising behaviors, especially the unexpected deterioration of the default

choices, emphasizes the limited understanding of systematic characterization of the

initialization suitable for permutation training scenarios.

3.4.8 Observation of Permutation Patterns

This section aims to explore the theoretical potential of permutation training

in describing network learning behavior. Based on the significant correlation be-

tween permutation and learning behavior, as evidenced by [71] and our investiga-

tion, we hypothesize that the permutation-active components of the weights may

play a crucial role in the training process. Therefore, by identifying and tracing the



3.4 Experiments 63

-1 -0.5 0 0.5 1
Weights

0

100

200

300

400

Pe
rm

ut
at

io
n 

ite
ra

tio
n

0 1000
Frequency

10 3 10 1 101 103

L∞ error

(a) (b) (c)

Figure 3.9: The permutation behavior in the first 400 permutation iterations in
approximating y = − sin(2πx) by an equidistantly initialized network with n =

640. (a) The distribution of the active components (denoted by dark green color).
(b) The frequency distribution illustrates the variation in the total count of active
components in each permutation. (c) The corresponding loss behavior.

permutation-active part of weights, a novel description tool can be achieved, which

also facilitates visualization and statistical analysis of the learning behavior.

As a preliminary attempt, we illustrate the permutation behavior of the coeffi-

cients θ(2n) in Figure 3.3(a). The components that participated in the permutation

are visually highlighted in dark green in Figure 3.9(a). The behaviors plotted in Fig-

ure 3.9(b)-(c) clearly show that the frequency of order relationship exchange evolves

synchronously with the learning process, agreeing with the observation of [71].

Specifically, the distribution of active components shows significant patterns,

which are classified into four stages (marked by red dashed lines in Figure 3.9). The

loss declines sharply in the initial stage, while only the components with medium

value are permuted. Once loss reaches a plateau in the second stage, more compo-

nents are involved in permutation, evidencing the role of permutation in propelling

the training. As loss starts to decline again, the permutation frequency correspond-

ingly diminishes. Interestingly, the slower loss decrease gives rise to a ribbon-like

pattern, akin to the reported localized permutations (plotted in Figure 14 of the
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appendix in [71]), and possibly due to slow updates failing to trigger a permutation.

This observation may support the existence of inherent low-dimensional structures

within the permutation training dynamics, potentially linked to mathematical de-

piction of permutation groups, such as cycle decomposition [8] and Fourier bases for

permutation [41]. Finally, the permutation’s saturation aligns with the stationary

state of loss convergence. We believe these inspiring phenomena deserve further ex-

ploration, as they hold the potential to provide novel insights regarding the learning

behavior of networks.



Chapter 4
Sidecar: A Structure-Preserving

Framework of Solving PDEs with NNs

In this chapter, we introduce Sidecar, an innovative framework aimed at im-

proving function-learning NN solvers for temporal evolution PDEs by embedding

structure-preserving knowledge. Drawing inspiration from the TDSR method dis-

cussed in Section 2.6.2, Sidecar incorporates a lightweight, time-dependent copilot

NN to model the evolution of preserved quantities. This copilot network guides the

primary NN solver to adhere to structure-preserving properties. Experimental re-

sults demonstrate that Sidecar significantly enhances solution accuracy and physical

consistency for both conservative and dissipative PDEs. Additionally, an ablation

study highlights the framework’s robustness and the effectiveness of its design [11].

Our main findings are summarized below:

1. We introduce Sidecar, a framework enhancing NN solvers for PDEs by em-

bedding structure-preserving knowledge via a lightweight copilot NN.

2. Sidecar’s adaptability is demonstrated to various NN solvers and PDEs, im-

proving physical consistency without performance loss.

3. We numerically validate Sidecar’s effectiveness on benchmark PDEs, achieving

higher accuracy and consistency, supported by ablation studies.

65
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4.1 Introduction

This section discusses the related works in the field of structure-preserving nu-

merical methods and NN solvers for PDEs and outlines of this chapter. It serves as

a complement to the introduction in Section 1.2.

4.1.1 Related Works

Recent works have attempted to incorporate the structure-preserving knowledge

into NN solvers [30,37,42,51], but these approaches often impose additional training

challenges, and thus sacrifice the performance and computational efficiency. Exist-

ing structure-preserving methods for NN solvers can generally be divided into two

categories: a) hard constraints: to manually post-process or project the network’s

outputs to enforce the physical structure [30, 37], and b) soft regularization: to in-

troduce additional regularization terms into the loss function [42, 51]. Ideally, the

structure-preserving properties should facilitate the learning process of NN solvers

rather than impose constraints.

However, a common challenge of these methods is the undesired trade-off between

accuracy and physical fidelity, ending up with a performance degradation. Addition-

ally, hard constraints methods often suffer from distribution shifts between training

and testing data, which can hurt the generalization ability. On the other hand,

the commonly-used soft regularization methods may face the challenge of numerical

integration, as the preserved quantities often involve integration over the spatial

domain. The numerical integration algorithms are required to be differentiable for

back-propagation, which can be impractical in scenarios with discontinuities or sin-

gularities.

4.1.2 Outlines

The remainder of this chapter is structured as follows: Section 4.2 describes

the proposed Sidecar framework, including the loss function design and training
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procedure. Section 4.3 evaluates Sidecar’s performance on benchmark PDEs and

compares it with existing NN solvers. Section 4.4 presents the ablation study and

further discussions on the advantages of the proposed framework.

4.2 Methodology

This section presents a novel structure-preserving framework named Sidecar to

improve the physical consistency of the existing function-learning NN solvers. Here

we discuss its architecture, loss function, and training strategy.

4.2.1 Framework Architecture

Inspired by the TDSR method discussed in Section 2.6.2, which introduces a

time-dependent factor to incorporate the structure-preserving properties Eq. (2.8)

into the PDEs (2.4), we also rewrite the numerical solution as

ūNN(x, t) = R̄NN(t) v̄NN(x, t), (4.1)

where v̄NN(x, t) is the primary network to learn the PDE solution, and R̄NN(t)

is the time-dependent copilot network to guide v̄NN(x, t) to respect the structure-

preserving properties. The overall solution ūNN(x, t) satisfies the coupled system in

Eq. (2.18). The Sidecar framework is illustrated in Figure 4.1, where the primary-

copilot design allows Sidecar to be flexibly integrated with existing NN solvers.

As for the architecture choice of each part, the primary network v̄NN(x, t) can

inherit the architecture of existing NN solvers, such as the MLP in Eq. (2.1) adopted

in the vanilla PINNs [72]. Meanwhile, to maintain computational efficiency and

avoid overwhelming v̄NN(x, t), the copilot network R̄NN(t) is implemented to be

lightweight, such as a shallow MLP with significantly fewer neurons compared to

v̄NN(x, t).
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Figure 4.1: The architecture of the Sidecar framework.

4.2.2 Loss Function

Incorporating structure-preserving properties into network training requires a

well-designed loss function, especially when the structure ODE (2.19) contains spa-

tial integration operators. Here, we design the Sidecar loss to consist of two compo-

nents:

LSidecar[R̄NN, v̄NN] = Lsolver[R̄NN v̄NN] + αLR[R̄NN, v̄copy], (4.2)

where Lsolver is the solver loss that guides the solution to learn the PDE solution,

LR is the structure loss that ensures the copilot network R̄NN(t) effectively guides

the primary network v̄NN(x, t) to adhere to the physical properties, α is a hyperpa-

rameter to control the relative weight, and v̄copy is a detached copy of the primary

network v̄NN (and will be discussed in detail in Section 4.2.2). While LSidecar adopts

the typical main-regularization format, its implementation is specifically tailored for

Sidecar.

Remark 4.1. Our experiments set α = 1 as the default value. While fine-tuning α

can lead to further improvements, the advantages of Sidecar remain robust to the

choice of α.
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The Solver Loss

We design Lsolver[R̄NN v̄NN] to evaluate the combined output rather than primary

network v̄NN(x, t) only, allowing the copilot network R̄NN to learn PDE-related in-

formation. The design of Lsolver can be inherited from the chosen NN solver. In the

case of vanilla PINNs [72], Lsolver can adopt the PINNs loss function as defined in

Eq. (2.5):

Lsolver[R̄NN, v̄NN] = LPINNs[R̄NN v̄NN]. (4.3)

The Structure Loss

A direct but impractical approach is to define the structure loss LR as the resid-

ual of the structure ODE (2.19), where spatial integration operators IQ[v̄NN] and

IS [v̄NN] are evaluated using numerical integration algorithms based on v̄NN(x, t).

However, this approach requires the numerical integration algorithms to be differ-

entiable for back-propagation. While several differentiable numerical integration al-

gorithms exist, such as torchquad [32] or torch.trapezoid in PyTorch library [70],

they are mainly based on low-order numerical schemes and are invalid for complex

PDE systems with discontinuities or singularities.

Numerical integration implementation: To facilitate the incorporation of

the existing high-accuracy numerical integration schemes, we propose to compute

the integration IQ and IS based on v̄copy(x, t), a detached copy of v̄NN(x, t). The

adopted numerical integration algorithm is the Romberg integration [29], which is

a widely used scheme with high accuracy. Subsequently, we minimize the structure

loss LR with respect to R̄NN(t) only, while keeping v̄NN(x, t) detached from the

back-propagation process, i.e., minR̄NN LR[R̄NN, v̄copy].

Temporal discretization: To avoid back-propagating through the numerical

integration algorithms, we need to discretize the structure ODE (2.19) into NT time

points. For simplicity, we consider a regular grid for the time points tn = n δt,
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n = 0, 1, · · · , NT , where δt = T/NT and denote discrete variables and operators as

Rn := R(tn), vn(x) := v(x, tn), ÎQ[vn] =
∫
Ω

Kv
Q[v

n](x) dx,

R̄n
NN := R̄NN(t

n), v̄ncopy(x) := v̄NN(x, t
n), ÎS [vn] =

∫
Ω

Kv
S [v

n](x) dx,

where ÎQ, ÎS : (Ω → R) → R are the discrete version of the integration operators

IQ, IS in Eq. (2.19), respectively. Similarly, we denote the discrete version of the

factor FQ, FS in Eq. (2.19) as F̂Q, F̂S : R→ R, respectively.

a) For conservative systems (i.e., S[Rv] = 0), the structure loss is designed as

LR[R̄NN, v̄copy] =
1

NT

NT∑
n=0

∣∣∣F̂Q[R̄
n
NN] ÎQ[v̄ncopy]− C0

∣∣∣2 , (4.4)

where the constant C0 = Q ◦ ι[u0] is given by the initial condition.

b) For dissipative systems (i.e., S[Rv] < 0), we first apply the backward Euler

method to discretize the structure ODE (2.19) as: for n = 1, · · · , NT ,

F̂Q[R
n] ÎQ[vn]− F̂Q[R

n−1] ÎQ[vn−1]

δt
= F̂S [R

n] ÎS [vn]. (4.5)

Combined with the initial condition FQ[R](0) IQ[v](0) = C0, we denote the residual

of the discrete structure ODE (4.5) as: for n = 1, · · · , NT ,


L0

R[R, v] :=
∣∣∣F̂Q[R

0] ÎQ[v0]− C0

∣∣∣2 ,
Ln

R[R, v] :=

∣∣∣∣∣F̂Q[R
n] ÎQ[vn]− F̂Q[R

n−1] ÎQ[vn−1]

δt
− F̂S [R

n] ÎS [vn]

∣∣∣∣∣
2

,

then the structure loss LR can be designed using the residual Ln
R as:

LR[R̄NN, v̄copy] =
1

NT

NT∑
n=0

Ln
R[R̄NN, v̄copy]. (4.6)
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Moreover, inspired by the causal training strategy [86], we can reformulate the

structure loss LR as the weighted form to respect the temporal causality:

L̃R[R̄NN, v̄copy] =
1

NT

NT∑
n=0

wn Ln
R[R̄NN, v̄copy],

where wn = exp

(
−ε

n−1∑
l=0

Ll
R[R̄NN, v̄copy]

)
.

(4.7)

Remark 4.2. To discretize the structure ODE (2.19), we adopt the backward Euler

method for simplicity, while it can be easily extended to other time discretization

schemes, such as Runge-Kutta methods and backward difference formula methods.

Example 4.1 (Example 2.1 revisited). For the Burgers’ equation (2.9), we discrete

the structure ODE (2.21) as: for n = 1, · · · , NT ,

(
Rn+1

)2 ÎQ[vn+1]− (Rn)2 ÎQ[vn]
δt

+ 2ν(Rn+1)2 ÎS [vn+1] = 0,

then we denote the residual of the discrete structure ODE as: for n = 1, · · · , NT ,
L0

R[R, v] :=

∣∣∣∣(R0)2 ÎQ[v0]−
∫ 1

−1

u20(x) dx

∣∣∣∣2 ,
Ln

R[R, v] =

∣∣∣∣∣(Rn)2 ÎQ[vn]− (Rn−1)2 ÎQ[vn−1]

δt
+ 2ν(Rn)2 ÎS [vn]

∣∣∣∣∣
2

.

The structure loss L̃R[R̄NN, v̄copy] is then formulated by using the residual Ln
R as

defined in Eq. (4.7).

4.2.3 Training Procedure

Although the primary-copilot design of Sidecar facilitates flexible integration

with existing NN solvers, it also introduces significant training challenges: Two

separate networks must serve different purposes while maintaining consistency, all

without incurring excessive computational cost. We design the training procedure
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of Sidecar to ensure that the structure-preserving knowledge can enhance, rather

than constrain, the learning process. It involves two stages:

a) Synchronization: We equip the primary network v̄NN(x, t) with the copilot

network R̄NN(t), and train both networks to minimize the solver loss Lsolver[R̄NN v̄NN]

as defined in Eq. (4.3). During this stage, all training techniques inherited from the

chosen NN solver can be applied, such as the adaptive sampling strategy [28,52] and

the causal training strategy [86].

This stage allows the primary network v̄NN(x, t) to achieve sufficient accuracy,

allowing a well-estimated spatial integration within the structure loss LR in Eq. (4.4)

or Eq. (4.6). Additionally, this stage ensures that the copilot network R̄NN(t) is syn-

chronized with the primary network v̄NN(x, t), offering a well-prepared initialization

for the next stage.

b) Navigation: The solver loss Lsolver[R̄NN v̄NN] continues to be minimized with

respect to both R̄NN(t) and v̄NN(x, t). Additionally, the structure loss LR[R̄NN] is

introduced and minimized with respect to the copilot network R̄NN(t) only.

The second stage aims to navigate the learned solution R̄NN(t) v̄NN(x, t) to better

satisfy the structure ODE (2.19), enhancing both accuracy and physical consistency.

As discussed in Section 4.2.2, the spatial integration IQ[v̄copy] and IS [v̄copy] within

the structure loss LR are computed using a detached copy v̄copy, which is not involved

in the back-propagation process. This stage acts as a fine-tuning process and thus

require significantly fewer epochs compared to the first stage. If the first stage

involves K1 training epochs, the second stage typically uses K2 � K1.

The two-stage training is easy to implement by setting the coefficient α = 0 in

Eq. (4.2) during the first stage and then updating it to α = 1 for the second stage.

The overall training procedure for Sidecar is outlined in Algorithm 3.
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Algorithm 3: Training Procedure of the Sidecar Framework
Input: PDE system (2.4) and its structure equation (2.8), the primary NN

solver and its loss function Lsolver, the structure loss LR as Eq. (4.4)

or Eq. (4.6), the training epochs K1 and K2.

Output: A trained primary NN solver v̄(x, t) and a copilot network R̄(t).

// Stage 1: Synchronization

for k = 1 to K1 do
Train v̄NN(x, t) and R̄NN(t) to minimize the solver loss Lsolver[R̄NN v̄NN]

as in Eq. (4.3).

// Stage 2: Navigation

for k = 1 to K2 do
Compute the structure loss LR by detached copy v̄copy(x, t) of v̄NN(x, t).

Train v̄NN(x, t) and R̄NN(t) to minimize the total loss

Lsolver[R̄NN v̄NN] + LR[R̄NN, v̄copy] as in Eq. (4.2).

4.3 Experiments

This section presents experiments demonstrating the Sidecar framework’s effec-

tiveness in enhancing NN solvers with structure knowledge.

4.3.1 Experimental Setup

For each primary network, we have implemented the vanilla version and the

Sidecar-enhanced version, and compared their performance in terms of the primary

NN solver loss Eq. (4.3), the L2 distance to the exact solution as the exact L2-error

as ‖ū− u‖2, and the structure-preserving L∞-error as

max
t∈[0,T ]

∣∣Q[ū](t)−Q[u](t)∣∣.
For a fair comparison, the total number of neurons and layers of the sidecar-

enhanced version is kept the same as the vanilla version. The width of the primary
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solver v̄NN(x, t) and the copilot network R̄NN(t) are denoted as Wv and WR, re-

spectively, while the total width in the vanilla version as Wv +WR. As the copilot

network only depends on the temporal variable, the total number of parameters of

the Sidecar-enhanced version is actually slightly smaller than the vanilla version.

Both vanilla PINNs and Sidecar-enhanced PINNs are trained with the same

training data and hyperparameters. The training data {(xj, 0)}NIC
j=1 and {(xk, tk)}NBC

k=1

are equally spaced collocation points for the initial and boundary conditions, respec-

tively, while the PDE residual points {(xi, ti)}NPDE
i=1 ∈ Ω×[0, T ] are the corresponding

collocation points in the inner domain Ω, i.e., NIC ·NBC = NPDE. The test set used

to evaluate the performance of the trained models is 2×refined from the training set.

For the two-stage training procedure of the Sidecar framework, the training epochs

of the compared vanilla version K0 are the same as the sum of the two stages of the

Sidecar-enhanced version, i.e., K0 = K1 +K2.

The code is implemented in Python with the PyTorch library [70], while it can be

easily extended to other deep learning frameworks such as JAX [3]. The experiments

are conducted on an NVIDIA A100 GPU. Each experiment is repeated 10 times

with different random seeds, and the results are averaged over these runs. The

shaded areas in the error plots represent the trust intervals with a confidence level

of 95%. The detailed hyperparameters of the Sidecar framework are summarized in

Table 4.1. The code and data are publicly available on GitHub at https://github.

com/DanclaChen/Sidecar.

4.3.2 Dissipative System: Burgers’ Equation

We first apply the Sidecar framework to the illustrative example of the Burgers’

equation (2.9) with the viscosity coefficient ν = 0.1, and compare the performance

of the Sidecar-enhanced PINNs with the vanilla PINNs. The initial condition and

the corresponding exact solution [89] are given as

u(x, 0) =
2πν sin(πx)

2 + cos(πx)
=⇒ u(x, t) =

2πν sin(πx)e−π2νt

2 + cos(πx)e−π2νt
. (4.8)

https://github.com/DanclaChen/Sidecar
https://github.com/DanclaChen/Sidecar
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Table 4.1: The hyperparameter of the Sidecar framework

Burgers’ equation NLS equation Allen-Cahn equation

Lv 2 4 4

Wv 16 32 64 128 256 25 50 100 200 64 128 256

LR 1 2 2

WR 8 10 16

K1 20,000 100,000 180,000

K2 10,000 20,000 20,000

NIC 128 512 512

NBC 100 128 200

NPDE 12,800 65,536 10240

α 10 1 1

The solution function is plotted in the top panel of Figure 4.2.

We implemented the vanilla PINNs [72] for the original Burgers’ equation (2.9),

and the Sidecar-enhanced PINNs for the transformed system Eq. (2.20) and Eq. (2.21)

after applying u(x, t) = R(t) v(x, t). The compared vanilla PINN is an MLP trained

using the PINNs loss function Eq. (2.5), following the vanilla PINNs design [72].

As for the Sidecar-enhanced PINNs, the primary network v̄NN(x, t) and the copi-

lot network R̄NN(t) are both parameterized by MLPs, while R̄NN(t) has much fewer

parameters than v̄NN(x, t). The solver loss Lsolver is designed as the PINNs loss func-

tion Eq. (2.5), while the structure loss LR is derived based on the loss design of the

dissipative system Eq. (4.7). The learned solutions, compared to the exact solution,
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Figure 4.2: The smooth solution of the Burgers’ equation. Top: The exact solution
of the Burgers’ equation. Bottom: Comparison of the exact solutions, the vanilla and
Sidecar-enhanced PINNs solutions corresponding to the three temporal snapshots.
The shown results are the worst cases of the 10 runs.

are shown in the bottom panel of Figure 4.2, while the error reduction with increas-

ing network width is illustrated in Figure 4.3. The Sidecar-enhanced PINNs provide

more accurate solutions and better preserve energy dissipation, demonstrating the

framework’s effectiveness in enhancing NN solvers with structure knowledge.

4.3.3 Conservation System: NLS Equation

We also apply the Sidecar framework to the 1D NLS equation in Eq. (2.11). Here

we consider the moving soliton solution, a typical solution to the NLS equation

describing a stable and localized wave packet that propagates without changing

shape [19]. The initial condition and the corresponding exact solution are given as

u(x, 0) = sech(x)e−2ix =⇒ u(x, t) = sech(x+ 2t) e−i(2x+ 3
2
t). (4.9)
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Figure 4.3: The comparison of the vanilla PINNs and the Sidecar-enhanced PINNs
for the Burgers’ equation.

Here, the spatial-temporal domain (x, t) ∈ [−15, 15] × [0, π/2] is chosen to ensure

that the soliton wave is fully captured. The solution function is plotted in the top

panel of Figure 4.4.

Since the NLS equation is a complex-valued PDE system, i.e., u(x, t) ∈ C, the

primary NN solver v(x, t) is naturally a complex-value function, while the TDSR

factor R(t) could be either R(t) ∈ C or R(t) ∈ R. Here, we choose a real-valued

TDSR factor R(t), and the overall solution can be written as

u(x, t) = R(t)
(
Re[v](x, t) + i Im[v](x, t)

)
, (4.10)

where Re[v] and Im[v] denote the real and imaginary parts of the complex function

v(x, t), respectively. It enables rewriting the norm of u as |u|2 = R2 (Re[v]2 + Im[v]2),

and the real-valued form of the PDE system in Eq. (2.11) as

−2R Im[v]t − 2Rt Im[v] + R Re[v]xx + 2R3
(
Re[v]2 + Im[v]2

)
Re[v] = 0,

2R Re[v]t + 2Rt Re[v] + R Im[v]xx + 2R3
(
Re[v]2 + Im[v]2

)
Im[v] = 0,

(4.11)

where (x, t) ∈ [−15, 15]× [0, π/2].
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Figure 4.4: The smooth solution of the NLS equation. Column 1: The exact so-
lution of the NLS equation. Columns 2-3: Comparison of the exact solutions, the
vanilla and Sidecar-enhanced PINNs solutions corresponding to the three temporal
snapshots. The shown results are the worst cases of the 10 runs.

Mass Conservation of NLS

We first consider the mass conservation law in Eq. (2.12), which is restated as

Q1[u](t) :=

∫ 15

−15

|u(x, t)|2 dx ≡ C
(1)
0 , where C

(1)
0 =

∫ 15

−15

|u0(x)|2 dx.
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Figure 4.5: The comparison of the vanilla PINNs and the Sidecar-enhanced PINNs
for the NLS equation with mass conservation.

After applying the transformation Eq. (4.10) and temporal discretization, the struc-

ture ODE of the mass conservation law gives

R2 I1[v] = C1, where I1[v](t) =
∫ 15

−15

|v(x, t)|2 dx. (4.12)

It is then used as the structure loss LR for the conservative system (4.11). (x, t) ∈

[−15, 15]× [0, π/2] leads to the mass constant C(1)
0 = 2 tanh(15).

We implement the vanilla PINNs for the NLS equation (2.11), and the Sidecar-

enhanced PINNs for the system Eq. (4.11) and Eq. (4.12) after applying the trans-

formation in Eq. (4.10). The compared vanilla PINN is an MLP trained using the

PINNs loss function Eq. (2.5), following the vanilla PINNs design [72]. As for the

Sidecar-enhanced PINNs, the primary NN solver v̄NN(x, t) and the copilot network

R̄NN(t) are parameterized by an MLP and a lightweight MLP, respectively. The

solver loss Lsolver is designed as the PINNs loss function Eq. (2.5), while the struc-

ture loss LR is derived from Eq. (4.12) following the conservative system Eq. (4.4),

along with the causal training strategy Eq. (4.7). The results are shown in Fig-

ure 4.5.

Similar to the Burgers’ equation, the Sidecar-enhanced PINNs result in more

accurate solutions compared to the vanilla PINNs, while also better preserving the

total mass of the system. Notably, as shown in the right panel of Figure 4.5, the

numerical mass of the vanilla PINNs fails to converge as the network width increases.
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Figure 4.6: The comparison of the vanilla PINNs and the Sidecar-enhanced PINNs
for the NLS equation with momentum conservation.

In contrast, the Sidecar-enhanced PINNs significantly improve the mass conservation

property of the NLS equation.

Momentum Conservation of NLS

For the NLS equation, we can also consider the momentum conservation law in

Eq. (2.13), which is restated as

Q2[u](t) ≡ C
(2)
0 , where


Q2[u](t) :=

∫ 15

−15

Re[u] Im[ux]− Im[u] Re[ux] dx,

C
(2)
0 =

∫ 15

−15

Re[u0] Im[(u0)x]− Im[u0] Re[(u0)x] dx.

After the transformation Eq. (4.10), the structure ODE of the momentum conser-

vation law can be written as

R2 I2[v] = C
(2)
0 , where I2[v](t) =

∫ 15

−15

(
Re[v] Im[vx]− Im[v] Re[vx]

)
dx. (4.13)

Since (x, t) ∈ [−15, 15]× [0, π/2], the momentum constant C(2)
0 = −4 tanh(15).

Following the same setting as the mass conservation law, we compare the per-

formance of vanilla PINNs with the Sidecar-enhanced PINNs. The only difference

is that the structure loss LR is derived from the structure ODE of momentum con-

servation law (4.13). The results shown in Figure 4.6 indicate that the Sidecar
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Figure 4.7: The comparison of the momentum/mass conservation performance for
the NLS equation between the vanilla PINNs and the Sidecar-enhanced PINNs
trained with the mass/conservation law only.

enhances both the solution accuracy and momentum conservation performance by

incorporating the momentum conservation law.

Moreover, since the NLS equation has both mass and momentum conservation

laws, we can further investigate the momentum conservation performance of the

Sidecar-enhanced PINNs trained with the mass conservation law only (and vice

versa). The results are shown in Figure 4.7. We can see that the Sidecar-enhanced

PINNs, trained with the mass conservation law only, can also effectively improve

momentum conservation. Future work includes exploring the preservation of multi-

ple physical properties simultaneously.

4.3.4 The Allen-Cahn Equation

We also apply the Sidecar framework to the Allen-Cahn equation in Eq. (2.14).

Here we follow the scenario in [86] to consider ε = 0.01 and f [u] = 5(u− u3), along

with the initial condition as u0(x) = x2 cos(πx). The exact solution is not available

for the Allen-Cahn equation, thus, we compute a high-resolution reference solution

with a spectral method [78] as the ground truth. The solution function is plotted

in the top panel of Figure 4.8.

Apply the transformation u(x, t) = R(t) v(x, t), the original Allen-Cahn equation
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Figure 4.8: The solutions of the 1D AC equation (2.14). Left: Illustration of the
reference solution. Middle: Comparison of the snapshot at t = 1 from the reference
solution, the Sidecar-enhanced causal-PINNs, and the equivalent causal-PINNs so-
lutions [86]. The cyan box indicates the region where the solution is zoomed in on
the right. Right: The zoomed-in view of the solutions snapshot. The shown results
are the worst cases of the 10 runs.

(2.14) and its energy dissipation law Eq. (2.15) can be rewritten as
Rvt +Rt v = ε2Rvxx + f [Rv],

d

dt
EAC [Rv] = SAC [Rv].

(4.14)

We simplify the energy functional EAC [Rv] and the dissipation speed SAC [Rv] by

factoring out R from integration as

EAC [Rv] = R4

∫ 1

−1

5

4
v4 dx+R2

∫ 1

−1

(
ε2

2
v2x −

5

2
v2
)
dx+

∫ 1

−1

5

4
dx,

SAC [Rv] = −R2
t

∫ 1

−1

v2 dx−R2

∫ 1

−1

v2t dx− 2RtR

∫ 1

−1

vvt dx.

By omitting the constant term, the structure ODE of the energy dissipation law can

be derived as
d

dt

(
R4 IQ,1[v] + R2 IQ,2[v]

)
= R2

t IS,1[v] + R2 IS,2[v] + RRt IS,3[v],

R4(0) IQ,1[v](0) + R2(0) IQ,2[v](0) = C0,

(4.15)
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where

IQ,1[v] =
5

4

∫ 1

−1

v4 dx, IQ,2[v] =

∫ 1

−1

(
ε2

2
v2x −

5

2
v2
)
dx, C0 = EAC ◦ ι[u0],

IS,1[v] = −
∫ 1

−1

v2t dx, IS,2[v] = −
∫ 1

−1

v2 dx, IS,3[v] = −2
∫ 1

−1

vvt dx.

After temporal discretization with the backward Euler scheme Eq. (4.5), we denote

the residual of the structure ODE as: for n = 1, 2, . . . , NT ,



L0
R =

∣∣∣(R0
)4 IQ,1[v

0] +
(
R0
)2 IQ,2[v

0]− C0

∣∣∣2 ,
Ln

R =

∣∣∣∣((Rn)4 IQ,1[v
n] + (Rn)2 IQ,2[v

n]
)

−
((
Rn−1

)4 IQ,1[v
n−1] +

(
Rn−1

)2 IQ,2[v
n−1]

)
− δt

((
R̃n

t

)2 IS,1[vn] + (Rn)2 IS,2[vn] + R̃n
t R

n IS,3[vn]
) ∣∣∣∣2,

(4.16)

where R̃n
t = (Rn −Rn−1)/δt is the difference quotient of R(t).

Remark 4.3. The discrete structure ODE (4.15) for the Allen-Cahn equation (2.14)

has a more complicated form, mainly due to the dissipation speed SAC [Rv] in

Eq. (2.16) involving the temporal derivative of R(t).

Experimental setting: We follow the causal training strategy [86] to reformu-

late the PDE loss LPDE in Eq. (2.5) as L̃PDE in Eq. (2.7), resulting in a variant of

vanilla PINNs [72] (referred to as CausalPINNs) for the Allen-Cahn equation. The

CausalPINNs model is implemented as an MLP, with the loss function defined as

the sum of the causal PDE loss and the data loss related to the initial and boundary

conditions, i.e., Lsolver = L̃PDE + Ldata.

We apply CausalPINNs to the original Allen-Cahn equation (2.14) and the

Sidecar-enhanced CausalPINNs to the transformed system (4.14) and (4.15) after

introducing u(x, t) = R(t) v(x, t). The CausalPINNs model is implemented as an

MLP, while the Sidecar-enhanced CausalPINNs consist of an MLP for the primary

solver and a lightweight MLP for the copilot network. The solver loss Lsolver follows
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Figure 4.9: The comparison of the CausalPINNs and the Sidecar-enhanced
CausalPINNs for the Allen-Cahn equation.

the CausalPINNs loss function Lsolver = L̃PDE + Ldata. The structure loss LR is de-

rived from the structure ODE residual Eq. (4.16), following the dissipative system

formulation in Eq. (4.6).

The results are shown in Figure 4.9. Compared to the CausalPINNs, the Sidecar-

enhanced CausalPINNs achieve higher solution accuracy and better preservation of

the energy dissipation property. This demonstrates that the Sidecar framework can

also be integrated with other primary NN solvers, showcasing its flexibility and

generality.

4.4 Further Discussions

In this section, we further discuss the reason why the Sidecar framework can

enhance the performance of existing NN solvers for PDEs. A series of ablation

studies is conducted to investigate the effectiveness of the main components in the

Sidecar framework. Specifically, we are interested in whether the Sidecar framework

benefits from:

1. improving the representation capacity of the NNs via the Sidecar architecture,

or

2. incorporating the structure-preserving knowledge via the loss design.
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We conduct a series of experiments to validate the above hypotheses, and the

results show that the Sidecar framework can benefit from both ways.

4.4.1 The Representation Capacity of Sidecar Architecture

In the Sidecar framework, the copilot network R̄NN(t) only depends on t, as

the structure-preserving properties are mainly related to the temporal evolution of

preserved quantities. During training, the temporal-dependent features captured by

R̄NN(t) could facilitate the learning of the primary NN solver v̄NN(x, t). Compared to

the MLP in Eq. (2.1) used in vanilla PINNs, the Sidecar architecture may enhance

the network’s ability to represent PDE solutions with temporal evolution, thereby

improving the performance of NN solvers. Here, we conduct an ablation study to

validate this hypothesis.

Experimental setting: To evaluate the enhancement in representation capac-

ity provided by the Sidecar architecture, we compare the approximation perfor-

mance to the exact solution of networks adopted in vanilla and Sidecar-enhanced

PINNs. Specifically, we consider an MLP equipped with a copilot network as

ūNN(x, t) = R̄NN(t) v̄NN(x, t), and a vanilla MLP ūNN(x, t) with an equivalent to-

tal number of neurons and layers. Both NNs are trained to approximate the exact

solution of the Burgers’ equation (2.9) and the NLS equation (4.9) with the same

training data and hyperparameters. The performance is compared in terms of the

L2 distance to the exact solution.

The results are shown in Figure 4.10, where the Sidecar-enhanced MLP consis-

tently outperforms the vanilla MLP. This supports the hypothesis that the Sidecar

architecture improves the representation capacity for PDE solutions with temporal

evolution, thereby enhancing the performance of NN solvers.

With the same number of neurons and layers, the Sidecar-enhanced MLP has

fewer parameters than the vanilla MLP while achieving more accurate approxi-

mations of the exact solution. Although increasing parameter numbers generally

improves approximation accuracy, architectures specifically designed for particular
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Figure 4.10: Comparison of copilot-equipped MLPs and the equivalent vanilla MLPs
for approximating the reference solutions of the 1D NLS equation Eq. (2.11) and
the 1D AC equation Eq. (2.14).

target functions can outperform standard designs. This principle is evident in the

success of the Convolution Neural Networks (CNNs) for image processing [53], the

Recurrent Neural Networks (RNNs) for sequential data [84], etc. Similarly, the Side-

car architecture can be viewed as a PDE-friendly design, tailored for PDE systems

with temporal evolution.

In addition to the commonly used MLP architecture, other novel network de-

signs have been proposed to enhance the performance of NN solvers. For example,

a modified MLP has been derived based on gradient flow analysis [87], and a vol-

ume weighting method has been proposed to address the ill-conditioning of PDE

losses [81]. These architectures involved additional connections to the vanilla MLP,

sharing the same spirit as the Sidecar framework. However, these approaches do

not explicitly incorporate structure-preserving knowledge, which is a key feature of

the Sidecar framework.
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4.4.2 The Effectiveness of the Loss Function Design and Im-

plementation

After confirming the enhanced representation capacity provided by the Sidecar

architecture, we now examine the effectiveness of the Sidecar loss design and imple-

mentation LSidecar = Lsolver+αLR in Eq. (4.2). Although LSidecar follows the common

”main loss + regularization term” format seen in existing structure-preserving NN

solvers [42, 51], its design and implementation, particularly the structure loss LR

derived from the structure-preserving properties of the PDE system in Eq. (4.4) or

Eq. (4.6), are uniquely tailored to the Sidecar framework.

To validate the effectiveness of LSidecar, we consider a sufficient condition: the

exact solution of the PDE system should minimize LSidecar. Therefore, if the learned

solution R̄ v̄ is sufficiently accurate, it should remain stable when further trained

with LSidecar[R̄, v̄]. To verify this, we initialize the networks with the learned exact

solution, and continue training with LSidecar.

Experimental setting: We initialize the Sidecar-enhanced PINNs using the

exact solution learned in Section 4.4.1. Then we follow the second Navigation stage

of the Sidecar training procedure to train the networks with LSidecar. We consider the

exact solution of Burgers’ equation (4.8), comparing the accuracy before and after

training with LSidecar. All hyperparameters remain consistent with those specified

in Section 4.3.

The results are shown in Figure 4.11. For most random seeds, the L2 distance

to the exact solution remains stable while minimizing LSidecar. Meanwhile, the PDE

residual error and the structure-preserving properties of the learned exact solution

are further improved by LSidecar. These observations numerically demonstrate that

the novel design and implementation of LSidecar align well with the PDE system.
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Figure 4.11: The comparison of the effectiveness of the Sidecar loss function design.
Each point is the result of one random seed. The x- and y-axes represent the MSE
error before and after training with the Sidecar loss LSidecar, respectively. The point
in the lower right corner corresponds to the case where the accuracy of the learned
exact solution is further improved by the Sidecar loss LSidecar.

4.4.3 The Necessity of the Structure Loss LR

Here, we validate the necessity of the structure loss LR in incorporating structure-

preserving knowledge. Ideally, LR should complement the PDE-based solver loss

Lsolver by explicitly embedding structure-preserving properties into the training pro-

cess. However, since these properties are inherently consistent with the PDE formu-

lation, it is possible that improvements in structure-preserving performance could

be achieved using Lsolver alone. To investigate this, we compare the performance of

the Sidecar-enhanced PINNs with and without the inclusion of LR.

Experimental setting: We evaluate the NLS equation (2.11), comparing the

Sidecar-enhanced PINNs with and without the structure loss LR during the second

Navigation stage. All other settings follow Table 4.1.

The results are shown in Figure 4.12. Although the PDE residual error and the

squared L2 distance to the exact solution are comparable for the Sidecar-enhanced

PINNs with or without the structure loss LR, the preservation of the system’s con-

sidered quantities is improved when LR is included, particularly for larger network

widths. This highlights the critical role of LR in embedding structure-preserving

knowledge into the training process.
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Figure 4.12: Comparison of the Sidecar-enhanced PINNs with and without the struc-
ture loss LR, and the equivalent vanilla PINNs [72] for 1D NLS equation Eq. (2.11).
From left to right: the PINN test loss, the L2 error of the numerical solution, and
the L∞ error of the mass conservation.

The added structure loss LR in our Sidecar framework shares a similar spirit with

the regularization terms used in the existing structure-preserving NN solvers [42,51],

which aim to enforce intrinsic physical properties of the PDE system during training.

However, these methods often suffer from performance degradation, as the added

regularization terms can create an unreasonable trade-off between solution accu-

racy and physical fidelity. In contrast, the Sidecar framework integrates structure-

preserving knowledge into the training process in a way that enhances physical

consistency without sacrificing solution accuracy.





Chapter 5
Conclusions and Future Research

This dissertation aims to incorporate the structure-preserving concepts into the

design and implementation of NNs, considering both the theoretical and applied

aspects. The main contributions of this dissertation are summarized as follows:

1. We prove the UAP of permutation-trained NNs with random initialization for

one-dimensional continuous functions.

2. We propose a novel structure-preserving framework, Sidecar, for enhancing

the accuracy and physical fidelity of existing NN solvers.

The first part of this dissertation focuses on a novel method, permutation train-

ing, which exhibits unique properties and practical potential. To verify its efficacy,

we prove the UAP of permutation-trained networks with random initialization for

one-dimensional continuous functions. The proof is generalized from the equidis-

tant scenario, where the key idea involves a four-pair construction of step function

approximators, along with a processing method to eliminate the impact of the re-

maining parameters. Our numerical experiments not only confirm the theoretical

results but also validate the prevalence of the UAP of permutation-trained networks

in various initializations. The discovery that commonly used initializations fail to

achieve UAP also raises an intriguing question about the systematic characteriza-

tion of initializations that satisfy UAP. Our observation suggests that permutation

91
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training could be a novel tool to describe the network learning behavior. Overall,

we believe that the UAP of permutation-trained networks reveals the profound, yet

undiscovered, insights into how the weight encodes the learned information, high-

lighting the importance of further theoretical and practical exploration.

The second part of this dissertation introduces Sidecar, a structure-preserving

framework designed to enhance existing NN solvers. The framework combines a

primary NN solver with a lightweight copilot network, trained jointly to minimize

a PDE-based solver loss Lsolver and a structure loss LR. The structure loss ex-

plicitly incorporates the system’s structure-preserving properties, ensuring solutions

adhere to intrinsic physical laws. A two-stage training procedure is employed to

first synchronize the networks and then navigate the learned solution to respect

these properties. The Sidecar framework is flexible, compatible with existing NN

solvers, and applicable to a wide range of PDE systems with different structure-

preserving properties. Experiments on the Burgers’ equation, the NLS equation,

and the Allen-Cahn equation demonstrate the Sidecar framework’s effectiveness in

improving solution accuracy and physical fidelity. The Sidecar-enhanced PINNs out-

perform vanilla PINNs in solution accuracy while better preserving system properties

like energy dissipation, mass conservation, and momentum conservation. Ablation

studies further validate the framework’s key components, showing improvements in

representation capacity, the effectiveness of the loss function design, and the ne-

cessity of the structure loss LR for embedding additional knowledge. We believe

that the Sidecar framework offers a promising approach to improving NN solvers for

PDEs by leveraging structure-preserving principles.

Although the two main parts of this dissertation address different facets of struc-

ture preservation in NNs, they are unified by a common goal: advancing both the

theoretical understanding and practical capabilities of NNs through explicit consid-

eration of underlying system structures. In the first part, the preserved structure

is the permutation invariance of the training process, which leads to a novel train-

ing method with theoretical guarantees and practical potential. The second part
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focuses on the preservation of physical structures in PDEs, resulting in a framework

that improves both the accuracy and physical fidelity of NN solvers. By integrating

classical concepts from approximation theory and numerical analysis with contem-

porary machine learning methodologies, this dissertation charts a promising path

for future research in the field of NNs and their applications.

1. Future Directions of Permutation Training

Our UAP results for permutation training in Chapter 3 provide the first theoreti-

cal guarantee (to our knowledge) for the effectiveness of this novel training method.

However, the setting is still basic since it only considers one-dimensional contin-

uous functions and shallow MLPs without estimation of the approximation rate,

which is mainly due to that the unique setting of permutation training hinders the

proof construction. The randomness in the initialization also necessitates advanced

techniques in stochastic analysis, which are not fully explored in this work. Here,

we briefly discuss some intriguing questions about generalization raised for future

research.

Generalizing to Other Scenarios

Although we mainly focus on basic settings, the proof idea exhibits generaliz-

ability. However, extending our theoretical results to the high-dimensional scenario

still faces challenges. One of the primary obstacles is constructing multi-dimensional

basis functions that are suitable for the permutation training scenario. A reasonable

approach relies on the construction in the finite element methods [4]. We plan to ad-

dress this problem in future work. As for the numerical evidence of high-dimensional

scenarios, [71] has examined the classification problem using VGG-based networks

on the CIFAR-10 dataset, while our experiments in regression tasks have shown

approximation behavior for two and three-dimensional inputs (see Section 3.4.4).

Obtaining an error bound in terms of the network width and depth is another

intriguing question. Existing proof techniques typically rely on the continuity of the
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target function, such that the approximation error of a given network to the target

function with a certain level of continuity can be bounded by the network width

and depth [80, 95]. Similarly, the continuity of the target function also influences

our proof construction in Section 3.3, especially in Step 1, where the target function

is approximated by a piecewise constant function. By introducing the modulus of

continuity (like in [80]), an error bound regarding the network width is expected.

However, deriving tighter or optimal error bounds may require a more systematic

and refined approach to the proof construction.

Another interesting direction is to establish the UAP for deeper networks. In a

free training scenario, the UAP results of shallow networks can be readily extended

to deeper networks by constructing identity functions in the following layers, or

rewriting a deeper network as a shallow network with more width [80]. Our linear

reorganization in Eq. (3.14) enables construct an identity function y = x using a

pair of basis functions y = pnϕ
+
1 (x) + qnϕ

−
1 (x), where b1 = 0, pn = 1, qn = −1. This

process enables us to utilize identity functions within subsequent layers. However,

estimating the influence of the network depth on the UAP of permutation training

is still an open question.

Permutation Training as a Theoretical Tool

Our observation in Section 3.4.8 indicates the theoretical potential of permuta-

tion training, as it corresponds well with the training process and has systematic

mathematical descriptions. Specifically, the patterns observed in Figure 3.9 can

intuitively lead to certain weight categorization strategies, potentially benefit con-

solidating the crucial weights for previous tasks [64], or pruning to find the ideal

subnetwork in the lottery ticket hypothesis [26]. Additionally, the existing permu-

tation training algorithm shares the same form as weight projection methods in

continual learning [93], as it can be viewed as applying an order-preserving projec-

tion from the free training results to the initial weight value.
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The Algorithmic Implementation

This work is expected to facilitate the applications of permutation training.

However, some practical issues still exist and deserve further investigation. As a

preliminary attempt, the existing permutation training algorithm, LaPerm, guides

the permutation by inner loops, thus incurring undesirable external computation

costs. However, employing more advanced and efficient search approaches, such

as the learn-to-rank formalism [9], or permutation search algorithms in the study

of LMC [1, 44], the benefits of permutation training will be actualized in practice.

Importantly, our proof does not rely on any specific algorithmic implementations.

Additionally, the incompatible initialization issue plotted in Figure 3.3(b) empha-

sizes the need for developing more effective initializations as well as investigating

the criterion of UAP-compatible initializations.

2. Future Directions of Sidecar

As a versatile framework, Sidecar can be applied to various PDEs with differ-

ent structure-preserving properties. Here is a brief discussion of potential future

directions.

Extending to More Complex PDEs

Future work will extend the Sidecar framework to more complex and high-

dimensional PDEs, such as high-dimensional Allen-Cahn equations or Navier-Stokes

equations. Thanks to the additional structure information provided by the Sidecar

framework, we can also explore the possibility of accelerating the training process

in larger-scale problems.

Exploring Local Structure Properties

The current implementation of Sidecar focuses on global quantities of inter-

est, such as energy dissipation, mass conservation, and momentum conservation.
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However, many other structure-preserving properties exist in the form of local con-

straints, such as the divergence-free condition in incompressible Navier-Stokes equa-

tions, or the local energy dissipation law in the Cahn-Hilliard equation [67]. Random

sampling strategies can be employed to incorporate these local constraints into the

Sidecar framework.

Preserving Multiple Structure-Preserving Properties

It’s also worth exploring the preservation of multiple structure-preserving proper-

ties simultaneously, which can be achieved by designing a more sophisticated struc-

ture loss function or using a multi-task learning approach. For example, in the case

of NLS equations, we can consider the preservation of both mass and momentum

conservation properties.

Integrating with Operator Learning

Integrating Sidecar with the evolution-operator learning methods like FNO [60]

to enhance physical fidelity during temporal evolution is another promising direc-

tion. There are also some recent works that incorporate structure-preserving into

operator learning methods, such as [94]. This approach is based on the scalar aux-

iliary variable (SAV) method [79], sharing the same idea of Lagrange multipliers

as TSDR. Therefore, the Sidecar framework can be easily integrated with these

operator learning methods to facilitate the training process.
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